Sample records for xenobiotic-induced hepatocyte proliferation

  1. Role of YAP activation in nuclear receptor CAR-mediated proliferation of mouse hepatocytes.

    PubMed

    Abe, Taiki; Amaike, Yuto; Shizu, Ryota; Takahashi, Miki; Kano, Makoto; Hosaka, Takuomi; Sasaki, Takamitsu; Kodama, Susumu; Matsuzawa, Atsushi; Yoshinari, Kouichi

    2018-06-08

    Constitutive androstane receptor (CAR) is a xenobiotic-responsive nuclear receptor that is highly expressed in the liver. CAR activation induces hepatocyte proliferation and hepatocarcinogenesis in rodents, but the mechanisms remain unclear. In this study, we investigated the association of CAR-dependent cell proliferation with Yes-associated protein (YAP), which is a transcriptional cofactor controlling organ size and cell growth through the interaction with various transcriptional factors including TEAD. In mouse livers, TCPOBOP (a mouse CAR activator) treatment increased the nuclear YAP accumulation and mRNA levels of YAP target genes as well as cell-cycle related genes along with liver hypertrophy and verteporfin (an inhibitor of YAP/TEAD interaction) cotreatment tended to attenuate them. Furthermore, in cell-based reporter gene assays, CAR activation enhanced the YAP/TEAD-dependent transcription. To investigate the role of YAP/TEAD activation in the CAR-dependent hepatocyte proliferation, we sought to establish an in vitro system completely reproducing CAR-dependent cell proliferation. Since CAR was only slightly expressed in cultured mouse primary hepatocytes compared to mouse livers and no proliferation was observed after treatment with TCPOBOP, we overexpressed CAR using mouse CAR expressing adenovirus (Ad-mCAR-V5) in mouse primary hepatocytes. Ad-mCAR-V5 infection and TCPOBOP treatment induced hepatocyte proliferation. Similar results were obtained with immortalized normal mouse hepatocytes as well. In the established in vitro system, CAR-dependent proliferation was strongly inhibited by Yap knockdown and completely abolished by verteporfin treatment. Our present results obtained in in vivo and in vitro experiments suggest that YAP/TEAD activation plays key roles in CAR-dependent proliferation of murine hepatocytes.

  2. Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeom, Chul-gon; Kim, Dong-il; Park, Min-jung

    Previously, we reported that CARM1 undergoes ubiquitination-dependent degradation in renal podocytes. It was also reported that CARM1 is necessary for fasting-induced hepatic gluconeogenesis. Based on these reports, we hypothesized that treatment with insulin, a hormone typically present under the ‘fed’ condition, would inhibit gluconeogenesis via CARM1 degradation. HepG2 cells, AML-12 cells, and rat primary hepatocytes were treated with insulin to confirm CARM1 downregulation. Surprisingly, insulin treatment increased CARM1 expression in all cell types examined. Furthermore, treatment with insulin increased histone 3 methylation at arginine 17 and 26 in HepG2 cells. To elucidate the role of insulin-induced CARM1 upregulation, the HA-CARM1more » plasmid was transfected into HepG2 cells. CARM1 overexpression did not increase the expression of lipogenic proteins generally increased by insulin signaling. Moreover, CARM1 knockdown did not influence insulin sensitivity. Insulin is known to facilitate hepatic proliferation. Like insulin, CARM1 overexpression increased CDK2 and CDK4 expression. In addition, CARM1 knockdown reduced the number of insulin-induced G2/M phase cells. Moreover, GFP-CARM1 overexpression increased the number of G2/M phase cells. Based on these results, we concluded that insulin-induced CARM1 upregulation facilitates hepatocyte proliferation. These observations indicate that CARM1 plays an important role in liver pathophysiology. - Highlights: • Insulin treatment increases CARM1 expression in hepatocytes. • CARM1 overexpression does not increase the expression of lipogenic proteins. • CARM1 knockdown does not influence insulin sensitivity. • Insulin-induced CARM1 upregulation facilitates hepatocyte proliferation.« less

  3. Free Fatty Acids Shift Insulin-induced Hepatocyte Proliferation towards CD95-dependent Apoptosis*

    PubMed Central

    Sommerfeld, Annika; Reinehr, Roland; Häussinger, Dieter

    2015-01-01

    Insulin is known to induce hepatocyte swelling, which triggers via integrins and c-Src kinase an activation of the epidermal growth factor receptor (EGFR) and subsequent cell proliferation (1). Free fatty acids (FFAs) are known to induce lipoapoptosis in liver cells in a c-Jun-NH2-terminal kinase (JNK)-dependent, but death receptor-independent way (2). As non-alcoholic steatohepatitis (NASH) is associated with hyperinsulinemia and increased FFA-blood levels, the interplay between insulin and FFA was studied with regard to hepatocyte proliferation and apoptosis in isolated rat and mouse hepatocytes. Saturated long chain FFAs induced apoptosis and JNK activation in primary rat hepatocytes, but did not activate the CD95 (Fas, APO-1) system, whereas insulin triggered EGFR activation and hepatocyte proliferation. Coadministration of insulin and FFAs, however, abolished hepatocyte proliferation and triggered CD95-dependent apoptosis due to a JNK-dependent association of the activated EGFR with CD95, subsequent CD95 tyrosine phosphorylation and formation of the death-inducing signaling complex (DISC). JNK inhibition restored the proliferative insulin effect in presence of FFAs and prevented EGFR/CD95 association, CD95 tyrosine phosphorylation and DISC formation. Likewise, in presence of FFAs insulin increased apoptosis in hepatocytes from wild type but not from Alb-Cre-FASfl/fl mice, which lack functional CD95. It is concluded that FFAs can shift insulin-induced hepatocyte proliferation toward hepatocyte apoptosis by triggering a JNK signal, which allows activated EGFR to associate with CD95 and to trigger CD95-dependent apoptosis. Such phenomena may contribute to the pathogenesis of NASH. PMID:25548285

  4. Role of CYP2B in Phenobarbital-Induced Hepatocyte Proliferation in Mice.

    PubMed

    Li, Lei; Bao, Xiaochen; Zhang, Qing-Yu; Negishi, Masahiko; Ding, Xinxin

    2017-08-01

    Phenobarbital (PB) promotes liver tumorigenesis in rodents, in part through activation of the constitutive androstane receptor (CAR) and the consequent changes in hepatic gene expression and increases in hepatocyte proliferation. A typical effect of CAR activation by PB is a marked induction of Cyp2b10 expression in the liver; the latter has been suspected to be vital for PB-induced hepatocellular proliferation. This hypothesis was tested here by using a Cyp2a(4/5)bgs -null (null) mouse model in which all Cyp2b genes are deleted. Adult male and female wild-type (WT) and null mice were treated intraperitoneally with PB at 50 mg/kg once daily for 5 successive days and tested on day 6. The liver-to-body weight ratio, an indicator of liver hypertrophy, was increased by 47% in male WT mice, but by only 22% in male Cyp2a(4/5)bgs -null mice, by the PB treatment. The fractions of bromodeoxyuridine-positive hepatocyte nuclei, assessed as a measure of the rate of hepatocyte proliferation, were also significantly lower in PB-treated male null mice compared with PB-treated male WT mice. However, whereas few proliferating hepatocytes were detected in saline-treated mice, many proliferating hepatocytes were still detected in PB-treated male null mice. In contrast, female WT mice were much less sensitive than male WT mice to PB-induced hepatocyte proliferation, and PB-treated female WT and PB-treated female null mice did not show significant difference in rates of hepatocyte proliferation. These results indicate that CYP2B induction plays a significant, but partial, role in PB-induced hepatocyte proliferation in male mice. U.S. Government work not protected by U.S. copyright.

