Sample records for xenobiotic efflux transporters

  1. Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters.

    PubMed

    Liu, Su; Jiang, Wei; Wu, Bing; Yu, Jing; Yu, Haiyan; Zhang, Xu-Xiang; Torres-Duarte, Cristina; Cherr, Gary N

    2016-01-01

    Low levels of graphene and graphene oxide (GO) are considered to be environmentally safe. In this study, we analyzed the potential effects of graphene and GO at relatively low concentrations on cellular xenobiotic defense system mediated by efflux transporters. The results showed that graphene (<0.5 μg/mL) and GO (<20 μg/mL) did not decrease cell viability, generate reactive oxygen species, or disrupt mitochondrial function. However, graphene and GO at the nontoxic concentrations could increase calcein-AM (CAM, an indicator of membrane ATP-binding cassette (ABC) transporter) activity) accumulation, indicating inhibition of ABC transporters' efflux capabilities. This inhibition was observed even at 0.005 μg/mL graphene and 0.05 μg/mL GO, which are 100 times and 400 times lower than their lowest toxic concentration from cytotoxicity experiments, respectively. The inhibition of ABC transporters significantly increased the toxicity of paraquat and arsenic, known substrates of ABC transporters. The inhibition of ABC transporters was found to be based on graphene and GO damaging the plasma membrane structure and fluidity, thus altering functions of transmembrane ABC transporters. This study demonstrates that low levels of graphene and GO are not environmentally safe since they can significantly make cell more susceptible to other xenobiotics, and this chemosensitizing activity should be considered in the risk assessment of graphene and GO.

  2. Xenobiotic Transporter Expression along the Male Genital Tract1

    PubMed Central

    Klein, David M.; Wright, Stephen H.; Cherrington, Nathan J.

    2015-01-01

    The male genital tract plays an important role in protecting sperm by forming a distinct compartment separate from the body which limits exposure to potentially toxic substrates. Transporters along this tract can influence the distribution of xenobiotics into the male genital tract through efflux back into the blood or facilitating the accumulation of toxicants. The aim of this study was to quantitatively determine the constitutive mRNA expression of 30 xenobiotic transporters in caput and cauda regions of the epididymis, vas deferens, prostate, and seminal vesicles from adult Sprague-Dawley rats. The epididymis was found to express at least moderate levels of 18 transporters, vas deferens 15, seminal vesicles 23, and prostate 18. Constitutive expression of these xenobiotic transporters in the male genital tract may provide insight into the xenobiotics that can potentially be transported into these tissues and may provide the molecular mechanism for site specific toxicity of select agents. PMID:24814985

  3. Structure-activity relationships for xenobiotic transport substrates and inhibitory ligands of P-glycoprotein.

    PubMed Central

    Bain, L J; McLachlan, J B; LeBlanc, G A

    1997-01-01

    The multixenobiotic resistance phenotype is characterized by the reduced accumulation of xenobiotics by cells or organisms due to increased efflux of the compounds by P-glycoprotein (P-gp) or related transporters. An extensive xenobiotic database, consisting primarily of pesticides, was utilized in this study to identify molecular characteristics that render a xenobiotic susceptible to transport by or inhibition of P-gp. Transport substrates were differentiated by several molecular size/shape parameters, lipophilicity, and hydrogen bonding potential. Electrostatic features differentiated inhibitory ligands from compounds not catagorized as transport substrates and that did no interact with P-gp. A two-tiered system was developed using the derived structure-activity relationships to identify P-gp transport substrates and inhibitory ligands. Prediction accuracy of the approach was 82%. We then validated the system using six additional pesticides of which tow were predicted to be P-gp inhibitors and four were predicted to be noninteractors, based upon the structure-activity analyses. Experimental determinations using cells transfected with the human MDR1 gene demonstrated that five of the six pesticides were properly catagorized by the structure-activity analyses (83% accuracy). Finally, structure-activity analyses revealed that among P-gp inhibitors, relative inhibitory potency can be predicted based upon the surface area or volume of the compound. These results demonstrate that P-gp transport substrates and inhibitory ligands can be distinguished using molecular characteristics. Molecular characteristics of transport substrates suggest that P-gp may function in the elimination of hydroxylated metabolites of xenobiotics. Images Figure 1. A Figure 1. B Figure 1. C Figure 1. D Figure 1. E Figure 1. F Figure 1. G Figure 1. H Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. Figure 3. A Figure 3. B PMID:9347896

  4. Recent Advances in Understanding of Kinetic Interplay Between Phase II Metabolism and Efflux Transport.

    PubMed

    Wang, Shuai; Xing, Huijie; Zhao, Mengjing; Lu, Danyi; Li, Zhijie; Dong, Dong; Wu, Baojian

    2016-01-01

    Mechanistic understanding of the metabolism-transport interplay assumes great importance in pharmaceutical fields because the knowledge can help to interpret drug/xenobiotic metabolism and disposition studies as well as the drug-drug interactions in vivo. About 10 years ago, it started to recognize that cellular phase II metabolism is strongly influenced by the excretion (efflux transport) of generated metabolites, a kinetic phenomenon termed "phase II metabolism-transport interplay". This interplay is believed to have significant effects on the pharmacokinetics (bioavailability) of drugs/chemicals undergoing phase II metabolism. In this article, we review the studies investigating the phase II metabolism-transport interplay using cell models, perfused rat intestine, and intact rats. The potential confounding factors in exploring such interplay is also summarized. Moreover, the mechanism underlying the phase II metabolism-transport interplay is discussed. Various studies with engineered cells and rodents have demonstrated that there is an interaction (interplay) between phase II enzymes and efflux transporters. This type of interplay mainly refers to the dependence of phase II (conjugative) metabolism on the activities of efflux transporters. In general, inhibiting efflux transporters or decreasing their expression causes the reductions in metabolite excretion, apparent excretion clearance (CLapp) and total metabolism (fmet), as well as an increase in the intracellular level of metabolite (Ci). The deconjugation mediated by hydrolase (acting as a "bridge") is essential for the interplay to play out based on pharmacokinetic modeling/simulations, cell and animal studies. The hydrolases bridge the two processes (i.e., metabolite formation and excretion) and enable the interplay thereof (a bridging effect). Without the bridge, metabolite formation is independent on its downstream process excretion, thus impact of metabolite excretion on its formation is impossible

  5. Detection and functional characterization of Pgp1 (ABCB1) and MRP3 (ABCC3) efflux transporters in the PLHC-1 fish hepatoma cell line.

    PubMed

    Zaja, Roko; Klobucar, Roberta Sauerborn; Smital, Tvrtko

    2007-03-30

    The PLHC-1 hepatoma cell line derived from topminnow (Poeciliopsis lucida) is one of the most frequently used fish cell lines in aquatic ecotoxicology. These cells have been well characterized regarding the presence of phase I and phase II enzymes involved in the metabolism of xenobiotics. However, the presence of the ABC transport proteins possibly involved in the MultiXenobiotic Resistance (MXR) mechanism as phase III of cellular detoxification has never been described in the PLHC-1 cells. The main goal of this study was the detection and functional characterization of toxicologically relevant xenobiotic efflux transporters from ABCB and ABCC subfamily in the PLHC-1 cells. Using specific primer pairs two PCR products 1769 and 1023bp in length were successfully cloned and sequenced. Subsequent multiple alignment and phylogenetic analysis showed that these sequences share a high degree of homology with the P-glycoprotein (Pgp1; ABCB1) and the MRP3 (ABCC3). Functional experiments with fluorescent model substrates and specific inhibitors were used to verify that transport activities of Pgp- and MRP-related proteins are indeed present in PLHC-1 cells. Accumulation or efflux/retention rates of rhodamine 123, calcein-AM or monochlorbimane were time- and concentration-dependent. Cyclosporine A, MK571, verapamil, reversine 205, indomethacine and probenecid were used as specific inhibitors of Pgp1 and/or MRPs transport activities, resulting in a dose dependent inhibition of related transport activities in PLHC-1 cells. Similar to mammalian systems, the obtained IC(50) values were in the lower micromolar range. Taken together these data demonstrate that: (1) the PLHC-1 cells do express a functional MXR mechanism mediated by toxicologically relevant ABC efflux transporters; and (2) the presence of all three critical phases of cellular detoxification additionally affirms the PLHC-1 cells as a reliable in vitro model in aquatic toxicology.

  6. A proposed role for efflux transporters in the pathogenesis of hydrocephalus

    PubMed Central

    Krishnamurthy, Satish; Tichenor, Michael D.; Satish, Akhila G.; Lehmann, David B.

    2014-01-01

    Hydrocephalus is a common brain disorder that is treated only with surgery. The basis for surgical treatment rests on the circulation theory. However, clinical and experimental data to substantiate circulation theory have remained inconclusive. In brain tissue and in the ventricles, we see that osmotic gradients drive water diffusion in water-permeable tissue. As the osmolarity of ventricular CSF increases within the cerebral ventricles, water movement into the ventricles increases and causes hydrocephalus. Macromolecular clearance from the ventricles is a mechanism to establish the normal CSF osmolarity, and therefore ventricular volume. Efflux transporters, (p-glycoprotein), are located along the blood brain barrier and play an important role in the clearance of macromolecules (endobiotics and xenobiotics) from the brain to the blood. There is clinical and experimental data to show that macromolecules are cleared out of the brain in normal and hydrocephalic brains. This article summarizes the existing evidence to support the role of efflux transporters in the pathogenesis of hydrocephalus. The location of p-gp along the pathways of macromolecular clearance and the broad substrate specificity of this abundant transporter to a variety of different macromolecules are reviewed. Involvement of p-gp in the transport of amyloid beta in Alzheimer disease and its relation to normal pressure hydrocephalus is reviewed. Finally, individual variability of p-gp expression might explain the variability in the development of hydrocephalus following intraventricular hemorrhage. PMID:25165050

  7. Targeting efflux pumps to overcome antifungal drug resistance

    PubMed Central

    Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D

    2016-01-01

    Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps. PMID:27463566

  8. Inhibition of the Human ABC Efflux Transporters P-gp and ...

    EPA Pesticide Factsheets

    High body burdens of polybrominated diphenyl ethers (PBDEs) in infants and young children have led to increased concern over their potential impact on human development. PBDE exposure can alter the expression of genes involved in thyroid homeostasis, including those of ATP-binding cassette (ABC) transporters, which mediate cellular xenobiotic efflux. However, little information exists on how PBDEs interact with ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). The purpose of this study was to evaluate the interactions of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) and its hydroxylated metabolite 6-OH-BDE-47 with P-gp and BCRP, using human MDR1- and BCRP-expressing membrane vesicles and stably transfected NIH-3T3-MDR1 and MDCK-BCRP cells. In P-gp membranes, BDE-47 did not affect P-gp activity; however, 6-OH-BDE-47 inhibited P-gp activity at low µM concentrations (IC50 = 11.7 µM). In BCRP membranes, BDE-47 inhibited BCRP activity; however, 6-OH-BDE-47 was a stronger inhibitor [IC50 = 45.9 µM (BDE-47) vs. IC50 = 9.4 µM (6-OH-BDE-47)]. Intracellular concentrations of known P-gp and BCRP substrates [(3H)-paclitaxel and (3H)-prazosin, respectively] were significantly higher (indicating less efflux) in NIH-3T3-MDR1 and MDCK-BCRP cells in the presence of 6-OH-BDE-47, but not BDE-47. Collectively, our results indicate that the BDE-47 metabolite 6-OH-BDE-47 is an inhibitor of both P-gp and BCRP efflux activity.

  9. Interaction of BDE-47 and its Hydroxylated Metabolite 6-OH-BDE-47 with the Human ABC Efflux Transporters P-gp and BCRP: Considerations for Human Exposure and Risk Assessment

    EPA Science Inventory

    ATP binding cassette (ABC) transporters, including P-glycoprotein (P-gp; also known as MDR1, ABCB1) and breast cancer resistance protein (BCRP; also known as ABCG2), are membrane-bound proteins that mediate the cellular efflux of xenobiotics as an important defense against chemic...

  10. Kinetic modelling of passive transport and active efflux of a fluoroquinolone across Caco-2 cells using a compartmental approach in NONMEM.

    PubMed

    González-Alvarez, I; Fernández-Teruel, C; Garrigues, T M; Casabo, V G; Ruiz-García, A; Bermejo, M

    2005-12-01

    The purpose was to develop a general mathematical model for estimating passive permeability and efflux transport parameters from in vitro cell culture experiments. The procedure is applicable for linear and non-linear transport of drug with time, <10 or >10% of drug transport, negligible or relevant back flow, and would allow the adequate correction in the case of relevant mass balance problems. A compartmental kinetic approach was used and the transport barriers were described quantitatively in terms of apical and basolateral clearances. The method can be applied when sink conditions are not achieved and it allows the evaluation of the location of the transporter and its binding site. In this work it was possible to demonstrate, from a functional point of view, the higher efflux capacity of the TC7 clone and to identify the apical membrane as the main resistance for the xenobiotic transport. This methodology can be extremely useful as a complementary tool for molecular biology approaches in order to establish meaningful hypotheses about transport mechanisms.

  11. A Perspective on Efflux Transport Proteins in the Liver

    PubMed Central

    Kock, K; Brouwer, K.L.R

    2013-01-01

    Detailed knowledge regarding the influence of hepatic transport proteins on drug disposition has advanced at a rapid pace over the past decade. Efflux transport proteins located in the basolateral and apical (canalicular) membranes of hepatocytes play an important role in the hepatic elimination of many endogenous and exogenous compounds, including drugs and metabolites. This review focuses on the role of these efflux transporters in hepatic drug excretion. The impact of these proteins as underlying factors for disease is highlighted, and the importance of hepatic efflux proteins in the efficacy and toxicity of drugs is discussed. In addition, a brief overview of methodology to evaluate the function of hepatic efflux transport proteins is provided. Current challenges in predicting the impact of altered efflux protein function on systemic, intestinal and hepatocyte exposure to drugs and metabolites are highlighted. PMID:22948894

  12. Phase 0 and phase III transport in various organs: combined concept of phases in xenobiotic transport and metabolism.

    PubMed

    Döring, Barbara; Petzinger, Ernst

    2014-08-01

    The historical phasing concept of drug metabolism and elimination was introduced to comprise the two phases of metabolism: phase I metabolism for oxidations, reductions and hydrolyses, and phase II metabolism for synthesis. With this concept, biological membrane barriers obstructing the accessibility of metabolism sites in the cells for drugs were not considered. The concept of two phases was extended to a concept of four phases when drug transporters were detected that guided drugs and drug metabolites in and out of the cells. In particular, water soluble or charged drugs are virtually not able to overcome the phospholipid membrane barrier. Drug transporters belong to two main clusters of transporter families: the solute carrier (SLC) families and the ATP binding cassette (ABC) carriers. The ABC transporters comprise seven families with about 20 carriers involved in drug transport. All of them operate as pumps at the expense of ATP splitting. Embedded in the former phase concept, the term "phase III" was introduced by Ishikawa in 1992 for drug export by ABC efflux pumps. SLC comprise 52 families, from which many carriers are drug uptake transporters. Later on, this uptake process was referred to as the "phase 0 transport" of drugs. Transporters for xenobiotics in man and animal are most expressed in liver, but they are also present in extra-hepatic tissues such as in the kidney, the adrenal gland and lung. This review deals with the function of drug carriers in various organs and their impact on drug metabolism and elimination.

  13. Killing them with kindness? In-hive medications may inhibit xenobiotic efflux transporters and endanger honey bees.

    PubMed

    Hawthorne, David J; Dively, Galen P

    2011-01-01

    Honey bees (Apis mellifera) have recently experienced higher than normal overwintering colony losses. Many factors have been evoked to explain the losses, among which are the presence of residues of pesticides and veterinary products in hives. Multiple residues are present at the same time, though most often in low concentrations so that no single product has yet been associated with losses. Involvement of a combination of residues to losses may however not be excluded. To understand the impact of an exposure to combined residues on honey bees, we propose a mechanism-based strategy, focusing here on Multi-Drug Resistance (MDR) transporters as mediators of those interactions. Using whole-animal bioassays, we demonstrate through inhibition by verapamil that the widely used organophosphate and pyrethroid acaricides coumaphos and τ-fluvalinate, and three neonicotinoid insecticides: imidacloprid, acetamiprid and thiacloprid are substrates of one or more MDR transporters. Among the candidate inhibitors of honey bee MDR transporters is the in-hive antibiotic oxytetracycline. Bees prefed oxytetracycline were significantly sensitized to the acaricides coumaphos and τ-fluvalinate, suggesting that the antibiotic may interfere with the normal excretion or metabolism of these pesticides. Many bee hives receive regular treatments of oxytetracycline and acaricides for prevention and treatment of disease and parasites. Our results suggest that seasonal co-application of these medicines to bee hives could increase the adverse effects of these and perhaps other pesticides. Our results also demonstrate the utility of a mechanism-based strategy. By identifying pesticides and apicultural medicines that are substrates and inhibitors of xenobiotic transporters we prioritize the testing of those chemical combinations most likely to result in adverse interactions.

  14. Regulation of hepatic ABCC transporters by xenobiotics and in disease states

    PubMed Central

    Gu, Xinsheng; Manautou, Jose E.

    2015-01-01

    The subfamily of ABCC transporters consists of 13 members in mammals, including the multidrug resistance-associated proteins (MRPs), sulfonylurea receptors (SURs), and the cystic fibrosis transmembrane conductance regulator (CFTR). These proteins play roles in chemical detoxification, disposition, and normal cell physiology. ABCC transporters are expressed differentially in the liver and are regulated at the transcription and translation level. Their expression and function are also controlled by post-translational modification and membrane-trafficking events. These processes are tightly regulated. Information about alterations in the expression of hepatobiliary ABCC transporters could provide important insights into the pathogenesis of diseases and disposition of xenobiotics. In this review, we describe the regulation of hepatic ABCC transporters in humans and rodents by a variety of xenobiotics, under disease states and in genetically modified animal models deficient in transcription factors, transporters, and cell-signaling molecules. PMID:20233023

  15. Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Chih-Chia; Yin, Linxiang; Kumar, Nitin

    2017-08-01

    Resistance-nodulation-cell division efflux pumps are integral membrane proteins that catalyze the export of substrates across cell membranes. Within the hydrophobe-amphiphile efflux subfamily, these resistance-nodulation-cell division proteins largely form trimeric efflux pumps. The drug efflux process has been proposed to entail a synchronized motion between subunits of the trimer to advance the transport cycle, leading to the extrusion of drug molecules. Here we use X-ray crystallography and single-molecule fluorescence resonance energy transfer imaging to elucidate the structures and functional dynamics of the Campylobacter jejuni CmeB multidrug efflux pump. We find that the CmeB trimer displays a very unique conformation. A directmore » observation of transport dynamics in individual CmeB trimers embedded in membrane vesicles indicates that each CmeB subunit undergoes conformational transitions uncoordinated and independent of each other. On the basis of our findings and analyses, we propose a model for transport mechanism where CmeB protomers function independently within the trimer.« less

  16. Efflux drug transporters at the forefront of antimicrobial resistance.

    PubMed

    Rahman, Tahmina; Yarnall, Benjamin; Doyle, Declan A

    2017-10-01

    Bacterial antibiotic resistance is rapidly becoming a major world health consideration. To combat antibiotics, microorganisms employ their pre-existing defence mechanisms that existed long before man's discovery of antibiotics. Bacteria utilise levels of protection that range from gene upregulation, mutations, adaptive resistance, and production of resistant phenotypes (persisters) to communal behaviour, as in swarming and the ultimate defence of a biofilm. A major part of all of these responses involves the use of antibiotic efflux transporters. At the single cell level, it is becoming apparent that the use of efflux pumps is the first line of defence against an antibiotic, as these pumps decrease the intracellular level of antibiotic while the cell activates the various other levels of protection. This frontline of defence involves a coordinated network of efflux transporters. In the future, inhibition of this efflux transporter network, as a target for novel antibiotic therapy, will require the isolation and then biochemical/biophysical characterisation of each pump against all known and new antibiotics. This depth of knowledge is required so that we can fully understand and tackle the mechanisms of developing antimicrobial resistance.

  17. Efflux proteins at the blood-brain barrier: review and bioinformatics analysis.

    PubMed

    Saidijam, Massoud; Karimi Dermani, Fatemeh; Sohrabi, Sareh; Patching, Simon G

    2018-05-01

    1. Efflux proteins at the blood-brain barrier provide a mechanism for export of waste products of normal metabolism from the brain and help to maintain brain homeostasis. They also prevent entry into the brain of a wide range of potentially harmful compounds such as drugs and xenobiotics. 2. Conversely, efflux proteins also hinder delivery of therapeutic drugs to the brain and central nervous system used to treat brain tumours and neurological disorders. For bypassing efflux proteins, a comprehensive understanding of their structures, functions and molecular mechanisms is necessary, along with new strategies and technologies for delivery of drugs across the blood-brain barrier. 3. We review efflux proteins at the blood-brain barrier, classified as either ATP-binding cassette (ABC) transporters (P-gp, BCRP, MRPs) or solute carrier (SLC) transporters (OATP1A2, OATP1A4, OATP1C1, OATP2B1, OAT3, EAATs, PMAT/hENT4 and MATE1). 4. This includes information about substrate and inhibitor specificity, structural organisation and mechanism, membrane localisation, regulation of expression and activity, effects of diseases and conditions and the principal technique used for in vivo analysis of efflux protein activity: positron emission tomography (PET). 5. We also performed analyses of evolutionary relationships, membrane topologies and amino acid compositions of the proteins, and linked these to structure and function.

  18. Xenobiotic, Bile Acid, and Cholesterol Transporters: Function and Regulation

    PubMed Central

    Aleksunes, Lauren M.

    2010-01-01

    Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting β polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) α and β] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory

  19. Effect of proinflammatory cytokine IL-6 on efflux transport of rebamipide in Caco-2 cells.

    PubMed

    Miyake, Masateru; Nakai, Daisuke

    2017-09-01

    1. Effect of IL-6, a pro-inflammatory cytokine, on efflux transport of rebamipide, an antiulcer drug, was investigated in Caco-2 cells. 2. Rebamipide had a greater basal-to-apical than apical-to-basal transport rate. Efflux transport of rebamipide was inhibited by cyclosporine A, a P-gp inhibitor, and probenecid, which is a general MRP inhibitor, but not by Ko143, a BCRP inhibitor. 3. By the addition of IL-6, mannitol transport was slightly increased in a concentration-dependent manner in both directions of absorption and efflux. The addition of IL-6 did not change efflux transport of rebamipide even though efflux transport of digoxin, a typical substrate of P-gp, was significantly decreased by the addition of IL-6, indicating decrease of the function of P-gp. 4. Therefore, it was suggested that increase of MRP(s)-mediated transport compensates for the decrease of P-gp mediated transport of rebamipide. These findings suggested that rebamipide absorption is unlikely to be changed in IBD patients.

  20. Interplay of drug metabolizing enzymes with cellular transporters.

    PubMed

    Böhmdorfer, Michaela; Maier-Salamon, Alexandra; Riha, Juliane; Brenner, Stefan; Höferl, Martina; Jäger, Walter

    2014-11-01

    Many endogenous and xenobiotic substances and their metabolites are substrates for drug metabolizing enzymes and cellular transporters. These proteins may not only contribute to bioavailability of molecules but also to uptake into organs and, consequently, to overall elimination. The coordinated action of uptake transporters, metabolizing enzymes, and efflux pumps, therefore, is a precondition for detoxification and elimination of drugs. As the understanding of the underlying mechanisms is important to predict alterations in drug disposal, adverse drug reactions and, finally, drug-drug interactions, this review illustrates the interplay between selected uptake/efflux transporters and phase I/II metabolizing enzymes.

  1. Effect of drug efflux transporters on placental transport of antiretroviral agent abacavir.

    PubMed

    Neumanova, Zuzana; Cerveny, Lukas; Greenwood, Susan L; Ceckova, Martina; Staud, Frantisek

    2015-11-01

    Abacavir is as a frequent part of combination antiretroviral therapy used in pregnant women. The aim of this study was to investigate, using in vitro, in situ and ex vivo experimental approaches, whether the transplacental pharmacokinetics of abacavir is affected by ATP-binding cassette (ABC) efflux transporters functionally expressed in the placenta: P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), multidrug resistance-associated protein 2 (ABCC2) and multidrug resistance-associated protein 5 (ABCC5). In vitro transport assays revealed that abacavir is a substrate of human ABCB1 and ABCG2 transporters but not of ABCC2 or ABCC5. In addition, in situ experiments using dually perfused rat term placenta confirmed interactions of abacavir with placental Abcb1/Abcg2. In contrast, uptake studies in human placental villous fragments did not reveal any interaction of abacavir with efflux transporters suggesting a large contribution of passive diffusion and/or influx mechanisms to net transplacental abacavir transfer. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Multiple resistance to carcinogens and xenobiotics: P-glycoproteins as universal detoxifiers.

    PubMed

    Efferth, Thomas; Volm, Manfred

    2017-07-01

    The detoxification of toxic substances is of general relevance in all biological systems. The plethora of exogenous xenobiotic compounds and endogenous toxic metabolic products explains the evolutionary pressure of all organisms to develop molecular mechanisms to detoxify and excrete harmful substances from the body. P-glycoprotein and other members of the ATP-binding cassette (ABC) transporter family extrude innumerous chemical compounds out of cells. Their specific expression in diverse biological contexts cause different phenotypes: (1) multidrug resistance (MDR) and thus failure of cancer chemotherapy, (2) avoidance of accumulation of carcinogens and prevention of carcinogenesis in healthy tissues, (3) absorption, distribution, metabolization and excretion (ADME) of pharmacological drugs in human patients, (4) protection from environmental toxins in aquatic organisms (multi-xenobiotic resistance, MXR). Hence ABC-transporters may have opposing effects for organismic health reaching from harmful in MDR of tumors to beneficial for maintenance of health in MXR. While their inhibition by specific inhibitors may improve treatment success in oncology and avoid carcinogenesis, blocking of ABC-transporter-driven efflux by environmental pollutants leads to ecotoxicological consequences in marine biotopes. Poisoned seafood may enter the food-chain and cause intoxications in human beings. As exemplified with ABC-transporters, joining forces in interdisciplinary research may, therefore, be a wise strategy to fight problems in human medicine and environmental sciences.

  3. Transintestinal transport of the anti-inflammatory drug 4F and the modulation of transintestinal cholesterol efflux[S

    PubMed Central

    Meriwether, David; Sulaiman, Dawoud; Wagner, Alan; Grijalva, Victor; Kaji, Izumi; Williams, Kevin J.; Yu, Liqing; Fogelman, Spencer; Volpe, Carmen; Bensinger, Steven J.; Anantharamaiah, G. M.; Shechter, Ishaiahu; Fogelman, Alan M.; Reddy, Srinivasa T.

    2016-01-01

    The site and mechanism of action of the apoA-I mimetic peptide 4F are incompletely understood. Transintestinal cholesterol efflux (TICE) is a process involved in the clearance of excess cholesterol from the body. While TICE is responsible for at least 30% of the clearance of neutral sterols from the circulation into the intestinal lumen, few pharmacological agents have been identified that modulate this pathway. We show first that circulating 4F selectively targets the small intestine (SI) and that it is predominantly transported into the intestinal lumen. This transport of 4F into the SI lumen is transintestinal in nature, and it is modulated by TICE. We also show that circulating 4F increases reverse cholesterol transport from macrophages and cholesterol efflux from lipoproteins via the TICE pathway. We identify the cause of this modulation of TICE either as 4F being a cholesterol acceptor with respect to enterocytes, from which 4F enhances cholesterol efflux, or as 4F being an intestinal chaperone with respect to TICE. Our results assign a novel role for 4F as a modulator of the TICE pathway and suggest that the anti-inflammatory functions of 4F may be a partial consequence of the codependent intestinal transport of both 4F and cholesterol. PMID:27199144

  4. [THE SYSTEM OF XENOBIOTICS BIOTRANSFORMATION OF HELMINTHS. RESEMBLANCE AND DIFFERENSES FROM SIMILAR HOST SYSTEMS (REWEW)].

    PubMed

    Smirnov, L P; Borvinskaya, E V; Suhovskaya, I V

    2016-01-01

    The three phases system xenobiotic biotransformation in cells as prokaryotes as eukaryotes was formed during the process of evolution. Clear and managed function of all three links of this system guarantee the survival of living organisms at alteration of chemical component of environment. Oxidation, reduction or hydrolysis of xenobiotics realize in phase I by insertion or opening reactive and hydrophilic groups in structure of drug molecule. In phase II xenobiotics or their metabolites from phase I conjugate with endogenic compounds, main of there are glutathione, glucuronic acid, amino acids and sulphates. Active transport of substrata, metabolites and conjugates through cell lipid membranes special transport proteins carry out (phase III). The system of xenobiotics biotransformation of helminths has essential differences from the same of vertebrate hosts. In particular, parasites do not reveal the activity of prime oxidases of phase I, such as CYP or FMO, in spite of the genes of these enzymes in DNA. As this phenomenon displays mainly in adult helminths, living in guts of vertebrates, then the hypothesis was formulated that this effect is related with adaptation to conditions of strong deficiency of oxygen, arise in a process of evolution (Kotze et al., 2006). Literature data testify the existence in helminths of unique forms of enzymes of phase II, the investigation of which present doubtless interest in relation with possible role in adaptation to parasitic mode of life. Notwithstanding that many of helminths GST in greater or lesser degree similar with enzymes of M, P, S and О classes of other organisms, nevertheless they have essential structural differences as compared with enzymes of hosts that makes perspective the search of specific anthelminthics vaccines. Transport of xenobiotics is now considered phase III of biotransformation. It was shown that proteins of this phase (ATP binding cassette transporters (ABC ) of parasites) play a key role in efflux

  5. Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters.

    PubMed

    Groothuis, Dennis R; Vavra, Michael W; Schlageter, Kurt E; Kang, Eric W-Y; Itskovich, Andrea C; Hertzler, Shannon; Allen, Cathleen V; Lipton, Howard L

    2007-01-01

    We examined the roles of diffusion, convection and capillary transporters in solute removal from extracellular space (ECS) of the brain. Radiolabeled solutes (eight with passive distribution and four with capillary or cell transporters) were injected into the brains of rats (n=497) and multiple-time point experiments measured the amount remaining in brain as a function of time. For passively distributed compounds, there was a relationship between lipid:water solubility and total brain efflux:diffusional efflux, which dominated when k(p), the transcapillary efflux rate constant, was >10(0) h(-1); when 10(-1)efflux dominated. Para-aminohippuric acid (PAH) experiments (n=112) showed that PAH entered the brain passively, but had efflux transporters. The total efflux rate constant, k(eff), was the sum of a passive component (k(p)=0.0018 h(-1)), a convective component (k(csf)=0.2 h(-1)), and a variable, concentration-dependent component (k(x)=0 to 0.45 h(-1)). Compounds with cell membrane transporters had longer clearance half times as did an oligonucleotide, which interacted with cell surface receptors. Manipulation of physiologic state (n=35) did not affect efflux, but sucrose efflux half time was longer with pentobarbital anesthesia (24 h) than with no anesthesia or ketamine-xylazine anesthesia (2 to 3 h). These results show that solute clearance from normal brain ECS may involve multiple physiologic pathways, may be affected by anesthesia, and suggests that convection-mediated efflux may be manipulated to increase or decrease drug clearance from brain.

  6. Role of human placental apical membrane transporters in the efflux of glyburide, rosiglitazone, and metformin

    PubMed Central

    HEMAUER, Sarah J.; PATRIKEEVA, Svetlana L.; NANOVSKAYA, Tatiana N.; HANKINS, Gary D.V.; AHMED, Mahmoud S.

    2010-01-01

    Objective Substrates of placental efflux transporters could compete for a single transporter, which could result in an increase in the transfer of each substrate to the fetal circulation. Our aim was to determine the role of placental transporters in the biodisposition of oral hypoglycemic drugs that could be used as monotherapy or in combination therapy for gestational diabetes. Study design Inside-out brush border membrane vesicles from term placentas were used to determine the efflux of glyburide, rosiglitazone, and metformin by P-gp, Breast Cancer Resistance Protein (BCRP), and Multidrug Resistance Protein (MRP1). Results Glyburide was transported by MRP1 (43 ± 4%); BCRP (25 ± 5%); and P-gp (9 ± 5%). Rosiglitazone was transported predominantly by P-gp (71 ± 26%). Metformin was transported by P-gp (58 ± 20%) and BCRP (25 ± 14%). Conclusion Multiple placental transporters contribute to efflux of glyburide, rosiglitazone, and metformin. Administration of drug combinations could lead to their competition for efflux transporters. PMID:20350646

  7. Chronic administration of phenytoin induces efflux transporter overexpression in rats.

    PubMed

    Alvariza, Silvana; Fagiolino, Pietro; Vázquez, Marta; Feria-Romero, Iris; Orozco-Suárez, Sandra

    2014-12-01

    Efflux transporters overexpression has been proposed as one of the responsible mechanism for refractory epilepsy by preventing access of the antiepileptic drug to the brain. In this work we investigated whether phenytoin (PHT), could induce efflux transporters overexpression, at different biological barriers and to evaluate the implication it could have on its pharmacokinetics and therapeutic/toxic response. Forty-two adult females Sprague Dawley divided in five groups were treated with oral doses of 25, 50 and 75mg/kg/6h of PHT for 3 days and two additionally groups were treated with intraperitoneal (ip) doses of 25mg/kg/6h or 100mg/kg/24h. At day 4 PHT plasma concentrations were measured and, obtained several organs, brain, parotid gland, liver and duodenum in which were analyzed for the Pgp expression. At day 4 PHT plasma concentrations were measured and several tissues: brain, parotid gland, liver and duodenum were obtained in order to analyze Pgp expression. In order to evaluate the oral bioavailability of PHT, two groups were administered with oral or intraperitoneal doses of 100mg/kg and plasma level were measured. An induction of the expression of efflux transporter mediated by phenytoin in a concentration-and-time dependent manner was found when increasing oral and ip doses of phenytoin, One week after the interruption of ip treatment a basal expression of transporters was recovered. Overexpression of efflux transporters can be mediated by inducer agents like PHT in a local-concentration dependent manner, and it is reversible once the substance is removed from the body. The recovery of basal Pgp expression could allow the design of dosing schedules that optimize anticonvulsant therapy. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. A primary fish gill cell culture model to assess pharmaceutical uptake and efflux: Evidence for passive and facilitated transport

    PubMed Central

    Stott, Lucy C.; Schnell, Sabine; Hogstrand, Christer; Owen, Stewart F.; Bury, Nic R.

    2015-01-01

    The gill is the principle site of xenobiotic transfer to and from the aqueous environment. To replace, refine or reduce (3Rs) the large numbers of fish used in in vivo uptake studies an effective in vitro screen is required that mimics the function of the teleost gill. This study uses a rainbow trout (Oncorhynchus mykiss) primary gill cell culture system grown on permeable inserts, which tolerates apical freshwater thus mimicking the intact organ, to assess the uptake and efflux of pharmaceuticals across the gill. Bidirectional transport studies in media of seven pharmaceuticals (propranolol, metoprolol, atenolol, formoterol, terbutaline, ranitidine and imipramine) showed they were transported transcellularly across the epithelium. However, studies conducted in water showed enhanced uptake of propranolol, ranitidine and imipramine. Concentration-equilibrated conditions without a concentration gradient suggested that a proportion of the uptake of propranolol and imipramine is via a carrier-mediated process. Further study using propranolol showed that its transport is pH-dependent and at very low environmentally relevant concentrations (ng L−1), transport deviated from linearity. At higher concentrations, passive uptake dominated. Known inhibitors of drug transport proteins; cimetidine, MK571, cyclosporine A and quinidine inhibited propranolol uptake, whilst amantadine and verapamil were without effect. Together this suggests the involvement of specific members of SLC and ABC drug transporter families in pharmaceutical transport. PMID:25544062

  9. Kinetic Parameters of Efflux of Penicillins by the Multidrug Efflux Transporter AcrAB-TolC of Escherichia coli▿

    PubMed Central

    Lim, Siew Ping; Nikaido, Hiroshi

    2010-01-01

    The multidrug efflux transporter AcrAB-TolC is known to pump out a diverse range of antibiotics, including β-lactams. However, the kinetic constants of the efflux process, needed for the quantitative understanding of resistance, were not available until those accompanying the efflux of some cephalosporins were recently determined by combining efflux with the hydrolysis of drugs by the periplasmic β-lactamase. In the present study we extended this approach to the study of a wide range of penicillins, from ampicillin and penicillin V to ureidopenicillins and isoxazolylpenicillins, by combining efflux with hydrolysis with the OXA-7 penicillinase. We found that the penicillins had a much stronger apparent affinity to AcrB and higher maximum rates of efflux than the cephalosporins. All penicillins showed strong positive cooperativity kinetics for export. The kinetic constants obtained were validated, as the MICs theoretically predicted on the basis of efflux and hydrolysis kinetics were remarkably similar to the observed MICs (except for the isoxazolylpenicillins). Surprisingly, however, the efflux kinetics of cloxacillin, for example, whose MIC decreased 512-fold in Escherichia coli upon the genetic deletion of the acrB gene, were quite similar to those of ampicillin, whose MIC decreased only 2-fold with the same treatment. Analysis of this phenomenon showed that the extensive decrease in the MIC for the acrB mutant is primarily due to the low permeation of the drug and that comparison of the MICs between the parent and the acrB strains is a very poor measure of the ability of AcrB to pump a drug out. PMID:20160052

  10. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems.

    PubMed

    Hassan, Karl A; Liu, Qi; Henderson, Peter J F; Paulsen, Ian T

    2015-02-10

    Multidrug efflux systems are a major cause of resistance to antimicrobials in bacteria, including those pathogenic to humans, animals, and plants. These proteins are ubiquitous in these pathogens, and five families of bacterial multidrug efflux systems have been identified to date. By using transcriptomic and biochemical analyses, we recently identified the novel AceI (Acinetobacter chlorhexidine efflux) protein from Acinetobacter baumannii that conferred resistance to the biocide chlorhexidine, via an active efflux mechanism. Proteins homologous to AceI are encoded in the genomes of many other bacterial species and are particularly prominent within proteobacterial lineages. In this study, we expressed 23 homologs of AceI and examined their resistance and/or transport profiles. MIC analyses demonstrated that, like AceI, many of the homologs conferred resistance to chlorhexidine. Many of the AceI homologs conferred resistance to additional biocides, including benzalkonium, dequalinium, proflavine, and acriflavine. We conducted fluorimetric transport assays using the AceI homolog from Vibrio parahaemolyticus and confirmed that resistance to both proflavine and acriflavine was mediated by an active efflux mechanism. These results show that this group of AceI homologs represent a new family of bacterial multidrug efflux pumps, which we have designated the proteobacterial antimicrobial compound efflux (PACE) family of transport proteins. Bacterial multidrug efflux pumps are an important class of resistance determinants that can be found in every bacterial genome sequenced to date. These transport proteins have important protective functions for the bacterial cell but are a significant problem in the clinical setting, since a single efflux system can mediate resistance to many structurally and mechanistically diverse antibiotics and biocides. In this study, we demonstrate that proteins related to the Acinetobacter baumannii AceI transporter are a new class of multidrug

  11. Correlation between Conjugated Bisphenol A Concentrations and Efflux Transporter Expression in Human Fetal Livers

    PubMed Central

    Moscovitz, Jamie E.; Nahar, Muna S.; Shalat, Stuart L.; Slitt, Angela L.; Dolinoy, Dana C.

    2016-01-01

    Because of its widespread use in the manufacturing of consumer products over several decades, human exposure to bisphenol A (BPA) has been pervasive. Fetuses are particularly sensitive to BPA exposure, with a number of negative developmental and reproductive outcomes observed in rodent perinatal models. Xenobiotic transporters are one mechanism to extrude conjugated and unconjugated BPA from the liver. In this study, the mRNA expression of xenobiotic transporters and relationships with total, conjugated, and free BPA levels were explored utilizing human fetal liver samples. The mRNA expression of breast cancer resistance protein (BCRP) and multidrug resistance-associated transporter (MRP)4, as well as BCRP and multidrug resistance transporter 1 exhibited the highest degree of correlation, with r2 values of 0.941 and 0.816 (P < 0.001 for both), respectively. Increasing concentrations of conjugated BPA significantly correlated with high expression of MRP1 (P < 0.001), MRP2 (P < 0.05), and MRP3 (P < 0.05) transporters, in addition to the NF-E2–related factor 2 transcription factor (P < 0.001) and its prototypical target gene, NAD(P)H quinone oxidoreductase 1 (P < 0.001). These data demonstrate that xenobiotic transporters may be coordinately expressed in the human fetal liver. This is also the first report of a relationship between environmentally relevant fetal BPA levels and differences in the expression of transporters that can excrete the parent compound and its metabolites. PMID:26851240

  12. A primary fish gill cell culture model to assess pharmaceutical uptake and efflux: evidence for passive and facilitated transport.

    PubMed

    Stott, Lucy C; Schnell, Sabine; Hogstrand, Christer; Owen, Stewart F; Bury, Nic R

    2015-02-01

    The gill is the principle site of xenobiotic transfer to and from the aqueous environment. To replace, refine or reduce (3Rs) the large numbers of fish used in in vivo uptake studies an effective in vitro screen is required that mimics the function of the teleost gill. This study uses a rainbow trout (Oncorhynchus mykiss) primary gill cell culture system grown on permeable inserts, which tolerates apical freshwater thus mimicking the intact organ, to assess the uptake and efflux of pharmaceuticals across the gill. Bidirectional transport studies in media of seven pharmaceuticals (propranolol, metoprolol, atenolol, formoterol, terbutaline, ranitidine and imipramine) showed they were transported transcellularly across the epithelium. However, studies conducted in water showed enhanced uptake of propranolol, ranitidine and imipramine. Concentration-equilibrated conditions without a concentration gradient suggested that a proportion of the uptake of propranolol and imipramine is via a carrier-mediated process. Further study using propranolol showed that its transport is pH-dependent and at very low environmentally relevant concentrations (ng L(-1)), transport deviated from linearity. At higher concentrations, passive uptake dominated. Known inhibitors of drug transport proteins; cimetidine, MK571, cyclosporine A and quinidine inhibited propranolol uptake, whilst amantadine and verapamil were without effect. Together this suggests the involvement of specific members of SLC and ABC drug transporter families in pharmaceutical transport. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Differences in the expression of endogenous efflux transporters in MDR1-transfected versus wildtype cell lines affect P-glycoprotein mediated drug transport

    PubMed Central

    Kuteykin-Teplyakov, Konstantin; Luna-Tortós, Carlos; Ambroziak, Kamila; Löscher, Wolfgang

    2010-01-01

    Background and purpose: P-glycoprotein (Pgp) efflux assays are widely used to identify Pgp substrates. The kidney cell lines Madin-Darby canine kidney (MDCK)-II and LLC-PK1, transfected with human MDR1 (ABCB1) are used to provide recombinant models of drug transport. Endogenous transporters in these cells may contribute to the activities of recombinant transporters, so that drug transport in MDR1-transfected cells is often corrected for the transport obtained in parental (wildtype) cells. However, expression of endogenous transporters may vary between transfected and wildtype cells, so that this correction may cause erroneous data. Here, we have measured the expression of endogenous efflux transporters in transfected and wildtype MDCK-II or LLC cells and the consequences for Pgp-mediated drug transport. Experimental approach: Using quantitative real-time RT-PCR, we determined the expression of endogenous Mdr1 mRNA and other efflux transporters in wildtype and MDR1-transfected MDCK-II and LLC cells. Transcellular transport was measured with the test substrate vinblastine. Key results: In MDR1-transfected MDCK cells, expression of endogenous (canine) Mdr1 and Mrp2 (Abcc2) mRNA was markedly lower than in wildtype cells, whereas MDR1-transfected LLC cells exhibited comparable Mdr1 but strikingly higher Mrp2 mRNA levels than wildtype cells. As a consequence, transport of vinblastine by human Pgp in efflux experiments was markedly underestimated when transport in MDR1-transfected MDCK cells was corrected for transport obtained in wildtype cells. This problem did not occur in LLC cells. Conclusions and implications: Differences in the expression of endogenous efflux transporters between transfected and wildtype MDCK cells provide a potential bias for in vitro studies on Pgp-mediated drug transport. PMID:20590635

  14. Characterisation of human tubular cell monolayers as a model of proximal tubular xenobiotic handling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Colin D.A.; Sayer, Rachel; Windass, Amy S.

    2008-12-15

    The aim of this study was to determine whether primary human tubular cell monolayers could provide a powerful tool with which to investigate the renal proximal tubular handling of xenobiotics. Human proximal and distal tubule/collecting duct cells were grown as monolayers on permeable filter supports. After 10 days in culture, proximal tubule cells remained differentiated and expressed a wide palette of transporters at the mRNA level including NaPi-IIa, SGLT1, SGLT2, OCT2, OCTN2, OAT1, OAT3, OAT4, MDR1, MRP2 and BCRP. At the protein level, the expression of a subset of transporters including NaPi-IIa, OAT1 and OAT3 was demonstrated using immunohistochemistry. Analysismore » of the expression of the ATP binding cassette efflux pumps MDR1, MRP2 and BCRP confirmed their apical membrane localisation. At the functional level, tubule cell monolayers retain the necessary machinery to mediate the net secretion of the prototypic substrates; PAH and creatinine. PAH secretion across the monolayer consisted of the uptake of PAH across the basolateral membrane by OAT1 and OAT3 and the apical exit of PAH by a probenecid and MK571-sensitive route consistent with actions of MRP2 or MRP4. Creatinine secretion was by OCT2-mediated uptake at the basolateral membrane and via MDR1 at the apical membrane. Functional expression of MDR1 and BCRP at the apical membrane was also demonstrated using a Hoechst 33342 dye. Similarly, measurement of calcein efflux demonstrated the functional expression of MRP2 at the apical membrane of cell monolayers. In conclusion, human tubular cell monolayers provide a powerful tool to investigate renal xenobiotic handling.« less

  15. Bilirubin Decreases Macrophage Cholesterol Efflux and ATP-Binding Cassette Transporter A1 Protein Expression.

    PubMed

    Wang, Dongdong; Tosevska, Anela; Heiß, Elke H; Ladurner, Angela; Mölzer, Christine; Wallner, Marlies; Bulmer, Andrew; Wagner, Karl-Heinz; Dirsch, Verena M; Atanasov, Atanas G

    2017-04-28

    Mild but chronically elevated circulating unconjugated bilirubin is associated with reduced total and low-density lipoprotein cholesterol concentration, which is associated with reduced cardiovascular disease risk. We aimed to investigate whether unconjugated bilirubin influences macrophage cholesterol efflux, as a potential mechanism for the altered circulating lipoprotein concentrations observed in hyperbilirubinemic individuals. Cholesterol efflux from THP-1 macrophages was assessed using plasma obtained from normo- and hyperbilirubinemic (Gilbert syndrome) humans (n=60 per group) or (heterozygote/homozygote Gunn) rats (n=20 per group) as an acceptor. Hyperbilirubinemic plasma from patients with Gilbert syndrome and Gunn rats induced significantly reduced cholesterol efflux compared with normobilirubinemic plasma. Unconjugated bilirubin (3-17.1 μmol/L) exogenously added to plasma- or apolipoprotein A1-supplemented media also decreased macrophage cholesterol efflux in a concentration- and time-dependent manner. We also showed reduced protein expression of the ATP-binding cassette transporter A1 (ABCA1), a transmembrane cholesterol transporter involved in apolipoprotein A1-mediated cholesterol efflux, in THP-1 macrophages treated with unconjugated bilirubin and in peripheral blood mononuclear cells obtained from hyperbilirubinemic individuals. Furthermore, we demonstrated that bilirubin accelerates the degradation rate of the ABCA1 protein in THP-1 macrophages. Cholesterol efflux from THP-1 macrophages is decreased in the presence of plasma obtained from humans and rats with mild hyperbilirubinemia. A direct effect of unconjugated bilirubin on cholesterol efflux was demonstrated and is associated with decreased ABCA1 protein expression. These data improve our knowledge concerning bilirubin's impact on cholesterol transport and represent an important advancement in our understanding of bilirubin's role in cardiovascular disease. © 2017 The Authors. Published on

  16. The Role of Xenobiotic-Metabolizing Enzymes in Anthelmintic Deactivation and Resistance in Helminths.

    PubMed

    Matoušková, Petra; Vokřál, Ivan; Lamka, Jiří; Skálová, Lenka

    2016-06-01

    Xenobiotic-metabolizing enzymes (XMEs) modulate the biological activity and behavior of many drugs, including anthelmintics. The effects of anthelmintics can often be abolished by XMEs when the drugs are metabolized to an inefficient compound. XMEs therefore play a significant role in anthelmintic efficacy. Moreover, differences in XMEs between helminths are reflected by differences in anthelmintic metabolism between target species. Taking advantage of the newly sequenced genomes of many helminth species, progress in this field has been remarkable. The present review collects up to date information regarding the most important XMEs (phase I and phase II biotransformation enzymes; efflux transporters) in helminths. The participation of these XMEs in anthelmintic metabolism and their possible roles in drug resistance are evaluated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Suppression of asymmetric acid efflux and gravitropism in maize roots treated with auxin transport inhibitors of sodium orthovanadate

    NASA Technical Reports Server (NTRS)

    Mulkey, T. J.; Evans, M. L.

    1982-01-01

    In gravitropically stimulated roots of maize (Zea mays L., hybrid WF9 x 38MS), there is more acid efflux on the rapidly growing upper side than on the slowly growing lower side. In light of the Cholodny/Went hypothesis of gravitropism which states that gravitropic curvature results from lateral redistribution of auxin, the effects of auxin transport inhibitors on the development of acid efflux asymmetry and curvature in gravistimulated roots were examined. All the transport inhibitors tested prevented both gravitropism and the development of asymmetric acid efflux in gravistimulated roots. The results indicate that auxin redistribution may cause the asymmetry of acid efflux, a finding consistent with the Cholodny/Went hypothesis of gravitropism. As further evidence that auxin-induced acid efflux asymmetry may mediate gravitropic curvature, sodium orthovanadate, an inhibitor of auxin-induced H+ efflux was found to prevent both gravitropism and the development of asymmetric acid efflux in gravistimulated roots.

  18. An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump

    PubMed Central

    Wang, Zhao; Fan, Guizhen; Hryc, Corey F; Blaza, James N; Serysheva, Irina I; Schmid, Michael F; Chiu, Wah; Luisi, Ben F; Du, Dijun

    2017-01-01

    Bacterial efflux pumps confer multidrug resistance by transporting diverse antibiotics from the cell. In Gram-negative bacteria, some of these pumps form multi-protein assemblies that span the cell envelope. Here, we report the near-atomic resolution cryoEM structures of the Escherichia coli AcrAB-TolC multidrug efflux pump in resting and drug transport states, revealing a quaternary structural switch that allosterically couples and synchronizes initial ligand binding with channel opening. Within the transport-activated state, the channel remains open even though the pump cycles through three distinct conformations. Collectively, our data provide a dynamic mechanism for the assembly and operation of the AcrAB-TolC pump. DOI: http://dx.doi.org/10.7554/eLife.24905.001 PMID:28355133

  19. Retinoid-xenobiotic interactions: the Ying and the Yang

    PubMed Central

    2015-01-01

    The literature provides compelling evidence pointing to tight metabolic interactions between retinoids and xenobiotics. These are extensive and important for understanding xenobiotic actions in the body. Within the body, retinoids affect xenobiotic metabolism and actions and conversely, xenobiotics affect retinoid metabolism and actions. This article summarizes data that establish the importance of retinoid-dependent metabolic pathways for sustaining the body’s responses to xenobiotic exposure, including the roles of all-trans- and 9-cis-retinoic acid for protecting mammals from harmful xenobiotic effects and for ensuring xenobiotic elimination from the body. This review will also consider molecular mechanisms underlying xenobiotic toxicity focusing on how this may contribute to retinoid deficiency and disruption of normal retinoid homeostasis. Special attention is paid to xenobiotic molecular targets (nuclear receptors, regulatory proteins, enzymes, and transporters) which affect retinoid metabolism and signaling. PMID:26311625

  20. Molecular Expression and Functional Activity of Efflux and Influx Transporters in Hypoxia Induced Retinal Pigment Epithelial Cells

    PubMed Central

    Vadlapatla, Ramya; Vadlapudi, Aswani Dutt; Ponnaluri, VK Chaithanya; Pal, Dhananjay; Mukherji, Mridul; Mitra, Ashim K.

    2013-01-01

    A decrease in tissue oxygen levels (aka hypoxia) mediates a number of vascular retinal diseases. Despite introduction of novel therapeutics, treatment of retinal disorders remains challenging, possibly due to complex nature of hypoxia signaling. To date, the differential effect of hypoxia on expression of efflux and influx transporters in retinal cells has not been studied. Therefore, the objective of this study was to delineate molecular and functional expression of membrane transporters in human retinal pigment epithelial (RPE) cells cultured under normoxic and hypoxic conditions. Quantitative real time polymerase chain reaction (qPCR), ELISA and immunoblot analysis were performed to examine the RNA and protein expression levels of transporters. Further, functional activity was evaluated by performing the uptake of various substrates in both normoxic and hypoxic conditions. qPCR analysis showed elevated expression of efflux transporters (P-glycoprotein, multidrug resistant protein 2, breast cancer resistant protein) and influx transporters (folate receptor-α, cationic and neutral amino acid transporter, sodium dependent multivitamin transporter) in a time dependent manner. Immunoblot analysis further confirmed elevated expression of breast cancer resistant protein and sodium dependent multivitamin transporter. A decrease in the uptake of efflux transporter substrates (digoxin, lopinavir and abacavir) and enhanced uptake of influx transporter substrates (arginine, folic acid and biotin) in hypoxia relative to normoxia further confirmed elevated expression of transporters, respectively. This study demonstrates for the first time that hypoxic conditions may alter expression of efflux and influx transporters in RPE cells. These findings suggest that hypoxia may further alter disposition of ophthalmic drugs. PMID:23827654

  1. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux.

    PubMed

    Ligaba, Ayalew; Maron, Lyza; Shaff, Jon; Kochian, Leon; Piñeros, Miguel

    2012-07-01

    Root efflux of organic acid anions underlies a major mechanism of plant aluminium (Al) tolerance on acid soils. This efflux is mediated by transporters of the Al-activated malate transporter (ALMT) or the multi-drug and toxin extrusion (MATE) families. ZmALMT2 was previously suggested to be involved in Al tolerance based on joint association-linkage mapping for maize Al tolerance. In the current study, we functionally characterized ZmALMT2 by heterologously expressing it in Xenopus laevis oocytes and transgenic Arabidopsis. In oocytes, ZmALMT2 mediated an Al-independent electrogenic transport product of organic and inorganic anion efflux. Ectopic overexpression of ZmALMT2 in an Al-hypersensitive Arabidopsis KO/KD line lacking the Al tolerance genes, AtALMT1 and AtMATE, resulted in Al-independent constitutive root malate efflux which partially restored the Al tolerance phenotype. The lack of correlation between ZmALMT2 expression and Al tolerance (e.g., expression not localized to the root tip, not up-regulated by Al, and higher in sensitive versus tolerance maize lines) also led us to question ZmALMT2's role in Al tolerance. The functional properties of the ZmALMT2 transporter presented here, along with the gene expression data, suggest that ZmALMT2 is not involved in maize Al tolerance but, rather, may play a role in mineral nutrient acquisition and transport. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  2. Influence of intestinal efflux pumps on the absorption and transport of furosemide

    PubMed Central

    Al-Mohizea, Abdullah M.

    2010-01-01

    Purpose Furosemide is a commonly used diuretic which is used in the treatment of edema, congestive heart failure, hypertension and renal failure. Its absorption exhibits inter- and intra-subject variability that can be attributed to many factors including the intestinal efflux pumps such as the P-glycoprotein (P-gp). This study was done due to the great disagreement between what is published in the literature regarding the influence of P-gp on furosemide and at the same time due to the importance of this drug in the treatment of different conditions as described above. In addition, an investigation of the effect of two of the commonly used pharmaceutical excipients (hydroxypropyl β-cyclodextrin [HPβCD] and Tween 80) and also a P-gp inhibitor (verapamil hydrochloride) on the intestinal absorption of this drug were also done. Methods The study utilized the everted intestinal sacs technique to investigate both the effect of the efflux transporter (P-gp) on furosemide absorption and also the effect of the chosen excipients. Results The absorption of furosemide was significantly influenced by the P-gp as confirmed by the everted vis the non-everted sacs together with the verapamil study in which the transport of furosemide was inhibited by verapamil. In addition, Tween 80 was also shown to inhibit the P-gp pump whereas the HPβCD did not significantly influence the efflux of furosemide in this study. Conclusions P-glycoprotein and some of the used excipients in the formulation play a very important role in the transport of furosemide and other drugs. Thus excipients that affect the activity of P-gp should be avoided when formulating drugs that are substrate for the P-gp or other efflux pumps. PMID:23960725

  3. Gβγ subunit activation promotes dopamine efflux through the dopamine transporter

    PubMed Central

    Garcia-Olivares, J; Baust, T; Harris, S; Hamilton, P; Galli, A; Amara, SG; Torres, GE

    2018-01-01

    The dopamine transporter (DAT) is an important regulator of brain dopamine (DA) homeostasis, controlling the intensity and duration of DA signaling. DAT is the target for psychostimulants—like cocaine and amphetamine—and plays an important role in neuropsychiatric disorders, including attention-deficit hyperactivity disorder and drug addiction. Thus, a thorough understanding of the mechanisms that regulate DAT function is necessary for the development of clinical interventions to treat DA-related brain disorders. Previous studies have revealed a plethora of protein–protein interactions influencing DAT cellular localization and activity, suggesting that the fine-tuning of DA homeostasis involves multiple mechanisms. We recently reported that G-protein beta-gamma (Gβγ) subunits bind directly to DAT and decrease DA clearance. Here we show that Gβγ induces the release of DA through DAT. Specifically, a Gβγ-binding/activating peptide, mSIRK, increases DA efflux through DAT in heterologous cells and primary dopaminergic neurons in culture. Addition of the Gβγ inhibitor gallein or DAT inhibitors prevents this effect. Residues 582 to 596 in the DAT carboxy terminus were identified as the primary binding site of Gβγ. A TAT peptide containing the Gβγ-interacting domain of DAT blocked the ability of mSIRK to induce DA efflux, consistent with a direct interaction of Gβγ with the transporter. Finally, activation of a G-protein-coupled receptor, the muscarinic M5R, results in DAT-mediated DA efflux through a Gβγ-dependent mechanism. Collectively, our data show that Gβγ interacts with DAT to promote DA efflux. This novel mechanism may have important implications in the regulation of brain DA homeostasis. PMID:28894302

  4. PKC phosphorylates residues in the N-terminal of the DA transporter to regulate amphetamine-induced DA efflux.

    PubMed

    Wang, Qiang; Bubula, Nancy; Brown, Jason; Wang, Yunliang; Kondev, Veronika; Vezina, Paul

    2016-05-27

    The DA transporter (DAT), a phosphoprotein, controls extracellular dopamine (DA) levels in the central nervous system through transport or reverse transport (efflux). Multiple lines of evidence support the claim that PKC significantly contributes to amphetamine-induced DA efflux. Other signaling pathways, involving CaMKII and ERK, have also been shown to regulate DAT mediated efflux. Here we assessed the contribution of putative PKC residues (S4, S7, S13) in the N-terminal of the DAT to amphetamine-induced DA efflux by transfecting DATs containing different serine to alanine (S-A) point mutations into DA pre-loaded HEK-293 cells and incubating these cells in amphetamine (2μM). The effects of a S-A mutation at the non-PKC residue S12 and a threonine to alanine (T-A) mutation at the ERK T53 residue were also assessed for comparison. WT-DATs were used as controls. In an initial experiment, we confirmed that inhibiting PKC with Go6976 (130nM) significantly reduced amphetamine-induced DA efflux. In subsequent experiments, cells transfected with the S4A, S12A, S13A, T53A and S4,7,13A mutants showed a reduction in amphetamine-induced DA efflux similar to that observed with Go6976. Interestingly, cells transfected with the S7A mutant, identified by some as a PKC-PKA residue, showed unperturbed WT-DAT levels of amphetamine-induced DA efflux. These results indicate that phosphorylation by PKC of select residues in the DAT N-terminal can regulate amphetamine-induced efflux. PKC can act either independently or in concert with other kinases such as ERK to produce this effect. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. From Evolution to Revolution: miRNAs as Pharmacological Targets for Modulating Cholesterol Efflux and Reverse Cholesterol Transport

    PubMed Central

    Dávalos, Alberto; Fernández-Hernando, Carlos

    2013-01-01

    There has been strong evolutionary pressure to ensure that an animal cell maintain levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies. PMID:23435093

  6. Efflux-Mediated Drug Resistance in Bacteria: an Update

    PubMed Central

    Li, Xian-Zhi; Nikaido, Hiroshi

    2010-01-01

    Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome although they can also be plasmid-encoded. A previous article (Li X-Z and Nikaido H, Drugs, 2004; 64[2]: 159–204) had provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past five years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria. PMID:19678712

  7. Characterization of Zebrafish Abcc4 as an Efflux Transporter of Organochlorine Pesticides

    PubMed Central

    Lu, Xing; Long, Yong; Lin, Li; Sun, Rongze; Zhong, Shan; Cui, Zongbin

    2014-01-01

    DDT and lindane are highly toxic organochlorine pesticides and posing adverse effects on the environment and public health due to their frequent usage in developing countries. ABCC4/MRP4 is an organic anion transporter that mediates cellular efflux of a wide range of exogenous and endogenous compounds such as cyclic nucleotides and anti-cancer drugs; however, it remains unclear whether ABCC4 and its orthologs function in the detoxification of organochlorine pesticides. Here, we demonstrated the roles of zebrafish Abcc4 in cellular efflux of DDT and lindane. Zebrafish abcc4 was maternally expressed in the oocytes and its transcripts were detected in the lens, pancreas, gills, liver, intestine and bladder of developing embryos and in adult tissues examined. DDT and lindane were able to induce the expression of abcc4 gene and overexpression of Abcc4 significantly decreased the cytotoxicity and accumulation of DDT and lindane in LLC-PK1 cells and developing embryos. In contrast, overexpression of an Abcc4-G1188D mutant abolished its transporter function without effects on its substrate binding activity, and sensitized LLC-PK1 cells and developing embryos to toxic pesticides. Moreover, glutathione (GSH) was involved in the efflux of cellular pesticides and ATPase activity in developing embryos can be induced by DDT or lindane. Thus, zebrafish Abcc4 plays crucial roles in cellular efflux of organochlorine pesticides and can be used a potential molecular marker for the monitor of DDT and lindane contamination in the aquatic environment. PMID:25478949

  8. Interaction of xenobiotics on the glucose-transport system and the Na+/K(+)-ATPase of human skin fibroblasts.

    PubMed

    Cascorbi, I; Forêt, M

    1991-02-01

    The effects of individual and combined xenobiotics on functional properties of the plasma membrane of human skin fibroblasts were investigated. Good correlations between toxic effects on the D-glucose transport system or the Na+/K(+)-ATPase and the lipophilicity of the substances could be observed. The linear regression coefficients plotting log EC20 values (doses, leading to 20% inhibition) versus log Pow (octanol/water partition coefficient) were r = 0.95 (P less than 0.05). The combination of lipophilic with less lipophilic xenobiotics, such as pentachlorophenol with 4-chloroaniline, leads to additional effects. However, when the detergent sodium dodecyl benzenesulfonate was combined with the herbicide 2,4-dichlorophenoxyacetate (2,4-D), the toxic effect of 2,4-D on the Na+/K(+)-ATPase decreased considerably. The results support in general the assumption that the inhibition of integral functional proteins is based on an accumulation of xenobiotics in the plasma membrane, probably due to the enhanced membrane fluidity. Thus, the basic toxicity of xenobiotics can be predicted by their physicochemical properties.

  9. Spatio-temporal Model of Xenobiotic Distribution and Metabolism in an in Silico Mouse Liver Lobule

    NASA Astrophysics Data System (ADS)

    Fu, Xiao; Sluka, James; Clendenon, Sherry; Glazier, James; Ryan, Jennifer; Dunn, Kenneth; Wang, Zemin; Klaunig, James

    Our study aims to construct a structurally plausible in silico model of a mouse liver lobule to simulate the transport of xenobiotics and the production of their metabolites. We use a physiologically-based model to calculate blood-flow rates in a network of mouse liver sinusoids and simulate transport, uptake and biotransformation of xenobiotics within the in silico lobule. Using our base model, we then explore the effects of variations of compound-specific (diffusion, transport and metabolism) and compound-independent (temporal alteration of blood flow pattern) parameters, and examine their influence on the distribution of xenobiotics and metabolites. Our simulations show that the transport mechanism (diffusive and transporter-mediated) of xenobiotics and blood flow both impact the regional distribution of xenobiotics in a mouse hepatic lobule. Furthermore, differential expression of metabolic enzymes along each sinusoid's portal to central axis, together with differential cellular availability of xenobiotics, induce non-uniform production of metabolites. Thus, the heterogeneity of the biochemical and biophysical properties of xenobiotics, along with the complexity of blood flow, result in different exposures to xenobiotics for hepatocytes at different lobular locations. We acknowledge support from National Institute of Health GM 077138 and GM 111243.

  10. ATP-binding cassette transporters in reproduction: a new frontier

    PubMed Central

    Bloise, E.; Ortiga-Carvalho, T.M.; Reis, F.M.; Lye, S.J.; Gibb, W.; Matthews, S.G.

    2016-01-01

    BACKGROUND The transmembrane ATP-binding cassette (ABC) transporters actively efflux an array of clinically relevant compounds across biological barriers, and modulate biodistribution of many physiological and pharmacological factors. To date, over 48 ABC transporters have been identified and shown to be directly and indirectly involved in peri-implantation events and fetal/placental development. They efflux cholesterol, steroid hormones, vitamins, cytokines, chemokines, prostaglandins, diverse xenobiotics and environmental toxins, playing a critical role in regulating drug disposition, immunological responses and lipid trafficking, as well as preventing fetal accumulation of drugs and environmental toxins. METHODS This review examines ABC transporters as important mediators of placental barrier functions and key reproductive processes. Expression, localization and function of all identified ABC transporters were systematically reviewed using PubMed and Google Scholar websites to identify relevant studies examining ABC transporters in reproductive tissues in physiological and pathophysiological states. Only reports written in English were incorporated with no restriction on year of publication. While a major focus has been placed on the human, extensive evidence from animal studies is utilized to describe current understanding of the regulation and function of ABC transporters relevant to human reproduction. RESULTS ABC transporters are modulators of steroidogenesis, fertilization, implantation, nutrient transport and immunological responses, and function as ‘gatekeepers’ at various barrier sites (i.e. blood-testes barrier and placenta) against potentially harmful xenobiotic factors, including drugs and environmental toxins. These roles appear to be species dependent and change as a function of gestation and development. The best-described ABC transporters in reproductive tissues (primarily in the placenta) are the multidrug transporters p-glycoprotein and

  11. K(+)- and HCO3(-)-dependent acid-base transport in squid giant axons. I. Base efflux

    PubMed Central

    1995-01-01

    We used microelectrodes to monitor the recovery (i.e., decrease) of intracellular pH (pHi) after using internal dialysis to load squid giant axons with alkali to pHi values of 7.7, 8.0, or 8.3. The dialysis fluid (DF) contained 400 mM K+ but was free of Na+ and Cl-. The artificial seawater (ASW) lacked Na+, K+, and Cl-, thereby eliminating effects of known acid-base transporters on pHi. Under these conditions, halting dialysis unmasked a slow pHi decrease caused at least in part by acid-base transport we refer to as "base efflux." Replacing K+ in the DF with either NMDG+ or TEA+ significantly reduced base efflux and made membrane voltage (Vm) more positive. Base efflux in K(+)-dialyzed axons was stimulated by decreasing the pH of the ASW (pHo) from 8 to 7, implicating transport of acid or base. Although postdialysis acidifications also occurred in axons in which we replaced the K+ in the DF with Li+, Na+, Rb+, or Cs+, only with Rb+ was base efflux stimulated by low pHo. Thus, the base effluxes supported by K+ and Rb+ appear to be unrelated mechanistically to those observed with Li+, Na+, or Cs+. The combination of 437 mM K+ and 12 mM HCO3- in the ASW, which eliminates the gradient favoring a hypothetical K+/HCO3- efflux, blocked pHi recovery in K(+)-dialyzed axons. However, the pHi recovery was not blocked by the combination of 437 mM Na+, veratridine, and CO2/HCO3- in the ASW, a treatment that inverts electrochemical gradients for H+ and HCO3- and would favor passive H+ and HCO3- fluxes that would have alkalinized the axon. Similarly, the recovery was not blocked by K+ alone or HCO3- alone in the ASW, nor was it inhibited by the K-H pump blocker Sch28080 nor by the Na-H exchange inhibitors amiloride and hexamethyleneamiloride. Our data suggest that a major component of base efflux in alkali-loaded axons cannot be explained by metabolism, a H+ or HCO3- conductance, or by a K-H exchanger. However, this component could be mediated by a novel K/HCO3- cotransporter

  12. Impact of anatase and rutile titanium dioxide nanoparticles on uptake carriers and efflux pumps in Caco-2 gut epithelial cells

    NASA Astrophysics Data System (ADS)

    Dorier, M.; Brun, E.; Veronesi, G.; Barreau, F.; Pernet-Gallay, K.; Desvergne, C.; Rabilloud, T.; Carapito, C.; Herlin-Boime, N.; Carrière, M.

    2015-04-01

    TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken together, these data suggest that TiO2-NPs may increase the functionality of gut epithelial cells, particularly their property to form a protective barrier against exogenous toxicants and to absorb nutrients.TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken

  13. Overexpression and deletion of phospholipid transfer protein reduce HDL mass and cholesterol efflux capacity but not macrophage reverse cholesterol transport[S

    PubMed Central

    Kuwano, Takashi; Bi, Xin; Cipollari, Eleonora; Yasuda, Tomoyuki; Lagor, William R.; Szapary, Hannah J.; Tohyama, Junichiro; Millar, John S.; Billheimer, Jeffrey T.; Lyssenko, Nicholas N.; Rader, Daniel J.

    2017-01-01

    Phospholipid transfer protein (PLTP) may affect macrophage reverse cholesterol transport (mRCT) through its role in the metabolism of HDL. Ex vivo cholesterol efflux capacity and in vivo mRCT were assessed in PLTP deletion and PLTP overexpression mice. PLTP deletion mice had reduced HDL mass and cholesterol efflux capacity, but unchanged in vivo mRCT. To directly compare the effects of PLTP overexpression and deletion on mRCT, human PLTP was overexpressed in the liver of wild-type animals using an adeno-associated viral (AAV) vector, and control and PLTP deletion animals were injected with AAV-null. PLTP overexpression and deletion reduced plasma HDL mass and cholesterol efflux capacity. Both substantially decreased ABCA1-independent cholesterol efflux, whereas ABCA1-dependent cholesterol efflux remained the same or increased, even though preβ HDL levels were lower. Neither PLTP overexpression nor deletion affected excretion of macrophage-derived radiocholesterol in the in vivo mRCT assay. The ex vivo and in vivo assays were modified to gauge the rate of cholesterol efflux from macrophages to plasma. PLTP activity did not affect this metric. Thus, deviations in PLTP activity from the wild-type level reduce HDL mass and ex vivo cholesterol efflux capacity, but not the rate of macrophage cholesterol efflux to plasma or in vivo mRCT. PMID:28137768

  14. P-glycoprotein multidrug transporter in inflammatory bowel diseases: More questions than answers.

    PubMed

    Cario, Elke

    2017-03-07

    The gastrointestinal barrier is constantly exposed to numerous environmental substrates that are foreign and potentially harmful. These xenobiotics can cause shifts in the intestinal microbiota composition, affect mucosal immune responses, disturb tissue integrity and impair regeneration. The multidrug transporter ABCB1/MDR1 p-glycoprotein (p-gp) plays a key role at the front line of host defence by efficiently protecting the gastrointestinal barrier from xenobiotic accumulation. This Editorial discusses how altered expression and function of ABCB1/MDR1 p-gp may contribute to the development and persistence of chronic intestinal inflammation in inflammatory bowel diseases (IBD). Recent evidence implies multiple interactions between intestinal microbiota, innate immunity and xenobiotic metabolism via p-gp. While decreased efflux activity may promote disease susceptibility and drug toxicity, increased efflux activity may confer resistance to therapeutic drugs in IBD. Mice deficient in MDR1A develop spontaneously chronic colitis, providing a highly valuable murine IBD model for the study of intestinal epithelial barrier function, immunoregulation, infectious co-triggers and novel therapeutic approaches. Possible associations of human ABCB1 gene polymorphisms with IBD susceptibility have been evaluated, but results are inconsistent. Future studies must focus on further elucidation of the pathophysiological relevance and immunological functions of p-gp and how its ambiguous effects could be therapeutically targeted in IBD.

  15. Amphipathic Polyproline Peptides Stimulate Cholesterol Efflux by the ABCA1 Transporter

    PubMed Central

    Sviridov, D.O.; Drake, S.K.; Freeman, L.A.; Remaley, A.T.

    2016-01-01

    ApoA-I mimetics are short synthetic peptides that contain an amphipathic αα-helix and stimulate cholesterol efflux by the ABCA1 transporter in a detergent-like extraction mechanism. We investigated the use of amphipathic peptides with a polypro helix for stimulating cholesterol efflux by ABCA1. Polypro peptides were synthesized with modified prolines, containing either a hydrophobic phenol group (Prop) or a polar N-acetylgalactosamine (Prog) attached to the pyrrolidine ring and were designated as either PP-2, 3, 4, or 5, depending on the number of 3 amino acid repeat units (Prop - Prog - Prop). Based on molecular modeling, these peptides were predicted to be relatively rigid and to bind to a phospholipid bilayer. By CD spectroscopy, PP peptides formed a Type-II polypro helix in an aqueous solution. PP-2 was inactive in promoting cholesterol efflux, but peptides with more than 2 repeat units were active. PP-4 showed a similar Vmax as a much longer amphipathic α-αhelical peptide, containing 37 amino acids, but had a Km that was approximately 20-fold lower. PP peptides were specific in that they did not stimulate cholesterol efflux from cells not expressing ABCA1 and were also non-cytotoxic. Addition of PP-3, 4 and 5 to serum promoted the formation of smaller size HDL species (7 nM) and increased its capacity for ABCA1-dependent cholesterol efflux by approximately 20-35% (p<0.05). Because of their relatively small size and increased potency, amphipathic peptides with a polypro helix may represent an alternative structural motif for the development of apoA-I mimetic peptides. PMID:26879139

  16. Direct Comparison of Manganese Detoxification/Efflux Proteins and Molecular Characterization of ZnT10 Protein as a Manganese Transporter*

    PubMed Central

    Nishito, Yukina; Tsuji, Natsuko; Fujishiro, Hitomi; Takeda, Taka-aki; Yamazaki, Tomohiro; Teranishi, Fumie; Okazaki, Fumiko; Matsunaga, Ayu; Tuschl, Karin; Rao, Rajini; Kono, Satoshi; Miyajima, Hiroaki; Narita, Hiroshi; Himeno, Seiichiro; Kambe, Taiho

    2016-01-01

    Manganese homeostasis involves coordinated regulation of specific proteins involved in manganese influx and efflux. However, the proteins that are involved in detoxification/efflux have not been completely resolved nor has the basis by which they select their metal substrate. Here, we compared six proteins, which were reported to be involved in manganese detoxification/efflux, by evaluating their ability to reduce manganese toxicity in chicken DT40 cells, finding that human ZnT10 (hZnT10) was the most significant contributor. A domain swapping and substitution analysis between hZnT10 and the zinc-specific transporter hZnT1 showed that residue Asn43, which corresponds to the His residue constituting the potential intramembranous zinc coordination site in other ZnT transporters, is necessary to impart hZnT10's unique manganese mobilization activity; residues Cys52 and Leu242 in transmembrane domains II and V play a subtler role in controlling the metal specificity of hZnT10. Interestingly, the His → Asn reversion mutant in hZnT1 conferred manganese transport activity and loss of zinc transport activity. These results provide important information about manganese detoxification/efflux mechanisms in vertebrate cells as well as the molecular characterization of hZnT10 as a manganese transporter. PMID:27226609

  17. Disposition of Naringenin via Glucuronidation Pathway Is Affected by Compensating Efflux Transporters of Hydrophilic Glucuronides

    PubMed Central

    Xu, Haiyan; Kulkarni, Kaustubh H.; Singh, Rashim; Yang, Zhen; Wang, Stephen W.J.; Tam, Vincent H.; Hu, Ming

    2010-01-01

    The purposes of this study were to investigate how efflux transporters and UDP-glucuronosyltransferases (UGT) affect the disposition of naringenin. A rat intestinal perfusion model with bile duct cannulation was used along with rat intestinal and liver microsomes. In the intestinal perfusion model, both absorption and subsequent excretion of naringenin metabolites were rapid and site-dependent (p < 0.05). Naringenin was absorbed the most in colon and its glucuronides were excreted the most in duodenum. In metabolism studies, the intrinsic clearance value of naringenin glucuronidation was the highest in jejunum microsomes, followed by liver, ileal and colonic microsomes. The rapid metabolism in microsomes did not always translate into more efficient excretion in the rat perfusion model, however, because of presence of rate-limiting efflux transporters. When used separately, MK-571 (an inhibitor of multidrug resistance-related protein 2 or Mrp2) or dipyridamole (an inhibitor of breast cancer resistance protein or Bcrp1) did not affect excretion of naringenin glucuronides, but when used together, they significantly (p < 0.05) decreased intestinal and biliary excretion of naringenin glucuronides. In conclusion, efflux transporters Mrp2 and Bcrp1 are shown to compensate for each other and enable the intestinal excretion of flavonoid (i.e., naringenin) glucuronides. PMID:19736994

  18. Interaction of Food Additives with Intestinal Efflux Transporters.

    PubMed

    Sjöstedt, Noora; Deng, Feng; Rauvala, Oskari; Tepponen, Tuomas; Kidron, Heidi

    2017-11-06

    Breast cancer resistance protein (BCRP), multidrug resistance associated protein 2 (MRP2) and P-glycoprotein (P-gp) are ABC transporters that are expressed in the intestine, where they are involved in the efflux of many drugs from enterocytes back into the intestinal lumen. The inhibition of BCRP, MRP2, and P-gp can result in enhanced absorption and exposure of substrate drugs. Food additives are widely used by the food industry to improve the stability, flavor, and consistency of food products. Although they are considered safe for consumption, their interactions with intestinal transporters are poorly characterized. Therefore, in this study, selected food additives, including preservatives, colorants, and sweeteners, were studied in vitro for their inhibitory effects on intestinal ABC transporters. Among the studied compounds, several colorants were able to inhibit BCRP and MRP2, whereas P-gp was fairly insensitive to inhibition. Additionally, one sweetener was identified as a potent inhibitor of BCRP. Dose-response studies revealed that the IC 50 values of the inhibitors were lower than the estimated intestinal concentrations after the consumption of beverages containing food colorants. This suggests that there is potential for previously unrecognized transporter-mediated food additive-drug interactions.

  19. Impact of anatase and rutile titanium dioxide nanoparticles on uptake carriers and efflux pumps in Caco-2 gut epithelial cells.

    PubMed

    Dorier, M; Brun, E; Veronesi, G; Barreau, F; Pernet-Gallay, K; Desvergne, C; Rabilloud, T; Carapito, C; Herlin-Boime, N; Carrière, M

    2015-04-28

    TiO2 microparticles are widely used in food products, where they are added as a white food colouring agent. This food additive contains a significant amount of nanoscale particles; still the impact of TiO2 nanoparticles (TiO2-NPs) on gut cells is poorly documented. Our study aimed at evaluating the impact of rutile and anatase TiO2-NPs on the main functions of enterocytes, i.e. nutrient absorption driven by solute-liquid carriers (SLC transporters) and protection against other xenobiotics driven by efflux pumps from the ATP-binding cassette (ABC) family. We show that acute exposure of Caco-2 cells to both anatase (12 nm) and rutile (20 nm) TiO2-NPs induce early upregulation of a battery of efflux pumps and nutrient transporters. In addition they cause overproduction of reactive oxygen species and misbalance redox repair systems, without inducing cell mortality or DNA damage. Taken together, these data suggest that TiO2-NPs may increase the functionality of gut epithelial cells, particularly their property to form a protective barrier against exogenous toxicants and to absorb nutrients.

  20. Intestinal absorption of the acetamiprid neonicotinoid by Caco-2 cells: transepithelial transport, cellular uptake and efflux.

    PubMed

    Brunet, Jean-Luc; Maresca, Marc; Fantini, Jacques; Belzunces, Luc P

    2008-01-01

    The human intestinal absorption of acetamiprid (AAP) using the Caco-2 cell line reveals that AAP flux was active in a bidirectional mode with an apparent permeability coefficient of 26 x 10(-6) cm x s(-1) at 37 degrees C. Apical uptake was concentration-dependent and unsaturated for AAP concentrations up to 200 micro M. AAP cell preloading demonstrated the involvement of active transport mechanisms. Arrhenius plot analysis revealed an unusual profile with two apparent activation energies suggesting two transport processes. Uptake Vi studies indicated the involvement of a sodium-dependent transporter, the presence of a common transporter of AAP and nicotine and the involvement of Ti-sensitive ATP-dependent efflux transporters. Apical efflux investigations showed the involvement of inward active transporter(s). Whereas vincristine had no effect on intracellular accumulation, taxol and daunorubicin treatments unexpectedly led to 10% and 23% reductions respectively, suggesting that the latter shared a common inward transporter with AAP. All these results suggest full and express AAP absorption in vivo with transport involving both inward and outward, passive and active mechanisms. Thus, AAP or its metabolites could be representative of a risk for human health after its ingestion in food.

  1. Establishment of optimized MDCK cell lines for reliable efflux transport studies.

    PubMed

    Gartzke, Dominik; Fricker, Gert

    2014-04-01

    Madin-Darby canine kidney (MDCK) cells transfected with human MDR1 gene (MDCK-MDR1) encoding for P-glycoprotein (hPgp, ABCB1) are widely used for transport studies to identify drug candidates as substrates of this efflux protein. Therefore, it is necessary to rely on constant and comparable expression levels of Pgp to avoid false negative or positive results. We generated a cell line with homogenously high and stable expression of hPgp through sorting single clones from a MDCK-MDR1 cell pool using fluorescence-activated cell sorting (FACS). To obtain control cell lines for evaluation of cross-interactions with endogenous canine Pgp (cPgp) wild-type cells were sorted with a low expression pattern of cPgp in comparison with the MDCK-MDR1. Expression of other transporters was also characterized in both cell lines by quantitative real-time PCR and Western blot. Pgp function was investigated applying the Calcein-AM assay as well as bidirectional transport assays using (3) H-Digoxin, (3) H-Vinblastine, and (3) H-Quinidine as substrates. Generated MDCK-MDR1 cell lines showed high expression of hPgp. Control MDCK-WT cells were optimized in showing a comparable expression level of cPgp in comparison with MDCK-MDR1 cell lines. Generated cell lines showed higher and more selective Pgp transport compared with parental cells. Therefore, they provide a significant improvement in the performance of efflux studies yielding more reliable results. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier

    NASA Technical Reports Server (NTRS)

    Chen, R.; Hilson, P.; Sedbrook, J.; Rosen, E.; Caspar, T.; Masson, P. H.

    1998-01-01

    Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589-1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.

  3. Regulation of ATP-binding Cassette Transporters and Cholesterol Efflux by Glucose in Primary Human Monocytes and Murine Bone Marrow-derived Macrophages

    PubMed Central

    Spartano, N. L.; Lamon-Fava, S.; Matthan, N. R.; Ronxhi, J.; Greenberg, A. S.; Obin, M. S.; Lichtenstein, A. H.

    2014-01-01

    Purpose Individuals with type 2 diabetes mellitus are at increased risk of developing atherosclerosis. This may be partially attributable to suppression of macrophage ATP-binding cassette (ABC) transporter mediated cholesterol efflux by sustained elevated blood glucose concentrations. 2 models were used to assess this potential relationship: human monocytes/leukocytes and murine bone marrow-derived macrophages (BMDM). Methods 10 subjects (4 F/6 M, 50–85 years, BMI 25–35 kg/m2) underwent an oral glucose challenge. Baseline and 1- and 2-h post-challenge ABC-transporter mRNA expression was determined in monocytes, leukocytes and peripheral blood mononuclear cells (PBMC). In a separate study, murine-BMDM were exposed to 5 mmol/L D-glucose (control) or additional 20 mmol/L D-or L-glucose and 25 ug/mL oxidized low density lipoprotein (oxLDL). High density lipoprotein (HDL)-mediated cholesterol efflux and ABC-transporter (ABCA1 and ABCG1) expression were determined. Results Baseline ABCA1and ABCG1 expression was lower (> 50 %) in human monocytes and PBMC than leukocytes (p < 0.05). 1 h post-challenge leukocyte ABCA1 and ABCG1 expression increased by 37 % and 30 %, respectively (p < 0.05), and began to return to baseline thereafter. There was no significant change in monocyte ABC-transporter expression. In murine BMDM, higher glucose concentrations suppressed HDL-mediated cholesterol efflux (10 %; p < 0.01) without significantly affecting ABCA1 and ABCG1 expression. Data demonstrate that leukocytes are not a reliable indicator of monocyte ABC-transporter expression. Conclusions Human monocyte ABC-transporter gene expression was unresponsive to a glucose challenge. Correspondingly, in BMDM, hyperglycemia attenuated macrophage cholesterol efflux in the absence of altered ABC-transporter expression, suggesting that hyperglycemia, per se, suppresses cholesterol transporter activity. This glucose-related impairment in cholesterol efflux may potentially contribute to

  4. Tolerance to biodegraded crude oil in marine invertebrate embryos and larvae is associated with expression of a multixenobiotic resistance transporter.