  5. Hepatocyte-specific deletion of hepatocyte nuclear factor-4α in adult mice results in increased hepatocyte proliferation.

    PubMed

    Walesky, Chad; Gunewardena, Sumedha; Terwilliger, Ernest F; Edwards, Genea; Borude, Prachi; Apte, Udayan

    2013-01-01

    Hepatocyte nuclear factor-4α (HNF4α) is known as the master regulator of hepatocyte differentiation. Recent studies indicate that HNF4α may inhibit hepatocyte proliferation via mechanisms that have yet to be identified. Using a HNF4α knockdown mouse model based on delivery of inducible Cre recombinase via an adeno-associated virus 8 viral vector, we investigated the role of HNF4α in the regulation of hepatocyte proliferation. Hepatocyte-specific deletion of HNF4α resulted in increased hepatocyte proliferation. Global gene expression analysis showed that a majority of the downregulated genes were previously known HNF4α target genes involved in hepatic differentiation. Interestingly, ≥500 upregulated genes were associated with cell proliferation and cancer. Furthermore, we identified potential negative target genes of HNF4α, many of which are involved in the stimulation of proliferation. Using chromatin immunoprecipitation analysis, we confirmed binding of HNF4α at three of these genes. Furthermore, overexpression of HNF4α in mouse hepatocellular carcinoma cells resulted in a decrease in promitogenic gene expression and cell cycle arrest. Taken together, these data indicate that, apart from its role in hepatocyte differentiation, HNF4α actively inhibits hepatocyte proliferation by repression of specific promitogenic genes.

  6. Hepatocyte-specific PPARA expression exclusively promotes agonist-induced cell proliferation without influence from nonparenchymal cells

    PubMed Central

    Brocker, Chad N.; Yue, Jiang; Kim, Donghwan; Qu, Aijuan; Bonzo, Jessica A.

    2017-01-01

    Peroxisome proliferator-activated receptor-α (PPARA) is a nuclear transcription factor and key mediator of systemic lipid metabolism. Prolonged activation in rodents causes hepatocyte proliferation and hepatocellular carcinoma. Little is known about the contribution of nonparenchymal cells (NPCs) to PPARA-mediated cell proliferation. NPC contribution to PPARA agonist-induced hepatomegaly was assessed in hepatocyte (Ppara△Hep)- and macrophage (Ppara△Mac)-specific Ppara null mice. Mice were treated with the agonist Wy-14643 for 14 days, and response of conditional null mice was compared with conventional knockout mice (Ppara−/−). Wy-14643 treatment caused weight loss and severe hepatomegaly in wild-type and Ppara△Mac mice, and histological analysis revealed characteristic hepatocyte swelling; Ppara△Hep and Ppara−/− mice were protected from these effects. Ppara△Mac serum chemistries, as well as aspartate aminotransferase and alanine aminotransferase levels, matched wild-type mice. Agonist-treated Ppara△Hep mice had elevated serum cholesterol, phospholipids, and triglycerides when compared with Ppara−/− mice, indicating a possible role for extrahepatic PPARA in regulating circulating lipid levels. BrdU labeling confirmed increased cell proliferation only in wild-type and Ppara△Mac mice. Macrophage PPARA disruption did not impact agonist-induced upregulation of lipid metabolism, cell proliferation, or DNA damage and repair-related gene expression, whereas gene expression was repressed in Ppara△Hep mice. Interestingly, downregulation of inflammatory cytokines IL-15 and IL-18 was dependent on macrophage PPARA. Cell type-specific regulation of target genes was confirmed in primary hepatocytes and Kupffer cells. These studies conclusively show that cell proliferation is mediated exclusively by PPARA activation in hepatocytes and that Kupffer cell PPARA has an important role in mediating the anti-inflammatory effects of PPARA agonists. PMID

  7. Identification of transcriptional networks involved in peroxisome proliferator chemical-induced hepatocyte proliferation

    EPA Science Inventory

    Peroxisome proliferator chemical (PPC) exposure leads to increases in rodent liver tumors through a non-genotoxic mode of action (MOA). The PPC MOA includes increased oxidative stress, hepatocyte proliferation and decreased apoptosis. We investigated the putative genetic regulato...

  8. Upregulation of CYP 450s expression of immortalized hepatocyte-like cells derived from mesenchymal stem cells by enzyme inducers

    PubMed Central

    2011-01-01

    Background The strenuous procurement of cultured human hepatocytes and their short lives have constrained the cell culture model of cytochrome P450 (CYP450) induction, xenobiotic biotransformation, and hepatotoxicity. The development of continuous non-tumorous cell line steadily containing hepatocyte phenotypes would substitute the primary hepatocytes for these studies. Results The hepatocyte-like cells have been developed from hTERT plus Bmi-1-immortalized human mesenchymal stem cells to substitute the primary hepatocytes. The hepatocyte-like cells had polygonal morphology and steadily produced albumin, glycogen, urea and UGT1A1 beyond 6 months while maintaining proliferative capacity. Although these hepatocyte-like cells had low basal expression of CYP450 isotypes, their expressions could be extensively up regulated to 80 folds upon the exposure to enzyme inducers. Their inducibility outperformed the classical HepG2 cells. Conclusion The hepatocyte-like cells contained the markers of hepatocytes including CYP450 isotypes. The high inducibility of CYP450 transcripts could serve as a sensitive model for profiling xenobiotic-induced expression of CYP450. PMID:21961524

  9. Genetic abolishment of hepatocyte proliferation activates hepatic stem cells.

    PubMed

    Endo, Yoko; Zhang, Mingjun; Yamaji, Sachie; Cang, Yong

    2012-01-01

    Quiescent hepatic stem cells (HSCs) can be activated when hepatocyte proliferation is compromised. Chemical injury rodent models have been widely used to study the localization, biomarkers, and signaling pathways in HSCs, but these models usually exhibit severe promiscuous toxicity and fail to distinguish damaged and non-damaged cells. Our goal is to establish new animal models to overcome these limitations, thereby providing new insights into HSC biology and application. We generated mutant mice with constitutive or inducible deletion of Damaged DNA Binding protein 1 (DDB1), an E3 ubiquitin ligase, in hepatocytes. We characterized the molecular mechanism underlying the compensatory activation and the properties of oval cells (OCs) by methods of mouse genetics, immuno-staining, cell transplantation and gene expression profiling. We show that deletion of DDB1 abolishes self-renewal capacity of mouse hepatocytes in vivo, leading to compensatory activation and proliferation of DDB1-expressing OCs. Partially restoring proliferation of DDB1-deficient hepatocytes by ablation of p21, a substrate of DDB1 E3 ligase, alleviates OC proliferation. Purified OCs express both hepatocyte and cholangiocyte markers, form colonies in vitro, and differentiate to hepatocytes after transplantation. Importantly, the DDB1 mutant mice exhibit very minor liver damage, compared to a chemical injury model. Microarray analysis reveals several previously unrecognized markers, including Reelin, enriched in oval cells. Here we report a genetic model in which irreversible inhibition of hepatocyte duplication results in HSC-driven liver regeneration. The DDB1 mutant mice can be broadly applied to studies of HSC differentiation, HSC niche and HSCs as origin of liver cancer.

  10. Cytochrome P450 peroxidase/peroxygenase mediated xenobiotic metabolic activation and cytotoxicity in isolated hepatocytes.

    PubMed

    Anari, M R; Khan, S; Liu, Z C; O'Brien, P J

    1995-12-01

    Cytochrome P450 (P450) can utilize organic hydroperoxides and peracids to support hydroxylation and dealkylation of various P450 substrates. However, the biological significance of this P450 peroxygenase/peroxidase activity in the bioactivation of xenobiotics in intact cells has not been demonstrated. We have shown that tert-butyl hydroperoxide (tBHP) markedly enhances 3-20-fold the cytotoxicity of various aromatic hydrocarbons and their phenolic metabolites. The tBHP-enhanced hepatocyte cytotoxicity of 4-nitroanisole (4-NA) and 4-hydroxyanisole (4-HA) was also accompanied by an increase in the hepatocyte O-demethylation of 4-NA and 4-HA up to 7.5- and 21-fold, respectively. Hepatocyte GSH conjugation by 4-HA was also markedly increased by tBHP. An LC/MS analysis of the GSH conjugates identified hydroquinone-GSH and 4-methoxy-catechol:GSH conjugates as the predominant adducts. Pretreatment of hepatocytes with P450 inhibitors, e.g., phenylimidazole, prevented tBHP-enhanced 4-HA metabolism, GSH depletion, and cytotoxicity. In conclusion, hydroperoxides can therefore be used by intact cells to support the bioactivation of xenobiotics through the P450 peroxidase/peroxygenase system.

  11. [Proliferation of hepatocytes after delivery of exogenous hepatocyte growth factor gene].

    PubMed

    Lin, Yong; Xie, Wei fen; Chen, Wei-zhong; Zhang, Xin; Zeng, Xin; Chen, Yue-xiang; Yang, Xiu-jiang; Zhang, Zhong-bing

    2003-06-01

    To explore the proliferation of primary cultured rats hepatocytes after delivery of exogenous hepatocyte growth factor (HGF) gene which was inserted into the genome of replication-deficient recombinant adenovirus vector. The recombinant adenovirus-AdHGF which could express HGF was generated by homologous recombination. After the HGF gene was delivered into the hepatocytes, the expression of both HGF and c-met/HGF receptor mRNA in the cells was detected by RT-PCR and the level of HGF in the culture supernatant was also assayed by ELISA. On the other hand, cell proliferation was compared between before and after delivery of the HGF gene by MTS assay and the percentages of cell cycles were analyzed by flow cytometry. In addition, the expression of proliferating cell nuclear antigen (PCNA) was determined by immunocytofluorescent stain. 4 x 10(10) efu/ml titer of AdHGF was obtained after recombination, RT-PCR indicated that the expression of HGF mRNA in hepatocytes increased on the third day after infected by the viruses and c-met/HGF receptor mRNA was also up-regulated. The HGF level in the culture supernatant assayed by ELISA was (5,939.0+/-414.39) pg/ml, which was much higher than that in the control (208.1pg/ml+/-37.20pg/ml, F=13.661, P<0.01). In addition, the proliferation of hepatocytes infected with AdHGF increased significantly according to MTS method (F>or=15.158, P<0.01) and more hepatocytes in G0/G1 stages changed into S stage (chi2=41.616, P<0.01), accordingly, PCNA index increased from 6.42+/- 1.88 to 14.56+/-2.85 (F=42.122, P<0.01). show that HGF gene delivered into hepatocytes by AdHGF can be expressed with high efficiency in the cells, which can stimulate hepatocytes proliferation. It may be an effective tool for hepatocyte transplantation by gene modified donor hepatocytes.

  12. Genetic Abolishment of Hepatocyte Proliferation Activates Hepatic Stem Cells

    PubMed Central

    Endo, Yoko; Zhang, Mingjun; Yamaji, Sachie; Cang, Yong

    2012-01-01

    Quiescent hepatic stem cells (HSCs) can be activated when hepatocyte proliferation is compromised. Chemical injury rodent models have been widely used to study the localization, biomarkers, and signaling pathways in HSCs, but these models usually exhibit severe promiscuous toxicity and fail to distinguish damaged and non-damaged cells. Our goal is to establish new animal models to overcome these limitations, thereby providing new insights into HSC biology and application. We generated mutant mice with constitutive or inducible deletion of Damaged DNA Binding protein 1 (DDB1), an E3 ubiquitin ligase, in hepatocytes. We characterized the molecular mechanism underlying the compensatory activation and the properties of oval cells (OCs) by methods of mouse genetics, immuno-staining, cell transplantation and gene expression profiling. We show that deletion of DDB1 abolishes self-renewal capacity of mouse hepatocytes in vivo, leading to compensatory activation and proliferation of DDB1-expressing OCs. Partially restoring proliferation of DDB1-deficient hepatocytes by ablation of p21, a substrate of DDB1 E3 ligase, alleviates OC proliferation. Purified OCs express both hepatocyte and cholangiocyte markers, form colonies in vitro, and differentiate to hepatocytes after transplantation. Importantly, the DDB1 mutant mice exhibit very minor liver damage, compared to a chemical injury model. Microarray analysis reveals several previously unrecognized markers, including Reelin, enriched in oval cells. Here we report a genetic model in which irreversible inhibition of hepatocyte duplication results in HSC-driven liver regeneration. The DDB1 mutant mice can be broadly applied to studies of HSC differentiation, HSC niche and HSCs as origin of liver cancer. PMID:22384083