    PubMed

    Hamdoun, Amro M; Griffin, Fred J; Cherr, Gary N

    2002-11-13

    The toxicity of water-soluble fractions of biodegraded crude oil (BWSF) to embryos and larvae of two marine invertebrates, the white sea urchin (Lytechinus anamesus) and the fat innkeeper (Urechis caupo), was studied. Santa Barbara Channel crude oil was artificially weathered and subjected to biodegradation using a mixed microbe culture obtained from natural oil seep sites. The degradation culture inoculated with seep sediment microbes accumulated 43.7 microg/l water-soluble hydrocarbons. In contrast water-soluble fractions from the non-degraded cultures (NWSF) only accumulated 3.05 microg/l. BWSF proved deleterious to Lytechinus embryo development at low concentrations (EC50 = 0.33 mg/l) but was essentially non-toxic to Urechis embryos/larvae up to 3.0 mg/l. An established mechanism for handling of a wide array of xenobiotics in Urechis embryos is the multixenobiotoic resistance transporter multixenobiotic response (MXR, also known as multidrug resistance, MDR). This mechanism is primarily mediated by ATP-dependent, efflux pumps that extrude a wide array of xenobiotic compounds. In this study, we show that Lytechinus larvae do not appear to express MXR efflux protein nor MXR mediated dye efflux capacity. In contrast, BWSF acts as a competitive inhibitor of MXR transport-mediated dye efflux in Urechis larvae. These results suggest that MXR may be an important mechanism for extrusion of the by-products of crude oil degradation by microbes, and that the level of its expression may determine the susceptibility of organisms to degraded oil hydrocarbons. Copyright 2002 Elsevier Science B.V.

  5. Inhibition of Efflux Transporter-Mediated Fungicide Resistance in Pyrenophora tritici-repentis by a Derivative of 4′-Hydroxyflavone and Enhancement of Fungicide Activity

    PubMed Central

    Reimann, Sven; Deising, Holger B.

    2005-01-01

    Populations of the causal agent of wheat tan spot, Pyrenophora tritici-repentis, that are collected from fields frequently treated with reduced fungicide concentrations have reduced sensitivity to strobilurin fungicides and azole fungicides (C14-demethylase inhibitors). Energy-dependent efflux transporter activity can be induced under field conditions and after in vitro application of sublethal amounts of fungicides. Efflux transporters can mediate cross-resistance to a number of fungicides that belong to different chemical classes and have different modes of action. Resistant isolates can grow on substrata amended with fungicides and can infect plants treated with fungicides at levels above recommended field concentrations. We identified the hydroxyflavone derivative 2-(4-ethoxy-phenyl)-chromen-4-one as a potent inhibitor of energy-dependent fungicide efflux transporters in P. tritici-repentis. Application of this compound in combination with fungicides shifted fungicide-resistant P. tritici-repentis isolates back to normal sensitivity levels and prevented infection of wheat leaves. These results highlight the role of energy-dependent efflux transporters in fungicide resistance and could enable a novel disease management strategy based on the inhibition of fungicide efflux to be developed. PMID:15933029

  6. Transport of root-respired CO₂ via the transpiration stream affects aboveground carbon assimilation and CO₂ efflux in trees.

    PubMed

    Bloemen, Jasper; McGuire, Mary Anne; Aubrey, Doug P; Teskey, Robert O; Steppe, Kathy

    2013-01-01

    Upward transport of CO₂ via the transpiration stream from belowground to aboveground tissues occurs in tree stems. Despite potentially important implications for our understanding of plant physiology, the fate of internally transported CO₂ derived from autotrophic respiratory processes remains unclear. We infused a ¹³CO₂-labeled aqueous solution into the base of 7-yr-old field-grown eastern cottonwood (Populus deltoides) trees to investigate the effect of xylem-transported CO₂ derived from the root system on aboveground carbon assimilation and CO₂ efflux. The ¹³C label was transported internally and detected throughout the tree. Up to 17% of the infused label was assimilated, while the remainder diffused to the atmosphere via stem and branch efflux. The largest amount of assimilated ¹³C was found in branch woody tissues, while only a small quantity was assimilated in the foliage. Petioles were more highly enriched in ¹³C than other leaf tissues. Our results confirm a recycling pathway for respired CO₂ and indicate that internal transport of CO₂ from the root system may confound the interpretation of efflux-based estimates of woody tissue respiration and patterns of carbohydrate allocation. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  7. P-glycoprotein multidrug transporter in inflammatory bowel diseases: More questions than answers

    PubMed Central

    Cario, Elke

    2017-01-01

    The gastrointestinal barrier is constantly exposed to numerous environmental substrates that are foreign and potentially harmful. These xenobiotics can cause shifts in the intestinal microbiota composition, affect mucosal immune responses, disturb tissue integrity and impair regeneration. The multidrug transporter ABCB1/MDR1 p-glycoprotein (p-gp) plays a key role at the front line of host defence by efficiently protecting the gastrointestinal barrier from xenobiotic accumulation. This Editorial discusses how altered expression and function of ABCB1/MDR1 p-gp may contribute to the development and persistence of chronic intestinal inflammation in inflammatory bowel diseases (IBD). Recent evidence implies multiple interactions between intestinal microbiota, innate immunity and xenobiotic metabolism via p-gp. While decreased efflux activity may promote disease susceptibility and drug toxicity, increased efflux activity may confer resistance to therapeutic drugs in IBD. Mice deficient in MDR1A develop spontaneously chronic colitis, providing a highly valuable murine IBD model for the study of intestinal epithelial barrier function, immunoregulation, infectious co-triggers and novel therapeutic approaches. Possible associations of human ABCB1 gene polymorphisms with IBD susceptibility have been evaluated, but results are inconsistent. Future studies must focus on further elucidation of the pathophysiological relevance and immunological functions of p-gp and how its ambiguous effects could be therapeutically targeted in IBD. PMID:28321153

  8. Rethinking Drug Treatment Approaches in ALS by Targeting ABC Efflux Transporters

    DTIC Science & Technology

    2014-12-01

    for ALS patients. One of the problems in finding highly efficacious treatments in ALS may derive from the so far underestimated issue of disease... efficacy the SOD1-G93A ALS mice. 15. SUBJECT TERMS Drug resistance, ALS, Therapy, Riluzole, Drug Efflux Transporters 16. SECURITY CLASSIFICATION OF...improves efficacy of ALS therapeutics Michael R. Jablonski1, Shashirekha S. Markandaiah1, Dena Jacob1, Ni J. Meng1, Ke Li2, Victoria Gennaro1, Angelo

  9. Water-mediated interactions enable smooth substrate transport in a bacterial efflux pump.

    PubMed

    Vargiu, Attilio Vittorio; Ramaswamy, Venkata Krishnan; Malvacio, Ivana; Malloci, Giuliano; Kleinekathöfer, Ulrich; Ruggerone, Paolo

    2018-04-01

    Efflux pumps of the Resistance-Nodulation-cell Division superfamily confer multi-drug resistance to Gram-negative bacteria. The most-studied polyspecific transporter belonging to this class is the inner-membrane trimeric antiporter AcrB of Escherichia coli. In previous studies, a functional rotation mechanism was proposed for its functioning, according to which the three monomers undergo concerted conformational changes facilitating the extrusion of substrates. However, the molecular determinants and the energetics of this mechanism still remain unknown, so its feasibility must be proven mechanistically. A computational protocol able to mimic the functional rotation mechanism in AcrB was developed. By using multi-bias molecular dynamics simulations we characterized the translocation of the substrate doxorubicin driven by conformational changes of the protein. In addition, we estimated for the first time the free energy profile associated to this process. We provided a molecular view of the process in agreement with experimental data. Moreover, we showed that the conformational changes occurring in AcrB enable the formation of a layer of structured waters on the internal surface of the transport channel. This water layer, in turn, allows for a fairly constant hydration of the substrate, facilitating its diffusion over a smooth free energy profile. Our findings reveal a new molecular mechanism of polyspecific transport whereby water contributes by screening potentially strong substrate-protein interactions. We provided a mechanistic understanding of a fundamental process related to multi-drug transport. Our results can help rationalizing the behavior of other polyspecific transporters and designing compounds avoiding extrusion or inhibitors of efflux pumps. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. A Rice Phenolic Efflux Transporter Is Essential for Solubilizing Precipitated Apoplasmic Iron in the Plant Stele*

    PubMed Central

    Ishimaru, Yasuhiro; Kakei, Yusuke; Shimo, Hugo; Bashir, Khurram; Sato, Yutaka; Sato, Yuki; Uozumi, Nobuyuki; Nakanishi, Hiromi; Nishizawa, Naoko K.

    2011-01-01

    Iron deficiency is one of the major agricultural problems, as 30% of the arable land of the world is too alkaline for optimal crop production, rendering plants short of available iron despite its abundance. To take up apoplasmic precipitated iron, plants secrete phenolics such as protocatechuic acid (PCA) and caffeic acid. The molecular pathways and genes of iron uptake strategies are already characterized, whereas the molecular mechanisms of phenolics synthesis and secretion have not been clarified, and no phenolics efflux transporters have been identified in plants yet. Here we describe the identification of a phenolics efflux transporter in rice. We identified a cadmium-accumulating rice mutant in which the amount of PCA and caffeic acid in the xylem sap was dramatically reduced and hence named it phenolics efflux zero 1 (pez1). PEZ1 localized to the plasma membrane and transported PCA when expressed in Xenopus laevis oocytes. PEZ1 localized mainly in the stele of roots. In the roots of pez1, precipitated apoplasmic iron increased. The growth of PEZ1 overexpression lines was severely restricted, and these lines accumulated more iron as a result of the high solubilization of precipitated apoplasmic iron in the stele. We show that PEZ1 is responsible for an increase of PCA concentration in the xylem sap and is essential for the utilization of apoplasmic precipitated iron in the stele. PMID:21602276

  11. CHX14 is a plasma membrane K-efflux transporter that regulates K(+) redistribution in Arabidopsis thaliana.

    PubMed

    Zhao, Jian; Li, Penghui; Motes, Christy M; Park, Sunghun; Hirschi, Kendal D

    2015-11-01

    Potassium (K(+) ) is essential for plant growth and development, yet the molecular identity of many K(+) transporters remains elusive. Here we characterized cation/H(+) exchanger (CHX) 14 as a plasma membrane K(+) transporter. CHX14 expression was induced by elevated K(+) and histochemical analysis of CHX14 promoter::GUS transgenic plants indicated that CHX14 was expressed in xylem parenchyma of root and shoot vascular tissues of seedlings. CHX14 knockout (chx14) and CHX14 overexpression seedlings displayed different growth phenotypes during K(+) stress as compared with wild-type seedlings. Roots of mutant seedlings displayed higher K(+) uptake rates than wild-type roots. CHX14 expression in yeast cells deficient in K(+) uptake renders the mutant cells more sensitive to deficiencies of K(+) in the medium. CHX14 mediates K(+) efflux in yeast cells loaded with high K(+) . Uptake experiments using (86) Rb(+) as a tracer for K(+) with both yeast and plant mutants demonstrated that CHX14 expression in yeast and in planta mediated low-affinity K(+) efflux. Functional green fluorescent protein (GFP)-tagged versions of CHX14 were localized to both the yeast and plant plasma membranes. Taken together, we suggest that CHX14 is a plasma membrane K(+) efflux transporter involved in K(+) homeostasis and K(+) recirculation. © 2015 John Wiley & Sons Ltd.

  12. Ascorbate Efflux as a New Strategy for Iron Reduction and Transport in Plants*

    PubMed Central

    Grillet, Louis; Ouerdane, Laurent; Flis, Paulina; Hoang, Minh Thi Thanh; Isaure, Marie-Pierre; Lobinski, Ryszard; Curie, Catherine; Mari, Stéphane

    2014-01-01

    Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled 55Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds. PMID:24347170

  13. Ascorbate efflux as a new strategy for iron reduction and transport in plants.

    PubMed

    Grillet, Louis; Ouerdane, Laurent; Flis, Paulina; Hoang, Minh Thi Thanh; Isaure, Marie-Pierre; Lobinski, Ryszard; Curie, Catherine; Mari, Stéphane

    2014-01-31

    Iron (Fe) is essential for virtually all living organisms. The identification of the chemical forms of iron (the speciation) circulating in and between cells is crucial to further understand the mechanisms of iron delivery to its final targets. Here we analyzed how iron is transported to the seeds by the chemical identification of iron complexes that are delivered to embryos, followed by the biochemical characterization of the transport of these complexes by the embryo, using the pea (Pisum sativum) as a model species. We have found that iron circulates as ferric complexes with citrate and malate (Fe(III)3Cit2Mal2, Fe(III)3Cit3Mal1, Fe(III)Cit2). Because dicotyledonous plants only transport ferrous iron, we checked whether embryos were capable of reducing iron of these complexes. Indeed, embryos did express a constitutively high ferric reduction activity. Surprisingly, iron(III) reduction is not catalyzed by the expected membrane-bound ferric reductase. Instead, embryos efflux high amounts of ascorbate that chemically reduce iron(III) from citrate-malate complexes. In vitro transport experiments on isolated embryos using radiolabeled (55)Fe demonstrated that this ascorbate-mediated reduction is an obligatory step for the uptake of iron(II). Moreover, the ascorbate efflux activity was also measured in Arabidopsis embryos, suggesting that this new iron transport system may be generic to dicotyledonous plants. Finally, in embryos of the ascorbate-deficient mutants vtc2-4, vtc5-1, and vtc5-2, the reducing activity and the iron concentration were reduced significantly. Taken together, our results identified a new iron transport mechanism in plants that could play a major role to control iron loading in seeds.

  14. ATP-Binding Cassette Efflux Transporters in Human Placenta

    PubMed Central

    Ni, Zhanglin; Mao, Qingcheng

    2010-01-01

    Pregnant women are often complicated with diseases including viral or bacterial infections, epilepsy, hypertension, or pregnancy-induced conditions such as depression and gestational diabetes that require treatment with medication. In addition, substance abuse during pregnancy remains a major public health problem. Many drugs used by pregnant women are off label without the necessary dose, efficacy, and safety data required for rational dosing regimens of these drugs. Thus, a major concern arising from the widespread use of drugs by pregnant women is the transfer of drugs across the placental barrier, leading to potential toxicity to the developing fetus. Knowledge regarding the ATP-binding cassette (ABC) efflux transporters, which play an important role in drug transfer across the placental barrier, is absolutely critical for optimizing the therapeutic strategy to treat the mother while protecting the fetus during pregnancy. Such transporters include P-glycoprotein (P-gp, gene symbol ABCB1), the breast cancer resistance protein (BCRP, gene symbol ABCG2), and the multidrug resistance proteins (MRPs, gene symbol ABCCs). In this review, we summarize the current knowledge with respect to developmental expression and regulation, membrane localization, functional significance, and genetic polymorphisms of these ABC transporters in the placenta and their relevance to fetal drug exposure and toxicity. PMID:21118087

  15. The role of multidrug resistance protein (MRP-1) as an active efflux transporter on blood-brain barrier (BBB) permeability.

    PubMed

    Lingineni, Karthik; Belekar, Vilas; Tangadpalliwar, Sujit R; Garg, Prabha

    2017-05-01

    Drugs acting on central nervous system (CNS) may take longer duration to reach the market as these compounds have a higher attrition rate in clinical trials due to the complexity of the brain, side effects, and poor blood-brain barrier (BBB) permeability compared to non-CNS-acting compounds. The roles of active efflux transporters with BBB are still unclear. The aim of the present work was to develop a predictive model for BBB permeability that includes the MRP-1 transporter, which is considered as an active efflux transporter. A support vector machine model was developed for the classification of MRP-1 substrates and non-substrates, which was validated with an external data set and Y-randomization method. An artificial neural network model has been developed to evaluate the role of MRP-1 on BBB permeation. A total of nine descriptors were selected, which included molecular weight, topological polar surface area, ClogP, number of hydrogen bond donors, number of hydrogen bond acceptors, number of rotatable bonds, P-gp, BCRP, and MRP-1 substrate probabilities for model development. We identified 5 molecules that fulfilled all criteria required for passive permeation of BBB, but they all have a low logBB value, which suggested that the molecules were effluxed by the MRP-1 transporter.

  16. Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by ToxCast Chemicals

    EPA Science Inventory

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  17. Transcriptional regulation of xenobiotic detoxification in Drosophila

    PubMed Central

    Misra, Jyoti R.; Horner, Michael A.; Lam, Geanette; Thummel, Carl S.

    2011-01-01

    Living organisms, from bacteria to humans, display a coordinated transcriptional response to xenobiotic exposure, inducing enzymes and transporters that facilitate detoxification. Several transcription factors have been identified in vertebrates that contribute to this regulatory response. In contrast, little is known about this pathway in insects. Here we show that the Drosophila Nrf2 (NF-E2-related factor 2) ortholog CncC (cap ‘n’ collar isoform-C) is a central regulator of xenobiotic detoxification responses. A binding site for CncC and its heterodimer partner Maf (muscle aponeurosis fibromatosis) is sufficient and necessary for robust transcriptional responses to three xenobiotic compounds: phenobarbital (PB), chlorpromazine, and caffeine. Genetic manipulations that alter the levels of CncC or its negative regulator, Keap1 (Kelch-like ECH-associated protein 1), lead to predictable changes in xenobiotic-inducible gene expression. Transcriptional profiling studies reveal that more than half of the genes regulated by PB are also controlled by CncC. Consistent with these effects on detoxification gene expression, activation of the CncC/Keap1 pathway in Drosophila is sufficient to confer resistance to the lethal effects of the pesticide malathion. These studies establish a molecular mechanism for the regulation of xenobiotic detoxification in Drosophila and have implications for controlling insect populations and the spread of insect-borne human diseases. PMID:21896655

  18. Possible involvement of cationic-drug sensitive transport systems in the blood-to-brain influx and brain-to-blood efflux of amantadine across the blood-brain barrier.

    PubMed

    Suzuki, Toyofumi; Fukami, Toshiro; Tomono, Kazuo

    2015-03-01

    The purpose of this study was to characterize the brain-to-blood efflux transport of amantadine across the blood-brain barrier (BBB). The apparent in vivo efflux rate constant for [(3) H]amantadine from the rat brain (keff ) was found to be 1.53 × 10(-2) min(-1) after intracerebral microinjection using the brain efflux index method. The efflux of [(3) H]amantadine was inhibited by 1-methyl-4-phenylpyridinium (MPP(+) ), a cationic neurotoxin, suggesting that amantadine transport from the brain to the blood across the BBB potentially involves the rat plasma membrane monoamine transporter (rPMAT). On the other hand, other selected substrates for organic cation transporters (OCTs) and organic anion transporters (OATs), as well as inhibitors of P-glycoprotein (P-gp), did not affect the efflux transport of [(3) H]amantadine. In addition, in vitro studies using an immortalized rat brain endothelial cell line (GPNT) showed that the uptake and retention of [(3) H]amantadine by the cells was not changed by the addition of cyclosporin, which is an inhibitor of P-gp. However, cyclosporin affected the uptake and retention of rhodamine123. Finally, the initial brain uptake of [(3) H]amantadine was determined using an in situ mouse brain perfusion technique. Notably, the brain uptake clearance for [(3) H]amantadine was significantly decreased with the co-perfusion of quinidine or verapamil, which are cationic P-gp inhibitors, while MPP(+) did not have a significant effect. It is thus concluded that while P-gp is not involved, it is possible that rPMAT and the cationic drug-sensitive transport system participate in the brain-to-blood efflux and the blood-to-brain influx of amantadine across the BBB, respectively. Copyright © 2014 John Wiley & Sons, Ltd.

  19. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport.

    PubMed

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-06-01

    The aim of this study was to elucidate the intestinal epithelial cell efflux transport processes that are involved in the intestinal transport of the H(2) receptor antagonist nizatidine. The intestinal epithelial efflux transport mechanisms of nizatidine were investigated and characterized across Caco-2 cell monolayers, in the concentration range 0.05-10 mM in both apical-basolateral (AP-BL) and BL-AP directions, and the transport constants of P-glycoprotein (P-gp) efflux activity were calculated. The concentration-dependent effects of various P-gp (verapamil, quinidine, erythromycin, ketoconazole, and cyclosporine A), multidrug resistant-associated protein 2 (MRP2; MK-571, probenecid, indomethacin, and p-aminohipuric acid), and breast cancer resistance protein (BCRP; Fumitremorgin C) inhibitors on nizatidine bidirectional transport were examined. Nizatidine exhibited 7.7-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. All P-gp inhibitors investigated displayed concentration-dependent inhibition on nizatidine secretion in both directions. The IC(50) of verapamil on nizatidine P-gp secretion was 1.2 x 10(-2) mM. In the absence of inhibitors, nizatidine displayed concentration-dependent secretion, with one saturable (J(max) = 5.7 x 10(-3) nmol cm(-2) s(-1) and K(m) = 2.2 mM) and one nonsaturable component (K(d) = 7 x 10(-4) microL cm(-2) s(-1)). Under complete P-gp inhibition, nizatidine exhibited linear secretory flux, with a slope similar to the nonsaturable component. V(max) and K(m) estimated for nizatidine P-gp-mediated secretion were 4 x 10(-3) nmol cm(-2) s(-1) and 1.2 mM, respectively. No effect was obtained with the MRP2 or the BCRP inhibitors. Being a drug commonly used in pediatrics, adults, and elderly, nizatidine susceptibility to efflux transport by P-gp revealed in this paper may be of significance in its absorption, distribution, and clearance, as well as possible drug-drug interactions.

  20. PPAR-α, a lipid-sensing transcription factor, regulates blood–brain barrier efflux transporter expression

    PubMed Central

    More, Vijay R; Campos, Christopher R; Evans, Rebecca A; Oliver, Keith D; Chan, Gary NY; Miller, David S

    2016-01-01

    Lipid sensor peroxisome proliferator-activated receptor alpha (PPAR-α) is the master regulator of lipid metabolism. Dietary release of endogenous free fatty acids, fibrates, and certain persistent environmental pollutants, e.g. perfluoroalkyl fire-fighting foam components, are peroxisome proliferator-activated receptor alpha ligands. Here, we define a role for peroxisome proliferator-activated receptor alpha in regulating the expression of three ATP-driven drug efflux transporters at the rat and mouse blood–brain barriers: P-glycoprotein (Abcb1), breast cancer resistance protein (Bcrp/Abcg2), and multidrug resistance-associated protein 2 (Mrp2/Abcc2). Exposing isolated rat brain capillaries to linoleic acid, clofibrate, or PKAs increased the transport activity and protein expression of the three ABC transporters. These effects were blocked by the PPAR-α antagonist, GW6471. Dosing rats with 20 mg/kg or 200 mg/kg of clofibrate decreased the brain accumulation of the P-glycoprotein substrate, verapamil, by 50% (in situ brain perfusion; effects blocked by GW6471) and increased P-glycoprotein expression and activity in capillaries ex vivo. Fasting C57Bl/6 wild-type mice for 24 h increased both serum lipids and brain capillary P-glycoprotein transport activity. Fasting did not alter P-glycoprotein activity in PPAR-α knockout mice. These results indicate that hyperlipidemia, lipid-lowering fibrates and exposure to certain fire-fighting foam components activate blood–brain barrier peroxisome proliferator-activated receptor alpha, increase drug efflux transporter expression and reduce drug delivery to the brain. PMID:27193034

  1. The putative drug efflux systems of the Bacillus cereus group

    PubMed Central

    Elbourne, Liam D. H.; Vörös, Aniko; Kroeger, Jasmin K.; Simm, Roger; Tourasse, Nicolas J.; Finke, Sarah; Henderson, Peter J. F.; Økstad, Ole Andreas; Paulsen, Ian T.; Kolstø, Anne-Brit

    2017-01-01

    The Bacillus cereus group of bacteria includes seven closely related species, three of which, B. anthracis, B. cereus and B. thuringiensis, are pathogens of humans, animals and/or insects. Preliminary investigations into the transport capabilities of different bacterial lineages suggested that genes encoding putative efflux systems were unusually abundant in the B. cereus group compared to other bacteria. To explore the drug efflux potential of the B. cereus group all putative efflux systems were identified in the genomes of prototypical strains of B. cereus, B. anthracis and B. thuringiensis using our Transporter Automated Annotation Pipeline. More than 90 putative drug efflux systems were found within each of these strains, accounting for up to 2.7% of their protein coding potential. Comparative analyses demonstrated that the efflux systems are highly conserved between these species; 70–80% of the putative efflux pumps were shared between all three strains studied. Furthermore, 82% of the putative efflux system proteins encoded by the prototypical B. cereus strain ATCC 14579 (type strain) were found to be conserved in at least 80% of 169 B. cereus group strains that have high quality genome sequences available. However, only a handful of these efflux pumps have been functionally characterized. Deletion of individual efflux pump genes from B. cereus typically had little impact to drug resistance phenotypes or the general fitness of the strains, possibly because of the large numbers of alternative efflux systems that may have overlapping substrate specificities. Therefore, to gain insight into the possible transport functions of efflux systems in B. cereus, we undertook large-scale qRT-PCR analyses of efflux pump gene expression following drug shocks and other stress treatments. Clustering of gene expression changes identified several groups of similarly regulated systems that may have overlapping drug resistance functions. In this article we review current

  2. Modulation of Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes by ToxCast Chemicals

    EPA Science Inventory

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  3. Ascorbic Acid Efflux from Human Brain Microvascular Pericytes: Role of Re-uptake

    PubMed Central

    May, James M.; Qu, Zhi-chao

    2015-01-01

    Microvascular pericytes take up ascorbic acid on the ascorbate transporter SVCT2. Intracellular ascorbate then protects the cells against apoptosis induced by culture at diabetic glucose concentrations. To investigate whether pericytes might also provide ascorbate to the underlying endothelial cells, we studied ascorbate efflux from human pericytes. When loaded with ascorbate to intracellular concentrations of 0.8–1.0 mM, almost two-thirds of intracellular ascorbate effluxed from the cells over 2 h. This efflux was opposed by ascorbate re-uptake from the medium, since preventing re-uptake by destroying extracellular ascorbate with ascorbate oxidase increased ascorbate loss even further. Ascorbate re-uptake occurred on the SVCT2, since its blockade by replacing medium sodium with choline, by the SVCT2 inhibitor sulfinpyrazone, or by extracellular ascorbate accelerated ascorbate loss from the cells. This was supported by finding that net efflux of radiolabeled ascorbate was increased by unlabeled extracellular ascorbate with a half-maximal effect in the range of the high affinity Km of the SVCT2. Intracellular ascorbate did not inhibit its efflux. To assess the mechanism of ascorbate efflux, known inhibitors of volume-regulated anion channels (VRACs) were tested. These potently inhibited ascorbate transport into cells on the SVCT2, but not its efflux. An exception was the anion transport inhibitor DIDS, which, despite inhibition of ascorbate uptake, also inhibited net efflux at 25–50 µM. These results suggest that ascorbate efflux from vascular pericytes occurs on a DIDS-inhibitable transporter or channel different from VRACs. Further, ascorbate efflux is opposed by re-uptake of ascorbate on the SVCT2, providing a potential regulatory mechanism. PMID:26340060

  4. Efflux as a mechanism of antimicrobial drug resistance in clinical relevant microorganisms: the role of efflux inhibitors.

    PubMed

    Willers, Clarissa; Wentzel, Johannes Frederik; du Plessis, Lissinda Hester; Gouws, Chrisna; Hamman, Josias Hendrik

    2017-01-01

    Microbial resistance against antibiotics is a serious threat to the effective treatment of infectious diseases. Several mechanisms exist through which microorganisms can develop resistance against antimicrobial drugs, of which the overexpression of genes to produce efflux pumps is a major concern. Several efflux transporters have been identified in microorganisms, which infer resistance against specific antibiotics and even multidrug resistance. Areas covered: This paper focuses on microbial resistance against antibiotics by means of the mechanism of efflux and gives a critical overview of studies conducted to overcome this problem by combining efflux pump inhibitors with antibiotics. Information was obtained from a literature search done with MEDLINE, Pubmed, Scopus, ScienceDirect, OneSearch and EBSCO host. Expert opinion: Efflux as a mechanism of multidrug resistance has presented a platform for improved efficacy against resistant microorganisms by co-administration of efflux pump inhibitors with antimicrobial agents. Although proof of concept has been shown for this approach with in vitro experiments, further research is needed to develop more potent inhibitors with low toxicity which is clinically effective.

  5. Roles of inner blood-retinal barrier organic anion transporter 3 in the vitreous/retina-to-blood efflux transport of p-aminohippuric acid, benzylpenicillin, and 6-mercaptopurine.

    PubMed

    Hosoya, Ken-ichi; Makihara, Akihide; Tsujikawa, Yuki; Yoneyama, Daisuke; Mori, Shinobu; Terasaki, Tetsuya; Akanuma, Shin-ichi; Tomi, Masatoshi; Tachikawa, Masanori

    2009-04-01

    The purpose of the present study was to characterize rat organic anion transporter (Oat) 3 (Oat3, Slc22a8) in the efflux transport at the inner blood-retinal barrier (BRB). Reverse transcription-polymerase chain reaction analysis showed that rat (r) Oat3 mRNA is expressed in retinal vascular endothelial cells (RVECs), but not rOat1 and rOat2 mRNA. The expression of Oat3 in the retina and human cultured retinal endothelial cells was further confirmed by Western blot analysis. Immunohistochemical staining in RVECs showed that rOat3 is colocalized with glucose transporter 1, but not P-glycoprotein, suggesting that rOat3 is possibly located at the abluminal membrane of the RVEC. The contribution of rOat3 to the efflux of [(3)H]p-aminohippuric acid ([(3)H]PAH), [(3)H]benzylpenicillin ([(3)H]PCG), and [(14)C]6-mercaptopurine ([(14)C]6-MP), substrates of rOat3, from the vitreous humor/retina to the circulating blood across the inner BRB was evaluated using the microdialysis method. [(3)H]PAH, [(3)H]PCG, [(14)C]6-MP, and [(14)C] or [(3)H]d-mannitol, a bulk flow marker, were biexponentially eliminated from the vitreous humor after vitreous bolus injection. The elimination rate constant of [(3)H]PAH, [(3)H]PCG, and [(14)C]6-MP during the terminal phase was approximately 2-fold greater than that of d-mannitol. This efflux transport was reduced in the retinal presence of probenecid, PAH, and PCG, whereas it was not inhibited by digoxin. In conclusion, rOat3 is expressed at the inner BRB and involved in the vitreous humor/retina-to-blood transport of PAH, PCG, and 6-MP. This transport system is one mechanism to limit the retinal distribution of PAH, PCG, and 6-MP.

  6. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine

    PubMed Central

    Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki

    2016-01-01

    Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux

  7. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine.

    PubMed

    Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki

    2016-01-01

    Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux

  8. Facilitated transporters mediate net efflux of amino acids to the fetus across the basal membrane of the placental syncytiotrophoblast

    PubMed Central

    Cleal, J K; Glazier, J D; Ntani, G; Crozier, S R; Day, P E; Harvey, N C; Robinson, S M; Cooper, C; Godfrey, K M; Hanson, M A; Lewis, R M

    2011-01-01

    Fetal growth depends on placental transfer of amino acids from maternal to fetal blood. The mechanisms of net amino acid efflux across the basal membrane (BM) of the placental syncytiotrophoblast to the fetus, although vital for amino acid transport, are poorly understood. We examined the hypothesis that facilitated diffusion by the amino acid transporters TAT1, LAT3 and LAT4 plays an important role in this process, with possible effects on fetal growth. Amino acid transfer was measured in isolated perfused human placental cotyledons (n= 5 per experiment) using techniques which distinguish between different transport processes. Placental TAT1, LAT3 and LAT4 proteins were measured, and mRNA expression levels (measured using real-time quantitative-PCR) were related to fetal and neonatal anthropometry and dual-energy X-ray absorptiometry measurements of neonatal lean mass in 102 Southampton Women's Survey (SWS) infants. Under conditions preventing transport by amino acid exchangers, all amino acids appearing in the fetal circulation were substrates of TAT1, LAT3 or LAT4. Western blots demonstrated the presence of TAT1, LAT3 and LAT4 in placental BM preparations. Placental TAT1 and LAT3 mRNA expression were positively associated with measures of fetal growth in SWS infants (P < 0.05). We provide evidence that the efflux transporters TAT1, LAT3 and LAT4 are present in the human placental BM, and may play an important role in the net efflux of amino acids to the fetus. Unlike other transporters they can increase fetal amino acid concentrations. Consistent with a role in placental amino acid transfer capacity and fetal growth TAT1 and LAT3 mRNA expression showed positive associations with infant size at birth. PMID:21224231

  9. Multidrug efflux transporter activity in sea urchin embryos:Does localization provide a diffusive advantage?

    NASA Astrophysics Data System (ADS)

    Song, Xianfeng; Setayeshgar, Sima; Cole, Bryan; Hamdoun, Amro; Epel, David

    2008-03-01

    Experiments have shown upregulation of multidrug efflux transporter activity approximately 30 min after fertilization in the sea urchin embryo [1]. These ATP-hydrolyzing transporter proteins pump moderately hydrophobic molecules out of the cell and represent the cell's first line of defense againstexogenous toxins. It has also been shown that transporters are moved in vesicles along microfilaments and localized to tips of microvilli prior to activation. We have constructed a geometrically realistic model of the embryo, including microvilli, to explore the functional role of this localization in the efficient elimination of toxins from the standpoint of diffusion. We compute diffusion of toxins in extracellular, membrane and intracellular spaces coupled with transporter activity, using experimentally derived values for physical parameters. For transporters uniformly distributed along microvilli and tip-localized transporters we compare regions in parameter space where each distribution provides diffusive advantage, and comment on the physically expected conditions. [1] A. M. Hamdoun, G. N. Cherr, T. A. Roepke and D. Epel, Developmental Biology 276 452 (2004).

  10. Xenobiotic Metabolism and Gut Microbiomes

    PubMed Central

    Das, Anubhav; Srinivasan, Meenakshi; Ghosh, Tarini Shankar; Mande, Sharmila S.

    2016-01-01

    Humans are exposed to numerous xenobiotics, a majority of which are in the form of pharmaceuticals. Apart from human enzymes, recent studies have indicated the role of the gut bacterial community (microbiome) in metabolizing xenobiotics. However, little is known about the contribution of the plethora of gut microbiome in xenobiotic metabolism. The present study reports the results of analyses on xenobiotic metabolizing enzymes in various human gut microbiomes. A total of 397 available gut metagenomes from individuals of varying age groups from 8 nationalities were analyzed. Based on the diversities and abundances of the xenobiotic metabolizing enzymes, various bacterial taxa were classified into three groups, namely, least versatile, intermediately versatile and highly versatile xenobiotic metabolizers. Most interestingly, specific relationships were observed between the overall drug consumption profile and the abundance and diversity of the xenobiotic metabolizing repertoire in various geographies. The obtained differential abundance patterns of xenobiotic metabolizing enzymes and bacterial genera harboring them, suggest their links to pharmacokinetic variations among individuals. Additional analyses of a few well studied classes of drug modifying enzymes (DMEs) also indicate geographic as well as age specific trends. PMID:27695034

  11. Chloroquine transport in Plasmodium falciparum. 1. Influx and efflux kinetics for live trophozoite parasites using a novel fluorescent chloroquine probe.

    PubMed

    Cabrera, Mynthia; Natarajan, Jayakumar; Paguio, Michelle F; Wolf, Christian; Urbach, Jeffrey S; Roepe, Paul D

    2009-10-13

    Several models for how amino acid substitutions in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to chloroquine (CQ) and other antimalarial drugs have been proposed. Distinguishing between these models requires detailed analysis of high-resolution CQ transport data that is unfortunately impossible to obtain with traditional radio-tracer methods. Thus, we have designed and synthesized fluorescent CQ analogues for drug transport studies. One probe places a NBD (6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoic acid) group at the tertiary aliphatic N of CQ, via a flexible 6 C amide linker. This probe localizes to the malarial parasite digestive vacuole (DV) during initial perfusion under physiologic conditions and exhibits similar pharmacology relative to CQ, vs both CQ-sensitive (CQS) and CQ-resistant (CQR) parasites. Using live, synchronized intraerythrocytic parasites under continuous perfusion, we define NBD-CQ influx and efflux kinetics for CQS vs CQR parasites. Since this fluorescence approach provides data at much higher kinetic resolution relative to fast-filtration methods using (3)H-CQ, rate constants vs linear initial rates for CQ probe flux can be analyzed in detail. Importantly, we find that CQR parasites have a decreased rate constant for CQ influx into the DV and that this is due to mutation of PfCRT. Analysis of zero trans efflux for CQS and CQR parasites suggests that distinguishing between bound vs free pools of intra-DV drug probe is essential for proper kinetic analysis of efflux. The accompanying paper (DOI 10.1021/bi901035j ) further probes efflux kinetics for proteoliposomes containing purified, reconstituted PfCRT.

  12. Glutathione Efflux and Cell Death

    PubMed Central

    2012-01-01

    Abstract Significance: Glutathione (GSH) depletion is a central signaling event that regulates the activation of cell death pathways. GSH depletion is often taken as a marker of oxidative stress and thus, as a consequence of its antioxidant properties scavenging reactive species of both oxygen and nitrogen (ROS/RNS). Recent Advances: There is increasing evidence demonstrating that GSH loss is an active phenomenon regulating the redox signaling events modulating cell death activation and progression. Critical Issues: In this work, we review the role of GSH depletion by its efflux, as an important event regulating alterations in the cellular redox balance during cell death independent from oxidative stress and ROS/RNS formation. We discuss the mechanisms involved in GSH efflux during cell death progression and the redox signaling events by which GSH depletion regulates the activation of the cell death machinery. Future Directions: The evidence summarized here clearly places GSH transport as a central mechanism mediating redox signaling during cell death progression. Future studies should be directed toward identifying the molecular identity of GSH transporters mediating GSH extrusion during cell death, and addressing the lack of sensitive approaches to quantify GSH efflux. Antioxid. Redox Signal. 17, 1694–1713. PMID:22656858

  13. Efflux transport of estrogen glucuronides by human MRP2, MRP3, MRP4 and BCRP.

    PubMed

    Järvinen, Erkka; Deng, Feng; Kidron, Heidi; Finel, Moshe

    2018-04-01

    Estrone, estradiol and estriol are endogenous human estrogens that are rapidly conjugated with glucuronic acid in both intestinal and hepatic epithelial cells. The resulting glucuronides, estrone-3-glucuronide (E 1 -G), estradiol-3- and 17-glucuronides (E 2 -3G and E 2 -17G), as well as estriol-3- and 16-glucuronides (E 3 -3G and E 3 -16G) are found in human plasma and urine. Unlike E 2 -17G, the efflux transport of other estrogen glucuronides by human transporters has not yet been investigated comprehensively. We have studied the transport of E 1 -G, E 2 -3G, E 3 -3G, E 3 -16G and estrone-3-sulfate (E 1 -S), another important estrogen conjugate, using the vesicular transport assay with recombinant human MRP2, MRP3, MRP4, MDR1 and BCRP that were expressed in insect cells. The transport screening assays revealed that whereas E 1 -S was a good and specific substrate for BCRP, the less transporter-specific conjugates, E 1 -G and E 2 -3G, were still transported by BCRP at 10-fold higher rates than E 1 -S. BCRP also transported E 3 -16G at higher rates than the studied MRPs, while it transported E 3 -3G at lower rates than MRP3. MRP2 exhibited lower or equal transport rates of E 1 -G, E 2 -3G, E 3 -3G and E 3 -16G in comparison to MRP3 and BCRP in the screening assays, mainly due to its high K m values, between 180 and 790 μM. MRP3 transported all the tested glucuronides at rather similar rates, at K m values below 20 μM, but lower V max values than other transporters. In the case of E 3 -3G, MRP3 was the most active transporter in the screening assay. MRP4 transported only E 3 -16G at considerable rates, while none of the tested estrogen conjugates was transported by MDR1 at higher rates than control vesicles. These new results, in combination with previously reported in vivo human data, stimulate our understanding on the substrate specificity and role of efflux transporters in disposition of estrogen glucuronides in humans. Copyright © 2017 Elsevier Ltd. All

  14. ATP binding cassette G1-dependent cholesterol efflux during inflammation.

    PubMed

    de Beer, Maria C; Ji, Ailing; Jahangiri, Anisa; Vaughan, Ashley M; de Beer, Frederick C; van der Westhuyzen, Deneys R; Webb, Nancy R

    2011-02-01

    ATP binding cassette transporter G1 (ABCG1) mediates the transport of cellular cholesterol to HDL, and it plays a key role in maintaining macrophage cholesterol homeostasis. During inflammation, HDL undergoes substantial remodeling, acquiring lipid changes and serum amyloid A (SAA) as a major apolipoprotein. In the current study, we investigated whether remodeling of HDL that occurs during acute inflammation impacts ABCG1-dependent efflux. Our data indicate that lipid free SAA acts similarly to apolipoprotein A-I (apoA-I) in mediating sequential efflux from ABCA1 and ABCG1. Compared with normal mouse HDL, acute phase (AP) mouse HDL containing SAA exhibited a modest but significant 17% increase in ABCG1-dependent efflux. Interestingly, AP HDL isolated from mice lacking SAA (SAAKO mice) was even more effective in promoting ABCG1 efflux. Hydrolysis with Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) significantly reduced the ability of AP HDL from SAAKO mice to serve as a substrate for ABCG1-mediated cholesterol transfer, indicating that phospholipid (PL) enrichment, and not the presence of SAA, is responsible for alterations in efflux. AP human HDL, which is not PL-enriched, was somewhat less effective in mediating ABCG1-dependent efflux compared with normal human HDL. Our data indicate that inflammatory remodeling of HDL impacts ABCG1-dependent efflux independent of SAA.

  15. P-glycoprotein mediated efflux in Caco-2 cell monolayers: the influence of herbals on digoxin transport.

    PubMed

    Oga, Enoche F; Sekine, Shuichi; Shitara, Yoshihisa; Horie, Toshiharu

    2012-12-18

    Several herbal medicines are concomitantly used with conventional medicines with a resultant increase in the recognition of herb-drug interactions. The phytomedicines Vernonia amygdalina Delile (VA), family Asteraceae; Azadiractha indica A. Juss (NL), family Meliaceae; Morinda lucida Benth (MLB), family Rubiaceae; Cymbopogon citratus Stapf (LG), family Poaceae; Curcuma longa L. (CUR), family Zingiberaceae; Carica papaya L. (CP), family Caricaceae and Tapinanthus sessilifolius Blume (ML), family Loranthaceae are used in African traditional medicine for the treatment of malaria. They are also used in several regions world over in managing other ailments like cancer and diabetes. This study investigated their interaction with digoxin (DIG) with a view to predict the potential of P-glycoprotein (p-gp) mediated drug-herb interactions occurring with p-gp substrate drugs. To assess p-gp mediated transport and inhibition, bidirectional transport studies were carried out on Caco-2 cell monolayers using digoxin (DIG) as a model p-gp substrate. Cell functionality was demonstrated using the determinations of transepithelial electric resistance (TEER), cell cytotoxicity testing utilizing the MTT assay as well as the inclusion of inhibition controls. Under the conditions of this study, extracts of ML, VA and CP showed significant inhibition to (3)H-Digoxin basolateral-to-apical (B-A) transport at 0.02-20mg/mL; the concentrations examined. Their apical-to-basolateral (A-B) transport was further investigated. Increases in the mean A-B transport and significant decreases in the B-A transport and efflux ratio values were observed. The apparent permeability coefficient and efflux ratio were computed providing an estimate of drug absorption. The findings show that extracts of ML, VA and CP significantly inhibit p-gp in vitro and interactions with conventional p-gp substrate drugs are likely to occur on co-administration which may result in altered therapeutic outcomes. Copyright

  16. SWEET sugar transporters for phloem transport and pathogen nutrition.

    PubMed

    Chen, Li-Qing

    2014-03-01

    Many intercellular solute transport processes require an apoplasmic step, that is, efflux from one cell and subsequent uptake by an adjacent cell. Cellular uptake transporters have been identified for many solutes, including sucrose; however, efflux transporters have remained elusive for a long time. Cellular efflux of sugars plays essential roles in many processes, such as sugar efflux as the first step in phloem loading, sugar efflux for nectar secretion, and sugar efflux for supplying symbionts such as mycorrhiza, and maternal efflux for filial tissue development. Furthermore, sugar efflux systems can be hijacked by pathogens for access to nutrition from hosts. Mutations that block recruitment of the efflux mechanism by the pathogen thus cause pathogen resistance. Until recently, little was known regarding the underlying mechanism of sugar efflux. The identification of sugar efflux carriers, SWEETs (Sugars Will Eventually be Exported Transporters), has shed light on cellular sugar efflux. SWEETs appear to function as uniporters, facilitating diffusion of sugars across cell membranes. Indeed, SWEETs probably mediate sucrose efflux from putative phloem parenchyma into the phloem apoplasm, a key step proceeding phloem loading. Engineering of SWEET mutants using transcriptional activator-like effector nuclease (TALEN)-based genomic editing allowed the engineering of pathogen resistance. The widespread expression of the SWEET family promises to provide insights into many other cellular efflux mechanisms.

  17. Unraveling carbohydrate transport mechanisms in young beech trees (Fagus sylvatica f. purpurea) by 13CO2 efflux measurements from stem and soil

    NASA Astrophysics Data System (ADS)

    Thoms, Ronny; Muhr, Jan; Keitel, Claudia; Kayler, Zachary; Gavrichkova, Olga; Köhler, Michael; Gessler, Arthur; Gleixner, Gerd

    2016-04-01

    Transport mechanisms of soluble carbohydrates and diurnal CO2 efflux from tree stems and surrounding soil are well studied. However, the effect of transport carbohydrates on respiration and their interaction with storage processes is largely unknown. Therefore, we performed a set of 13CO2 pulse labeling experiments on young trees of European beech (Fagus sylvatica f. purpurea). We labeled the whole tree crowns in a closed transparent plastic chamber with 99% 13CO2 for 30 min. In one experiment, only a single branch was labeled and removed 36 hours after labeling. In all experiments, we continuously measured the 13CO2 efflux from stem, branch and soil and sampled leaf and stem material every 3 h for 2 days, followed by a daily sampling of leaves in the successive 5 days. The compound specific δ 13C value of extracted soluble carbohydrates from leaf and stem material was measured by high-performance liquid chromatography linked with an isotope ratio mass spectrometer (HPLC-IRMS). The 13CO2 signal from soil respiration occurred only few hours after labeling indicating a very high transport rate of carbohydrates from leaf to roots and to the rhizosphere. The label was continuously depleted within the next 5 days. In contrast, we observed a remarkable oscillating pattern of 13CO2 efflux from the stem with maximum 13CO2 enrichment at noon and minima at night time. This oscillation suggests that enriched carbohydrates are respired during the day, whereas in the night the enriched sugars are not respired. The observed oscillation in stem 13CO2 enrichment remained unchanged even when only single branches were labelled and cut right afterwards. Thus, storage and conversion of carbohydrates only occurred within the stem. The δ13C patterns of extracted soluble carbohydrates showed, that a transformation of transitory starch to carbohydrates and vice versa was no driver of the oscillating 13CO2 efflux from the stem. Carbohydrates might have been transported in the phloem to

  18. Identification of a novel topoisomerase inhibitor effective in cells overexpressing drug efflux transporters.

    PubMed

    Fayad, Walid; Fryknäs, Mårten; Brnjic, Slavica; Olofsson, Maria Hägg; Larsson, Rolf; Linder, Stig

    2009-10-02

    Natural product structures have high chemical diversity and are attractive as lead structures for discovery of new drugs. One of the disease areas where natural products are most frequently used as therapeutics is oncology. A library of natural products (NCI Natural Product set) was screened for compounds that induce apoptosis of HCT116 colon carcinoma cells using an assay that measures an endogenous caspase-cleavage product. One of the apoptosis-inducing compounds identified in the screen was thaspine (taspine), an alkaloid from the South American tree Croton lechleri. The cortex of this tree is used for medicinal purposes by tribes in the Amazonas basin. Thaspine was found to induce conformational activation of the pro-apoptotic proteins Bak and Bax, mitochondrial cytochrome c release and mitochondrial membrane permeabilization in HCT116 cells. Analysis of the gene expression signature of thaspine-treated cells suggested that thaspine is a topoisomerase inhibitor. Inhibition of both topoisomerase I and II was observed using in vitro assays, and thaspine was found to have a reduced cytotoxic effect on a cell line with a mutated topoisomerase II enzyme. Interestingly, in contrast to the topoisomerase II inhibitors doxorubicin, etoposide and mitoxantrone, thaspine was cytotoxic to cell lines overexpressing the PgP or MRP drug efflux transporters. We finally show that thaspine induces wide-spread apoptosis in colon carcinoma multicellular spheroids and that apoptosis is induced in two xenograft mouse models in vivo. The alkaloid thaspine from the cortex of Croton lechleri is a dual topoisomerase inhibitor effective in cells overexpressing drug efflux transporters and induces wide-spread apoptosis in multicellular spheroids.

  19. Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB

    PubMed Central

    Eicher, Thomas; Seeger, Markus A; Anselmi, Claudio; Zhou, Wenchang; Brandstätter, Lorenz; Verrey, François; Diederichs, Kay; Faraldo-Gómez, José D; Pos, Klaas M

    2014-01-01

    Membrane transporters of the RND superfamily confer multidrug resistance to pathogenic bacteria, and are essential for cholesterol metabolism and embryonic development in humans. We use high-resolution X-ray crystallography and computational methods to delineate the mechanism of the homotrimeric RND-type proton/drug antiporter AcrB, the active component of the major efflux system AcrAB-TolC in Escherichia coli, and one most complex and intriguing membrane transporters known to date. Analysis of wildtype AcrB and four functionally-inactive variants reveals an unprecedented mechanism that involves two remote alternating-access conformational cycles within each protomer, namely one for protons in the transmembrane region and another for drugs in the periplasmic domain, 50 Å apart. Each of these cycles entails two distinct types of collective motions of two structural repeats, coupled by flanking α-helices that project from the membrane. Moreover, we rationalize how the cross-talk among protomers across the trimerization interface might lead to a more kinetically efficient efflux system. DOI: http://dx.doi.org/10.7554/eLife.03145.001 PMID:25248080

  20. Inside out: efflux of carbon dioxide from leaves represents more than leaf metabolism.

    PubMed

    Stutz, Samantha S; Anderson, Jeremiah; Zulick, Rachael; Hanson, David T

    2017-05-17

    High concentrations of inorganic carbon in the xylem, produced from root, stem, and branch respiration, travel via the transpiration stream and eventually exit the plant through distant tissues as CO2. Unlike previous studies that focused on the efflux of CO2 from roots and woody tissues, we focus on efflux from leaves and the potential effect on leaf respiration measurements. We labeled transported inorganic carbon, spanning reported xylem concentrations, with 13C and then manipulated transpiration rates in the dark in order to vary the rates of inorganic carbon supply to cut leaves from Brassica napus and Populus deltoides. We used tunable diode laser absorbance spectroscopy to directly measure the rate of gross 13CO2 efflux, derived from inorganic carbon supplied from outside of the leaf, relative to gross 12CO2 efflux generated from leaf cells. These experiemnts showed that 13CO2 efflux was dependent upon the rate of inorganic carbon supply to the leaf and the rate of transpiration. Our data show that the gross leaf efflux of xylem-transported CO2 is likely small in the dark when rates of transpiration are low. However, gross leaf efflux of xylem-transported CO2 could approach half the rate of leaf respiration in the light when transpiration rates and branch inorganic carbon concentrations are high, irrespective of the grossly different petiole morphologies in our experiment. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Ascorbic acid efflux and re-uptake in endothelial cells: maintenance of intracellular ascorbate.

    PubMed

    May, James M; Qu, Zhi-chao

    2009-05-01

    Entry of vitamin C or ascorbate into most tissues requires its movement across the endothelial cell barrier of vessels. If trans-cellular ascorbate movement occurs, then it should be evident as ascorbate efflux from endothelial cells. Cultured EA.926 endothelial cells that had been loaded to about 3.5 mM intracellular ascorbate lost 70-80% of ascorbate to the medium over several hours at 37 degrees C via a non-saturable process that was insensitive to anion transport inhibitors and thiol reagents. Oxidation of this extracellular ascorbate by ascorbate oxidase or ferricyanide enhanced apparent ascorbate efflux, suggesting that efflux of the vitamin was countered in part by its re-uptake on ascorbate transporters. Although basal ascorbate efflux was not calcium-dependent, increased entry of calcium into the cells enhanced ascorbate release. These results support the hypothesis that ascorbate efflux reflects trans-endothelial cell ascorbate movement out of the blood vessel.

  2. Xenobiotics and the Glucocorticoid Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulliver, Linda S M, E-mail: linda.gulliver@otago.

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmunemore » processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  3. Efflux systems in bacteria and their metabolic engineering applications.

    PubMed

    Jones, Christopher M; Hernández Lozada, Néstor J; Pfleger, Brian F

    2015-11-01

    The production of valuable chemicals from metabolically engineered microbes can be limited by excretion from the cell. Efflux is often overlooked as a bottleneck in metabolic pathways, despite its impact on alleviating feedback inhibition and product toxicity. In the past, it has been assumed that endogenous efflux pumps and membrane porins can accommodate product efflux rates; however, there are an increasing number of examples wherein overexpressing efflux systems is required to improve metabolite production. In this review, we highlight specific examples from the literature where metabolite export has been studied to identify unknown transporters, increase tolerance to metabolites, and improve the production capabilities of engineered bacteria. The review focuses on the export of a broad spectrum of valuable chemicals including amino acids, sugars, flavins, biofuels, and solvents. The combined set of examples supports the hypothesis that efflux systems can be identified and engineered to confer export capabilities on industrially relevant microbes.

  4. Effect of glucose transport inhibitors on vincristine efflux in multidrug-resistant murine erythroleukaemia cells overexpressing the multidrug resistance-associated protein (MRP) and two glucose transport proteins, GLUT1 and GLUT3.

    PubMed Central

    Martell, R. L.; Slapak, C. A.; Levy, S. B.

    1997-01-01

    The relationship between mammalian facilitative glucose transport proteins (GLUT) and multidrug resistance was examined in two vincristine (VCR)-selected murine erythroleukaemia (MEL) PC4 cell lines. GLUT proteins, GLUT1 and GLUT3, were constitutively coexpressed in the parental cell line and also in the VCR-selected cell lines. Increased expression of the GLUT1 isoform was noted both in the PC-V40 (a non-P-glycoprotein, mrp-overexpressing subline) and in the more resistant PC-V160 (overexpressing mrp and mdr3) cell lines. Overexpression of GLUT3 was detected only in the PC-V160 subline. An increased rate of facilitative glucose transport (Vmax) and level of plasma membrane GLUT protein expression paralleled increased VCR resistance, active VCR efflux and decreased VCR steady-state accumulation in these cell lines. Glucose transport inhibitors (GTIs), cytochalasin B (CB) and phloretin blocked the active efflux and decreased steady-state accumulation of VCR in the PC-V40 subline. GTIs did not significantly affect VCR accumulation in the parental or PC-V160 cells. A comparison of protein sequences among GLUT1, GLUT3 and MRP revealed a putative cytochalasin B binding site in MRP, which displayed 44% sequence similarity/12% identity with that previously identified in GLUT1 and GLUT3; these regions also exhibited a similar hydropathy plot pattern. The findings suggested that CB bound to MRP and directly or indirectly lowered VCR efflux and/or CB bound to one or both GLUT proteins, which acted to lower the VCR efflux mediated by MRP. This is the first report of a non-neuronal murine cell line that expressed GLUT3. Images Figure 3 PMID:9010020

  5. Identification of a Novel Topoisomerase Inhibitor Effective in Cells Overexpressing Drug Efflux Transporters

    PubMed Central

    Fayad, Walid; Fryknäs, Mårten; Brnjic, Slavica; Olofsson, Maria Hägg; Larsson, Rolf; Linder, Stig

    2009-01-01

    Background Natural product structures have high chemical diversity and are attractive as lead structures for discovery of new drugs. One of the disease areas where natural products are most frequently used as therapeutics is oncology. Method and Findings A library of natural products (NCI Natural Product set) was screened for compounds that induce apoptosis of HCT116 colon carcinoma cells using an assay that measures an endogenous caspase-cleavage product. One of the apoptosis-inducing compounds identified in the screen was thaspine (taspine), an alkaloid from the South American tree Croton lechleri. The cortex of this tree is used for medicinal purposes by tribes in the Amazonas basin. Thaspine was found to induce conformational activation of the pro-apoptotic proteins Bak and Bax, mitochondrial cytochrome c release and mitochondrial membrane permeabilization in HCT116 cells. Analysis of the gene expression signature of thaspine-treated cells suggested that thaspine is a topoisomerase inhibitor. Inhibition of both topoisomerase I and II was observed using in vitro assays, and thaspine was found to have a reduced cytotoxic effect on a cell line with a mutated topoisomerase II enzyme. Interestingly, in contrast to the topoisomerase II inhibitors doxorubicin, etoposide and mitoxantrone, thaspine was cytotoxic to cell lines overexpressing the PgP or MRP drug efflux transporters. We finally show that thaspine induces wide-spread apoptosis in colon carcinoma multicellular spheroids and that apoptosis is induced in two xenograft mouse models in vivo. Conclusions The alkaloid thaspine from the cortex of Croton lechleri is a dual topoisomerase inhibitor effective in cells overexpressing drug efflux transporters and induces wide-spread apoptosis in multicellular spheroids. PMID:19798419

  6. Crystal structure of an antigenic outer-membrane protein from Salmonella Typhi suggests a potential antigenic loop and an efflux mechanism.

    PubMed

    Guan, Hong-Hsiang; Yoshimura, Masato; Chuankhayan, Phimonphan; Lin, Chien-Chih; Chen, Nai-Chi; Yang, Ming-Chi; Ismail, Asma; Fun, Hoong-Kun; Chen, Chun-Jung

    2015-11-13

    ST50, an outer-membrane component of the multi-drug efflux system from Salmonella enterica serovar Typhi, is an obligatory diagnostic antigen for typhoid fever. ST50 is an excellent and unique diagnostic antigen with 95% specificity and 90% sensitivity and is used in the commercial diagnosis test kit (TYPHIDOT(TM)). The crystal structure of ST50 at a resolution of 2.98 Å reveals a trimer that forms an α-helical tunnel and a β-barrel transmembrane channel traversing the periplasmic space and outer membrane. Structural investigations suggest significant conformational variations in the extracellular loop regions, especially extracellular loop 2. This is the location of the most plausible antibody-binding domain that could be used to target the design of new antigenic epitopes for the development of better diagnostics or drugs for the treatment of typhoid fever. A molecule of the detergent n-octyl-β-D-glucoside is observed in the D-cage, which comprises three sets of Asp361 and Asp371 residues at the periplasmic entrance. These structural insights suggest a possible substrate transport mechanism in which the substrate first binds at the periplasmic entrance of ST50 and subsequently, via iris-like structural movements to open the periplasmic end, penetrates the periplasmic domain for efflux pumping of molecules, including poisonous metabolites or xenobiotics, for excretion outside the pathogen.

  7. Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism.

    PubMed

    Joyce, Helena; McCann, Andrew; Clynes, Martin; Larkin, Annemarie

    2015-05-01

    Chemotherapy involving the use of anticancer drugs remains an important strategy in the overall management of patients with metastatic cancer. Acquisition of multidrug resistance remains a major impediment to successful chemotherapy. Drug transporters in cell membranes and intracellular drug metabolizing enzymes contribute to the resistance phenotype and determine the pharmacokinetics of anticancer drugs in the body. ATP-binding cassette (ABC) transporters mediate the transport of endogenous metabolites and xenobiotics including cytotoxic drugs out of cells. Solute carrier (SLC) transporters mediate the influx of cytotoxic drugs into cells. This review focuses on the substrate interaction of these transporters, on their biology and what role they play together with drug metabolizing enzymes in eliminating therapeutic drugs from cells. The majority of anticancer drugs are substrates for the ABC transporter and SLC transporter families. Together, these proteins have the ability to control the influx and the efflux of structurally unrelated chemotherapeutic drugs, thereby modulating the intracellular drug concentration. These interactions have important clinical implications for chemotherapy because ultimately they determine therapeutic efficacy, disease progression/relapse and the success or failure of patient treatment.

  8. Regulation of ATP-binding cassette transporters and cholesterol efflux by glucose in primary human monocytes and murine bone marrow-derived macrophages

    USDA-ARS?s Scientific Manuscript database

    Individuals with type 2 diabetes mellitus are at increased risk of developing atherosclerosis. This may be partially attributable to suppression of macrophage ATP-binding cassette (ABC) transporter mediated cholesterol efflux by sustained elevated blood glucose concentrations. Two models were used...

  9. Ascorbic Acid Efflux and Re-uptake in Endothelial Cells: Maintenance of Intracellular Ascorbate

    PubMed Central

    May, James M.; Qu, Zhi-chao

    2013-01-01

    Entry of vitamin C or ascorbate into most tissues requires its movement across the endothelial cell barrier of vessels. If trans-cellular ascorbate movement occurs, then it should be evident as ascorbate efflux from endothelial cells. Cultured EA.926 endothelial cells that had been loaded to about 3.5 mM intracellular ascorbate lost 70–80% of ascorbate to the medium over several hours at 37 °C via a non-saturable process that was insensitive to anion transport inhibitors and thiol reagents. Oxidation of this extracellular ascorbate by ascorbate oxidase or ferricyanide enhanced apparent ascorbate efflux, suggesting that efflux of the vitamin was countered in part by its re-uptake on ascorbate transporters. Although basal ascorbate efflux was not calcium-dependent, increased entry of calcium into the cells enhanced ascorbate release. These results support the hypothesis that ascorbate efflux reflects trans-endothelial cell ascorbate movement out of the blood vessel. PMID:19148707

  10. Drug transporters, the blood–testis barrier, and spermatogenesis

    PubMed Central

    Su, Linlin; Mruk, Dolores D; Cheng, C Yan

    2015-01-01

    The blood–testis barrier (BTB), which is created by adjacent Sertoli cells near the basement membrane, serves as a ‘gatekeeper’ to prohibit harmful substances from reaching developing germ cells, most notably postmeiotic spermatids. The BTB also divides the seminiferous epithelium into the basal and adluminal (apical) compartment so that postmeiotic spermatid development, namely spermiogenesis, can take place in a specialized microenvironment in the apical compartment behind the BTB. The BTB also contributes, at least in part, to the immune privilege status of the testis, so that anti-sperm antibodies are not developed against antigens that are expressed transiently during spermatogenesis. Recent studies have shown that numerous drug transporters are expressed by Sertoli cells. However, many of these same drug transporters are also expressed by spermatogonia, spermatocytes, round spermatids, elongating spermatids, and elongated spermatids, suggesting that the developing germ cells are also able to selectively pump drugs ‘in’ and/or ‘out’ via influx or efflux pumps. We review herein the latest developments regarding the role of drug transporters in spermatogenesis. We also propose a model utilized by the testis to protect germ cell development from ‘harmful’ environmental toxicants and xenobiotics and/or from ‘therapeutic’ substances (e.g. anticancer drugs). We also discuss how drug transporters that are supposed to protect spermatogenesis can work against the testis in some instances. For example, when drugs (e.g. male contraceptives) that can perturb germ cell adhesion and/or maturation are actively pumped out of the testis or are prevented from entering the apical compartment, such as by efflux pumps. PMID:21134990

  11. MicroRNA-20a/b regulates cholesterol efflux through post-transcriptional repression of ATP-binding cassette transporter A1.

    PubMed

    Liang, Bin; Wang, Xin; Song, Xiaosu; Bai, Rui; Yang, Huiyu; Yang, Zhiming; Xiao, Chuanshi; Bian, Yunfei

    2017-09-01

    ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in reverse cholesterol transport and exhibits anti-atherosclerosis effects. Some microRNAs (miRs) regulate ABCA1 expression, and recent studies have shown that miR-20a/b might play a critical role in atherosclerotic diseases. Here, we attempted to clarify the potential contribution of miR-20a/b in post-transcriptional regulation of ABCA1, cholesterol efflux, and atherosclerosis. We performed bioinformatics analysis and found that miR-20a/b was highly conserved and directly bound to ABCA1 mRNA with low binding free energy. Luciferase-reporter assay also confirmed that miR-20a/b significantly reduced luciferase activity associated with the ABCA1 3' untranslated region reporter construct. Additionally, miR-20a/b decreased ABCA1 expression, which, in turn, decreased cholesterol efflux and increased cholesterol content in THP-1 and RAW 264.7 macrophage-derived foam cells. In contrast, miR-20a/b inhibitors increased ABCA1 expression and cholesterol efflux, decreased cholesterol content, and inhibited foam-cell formation. Consistent with our in vitro results, miR-20a/b-treated ApoE -/- mice showed decreased ABCA1expression in the liver and reductions of reverse cholesterol transport in vivo. Furthermore, miR-20a/b regulated the formation of nascent high-density lipoprotein and promoted atherosclerotic development, whereas miR-20a/b knockdown attenuated atherosclerotic formation. miR-20 is a new miRNA capable of targeting ABCA1 and regulating ABCA1 expression. Therefore, miR-20 inhibition constitutes a new strategy for ABCA1-based treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Genomic Analysis of ATP Efflux in Saccharomyces cerevisiae

    PubMed Central

    Peters, Theodore W.; Miller, Aaron W.; Tourette, Cendrine; Agren, Hannah; Hubbard, Alan; Hughes, Robert E.

    2015-01-01

    Adenosine triphosphate (ATP) plays an important role as a primary molecule for the transfer of chemical energy to drive biological processes. ATP also functions as an extracellular signaling molecule in a diverse array of eukaryotic taxa in a conserved process known as purinergic signaling. Given the important roles of extracellular ATP in cell signaling, we sought to comprehensively elucidate the pathways and mechanisms governing ATP efflux from eukaryotic cells. Here, we present results of a genomic analysis of ATP efflux from Saccharomyces cerevisiae by measuring extracellular ATP levels in cultures of 4609 deletion mutants. This screen revealed key cellular processes that regulate extracellular ATP levels, including mitochondrial translation and vesicle sorting in the late endosome, indicating that ATP production and transport through vesicles are required for efflux. We also observed evidence for altered ATP efflux in strains deleted for genes involved in amino acid signaling, and mitochondrial retrograde signaling. Based on these results, we propose a model in which the retrograde signaling pathway potentiates amino acid signaling to promote mitochondrial respiration. This study advances our understanding of the mechanism of ATP secretion in eukaryotes and implicates TOR complex 1 (TORC1) and nutrient signaling pathways in the regulation of ATP efflux. These results will facilitate analysis of ATP efflux mechanisms in higher eukaryotes. PMID:26585826

  13. P-glycoprotein Inhibition by the Agricultural Pesticide Propiconazole and Its Hydroxylated Metabolites: Implications for Pesticide-Drug Interactions.

    EPA Science Inventory

    The human efflux transporter P-glycoprotein (P-gp; MDR1) functions an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure ass...

  14. P-glycoprotein Inhibition by the Agricultural Pesticide Propiconazole and Its Hydroxylated Metabolites: Implications for Pesticide-Drug Interactions

    EPA Science Inventory

    The human efflux transporter P-glycoprotein (P-gp, MDR1) functions an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure ass...

  15. Pregnane xenobiotic receptor in cancer pathogenesis and therapeutic response

    PubMed Central

    Pondugula, Satyanarayana R.; Mani, Sridhar

    2012-01-01

    Pregnane xenobiotic receptor (PXR) is an orphan nuclear receptor that regulates the metabolism of endobiotics and xenobiotics. PXR is promiscuous and unique in that it is activated by a diverse group of xenochemicals, including therapeutic anticancer drugs and naturally-occurring endocrine disruptors. PXR has been predominantly studied to understand its regulatory role in xenobiotic clearance in liver and intestine via induction of drug metabolizing enzymes and drug transporters. PXR, however, is widely expressed and has functional implications in other normal and malignant tissues, including breast, prostate, ovary, endometrium and bone. The differential expression of PXR and its target genes in cancer tissues has been suggested to determine the prognosis of chemotherapeutic outcome. In addition, the emerging evidence points to the implications of PXR in regulating apoptotic and antiapoptotic as well as growth factor signaling that promote tumor proliferation and metastasis. In this review, we highlight the recent progress made in understanding the role of PXR in cancer, discuss the future directions to further understand the mechanistic role of PXR in cancer, and conclude with the need to identify novel selective PXR modulators. PMID:22939994

  16. Mind the gap: non-biological processes contributing to soil CO2 efflux.

    PubMed

    Rey, Ana

    2015-05-01

    Widespread recognition of the importance of soil CO2 efflux as a major source of CO2 to the atmosphere has led to active research. A large soil respiration database and recent reviews have compiled data, methods, and current challenges. This study highlights some deficiencies for a proper understanding of soil CO2 efflux focusing on processes of soil CO2 production and transport that have not received enough attention in the current soil respiration literature. It has mostly been assumed that soil CO2 efflux is the result of biological processes (i.e. soil respiration), but recent studies demonstrate that pedochemical and geological processes, such as geothermal and volcanic CO2 degassing, are potentially important in some areas. Besides the microbial decomposition of litter, solar radiation is responsible for photodegradation or photochemical degradation of litter. Diffusion is considered to be the main mechanism of CO2 transport in the soil, but changes in atmospheric pressure and thermal convection may also be important mechanisms driving soil CO2 efflux greater than diffusion under certain conditions. Lateral fluxes of carbon as dissolved organic and inorganic carbon occur and may cause an underestimation of soil CO2 efflux. Traditionally soil CO2 efflux has been measured with accumulation chambers assuming that the main transport mechanism is diffusion. New techniques are available such as improved automated chambers, CO2 concentration profiles and isotopic techniques that may help to elucidate the sources of carbon from soils. We need to develop specific and standardized methods for different CO2 sources to quantify this flux on a global scale. Biogeochemical models should include biological and non-biological CO2 production processes before we can predict the response of soil CO2 efflux to climate change. Improving our understanding of the processes involved in soil CO2 efflux should be a research priority given the importance of this flux in the global

  17. Xenobiotics: Chapter 15

    USGS Publications Warehouse

    Bridges, Christine M.; Semlitsch, Raymond D.; Lannoo, Michael

    2005-01-01

    While a number of compounds have been reported as toxic to amphibians, until recently, there have been conspicuously few ecotoxicological studies concerning amphibians. Studies are now focusing on the effects of xenobiotics on amphibians, an interest likely stimulated by widespread reports of amphibian declines. It has been speculated that chemical contamination may be partially to blame for some documented amphibian declines, by disrupting growth, reproduction, and behavior. However, evidence that xenobiotics are directly to blame for population declines is sparse because environmental concentrations are typically not great enough to generate direct mortality. Although the effects of environmental contaminants on the amphibian immune system are currently unknown, it is possible that exposure to stressors such as organic pollutants (which enter ecosystems in the form of pesticides) may depress immune system function, thus allowing greater susceptibility to fungal infections. This chapter discusses toxicity testing for xenobiotics and presents the results of a study that has focused on the subtle effects of sublethal concentrations of the chemical carbaryl on tadpoles.

  18. Molecular Components of Nitrate and Nitrite Efflux in Yeast

    PubMed Central

    Cabrera, Elisa; González-Montelongo, Rafaela; Giraldez, Teresa; de la Rosa, Diego Alvarez

    2014-01-01

    Some eukaryotes, such as plant and fungi, are capable of utilizing nitrate as the sole nitrogen source. Once transported into the cell, nitrate is reduced to ammonium by the consecutive action of nitrate and nitrite reductase. How nitrate assimilation is balanced with nitrate and nitrite efflux is unknown, as are the proteins involved. The nitrate assimilatory yeast Hansenula polymorpha was used as a model to dissect these efflux systems. We identified the sulfite transporters Ssu1 and Ssu2 as effective nitrate exporters, Ssu2 being quantitatively more important, and we characterize the Nar1 protein as a nitrate/nitrite exporter. The use of strains lacking either SSU2 or NAR1 along with the nitrate reductase gene YNR1 showed that nitrate reductase activity is not required for net nitrate uptake. Growth test experiments indicated that Ssu2 and Nar1 exporters allow yeast to cope with nitrite toxicity. We also have shown that the well-known Saccharomyces cerevisiae sulfite efflux permease Ssu1 is also able to excrete nitrite and nitrate. These results characterize for the first time essential components of the nitrate/nitrite efflux system and their impact on net nitrate uptake and its regulation. PMID:24363367

  19. Interactions among infections, nutrients and xenobiotics.

    PubMed

    Ilbäck, Nils-Gunnar; Friman, Göran

    2007-01-01

    During recent years there have been several incidents in which symptoms of disease have been linked to consumption of food contaminated by chemical substances (e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD). Furthermore, outbreaks of infections in food-producing animals have attracted major attention regarding the safety of consumers, e.g., Bovine Spongiform Encephalitis (BSE) and influenza in chicken. As shown for several xenobiotics in an increasing number of experimental studies, even low-dose xenobiotic exposure may impair immune function over time, as well as microorganism virulence, resulting in more severe infectious diseases and associated complications. Moreover, during ongoing infection, xenobiotic uptake and distribution are often changed resulting in increased toxic insult to the host. The interactions among infectious agents, nutrients, and xenobiotics have thus become a developing concern and new avenue of research in food toxicology as well as in food-borne diseases. From a health perspective, in the risk assessment of xenobiotics in our food and environment, synergistic effects among microorganisms, nutrients, and xenobiotics will have to be considered. Otherwise, such effects may gradually change the disease panorama in society.

  20. Modified host cells with efflux pumps

    DOEpatents

    Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

    2016-08-30

    The present invention provides for a modified host cell comprising a heterologous expression of an efflux pump capable of transporting an organic molecule out of the host cell wherein the organic molecule at a sufficiently high concentration reduces the growth rate of or is lethal to the host cell.

  1. Hxt-carrier-mediated glucose efflux upon exposure of Saccharomyces cerevisiae to excess maltose.

    PubMed

    Jansen, Mickel L A; De Winde, Johannes H; Pronk, Jack T

    2002-09-01

    When wild-type Saccharomyces cerevisiae strains pregrown in maltose-limited chemostat cultures were exposed to excess maltose, release of glucose into the external medium was observed. Control experiments confirmed that glucose release was not caused by cell lysis or extracellular maltose hydrolysis. To test the hypothesis that glucose efflux involved plasma membrane glucose transporters, experiments were performed with an S. cerevisiae strain in which all members of the hexose transporter (HXT) gene family had been eliminated and with an isogenic reference strain. Glucose efflux was virtually eliminated in the hexose-transport-deficient strain. This constitutes experimental proof that Hxt transporters facilitate export of glucose from S. cerevisiae cells. After exposure of the hexose-transport-deficient strain to excess maltose, an increase in the intracellular glucose level was observed, while the concentrations of glucose 6-phosphate and ATP remained relatively low. These results demonstrate that glucose efflux can occur as a result of uncoordinated expression of the initial steps of maltose metabolism and the subsequent reactions in glucose dissimilation. This is a relevant phenomenon for selection of maltose-constitutive strains for baking and brewing.

  2. The Elementary Mass Action Rate Constants of P-gp Transport for a Confluent Monolayer of MDCKII-hMDR1 Cells

    PubMed Central

    Tran, Thuy Thanh; Mittal, Aditya; Aldinger, Tanya; Polli, Joseph W.; Ayrton, Andrew; Ellens, Harma; Bentz, Joe

    2005-01-01

    The human multi-drug resistance membrane transporter, P-glycoprotein, or P-gp, has been extensively studied due to its importance to human health and disease. Thus far, the kinetic analysis of P-gp transport has been limited to steady-state Michaelis-Menten approaches or to compartmental models, neither of which can prove molecular mechanisms. Determination of the elementary kinetic rate constants of transport will be essential to understanding how P-gp works. The experimental system we use is a confluent monolayer of MDCKII-hMDR1 cells that overexpress P-gp. It is a physiologically relevant model system, and transport is measured without biochemical manipulations of P-gp. The Michaelis-Menten mass action reaction is used to model P-gp transport. Without imposing the steady-state assumptions, this reaction depends upon several parameters that must be simultaneously fitted. An exhaustive fitting of transport data to find all possible parameter vectors that best fit the data was accomplished with a reasonable computation time using a hierarchical algorithm. For three P-gp substrates (amprenavir, loperamide, and quinidine), we have successfully fitted the elementary rate constants, i.e., drug association to P-gp from the apical membrane inner monolayer, drug dissociation back into the apical membrane inner monolayer, and drug efflux from P-gp into the apical chamber, as well as the density of efflux active P-gp. All three drugs had overlapping ranges for the efflux active P-gp, which was a benchmark for the validity of the fitting process. One novel finding was that the association to P-gp appears to be rate-limited solely by drug lateral diffusion within the inner monolayer of the plasma membrane for all three drugs. This would be expected if P-gp structure were open to the lipids of the apical membrane inner monolayer, as has been suggested by recent structural studies. The fitted kinetic parameters show how P-gp efflux of a wide range of xenobiotics has been

  3. Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tocchetti, Guillermo Nicolás

    The multidrug resistance-associated protein 2 (MRP2/ABCC2) is a transporter that belongs to the ATP-binding cassette (ABC) superfamily. In the intestine, it is localized to the apical membrane of the enterocyte and plays a key role in limiting the absorption of xenobiotics incorporated orally. MRP2 may also play a role in systemic clearance of xenobiotics available from the serosal side of the intestine. MRP2 transports a wide range of substrates, mainly organic anions conjugated with glucuronic acid, glutathione and sulfate and its expression can be modulated by xenobiotics at transcriptional- and post-transcriptional levels. Transcriptional regulation is usually mediated by a groupmore » of nuclear receptors. The pregnane X receptor (PXR) is a major member of this group. Relevant drugs described to up-regulate intestinal MRP2 via PXR are rifampicin, spironolactone and carbamazepine, among others. The constitutive androstane receptor (CAR, NR1I3) was also reported to modulate MRP2 expression, phenobarbital being a typical activator. Dietary compounds, including micronutrients and other natural products, are also capable of regulating intestinal MRP2 expression transcriptionally. We have given them particular attention since the composition of the food ingested daily is not necessarily supervised and may result in interactions with therapeutic drugs. Post-transcriptional regulation of MRP2 activity by xenobiotics, e.g. as a consequence of inhibitory actions, is also described in this review. Unfortunately, only few studies report on drug-drug or nutrient-drug interactions as a consequence of modulation of intestinal MRP2 activity by xenobiotics. Future clinical studies are expected to identify additional interactions resulting in changes in efficacy or safety of therapeutic drugs. - Highlights: • Intestinal MRP2 (ABCC2) expression and activity can be regulated by xenobiotics. • PXR and CAR are major MRP2 modulators through a transcriptional mechanism.

  4. Multixenobiotic resistance in Mytilus edulis: Molecular and functional characterization of an ABCG2- type transporter in hemocytes and gills.

    PubMed

    Ben Cheikh, Yosra; Xuereb, Benoit; Boulangé-Lecomte, Céline; Le Foll, Frank

    2018-02-01

    Among the cellular protection arsenal, ABC transporters play an important role in xenobiotic efflux in marine organisms. Two pumps belonging to B and C subfamily has been identified in Mytilus edulis. In this study, we investigated the presence of the third major subtype ABCG2/BCRP protein in mussel tissues. Transcript was expressed in hemocytes and with higher level in gills. Molecular characterization revealed that mussel ABCG2 transporter shares the sequence and organizational structure with mammalian and molluscan orthologs. Overall identity of the predicted amino acid sequence with corresponding homologs from other organisms was between 49% and 98%. Moreover, protein efflux activity was demonstrated using a combination of fluorescent allocrites and specific inhibitors. The accumulation of bodipy prazosin and pheophorbide A was heterogeneous in gills and hemocytes. Most of the used blockers enhanced probe accumulation at different levels, most significantly for bodipy prazosin. Moreover, Mrp classical blocker MK571 showed a polyspecificity. In conclusion, our data demonstrate that several ABC transporters contribute to MXR phenotype in the blue mussel including ABCG2 that forms an active pump in hemocytes and gills. Efforts are needed to distinguish between the different members and to explore their single function and specificity towards allocrites and chemosensitizers. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Localization of the Placental BCRP/ABCG2 Transporter to Lipid Rafts: Role for Cholesterol in Mediating Efflux Activity

    PubMed Central

    Szilagyi, John T.; Vetrano, Anna M.; Laskin, Jeffrey D.; Aleksunes, Lauren M.

    2017-01-01

    Introduction The breast cancer resistance protein (BCRP/ABCG2) is an efflux transporter in the placental barrier. By transporting chemicals from the fetal to the maternal circulation, BCRP limits fetal exposure to a range of drugs, toxicants, and endobiotics such as bile acids and hormones. The purpose of the present studies was to 1) determine whether BCRP localizes to highly-ordered, cholesterol-rich lipid raft microdomains in placenta microvillous membranes, and 2) determine the impact of cholesterol on BCRP-mediated placental transport in vitro. Methods BCRP expression was analyzed in lipid rafts isolated from placentas from healthy, term pregnancies and BeWo trophoblasts by density gradient ultracentrifugation. BeWo cells were also tested for their ability to efflux BCRP substrates after treatment with the cholesterol sequestrant methyl-β-cyclodextrin (MβCD, 5mM, 1 h) or the cholesterol synthesis inhibitor pravastatin (200μM, 48 h). Results and Discussion BCRP was found to co-localize with lipid raft proteins in detergent-resistant, lipid raft-containing fractions from placental microvillous membranes and BeWo cells. Treatment of BeWo cells with MβCD redistributed BCRP protein into higher density non-lipid raft fractions. Repletion of the cells with cholesterol restored BCRP localization to lipid raft-containing fractions. Treatment of BeWo cells with MβCD or pravastatin increased cellular retention of two BCRP substrates, the fluorescent dye Hoechst 33342 and the mycotoxin zearalenone. Repletion with cholesterol restored BCRP transporter activity. Taken together, these data demonstrate that cholesterol may play a critical role in the post-translational regulation of BCRP in placental lipid rafts. PMID:28623970

  6. Localization of the placental BCRP/ABCG2 transporter to lipid rafts: Role for cholesterol in mediating efflux activity.