  13. IL-6 modulates hepatocyte proliferation via induction of HGF/p21{sup cip1}: Regulation by SOCS3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Rui; Jaruga, Barbara; Kulkarni, Shailin

    2005-12-30

    The precise role of IL-6 in liver regeneration and hepatocyte proliferation is controversial and the role of SOCS3 in liver regeneration remains unknown. Here we show that in vitro treatment with IL-6 inhibited primary mouse hepatocyte proliferation. IL-6 induced p21{sup cip1} protein expression in primary mouse hepatocytes. Disruption of the p21{sup cip1} gene abolished the inhibitory effect of IL-6 on cell proliferation. Co-culture with nonparenchymal liver cells diminished IL-6 inhibition of hepatocyte proliferation, which was likely due to IL-6 stimulation of nonparenchymal cells to produce HGF. Finally, IL-6 induced higher levels of p21{sup cip1} protein expression and a slightly strongermore » inhibition of cell proliferation in SOCS3{sup +/-} mouse hepatocytes compared to wild-type hepatocytes, while liver regeneration was enhanced and prolonged in SOCS3{sup +/-} mice. Our findings suggest that IL-6 directly inhibits hepatocyte proliferation via a p21{sup cip1}-dependent mechanism and indirectly enhances hepatocyte proliferation via stimulating nonparenchymal cells to produce HGF. SOCS3 negatively regulates liver regeneration.« less

  14. Reversal of hepatocyte senescence after continuous in vivo cell proliferation.

    PubMed

    Wang, Min-Jun; Chen, Fei; Li, Jian-Xiu; Liu, Chang-Cheng; Zhang, Hai-Bin; Xia, Yong; Yu, Bing; You, Pu; Xiang, Dao; Lu, Lian; Yao, Hao; Borjigin, Uyunbilig; Yang, Guang-Shun; Wangensteen, Kirk J; He, Zhi-Ying; Wang, Xin; Hu, Yi-Ping

    2014-07-01

    A better understanding of hepatocyte senescence could be used to treat age-dependent disease processes of the liver. Whether continuously proliferating hepatocytes could avoid or reverse senescence has not yet been fully elucidated. We confirmed that the livers of aged mice accumulated senescent and polyploid hepatocytes, which is associated with accumulation of DNA damage and activation of p53-p21 and p16(ink4a)-pRB pathways. Induction of multiple rounds continuous cell division is hard to apply in any animal model. Taking advantage of serial hepatocyte transplantation assays in the fumarylacetoacetate hydrolase-deficient (Fah(-/-)) mouse, we studied the senescence of hepatocytes that had undergone continuous cell proliferation over a long time period, up to 12 rounds of serial transplantations. We demonstrated that the continuously proliferating hepatocytes avoided senescence and always maintained a youthful state. The reactivation of telomerase in hepatocytes after serial transplantation correlated with reversal of senescence. Moreover, senescent hepatocytes harvested from aged mice became rejuvenated upon serial transplantation, with full restoration of proliferative capacity. The same findings were also true for human hepatocytes. After serial transplantation, the high initial proportion of octoploid hepatocytes decreased to match the low level of youthful liver. These findings suggest that the hepatocyte "ploidy conveyer" is regulated differently during aging and regeneration. The findings of reversal of hepatocyte senescence could enable future studies on liver aging and cell therapy. © 2014 by the American Association for the Study of Liver Diseases.

  15. MET inhibitor PHA-665752 suppresses the hepatocyte growth factor-induced cell proliferation and radioresistance in nasopharyngeal carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tongxin; Li, Qi; Sun, Quanquan

    2014-06-20

    Highlights: • We demonstrated that irradiation induced MET overexpression and activation. • The aberrant MET signal mediated by HGF induced proliferation and radioresistance of NPC cells. • MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. • PHA-665752 suppressed the three downstream pathway of HGF/MET signal in a dose-dependent manner. - Abstract: Although ionizing radiation (IR) has provided considerable improvements in nasopharyngeal carcinoma (NPC), in subsets of patients, radioresistance is still a major problem in the treatment. In this study, we demonstrated that irradiation induced MET overexpression and activation, and the aberrant MET signal mediatedmore » by hepatocyte growth factor (HGF) induced radioresistance. We also found that MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. Further investigation indicated that PHA-665752 suppressed the phosphorylation of the Akt, ERK1/2, and STAT3 proteins in a dose-dependent manner. Our data indicated that the combination of IR with a MET inhibitor, such as PHA-665752, might be a promising therapeutic strategy for NPC.« less

  16. MicroRNAs control hepatocyte proliferation during liver regeneration.

    PubMed

    Song, Guisheng; Sharma, Amar Deep; Roll, Garrett R; Ng, Raymond; Lee, Andrew Y; Blelloch, Robert H; Frandsen, Niels M; Willenbring, Holger

    2010-05-01

    MicroRNAs (miRNAs) constitute a new class of regulators of gene expression. Among other actions, miRNAs have been shown to control cell proliferation in development and cancer. However, whether miRNAs regulate hepatocyte proliferation during liver regeneration is unknown. We addressed this question by performing 2/3 partial hepatectomy (2/3 PH) on mice with hepatocyte-specific inactivation of DiGeorge syndrome critical region gene 8 (DGCR8), an essential component of the miRNA processing pathway. Hepatocytes of these mice were miRNA-deficient and exhibited a delay in cell cycle progression involving the G(1) to S phase transition. Examination of livers of wildtype mice after 2/3 PH revealed differential expression of a subset of miRNAs, notably an induction of miR-21 and repression of miR-378. We further discovered that miR-21 directly inhibits Btg2, a cell cycle inhibitor that prevents activation of forkhead box M1 (FoxM1), which is essential for DNA synthesis in hepatocytes after 2/3 PH. In addition, we found that miR-378 directly inhibits ornithine decarboxylase (Odc1), which is known to promote DNA synthesis in hepatocytes after 2/3 PH. Our results show that miRNAs are critical regulators of hepatocyte proliferation during liver regeneration. Because these miRNAs and target gene interactions are conserved, our findings may also be relevant to human liver regeneration.

  17. TWEAK induces liver progenitor cell proliferation

    PubMed Central

    Jakubowski, Aniela; Ambrose, Christine; Parr, Michael; Lincecum, John M.; Wang, Monica Z.; Zheng, Timothy S.; Browning, Beth; Michaelson, Jennifer S.; Baestcher, Manfred; Wang, Bruce; Bissell, D. Montgomery; Burkly, Linda C.

    2005-01-01

    Progenitor (“oval”) cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors. PMID:16110324

  18. Assessment of mitochondrial dysfunction-related, drug-induced hepatotoxicity in primary rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Cong; Sekine, Shuichi, E-mail: ssekine@facult

    Evidence that mitochondrial dysfunction plays a central role in drug-induced liver injury is rapidly accumulating. In contrast to physiological conditions, in which almost all adenosine triphosphate (ATP) in hepatocytes is generated in mitochondria via aerobic respiration, the high glucose content and limited oxygen supply of conventional culture systems force primary hepatocytes to generate most ATP via cytosolic glycolysis. Thus, such anaerobically poised cells are resistant to xenobiotics that impair mitochondrial function, and are not suitable to identify drugs with mitochondrial liabilities. In this study, primary rat hepatocytes were cultured in galactose-based medium, instead of the conventional glucose-based medium, and inmore » hyperoxia to improve the reliance of energy generation on aerobic respiration. Activation of mitochondria was verified by diminished cellular lactate release and increased oxygen consumption. These conditions improved sensitivity to the mitochondrial complex I inhibitor rotenone. Since oxidative stress is also a general cause of mitochondrial impairment, cells were exposed to test compounds in the presence of transferrin to increase the generation of reactive oxygen species via increased uptake of iron. Finally, 14 compounds with reported mitochondrial liabilities were tested to validate this new drug-induced mitochondrial toxicity assay. Overall, the culture of primary rat hepatocytes in galactose, hyperoxia and transferrin is a useful model for the identification of mitochondrial dysfunction-related drug-induced hepatotoxicity. - Highlights: • Drug-induced mitochondrial toxicity was evaluated using primary rat hepatocytes. • Galactose and hyperoxia could activate OXPHOS in primary rat hepatocytes. • Cells with enhanced OXPHOS exhibit improved sensitivity to mitochondrial toxins. • Transferrin potentiate mitochondrial toxicity via increased ROS production.« less

  19. Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by ToxCast Chemicals

    EPA Science Inventory

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  20. Hepatocyte growth factor induces proliferation and differentiation of multipotent and erythroid hemopoietic progenitors.

    PubMed

    Galimi, F; Bagnara, G P; Bonsi, L; Cottone, E; Follenzi, A; Simeone, A; Comoglio, P M

    1994-12-01

    Hepatocyte growth factor (HGF) is a mesenchymal derived growth factor known to induce proliferation and "scattering" of epithelial and endothelial cells. Its receptor is the tyrosine kinase encoded by the c-MET protooncogene. Here we show that highly purified recombinant HGF stimulates hemopoietic progenitors to form colonies in vitro. In the presence of erythropoietin, picomolar concentrations of HGF induced the formation of erythroid burst-forming unit colonies from CD34-positive cells purified from human bone marrow, peripheral blood, or umbilical cord blood. The growth stimulatory activity was restricted to the erythroid lineage. HGF also stimulated the formation of multipotent CFU-GEMM colonies. This effect is synergized by stem cell factor, the ligand of the tyrosine kinase receptor encoded by the c-KIT protooncogene, which is active on early hemopoietic progenitors. By flow cytometry analysis, the receptor for HGF was found to be expressed on the cell surface in a fraction of CD34+ progenitors. Moreover, in situ hybridization experiments showed that HGF receptor mRNA is highly expressed in embryonic erythroid cells (megaloblasts). HGF mRNA was also found to be produced in the embryonal liver. These data show that HGF plays a direct role in the control of proliferation and differentiation of erythroid progenitors, and they suggest that it may be one of the long-sought mediators of paracrine interactions between stromal and hemopoietic cells within the hemopoietic microenvironment.

  1. Hepatocyte-induced CD4+ T cell alloresponse is associated with major histocompatibility complex class II up-regulation on hepatocytes and suppressible by regulatory T cells.

    PubMed

    DeTemple, Daphne E; Oldhafer, Felix; Falk, Christine S; Chen-Wacker, Chen; Figueiredo, Constanca; Kleine, Moritz; Ramackers, Wolf; Timrott, Kai; Lehner, Frank; Klempnauer, Juergen; Bock, Michael; Vondran, Florian W R

    2018-03-01

    Hepatocyte transplantation is a promising therapeutic approach for various liver diseases. Despite the liver's tolerogenic potential, early immune-mediated loss of transplanted cells is observed, and longterm acceptance has not been achieved yet. Patients deemed tolerant after liver transplantation presented an increased frequency of regulatory T cells (Tregs), which therefore also might enable reduction of posttransplant cell loss and enhance longterm allograft acceptance. We hence characterized hepatocyte-induced immune reactions and evaluated the immunomodulatory potential of Tregs applying mixed lymphocyte cultures and mixed lymphocyte hepatocyte cultures. These were set up using peripheral blood mononuclear cells and primary human hepatocytes, respectively. Polyclonally expanded CD4 + CD25 high CD127 low Tregs were added to cocultures in single-/trans-well setups with/without supplementation of anti-interferon γ (IFNγ) antibodies. Hepatocyte-induced alloresponses were then analyzed by multicolor flow cytometry. Measurements indicated that T cell response upon stimulation was associated with IFNγ-induced major histocompatibility complex (MHC) class II up-regulation on hepatocytes and mediated by CD4 + T cells. An indirect route of antigen presentation could be ruled out by use of fragmented hepatocytes and culture supernatants of hepatocytes. Allospecific proliferation was accompanied by inflammatory cytokine secretion. CD8 + T cells showed early up-regulation of CD69 despite lack of cell proliferation in the course of coculture. Supplementation of Tregs effectively abrogated hepatocyte-induced alloresponses and was primarily cell contact dependent. In conclusion, human hepatocytes induce a CD4 + T cell alloresponse in vitro, which is associated with MHC class II up-regulation on hepatocytes and is susceptible to suppression by Tregs. Liver Transplantation 24 407-419 2018 AASLD. © 2018 The Authors. Liver Transplantation published by Wiley Periodicals, Inc

  2. Modulation of Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes by ToxCast Chemicals

    EPA Science Inventory

    ToxCast chemicals were assessed for induction or suppression of xenobiotic metabolizing enzyme and transporter gene expression using primary human hepatocytes. The mRNA levels of 14 target and 2 control genes were measured: ABCB1, ABCB11, ABCG2, SLCO1B1, CYP1A1, CYP1A2, CYP2B6, C...

  3. Xenobiotic effects on intestinal stem cell proliferation in adult honey bee (Apis mellifera L) workers.

    PubMed

    Forkpah, Cordelia; Dixon, Luke R; Fahrbach, Susan E; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species.