    PubMed

    Szilagyi, John T; Vetrano, Anna M; Laskin, Jeffrey D; Aleksunes, Lauren M

    2017-07-01

    The breast cancer resistance protein (BCRP/ABCG2) is an efflux transporter in the placental barrier. By transporting chemicals from the fetal to the maternal circulation, BCRP limits fetal exposure to a range of drugs, toxicants, and endobiotics such as bile acids and hormones. The purpose of the present studies was to 1) determine whether BCRP localizes to highly-ordered, cholesterol-rich lipid raft microdomains in placenta microvillous membranes, and 2) determine the impact of cholesterol on BCRP-mediated placental transport in vitro. BCRP expression was analyzed in lipid rafts isolated from placentas from healthy, term pregnancies and BeWo trophoblasts by density gradient ultracentrifugation. BeWo cells were also tested for their ability to efflux BCRP substrates after treatment with the cholesterol sequestrant methyl-β-cyclodextrin (MβCD, 5 mM, 1 h) or the cholesterol synthesis inhibitor pravastatin (200 μM, 48 h). BCRP was found to co-localize with lipid raft proteins in detergent-resistant, lipid raft-containing fractions from placental microvillous membranes and BeWo cells. Treatment of BeWo cells with MβCD redistributed BCRP protein into higher density non-lipid raft fractions. Repletion of the cells with cholesterol restored BCRP localization to lipid raft-containing fractions. Treatment of BeWo cells with MβCD or pravastatin increased cellular retention of two BCRP substrates, the fluorescent dye Hoechst 33342 and the mycotoxin zearalenone. Repletion with cholesterol restored BCRP transporter activity. Taken together, these data demonstrate that cholesterol may play a critical role in the post-translational regulation of BCRP in placental lipid rafts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Oral and inhaled corticosteroids: Differences in P-glycoprotein (ABCB1) mediated efflux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, Andrew, E-mail: a.p.crowe@curtin.edu.au; Tan, Ai May

    There is concern that P-glycoprotein mediated efflux contributes to steroid resistance. Therefore, this study examined bidirectional corticosteroid transport and induction capabilities for P-glycoprotein (P-gp) to understand which of the systemic and inhaled corticosteroids interacted with P-gp to the greatest extent. Hydrocortisone, prednisolone, prednisone, methylprednisolone, and dexamethasone represented systemically active drugs, while fluticasone propionate, beclomethasone dipropionate, ciclesonide and budesonide represented inhaled corticosteroids. Aldosterone and fludrocortisone represented mineralocorticoids. All drugs were detected using individually optimised HPLC protocols. Transport studies were conducted through Caco-2 monolayers. Hydrocortisone and aldosterone had efflux ratios below 1.5, while prednisone showed a P-gp mediated efflux ratio of onlymore » 1.8 compared to its active drug, prednisolone, with an efflux ratio of 4.5. Dexamethasone and beclomethasone had efflux ratios of 2.1 and 3.3 respectively, while this increased to 5.1 for methylprednisolone. Fluticasone showed an efflux ratio of 2.3. Protein expression studies suggested that all of the inhaled corticosteroids were able to induce P-gp expression, from 1.6 to 2 times control levels. Most of the systemic corticosteroids had higher passive permeability (> 20 × 10{sup −6} cm/s) compared to the inhaled corticosteroids (> 5 × 10{sup −6} cm/s), except for budesonide, with permeability similar to the systemic corticosteroids. Inhaled corticosteroids are not transported by P-gp to the same extent as systemic corticosteroids. However, they are able to induce P-gp production. Thus, inhaled corticosteroids may have greater interactions with other P-gp substrates, but P-gp itself is less likely to influence resistance to the drugs. -- Highlights: ► Inhaled corticosteroids are only weak substrates for P-gp, including budesonide. ► Inhaled corticosteroid potent P-gp inducers especially

  8. Atypical dopamine efflux caused by 3,4-methylenedioxypyrovalerone (MDPV) via the human dopamine transporter.

    PubMed

    Shekar, Aparna; Aguilar, Jenny I; Galli, Greta; Cozzi, Nicholas V; Brandt, Simon D; Ruoho, Arnold E; Baumann, Michael H; Matthies, Heinrich J G; Galli, Aurelio

    2017-10-01

    Synthetic cathinones are similar in chemical structure to amphetamines, and their behavioral effects are associated with enhanced dopaminergic signaling. The past ten years of research on the common constituent of bath salts, MDPV (the synthetic cathinone 3,4-methylenedioxypyrovalerone), has aided the understanding of how synthetic cathinones act at the dopamine (DA) transporter (DAT). Several groups have described the ability of MDPV to block the DAT with high-affinity. In this study, we demonstrate for the first time a new mode of action of MDPV, namely its ability to promote DAT-mediated DA efflux. Using single cell amperometric assays, we determined that low concentrations of MDPV (1nM) can cause reverse transport of DA via DAT. Notably, administration of MDPV leads to hyperlocomotion in Drosophila melanogaster. These data describe further how MDPV acts at the DAT, possibly paving the way for novel treatment strategies for individuals who abuse bath salts. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Fluorescein-methotrexate transport in dogfish shark (Squalus acanthias) choroid plexus.

    PubMed

    Baehr, Carsten H; Fricker, Gert; Miller, David S

    2006-08-01

    The vertebrate choroid plexus removes potentially toxic metabolites and xenobiotics from cerebrospinal fluid (CSF) to blood for subsequent excretion in urine and bile. We used confocal microscopy and quantitative image analysis to characterize the mechanisms driving transport of the large organic anion, fluorescein-methotrexate (FL-MTX), from bath (CSF-side) to blood vessels in intact lateral choroid plexus from dogfish shark, Squalus acanthias, an evolutionarily ancient vertebrate. With 2 microM FL-MTX in the bath, steady-state fluorescence in the subepithelium/vascular space exceeded bath levels by 5- to 10-fold, and fluorescence in the epithelial cells was slightly below bath levels. FL-MTX accumulation in both tissue compartments was reduced by NaCN, Na removal, and ouabain, but not by a 10-fold increase in medium K. Certain organic anions, e.g., probenecid, MTX, and taurocholate, reduced FL-MTX accumulation in both tissue compartments; p-aminohippurate and estrone sulfate reduced subepithelial/vascular accumulation, but not cellular accumulation. At low concentrations, digoxin, leukotriene C4, and MK-571 reduced fluorescence in the subepithelium/vascular space while increasing cellular fluorescence, indicating preferential inhibition of efflux over uptake. In the presence of 10 microM digoxin (reduced efflux, enhanced cellular accumulation), cellular FL-MTX accumulation was specific, concentrative, and Na dependent. Thus transepithelial FL-MTX transport involved the following two carrier-mediated steps: electroneutral, Na-dependent uptake at the apical membrane and electroneutral efflux at the basolateral membrane. Finally, FL-MTX accumulation in both tissue compartments was reduced by phorbol ester and increased by forskolin, indicating antagonistic modulation by protein kinase C and protein kinase A.

  10. Reviving Antibiotics: Efflux Pump Inhibitors That Interact with AcrA, a Membrane Fusion Protein of the AcrAB-TolC Multidrug Efflux Pump

    DOE PAGES

    Abdali, Narges; Parks, Jerry M.; Haynes, Keith M.; ...

    2016-10-21

    Antibiotic resistance is a major threat to human welfare. Inhibitors of multidrug efflux pumps (EPIs) are promising alternative therapeutics that could revive activities of antibiotics and reduce bacterial virulence. Identification of new druggable sites for inhibition is critical for developing effective EPIs, especially in light of constantly emerging resistance. We describe new EPIs that interact with and possibly inhibit the function of periplasmic membrane fusion proteins, critical components of efflux pumps that are responsible for the activation of the transporter and the recruitment of the outer-membrane channel. The discovered EPIs bind to AcrA, a component of the prototypical AcrAB-TolC pump,more » change its structure in vivo, inhibit efflux of fluorescent probes and potentiate the activities of antibiotics in Escherichia coli cells. These findings expand the chemical and mechanistic diversity of EPIs, suggest the mechanism for regulation of the efflux pump assembly and activity, and provide a promising path for reviving the activities of antibiotics in resistant bacteria.« less

  11. Reviving Antibiotics: Efflux Pump Inhibitors That Interact with AcrA, a Membrane Fusion Protein of the AcrAB-TolC Multidrug Efflux Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdali, Narges; Parks, Jerry M.; Haynes, Keith M.

    Antibiotic resistance is a major threat to human welfare. Inhibitors of multidrug efflux pumps (EPIs) are promising alternative therapeutics that could revive activities of antibiotics and reduce bacterial virulence. Identification of new druggable sites for inhibition is critical for developing effective EPIs, especially in light of constantly emerging resistance. We describe new EPIs that interact with and possibly inhibit the function of periplasmic membrane fusion proteins, critical components of efflux pumps that are responsible for the activation of the transporter and the recruitment of the outer-membrane channel. The discovered EPIs bind to AcrA, a component of the prototypical AcrAB-TolC pump,more » change its structure in vivo, inhibit efflux of fluorescent probes and potentiate the activities of antibiotics in Escherichia coli cells. These findings expand the chemical and mechanistic diversity of EPIs, suggest the mechanism for regulation of the efflux pump assembly and activity, and provide a promising path for reviving the activities of antibiotics in resistant bacteria.« less

  12. Pharmacokinetic Assessment of Cooperative Efflux of the Multitargeted Kinase Inhibitor Ponatinib Across the Blood-Brain Barrier.

    PubMed

    Laramy, Janice K; Kim, Minjee; Parrish, Karen E; Sarkaria, Jann N; Elmquist, William F

    2018-05-01

    A compartmental blood-brain barrier (BBB) model describing drug transport across the BBB was implemented to evaluate the influence of efflux transporters on the rate and extent of the multikinase inhibitor ponatinib penetration across the BBB. In vivo pharmacokinetic studies in wild-type and transporter knockout mice showed that two major BBB efflux transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), cooperate to modulate the brain exposure of ponatinib. The total and unbound (free) brain-to-plasma ratios were approximately 15-fold higher in the triple knockout mice lacking both P-gp and Bcrp [ Mdr1a/b(-/-)Bcrp1(-/-) ] compared with the wild-type mice. The triple knockout mice had a greater than an additive increase in the brain exposure of ponatinib when compared with single knockout mice [ Bcrp1(-/-) or Mdr1a/b(-/-) ], suggesting functional compensation of transporter-mediated drug efflux. Based on the BBB model characterizing the observed brain and plasma concentration-time profiles, the brain exit rate constant and clearance out of the brain were approximately 15-fold higher in the wild-type compared with Mdr1a/b(-/-)Bcrp1(-/-) mice, resulting in a significant increase in the mean transit time (the average time spent by ponatinib in the brain in a single passage) in the absence of efflux transporters (P-gp and Bcrp). This study characterized transporter-mediated drug efflux from the brain, a process that reduces the duration and extent of ponatinib exposure in the brain and has critical implications for the use of targeted drug delivery for brain tumors. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Hxt-Carrier-Mediated Glucose Efflux upon Exposure of Saccharomyces cerevisiae to Excess Maltose

    PubMed Central

    Jansen, Mickel L. A.; De Winde, Johannes H.; Pronk, Jack T.

    2002-01-01

    When wild-type Saccharomyces cerevisiae strains pregrown in maltose-limited chemostat cultures were exposed to excess maltose, release of glucose into the external medium was observed. Control experiments confirmed that glucose release was not caused by cell lysis or extracellular maltose hydrolysis. To test the hypothesis that glucose efflux involved plasma membrane glucose transporters, experiments were performed with an S. cerevisiae strain in which all members of the hexose transporter (HXT) gene family had been eliminated and with an isogenic reference strain. Glucose efflux was virtually eliminated in the hexose-transport-deficient strain. This constitutes experimental proof that Hxt transporters facilitate export of glucose from S. cerevisiae cells. After exposure of the hexose-transport-deficient strain to excess maltose, an increase in the intracellular glucose level was observed, while the concentrations of glucose 6-phosphate and ATP remained relatively low. These results demonstrate that glucose efflux can occur as a result of uncoordinated expression of the initial steps of maltose metabolism and the subsequent reactions in glucose dissimilation. This is a relevant phenomenon for selection of maltose-constitutive strains for baking and brewing. PMID:12200274

  14. Microbial Efflux Pump Inhibition: Tactics and Strategies

    PubMed Central

    Tegos, George P.; Haynes, Mark; Strouse, J. Jacob; Khan, Mohiuddin Md. T.; Bologa, Cristian G.; Oprea, Tudor I.; Sklar, Larry A.

    2013-01-01

    Traditional antimicrobials are increasingly suffering from the emergence of multidrug resistance among pathogenic microorganisms. To overcome these deficiencies, a range of novel approaches to control microbial infections are under investigation as potential alternative treatments. Multidrug efflux is a key target of these efforts. Efflux mechanisms are broadly recognized as major components of resistance to many classes of chemotherapeutic agents as well as antimicrobials. Efflux occurs due to the activity of membrane transporter proteins widely known as Multidrug Efflux Systems (MES). They are implicated in a variety of physiological roles other than efflux and identifying natural substrates and inhibitors is an active and expanding research discipline. One plausible alternative is the combination of conventional antimicrobial agents/antibiotics with small molecules that block MES known as multidrug efflux pump inhibitors (EPIs). An array of approaches in academic and industrial research settings, varying from high-throughput screening (HTS) ventures to bioassay guided purification and determination, have yielded a number of promising EPIs in a series of pathogenic systems. This synergistic discovery platform has been exploited in translational directions beyond the potentiation of conventional antimicrobial treatments. This venture attempts to highlight different tactical elements of this platform, identifying the need for highly informative and comprehensive EPI-discovery strategies. Advances in assay development genomics, proteomics as well as the accumulation of bioactivity and structural information regarding MES facilitates the basis for a new discovery era. This platform is expanding drastically. A combination of chemogenomics and chemoinformatics approaches will integrate data mining with virtual and physical HTS ventures and populate the chemical-biological interface with a plethora of novel chemotypes. This comprehensive step will expedite the

  15. Hyaluronan, CD44, and Emmprin Regulate Lactate Efflux and Membrane Localization of Monocarboxylate Transporters in Human Breast Carcinoma Cells

    PubMed Central

    Slomiany, Mark G.; Grass, G. Daniel; Robertson, Angela D.; Yang, Xiao Y.; Maria, Bernard L.; Beeson, Craig; Toole, Bryan P.

    2013-01-01

    Interactions of hyaluronan with CD44 in tumor cells play important cooperative roles in various aspects of malignancy and drug resistance. Emmprin (CD147; basigin)is a cell surface glycoprotein of the immunoglobulin superfamily that is highly up-regulated in malignant cancer cells and stimulates hyaluronan production, as well as several downstream signaling pathways. Emmprin also interacts with various monocarboxylate transporters (MCT). Malignant cancer cells use the glycolytic pathway and require MCTs to efflux lactate that results from glycolysis. Glycolysis and lactate secretion contribute to malignant cell behaviors and drug resistance in tumor cells. In the present study, we find that perturbation of endogenous hyaluronan, using small hyaluronan oligosaccharides, rapidly inhibits lactate efflux from breast carcinoma cells; down-regulation of emmprin, using emmprin small interfering RNA, also results in decreased efflux. In addition, we find that CD44 coimmunoprecipitates with MCT1, MCT4, and emmprin and colocalizes with these proteins at the plasma membrane. Moreover, after treatment of the cells with hyaluronan oligosaccharides, CD44, MCT1, and MCT4 become localized intracellularly whereas emmprin remains at the cell membrane. Together, these data indicate that constitutive interactions among hyaluronan, CD44, and emmprin contribute to regulation of MCT localization and function in the plasma membrane of breast carcinoma cells. PMID:19176383

  16. Assembly and Channel Opening of Outer Membrane Protein in Tripartite Drug Efflux Pumps of Gram-negative Bacteria*

    PubMed Central

    Xu, Yongbin; Moeller, Arne; Jun, So-Young; Le, Minho; Yoon, Bo-Young; Kim, Jin-Sik; Lee, Kangseok; Ha, Nam-Chul

    2012-01-01

    Gram-negative bacteria are capable of expelling diverse xenobiotic substances from within the cell by use of three-component efflux pumps in which the energy-activated inner membrane transporter is connected to the outer membrane channel protein via the membrane fusion protein. In this work, we describe the crystal structure of the membrane fusion protein MexA from the Pseudomonas aeruginosa MexAB-OprM pump in the hexameric ring arrangement. Electron microscopy study on the chimeric complex of MexA and the outer membrane protein OprM reveals that MexA makes a tip-to-tip interaction with OprM, which suggests a docking model for MexA and OprM. This docking model agrees well with genetic results and depicts detailed interactions. Opening of the OprM channel is accompanied by the simultaneous exposure of a protein structure resembling a six-bladed cogwheel, which intermeshes with the complementary cogwheel structure in the MexA hexamer. Taken together, we suggest an assembly and channel opening model for the MexAB-OprM pump. This study provides a better understanding of multidrug resistance in Gram-negative bacteria. PMID:22308040

  17. Hepatic Xenobiotic Metabolizing Enzyme Gene Expression Through the Life Stages of the Mouse

    EPA Science Inventory

    BACKGROUND: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been ca...

  18. Use of a combined effect model approach for discriminating between ABCB1- and ABCC1-type efflux activities in native bivalve gill tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faria, Melissa; CESAM & Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro; Pavlichenko, Vasiliy

    Aquatic organisms, such as bivalves, employ ATP binding cassette (ABC) transporters for efflux of potentially toxic chemicals. Anthropogenic water contaminants can, as chemosensitizers, disrupt efflux transporter function enabling other, putatively toxic compounds to enter the organism. Applying rapid amplification of cDNA ends (RACE) PCR we identified complete cDNAs encoding ABCB1- and ABCC1-type transporter homologs from zebra mussel providing the molecular basis for expression of both transporter types in zebra mussel gills. Further, efflux activities of both transporter types in gills were indicated with dye accumulation assays where efflux of the dye calcein-am was sensitive to both ABCB1- (reversin 205, verapamil)more » and ABCC1- (MK571) type specific inhibitors. The assumption that different inhibitors targeted different efflux pump types was confirmed when comparing measured effects of binary inhibitor compound mixtures in dye accumulation assays with predictions from mixture effect models. Effects by the MK571/reversin 205 mixture corresponded better with independent action, whereas reversin 205/verapamil joint effects were better predicted by the concentration addition model indicating different and equal targets, respectively. The binary mixture approach was further applied to identify the efflux pump type targeted by environmentally relevant chemosensitizing compounds. Pentachlorophenol and musk ketone, which were selected after a pre-screen of twelve compounds that previously had been identified as chemosensitizers, showed mixture effects that corresponded better with concentration addition when combined with reversine 205 but with independent action predictions when combined with MK571 indicating targeting of an ABCB1-type efflux pump by these compounds. - Highlights: • Sequences and function of ABC efflux transporters in bivalve gills were explored. • Full length Dreissena polymorpha abcb1 and abcc1 cDNA sequences were identified. • A

  19. Lessons Learned From Recent Research on Internal CO2 Transport in Trees. Part I, CO2 Efflux and Respiration

    NASA Astrophysics Data System (ADS)

    McGuire, M. A.; Bloemen, J.; Aubrey, D. P.; Steppe, K.; Teskey, R. O.

    2016-12-01

    Currently, the most pressing problem regarding respiration in trees is determining the rate of respiration in woody tissues. In stems and roots, barriers to diffusion promote the buildup of CO2 from respiration to high concentrations, often in the range of 3 to 10% and sometimes exceeding 20%, substantially higher than that of the atmosphere ( 0.04%). A substantial portion of this internal CO2 released from respiring cells in roots and stems can dissolve in xylem sap and move upward in the xylem stream, resulting in internal transport of respired CO2 that rivals the efflux of respired CO2from woody tissues. The importance of such internal CO2 transport for the assessment of above- and below-ground respiration has gained increasing interest and here we will synthesize the latest research. The most important recent finding has been that in tree roots, a large fraction of respired CO2 remains within the root system rather than diffusing into the soil. This CO2 is transported in xylem sap into the shoot, and because respiration is almost always measured as the flux of CO2 into the atmosphere from plant tissues, it represents an unaccounted- for component of tree root metabolism. In Populus deltoides trees, for which xylem CO2 transport and soil CO2 efflux near the tree was measured, twice the amount of CO2 derived from below-ground autotrophic respiration entered the xylem stream as diffused into the soil environment. For both Eucalyptus and Quercus, up to 24 and 19% of root-respired CO2 was transported via the transpiration stream, respectively, illustrating that a significant internal transport of root-respired CO2 is present across a wide range of plant families. These findings suggest that root and soil respiration can be substantially underestimated by "soil-centric" measurements. Moreover, internal transport of respired CO2, which has only recently been recognized and measured, has important implications for our understanding of carbon dynamics at both plant and

  20. Rice SPX-Major Facility Superfamily3, a Vacuolar Phosphate Efflux Transporter, Is Involved in Maintaining Phosphate Homeostasis in Rice1[OPEN

    PubMed Central

    Ying, Yinghui; Wang, Shoudong; Secco, David; Liu, Yu; Whelan, James; Tyerman, Stephen D.; Shou, Huixia

    2015-01-01

    To maintain a stable cytosol phosphate (Pi) concentration, plant cells store Pi in their vacuoles. When the Pi concentration in the cytosol decreases, Pi is exported from the vacuole into the cytosol. This export is mediated by Pi transporters on the tonoplast. In this study, we demonstrate that SYG1, PHO81, and XPR1 (SPX)-Major Facility Superfamily (MFS) proteins have a similar structure with yeast (Saccharomyces cerevisiae) low-affinity Pi transporters Phosphatase87 (PHO87), PHO90, and PHO91. OsSPX-MFS1, OsSPX-MFS2, and OsSPX-MFS3 all localized on the tonoplast of rice (Oryza sativa) protoplasts, even in the absence of the SPX domain. At high external Pi concentration, OsSPX-MFS3 could partially complement the yeast mutant strain EY917 under pH 5.5, which lacks all five Pi transporters present in yeast. In oocytes, OsSPX-MFS3 was shown to facilitate Pi influx or efflux depending on the external pH and Pi concentrations. In contrast to tonoplast localization in plants cells, OsSPX-MFS3 was localized to the plasma membrane when expressed in both yeast and oocytes. Overexpression of OsSPX-MFS3 results in decreased Pi concentration in the vacuole of rice tissues. We conclude that OsSPX-MFS3 is a low-affinity Pi transporter that mediates Pi efflux from the vacuole into cytosol and is coupled to proton movement. PMID:26424157

  1. α-Synuclein Regulates Neuronal Cholesterol Efflux.

    PubMed

    Hsiao, Jen-Hsiang T; Halliday, Glenda M; Kim, Woojin Scott

    2017-10-19

    α-Synuclein is a neuronal protein that is at the center of focus in understanding the etiology of a group of neurodegenerative diseases called α-synucleinopathies, which includes Parkinson's disease (PD). Despite much research, the exact physiological function of α-synuclein is still unclear. α-Synuclein has similar biophysical properties as apolipoproteins and other lipid-binding proteins and has a high affinity for cholesterol. These properties suggest a possible role for α-synuclein as a lipid acceptor mediating cholesterol efflux (the process of removing cholesterol out of cells). To test this concept, we "loaded" SK-N-SH neuronal cells with fluorescently-labelled cholesterol, applied exogenous α-synuclein, and measured the amount of cholesterol removed from the cells using a classic cholesterol efflux assay. We found that α-synuclein potently stimulated cholesterol efflux. We found that the process was dose and time dependent, and was saturable at 1.0 µg/mL of α-synuclein. It was also dependent on the transporter protein ABCA1 located on the plasma membrane. We reveal for the first time a novel role of α-synuclein that underscores its importance in neuronal cholesterol regulation, and identify novel therapeutic targets for controlling cellular cholesterol levels.

  2. Efflux-mediated antimicrobial resistance.

    PubMed

    Poole, Keith

    2005-07-01

    Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors.

  3. Bardoxolone methyl modulates efflux transporter and detoxifying enzyme expression in cisplatin-induced kidney cell injury.

    PubMed

    Atilano-Roque, Amandla; Aleksunes, Lauren M; Joy, Melanie S

    2016-09-30

    Cisplatin is prescribed for the treatment of solid tumors and elicits toxicity to kidney tubules, which limits its clinical use. Nuclear factor erythroid 2-related factor 2 (Nrf2, NFE2L2) is a critical transcription factor that has been shown to protect against kidney injury through activation of antioxidant mechanisms. We aimed to evaluate the ability of short-term treatment with the Nrf2 activator bardoxolone methyl (CDDO-Me) to protect against cisplatin-induced kidney cell toxicity. Cell viability was assessed in human kidney proximal tubule epithelial cells (hPTCs) exposed to low, intermediate, and high cisplatin concentrations in the presence and absence of CDDO-Me, administered either prior to or after cisplatin. Treatment with cisplatin alone resulted in reductions in hPTC viability, while CDDO-Me administered prior to or after cisplatin exposure yielded significantly higher cell viability (17%-71%). Gene regulation (mRNA expression) studies revealed the ability of CDDO-Me to modify protective pathways including Nrf2 induced detoxifying genes [GCLC (increased 1.9-fold), NQO1 (increased 9.3-fold)], and an efflux transporter [SLC47A1 (increased 4.5-fold)] at 12h. Protein assessments were in agreement with gene expression. Immunofluorescence revealed localization of GCLC and NQO1 to the nucleus and cytosol, respectively, with CDDO-Me administered prior to or after cisplatin exposure. The findings of enhanced cell viability and increased expression of detoxifying enzymes (GCLC and NQO1) and the multidrug and toxin extrusion protein 1 (MATE1) efflux transporter (SLC47A1) in hPTCs exposed to CDDO-Me, suggest that intermittent treatment with CDDO-Me prior to or after cisplatin exposure may be a promising approach to mitigate acute kidney injury. Copyright © 2016. Published by Elsevier Ireland Ltd.

  4. Multidrug resistance transporters Snq2p and Pdr5p mediate caffeine efflux in Saccharomyces cerevisiae.

    PubMed

    Tsujimoto, Yoshiyuki; Shimizu, Yoshihiro; Otake, Kazuya; Nakamura, Tatsuya; Okada, Ryutaro; Miyazaki, Toshitaka; Watanabe, Kunihiko

    2015-01-01

    SNQ2 was identified as a caffeine-resistance gene by screening a genomic library of Saccharomyces cerevisiae in a multicopy vector YEp24. SNQ2 encodes an ATP-binding cassette transporter and is highly homologous to PDR5. Multicopy of PDR5 also conferred resistance to caffeine, while its resistance was smaller than that of SNQ2. Residual caffeine contents were analyzed after transiently exposing cells to caffeine. The ratios of caffeine contents were 21.3 ± 8.8% (YEp24-SNQ2) and 81.9 ± 8.7% (YEp24-PDR5) relative to control (YEp24, 100%). In addition, multicopies of SNQ2 or PDR5 conferred resistance to rhodamine 6G (R6G), which was widely used as a substrate for transport assay. R6G was exported by both transporters, and their efflux activities were inhibited by caffeine with half-maximal inhibitory concentrations of 5.3 ± 1.9 (YEp24-SNQ2) and 17.2 ± 9.6 mM (YEp24-PDR5). These results demonstrate that Snq2p is a more functional transporter of caffeine than Pdr5p in yeast cells.

  5. Bypassing P-Glycoprotein Drug Efflux Mechanisms: Possible Applications in Pharmacoresistant Schizophrenia Therapy

    PubMed Central

    Hoosain, Famida G.; Choonara, Yahya E.; Tomar, Lomas K.; Tyagi, Charu; du Toit, Lisa C.

    2015-01-01

    The efficient noninvasive treatment of neurodegenerative disorders is often constrained by reduced permeation of therapeutic agents into the central nervous system (CNS). A vast majority of bioactive agents do not readily permeate into the brain tissue due to the existence of the blood-brain barrier (BBB) and the associated P-glycoprotein efflux transporter. The overexpression of the MDR1 P-glycoprotein has been related to the occurrence of multidrug resistance in CNS diseases. Various research outputs have focused on overcoming the P-glycoprotein drug efflux transporter, which mainly involve its inhibition or bypassing mechanisms. Studies into neurodegenerative disorders have shown that the P-glycoprotein efflux transporter plays a vital role in the progression of schizophrenia, with a noted increase in P-glycoprotein function among schizophrenic patients, thereby reducing therapeutic outcomes. In this review, we address the hypothesis that methods employed in overcoming P-glycoprotein in cancer and other disease states at the level of the BBB and intestine may be applied to schizophrenia drug delivery system design to improve clinical efficiency of drug therapies. In addition, the current review explores polymers and drug delivery systems capable of P-gp inhibition and modulation. PMID:26491671

  6. Mechanistic kinetic modeling generates system-independent P-glycoprotein mediated transport elementary rate constants for inhibition and, in combination with 3D SIM microscopy, elucidates the importance of microvilli morphology on P-glycoprotein mediated efflux activity.

    PubMed

    Ellens, Harma; Meng, Zhou; Le Marchand, Sylvain J; Bentz, Joe

    2018-06-01

    In vitro transporter kinetics are typically analyzed by steady-state Michaelis-Menten approximations. However, no clear evidence exists that these approximations, applied to multiple transporters in biological membranes, yield system-independent mechanistic parameters needed for reliable in vivo hypothesis generation and testing. Areas covered: The classical mass action model has been developed for P-glycoprotein (P-gp) mediated transport across confluent polarized cell monolayers. Numerical integration of the mass action equations for transport using a stable global optimization program yields fitted elementary rate constants that are system-independent. The efflux active P-gp was defined by the rate at which P-gp delivers drugs to the apical chamber, since as much as 90% of drugs effluxed by P-gp partition back into nearby microvilli prior to reaching the apical chamber. The efflux active P-gp concentration was 10-fold smaller than the total expressed P-gp for Caco-2 cells, due to their microvilli membrane morphology. The mechanistic insights from this analysis are readily extrapolated to P-gp mediated transport in vivo. Expert opinion: In vitro system-independent elementary rate constants for transporters are essential for the generation and validation of robust mechanistic PBPK models. Our modeling approach and programs have broad application potential. They can be used for any drug transporter with minor adaptations.

  7. Detoxification of ivermectin by ATP binding cassette transporter C4 and cytochrome P450 monooxygenase 6CJ1 in the human body louse, Pediculus humanus humanus.

    PubMed

    Kim, J H; Gellatly, K J; Lueke, B; Kohler, M; Nauen, R; Murenzi, E; Yoon, K S; Clark, J M

    2018-02-01

    We previously observed that ivermectin-induced detoxification genes, including ATP binding cassette transporter C4 (PhABCC4) and cytochrome P450 6CJ1 (CYP6CJ1) were identified from body lice following a brief exposure to a sublethal dose of ivermectin using a non-invasive induction assay. In this current study, the functional properties of PhABCC4 and CYP6CJ1 were investigated after expression in either X. laevis oocytes or using a baculovirus expression system, respectively. Efflux of [ 3 H]-9-(2-phosphonomethoxyethyl) adenine ([ 3 H]-PMEA), a known ABCC4 substrate in humans, was detected from PhABCC4 cRNA-injected oocytes by liquid scintillation spectrophotometric analysis and PhABCC4 expression in oocytes was confirmed using ABC transporter inhibitors. Efflux was also determined to be ATP-dependent. Using a variety of insecticides in a competition assay, only co-injection of ivermectin and dichlorodiphenyltrichloroethane led to decreased efflux of [ 3 H]-PMEA. PhABCC4-expressing oocytes also directly effluxed [ 3 H]-ivermectin, which increased over time. In addition, ivermectin appeared to be oxidatively metabolized and/or sequestered, although at low levels, following functional expression of CYP6CJ1 along with cytochrome P450 reductase in Sf9 cells. Our study suggests that PhABCC4 and perhaps CYP6CJ1 are involved in the Phase III and Phase I xenobiotic metabolism of ivermectin, respectively, and may play an important role in the evolution of ivermectin resistance in lice and other insects as field selection occurs. © 2017 The Royal Entomological Society.

  8. Broad Specificity Efflux pumps and Their Role in Multidrug Resistance of Gram Negative Bacteria

    PubMed Central

    Nikaido, Hiroshi; Pagès, Jean-Marie

    2013-01-01

    Antibiotic resistance mechanisms reported in Gram-negative bacteria are producing a worldwide health problem. The continuous dissemination of «multi-drug resistant» (MDR) bacteria drastically reduces the efficacy of our antibiotic “arsenal” and consequently increases the frequency of therapeutic failure. In MDR bacteria, the over-expression of efflux pumps that expel structurally-unrelated drugs contributes to the reduced susceptibility by decreasing the intracellular concentration of antibiotics. During the last decade, several clinical data indicate an increasing involvement of efflux pumps in the emergence and dissemination of resistant Gram-negative bacteria. It is necessary to clearly define the molecular, functional and genetic bases of the efflux pump in order to understand the translocation of antibiotic molecules through the efflux transporter. The recent investigation on the efflux pump AcrB at its structural and physiological level, including the identification of drug affinity sites and kinetic parameters for various antibiotics, may open the way to rationally develop an improved new generation of antibacterial agents as well as efflux inhibitors in order to efficiently combat efflux-based resistance mechanisms. PMID:21707670

  9. Development of classification models for identifying "true" P-glycoprotein (P-gp) inhibitors through inhibition, ATPase activation and monolayer efflux assays.

    PubMed

    Rapposelli, Simona; Coi, Alessio; Imbriani, Marcello; Bianucci, Anna Maria

    2012-01-01

    P-glycoprotein (P-gp) is an efflux pump involved in the protection of tissues of several organs by influencing xenobiotic disposition. P-gp plays a key role in multidrug resistance and in the progression of many neurodegenerative diseases. The development of new and more effective therapeutics targeting P-gp thus represents an intriguing challenge in drug discovery. P-gp inhibition may be considered as a valid approach to improve drug bioavailability as well as to overcome drug resistance to many kinds of tumours characterized by the over-expression of this protein. This study aims to develop classification models from a unique dataset of 59 compounds for which there were homogeneous experimental data on P-gp inhibition, ATPase activation and monolayer efflux. For each experiment, the dataset was split into a training and a test set comprising 39 and 20 molecules, respectively. Rational splitting was accomplished using a sphere-exclusion type algorithm. After a two-step (internal/external) validation, the best-performing classification models were used in a consensus predicting task for the identification of compounds named as "true" P-gp inhibitors, i.e., molecules able to inhibit P-gp without being effluxed by P-gp itself and simultaneously unable to activate the ATPase function.

  10. Volume-activated trimethylamine oxide efflux in red blood cells of spiny dogfish (Squalus acanthias).

    PubMed

    Koomoa, D L; Musch, M W; MacLean, A V; Goldstein, L

    2001-09-01

    The aims of this study were to determine the pathway of swelling-activated trimethylamine oxide (TMAO) efflux and its regulation in spiny dogfish (Squalus acanthias) red blood cells and compare the characteristics of this efflux pathway with the volume-activated osmolyte (taurine) channel present in erythrocytes of fishes. The characteristics of the TMAO efflux pathway were similar to those of the taurine efflux pathway. The swelling-activated effluxes of both TMAO and taurine were significantly inhibited by known anion transport inhibitors (DIDS and niflumic acid) and by the general channel inhibitor quinine. Volume expansion by hypotonicity, ethylene glycol, and diethyl urea activated both TMAO and taurine effluxes similarly. Volume expansion by hypotonicity, ethylene glycol, and diethyl urea also stimulated the activity of tyrosine kinases p72syk and p56lyn, although the stimulations by the latter two treatments were less than by hypotonicity. The volume activations of both TMAO and taurine effluxes were inhibited by tyrosine kinase inhibitors, suggesting that activation of tyrosine kinases may play a role in activating the osmolyte effluxes. These results indicate that the volume-activated TMAO efflux occurs via the organic osmolyte (taurine) channel and may be regulated by the volume activation of tyrosine kinases.

  11. Pharmacokinetic Assessment of Efflux Transport in Sunitinib Distribution to the Brain

    PubMed Central

    Oberoi, Rajneet K.; Mittapalli, Rajendar K.

    2013-01-01

    This study quantitatively assessed transport mechanisms that limit the brain distribution of sunitinib and investigated adjuvant strategies to improve its brain delivery for the treatment of glioblastoma multiforme (GBM). Sunitinib has not shown significant activity in GBM clinical trials, despite positive results seen in preclinical xenograft studies. We performed in vivo studies in transgenic Friend leukemia virus strain B mice: wild-type, Mdr1a/b(−/−), Bcrp1(−/−), and Mdr1a/b(−/−)Bcrp1(−/−) genotypes were examined. The brain-to-plasma area under the curve ratio after an oral dose (20 mg/kg) was similar to the steady-state tissue distribution coefficient, indicating linear distribution kinetics in mice over this concentration range. Furthermore, the distribution of sunitinib to the brain increased after administration of selective P-glycoprotein (P-gp) or breast cancer resistance protein (Bcrp) pharmacological inhibitors and a dual inhibitor, elacridar, comparable to that of the corresponding transgenic genotype. The brain-to-plasma ratio after coadministration of elacridar in wild-type mice was ∼12 compared with ∼17.3 in Mdr1a/b(−/−)Bcrp1(−/−) mice. Overall, these findings indicate that there is a cooperation at the blood-brain barrier (BBB) in restricting the brain penetration of sunitinib, and brain delivery can be enhanced by administration of a dual inhibitor. These data indicate that the presence of cooperative efflux transporters, P-gp and Bcrp, in an intact BBB can protect invasive glioma cells from chemotherapy. Thus, one may consider the use of transporter inhibition as a powerful adjuvant in the design of future clinical trials for the targeted delivery of sunitinib in GBM. PMID:24113148

  12. Sensitivity of chloride efflux vs. transepithelial measurements in mixed CF and normal airway epithelial cell populations.

    PubMed

    Illek, Beate; Lei, Dachuan; Fischer, Horst; Gruenert, Dieter C

    2010-01-01

    While the Cl(-) efflux assays are relatively straightforward, their ability to assess the efficacy of phenotypic correction in cystic fibrosis (CF) tissue or cells may be limited. Accurate assessment of therapeutic efficacy, i.e., correlating wild type CF transmembrane conductance regulator (CFTR) levels with phenotypic correction in tissue or individual cells, requires a sensitive assay. Radioactive chloride ((36)Cl) efflux was compared to Ussing chamber analysis for measuring cAMP-dependent Cl(-) transport in mixtures of human normal (16HBE14o-) and cystic fibrosis (CF) (CFTE29o- or CFBE41o-, respectively) airway epithelial cells. Cell mixtures with decreasing amounts of 16HBE14o- cells were evaluated. Efflux and Ussing chamber studies on mixed populations of normal and CF airway epithelial cells showed that, as the number of CF cells within the population was progressively increased, the cAMP-dependent Cl(-) decreased. The (36)Cl efflux assay was effective for measuring Cl(-) transport when ≥ 25% of the cells were normal. If < 25% of the cells were phenotypically wild-type (wt), the (36)Cl efflux assay was no longer reliable. Polarized CFBE41o- cells, also homozygous for the ΔF508 mutation, were used in the Ussing chamber studies. Ussing analysis detected cAMP-dependent Cl(-) currents in mixtures with ≥1% wild-type cells indicating that Ussing analysis is more sensitive than (36)Cl efflux analysis for detection of functional CFTR. Assessment of CFTR function by Ussing analysis is more sensitive than (36)Cl efflux analysis. Ussing analysis indicates that cell mixtures containing 10% 16HBE14o- cells showed 40-50% of normal cAMP-dependent Cl(-) transport that drops off exponentially between 10-1% wild-type cells. Copyright © 2010 S. Karger AG, Basel.

  13. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics.

    PubMed

    Abhilash, P C; Jamil, Sarah; Singh, Nandita

    2009-01-01

    Phytoremediation--the use of plants to clean up polluted soil and water resources--has received much attention in the last few years. Although plants have the inherent ability to detoxify xenobiotics, they generally lack the catabolic pathway for the complete degradation of these compounds compared to microorganisms. There are also concerns over the potential for the introduction of contaminants into the food chain. The question of how to dispose of plants that accumulate xenobiotics is also a serious concern. Hence the feasibility of phytoremediation as an approach to remediate environmental contamination is still somewhat in question. For these reasons, researchers have endeavored to engineer plants with genes that can bestow superior degradation abilities. A direct method for enhancing the efficacy of phytoremediation is to overexpress in plants the genes involved in metabolism, uptake, or transport of specific pollutants. Furthermore, the expression of suitable genes in root system enhances the rhizodegradation of highly recalcitrant compounds like PAHs, PCBs etc. Hence, the idea to amplify plant biodegradation of xenobiotics by genetic manipulation was developed, following a strategy similar to that used to develop transgenic crops. Genes from human, microbes, plants, and animals are being used successfully for this venture. The introduction of these genes can be readily achieved for many plant species using Agrobacterium tumefaciens-mediated plant transformation or direct DNA methods of gene transfer. One of the promising developments in transgenic technology is the insertion of multiple genes (for phase 1 metabolism (cytochrome P450s) and phase 2 metabolism (GSH, GT etc.) for the complete degradation of the xenobiotics within the plant system. In addition to the use of transgenic plants overexpressed with P450 and GST genes, various transgenic plants expressing bacterial genes can be used for the enhanced degradation and remediation of herbicides, explosives

  14. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs.

    PubMed

    Dahan, Arik; Amidon, Gordon L

    2009-01-01

    The purpose of this study was to investigate the role of P-gp efflux in the in vivo intestinal absorption process of BCS class III P-gp substrates, i.e. high-solubility low-permeability drugs. The in vivo permeability of two H (2)-antagonists, cimetidine and famotidine, was determined by the single-pass intestinal perfusion model in different regions of the rat small intestine, in the presence or absence of the P-gp inhibitor verapamil. The apical to basolateral (AP-BL) and the BL-AP transport of the compounds in the presence or absence of various efflux transporters inhibitors (verapamil, erythromycin, quinidine, MK-571 and fumitremorgin C) was investigated across Caco-2 cell monolayers. P-gp expression levels in the different intestinal segments were confirmed by immunoblotting. Cimetidine and famotidine exhibited segmental dependent permeability through the gut wall, with decreased P(eff) in the distal ileum in comparison to the proximal regions of the intestine. Coperfusion of verapamil with the drugs significantly increased the permeability in the ileum, while no significant change in the jejunal permeability was observed. Both drugs exhibited significantly greater BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Concentration dependent decrease of this secretion was obtained by the P-gp inhibitors verapamil, erythromycin and quinidine, while no effect was evident by the MRP2 inhibitor MK-571 and the BCRP inhibitor FTC, indicating that P-gp is the transporter mediates the intestinal efflux of cimetidine and famotidine. P-gp levels throughout the intestine were inversely related to the in vivo permeability of the drugs from the different segments. The data demonstrate that for these high-solubility low-permeability P-gp substrates, P-gp limits in vivo intestinal absorption in the distal segments of the small intestine; however P-gp plays a minimal role in the proximal intestinal segments due to significant lower P-gp expression levels

  15. The Therapeutic Role of Xenobiotic Nuclear Receptors against Metabolic Syndrome.

    PubMed

    Pu, Shuqi; Wu, Xiaojie; Yang, Xiaoying; Zhang, Yunzhan; Dai, Yunkai; Zhang, Yueling; Wu, Xiaoting; Liu, Yan; Cui, Xiaona; Jin, Haiyong; Cao, Jianhong; Li, Ruliu; Cai, Jiazhong; Cao, Qizhi; Hu, Ling; Gao, Yong

    2018-06-10

    Xenobiotic nuclear receptors (XNRs) are nuclear receptors that characterized by coordinately regulating the expression of genes encoding drug-metabolizing enzymes and transporters to essentially eliminate and detoxify xenobiotics and endobiotics from the body, including the peroxisome proliferator-activated receptor (PPAR), the farnesoid X receptor (FXR), the liver X receptor (LXR), the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Heretofore, increasing evidences have suggested that these five XNRs are not only involved in the regulation of xeno-/endo-biotics detoxication but also the development of human diseases, such as cancer, obesity and diabetes. PPAR, FXR, LXR, PXR and CAR, as the receptors for numerous natural or synthetic compounds may be the most effective therapeutic targets in the treatment of metabolic diseases. In this review, we will focus on these five XNRs and their recently discovered functions in diabetes and its complications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Serum Opacity Factor Enhances HDL-Mediated Cholesterol Efflux, Esterification and Anti Inflammatory Effects

    PubMed Central

    Tchoua, Urbain; Rosales, Corina; Tang, Daming; Gillard, Baiba K.; Vaughan, Ashley; Lin, Hu Yu; Courtney, Harry S.

    2011-01-01

    Serum opacity factor (SOF) is a streptococcal protein that disrupts the structure of human high density lipoproteins (HDL) releasing lipid-free apo A-I while forming a large cholesteryl ester-rich particle and a small neo HDL. Given its low cholesterol and high phospholipid contents, we tested the hypotheses that neo HDL is a better substrate for cholesterol esterification via lecithin:cholesterol acyltransferase (LCAT), better than HDL as an acceptor of THP-1 macrophage cholesterol efflux, and improves reduction of oxidized LDL-induced production of inflammatory markers. We observed that both cholesterol efflux and esterification were improved by recombinant (r)SOF treatment of whole plasma and that the underlying cause of the improved cholesterol esterification in plasma and macrophage cholesterol efflux to rSOF-treated plasma was due to the rSOF-mediated conversion of HDL to neo HDL. Moreover, the reduction of secretion of TNF-α and IL-6 by THP-1 cells by neo HDL was twice that of HDL. Studies in BHK cells overexpressing cholesterol transporters showed that efflux to neo HDL occurred primarily via ABCA1 not ABCG1. Thus, rSOF improves two steps in reverse cholesterol transport with a concomitant reduction in the release of macrophage markers of inflammation. We conclude that rSOF catalyzes a novel reaction that might be developed as a new therapy that prevents or reverses atherosclerosis via improved reverse cholesterol transport. PMID:20972840

  17. Co-treatment with grapefruit juice inhibits while chronic administration activates intestinal P-glycoprotein-mediated drug efflux.

    PubMed

    Panchagnula, R; Bansal, T; Varma, M V S; Kaul, C L

    2005-12-01

    P-Glycoprotein (P-gp) mediated efflux is recognized as a significant biochemical barrier affecting oral absorption for a number of drugs. Various conflicting reports have been published regarding the effects of grapefruit juice (GFJ) on P-gp-mediated drug efflux, in which GFJ has been shown both to inhibit and activate it. Hence, the present study adopted a two-way approach, involving both co-treatment and chronic administration. Bi-directional transport of paclitaxel (PCL) was carried out in the absence and presence of GFJ extract, in rat everted ileum sac. Further, the effect of chronic administration of GFJ to rats was characterized by permeability studies with indinavir (INDI). Co-treatment of GFJ extract at 100% concentration reduced the asymmetric transport of PCL (efflux ratio = 20.8) by increasing absorptive (A --> B) transport by 921% and reducing secretory (B --> A) transport by 41%. Further, GFJ showed a concentration dependent effect on PCL permeability. Imipramine, a passive permeability marker with absorptive permeability of 15.33 +/- 4.26 x 10(-6) cm/s showed no asymmetric transport and also no significant (P < 0.05) change in permeability in the presence of GFJ. Chronic administration of GFJ resulted in a significant decrease in absorptive transport of indinavir, which was even greater than that produced by rifampicin pretreatment. No change in permeability of propranolol, a passive permeability marker, was observed. Further, the decrease in absorptive transport of INDI was reversed by the P-gp inhibitor verapamil. In conclusion, GFJ extract inhibited P-gp-mediated efflux in co-treatment, whereas chronic administration led to increased levels of P-gp expression, thus having a profound effect on intestinal absorption and GFJ-drug interactions in vivo.

  18. Kinetic Analysis of Rhodamines Efflux Mediated by the Multidrug Resistance Protein (MRP1)

    PubMed Central

    Saengkhae, Chantarawan; Loetchutinat, Chatchanok; Garnier-Suillerot, Arlette

    2003-01-01

    Characterization of rhodamine 123 as functional assay for MDR has been primarily focused on P-glycoprotein-mediated MDR. Several studies have suggested that Rh123 is also a substrate for MRP1. However, no quantitative studies of the MRP1-mediated efflux of rhodamines have, up to now, been performed. Measurement of the kinetic characteristics of substrate transport is a powerful approach to enhancing our understanding of their function and mechanism. In the present study, we have used a continuous fluorescence assay with four rhodamine dyes (rhodamine 6G, tetramethylrosamine, tetramethylrhodamine ethyl ester, and tetramethylrhodamine methyl ester) to quantify drug transport by MRP1 in living GLC4/ADR cells. The formation of a substrate concentration gradient was observed. MRP1-mediated transport of rhodamine was glutathione-dependent. The kinetics parameter, ka = VM/km, was very similar for the four rhodamine analogs but ∼10-fold less than the values of the same parameter determined previously for the MRP1-mediated efflux of anthracycline. The findings presented here are the first to show quantitative information about the kinetics parameters for MRP1-mediated efflux of rhodamine dyes. PMID:12944313

  19. Multidrug Efflux Transporters Limit Accumulation of Inorganic, but Not Organic, Mercury in Sea Urchin Embryos

    PubMed Central

    Bošnjak, Ivana; Uhlinger, Kevin R.; Heim, Wesley; Smital, Tvrtko; Franekić-Čolić, Jasna; Coale, Kenneth; Epel, David; Hamdoun, Amro

    2011-01-01

    Mercuric compounds are persistent global pollutants that accumulate in marine organisms and in humans who consume them. While the chemical cycles and speciation of mercury in the oceans are relatively well described, the cellular mechanisms that govern which forms of mercury accumulate in cells and why they persist are less understood. In this study we examined the role of multidrug efflux transport in the differential accumulation of inorganic (HgCl2) and organic (CH3HgCl) mercury in sea urchin (Strongylocentrotus purpuratus) embryos. We found that inhibition of MRP/ABCC-type transporters increases intracellular accumulation of inorganic mercury but had no effect on accumulation of organic mercury. Similarly, pharmacological inhibition of metal conjugating enzymes by ligands GST/GSH significantly increases this antimitotic potency of inorganic mercury, but had no effect on the potency of organic mercury. Our results point to MRP-mediated elimination of inorganic mercury conjugates as a cellular basis for differences in the accumulation and potency of the two major forms of mercury found in marine environments. PMID:19924972

  20. Impact of passive permeability and gut efflux transport on the oral bioavailability of novel series of piperidine-based renin inhibitors in rodents.

    PubMed

    Lévesque, Jean-François; Bleasby, Kelly; Chefson, Amandine; Chen, Austin; Dubé, Daniel; Ducharme, Yves; Fournier, Pierre-André; Gagné, Sébastien; Gallant, Michel; Grimm, Erich; Hafey, Michael; Han, Yongxin; Houle, Robert; Lacombe, Patrick; Laliberté, Sébastien; MacDonald, Dwight; Mackay, Bruce; Papp, Robert; Tschirret-Guth, Richard

    2011-09-15

    An oral bioavailability issue encountered during the course of lead optimization in the renin program is described herein. The low F(po) of pyridone analogs was shown to be caused by a combination of poor passive permeability and gut efflux transport. Substitution of pyridone ring for a more lipophilic moiety (logD>1.7) had minimal effect on rMdr1a transport but led to increased passive permeability (P(app)>10 × 10(-6) cm/s), which contributed to overwhelm gut transporters and increase rat F(po). LogD and in vitro passive permeability determination were found to be key in guiding SAR and improve oral exposure of renin inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. In vitro transport activity of the fully assembled MexAB-OprM efflux pump from Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Verchère, Alice; Dezi, Manuela; Adrien, Vladimir; Broutin, Isabelle; Picard, Martin

    2015-04-01

    Antibiotic resistance is a major public health issue and many bacteria responsible for human infections have now developed a variety of antibiotic resistance mechanisms. For instance, Pseudomonas aeruginosa, a disease-causing Gram-negative bacteria, is now resistant to almost every class of antibiotics. Much of this resistance is attributable to multidrug efflux pumps, which are tripartite membrane protein complexes that span both membranes and actively expel antibiotics. Here we report an in vitro procedure to monitor transport by the tripartite MexAB-OprM pump. By combining proteoliposomes containing the MexAB and OprM portions of the complex, we are able to assay energy-dependent substrate translocation in a system that mimics the dual-membrane architecture of Gram-negative bacteria. This assay facilitates the study of pump transport dynamics and could be used to screen pump inhibitors with potential clinical use in restoring therapeutic activity of old antibiotics.

  2. A Barley Efflux Transporter Operates in a Na+-Dependent Manner, as Revealed by a Multidisciplinary Platform[OPEN

    PubMed Central

    Nagarajan, Yagnesh; Rongala, Jay; Luang, Sukanya; Shadiac, Nadim; Sutton, Tim; Tyerman, Stephen D.; McPhee, Gordon; Voelcker, Nicolas H.; Lee, Jung-Goo

    2016-01-01

    Plant growth and survival depend upon the activity of membrane transporters that control the movement and distribution of solutes into, around, and out of plants. Although many plant transporters are known, their intrinsic properties make them difficult to study. In barley (Hordeum vulgare), the root anion-permeable transporter Bot1 plays a key role in tolerance to high soil boron, facilitating the efflux of borate from cells. However, its three-dimensional structure is unavailable and the molecular basis of its permeation function is unknown. Using an integrative platform of computational, biophysical, and biochemical tools as well as molecular biology, electrophysiology, and bioinformatics, we provide insight into the origin of transport function of Bot1. An atomistic model, supported by atomic force microscopy measurements, reveals that the protein folds into 13 transmembrane-spanning and five cytoplasmic α-helices. We predict a trimeric assembly of Bot1 and the presence of a Na+ ion binding site, located in the proximity of a pore that conducts anions. Patch-clamp electrophysiology of Bot1 detects Na+-dependent polyvalent anion transport in a Nernstian manner with channel-like characteristics. Using alanine scanning, molecular dynamics simulations, and transport measurements, we show that conductance by Bot1 is abolished by removal of the Na+ ion binding site. Our data enhance the understanding of the permeation functions of Bot1. PMID:26672067

  3. Optimized efflux assay for the NorA multidrug efflux pump in Staphylococcus aureus.

    PubMed

    Zimmermann, Saskia; Tuchscherr, Lorena; Rödel, Jürgen; Löffler, Bettina; Bohnert, Jürgen A

    2017-11-01

    Real-time fluorescent efflux assays are commonly used for measuring the efflux of bacterial pumps. Here we describe an optimized protocol for the NorA efflux pump in S. aureus using DiOC 3 instead of ethidium bromide. Glucose and sodium formate were tested as energy carriers. This novel method is fast and reproducible. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Efflux pumps as antimicrobial resistance mechanisms.

    PubMed

    Poole, Keith

    2007-01-01

    Antibiotic resistance continues to hamper antimicrobial chemotherapy of infectious disease, and while biocide resistance outside of the laboratory is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are not uncommon. Efflux mechanisms, both drug-specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials in important human pathogens. Multidrug efflux mechanisms are generally chromosome-encoded, with their expression typically resultant from mutations in regulatory genes, while drug-specific efflux mechanisms are encoded by mobile genetic elements whose acquisition is sufficient for resistance. While it has been suggested that drug-specific efflux systems originated from efflux determinants of self-protection in antibiotic-producing Actinomycetes, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, are appreciated as having an intended housekeeping function unrelated to drug export and resistance. Thus, it will be important to elucidate the intended natural function of these efflux mechanisms in order, for example, to anticipate environmental conditions or circumstances that might promote their expression and, so, compromise antimicrobial chemotherapy. Given the clinical significance of antimicrobial exporters, it is clear that efflux must be considered in formulating strategies for treatment of drug-resistant infections, both in the development of new agents, for example, less impacted by efflux or in targeting efflux directly with efflux inhibitors.

  5. Effect of vildagliptin and pravastatin combination on cholesterol efflux in adipocytes.

    PubMed

    Mostafa, Ahmed M; Hamdy, Nadia M; Abdel-Rahman, Sherif Z; El-Mesallamy, Hala O

    2016-07-01

    Many reports suggested that some statins are almost ineffective in reducing triglycerides or enhancing HDL-C plasma levels, although statin treatment was still efficacious in reducing LDL-C. In diabetic dyslipidemic patients, it may therefore be necessary to use a combination therapy with other drugs to achieve either LDL-C- and triglyceride-lowering or HDL-C-enhancing goals. Such ineffectiveness of statins can be attributed to their effect on the liver X receptor (LXR) which regulates the expression of the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. A decrease in the expression of these transporters eventually leads to decreased cholesterol efflux from peripheral tissues leading to low levels of HDL-C. Although manipulating the LXR pathway may complement the effects of statins, LXR synthetic ligands as T091317 have shown significant hypertriglyceridemic action which limits their use. We recently found that the antidiabetic drug vildagliptin stimulates LXR expression leading to increased ABCB1/ABCG1 expression which improves cholesterol efflux from adipocytes. Therefore, a combination of vildagliptin and statin may provide a solution without the hypertriglyceridemic action observed with LXR agonist. We hypothesize that a combination of vildagliptin and pravastatin will improve cholesterol efflux in adipocytes. Statin-treated 3T3-L1 adipocytes were treated with vildagliptin, and the expression of LXR-ABCA1/ABCG1 cascade and the cholesterol efflux were then determined. Our data indicate that a combination of vildagliptin and pravastatin significantly induces the expression of LXR-ABCA1/ABCG1 cascade and improves cholesterol efflux (P > 0.05) in adipocytes. Our data may explain, at least in part, the improvement in HDL-C levels observed in patients receiving both medications. © 2016 IUBMB Life, 68(7):535-543, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  6. Repression of adenosine triphosphate-binding cassette transporter ABCG2 by estrogen increases intracellular glutathione in brain endothelial cells following ischemic reperfusion injury.

    PubMed

    Shin, Jin A; Jeong, Sae Im; Kim, Hye Won; Jang, Gyeonghui; Ryu, Dong-Ryeol; Ahn, Young-Ho; Choi, Ji Ha; Choi, Youn-Hee; Park, Eun-Mi

    2018-06-01

    The adenosine triphosphate-binding cassette efflux transporter ABCG2, which is located in the blood-brain barrier limits the entry of endogenous compounds and xenobiotics into the brain, and its expression and activity are regulated by estrogen. This study was aimed to define the role of ABCG2 in estrogen-mediated neuroprotection against ischemic injury. ABCG2 protein levels before and after ischemic stroke were increased in the brain of female mice by ovariectomy, which were reversed by estrogen replacement. In brain endothelial cell line bEnd.3, estrogen reduced the basal ABCG2 protein level and efflux activity and protected cells from ischemic injury without inducing ABCG2 expression. When bEnd.3 cells were transfected with ABCG2 small interfering RNA, ischemia-induced cell death was reduced, and the intracellular concentration of glutathione, an antioxidant that is transported by ABCG2, was increased. In addition, after ischemic stroke in ovariectomized mice, estrogen prevented the reduction of intracellular glutathione level in brain microvessels. These data suggested that the suppression of ABCG2 by estrogen is involved in neuroprotection against ischemic injury by increasing intracellular glutathione, and that the modulation of ABCG2 activity offers a therapeutic target for brain diseases in estrogen-deficient aged women. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Hydrogen peroxide inhibits iodide influx and enhances iodide efflux in cultured FRTL-5 rat thyroid cells.

    PubMed

    Sugawara, M; Yamaguchi, D T; Lee, H Y; Yanagisawa, K; Murakami, S; Summer, C N; Johnson, D G; Levin, S R

    1990-05-01

    This study describes the effects of hydrogen peroxide on the two iodide transport systems, I influx and I efflux, in the cultured FRTL-5 rat thyroid cells. I influx was measured by the amount of I taken up by the cells during incubation with Na125I and NaI for 7 min, and I efflux was measured by calculating the rate of 125I release from the 125I-loaded cells in the presence and absence of 5 mmol/l H2O2. Exposure to greater than 100 mumol/l H2O2 for 40 min caused a significant inhibition of I influx; the inhibition was reversible and non-competitive with iodide. Thyroid Na+K+ ATPase activity, a major mechanism to drive I influx, decreased by 40% after the cells were exposed to 5 mmol/l H2O2 for 10 min. H2O2 enhanced I efflux only when Ca2+ was present in the medium. The mechanism of an enhanced I efflux by H2O2 appears to be mediated through the elevation of free cytosolic Ca2+ concentration. Our data indicate that H2O2 can affect I transport by inhibiting I influx and enhancing I efflux.

  8. Current Advances in Developing Inhibitors of Bacterial Multidrug 
Efflux Pumps

    PubMed Central

    Mahmood, Hannah Y.; Jamshidi, Shirin; Sutton, J. Mark; Rahman, Khondaker M.

    2016-01-01

    Antimicrobial resistance represents a significant challenge to future healthcare provision. An acronym ESKAPEE has been derived from the names of the organisms recognised as the major threats although there are a number of other organisms, notably Neisseria gonorrhoeae, that have become equally challenging to treat in the clinic. These pathogens are characterised by the ability to rapidly develop and/or acquire resistance mechanisms in response to exposure to different antimicrobial agents. A key part of the armoury of these pathogens is a series of efflux pumps, which effectively exclude or reduce the intracellular concentration of a large number of antibiotics, making the pathogens significantly more resistant. These efflux pumps are the topic of considerable interest, both from the perspective of basic understanding of efflux pump function, and its role in drug resistance but also as targets for the development of novel adjunct therapies. The necessity to overcome antimicrobial resistance has encouraged investigations into the characterisation of resistance-modifying efflux pump inhibitors to block the mechanisms of drug extrusion, thereby restoring antibacterial susceptibility and returning existing antibiotics into the clinic. A greater understanding of drug recognition and transport by multidrug efflux pumps is needed to develop clinically useful inhibitors, given the breadth of molecules that can be effluxed by these systems. This review discusses different bacterial EPIs originating from both natural source and chemical synthesis and examines the challenges to designing successful EPIs that can be useful against multidrug resistant bacteria. PMID:26947776

  9. Physiological characterisation of the efflux pump system of antibiotic-susceptible and multidrug-resistant Enterobacter aerogenes.

    PubMed

    Martins, A; Spengler, G; Martins, M; Rodrigues, L; Viveiros, M; Davin-Regli, A; Chevalier, J; Couto, I; Pagès, J M; Amaral, L

    2010-10-01

    Enterobacter aerogenes predominates amongst Enterobacteriaceae species that are increasingly reported as producers of extended-spectrum beta-lactamases. Although this mechanism of resistance to beta-lactams is important, other mechanisms bestowing a multidrug-resistant (MDR) phenotype in this species are now well documented. Amongst these mechanisms is the overexpression of efflux pumps that extrude structurally unrelated antibiotics prior to their reaching their targets. Interestingly, although knowledge of the genetic background behind efflux pumps is rapidly advancing, few studies assess the physiological nature of the overall efflux pump system of this, or for that matter any other, bacterium. The study reported here evaluates physiologically the efflux pump system of an E. aerogenes ATCC reference as well as two strains whose MDR phenotypes are mediated by overexpressed efflux pumps. The activities of the efflux pumps in these strains are modulated by pH and glucose, although the effects of the latter are essentially restricted to pH 8, suggesting the presence of two general efflux pump systems, i.e. proton-motive force-dependent and ABC transporter types, respectively. Copyright 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  10. Pharmacologic Suppression of Hepcidin Increases Macrophage Cholesterol Efflux and Reduces Foam Cell Formation and Atherosclerosis

    PubMed Central

    Saeed, Omar; Otsuka, Fumiyuki; Polavarapu, Rohini; Karmali, Vinit; Weiss, Daiana; Davis, Talina; Rostad, Brad; Pachura, Kimberly; Adams, Lila; Elliott, John; Taylor, W. Robert; Narula, Jagat; Kolodgie, Frank; Virmani, Renu; Hong, Charles C.; Finn, Aloke V.

    2012-01-01

    Objectives We recently reported that lowering of macrophage free intracellular iron increases expression of cholesterol efflux transporters ABCA1 and ABCG1 by reducing generation of reactive oxygen species. In this study, we explore whether reducing macrophage intracellular iron levels via pharmacologic suppression of hepcidin can increase macrophage-specific expression of cholesterol efflux transporters and reduce atherosclerosis. Methods and Results To suppress hepcidin, increase expression of the iron exporter ferroportin (FPN), and reduce macrophage intracellular iron, we used a small molecule inhibitor of BMP signaling, LDN 193189 (LDN). LDN (10 mg/kg i.p. bid) was administered to mice and its effects on atherosclerosis, intracellular iron, oxidative stress, lipid efflux, and foam cell formation were measured in plaques and peritoneal macrophages. Long-term LDN administration to Apo E (-/-) mice increased ABCA1 immunoreactivity within intraplaque macrophages by 3.7-fold (n=8; p=0.03), reduced oil-red-o positive lipid area by 50% (n=8; p=0.02) and decreased total plaque area by 43% (n=8; p=0.001). LDN suppressed liver hepcidin transcription and increased macrophage FPN, lowering intracellular iron and hydrogen peroxide production. LDN treatment increased macrophage ABCA1 and ABCG1 expression, significantly raised cholesterol efflux to ApoA-1 and decreased foam cell formation. All preceding LDN-induced effects on cholesterol efflux were reversed by exogenous hepcidin administration, suggesting that modulation of intracellular iron levels within macrophages as the mechanism by which LDN triggers these effects. Conclusion These data suggest that pharmacologic manipulation of iron homeostasis may be a promising target to increase macrophage reverse cholesterol transport and limit atherosclerosis. PMID:22095982

  11. Isolation and Applications of Prostate Side Population Cells Based on Dye Cycle Violet Efflux

    PubMed Central

    Gangavarapu, Kalyan J.; Huss, Wendy J.

    2011-01-01

    This unit describes methods for the digestion of human prostate clinical specimens, dye cycle violet (DCV) staining procedure for the identification, isolation, and quantitation of radiolabeled dihydrotestosterone (DHT) retention of side population cells. The principle of the side population assay is based on differential efflux of DCV, a cell membrane permeable fluorescent dye, by cells with high ATP binding cassette (ABC) transporter activity. Cells with high ABC transporter activity efflux DCV and fall in the lower left quadrant of a flow cytograph are designated as “side population” cells. This unit emphasizes tissue digestion, DCV staining, flow settings for sorting side population cells and quantitation of radiolabeled DHT retention. PMID:21400686

  12. Xenobiotic metabolizing enzyme (XME) expression in aging humans.

    EPA Science Inventory

    In the presence of foreign compounds, metabolic homeostasis of the organism is maintained by the liver’s ability to detoxify and eliminate these xenobiotics. This is accomplished, in part, by the expression of XMEs, which metabolize xenobiotics and determine whether exposure will...

  13. The Role of Monocarboxylate Transporters and Their Chaperone CD147 in Lactate Efflux Inhibition and the Anticancer Effects of Terminalia chebula in Neuroblastoma Cell Line N2-A

    PubMed Central

    Messeha, S. S.; Zarmouh, N. O.; Taka, E.; Gendy, S. G.; Shokry, G. R.; Kolta, M. G.; Soliman, K. F. A.

    2016-01-01

    Aims In the presence of oxygen, most of the synthesized pyruvate during glycolysis in the cancer cell of solid tumors is released away from the mitochondria to form lactate (Warburg Effect). To maintain cell homeostasis, lactate is transported across the cell membrane by monocarboxylate transporters (MCTs). The major aim of the current investigation is to identify novel compounds that inhibit lactate efflux that may lead to identifying effective targets for cancer treatment. Study Design In this study, 900 ethanol plant extracts were screened for their lactate efflux inhibition using neuroblastoma (N2-A) cell line. Additionally, we investigated the mechanism of inhibition for the most potent plant extract regarding monocarboxylate transporters expression, and consequences effects on viability, growth, and apoptosis. Methodology The potency of lactate efflux inhibition of ethanol plant extracts was evaluated in N2-A cells by measuring extracellular lactate levels. Caspase 3- activity and acridine orange/ethidium bromide staining were performed to assess the apoptotic effect. The antiproliferative effect was measured using WST assay. Western blotting was performed to quantify protein expression of MCTs and their chaperone CD147 in treated cells lysates. Results Terminalia chebula plant extract was the most potent lactate efflux inhibitor in N2-A cells among the 900 - tested plant extracts. The results obtained show that extract of Terminalia chebula fruits (TCE) significantly (P = 0.05) reduced the expression of the MCT1, MCT3, MCT4 and the chaperone CD147. The plant extract was more potent (IC50 of 3.59 ± 0.26 μg/ml) than the MCT standard inhibitor phloretin (IC50 76.54 ± 3.19 μg/ml). The extract also showed more potency and selective cytotoxicity in cancer cells than DI-TNC1 primary cell line (IC50 7.37 ± 0.28 vs. 17.35 ± 0.19 μg/ml). Moreover, TCE Inhibited N2-A cell growth (IG50 = 5.20 ± 0.30 μg/ml) and induced apoptosis at the 7.5 μg/ml concentration

  14. [Efflux systems in Serratia marcescens].

    PubMed

    Mardanova, A M; Bogomol'naia, L M; Romanova, Iu D; Sharipova, M R

    2014-01-01

    A widespread bacterium Serratia marcescens (family Enterobacteriaceae) is an opportunistic and exhibits multiple drug resistance. Active removal of antibiotics and other antimicrobials from pathogen and exhibits multiple drug resistance. Active removal of antibiotics and other antimicrobials from the cells by efflux systems is one of the mechanisms responsible for microbial resistance to these compounds. Among enterobacteria, efflux systems of Escherichia coli and Salmonella enterica var. Typhimurium have been studied most extensively. Few efflux systems that belong to different families have been reported for S. marcescens. In this review, we analyzed available literature about S. marcescens efflux systems and carried out the comparative analysis of the genes encoding the RND type systems in different Serratia species and in other enterobacteria. Bioinformatical analysis of the S. marcescens genome allowed us to identify the previously unknown efflux systems based on their homology with the relevant E. coli genes. Identification of additional efflux systems in S. marcescens genome will promote our understanding of physiology of these bacteria, will detect new molecular mechanisms of resistance and will reveal their resistance potential.

  15. Design and Study of Efflux Function of EGFP Fused MexAB-OprM Membrane Transporter in Pseudomonas aeruginosa Using Fluorescence Spectroscopy

    PubMed Central

    Ding, Feng; Lee, Kerry J.; Vahedi-Faridi, Ardeschir; Yoneyama, Hiroshi; Osgood, Christopher J.; Xu, Xiao-Hong Nancy

    2014-01-01

    Multidrug membrane transporters (efflux pumps) can selectively extrude a variety of structurally and functionally diverse substrates (e.g., chemotoxics, antibiotics), leading to multidrug resistance (MDR) and ineffective treatment of a wide variety of diseases. In this study, we have designed and constructed fusion gene (egfp-mexB) of N-terminal mexB with C-terminal egfp, inserted it into a plasmid vector (pMMB67EH), and successfully expressed it in ΔMexB (MexB deletion) strain of Pseudomonas aeruginosa to create a new strain that expresses MexA-(EGFP-MexB)-OprM. We characterized the fusion gene using gel electrophoresis and DNA sequencing, and determined their expression in live cells by measuring the fluorescence of EGFP in single live cells using fluorescence microscopy. Efflux function of the new strain was studied by measuring its accumulation kinetics of ethidium bromide (EtBr, a pump substrate) using fluorescence spectroscopy, which was compared with the cells (WT, ΔMexM, ΔABM, and nalB1) with various expression levels of MexAB-OprM. The new strain shows 6-fold lower accumulation rates of EtBr (15 μM) than ΔABM, 4-fold lower than ΔMexB, but only 1.1-fold higher than WT. As EtBr concentration increases to 40 μM, the new strain has nearly the same accumulation rate of EtBr as ΔMexB, but 1.4-fold higher than WT. We observed the nearly same level of inhibitory effect of CCCP (carbonyl cyanide-m-chlorophenylhydrazone) on the efflux of EtBr by the new strain and WT. Antibiotic susceptibility study shows that the minimum inhibitory concentrations (MICs) of aztreonam (AZT) and chloramphenicol (CP) for the new strain are 6-fold or 3-fold lower than WT, respectively, and 2-fold higher than those of ΔMexB. Taken together, the results suggest that the fusion protein partially retains the efflux function of MexAB-OprM. Modeled structure of the fusion protein shows that the position and orientation of the N-terminal fused EGFP domain may either partially block

  16. Transport behaviour of xenobiotic micropollutants in surface waters - an experimental assessment

    NASA Astrophysics Data System (ADS)

    Schwientek, Marc; Kuch, Bertram; Rügner, Hermann; Dobramysl, Lorenz; Grathwohl, Peter

    2013-04-01

    Xenobiotics are substances that do not exist in natural systems but are increasingly produced by industrial processes and introduced into the environment. While many of these compounds are eliminated in waste water treatment plants, some are only barely degraded and are discharged into receiving water bodies. Often little is known about their acute or chronic toxicity and even less about their persistence or transport behaviour in aquatic systems. In the present study, the stability and turnover of selected micropollutants along a 7.5 km long segment of the River Ammer in Southwest Germany was investigated (catchment area 134 km²). This stream carries a proportion of treated wastewater which is clearly above the average in German rivers, mainly supplied by a major waste water treatment plant at the upstream end of the studied stream segment. An experimental mass balance approach was chosen where in- and outflow of water and target compounds into and out of the balanced stream segment was measured during base flow conditions. To cover a complete diurnal cycle of wastewater input, pooled samples were collected every 2 h over a sampling period of 24 h. A comparison of bulk mass fluxes showed that carbamazepine, a pharmaceutical, and phosphorous flame retardants, such as TCPP, behave conservative under the given conditions. Some retention was observed for the disinfectant product Triclosan and some polycyclic musk fragrances (e.g., HHCB). TAED, a bleaching activator used in detergents, was completely eliminated along the stream segment. The outcome of the experiment demonstrates the very different persistence of some widely-used micropollutants in aquatic systems. However, the mechanisms involved in their attenuation as well as the fate of the most persistent compounds still remain subject to further research.

  17. Tripartite assembly of RND multidrug efflux pumps

    NASA Astrophysics Data System (ADS)

    Daury, Laetitia; Orange, François; Taveau, Jean-Christophe; Verchère, Alice; Monlezun, Laura; Gounou, Céline; Marreddy, Ravi K. R.; Picard, Martin; Broutin, Isabelle; Pos, Klaas M.; Lambert, Olivier

    2016-02-01

    Tripartite multidrug efflux systems of Gram-negative bacteria are composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. They are assumed to form ducts inside the periplasm facilitating drug exit across the outer membrane. Here we present the reconstitution of native Pseudomonas aeruginosa MexAB-OprM and Escherichia coli AcrAB-TolC tripartite Resistance Nodulation and cell Division (RND) efflux systems in a lipid nanodisc system. Single-particle analysis by electron microscopy reveals the inner and outer membrane protein components linked together via the periplasmic adaptor protein. This intrinsic ability of the native components to self-assemble also leads to the formation of a stable interspecies AcrA-MexB-TolC complex suggesting a common mechanism of tripartite assembly. Projection structures of all three complexes emphasize the role of the periplasmic adaptor protein as part of the exit duct with no physical interaction between the inner and outer membrane components.

  18. Mutations in MexB that affect the efflux of antibiotics with cytoplasmic targets.

    PubMed

    Ohene-Agyei, Thelma; Lea, Jon D; Venter, Henrietta

    2012-08-01

    Drug efflux pumps such as MexAB-OprM from Pseudomonas aeruginosa confer resistance to a wide range of chemically different compounds. Within the tripartite assembly, the inner membrane protein MexB is mainly responsible for substrate recognition. Recently, considerable advances have been made in elucidating the drug efflux pathway through the large periplasmic domains of resistance-nodulation-division (RND) transporters. However, little is known about the role of amino acids in other parts of the protein. We have investigated the role of two conserved phenylalanine residues that are aligned around the cytoplasmic side of the central cavity of MexB. The two conserved phenylalanine residues have been mutated to alanine residues (FAFA MexB). The interaction of the wild-type and mutant proteins with a variety of drugs from different classes was investigated by assays of cytotoxicity and drug transport. The FAFA mutation affected the efflux of compounds that have targets inside the cell, but antibiotics that act on cell wall synthesis and membrane probes were unaffected. Combined, our results indicate the presence of a hitherto unidentified cytoplasmic-binding site in RND drug transporters and enhance our understanding of the molecular mechanisms that govern drug resistance in Gram-negative pathogens. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Acid sphingomyelinase-deficient macrophages have defective cholesterol trafficking and efflux.

    PubMed

    Leventhal, A R; Chen, W; Tall, A R; Tabas, I

    2001-11-30

    Cholesterol efflux from macrophage foam cells, a key step in reverse cholesterol transport, requires trafficking of cholesterol from intracellular sites to the plasma membrane. Sphingomyelin is a cholesterol-binding molecule that transiently exists with cholesterol in endosomes and lysosomes but is rapidly hydrolyzed by lysosomal sphingomyelinase (L-SMase), a product of the acid sphingomyelinase (ASM) gene. We therefore hypothesized that sphingomyelin hydrolysis by L-SMase enables cholesterol efflux by preventing cholesterol sequestration by sphingomyelin. Macrophages from wild-type and ASM knockout mice were incubated with [(3)H]cholesteryl ester-labeled acetyl-LDL and then exposed to apolipoprotein A-I or high density lipoprotein. In both cases, [(3)H]cholesterol efflux was decreased substantially in the ASM knockout macrophages. Similar results were shown for ASM knockout macrophages labeled long-term with [(3)H]cholesterol added directly to medium, but not for those labeled for a short period, suggesting defective efflux from intracellular stores but not from the plasma membrane. Cholesterol trafficking to acyl-coenzyme A:cholesterol acyltransferase (ACAT) was also defective in ASM knockout macrophages. Using filipin to probe cholesterol in macrophages incubated with acetyl-LDL, we found there was modest staining in the plasma membrane of wild-type macrophages but bright, perinuclear fluorescence in ASM knockout macrophages. Last, when wild-type macrophages were incubated with excess sphingomyelin to "saturate" L-SMase, [(3)H]cholesterol efflux was decreased. Thus, sphingomyelin accumulation due to L-SMase deficiency leads to defective cholesterol trafficking and efflux, which we propose is due to sequestration of cholesterol by sphingomyelin and possibly other mechanisms. This model may explain the low plasma high density lipoprotein found in ASM-deficient humans and may implicate L-SMase deficiency and/or sphingomyelin enrichment of lipoproteins as novel

  20. Inhibition of multidrug/xenobiotic resistance transporter by MK571 improves dye (Fura 2) accumulation in crustacean tissues from lobster, shrimp, and isopod.

    PubMed

    Lüders, Ann-Katrin; Saborowski, Reinhard; Bickmeyer, Ulf

    2009-09-01

    Multidrug/xenobiotic resistance transporters are present in living organisms as a first line defence system against small, potentially harmful molecules from the environment or from internal metabolic reactions. Multidrug resistance associated proteins (MRP) are one type of ATP-Binding-Cassette (ABC) transporters, which also transport dyes such as Fura 2, a calcium chelating fluorescence indicator. The specific MRP inhibitor MK571 was used to investigate the fluorescence intensity of cells in tissues of the brain and the midgut gland of the crustaceans Homarus gammarus (lobster), Crangon crangon (brown shrimp) and Idotea emarginata (isopod) during incubation with Fura 2AM (1 microM). In the presence of the inhibitor MK571 (50 microM), the fluorescence of brain tissue significantly increased in all of the three species. The midgut gland of H. gammarus showed a significant increase of fluorescence, whereas there was no effect in the midgut glands of C. crangon and I. baltica. The half maximal concentration of MK571 was 50 microM as measured in the midgut gland of H. gammarus. In conclusion, MRP transporters are present in the three investigated crustacean nervous systems. Using the midgut glands of the three species, only in H. gammarus MK571 inhibited dye extrusion, indicating species-specific differences of transporter systems, their specificity, or tissue specific expression.

  1. Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future.

    PubMed

    Cole, Susan P C

    2014-01-01

    The human ATP-binding cassette transporter multidrug resistance protein 1 (MRP1), encoded by ABCC1, was initially identified because of its ability to confer multidrug resistance in lung cancer cells. It is now established that MRP1 plays a role in protecting certain tissues from xenobiotic insults and that it mediates the cellular efflux of the proinflammatory cysteinyl leukotriene C4 as well as a vast array of other endo- and xenobiotic organic anions. Many of these are glutathione (GSH) or glucuronide conjugates, the products of Phase II drug metabolism. MRP1 also plays a role in the cellular efflux of the reduced and oxidized forms of GSH and thus contributes to the many physiological and pathophysiological processes influenced by these small peptides, including oxidative stress. In this review, the pharmacological and physiological aspects of MRP1 are considered in the context of the current status and future prospects of pharmacological and genetic modulation of MRP1 activity.

  2. Fitting the Elementary Rate Constants of the P-gp Transporter Network in the hMDR1-MDCK Confluent Cell Monolayer Using a Particle Swarm Algorithm

    PubMed Central

    Agnani, Deep; Acharya, Poulomi; Martinez, Esteban; Tran, Thuy Thanh; Abraham, Feby; Tobin, Frank; Ellens, Harma; Bentz, Joe

    2011-01-01

    P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3∶1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the apical membrane. PMID

  3. The Tomato 14-3-3 Protein TFT4 Modulates H+ Efflux, Basipetal Auxin Transport, and the PKS5-J3 Pathway in the Root Growth Response to Alkaline Stress1[C][W

    PubMed Central

    Xu, Weifeng; Jia, Liguo; Shi, Weiming; Baluška, František; Kronzucker, Herbert J.; Liang, Jiansheng; Zhang, Jianhua

    2013-01-01

    Alkaline stress is a common environmental stress, in particular in salinized soils. Plant roots respond to a variety of soil stresses by regulating their growth, but the nature of the regulatory pathways engaged in the alkaline stress response (ASR) is not yet understood. Previous studies show that PIN-FORMED2, an auxin (indole-3-acetic acid [IAA]) efflux transporter, PKS5, a protein kinase, and DNAJ HOMOLOG3 (J3), a chaperone, play key roles in root H+ secretion by regulating plasma membrane (PM) H+-ATPases directly or by targeting 14-3-3 proteins. Here, we investigated the expression of all 14-3-3 gene family members (TOMATO 14-3-3 PROTEIN1 [TFT1]–TFT12) in tomato (Solanum lycopersicum) under ASR, showing the involvement of four of them, TFT1, TFT4, TFT6, and TFT7. When these genes were separately introduced into Arabidopsis (Arabidopsis thaliana) and overexpressed, only the growth of TFT4 overexpressors was significantly enhanced when compared with the wild type under stress. H+ efflux and the activity of PM H+-ATPase were significantly enhanced in the root tips of TFT4 overexpressors. Microarray analysis and pharmacological examination of the overexpressor and mutant plants revealed that overexpression of TFT4 maintains primary root elongation by modulating PM H+-ATPase-mediated H+ efflux and basipetal IAA transport in root tips under alkaline stress. TFT4 further plays important roles in the PKS5-J3 signaling pathway. Our study demonstrates that TFT4 acts as a regulator in the integration of H+ efflux, basipetal IAA transport, and the PKS5-J3 pathway in the ASR of roots and coordinates root apex responses to alkaline stress for the maintenance of primary root elongation. PMID:24134886

  4. Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport.

    PubMed

    Naramoto, Satoshi

    2017-12-01

    Directional cell-to-cell transport of functional molecules, called polar transport, enables plants to sense and respond to developmental and environmental signals. Transporters that localize to plasma membranes (PMs) in a polar manner are key components of these systems. PIN-FORMED (PIN) auxin efflux carriers, which are the most studied polar-localized PM proteins, are implicated in the polar transport of auxin that in turn regulates plant development and tropic growth. In this review, the regulatory mechanisms underlying polar localization of PINs, control of auxin efflux activity, and PIN abundance at PMs are considered. Up to date information on polar-localized nutrient transporters that regulate directional nutrient movement from soil into the root vasculature is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Chalcone inhibitors of the NorA efflux pump in Staphylococcus aureus whole cells and enriched everted membrane vesicles.

    PubMed

    Holler, Jes Gitz; Slotved, Hans-Christian; Mølgaard, Per; Olsen, Carl Erik; Christensen, Søren Brøgger

    2012-07-15

    A library of 117 chalcones was screened for efflux pump inhibitory (EPI) activity against NorA mediated ethidium bromide efflux. Five of the chalcones (5-7, 9, and 10) were active and two chalcones (9 and 10) were equipotent to reserpine with IC(50)-values of 9.0 and 7.7 μM, respectively. Twenty chalcones were subsequently proved to be inhibitors of the NorA efflux pump in everted membrane vesicles. Compounds 5, 7, and 9 synergistically increased the effect of ciprofloxacin on Staphylococcus aureus. Our results suggest that chalcones might be developed into drugs for overcoming multidrug resistance based on efflux transporters of microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. CO2 efflux from soils with seasonal water repellency

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Doerr, Stefan H.

    2017-10-01

    Soil carbon dioxide (CO2) emissions are strongly dependent on pore water distribution, which in turn can be modified by reduced wettability. Many soils around the world are affected by soil water repellency (SWR), which reduces infiltration and results in diverse moisture distribution. SWR is temporally variable and soils can change from wettable to water-repellent and vice versa throughout the year. Effects of SWR on soil carbon (C) dynamics, and specifically on CO2 efflux, have only been studied in a few laboratory experiments and hence remain poorly understood. Existing studies suggest soil respiration is reduced with increasing severity of SWR, but the responses of soil CO2 efflux to varying water distribution created by SWR are not yet known.Here we report on the first field-based study that tests whether SWR indeed reduces soil CO2 efflux, based on in situ measurements carried out over three consecutive years at a grassland and pine forest sites under the humid temperate climate of the UK.Soil CO2 efflux was indeed very low on occasions when soil exhibited consistently high SWR and low soil moisture following long dry spells. Low CO2 efflux was also observed when SWR was absent, in spring and late autumn when soil temperatures were low, but also in summer when SWR was reduced by frequent rainfall events. The highest CO2 efflux occurred not when soil was wettable, but when SWR, and thus soil moisture, was spatially patchy, a pattern observed for the majority of the measurement period. Patchiness of SWR is likely to have created zones with two different characteristics related to CO2 production and transport. Zones with wettable soil or low persistence of SWR with higher proportion of water-filled pores are expected to provide water with high nutrient concentration resulting in higher microbial activity and CO2 production. Soil zones with high SWR persistence, on the other hand, are dominated by air-filled pores with low microbial activity, but facilitating O2

  7. Paternal nicotine exposure alters hepatic xenobiotic metabolism in offspring

    PubMed Central

    Vallaster, Markus P; Kukreja, Shweta; Bing, Xin Y; Ngolab, Jennifer; Zhao-Shea, Rubing; Gardner, Paul D; Tapper, Andrew R; Rando, Oliver J

    2017-01-01

    Paternal environmental conditions can influence phenotypes in future generations, but it is unclear whether offspring phenotypes represent specific responses to particular aspects of the paternal exposure history, or a generic response to paternal ‘quality of life’. Here, we establish a paternal effect model based on nicotine exposure in mice, enabling pharmacological interrogation of the specificity of the offspring response. Paternal exposure to nicotine prior to reproduction induced a broad protective response to multiple xenobiotics in male offspring. This effect manifested as increased survival following injection of toxic levels of either nicotine or cocaine, accompanied by hepatic upregulation of xenobiotic processing genes, and enhanced drug clearance. Surprisingly, this protective effect could also be induced by a nicotinic receptor antagonist, suggesting that xenobiotic exposure, rather than nicotinic receptor signaling, is responsible for programming offspring drug resistance. Thus, paternal drug exposure induces a protective phenotype in offspring by enhancing metabolic tolerance to xenobiotics. DOI: http://dx.doi.org/10.7554/eLife.24771.001 PMID:28196335

  8. Aluminum-Activated Malate Transporters Can Facilitate GABA Transport.

    PubMed

    Ramesh, Sunita A; Kamran, Muhammad; Sullivan, Wendy; Chirkova, Larissa; Okamoto, Mamoru; Degryse, Fien; McLaughlin, Michael; Gilliham, Matthew; Tyerman, Stephen D

    2018-05-01

    Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABA A receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA] i ) in both wheat ( Triticum aestivum ) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA] i because TaALMT1 facilitates GABA efflux but GABA does not complex Al 3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14 C-GABA uptake into TaALMT1 -expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1 F213C ) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA] i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status. © 2018 American Society of Plant Biologists. All rights reserved.