  4. Xenobiotic Effects on Intestinal Stem Cell Proliferation in Adult Honey Bee (Apis mellifera L) Workers

    PubMed Central

    Forkpah, Cordelia; Dixon, Luke R.; Fahrbach, Susan E.; Rueppell, Olav

    2014-01-01

    The causes of the current global decline in honey bee health are unknown. One major group of hypotheses invokes the pesticides and other xenobiotics to which this important pollinator species is often exposed. Most studies have focused on mortality or behavioral deficiencies in exposed honey bees while neglecting other biological functions and target organs. The midgut epithelium of honey bees presents an important interface between the insect and its environment. It is maintained by proliferation of intestinal stem cells throughout the adult life of honey bees. We used caged honey bees to test multiple xenobiotics for effects on the replicative activity of the intestinal stem cells under laboratory conditions. Most of the tested compounds did not alter the replicative activity of intestinal stem cells. However, colchicine, methoxyfenozide, tetracycline, and a combination of coumaphos and tau-fluvalinate significantly affected proliferation rate. All substances except methoxyfenozide decreased proliferation rate. Thus, the results indicate that some xenobiotics frequently used in apiculture and known to accumulate in honey bee hives may have hitherto unknown physiological effects. The nutritional status and the susceptibility to pathogens of honey bees could be compromised by the impacts of xenobiotics on the maintenance of the midgut epithelium. This study contributes to a growing body of evidence that more comprehensive testing of xenobiotics may be required before novel or existing compounds can be considered safe for honey bees and other non-target species. PMID:24608542

  5. TGFbeta Induces Binucleation/Polyploidization in Hepatocytes through a Src-Dependent Cytokinesis Failure.

    PubMed

    De Santis Puzzonia, Marco; Cozzolino, Angela Maria; Grassi, Germana; Bisceglia, Francesca; Strippoli, Raffaele; Guarguaglini, Giulia; Citarella, Franca; Sacchetti, Benedetto; Tripodi, Marco; Marchetti, Alessandra; Amicone, Laura

    2016-01-01

    In all mammals, the adult liver shows binucleated as well as mononucleated polyploid hepatocytes. The hepatic polyploidization starts after birth with an extensive hepatocyte binucleation and generates hepatocytes of several ploidy classes. While the functional significance of hepatocyte polyploidy is becoming clearer, how it is triggered and maintained needs to be clarified. Aim of this study was to identify a major inducer of hepatocyte binucleation/polyploidization and the cellular and molecular mechanisms involved. We found that, among several cytokines analyzed, known to be involved in early liver development and/or mass control, TGFbeta1 was capable to induce, together with the expected morphological changes, binucleation in hepatocytes in culture. Most importantly, the pharmacological inhibition of TGFbeta signaling in healthy mice during weaning, when the physiological binucleation occurs, induced a significant decrease of hepatocyte binucleation rate, without affecting cell proliferation and hepatic index. The TGFbeta-induced hepatocyte binucleation resulted from a cytokinesis failure, as assessed by video microscopy, and is associated with a delocalization of the cytokinesis regulator RhoA-GTPase from the mid-body of dividing cells. The use of specific chemical inhibitors demonstrated that the observed events are Src-dependent. Finally, the restoration of a fully epithelial phenotype by TGFbeta withdrawal gave rise to a cell progeny capable to maintain the polyploid state. In conclusion, we identified TGFbeta as a major inducer of hepatocyte binucleation both in vitro and in vivo, thus ascribing a novel role to this pleiotropic cytokine. The production of binucleated/tetraploid hepatocytes is due to a cytokinesis failure controlled by the molecular axis TGFbeta/Src/RhoA.

  6. MicroRNA-30e promotes hepatocyte proliferation and inhibits apoptosis in cecal ligation and puncture-induced sepsis through the JAK/STAT signaling pathway by binding to FOSL2.

    PubMed

    Ling, Lan; Zhang, Shan-Hong; Zhi, Li-Da; Li, Hong; Wen, Qian-Kuan; Li, Gang; Zhang, Wen-Jia

    2018-05-19

    Hepatocyte proliferation and apoptosis are critical cellular behaviors in rat liver as a result of a liver injury. Herein, we performed this study in order to evaluate the role of miR-30e and its target Fos-Related Antigen-2 (FOSL2) in septic rats through the JAK/STAT signaling pathway. Rat models of sepsis were induced by cecal ligation and puncture. Enzyme-linked immunosorbent assay (ELISA) was performed to access serum levels of lipopolysaccharide (LPS), inflammatory factors, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) to confirm the successful establishment of the model. The hepatocytes were subject to miR-30e mimics, miR-30e inhibitors or siRNA-FOSL2. The expressions of miR-30e, FOSL2, apoptosis- and, JAK/STAT signaling pathway-related genes in liver tissues and hepatocytes were determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. MTT assay and flow cytometry were performed to evaluate hepatocyte viability and apoptosis, respectively. The results obtained revealed that in the septic rats, serum levels of inflammatory factors, LPS, ALT and AST, as well as the expression of FOSL2 were elevated and the JAK/STAT signaling pathway was activated, while there was a reduction in the expression of miR-30e. An initial bioinformatics prediction followed by a confirmatory dual-luciferase reporter assay determined that miR-30e targeted and negatively regulated FOSL2 expression. MiR-30e inhibited the activation of JSK2/STAT3 signaling pathway by reducing FOSL2 expression, while miR-30e enhanced hepatocyte proliferation and decreased hepatocyte cell apoptosis in septic rats. These findings indicated that miR-30e may serve as an independent therapeutic target for sepsis, due to its ability to inhibit apoptosis and induce proliferation of hepatocytes by targeted inhibition of FOSL2 through the JAK/STAT signaling pathway. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. R-spondin3-LGR4 signaling protects hepatocytes against DMOG-induced hypoxia/reoxygenation injury through activating β-catenin.

    PubMed

    Liu, Shiying; Yin, Yue; Yu, Ruili; Li, Yin; Zhang, Weizhen

    2018-04-30

    Leucine-rich repeat G-protein-coupled receptor 4 (LGR4) and its ligands R-spondin1-4 (Rspos) have been vastly investigated in embryonic development. The biological functions of Rspos-LGR4 system in liver remains largely unknown. Here, we explored whether it protects hepatocytes against hypoxia/reoxygenation (H/R) induced damage. H/R injury was induced by dimethyloxalylglycine (DMOG) in AML12 cells and the effects of Rspo3 on cell proliferation and apoptosis were assessed. Specific shRNAs were used to interfere LGR4 or β-catenin. DMOG caused hepatocytes damage evidenced by increase in HIF-1α, cell death and apoptosis genes p27 and Bax, with concurrent decrease of cell proliferation genes PCNA and CyclinD1. Of all the Rspos, Rspo3 is predominantly expressed in AML12 hepatocytes. Importantly, Rspo3 demonstrated an alteration in a manner similar to proliferation-related genes during H/R injury. Rspo3 pretreatment rendered hepatocytes less vulnerable to DMOG induced H/R injury. Ablation of LGR4 using shRNA attenuated the protective effects of Rspo3. Wnt3a also protected AML12 cells from damages caused by H/R, showing enhanced proliferation activity. Notably, knockdown of β-catenin in hepatocytes completely abolished the effect of Rspo3 pretreatment on the expression levels of PCNA and CyclinD1. Rspo3-LGR4 axis protects hepatocytes from H/R injury via activating β-catenin. Copyright © 2018. Published by Elsevier Inc.