  9. Organic Anion-Transporting Polypeptide and Efflux Transporter-Mediated Hepatic Uptake and Biliary Excretion of Cilostazol and Its Metabolites in Rats and Humans.

    PubMed

    Wang, Chong; Huo, Xiaokui; Wang, Changyuan; Meng, Qiang; Liu, Zhihao; Sun, Pengyuan; Cang, Jian; Sun, Huijun; Liu, Kexin

    2017-09-01

    Cilostazol undergoes extensive liver metabolism. However, the transporter-mediated hepatic disposition of cilostazol remains unknown. The present study was performed to investigate the hepatic uptake and biliary excretion of cilostazol and its metabolites (OPC-13015 and OPC-13213) using rat liver and human transporter-transfected cells in vitro. Cilostazol uptake by rat liver slices and isolated rat hepatocytes exhibited time-, concentration-, and temperature dependency and was decreased by Oatp inhibitors, which suggested that Oatp was involved in the hepatic uptake of cilostazol. Cilostazol uptake in rat hepatocytes, OATP1B1-, and OATP1B3-HEK293 cells indicated a saturable process with K m values of 2.7 μM, 17.7 μM, and 2.7 μM, respectively. Epigallocatechin gallate, cyclosporin A, rifampicin, and telmisartan inhibited cilostazol uptake in OATP1B1/1B3-HEK293 cells with K i values close to their clinical plasma concentration, which suggested possible drug-drug interactions in humans via OATP1B1/1B3. Moreover, the cumulative biliary excretion of cilostazol and OPC-13015 was significantly decreased by quinidine, bilirubin, and novobiocin in perfused rat liver, but OPC-13213 biliary excretion was only inhibited by novobiocin, which suggested that the efflux transporters Mrp2, Bcrp, and P-gp were involved in the biliary excretion of cilostazol and its metabolites. Our findings indicated that multiple transporters were involved in the hepatic disposition of cilostazol and its metabolites. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Characterization of the Impact of Life Stage on Xenobiotic Metabolizing Enzyme Expression and Gene -Chemical Interactions in the Liver

    EPA Science Inventory

    Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). We have carried out a comprehensive analysis of the mRNA expression of XMETs thro...

  11. [Effect of ferulic acid on cholesterol efflux in macrophage foam cell formation and potential mechanism].

    PubMed

    Chen, Fu-xin; Wang, Lian-kai

    2015-02-01

    The formation of macrophage-derived foam cells is a typical feature of atherosclerosis (AS). Reverse cholesterol efflux (RCT) is one of important factors for the formation of macrophage foam cells. In this study, macrophage form cells were induced by oxidized low density lipoprotein (ox-LDL) and then treated with different concentrations of ferulic acid, so as to observe the effect of ferulic acid on the intracellular lipid metabolism in the ox-LDL-induced macrophage foam cell formation, the cholesterol efflux and the mRNA expression and protein levels of ATP binding cassette transporter A1 (ABCA1) and ATP binding cassette transporter G1 (ABCG1) that mediate cholesterol efflux, and discuss the potential mechanism of ferulic acid in resisting AS. According to the findings, compared with the control group, the ox-LDL-treated group showed significant increase in intracellular lipid content, especially for the cholesterol content; whereas the intracellular lipid accumulation markedly decreased, after the treatment with ferulic acid. The data also demonstrated that the mRNA and protein expressions of ABCA1 and ABCG1 significantly increased after macrophage foam cells were treated with different concentrations of ferulic acid. In summary, ferulic acid may show the anti-atherosclerosis effect by increasing the surface ABCA1 and ABCG1 expressions of macrophage form cells and promoting cholesterol efflux.

  12. Curcumin Affects Phase II Disposition of Resveratrol Through Inhibiting Efflux Transporters MRP2 and BCRP

    PubMed Central

    Ge, Shufan; Yin, Taijun; Xu, Beibei; Gao, Song; Hu, Ming

    2015-01-01

    Purpose To evaluate the impact of curcumin on the disposition of resveratrol phase II metabolites in vivo, and explain the observations by performing in vitro studies in transporter-overexpressed cells. Methods Pharmacokinetic studies of resveratrol with and without the co-administration of curcumin were performed in both FVB wild-type and Bcrp1 (−/−) mice. Human UGT1A9-overexpressing HeLa cells and human MRP2-overexpressing MDCK II-UGT1A1 cells were used as in vitro tools to further determine the impact of curcumin as a transporter inhibitor on resveratrol metabolites. Results We observed higher exposure of resveratrol conjugates in Bcrp1 (−/−) mice compared to wild-type mice. In wild-type mice, curcumin increased the AUC of resveratrol glucuronide by 4-fold compared to the mice treated without curcumin. The plasma levels of resveratrol and its sulfate conjugate also increased moderately. In Bcrp1 (−/−) mice, there was a further increase (6-fold increase) in AUC of resveratrol glucuronide observed when curcumin was co-administered compared to AUC values obtained in wild-type mice without curcumin treatment. In the presence of 50nM curcumin, the clearance of resveratrol-3-O-glucuronide and resveratrol-3-O-sulfate reduced in both MRP2-overexpressing MDCKII-UGT1A1 cells and Human UGT1A9-overexpressing HeLa cells. Conclusions These results suggest that curcumin alters the phase II distribution of resveratrol through inhibiting efflux transporters including MRP2 and BCRP. PMID:26502886

  13. Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand.

    PubMed

    Tarvainen, Lasse; Räntfors, Mats; Wallin, Göran

    2014-05-01

    Stem CO2 efflux is known to vary seasonally and vertically along tree stems. However, annual tree- and stand-scale efflux estimates are commonly based on measurements made only a few times a year, during daytime and at breast height. In this study, the effect of these simplifying assumptions on annual efflux estimates and their influence on the estimates of the importance of stems in stand-scale carbon cycling are evaluated. In order to assess the strength of seasonal, diurnal and along-stem variability in CO2 efflux, half-hourly measurements were carried out at three heights on three mature Norway spruce (Picea abies (L.) Karst.) trees over a period of 3 years. Making the common assumption of breast height efflux rates being representative of the entire stem was found to result in underestimations of 10-17% in the annual tree-scale CO2 efflux. Upscaling using only daytime measurements from breast height increased the underestimation to 15-20%. Furthermore, the results show that the strength of the vertical gradient varies seasonally, being strongest in the early summer and non-existent during the cool months. The observed seasonality in the vertical CO2 efflux gradient could not be explained by variation in stem temperature, temperature response of the CO2 efflux (Q10), outer-bark permeability, CO2 transport in the xylem or CO2 release from the phloem. However, the estimated CO2 concentration immediately beneath the bark was considerably higher in the upper stem during the main period of diameter growth, coinciding with the strongest vertical efflux gradient. These results suggest that higher growth rates in the upper stem are the main cause for the observed vertical variation in the stem CO2 effluxes. Furthermore, the results indicate that accounting for the vertical efflux variation is essential for assessments of the importance of stems in stand-scale carbon cycling. © The Author 2014. Published by Oxford University Press. All rights reserved.

  14. Differences in trans-stimulated chloroquine efflux kinetics are linked to PfCRT in Plasmodium falciparum

    PubMed Central

    Sanchez, Cecilia P.; Rohrbach, Petra; McLean, Jeremy E.; Fidock, David A.; Stein, Wilfred D.; Lanzer, Michael

    2010-01-01

    Summary The mechanism underpinning chloroquine drug resistance in the human malarial parasite Plasmodium falciparum has remained controversial. Currently discussed models include a carrier or a channel for chloroquine, the former actively expelling the drug, the latter facilitating its passive diffusion, out of the parasite’s food vacuole, where chloroquine accumulates and inhibits haem detoxification. Here we have challenged both models using an established trans-stimulation efflux protocol. While carriers may demonstrate trans-stimulation, channels do not. Our data reveal that extracellular chloroquine stimulates chloroquine efflux in the presence and absence of metabolic energy in both chloroquine-sensitive and -resistant parasites, resulting in a hyperbolic increase in the apparent initial efflux rates as the concentration of external chloroquine increases. In the absence of metabolic energy, the apparent initial efflux rates were comparable in both parasites. Significant differences were only observed in the presence of metabolic energy, where consistently higher apparent initial efflux rates were found in chloroquine-resistant parasites. As trans-stimulation is characteristic of a carrier, and not a channel, we interpret our data in favour of a carrier for chloroquine being present in both chloroquine-sensitive and -resistant parasites, however, with different transport modalities. PMID:17493125

  15. Placental transporter localization and expression in the Human: the importance of species, sex, and gestational age differences†

    PubMed Central

    Walker, Natasha; Filis, Panagiotis; Soffientini, Ugo; Bellingham, Michelle; O’Shaughnessy, Peter J; Fowler, Paul A

    2017-01-01

    Abstract The placenta is a critical organ during pregnancy, essential for the provision of an optimal intrauterine environment, with fetal survival, growth, and development relying on correct placental function. It must allow nutritional compounds and relevant hormones to pass into the fetal bloodstream and metabolic waste products to be cleared. It also acts as a semipermeable barrier to potentially harmful chemicals, both endogenous and exogenous. Transporter proteins allow for bidirectional transport and are found in the syncytiotrophoblast of the placenta and endothelium of fetal capillaries. The major transporter families in the human placenta are ATP-binding cassette (ABC) and solute carrier (SLC), and insufficiency of these transporters may lead to deleterious effects on the fetus. Transporter expression levels are gestation-dependent and this is of considerable clinical interest as levels of drug resistance may be altered from one trimester to the next. This highlights the importance of these transporters in mediating correct and timely transplacental passage of essential compounds but also for efflux of potentially toxic drugs and xenobiotics. We review the current literature on placental molecular transporters with respect to their localization and ontogeny, the influence of fetal sex, and the relevance of animal models. We conclude that a paucity of information exists, and further studies are required to unlock the enigma of this dynamic organ. PMID:28339967

  16. Genomic analysis of the aging rodent and human liver: impact on xenobiotic metabolism

    EPA Science Inventory

    Metabolic homeostasis of the organism is maintained by the liver’s ability to detoxify and eliminate xenobiotics. This is accomplished, in part, by xenobiotic metabolizing enzymes (XMEs), which metabolize xenobiotics and determine whether exposure will result in toxicity. Some ev...

  17. Genetic and Dietary Regulation of Glyburide Efflux by the Human Placental Breast Cancer Resistance Protein Transporter.

    PubMed

    Bircsak, Kristin M; Gupta, Vivek; Yuen, Poi Yu Sofia; Gorczyca, Ludwik; Weinberger, Barry I; Vetrano, Anna M; Aleksunes, Lauren M

    2016-04-01

    Glyburide is frequently used to treat gestational diabetes owing to its low fetal accumulation resulting from placental efflux by the breast cancer resistance protein (BCRP)/ABCG2 transporter. Here we sought to determine how exposure to the dietary phytoestrogen genistein and expression of a loss-of-function polymorphism in the ABCG2 gene (C421A) impacted the transport of glyburide by BCRP using stably transfected human embryonic kidney 293 (HEK) cells, human placental choriocarcinoma BeWo cells, and human placental explants. Genistein competitively inhibited the BCRP-mediated transport of (3)H-glyburide in both wild-type (WT) and C421A-BCRP HEK-expressing cells, with greater accumulation of (3)H-glyburide in cells expressing the C421A variant. In BeWo cells, exposure to genistein for 60 minutes increased the accumulation of (3)H-glyburide 30%-70% at concentrations relevant to dietary exposure (IC50 ∼180 nM). Continuous exposure of BeWo cells to genistein for 48 hours reduced the expression of BCRP mRNA and protein by up to 40%, which impaired BCRP transport activity. Pharmacologic antagonism of the estrogen receptor attenuated the genistein-mediated downregulation of BCRP expression, suggesting that phytoestrogens may reduce BCRP levels through this hormone receptor pathway in BeWo cells. Interestingly, genistein treatment for 48 hours did not alter BCRP protein expression in explants dissected from healthy term placentas. These data suggest that whereas genistein can act as a competitive inhibitor of BCRP-mediated transport, its ability to downregulate placental BCRP expression may only occur in choriocarcinoma cells. Overall, this research provides important mechanistic data regarding how the environment (dietary genistein) and a frequent genetic variant (ABCG2, C421A) may alter the maternal-fetal disposition of glyburide. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Genetic and Dietary Regulation of Glyburide Efflux by the Human Placental Breast Cancer Resistance Protein Transporter

    PubMed Central

    Bircsak, Kristin M.; Gupta, Vivek; Yuen, Poi Yu Sofia; Gorczyca, Ludwik; Weinberger, Barry I.; Vetrano, Anna M.

    2016-01-01

    Glyburide is frequently used to treat gestational diabetes owing to its low fetal accumulation resulting from placental efflux by the breast cancer resistance protein (BCRP)/ABCG2 transporter. Here we sought to determine how exposure to the dietary phytoestrogen genistein and expression of a loss-of-function polymorphism in the ABCG2 gene (C421A) impacted the transport of glyburide by BCRP using stably transfected human embryonic kidney 293 (HEK) cells, human placental choriocarcinoma BeWo cells, and human placental explants. Genistein competitively inhibited the BCRP-mediated transport of 3H-glyburide in both wild-type (WT) and C421A-BCRP HEK-expressing cells, with greater accumulation of 3H-glyburide in cells expressing the C421A variant. In BeWo cells, exposure to genistein for 60 minutes increased the accumulation of 3H-glyburide 30%–70% at concentrations relevant to dietary exposure (IC50 ∼180 nM). Continuous exposure of BeWo cells to genistein for 48 hours reduced the expression of BCRP mRNA and protein by up to 40%, which impaired BCRP transport activity. Pharmacologic antagonism of the estrogen receptor attenuated the genistein-mediated downregulation of BCRP expression, suggesting that phytoestrogens may reduce BCRP levels through this hormone receptor pathway in BeWo cells. Interestingly, genistein treatment for 48 hours did not alter BCRP protein expression in explants dissected from healthy term placentas. These data suggest that whereas genistein can act as a competitive inhibitor of BCRP-mediated transport, its ability to downregulate placental BCRP expression may only occur in choriocarcinoma cells. Overall, this research provides important mechanistic data regarding how the environment (dietary genistein) and a frequent genetic variant (ABCG2, C421A) may alter the maternal-fetal disposition of glyburide. PMID:26850786

  19. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase.

    PubMed

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M; Brown, Robert J

    2014-09-05

    Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. On the physics of multidrug efflux through a biomolecular complex

    NASA Astrophysics Data System (ADS)

    Mishima, Hirokazu; Oshima, Hiraku; Yasuda, Satoshi; Amano, Ken-ichi; Kinoshita, Masahiro

    2013-11-01

    Insertion and release of a solute into and from a vessel comprising biopolymers is a fundamental function in a biological system. A typical example is found in a multidrug efflux transporter. "Multidrug efflux" signifies that solutes such as drug molecules with diverse properties can be handled. In our view, the mechanism of the multidrug efflux is not chemically specific but rather has to be based on a physical factor. In earlier works, we showed that the spatial distribution of the solute-vessel potential of mean force (PMF) induced by the solvent plays imperative roles in the insertion/release process. The PMF can be decomposed into the energetic and entropic components. The entropic component, which originates from the translational displacement of solvent molecules, is rather insensitive to the solute-solvent and vessel inner surface-solvent affinities. This feature is not shared with the energetic component. When the vessel inner surface is neither solvophobic nor solvophilic, the solvents within the vessel cavity and in the bulk offer almost the same environment to any solute with solvophobicity or solvophilicity, and the energetic component becomes much smaller than the entropic component (i.e., the latter predominates over the former). Our idea is that the multidrug efflux can be realized if the insertion/release process is accomplished by the entropic component exhibiting the insensitivity to the solute properties. However, we have recently argued that the entropic release of the solute is not feasible as long as the vessel geometry is fixed. Here we consider a model of TolC, a cylindrical vessel possessing an entrance at one end and an exit at the other end for the solute. The spatial distribution of the PMF is calculated by employing the three-dimensional integral equation theory with rigid-body models in which the constituents interact only through hard-body potentials. Since the behavior of these models is purely entropic in origin, our analysis is

  1. Extra-Renal Elimination of Uric Acid via Intestinal Efflux Transporter BCRP/ABCG2

    PubMed Central

    Hosomi, Atsushi; Nakanishi, Takeo; Fujita, Takuya; Tamai, Ikumi

    2012-01-01

    Urinary excretion accounts for two-thirds of total elimination of uric acid and the remainder is excreted in feces. However, the mechanism of extra-renal elimination is poorly understood. In the present study, we aimed to clarify the mechanism and the extent of elimination of uric acid through liver and intestine using oxonate-treated rats and Caco-2 cells as a model of human intestinal epithelium. In oxonate-treated rats, significant amounts of externally administered and endogenous uric acid were recovered in the intestinal lumen, while biliary excretion was minimal. Accordingly, direct intestinal secretion was thought to be a substantial contributor to extra-renal elimination of uric acid. Since human efflux transporter BCRP/ABCG2 accepts uric acid as a substrate and genetic polymorphism causing a decrease of BCRP activity is known to be associated with hyperuricemia and gout, the contribution of rBcrp to intestinal secretion was examined. rBcrp was confirmed to transport uric acid in a membrane vesicle study, and intestinal regional differences of expression of rBcrp mRNA were well correlated with uric acid secretory activity into the intestinal lumen. Bcrp1 knockout mice exhibited significantly decreased intestinal secretion and an increased plasma concentration of uric acid. Furthermore, a Bcrp inhibitor, elacridar, caused a decrease of intestinal secretion of uric acid. In Caco-2 cells, uric acid showed a polarized flux from the basolateral to apical side, and this flux was almost abolished in the presence of elacridar. These results demonstrate that BCRP contributes at least in part to the intestinal excretion of uric acid as extra-renal elimination pathway in humans and rats. PMID:22348008

  2. Neurotoxicity Linked to Dysfunctional Metal Ion Homeostasis and Xenobiotic Metal Exposure: Redox Signaling and Oxidative Stress.

    PubMed

    Garza-Lombó, Carla; Posadas, Yanahi; Quintanar, Liliana; Gonsebatt, María E; Franco, Rodrigo

    2018-06-20

    Essential metals such as copper, iron, manganese, and zinc play a role as cofactors in the activity of a wide range of processes involved in cellular homeostasis and survival, as well as during organ and tissue development. Throughout our life span, humans are also exposed to xenobiotic metals from natural and anthropogenic sources, including aluminum, arsenic, cadmium, lead, and mercury. It is well recognized that alterations in the homeostasis of essential metals and an increased environmental/occupational exposure to xenobiotic metals are linked to several neurological disorders, including neurodegeneration and neurodevelopmental alterations. Recent Advances: The redox activity of essential metals is key for neuronal homeostasis and brain function. Alterations in redox homeostasis and signaling are central to the pathological consequences of dysfunctional metal ion homeostasis and increased exposure to xenobiotic metals. Both redox-active and redox-inactive metals trigger oxidative stress and damage in the central nervous system, and the exact mechanisms involved are starting to become delineated. In this review, we aim to appraise the role of essential metals in determining the redox balance in the brain and the mechanisms by which alterations in the homeostasis of essential metals and exposure to xenobiotic metals disturb the cellular redox balance and signaling. We focus on recent literature regarding their transport, metabolism, and mechanisms of toxicity in neural systems. Delineating the specific mechanisms by which metals alter redox homeostasis is key to understand the pathological processes that convey chronic neuronal dysfunction in neurodegenerative and neurodevelopmental disorders. Antioxid. Redox Signal. 28, 1669-1703.

  3. Effect of apoA-I Mutations in the Capacity of Reconstituted HDL to Promote ABCG1-Mediated Cholesterol Efflux.

    PubMed

    Daniil, Georgios; Zannis, Vassilis I; Chroni, Angeliki

    2013-01-01

    ATP binding cassette transporter G1 (ABCG1) mediates the cholesterol transport from cells to high-density lipoprotein (HDL), but the role of apolipoprotein A-I (apoA-I), the main protein constituent of HDL, in this process is not clear. To address this, we measured cholesterol efflux from HEK293 cells or J774 mouse macrophages overexpressing ABCG1 using as acceptors reconstituted HDL (rHDL) containing wild-type or various mutant apoA-I forms. It was found that ABCG1-mediated cholesterol efflux was severely reduced (by 89%) when using rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185-243)]. ABCG1-mediated cholesterol efflux was not affected or moderately decreased by rHDL containing amino-terminal deletion mutants and several mid-region deletion or point apoA-I mutants, and was restored to 69-99% of control by double deletion mutants apoA-I[Δ(1-41)Δ(185-243)] and apoA-I[Δ(1-59)Δ(185-243)]. These findings suggest that the central helices alone of apoA-I associated to rHDL can promote ABCG1-mediated cholesterol efflux. Further analysis showed that rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185-243)] only slightly reduced (by 22%) the ABCG1-mediated efflux of 7-ketocholesterol, indicating that depending on the sterol type, structural changes in rHDL-associated apoA-I affect differently the ABCG1-mediated efflux of cholesterol and 7-ketocholesterol. Overall, our findings demonstrate that rHDL-associated apoA-I structural changes affect the capacity of rHDL to accept cellular cholesterol by an ABCG1-mediated process. The structure-function relationship seen here between rHDL-associated apoA-I mutants and ABCG1-mediated cholesterol efflux closely resembles that seen before in lipid-free apoA-I mutants and ABCA1-dependent cholesterol efflux, suggesting that both processes depend on the same structural determinants of apoA-I.

  4. Decreased detoxification genes and genome size make the human body louse an efficient model to study xenobiotic metabolism

    PubMed Central

    Lee, Si Hyeock; Kang, Jae Soon; Min, Jee Sun; Yoon, Kyong Sup; Strycharz, Joseph P.; Johnson, Reed; Mittapalli, Omprakash; Margam, Venu M.; Sun, Weilin; Li, Hong-Mei; Xie, Jun; Wu, Jing; Kirkness, Ewen F.; Berenbaum, May R.; Pittendrigh, Barry R.; Clark, J. Marshall

    2010-01-01

    The human body louse, Pediculus humanus humanus, has one of the smallest insect genomes, containing ~10,775 annotated genes (Kirkness et al. 2010). Annotation of detoxification [cytochrome P450 monooxygenase (P450), glutathione-S-transferase (GST), esterase (Est), and ATP-binding cassette transporter (ABC transporter)] genes revealed that they are dramatically reduced in P. h. humanus compared to other insects except for Apis mellifera. There are 37 P450, 13 GST and 17 Est genes present in P. h. humanus, approximately half of that found in Drosophila melanogaster and Anopheles gambiae. The number of putatively functional ABC transporter genes in P. h. humanus and A. mellifera are the same (36) but both have fewer than An. gambiae (44) or D. melanogaster (65). The reduction of detoxification genes in P. h. humanus may be due to their simple life history, where they do not encounter a wide variety of xenobiotics. Neuronal component genes are highly conserved across different insect species as expected due to their critical function. Although reduced in number, P. h. humanus still retains at least a minimum repertoire of genes known to confer metabolic or toxicokinetic resistance to xenobiotics (e.g., Cyp3 clade P450s, Delta GSTs, B clade Ests and B/C subfamily ABC transporters), suggestive of its high potential for resistance development. PMID:20561088

  5. Decreased detoxification genes and genome size make the human body louse an efficient model to study xenobiotic metabolism.

    PubMed

    Lee, S H; Kang, J S; Min, J S; Yoon, K S; Strycharz, J P; Johnson, R; Mittapalli, O; Margam, V M; Sun, W; Li, H-M; Xie, J; Wu, J; Kirkness, E F; Berenbaum, M R; Pittendrigh, B R; Clark, J M

    2010-10-01

    The human body louse, Pediculus humanus humanus, has one of the smallest insect genomes, containing ∼10 775 annotated genes. Annotation of detoxification [cytochrome P450 monooxygenase (P450), glutathione-S-transferase (GST), esterase (Est) and ATP-binding cassette transporter (ABC transporter)] genes revealed that they are dramatically reduced in P. h. humanus compared to other insects except for Apis mellifera. There are 37 P450, 13 GST and 17 Est genes present in P. h. humanus, approximately half the number found in Drosophila melanogaster and Anopheles gambiae. The number of putatively functional ABC transporter genes in P. h. humanus and Ap. mellifera are the same (36) but both have fewer than An. gambiae (44) or Dr. melanogaster (65). The reduction of detoxification genes in P. h. humanus may be a result of this louse's simple life history, in which it does not encounter a wide variety of xenobiotics. Neuronal component genes are highly conserved across different insect species as expected because of their critical function. Although reduced in number, P. h. humanus still retains at least a minimum repertoire of genes known to confer metabolic or toxicokinetic resistance to xenobiotics (eg Cyp3 clade P450s, Delta GSTs, B clade Ests and B/C subfamily ABC transporters), suggestive of its high potential for resistance development. © 2010 The Authors. Insect Molecular Biology © 2010 The Royal Entomological Society.

  6. Opioid analgesics and P-glycoprotein efflux transporters: a potential systems-level contribution to analgesic tolerance.

    PubMed

    Mercer, Susan L; Coop, Andrew

    2011-01-01

    Chronic clinical pain remains poorly treated. Despite attempts to develop novel analgesic agents, opioids remain the standard analgesics of choice in the clinical management of chronic and severe pain. However, mu opioid analgesics have undesired side effects including, but not limited to, respiratory depression, physical dependence and tolerance. A growing body of evidence suggests that P-glycoprotein (P-gp), an efflux transporter, may contribute a systems-level approach to the development of opioid tolerance. Herein, we describe current in vitro and in vivo methodology available to analyze interactions between opioids and P-gp and critically analyze P-gp data associated with six commonly used mu opioids to include morphine, methadone, loperamide, meperidine, oxycodone, and fentanyl. Recent studies focused on the development of opioids lacking P-gp substrate activity are explored, concentrating on structure-activity relationships to develop an optimal opioid analgesic lacking this systems-level contribution to tolerance development. Continued work in this area will potentially allow for delineation of the mechanism responsible for opioid-related P-gp up-regulation and provide further support for evidence based medicine supporting clinical opioid rotation.

  7. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway.

    PubMed

    Xu, Xiaolin; Li, Qian; Pang, Liewen; Huang, Guoqian; Huang, Jiechun; Shi, Meng; Sun, Xiaotian; Wang, Yiqing

    2013-11-15

    Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Single cell model for simultaneous drug delivery and efflux.

    PubMed

    Yi, C; Saidel, G M; Gratzl, M

    1999-01-01

    Multidrug resistance (MDR) of some cancer cells is a major challenge for chemotherapy of systemic cancers to overcome. To experimentally uncover the cellular mechanisms leading to MDR, it is necessary to quantitatively assess both drug influx into, and efflux from, the cells exposed to drug treatment. By using a novel molecular microdelivery system to enforce continuous and adjustable drug influx into single cells by controlled diffusion through a gel plug in a micropipet tip, drug resistance studies can now be performed on the single cell level. Our dynamic model of this scheme incorporates drug delivery, diffusive mixing, and accumulation inside the cytoplasm, and efflux by both passive and active membrane transport. Model simulations using available experimental information on these processes can assist in the design of MDR related experiments on single cancer cells which are expected to lead to a quantitative evaluation of mechanisms. Simulations indicate that drug resistance of a cancer cell can be quantified better by its dynamic response than by steady-state analysis.

  9. Functional expression and regulation of drug transporters in monolayer- and sandwich-cultured mouse hepatocytes.

    PubMed

    Noel, Gregory; Le Vee, Marc; Moreau, Amélie; Stieger, Bruno; Parmentier, Yannick; Fardel, Olivier

    2013-04-11

    Primary hepatocyte cultures are now considered as convenient models for in vitro analyzing liver drug transport. However, if primary human and rat hepatocytes have been well-characterized with respect to drug transporter expression and regulation, much less is known for primary mouse hepatocytes. The present study was therefore designed to gain insights about this point. The profile of sinusoidal and canalicular drug transporter mRNA expression in short time (4h)-cultured mouse hepatocytes was found to be highly correlated with that of freshly isolated hepatocytes; by contrast, those of counterparts cultured for a longer time (until 4 days) either in monolayer configurations on plastic or collagen or in sandwich configuration with matrigel were profoundly altered: uptake drug transporters such as Oct1, Oatps and Oat2 were thus down-regulated, whereas most of efflux transporters such as Mdr1a/b, Mrp3, Mrp4 and Bcrp were induced. Moreover, short time-cultured hepatocytes exhibited the highest levels of sinusoidal influx transporter activities. Transporter-mediated drug secretion into canalicular networks was however only observed in sandwich-cultured hepatocytes. Mouse hepatocytes cultured either in monolayer or sandwich configurations were finally shown to exhibit up-regulation of referent transporters in response to exposure to prototypical activators of the drug sensing receptors pregnane X receptor, aryl hydrocarbon receptor or constitutive androstane receptor. Taken together, these data demonstrate the feasibility of using primary mouse hepatocytes for investigating potential interactions of xenobiotics with hepatic transporter activity or regulation, provided that adequate culture conditions are retained. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development

    PubMed Central

    Sakhtah, Hassan; Koyama, Leslie; Zhang, Yihan; Morales, Diana K.; Fields, Blanche L.; Price-Whelan, Alexa; Hogan, Deborah A.; Shepard, Kenneth; Dietrich, Lars E. P.

    2016-01-01

    Redox-cycling compounds, including endogenously produced phenazine antibiotics, induce expression of the efflux pump MexGHI-OpmD in the opportunistic pathogen Pseudomonas aeruginosa. Previous studies of P. aeruginosa virulence, physiology, and biofilm development have focused on the blue phenazine pyocyanin and the yellow phenazine-1-carboxylic acid (PCA). In P. aeruginosa phenazine biosynthesis, conversion of PCA to pyocyanin is presumed to proceed through the intermediate 5-methylphenazine-1-carboxylate (5-Me-PCA), a reactive compound that has eluded detection in most laboratory samples. Here, we apply electrochemical methods to directly detect 5-Me-PCA and find that it is transported by MexGHI-OpmD in P. aeruginosa strain PA14 planktonic and biofilm cells. We also show that 5-Me-PCA is sufficient to fully induce MexGHI-OpmD expression and that it is required for wild-type colony biofilm morphogenesis. These physiological effects are consistent with the high redox potential of 5-Me-PCA, which distinguishes it from other well-studied P. aeruginosa phenazines. Our observations highlight the importance of this compound, which was previously overlooked due to the challenges associated with its detection, in the context of P. aeruginosa gene expression and multicellular behavior. This study constitutes a unique demonstration of efflux-based self-resistance, controlled by a simple circuit, in a Gram-negative pathogen. PMID:27274079

  11. Pharmacokinetic interplay of phase II metabolism and transport: a theoretical study.

    PubMed

    Wu, Baojian

    2012-01-01

    Understanding of the interdependence of cytochrome P450 enzymes and P-glycoprotein in disposition of drugs (also termed "transport-metabolism interplay") has been significantly advanced in recent years. However, whether such "interplay" exists between phase II metabolic enzymes and efflux transporters remains largely unknown. The objective of this article is to explore the role of efflux transporters (acting on the phase II metabolites) in disposition of the parent drug in Caco-2 cells, liver, and intestine via simulations utilizing a catenary model (for Caco-2 system) and physiologically based pharmacokinetic (PBPK) models (for the liver and intestine). In all three models, "transport-metabolism interplay" (i.e., inhibition of metabolite efflux decreases the metabolism) can be observed only when futile recycling (or deconjugation) occurred. Futile recycling appeared to bridge the two processes (i.e., metabolite formation and excretion) and enable the interplay thereof. Without futile recycling, metabolite formation was independent on its downstream process excretion, thus impact of metabolite excretion on its formation was impossible. Moreover, in liver PBPK model with futile recycling, impact of biliary metabolite excretion on the exposure of parent drug [(systemic (reservoir) area under the concentration-time curve (AUC(R1))] was limited; a complete inhibition of efflux resulted in AUC(R1) increases of less than 1-fold only. In intestine PBPK model with futile recycling, even though a complete inhibition of efflux could result in large elevations (e.g., 3.5-6.0-fold) in AUC(R1), an incomplete inhibition of efflux (e.g., with a residual activity of ≥ 20% metabolic clearance) saw negligible increases (<0.9-fold) in AUC(R1). In conclusion, this study presented mechanistic observations of pharmacokinetic interplay between phase II enzymes and efflux transporters. Those studying such "interplay" are encouraged to adequately consider potential consequences of

  12. Efflux transport of chrysin and apigenin sulfates in HEK293 cells overexpressing SULT1A3: The role of multidrug resistance-associated protein 4 (MRP4/ABCC4).

    PubMed

    Li, Wan; Sun, Hua; Zhang, Xingwang; Wang, Huan; Wu, Baojian

    2015-11-01

    Efflux transport is a critical determinant to the pharmacokinetics of sulfate conjugates. Here we aimed to establish SULT1A3 stably transfected HEK293 cells, and to determine the contributions of BCRP and MRP transporters to excretion of chrysin and apigenin sulfates. The cDNA of SULT1A3 was stably introduced into HEK293 cells using a lentiviral vector, generating a sulfonation active cell line (i.e., SULT293 cells). Identification of sulfate transporters was achieved through chemical inhibition (using chemical inhibitors) and biological inhibition (using short-hairpin RNAs (shRNAs)) methods. Sulfated metabolites were rapidly generated and excreted upon incubation of SULT293 cells with chrysin and apigenin. Ko143 (a selective BCRP inhibitor) did not show inhibitory effects on sulfate disposition, whereas the pan-MRP inhibitor MK-571 caused significant reductions (38.5-64.3%, p<0.001) in sulfate excretion and marked elevations (160-243%, p<0.05) in sulfate accumulation. Further, two efflux transporters (BCRP and MRP4) expressed in the cells were knocked-down by shRNA-mediated silencing. Neither sulfate excretion nor sulfate accumulation was altered in BCRP knocked-down cells as compared to scramble cells. By contrast, MRP4 knock-down led to moderate decreases (17.1-20.6%, p<0.05) in sulfate excretion and increases (125-135%, p<0.05) in sulfate accumulation. In conclusion, MRP4 was identified as an exporter for chrysin and apigenin sulfates. The SULT1A3 modified HEK293 cells were an appropriate tool to study SULT1A3-mediated sulfonation and to characterize BCRP/MRP4-mediated sulfate transport. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The multidrug resistance-associated protein 1 transports methoxychlor and protects the seminiferous epithelium from injury.

    PubMed

    Tribull, Tiffany E; Bruner, Richard H; Bain, Lisa J

    2003-04-30

    We examined the ability of the multidrug resistance-associated protein 1 (MRP1/ABCC1) to transport pesticides, as this transporter mediates the cellular efflux of a variety of xenobiotics, typically as glucuronide, sulfate, or glutathione conjugates. NIH3T3 cells stably expressing MRP1 were 3.37-fold more resistant to the toxicity of fenitrothion, 3.12-fold more resistant to chlorpropham, and 2.5-fold more resistant to methoxychlor, a pesticide with estrogenic and anti-androgenic metabolites. The cells expressing MRP1 also eliminated methoxychlor two times more rapidly than their mock-transfected counterparts. We then examined whether mrp1 expression could alter the toxicity of methoxychlor in vivo using male FVB/mrp1 knockout mice (FVB/mrp1-/-). Both control and knockout mice were fed 25 mg/kg methoxychlor in honey for 39 days, and its effects on testicular morphology were examined. Methoxychlor treatment did not significantly affect testicular morphology in the FVB mice, but markedly reduced the number of developing spermatocytes in the FVB/mrp1-/- mice. These results suggest that MRPI may play a role in protecting the seminiferous tubules from methoxychlor-induced damage.

  14. Structure-function relationships in reconstituted HDL: Focus on antioxidative activity and cholesterol efflux capacity.

    PubMed

    Cukier, Alexandre M O; Therond, Patrice; Didichenko, Svetlana A; Guillas, Isabelle; Chapman, M John; Wright, Samuel D; Kontush, Anatol

    2017-09-01

    High-density lipoprotein (HDL) contains multiple components that endow it with biological activities. Apolipoprotein A-I (apoA-I) and surface phospholipids contribute to these activities; however, structure-function relationships in HDL particles remain incompletely characterised. Reconstituted HDLs (rHDLs) were prepared from apoA-I and soy phosphatidylcholine (PC) at molar ratios of 1:50, 1:100 and 1:150. Oxidative status of apoA-I was varied using controlled oxidation of Met112 residue. HDL-mediated inactivation of PC hydroperoxides (PCOOH) derived from mildly pre-oxidized low-density lipoprotein (LDL) was evaluated by HPLC with chemiluminescent detection in HDL+LDL mixtures and re-isolated LDL. Cellular cholesterol efflux was characterised in RAW264.7 macrophages. rHDL inactivated LDL-derived PCOOH in a dose- and time-dependent manner. The capacity of rHDL to both inactivate PCOOH and efflux cholesterol via ATP-binding cassette transporter A1 (ABCA1) increased with increasing apoA-I/PC ratio proportionally to the apoA-I content in rHDL. Controlled oxidation of apoA-I Met112 gradually decreased PCOOH-inactivating capacity of rHDL but increased ABCA1-mediated cellular cholesterol efflux. Increasing apoA-I content in rHDL enhanced its antioxidative activity towards oxidized LDL and cholesterol efflux capacity via ABCA1, whereas oxidation of apoA-I Met112 decreased the antioxidative activity but increased the cholesterol efflux. These findings provide important considerations in the design of future HDL therapeutics. Non-standard abbreviations and acronyms: AAPH, 2,2'-azobis(-amidinopropane) dihydrochloride; ABCA1, ATP-binding cassette transporter A1; apoA-I, apolipoprotein A-I; BHT, butylated hydroxytoluene; CV, cardiovascular; EDTA, ethylenediaminetetraacetic acid; HDL-C, high-density lipoprotein cholesterol; LOOH, lipid hydroperoxides; Met(O), methionine sulfoxide; Met112, methionine 112 residue; Met86, methionine 86 residue; oxLDL, oxidized low

  15. RBE4 cells are highly resistant to paraquat-induced cytotoxicity: studies on uptake and efflux mechanisms.

    PubMed

    Vilas-Boas, V; Silva, R; Guedes-de-Pinho, P; Carvalho, F; Bastos, M L; Remião, F

    2014-09-01

    Paraquat (PQ) is a widely used, highly toxic and non-selective contact herbicide, which has been associated with central neurotoxic effects, namely the development of Parkinson's disease, but whose effects to the blood-brain barrier (BBB) itself have rarely been studied. This work studied the mechanisms of PQ uptake and efflux in a rat's BBB cell model, the RBE4 cells. PQ is believed to enter cells using the basic or neutral amino acid or polyamine transport systems or through the choline-uptake system. In contrast, PQ efflux from cells is reported to be mediated by P-glycoprotein. Therefore, we evaluated PQ-induced cytotoxicity and the effect of some substrates/blockers of these transporters (such as arginine, L-valine, putrescine, hemicholinium-3 and GF120918) on such cytotoxicity. RBE4 cells were shown to be extremely resistant to PQ after 24 h of exposure; even at concentrations as high as 50 mM approximately 45% of the cells remained viable. Prolonging exposure until 48 h elicited significant cytotoxicity only for PQ concentrations above 5 mM. Although hemicholinium-3, a choline-uptake system inhibitor, significantly protected cells against PQ-induced toxicity, none of the effects were observed for arginine, L-valine or putrescine. Meanwhile, inhibiting the efflux pump P-glycoprotein using GF120918 significantly enhanced PQ-induced cytotoxicity. In conclusion, PQ used the choline-uptake system, instead of the transporters for the basic or neutral amino acids or for the polyamines, to enter RBE4 cells. P-glycoprotein extrudes PQ back to the extracellular medium. However, this efflux mechanism only partially explains the observed RBE4 resistance to PQ. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Computational analysis of structure-based interactions and ligand properties can predict efflux effects on antibiotics.

    PubMed

    Sarkar, Aurijit; Anderson, Kelcey C; Kellogg, Glen E

    2012-06-01

    AcrA-AcrB-TolC efflux pumps extrude drugs of multiple classes from bacterial cells and are a leading cause for antimicrobial resistance. Thus, they are of paramount interest to those engaged in antibiotic discovery. Accurate prediction of antibiotic efflux has been elusive, despite several studies aimed at this purpose. Minimum inhibitory concentration (MIC) ratios of 32 β-lactam antibiotics were collected from literature. 3-Dimensional Quantitative Structure-Activity Relationship on the β-lactam antibiotic structures revealed seemingly predictive models (q(2)=0.53), but the lack of a general superposition rule does not allow its use on antibiotics that lack the β-lactam moiety. Since MIC ratios must depend on interactions of antibiotics with lipid membranes and transport proteins during influx, capture and extrusion of antibiotics from the bacterial cell, descriptors representing these factors were calculated and used in building mathematical models that quantitatively classify antibiotics as having high/low efflux (>93% accuracy). Our models provide preliminary evidence that it is possible to predict the effects of antibiotic efflux if the passage of antibiotics into, and out of, bacterial cells is taken into account--something descriptor and field-based QSAR models cannot do. While the paucity of data in the public domain remains the limiting factor in such studies, these models show significant improvements in predictions over simple LogP-based regression models and should pave the path toward further work in this field. This method should also be extensible to other pharmacologically and biologically relevant transport proteins. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Milbemycins: More than Efflux Inhibitors for Fungal Pathogens

    PubMed Central

    Silva, Luis Vale; Sanguinetti, Maurizio; Vandeputte, Patrick; Torelli, Riccardo; Rochat, Bertrand

    2013-01-01

    Existing antifungal agents are still confronted to activities limited to specific fungal species and to the development of resistance. Several improvements are possible either by tackling and overcoming resistance or exacerbating the activity of existing antifungal agents. In Candida glabrata, azole resistance is almost exclusively mediated by ABC transporters (including C. glabrata CDR1 [CgCDR1] and CgCDR2) via gain-of-function mutations in the transcriptional activator CgPDR1 or by mitochondrial dysfunctions. We also observed that azole resistance was correlating with increasing virulence and fitness of C. glabrata in animal models of infection. This observation motivated the re-exploitation of ABC transporter inhibitors as a possible therapeutic intervention to decrease not only the development of azole resistance but also to interfere with the virulence of C. glabrata. Milbemycins are known ABC transporter inhibitors, and here we used commercially available milbemycin A3/A4 oxim derivatives to verify this effect. As expected, the derivatives were inhibiting C. glabrata efflux with the highest activity for A3 oxim below 1 μg/ml. More surprising was that oxim derivatives had intrinsic fungicidal activity above 3.2 μg/ml, thus highlighting effects additional to the efflux inhibition. Similar values were obtained with C. albicans. Our data show that the fungicidal activity could be related to reactive oxygen species formation in these species. Transcriptional analysis performed both in C. glabrata and C. albicans exposed to A3 oxim highlighted a core of commonly regulated genes involved in stress responses, including genes involved in oxidoreductive processes, protein ubiquitination, and vesicle trafficking, as well as mitogen-activated protein kinases. However, the transcript profiles contained also species-specific signatures. Following these observations, experimental treatments of invasive infections were performed in mice treated with the commercial A3/A4

  18. Sugar transporters for intercellular exchange and nutrition of pathogens.

    PubMed

    Chen, Li-Qing; Hou, Bi-Huei; Lalonde, Sylvie; Takanaga, Hitomi; Hartung, Mara L; Qu, Xiao-Qing; Guo, Woei-Jiun; Kim, Jung-Gun; Underwood, William; Chaudhuri, Bhavna; Chermak, Diane; Antony, Ginny; White, Frank F; Somerville, Shauna C; Mudgett, Mary Beth; Frommer, Wolf B

    2010-11-25

    Sugar efflux transporters are essential for the maintenance of animal blood glucose levels, plant nectar production, and plant seed and pollen development. Despite broad biological importance, the identity of sugar efflux transporters has remained elusive. Using optical glucose sensors, we identified a new class of sugar transporters, named SWEETs, and show that at least six out of seventeen Arabidopsis, two out of over twenty rice and two out of seven homologues in Caenorhabditis elegans, and the single copy human protein, mediate glucose transport. Arabidopsis SWEET8 is essential for pollen viability, and the rice homologues SWEET11 and SWEET14 are specifically exploited by bacterial pathogens for virulence by means of direct binding of a bacterial effector to the SWEET promoter. Bacterial symbionts and fungal and bacterial pathogens induce the expression of different SWEET genes, indicating that the sugar efflux function of SWEET transporters is probably targeted by pathogens and symbionts for nutritional gain. The metazoan homologues may be involved in sugar efflux from intestinal, liver, epididymis and mammary cells.

  19. The Boron Efflux Transporter ROTTEN EAR Is Required for Maize Inflorescence Development and Fertility[C][W][OPEN

    PubMed Central

    Chatterjee, Mithu; Tabi, Zara; Galli, Mary; Malcomber, Simon; Buck, Amy; Muszynski, Michael; Gallavotti, Andrea

    2014-01-01

    Although boron has a relatively low natural abundance, it is an essential plant micronutrient. Boron deficiencies cause major crop losses in several areas of the world, affecting reproduction and yield in diverse plant species. Despite the importance of boron in crop productivity, surprisingly little is known about its effects on developing reproductive organs. We isolated a maize (Zea mays) mutant, called rotten ear (rte), that shows distinct defects in vegetative and reproductive development, eventually causing widespread sterility in its inflorescences, the tassel and the ear. Positional cloning revealed that rte encodes a membrane-localized boron efflux transporter, co-orthologous to the Arabidopsis thaliana BOR1 protein. Depending on the availability of boron in the soil, rte plants show a wide range of phenotypic defects that can be fully rescued by supplementing the soil with exogenous boric acid, indicating that rte is crucial for boron transport into aerial tissues. rte is expressed in cells surrounding the xylem in both vegetative and reproductive tissues and is required for meristem activity and organ development. We show that low boron supply to the inflorescences results in widespread defects in cell and cell wall integrity, highlighting the structural importance of boron in the formation of fully fertile reproductive organs. PMID:25035400

  20. The effect of calcium on non-heme iron uptake, efflux, and transport in intestinal-like epithelial cells (Caco-2 cells).

    PubMed

    Gaitán, Diego Alejandro; Flores, Sebastian; Pizarro, Fernando; Olivares, Manuel; Suazo, Miriam; Arredondo, Miguel

    2012-03-01

    It has been suggested that calcium inhibits the absorption of dietary iron by directly affecting enterocytes. However, it is not clear if this effect is due to a decreased uptake of iron or its efflux from enterocytes. We studied the effect of calcium on the uptake, efflux, and net absorption of non-heme iron using the intestinal-like epithelial cell line Caco-2 as an in vitro model. Caco-2 cells were incubated for 60 min in a buffer supplemented with non-heme iron (as sulfate) and calcium to achieve calcium to iron molar ratios ranging from 50:1 to 1,000:1. The uptake, efflux, and net absorption of non-heme iron were calculated by following a radioisotope tracer of (55)Fe that had been added to the buffer. Administration of calcium and iron at molar ratios between 500 and 1,000:1 increased the uptake of non-heme iron and decreased efflux. Calcium did not have an effect on the net absorption of non-heme iron. At typical supplementary doses for calcium and non-heme iron, calcium may not have an effect on the absorption of non-heme iron. The effect of higher calcium to iron molar ratios on the efflux of non-heme iron may be large enough to explain results from human studies.

  1. Structural basis for the blockade of MATE multidrug efflux pumps

    DOE PAGES

    Radchenko, Martha; Symersky, Jindrich; Nie, Rongxin; ...

    2015-08-06

    Multidrug and toxic compound extrusion (MATE) transporters underpin multidrug resistance by using the H + or Na + electrochemical gradient to extrude different drugs across cell membranes. MATE transporters can be further parsed into the DinF, NorM and eukaryotic subfamilies based on their amino-acid sequence similarity. Here we report the 3.0 Å resolution X-ray structures of a protonation-mimetic mutant of an H +-coupled DinF transporter, as well as of an H +-coupled DinF and a Na +-coupled NorM transporters in complexes with verapamil, a small-molecule pharmaceutical that inhibits MATE-mediated multidrug extrusion. Combining structure-inspired mutational and functional studies, we confirm themore » biological relevance of our crystal structures, reveal the mechanistic differences among MATE transporters, and suggest how verapamil inhibits MATE-mediated multidrug efflux. Our findings offer insights into how MATE transporters extrude chemically and structurally dissimilar drugs and could inform the design of new strategies for tackling multidrug resistance.« less

  2. OCT2 and MATE1 Provide Bi-directional Agmatine Transport

    PubMed Central

    Winter, Tate N.; Elmquist, William F.; Fairbanks, Carolyn A.

    2015-01-01

    Agmatine is a biogenic amine (l-arginine metabolite) of potential relevance to several central nervous system (CNS) conditions. The identities of transporters underlying agmatine and polyamine disposition in mammalian systems are not well defined. The SLC-family organic cation transporters (OCT) OCT1 and OCT2 and multidrug and toxin extrusion transporter-1 (MATE1) are transport systems that may be of importance for the cellular disposition of agmatine and putrescine. We investigated the transport of [3H]-agmatine and [3H]-putrescine in human embryonic kidney (HEK293) cells stably-transfected with hOCT1-, hOCT2-, and hMATE1. Agmatine transport by hOCT1 and hOCT2 was concentration-dependent, whereas only hOCT2 demonstrated pH-dependent transport. hOCT2 exhibited a greater affinity for agmatine (Km = 1.84 ± 0.38 mM) than did hOCT1 (Km = 18.73 ± 4.86 mM). Putrescine accumulation was pH- and concentration-dependent in hOCT2-HEK cells (Km = 11.29 ± 4.26 mM) but not hOCT1-HEK cells. Agmatine accumulation, in contrast to putrescine, was significantly enhanced by hMATE1 over-expression, and was saturable (Km = 240 ± 31 μM; Vmax = 192 ± 10 pmol/min/mg protein). Intracellular agmatine was also trans-stimulated (effluxed) from hMATE1-HEK cells in the presence of an inward proton-gradient. The hMATE1-mediated transport of agmatine was inhibited by polyamines, the prototypical substrates MPP+ and paraquat, as well as guanidine and arcaine, but not l-arginine. These results suggest that agmatine disposition may be influenced by hOCT2 and hMATE1, two transporters critical in the renal elimination of xenobiotic compounds. PMID:21128598

  3. Back to the future: transgenerational transmission of xenobiotic-induced epigenetic remodeling

    PubMed Central

    Jiménez-Chillarón, Josep C; Nijland, Mark J; Ascensão, António A; Sardão, Vilma A; Magalhães, José; Hitchler, Michael J; Domann, Frederick E; Oliveira, Paulo J

    2015-01-01

    Epigenetics, or regulation of gene expression independent of DNA sequence, is the missing link between genotype and phenotype. Epigenetic memory, mediated by histone and DNA modifications, is controlled by a set of specialized enzymes, metabolite availability, and signaling pathways. A mostly unstudied subject is how sub-toxic exposure to several xenobiotics during specific developmental stages can alter the epigenome and contribute to the development of disease phenotypes later in life. Furthermore, it has been shown that exposure to low-dose xenobiotics can also result in further epigenetic remodeling in the germ line and contribute to increase disease risk in the next generation (multigenerational and transgenerational effects). We here offer a perspective on current but still incomplete knowledge of xenobiotic-induced epigenetic alterations, and their possible transgenerational transmission. We also propose several molecular mechanisms by which the epigenetic landscape may be altered by environmental xenobiotics and hypothesize how diet and physical activity may counteract epigenetic alterations. PMID:25774863

  4. Kinetic control of TolC recruitment by multidrug efflux complexes.

    PubMed

    Tikhonova, Elena B; Dastidar, Vishakha; Rybenkov, Valentin V; Zgurskaya, Helen I

    2009-09-22

    In Gram-negative pathogens, multidrug efflux pumps that provide clinically significant levels of antibiotic resistance function as three-component complexes. They are composed of the inner membrane transporters belonging to one of three superfamilies of proteins, RND, ABC, or MF; periplasmic proteins belonging to the membrane fusion protein (MFP) family; and outer membrane channels exemplified by the Escherichia coli TolC. The three-component complexes span the entire two-membrane envelope of Gram-negative bacteria and expel toxic molecules from the cytoplasmic membrane to the medium. The architecture of these complexes is expected to vary significantly because of the structural diversity of the inner membrane transporters. How the three-component pumps are assembled, their architecture, and their dynamics remain unclear. In this study, we reconstituted interactions and compared binding kinetics of the E. coli TolC with AcrA, MacA, and EmrA, the periplasmic MFPs that function in multidrug efflux with transporters from the RND, ABC, and MF superfamilies, respectively. By using surface plasmon resonance, we demonstrate that TolC interactions with MFPs are highly dynamic and sensitive to pH. The affinity of TolC to MFPs decreases in the order MacA > EmrA > AcrA. We further show that MFPs are prone to oligomerization, but differ dramatically from each other in oligomerization kinetics and stability of oligomers. The propensity of MFPs to oligomerize correlates with the stability of MFP-TolC complexes and structural features of inner membrane transporters. We propose that recruitment of TolC by various MFPs is determined not only by kinetics of MFP-TolC interactions but also by oligomerization kinetics of MFPs and pH.

  5. Montelukast is a potent and durable inhibitor of multidrug resistance protein 2 (MRP2)-mediated efflux of taxol and saquinavir

    PubMed Central

    Roy, Upal; Chakravarty, Geetika; Honer Zu Bentrup, Kerstin; Mondal, Debasis

    2009-01-01

    The ATP binding cassette (ABC)-transporters are energy dependent efflux pumps which regulate the pharmacokinetics of both anti-cancer chemotherapeutic agents, e.g. taxol, and of HIV-1 protease inhibitors (HPIs), e.g. saquinavir. Increased expression of several ABC-transporters, especially P-gp and MRP2, are observed in multidrug resistant (MDR) tumor cells and on HIV-1 infected lymphocytes. In addition, due to their apical expression on vascular endothelial barriers, both P-gp and MRP2 are of crucial importance towards dictating drug access into sequestered tissues. However, although a number of P-gp inhibitors are currently in clinical trials, possible inhibitors of MRP2 are not being thoroughly investigated. The experimental leukotriene receptor antagonist (LTRA), MK-571 is known to be a potent inhibitor of MRP transporters. Using the MRP2 over-expressing cell line, MDCKII-MRP2, we evaluated whether the clinically approved LTRAs, e.g. montelukast (Singulair™) and zafirlukast (Accolate™), can similarly suppress MRP2-mediated efflux. We compared the efficacy of increasing concentrations (20-100 μM) of MK-571, montelukast, and zafirlukast, in suppressing the efflux of calcein-AM, a fluorescent MRP substrate, and the radiolabeled [3H-] drugs, taxol and saquinavir. Montelukast was the most potent inhibitor (p<0.01) of MRP2-mediated efflux of all three substrates. Montelukast also increased (p<0.01) the duration of intracellular retention of both taxol and saquinavir. More than 50% of the drugs were retained in cells even after 90 mins post removal of montelukast from the medium. Our findings implicate that montelukast, a relatively safe anti-asthmatic agent, may be used as an adjunct therapy to suppress the efflux of taxol and saquinavir from MRP2 overexpressing cells. PMID:19952419

  6. Lack of AcrB Efflux Function Confers Loss of Virulence on Salmonella enterica Serovar Typhimurium

    PubMed Central

    Wang-Kan, Xuan; Chirullo, Barbara; Betts, Jonathan; La Ragione, Roberto M.; Ivens, Alasdair; Ricci, Vito; Opperman, Timothy J.

    2017-01-01

    ABSTRACT AcrAB-TolC is the paradigm resistance-nodulation-division (RND) multidrug resistance efflux system in Gram-negative bacteria, with AcrB being the pump protein in this complex. We constructed a nonfunctional AcrB mutant by replacing D408, a highly conserved residue essential for proton translocation. Western blotting confirmed that the AcrB D408A mutant had the same native level of expression of AcrB as the parental strain. The mutant had no growth deficiencies in rich or minimal medium. However, compared with wild-type SL1344, the mutant had increased accumulation of Hoechst 33342 dye and decreased efflux of ethidium bromide and was multidrug hypersusceptible. The D408A mutant was attenuated in vivo in mouse and Galleria mellonella models and showed significantly reduced invasion into intestinal epithelial cells and macrophages in vitro. A dose-dependent inhibition of invasion was also observed when two different efflux pump inhibitors were added to the wild-type strain during infection of epithelial cells. RNA sequencing (RNA-seq) revealed downregulation of bacterial factors necessary for infection, including those in the Salmonella pathogenicity islands 1, 2, and 4; quorum sensing genes; and phoPQ. Several general stress response genes were upregulated, probably due to retention of noxious molecules inside the bacterium. Unlike loss of AcrB protein, loss of efflux function did not induce overexpression of other RND efflux pumps. Our data suggest that gene deletion mutants are unsuitable for studying membrane transporters and, importantly, that inhibitors of AcrB efflux function will not induce expression of other RND pumps. PMID:28720734

  7. Molecular Evidence and Functional Expression of a Novel Drug Efflux pump (ABCC2) in Human Corneal Epithelium and Rabbit Cornea and its role in Ocular drug efflux

    PubMed Central

    Karla, Pradeep K.; Pal, Dhananjay; Quinn, Tim; Mitra, Ashim K.

    2007-01-01

    Cornea is considered as a major barrier for ocular drug delivery. Low ocular bioavailability of drugs has been attributed primarily to low permeability across corneal epithelium thus leading to sub-therapeutic concentrations of drug in the eye and treatment failure. The role of drug efflux proteins, particularly the Pglycoprotein in ocular drug bioavailability has been reported. The objective of this research was to determine whether human corneal epithelium expresses multi drug resistance associated proteins contributing to drug efflux by employing both cultured corneal cells and freshly excised rabbit cornea. SV40 HCEC and rPCEC were selected for in-vitro testing. SV40-HCEC and freshly excised rabbit corneas were utilized for transport studies. [3H]-cyclosporine-A and [14C]-erythromycin which are known substrates for ABCC2 and MK-571, a specific inhibitor for MRP were applied in this study. RT-PCR indicated a unique and distinct band at ∼272 bp corresponding to ABCC2 in HCEC, SV40-HCEC, rabbit cornea, rPCEC and MDCKII-MRP2 cells. Also RT-PCR indicated a unique band ∼181 bp for HCEC and SV40-HCEC. Immunoprecipitation followed by Western Blot analysis revealed a specific band at ∼190-kDa in membrane fraction of SV40-HCEC, MDCKII-MRP2 and no band with isotype control. Uptake of [3H]-cyclosporine-A and [14C]-erythromycin in the presence of MK-571 was significantly enhanced than control in both SV40 HCEC and rPCEC. Similarly a significant elevation in (A→B) permeability of [3H]-cyclosporine-A and [14C]-erythromycin was observed in the presence of MK-571 in SV40-HCEC. A→B transport of [3H]-cyclosporine-A was elevated in the presence of MK-571 in freshly excised rabbit cornea indicating potential role of this efflux transporter and high clinical significance of this finding. PMID:17156953

  8. Sodium efflux from voltage clamped squid giant axons.

    PubMed Central

    Landowne, D

    1977-01-01

    1. The efflux of radioactive sodium was measured from squid axons during simultaneous voltage clamp experiments such that it was possible to determine the efflux of sodium associated with a measured voltage clamp current. 2. The extra efflux of sodium associated with voltage clamp pulses increased linearly with the magnitude of the depolarization above 40 mV. A 100 mV pulse of sufficient duration to produce all of the sodium current increased the rate constant of efflux by about 10(-6). 3. Application of 100 nM tetrodotoxin eliminated the sodium current and the extra efflux of radioactive sodium. 4. Cooling the axon increased the extra efflux/voltage clamp pulse slightly with a Q10 of 1/1-1. On the same axons cooling increased the integral of the sodium current with a Q10 of 1/1-4. 5. Replacing external sodium with Tris, dextrose or Mg-mannitol reduced the extra efflux of sodium by about 50%. The inward sodium current was replaced with an outward current as expected. 6. Replacing external sodium with lithium also reduced the extra efflux by about 50% but the currents seen in lithium were slightly larger than those in sodium. 7. The effect of replacing external sodium was not voltage dependent. Cooling reduced the effect so that there was less reduction of efflux on switching to Tris ASW in the cold than in the warm. 8. The extra efflux of sodium into sodium-free ASW is approximately the same as the integral of the sodium current. Adding external sodium produces a deviation from the independence principle such that there is more exchange of sodium than predicted. Such a deviation from prediction was noted by Hodgkin & Huxley (1952c). 9. Using the equations of Hodgkin & Huxley (1952c) modified to include the deviation from independence reported in this paper and its temperature dependence, one can predict the temperature dependence of the sodium efflux associated with action potentials and obtain much better agreement than is possibly without these phenomena. 10

  9. Regulated efflux of photoreceptor outer segment-derived cholesterol by human RPE cells.

    PubMed

    Storti, Federica; Raphael, Gabriele; Griesser, Vera; Klee, Katrin; Drawnel, Faye; Willburger, Carolin; Scholz, Rebecca; Langmann, Thomas; von Eckardstein, Arnold; Fingerle, Jürgen; Grimm, Christian; Maugeais, Cyrille

    2017-12-01

    Genetic studies have linked age-related macular degeneration (AMD) to genes involved in high-density lipoprotein (HDL) metabolism, including ATP-binding cassette transporter A1 (ABCA1). The retinal pigment epithelium (RPE) handles large amounts of lipids, among others cholesterol, partially derived from internalized photoreceptor outer segments (OS) and lipids physiologically accumulate in the aging eye. To analyze the potential function of ABCA1 in the eye, we measured cholesterol efflux, the first step of HDL generation, in RPE cells. We show the expression of selected genes related to HDL metabolism in mouse and human eyecups as well as in ARPE-19 and human primary RPE cells. Immunofluorescence staining revealed localization of ABCA1 on both sides of polarized RPE cells. This was functionally confirmed by directional efflux to apolipoprotein AI (ApoA-I) of 3 H-labeled cholesterol given to the cells via serum or via OS. ABCA1 expression and activity was modulated using a liver-X-receptor (LXR) agonist and an ABCA1 neutralizing antibody, demonstrating that the efflux was ABCA1-dependent. We concluded that the ABCA1-mediated lipid efflux pathway, and hence HDL biosynthesis, is functional in RPE cells towards both the basal (choroidal) and apical (subretinal) space. Impaired activity of the pathway might cause age-related perturbations of lipid homeostasis in the outer retina and thus may contribute to disease development and/or progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Opioid Analgesics and P-glycoprotein Efflux Transporters: A Potential Systems-Level Contribution to Analgesic Tolerance

    PubMed Central

    Mercer, Susan L.; Coop, Andrew

    2012-01-01

    Chronic clinical pain remains poorly treated. Despite attempts to develop novel analgesic agents, opioids remain the standard analgesics of choice in the clinical management of chronic and severe pain. However, mu opioid analgesics have undesired side effects including, but not limited to, respiratory depression, physical dependence and tolerance. A growing body of evidence suggests that P-glycoprotein (P-gp), an efflux transporter, may contribute a systems-level approach to the development of opioid tolerance. Herein, we describe current in vitro and in vivo methodology available to analyze interactions between opioids and P-gp and critically analyze P-gp data associated with six commonly used mu opioids to include morphine, methadone, loperamide, meperidine, oxycodone, and fentanyl. Recent studies focused on the development of opioids lacking P-gp substrate activity are explored, concentrating on structure-activity relationship development to develop an optimal opioid analgesic lacking this systems-level contribution to tolerance development. Continued work in this area will potentially allow for delineation of the mechanism responsible for opioid-related P-gp up-regulation and provide further support for evidence based medicine supporting clinical opioid rotation. PMID:21050174

  11. Cytotoxic effects and aromatase inhibition by xenobiotic endocrine disrupters alone and in combination.

    PubMed

    Benachour, Nora; Moslemi, Safa; Sipahutar, Herbert; Seralini, Gilles-Eric

    2007-07-15

    Xenobiotics may cause long-term adverse effects in humans, especially at the embryonic level, raising questions about their levels of exposure, combined effects, and crucial endpoints. We are interested in the possible interactions between xenobiotic endocrine disrupters, cellular viability and androgen metabolism. Accordingly, we tested aroclor 1254 (A1254), atrazine (AZ), o,p'-DDT, vinclozolin (VZ), p,p'-DDE, bisphenol A (BPA), chlordecone (CD), nonylphenol (NP), tributylin oxide (TBTO), and diethylstilbestrol (DES) for cellular toxicity against human embryonic 293 cells, and activity against cellular aromatase, but also on placental microsomes and on the purified equine enzyme. Cellular viability was affected in 24 h by all the xenobiotics with a threshold at 50 microM (except for TBTO and DES, 10 microM threshold), and aromatase was inhibited at non-toxic doses. In combination synergism was observed reducing the threshold values of toxicity to 4-10 microM, and aromatase activity by 50% in some cases. In placental microsomes the most active xenobiotics rapidly inhibited microsomal aromatase in a manner independent of NADPH metabolism. Prolonged exposures to low doses in cells generally amplified by 50 times aromatase inhibition. These xenobiotics may act by inhibition of the active site or by allosteric effects on the enzyme. Bioaccumulation is a feature of some xenobiotics, especially chlordecone, DDT and DDE, and low level chronic exposures can also affect cell signaling mechanisms. This new information about the mechanism of action of these xenobiotics will assist in improved molecular design with a view to providing safer compounds for use in the (human) environment.

  12. Vitreous humor analysis for the detection of xenobiotics in forensic toxicology: a review.

    PubMed

    Bévalot, Fabien; Cartiser, Nathalie; Bottinelli, Charline; Fanton, Laurent; Guitton, Jérôme

    2016-01-01

    Vitreous humor (VH) is a gelatinous substance contained in the posterior chamber of the eye, playing a mechanical role in the eyeball. It has been the subject of numerous studies in various forensic applications, primarily for the assessment of postmortem interval and for postmortem chemical analysis. Since most of the xenobiotics present in the bloodstream are detected in VH after crossing the selective blood-retinal barrier, VH is an alternative matrix useful for forensic toxicology. VH analysis offers particular advantages over other biological matrices: it is less prone to postmortem redistribution, is easy to collect, has relatively few interfering compounds for the analytical process, and shows sample stability over time after death. The present study is an overview of VH physiology, drug transport and elimination. Collection, storage, analytical techniques and interpretation of results from qualitative and quantitative points of view are dealt with. The distribution of xenobiotics in VH samples is thus discussed and illustrated by a table reporting the concentrations of 106 drugs from more than 300 case reports. For this purpose, a survey was conducted of publications found in the MEDLINE database from 1969 through April 30, 2015.

  13. Constitutive androstane receptor upregulates Abcb1 and Abcg2 at the blood-brain barrier after CITCO activation.

    PubMed

    Lemmen, Julia; Tozakidis, Iasson E P; Bele, Prachee; Galla, Hans-Joachim

    2013-03-21

    ATP-driven efflux transporters are considered to be the major hurdle in the treatment of central nervous system (CNS) diseases. Abcb1 (P-glycoprotein) and Abcg2 (breast cancer resistance protein/brain multidrug resistance protein) belong to the best known ABC-transporters. These ABC-transporters limit the permeability of the blood-brain barrier and protect the brain against toxic compounds in the blood but on the other hand they also reduce the efficacy of CNS pharmacotherapy. Even after 40 years of extensive research, the regulatory mechanisms of these efflux transporters are still not completely understood. To unravel the efflux transporter regulation, we analyzed the effect of the nuclear receptor CAR (constitutive androstane receptor) on the expression of Abcb1 and Abcg2 in primary cultures of porcine brain capillary endothelial cells (PBCEC). CAR is a xenobiotic-activated transcription factor, which is, like the other important nuclear receptor pregnane X receptor (PXR), highly expressed in barrier tissue and known to be a positive regulator of ABC-transporters. We demonstrate that activation of porcine CAR by the human CAR (hCAR) ligand CITCO (6-(4-chlorophenyl)-imidazo[2,1-b]thiazole-5-carbaldehyde) leads to an up-regulation of both transporters, whereas the mouse-specific CAR ligand TCPOBOP (1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene) had no effect on transporter expression. The stimulation of PBCEC with CITCO caused a significant up-regulation of both efflux-transporters on RNA-level, protein level and transport level. Furthermore the additional application of a CAR inhibitor significantly decreased the transporter expression to control niveau. In conclusion our data prove CAR activation only by the human ligand CITCO leading to an increased ABC-transporter expression and transport activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Coordinated Changes in Xenobiotic Metabolizing Enzyme Gene Expression in Aging Male Rats

    EPA Science Inventory

    In order to gain better insight on aging and susceptibility, we characterized the expression of xenobiotic metabolizing enzymes (XMEs) from the livers of rats to evaluate the change in capacity to respond to xenobiotics across the adult lifespan. Gene expression profiles for XMEs...

  15. Fluconazole Resistance Associated with Drug Efflux and Increased Transcription of a Drug Transporter Gene, PDH1, in Candida glabrata

    PubMed Central

    Miyazaki, Haruko; Miyazaki, Yoshitsugu; Geber, Antonia; Parkinson, Tanya; Hitchcock, Christopher; Falconer, Derek J.; Ward, Douglas J.; Marsden, Katherine; Bennett, John E.

    1998-01-01

    Sequential Candida glabrata isolates were obtained from the mouth of a patient infected with human immunodeficiency virus type 1 who was receiving high doses of fluconazole for oropharyngeal thrush. Fluconazole-susceptible colonies were replaced by resistant colonies that exhibited both increased fluconazole efflux and increased transcripts of a gene which codes for a protein with 72.5% identity to Pdr5p, an ABC multidrug transporter in Saccharomyces cerevisiae. The deduced protein had a molecular mass of 175 kDa and was composed of two homologous halves, each with six putative transmembrane domains and highly conserved sequences of ATP-binding domains. When the earliest and most azole-susceptible isolate of C. glabrata from this patient was exposed to fluconazole, increased transcripts of the PDR5 homolog appeared, linking azole exposure to regulation of this gene. PMID:9661006

  16. Hepatic Xenobiotic Metabolizing Enzyme Gene Expression ...

    EPA Pesticide Factsheets

    BACKGROUND: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been carried out through life stages in any species. RESULTS: Using full-genome arrays, the mRNA expression of all XMETs and their regulatory proteins was examined during fetal (gestation day (GD) 19), neonatal (postnatal day (PND) 7), prepubescent (PND32), middle age (12 months), and old age (18 and 24 months) in the C57BL/6J (C57) mouse liver and compared to adults. Fetal and neonatal life stages exhibited dramatic differences in XMET mRNA expression compared to the relatively minor effects of old age. The total number of XMET probe sets that differed from adults was 636, 500, 84, 5, 43, and 102 for GD19, PND7, PND32, 12 months, 18 months and 24 months, respectively. At all life stages except PND32, under-expressed genes outnumbered over-expressed genes. The altered XMETs included those in all of the major metabolic and transport phases including introduction of reactive or polar groups (Phase I), conjugation (Phase II) and excretion (Phase III). In the fetus and neonate, parallel increases in expression were noted in the dioxin receptor, Nrf2 components and their regulated genes while nuclear receptors and regulated genes were generally down-regulated. Suppression of male-specific XMETs w

  17. Xenobiotic-metabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment.

    PubMed

    Bártíková, Hana; Skálová, Lenka; Stuchlíková, Lucie; Vokřál, Ivan; Vaněk, Tomáš; Podlipná, Radka

    2015-08-01

    Many various xenobiotics permanently enter plants and represent potential danger for their organism. For that reason, plants have evolved extremely sophisticated detoxification systems including a battery of xenobiotic-metabolizing enzymes. Some of them are similar to those in humans and animals, but there are several plant-specific ones. This review briefly introduces xenobiotic-metabolizing enzymes in plants and summarizes present information about their action toward veterinary drugs. Veterinary drugs are used worldwide to treat diseases and protect animal health. However, veterinary drugs are also unwantedly introduced into environment mostly via animal excrements, they persist in the environment for a long time and may impact on the non-target organisms. Plants are able to uptake, transform the veterinary drugs to non- or less-toxic compounds and store them in the vacuoles and cell walls. This ability may protect not only plant themselves but also other organisms, predominantly invertebrates and wild herbivores. The aim of this review is to emphasize the importance of plants in detoxification of veterinary drugs in the environment. The results of studies, which dealt with transport and biotransformation of veterinary drugs in plants, are summarized and evaluated. In conclusion, the risks and consequences of veterinary drugs in the environment and the possibilities of phytoremediation technologies are considered and future perspectives are outlined.

  18. LCP crystallization and X-ray diffraction analysis of VcmN, a MATE transporter from Vibrio cholerae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusakizako, Tsukasa; Tanaka, Yoshiki; Hipolito, Christopher J.

    A V. cholerae MATE transporter was crystallized using the lipidic cubic phase (LCP) method. X-ray diffraction data sets were collected from single crystals obtained in a sandwich plate and a sitting-drop plate to resolutions of 2.5 and 2.2 Å, respectively. Multidrug and toxic compound extrusion (MATE) transporters, one of the multidrug exporter families, efflux xenobiotics towards the extracellular side of the membrane. Since MATE transporters expressed in bacterial pathogens contribute to multidrug resistance, they are important therapeutic targets. Here, a MATE-transporter homologue from Vibrio cholerae, VcmN, was overexpressed in Escherichia coli, purified and crystallized in lipidic cubic phase (LCP). X-raymore » diffraction data were collected to 2.5 Å resolution from a single crystal obtained in a sandwich plate. The crystal belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 52.3, b = 93.7, c = 100.2 Å. As a result of further LCP crystallization trials, crystals of larger size were obtained using sitting-drop plates. X-ray diffraction data were collected to 2.2 Å resolution from a single crystal obtained in a sitting-drop plate. The crystal belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 61.9, b = 91.8, c = 100.9 Å. The present work provides valuable insights into the atomic resolution structure determination of membrane transporters.« less

  19. Metabolic and redox barriers in the skin exposed to drugs and xenobiotics.

    PubMed

    Korkina, Liudmila

    2016-01-01

    Growing exposure of human skin to environmental and occupational hazards, to numerous skin care/beauty products, and to topical drugs led to a biomedical concern regarding sustainability of cutaneous chemical defence that is essential for protection against intoxication. Since skin is the largest extra-hepatic drug/xenobiotic metabolising organ where redox-dependent metabolic pathways prevail, in this review, publications on metabolic processes leading to redox imbalance (oxidative stress) and its autocrine/endocrine impact to cutaneous drug/xenobiotic metabolism were scrutinised. Chemical and photo-chemical skin barriers contain metabolic and redox compartments: their protective and homeostatic functions. The review will examine the striking similarity of adaptive responses to exogenous chemical/photo-chemical stressors and endogenous toxins in cutaneous metabolic and redox system; the role(s) of xenobiotics/drugs and phase II enzymes in the endogenous antioxidant defence and maintenance of redox balance; redox regulation of interactions between metabolic and inflammatory responses in skin cells; skin diseases sharing metabolic and redox problems (contact dermatitis, lupus erythematosus, and vitiligo) Due to exceptional the redox dependence of cutaneous metabolic pathways and interaction of redox active metabolites/exogenous antioxidants with drug/xenobiotic metabolism, metabolic tests of topical xenobiotics/drugs should be combined with appropriate redox analyses and performed on 3D human skin models.

  20. Xenobiotic metabolism in the fourth dimension: PARtners in time.

    PubMed

    Green, Carla B; Takahashi, Joseph S

    2006-07-01

    A significant portion of the transcriptome in mammals, including the PAR bZIP transcription factors DBP, HLF, and TEF, is under circadian clock control. In this issue of Cell Metabolism, Gachon and colleagues (Gachon et al., 2006) show that disruption of these three genes in mice alters gene expression patterns of many proteins involved in drug metabolism and in liver and kidney responses to xenobiotic agents. Triple mutant mice have severe physiological deficits, including increased hypersensitivity to xenobiotic agents and premature aging, highlighting the profound effect the circadian clock has on this important response system.

  1. Describing the role of Drosophila melanogaster ABC transporters in insecticide biology using CRISPR-Cas9 knockouts.

    PubMed

    Denecke, Shane; Fusetto, Roberto; Batterham, Philip

    2017-12-01

    ABC transporters have a well-established role in drug resistance, effluxing xenobiotics from cells and tissues within the organism. More recently, research has been dedicated to understanding the role insect ABC transporters play in insecticide toxicity, but progress in understanding the contribution of specific transporters has been hampered by the lack of functional genetic tools. Here, we report knockouts of three Drosophila melanogaster ABC transporter genes, Mdr49, Mdr50, and Mdr65, that are homologous to the well-studied mammalian ABCB1 (P-glycoprotein). Each knockout mutant was created in the same wild type background and tested against a panel of insecticides representing different chemical classes. Mdr65 knockouts were more susceptible to all neuroactive insecticides tested, but Mdr49 and Mdr50 knockouts showed increased susceptibility or resistance depending on the insecticide used. Mdr65 was chosen for further analysis. Calculation of LC 50 values for the Mdr65 knockout allowed the substrate specificity of this transporter to be examined. No obvious distinguishing structural features were shared among MDR65 substrates. A role for Mdr65 in insecticide transport was confirmed by testing the capacity of the knockout to synergize with the ABC inhibitor verapamil and by measuring the levels of insecticide retained in the body of knockout flies. These data unambiguously establish the influence of ABC transporters on the capacity of wild type D. melanogaster to tolerate insecticide exposure and suggest that both tissue and substrate specificity underpin this capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of a Series of Acidic Drugs on L-Lactic Acid Transport by the Monocarboxylate Transporters MCT1 and MCT4.

    PubMed

    Leung, Yat H; Belanger, Francois; Lu, Jennifer; Turgeon, Jacques; Michaud, Veronique

    2017-01-01

    Drug-induced myopathy is a serious side effect that often requires removal of a medication from a drug regimen. For most drugs, the underlying mechanism of drug-induced myopathy remains unclear. Monocarboxylate transporters (MCTs) mediate L-lactic acid transport, and inhibition of MCTs may potentially lead to perturbation of L-lactic acid accumulation and muscular disorders. Therefore, we hypothesized that L-lactic acid transport may be involved in the development of drug-induced myopathy. The aim of this study was to assess the inhibitory potential of 24 acidic drugs on L-lactic acid transport using breast cancer cell lines Hs578T and MDA-MB-231, which selectively express MCT1 and MCT4, respectively. The influx transport of L-lactic acid was minimally inhibited by all drugs tested. The efflux transport was next examined: loratadine (IC50: 10 and 61 µM) and atorvastatin (IC50: 78 and 41 µM) demonstrated the greatest potency for inhibition of L-lactic acid efflux by MCT1 and MCT4, respectively. Acidic drugs including fluvastatin, cerivastatin, simvastatin acid, lovastatin acid, irbesartan and losartan exhibited weak inhibitory potency on L-lactic acid efflux. Our results suggest that some acidic drugs, such as loratadine and atorvastatin, can inhibit the efflux transport of L-lactic acid. This inhibition may cause an accumulation of intracellular L-lactic acid leading to acidification and muscular disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. The biochemistry and molecular biology of xenobiotic polymer degradation by microorganisms.

    PubMed

    Kawai, Fusako

    2010-01-01

    Research on microbial degradation of xenobiotic polymers has been underway for more than 40 years. It has exploited a new field not only in applied microbiology but also in environmental microbiology, and has greatly contributed to polymer science by initiating the design of biodegradable polymers. Owing to the development of analytical tools and technology, molecular biological and biochemical advances have made it possible to prospect for degrading microorganisms in the environment and to determine the mechanisms involved in biodegradation when xenobiotic polymers are introduced into the environment and are exposed to microbial attack. In this review, the molecular biological and biochemical aspects of the microbial degradation of xenobiotic polymers are summarized, and possible applications of potent microorganisms, enzymes, and genes in environmental biotechnology are suggested.

  4. Xenobiotics: How the Environment Changes Your Body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Erin

    Erin Baker studies how substances foreign to your body affect your health. To do so, her team at PNNL developed a rapid way to separate and study both xenobiotics and endogenous molecules using ion mobility.

  5. Characterization of the multixenobiotic resistance (MXR) mechanism in embryos and larvae of the zebra mussel (Dreissena polymorpha) and studies on its role in tolerance to single and mixture combinations of toxicants.

    PubMed

    Faria, Melissa; Navarro, Ana; Luckenbach, Till; Piña, Benjamin; Barata, Carlos

    2011-01-17

    The study of the cellular mechanisms of tolerance of organisms to pollution is a key issue in aquatic environmental risk assessment. Recent evidence indicates that multixenobiotic resistance (MXR) mechanisms represent a general biological defense of many marine and freshwater organisms against environmental toxicants. In this work, toxicologically relevant xenobiotic efflux transporters were studied in early life stages of zebra mussels (Dreissena polymorpha). Expression of a P-gp1 (ABCB1) transporter gene and its associated efflux activities during development were studied, using qRT-PCR and the fluorescent transporter substrates rhodamine B and calcein-AM combined with specific transporter inhibitors (chemosensitizers). Toxicity bioassays with the model P-gp1 chemotherapeutic drug vinblastine applied singly and in combination with different chemosensitizers were performed to elucidate the tolerance role of the P-gp1 efflux transporter. Results evidenced that the gene expression and associated efflux activities of ABC transporters were low or absent in eggs and increased significantly in 1-3d old trochophora and veliger larvae. Specific inhibitors of Pgp1 and/or MRP transport activities including cyclosporine A, MK571, verapamil and reversin 205 and the musk celestolide resulted in a concentration dependent inhibition of related transport activities in zebra mussel veliger larvae, with IC50 values in the lower micromolar range and similar to those reported for mammals, fish and mussels. Binary mixtures of the tested transporter inhibitors except celestolide with the anticancer drug and P-gp1 substrate vinblastine increased the toxicity of the former compound more than additively. These results indicate that MXR transporter activity is high in early life-stages of the zebra mussel and that may play an important role in the tolerance to environmental contaminants. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. ATP-dependent transport of statins by human and rat MRP2/Mrp2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Lucy C.J., E-mail: Luc_ellis@yahoo.co.uk; Hawksworth, Gabrielle M.; Weaver, Richard J.

    2013-06-01

    Multidrug resistance associated protein-2, MRP2 (human), Mrp2 (rat) are an efflux transporter, responsible for the transport of numerous endogenous and xenobiotic compounds including taurocholate, methotrexate and carboxydichlorofluorescein (CDF). The present study aims to characterise transport of statins by human and rat MRP2/Mrp2 using membrane and vesicle preparations. All statins tested (simvastatin, pravastatin, pitavastatin, fluvastatin, atorvastatin, lovastatin and rosuvastatin) stimulated vanadate-sensitive ATPase activity in membranes expressing human or rat MRP2/Mrp2, suggesting that all statins are substrates of human and rat MRP2/Mrp2. The substrate affinity (Km) of all statins for MRP2/Mrp2 was comparable and no correlation between lipophilicity (logD{sub 7.0}) and Kmmore » was seen. All statins also inhibited uptake of the fluorescent Mrp2 substrate, CDF (1 μM) into vesicles expressing human or rat MRP2/Mrp2 with similar IC{sub 50} values. Fitting of the inhibitory data to the hill slope equation, gave hill coefficients (h) of greater than one, suggesting that transport involved more than one binding site for inhibitors of MPR2 and Mrp2. We conclude that statins were transported by both human and rat MRP2/Mrp2 with similar affinity. Statins were also shown to compete with other substrates for transport by MRP2/Mrp2 and that this transport involved more than one binding site on the Mrp2/MRP2 protein. - Highlights: • We characterised MRP2 (human)/Mrp2 (rat)-mediated transport of statins. • We show statins were transported by human and rat MRP2/Mrp2. • Statins competed with a known substrate for transport by MRP2/Mrp2. • Competition involved more than one binding site on the MRP2/Mrp2 protein.« less

  7. PROXIMAL: a method for Prediction of Xenobiotic Metabolism.

    PubMed

    Yousofshahi, Mona; Manteiga, Sara; Wu, Charmian; Lee, Kyongbum; Hassoun, Soha

    2015-12-22

    Contamination of the environment with bioactive chemicals has emerged as a potential public health risk. These substances that may cause distress or disease in humans can be found in air, water and food supplies. An open question is whether these chemicals transform into potentially more active or toxic derivatives via xenobiotic metabolizing enzymes expressed in the body. We present a new prediction tool, which we call PROXIMAL (Prediction of Xenobiotic Metabolism) for identifying possible transformation products of xenobiotic chemicals in the liver. Using reaction data from DrugBank and KEGG, PROXIMAL builds look-up tables that catalog the sites and types of structural modifications performed by Phase I and Phase II enzymes. Given a compound of interest, PROXIMAL searches for substructures that match the sites cataloged in the look-up tables, applies the corresponding modifications to generate a panel of possible transformation products, and ranks the products based on the activity and abundance of the enzymes involved. PROXIMAL generates transformations that are specific for the chemical of interest by analyzing the chemical's substructures. We evaluate the accuracy of PROXIMAL's predictions through case studies on two environmental chemicals with suspected endocrine disrupting activity, bisphenol A (BPA) and 4-chlorobiphenyl (PCB3). Comparisons with published reports confirm 5 out of 7 and 17 out of 26 of the predicted derivatives for BPA and PCB3, respectively. We also compare biotransformation predictions generated by PROXIMAL with those generated by METEOR and Metaprint2D-react, two other prediction tools. PROXIMAL can predict transformations of chemicals that contain substructures recognizable by human liver enzymes. It also has the ability to rank the predicted metabolites based on the activity and abundance of enzymes involved in xenobiotic transformation.

  8. Protons Regulate Vesicular Glutamate Transporters through an Allosteric Mechanism.

    PubMed

    Eriksen, Jacob; Chang, Roger; McGregor, Matt; Silm, Katlin; Suzuki, Toshiharu; Edwards, Robert H

    2016-05-18

    The quantal nature of synaptic transmission requires a mechanism to transport neurotransmitter into synaptic vesicles without promoting non-vesicular efflux across the plasma membrane. Indeed, the vesicular transport of most classical transmitters involves a mechanism of H(+) exchange, which restricts flux to acidic membranes such as synaptic vesicles. However, vesicular transport of the principal excitatory transmitter glutamate depends primarily on membrane potential, which would drive non-vesicular efflux, and the role of protons is unclear. Adapting electrophysiology to record currents associated with the vesicular glutamate transporters (VGLUTs), we characterize a chloride conductance that is gated by lumenal protons and chloride and supports glutamate uptake. Rather than coupling stoichiometrically to glutamate flux, lumenal protons and chloride allosterically activate vesicular glutamate transport. Gating by protons serves to inhibit what would otherwise be substantial non-vesicular glutamate efflux at the plasma membrane, thereby restricting VGLUT activity to synaptic vesicles. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. CNS tau efflux via exosomes is likely increased in Parkinson disease but not in Alzheimer disease

    PubMed Central

    Shi, Min; Kovac, Andrej; Korff, Ane; Cook, Travis J.; Ginghina, Carmen; Bullock, Kristin M.; Yang, Li; Stewart, Tessandra; Zheng, Danfeng; Aro, Patrick; Atik, Anzari; Kerr, Kathleen F.; Zabetian, Cyrus P.; Peskind, Elaine R.; Hu, Shu-Ching; Quinn, Joseph F.; Galasko, Douglas R.; Montine, Thomas J.; Banks, William A.; Zhang, Jing

    2016-01-01

    Background Alzheimer disease (AD) and Parkinson disease (PD) involve tau pathology. Tau is detectable in blood, but its clearance from neuronal cells and the brain is poorly understood. Methods Tau efflux from the brain to the blood was evaluated by administering radioactively labeled and unlabeled tau intracerebroventricularly in wild-type and tau knock-out mice, respectively. Central nervous system (CNS)-derived tau in L1CAM-containing exosomes was further characterized extensively in human plasma, including by Single Molecule Array technology with 303 subjects. Results The efflux of Tau, including a fraction via CNS-derived L1CAM exosomes, was observed in mice. In human plasma, tau was explicitly identified within L1CAM exosomes. In contrast to AD patients, L1CAM exosomal tau was significantly higher in PD patients than controls, and correlated with cerebrospinal fluid tau. Conclusions Tau is readily transported from the brain to the blood. The mechanisms of CNS tau efflux are likely different between AD and PD. PMID:27234211

  10. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux

    USDA-ARS?s Scientific Manuscript database

    Aluminum (Al) toxicity is a primary limitation to crop productivity on acid soils throughout the plant. Root efflux of organic acid anions constitutes a mechanism by which plants cope with toxic aluminum (Al) ions on acid soils. In this study, we have characterized ZmALMT2 (a member of aluminum-acti...

  11. Development of an accumulation assay and evaluation of the effects of efflux pump inhibitors on the retention of chlorhexidine digluconate in Pseudomonas aeruginosa and Staphylococcus aureus.

    PubMed

    Mombeshora, Molly; Mukanganyama, Stanley

    2017-07-26

    Chlorhexidine digluconate (CHG) is used as a disinfectant. The emergence of pathogens resistant to the biocide raises health concern. Information on specific efflux mechanisms utilised by bacteria to confer reduced susceptibility to the biocide, may be used to develop ways of preventing the efflux of the biocide from nosocomial pathogens resulting in higher disinfection activity. The aim of the study was to evaluate the role of ATP-binding cassette transporters on the transport of CHG in bacteria. Clinical strains of Pseudomonas aeruginosa, Staphylococcus aureus and their respective laboratory strains ATCC 27853 and ATCC 9144 were used for susceptibility tests. The minimum inhibitory concentration (MIC) of CHG with or without an efflux pump inhibitor [reserpine or carbonyl cyanide m-chlorophenylhydrazone (CCCP)] was determined using the broth microdilution method. A spectrophotometric method to quantify the amount of chlorhexidine in a sample was developed, validated and used to quantify CHG within P. aeruginosa and S. aureus cells. In the presence of reserpine, the MIC of CHG against the clinical strains of P. aeruginosa and S. aureus decreased from 6.3 to 3.2 µg/ml but showed no change against both ATCC isolates. The MIC of CHG in the presence of CCCP for both strains of P. aeruginosa remained unchanged but showed a reduction for both isolates of S. aureus. The suitability of the spectrophotometric method developed for quantifying the amount of CHG accumulated in microbial cells was validated and used successfully to quantify CHG accumulated within bacterial cells. The spectrophotometric determination of CHG within microbial cells may be used to quantify CHG in microbial cells. Only the clinical strain of P. aeruginosa showed significant efflux of CHG suggesting the participation of efflux transporters in the pumping out of CHG from this isolate. The use of efflux pump inhibitors together with the biocide may be explored to preventing the efflux of the biocide

  12. Multidrug efflux transporter, AcrB--the pumping mechanism.

    PubMed

    Murakami, Satoshi

    2008-08-01

    Resistance nodulation cell division (RND) transporters are one of the main causes of the bacterial multidrug resistance. They pump a wide range of antibiotics out of the cell by proton motive force. AcrB is the major RND transporter in Escherichia coli. Recently, the crystal structures of AcrB have been determined by different space groups. All these structures are consistent with asymmetric trimer. Each monomer has different conformation corresponding to one of the three functional states of the transport cycle. Transporting hydrophobic drug was bound in the periplasmic domain on one of the three monomers. The transport pathway with alternating access mechanism is located at the hydrophilic domain protruded into the periplasmic space while this mechanism of other transporter families like ATP binding cassette (ABC) and major facilitator superfamily (MFS) transporter is located in the membrane-embedded region. For the RND, protonation might also take place asymmetrically at the functionally important charged residues in the transmembrane (TM) region. The structures indicate that drugs are transported by a three-step functional rotation in which substrates undergo ordered binding change.

  13. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study.

    PubMed

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-07-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  14. Efflux Of Nitrate From Hydroponically Grown Wheat

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Aslam, M.; Ward, M. R.

    1992-01-01

    Report describes experiments to measure influx, and efflux of nitrate from hydroponically grown wheat seedlings. Ratio between efflux and influx greater in darkness than in light; increased with concentration of nitrate in nutrient solution. On basis of experiments, authors suggest nutrient solution optimized at lowest possible concentration of nitrate.

  15. Striatal norepinephrine efflux in l-DOPA-induced dyskinesia.

    PubMed

    Ostock, Corinne Y; Bhide, Nirmal; Goldenberg, Adam A; George, Jessica A; Bishop, Christopher

    2018-03-01

    l-DOPA remains the primary treatment for Parkinson's disease (PD). Unfortunately, its therapeutic benefits are compromised by the development of abnormal involuntary movements (AIMs) known as l-DOPA-induced dyskinesia (LID). The norepinephrine (NE) system originating in the locus coeruleus is profoundly affected in PD and known to influence dopamine (DA) signaling. However, the effect of noradrenergic loss on l-DOPA-induced striatal monoamine efflux and Parkinsonian motor behavior remains controversial and is frequently overlooked in traditional animal models of LID. Thus, the current study sought to determine whether degeneration of the DA and/or NE system(s) altered l-DOPA-induced striatal monoamine efflux in hemiparkinsonian rats with additional NE loss induced by the potent NE-toxin α DA beta hydroxylase (DBH)-saporin. Sham-, DA-, NE-, and dual DA + NE-lesioned rats were treated with l-DOPA (6 mg/kg, s.c.) for 2 weeks. Thereafter, l-DOPA-mediated striatal monoamine efflux was measured with in vivo microdialysis, and concurrent AIMs testing occurred to determine responsiveness to l-DOPA. Noradrenergic lesions exacerbated parkinsonian motor deficits but did not significantly alter LID expression or corresponding l-DOPA-induced striatal monoamine efflux. Interestingly, l-DOPA-induced striatal NE efflux rather than DA efflux, corresponded more closely with dyskinesia severity. Moreover, marked reductions in striatal NE tissue concentration did not appear to impact l-DOPA-induced striatal NE efflux. The current study implicates l-DOPA-induced striatal NE as an important factor in LID expression and demonstrates the importance of developing treatment strategies that co-modulate the NE and DA systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Active and passive transport of drugs in the human placenta.

    PubMed

    Włoch, Stanisław; Pałasz, Artur; Kamiński, Marcin

    2009-10-01

    The human placenta, characterized by the processes of passive transport and facilitated diffusion, contains numerous active transport proteins, usually located in the microvilli of the syncytiotrophoblast or in the endothelium of the capillaries of the villi. These proteins use either the energy from ATP hydrolysis or other mechanisms resulting, among others, from the formation of the maternofetal ion gradient, which facilitates the transfer of various endogenous substances or xenobiotics across the body membranes. The proteins either trigger the efflux of these substances from the fetal tissues via the placenta into the maternal bloodstream, or conversely they accumulate them in the fetal tissues. Both the placenta and the fetus are equipped with independent systems of enzymes of 1st and 2nd phase of substrate metabolism, such as CYP450, glucuronyltransferase or sulphatase. An active therapy with a wide range of drugs, often at high toxicity levels, either shortly before or during pregnancy, has naturally posed a question concerning the degree of impermeability of the placental barrier and how effectively it can be crossed, including any possible negative embryotoxic or teratogenic consequences. Such hazards seem to be quite real, as many drugs are substrates for ABC transporters. Also the placenta itself, including its structure, is subject to vast transformations during pregnancy which may be observed as the thinning of the barrier separating the maternal blood from the fetal one, from 20-30 microm in the first trimester of gestation down to 2-4 microm in the third trimester of gestation.

  17. Differential effect of imipramine and related compounds on Mg2+ efflux from rat erythrocytes.

    PubMed

    Ebel, H; Hollstein, M; Günther, T

    2004-12-15

    The effect of imipramine on Mg2+ efflux in NaCl medium (Na+/Mg2+ antiport), on Mg2+ efflux in choline.Cl medium (choline/Mg2+ antiport) and on Mg2+ efflux in sucrose medium (Cl- -coupled Mg2+ efflux) was investigated in rat erythrocytes. In non-Mg2+-loaded rat erythrocytes, imipramine stimulated Na+/Mg2+ antiport but inhibited choline/Mg2+ antiport and Cl- -coupled Mg2+ efflux. The same effect could be obtained by several other compounds structurally related to imipramine. These drugs contain a cyclic hydrophobic ring structure to which a four-membered secondary or tertiary amine side chain is attached. At a physiological pH, the amine side chain expresses a cationic choline-like structure. The inhibitory effect on choline/Mg2+ antiport is lost when the amine side chain is modified or abandoned, pointing to competition of the choline-like side chain with choline or another cation at the unspecific choline antiporter or at the Cl- -coupled Mg2+ efflux. Other related drugs either stimulated Na+/Mg2+ antiport and choline/Mg2+ antiport, or they were ineffective. For stimulation of Na+/Mg2+ antiport and choline/Mg2+ antiport, there is no specific common structural motif of the drugs tested. The effects of imipramine on Na+/Mg2+ antiport and choline/Mg2+ antiport are not mediated by PKCalpha but are caused by a direct reaction of imipramine with these transporters. By increasing the intracellular Mg2+ concentration, the stimulation of Na+/Mg2+ antiport at a physiological intracellular Mg2+ concentration changed to an inhibition of Na+/Mg2+ antiport. This effect can be explained by the hypothesis that Mg2+ loading induced an allosteric transition of the Mg2+/Mg2+ exchanger with low Na+/Mg2+ antiport capacity to the Na+/Mg2+ antiporter with high Na+/Mg2+ antiport capacity. Both forms of the Mg2+ exchanger may be differently affected by imipramine.

  18. Symposium overview: alterations in cytokine receptors by xenobiotics.

    PubMed

    Cohen, M D; Schook, L B; Oppenheim, J J; Freed, B M; Rodgers, K E

    1999-04-01

    A symposium entitled Alterations in Cytokine Receptors by Xenobiotics was held at the 37th Annual Meeting of the Society of Toxicology (SOT) in Seattle, Washington. The symposium was sponsored by the Immunotoxicology Specialty Section of SOT and was designed to present information on the effect of several different classes of xenobiotics on various aspects of receptor function (i.e., post-receptor signal transduction of receptor expression), or the involvement of cytokine receptors in the action of the toxicant under consideration. This symposium brought together scientists in the area of receptor immunobiology whose expertise in receptor modulation encompassed those major signaling agents involved in the normal immune response, i.e., proinflammatory cytokines, chemokines, interleukins, and interferons. The following is a summary of each of the individual presentations.

  19. Fullerene inhibits benzo(a)pyrene Efflux from Cyprinus carpio hepatocytes by affecting cell membrane fluidity and P-glycoprotein expression.

    PubMed

    Chen, Qiqing; Hu, Xialin; Wang, Rui; Yuan, Jin; Yin, Daqiang

    2016-05-01

    P-Glycoprotein (P-gp) can protect cells by pumping out toxic compounds, and has been found widely expressed in fish tissues. Here, we illustrate the P-gp efflux ability for benzo(a)pyrene (BaP) in the hepatocytes of common carp (Cyprinus carpio) after exposing to fullerene aqueous suspension (nC60). The results revealed that nC60 increased the membrane fluidity by decreasing the ratio of saturated to unsaturated fatty acids, and increased the cholesterol contents. These findings, combined with 10-38% and 70-75% down-regulation of P-gp mRNA and protein respectively, suggested that nC60 caused inhibition on P-gp efflux transport system. Therefore, we further investigated the cellular efflux ability for BaP. Results showed unequivocally that nC60 is a potent P-gp inhibitor. The retaining BaP amounts after efflux were elevated by 1.7-2.8 fold during the 10 day exposure. Meanwhile, 5mg/L humic acid (one of the important fractions of natural organic matter, which is ubiquitous in aquatic environment) alleviated the nC60 damage to hepatocytes in terms of oxidative damage, cholesterol increment, and P-gp content reduction; and finally attenuated the suppressed P-gp efflux ability. Collectively, this study provides the first evidence of nC60 toxicity to P-gp functionality in fish and illustrates the possible mechanism of the suppressed P-gp efflux ability for BaP. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria

    PubMed Central

    Xu, Zeling; Yan, Aixin

    2015-01-01

    Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps in the medicinally relevant microaerobic and anaerobic pathogens and their implications in the effort to combat drug-resistant infections. PMID:27025630

  1. Xenobiotics enhance laccase activity in alkali-tolerant γ-proteobacterium JB.

    PubMed

    Singh, Gursharan; Batish, Mona; Sharma, Prince; Capalash, Neena

    2009-01-01

    Various genotoxic textile dyes, xenobiotics, substrates (10 µM) and agrochemicals (100 µg/ml) were tested for enhancement of alkalophilic laccase activity in γ-proteobacterium JB. Neutral Red, Indigo Carmine, Naphthol Base Bordears and Sulphast Ruby dyes increased the activity by 3.7, 2.7, 2.6 and 2.3 fold respectively. Xenobiotics/substrates like p-toluidine, 8-hydroxyquinoline and anthracine increased it by 3.4, 2.8 and 2.3 fold respectively. Atrazine and trycyclozole pesticides enhanced the activity by 1.95 and 1.5 fold respectively.

  2. Xenobiotics enhance laccase activity in alkali-tolerant γ-proteobacterium JB

    PubMed Central

    Singh, Gursharan; Batish, Mona; Sharma, Prince; Capalash, Neena

    2009-01-01

    Various genotoxic textile dyes, xenobiotics, substrates (10 µM) and agrochemicals (100 µg/ml) were tested for enhancement of alkalophilic laccase activity in γ-proteobacterium JB. Neutral Red, Indigo Carmine, Naphthol Base Bordears and Sulphast Ruby dyes increased the activity by 3.7, 2.7, 2.6 and 2.3 fold respectively. Xenobiotics/substrates like p-toluidine, 8-hydroxyquinoline and anthracine increased it by 3.4, 2.8 and 2.3 fold respectively. Atrazine and trycyclozole pesticides enhanced the activity by 1.95 and 1.5 fold respectively. PMID:24031313

  3. Research Resource: A Reference Transcriptome for Constitutive Androstane Receptor and Pregnane X Receptor Xenobiotic Signaling

    PubMed Central

    Ochsner, Scott A.; Tsimelzon, Anna; Dong, Jianrong; Coarfa, Cristian

    2016-01-01

    The pregnane X receptor (PXR) (PXR/NR1I3) and constitutive androstane receptor (CAR) (CAR/NR1I2) members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors are well-characterized mediators of xenobiotic and endocrine-disrupting chemical signaling. The Nuclear Receptor Signaling Atlas maintains a growing library of transcriptomic datasets involving perturbations of NR signaling pathways, many of which involve perturbations relevant to PXR and CAR xenobiotic signaling. Here, we generated a reference transcriptome based on the frequency of differential expression of genes across 159 experiments compiled from 22 datasets involving perturbations of CAR and PXR signaling pathways. In addition to the anticipated overrepresentation in the reference transcriptome of genes encoding components of the xenobiotic stress response, the ranking of genes involved in carbohydrate metabolism and gonadotropin action sheds mechanistic light on the suspected role of xenobiotics in metabolic syndrome and reproductive disorders. Gene Set Enrichment Analysis showed that although acetaminophen, chlorpromazine, and phenobarbital impacted many similar gene sets, differences in direction of regulation were evident in a variety of processes. Strikingly, gene sets representing genes linked to Parkinson's, Huntington's, and Alzheimer's diseases were enriched in all 3 transcriptomes. The reference xenobiotic transcriptome will be supplemented with additional future datasets to provide the community with a continually updated reference transcriptomic dataset for CAR- and PXR-mediated xenobiotic signaling. Our study demonstrates how aggregating and annotating transcriptomic datasets, and making them available for routine data mining, facilitates research into the mechanisms by which xenobiotics and endocrine-disrupting chemicals subvert conventional NR signaling modalities. PMID:27409825

  4. Research Resource: A Reference Transcriptome for Constitutive Androstane Receptor and Pregnane X Receptor Xenobiotic Signaling.

    PubMed

    Ochsner, Scott A; Tsimelzon, Anna; Dong, Jianrong; Coarfa, Cristian; McKenna, Neil J

    2016-08-01

    The pregnane X receptor (PXR) (PXR/NR1I3) and constitutive androstane receptor (CAR) (CAR/NR1I2) members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors are well-characterized mediators of xenobiotic and endocrine-disrupting chemical signaling. The Nuclear Receptor Signaling Atlas maintains a growing library of transcriptomic datasets involving perturbations of NR signaling pathways, many of which involve perturbations relevant to PXR and CAR xenobiotic signaling. Here, we generated a reference transcriptome based on the frequency of differential expression of genes across 159 experiments compiled from 22 datasets involving perturbations of CAR and PXR signaling pathways. In addition to the anticipated overrepresentation in the reference transcriptome of genes encoding components of the xenobiotic stress response, the ranking of genes involved in carbohydrate metabolism and gonadotropin action sheds mechanistic light on the suspected role of xenobiotics in metabolic syndrome and reproductive disorders. Gene Set Enrichment Analysis showed that although acetaminophen, chlorpromazine, and phenobarbital impacted many similar gene sets, differences in direction of regulation were evident in a variety of processes. Strikingly, gene sets representing genes linked to Parkinson's, Huntington's, and Alzheimer's diseases were enriched in all 3 transcriptomes. The reference xenobiotic transcriptome will be supplemented with additional future datasets to provide the community with a continually updated reference transcriptomic dataset for CAR- and PXR-mediated xenobiotic signaling. Our study demonstrates how aggregating and annotating transcriptomic datasets, and making them available for routine data mining, facilitates research into the mechanisms by which xenobiotics and endocrine-disrupting chemicals subvert conventional NR signaling modalities.

  5. Evaluation of a series of 2-napthamide derivatives as inhibitors of the drug efflux pump AcrB for the reversal of antimicrobial resistance.

    PubMed

    Wang, Yinhu; Mowla, Rumana; Guo, Liwei; Ogunniyi, Abiodun D; Rahman, Taufiq; De Barros Lopes, Miguel A; Ma, Shutao; Venter, Henrietta

    2017-02-15

    Drug efflux pumps confer multidrug resistance to dangerous pathogens which makes these pumps important drug targets. We have synthesised a novel series of compounds based on a 2-naphthamide pharmacore aimed at inhibiting the efflux pumps from Gram-negative bacteria. The archeatypical transporter AcrB from Escherichia coli was used as model efflux pump as AcrB is widely conserved throughout Gram-negative organisms. The compounds were tested for their antibacterial action, ability to potentiate the action of antibiotics and for their ability to inhibit Nile Red efflux by AcrB. None of the compounds were antimicrobial against E. coli wild type cells. Most of the compounds were able to inhibit Nile Red efflux indicating that they are substrates of the AcrB efflux pump. Three compounds were able to synergise with antibiotics and reverse resistance in the resistant phenotype. Compound A3, 4-(isopentyloxy)-2-naphthamide, reduced the MICs of erythromycin and chloramphenicol to the MIC levels of the drug sensitive strain that lacks an efflux pump. A3 had no effect on the MIC of the non-substrate rifampicin indicating that this compound acts specifically through the AcrB efflux pump. A3 also does not act through non-specific mechanisms such as outer membrane or inner membrane permeabilisation and is not cytotoxic against mammalian cell lines. Therefore, we have designed and synthesised a novel chemical compound with great potential to further optimisation as inhibitor of drug efflux pumps. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Genome-wide identification of ATP-binding cassette (ABC) transporters and their roles in response to polycyclic aromatic hydrocarbons (PAHs) in the copepod Paracyclopina nana.

    PubMed

    Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Lee, Young Hwan; Kim, Hui-Su; Kim, Il-Chan; Lee, Jae-Seong

    2017-02-01

    The ATP-binding cassette (ABC) protein superfamily is one of the largest gene families and is highly conserved in all domains. The ABC proteins play roles in several biological processes, including multi-xenobiotic resistance (MXR), by functioning as transporters in the cellular membrane. They also mediate the cellular efflux of a wide range of substrates against concentration gradients. In this study, 37 ABC genes belonging to eight distinct subfamilies were identified in the marine copepod Paracyclopina nana and annotated based on a phylogenetic analysis. Also, the functions of P-glycoproteins (P-gp) and multidrug resistance-associated proteins (MRPs), conferring MXR, were verified using fluorescent substrates and specific inhibitors. The activities of MXR-mediated ABC proteins and their transcriptional level were examined in response to polyaromatic hydrocarbons (PAHs), main components of the water-accommodated fraction. This study increases the understanding of the protective role of MXR in response to PAHs over the comparative evolution of ABC gene families. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole.

    PubMed

    Ahmad, Aijaz; Khan, Amber; Manzoor, Nikhat

    2013-01-23

    Thymol (THY) and carvacrol (CARV), the principal chemical components of thyme oil have long been known for their wide use in medicine due to antimicrobial and disinfectant properties. This study, however, draws attention to a possible synergistic antifungal effect of these monoterpenes with azole antimycotic-fluconazole. Resistance to azoles in Candida albicans involves over-expression of efflux-pump genes MDR1, CDR1, CDR2 or mutations and over-expression of target gene ERG11. The inhibition of drug efflux pumps is considered a feasible strategy to overcome clinical antifungal resistance. To put forward this approach, we investigated the combination effects of these monoterpenes and FLC against 38 clinically obtained FLC-sensitive, and eleven FLC-resistant Candida isolates. Synergism was observed with combinations of THY-FLC and CARV-FLC evaluated by checkerboard microdilution method and nature of the interactions was calculated by FICI. In addition, antifungal activity was assessed using agar-diffusion and time-kill curves. The drug efflux activity was determined using two dyes, Rhodamine6G (R6G) and fluorescent Hoechst 33342. No significant differences were observed in dye uptakes between FLC-susceptible and resistant isolates, incubated in glucose free buffer. However, a significantly higher efflux was recorded in FLC-resistant isolates when glucose was added. Both monoterpenes inhibited efflux by 70-90%, showing their high potency to block drug transporter pumps. Significant differences, in the expression levels of CDR1 and MDR1, induced by monoterpenes revealed reversal of FLC-resistance. The selectively fungicidal characteristics and ability to restore FLC susceptibility in resistant isolates signify a promising candidature of THY and CARV as antifungal agents in combinational treatments for candidiasis. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. CO2 efflux from cleared mangrove peat.

    PubMed

    Lovelock, Catherine E; Ruess, Roger W; Feller, Ilka C

    2011-01-01

    CO(2) emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. We measured CO(2) efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2) efflux. CO(2) efflux from soils declines from time of clearing from ∼10,600 tonnes km(-2) year(-1) in the first year to 3000 tonnes km(2) year(-1) after 20 years since clearing. Disturbing peat leads to short term increases in CO(2) efflux (27 umol m(-2) s(-1)), but this had returned to baseline levels within 2 days. Deforesting mangroves that grow on peat soils results in CO(2) emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks.

  9. GENE EXPRESSION PROFILING IN AGING RATS AND MICE REVEALS CHANGES IN XENOBIOTIC METABOLISM GENES

    EPA Science Inventory

    Detoxification and elimination of xenobiotics are major functions of the liver and is important in maintaining the metabolic homeostasis of the organism. The degree to which aging affects hepatic metabolism is not known. The expression of xenobiotic metabolizing enzymes (XMEs), i...

  10. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study1

    PubMed Central

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-01-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity. PMID:21750656

  11. Natural and Synthetic Polymers as Inhibitors of Drug Efflux Pumps

    PubMed Central

    2007-01-01

    Inhibition of efflux pumps is an emerging approach in cancer therapy and drug delivery. Since it has been discovered that polymeric pharmaceutical excipients such as Tweens® or Pluronics® can inhibit efflux pumps, various other polymers have been investigated regarding their potential efflux pump inhibitory activity. Among them are polysaccharides, polyethylene glycols and derivatives, amphiphilic block copolymers, dendrimers and thiolated polymers. In the current review article, natural and synthetic polymers that are capable of inhibiting efflux pumps as well as their application in cancer therapy and drug delivery are discussed. PMID:17896100

  12. Soybean NADP-Malic Enzyme Functions in Malate and Citrate Metabolism and Contributes to Their Efflux under Al Stress.

    PubMed

    Zhou, Ying; Yang, Zhenming; Xu, Yuezi; Sun, Haoran; Sun, Zhitao; Lin, Bao; Sun, Wenjing; You, Jiangfeng

    2017-01-01

    Malate accumulation has been suggested to balance Al-induced citrate synthesis and efflux in soybean roots. To test this hypothesis, characteristics of Al-induced accumulation and efflux of citrate and malate were compared between two soybean genotypes combining a functional analysis of GmME1 putatively encode a cytosolic NADP-malic enzyme. Similar amounts of citrate were released, and root elongation was equally inhibited before 8 h of Al treatment of Jiyu 70 and Jiyu 62 cultivars. Jiyu 70 began to secrete more citrate and exhibited higher Al resistance than did Jiyu 62 at 12 h. A sustained increase in internal malate and citrate concentrations was observed in Jiyu 70 at 24 h of Al treatment. However, Jiyu 62 decreased its malate concentration at 12 h and its citrate concentration at 24 h of Al treatment. GmME1 localized to the cytoplast and clustered closely with cytosolic malic enzymes AtME2 and SgME1 and was constitutively expressed in the roots. Al treatment induced higher NADP-malic enzyme activities and GmME1 expression levels in Jiyu 70 than in Jiyu 62 within 24 h. Compared with wild-type hairy roots, over-expressing GmME1 in hairy roots ( GmME1 -OE) produced higher expression levels of GmME1 but did not change the expression patterns of either of the putative citrate transporter genes GmAACT1 and GmFRDL or the malate transporter gene GmALMT1 , with or without Al treatment. GmME1 -OE showed a higher internal concentration and external efflux of both citrate and malate at 4 h of Al stress. Lighter hematoxylin staining and lower Al contents in root apices of GmME1 -OE hairy roots indicated greater Al resistance. Comprehensive experimental results suggest that sustaining Al-induced citrate efflux depends on the malate pool in soybean root apices. GmME1 encodes a cytosolic malic enzyme that contributes to increased internal malate and citrate concentrations and their external efflux to confer higher Al resistance.

  13. Current knowledge of detoxification mechanisms of xenobiotic in honey bees.

    PubMed

    Gong, Youhui; Diao, Qingyun

    2017-01-01

    The western honey bee Apis mellifera is the most important managed pollinator species in the world. Multiple factors have been implicated as potential causes or factors contributing to colony collapse disorder, including honey bee pathogens and nutritional deficiencies as well as exposure to pesticides. Honey bees' genome is characterized by a paucity of genes associated with detoxification, which makes them vulnerable to specific pesticides, especially to combinations of pesticides in real field environments. Many studies have investigated the mechanisms involved in detoxification of xenobiotics/pesticides in honey bees, from primal enzyme assays or toxicity bioassays to characterization of transcript gene expression and protein expression in response to xenobiotics/insecticides by using a global transcriptomic or proteomic approach, and even to functional characterizations. The global transcriptomic and proteomic approach allowed us to learn that detoxification mechanisms in honey bees involve multiple genes and pathways along with changes in energy metabolism and cellular stress response. P450 genes, is highly implicated in the direct detoxification of xenobiotics/insecticides in honey bees and their expression can be regulated by honey/pollen constitutes, resulting in the tolerance of honey bees to other xenobiotics or insecticides. P450s is also a key detoxification enzyme that mediate synergism interaction between acaricides/insecticides and fungicides through inhibition P450 activity by fungicides or competition for detoxification enzymes between acaricides. With the wide use of insecticides in agriculture, understanding the detoxification mechanism of insecticides in honey bees and how honeybees fight with the xenobiotis or insecticides to survive in the changing environment will finally benefit honeybees' management.

  14. Total hepatocellular disposition profiling of rosuvastatin and pitavastatin in sandwich-cultured human hepatocytes.

    PubMed

    Kanda, Katsuhiro; Takahashi, Ryosuke; Yoshikado, Takashi; Sugiyama, Yuichi

    2018-04-09

    This study describes the total disposition profiling of rosuvastatin (RSV) and pitavastatin (PTV) using a single systematic procedure called D-PREX (Disposition Profile Exploration) in sandwich-cultured human hepatocytes (SCHH). The biliary excretion fractions of both statins were clearly observed, which were significantly decreased dependent on the concentration of Ko143, an inhibitor for breast cancer resistance protein (BCRP). Ko143 also decreased the basolateral efflux fraction of RSV, whereas that of PTV was not significantly affected. To understand these phenomena, effects of Ko143 on biliary excretion (BCRP and multidrug resistance-associated protein (MRP) 2) and basolateral efflux (MRP3 and MRP4) transporters were examined using transporter-expressing membrane vesicles. BCRP, MRP3 and MRP4-mediated transport of RSV was observed, and Ko143 inhibited these transporters except MRP3. BCRP and MRP4 also mediated the transport of PTV, but the Ko143-mediated inhibition was only clear for BCRP. These results might explain the Ko143-mediated complete and partial inhibition of the biliary excretion and the basolateral efflux of RSV, respectively, in SCHH. In conclusion, D-PREX with sequential sampling of supernatants prior to cell lysis enables the evaluation of total drug disposition profiles resulting from complex interplays of intracellular pathways, which would provide high-throughput evaluation of drug disposition during drug discovery. Copyright © 2018 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  15. Removal of xenobiotics from effluent discharge by adsorption on zeolite and expanded clay: an alternative to activated carbon?

    PubMed

    Tahar, A; Choubert, J M; Miège, C; Esperanza, M; Le Menach, K; Budzinski, H; Wisniewski, C; Coquery, M

    2014-04-01

    Xenobiotics such as pesticides and pharmaceuticals are an increasingly large problem in aquatic environments. A fixed-bed adsorption filter, used as tertiary stage of sewage treatment, could be a solution to decrease xenobiotics concentrations in wastewater treatment plants (WWTPs) effluent. The adsorption efficiency of two mineral adsorbent materials (expanded clay (EC) and zeolite (ZE)), both seen as a possible alternative to activated carbon (AC), was evaluated in batch tests. Experiments involving secondary treated domestic wastewater spiked with a cocktail of ten xenobiotics (eight pharmaceuticals and two pesticides) known to be poorly eliminated in conventional biological process were carried out. Removal efficiencies and partitions coefficients were calculated for two levels of initial xenobiotic concentration, i.e, concentrations lower to 10 μg/L and concentrations ranged from 100 to 1,000 μg/L. While AC was the most efficient adsorbent material, both alternative adsorbent materials showed good adsorption efficiencies for all ten xenobiotics (from 50 to 100 % depending on the xenobiotic/adsorbent material pair). For all the targeted xenobiotics, at lower concentrations, EC presented the best adsorption potential with higher partition coefficients, confirming the results in terms of removal efficiencies. Nevertheless, Zeolite presents virtually the same adsorption potential for both high and low xenobiotics concentrations to be treated. According to this first batch investigation, ZE and EC could be used as alternative absorbent materials to AC in WWTP.

  16. Computer-aided prediction of xenobiotic metabolism in the human body

    NASA Astrophysics Data System (ADS)

    Bezhentsev, V. M.; Tarasova, O. A.; Dmitriev, A. V.; Rudik, A. V.; Lagunin, A. A.; Filimonov, D. A.; Poroikov, V. V.

    2016-08-01

    The review describes the major databases containing information about the metabolism of xenobiotics, including data on drug metabolism, metabolic enzymes, schemes of biotransformation and the structures of some substrates and metabolites. Computational approaches used to predict the interaction of xenobiotics with metabolic enzymes, prediction of metabolic sites in the molecule, generation of structures of potential metabolites for subsequent evaluation of their properties are considered. The advantages and limitations of various computational methods for metabolism prediction and the prospects for their applications to improve the safety and efficacy of new drugs are discussed. Bibliography — 165 references.

  17. Timescale dependence of environmental controls on methane efflux from Poyang Hu, China

    NASA Astrophysics Data System (ADS)

    Liu, Lixiang; Xu, Ming; Li, Renqiang; Shao, Rui

    2017-04-01

    Lakes are an important natural source of CH4 to the atmosphere. However, the multi-seasonal CH4 efflux from lakes has been rarely studied. In this study, the CH4 efflux from Poyang Hu, the largest freshwater lake in China, was measured monthly over a 4-year period by using the floating-chamber technique. The mean annual CH4 efflux throughout the 4 years was 0.54 mmol m-2 day-1, ranging from 0.47 to 0.60 mmol m-2 day-1. The CH4 efflux had a high seasonal variation with an average summer (June to August) efflux of 1.34 mmol m-2 day-1 and winter (December to February) efflux of merely 0.18 mmol m-2 day-1. The efflux showed no apparent diel pattern, although most of the peak effluxes appeared in the late morning, from 10:00 to 12:00 CST (GMT + 8). Multivariate stepwise regression on a seasonal scale showed that environmental factors, such as sediment temperature, sediment total nitrogen content, dissolved oxygen, and total phosphorus content in the water, mainly regulated the CH4 efflux. However, the CH4 efflux only showed a strong positive linear correlation with wind speed within 1 day on a bihourly scale in the multivariate regression analyses but almost no correlation with wind speed on diurnal and seasonal scales.

  18. Effect of bisphenol A on P-glycoprotein-mediated efflux and ultrastructure of the sea urchin embryo.

    PubMed

    Bošnjak, Ivana; Borra, Marco; Iamunno, Franco; Benvenuto, Giovanna; Ujević, Ivana; Bušelić, Ivana; Roje-Busatto, Romana; Mladineo, Ivona

    2014-11-01

    Usage of bisphenol A (BPA) in production of polycarbonate plastics has resulted in global distribution of BPA in the environment. These high concentrations cause numerous negative effects to the aquatic biota, among which the most known is the induction of endocrine disruption. The focus of this research was to determine the effects of two experimentally determined concentrations of BPA (100nM and 4μM) on cellular detoxification mechanisms during the embryonic development (2-cell, pluteus) of the rocky sea urchin (Paracentrotus lividus), primarily the potential involvement of multidrug efflux transport in the BPA intercellular efflux. The results of transport assay, measurements of the intracellular BPA and gene expression surveys, for the first time indicate the importance of P-glycoprotein (P-gp/ABCB1) in defense against BPA. Cytotoxic effects of BPA, validated by the immunohistochemistry (IHC) and the transmission electron microscopy (TEM), induced the aberrant karyokinesis, and consequently, the impairment of embryo development through the first cell division and retardation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Mathematical Modeling and Experimental Validation of Nanoemulsion-Based Drug Transport across Cellular Barriers.

    PubMed

    Kadakia, Ekta; Shah, Lipa; Amiji, Mansoor M

    2017-07-01

    Nanoemulsions have shown potential in delivering drug across epithelial and endothelial cell barriers, which express efflux transporters. However, their transport mechanisms are not entirely understood. Our goal was to investigate the cellular permeability of nanoemulsion-encapsulated drugs and apply mathematical modeling to elucidate transport mechanisms and sensitive nanoemulsion attributes. Transport studies were performed in Caco-2 cells, using fish oil nanoemulsions and a model substrate, rhodamine-123. Permeability data was modeled using a semi-mechanistic approach, capturing the following cellular processes: endocytotic uptake of the nanoemulsion, release of rhodamine-123 from the nanoemulsion, efflux and passive permeability of rhodamine-123 in aqueous solution. Nanoemulsions not only improved the permeability of rhodamine-123, but were also less sensitive to efflux transporters. The model captured bidirectional permeability results and identified sensitive processes, such as the release of the nanoemulsion-encapsulated drug and cellular uptake of the nanoemulsion. Mathematical description of cellular processes, improved our understanding of transport mechanisms, such as nanoemulsions don't inhibit efflux to improve drug permeability. Instead, their endocytotic uptake, results in higher intracellular drug concentrations, thereby increasing the concentration gradient and transcellular permeability across biological barriers. Modeling results indicated optimizing nanoemulsion attributes like the droplet size and intracellular drug release rate, may further improve drug permeability.

  20. Soil efflux and total emission rates of magmatic CO2 at the horseshoe lake tree kill, mammoth mountain, California, 1995-1999

    USGS Publications Warehouse

    Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.

    2001-01-01

    We report the results of eight soil CO2 efflux surveys by the closed circulation chamber method at the Horseshoe Lake tree kill (HLTK) - the largest tree kill on Mammoth Mountain. The surveys were undertaken from 1995 to 1999 to constrain total HLTK CO2 emissions and to evaluate occasional efflux surveys as a surveillance tool for the tree kills. HLTK effluxes range from 1 to > 10,000 g m -2 day -1 (grams CO2 per square meter per day); they are not normally distributed. Station efflux rates can vary by 7-35% during the course of the 8- to 16-h surveys. Disturbance of the upper 2 cm of ground surface causes effluxes to almost double. Semivariograms of efflux spatial covariance fit exponential or spherical models; they lack nugget effects. Efflux contour maps and total CO2 emission rates based on exponential, spherical, and linear kriging models of survey data are nearly identical; similar results are also obtained with triangulation models, suggesting that the kriging models are not seriously distorted by the lack of normal efflux distributions. In addition, model estimates of total CO2 emission rates are relatively insensitive to the measurement precision of the efflux rates and to the efflux value used to separate magmatic from forest soil sources of CO2. Surveys since 1997 indicate that, contrary to earlier speculations, a termination of elevated CO2 emissions at the HLTK is unlikely anytime soon. The HLTK CO2 efflux anomaly fluctuated greatly in size and intensity throughout the 1995-1999 surveys but maintained a N-S elongation, presumably reflecting fault control of CO2 transport from depth. Total CO2 emission rates also fluctuated greatly, ranging from 46 to 136 t day-1 (metric tons CO2 per day) and averaging 93 t day-1. The large inter-survey variations are caused primarily by external (meteorological) processes operating on time scales of hours to days. The externally caused variations can mask significant changes occurring at depth; a striking example is

  1. CO2 Efflux from Cleared Mangrove Peat

    PubMed Central

    Lovelock, Catherine E.; Ruess, Roger W.; Feller, Ilka C.

    2011-01-01

    Background CO2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. Methodology/Principal Findings We measured CO2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO2 efflux. CO2 efflux from soils declines from time of clearing from ∼10 600 tonnes km−2 year−1 in the first year to 3000 tonnes km2 year−1 after 20 years since clearing. Disturbing peat leads to short term increases in CO2 efflux (27 umol m−2 s−1), but this had returned to baseline levels within 2 days. Conclusions/Significance Deforesting mangroves that grow on peat soils results in CO2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks. PMID:21738628

  2. An activated sludge modeling framework for xenobiotic trace chemicals (ASM-X): assessment of diclofenac and carbamazepine.

    PubMed

    Plósz, Benedek Gy; Langford, Katherine H; Thomas, Kevin V

    2012-11-01

    Conventional models for predicting the fate of xenobiotic organic trace chemicals, identified, and calibrated using data obtained in batch experiments spiked with reference substances, can be limited in predicting xenobiotic removal in wastewater treatment plants (WWTPs). At stake is the level of model complexity required to adequately describe a general theory of xenobiotic removal in WWTPs. In this article, we assess the factors that influence the removal of diclofenac and carbamazepine in activated sludge, and evaluate the complexity required for the model to effectively predict their removal. The results are generalized to previously published cases. Batch experimental results, obtained under anoxic and aerobic conditions, were used to identify extensions to, and to estimate parameter values of the activated sludge modeling framework for Xenobiotic trace chemicals (ASM-X). Measurement and simulation results obtained in the batch experiments, spiked with the diclofenac and carbamazepine content of preclarified municipal wastewater shows comparably high biotransformation rates in the presence of growth substrates. Forward dynamic simulations were performed using full-scale data obtained from Bekkelaget WWTP (Oslo, Norway) to evaluate the model and to estimate the level of re-transformable xenobiotics present in the influent. The results obtained in this study demonstrate that xenobiotic loading conditions can significantly influence the removal capacity of WWTPs. We show that the trace chemical retransformation in upstream sewer pipes can introduce considerable error in assessing the removal efficiency of a WWTP, based only on parent compound concentration measurements. The combination of our data with those from the literature shows that solids retention time (SRT) can enhance the biotransformation of diclofenac, which was not the case for carbamazepine. Model approximation of the xenobiotic concentration, detected in the solid phase, suggest that between

  3. High brain distribution of a new central nervous system drug candidate despite its P-glycoprotein-mediated efflux at the mouse blood-brain barrier.

    PubMed

    Taccola, Camille; Cartot-Cotton, Sylvaine; Valente, Delphine; Barneoud, Pascal; Aubert, Catherine; Boutet, Valérie; Gallen, Fabienne; Lochus, Murielle; Nicolic, Sophie; Dodacki, Agnès; Smirnova, Maria; Cisternino, Salvatore; Declèves, Xavier; Bourasset, Fanchon

    2018-05-30

    Efficacy of drugs aimed at treating central nervous system (CNS) disorders rely partly on their ability to cross the cerebral endothelium, also called the blood-brain barrier (BBB), which constitutes the main interface modulating exchanges of compounds between the brain and blood. In this work, we used both, conventional pharmacokinetics (PK) approach and in situ brain perfusion technique to study the blood and brain PK of PKRinh, an inhibitor of the double-stranded RNA-dependent protein kinase (PKR) activation, in mice. PKRinh showed a supra dose-proportional blood exposure that was not observed in the brain, and a brain to blood AUC ratio of unbound drug smaller than 1 at all tested doses. These data suggested the implication of an active efflux at the BBB. Using in situ brain perfusion technique, we showed that PKRinh has a very high brain uptake clearance which saturates with increasing concentrations. Fitting the data to a Michaelis-Menten equation revealed that PKRinh transport through the BBB is composed of a passive unsaturable flux and an active saturable protein-mediated efflux with a k m of ≅ 3 μM. We were able to show that the ATP-binding cassette (ABC) transporter P-gp (Abcb1), but not Bcrp (Abcg2), was involved in the brain to blood efflux of PKRinh. At the circulating PKRinh concentrations of this study, the P-gp was not saturated, in accordance with the linear brain PKRinh PK. Finally, PKRinh had high brain uptake clearance (14 μl/g/s) despite it is a good P-gp substrate (P-gp Efflux ratio ≅ 3.6), and reached similar values than the cerebral blood flow reference, diazepam, in P-gp saturation conditions. With its very unique brain transport properties, PKRinh improves our knowledge about P-gp-mediated efflux across the BBB for the development of new CNS directed drugs. Copyright © 2018. Published by Elsevier B.V.

  4. Interaction of Isoflavones with the BCRP/ABCG2 Drug Transporter

    PubMed Central

    Bircsak, Kristin M; Aleksunes, Lauren M

    2015-01-01

    This review will provide a comprehensive overview of the interactions between dietary isoflavones and the ATP-binding cassette (ABC) G2 efflux transporter, which is also named the breast cancer resistance protein (BCRP). Expressed in a variety of organs including the liver, kidneys, intestine, and placenta, BCRP mediates the disposition and excretion of numerous endogenous chemicals and xenobiotics. Isoflavones are a class of naturally-occurring compounds that are found at high concentrations in commonly consumed foods and dietary supplements. A number of isoflavones, including genistein and daidzein and their metabolites, interact with BCRP as substrates, inhibitors, and/or modulators of gene expression. To date, a variety of model systems have been employed to study the ability of isoflavones to serve as substrates and inhibitors of BCRP; these include whole cells, inverted plasma membrane vesicles, in situ organ perfusion, as well as in vivo rodent and sheep models. Evidence suggests that BCRP plays a role in mediating the disposition of isoflavones and in particular, their conjugated forms. Furthermore, as inhibitors, these compounds may aid in reversing multidrug resistance and sensitizing cancer cells to chemotherapeutic drugs. This review will also highlight the consequences of altered BCRP expression and/or function on the pharmacokinetics and toxicity of chemicals following isoflavone exposure. PMID:26179608

  5. Quantifying the Evolutionary Conservation of Genes Encoding Multidrug Efflux Pumps in the ESKAPE Pathogens To Identify Antimicrobial Drug Targets.

    PubMed

    Brooks, Lauren E; Ul-Hasan, Sabah; Chan, Benjamin K; Sistrom, Mark J

    2018-01-01

    Increasing rates of antibiotic-resistant bacterial infection are one of the most pressing contemporary global health concerns. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) have been identified as the leading global cause of multidrug-resistant bacterial infections, and overexpression of multidrug efflux (MEX) transport systems has been identified as one of the most critical mechanisms facilitating the evolution of multidrug resistance in ESKAPE pathogens. Despite efforts to develop efflux pump inhibitors to combat antibiotic resistance, the need persists to identify additional targets for future investigations. We evaluated evolutionary pressures on 110 MEX-encoding genes from all annotated ESKAPE organism genomes. We identify several MEX genes under stabilizing selection-representing targets which can facilitate broad-spectrum treatments with evolutionary constraints limiting the potential emergence of escape mutants. We also examine MEX systems being evaluated as drug targets, demonstrating that divergent selection may underlie some of the problems encountered in the development of effective treatments-specifically in relation to the NorA system in S. aureus. This study provides a comprehensive evolutionary context to efflux in the ESKAPE pathogens, which will provide critical context to the evaluation of efflux systems as antibiotic targets. IMPORTANCE Increasing rates of antibiotic-resistant bacterial infection are one of the most pressing contemporary global health concerns. The ESKAPE pathogen group represents the leading cause of these infections, and upregulation of efflux pump expression is a significant mechanism of resistance in these pathogens. This has resulted in substantial interest in the development of efflux pump inhibitors to combat antibiotic-resistant infections; however, no widespread treatments have been developed to date

  6. Quantifying the Evolutionary Conservation of Genes Encoding Multidrug Efflux Pumps in the ESKAPE Pathogens To Identify Antimicrobial Drug Targets

    PubMed Central

    Ul-Hasan, Sabah; Chan, Benjamin K.; Sistrom, Mark J.

    2018-01-01

    ABSTRACT Increasing rates of antibiotic-resistant bacterial infection are one of the most pressing contemporary global health concerns. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) have been identified as the leading global cause of multidrug-resistant bacterial infections, and overexpression of multidrug efflux (MEX) transport systems has been identified as one of the most critical mechanisms facilitating the evolution of multidrug resistance in ESKAPE pathogens. Despite efforts to develop efflux pump inhibitors to combat antibiotic resistance, the need persists to identify additional targets for future investigations. We evaluated evolutionary pressures on 110 MEX-encoding genes from all annotated ESKAPE organism genomes. We identify several MEX genes under stabilizing selection—representing targets which can facilitate broad-spectrum treatments with evolutionary constraints limiting the potential emergence of escape mutants. We also examine MEX systems being evaluated as drug targets, demonstrating that divergent selection may underlie some of the problems encountered in the development of effective treatments—specifically in relation to the NorA system in S. aureus. This study provides a comprehensive evolutionary context to efflux in the ESKAPE pathogens, which will provide critical context to the evaluation of efflux systems as antibiotic targets. IMPORTANCE Increasing rates of antibiotic-resistant bacterial infection are one of the most pressing contemporary global health concerns. The ESKAPE pathogen group represents the leading cause of these infections, and upregulation of efflux pump expression is a significant mechanism of resistance in these pathogens. This has resulted in substantial interest in the development of efflux pump inhibitors to combat antibiotic-resistant infections; however, no widespread treatments have been

  7. Paracellular tightness and the functional expression of efflux transporters P-gp and BCRP in bEnd3 cells.

    PubMed

    Yang, Shu; Jin, Hong; Zhao, Zhigang

    2018-04-23

    Objective The blood-brain barrier (BBB), regulating brain homeostasis and limiting the entry of most drugs, is characterized by intercellular tight junctions and the presence of transporters. In this study, the paracellular tightness and functional expression of efflux transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) were evaluated in mouse brain immortalized cell line bEnd3 to prove it as a useful BBB-mimicking system for biological and pharmacological research. Methods The presence of P-gp, BCRP and tight junction proteins occludin, claudin-5 and ZO-1 were validated by RT-PCR and Western blot. The tightness of bEnd3 monolayers was evaluated by measuring the permeability of hydrophilic marker Lucifer yellow. The P-gp functionality was identified by intracellular uptake assay using Rhodamine 123 (R123) as P-gp substrate and verapamil as P-gp inhibitor. The BCRP functionality was identified by flow cytometric analysis of mitoxantrone accumulation and fluorescence microscopic analysis of Hoechst 33342 accumulation using Ko-143 as BCRP inhibitor. Results The bEnd3 cells demonstrated the expression of P-gp, BCRP and tight junction proteins occludin, claudin-5 and ZO-1 at mRNA and protein levels. The permeability coefficient of Lucifer yellow was 1.3 ± 0.13 × 10 -3  cm/min, indicating the moderate paracellular tightness barrier formed by bEnd3 cells. The verapamil induced a higher cellular uptake of Rhodamine 123, and Ko-143 significantly elevated cellular accumulation of mitoxantrone and Hoechst 33342, suggesting the P-gp and BCRP functionality shown by bEnd3 cells. Conclusions The bEnd3 cell line represents a useful in vitro tool for studying BBB characteristics and drug transport mechanisms at the BBB.

  8. Two horizontally transferred xenobiotic resistance gene clusters associated with detoxification of benzoxazolinones by Fusarium species

    USDA-ARS?s Scientific Manuscript database

    Microbes encounter a broad spectrum of chemical compounds in their diverse environments. These xenobiotics may negatively impact growth or cause death. To counter such adverse effects, many microbes possess metabolic strategies to detoxify and biotransform xenobiotics. Fusarium verticillioides is a ...

  9. Nontargeted analysis of the urine nonpolar sulfateome: a pathway to the nonpolar xenobiotic exposome

    PubMed Central

    Yao, Yuanyuan; Wang, Poguang; Shao, Gang; Anzalota Del Toro, Liza V.; Codero, Jose; Giese, Roger W.

    2016-01-01

    RATIONALE Testing the urine nonpolar sulfateome can enable discovery of xenobiotics that are most likely to be bioactive. This is based on the fact that nonpolar xenobiotics are more likely to enter cells where they tend to undergo metabolism, in part, to sulfates that are then largely excreted into the urine. METHODS The following sequence of steps, with conditions that achieve high reproducibility, was applied to large human urine samples: (1) competitive nonpolar extraction with a porous extraction paddle; (2) weak anion exchange extraction with strong organic washing; and (3) UHPLC/negative ion-MALDI-TOF/TOF-MS with recording of ions with S/N ≥ 20 that yielded M-1-80 (loss of SO3) or m/z 97 (HSO4−) upon fragmentation. RESULTS From a collection of urine samples from six pregnant women, the masses of 1129 putative sulfates were measured. Three lists of candidate compounds (preliminary hits) from these masses were formed by searching METLIN, especially via MATLAB, yielding putative xenobiotic contaminants (35 compounds), steroids (122), and flavonoids (1582). CONCLUSION A new way to reveal some of the nonpolar xenobiotic exposome has been developed that applies to urine samples. The value of the method is to suggest xenobiotics for subsequent targeted analysis in the population of people under study, in order to relate the environment to health and disease. PMID:27557133

  10. Generation Z: Adolescent Xenobiotic Abuse in the 21st Century.

    PubMed

    Eggleston, William; Stork, Christine

    2015-12-01

    NMDA receptor antagonists include the prescription medication ketamine, the illicit xenobiotics PCP, MXE, and other novel PCP analogs, and the OTC medication DXM. The NMDA receptor antagonist most commonly abused by adolescents in the United States is DXM. These xenobiotics cause dissociative effects by non-competitively inhibiting the action of glutamate at the NMDA receptor. Additionally, these agents modulate the actions of monoamine neurotransmitters, agonize opioid receptors, and inhibit nitric oxide synthase. Patients typically present with sympathomimetic and neuropsychiatric clinical manifestations after abuse of NMDA receptor antagonists. Treatment is generally symptomatic and supportive. Interventions include benzodiazepines, propofol, fluids, antiemetics, aggressive cooling, and respiratory support.

  11. Data-based mathematical modeling of vectorial transport across double-transfected polarized cells.

    PubMed

    Bartholomé, Kilian; Rius, Maria; Letschert, Katrin; Keller, Daniela; Timmer, Jens; Keppler, Dietrich

    2007-09-01

    Vectorial transport of endogenous small molecules, toxins, and drugs across polarized epithelial cells contributes to their half-life in the organism and to detoxification. To study vectorial transport in a quantitative manner, an in vitro model was used that includes polarized MDCKII cells stably expressing the recombinant human uptake transporter OATP1B3 in their basolateral membrane and the recombinant ATP-driven efflux pump ABCC2 in their apical membrane. These double-transfected cells enabled mathematical modeling of the vectorial transport of the anionic prototype substance bromosulfophthalein (BSP) that has frequently been used to examine hepatobiliary transport. Time-dependent analyses of (3)H-labeled BSP in the basolateral, intracellular, and apical compartments of cells cultured on filter membranes and efflux experiments in cells preloaded with BSP were performed. A mathematical model was fitted to the experimental data. Data-based modeling was optimized by including endogenous transport processes in addition to the recombinant transport proteins. The predominant contributions to the overall vectorial transport of BSP were mediated by OATP1B3 (44%) and ABCC2 (28%). Model comparison predicted a previously unrecognized endogenous basolateral efflux process as a negative contribution to total vectorial transport, amounting to 19%, which is in line with the detection of the basolateral efflux pump Abcc4 in MDCKII cells. Rate-determining steps in the vectorial transport were identified by calculating control coefficients. Data-based mathematical modeling of vectorial transport of BSP as a model substance resulted in a quantitative description of this process and its components. The same systems biology approach may be applied to other cellular systems and to different substances.

  12. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters.

    PubMed

    Cobbina, Enoch; Akhlaghi, Fatemeh

    2017-05-01

    Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver disorders. It is defined by the presence of steatosis in more than 5% of hepatocytes with little or no alcohol consumption. Insulin resistance, the metabolic syndrome or type 2 diabetes and genetic variants of PNPLA3 or TM6SF2 seem to play a role in the pathogenesis of NAFLD. The pathological progression of NAFLD follows tentatively a "three-hit" process namely steatosis, lipotoxicity and inflammation. The presence of steatosis, oxidative stress and inflammatory mediators like TNF-α and IL-6 has been implicated in the alterations of nuclear factors such as CAR, PXR, PPAR-α in NAFLD. These factors may result in altered expression and activity of drug metabolizing enzymes (DMEs) or transporters. Existing evidence suggests that the effect of NAFLD on CYP3A4, CYP2E1 and MRP3 is more consistent across rodent and human studies. CYP3A4 activity is down-regulated in NASH whereas the activity of CYP2E1 and the efflux transporter MRP3 is up-regulated. However, it is not clear how the majority of CYPs, UGTs, SULTs and transporters are influenced by NAFLD either in vivo or in vitro. The alterations associated with NAFLD could be a potential source of drug variability in patients and could have serious implications for the safety and efficacy of xenobiotics. In this review, we summarize the effects of NAFLD on the regulation, expression and activity of major DMEs and transporters. We also discuss the potential mechanisms underlying these alterations.

  13. Review and evaluation of the effects of xenobiotic chemicals on microorganisms in soil. [139 references

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, R.J.; Van Voris, P.

    1988-02-01

    The primary objective was to review and evaluate the relevance and quality of existing xenobiotic data bases and test methods for evaluating direct and indirect effects (both adverse and beneficial) of xenobiotics on the soil microbial community; direct and indirect effects of the soil microbial community on xenobiotics; and adequacy of test methods used to evaluate these effects and interactions. Xenobiotic chemicals are defined here as those compounds, both organic and inorganic, produced by man and introduced into the environment at concentrations that cause undesirable effects. Because soil serves as the main repository for many of these chemicals, it thereforemore » has a major role in determining their ultimate fate. Once released, the distribution of xenobiotics between environmental compartments depends on the chemodynamic properties of the compounds, the physicochemical properties of the soils, and the transfer between soil-water and soil-air interfaces and across biological membranes. Abiotic and biotic processes can transform the chemical compound, thus altering its chemical state and, subsequently, its toxicity and reactivity. Ideally, the conversion is to carbon dioxide, water, and mineral elements, or at least, to some harmless substance. However, intermediate transformation products, which can become toxic pollutants in their own right, can sometimes be formed. 139 refs., 6 figs., 11 tabs.« less

  14. Biotic and abiotic studies on the biological fate, transport and ecotoxicity of toxic and hazardous waste in the Mississippi River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelghani, A.; Pramar, Y.; Mandal, T.

    1996-05-02

    This project assesses the levels of xenobiotics in Devils Swamp and studies their biological fate, transport, ecotoxicity, and potential toxicity to man. This article reports on the following studies: assessment of the acute toxicity of individual xenobiotics and toxicity of organic compounds hexachlorobutadience (HCB) and hexachlorobenzene (HCBD) on juvenile crayfish; determination of the biotic influence of temperature, salinity, pH, oxidation-reduction potential, and sediment composition on the migration of xenobiotics; development of a pharmacokinetics model for xenobiotic absorption and storage, distribution and excretion by fish and crayfish.

  15. In Vitro Drug-Induced Liver Injury Prediction: Criteria Optimization of Efflux Transporter IC50 and Physicochemical Properties.

    PubMed

    Yucha, Robert W; He, Kan; Shi, Qin; Cai, Lining; Nakashita, Yukie; Xia, Cindy Q; Liao, Mingxiang

    2017-06-01

    Drug-induced liver injury (DILI) is a severe drug adverse response, which cannot always be reliably predicted in preclinical or clinical studies. Lack of observation of DILI during preclinical and clinical drug development has led to DILI being a leading cause of drug withdrawal from the market. As DILI is potentially fatal, pharmaceutical companies have been developing in vitro tools to screen for potential liver injury. Screens for physicochemical properties, mitochondrial function, and transport protein inhibition have all been employed to varying degrees of success. In vitro inhibition of the bile salt export pump (BSEP) has become a major risk factor for in vivo DILI predictions, yet discrepancies exist in which methods to use and the extent to which BSEP inhibition predicts clinical DILI. The presented work focuses on optimizing DILI predictions by comparing BSEP inhibition via the membrane vesicle assay and the hepatocyte-based BSEPcyte assay, as well as dual and triple liabilities. BSEP transport inhibition of taurcholic acids and glycocholic acids were similar for up to 29 drugs tested, in both the vesicle and hepatocyte-based assays. Positive and negative DILI predictions were optimized at a 50-µM cutoff value for 50 drugs using both NIH Livertox and PharmaPendium databases. Additionally, dual inhibition of BSEP and other efflux transporters (multidrug resistance-associated protein [MRP]2, MRP3, or MRP4) provided no observable predictive benefit compared with BSEP inhibition alone. Eighty-five percent of drugs with high molecular weight (>600 Da), high cLogP (>3), or a daily dose >100 mg and BSEP inhibition were associated with DILI. Triple liability of BSEP inhibition, high molecular weight, and high cLogP attained a 100% positive prediction rate. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. An LXR–NCOA5 gene regulatory complex directs inflammatory crosstalk-dependent repression of macrophage cholesterol efflux

    PubMed Central

    Gillespie, Mark A; Gold, Elizabeth S; Ramsey, Stephen A; Podolsky, Irina; Aderem, Alan; Ranish, Jeffrey A

    2015-01-01

    LXR–cofactor complexes activate the gene expression program responsible for cholesterol efflux in macrophages. Inflammation antagonizes this program, resulting in foam cell formation and atherosclerosis; however, the molecular mechanisms underlying this antagonism remain to be fully elucidated. We use promoter enrichment-quantitative mass spectrometry (PE-QMS) to characterize the composition of gene regulatory complexes assembled at the promoter of the lipid transporter Abca1 following downregulation of its expression. We identify a subset of proteins that show LXR ligand- and binding-dependent association with the Abca1 promoter and demonstrate they differentially control Abca1 expression. We determine that NCOA5 is linked to inflammatory Toll-like receptor (TLR) signaling and establish that NCOA5 functions as an LXR corepressor to attenuate Abca1 expression. Importantly, TLR3–LXR signal crosstalk promotes recruitment of NCOA5 to the Abca1 promoter together with loss of RNA polymerase II and reduced cholesterol efflux. Together, these data significantly expand our knowledge of regulatory inputs impinging on the Abca1 promoter and indicate a central role for NCOA5 in mediating crosstalk between pro-inflammatory and anti-inflammatory pathways that results in repression of macrophage cholesterol efflux. PMID:25755249

  17. Ion transport in broad bean leaf mesophyll under saline conditions.

    PubMed

    Percey, William J; Shabala, Lana; Breadmore, Michael C; Guijt, Rosanne M; Bose, Jayakumar; Shabala, Sergey

    2014-10-01

    Salt stress reduces the ability of mesophyll tissue to respond to light. Potassium outward rectifying channels are responsible for 84 % of Na (+) induced potassium efflux from mesophyll cells. Modulation in ion transport of broad bean (Vicia faba L.) mesophyll to light under increased apoplastic salinity stress was investigated using vibrating ion-selective microelectrodes (the MIFE technique). Increased apoplastic Na(+) significantly affected mesophyll cells ability to respond to light by modulating ion transport across their membranes. Elevated apoplastic Na(+) also induced a significant K(+) efflux from mesophyll tissue. This efflux was mediated predominately by potassium outward rectifying channels (84 %) and the remainder of the efflux was through non-selective cation channels. NaCl treatment resulted in a reduction in photosystem II efficiency in a dose- and time-dependent manner. In particular, reductions in Fv'/Fm' were linked to K(+) homeostasis in the mesophyll tissue. Increased apoplastic Na(+) concentrations induced vanadate-sensitive net H(+) efflux, presumably mediated by the plasma membrane H(+)-ATPase. It is concluded that the observed pump's activation is essential for the maintenance of membrane potential and ion homeostasis in the cytoplasm of mesophyll under salt stress.

  18. Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells.

    PubMed

    McCarthy, Ryan C; Kosman, Daniel J

    2014-01-01

    We have used an in vitro model system to probe the iron transport pathway across the brain microvascular endothelial cells (BMVEC) of the blood-brain barrier (BBB). This model consists of human BMVEC (hBMVEC) and C6 glioma cells (as an astrocytic cell line) grown in a transwell, a cell culture system commonly used to quantify metabolite flux across a cell-derived barrier. We found that iron efflux from hBMVEC through the ferrous iron permease ferroportin (Fpn) was stimulated by secretion of the soluble form of the multi-copper ferroxidase, ceruloplasmin (sCp) from the co-cultured C6 cells. Reciprocally, expression of sCp mRNA in the C6 cells was increased by neighboring hBMVEC. In addition, data indicate that C6 cell-secreted hepcidin stimulates internalization of hBMVEC Fpn but only when the end-feet projections characteristic of this glia-derived cell line are proximal to the endothelial cells. This hepcidin-dependent loss of Fpn correlated with knock-down of iron efflux from the hBMVEC; this result was consistent with the mechanism by which hepcidin regulates iron efflux in mammalian cells. In summary, the data support a model of iron trafficking across the BBB in which the capillary endothelium induce the underlying astrocytes to produce the ferroxidase activity needed to support Fpn-mediated iron efflux. Reciprocally, astrocyte proximity modulates the effective concentration of hepcidin at the endothelial cell membrane and thus the surface expression of hBMVEC Fpn. These results are independent of the source of hBMVEC iron (transferrin or non-transferrin bound) indicating that the model developed here is broadly applicable to brain iron homeostasis.

  19. CFTR-dependent chloride efflux in cystic fibrosis mononuclear cells is increased by ivacaftor therapy.

    PubMed

    Guerra, Lorenzo; D'Oria, Susanna; Favia, Maria; Castellani, Stefano; Santostasi, Teresa; Polizzi, Angela M; Mariggiò, Maria A; Gallo, Crescenzio; Casavola, Valeria; Montemurro, Pasqualina; Leonetti, Giuseppina; Manca, Antonio; Conese, Massimo

    2017-07-01

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) potentiator ivacaftor (Kalydeco®) improves clinical outcome in G551D cystic fibrosis (CF) patients. Here, we have investigated whether ivacaftor has a clinical impact on non-G551D gating mutations and function of circulating leukocytes as well. Seven patients were treated with ivacaftor and evaluated at baseline, and at 1-3 and 6 months. Besides clinical and systemic inflammatory parameters, circulating mononuclear cells (MNC) were evaluated for CFTR-dependent chloride efflux by spectrofluorimetry, neutrophils for oxidative burst by cytofluorimetry and HVCN1 mRNA expression by real time PCR. Ivacaftor determined a significant decrease in sweat chloride concentrations at all time points during treatment. Body mass index (BMI), FEV 1 , and FVC showed an increasing trend. While C-reactive protein decreased significantly at 2 months, the opposite behavior was noticed for circulating monocytes. CFTR activity in MNC was found to increase significantly at 3 and 6 months. Neutrophil oxidative burst peaked at 2 months and then decreased to baseline. HVCN1 mRNA expression was significantly higher than baseline at 1-3 months and decreased after 6 months of treatment. The chloride efflux in MNC correlated positively with both FEV 1 and FVC. On the other hand, sweat chloride correlated positively with CRP and WBC, and negatively with both respiratory function tests. A cluster analysis confirmed that sweat chloride, FEV 1 , FVC, BMI, and MNC chloride efflux behaved as a single entity over time. In patients with non-G551D mutations, ivacaftor improved both chloride transport in sweat ducts and chloride efflux in MNC, that is, functions directly imputed to CFTR. © 2017 Wiley Periodicals, Inc.

  20. Multidrug Efflux Pumps in Staphylococcus aureus: an Update.

    PubMed

    Costa, Sofia Santos; Viveiros, Miguel; Amaral, Leonard; Couto, Isabel

    2013-01-01

    The emergence of infections caused by multi- or pan-resistant bacteria in the hospital or in the community settings is an increasing health concern. Albeit there is no single resistance mechanism behind multiresistance, multidrug efflux pumps, proteins that cells use to detoxify from noxious compounds, seem to play a key role in the emergence of these multidrug resistant (MDR) bacteria. During the last decades, experimental data has established their contribution to low level resistance to antimicrobials in bacteria and their potential role in the appearance of MDR phenotypes, by the extrusion of multiple, unrelated compounds. Recent studies suggest that efflux pumps may be used by the cell as a first-line defense mechanism, avoiding the drug to reach lethal concentrations, until a stable, more efficient alteration occurs, that allows survival in the presence of that agent. In this paper we review the current knowledge on MDR efflux pumps and their intricate regulatory network in Staphylococcus aureus, a major pathogen, responsible from mild to life-threatening infections. Particular emphasis will be given to the potential role that S. aureus MDR efflux pumps, either chromosomal or plasmid-encoded, have on resistance towards different antimicrobial agents and on the selection of drug - resistant strains. We will also discuss the many questions that still remain on the role of each specific efflux pump and the need to establish appropriate methodological approaches to address all these questions.

  1. Interplay between Mutations and Efflux in Drug Resistant Clinical Isolates of Mycobacterium tuberculosis.

    PubMed

    Machado, Diana; Coelho, Tatiane S; Perdigão, João; Pereira, Catarina; Couto, Isabel; Portugal, Isabel; Maschmann, Raquel De Abreu; Ramos, Daniela F; von Groll, Andrea; Rossetti, Maria L R; Silva, Pedro A; Viveiros, Miguel

    2017-01-01

    Numerous studies show efflux as a universal bacterial mechanism contributing to antibiotic resistance and also that the activity of the antibiotics subject to efflux can be enhanced by the combined use of efflux inhibitors. Nevertheless, the contribution of efflux to the overall drug resistance levels of clinical isolates of Mycobacterium tuberculosis is poorly understood and still is ignored by many. Here, we evaluated the contribution of drug efflux plus target-gene mutations to the drug resistance levels in clinical isolates of M. tuberculosis . A panel of 17 M. tuberculosis clinical strains were characterized for drug resistance associated mutations and antibiotic profiles in the presence and absence of efflux inhibitors. The correlation between the effect of the efflux inhibitors and the resistance levels was assessed by quantitative drug susceptibility testing. The bacterial growth/survival vs. growth inhibition was analyzed through the comparison between the time of growth in the presence and absence of an inhibitor. For the same mutation conferring antibiotic resistance, different MICs were observed and the different resistance levels found could be reduced by efflux inhibitors. Although susceptibility was not restored, the results demonstrate the existence of a broad-spectrum synergistic interaction between antibiotics and efflux inhibitors. The existence of efflux activity was confirmed by real-time fluorometry. Moreover, the efflux pump genes mmr, mmpL7, Rv1258c, p55 , and efpA were shown to be overexpressed in the presence of antibiotics, demonstrating the contribution of these efflux pumps to the overall resistance phenotype of the M. tuberculosis clinical isolates studied, independently of the genotype of the strains. These results showed that the drug resistance levels of multi- and extensively-drug resistant M. tuberculosis clinical strains are a combination between drug efflux and the presence of target-gene mutations, a reality that is often

  2. Xenobiotics removal by adsorption in the context of tertiary treatment: a mini review.

    PubMed

    Tahar, Alexandre; Choubert, Jean-Marc; Coquery, Marina

    2013-08-01

    Many xenobiotics, including several pharmaceuticals and pesticides, are poorly treated in domestic wastewater treatment plants. Adsorption processes, such as with activated carbons, could be a solution to curb their discharge into the aquatic environment. As adsorbent-like activated carbon is known to be expensive, identifying promising alternative adsorbent materials is a key challenge for efficient yet affordable xenobiotic removal from wastewaters. As part of the effort to address this challenge, we surveyed the literature on pharmaceutical and pesticide xenobiotics and built a database compiling data from 38 scientific publications covering 65 xenobiotics and 58 materials. Special focus was given to the relevance and comparability of the data to the characteristics of the adsorbent materials used and to the operating conditions of the batch tests inventoried. This paper gives an in-depth overview of the adsorption capacities of various adsorbents. The little data on alternative adsorbent materials, especially for the adsorption of pharmaceuticals, makes it difficult to single out any one activated carbon alternative capable of adsorbing pesticides and pharmaceuticals at the tertiary stage of treatment. There is a pressing need for further lab-scale experiments to investigate the tertiary treatment of discharged effluents. We conclude with recommendations on how future data should best be used and interpreted.

  3. Maintenance of asymmetric cellular localization of an auxin transport protein through interaction with the actin cytoskeleton

    NASA Technical Reports Server (NTRS)

    Muday, G. K.

    2000-01-01

    In shoots, polar auxin transport is basipetal (that is, from the shoot apex toward the base) and is driven by the basal localization of the auxin efflux carrier complex. The focus of this article is to summarize the experiments that have examined how the asymmetric distribution of this protein complex is controlled and the significance of this polar distribution. Experimental evidence suggests that asymmetries in the auxin efflux carrier may be established through localized secretion of Golgi vesicles, whereas an attachment of a subunit of the efflux carrier to the actin cytoskeleton may maintain this localization. In addition, the idea that this localization of the efflux carrier may control both the polarity of auxin movement and more globally regulate developmental polarity is explored. Finally, evidence indicating that the gravity vector controls auxin transport polarity is summarized and possible mechanisms for the environmentally induced changes in auxin transport polarity are discussed.

  4. In vitro, in vivo and ex vivo characterization of ibrutinib: a potent inhibitor of the efflux function of the transporter MRP1.

    PubMed

    Zhang, Hui; Patel, Atish; Ma, Shao-Lin; Li, Xiao Jie; Zhang, Yun-Kai; Yang, Pei-Qi; Kathawala, Rishil J; Wang, Yi-Jun; Anreddy, Nagaraju; Fu, Li-Wu; Chen, Zhe-Sheng

    2014-12-01

    The transporter, multidrug resistance protein 1 (MRP1, ABCC1), plays a critical role in the development of multidrug resistance (MDR). Ibrutinib is an inhibitor of Bruton's tyrosine kinase. Here we investigated the reversal effect of ibrutinib on MRP1-mediated MDR. Cytotoxicity was determined by MTT assay. The expression of protein was detected by Western blot. RT-PCR and Q-PCR were performed to detect the expression of MRP1 mRNA. The intracellular accumulation and efflux of substrates for MRP1 were measured by scintillation counter and flow cytometry. HEK293/MRP1 cell xenografts in nude mice were established to study the effects of ibrutinib in vivo. Ibrutinib significantly enhanced the cytotoxicity of MRP1 substrates in HEK293/MRP1 and HL60/Adr cells overexpressing MRP1. Furthermore, ibrutinib increased the accumulation of substrates in these MRP1-overexpressing cells by inhibiting the drug efflux function of MRP1. However, mRNA and protein expression of MRP1 remained unaltered after treatment with ibrutinib in MRP1-overexpressing cells. In vivo, ibrutinib enhanced the efficacy of vincristine to inhibit the growth of HEK293/MRP1 tumour xenografts in nude mice. Importantly, ibrutinib also enhances the cytotoxicity of vincristine in primary cultures of leukaemia blasts, derived from patients. Our results indicated that ibrutinib significantly increased the efficacy of the chemotherapeutic agents which were MRP1 substrates, in MRP1-overexpressing cells, in vitro, in vivo and ex vivo. These findings will lead to further studies on the effects of a combination of ibrutinib with chemotherapeutic agents in cancer patients overexpressing MRP1. © 2014 The British Pharmacological Society.

  5. In vitro, in vivo and ex vivo characterization of ibrutinib: a potent inhibitor of the efflux function of the transporter MRP1

    PubMed Central

    Zhang, Hui; Patel, Atish; Ma, Shao-Lin; Li, Xiao Jie; Zhang, Yun-Kai; Yang, Pei-Qi; Kathawala, Rishil J; Wang, Yi-Jun; Anreddy, Nagaraju; Fu, Li-Wu; Chen, Zhe-Sheng

    2014-01-01

    Background and Purpose The transporter, multidrug resistance protein 1 (MRP1, ABCC1), plays a critical role in the development of multidrug resistance (MDR). Ibrutinib is an inhibitor of Bruton's tyrosine kinase. Here we investigated the reversal effect of ibrutinib on MRP1-mediated MDR. Experimental Approach Cytotoxicity was determined by MTT assay. The expression of protein was detected by Western blot. RT-PCR and Q-PCR were performed to detect the expression of MRP1 mRNA. The intracellular accumulation and efflux of substrates for MRP1 were measured by scintillation counter and flow cytometry. HEK293/MRP1 cell xenografts in nude mice were established to study the effects of ibrutinib in vivo. Key Results Ibrutinib significantly enhanced the cytotoxicity of MRP1 substrates in HEK293/MRP1 and HL60/Adr cells overexpressing MRP1. Furthermore, ibrutinib increased the accumulation of substrates in these MRP1-overexpressing cells by inhibiting the drug efflux function of MRP1. However, mRNA and protein expression of MRP1 remained unaltered after treatment with ibrutinib in MRP1-overexpressing cells. In vivo, ibrutinib enhanced the efficacy of vincristine to inhibit the growth of HEK293/MRP1 tumour xenografts in nude mice. Importantly, ibrutinib also enhances the cytotoxicity of vincristine in primary cultures of leukaemia blasts, derived from patients. Conclusions and Implications Our results indicated that ibrutinib significantly increased the efficacy of the chemotherapeutic agents which were MRP1 substrates, in MRP1-overexpressing cells, in vitro, in vivo and ex vivo. These findings will lead to further studies on the effects of a combination of ibrutinib with chemotherapeutic agents in cancer patients overexpressing MRP1. PMID:25164592

  6. V1-receptor mediated GSH efflux by vasopressin from rat hepatocytes.

    PubMed

    Sato, C; Liu, J H; Uchihara, M; Izumi, N; Yauchi, T; Sakaj, Y; Asahina, Y; Fukuma, T; Takano, T; Marumo, F

    1992-01-01

    Vasopression increases sinusoidal efflux of GSH in the perfused rat liver. The mechanism of this effect was studied in the perfused rat liver and in isolated rat hepatocytes. Vasopressin stimulated GSH efflux in both systems and a V1-receptor antagonist (OPC-21268) significantly inhibited the effect of vasopressin suggesting that vasopressin stimulates GSH efflux from rat hepatocytes via V1-receptor.

  7. 13-hydroxy linoleic acid increases expression of the cholesterol transporters ABCA1, ABCG1 and SR-BI and stimulates apoA-I-dependent cholesterol efflux in RAW264.7 macrophages

    PubMed Central

    2011-01-01

    Background Synthetic activators of peroxisome proliferator-activated receptors (PPARs) stimulate cholesterol removal from macrophages through PPAR-dependent up-regulation of liver × receptor α (LXRα) and subsequent induction of cholesterol exporters such as ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type 1 (SR-BI). The present study aimed to test the hypothesis that the hydroxylated derivative of linoleic acid (LA), 13-HODE, which is a natural PPAR agonist, has similar effects in RAW264.7 macrophages. Methods RAW264.7 macrophages were treated without (control) or with LA or 13-HODE in the presence and absence of PPARα or PPARγ antagonists and determined protein levels of LXRα, ABCA1, ABCG1, SR-BI, PPARα and PPARγ and apolipoprotein A-I mediated lipid efflux. Results Treatment of RAW264.7 cells with 13-HODE increased PPAR-transactivation activity and protein concentrations of LXRα, ABCA1, ABCG1 and SR-BI when compared to control treatment (P < 0.05). In addition, 13-HODE enhanced cholesterol concentration in the medium but decreased cellular cholesterol concentration during incubation of cells with the extracellular lipid acceptor apolipoprotein A-I (P < 0.05). Pre-treatment of cells with a selective PPARα or PPARγ antagonist completely abolished the effects of 13-HODE on cholesterol efflux and protein levels of genes investigated. In contrast to 13-HODE, LA had no effect on either of these parameters compared to control cells. Conclusion 13-HODE induces cholesterol efflux from macrophages via the PPAR-LXRα-ABCA1/SR-BI-pathway. PMID:22129452

  8. Cyclic AMP efflux inhibitors as potential therapeutic agents for leukemia.

    PubMed

    Perez, Dominique R; Smagley, Yelena; Garcia, Matthew; Carter, Mark B; Evangelisti, Annette; Matlawska-Wasowska, Ksenia; Winter, Stuart S; Sklar, Larry A; Chigaev, Alexandre

    2016-06-07

    Apoptotic evasion is a hallmark of cancer. We propose that some cancers may evade cell death by regulating 3'-5'-cyclic adenosine monophosphate (cAMP), which is associated with pro-apoptotic signaling. We hypothesize that leukemic cells possess mechanisms that efflux cAMP from the cytoplasm, thus protecting them from apoptosis. Accordingly, cAMP efflux inhibition should result in: cAMP accumulation, activation of cAMP-dependent downstream signaling, viability loss, and apoptosis. We developed a novel assay to assess cAMP efflux and performed screens to identify inhibitors. In an acute myeloid leukemia (AML) model, several identified compounds reduced cAMP efflux, appropriately modulated pathways that are responsive to cAMP elevation (cAMP-responsive element-binding protein phosphorylation, and deactivation of Very Late Antigen-4 integrin), and induced mitochondrial depolarization and caspase activation. Blocking adenylyl cyclase activity was sufficient to reduce effects of the most potent compounds. These compounds also decreased cAMP efflux and viability of B-lineage acute lymphoblastic leukemia (B-ALL) cell lines and primary patient samples, but not of normal primary peripheral blood mononuclear cells. Our data suggest that cAMP efflux is a functional feature that could be therapeutically targeted in leukemia. Furthermore, because some of the identified drugs are currently used for treating other illnesses, this work creates an opportunity for repurposing.

  9. A physico-genetic module for the polarisation of auxin efflux carriers PIN-FORMED (PIN)

    NASA Astrophysics Data System (ADS)

    Hernández-Hernández, Valeria; Barrio, Rafael A.; Benítez, Mariana; Nakayama, Naomi; Romero-Arias, José Roberto; Villarreal, Carlos

    2018-05-01

    Intracellular polarisation of auxin efflux carriers is crucial for understanding how auxin gradients form in plants. The polarisation dynamics of auxin efflux carriers PIN-FORMED (PIN) depends on both biomechanical forces as well as chemical, molecular and genetic factors. Biomechanical forces have shown to affect the localisation of PIN transporters to the plasma membrane. We propose a physico-genetic module of PIN polarisation that integrates biomechanical, molecular, and cellular processes as well as their non-linear interactions. The module was implemented as a discrete Boolean model and then approximated to a continuous dynamic system, in order to explore the relative contribution of the factors mediating PIN polarisation at the scale of single cell. Our models recovered qualitative behaviours that have been experimentally observed and enable us to predict that, in the context of PIN polarisation, the effects of the mechanical forces can predominate over the activity of molecular factors such as the GTPase ROP6 and the ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN RIC1.

  10. Arsenic and Antimony Transporters in Eukaryotes

    PubMed Central

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters. PMID:22489166

  11. Arsenic and antimony transporters in eukaryotes.

    PubMed

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  12. Secretin stimulates HCO3(-) and acetate efflux but not Na+/HCO3(-) uptake in rat pancreatic ducts.