  8. TGFbeta Induces Binucleation/Polyploidization in Hepatocytes through a Src-Dependent Cytokinesis Failure

    PubMed Central

    Grassi, Germana; Bisceglia, Francesca; Strippoli, Raffaele; Guarguaglini, Giulia; Citarella, Franca; Sacchetti, Benedetto; Tripodi, Marco; Amicone, Laura

    2016-01-01

    In all mammals, the adult liver shows binucleated as well as mononucleated polyploid hepatocytes. The hepatic polyploidization starts after birth with an extensive hepatocyte binucleation and generates hepatocytes of several ploidy classes. While the functional significance of hepatocyte polyploidy is becoming clearer, how it is triggered and maintained needs to be clarified. Aim of this study was to identify a major inducer of hepatocyte binucleation/polyploidization and the cellular and molecular mechanisms involved. We found that, among several cytokines analyzed, known to be involved in early liver development and/or mass control, TGFbeta1 was capable to induce, together with the expected morphological changes, binucleation in hepatocytes in culture. Most importantly, the pharmacological inhibition of TGFbeta signaling in healthy mice during weaning, when the physiological binucleation occurs, induced a significant decrease of hepatocyte binucleation rate, without affecting cell proliferation and hepatic index. The TGFbeta-induced hepatocyte binucleation resulted from a cytokinesis failure, as assessed by video microscopy, and is associated with a delocalization of the cytokinesis regulator RhoA-GTPase from the mid-body of dividing cells. The use of specific chemical inhibitors demonstrated that the observed events are Src-dependent. Finally, the restoration of a fully epithelial phenotype by TGFbeta withdrawal gave rise to a cell progeny capable to maintain the polyploid state. In conclusion, we identified TGFbeta as a major inducer of hepatocyte binucleation both in vitro and in vivo, thus ascribing a novel role to this pleiotropic cytokine. The production of binucleated/tetraploid hepatocytes is due to a cytokinesis failure controlled by the molecular axis TGFbeta/Src/RhoA. PMID:27893804

  9. PLCγ2 promotes apoptosis while inhibits proliferation in rat hepatocytes through PKCD/JNK MAPK and PKCD/p38 MAPK signalling.

    PubMed

    Chen, Xiaoguang; Lv, Qiongxia; Ma, Jun; Liu, Yumei

    2018-02-11

    The PLCG2 (PLCγ2) gene is a member of PLC gene family encoding transmembrane signalling enzymes involved in various biological processes including cell proliferation and apoptosis. Our earlier study indicated that PLCγ2 may be involved in the termination of regeneration of the liver which is mainly composed of hepatocytes, but its exact biological function and molecular mechanism in liver regeneration termination remains unclear. This study aims to examine the role of PLCγ2 in the growth of hepatocytes. A recombinant adenovirus expressing PLCγ2 was used to infect primary rat hepatocytes. PLCγ2 mRNA and protein levels were detected by qRT-PCR and Western blot. The subcellular location of PLCγ2 protein was tested by an immunofluorescence assay. The proliferation of hepatocytes was measured by MTT assay. The cell cycle and apoptosis were analysed by flow cytometry. Caspase-3, -8 and -9 activities were measured by a spectrophotometry method. Phosphorylation levels of PKCD, JNK and p38 in the infected cells were detected by Western blot. The possible mechanism underlying the role of PLCγ2 in hepatocyte growth was also explored by adding a signalling pathway inhibitor. Hepatocyte proliferation was dramatically reduced, while cell apoptosis was remarkably increased. The results demonstrated that PLCγ2 increased the phosphorylation of PKCD, p38 and JNK in rat hepatocytes. After PKCD activity was inhibited by the inhibitor Go 6983, the levels of both p-p38 and p-JNK MAPKs significantly decreased, and PLCγ2-induced cell proliferation inhibition and cell apoptosis were obviously reversed. This study showed that PLCγ2 regulates hepatocyte growth through PKCD-dependently activating p38 MAPK and JNK MAPK pathways; this result was experimentally based on the further exploration of the effect of PLCγ2 on hepatocyte growth in vivo. © 2018 John Wiley & Sons Ltd.

  10. Branches of NF-κb signaling pathway regulate hepatocyte proliferation in rat liver regeneration.

    PubMed

    Chang, C F; Zhao, W M; Mei, J X; Zhou, Y; Pan, C Y; Xu, T T; Xu, C S

    2015-07-13

    Previous studies have demonstrated that the nuclear factor κB (NF-κB) pathway is involved in promoting cell proliferation. To further explore the regulatory branches and their sequence in the NF-κB pathway in the promotion of hepatocyte proliferation at the transcriptional level during rat liver regeneration, Rat Genome 230 2.0 array was used to detect the expression changes of the isolated hepatocytes. We found that many genes involved in the NF-κB pathway (including 73 known genes and 19 homologous genes) and cell proliferation (including 484 genes and 104 homologous genes) were associated with liver regeneration. Expression profile function (Ep) was used to analyze the biological processes. It was revealed that the NF-κB pathway promoted hepatocyte proliferation through three branches. Several methods of integrated statistics were applied to extract and screen key genes in liver regeneration, and it indicated that eight genes may play a vital role in rat liver regeneration. To confirm the above predicted results, Ccnd1, Jun and Myc were analyzed using qRT-PCR, and the results were generally consistent with that of microarray data. It is concluded that 3 branches and 8 key genes involved in the NF-κB pathway regulate hepatocyte proliferation during rat liver regeneration.

  11. Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish.

    PubMed

    Choi, Tae-Young; Ninov, Nikolay; Stainier, Didier Y R; Shin, Donghun

    2014-03-01

    Biliary epithelial cells (BECs) are considered to be a source of regenerating hepatocytes when hepatocyte proliferation is compromised. However, there is still controversy about the extent to which BECs can contribute to the regenerating hepatocyte population, and thereby to liver recovery. To investigate this issue, we established a zebrafish model of liver regeneration in which the extent of hepatocyte ablation can be controlled. Hepatocytes were depleted by administration of metronidazole to Tg(fabp10a:CFP-NTR) animals. We traced the origin of regenerating hepatocytes using short-term lineage-tracing experiments, as well as the inducible Cre/loxP system; specifically, we utilized both a BEC tracer line Tg(Tp1:CreER(T2)) and a hepatocyte tracer line Tg(fabp10a:CreER(T2)). We also examined BEC and hepatocyte proliferation and liver marker gene expression during liver regeneration. BECs gave rise to most of the regenerating hepatocytes in larval and adult zebrafish after severe hepatocyte depletion. After hepatocyte loss, BECs proliferated as they dedifferentiated into hepatoblast-like cells; they subsequently differentiated into highly proliferative hepatocytes that restored the liver mass. This process was impaired in zebrafish wnt2bb mutants; in these animals, hepatocytes regenerated but their proliferation was greatly reduced. BECs contribute to regenerating hepatocytes after substantial hepatocyte depletion in zebrafish, thereby leading to recovery from severe liver damage. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Long non-coding RNA Gm2199 rescues liver injury and promotes hepatocyte proliferation through the upregulation of ERK1/2.