    PubMed

    Novak, I; Christoffersen, B C

    2001-03-01

    Pancreatic ducts secrete HCO3(-), but transport mechanisms are unresolved and possibly vary between species. Our aim was to study the intracellular pH (pHi) regulation and thus H+/HCO3- transport in rat pancreatic ducts. Of particular interest was the Na+/HCO3(-) cotransporter, thought to be important in HCO3(-) -transporting epithelia. pHi was measured with BCECF in freshly isolated intralobular ducts. A reduction in extracellular Na+ concentration or application of HOE 694 (1 microM) decreased pHi by 0.1 to 0.6 pH units, demonstrating Na+/H+ exchanger activity. A reduction in extracellular Cl- concentration or addition of H2DIDS (10 microM) increased pHi by 0.1 to 0.5 pH units, demonstrating Cl-/ HCO(3)- (OH ) exchanger activity. In experimental acidosis, extracellular HCO3(-)/CO2 buffer did not increase the rate of pHi recovery, indicating that provision of HCO3(-) by the Na+/HCO3(-) cotransporter was not apparent. Most importantly, Na+/HCO3(-) cotransport was not stimulated by secretin (1 nM). In contrast, in experimental alkalosis the pHi recovery was increased in HCO3(-)/CO2 buffer, possibly due to Na+/HCO3(-) cotransport in the efflux mode. Secretin (1 nM) and carbachol (1 microM) stimulated HCO3(-) efflux, which can account for the observed HCO3(-) concentrations in rat pancreatic juice. Acetate and HCO3(-) buffers were handled similarly, indicating similar transport mechanisms in pancreatic ducts.

  13. Efflux inhibitor suppresses Streptococcus mutans virulence properties.

    PubMed

    Zeng, Huihui; Liu, Jia; Ling, Junqi

    2017-04-01

    It is well established that efflux pumps play important roles in bacterial pathogenicity and efflux inhibitors (EIs) have been proved to be effective in suppressing bacterial virulence properties. However, little is known regarding the EI of Streptococcus mutans, a well-known caries-inducing bacterium. In this study, we identified the EI of S. mutans through ethidium bromide efflux assay and investigated how EI affected S. mutans virulence regarding the cariogenicity and stress response. Results indicated that reserpine, the identified EI, suppressed acid tolerance, mutacin production and transformation efficiency of S. mutans, and modified biofilm architecture and extracellular polysaccharide distribution. Suppressed glycosyltransferase activity was also noted after reserpine exposure. The data from quantitative real-time-PCR demonstrated that reserpine significantly altered the expression profile of quorum-sensing and virulence-associated genes. These findings suggest that reserpine represents a promising adjunct anticariogenic agent in that it suppresses virulence properties of S. mutans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins.

    PubMed

    Chacón, Kelly N; Mealman, Tiffany D; McEvoy, Megan M; Blackburn, Ninian J

    2014-10-28

    Copper is an essential nutrient for all aerobic organisms but is toxic in excess. At the host-pathogen interface, macrophages respond to bacterial infection by copper-dependent killing mechanisms, whereas the invading bacteria are thought to counter with an up-regulation of copper transporters and efflux pumps. The tripartite efflux pump CusCBA and its metallochaperone CusF are vital to the detoxification of copper and silver ions in the periplasm of Escherichia coli. However, the mechanism of efflux by this complex, which requires the activation of the inner membrane pump CusA, is poorly understood. Here, we use selenomethionine (SeM) active site labels in a series of biological X-ray absorption studies at the selenium, copper, and silver edges to establish a "switch" role for the membrane fusion protein CusB. We determine that metal-bound CusB is required for activation of cuprous ion transfer from CusF directly to a site in the CusA antiporter, showing for the first time (to our knowledge) the in vitro activation of the Cus efflux pump. This metal-binding site of CusA is unlike that observed in the crystal structures of the CusA protein and is composed of one oxygen and two sulfur ligands. Our results suggest that metal transfer occurs between CusF and apo-CusB, and that, when metal-loaded, CusB plays a role in the regulation of metal ion transfer from CusF to CusA in the periplasm.

  15. Random Mutagenesis of the Multidrug Transporter AcrB from Escherichia coli for Identification of Putative Target Residues of Efflux Pump Inhibitors

    PubMed Central

    Kohler, Samay; Buck, Annika; Dambacher, Christine; König, Armin; Bohnert, Jürgen A.; Kern, Winfried V.

    2014-01-01

    Efflux is an important mechanism of bacterial multidrug resistance (MDR), and the inhibition of MDR pumps by efflux pump inhibitors (EPIs) could be a promising strategy to overcome MDR. 1-(1-Naphthylmethyl)-piperazine (NMP) and phenylalanine-arginine-β-naphthylamide (PAβN) are model EPIs with activity in various Gram-negative bacteria expressing AcrB, the major efflux pump of Escherichia coli, or similar homologous pumps of the resistance-nodulation-cell division class. The aim of the present study was to generate E. coli AcrB mutants resistant to the inhibitory action of the two model EPIs and to identify putative EPI target residues in order to better understand mechanisms of pump inhibition. Using an in vitro random mutagenesis approach focusing on the periplasmic domain of AcrB, we identified the double mutation G141D N282Y, which substantially compromised the synergistic activity of NMP with linezolid, was associated with similar intracellular linezolid concentrations in the presence and absence of NMP, and did not impair the intrinsic MICs of various pump substrates and dye accumulation. We propose that these mutations near the outer face of the distal substrate binding pocket reduce NMP trapping. Other residues found to be relevant for efflux inhibition by NMP were G288 and A279, but mutations at these sites also changed the susceptibility to several pump substrates. Unlike with NMP, we were unable to generate AcrB periplasmic domain mutants with resistance or partial resistance to the EPI activity of PAβN, which is consistent with the modes of action of PAβN differing from those of NMP. PMID:25182653

  16. CINPA1 Is an Inhibitor of Constitutive Androstane Receptor That Does Not Activate Pregnane X Receptor

    PubMed Central

    Cherian, Milu T; Lin, Wenwei; Wu, Jing

    2015-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. PMID:25762023

  17. A Pseudomonas putida efflux pump acts on short-chain alcohols.

    PubMed

    Basler, Georg; Thompson, Mitchell; Tullman-Ercek, Danielle; Keasling, Jay

    2018-01-01

    The microbial production of biofuels is complicated by a tradeoff between yield and toxicity of many fuels. Efflux pumps enable bacteria to tolerate toxic substances by their removal from the cells while bypassing the periplasm. Their use for the microbial production of biofuels can help to improve cell survival, product recovery, and productivity. However, no native efflux pump is known to act on the class of short-chain alcohols, important next-generation biofuels, and it was considered unlikely that such an efflux pump exists. We report that controlled expression of the RND-type efflux pump TtgABC from Pseudomonas putida DOT-T1E strongly improved cell survival in highly toxic levels of the next-generation biofuels n -butanol, isobutanol, isoprenol, and isopentanol. GC-FID measurements indicated active efflux of n -butanol when the pump is expressed. Conversely, pump expression did not lead to faster growth in media supplemented with low concentrations of n -butanol and isopentanol. TtgABC is the first native efflux pump shown to act on multiple short-chain alcohols. Its controlled expression can be used to improve cell survival and increase production of biofuels as an orthogonal approach to metabolic engineering. Together with the increased interest in P. putida for metabolic engineering due to its flexible metabolism, high native tolerance to toxic substances, and various applications of engineering its metabolism, our findings endorse the strain as an excellent biocatalyst for the high-yield production of next-generation biofuels.

  18. The N Terminus of Monoamine Transporters Is a Lever Required for the Action of Amphetamines*

    PubMed Central

    Sucic, Sonja; Dallinger, Stefan; Zdrazil, Barbara; Weissensteiner, René; Jørgensen, Trine N.; Holy, Marion; Kudlacek, Oliver; Seidel, Stefan; Cha, Joo Hwan; Gether, Ulrik; Newman, Amy H.; Ecker, Gerhard F.; Freissmuth, Michael; Sitte, Harald H.

    2010-01-01

    The serotonin transporter (SERT) terminates neurotransmission by removing serotonin from the synaptic cleft. In addition, it is the site of action of antidepressants (which block the transporter) and of amphetamines (which induce substrate efflux). We explored the functional importance of the N terminus in mediating the action of amphetamines by focusing initially on the highly conserved threonine residue at position 81, a candidate site for phosphorylation by protein kinase C. Molecular dynamics simulations of the wild type SERT, compared with its mutations SERTT81A and SERTT81D, suggested structural changes in the inner vestibule indicative of an opening of the inner vestibule. Predictions from this model (e.g. the preferential accumulation of SERTT81A in the inward conformation, its reduced turnover number, and a larger distance between its N and C termini) were verified. Most importantly, SERTT81A (and the homologous mutations in noradrenaline and dopamine) failed to support amphetamine-induced efflux, and this was not remedied by aspartate at this position. Amphetamine-induced currents through SERTT81A were comparable with those through the wild type transporter. Both abundant Na+ entry and accumulation of SERTT81A in the inward facing conformation ought to favor amphetamine-induced efflux. Thus, we surmised that the N terminus must play a direct role in driving the transporter into a state that supports amphetamine-induced efflux. This hypothesis was verified by truncating the first 64 amino acids and by tethering the N terminus to an additional transmembrane helix. Either modification abolished amphetamine-induced efflux. We therefore conclude that the N terminus of monoamine transporters acts as a lever that sustains reverse transport. PMID:20118234

  19. MCT Expression and Lactate Influx/Efflux in Tanycytes Involved in Glia-Neuron Metabolic Interaction

    PubMed Central

    Cortés-Campos, Christian; Elizondo, Roberto; Llanos, Paula; Uranga, Romina María; Nualart, Francisco; García, María Angeles

    2011-01-01

    Metabolic interaction via lactate between glial cells and neurons has been proposed as one of the mechanisms involved in hypothalamic glucosensing. We have postulated that hypothalamic glial cells, also known as tanycytes, produce lactate by glycolytic metabolism of glucose. Transfer of lactate to neighboring neurons stimulates ATP synthesis and thus contributes to their activation. Because destruction of third ventricle (III-V) tanycytes is sufficient to alter blood glucose levels and food intake in rats, it is hypothesized that tanycytes are involved in the hypothalamic glucose sensing mechanism. Here, we demonstrate the presence and function of monocarboxylate transporters (MCTs) in tanycytes. Specifically, MCT1 and MCT4 expression as well as their distribution were analyzed in Sprague Dawley rat brain, and we demonstrate that both transporters are expressed in tanycytes. Using primary tanycyte cultures, kinetic analyses and sensitivity to inhibitors were undertaken to confirm that MCT1 and MCT4 were functional for lactate influx. Additionally, physiological concentrations of glucose induced lactate efflux in cultured tanycytes, which was inhibited by classical MCT inhibitors. Because the expression of both MCT1 and MCT4 has been linked to lactate efflux, we propose that tanycytes participate in glucose sensing based on a metabolic interaction with neurons of the arcuate nucleus, which are stimulated by lactate released from MCT1 and MCT4-expressing tanycytes. PMID:21297988

  20. Xenobiotic effects on intestinal stem cell proliferation in adult honey bee (Apis mellifera L) workers.

    PubMed

    Forkpah, Cordelia; Dixon, Luke R; Fahrbach, Susan E; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species.

  1. Xenobiotic Effects on Intestinal Stem Cell Proliferation in Adult Honey Bee (Apis mellifera L) Workers

    PubMed Central

    Forkpah, Cordelia; Dixon, Luke R.; Fahrbach, Susan E.; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species. PMID:24608542

  2. In silico identification and construction of microbial gene clusters associated with biodegradation of xenobiotic compounds.

    PubMed

    Awasthi, Garima; Kumari, Anjani; Pant, Aditya Bhushan; Srivastava, Prachi

    2018-01-01

    Chemical substances not showing any importance in existence of biological systems and causing serious health hazards may be designated as Xenobiotic compound. Elimination or degradation of these unwanted substances is a major issue of concern for current time research. Process of biodegradation is a very important aspect of current research as discussed in current manuscript. Current study focuses on the detailed mining of data for the construction of microbial consortia for wide range of xenobiotics compounds. Intensive literature search was done for the construction of this library. Desired data was retrieved from NCBI in fasta format. Data was analysed through homology approaches by using BLAST. This homology based searched enriched with a great vision that not only bacterial population but many other cheap and potential sources are available for different xenobiotic degradation. Though it was focused that bacterial population covers a major part of biodegradation which is near about 90.6% but algae and fungi are also showing promising future in degradation of some important xenobiotic compounds. Analysis of data reveals that Pseudomonas putida has potential for degrading maximum compounds. Establishment of correlation through cluster analysis signifies that Pseudomonas putida, Aspergillus niger and Skeletonema costatum can have combined traits that can be used in finding out actual evolutionary relationship between these species. These findings may also givea new outcome in terms of much cheaper and eco-friendly source in the area of biodegradation of specified xenobiotic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Influence of xenobiotics on the microbiological and agrochemical parameters of soddy-podzolic soil

    NASA Astrophysics Data System (ADS)

    Vakkerov-Kouzova, N. D.

    2010-08-01

    We studied the influence of various chemical compounds, i.e., azobenzene (an insecticide and acaricide), nitrification inhibitors (DCD, dicyandiamide and DMPP, and 3,4-dimetylpyrazolphosphate), and inhibitors of urease activity (HQ-hydroquinone), on the agrochemical and microbiological parameters of a soddy-podzolic soil. It is proved that these xenobiotics are able to influence the agrochemical parameters (the pH and the content of NO{3/-} and NH{4/+}, the microbial activity (the basal respiration, the microbial mass carbon, and the microbial quotient), and the number of bacteria of different physiological groups in soddypodzolic soil. The influence of the xenobiotics was preserved for some time, which testified to their persistence in the soil. Upon cultivating the soil microorganisms in different media, the growth of the heterotrophic bacteria was inhibited, the radial growth velocity was slowed down, and the sporogenesis of the micromycetes was retarded. The toxic effect of the xenobiotics was higher with their increasing concentrations.

  4. Wood CO(2) efflux and foliar respiration for Eucalyptus in Hawaii and Brazil.

    PubMed

    Ryan, Michael G; Cavaleri, Molly A; Almeida, Auro C; Penchel, Ricardo; Senock, Randy S; Luiz Stape, José

    2009-10-01

    We measured CO(2) efflux from wood for Eucalyptus in Hawaii for 7 years and compared these measurements with those on three- and four-and-a-half-year-old Eucalyptus in Brazil. In Hawaii, CO(2) efflux from wood per unit biomass declined approximately 10x from age two to age five, twice as much as the decline in tree growth. The CO(2) efflux from wood in Brazil was 8-10x lower than that for comparable Hawaii trees with similar growth rates. Growth and maintenance respiration coefficients calculated from Hawaii wood CO(2) efflux declined with tree age and size (the growth coefficient declined from 0.4 mol C efflux mol C(-1) wood growth at age one to 0.1 mol C efflux mol C(-1) wood growth at age six; the maintenance coefficient from 0.006 to 0.001 micromol C (mol C biomass)(-1) s(-1) at 20 degrees C over the same time period). These results suggest interference with CO(2) efflux through bark that decouples CO(2) efflux from respiration. We also compared the biomass fractions and wood CO(2) efflux for the aboveground woody parts for 3- and 7-year-old trees in Hawaii to estimate how focusing measurements near the ground might bias the stand-level estimates of wood CO(2) efflux. Three-year-old Eucalyptus in Hawaii had a higher proportion of branches < 0.5 cm in diameter and a lower proportion of stem biomass than did 7-year-old trees. Biomass-specific CO(2) efflux measured at 1.4 m extrapolated to the tree could bias tree level estimates by approximately 50%, assuming no refixation from bark photosynthesis. However, the bias did not differ for the two tree sizes. Foliar respiration was identical per unit nitrogen for comparable treatments in Brazil and Hawaii (4.2 micromol C mol N(-1) s(-1) at 20 degrees C).

  5. Contribution of efflux to colistin heteroresistance in a multidrug resistant Acinetobacter baumannii clinical isolate.

    PubMed

    Machado, Diana; Antunes, Jéssica; Simões, Ana; Perdigão, João; Couto, Isabel; McCusker, Matthew; Martins, Marta; Portugal, Isabel; Pacheco, Teresa; Batista, Judite; Toscano, Cristina; Viveiros, Miguel

    2018-06-01

    The mechanisms underlying colistin heteroresistance in Acinetobacter baumannii are not fully understood. Here, we investigated the role of efflux in colistin-heteroresistant populations of a multidrug-resistant (MDR) A. baumannii clinical isolate. Three colistin-resistant A. baumannii strain variants isolated from the same clinical sample were studied for the presence of heteroresistance to colistin by drug susceptibility testing, genotyping and drug resistance target mutation analysis. The existence of active efflux was studied by synergism assays with efflux inhibitors, real-time efflux activity measurements and analysis of the mRNA transcriptional levels of selected efflux pump genes in response to colistin. All of the strain variants belong to the ST218, clonal complex 92, international clonal lineage II. Different colistin susceptibility levels were observed among the three strain variants, indicating that colistin-heteroresistant subpopulations were being selected upon exposure to colistin. No mutations were found in the genes lpxACD and pmrAB, which are associated with colistin resistance. The results showed the existence of synergistic interactions between efflux inhibitors and colistin and ethidium bromide. Real-time efflux assays demonstrated that the three strain variants had increased efflux activity that could be inhibited in the presence of the inhibitors. The efflux pump genes adeB, adeJ, adeG, craA, amvA, abeS and abeM were found to be overexpressed in the strain variants in response to colistin exposure. This study shows that efflux activity contributes to colistin heteroresistance in an MDR A. baumannii clinical isolate. The use of efflux inhibitors as adjuvants of the therapy can resensitize A. baumannii to colistin and prevent the emergence of drug resistance.

  6. Targeting blood–brain barrier changes during inflammatory pain: an opportunity for optimizing CNS drug delivery

    PubMed Central

    Ronaldson, Patrick T; Davis, Thomas P

    2012-01-01

    The blood–brain barrier (BBB) is the most significant obstacle to effective CNS drug delivery. It possesses structural and biochemical features (i.e., tight-junction protein complexes and, influx and efflux transporters) that restrict xenobiotic permeation. Pathophysiological stressors (i.e., peripheral inflammatory pain) can alter BBB tight junctions and transporters, which leads to drug-permeation changes. This is especially critical for opioids, which require precise CNS concentrations to be safe and effective analgesics. Recent studies have identified molecular targets (i.e., endogenous transporters and intracellular signaling systems) that can be exploited for optimization of CNS drug delivery. This article summarizes current knowledge in this area and emphasizes those targets that present the greatest opportunity for controlling drug permeation and/or drug transport across the BBB in an effort to achieve optimal CNS opioid delivery. PMID:22468221

  7. Non-Alcoholic Fatty Liver Disease (NAFLD) - Pathogenesis, Classification, and Effect on Drug Metabolizing Enzymes and Transporters

    PubMed Central

    Cobbina, Enoch; Akhlaghi, Fatemeh

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver disorders. It is defined by the presence of steatosis in more than 5 % of hepatocytes with little or no alcohol consumption. Insulin resistance, the metabolic syndrome or type 2 diabetes and genetic variants of PNPLA3 or TM6SF2 seem to play a role in the pathogenesis of NAFLD. The pathological progression of NAFLD follows tentatively a ‘three-hit’ process namely steatosis, lipotoxicity and inflammation. The presence of steatosis, oxidative stress and inflammatory mediators like TNF-α and IL-6 have been implicated in the alterations of nuclear factors such as CAR, PXR, PPAR-α in NAFLD. These factors may results in altered expression and activity of drug metabolizing enzymes (DMEs) or transporters. Existing evidence suggests that the effect of NAFLD on CYP3A4, CYP2E1 and MRP3 are more consistent across rodent and human studies. CYP3A4 activity is down-regulated in NASH whereas the activity of CYP2E1 and the efflux transporter MRP3 are up-regulated. However, it is not clear how the majority of CYPs, UGTs, SULTs and transporters are influenced by NAFLD either in vivo or in vitro. The alterations associated with NAFLD could be a potential source of drug variability in patients and could have serious implications for the safety and efficacy of xenobiotics. In this review, we summarize the effects of NAFLD on the regulation, expression and activity of major drug metabolizing enzymes and transporters. We also discuss the potential mechanisms underlying these alterations. PMID:28303724

  8. Aquatic models for the study of renal transport function and pollutant toxicity.

    PubMed Central

    Miller, D S

    1987-01-01

    Studies of renal cell transport mechanisms and their impairment by xenobiotics are often limited by technical difficulties related to renal tubule complexity. Problems include the juxtaposition of multiple tubule segments with different transport functions and severely limited access to the tubular lumen. Some limitations can be overcome by the careful selection of an appropriate aquatic experimental system. Two aquatic models for the vertebrate proximal segment are discussed here. The first is the kidney from certain marine flounder, which offers the following advantages: long-term viability, little tissue of nonproximal origin, and easy tubule isolation. Data are presented to demonstrate how studies with flounder kidney can be used to elucidate cellular mechanisms whereby different classes of toxic pollutants may interact. Results from these experiments indicate that the excretion of certain anionic xenobiotics can be delayed by other anionic xenobiotics that compete for secretory transport sites and by compounds that disrupt cellular ion gradients and energy metabolism needed to drive transport. The second system is the crustacean urinary bladder, a simple, flatsheet epithelium. Bladder morphology and transport physiology closely resemble those of vertebrate proximal segment. Electron micrographs show a brush border membrane at the luminal surface, numerous mitochondria, and an infolded serosal membrane, while in vivo and in vitro transport studies show reabsorption of NaCl, nutrients and water and secretion of organic cations; organic anions are secreted in bladders from some species and reabsorbed in others. Moreover, since bladders can be mounted as flat sheets in flux chambers, studies with this tissue avoid the problems of complex renal tubule geometry and tissue heterogeneity that limit transport studies in proximal tubule. Images FIGURE 3. FIGURE 6. PMID:3297665

  9. Short-term calorie restriction feminizes the mRNA profiles of drug metabolizing enzymes and transporters in livers of mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Zidong Donna; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2014-01-01

    Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors.more » In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. - Highlights: • Utilized a graded CR model in male mice • The mRNA profiles of xenobiotic processing genes (XPGs) in liver were investigated. • CR up-regulates many phase-II enzymes. • CR tends to feminize the mRNA profiles of XPGs.« less

  10. Free Radical Mechanisms of Xenobiotic Mammalian Cytotoxicities

    DTIC Science & Technology

    1991-06-30

    injury process was mediated through biotransformation of the halocarbons to a free radical intermediate, similar to what happens in the liver . However...peroxidation) of antioxidant agents - is not limited to the liver , but also occurs in vascular cells as well. Unlike the liver , where most of the injury is...frequent mechanism of xenobiotic liver toxicity is biotransformation by cytochrome P,5o-enzymes to toxic free radical intermediates. The primary objective

  11. Free Radical Mechanisms of Xenobiotic Mammalian Cytotoxicities

    DTIC Science & Technology

    1988-10-31

    cytochrome P450 is small compared to that of the liver (about 0.1%), cardiovascular tissues may be more susceptible to oxidative injury because of the... injury participates in the pathogenic mechanisms of many lipophilic xenobiotic compounds). The most dramatic finding is our demonstration that five...UPID PEROXIDATION BETTER THAN THE INITIAL RADICAL OR HYDROPEROXIDE. INDIRECT IRP EFFECTS ON FREE RADICAL MEMBRANE INJURY : 4) POISONING OF THE ELECTRON

  12. Inhibition mechanism of P-glycoprotein mediated efflux by mPEG-PLA and influence of PLA chain length on P-glycoprotein inhibition activity.

    PubMed

    Li, Wenjing; Li, Xinru; Gao, Yajie; Zhou, Yanxia; Ma, Shujin; Zhao, Yong; Li, Jinwen; Liu, Yan; Wang, Xinglin; Yin, Dongdong

    2014-01-06

    The present study aimed to investigate the effect of monomethoxy poly(ethylene glycol)-block-poly(D,L-lactic acid) (mPEG-PLA) on the activity of P-glycoprotein (P-gp) in Caco-2 cells and further unravel the relationship between PLA chain length in mPEG-PLA and influence on P-gp efflux and the action mechanism. The transport results of rhodamine 123 (R123) across Caco-2 cell monolayers suggested that mPEG-PLA unimers were responsible for its P-gp inhibitory effect. Furthermore, transport studies of R123 revealed that the inhibitory potential of P-gp efflux by mPEG-PLA analogues was strongly correlated with their structural features and showed that the hydrophilic mPEG-PLA copolymers with an intermediate PLA chain length and 10.20 of hydrophilic-lipophilic balance were more effective at inhibiting P-gp efflux in Caco-2 cells. The fluorescence polarization measurement results ruled out the plasma membrane fluidization as a contributor for inhibition of P-gp by mPEG-PLA. Concurrently, mPEG-PLA inhibited neither basal P-gp ATPase (ATP is adenosine triphosphate) activity nor substrate stimulated P-gp ATPase activity, suggesting that mPEG-PLA seemed not to be a substrate of P-gp and a competitive inhibitor. No evident alteration in P-gp surface level was detected by flow cytometry upon exposure of the cells to mPEG-PLA. The depletion of intracellular ATP, which was likely to be a result of partial inhibition of cellular metabolism, was directly correlated with inhibitory potential for P-gp mediated efflux by mPEG-PLA analogues. Hence, intracellular ATP-depletion appeared to be possible explanation to the inhibition mechanism of P-gp by mPEG-PLA. Taken together, the establishment of a relationship between PLA chain length and impact on P-gp efflux activity and interpretation of action mechanism of mPEG-PLA on P-gp are of fundamental importance and will facilitate future development of mPEG-PLA in the drug delivery area.

  13. ITC commentary on the prediction of digoxin clinical drug-drug interactions from in vitro transporter assays.

    PubMed

    Lee, C A; Kalvass, J C; Galetin, A; Zamek-Gliszczynski, M J

    2014-09-01

    The "P-glycoprotein" IC50 working group reported an 18- to 796-fold interlaboratory range in digoxin transport IC50 (inhibitor concentration achieving 50% of maximal inhibition), raising concerns about the predictability of clinical transporter-based drug-drug interactions (DDIs) from in vitro data. This Commentary describes complexities of digoxin transport, which involve both uptake and efflux processes. We caution against attributing digoxin transport IC50 specifically to P-glycoprotein (P-gp) or extending this composite uptake/efflux IC50 variability to individual transporters. Clinical digoxin interaction studies should be interpreted as evaluation of digoxin safety, not P-gp DDIs.

  14. Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest.

    PubMed

    Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Ohashi, Mizue; Matsumoto, Kazuho; Ichihashi, Ryuji; Kumagai, Tomo'omi; Otsuki, Kyoichi

    2014-05-01

    Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux. © The Author 2014. Published by Oxford University Press. All rights reserved.

  15. Characterization and regulation of the resistance-nodulation-cell division-type multidrug efflux pumps MdtABC and MdtUVW from the fire blight pathogen Erwinia amylovora.

    PubMed

    Pletzer, Daniel; Weingart, Helge

    2014-07-11

    The Gram-negative bacterium Erwinia amylovora is the causal agent of the devastating disease fire blight in rosaceous plants such as apple, pear, quince, raspberry, and cotoneaster. In order to survive and multiply in a host, microbes must be able to circumvent the toxic effects of antimicrobial plant compounds, such as flavonoids and tannins. E. amylovora uses multidrug efflux transporters that recognize and actively export toxic compounds out of the cells. Here, two heterotrimeric resistance-nodulation-cell division (RND)-type multidrug efflux pumps, MdtABC and MdtUVW, from E. amylovora were identified. These RND systems are unusual in that they contain two different RND proteins forming a functional pump. To find the substrate specificities of the two efflux systems, we overexpressed the transporters in a hypersensitive mutant lacking the major RND pump AcrB. Both transporters mediated resistance to several flavonoids, fusidic acid and novobiocin. Additionally, MdtABC mediated resistance towards josamycin, bile salts and silver nitrate, and MdtUVW towards clotrimazole. The ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock was reduced. Quantitative RT-PCR analyses revealed that the expression of the transporter genes was induced during infection of apple rootstock. The polyphenolic plant compound tannin, as well as the heavy metal salt tungstate was found to induce the expression of mdtABC. Finally, the expression of the mdtABC genes was shown to be regulated by BaeR, the response regulator of the two-component system BaeSR, a cell envelope stress response system that controls the adaptive responses to changes in the environment. The expression of MdtABC and MdtUVW is induced during growth of E. amylovora in planta. We identified the plant polyphenol tannin as inducer of mdtABC expression. The reduced ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock suggests that the efflux pumps are involved in

  16. Characterization and regulation of the Resistance-Nodulation-Cell Division-type multidrug efflux pumps MdtABC and MdtUVW from the fire blight pathogen Erwinia amylovora

    PubMed Central

    2014-01-01

    Background The Gram-negative bacterium Erwinia amylovora is the causal agent of the devastating disease fire blight in rosaceous plants such as apple, pear, quince, raspberry, and cotoneaster. In order to survive and multiply in a host, microbes must be able to circumvent the toxic effects of antimicrobial plant compounds, such as flavonoids and tannins. E. amylovora uses multidrug efflux transporters that recognize and actively export toxic compounds out of the cells. Here, two heterotrimeric resistance-nodulation-cell division (RND)-type multidrug efflux pumps, MdtABC and MdtUVW, from E. amylovora were identified. These RND systems are unusual in that they contain two different RND proteins forming a functional pump. Results To find the substrate specificities of the two efflux systems, we overexpressed the transporters in a hypersensitive mutant lacking the major RND pump AcrB. Both transporters mediated resistance to several flavonoids, fusidic acid and novobiocin. Additionally, MdtABC mediated resistance towards josamycin, bile salts and silver nitrate, and MdtUVW towards clotrimazole. The ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock was reduced. Quantitative RT-PCR analyses revealed that the expression of the transporter genes was induced during infection of apple rootstock. The polyphenolic plant compound tannin, as well as the heavy metal salt tungstate was found to induce the expression of mdtABC. Finally, the expression of the mdtABC genes was shown to be regulated by BaeR, the response regulator of the two-component system BaeSR, a cell envelope stress response system that controls the adaptive responses to changes in the environment. Conclusions The expression of MdtABC and MdtUVW is induced during growth of E. amylovora in planta. We identified the plant polyphenol tannin as inducer of mdtABC expression. The reduced ability of the mdtABC- and mdtUVW-deficient mutants to multiply in apple rootstock suggests that the

  17. Nanoparticles as Efflux Pump and Biofilm Inhibitor to Rejuvenate Bactericidal Effect of Conventional Antibiotics

    NASA Astrophysics Data System (ADS)

    Gupta, Divya; Singh, Ajeet; Khan, Asad U.

    2017-07-01

    The universal problem of bacterial resistance to antibiotic reflects a serious threat for physicians to control infections. Evolution in bacteria results in the development of various complex resistance mechanisms to neutralize the bactericidal effect of antibiotics, like drug amelioration, target modification, membrane permeability reduction, and drug extrusion through efflux pumps. Efflux pumps acquire a wide range of substrate specificity and also the tremendous efficacy for drug molecule extrusion outside bacterial cells. Hindrance in the functioning of efflux pumps may rejuvenate the bactericidal effect of conventional antibiotics. Efflux pumps also play an important role in the exclusion or inclusion of quorum-sensing biomolecules responsible for biofilm formation in bacterial cells. This transit movement of quorum-sensing biomolecules inside or outside the bacterial cells may get interrupted by impeding the functioning of efflux pumps. Metallic nanoparticles represent a potential candidate to block efflux pumps of bacterial cells. The application of nanoparticles as efflux pump inhibitors will not only help to revive the bactericidal effect of conventional antibiotics but will also assist to reduce biofilm-forming capacity of microbes. This review focuses on a novel and fascinating application of metallic nanoparticles in synergy with conventional antibiotics for efflux pump inhibition.

  18. Transcriptome-based identification of ABC transporters in the western tarnished plant bug lygus hesperus

    USDA-ARS?s Scientific Manuscript database

    ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate diverse physiological functions by coupling ATP hydrolysis with substrate transport across lipid membranes. In insects, these proteins play roles in metabolism, development, eye pigmentation, and xenobiotic cle...

  19. Development of an ATP measurement method suitable for xenobiotic treatment activated sludge biomass.

    PubMed

    Nguyen, Lan Huong; Chong, Nyuk-Min

    2015-09-01

    Activated sludge consumes a large amount of energy to degrade a xenobiotic organic compound. By tracking the energy inventory of activated sludge biomass during the sludge's degradation of a xenobiotic, any disadvantageous effect on the sludge's performance caused by energy deficiency can be observed. The purpose of this study was to develop a reliable and accurate method for measuring the ATP contents of activated sludge cells that were to degrade a xenobiotic organic. Cell disruption and cellular ATP extraction were performed by a protocol with which xenobiotic degrading activated sludge biomass was washed with SDS, treated by Tris and TCA, and followed by bead blasting. The suspension of disrupted cells was filtered before the filtrate was injected into HPLC that was set at optimal conditions to measure the ATP concentration therein. This extraction protocol and HPLC measurement of ATP was evaluated for its linearity, limits of detection, and reproducibility. Evaluation test results reported a R(2) of 0.999 of linear fit of ATP concentration versus activated sludge concentration, a LOD=0.00045mg/L, a LOQ=0.0015mg/L for HPLC measurement of ATP, a MDL=0.46mg/g SS for ATP extraction protocol, and a recovery efficiency of 96.4±2%. This method of ATP measurement was simple, rapid, reliable, and was unburdened of some limitations other methods may have. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins

    DOE PAGES

    Chacon, Kelly N.; Mealman, Tiffany D.; McEvoy, Megan M.; ...

    2014-10-13

    Copper is an essential nutrient for all aerobic organisms but is toxic in excess. At the host–pathogen interface, macrophages respond to bacterial infection by copper-dependent killing mechanisms, whereas the invading bacteria are thought to counter with an up-regulation of copper transporters and efflux pumps. The tripartite efflux pump CusCBA and its metallochaperone CusF are vital to the detoxification of copper and silver ions in the periplasm of Escherichia coli. However, the mechanism of efflux by this complex, which requires the activation of the inner membrane pump CusA, is poorly understood. In this paper, we use selenomethionine (SeM) active site labelsmore » in a series of biological X-ray absorption studies at the selenium, copper, and silver edges to establish a “switch” role for the membrane fusion protein CusB. We determine that metal-bound CusB is required for activation of cuprous ion transfer from CusF directly to a site in the CusA antiporter, showing for the first time (to our knowledge) the in vitro activation of the Cus efflux pump. This metal-binding site of CusA is unlike that observed in the crystal structures of the CusA protein and is composed of one oxygen and two sulfur ligands. Finally, our results suggest that metal transfer occurs between CusF and apo-CusB, and that, when metal-loaded, CusB plays a role in the regulation of metal ion transfer from CusF to CusA in the periplasm.« less

  1. Interplay between three RND efflux pumps in doxycycline-selected strains of Burkholderia thailandensis.

    PubMed

    Biot, Fabrice Vincent; Lopez, Mélanie Monique; Poyot, Thomas; Neulat-Ripoll, Fabienne; Lignon, Sabrina; Caclard, Arnaud; Thibault, François Michel; Peinnequin, Andre; Pagès, Jean-Marie; Valade, Eric

    2013-01-01

    Efflux systems are involved in multidrug resistance in most Gram-negative non-fermentative bacteria. We have chosen Burkholderia thailandensis to dissect the development of multidrug resistance phenotypes under antibiotic pressure. We used doxycycline selection to obtain several resistant B. thailandensis variants. The minimal inhibitory concentrations of a large panel of structurally unrelated antibiotics were determined ± the efflux pump inhibitor phenylalanine-arginine ß-naphthylamide (PAßN). Membrane proteins were identified by proteomic method and the expressions of major efflux pumps in the doxycycline selected variants were compared to those of the parental strains by a quantitative RT-PCR analysis. Doxycycline selected variants showed a multidrug resistance in two major levels corresponding to the overproduction of two efflux pumps depending on its concentration: AmrAB-OprA and BpeEF-OprC. The study of two mutants, each lacking one of these pumps, indicated that a third pump, BpeAB-OprB, could substitute for the defective pump. Surprisingly, we observed antagonistic effects between PAßN and aminoglycosides or some ß-lactams. PAßN induced the overexpression of AmrAB-OprA and BpeAB-OprB pump genes, generating this unexpected effect. These results may account for the weak activity of PAßN in some Gram-negative species. We clearly demonstrated two antagonistic effects of this molecule on bacterial cells: the blocking of antibiotic efflux and an increase in efflux pump gene expression. Thus, doxycycline is a very efficient RND efflux pump inducer and PAßN may promote the production of some efflux pumps. These results should be taken into account when considering antibiotic treatments and in future studies on efflux pump inhibitors.

  2. Inhibition of vinblastine efflux mediated by P-glycoprotein by grapefruit juice components in caco-2 cells.

    PubMed

    Takanaga, H; Ohnishi, A; Matsuo, H; Sawada, Y

    1998-10-01

    We investigated the effect of components in grapefruit juice (GFJ) on the transport of vinblastine, a substrate of P-glycoprotein (P-gp), across Caco-2 cells. The apical to basolateral flux of [3H]vinblastine was increased in the presence of GFJ extracts. The steady-state uptake of [3H]vinblastine from the apical side was significantly increased in the presence of GFJ in a dose-dependent manner within the range of 2.5 to 50% (v/v) of GFJ. Although naringin and naringenin reduced apical efflux of [3H]vinblastine at the concentration present in GFJ and increased steady-state uptake from the apical side to 124 and 240%, respectively, the observed effect of naringin was not enough to account for the effect of GFJ and naringenin is not naturally present in GFJ. To investigate the effective components in GFJ, we examined the inhibitory effect of several organic solvent extracts of GFJ on the transport of [3H]vinblastine in Caco-2 cells. Organic solvent extracts of GFJ enhanced the apical to basolateral transcellular transport and inhibited the apical efflux. The permeability coefficient of apical to basolateral transport of [3H]vinblastine increased in the order of the ethyl acetate>diethyl ether>methylene chloride extracts of GFJ. Since the extracted amount of naringenin by ethyl acetate was less than that with the other organic solvents, the primary inhibitor in GFJ is suggested to be different from this flavonoid. The present study demonstrated the existence of inhibitory components in GFJ for the P-gp function in Caco-2 cells, which are distinct from known components such as naringin or naringenin.

  3. In silico platform for xenobiotics ADME-T pharmacological properties modeling and prediction. Part II: The body in a Hilbertian space.

    PubMed

    Jacob, Alexandre; Pratuangdejkul, Jaturong; Buffet, Sébastien; Launay, Jean-Marie; Manivet, Philippe

    2009-04-01

    We have broken old surviving dogmas and concepts used in computational chemistry and created an efficient in silico ADME-T pharmacological properties modeling and prediction toolbox for any xenobiotic. With the help of an innovative and pragmatic approach combining various in silico techniques, like molecular modeling, quantum chemistry and in-house developed algorithms, the interactions between drugs and those enzymes, transporters and receptors involved in their biotransformation can be studied. ADME-T pharmacological parameters can then be predicted after in vitro and in vivo validations of in silico models.

  4. Importance of cholesterol in dopamine transporter function

    PubMed Central

    Jones, Kymry T.; Zhen, Juan; Reith, Maarten E.A.

    2012-01-01

    The conformation and function of the dopamine transporter (DAT) can be affected by manipulating membrane cholesterol, yet there is no agreement as to the impact of cholesterol on the activity of lipid-raft localized DATs compared to non-raft DATs. Given the paucity of information regarding the impact of cholesterol on substrate efflux by the DAT, this study explores its influence on the kinetics of DAT-mediated DA efflux induced by dextroamphetamine, as measured by rotating disk electrode voltammetry (RDEV). Treatment with methyl-β-cyclodextrin (mβCD), which effectively depletes total membrane cholesterol- uniformly affecting cholesterol-DAT interactions in both raft and non-raft membrane domains- reduced both DA uptake and efflux rate. In contrast, disruption of raft localized DAT by cholesterol chelation with nystatin had no effect, arguing against a vital role for raft-localized DAT in substrate uptake or efflux. Supra-normal repletion of cholesterol depleted cells with the analogue desmosterol, a non-raft promoting sterol, was as effective as cholesterol itself in restoring transport rates. Further studies with Zn2+ and the conformationally-biased W84L DAT mutant supported the idea that cholesterol is important for maintaining the outward-facing DAT with normal rates of conformational interconversions. Collectively, these results point to a role for direct cholesterol-DAT interactions in regulating DAT function. PMID:22957537

  5. P-gp expression in brown trout erythrocytes: evidence of a detoxification mechanism in fish erythrocytes.

    PubMed

    Valton, Emeline; Amblard, Christian; Wawrzyniak, Ivan; Penault-Llorca, Frederique; Bamdad, Mahchid

    2013-12-05

    Blood is a site of physiological transport for a great variety of molecules, including xenobiotics. Blood cells in aquatic vertebrates, such as fish, are directly exposed to aquatic pollution. P-gp are ubiquitous "membrane detoxification proteins" implicated in the cellular efflux of various xenobiotics, such as polycyclic aromatic hydrocarbons (PAHs), which may be pollutants. The existence of this P-gp detoxification system inducible by benzo [a] pyrene (BaP), a highly cytotoxic PAH, was investigated in the nucleated erythrocytes of brown trout. Western blot analysis showed the expression of a 140-kDa P-gp in trout erythrocytes. Primary cultures of erythrocytes exposed to increasing concentrations of BaP showed no evidence of cell toxicity. Yet, in the same BaP-treated erythrocytes, P-gp expression increased significantly in a dose-dependent manner. Brown trout P-gp erythrocytes act as membrane defence mechanism against the pollutant, a property that can be exploited for future biomarker development to monitor water quality.

  6. Further evidence for a potassium-like action of lithium ions on sodium efflux in frog skeletal muscle

    PubMed Central

    Beaugé, L. A.; Ortiz, Olga

    1972-01-01

    1. The efflux of labelled sodium as well as net sodium and lithium changes were studied in aged high sodium sartorius muscles of the South American frog Leptodactilus ocelatus. 2. In the presence of 2·5 mM potassium in the media, the replacement of external sodium with lithium or magnesium resulted in an increase in sodium efflux. The magnitude of such increase was always larger in lithium. 3. With the absence of potassium in the media, the response of sodium efflux to replacement of external sodium varied with the cation used as a substitute. In lithium Ringer there was always a noticeable increase, whereas in magnesium there was always a marked reduction. The same results were observed when calcium was substituted for magnesium. 4. The replacement of 60 mM external sodium with sucrose did not prevent the stimulating effect of 5 mM potassium on sodium efflux, nor the inhibitory action of 10-4 M ouabain. This indicates that neither sucrose by itself, nor the lowering of the ionic strength, modified to an appreciable extent the function of the sodium pump. 5. Net sodium extrusion took place against an electrochemical gradient in potassium-free — 50 mM sodium — mM lithium Ringer. About 75% of this efflux was ouabain sensitive. 6. Muscles made both sodium and lithium rich and incubated in potassium-free — 60 mM sodium — 50 mM lithium Ringer also showed net sodium extrusion against an electrochemical gradient, which was 85% ouabain sensitive. This extrusion took place even under conditions where the changes in free energy favouring lithium entry were always lower than the changes in free energy opposing sodium going out. This indicates that a sodium-lithium exchange by a counter-transport process is unlikely. 7. External potassium reduced the ouabain sensitive lithium influx in muscles incubated in lithium Ringer. The values found were 5·90 ± 0·39 μ-mole/g.hr and 2·66 ± 0·43 μmole/g.hr in potassium-free and 15 mM potassium respectively. At the same

  7. Systems approaches evaluating the perturbation of xenobiotic metabolism in response to cigarette smoke exposure in nasal and bronchial tissues.

    PubMed

    Iskandar, Anita R; Martin, Florian; Talikka, Marja; Schlage, Walter K; Kostadinova, Radina; Mathis, Carole; Hoeng, Julia; Peitsch, Manuel C

    2013-01-01

    Capturing the effects of exposure in a specific target organ is a major challenge in risk assessment. Exposure to cigarette smoke (CS) implicates the field of tissue injury in the lung as well as nasal and airway epithelia. Xenobiotic metabolism in particular becomes an attractive tool for chemical risk assessment because of its responsiveness against toxic compounds, including those present in CS. This study describes an efficient integration from transcriptomic data to quantitative measures, which reflect the responses against xenobiotics that are captured in a biological network model. We show here that our novel systems approach can quantify the perturbation in the network model of xenobiotic metabolism. We further show that this approach efficiently compares the perturbation upon CS exposure in bronchial and nasal epithelial cells in vivo samples obtained from smokers. Our observation suggests the xenobiotic responses in the bronchial and nasal epithelial cells of smokers were similar to those observed in their respective organotypic models exposed to CS. Furthermore, the results suggest that nasal tissue is a reliable surrogate to measure xenobiotic responses in bronchial tissue.

  8. Systems Approaches Evaluating the Perturbation of Xenobiotic Metabolism in Response to Cigarette Smoke Exposure in Nasal and Bronchial Tissues

    PubMed Central

    Iskandar, Anita R.; Martin, Florian; Talikka, Marja; Schlage, Walter K.; Mathis, Carole; Hoeng, Julia; Peitsch, Manuel C.

    2013-01-01

    Capturing the effects of exposure in a specific target organ is a major challenge in risk assessment. Exposure to cigarette smoke (CS) implicates the field of tissue injury in the lung as well as nasal and airway epithelia. Xenobiotic metabolism in particular becomes an attractive tool for chemical risk assessment because of its responsiveness against toxic compounds, including those present in CS. This study describes an efficient integration from transcriptomic data to quantitative measures, which reflect the responses against xenobiotics that are captured in a biological network model. We show here that our novel systems approach can quantify the perturbation in the network model of xenobiotic metabolism. We further show that this approach efficiently compares the perturbation upon CS exposure in bronchial and nasal epithelial cells in vivo samples obtained from smokers. Our observation suggests the xenobiotic responses in the bronchial and nasal epithelial cells of smokers were similar to those observed in their respective organotypic models exposed to CS. Furthermore, the results suggest that nasal tissue is a reliable surrogate to measure xenobiotic responses in bronchial tissue. PMID:24224167

  9. A sampling scheme to assess persistence and transport characteristics of xenobiotics within an urban river section

    NASA Astrophysics Data System (ADS)

    Schwientek, Marc; Guillet, Gaelle; Kuch, Bertram; Rügner, Hermann; Grathwohl, Peter

    2014-05-01

    Xenobiotic contaminants such as pharmaceuticals or personal care products typically are continuously introduced into the receiving water bodies via wastewater treatment plant (WWTP) outfalls and, episodically, via combined sewer overflows in the case of precipitation events. Little is known about how these chemicals behave in the environment and how they affect ecosystems and human health. Examples of traditional persistent organic pollutants reveal, that they may still be present in the environment even decades after they have been released. In this study a sampling strategy was developed which gives valuable insights into the environmental behaviour of xenobiotic chemicals. The method is based on the Lagrangian sampling scheme by which a parcel of water is sampled repeatedly as it moves downstream while chemical, physical, and hydrologic processes altering the characteristics of the water mass can be investigated. The Steinlach is a tributary of the River Neckar in Southwest Germany with a catchment area of 140 km². It receives the effluents of a WWTP with 99,000 inhabitant equivalents 4 km upstream of its mouth. The varying flow rate of effluents induces temporal patterns of electrical conductivity in the river water which enable to track parcels of water along the subsequent urban river section. These parcels of water were sampled a) close to the outlet of the WWTP and b) 4 km downstream at the confluence with the Neckar. Sampling was repeated at a 15 min interval over a complete diurnal cycle and 2 h composite samples were prepared. A model-based analysis demonstrated, on the one hand, that substances behaved reactively to a varying extend along the studied river section. On the other hand, it revealed that the observed degradation rates are likely dependent on the time of day. Some chemicals were degraded mainly during daytime (e.g. the disinfectant Triclosan or the phosphorous flame retardant TDCP), others as well during nighttime (e.g. the musk fragrance

  10. The ins and outs of RND efflux pumps in Escherichia coli.

    PubMed

    Anes, João; McCusker, Matthew P; Fanning, Séamus; Martins, Marta

    2015-01-01

    Infectious diseases remain one of the principal causes of morbidity and mortality in the world. Relevant authorities including the WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. They have also reaffirmed the urgent need for investment in the discovery and development of new antibiotics and therapeutic approaches to treat multidrug resistant (MDR) bacteria. The extensive use of antimicrobial compounds in diverse environments, including farming and healthcare, has been identified as one of the main causes for the emergence of MDR bacteria. Induced selective pressure has led bacteria to develop new strategies of defense against these chemicals. Bacteria can accomplish this by several mechanisms, including enzymatic inactivation of the target compound; decreased cell permeability; target protection and/or overproduction; altered target site/enzyme and increased efflux due to over-expression of efflux pumps. Efflux pumps can be specific for a single substrate or can confer resistance to multiple antimicrobials by facilitating the extrusion of a broad range of compounds including antibiotics, heavy metals, biocides and others, from the bacterial cell. To overcome antimicrobial resistance caused by active efflux, efforts are required to better understand the fundamentals of drug efflux mechanisms. There is also a need to elucidate how these mechanisms are regulated and how they respond upon exposure to antimicrobials. Understanding these will allow the development of combined therapies using efflux inhibitors together with antibiotics to act on Gram-negative bacteria, such as the emerging globally disseminated MDR pathogen Escherichia coli ST131 (O25:H4). This review will summarize the current knowledge on resistance-nodulation-cell division efflux mechanisms in E. coli, a bacteria responsible for community and hospital-acquired infections, as well as foodborne outbreaks worldwide.

  11. Eicosapentaenoic acid membrane incorporation impairs ABCA1-dependent cholesterol efflux via a protein kinase A signaling pathway in primary human macrophages.

    PubMed

    Fournier, Natalie; Tardivel, Sylviane; Benoist, Jean-François; Vedie, Benoît; Rousseau-Ralliard, Delphine; Nowak, Maxime; Allaoui, Fatima; Paul, Jean-Louis

    2016-04-01

    A diet rich in n-3/n-6 polyunsaturated fatty acids (PUFAs) is cardioprotective. Dietary PUFAs affect the cellular phospholipids composition, which may influence the function of membrane proteins. We investigated the impact of the membrane incorporation of several PUFAs on ABCA1-mediated cholesterol efflux, a key antiatherogenic pathway. Arachidonic acid (AA) (C20:4 n-6) and docosahexaenoic acid (DHA) (C22:6 n-3) decreased or increased cholesterol efflux from J774 mouse macrophages, respectively, whereas they had no effect on efflux from human monocyte-derived macrophages (HMDM). Importantly, eicosapentaenoic acid (EPA) (C20:5 n-3) induced a dose-dependent reduction of ABCA1 functionality in both cellular models (-28% for 70μM of EPA in HMDM), without any alterations in ABCA1 expression. These results show that PUFA membrane incorporation does not have the same consequences on cholesterol efflux from mouse and human macrophages. The EPA-treated HMDM exhibited strong phospholipid composition changes, with high levels of both EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which is associated with a decreased level of AA. In HMDM, EPA reduced the ATPase activity of the membrane transporter. Moreover, the activation of adenylate cyclase by forskolin and the inhibition of cAMP phosphodiesterase by isobutylmethylxanthine restored ABCA1 cholesterol efflux in EPA-treated human macrophages. In conclusion, EPA membrane incorporation reduces ABCA1 functionality in mouse macrophages as well as in primary human macrophages and this effect seems to be PKA-dependent in human macrophages. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Laboratory procedure for estimating residue dynamics of xenobiotic contaminants in a freshwater food chain

    USGS Publications Warehouse

    Johnson, B. Thomas

    1980-01-01

    A laboratory method of measuring the accumulation, transfer, elimination, and degradation of xenobiotic contaminants is described for organisms in a freshwater food chain (microorganisms, filter-feeder, and fish). A flow-through diluter-system, 14C-labeled contaminants, gas and thin-layer chromatography, autoradiography, and liquid scintillation spectrometry are used in making residue determinations. Accumulation factors and various index values are developed for measuring and estimating potential accumulation of xenobiotic contaminants by aquatic organisms. The laboratory procedure is economical, simple, reproducible, and ecologically relevant.

  13. pH Dependent but not P-gp Dependent Bidirectional Transport Study of S-propranolol: The Importance of Passive Diffusion.

    PubMed

    Zheng, Yi; Benet, Leslie Z; Okochi, Hideaki; Chen, Xijing

    2015-08-01

    Recent controversial publications, citing studies purporting to show that P-gp mediates the transport of propranolol, proposed that passive biological membrane transport is negligible. Based on the BDDCS, the extensively metabolized-highly permeable-highly soluble BDDCS class 1 drug, propranolol, shows a high passive permeability at concentrations unrestricted by solubility that can overwhelm any potential transporter effects. Here we reinvestigate the effects of passive diffusion and carrier-mediated transport on S-propranolol. Bidirectional permeability and inhibition of efflux transport studies were carried out in MDCK, MDCK-MDR1 and Caco-2 cell lines at different concentrations. Transcellular permeability studies were conducted at different apical pHs in the rat jejunum Ussing chamber model and PAMPA system. S-propranolol exhibited efflux ratios lower than 1 in MDCK, MDCK-MDR1 and Caco-2 cells. No significant differences of Papp, B->A in the presence and absence of the efflux inhibitor GG918 were observed. However, an efflux ratio of 3.63 was found at apical pH 6.5 with significant decrease in Papp, A->B and increase in Papp, B->A compared to apical pH 7.4 in Caco-2 cell lines. The pH dependent permeability was confirmed in the Ussing chamber model. S-propranolol flux was unchanged during inhibition by verapamil and rifampin. Furthermore, pH dependent permeability was also observed in the PAMPA system. S-propranolol does not exhibit active transport as proposed previously. The "false" positive efflux ratio can be explained by the pH partition theory. As expected, passive diffusion, but not active transport, plays the primary role in the permeability of the BDDCS class 1 drug propranolol.

  14. IL-8 negatively regulates ABCA1 expression and cholesterol efflux via upregulating miR-183 in THP-1 macrophage-derived foam cells.

    PubMed

    Tang, Xiao-Er; Li, Heng; Chen, Ling-Yan; Xia, Xiao-Dan; Zhao, Zhen-Wang; Zheng, Xi-Long; Zhao, Guo-Jun; Tang, Chao-Ke

    2018-04-24

    Previous studies suggest that IL-8 has an important role in the regulation of cholesterol efflux, but whether miRNAs are involved in this process is still unknown. The purpose of this study is to explore whether IL-8 promotes cholesterol accumulation by enhancing miR-183 expression in macrophages and its underlying mechanism. Treatment of THP-1 macrophage-derived foam cells with IL-8 decreased ABCA1 expression and cholesterol efflux. Using bioinformatics analyses and dual-luciferase reporter assays, we found that miR-183 was highly conserved during evolution and directly inhibited ABCA1 protein and mRNA expression by targeting ABCA1 3'UTR. MiR-183 directly regulated endogenous ABCA1 expression levels. Furthermore, IL-8 enhanced the expression of miR-183 and decrease ABCA1 expression. Cholesterol transport assays confirmed that IL-8 dramatically inhibited apolipoprotein AI-mediated ABCA1-dependent cholesterol efflux by increasing miR-183 expression. In contrast, treatment with anti-IL-8 antibody reversed these effects. IL-8 enhances the expression of miR-183, which then inhibits ABCA1 expression and cholesterol efflux. Our studies suggest that the IL-8-miR-183-ABCA1 axis may play an intermediary role in the development of atherosclerosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Puerarin promotes ABCA1-mediated cholesterol efflux and decreases cellular lipid accumulation in THP-1 macrophages.

    PubMed

    Li, Cong-Hui; Gong, Duo; Chen, Ling-Yan; Zhang, Min; Xia, Xiao-Dan; Cheng, Hai-Peng; Huang, Chong; Zhao, Zhen-Wang; Zheng, Xi-Long; Tang, Xiao-Er; Tang, Chao-Ke

    2017-09-15

    It was reported that puerarin decreases the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and increases high-density lipoprotein cholesterol (HDL-C) level, but the underlying mechanism is unclear. This study was designed to determine whether puerarin decreased lipid accumulation via up-regulation of ABCA1-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. Our results showed that puerarin significantly promoted the expression of ATP-binding cassette transporter A1 (ABCA1) mRNA and protein via the AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma (PPARγ)-liver X receptor-alpha (LXR-α) pathway and decreased cellular lipid accumulation in human THP-1 macrophage-derived foam cells. The miR-7 directly targeted 3' untranslated region of STK11 (Serine/Threonine Kinase 11), which activated the AMPK pathway. Transfection with miR-7 mimic significantly reduced STK11 expression in puerarin-treated macrophages, decreased the phosphorylation of AMPK, down-regulated the expression of the PPARγ-LXR-α-ABCA1 expression. Additionally, treatment with miR-7 decreased cholesterol efflux and increased cholesterol levels in THP-1 macrophage-derived foam cells. Our study demonstrates that puerarin promotes ABCA1-mediated cholesterol efflux and decreases intracellular cholesterol levels through the pathway involving miR-7, STK11, and the AMPK-PPARγ-LXR-α-ABCA1 cascade. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Tocopherol transport in the rat erythrocyte

    PubMed Central

    Silber, R.; Winter, R.; Kayden, H. J.

    1969-01-01

    The transport of vitamin E (α-tocopherol) has been studied in the rat erythrocyte in vivo and in vitro. Uptake and efflux are independent of energy, but sensitive to temperature. Tocopherol is localized to the cell membrane. Rapid exchange takes place between erythrocytes and serum with an hourly fractional tocopherol efflux of 26%. The vitamin is transferred from the erythrocyte to the low density lipoproteins. These experiments indicate that tocopherol, like cholesterol, is a constituent of the erythrocyte membrane which is in dynamic equilibrium with the corresponding plasma compound. PMID:5824074

  17. Do Candida spp. "read" Nietzsche? Can xenobiotics modulate their aggressiveness? Proposition that chemicals may interfere in their virulence attributes.

    PubMed

    Rosa, Edvaldo Antonio Ribeiro

    2012-01-01

    As well as the host, opportunist Candida spp. enface all sorts of exogenous chemicals, so-called xenobiotics. It is plausible that xenobiotics exert some effects on such microorganisms; among them, the modulation of virulence attributes.

  18. Greenhouse gas efflux from an impacted Malaysian tropical peat swamp (Invited)

    NASA Astrophysics Data System (ADS)

    Waldron, S.; Vihermaa, L. E.; Evers, S.; Garnett, M.; Newton, J.; Padfield, R.

    2013-12-01

    Tropical peatlands constitute ~11% of global peatland area and ~12% of the global peat C pool. Malaysia alone contains 10% of tropical peats. Due to rising global demands for food and biofuels, SE-Asia peat swamp forest ecosystems are threatened by increasing amounts of drainage, fire and conversion to plantation. These processes can change the GHG emissions and thus net ecosystem C balance. However, in comparison to temperate and boreal peatlands, there is a lack of data on terrestrial-aquatic-atmospheric carbon transfer from tropical peatlands, both those that are little disturbed and those facing anthropogenic pressures. Lateral transport of soil-respired carbon, and fluvial respiration or UV-oxidation of terrestrial DOC primes atmospheric carbon dioxide efflux. We now know that DOC lost from disturbed tropical peat swamp forests can be centuries to millennia old and originates deep within the peat column - this carbon may fuel efflux of old carbon dioxide and so anthropogenic land-use change renders the older, slower carbon cycles shorter and faster. Currently we have no knowledge of how significant ';older-slower' terrestrial-aquatic-atmospheric cycles are in disturbed tropical peatlands. Further, in some areas for commercial reasons, or by conservation bodies trying to minimise peat habitat loss, logged peats have been left to regenerate. Consequently, unpicking the legacy of multiple land uses on magnitude, age and source of GHG emissions is challenging but required to support land management decisions and projections of response to a changing climate. Here, we present the results of our first field campaign in July 2013 to the Raja Musa and Sungai Karang Peat Swamp Forest Reserves in North Selangor, Malaysia. This is one of Malaysia's largest oceanic peat swamps, and has been selectively logged and drained for 80 years, but is now subject to a 30 year logging ban to aid forest regeneration and build up wood stocks. From sites subject to different land use

  19. Transcriptome-Based Identification of ABC Transporters in the Western Tarnished Plant Bug Lygus hesperus

    PubMed Central

    Hull, J. Joe; Chaney, Kendrick; Geib, Scott M.; Fabrick, Jeffrey A.; Brent, Colin S.; Walsh, Douglas; Lavine, Laura Corley

    2014-01-01

    ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate diverse physiological functions by coupling ATP hydrolysis with substrate transport across lipid membranes. In insects, these proteins play roles in metabolism, development, eye pigmentation, and xenobiotic clearance. While ABC transporters have been extensively studied in vertebrates, less is known concerning this superfamily in insects, particularly hemipteran pests. We used RNA-Seq transcriptome sequencing to identify 65 putative ABC transporter sequences (including 36 full-length sequences) from the eight ABC subfamilies in the western tarnished plant bug (Lygus hesperus), a polyphagous agricultural pest. Phylogenetic analyses revealed clear orthologous relationships with ABC transporters linked to insecticide/xenobiotic clearance and indicated lineage specific expansion of the L. hesperus ABCG and ABCH subfamilies. The transcriptional profile of 13 LhABCs representative of the ABCA, ABCB, ABCC, ABCG, and ABCH subfamilies was examined across L. hesperus development and within sex-specific adult tissues. All of the transcripts were amplified from both reproductively immature and mature adults and all but LhABCA8 were expressed to some degree in eggs. Expression of LhABCA8 was spatially localized to the testis and temporally timed with male reproductive development, suggesting a potential role in sexual maturation and/or spermatozoa protection. Elevated expression of LhABCC5 in Malpighian tubules suggests a possible role in xenobiotic clearance. Our results provide the first transcriptome-wide analysis of ABC transporters in an agriculturally important hemipteran pest and, because ABC transporters are known to be important mediators of insecticidal resistance, will provide the basis for future biochemical and toxicological studies on the role of this protein family in insecticide resistance in Lygus species. PMID:25401762

  20. Dithiazole thione derivative as competitive NorA efflux pump inhibitor to curtail multi drug resistant clinical isolate of MRSA in a zebrafish infection model.

    PubMed

    Lowrence, Rene Christena; Raman, Thiagarajan; Makala, Himesh V; Ulaganathan, Venkatasubramanian; Subramaniapillai, Selva Ganesan; Kuppuswamy, Ashok Ayyappa; Mani, Anisha; Chittoor Neelakantan, Sundaresan; Nagarajan, Saisubramanian

    2016-11-01

    Multi drug resistant (MDR) pathogens pose a serious threat to public health since they can easily render most potent drugs ineffective. Efflux pump inhibitors (EPI) can be used to counter the MDR phenotypes arising due to increased efflux. In the present study, a series of dithiazole thione derivatives were synthesized and checked for its antibacterial and efflux pump inhibitory (EPI) activity. Among 10 dithiazole thione derivatives, real-time efflux studies revealed that seven compounds were potent EPIs relative to CCCP. Zebrafish toxicity studies identified four non-toxic putative EPIs. Both DTT3 and DTT9 perturbed membrane potential and DTT6 was haemolytic. Among DTT6 and DTT10, the latter was less toxic as evidenced by histopathology studies. Since DTT10 was non-haemolytic, did not affect the membrane potential, and was least toxic, it was chosen further for in vivo study, wherein DTT10 potentiated effect of ciprofloxacin against clinical strain of MRSA and reduced bacterial burden in muscle and skin tissue of infected zebrafish by ~ 1.7 and 2.5 log fold respectively. Gene expression profiling of major efflux transport proteins by qPCR revealed that clinical isolate of MRSA, in the absence of antibiotic, upregulated NorA, NorB and MepA pump, whereas it downregulates NorC and MgrA relative to wild-type strain of Staphylococcus aureus. In vitro studies with NorA mutant strains and substrate profiling revealed that at higher concentrations DTT10 is likely to function as a competitive inhibitor of NorA efflux protein in S. aureus, whereas at lower concentrations it might inhibit ciprofloxacin efflux through NorB and MepA as implied by docking studies. A novel non-toxic, non-haemolytic dithiazole thione derivative (DTT10) was identified as a potent competitive inhibitor of NorA efflux pump in S. aureus using in silico, in vitro and in vivo studies. This study also underscores the importance of using zebrafish infection model to screen and evaluate putative EPI for

  1. Fractionation of Sodium Efflux in Frog Sartorius Muscles by Strophanthidin and Removal of External Sodium

    PubMed Central

    Horowicz, P.; Taylor, J. W.; Waggoner, D. M.

    1970-01-01

    The influence of strophanthidin, ouabain, and the removal of external sodium on the sodium efflux from frog sartorius muscle was measured. In freshly dissected muscles strophanthidin and ouabain in maximally effective concentrations reduced the efflux of sodium by about 50%. Of the sodium efflux which is strophanthidin-insensitive about 75% is inhibited after complete replacement of external sodium by lithium. In the absence of strophanthidin replacement of external sodium by lithium, calcium, or magnesium produces an initial rise in the sodium efflux, followed by a fall in the efflux as the exposure of the muscles to sodium-free media is continued. When the muscles are exposed for prolonged periods in sodium-free media, the fraction of internal sodium lost per minute is higher when returned to normal Ringer fluid than it was initially. The activation of sodium efflux by external sodium after long periods in sodium-free solutions is partly strophanthidin-sensitive and partly strophanthidin-insensitive. The internal sodium concentration is an important factor in these effects. The effects of temperature on the sodium efflux were also measured. Above 7°C the Q 10 of both the strophanthidin-sensitive and strophanthidin-insensitive sodium efflux is about 2.0. Below 7°C the strophanthidin-insensitive sodium efflux has a Q 10 of about 7.4. PMID:5315424

  2. Structure and function of Neisseria gonorrhoeae MtrF illuminates a class of antimetabolite efflux pumps

    DOE PAGES

    Su, Chih -Chia; Bolla, Jani  Reddy; Kumar, Nitin; ...

    2015-04-01

    Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. N. gonorrhoeae MtrF is an integral membrane protein that belongs to the AbgT family of transporters for which no structural information is available. Here, we describe the crystal structure of MtrF, revealing a dimeric molecule with architecture distinct from all other families of transporters. MtrF is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm tomore » halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins, posing a plausible pathway for substrate transport. A combination of the crystal structure and biochemical functional assays suggests that MtrF is an antibiotic efflux pump mediating bacterial resistance to sulfonamide antimetabolite drugs.« less

  3. Structure and function of Neisseria gonorrhoeae MtrF illuminates a class of antimetabolite efflux pumps

    PubMed Central

    Su, Chih-Chia; Bolla, Jani Reddy; Kumar, Nitin; Radhakrishnan, Abhijith; Long, Feng; Delmar, Jared A.; Chou, Tsung-Han; Rajashankar, Kanagalaghatta R.; Shafer, William M.; Yu, Edward W.

    2015-01-01

    SUMMARY Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually-transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. N. gonorrhoeae MtrF is an integral membrane protein, which belongs to the AbgT family of transporters for which no structural information is available. Here we describe the crystal structure of MtrF, revealing a dimeric molecule with architecture distinct from all other families of transporters. MtrF is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins, posing a plausible pathway for substrate transport. A combination of the crystal structure and biochemical functional assays suggests that MtrF is an antibiotic efflux pump, mediating bacterial resistance to sulfonamide antimetabolite drugs. PMID:25818299

  4. Tracing the evolution of degraders in activated sludge during the sludge’s acclimation to a xenobiotic organic

    NASA Astrophysics Data System (ADS)

    Chong, N. M.; Fan, C. H.; Yang, Y. C.

    2017-01-01

    The molecular biology method of high-throughput pyrosequencing was employed to examine the change of activated sludge community structures during the process in which activated sludge was acclimated to and degraded a target xenobiotic. The sample xenobiotic organic compound used as the activated sludge acclimation target was the herbicide 2,4-dichlorphenoxyacetic acid (2,4-D). Indigenous activated sludge microorganisms were acclimated to 2,4-D as the sole carbon source in both the batch and the continuous-flow reaction modes. Sludge masses at multiple time points during the course of acclimation were subjected to pyrosequencing targeting the microorganisms’ 16S rRNA genes. With the bacterial 16S rRNA sequencing results the genera that increased in abundance were checked with degradative pathway databases or literature to confirm that they are commonly seen as potent degraders of 2,4-D. From this systematic examination of degrader changes at time points during activated sludge acclimation and degradation of the target xenobiotic, the trend of degrader evolution in activated sludge over the sludge’s acclimation process to a xenobiotic was traced.

  5. Homology modeling, molecular dynamics, and virtual screening of NorA efflux pump inhibitors of Staphylococcus aureus

    PubMed Central

    Bhaskar, Baki Vijaya; Babu, Tirumalasetty Muni Chandra; Reddy, Netala Vasudeva; Rajendra, Wudayagiri

    2016-01-01

    Emerging drug resistance in clinical isolates of Staphylococcus aureus might be implicated to the overexpression of NorA efflux pump which is capable of extruding numerous structurally diverse compounds. However, NorA efflux pump is considered as a potential drug target for the development of efflux pump inhibitors. In the present study, NorA model was constructed based on the crystal structure of glycerol-3-phosphate transporter (PDBID: 1PW4). Molecular dynamics (MD) simulation was performed using NAMD2.7 for NorA which is embedded in the hydrated lipid bilayer. Structural design of NorA unveils amino (N)- and carboxyl (C)-terminal domains which are connected by long cytoplasmic loop. N and C domains are composed of six transmembrane α-helices (TM) which exhibits pseudo-twofold symmetry and possess voluminous substrate binding cavity between TM helices. Molecular docking of reserpine, totarol, ferruginol, salvin, thioxanthene, phenothiazine, omeprazole, verapamil, nalidixic acid, ciprofloxacin, levofloxacin, and acridine to NorA found that all the molecules were bound at the large hydrophobic cleft and indicated significant interactions with the key residues. In addition, structure-based virtual screening was employed which indicates that 14 potent novel lead molecules such as CID58685302, CID58685367, CID5799283, CID5578487, CID60028372, ZINC12196383, ZINC72140751, ZINC72137843, ZINC39227983, ZINC43742707, ZINC12196375, ZINC66166948, ZINC39228014, and ZINC14616160 have highest binding affinity for NorA. These lead molecules displayed considerable pharmacological properties as evidenced by Lipinski rule of five and prophecy of toxicity risk assessment. Thus, the present study will be helpful in designing and synthesis of a novel class of NorA efflux pump inhibitors that restore the susceptibilities of drug compounds. PMID:27757014

  6. Homology modeling, molecular dynamics, and virtual screening of NorA efflux pump inhibitors of Staphylococcus aureus.

    PubMed

    Bhaskar, Baki Vijaya; Babu, Tirumalasetty Muni Chandra; Reddy, Netala Vasudeva; Rajendra, Wudayagiri

    2016-01-01

    Emerging drug resistance in clinical isolates of Staphylococcus aureus might be implicated to the overexpression of NorA efflux pump which is capable of extruding numerous structurally diverse compounds. However, NorA efflux pump is considered as a potential drug target for the development of efflux pump inhibitors. In the present study, NorA model was constructed based on the crystal structure of glycerol-3-phosphate transporter (PDBID: 1PW4). Molecular dynamics (MD) simulation was performed using NAMD2.7 for NorA which is embedded in the hydrated lipid bilayer. Structural design of NorA unveils amino (N)- and carboxyl (C)-terminal domains which are connected by long cytoplasmic loop. N and C domains are composed of six transmembrane α-helices (TM) which exhibits pseudo-twofold symmetry and possess voluminous substrate binding cavity between TM helices. Molecular docking of reserpine, totarol, ferruginol, salvin, thioxanthene, phenothiazine, omeprazole, verapamil, nalidixic acid, ciprofloxacin, levofloxacin, and acridine to NorA found that all the molecules were bound at the large hydrophobic cleft and indicated significant interactions with the key residues. In addition, structure-based virtual screening was employed which indicates that 14 potent novel lead molecules such as CID58685302, CID58685367, CID5799283, CID5578487, CID60028372, ZINC12196383, ZINC72140751, ZINC72137843, ZINC39227983, ZINC43742707, ZINC12196375, ZINC66166948, ZINC39228014, and ZINC14616160 have highest binding affinity for NorA. These lead molecules displayed considerable pharmacological properties as evidenced by Lipinski rule of five and prophecy of toxicity risk assessment. Thus, the present study will be helpful in designing and synthesis of a novel class of NorA efflux pump inhibitors that restore the susceptibilities of drug compounds.

  7. Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress.

    PubMed

    Wages, Phillip A; Cheng, Wan-Yun; Gibbs-Flournoy, Eugene; Samet, James M

    2016-12-01

    Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular techniques. However, there is increasing evidence that low-level exposure to a variety of toxicants dysregulates cellular physiology by interfering with redox-dependent processes. The study of events involved in redox toxicology requires methodology capable of detecting transient modifications at relatively low signal strength. This article reviews the advantages of live-cell imaging for redox toxicology studies. Toxicological studies with xenobiotics of supra-physiological reactivity require careful consideration when using fluorogenic sensors in order to avoid potential artifacts and false negatives. Fortunately, experiments conducted for the purpose of validating the use of these sensors in toxicological applications often yield unexpected insights into the mechanisms through which xenobiotic exposure induces oxidant stress. Live-cell imaging using a new generation of small molecule and genetically encoded fluorophores with excellent sensitivity and specificity affords unprecedented spatiotemporal resolution that is optimal for redox toxicology studies. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Published by Elsevier B.V.

  8. Hsp27 promotes ABCA1 expression and cholesterol efflux through the PI3K/PKCζ/Sp1 pathway in THP-1 macrophages.

    PubMed

    Kuang, Hai-Jun; Zhao, Guo-Jun; Chen, Wu-Jun; Zhang, Min; Zeng, Gao-Feng; Zheng, Xi-Long; Tang, Chao-Ke

    2017-09-05

    Heat shock protein 27 (Hsp27) is a putative biomarker and therapeutic target in atherosclerosis. This study was to explore the potential mechanisms underlying Hsp27 effects on ATP-binding cassette transporter A1 (ABCA1) expression and cellular cholesterol efflux. THP-1 macrophage-derived foam cells were infected with adenovirus to express wild-type Hsp27, hyper-phosphorylated Hsp27 mimic (3D Hsp27), antisense Hsp27 or hypo-phosphorylated Hsp27 mimic (3A Hsp27). Wild-type and 3D Hsp27 were found to up-regulate ABCA1 mRNA and protein expression and increase cholesterol efflux from cells. Expression of antisense or 3A Hsp27 suppressed the expression of ABCA1 and cholesterol efflux. Furthermore, over-expression of wild-type and 3D Hsp27 significantly increased the levels of phosphorylated specificity protein 1 (Sp1), protein kinase C ζ (PKCζ) and phosphatidylinositol 3-kinase (PI3K). In addition, the up-regulation of ABCA1 expression and cholesterol efflux induced by 3D Hsp27 was suppressed by inhibition of Sp1, PKCζ and PI3K with specific kinase inhibitors. Taken together, our results revealed that Hsp27 may up-regulate the expression of ABCA1 and promotes cholesterol efflux through activation of the PI3K/PKCζ/Sp1 signal pathway in THP-1 macrophage-derived foam cells. Our findings may partly explain the mechanisms underlying the anti-atherogenic effect of Hsp27. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. pH dependent but not P-gp dependent bidirectional transport study of S-propranolol: the importance of passive diffusion

    PubMed Central

    Zheng, Yi; Benet, Leslie Z.; Okochi, Hideaki; Chen, Xijing

    2016-01-01

    Purpose Recent controversial publications, citing studies purporting to show that P-gp mediates the transport of propranolol, proposed that passive biological membrane transport is negligible. Based on the BDDCS, the extensively metabolized-highly permeable-highly soluble BDDCS class 1 drug, propranolol, shows a high passive permeability at concentrations unrestricted by solubility that can overwhelm any potential transporter effects. Here we reinvestigate the effects of passive diffusion and carrier-mediated transport on S-propranolol. Methods Bidirectional permeability and inhibition of efflux transport studies were carried out in MDCK, MDCK-MDR1 and Caco-2 cell lines at different concentrations. Transcellular permeability studies were conducted at different apical pHs in the rat jejunum Ussing chamber model and PAMPA system. Results S-propranolol exhibited efflux ratios lower than 1 in MDCK, MDCK-MDR1 and Caco-2 cells. No significant differences of Papp, B->A in the presence and absence of the efflux inhibitor GG918 were observed. However, an efflux ratio of 3.63 was found at apical pH 6.5 with significant decrease in Papp, A->B and increase in Papp, B->A compared to apical pH 7.4 in Caco-2 cell lines. The pH dependent permeability was confirmed in the Ussing chamber model. S-propranolol flux was unchanged during inhibition by verapamil and rifampin. Furthermore, pH dependent permeability was also observed in the PAMPA system. Conclusions S-propranolol does not exhibit active transport as proposed previously. The "false" positive efflux ratio can be explained by the pH partition theory. As expected, passive diffusion, but not active transport, plays the primary role in the permeability of the BDDCS class 1 drug propranolol. PMID:25690341

  10. Deficiency in the manganese efflux transporter SLC30A10 induces severe hypothyroidism in mice.

    PubMed

    Hutchens, Steven; Liu, Chunyi; Jursa, Thomas; Shawlot, William; Chaffee, Beth K; Yin, Weiling; Gore, Andrea C; Aschner, Michael; Smith, Donald R; Mukhopadhyay, Somshuvra

    2017-06-09

    Manganese is an essential metal that becomes toxic at elevated levels. Loss-of-function mutations in SLC30A10, a cell-surface-localized manganese efflux transporter, cause a heritable manganese metabolism disorder resulting in elevated manganese levels and parkinsonian-like movement deficits. The underlying disease mechanisms are unclear; therefore, treatment is challenging. To understand the consequences of loss of SLC30A10 function at the organism level, we generated Slc30a10 knock-out mice. During early development, knock-outs were indistinguishable from controls. Surprisingly, however, after weaning and compared with controls, knock-out mice failed to gain weight, were smaller, and died prematurely (by ∼6-8 weeks of age). At 6 weeks, manganese levels in the brain, blood, and liver of the knock-outs were ∼20-60-fold higher than controls. Unexpectedly, histological analyses revealed that the brain and liver of the knock-outs were largely unaffected, but their thyroid exhibited extensive alterations. Because hypothyroidism leads to growth defects and premature death in mice, we assayed for changes in thyroid and pituitary hormones. At 6 weeks and compared with controls, the knock-outs had markedly reduced thyroxine levels (∼50-80%) and profoundly increased thyroid-stimulating hormone levels (∼800-1000-fold), indicating that Slc30a10 knock-out mice develop hypothyroidism. Importantly, a low-manganese diet produced lower tissue manganese levels in the knock-outs and rescued the phenotype, suggesting that manganese toxicity was the underlying cause. Our unanticipated discovery highlights the importance of determining the role of thyroid dysfunction in the onset and progression of manganese-induced disease and identifies Slc30a10 knock-out mice as a new model for studying thyroid biology. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. An ex vivo study of nitric oxide efflux from human erythrocytes in both genders.

    PubMed

    Duarte, Catarina; Napoleão, Patrícia; Freitas, Teresa; Saldanha, Carlota

    2016-01-01

    Acetylcholinesterase (AChE) is located on outer surface of erythrocyte membrane. Gender-related differences in erythrocyte AChE enzyme activity had been verified in young adults. It is also known that binding of acetylcholine (ACh) with AChE on erythrocyte membrane initiates a signal transduction mechanism that stimulates nitric oxide (NO) efflux. This ex vivo study was done to compare the amount of NO efflux obtained from erythrocytes of healthy donors in males and females. We included 66 gender age-matched healthy donors (40-60 years old). We performed quantification of erythrocyte NO efflux from erythrocytes and of the membrane AChE enzyme activity. There are no significant differences in NO efflux from erythrocytes between men and women. Regarding AChE enzyme activity values, in this range of age, no differences between genders were obtained. However, the values of AChE enzyme activity in the third quartile of NO efflux values were significantly higher (p < 0.05) in women than in men. The efflux of NO from erythrocyte of healthy humans did not change with gender. For the same range of values of NO efflux from erythrocytes, in both gender, it was verified higher values of AChE enzyme activity in women.

  12. The effect of polyoxyethylene polymers on the transport of ranitidine in Caco-2 cell monolayers.

    PubMed

    Ashiru-Oredope, Diane A I; Patel, Nilesh; Forbes, Ben; Patel, Rajesh; Basit, Abdul W

    2011-05-16

    Previous in vivo studies using PEG 400 showed an enhancement in the bioavailability of ranitidine. This study investigated the effect of PEG 200, 300 and 400 on ranitidine transport across Caco-2 cells. The effect of PEG polymers (20%, v/v) on the bi-directional flux of (3)H-ranitidine across Caco-2 cell monolayers was measured. The concentration dependence of PEG 400 effects on ranitidine transport was also studied. A specific screen for P-glycoprotein (P-gp) activity was used to test for an interaction between PEG and P-gp. In the absence of PEG, ranitidine transport showed over 5-fold greater flux across Caco-2 monolayers in the secretory than the absorptive direction; efflux ratio 5.38. PEG 300 and 400 significantly reduced this efflux ratio (p<0.05), whereas PEG 200 had no effect (p>0.05). In concordance, PEG 300 and 400 showed an interaction with the P-gp transporter, whereas PEG 200 did not. Interestingly, with PEG 400 a non-linear concentration dependence was seen for the inhibition of the efflux ratio of ranitidine, with a maxima at 1%, v/v (p<0.05). The inhibition of ranitidine efflux by PEG 300 and 400 which interact with P-gp provides a mechanism that may account for the observations of ranitidine absorption enhancement by PEG 400 in vivo. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. CO₂ efflux from shrimp ponds in Indonesia.

    PubMed

    Sidik, Frida; Lovelock, Catherine E

    2013-01-01

    The conversion of mangrove forest to aquaculture ponds has been increasing in recent decades. One of major concerns of this habitat loss is the release of stored 'blue' carbon from mangrove soils to the atmosphere. In this study, we assessed carbon dioxide (CO₂) efflux from soil in intensive shrimp ponds in Bali, Indonesia. We measured CO₂ efflux from the floors and walls of shrimp ponds. Rates of CO₂ efflux within shrimp ponds were 4.37 kg CO₂ m⁻² y⁻¹ from the walls and 1.60 kg CO₂ m⁻² y⁻¹ from the floors. Combining our findings with published data of aquaculture land use in Indonesia, we estimated that shrimp ponds in this region result in CO₂ emissions to the atmosphere between 5.76 and 13.95 Tg y⁻¹. The results indicate that conversion of mangrove forests to aquaculture ponds contributes to greenhouse gas emissions that are comparable to peat forest conversion to other land uses in Indonesia. Higher magnitudes of CO₂ emission may be released to atmosphere where ponds are constructed in newly cleared mangrove forests. This study indicates the need for incentives that can meet the target of aquaculture industry without expanding the converted mangrove areas, which will lead to increased CO₂ released to atmosphere.

  14. Association of Cholesterol Efflux Capacity With Clinical Features of Metabolic Syndrome: Relevance to Atherosclerosis.

    PubMed

    Gall, Julie; Frisdal, Eric; Bittar, Randa; Le Goff, Wilfried; Bruckert, Eric; Lesnik, Philippe; Guerin, Maryse; Giral, Philippe

    2016-11-23

    The contribution of high-density lipoprotein to cardiovascular benefit is closely linked to its role in the cellular cholesterol efflux process; however, various clinical and biochemical variables are known to modulate the overall cholesterol efflux process. The aim of this study was to evaluate the extent to which clinical and biological anomalies associated with the establishment of the metabolic syndrome modulate cholesterol efflux capacity and contribute to development of atherosclerosis. This study involved patients (n=1202) displaying atherogenic dyslipidemia in primary prevention who were referred to our prevention center. Among these patients, 25% presented at least 3 criteria of the metabolic syndrome, as defined by the National Cholesterol Education Program Adult Treatment Panel III. We measured the capacity of 40-fold diluted serum to mediate cholesterol efflux from cholesterol-loaded human THP-1 macrophages. Cholesterol efflux capacity was reduced progressively by 4% to 11% (P<0.0001) as a function of the increasing number of coexisting criteria for the metabolic syndrome from 1 to 5. This observation was primarily related to reductions in scavenger receptor class B member 1 and ATP binding cassette subfamily G member 1-dependent efflux. Multivariate analyses indicate that serum efflux capacity was significantly associated with established metabolic syndrome (odds ratio 0.45; 95% CI 0.28-0.72; P=0.009) independent of age, low-density lipoprotein cholesterol, status with regard to lipid-lowering therapy, smoking status, and alcohol consumption. Our study revealed that individual criteria of metabolic syndrome are closely related synergistically to cholesterol efflux capacity. In addition, established metabolic syndrome and cholesterol efflux capacity were independently associated with clinical features of atherosclerosis. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  15. Monocrotophos Induces the Expression and Activity of Xenobiotic Metabolizing Enzymes in Pre-Sensitized Cultured Human Brain Cells

    PubMed Central

    Tripathi, Vinay K.; Kumar, Vivek; Singh, Abhishek K.; Kashyap, Mahendra P.; Jahan, Sadaf; Pandey, Ankita; Alam, Sarfaraz; Khan, Feroz; Khanna, Vinay K.; Yadav, Sanjay; Lohani, Mohtshim; Pant, Aditya B.

    2014-01-01

    The expression and metabolic profile of cytochrome P450s (CYPs) is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y) and glial (U373-MG) cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC), cyclophosphamide (CPA), ethanol and known neurotoxicant- monocrotophos (MCP), a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h) of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against xenobiotics

  16. Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees.

    PubMed

    Holler, Jes Gitz; Christensen, S Brøgger; Slotved, Hans-Christian; Rasmussen, Hasse B; Gúzman, Alfonso; Olsen, Carl-Erik; Petersen, Bent; Mølgaard, Per

    2012-05-01

    To isolate a plant-derived compound with efflux inhibitory activity towards the NorA transporter of Staphylococcus aureus. Bioassay-guided isolation was used, with inhibition of ethidium bromide efflux via NorA as a guide. Characterization of activity was carried out using MIC determination and potentiation studies of a fluoroquinolone antibiotic in combination with the isolated compound. Everted membrane vesicles of Escherichia coli cells enriched with NorA were prepared to study efflux inhibitory activity in an isolated manner. The ethanolic extract of Persea lingue was subjected to bioassay-guided fractionation and led to the isolation of the known compound kaempferol-3-O-α-L-(2,4-bis-E-p-coumaroyl)rhamnoside (compound 1). Evaluation of the dose-response relationship of compound 1 showed that ethidium bromide efflux was inhibited, with an IC(50) value of 2 μM. The positive control, reserpine, was found to have an IC(50) value of 9 μM. Compound 1 also inhibited NorA in enriched everted membrane vesicles of E. coli. Potentiation studies revealed that compound 1 at 1.56 mg/L synergistically increased the antimicrobial activity of ciprofloxacin 8-fold against a NorA overexpresser, and the synergistic activity was exerted at a fourth of the concentration necessary for reserpine. Compound 1 was not found to exert a synergistic effect on ciprofloxacin against a norA deletion mutant. The 2,3-coumaroyl isomer of compound 1 has been shown previously not to cause acute toxicity in mice at 20 mg/kg/day. Our results show that compound 1 acts through inhibition of the NorA efflux pump. Combination of compound 1 with subinhibitory concentrations of ciprofloxacin renders a wild-type more susceptible and a NorA overexpresser S. aureus susceptible.

  17. Variability in soil CO2 efflux across distinct urban land cover types

    NASA Astrophysics Data System (ADS)

    Weissert, Lena F.; Salmond, Jennifer A.; Schwendenmann, Luitgard

    2015-04-01

    As a main source of greenhouse gases urban areas play an important role in the global carbon cycle. To assess the potential role of urban vegetation in mitigating carbon emissions we need information on the magnitude of biogenic CO2 emissions and its driving factors. We examined how urban land use types (urban forest, parklands, sportsfields) vary in their soil CO2 efflux. We measured soil CO2 efflux and its isotopic signature, soil temperature and soil moisture over a complete growing season in Auckland, New Zealand. Soil physical and chemical properties and vegetation characteristics were also measured. Mean soil CO2 efflux ranged from 4.15 to 12 μmol m-2 s-1. We did not find significant differences in soil CO2 efflux among land cover types due to high spatial variability in soil CO2 efflux among plots. Soil (soil carbon and nitrogen density, texture, soil carbon:nitrogen ratio) and vegetation characteristics (basal area, litter carbon density, grass biomass) were not significantly correlated with soil CO2 efflux. We found a distinct seasonal pattern with significantly higher soil CO2 efflux in autumn (Apr/May) and spring (Oct). In urban forests and sportsfields over 80% of the temporal variation was explained by soil temperature and soil water content. The δ13C signature of CO2 respired from parklands and sportsfields (-20 permil - -25 permil) were more positive compared to forest plots (-29 permil) indicating that parkland and sportsfields had a considerable proportion of C4 grasses. Despite the large intra-urban variability, our results compare to values reported from other, often climatically different cities, supporting the hypothesis of homogenization across urban areas as a result of human management practices.

  18. Temporal and Spatial Variations in Soil CO2 Effluxes of Different Ecosystems

    NASA Astrophysics Data System (ADS)

    Liang, N.; Kim, S.; Shimoyama, K.; Kim, Y.; Hirano, T.; Takagi, K.; Suto, H.; Fujinuma, Y.; Inoue, G.

    2005-12-01

    Regional networks for measuring carbon sequestration or loss by terrestrial ecosystems on a year round basis have been in operation since the mid-1990s. However, continuous measurements of soil CO2 efflux, the largest component of ecosystem respiration have only been reported over similar time scales at a few of the sites. Reasons include the lack of automated measurement systems that are commercially available, and the need for frequent servicing to ensure accurate measurements. We have developed a multichannel automated chamber system that can be used for continuous measuring soil CO2 efflux during snow-free seasons. We installed the chamber systems in boreal forest in Alaska, tundra in west Siberia, temperate and cool-temperate forests in Japan and Korea, tropical seasonal forest in Thailand, and tropical rainforest in Malaysia. Annual soil CO2 efflux were measured to be about 5-6 tC ha-1 y-1 in the boreal and cool-temperate forests, 10 tC ha-1 y-1 in the temperate forests, and 26 tC ha-1 y-1 in the tropical rainforests. Efflux showed significant seasonality in the boreal and temperate forest that corresponding with the seasonal soil temperature. However, the wavelike efflux rates in the tropical forests were correlated with the seasonality of soil moisture. Soil CO2 efflux of forest ecosystems showed large spatial variation and was correlated with vegetation type and the chamber size.

  19. A Simple Method for Assessment of MDR Bacteria for Over-Expressed Efflux Pumps

    PubMed Central

    Martins, Marta; McCusker, Matthew P; Viveiros, Miguel; Couto, Isabel; Fanning, Séamus; Pagès, Jean-Marie; Amaral, Leonard

    2013-01-01

    It is known that bacteria showing a multi-drug resistance phenotype use several mechanisms to overcome the action of antibiotics. As a result, this phenotype can be a result of several mechanisms or a combination of thereof. The main mechanisms of antibiotic resistance are: mutations in target genes (such as DNA gyrase and topoisomerase IV); over-expression of efflux pumps; changes in the cell envelope; down regulation of membrane porins, and modified lipopolysaccharide component of the outer cell membrane (in the case of Gram-negative bacteria). In addition, adaptation to the environment, such as quorum sensing and biofilm formation can also contribute to bacterial persistence. Due to the rapid emergence and spread of bacterial isolates showing resistance to several classes of antibiotics, methods that can rapidly and efficiently identify isolates whose resistance is due to active efflux have been developed. However, there is still a need for faster and more accurate methodologies. Conventional methods that evaluate bacterial efflux pump activity in liquid systems are available. However, these methods usually use common efflux pump substrates, such as ethidium bromide or radioactive antibiotics and therefore, require specialized instrumentation, which is not available in all laboratories. In this review, we will report the results obtained with the Ethidium Bromide-agar Cartwheel method. This is an easy, instrument-free, agar based method that has been modified to afford the simultaneous evaluation of as many as twelve bacterial strains. Due to its simplicity it can be applied to large collections of bacteria to rapidly screen for multi-drug resistant isolates that show an over-expression of their efflux systems. The principle of the method is simple and relies on the ability of the bacteria to expel a fluorescent molecule that is substrate for most efflux pumps, ethidium bromide. In this approach, the higher the concentration of ethidium bromide required to

  20. Wood CO2 efflux and foliar respiration for Eucalyptus in Hawaii and Brazil

    Treesearch

    Michael G. Ryan; Molly A. Cavaleri; Auro C. Almeida; Ricardo Penchel; Randy S. Senock; Jose Luiz Stape

    2009-01-01

    We measured CO2 efflux from wood for Eucalyptus in Hawaii for 7 years and compared these measurements with those on three- and four-and-a-halfyear- old Eucalyptus in Brazil. In Hawaii, CO2 efflux from wood per unit biomass declined ~10x from age two to age five, twice as much as the decline in tree growth. The CO2 efflux from wood in Brazil was 8-10· lower than that...

  1. Oxaloacetate- and acetoacetate-induced calcium efflux from mitochondria occurs by reversal of the uptake pathway.

    PubMed Central

    Bardsley, M E; Brand, M D

    1982-01-01

    1. Addition of oxaloacetate or acetoacetate to isolated rat liver mitochondria results in an efflux of Ca2+. Concomitant with this efflux is an immediate oxidation of endogenous nicotinamide nucleotides, a fall in the mitochondrial membrane potential and an increase in the rate of respiration. The primary effect in this sequence may be either (a) physiologically important stimulation of a Ca2+-efflux carrier, followed by Ca2+ re-uptake, a fall in membrane potential and increased respiration, or (b) physiologically unimportant damage to mitochondrial integrity, followed by a fall in membrane potential, increased respiration and Ca2+ efflux. 2. Ruthenium Red and EGTA will restore the increased respiratory rate to one approximating to the control rate of respiration. However, addition of lanthanide, at a concentration which inhibits the uptake but not the normal efflux of Ca2+, inhibits the rate of Ca2+ efflux induced by oxaloacetate or acetoacetate. Therefore the observed efflux is occurring by a reversal of the uptake pathway (uniporter) and thus follows the fall in membrane potential. 3. From these results we conclude that the decrease in membrane potential and increase in the rate of respiration seen during oxaloacetate- or acetoacetate-induced Ca2+ efflux cannot be accounted for by rapid Ca2+ cycling, but are due to damage to mitochondrial integrity. PMID:7082307

  2. Nutrient transporter gene expression in poultry, livestock and fish

    USDA-ARS?s Scientific Manuscript database

    The absorption of nutrients such as amino acids, peptides, monosaccharides and minerals by cells and tissues is mediated by a series of membrane bound transporters that are members of the solute carrier (SLC) gene family. These transporters regulate the influx and efflux of nutrients in a wide vari...

  3. Effect of sulfonylurea agents on reverse cholesterol transport in vitro and vivo.

    PubMed

    Terao, Yoshio; Ayaori, Makoto; Ogura, Masatsune; Yakushiji, Emi; Uto-Kondo, Harumi; Hisada, Tetsuya; Ozasa, Hideki; Takiguchi, Shunichi; Nakaya, Kazuhiro; Sasaki, Makoto; Komatsu, Tomohiro; Iizuka, Maki; Horii, Shunpei; Mochizuki, Seibu; Yoshimura, Michihiro; Ikewaki, Katsunori

    2011-01-01

    Reverse cholesterol transport (RCT) is a critical mechanism for the anti-atherogenic property of HDL. The inhibitory effect of the sulfonylurea agent (SUA) glibenclamide on ATP binding-cassette transporter (ABC) A1 may decrease HDL function but it remains unclear whether it attenuates RCT in vivo. We therefore investigated how the SUAs glibenclamide and glimepiride affected the functionality of ABCA1/ABCG1 and scavenger receptor class B type I (SR-BI) expression in macrophages in vitro and overall RCT in vivo. RAW264.7, HEK293 and BHK-21 cells were used for in vitro studies. To investigate RCT in vivo, 3H-cholesterol-labeled and acetyl LDL-loaded RAW264.7 cells were injected into mice. High dose (500µM) of glibenclamide inhibited ABCA1 function and apolipoprotein A-I (apoA-I)-mediated cholesterol efflux, and attenuated ABCA1 expression. Although glimepiride maintained apoA-I-mediated cholesterol efflux from RAW264.7 cells, like glibenclamide, it inhibited ABCA1-mediated cholesterol efflux from transfected HEK293 cells. Similarly, the SUAs inhibited SR-BI-mediated cholesterol efflux from transfected BHK-21 cells. High doses of SUAs increased ABCG1 expression in RAW264.7 cells, promoting HDL-mediated cholesterol efflux in an ABCG1-independent manner. Low doses (0.1-100 µM) of SUAs did not affect cholesterol efflux from macrophages despite dose-dependent increases in ABCA1/G1 expression. Furthermore, they did not change RCT or plasma lipid levels in mice. High doses of SUAs inhibited the functionality of ABCA1/SR-BI, but not ABCG1. At lower doses, they had no unfavorable effects on cholesterol efflux or overall RCT in vivo. These results indicate that SUAs do not have adverse effects on atherosclerosis contrary to previous findings for glibenclamide.

  4. In vivo evaluation of anionic thiolated polymers as oral delivery systems for efflux pump inhibition.

    PubMed

    Palmberger, Thomas F; Laffleur, Flavia; Greindl, Melanie; Bernkop-Schnürch, Andreas

    2015-08-01

    Recently, the cationic polymer thiolated chitosan has been reported to modulate drug absorption by inhibition of intestinal efflux pumps. The objective of this study was to evaluate in vitro and in vivo whether thiolated anionic biopolymers also show an efflux pump inhibitory effect in order to improve intestinal transcellular drug uptake. Therefore, three thiomers have been synthesized due covalent attachment of cysteine to various polymer backbones: pectin-cysteine (pect-cys), carboxymethylcellulose-cysteine (CMC-cys) and alginate-cysteine (alg-cys). In vitro, the permeation enhancing properties of these thiomers and their corresponding unmodified polymers have been evaluated on rat small intestine in Ussing-type chambers, using sulforhodamine 101 (SR-101) as MRP2 model substrate. In comparison to buffer only, SR-101 transport in presence of pect-cys, CMC-cys and alg-cys was improved 1.5-fold, 1.8-fold and 3.0-fold, respectively. Due to the comparatively best in vitro performance of thiolated alginate, it has been chosen for in vivo studies: a SR-101 solution containing 4% (w/v) alg-cys led to an AUC0 ≥ 12 of SR-101 of 109 ng ml(-1)h in rats representing a 3.8-fold improvement in comparison to a SR-101 buffer solution. Unmodified alginate improved the AUC0 ≥ 12 of SR-101 by a factor of 1.9. These findings suggest thiolated alginate as promising auxiliary agent for drugs being anionic efflux pump substrates, since the oral bioavailability of a MRP2 substrate could be significantly improved. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Efflux Pump Gene Expression in Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolates

    PubMed Central

    Jiang, Yi; Wei, Jianhao; Zhao, Li-li; Zhao, Xiuqin; Lu, Jianxin; Wan, Kanglin

    2015-01-01

    Isoniazid (INH) and rifampicin (RIF) are the two most effective drugs in tuberculosis therapy. Understanding the molecular mechanisms of resistance to these two drugs is essential to quickly diagnose multidrug-resistant (MDR) tuberculosis and extensive drug-resistant tuberculosis. Nine clinical Mycobacterium tuberculosis isolates resistant to only INH and RIF and 10 clinical pan-sensitive isolates were included to evaluate the expression of 20 putative drug efflux pump genes and sequence mutations in rpoB (RIF), katG (INH), the inhA promoter (INH), and oxyR-ahpC (INH). Nine and three MDR isolates were induced to overexpress efflux pump genes by INH and RIF, respectively. Eight and two efflux pump genes were induced to overexpress by INH and RIF in MDR isolates, respectively. drrA, drrB, efpA, jefA (Rv2459), mmr, Rv0849, Rv1634, and Rv1250 were overexpressed under INH or RIF stress. Most efflux pump genes were overexpressed under INH stress in a MDR isolates that carried the wild-type katG, inhA, and oxyR-ahpC associated with INH resistance than in those that carried mutations. The expression levels of 11 genes (efpA, Rv0849, Rv1250, P55 (Rv1410c), Rv1634, Rv2994, stp, Rv2459, pstB, drrA, and drrB) without drug inducement were significantly higher (P < 0.05) in nine MDR isolates than in 10 pan-sensitive isolates. In conclusion, efflux pumps may play an important role in INH acquired resistance in MDR M. tuberculosis, especially in those strains having no mutations in genes associated with INH resistance; basal expression levels of some efflux pump genes are higher in MDR isolates than in pan-sensitive isolates and the basal expressional differences may be helpful to diagnose and treat resistant tuberculosis. PMID:25695504

  6. Inhibition of the NLRP3 inflammasome attenuates foam cell formation of THP-1 macrophages by suppressing ox-LDL uptake and promoting cholesterol efflux.

    PubMed

    Chen, Liang; Yao, Qiying; Xu, Siwei; Wang, Hongyan; Qu, Peng

    2018-01-01

    The NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome plays an important role in the development of atherosclerosis. The activated NLRP3 inflammasome has been reported to promote macrophage foam cell formation, but not all studies have obtained the same result, and how NLRP3 inflammasome is involved in the formation of foam cells remains elusive. We used selective NLRP3 inflammasome inhibitors and NLRP3-deficient THP-1 cells to assess the effect of NLRP3 inflammasome inhibition on macrophage foam cell formation, oxidized low-density lipoprotein (ox-LDL) uptake, esterification, and cholesterol efflux, as well as the expression of associated proteins. Inhibition of the NLRP3 inflammasome attenuated foam cell formation, diminished ox-LDL uptake, and promoted cholesterol efflux from THP-1 macrophages. Moreover, it downregulated CD36, acyl coenzyme A: cholesterol acyltransferase-1 and neutral cholesterol ester hydrolase expression; upregulated ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) expression; but had no effect on the expression of scavenger receptor class A and ATP-binding cassette transporter G1. Collectively, our findings show that inhibition of the NLRP3 inflammasome decreases foam cell formation of THP-1 macrophages via suppression of ox-LDL uptake and enhancement of cholesterol efflux, which may be due to downregulation of CD36 expression and upregulation of ABCA1 and SR-BI expression, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY -cholesterol

    USDA-ARS?s Scientific Manuscript database

    Studies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantifying cholesterol efflux involves labeling cells with [(3)H]cholesterol and measuring release of the labeled sterol. Using [(3)H]cholesterol is not ideal for...

  8. HDL cholesterol transport during inflammation.

    PubMed

    van der Westhuyzen, Deneys R; de Beer, Frederick C; Webb, Nancy R

    2007-04-01

    The aim of this article is to review recent advances made towards understanding how inflammation and acute phase proteins, particularly serum amyloid A and group IIa secretory phospholipase A2, may alter reverse cholesterol transport by HDL during inflammation and the acute phase response. Findings suggest that the decreased apoA-I content and markedly increased serum amyloid A content in HDL during the acute phase response result from reciprocal and coordinate transcriptional regulation of these proteins as well as HDL remodeling by group IIa secretory phospholipase A2. Serum amyloid A functions efficiently in a lipid-free or lipid-poor form to promote cholesterol efflux by ATP binding cassette protein ABCA1, evidently by functioning directly as an acceptor for cholesterol efflux as well as by increasing the availability of cellular free cholesterol. Serum amyloid A increases the ability of acute phase HDL to serve as an acceptor for SR-BI-dependent cellular cholesterol efflux. Altered remodeling of HDL by group IIa secretory phospholipase A2 in concert with cholesterol ester transfer protein may contribute to the generation of lipid-poor apoA-I and serum amyloid A acceptors for cholesterol efflux. Current data support a model for the acute phase response in which serum amyloid A and sPLA2-IIa, present at sites of inflammation and tissue damage, play a protective role by enhancing cellular cholesterol efflux, thereby promoting the removal of excess cholesterol from macrophages.

  9. GENE EXPRESSION PROFILING OF XENOBIOTIC METABOLIZING ENZYMES (XMES) THROUGH THE LIFE STAGES OF THE MALE C57BL/6 MOUSE

    EPA Science Inventory

    In the presence of foreign compounds, metabolic homeostasis of the organism is maintained by the liver's ability to detoxify and eliminate these xenobiotics. This is accomplished, in part, by the expression of XMEs, which metabolize xenobiotics and determine whether exposure will...

  10. Mode of action of the 2-phenylquinoline efflux inhibitor PQQ4R against Escherichia coli

    PubMed Central

    Machado, Diana; Fernandes, Laura; Costa, Sofia S.; Cannalire, Rolando; Manfroni, Giuseppe; Tabarrini, Oriana; Couto, Isabel; Sabatini, Stefano

    2017-01-01

    Efflux pump inhibitors are of great interest since their use as adjuvants of bacterial chemotherapy can increase the intracellular concentrations of the antibiotics and assist in the battle against the rising of antibiotic-resistant bacteria. In this work, we have described the mode of action of the 2-phenylquinoline efflux inhibitor (4-(2-(piperazin-1-yl)ethoxy)-2-(4-propoxyphenyl) quinolone – PQQ4R), against Escherichia coli, by studding its efflux inhibitory ability, its synergistic activity in combination with antibiotics, and compared its effects with the inhibitors phenyl-arginine-β-naphthylamide (PAβN) and chlorpromazine (CPZ). The results showed that PQQ4R acts synergistically, in a concentration dependent manner, with antibiotics known to be subject to efflux in E. coli reducing their MIC in correlation with the inhibition of their efflux. Real-time fluorometry assays demonstrated that PQQ4R at sub-inhibitory concentrations promote the intracellular accumulation of ethidium bromide inhibiting its efflux similarly to PAβN or CPZ, well-known and described efflux pump inhibitors for Gram-negative bacteria and whose clinical usage is limited by their levels of toxicity at clinical and bacteriological effective concentrations. The time-kill studies showed that PQQ4R, at bactericidal concentrations, has a rapid antimicrobial activity associated with a fast decrease of the intracellular ATP levels. The results also indicated that the mode of action of PQQ4R involves the destabilization of the E. coli inner membrane potential and ATP production impairment, ultimately leading to efflux pump inhibition by interference with the energy required by the efflux systems. At bactericidal concentrations, membrane permeabilization increases and finally ATP is totally depleted leading to cell death. Since drug resistance mediated by the activity of efflux pumps depends largely on the proton motive force (PMF), dissipaters of PMF such as PQQ4R, can be regarded as future

  11. EFFECT OF PREGNANE XENOBIOTIC RECEPTOR ACTIVATION ON INFLAMMATORY BOWEL DISEASE TREATED WITH RIFAXIMIN.

    PubMed

    Wan, Y C; Li, T; Han, Y-D; Zhang, H-Y; Lin, H; Zhang, B

    2015-01-01

    The causes and pathogenesis of Inflammatory Bowel Disease (IBD) are still not clearly understood. This study aims to prove the important role of rifaximin played in inflammatory reaction caused by abnormity of the intestinal mucosal immune system. Intestinal microflora can greatly promote and maintain the inflammatory reaction of IBD, therefore, antibiotics can be used to treat IBD. Rifaximin is a medicine usually used for local intestinal infection. Many clinical and basic studies have shown that both a single application of rifaximin and the joint application with other medicines could achieve a good efficacy. This paper studied the activation of Pregnane Xenobiotic Receptor (PXR) in treating IBD with rifaximin and analyzed its efficacy in IBD when PXR was involved in the transport of medicine and metabolism. The results prove that rifaximin can not only serve as an anti-microbial drug, but can activate PXR and actually weaken the reaction of IBD. Thus it is safe to say that rifaximin has great potential in treating IBD.

  12. Interaction of dipeptide prodrugs of saquinavir with multidrug resistance protein-2 (MRP-2): evasion of MRP-2 mediated efflux.

    PubMed

    Jain, Ritesh; Agarwal, Sheetal; Mandava, Nanda Kishore; Sheng, Ye; Mitra, Ashim K

    2008-10-01

    Saquinavir (SQV), the first protease inhibitor approved by FDA to treat HIV-1 infection. This drug is a well-known substrate for multidrug resistance protein-2 (MRP-2). The objective of this study was to investigate whether derivatization of SQV to dipeptide prodrugs, valine-valine-saquinavir (Val-Val-SQV) and glycine-valine-saquinavir (Gly-Val-SQV), targeting peptide transporter can circumvent MRP-2 mediated efflux. Uptake and transport studies were carried out across MDCKII-MRP2 cell monolayers to investigate the interaction of SQV and its prodrugs with MRP-2. In situ single pass intestinal perfusion experiments in rat jejunum were performed to calculate intestinal absorption rate constants and permeabilities of SQV, Val-Val-SQV and Gly-Val-SQV. Uptake studies demonstrated that the prodrugs have significantly lower interaction with MRP-2 relative to SQV. Transepithelial transport of Val-Val-SQV and Gly-Val-SQV across MDCKII-MRP2 cells exhibited an enhanced absorptive flux and reduced secretory flux as compared to SQV. Intestinal perfusion studies revealed that synthesized prodrugs have higher intestinal permeabilities relative to SQV. Enhanced absorption of Val-Val-SQV and Gly-Val-SQV relative to SQV can be attributed to their translocation by the peptide transporter in the jejunum. In the presence of MK-571, a MRP family inhibitor, there was a significant increase in the permeabilities of SQV and Gly-Val-SQV indicating that these compounds are probably substrates for MRP-2. However, there was no change in the permeability of Val-Val-SQV with MK-571 indicating lack of any interaction of Val-Val-SQV with MRP-2. In conclusion, peptide transporter targeted prodrug modification of MRP-2 substrates may lead to shielding of these drug molecules from MRP-2 efflux pumps.

  13. EmrE, a multidrug transporter from Escherichia coli, transports monovalent and divalent substrates with the same stoichiometry.

    PubMed

    Rotem, Dvir; Schuldiner, Shimon

    2004-11-19

    Multidrug transporters recognize and transport substrates with apparently little common structural features. At times these substrates are neutral, negatively, or positively charged, and only limited information is available as to how these proteins deal with the energetic consequences of transport of substrates with different charges. Multidrug transporters and drug-specific efflux systems are responsible for clinically significant resistance to chemotherapeutic agents in pathogenic bacteria, fungi, parasites, and human cancer cells. Understanding how these efflux systems handle different substrates may also have practical implications in the development of strategies to overcome the resistance mechanisms mediated by these proteins. Here, we compare transport of monovalent and divalent substrates by EmrE, a multidrug transporter from Escherichia coli, in intact cells and in proteoliposomes reconstituted with the purified protein. The results demonstrated that whereas the transport of monovalent substrates involves charge movement (i.e. electrogenic), the transport of divalent substrate does not (i.e. electroneutral). Together with previous results, these findings suggest that an EmrE dimer exchanges two protons per substrate molecule during each transport cycle. In intact cells, under conditions where the only driving force is the electrical potential, EmrE confers resistance to monovalent substrates but not to divalent ones. In the presence of proton gradients, resistance to both types of substrates is detected. The finding that under some conditions EmrE does not remove certain types of drugs points out the importance of an in-depth understanding of mechanisms of action of multidrug transporters to devise strategies for coping with the problem of multidrug resistance.

  14. Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1.

    PubMed

    Noh, Bosl; Bandyopadhyay, Anindita; Peer, Wendy Ann; Spalding, Edgar P; Murphy, Angus S

    2003-06-26

    Many aspects of plant growth and development are dependent on the flow of the hormone auxin down the plant from the growing shoot tip where it is synthesized. The direction of auxin transport in stems is believed to result from the basal localization within cells of the PIN1 membrane protein, which controls the efflux of the auxin anion. Mutations in two genes homologous to those encoding the P-glycoprotein ABC transporters that are especially abundant in multidrug-resistant tumour cells in animals were recently shown to block polar auxin transport in the hypocotyls of Arabidopsis seedlings. Here we show that the mdr mutants display faster and greater gravitropism and enhanced phototropism instead of the impaired curvature development expected in mutants lacking polar auxin transport. We find that these phenotypes result from a disruption of the normal accumulation of PIN1 protein along the basal end of hypocotyl cells associated with basipetal auxin flow. Lateral auxin conductance becomes relatively larger as a result, enhancing the growth differentials responsible for tropic responses.

  15. Efflux of hydraulically lifted water from mycorrhizal fungal hyphae during imposed drought

    PubMed Central

    Querejeta, José Ignacio; Allen, Michael F

    2008-01-01

    Apart from improving plant and soil water status during drought, it has been suggested that hydraulic lift (HL) could enhance plant nutrient capture through the flow of mineral nutrients directly from the soil to plant roots, or by maintaining the functioning of mycorrhizal fungi. We evaluated the extent to which the diel cycle of water availability created by HL covaries with the efflux of HL water from the tips of extramatrical (external) mycorrhizal hyphae, and the possible effects on biogeochemical processes. Phenotypic mycorrhizal fungal variables, such as total and live hyphal lengths, were positively correlated with HL efflux from hyphae, soil water potential (dawn), and plant response variables (foliar 15N). The efflux of HL water from hyphae was also correlated with bacterial abundance and soil enzyme activity (P), and the moistening of soil organic matter. Such findings indicate that the efflux of HL water from the external mycorrhizal mycelia may be a complementary explanation for plant nutrient acquisition and survival during drought. PMID:19704776

  16. Efflux-Mediated Resistance to Tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1

    PubMed Central

    Dean, Charles R.; Visalli, Melissa A.; Projan, Steven J.; Sum, Phaik-Eng; Bradford, Patricia A.

    2003-01-01

    Pseudomonas aeruginosa strains are less susceptible to tigecycline (previously GAR-936; MIC, 8 μg/ml) than many other bacteria (P. J. Petersen, N. V. Jacobus, W. J. Weiss, P. E. Sum, and R. T. Testa, Antimicrob. Agents Chemother. 43:738-744, 1999). To elucidate the mechanism of resistance to tigecycline, P. aeruginosa PAO1 strains defective in the MexAB-OprM and/or MexXY (OprM) efflux pumps were tested for susceptibility to tigecycline. Increased susceptibility to tigecycline (MIC, 0.5 to 1 μg/ml) was specifically associated with loss of MexXY. Transcription of mexX and mexY was also responsive to exposure of cells to tigecycline. To test for the emergence of compensatory efflux pumps in the absence of MexXY-OprM, mutants lacking MexXY-OprM were plated on medium containing tigecycline at 4 or 6 μg/ml. Resistant mutants were readily recovered, and these also had decreased susceptibility to several other antibiotics, suggesting efflux pump recruitment. One representative carbenicillin-resistant strain overexpressed OprM, the outer membrane channel component of the MexAB-OprM efflux pump. The mexAB-oprM repressor gene, mexR, from this strain contained a 15-bp in-frame deletion. Two representative chloramphenicol-resistant strains showed expression of an outer membrane protein slightly larger than OprM. The mexCD-OprJ repressor gene, nfxB, from these mutants contained a 327-bp in-frame deletion and an IS element insertion, respectively. Together, these data indicated drug efflux mediated by MexCD-OprJ. The MICs of the narrower-spectrum semisynthetic tetracyclines doxycycline and minocycline increased more substantially than did those of tigecycline and other glycylcyclines against the MexAB-OprM- and MexCD-OprJ-overexpressing mutant strains. This suggests that glycylcyclines, although they are subject to efflux from P. aeruginosa, are generally inferior substrates for P. aeruginosa efflux pumps than are narrower-spectrum tetracyclines. PMID:12604529

  17. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus

    PubMed Central

    2011-01-01

    Background Antimicrobial resistance mediated by efflux systems is still poorly characterized in Staphylococcus aureus, despite the description of several efflux pumps (EPs) for this bacterium. In this work we used several methodologies to characterize the efflux activity of 52 S. aureus isolates resistant to ciprofloxacin collected in a hospital in Lisbon, Portugal, in order to understand the role played by these systems in the resistance to fluoroquinolones. Results Augmented efflux activity was detected in 12 out of 52 isolates and correlated with increased resistance to fluoroquinolones. Addition of efflux inhibitors did not result in the full reversion of the fluoroquinolone resistance phenotype, yet it implied a significant decrease in the resistance levels, regardless of the type(s) of mutation(s) found in the quinolone-resistance determining region of grlA and gyrA genes, which accounted for the remaining resistance that was not efflux-mediated. Expression analysis of the genes coding for the main efflux pumps revealed increased expression only in the presence of inducing agents. Moreover, it showed that not only different substrates can trigger expression of different EP genes, but also that the same substrate can promote a variable response, according to its concentration. We also found isolates belonging to the same clonal type that showed different responses towards drug exposure, thus evidencing that highly related clinical isolates may diverge in the efflux-mediated response to noxious agents. The data gathered by real-time fluorometric and RT-qPCR assays suggest that S. aureus clinical isolates may be primed to efflux antimicrobial compounds. Conclusions The results obtained in this work do not exclude the importance of mutations in resistance to fluoroquinolones in S. aureus, yet they underline the contribution of efflux systems for the emergence of high-level resistance. All together, the results presented in this study show the potential role

  18. Vertical profile of branch CO2 efflux in a Norway spruce tree: a case study

    NASA Astrophysics Data System (ADS)

    Acosta, M.; Pavelka, M.

    2012-04-01

    Despite woody-tissue CO2 effluxes having been recognized as an important component of forest carbon budget due to the fraction of assimilates used and the dramatic increase in woody with stand development, there is limited research to determine the CO2 efflux vertical variability of woody-tissue components. For a better understanding and quantification of branch woody-tissue CO2 efflux in forest ecosystems, it is necessary to identify the environmental factors influencing it and the role of the branch distribution within the canopy. The proper assessment of this forest component will improve the knowledge of the ratio between ecosystem respiration and gross primary production at forest ecosystem. In order to achieve this goal, branch CO2 efflux of Norway spruce tree was measured in ten branches at five different whorls during the growing season 2004 (from June till October) in campaigns of 3-4 times per month at the Beskydy Mts., the Czech Republic, using a portable infrared gas analyzer operating as a closed system. Branch woody tissue temperature was measured continuously in ten minutes intervals for each sample position during the whole experiment period. On the basis of relation between CO2 efflux rate and woody tissue temperature a value of Q10 and normalized CO2 efflux rate (E10 - CO2 efflux rate at 10° C) were calculated for each sampled position. Estimated Q10 values ranged from 2.12 to 2.89 and E10 ranged from 0.41 to 1.19 ?molCO2m-2 s-1. Differences in branch CO2 efflux were found between orientations; East side branches presented higher efflux rate than west side branches. The highest branch CO2 efflux rate values were measured in August and the lowest in October, which were connected with woody tissue temperature and ontogenetic processes during these periods. Branch CO2 efflux was significantly and positively correlated with branch position within canopy and woody tissue temperature. Branches from the upper whorls showed higher respiration activity

  19. Enhancement of antibiotic activity by efflux inhibitors against multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil

    PubMed Central

    Coelho, Tatiane; Machado, Diana; Couto, Isabel; Maschmann, Raquel; Ramos, Daniela; von Groll, Andrea; Rossetti, Maria L.; Silva, Pedro A.; Viveiros, Miguel

    2015-01-01

    Drug resistant tuberculosis continues to increase and new approaches for its treatment are necessary. The identification of M. tuberculosis clinical isolates presenting efflux as part of their resistant phenotype has a major impact in tuberculosis treatment. In this work, we used a checkerboard procedure combined with the tetrazolium microplate-based assay (TEMA) to study single combinations between antituberculosis drugs and efflux inhibitors (EIs) against multidrug resistant M. tuberculosis clinical isolates using the fully susceptible strain H37Rv as reference. Efflux activity was studied on a real-time basis by a fluorometric method that uses ethidium bromide as efflux substrate. Quantification of efflux pump genes mRNA transcriptional levels were performed by RT-qPCR. The fractional inhibitory concentrations (FIC) indicated synergistic activity for the interactions between isoniazid, rifampicin, amikacin, ofloxacin, and ethidium bromide plus the EIs verapamil, thioridazine and chlorpromazine. The FICs ranged from 0.25, indicating a four-fold reduction on the MICs, to 0.015, 64-fold reduction. The detection of active efflux by real-time fluorometry showed that all strains presented intrinsic efflux activity that contributes to the overall resistance which can be inhibited in the presence of the EIs. The quantification of the mRNA levels of the most important efflux pump genes on these strains shows that they are intrinsically predisposed to expel toxic compounds as the exposure to subinhibitory concentrations of antibiotics were not necessary to increase the pump mRNA levels when compared with the non-exposed counterpart. The results obtained in this study confirm that the intrinsic efflux activity contributes to the overall resistance in multidrug resistant clinical isolates of M. tuberculosis and that the inhibition of efflux pumps by the EIs can enhance the clinical effect of antibiotics that are their substrates. PMID:25972842

  20. Amyloid-β efflux from the CNS into the plasma

    PubMed Central

    Roberts, Kaleigh Filisa; Elbert, Donald L.; Kasten, Tom P.; Patterson, Bruce W.; Sigurdson, Wendy C.; Connors, Rose E.; Ovod, Vitaliy; Munsell, Ling Y.; Mawuenyega, Kwasi G.; Miller-Thomas, Michelle M.; Moran, Christopher J.; Cross, Dewitte T.; Derdeyn, Colin P.; Bateman, Randall J.

    2015-01-01

    Objective The aim of this study was to measure the flux of amyloid-β (Aβ) across the human cerebral capillary bed in order to determine if transport into the blood is a significant mechanism of clearance for Aβ produced in the central nervous system (CNS). Methods Time-matched blood samples were simultaneously collected from a cerebral vein (including the sigmoid sinus, inferior petrosal sinus, and the internal jugular vein), femoral vein, and radial artery of patients undergoing Inferior Petrosal Sinus Sampling (IPSS). For each plasma sample, Aβ concentration was assessed by three assays and the venous to arterial Aβ concentration ratios were determined. Results Aβ concentration was increased by ~7.5% in venous blood leaving the CNS capillary bed compared to arterial blood, indicating efflux from the CNS into the peripheral blood (p < 0.0001). There was no difference in peripheral venous Aβ concentration compared to arterial blood concentration. Interpretation Our results are consistent with clearance of CNS-derived Aβ into the venous blood supply with no increase from a peripheral capillary bed. Modeling these results suggests that direct transport of Aβ across the blood-brain barrier accounts for ~25% of Aβ clearance, and reabsorption of cerebrospinal fluid Aβ accounts for ~25% of the total CNS Aβ clearance in humans. PMID:25205593

  1. The barley MATE gene, HvAACT1, increases citrate efflux and Al3+ tolerance when expressed in wheat and barley

    PubMed Central

    Zhou, Gaofeng; Delhaize, Emmanuel; Zhou, Meixue; Ryan, Peter R.

    2013-01-01

    Background and Aims Aluminium is toxic in acid soils because the soluble Al3+ inhibits root growth. A mechanism of Al3+ tolerance discovered in many plant species involves the release of organic anions from root apices. The Al3+-activated release of citrate from the root apices of Al3+-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al3+ tolerance of these important cereal species. Methods HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al3+ tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. Key Results and Conclusions Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al3+ tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al3+ tolerance of important crop plants. PMID:23798600

  2. The barley MATE gene, HvAACT1, increases citrate efflux and Al(3+) tolerance when expressed in wheat and barley.

    PubMed

    Zhou, Gaofeng; Delhaize, Emmanuel; Zhou, Meixue; Ryan, Peter R

    2013-08-01

    Aluminium is toxic in acid soils because the soluble Al(3+) inhibits root growth. A mechanism of Al(3+) tolerance discovered in many plant species involves the release of organic anions from root apices. The Al(3+)-activated release of citrate from the root apices of Al(3+)-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al(3+) tolerance of these important cereal species. HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al(3+) tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al(3+) tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al(3+) tolerance of important crop plants.

  3. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease.

    PubMed Central

    Urban, M; Bhargava, T; Hamer, J E

    1999-01-01

    Cells tolerate exposure to cytotoxic compounds through the action of ATP-driven efflux pumps belonging to the ATP-binding cassette (ABC) superfamily of membrane transporters. Phytopathogenic fungi encounter toxic environments during plant invasion as a result of the plant defense response. Here we demonstrate the requirement for an ABC transporter during host infection by the fungal plant pathogen Magnaporthe grisea. The ABC1 gene was identified in an insertional mutagenesis screen for pathogenicity mutants. The ABC1 insertional mutant and a gene-replacement mutant arrest growth and die shortly after penetrating either rice or barley epidermal cells. The ABC1-encoded protein is similar to yeast ABC transporters implicated in multidrug resistance, and ABC1 gene transcripts are inducible by toxic drugs and a rice phytoalexin. However, abc1 mutants are not hypersensitive to antifungal compounds. The non-pathogenic, insertional mutation in ABC1 occurs in the promoter region and dramatically reduces transcript induction by metabolic poisons. These data strongly suggest that M.grisea requires the up-regulation of specific ABC transporters for pathogenesis; most likely to protect itself against plant defense mechanisms. PMID:9927411

  4. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis

    PubMed Central

    Chen, Jing; Zhang, Xiaolu; Kusumo, Handojo; Costa, Lucio G.; Guizzetti, Marina

    2012-01-01

    Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS. PMID:23010475

  5. cis-Cinnamic Acid Is a Novel, Natural Auxin Efflux Inhibitor That Promotes Lateral Root Formation1[OPEN

    PubMed Central

    Steenackers, Ward; Corneillie, Sander; Araújo, Pedro; Viaene, Tom; Nowack, Moritz K.; Blakeslee, Joshua J.; Novák, Ondřej; Zažímalová, Eva

    2017-01-01

    Auxin steers numerous physiological processes in plants, making the tight control of its endogenous levels and spatiotemporal distribution a necessity. This regulation is achieved by different mechanisms, including auxin biosynthesis, metabolic conversions, degradation, and transport. Here, we introduce cis-cinnamic acid (c-CA) as a novel and unique addition to a small group of endogenous molecules affecting in planta auxin concentrations. c-CA is the photo-isomerization product of the phenylpropanoid pathway intermediate trans-CA (t-CA). When grown on c-CA-containing medium, an evolutionary diverse set of plant species were shown to exhibit phenotypes characteristic for high auxin levels, including inhibition of primary root growth, induction of root hairs, and promotion of adventitious and lateral rooting. By molecular docking and receptor binding assays, we showed that c-CA itself is neither an auxin nor an anti-auxin, and auxin profiling data revealed that c-CA does not significantly interfere with auxin biosynthesis. Single cell-based auxin accumulation assays showed that c-CA, and not t-CA, is a potent inhibitor of auxin efflux. Auxin signaling reporters detected changes in spatiotemporal distribution of the auxin response along the root of c-CA-treated plants, and long-distance auxin transport assays showed no inhibition of rootward auxin transport. Overall, these results suggest that the phenotypes of c-CA-treated plants are the consequence of a local change in auxin accumulation, induced by the inhibition of auxin efflux. This work reveals a novel mechanism how plants may regulate auxin levels and adds a novel, naturally occurring molecule to the chemical toolbox for the studies of auxin homeostasis. PMID:27837086

  6. Glucocorticoid receptors in the prefrontal cortex regulate stress-evoked dopamine efflux and aspects of executive function.

    PubMed

    Butts, Kelly A; Weinberg, Joanne; Young, Allan H; Phillips, Anthony G

    2011-11-08

    Enhanced dopamine efflux in the prefrontal cortex is a well-documented response to acute stress. However, the underlying mechanism(s) for this response is unknown. Using in vivo microdialysis, we demonstrate that blocking glucocorticoid receptors locally within the rat prefrontal cortex results in a reduction in stress-evoked dopamine efflux. In contrast, blocking glucocorticoid receptors in the ventral tegmental area did not affect stress-evoked dopamine efflux in the prefrontal cortex. Additionally, local administration of corticosterone into the prefrontal cortex increased prefrontal dopamine efflux. The functional impact of enhanced dopamine efflux evoked by acute stress was demonstrated using a cognitive task dependent on the prefrontal cortex and sensitive to impairment in working memory. Notably, stress-induced impairments in cognition were attenuated by blockade of glucocorticoid receptors in the prefrontal cortex. Taken together, these data demonstrate that glucocorticoids act locally within the prefrontal cortex to modulate mesocortical dopamine efflux leading to the cognitive impairments observed during acute stress.

  7. Coordinated changes in xenobiotic metabolizing enzyme (XME) gene expression through the life stages of the male C57BL/6 mouse

    EPA Science Inventory

    Metabolic homeostasis of the organism is maintained by the liver's ability to detoxify and eliminate xenobiotics. This is accomplished, in part, by the expression of XMEs, which metabolize xenobiotics and determine whether exposure will result in toxicity. Some evidence indicates...

  8. Monocytes from HIV+ individuals show impaired cholesterol efflux and increased foam cell formation after transendothelial migration

    PubMed Central

    MAISA, Anna; HEARPS, Anna C.; ANGELOVICH, Thomas A.; PEREIRA, Candida F.; ZHOU, Jingling; SHI, Margaret D.Y.; PALMER, Clovis S.; MULLER, William A.; CROWE, Suzanne M.; JAWOROWSKI, Anthony

    2016-01-01

    Design HIV+ individuals have an increased risk of atherosclerosis and cardiovascular disease which is independent of antiretroviral therapy and traditional risk factors. Monocytes play a central role in the development of atherosclerosis, and HIV-related chronic inflammation and monocyte activation may contribute to increased atherosclerosis, but the mechanisms are unknown. Methods Using an in vitro model of atherosclerotic plaque formation, we measured the transendothelial migration of purified monocytes from age-matched HIV+ and uninfected donors and examined their differentiation into foam cells. Cholesterol efflux and the expression of cholesterol metabolism genes were also assessed. Results Monocytes from HIV+ individuals showed increased foam cell formation compared to controls (18.9% vs 0% respectively, p=0.004) and serum from virologically suppressed HIV+ individuals potentiated foam cell formation by monocytes from both uninfected and HIV+ donors. Plasma TNF levels were increased in HIV+ vs control donors (5.9 vs 3.5 pg/ml, p=0.02) and foam cell formation was inhibited by blocking antibodies to TNF receptors, suggesting a direct effect on monocyte differentiation to foam cells. Monocytes from virologically suppressed HIV+ donors showed impaired cholesterol efflux and decreased expression of key genes regulating cholesterol metabolism, including the cholesterol transporter ABCA1 (p=0.02). Conclusions Monocytes from HIV+ individuals show impaired cholesterol efflux and are primed for foam cell formation following trans-endothelial migration. Factors present in HIV+ serum, including elevated TNF levels, further enhance foam cell formation. The pro-atherogenic phenotype of monocytes persists in virologically suppressed HIV+ individuals and may contribute mechanistically to increased atherosclerosis in this population. PMID:26244384

  9. Cross-functioning between the extraneuronal monoamine transporter and multidrug resistance protein 1 in the uptake of adrenaline and export of 5-(glutathion-S-yl)adrenaline in rat cardiomyocytes.

    PubMed

    Costa, Vera Marisa; Ferreira, Lusa Maria; Branco, Paula Srio; Carvalho, Flix; Bastos, Maria Lourdes; Carvalho, Rui Albuquerque; Carvalho, Mrcia; Remio, Fernando

    2009-01-01

    Isolated heart cells are highly susceptible to the toxicity of catecholamine oxidation products, namely, to catecholamine-glutathione adducts. Although cellular uptake and/or efflux of these products may constitute a crucial step, the knowledge about the involvement of transporters is still very scarce. This work aimed to contribute to the characterization of membrane transport mechanisms, namely, extraneuronal monoamine transporter (EMT), the multidrug resistant protein 1 (MRP1), and P-glycoprotein (P-gp) in freshly isolated cardiomyocytes from adult rats. These transporters may be accountable for uptake and/or efflux of adrenaline and an adrenaline oxidation product, 5-(glutathion-S-yl)adrenaline, in cardiomyocyte suspensions. Our results showed that 5-(glutathion-S-yl)adrenaline efflux was mediated by MRP1. Additionally, we demonstrated that the adduct formation occurs within the cardiomyocytes, since EMT inhibition reduced the intracellular adduct levels. The classical uptake2 transport in rat myocardial cells was inhibited by the typical EMT inhibitor, corticosterone, and surprisingly was also inhibited by low concentrations of another drug, a well-known P-gp inhibitor, GF120918. The P-gp activity was absent in the cells since P-gp-mediated efflux of quinidine was not blocked by GF120918. In conclusion, this work showed that freshly isolated cardiomyocytes from adult rats constitute a good model for the study of catecholamines and catecholamines metabolites membrane transport. The cardiomyocytes maintain EMT and MRP1 fully active, and these transporters contribute to the formation and efflux of 5-(glutathion-S-yl)adrenaline. In the present experimental conditions, P-gp activity is absent in the isolated cardiomyocytes.

  10. A Liver-Centric Multiscale Modeling Framework for Xenobiotics.

    PubMed

    Sluka, James P; Fu, Xiao; Swat, Maciej; Belmonte, Julio M; Cosmanescu, Alin; Clendenon, Sherry G; Wambaugh, John F; Glazier, James A

    2016-01-01

    We describe a multi-scale, liver-centric in silico modeling framework for acetaminophen pharmacology and metabolism. We focus on a computational model to characterize whole body uptake and clearance, liver transport and phase I and phase II metabolism. We do this by incorporating sub-models that span three scales; Physiologically Based Pharmacokinetic (PBPK) modeling of acetaminophen uptake and distribution at the whole body level, cell and blood flow modeling at the tissue/organ level and metabolism at the sub-cellular level. We have used standard modeling modalities at each of the three scales. In particular, we have used the Systems Biology Markup Language (SBML) to create both the whole-body and sub-cellular scales. Our modeling approach allows us to run the individual sub-models separately and allows us to easily exchange models at a particular scale without the need to extensively rework the sub-models at other scales. In addition, the use of SBML greatly facilitates the inclusion of biological annotations directly in the model code. The model was calibrated using human in vivo data for acetaminophen and its sulfate and glucuronate metabolites. We then carried out extensive parameter sensitivity studies including the pairwise interaction of parameters. We also simulated population variation of exposure and sensitivity to acetaminophen. Our modeling framework can be extended to the prediction of liver toxicity following acetaminophen overdose, or used as a general purpose pharmacokinetic model for xenobiotics.

  11. A Liver-Centric Multiscale Modeling Framework for Xenobiotics

    PubMed Central

    Swat, Maciej; Cosmanescu, Alin; Clendenon, Sherry G.; Wambaugh, John F.; Glazier, James A.

    2016-01-01

    We describe a multi-scale, liver-centric in silico modeling framework for acetaminophen pharmacology and metabolism. We focus on a computational model to characterize whole body uptake and clearance, liver transport and phase I and phase II metabolism. We do this by incorporating sub-models that span three scales; Physiologically Based Pharmacokinetic (PBPK) modeling of acetaminophen uptake and distribution at the whole body level, cell and blood flow modeling at the tissue/organ level and metabolism at the sub-cellular level. We have used standard modeling modalities at each of the three scales. In particular, we have used the Systems Biology Markup Language (SBML) to create both the whole-body and sub-cellular scales. Our modeling approach allows us to run the individual sub-models separately and allows us to easily exchange models at a particular scale without the need to extensively rework the sub-models at other scales. In addition, the use of SBML greatly facilitates the inclusion of biological annotations directly in the model code. The model was calibrated using human in vivo data for acetaminophen and its sulfate and glucuronate metabolites. We then carried out extensive parameter sensitivity studies including the pairwise interaction of parameters. We also simulated population variation of exposure and sensitivity to acetaminophen. Our modeling framework can be extended to the prediction of liver toxicity following acetaminophen overdose, or used as a general purpose pharmacokinetic model for xenobiotics. PMID:27636091

  12. A Major Facilitator Superfamily Transporter Plays a Dual Role in Polar Auxin Transport and Drought Stress Tolerance in Arabidopsis[W

    PubMed Central

    Remy, Estelle; Cabrito, Tânia R.; Baster, Pawel; Batista, Rita A.; Teixeira, Miguel C.; Friml, Jiri; Sá-Correia, Isabel; Duque, Paula

    2013-01-01

    Many key aspects of plant development are regulated by the polarized transport of the phytohormone auxin. Cellular auxin efflux, the rate-limiting step in this process, has been shown to rely on the coordinated action of PIN-formed (PIN) and B-type ATP binding cassette (ABCB) carriers. Here, we report that polar auxin transport in the Arabidopsis thaliana root also requires the action of a Major Facilitator Superfamily (MFS) transporter, Zinc-Induced Facilitator-Like 1 (ZIFL1). Sequencing, promoter-reporter, and fluorescent protein fusion experiments indicate that the full-length ZIFL1.1 protein and a truncated splice isoform, ZIFL1.3, localize to the tonoplast of root cells and the plasma membrane of leaf stomatal guard cells, respectively. Using reverse genetics, we show that the ZIFL1.1 transporter regulates various root auxin-related processes, while the ZIFL1.3 isoform mediates drought tolerance by regulating stomatal closure. Auxin transport and immunolocalization assays demonstrate that ZIFL1.1 indirectly modulates cellular auxin efflux during shootward auxin transport at the root tip, likely by regulating plasma membrane PIN2 abundance. Finally, heterologous expression in yeast revealed that ZIFL1.1 and ZIFL1.3 share H+-coupled K+ transport activity. Thus, by determining the subcellular and tissue distribution of two isoforms, alternative splicing dictates a dual function for the ZIFL1 transporter. We propose that this MFS carrier regulates stomatal movements and polar auxin transport by modulating potassium and proton fluxes in Arabidopsis cells. PMID:23524662

  13. Hydrodynamic Controls on Carbon Dioxide Efflux from Inland Waters

    NASA Astrophysics Data System (ADS)

    Long, H. E.; Waldron, S.; Hoey, T.; Newton, J.; Quemin, S.

    2013-12-01

    Intensive research has been undertaken on carbon dioxide efflux from lakes, estuaries and oceans, but much less attention has been given to rivers and streams, especially lower order streams. River systems are often over-saturated with carbon dioxide and so tend to act as sources of carbon dioxide to the atmosphere. It has been thought that rivers act as pipes carrying this terrestrial carbon to the oceans. However, recent studies have shown that a significant amount of the carbon is reprocessed within the system in a series of transformations and losses. Fluvial evasion of carbon dioxide is now recognised to be a significant component of carbon cycles, however the factors controlling carbon dioxide efflux and its magnitude remain poorly understood and quantified. This research aims to quantify, and better understand the controls on, freshwater carbon dioxide evasion. Data are presented here from field measurements that commenced in Sept 2013 in two contrasting Scottish rivers: the River Kelvin which has a large (335 km.sq) part-urban catchment with predominantly non-peat soils and Drumtee Water, a small (9.6 km.sq) rural catchment of peat soils and agricultural land. Using a floating chamber with the headspace connected to an infrared gas analyser to measure changes in carbon dioxide concentration, efflux rates from 0.22 - 47.4 μmol CO2/m.sq/sec were measured, these close to the middle of the range of previously reported values. At one site on the River Kelvin in May 2013 an influx of -0.61 - -3.53 μmol CO2/m.sq/sec was recorded. Whereas previous research finds carbon dioxide efflux to increase with decreasing river size and a more organic-rich soil catchment, here the controls on carbon dioxide evasion are similar across the contrasting catchments. Carbon dioxide evasion shows seasonality, with maximum fluxes in the summer months being up to twice as high as the winter maxima. Linear regression demonstrates that evasion increases with increased flow velocity

  14. Live-cell Imaging Approaches for the Investigation of Xenobiotic-Induced Oxidant Stress

    EPA Science Inventory

    BACKGROUND: Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular t...

  15. The Ins and Outs of Cellular Ca2+ Transport

    PubMed Central

    Spalding, Edgar P.; Harper, Jeffrey F.

    2011-01-01

    The cytoplasmic Ca2+ signals that participate in nearly all aspects of plant growth and development encode information as binary switches or information-rich signatures. They are the result of influx (thermodynamically passive) and efflux (thermodynamically active) activities mediated by membrane transport proteins. On the influx side, confirming the molecular identities of Ca2+-permeable channels is still a major research topic. Cyclic nucleotide-gated channels and glutamate receptor-like channels are candidates well supported by evidence. On the efflux side, CAX antiporters and P-type ATPase pumps are the principal molecular entities. Both of these active transporters load Ca2+ into specific compartments and have the potential to reduce the magnitude and duration of a Ca2+ transient. Recent studies indicate calmodulin-activated Ca2+ pumps in endomembrane systems can dampen the magnitude and duration of a Ca2+ transient that could otherwise grow into a Ca2+ cell-death signature. An important challenge following molecular characterization of the influx and efflux pathways is to understand how they are coordinately regulated to produce a Ca2+ switch or encode specific information into a Ca2+ signature. PMID:21865080

  16. Stress Introduction Rate Alters the Benefit of AcrAB-TolC Efflux Pumps.

    PubMed

    Langevin, Ariel M; Dunlop, Mary J

    2018-01-01

    Stress tolerance studies are typically conducted in an all-or-none fashion. However, in realistic settings-such as in clinical or metabolic engineering applications-cells may encounter stresses at different rates. Therefore, how cells tolerate stress may depend on its rate of appearance. To address this, we studied how the rate of stress introduction affects bacterial stress tolerance by focusing on a key stress response mechanism. Efflux pumps, such as AcrAB-TolC of Escherichia coli , are membrane transporters well known for the ability to export a wide variety of substrates, including antibiotics, signaling molecules, and biofuels. Although efflux pumps improve stress tolerance, pump overexpression can result in a substantial fitness cost to the cells. We hypothesized that the ideal pump expression level would involve a rate-dependent trade-off between the benefit of pumps and the cost of their expression. To test this, we evaluated the benefit of the AcrAB-TolC pump under different rates of stress introduction, including a step, a fast ramp, and a gradual ramp. Using two chemically diverse stresses, the antibiotic chloramphenicol and the jet biofuel precursor pinene, we assessed the benefit provided by the pumps. A mathematical model describing these effects predicted the benefit as a function of the rate of stress introduction. Our findings demonstrate that as the rate of introduction is lowered, stress response mechanisms provide a disproportionate benefit to pump-containing strains, allowing cells to survive beyond the original inhibitory concentrations. IMPORTANCE Efflux pumps are ubiquitous in nature and provide stress tolerance in the cells of species ranging from bacteria to mammals. Understanding how pumps provide tolerance has far-reaching implications for diverse fields, from medicine to biotechnology. Here, we investigated how the rate of stressor appearance impacts tolerance. We focused on two distinct substrates of AcrAB-TolC efflux pumps, the

  17. ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mingli; Yin, Huancai; Bai, Pengli

    This paper aimed to investigate the role of adenosine triphosphate-binding cassette (ABC) transporters on the efflux and the toxicity of nanoparticles in liver and kidney cells. In this study, we synthesized CdTe quantum dots (QDs) that were monodispersed and emitted green fluorescence (maximum peak at 530 nm). Such QDs tended to accumulate in human hepatocellular carcinoma cells (HepG2), human kidney cells 2 (HK-2), and Madin-Darby canine kidney (MDCK) cells, and cause significant toxicity in all the three cell lines. Using specific inhibitors and inducers of P-glycoprotein (Pgp) and multidrug resistance associated proteins (Mrps), the cellular accumulation and subsequent toxicity ofmore » QDs in HepG2 and HK-2 cells were significantly affected, while only slight changes appeared in MDCK cells, corresponding well with the functional expressions of ABC transporters in cells. Moreover, treatment of QDs caused concentration- and time- dependent induction of ABC transporters in HepG2 and HK-2 cells, but such phenomenon was barely found in MDCK cells. Furthermore, the effects of CdTe QDs on ABC transporters were found to be greater than those of CdCl{sub 2} at equivalent concentrations of cadmium, indicating that the effects of QDs should be a combination of free Cd{sup 2+} and specific properties of QDs. Overall, these results indicated a strong dependence between the functional expressions of ABC transporters and the efflux of QDs, which could be an important reason for the modulation of QDs toxicity by ABC transporters. - Highlights: • ABC transporters contributed actively to the cellular efflux of CdTe quantum dots. • ABC transporters affected the cellular toxicity of CdTe quantum dots. • Treatment of CdTe quantum dots induced the gene expression of ABC transporters. • Free Cd{sup 2+} should be partially involved in the effects of QDs on ABC transporters. • Cellular efflux of quantum dots could be an important modulator for its toxicity.« less

  18. Detoxification function of the Arabidopsis sulphotransferase AtSOT12 by sulphonation of xenobiotics.

    PubMed

    Chen, Jinhua; Gao, Liqiong; Baek, Dongwon; Liu, Chunlin; Ruan, Ying; Shi, Huazhong

    2015-08-01

    Cytosolic sulphotransferases have been implicated in inactivation of endogenous steroid hormones and detoxification of xenobiotics in human and animals. Yet, the function of plant sulphotransferases in xenobiotic sulphonation and detoxification has not been reported. In this study, we show that the Arabidopsis sulphotransferase AtSOT12 could sulphonate the bacterial-produced toxin cycloheximide. Loss-of-function mutant sot12 exhibited hypersensitive phenotype to cycloheximide, and expression of AtSOT12 protein in yeast cells conferred resistance to this toxic compound. AtSOT12 exhibited broad specificity and could sulphonate a variety of xenobiotics including phenolic and polycyclic compounds. Enzyme kinetics analysis indicated that AtSOT12 has different selectivity for simple phenolics with different side chains, and the position of the side chain in the simple phenolic compounds affects substrate binding affinity and catalytic efficiency. We proposed that the broad specificity and induced production of AtSOT12 may have rendered this enzyme to not only modify endogenous molecules such as salicylic acid as we previously reported, but also sulphonate pathogen-produced toxic small molecules to protect them from infection. Sulphonation of small molecules in plants may constitute a rapid way to inactivate or change the physiochemical properties of biologically active molecules that could have profound effects on plant growth, development and defence. © 2015 John Wiley & Sons Ltd.

  19. Pharmacophore-Based Repositioning of Approved Drugs as Novel Staphylococcus aureus NorA Efflux Pump Inhibitors.

    PubMed

    Astolfi, Andrea; Felicetti, Tommaso; Iraci, Nunzio; Manfroni, Giuseppe; Massari, Serena; Pietrella, Donatella; Tabarrini, Oriana; Kaatz, Glenn W; Barreca, Maria L; Sabatini, Stefano; Cecchetti, Violetta

    2017-02-23

    An intriguing opportunity to address antimicrobial resistance is represented by the inhibition of efflux pumps. Focusing on NorA, the most important efflux pump of Staphylococcus aureus, an efflux pump inhibitors (EPIs) library was used for ligand-based pharmacophore modeling studies. By exploitation of the obtained models, an in silico drug repositioning approach allowed for the identification of novel and potent NorA EPIs.

  20. Basolateral phosphate transport in renal proximal-tubule-like OK cells.

    PubMed

    Barac-Nieto, M; Alfred, M; Spitzer, A

    2002-09-01

    It is generally assumed that phosphate (Pi) effluxes from proximal tubule cells by passive diffusion across the basolateral (BL) membrane. We explored the mechanism of BL Pi efflux in proximal tubule-like OK cells grown on permeable filters and then loaded with 32P. BL efflux of 32P was significantly stimulated (P < 0.05) by exposing the BL side of the monolayer to 12.5 mM Pi, to 10 mM citrate, or by acid-loading the cells, and was inhibited by exposure to 0.05 mM Pi or 25 mM HCO3; by contrast, BL exposure to high (8.4) pH, 40 mM K+, 140 mM Na gluconate (replacing NaCl), 10 mM lactate, 10 mM succinate, or 10 mM glutamate did not affect BL 32P efflux. These data are consistent with BL Pi efflux from proximal tubule-like cells occurring, in part, via an electro-neutral sodium-sensitive anion transporter capable of exchanging two moles of intracellular acidic H2PO4- for each mole of extracellular basic HPO4= or for citrate.

  1. Fluoroquinolone resistance of Serratia marcescens: involvement of a proton gradient-dependent efflux pump.

    PubMed

    Kumar, Ayush; Worobec, Elizabeth A

    2002-10-01

    To determine the presence of a proton gradient-dependent efflux of fluoroquinolone drugs in Serratia marcescens. Thirteen clinical isolates of S. marcescens were screened for resistance to four fluoroquinolones: ofloxacin, ciprofloxacin, norfloxacin and nalidixic acid by determining MICs. The presence of a proton gradient-dependent efflux mechanism was assessed using ethidium bromide accumulation assays. Drug accumulation studies for norfloxacin, ciprofloxacin and ofloxacin were performed to determine the drug specificity of efflux. Western transfer of cellular proteins, followed by immunodetection using anti-AcrA (Escherichia coli) antibodies were used to demonstrate the presence of a resistance-nodulation-cell division (RND) pump protein. PCR was used to identify a RND pump-encoding gene using primers for two conserved motifs within inner membrane components of RND proteins. A mutant strain of S. marcescens, UOC-67WL, was isolated by culturing the wild-type strain in the presence of ciprofloxacin in T-soy media and was subjected to the same studies as described above for the clinical isolates. Ethidium bromide accumulation assays confirmed the presence of a proton gradient-dependent efflux mechanism in S. marcescens. One clinical isolate, T-861, and the mutant strain, UOC-67WL, were found to efflux ciprofloxacin and ofloxacin. Western immunoblot results confirmed overexpression of an AcrA-like protein in T-861 and UOC-67WL. Sequencing of the PCR product showed the presence of a mexF-like gene, which is overexpressed in nfxC mutants of Pseudomonas aeruginosa. This study reports the presence of a proton gradient-dependent efflux mechanism in S. marcescens.

  2. In vitro and in vivo evaluations of the P-glycoprotein-mediated efflux of dibenzoylhydrazines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyata, Ken-ichi, E-mail: Miyata.Kenichi@otsuka.jp; Otsuka Pharmaceutical Co., Ltd., Tokushima 771-0182; Nakagawa, Yoshiaki

    2016-05-01

    P-glycoprotein (P-gp) is a member of the ATP-binding cassette transporter family. It actively transports a wide variety of compounds out of cells to protect humans from xenobiotics. Thus, determining whether chemicals are substrates and/or inhibitors of P-gp is important in risk assessments of pharmacokinetic interactions among chemicals because P-gp-mediated transport processes play a significant role in their absorption and disposition. We previously reported that dibenzoylhydrazines (DBHs) such as tebufenozide and methoxyfenozide (agrochemicals) stimulated P-gp ATPase activity. However, it currently remains unclear whether these derivatives are transport substrates of P-gp and inhibit transport of other chemicals by P-gp. In the presentmore » study, in order to evaluate the interactions of DBHs with other chemicals in humans, we determined whether DBHs are P-gp transport substrates using both the in vitro bidirectional transport assay and the in vivo study of rats. In the in vivo study, we investigated the influence of P-gp inhibitors on the brain to plasma ratio of methoxyfenozide in rats. We also examined the inhibitory effects of DBHs on quinidine (a P-gp substrate) transport by P-gp in order to ascertain whether these derivatives are inhibitors of P-gp. Based on the results, DBHs were concluded to be weak P-gp transport substrates and moderate P-gp inhibitors. However, the risk of DBHs caused by interaction with other chemicals including drugs was considered to be low by considering the DBHs' potential as the substrates and inhibitors of P-gp as well as their plasma concentrations as long as DBHs are properly used. - Highlights: • Transport of DBHs by P-gp was not detected in in vitro bidirectional transport assay. • DBHs were weak P-gp transport substrates based on in vivo studies in rats. • The in vivo studies are useful methods for evaluating P-gp transport substrates. • DBHs inhibit quinidine transport by P-gp in in vitro bidirectional

  3. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents

    PubMed Central

    Wink, Michael; Ashour, Mohamed L.; El-Readi, Mahmoud Zaki

    2012-01-01

    Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion. PMID:22536197

  4. Large-Scale Femtoliter Droplet Array for Single Cell Efflux Assay of Bacteria.

    PubMed

    Iino, Ryota; Sakakihara, Shouichi; Matsumoto, Yoshimi; Nishino, Kunihiko

    2018-01-01

    Large-scale femtoliter droplet array as a platform for single cell efflux assay of bacteria is described. Device microfabrication, femtoliter droplet array formation and concomitant enclosure of single bacterial cells, fluorescence-based detection of efflux activity at the single cell level, and collection of single cells from droplet and subsequent gene analysis are described in detail.

  5. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm.

    PubMed

    Soto, Sara M

    2013-04-01

    Biofilms are complex microbial associations anchored to abiotic or biotic surfaces, embedded in extracellular matrix produced by the biofilms themselves where they interact with each other and the environment. One of the main properties of biofilms is their capacity to be more resistant to antimicrobial agents than planktonic cells. Efflux pumps have been reported as one of the mechanisms responsible for the antimicrobial resistance in biofilm structures. Evidence of the role of efflux pump in biofilm resistance has been found in several microorganisms such as Pseudomonas aeruginosa, Escherichia coli and Candida albicans. However, in spite of the studies on the importance of efflux pumps in biofilm growth and about their relevance in antimicrobial resistance forming biofilm, the exact role of these efflux systems has not been determined as yet.

  6. Retrofit Strategies for Incorporating Xenobiotic Metabolism into High Throughput Screening Assays (EMGS)

    EPA Science Inventory

    The US EPA’s ToxCast program is designed to assess chemical perturbations of molecular and cellular endpoints using a variety of high-throughput screening (HTS) assays. However, existing HTS assays have limited or no xenobiotic metabolism which could lead to a mischaracterization...

  7. Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress☆,☆☆

    PubMed Central

    Wages, Phillip A.; Cheng, Wan-Yun; Gibbs-Flournoy, Eugene; Samet, James M.

    2017-01-01

    Background Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular techniques. However, there is increasing evidence that low-level exposure to a variety of toxicants dysregulates cellular physiology by interfering with redox-dependent processes. Scope of review The study of events involved in redox toxicology requires methodology capable of detecting transient modifications at relatively low signal strength. This article reviews the advantages of live-cell imaging for redox toxicology studies. Major conclusions Toxicological studies with xenobiotics of supra-physiological reactivity require careful consideration when using fluorogenic sensors in order to avoid potential artifacts and false negatives. Fortunately, experiments conducted for the purpose of validating the use of these sensors in toxicological applications often yield unexpected insights into the mechanisms through which xenobiotic exposure induces oxidant stress. General significance Live-cell imaging using a new generation of small molecule and genetically encoded fluorophores with excellent sensitivity and specificity affords unprecedented spatiotemporal resolution that is optimal for redox toxicology studies. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. PMID:27208426

  8. Behavioral responses of honey bees (Apis mellifera) to natural and synthetic xenobiotics in food.

    PubMed

    Liao, Ling-Hsiu; Wu, Wen-Yen; Berenbaum, May R

    2017-11-21

    While the natural foods of the western honey bee (Apis mellifera) contain diverse phytochemicals, in contemporary agroecosystems honey bees also encounter pesticides as floral tissue contaminants. Whereas some ubiquitous phytochemicals in bee foods up-regulate detoxification and immunity genes, thereby benefiting nestmates, many agrochemical pesticides adversely affect bee health even at sublethal levels. How honey bees assess xenobiotic risk to nestmates as they forage is poorly understood. Accordingly, we tested nine phytochemicals ubiquitous in nectar, pollen, or propolis, as well as five synthetic xenobiotics that frequently contaminate hives-two herbicides (atrazine and glyphosate) and three fungicides (boscalid, chlorothalonil, and prochloraz). In semi-field free-flight experiments, bees were offered a choice between paired sugar water feeders amended with either a xenobiotic or solvent only (control). Among the phytochemicals, foragers consistently preferred quercetin at all five concentrations tested, as evidenced by both visitation frequency and consumption rates. This preference may reflect the long evolutionary association between honey bees and floral tissues. Of pesticides eliciting a response, bees displayed a preference at specific concentrations for glyphosate and chlorothalonil. This paradoxical preference may account for the frequency with which these pesticides occur as hive contaminants and suggests that they present a greater risk factor for honey bee health than previously suspected.

  9. Avian species differences in the intestinal absorption of xenobiotics (PCB, dieldrin, Hg2+)

    USGS Publications Warehouse

    Serafin, J.A.

    1984-01-01

    1. Intestinal absorption of a polychlorinated biphenyl, dieldrin, and mercury (from HgCl2) was measured in adult Northern bobwhites, Eastern screech owls, American kestrels, black-crowned night-herons and mallards in vivo by an in situ luminal perfusion technique.2. Bobwhites, screech owls and kestrels absorbed much more of each xenobiotic than black-crowned night-herons and mallards.3. Mallards absorbed less dieldrin and mercury than black-crowned night-herons.4. Mercury absorption by kestrels was more than twice that in screech owls and eight times that observed in mallards.5. Pronounced differences in xenobiotic absorption rates between bobwhites, screech owls and kestrels on the one hand, and black-crowned night-herons and mallards on the other, raise the possibility that absorptive ability may be associated with the phylogenetic classification of birds.

  10. The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria

    PubMed Central

    Plésiat, Patrick

    2015-01-01

    SUMMARY The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps. PMID:25788514

  11. Xenon for tunnelling analysis of the efflux pump component OprN.

    PubMed

    Ntsogo Enguéné, Yvette Véronique; Phan, Gilles; Garnier, Cyril; Ducruix, Arnaud; Prangé, Thierry; Broutin, Isabelle

    2017-01-01

    Tripartite efflux pumps are among the main actors responsible for antibiotics resistance in Gram-negative bacteria. In the last two decades, structural studies gave crucial information about the assembly interfaces and the mechanistic motions. Thus rigidifying the assembly seems to be an interesting way to hamper the drug efflux. In this context, xenon is a suitable probe for checking whether small ligands could act as conformational lockers by targeting hydrophobic cavities. Here we focus on OprN, the outer membrane channel of the MexEF efflux pump from Pseudomonas aeruginosa. After exposing OprN crystals to xenon gas pressure, 14 binding sites were observed using X-ray crystallography. These binding sites were unambiguously characterized in hydrophobic cavities of OprN. The major site is observed in the sensitive iris-like region gating the channel at the periplasmic side, built by the three key-residues Leu 405, Asp 109, and Arg 412. This arrangement defines along the tunnel axis a strong hydrophobic/polar gradient able to enhance the passive efflux mechanism of OprN. The other xenon atoms reveal strategic hydrophobic regions of the channel scaffold to target, with the aim to freeze the dynamic movements responsible of the open/close conformational equilibrium in OprN.

  12. IP/sub 3/ stimulates CA/sup + +/ efflux from fusogenic carrot protoplasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rincon, M.; Boss, W.F.

    1986-04-01

    Polyphosphoinositide breakdown plays an important role in signal transduction in animal cells (Berridge and Irvine, 1984, Nature, 312:315). Upon stimulation, phospholipase C hydrolyzes phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate (IP/sub 3/) and diacylglycerol both of which act as cellular second messengers. IP/sub 3/ mobilizes Ca/sup + +/ from internal stores, hence the cytosolic free Ca/sup + +/ concentration increases and those physiological activities regulated by Ca/sup + +/ are stimulated. To test if plant cells also responded to IP/sub 3/, Ca/sup + +/ efflux studies were done with fusogenic carrot protoplasts released in EGTA. The protoplasts were preloaded with /sup 45/Ca/supmore » + +/ placed in a Ca/sup + +/-free medium, and efflux determined as /sup 45/Ca/sup + +/ loss from the protoplasts. IP/sub 3/ (10-20..mu..M) caused enhanced /sup 45/Ca/sup + +/ efflux and the response was sustained for at least 15 min. In plants, as in animals, the observed IP/sub 3/-enhanced /sup 45/Ca/sup + +/ efflux suggested that IP/sub 3/ released Ca/sup + +/ from internal stores, and the increased free cytosolic Ca/sup + +/ activated Ca/sup + +/ pumping mechanisms which restored the Ca/sup + +/ concentration in the cytosol to the normal level.« less

  13. Xenon for tunnelling analysis of the efflux pump component OprN

    PubMed Central

    Garnier, Cyril; Ducruix, Arnaud; Broutin, Isabelle

    2017-01-01

    Tripartite efflux pumps are among the main actors responsible for antibiotics resistance in Gram-negative bacteria. In the last two decades, structural studies gave crucial information about the assembly interfaces and the mechanistic motions. Thus rigidifying the assembly seems to be an interesting way to hamper the drug efflux. In this context, xenon is a suitable probe for checking whether small ligands could act as conformational lockers by targeting hydrophobic cavities. Here we focus on OprN, the outer membrane channel of the MexEF efflux pump from Pseudomonas aeruginosa. After exposing OprN crystals to xenon gas pressure, 14 binding sites were observed using X-ray crystallography. These binding sites were unambiguously characterized in hydrophobic cavities of OprN. The major site is observed in the sensitive iris-like region gating the channel at the periplasmic side, built by the three key-residues Leu 405, Asp 109, and Arg 412. This arrangement defines along the tunnel axis a strong hydrophobic/polar gradient able to enhance the passive efflux mechanism of OprN. The other xenon atoms reveal strategic hydrophobic regions of the channel scaffold to target, with the aim to freeze the dynamic movements responsible of the open/close conformational equilibrium in OprN. PMID:28886086

  14. An Arg-Gly-Asp peptide stimulates Ca2+ efflux from osteoclast precursors through a novel mechanism

    NASA Technical Reports Server (NTRS)

    Yamakawa, K.; Duncan, R.; Hruska, K. A.

    1994-01-01

    We examined the effect of a peptide containing the Arg-Gly-Asp (RGD) sequence on 45Ca2+ efflux from osteoclast precursors. 45Ca(2+)-loaded osteoclast precursors were treated with GRGDSP (170 microM) for 10 min after 30 min of basal perfusion with a bicarbonate-containing buffer. GRGDSP significantly increased fractional efflux of Ca2+ from treated cells compared with vehicle-treated cells (P < 0.01) or cells treated with up to 200 micrograms/ml of a control peptide containing GRGESP. The effect of RGD was sustained for 15 min after the peptide was removed from the perfusate, but control levels of Ca2+ efflux returned by 1 h. The Ca2+ efflux effect of GRGDSP was most likely due to activation of the plasma membrane Ca(2+)-adenosinetriphosphatase (Ca(2+)-ATPase) pump, as indicated by its inhibition with vanadate and a calmodulin antagonist, N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide, and the absence of an effect of Na+/Ca2+ exchange inhibition. An inhibitor of cyclic nucleotide-dependent protein kinases, N-[2-(methylamino)ethyl]-5-isoquinoline-sulfonamide (0.1 mM), failed to inhibit GRGDSP-stimulated Ca2+ efflux. However, genistein and herbimycin A, inhibitors of protein-tyrosine kinases, blocked Ca2+ efflux stimulated by GRGDSP. The results indicate that RGD sequences of matrix proteins may stimulate Ca2+ efflux from osteoclasts through activation of protein-tyrosine kinases and suggest that GRGDSP-stimulated Ca2+ efflux is mediated via the plasma membrane Ca(2+)-ATPase.

  15. Comparative study of the active cadmium efflux systems operating at the plasma membrane and tonoplast of cucumber root cells.

    PubMed

    Migocka, Magdalena; Papierniak, Anna; Kosatka, Ewelina; Klobus, Grazyna

    2011-10-01

    The strategies developed by plants to avoid the toxicity of cadmium (Cd) and other heavy metals involve active sequestration of metals into the apoplast and vacuoles. The protein systems excluding heavy metals from the cell cytosol localize to the plasma membrane and tonoplast and are energized either by ATP or by the electrochemical gradient generated by H(+)-ATPase or by V-ATPase and pyrophosphatase (PPase), respectively. In this work, a comparative study on the contribution of both the plasma membrane and tonoplast in the active detoxification of plant cells after treatment with Cd was performed. The studies using plants treated and untreated with Cd reveal that both, H(+)-coupled and MgATP-driven efflux of Cd across plasma membranes and tonoplast is markedly stimulated in the presence of Cd in the environment. Previous studies on plasma-membrane localized H(+)-coupled Cd efflux together with the present data demonstrating tonoplast H(+)/Cd(2+) antiport activity suggest that H(+)-coupled secondary transport of Cd displays a lower affinity for Cd when compared with Cd primary pumps driven by MgATP. In addition, it is shown that MgATP-energized Cd efflux across both membranes is significantly enhanced by cysteine, dithiothreitol, and glutathione. These results suggest that Cd is excluded from the cytosol through an energy-dependent system as a free ion as well as a complexed form. Although both membranes contribute in the active exclusion of ionized and complexed Cd from the cytosol, the overall calculation of Cd accumulation in the everted plasma membranes and vacuolar vesicles suggests that the tonoplast and vacuole have a major function in Cd efflux from the cytosol in the roots of cucumber subjected to Cd stress.

  16. Ligand Promiscuity between the Efflux Pumps Human P-Glycoprotein and S. aureus NorA.

    PubMed

    Brincat, Jean Pierre; Broccatelli, Fabio; Sabatini, Stefano; Frosini, Maria; Neri, Annalisa; Kaatz, Glenn W; Cruciani, Gabriele; Carosati, Emanuele

    2012-03-08

    Thirty-two diverse compounds were evaluated for their ability to inhibit both Pgp-mediated efflux in mouse T-lymphoma L5178 MDR1 and NorA-mediated efflux in S. aureus SA-1199B. Only four compounds were strong inhibitors of both efflux pumps. Three compounds were found to inhibit Pgp exclusively and strongly, while seven compounds inhibited only NorA. These results demonstrate that Pgp and NorA inhibitors do not necessarily overlap, opening the way to safer therapeutic use of effective NorA inhibitors.

  17. [Hypothetical link between endometriosis and xenobiotics-associated genetically modified food].

    PubMed

    Aris, A; Paris, K

    2010-12-01

    Endometriosis is an oestrogen-dependent inflammatory disease affecting 10 % of reproductive-aged women. Often accompanied by chronic pelvic pain and infertility, endometriosis rigorously interferes with women's quality of life. Although the pathophysiology of endometriosis remains unclear, a growing body of evidence points to the implication of environmental toxicants. Over the last decade, an increase in the incidence of endometriosis has been reported and coincides with the introduction of genetically modified foods in our diet. Even though assessments of genetically modified food risk have not indicated any hazard on human health, xenobiotics-associated genetically modified food, such as pesticides residues and xenoproteins, could be harmful in the long-term. The "low-dose hypothesis", accumulation and biotransformation of pesticides-associated genetically modified food and the multiplied toxicity of pesticides-formulation adjuvants support this hypothesis. This review summarizes toxic effects (in vitro and on animal models) of some xenobiotics-associated genetically modified food, such as glyphosate and Cry1Ab protein, and extrapolates on their potential role in the pathophysiology of endometriosis. Their roles as immune toxicants, pro-oxidants, endocrine disruptors and epigenetic modulators are discussed. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  18. Correlation of the lipophilicity of xenobiotics with their synergistic effects on DNA synthesis in human fibroblasts.

    PubMed

    Jacobi, H; Leier, G; Witte, I

    1996-04-01

    The binary combination effects of DNA synthesis of human fibroblasts were investigated using 2,4-D with 15 xenobiotics of different chemical substance classes. Results were compared with previous investigations on cell growth. Each of the 15 chemicals tested at their no effect concentrations (NOEC's) increased the effects of 2,4-D on DNA synthesis. Thereby, the EC20 value of 2,4-D was reduced by approximately 40% in the combinations. The NOEC's of the xenobiotics used in the combinations varied by a factor of 1,600 and depended strongly on the lipophilicity of the agents combined with 2,4-D. A significant statistical correlation of r = 0.90 was found between the NOEC's of the 15 combined xenobiotics and their lipophilicity. The combination effects on DNA synthesis were similar to those on cell growth. The regression lines of the relationship between the NOEC's and lipophilicity in both assays showed only slight differences in the slopes. This is an additional confirmation of our hypothesis on a facilitated uptake of 2,4-D in the binary combinations.

  19. Arylsulfatase B Mediates the Sulfonation-Transport Interplay in Human Embryonic Kidney 293 Cells Overexpressing Sulfotransferase 1A3.

    PubMed

    Zhao, Mengjing; Wang, Shuai; Li, Feng; Dong, Dong; Wu, Baojian

    2016-09-01

    Elucidating the intricate relationships between metabolic and transport pathways contributes to improved predictions of in vivo drug disposition and drug-drug interactions. Here we reported that inhibited excretion of conjugative metabolites [i.e., hesperetin 3'-O-sulfate (H3'S) and hesperetin 7-O-sulfate (H7S)] by MK-571 led to reduced metabolism of hesperetin (a maximal 78% reduction) in human embryonic kidney 293 cells overexpressing sulfotransferase 1A3 (named SULT293 cells). The strong dependence of cellular sulfonation on the efflux transport of generated sulfated metabolites revealed an interplay of sulfonation metabolism with efflux transport (or sulfonation-transport interplay). Polymerase chain reaction (PCR) and Western blot analyses demonstrated that SULT293 cells expressed multiple sulfatases such as arylsulfatase A (ARSA), ARSB, and ARSC. Of these three desulfonation enzymes, only ARSB showed significant activities toward hesperetin sulfates. The intrinsic clearance values for the hydrolysis of H3'S and H7S were estimated at 0.6 and 0.5 μl/h/mg, respectively. Furthermore, knockdown of ARSB attenuated the regulatory effect of efflux transporter on cellular sulfonation, whereas overexpression of ABSB enhanced the transporter effect. Taken together, the results indicated that ARSB mediated the sulfonation-transport interplay in SULT293 cells. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  20. The actin cytoskeleton may control the polar distribution of an auxin transport protein

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Hu, S.; Brady, S. R.; Davies, E. (Principal Investigator)

    2000-01-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  1. The actin cytoskeleton may control the polar distribution of an auxin transport protein.

    PubMed

    Muday, G K; Hu, S; Brady, S R

    2000-06-01

    The gravitropic bending of plants has long been linked to the changes in the transport of the plant hormone auxin. To understand the mechanism by which gravity alters auxin movement, it is critical to know how polar auxin transport is initially established. In shoots, polar auxin transport is basipetal (i.e., from the shoot apex toward the base). It is driven by the basal localization of the auxin efflux carrier complex. One mechanism for localizing this efflux carrier complex to the basal membrane may be through attachment to the actin cytoskeleton. The efflux carrier protein complex is believed to consist of several polypeptides, including a regulatory subunit that binds auxin transport inhibitors, such as naphthylphthalamic acid (NPA). Several lines of experimentation have been used to determine if the NPA binding protein interacts with actin filaments. The NPA binding protein has been shown to partition with the actin cytoskeleton during detergent extraction. Agents that specifically alter the polymerization state of the actin cytoskeleton change the amount of NPA binding protein and actin recovered in these cytoskeletal pellets. Actin-affinity columns were prepared with polymers of actin purified from zucchini hypocotyl tissue. NPA binding activity was eluted in a single peak from the actin filament column. Cytochalasin D, which fragments the actin cytoskeleton, was shown to reduce polar auxin transport in zucchini hypocotyls. The interaction of the NPA binding protein with the actin cytoskeleton may localize it in one plane of the plasma membrane, and thereby control the polarity of auxin transport.

  2. CO2 Efflux from Shrimp Ponds in Indonesia

    PubMed Central

    Sidik, Frida; Lovelock, Catherine E.

    2013-01-01

    The conversion of mangrove forest to aquaculture ponds has been increasing in recent decades. One of major concerns of this habitat loss is the release of stored ‘blue’ carbon from mangrove soils to the atmosphere. In this study, we assessed carbon dioxide (CO2) efflux from soil in intensive shrimp ponds in Bali, Indonesia. We measured CO2 efflux from the floors and walls of shrimp ponds. Rates of CO2 efflux within shrimp ponds were 4.37 kg CO2 m−2 y−1 from the walls and 1.60 kg CO2 m−2 y−1 from the floors. Combining our findings with published data of aquaculture land use in Indonesia, we estimated that shrimp ponds in this region result in CO2 emissions to the atmosphere between 5.76 and 13.95 Tg y−1. The results indicate that conversion of mangrove forests to aquaculture ponds contributes to greenhouse gas emissions that are comparable to peat forest conversion to other land uses in Indonesia. Higher magnitudes of CO2 emission may be released to atmosphere where ponds are constructed in newly cleared mangrove forests. This study indicates the need for incentives that can meet the target of aquaculture industry without expanding the converted mangrove areas, which will lead to increased CO2 released to atmosphere. PMID:23755306

  3. Peptide mediators of cholesterol efflux

    DOEpatents

    Bielicki, John K.; Johansson, Jan

    2013-04-09

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  4. Tet(L) and Tet(K) Tetracycline-Divalent Metal/H+ Antiporters: Characterization of Multiple Catalytic Modes and a Mutagenesis Approach to Differences in Their Efflux Substrate and Coupling Ion Preferences

    PubMed Central

    Jin, Jie; Guffanti, Arthur A.; Bechhofer, David H.; Krulwich, Terry A.

    2002-01-01

    The Tet(L) protein encoded in the Bacillus subtilis chromosome and the closely related Tet(K) protein from Staphylococcus aureus plasmids are multifunctional antiporters that have three cytoplasmic efflux substrates: a tetracycline-divalent metal (TC-Me2+) complex that bears a net single positive charge, Na+, and K+. Tet(L) and Tet(K) had been shown to couple efflux of each of these substrates to influx of H+ as the coupling ion. In this study, competitive cross-inhibition between K+ and other cytoplasmic efflux substrates was demonstrated. Tet(L) and Tet(K) had also been shown to use K+ as an alternate coupling ion in support of Na+ or K+ efflux. Here they were shown to couple TC-Me2+ efflux to K+ uptake as well, exhibiting greater use of K+ as a coupling ion as the external pH increased. The substrate and coupling ion preferences of the two Tet proteins differed, especially in the higher preference of Tet(K) than Tet(L) for K+, both as a cytoplasmic efflux substrate and as an external coupling ion. Site-directed mutagenesis was employed to test the hypothesis that some feature of the putative “antiporter motif,” motif C, of Tet proteins would be involved in these characteristic preferences. Mutation of the A157 in Tet(L) to a hydroxyamino acid resulted in a more Tet(K)-like K+ preference both as coupling ion and efflux substrate. A reciprocal S157A mutant of Tet(K) exhibited reduced K+ preference. Competitive inhibition among substrates and the parallel effects of the single mutation upon K+ preference, as both an efflux substrate and coupling ion, are compatible with a model in which a single translocation pathway through the Tet(L) and Tet(K) transporters is used both for the cytoplasmic efflux substrates and for the coupling ions, in an alternating fashion. However, the effects of the A157 and other mutations of Tet(L) indicate that even if there are a shared binding site and translocation pathway, some elements of that pathway are used by all substrates

  5. Calcium Efflux Systems in Stress Signaling and Adaptation in Plants

    PubMed Central

    Bose, Jayakumar; Pottosin, Igor I.; Shabala, Stanislav S.; Palmgren, Michael G.; Shabala, Sergey

    2011-01-01

    Transient cytosolic calcium ([Ca2+]cyt) elevation is an ubiquitous denominator of the signaling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca2+]cyt elevations vary in magnitude, frequency, and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium “signature” that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca2+ influx mechanisms to shaping [Ca2+]cyt signatures, restoration of the basal [Ca2+]cyt levels is impossible without both cytosolic Ca2+ buffering and efficient Ca2+ efflux mechanisms removing excess Ca2+ from cytosol, to reload Ca2+ stores and to terminate Ca2+ signaling. This is the topic of the current review. The molecular identity of two major types of Ca2+ efflux systems, Ca2+-ATPase pumps and Ca2+/H+ exchangers, is described, and their regulatory modes are analyzed in detail. The spatial and temporal organization of calcium signaling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca2+ efflux systems in plant responses to a range of abiotic and biotic factors is summarized. Contribution of Ca2+-ATPase pumps and Ca2+/H+ exchangers in shaping [Ca2+]cyt signatures is then modeled by using a four-component model (plasma- and endo-membrane-based Ca2+-permeable channels and efflux systems) taking into account the cytosolic Ca2+ buffering. It is concluded that physiologically relevant variations in the activity of Ca2+-ATPase pumps and Ca2+/H+ exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca2+]cyt signatures in response to environmental stimuli, emphasizing the crucial role these active efflux systems play in plant adaptive responses to environment. PMID:22639615

  6. Effect of GAPDH-derived antimicrobial peptides on sensitive yeasts cells: membrane permeability, intracellular pH and H+-influx/-efflux rates.

    PubMed

    Branco, Patrícia; Albergaria, Helena; Arneborg, Nils; Prista, Catarina

    2018-05-01

    Saccharomyces cerevisiae secretes antimicrobial peptides (AMPs) derived from glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which induce the death of several non-Saccharomyces yeasts. Previously, we demonstrated that the naturally secreted GAPDH-derived AMPs (i.e. saccharomycin) caused a loss of culturability and decreased the intracellular pH (pHi) of Hanseniaspora guilliermondii cells. In this study, we show that chemically synthesised analogues of saccharomycin also induce a pHi drop and loss of culturability in H. guilliermondii, although to a lesser extent than saccharomycin. To assess the underlying causes of the pHi drop, we evaluated the membrane permeability to H+ cations of H. guilliermondii cells, after being exposed to saccharomycin or its synthetic analogues. Results showed that the H+-efflux decreased by 75.6% and the H+-influx increased by 66.5% in cells exposed to saccharomycin at pH 3.5. Since H+-efflux via H+-ATPase is energy dependent, reduced glucose consumption would decrease ATP production and consequently H+-ATPase activity. However, glucose uptake rates were not affected, suggesting that the AMPs rather than affecting glucose transporters may affect directly the plasma membrane H+-ATPase or increase ATP leakage due to cell membrane disturbance. Thus, our study revealed that both saccharomycin and its synthetic analogues induced cell death of H. guilliermondii by increasing the proton influx and inhibiting the proton efflux.

  7. Investigation of runoff generation from anthropogenic sources with dissolved xenobiotics

    NASA Astrophysics Data System (ADS)

    Krein, A.; Pailler, J.; Guignard, C.; Iffly, J.; Pfister, L.; Hoffmann, L.

    2009-04-01

    In the experimental Mess basin (35 km2, Luxembourg) dissolved xenobiotics in surface water are used to study the influences of anthropogenic sources like separated sewer systems on runoff generation. Emerging contaminants like pharmaceuticals are of growing interest because of their use in large quantities in human and veterinary medicine. The amounts reaching surface waters depend on rainfall patterns, hydraulic conditions, consumption, metabolism, degradation, and disposal. The behaviour of endocrine disruptors including pharmaceuticals in the aquatic environment is widely unknown. The twelve molecules analyzed belong to three families: the estrogens, the antibiotics (sulfonamides, tetracyclines), and the painkillers (ibuprofen, diclofenac). Xenobiotics can be used as potential environmental tracers for untreated sewerage. Our results show that the concentrations are highly variable during flood events. The highest concentrations are reached in the first flush period, mainly during the rising limb of the flood hydrographs. As a result of the kinematic wave effect the concentration peak occurs in some cases a few hours after the discharge maximum. In floodwater (eleven floods, 66 samples) the highest concentrations were measured for ibuprofen (g/l range), estrone, and diclofenac (all ng/l range). From the tetracycline group, essentially tetracycline itself is of relevance, while the sulfonamides are mainly represented by sulfamethoxazole (all in ng/l range). In the Mess River the pharmaceuticals fluxes during flood events proved to be influenced by hydrological conditions. Different pharmaceuticals showed their concentration peaks during different times of a flood event. An example is the estrone peak that - during summer flash floods - often occurred one to two hours prior to the largest concentrations of the painkillers. This suggests for more sources than the sole storm drainage through the spillway of the single sewage water treatment plant, different

  8. Comparative effects of auxin and abscisic acid on growth, hydrogen ion efflux and gravitropism in primary roots of maize

    NASA Technical Reports Server (NTRS)

    Evans, M. L.; Mulkey, T. J.

    1984-01-01

    In order to test the idea that auxin action on root growth may be mediated by H(+) movement, the correlation of auxin action on growth and H(+) movement in roots was examined along with changes in H(+) efflux patterns associated with the asymmetric growth which occurs during gravitropism. The effects of indoleacetic acid (IAA) and abscisic acid (AbA) on growth, H(+) secretion, and gravitropism in roots were compared. Results show a close correlation existent between H(+) efflux and growth in maize roots. In intact roots there is strong H(+) efflux from the elongation zone. Growth-promoting concentrations of IAA stimulate H(+) efflux. During gravitropism the H(+) efflux from the elongation zone becomes asymmetric; the evidence indicates that auxin redistribution contributes to the development of acid efflux asymmetry. That AbA stimulates root growth is reflected in its ability to stimulate H(+) efflux from apical root segments.

  9. Efflux pump-mediated benzalkonium chloride resistance in Listeria monocytogenes isolated from retail food.

    PubMed

    Jiang, Xiaobing; Yu, Tao; Liang, Yu; Ji, Shengdong; Guo, Xiaowei; Ma, Jianmin; Zhou, Lijun

    2016-01-18

    In this study, efflux pump-mediated benzalkonium chloride (BC) resistance, including plasmid-encoded (Qac protein family and BcrABC) and chromosome-borne efflux pumps, was investigated in Listeria monocytogenes from retail food in China. Among the 59 L. monocytogenes strains, 13 (22.0%) strains were resistant to BC. The PCR results showed that bcrABC was harbored by 2 of 13 BC resistant strains. However, none of the qac genes were detected among the 59 strains. The bcrABC was absent in both of the plasmid cured strains, indicating that this BC resistance determinant was plasmid-encoded in the two bcrABC-positive strains. In the presence of reserpine, most of the bcrABC-negative strains had decreases in the MICs of BC, suggesting the existence of other efflux pumps and their role in BC resistance. After exposed to reserpine, the reduction in BC MICs was observed in the two cured strains, indicating that efflux pumps located on chromosome was also involved in BC resistance. Our findings suggest that food products may act as reservoirs for BC resistant isolates of L. monocytogenes and plasmid- and chromosome-encoded efflux pumps could mediate the BC resistance of L. monocytogenes, which is especially relevant to the adaption of this organism in food-related environments with frequent BC use. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. It’s War Out There: Fighting for life with xenobiotic degrading enzymes

    USDA-ARS?s Scientific Manuscript database

    It’s War Out There: Fighting for life with xenobiotic degrading enzymes Beta-lactamase enzymes are well studied because of their tremendous impact on medicine. Their prominent role is in resistance to beta-lactam (four membered lactam ring) antibiotics including the first and most famous fungally d...

  11. Evaluation of the tannic acid inhibitory effect against the NorA efflux pump of Staphylococcus aureus.

    PubMed

    Tintino, Saulo R; Oliveira-Tintino, Cícera D M; Campina, Fábia F; Silva, Raimundo L P; Costa, Maria do S; Menezes, Irwin R A; Calixto-Júnior, João T; Siqueira-Junior, José P; Coutinho, Henrique D M; Leal-Balbino, Tereza C; Balbino, Valdir Q

    2016-08-01

    During the early periods of antibiotic usage, bacterial infections were considered tamed. However, widespread antibiotic use has promoted the emergence of antibiotic-resistant pathogens, including multidrug resistant strains. Active efflux is a mechanism for bacterial resistance to inhibitory substances, known simply as drug efflux pumps. The bacterium Staphylococcus aureus is an important pathogenic bacterium responsible for an array of infections. The NorA efflux pump has been shown to be responsible for moderate fluoroquinolone resistance of S. aureus. The inhibition of the efflux pump was assayed using a sub-inhibitory concentration of standard efflux pump inhibitors and tannic acid (MIC/8), where its capacity to decrease the MIC of Ethidium bromide (EtBr) and antibiotics due to the possible inhibitory effect of these substances was observed. The MICs of EtBr and antibiotics were significantly reduced in the presence of tannic acid, indicating the inhibitory effect of this agent against the efflux pumps of both strains causing a three-fold reduction of the MIC when compared with the control. These results indicate the possible usage of tannic acid as an adjuvant in antibiotic therapy against multidrug resistant bacteria (MDR). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Ketoconazole and the modulation of multidrug resistance-mediated transport in Caco-2 and MDCKII-MDR1 drug transport models.

    PubMed

    Fan, Y; Rodriguez-Proteau, R

    2008-02-01

    The hypothesis tested was that ketoconazole can modulate P-glycoprotein, thereby altering cellular uptake and apparent permeability (P(app)) of multidrug-resistant substrates, such as cyclosporin A (CSA) and digoxin, across Caco-2, MDCKII-MDR1, and MDCKII wild-type cell transport models. (3)H-CSA/(3)H-digoxin transport experiments were performed with and without co-exposure to ketoconazole, and (3)H-ketoconzole transport experiments were performed with and without co-exposure to dietary flavonoids, epigallocatechin-3-gallate, and xanthohumol. Ketoconazole (3 microM) reduced the P(app) efflux of CSA and digoxin from 5.07 x 10(-6) to 2.91 x 10(-6) cm s(-1) and from 2.60 x 10(-6) to 1.41 x 10(-6) cm s(-1), respectively, in Caco-2 cells. In the MDCKII-MDR1 cells, ketoconazole reduced the P(app) efflux of CSA and increased the P(app) absorption of digoxin. Cellular uptake of ketoconazole in the Caco-2 cells was significantly inhibited by CSA and digoxin, whereas epigallocatechin-3-gallate and xanthohumol exhibited biphasic responses. In conclusion, ketoconazole modulates the P(app) of P-glycoprotein substrates by interacting with MDR1 protein. Epigallocatechin-3-gallate and xanthohumol modulate the transport and uptake of ketoconazole.

  13. HNP-3 enhanced the antimicrobial activity of CIP by promoting ATP efflux from P. aeruginosa cells.

    PubMed

    Wang, Hao; Dong, Birong; Lou, Li

    2011-04-01

    To establish a novel strategy of P. aeruginosa control, we acquired recombination HNP-3 by gene recombination. Then we examined HNP-3 bio-activities and the influences of antimicrobial peptide on the efflux of ATP. Consequently, we obtained target protein with a molecular mass of 3,000 D consistent with the Anticipation. FIC index of Ciprofloxacin added HNP-3 was less than 0.5 and HNP3 synergistically cooperated with CIP to suppress P. aeruginosa colony formation revealed that there was significant synergy. ATP efflux was however up-regulated by low concentrations of HNP-3, although CIP did not exert any influence on ATP efflux. Conclusively, recombination protein HNP-3 displayed antimicrobial and synergic effects. HNP-3 enhanced the antimicrobial activity of CIP by promoting ATP efflux from P. aeruginosa cells and decreasing efflux of the drugs, which could have useful clinical applications.

  14. Responses of human hepatoma HepG2 cells to silver nanoparticles and polycyclic aromatic hydrocarbons.

    PubMed

    Filipak Neto, Francisco; Cardoso da Silva, Ludiana; Liebel, Samuel; Voigt, Carmen Lúcia; Oliveira Ribeiro, Ciro Alberto de

    2018-01-01

    The nanotechnology has revolutionized the global market with silver nanoparticles (AgNP) occupying a prominent position due to their remarkable anti-bacterial properties. However, there is no data about the adverse and toxic effects of associations of AgNP and ubiquitous compounds, such as polycyclic aromatic hydrocarbons (PAH). In the current study, we investigated the responses of HepG2 cells to realistic concentrations of AgNP (0.09, 0.9, and 9 ng ml -1 ) and mixture of PAH (30 and 300 ng ml -1 ), separately and in association. Cell viability and cytotoxicity (neutral red retention and MTT production assays) and proliferation (crystal violet [CV] assay), xenobiotic efflux transporter activity (rhodamine B accumulation assay), ROS levels (dichlorodihydrofluorescein diacetate assay), and lipid peroxidation (pyrenylphosphine-1-diphenyl assay) were analyzed. There was no decreases of cell viability after exposure to AgNP, PAH and most of AgNP + PAH associations, but increases of cell viability/number (CV assay) occurred. Efflux transporter activity was not affected, with exception of one AgNP + PAH associations, ROS levels increased, but lipid peroxidation decreased. Some toxicological interactions occurred, particularly for the highest concentrations of AgNP and PAH, but there is no evidence that these interactions increased the toxicity of AgNP and PAH.

  15. Living with a leaky skin: upregulation of ion transport proteins during sloughing.

    PubMed

    Wu, Nicholas C; Cramp, Rebecca L; Franklin, Craig E

    2017-06-01

    Amphibian skin is a multifunctional organ providing protection from the external environment and facilitating the physiological exchange of gases, water and salts with the environment. In order to maintain these functions, the outer layer of skin is regularly replaced in a process called sloughing. During sloughing, the outermost layer of the skin is removed in its entirety, which has the potential to interfere with skin permeability and ion transport, disrupting homeostasis. In this study, we measured, in vivo , the effects of sloughing on the cutaneous efflux of ions in toads Rhinella marina kept in freshwater conditions. We also measured transepithelial potential, cutaneous resistance, active ion transport and the distribution, abundance and gene expression of the key ion transport proteins sodium-potassium ATPase (NKA) and epithelial sodium channel (ENaC) during sloughing. We hypothesised that the increase in transepithelial efflux of ions during sloughing is a consequence of increased permeability and/or a reduction in the abundance or expression of cutaneous ion transport proteins, resulting in disruption of internal ion homeostasis. There was a significant increase in sodium and chloride efflux during sloughing in R. marina However, although in vitro skin resistance decreased after sloughing, active sodium transport increased commensurate with an increase in NKA and ENaC protein abundance in the skin. These changes in skin function associated with sloughing did not affect the maintenance of internal electrolyte homeostasis. These results suggest that during sloughing, amphibians actively maintain internal homeostasis by increasing cutaneous rates of ion uptake. © 2017. Published by The Company of Biologists Ltd.

  16. Estimation of maximum transdermal flux of nonionized xenobiotics from basic physicochemical determinants

    PubMed Central

    Milewski, Mikolaj; Stinchcomb, Audra L.

    2012-01-01

    An ability to estimate the maximum flux of a xenobiotic across skin is desirable both from the perspective of drug delivery and toxicology. While there is an abundance of mathematical models describing the estimation of drug permeability coefficients, there are relatively few that focus on the maximum flux. This article reports and evaluates a simple and easy-to-use predictive model for the estimation of maximum transdermal flux of xenobiotics based on three common molecular descriptors: logarithm of octanol-water partition coefficient, molecular weight and melting point. The use of all three can be justified on the theoretical basis of their influence on the solute aqueous solubility and the partitioning into the stratum corneum lipid domain. The model explains 81% of the variability in the permeation dataset comprised of 208 entries and can be used to obtain a quick estimate of maximum transdermal flux when experimental data is not readily available. PMID:22702370

  17. ATP-binding cassette exporters: structure and mechanism with a focus on P-glycoprotein and MRP1.

    PubMed

    Arana, Maite Rocío; Altenberg, Guillermo

    2017-10-12

    The majority of proteins that belong to the ATP-binding cassette (ABC) superfamily are transporters that mediate the efflux of substrates from cells. These exporters include multidrug resistance proteins of the ABCB and ABCC subfamilies, such as P-glycoprotein (Pgp) and MRP1, respectively. These proteins are not only involved in the resistance of cancer to cytotoxic agents, but also in the protection from endo and xenobiotics, and the determination of drug pharmacokinetics, as well as in the pathophysiology of a variety of disorders. Here, we present a review of the information available on ABC exporters, with a focus on Pgp, MRP1 and related proteins. We describe tissue localization and function of these transporters in health and disease, and discuss the mechanisms of substrate transport. We also correlate recent structural information with the function of the exporters, and discuss details of their molecular mechanism with a focus on the nucleotide-binding domains. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Unlike Butylcycloheptylprodigiosin, Isolated Undecylprodigiosin from Streptomyces parvulus Is Not a MDR1 and BCRP Substrate in Multidrug-Resistant Cancers.

    PubMed

    Mirzaei, Seyed Abbas; Safari Kavishahi, Mansureh; Keshavarz, Zhila; Elahian, Fatemeh

    2018-06-01

    The search for new chemotherapeutics unaffected by efflux pumps would significantly increase life expectancy in patients with malignant cancers. In this study, butylcycloheptylprodigiosin and undecylprodigiosin were HPLC-purified and verified, using nuclear magnetic resonance spectroscopy. Cell cytotoxicity and transportation kinetics on multiple-drug resistance (MDR) cells were evaluated. Daunorubicin and butylcycloheptylprodigiosin were less toxic in the MDR1 overexpressing line, but undecylprodigiosin revealed potent toxicity toward MDR1 and BCRP expressing malignant cells. There was no noticeable change in MDR1 and BCRP transcripts during 3 days of treatment with prodiginines. While daunorubicin and mitoxantrone uptake from the cell environment significantly decreased with increasing multidrug resistance up to 46% and 62%, respectively, the accumulation of undecylprodigiosin and to a lesser extent butylcycloheptylprodigiosin in the resistance cells occurred cell- and dose-dependently via a passive diffusion process and were almost equally sensitive to the parent lines. The efflux of xenobiotics commenced immediately with different kinetics in various cells. A greater amount of daunorubicin and mitoxantrone were rapidly thrown out of their corresponding MDR cells in the absence of the specific inhibitor (3.01 and 1.81 dF/min, respectively) and represented functional efflux pumps. MDR pumps did not apparently influence undecylprodigiosin efflux patterns; but butylcycloheptylprodigiosin was partially removed from EPG85.257RDB cells at the rate of 2.66 and 1.41 dF/min in the absence and presence of verapamil, respectively.

  19. Comparative metabolism as a key driver of wildlife species sensitivity to human and veterinary pharmaceuticals

    PubMed Central

    Hutchinson, Thomas H.; Madden, Judith C.; Naidoo, Vinny; Walker, Colin H.

    2014-01-01

    Human and veterinary drug development addresses absorption, distribution, metabolism, elimination and toxicology (ADMET) of the Active Pharmaceutical Ingredient (API) in the target species. Metabolism is an important factor in controlling circulating plasma and target tissue API concentrations and in generating metabolites which are more easily eliminated in bile, faeces and urine. The essential purpose of xenobiotic metabolism is to convert lipid-soluble, non-polar and non-excretable chemicals into water soluble, polar molecules that are readily excreted. Xenobiotic metabolism is classified into Phase I enzymatic reactions (which add or expose reactive functional groups on xenobiotic molecules), Phase II reactions (resulting in xenobiotic conjugation with large water-soluble, polar molecules) and Phase III cellular efflux transport processes. The human–fish plasma model provides a useful approach to understanding the pharmacokinetics of APIs (e.g. diclofenac, ibuprofen and propranolol) in freshwater fish, where gill and liver metabolism of APIs have been shown to be of importance. By contrast, wildlife species with low metabolic competency may exhibit zero-order metabolic (pharmacokinetic) profiles and thus high API toxicity, as in the case of diclofenac and the dramatic decline of vulture populations across the Indian subcontinent. A similar threat looms for African Cape Griffon vultures exposed to ketoprofen and meloxicam, recent studies indicating toxicity relates to zero-order metabolism (suggesting P450 Phase I enzyme system or Phase II glucuronidation deficiencies). While all aspects of ADMET are important in toxicity evaluations, these observations demonstrate the importance of methods for predicting API comparative metabolism as a central part of environmental risk assessment. PMID:25405970

  20. Interactions of pesticides with membrane drug transporters: Implications for toxicokinetics and toxicity.

    PubMed

    Chedik, Lisa; Bruyere, Arnaud; Bacle, Astrid; Potin, Sophie; Le Vée, Marc; Fardel, Olivier

    2018-06-10

    Drug transporters are now recognized as major actors of pharmacokinetics. They are also likely implicated in toxicokinetics and toxicology of environmental pollutants, notably pesticides, to which humans are widely exposed and which are known to exert various deleterious effects towards health. Interactions of pesticides with drug transporters are therefore important to consider. Areas covered: This review provides an overview of the interactions of pesticides with membrane drug transporters, i.e., inhibition of their activity, regulation of their expression and handling of pesticides. Consequences for toxicokinetics and toxicity of pesticides are additionally summarized and discussed. Expert opinion: Some pesticides belonging to several chemical classes, such as organochlorine, pyrethroid and organophosphorus pesticides, have been demonstrated to interact with various uptake and efflux drug transporters, including the efflux pump P-glycoprotein and the uptake organic cation transporters (OCTs). This provides the proof of the concept that pesticide-transporter relationships merit attention. More extensive and systematic characterization of pesticide-transporter relationships, possibly through the use of in silico methods, is however likely required. In addition, consideration of transporter polymorphisms, pesticide mixture effects and realistic pesticide concentrations reached in humans, may help to better define the in vivo relevance of pesticide-transporter interactions in terms of toxicokinetics and toxicity.

  1. Polar auxin transport: controlling where and how much

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; DeLong, A.; Brown, C. S. (Principal Investigator)

    2001-01-01

    Auxin is transported through plant tissues, moving from cell to cell in a unique polar manner. Polar auxin transport controls important growth and developmental processes in higher plants. Recent studies have identified several proteins that mediate polar auxin transport and have shown that some of these proteins are asymmetrically localized, paving the way for studies of the mechanisms that regulate auxin transport. New data indicate that reversible protein phosphorylation can control the amount of auxin transport, whereas protein secretion through Golgi-derived vesicles and interactions with the actin cytoskeleton might regulate the localization of auxin efflux complexes.

  2. Sandwich-Cultured Hepatocytes for Mechanistic Understanding of Hepatic Disposition of Parent Drugs and Metabolites by Transporter-Enzyme Interplay.

    PubMed

    Matsunaga, Norikazu; Fukuchi, Yukina; Imawaka, Haruo; Tamai, Ikumi

    2018-05-01

    Functional interplay between transporters and drug-metabolizing enzymes is currently one of the hottest topics in the field of drug metabolism and pharmacokinetics. Uptake transporter-enzyme interplay is important to determine intrinsic hepatic clearance based on the extended clearance concept. Enzyme and efflux transporter interplay, which includes both sinusoidal (basolateral) and canalicular efflux transporters, determines the fate of metabolites formed in the liver. As sandwich-cultured hepatocytes (SCHs) maintain metabolic activities and form a canalicular network, the whole interplay between uptake and efflux transporters and drug-metabolizing enzymes can be investigated simultaneously. In this article, we review the utility and applicability of SCHs for mechanistic understanding of hepatic disposition of both parent drugs and metabolites. In addition, the utility of SCHs for mimicking species-specific disposition of parent drugs and metabolites in vivo is described. We also review application of SCHs for clinically relevant prediction of drug-drug interactions caused by drugs and metabolites. The usefulness of mathematical modeling of hepatic disposition of parent drugs and metabolites in SCHs is described to allow a quantitative understanding of an event in vitro and to develop a more advanced model to predict in vivo disposition. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Winter CO2 efflux from cold semiarid sagebrush shrublands distributed across the rain-to-snow transition zone

    NASA Astrophysics Data System (ADS)

    Fellows, A.; Flerchinger, G. N.; Lohse, K. A.; Seyfried, M. S.

    2017-12-01

    Predicting winter CO2 efflux across the rain-to-snow transition zone is challenging in the cold semiarid northern Great Basin, USA, complicated by steep environmental gradients and marked heterogeneity in ecosystem properties. We therefore examined winter CO2 efflux over 9 site-years using 4 eddy covariance towers located in the Reynolds Creek Critical Zone Observatory. The sites were sagebrush shrublands located at 1425, 1680, 2098, and 2111 m, and spanned a large part of the rain-to-snow transition zone. We focused on two objectives. First, we quantified winter CO2 efflux at the sites, and considered how these varied with elevation. Second, we used a within-site and cross-site analysis to examine the biological and physical factors that impact winter CO2 efflux. Winter conditions were identified using temperature, snow depth, and CO2 exchange measurements and included 12,922 observations. The duration of winter conditions increased from 90 to 180 days with elevation. Peak snow depth increased from < 30 to > 100 cm with elevation. Cumulative winter CO2 efflux accounted for > 10% of the total annual CO2 efflux, increased with elevation, and was a key component of net ecosystem production at some sites in some years. The importance of winter CO2 efflux was accentuated by the region's long winters and also dry summers that decreased water availability and decomposition during non-winter periods. Preliminary regressions examining air temperature, soil temperature, wind speed, snow depth, and gross carbon uptake indicated some of these factors control the rate of winter CO2 efflux and require consideration, but that additional work is needed to disentangle co-linearity and assess the importance of these factors within and between sites. These findings suggest a consideration of winter CO2 efflux is warranted in cold winter-wet semiarid ecosystems, particularly where winters are long and non-winter CO2 efflux is strongly limited by water availability.

  4. Virtual screening of ABCC1 transporter nucleotidebinding domains as a therapeutic target in multidrug resistant cancer

    PubMed Central

    Rungsardthong, Kanin; Mares- Sámano, Sergio; Penny, Jeffrey

    2012-01-01

    ABCC1 is a member of the ATP-binding Cassette super family of transporters, actively effluxes xenobiotics from cells. Clinically, ABCC1 expression is linked to cancer multidrug resistance. Substrate efflux is energised by ATP binding and hydrolysis at the nucleotide-binding domains (NBDs) and inhibition of these events may help combat drug resistance. The aim of this study is to identify potential inhibitors of ABCC1 through virtual screening of National Cancer Institute (NCI) compounds. A threedimensional model of ABCC1 NBD2 was generated using MODELLER whilst the X-ray crystal structure of ABCC1 NBD1 was retrieved from the Protein Data Bank. A pharmacophore hypothesis was generated based on flavonoids known to bind at the NBDs using PHASE, and used to screen the NCI database. GLIDE was employed in molecular docking studies for all hit compounds identified by pharmacophore screening. The best potential inhibitors were identified as compounds possessing predicted binding affinities greater than ATP. Approximately 5% (13/265) of the hit compounds possessed lower docking scores than ATP in ABCC1 NBD1 (NSC93033, NSC662377, NSC319661, NSC333748, NSC683893, NSC226639, NSC94231, NSC55979, NSC169121, NSC166574, NSC73380, NSC127738, NSC115534), whereas approximately 7% (7/104) of docked NCI compounds were predicted to possess lower docking scores than ATP in ABCC1 NBD2 (NSC91789, NSC529483, NSC211168, NSC318214, NSC116519, NSC372332, NSC526974). Analyses of docking orientations revealed P-loop residues of each NBD and the aromatic amino acids Trp653 (NBD1) and Tyr1302 (NBD2) were key in interacting with high-affinity compounds. On the basis of docked orientation and docking score the compounds identified may be potential inhibitors of ABCC1 and require further pharmacological analysis. Abbreviations ABC - ATP-binding cassette, DHS - dehydrosilybin, MDR - multidrug resistance, NBD - nucleotide-binding domain, PDB - protein data bank. PMID:23144549

  5. Xenobiotics and loss of cell adhesion drive distinct transcriptional outcomes by aryl hydrocarbon receptor signaling.

    PubMed

    Hao, Nan; Lee, Kian Leong; Furness, Sebastian G B; Bosdotter, Cecilia; Poellinger, Lorenz; Whitelaw, Murray L

    2012-12-01

    The aryl hydrocarbon receptor (AhR) is a signal-regulated transcription factor, which is canonically activated by the direct binding of xenobiotics. In addition, switching cells from adherent to suspension culture also activates the AhR, representing a nonxenobiotic, physiological activation of AhR signaling. Here, we show that the AhR is recruited to target gene enhancers in both ligand [isopropyl-2-(1,3-dithietane-2-ylidene)-2-[N-(4-methylthiazol-2-yl)carbamoyl]acetate (YH439)]-treated and suspension cells, suggesting a common mechanism of target gene induction between these two routes of AhR activation. However, gene expression profiles critically differ between xenobiotic- and suspension-activated AhR signaling. Por and Cldnd1 were regulated predominantly by ligand treatments, whereas, in contrast, ApoER2 and Ganc were regulated predominantly by the suspension condition. Classic xenobiotic-metabolizing AhR targets such as Cyp1a1, Cyp1b1, and Nqo1 were regulated by both ligand and suspension conditions. Temporal expression patterns of AhR target genes were also found to vary, with examples of transient activation, transient repression, or sustained alterations in expression. Furthermore, sequence analysis coupled with chromatin immunoprecipitation assays and reporter gene analysis identified a functional xenobiotic response element (XRE) in the intron 1 of the mouse Tiparp gene, which was also bound by hypoxia-inducible factor-1α during hypoxia and features a concatemer of four XRE cores (GCGTG). Our data suggest that this XRE concatemer site concurrently regulates the expression of both the Tiparp gene and its cis antisense noncoding RNA after ligand- or suspension-induced AhR activation. This work provides novel insights into how AhR signaling drives different transcriptional programs via the ligand versus suspension modes of activation.

  6. The Impact of Diesel Oil Pollution on the Hydrophobicity and CO2 Efflux of Forest Soils.

    PubMed

    Hewelke, Edyta; Szatyłowicz, Jan; Hewelke, Piotr; Gnatowski, Tomasz; Aghalarov, Rufat

    2018-01-01

    The contamination of soil with petroleum products is a major environmental problem. Petroleum products are common soil contaminants as a result of human activities, and they are causing substantial changes in the biological (particularly microbiological) processes, chemical composition, structure and physical properties of soil. The main objective of this study was to assess the impact of soil moisture on CO 2 efflux from diesel-contaminated albic podzol soils. Two contamination treatments (3000 and 9000 mg of diesel oil per kg of soil) were prepared for four horizons from two forest study sites with different initial levels of soil water repellency. CO 2 emissions were measured using a portable infrared gas analyser (LCpro+, ADC BioScientific, UK) while the soil samples were drying under laboratory conditions (from saturation to air-dry). The assessment of soil water repellency was performed using the water drop penetration time test. An analysis of variance (ANVOA) was conducted for the CO 2 efflux data. The obtained results show that CO 2 efflux from diesel-contaminated soils is higher than efflux from uncontaminated soils. The initially water-repellent soils were found to have a bigger CO 2 efflux. The non-linear relationship between soil moisture content and CO 2 efflux only existed for the upper soil horizons, while for deeper soil horizons, the efflux is practically independent of soil moisture content. The contamination of soil by diesel leads to increased soil water repellency.

  7. β3-Adrenoceptor activation upregulates apolipoprotein A-I expression in HepG2 cells, which might further promote cholesterol efflux from macrophage foam cells.

    PubMed

    Gao, Xia-Qing; Li, Yan-Fang; Jiang, Zhi-Li

    2017-01-01

    The aim of this study was to explore the effects of β 3 -adrenoceptor (β 3 -AR) activation on HepG2 cells and its influence on cholesterol efflux from macrophage foam cells. HepG2 cells were cultured and treated with the β 3 -AR agonist, BRL37344, and antagonist, SR52390A, and the expression of apolipoprotein (Apo) A-I, ApoA-II, ApoB, and β 3 -AR in the supernatants and cells was determined. The expression of peroxisome proliferator-activated receptor (PPAR) γ and PPARα in the HepG2 cells was also assessed. Next, using the RAW264.7 macrophage foam cell model, we also assessed the influence of the HepG2 cell supernatants on lipid efflux. The cholesterol content of the foam cells was also measured, and the cholesterol efflux from the macrophages was examined by determining 3 H-labeled cholesterol levels. Expression of ATP-binding cassette transporter (ABC) A1 and ABCG1 of the macrophage foam cells was also assessed. β 3 -AR activation increased ApoA-I expression in both the HepG2 cells and the supernatants; PPARγ expression was upregulated, but PPARα expression was not. Treatment with GW9662 abolished the increased expression of ApoA-I induced by the β 3 -AR agonist. The HepG2 cell supernatants decreased the lipid accumulation and increased the cholesterol efflux from the macrophage foam cells. ABCA1 expression, but not ABCG1 expression, increased in the macrophage foam cells treated with BRL37344-treated HepG2 cell supernatants. Activation of β 3 -AR in HepG2 cells upregulates ApoA-I expression, which might further promote cholesterol efflux from macrophage foam cells. PPARγ might be required for the induction of ApoA-I expression.

  8. Intestinal Transport Characteristics and Metabolism of C-Glucosyl Dihydrochalcone, Aspalathin.

    PubMed

    Bowles, Sandra; Joubert, Elizabeth; de Beer, Dalene; Louw, Johan; Brunschwig, Christel; Njoroge, Mathew; Lawrence, Nina; Wiesner, Lubbe; Chibale, Kelly; Muller, Christo

    2017-03-30

    Insight into the mechanisms of intestinal transport and metabolism of aspalathin will provide important information for dose optimisation, in particular for studies using mouse models. Aspalathin transportation across the intestinal barrier (Caco-2 monolayer) tested at 1-150 µM had an apparent rate of permeability (P app ) typical of poorly absorbed compounds (1.73 × 10 -6 cm/s). Major glucose transporters, sodium glucose linked transporter 1 (SGLT1) and glucose transporter 2 (GLUT2), and efflux protein (P-glycoprotein, PgP) (1.84 × 10 -6 cm/s; efflux ratio: 1.1) were excluded as primary transporters, since the P app of aspalathin was not affected by the presence of specific inhibitors. The P app of aspalathin was also not affected by constituents of aspalathin-enriched rooibos extracts, but was affected by high glucose concentration (20.5 mM), which decreased the P app value to 2.9 × 10 -7 cm/s. Aspalathin metabolites (sulphated, glucuronidated and methylated) were found in mouse urine, but not in blood, following an oral dose of 50 mg/kg body weight of the pure compound. Sulphates were the predominant metabolites. These findings suggest that aspalathin is absorbed and metabolised in mice to mostly sulphate conjugates detected in urine. Mechanistically, we showed that aspalathin is not actively transported by the glucose transporters, but presumably passes the monolayer paracellularly.

  9. Cerebellar modulation of frontal cortex dopamine efflux in mice: relevance to autism and schizophrenia.

    PubMed

    Mittleman, Guy; Goldowitz, Daniel; Heck, Detlef H; Blaha, Charles D

    2008-07-01

    Cerebellar and frontal cortical pathologies have been commonly reported in schizophrenia, autism, and other developmental disorders. Whether there is a relationship between prefrontal and cerebellar pathologies is unknown. Using fixed potential amperometry, dopamine (DA) efflux evoked by cerebellar or, dentate nucleus electrical stimulation (50 Hz, 200 muA) was recorded in prefrontal cortex of urethane anesthetized lurcher (Lc/+) mice with 100% loss of cerebellar Purkinje cells and wildtype (+/+) control mice. Cerebellar stimulation with 25 and 100 pulses evoked prefrontal cortex DA efflux in +/+ mice that persisted for 12 and 25 s poststimulation, respectively. In contrast, 25 pulse cerebellar stimulation failed to evoke prefrontal cortex DA efflux in Lc/+ mice indicating a dependency on cerebellar Purkinje cell outputs. Dentate nucleus stimulation (25 pulses) evoked a comparable but briefer (baseline recovery within 7 s) increase in prefrontal cortex DA efflux compared to similar cerebellar stimulation in +/+ mice. However, in Lc/+ mice 25 pulse dentate nucleus evoked prefrontal cortex DA efflux was attenuated by 60% with baseline recovery within 4 s suggesting that dentate nucleus outputs to prefrontal cortex remain partially functional. DA reuptake blockade enhanced 100 pulse stimulation evoked prefrontal cortex responses, while serotonin or norepinephrine reuptake blockade were without effect indicating the specificity of the amperometric recordings to DA. Results provide neurochemical evidence that the cerebellum can modulate DA efflux in the prefrontal cortex. Together, these findings may explain why cerebellar and frontal cortical pathologies co-occur, and may provide a mechanism that accounts for the diversity of symptoms common to multiple developmental disorders.

  10. Cerebellar Modulation of Frontal Cortex Dopamine Efflux in Mice: Relevance to Autism and Schizophrenia

    PubMed Central

    MITTLEMAN, GUY; GOLDOWITZ, DANIEL; HECK, DETLEF H.; BLAHA, CHARLES D.

    2013-01-01

    Cerebellar and frontal cortical pathologies have been commonly reported in schizophrenia, autism, and other developmental disorders. Whether there is a relationship between prefrontal and cerebellar pathologies is unknown. Using fixed potential amperometry, dopamine (DA) efflux evoked by cerebellar or, dentate nucleus electrical stimulation (50 Hz, 200 μA) was recorded in prefrontal cortex of urethane anesthetized lurcher (Lc/+) mice with 100% loss of cerebellar Purkinje cells and wildtype (+/+) control mice. Cerebellar stimulation with 25 and 100 pulses evoked prefrontal cortex DA efflux in +/+ mice that persisted for 12 and 25 s poststimulation, respectively. In contrast, 25 pulse cerebellar stimulation failed to evoke prefrontal cortex DA efflux in Lc/+ mice indicating a dependency on cerebellar Purkinje cell outputs. Dentate nucleus stimulation (25 pulses) evoked a comparable but briefer (baseline recovery within 7 s) increase in prefrontal cortex DA efflux compared to similar cerebellar stimulation in +/+ mice. However, in Lc/+ mice 25 pulse dentate nucleus evoked prefrontal cortex DA efflux was attenuated by 60% with baseline recovery within 4 s suggesting that dentate nucleus outputs to prefrontal cortex remain partially functional. DA reuptake blockade enhanced 100 pulse stimulation evoked pre-frontal cortex responses, while serotonin or norepinephrine reuptake blockade were without effect indicating the specificity of the amperometric recordings to DA. Results provide neurochemical evidence that the cerebellum can modulate DA efflux in the prefrontal cortex. Together, these findings may explain why cerebellar and frontal cortical pathologies co-occur, and may provide a mechanism that accounts for the diversity of symptoms common to multiple developmental disorders. PMID:18435424

  11. Cloning, Sequencing, and Characterization of the SdeAB Multidrug Efflux Pump of Serratia marcescens

    PubMed Central

    Kumar, Ayush; Worobec, Elizabeth A.

    2005-01-01

    Serratia marcescens is an important nosocomial agent known for causing various infections in immunocompromised individuals. Resistance of this organism to a broad spectrum of antibiotics makes the treatment of infections very difficult. This study was undertaken to identify multidrug resistance efflux pumps in S. marcescens. Three mutant strains of S. marcescens were isolated in vitro by the serial passaging of a wild-type strain in culture medium supplemented with ciprofloxacin, norfloxacin, or ofloxacin. Fluoroquinolone accumulation assays were performed to detect the presence of a proton gradient-dependent efflux mechanism. Two of the mutant strains were found to be effluxing norfloxacin, ciprofloxacin, and ofloxacin, while the third was found to efflux only ofloxacin. A genomic library of S. marcescens wild-type strain UOC-67 was constructed and screened for RND pump-encoding genes by using DNA probes for two putative RND pump-encoding genes. Two different loci were identified: sdeAB, encoding an MFP and an RND pump, and sdeCDE, encoding an MFP and two different RND pumps. Northern blot analysis revealed overexpression of sdeB in two mutant strains effluxing fluoroquinolones. Analysis of the sdeAB and sdeCDE loci in Escherichia coli strain AG102MB, deficient in the RND pump (AcrB), revealed that gene products of sdeAB are responsible for the efflux of a diverse range of substrates that includes ciprofloxacin, norfloxacin, ofloxacin, chloramphenicol, sodium dodecyl sulfate, ethidium bromide, and n-hexane, while those of sdeCDE did not result in any change in susceptibilities to any of these agents. PMID:15793131

  12. Cloning, sequencing, and characterization of the SdeAB multidrug efflux pump of Serratia marcescens.

    PubMed

    Kumar, Ayush; Worobec, Elizabeth A

    2005-04-01

    Serratia marcescens is an important nosocomial agent known for causing various infections in immunocompromised individuals. Resistance of this organism to a broad spectrum of antibiotics makes the treatment of infections very difficult. This study was undertaken to identify multidrug resistance efflux pumps in S. marcescens. Three mutant strains of S. marcescens were isolated in vitro by the serial passaging of a wild-type strain in culture medium supplemented with ciprofloxacin, norfloxacin, or ofloxacin. Fluoroquinolone accumulation assays were performed to detect the presence of a proton gradient-dependent efflux mechanism. Two of the mutant strains were found to be effluxing norfloxacin, ciprofloxacin, and ofloxacin, while the third was found to efflux only ofloxacin. A genomic library of S. marcescens wild-type strain UOC-67 was constructed and screened for RND pump-encoding genes by using DNA probes for two putative RND pump-encoding genes. Two different loci were identified: sdeAB, encoding an MFP and an RND pump, and sdeCDE, encoding an MFP and two different RND pumps. Northern blot analysis revealed overexpression of sdeB in two mutant strains effluxing fluoroquinolones. Analysis of the sdeAB and sdeCDE loci in Escherichia coli strain AG102MB, deficient in the RND pump (AcrB), revealed that gene products of sdeAB are responsible for the efflux of a diverse range of substrates that includes ciprofloxacin, norfloxacin, ofloxacin, chloramphenicol, sodium dodecyl sulfate, ethidium bromide, and n-hexane, while those of sdeCDE did not result in any change in susceptibilities to any of these agents.

  13. Glutathione Transport Is a Unique Function of the ATP-binding Cassette Protein ABCG2*

    PubMed Central

    Brechbuhl, Heather M.; Gould, Neal; Kachadourian, Remy; Riekhof, Wayne R.; Voelker, Dennis R.; Day, Brian J.

    2010-01-01

    Glutathione (GSH) transport is vital for maintenance of intracellular and extracellular redox balance. Only a few human proteins have been identified as transporters of GSH, glutathione disulfide (GSSG) and/or GSH conjugates (GS-X). Human epithelial MDA1586, A549, H1975, H460, HN4, and H157 cell lines were exposed to 2′,5′-dihydroxychalcone, which induces a GSH efflux response. A real-time gene superarray for 84 proteins found in families that have a known role in GSH, GSSG, and/or GS-X transport was employed to help identify potential GSH transporters. ABCG2 was identified as the only gene in the array that closely corresponded with the magnitude of 2′,5′-dihydroxychalcone (2′,5′-DHC)-induced GSH efflux. The role of human ABCG2 as a novel GSH transporter was verified in a Saccharomyces cerevisiae galactose-inducible gene expression system. Yeast expressing human ABCG2 had 2.5-fold more extracellular GSH compared with those not expressing ABCG2. GSH efflux in ABCG2-expressing yeast was abolished by the ABCG2 substrate methotrexate (10 μm), indicating competitive inhibition. In contrast, 2′,5′-DHC treatment of ABCG2-expressing yeast increased extracellular GSH levels in a dose-dependent manner with a maximum 3.5-fold increase in GSH after 24 h. In addition, suppression of ABCG2 with short hairpin RNA or ABCG2 overexpression in human epithelial cells decreased or increased extracellular GSH levels, respectively. Our data indicate that ABCG2 is a novel GSH transporter. PMID:20332504

  14. Glutathione transport is a unique function of the ATP-binding cassette protein ABCG2.

    PubMed

    Brechbuhl, Heather M; Gould, Neal; Kachadourian, Remy; Riekhof, Wayne R; Voelker, Dennis R; Day, Brian J

    2010-05-28

    Glutathione (GSH) transport is vital for maintenance of intracellular and extracellular redox balance. Only a few human proteins have been identified as transporters of GSH, glutathione disulfide (GSSG) and/or GSH conjugates (GS-X). Human epithelial MDA1586, A549, H1975, H460, HN4, and H157 cell lines were exposed to 2',5'-dihydroxychalcone, which induces a GSH efflux response. A real-time gene superarray for 84 proteins found in families that have a known role in GSH, GSSG, and/or GS-X transport was employed to help identify potential GSH transporters. ABCG2 was identified as the only gene in the array that closely corresponded with the magnitude of 2',5'-dihydroxychalcone (2',5'-DHC)-induced GSH efflux. The role of human ABCG2 as a novel GSH transporter was verified in a Saccharomyces cerevisiae galactose-inducible gene expression system. Yeast expressing human ABCG2 had 2.5-fold more extracellular GSH compared with those not expressing ABCG2. GSH efflux in ABCG2-expressing yeast was abolished by the ABCG2 substrate methotrexate (10 microM), indicating competitive inhibition. In contrast, 2',5'-DHC treatment of ABCG2-expressing yeast increased extracellular GSH levels in a dose-dependent manner with a maximum 3.5-fold increase in GSH after 24 h. In addition, suppression of ABCG2 with short hairpin RNA or ABCG2 overexpression in human epithelial cells decreased or increased extracellular GSH levels, respectively. Our data indicate that ABCG2 is a novel GSH transporter.

  15. Constitutive mRNA expression and protein activity levels of nine ABC efflux transporters in seven permanent cell lines derived from different tissues of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Fischer, Stephan; Loncar, Jovica; Zaja, Roko; Schnell, Sabine; Schirmer, Kristin; Smital, Tvrtko; Luckenbach, Till

    2011-01-25

    Permanent fish cell lines have become common model systems for determining ecotoxicological effects of pollutants. For these cell lines little is known on the cellular active transport mechanisms that control the amount of a compound entering the cell, such as the MXR (multixenobiotic resistance) system mediated by ATP binding cassette (ABC) transport proteins. Therefore, for toxic evaluation of chemicals with those cells information on MXR is important. We here present data on constitutive mRNA expression and protein activity levels of a series of ABC efflux transporters in seven permanent cell lines derived from liver (RTL-W1; R1) and liver hepatoma (RTH-149), gill (RTgill-W1), gonad (RTG-2), gut (RTgutGC) and brain (RTbrain) of rainbow trout (Oncorhynchus mykiss). In addition to known transporters abcb1 (designated here abcb1a), abcb11, abcc1-3, abcc5 and abcg2, we quantified expression levels of a newly identified abcb1 isoform (abcb1b) and abcc4, previously unknown in trout. Quantitative real time PCR (qPCR) indicated that mRNA of the examined ABC transporters was constitutively expressed in all cell lines. Transporter mRNA expression patterns were similar in all cell lines, with expression levels of abcc transporters being 80 to over 1000 fold higher than for abcg2, abcb1a/b and abcb11 (abcc1-5>abcg2>abcb1a/b, 11). Transporter activity in the cell lines was determined by measuring uptake of transporter type specific fluorescent substrates in the presence of activity inhibitors. The combination of the ABCB1 and ABCC transporter substrate calcein-AM with inhibitors cyclosporine A, PSC833 and MK571 resulted in a concentration-dependent fluorescence increase of up to 3-fold, whereas reversin 205 caused a slight, but not concentration-dependent fluorescence increase. Accumulation of the dyes Hoechst 33342 and 2',7'-dichlorodihydrofluorescein diacetate was basically unchanged in the presence of Ko134 and taurocholate, respectively, indicating low Abcg2 and Abcb11

  16. Insights into the ion-coupling mechanism in the MATE transporter NorM-VC

    NASA Astrophysics Data System (ADS)

    Krah, Alexander; Zachariae, Ulrich

    2017-08-01

    Bacteria have developed a variety of different mechanisms to defend themselves from compounds that are toxic to them, such as antibiotics. One of these defence mechanisms is the expulsion of drugs or other noxious compounds by multidrug efflux pumps. Multidrug and toxic compound extrusion (MATE) transporters are efflux pumps that extrude metabolic waste and a variety of antibiotics out of the cell, using an ion gradient as energy source. They function via an alternating-access mechanism. When ions bind in the outward facing conformation, a large conformational change to the inward facing conformation is induced, from which the ion is released and the extruded chemical compound is bound. NorM proteins, which are usually coupled to a Na+ gradient, are members of the MATE family. However, for NorM-VC from Vibrio cholerae, it has been shown that this MATE transporter is additionally coupled to protons. How H+ and Na+ binding are coupled mechanistically to enable drug antiport is not well understood. In this study, we use molecular dynamics simulations to illuminate the sequence of ion binding events that enable efflux. Understanding this antiport mechanism is important to support the development of novel compounds that specifically inhibit the functional cycle of NorM transporters.

  17. Analysis of a vesicular glutamate transporter (VGLUT2) supports a cell-leakage mode in addition to vesicular packaging.

    PubMed

    Mackenzie, Bryan; Illing, Anthony C; Morris, Marie E K; Varoqui, Hélène; Erickson, Jeffrey D

    2008-02-01

    VGLUT2 is one of three vesicular glutamate transporters that play crucial roles in glutamatergic excitatory neurotransmission. We explored the functional properties of the rat VGLUT2 by heterologous expression of VGLUT2 in Xenopus oocytes. Immunocytochemical analysis indicated that most VGLUT2 protein was expressed in intracellular compartments but that some expression occurred also on the plasma membrane. Functional analysis revealed VGLUT2 to be active in two independent modes, namely, uptake into intracellular organelles and efflux at the plasma membrane. VGLUT-specific transport was identified based on the strong preference for glutamate over aspartate--in contrast to plasma-membrane or mitochondrial glutamate transporters--and sensitivity to known VGLUT blockers. VGLUT2 expression in oocytes (1) stimulated the influx of L-[(3)H]glutamate, but not D-[(3)H]aspartate, into digitonin-permeabilized oocytes and (2) stimulated efflux of L-glutamate, but not L-aspartate, from intact oocytes preinjected with (3)H-labeled amino acids. In the latter assay, cellular efflux of glutamate (which was blocked by rose bengal and trypan blue) may be analogous to vesicular packaging of glutamate. Our data are consistent with VGLUT2-mediated H(+)/L-glutamate antiport, but not antiport with chloride. Expression of mammalian VGLUT1 and VGLUT3 also stimulated L-[(3)H]glutamate efflux from Xenopus oocytes, suggesting that this phenomenon is a general feature of vesicular glutamate transporters. Our findings support the idea that vesicular glutamate transporters, when transiently expressed on the neuronal plasma membrane, may mediate Ca(2+)-independent glutamate leakage in addition to their traditional role of packaging glutamate into synaptic vesicles for Ca(2+)-dependent exocytosis.

  18. Decreased cholesterol efflux capacity and atherogenic lipid profile in young women with PCOS.

    PubMed

    Roe, Andrea; Hillman, Jennifer; Butts, Samantha; Smith, Mathew; Rader, Daniel; Playford, Martin; Mehta, Nehal N; Dokras, Anuja

    2014-05-01

    Women with polycystic ovary syndrome (PCOS) have a high prevalence of cardiovascular disease (CVD) risk factors including dyslipidemia. Lipoproteins are heterogeneous, and measurement of serum lipids provides only the size of the pool and does not predict their function or composition. Recently, high-density lipoprotein cholesterol (HDL-C) function, as determined by cholesterol efflux capacity from macrophages, has been shown to be an independent predictor of subclinical CVD. The aim of the study was to comprehensively evaluate lipoprotein profile including lipid particle size and number and cholesterol efflux capacity in PCOS to better define CVD risk. A case control study was performed at an academic PCOS center. Women with PCOS (n = 124) and geographically matched controls (n = 67) were included in the study. The primary outcome was to measure HDL-C efflux capacity by an ex vivo system involving the incubation of macrophages with apolipoprotein (Apo) B-depleted serum from subjects, and the secondary outcome was to measure lipid particle size and number using nuclear magnetic resonance spectroscopy. Women with PCOS had significantly higher body mass index and blood pressure but similar HDL-C and low-density lipoprotein cholesterol levels compared to controls. The mean ApoA1 levels were lower, and the ApoB/ApoA1 ratio was higher in PCOS subjects compared to controls (P < .01). There were no differences in ApoB levels. Women with PCOS had an 7% decrease in normalized cholesterol efflux capacity compared to controls (P < .003). Cholesterol efflux capacity in PCOS correlated with body mass index, ApoA1, HDL-C, and the presence of metabolic syndrome. In a multivariable regression model, PCOS was significantly associated with diminished cholesterol efflux. PCOS was also associated with an atherogenic profile including an increase in large very low-density lipoprotein particles, very low-density lipoprotein (VLDL) size, and small low-density lipoprotein cholesterol

  19. Decreased Cholesterol Efflux Capacity and Atherogenic Lipid Profile in Young Women With PCOS

    PubMed Central

    Roe, Andrea; Hillman, Jennifer; Butts, Samantha; Smith, Mathew; Rader, Daniel; Playford, Martin; Mehta, Nehal N.

    2014-01-01

    Context: Women with polycystic ovary syndrome (PCOS) have a high prevalence of cardiovascular disease (CVD) risk factors including dyslipidemia. Lipoproteins are heterogeneous, and measurement of serum lipids provides only the size of the pool and does not predict their function or composition. Recently, high-density lipoprotein cholesterol (HDL-C) function, as determined by cholesterol efflux capacity from macrophages, has been shown to be an independent predictor of subclinical CVD. Objective: The aim of the study was to comprehensively evaluate lipoprotein profile including lipid particle size and number and cholesterol efflux capacity in PCOS to better define CVD risk. Design and Setting: A case control study was performed at an academic PCOS center. Patients: Women with PCOS (n = 124) and geographically matched controls (n = 67) were included in the study. Main Outcome Measures: The primary outcome was to measure HDL-C efflux capacity by an ex vivo system involving the incubation of macrophages with apolipoprotein (Apo) B-depleted serum from subjects, and the secondary outcome was to measure lipid particle size and number using nuclear magnetic resonance spectroscopy. Results: Women with PCOS had significantly higher body mass index and blood pressure but similar HDL-C and low-density lipoprotein cholesterol levels compared to controls. The mean ApoA1 levels were lower, and the ApoB/ApoA1 ratio was higher in PCOS subjects compared to controls (P < .01). There were no differences in ApoB levels. Women with PCOS had an 7% decrease in normalized cholesterol efflux capacity compared to controls (P < .003). Cholesterol efflux capacity in PCOS correlated with body mass index, ApoA1, HDL-C, and the presence of metabolic syndrome. In a multivariable regression model, PCOS was significantly associated with diminished cholesterol efflux. PCOS was also associated with an atherogenic profile including an increase in large very low-density lipoprotein particles, very low

  20. [The participation of the transport-barrier functions of the plasma membrane in the development of fluoroquinolone (ciprofloxacin) resistance in Acholeplasma laidlawii].

    PubMed

    Abramycheva, N Iu; Govorun, V M

    2000-01-01

    The role of transport activity of Acholeplasma laidlawii plasmatic membrane in the development of resistance to ciprofloxacin was investigated. It was shown that ethidium bromide used as fluoroquinolone analogue in plasmatic membrane efflux pump was accumulated in ciprofloxacin-resistant cells in much less amount. It was estimated that ethidium bromide efflux depended on temperature, glucose and transmembrane electro-chemical proton potential. Inhibitors of efflux systems--reserpine and verapamil enhanced the ethidium bromide accumulation much more intensively in ciprofloxacin resistant cells. The results of investigation allowed to consider the existence of active efflux system for toxic agents in acholeplasma; in the case of ciprofloxacin-resistant strain these systems are inducible.

  1. Stem compression reversibly reduces phloem transport in Pinus sylvestris trees.

    PubMed

    Henriksson, Nils; Tarvainen, Lasse; Lim, Hyungwoo; Tor-Ngern, Pantana; Palmroth, Sari; Oren, Ram; Marshall, John; Näsholm, Torgny

    2015-10-01

    Manipulating tree belowground carbon (C) transport enables investigation of the ecological and physiological roles of tree roots and their associated mycorrhizal fungi, as well as a range of other soil organisms and processes. Girdling remains the most reliable method for manipulating this flux and it has been used in numerous studies. However, girdling is destructive and irreversible. Belowground C transport is mediated by phloem tissue, pressurized through the high osmotic potential resulting from its high content of soluble sugars. We speculated that phloem transport may be reversibly blocked through the application of an external pressure on tree stems. Thus, we here introduce a technique based on compression of the phloem, which interrupts belowground flow of assimilates, but allows trees to recover when the external pressure is removed. Metal clamps were wrapped around the stems and tightened to achieve a pressure theoretically sufficient to collapse the phloem tissue, thereby aiming to block transport. The compression's performance was tested in two field experiments: a (13)C canopy labelling study conducted on small Scots pine (Pinus sylvestris L.) trees [2-3 m tall, 3-7 cm diameter at breast height (DBH)] and a larger study involving mature pines (∼15 m tall, 15-25 cm DBH) where stem respiration, phloem and root carbohydrate contents, and soil CO2 efflux were measured. The compression's effectiveness was demonstrated by the successful blockage of (13)C transport. Stem compression doubled stem respiration above treatment, reduced soil CO2 efflux by 34% and reduced phloem sucrose content by 50% compared with control trees. Stem respiration and soil CO2 efflux returned to normal within 3 weeks after pressure release, and (13)C labelling revealed recovery of phloem function the following year. Thus, we show that belowground phloem C transport can be reduced by compression, and we also demonstrate that trees recover after treatment, resuming C

  2. Permeability, transport, and metabolism of solutes in Caco-2 cell monolayers: a theoretical study.

    PubMed

    Sun, Huadong; Pang, K Sandy

    2008-01-01

    We explored the properties of a catenary model that includes the basolateral (B), apical (A), and cellular compartments via simulations under linear and nonlinear conditions to understand the asymmetric observations arising from transporters, enzymes, and permeability in Caco-2 cells. The efflux ratio (EfR; P(app,B-->A)/P(app,A-->B)), obtained from the effective permeability from the A-->B and B-->A direction under linear conditions, was unity for passively permeable drugs whose transport does not involve transporters; the value was unaffected by cellular binding or metabolism, but increased with apical efflux. Metabolism was asymmetric, showing lesser metabolite accrual for the B-->A than A-->B direction because of inherent differences in the volumes for A and B. Moreover, the net flux (total - passive permeation) due to saturable apical efflux, absorption, or metabolism showed nonconformity to simple Michaelis-Menten kinetics against C(D,0), the loading donor concentration. EfR values differed with saturable apical efflux and metabolism (>1), as well as apical absorption (EfRs <1), but approached unity with high passive diffusive clearance (CL(d)) and increasing C(D,0) at a higher degree of saturation of the process. The J(max) (apparent V(max) estimated for the carrier system) and K(m)(') [or the K(m)('') based on a modified equation with the Hill coefficient (beta)] estimates from the Eadie-Hofstee plot revealed spurious correlations with the assigned V(max) and K(m). The sampling time, CL(d), and parameter space of K(m) and V(max) strongly influenced both the correlation and accuracy of estimates. Improved correlation was found for compounds with high CL(d). These observations showed that the catenary model is appropriate in the description of transport and metabolic data in Caco-2 cells.

  3. Small molecule membrane transporters in the mammalian podocyte: a pathogenic and therapeutic target.

    PubMed

    Zennaro, Cristina; Artero, Mary; Di Maso, Vittorio; Carraro, Michele

    2014-11-18

    The intriguingly complex glomerular podocyte has been a recent object of intense study. Researchers have sought to understand its role in the pathogenesis of common proteinuric diseases such as minimal change disease and focal segmental glomerular sclerosis. In particular, considerable effort has been directed towards the anatomic and functional barrier to macromolecular filtration provided by the secondary foot processes, but little attention has been paid to the potential of podocytes to handle plasma proteins beyond the specialization of the slit diaphragm. Renal membrane transporters in the proximal tubule have been extensively studied for decades, particularly in relation to drug metabolism and elimination. Recently, uptake and efflux transporters for small organic molecules have also been found in the glomerular podocyte, and we and others have found that these transporters can engage not only common pharmaceuticals but also injurious endogenous and exogenous agents. We have also found that the activity of podocyte transporters can be manipulated to inhibit pathogen uptake and efflux. It is conceivable that podocyte transporters may play a role in disease pathogenesis and may be a target for future drug development.

  4. Microbial Efflux Systems and Inhibitors: Approaches to Drug Discovery and the Challenge of Clinical Implementation

    PubMed Central

    Kourtesi, Christina; Ball, Anthony R; Huang, Ying-Ying; Jachak, Sanjay M; Vera, D Mariano A; Khondkar, Proma; Gibbons, Simon; Hamblin, Michael R; Tegos, George P

    2013-01-01

    Conventional antimicrobials are increasingly ineffective due to the emergence of multidrug-resistance among pathogenic microorganisms. The need to overcome these deficiencies has triggered exploration for novel and unconventional approaches to controlling microbial infections. Multidrug efflux systems (MES) have been a profound obstacle in the successful deployment of antimicrobials. The discovery of small molecule efflux system blockers has been an active and rapidly expanding research discipline. A major theme in this platform involves efflux pump inhibitors (EPIs) from natural sources. The discovery methodologies and the available number of natural EPI-chemotypes are increasing. Advances in our understanding of microbial physiology have shed light on a series of pathways and phenotypes where the role of efflux systems is pivotal. Complementing existing antimicrobial discovery platforms such as photodynamic therapy (PDT) with efflux inhibition is a subject under investigation. This core information is a stepping stone in the challenge of highlighting an effective drug development path for EPIs since the puzzle of clinical implementation remains unsolved. This review summarizes advances in the path of EPI discovery, discusses potential avenues of EPI implementation and development, and underlines the need for highly informative and comprehensive translational approaches. PMID:23569468

  5. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance.

    PubMed

    Joshi, Anand A; Vaidya, Soniya S; St-Pierre, Marie V; Mikheev, Andrei M; Desino, Kelly E; Nyandege, Abner N; Audus, Kenneth L; Unadkat, Jashvant D; Gerk, Phillip M

    2016-12-01

    The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy.

  6. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance

    PubMed Central

    Joshi, Anand A.; Vaidya, Soniya S.; St-Pierre, Marie V.; Mikheev, Andrei M.; Desino, Kelly E.; Nyandege, Abner N.; Audus, Kenneth L.; Unadkat, Jashvant D.; Gerk, Phillip M.

    2017-01-01

    The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy. PMID:27644937

  7. Effect of β-elemene on the kinetics of intracellular transport of d-luciferin potassium salt (ABC substrate) in doxorubicin-resistant breast cancer cells and the associated molecular mechanism.

    PubMed

    Tang, Chao-Yuan; Zhu, Li-Xin; Yu, Jian-Dong; Chen, Zhi; Gu, Man-Cang; Mu, Chao-Feng; Liu, Qi; Xiong, Yang

    2018-07-30

    In order to explore the mechanism of the reversing multidrug resistance (MDR) phenotypes by β-elemene (β-ELE) in doxorubicin (DOX)-resistant breast cancer cells (MCF-7/DOX), both the functionality and quantity of the ABC transporters in MCF-7/DOX were studied. Bioluminescence imaging (BLI) was used to study the efflux of d-luciferin potassium salt, the substrate of ATP-binding cassette transporters (ABC transporters), in MCF-7/DOX cells treated by β-ELE. At the same time three major ABC transport proteins and genes-related MDR, P-glycoprotein (P-gp, ABCB1) and multidrug resistance-associated protein 1 (MRP, ABCC1) as well as breast cancer resistance protein (BCRP, ABCG2) were analyzed by q-PCR and Western blot. To investigate the efflux functionality of ABC transporters, MCF-7/DOX Fluc cell line with stably-overexpressed luciferase was established. BLI was then used to real-time monitor the efflux kinetics of d-luciferin potassium salt before and after MCF-7/DOX Fluc cells being treated with β-ELE or not. The results showed that the efflux of d-luciferin potassium salt from MCF-7/DOX Fluc was lessened when pretreated with β-ELE, which means that β-ELE may dampen the functionality of ABC transporters, thus decrease the efflux of d-fluorescein potassium or other chemotherapies which also serve as the substrates of ABC transporters. As the effect of β-ELE on the expression of ABC transporters, the results of q-PCR and Western blot showed that gene and protein expression of ABC transporters such as P-gp, MRP, and BCRP were down-regulated after the treatment of β-ELE. To verify the efficacy of β-ELE on reversing MDR, MCF-7/DOX cells were treated with the combination of DOX and β-ELE. MTT assay showed that β-ELE increased the inhibitory effect of DOX on the proliferation of MCF-7/DOX, and the IC 50 of the combination group was much lower than that of the single DOX or β-ELE treatment. In all, β-ELE may reverse MDR through the substrates of ABC transporters

  8. Hypergravity differentially modulates cGMP efflux in human melanocytic cells stimulated by nitric oxide and natriuretic peptides

    NASA Astrophysics Data System (ADS)

    Ivanova, K.; Stieber, C.; Lambers, B.; Block, I.; Krieg, R.; Wellmann, A.; Gerzer, R.

    Nitric oxide NO plays a key role in many patho physiologic processes including inflammation and skin cancer The diverse cellular effects of NO are mainly mediated by activation of the soluble guanylyl cyclase sGC isoform that leads to increases in intracellular cGMP levels whereas the membrane-bound isoforms serve as receptors for natriuretic peptides e g ANP In human skin epidermal melanocytes represent the principal cells for skin pigmentation by synthesizing the pigment melanin Melanin acts as a scavenger for free radicals that may arise during metabolic stress as a result of potentially harmful effects of the environment In previous studies we found that long-term exposure to hypergravity stimulated cGMP efflux in normal human melanocytes NHMs and non-metastatic melanoma cells at least partly by an enhanced expression of the multidrug resistance proteins MRP and cGMP transporters MRP4 5 The present study investigated whether hypergravity generated by centrifugal acceleration may modulate the cGMP efflux in NO-stimulated NHMs and melanoma cells MCs with different metastatic potential The NONOates PAPA-NO and DETA-NO were used as direct NO donors for cell stimulation In the presence of 0 1 mM DETA-NO t 1 2 sim 20 h long-term application of hypergravity up to 5 g for 24 h reduced intracellular cGMP levels by stimulating cGMP efflux in NHMs and non-metastatic MCs in comparison to 1 g whereas exposure to 5 g for 6 h in the presence of 0 1 mM PAPA-NO t 1 2 sim 30 min was not effective The hypergravity-stimulated

  9. Comparative investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family among fungi

    USDA-ARS?s Scientific Manuscript database

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes well-characterized in several bacteria and higher eukaryotes. The role of NATs in fungal biology has only recently been investigated. The NAT1 gene of Gibberella moniliformis was the first NAT cloned and characterized from fun...

  10. Test of the mechanism of UV-induced K/sup +/ efflux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, T.M.; Huerta, A.J.

    1987-04-01

    UV radiation and certain plant pathogens stimulate a net efflux of K/sup +/ from cultured plant cells. Many aspects of the efflux are uncertain, including the counterion(s) involved. In the case of UV irradiation of rose cells, Murphy and Wilson suggest a coordinate loss of K/sup +/ and HCO/sub 3//sup -/; in contrast, Atkinson et al. suggest that treatment of tobacco cells with Erwinia pectate lyase introduces a counterflux of K/sup +/ and H/sup +/. In respiring cells, the cytoplasm and medium are buffered by respiratory CO/sub 2/, and it is difficult to distinguish between the two mechanisms. Still, themore » two models predict different influences of external pH on the rate of K/sup +/ flux. The authors have found that increasing pH from 4 to 8 by use of MES-TRIS buffer, pH state, or controlled external CO/sub 2/ concentration does not significantly decrease the rate of UV-induced K/sup +/ efflux. This evidence does not support the application of the K/sup +//H/sup +/ counterflux model to the case of the UV-irradiated rose cells.« less

  11. Transporters at CNS Barrier Sites: Obstacles or Opportunities for Drug Delivery?

    PubMed Central

    Sanchez-Covarrubias, Lucy; Slosky, Lauren M.; Thompson, Brandon J.; Davis, Thomas P.; Ronaldson, Patrick T.

    2014-01-01

    The blood-brain barrier (BBB) and blood-cerebrospinal fluid (BCSF) barriers are critical determinants of CNS homeostasis. Additionally, the BBB and BCSF barriers are formidable obstacles to effective CNS drug delivery. These brain barrier sites express putative influx and efflux transporters that precisely control permeation of circulating solutes including drugs. The study of transporters has enabled a shift away from “brute force” approaches to delivering drugs by physically circumventing brain barriers towards chemical approaches that can target specific compounds of the BBB and/or BCSF barrier. However, our understanding of transporters at the BBB and BCSF barriers has primarily focused on understanding efflux transporters that efficiently prevent drugs from attaining therapeutic concentrations in the CNS. Recently, through the characterization of multiple endogenously expressed uptake transporters, this paradigm has shifted to the study of brain transporter targets that can facilitate drug delivery (i.e., influx transporters). Additionally, signaling pathways and trafficking mechanisms have been identified for several endogenous BBB/BCSF transporters, thereby offering even more opportunities to understand how transporters can be exploited for optimization of CNS drug delivery. This review presents an overview of the BBB and BCSF barrier as well as the many families of transporters functionally expressed at these barrier sites. Furthermore, we present an overview of various strategies that have been designed and utilized to deliver therapeutic agents to the brain with a particular emphasis on those approaches that directly target endogenous BBB/BCSF barrier transporters. PMID:23789948

  12. Multidrug Resistance Protein 1 (MRP1, ABCC1), a “Multitasking” ATP-binding Cassette (ABC) Transporter*

    PubMed Central

    Cole, Susan P. C.

    2014-01-01

    The multidrug resistance protein 1 (MRP1) encoded by ABCC1 was originally discovered as a cause of multidrug resistance in tumor cells. However, it is now clear that MRP1 serves a broader role than simply mediating the ATP-dependent efflux of drugs from cells. The antioxidant GSH and the pro-inflammatory cysteinyl leukotriene C4 have been identified as key physiological organic anions effluxed by MRP1, and an ever growing body of evidence indicates that additional lipid-derived mediators are also substrates of this transporter. As such, MRP1 is a multitasking transporter that likely influences the etiology and progression of a host of human diseases. PMID:25281745

  13. Improvement of Transmembrane Transport Mechanism Study of Imperatorin on P-Glycoprotein-Mediated Drug Transport.

    PubMed

    Liao, Zheng-Gen; Tang, Tao; Guan, Xue-Jing; Dong, Wei; Zhang, Jing; Zhao, Guo-Wei; Yang, Ming; Liang, Xin-Li

    2016-11-24

    P-glycoprotein (P-gp) affects the transport of many drugs; including puerarin and vincristine. Our previous study demonstrated that imperatorin increased the intestinal absorption of puerarin and vincristine by inhibiting P-gp-mediated drug efflux. However; the underlying mechanism was not known. The present study investigated the mechanism by which imperatorin promotes P-gp-mediated drug transport. We used molecular docking to predict the binding force between imperatorin and P-gp and the effect of imperatorin on P-gp activity. P-gp efflux activity and P-gp ATPase activity were measured using a rhodamine 123 (Rh-123) accumulation assay and a Pgp-Glo™ assay; respectively. The fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to assess cellular membrane fluidity in MDCK-MDR1 cells. Western blotting was used to analyze the effect of imperatorin on P-gp expression; and P-gp mRNA levels were assessed by qRT-PCR. Molecular docking results demonstrated that the binding force between imperatorin and P-gp was much weaker than the force between P-gp and verapamil (a P-gp substrate). Imperatorin activated P-gp ATPase activity; which had a role in the inhibition of P-gp activity. Imperatorin promoted Rh-123 accumulation in MDCK-MDR1 cells and decreased cellular membrane fluidity. Western blotting demonstrated that imperatorin inhibited P-gp expression; and qRT-PCR revealed that imperatorin down-regulated P-gp (MDR1) gene expression. Imperatorin decreased P-gp-mediated drug efflux by inhibiting P-gp activity and the expression of P-gp mRNA and protein. Our results suggest that imperatorin could down-regulate P-gp expression to overcome multidrug resistance in tumors.

  14. Comparative genomic and phylogenetic investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family

    USDA-ARS?s Scientific Manuscript database

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes characterized in several bacteria and eukaryotic organisms. We report a comprehensive phylogenetic analysis employing an exhaustive dataset of NAT-homologous sequences recovered through inspection of 2445 genomes. We describe ...

  15. The Simplest Flowchart Stating the Mechanisms for Organic Xenobiotics-induced Toxicity: Can it Possibly be Accepted as a "Central Dogma" for Toxic Mechanisms?

    PubMed

    Park, Yeong-Chul; Lee, Sundong; Cho, Myung-Haing

    2014-09-01

    Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems.

  16. Studying Interactions of Drugs with Cell Membrane Nutrient Transporters: New Frontiers of Proteoliposome Nanotechnology.

    PubMed

    Scalise, Mariafrancesca; Galluccio, Michele; Pochini, Lorena; Console, Lara; Barile, Maria; Giangregorio, Nicola; Tonazzi, Annamaria; Indiveri, Cesare

    2017-01-01

    Transport systems are hydrophobic proteins localized in cell membranes where they mediate transmembrane flow of nutrients, ions and any other compounds essential for cell metabolism. More than 400 transporters of the SoLuteCarrier (SLC) group are present in human cells. Transporters take contacts also with xenobiotics, thus mediating absorption and/or interaction with these exogenous compounds. Since drugs belong to xenobiotics, transporters gained interest also in drug discovery. Transporters differentially expressed in pathological conditions are exploited as drug targets. Among the methodologies for defining drug interactions, in silico ligand screening and intact cell transport assay were the most diffused, so far. The first is a predictive methodology based on docking chemicals to transporters. It presents limitations due to the small number of human transporter 3D structures that have to be constructed by homology modeling. Intact cells are used for testing effects of drugs and for validating predictions. The challenges of handling this very complex experimental system, are the interferences caused by other transporters and/or intracellular enzymes. Thus, methodologies with lower complexity are welcome. One of the most updated is the proteoliposome nanotechnology consisting in a cell mimicking phospholipid membrane in which a purified transporter is inserted. In this system, drug-transporter interaction can be studied defining kinetics and mechanisms. Several data have been obtained by proteoliposome nanotechnology. An overview of data obtained on the organic cation transporters OCTN1, OCTN2 and on the amino acid transporters ASCT2 and B0AT1 will be presented. Standardized procedures, expected to be pointed out, will enlarge the assay to High Throughput Screenings. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Response to Bile Salts in Clinical Strains of Acinetobacter baumannii Lacking the AdeABC Efflux Pump: Virulence Associated with Quorum Sensing

    PubMed Central

    López, Maria; Blasco, Lucia; Gato, Eva; Perez, Astrid; Fernández-Garcia, Laura; Martínez-Martinez, Luis; Fernández-Cuenca, Felipe; Rodríguez-Baño, Jesús; Pascual, Alvaro; Bou, German; Tomás, Maria

    2017-01-01

    Introduction: Acinetobacter baumannii is an opportunistic nosocomial pathogen associated with multiple infections. This pathogen usually colonizes (first stage of microbial infection) host tissues that are in contact with the external environment. As one of the sites of entry in human hosts is the gastrointestinal tract, the pathogen must be capable of tolerating bile salts. However, studies analyzing the molecular characteristics involved in the response to bile salts in clinical strains of A. baumannii are scarce. Material and Methods: Microbiological and transcriptional studies (arrays and RT-PCR) in the response to bile salts were carried out in isogenic (A. baumanni ΔadeB ATCC 17978 and A. baumannii ΔadeL ATCC 17978) and clinical strains from clone ST79/PFGE-HUI-1 which is characterized by lacking the AdeABC efflux pump and by overexpression the AdeFGH efflux pump. Results and Discussion: In presence of bile salts, in addition to the glutamate/aspartate transporter were found overexpressed in A. baumannii ΔadeB ATCC 17978, the virulence factors (surface motility, biofilm, and Type VI Secretion System) which are associated with activation of the Quorum Sensing system. Overexpression of these factors was confirmed in clinical strains of clone ST79/PFGE-HUI-1. Conclusions: This the first study about the adaptive response to bile salts investigating the molecular and microbiological characteristics in response to bile salts of an isogenic model of A. baumannii ATCC 17978 and clinical isolates of A. baumannii (clinical strains of ST79/PFGE-HUI-1) lacking the main RND efflux pump (AdeABC). Clinical isolates of A. baumannii lacking the AdeABC efflux pump (clone ST79/PFGE-HUI-1) displayed a new clinical profile (increased invasiveness) possibly associated with the response to stress conditions (such as the presence of bile salts). PMID:28536672

  18. Structure/function relationships in serotonin transporter: new insights from the structure of a bacterial transporter.

    PubMed

    Rudnick, G

    2006-01-01

    Serotonin transporter (SERT) serves the important function of taking up serotonin (5-HT) released during serotonergic neurotransmission. It is the target for important therapeutic drugs and psychostimulants. SERT catalyzes the influx of 5-HT together with Na+ and Cl- in a 1:1:1 stoichiometry. In the same catalytic cycle, there is coupled efflux of one K+ ion. SERT is one member of a large family of amino acid and amine transporters that is believed to utilize similar mechanisms of transport. A bacterial member of this family was recently crystallized, revealing the structural basis of these transporters. In light of the new structure, previous results with SERT have been re-interpreted, providing new insight into the substrate binding site, the permeation pathway, and the conformational changes that occur during the transport cycle.

  19. Sensitive and Specific Fluorescent Probes for Functional Analysis of the Three Major Types of Mammalian ABC Transporters

    PubMed Central

    Lebedeva, Irina V.; Pande, Praveen; Patton, Wayne F.

    2011-01-01

    An underlying mechanism for multi drug resistance (MDR) is up-regulation of the transmembrane ATP-binding cassette (ABC) transporter proteins. ABC transporters also determine the general fate and effect of pharmaceutical agents in the body. The three major types of ABC transporters are MDR1 (P-gp, P-glycoprotein, ABCB1), MRP1/2 (ABCC1/2) and BCRP/MXR (ABCG2) proteins. Flow cytometry (FCM) allows determination of the functional expression levels of ABC transporters in live cells, but most dyes used as indicators (rhodamine 123, DiOC2(3), calcein-AM) have limited applicability as they do not detect all three major types of ABC transporters. Dyes with broad coverage (such as doxorubicin, daunorubicin and mitoxantrone) lack sensitivity due to overall dimness and thus may yield a significant percentage of false negative results. We describe two novel fluorescent probes that are substrates for all three common types of ABC transporters and can serve as indicators of MDR in flow cytometry assays using live cells. The probes exhibit fast internalization, favorable uptake/efflux kinetics and high sensitivity of MDR detection, as established by multidrug resistance activity factor (MAF) values and Kolmogorov-Smirnov statistical analysis. Used in combination with general or specific inhibitors of ABC transporters, both dyes readily identify functional efflux and are capable of detecting small levels of efflux as well as defining the type of multidrug resistance. The assay can be applied to the screening of putative modulators of ABC transporters, facilitating rapid, reproducible, specific and relatively simple functional detection of ABC transporter activity, and ready implementation on widely available instruments. PMID:21799851

  20. Monobromobimane occupies a distinct xenobiotic substrate site in glutathione S-transferase π

    PubMed Central

    Ralat, Luis A.; Colman, Roberta F.

    2003-01-01

    Monobromobimane (mBBr), functions as a substrate of porcine glutathione S-transferase π (GST π): The enzyme catalyzes the reaction of mBBr with glutathione. S-(Hydroxyethyl)bimane, a nonreactive analog of monobromobimane, acts as a competitive inhibitor with respect to mBBr as substrate but does not affect the reaction of GST π with another substrate, 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of glutathione, monobromobimane inactivates GST π at pH 7.0 and 25°C as assayed using mBBr as substrate, with a lesser effect on the enzyme’s use of CDNB as substrate. These results indicate that the sites occupied by CDNB and mBBr are not identical. Inactivation is proportional to the incorporation of 2 moles of bimane/mole of subunit. Modification of GST π with mBBr does not interfere with its binding of 8-anilino-1-naphthalene sulfonate, indicating that this hydrophobic site is not the target of monobromobimane. S-Methylglutathione and S-(hydroxyethyl)bimane each yield partial protection against inactivation and decrease reagent incorporation, while glutathionyl-bimane protects completely against inactivation. Peptide analysis after trypsin digestion indicates that mBBr modifies Cys45 and Cys99 equally. Modification of Cys45 is reduced in the presence of S-methylglutathione, indicating that this residue is at or near the glutathione binding region. In contrast, modification of Cys99 is reduced in the presence of S-(hydroxyethyl)bimane, suggesting that this residue is at or near the mBBr xenobiotic substrate binding site. Modification of Cys99 can best be understood by reaction with monobromobimane while it is bound to its xenobiotic substrate site in an alternate orientation. These results support the concept that glutathione S-transferase accomplishes its ability to react with a diversity of substrates in part by harboring distinct xenobiotic substrate sites. PMID:14573868