    PubMed

    Gao, Qiang; Gu, Yunyan; Jiang, Yanan; Fan, Li; Wei, Zixiang; Jin, Haobin; Yang, Xirui; Wang, Lijuan; Li, Xuguang; Tai, Sheng; Yang, Baofeng; Liu, Yan

    2018-05-22

    Long non-coding RNAs (lncRNAs) are a new class of regulators of various human diseases. This study was designed to explore the potential role of lncRNAs in experimental hepatic damage. In vivo hepatic damage in mice and in vitro hepatocyte damage in AML12 and NCTC1469 cells were induced by carbon tetrachloride (CCl 4 ) treatments. Expression profiles of lncRNAs and mRNAs were analyzed by microarray. Bioinformatics analyses were conducted to predict the potential functions of differentially expressed lncRNAs with respect to hepatic damage. Overexpression of lncRNA Gm2199 was achieved by transfection of the pEGFP-N1-Gm2199 plasmid in vitro and adeno-associated virus-Gm2199 in vivo. Cell proliferation and viability was detected by cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assay. Protein and mRNA expressions of extracellular signal-regulated kinase-1/2 (ERK1/2) were detected by western blot and quantitative real-time reverse-transcription PCR (qRT-PCR). Microarray analysis identified 190 and 148 significantly differentially expressed lncRNAs and mRNAs, respectively. The analyses of lncRNA-mRNA co-expression and lncRNA-biological process networks unraveled potential roles of the differentially expressed lncRNAs including Gm2199 in the pathophysiological processes leading to hepatic damage. Gm2199 was downregulated in both damaged livers and hepatocyte lines. Overexpression of Gm2199 restored the reduced proliferation of damaged hepatocyte lines and increased the expression of ERK1/2. Overexpression of Gm2199 also promoted the proliferation and viability of normal hepatocyte lines and increased the level of p-ERK1/2. Overexpression of Gm2199 in vivo also protected mouse liver injury induced by CCl 4 , evidenced by more proliferating hepatocytes, less serum alanine aminotransferase, less serum aspartate aminotransferase, and decreased hepatic hydroxyproline. The ability of Gm2199 to maintain hepatic proliferation capacity indicates it as a novel anti-liver damage

  13. Protective effects of ACLF sera on metabolic functions and proliferation of hepatocytes co-cultured with bone marrow MSCs in vitro

    PubMed Central

    Shi, Xiao-Lei; Gu, Jin-Yang; Zhang, Yue; Han, Bing; Xiao, Jiang-Qiang; Yuan, Xian-Wen; Zhang, Ning; Ding, Yi-Tao

    2011-01-01

    AIM: To investigate whether the function of hepatocytes co-cultured with bone marrow mesenchymal stem cells (MSCs) could be maintained in serum from acute-on-chronic liver failure (ACLF) patients. METHODS: Hepatocyte supportive functions and cytotoxicity of sera from 18 patients with viral hepatitis B-induced ACLF and 18 healthy volunteers were evaluated for porcine hepatocytes co-cultured with MSCs and hepatocyte mono-layered culture, respectively. Chemokine profile was also examined for the normal serum and liver failure serum. RESULTS: Hepatocyte growth factor (HGF) and Tumor necrosis factor; tumor necrosis factor (TNF)-α were remarkably elevated in response to ACLF while epidermal growth factor (EGF) and VEGF levels were significantly decreased. Liver failure serum samples induced a higher detachment rate, lower viability and decreased liver support functions in the homo-hepatocyte culture. Hepatocytes co-cultured with MSCs could tolerate the cytotoxicity of the serum from ACLF patients and had similar liver support functions compared with the hepatocytes cultured with healthy human serum in vitro. In addition, co-cultured hepatocytes maintained a proliferative capability despite of the insult from liver failure serum. CONCLUSION: ACLF serum does not impair the cell morphology, viability, proliferation and overall metabolic capacities of hepatocyte co-cultured with MSCs in vitro. PMID:21633639

  14. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Yongsheng, E-mail: yongshengtanwhu@126.com; Li, Yan, E-mail: liyansd2@163.com

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 {sup low} and control cells were treated withmore » different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96{sup ®}Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 {sup low}, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases

  15. Comparative Gene Expression Profiles Induced by PPARγ and PPARα/γ Agonists in Human Hepatocytes

    PubMed Central

    Rogue, Alexandra; Lambert, Carine; Jossé, Rozenn; Antherieu, Sebastien; Spire, Catherine; Claude, Nancy; Guillouzo, André

    2011-01-01

    Background Several glitazones (PPARγ agonists) and glitazars (dual PPARα/γ agonists) have been developed to treat hyperglycemia and, simultaneously, hyperglycemia and dyslipidemia, respectively. However, most have caused idiosyncratic hepatic or extrahepatic toxicities through mechanisms that remain largely unknown. Since the liver plays a key role in lipid metabolism, we analyzed changes in gene expression profiles induced by these two types of PPAR agonists in human hepatocytes. Methodology/Principal Findings Primary human hepatocytes and the well-differentiated human hepatoma HepaRG cells were exposed to different concentrations of two PPARγ (troglitazone and rosiglitazone) and two PPARα/γ (muraglitazar and tesaglitazar) agonists for 24 h and their transcriptomes were analyzed using human pangenomic Agilent microarrays. Principal Component Analysis, hierarchical clustering and Ingenuity Pathway Analysis® revealed large inter-individual variability in the response of the human hepatocyte populations to the different compounds. Many genes involved in lipid, carbohydrate, xenobiotic and cholesterol metabolism, as well as inflammation and immunity, were regulated by both PPARγ and PPARα/γ agonists in at least a number of human hepatocyte populations and/or HepaRG cells. Only a few genes were selectively deregulated by glitazars when compared to glitazones, indicating that PPARγ and PPARα/γ agonists share most of their target genes. Moreover, some target genes thought to be regulated only in mouse or to be expressed in Kupffer cells were also found to be responsive in human hepatocytes and HepaRG cells. Conclusions/Significance This first comprehensive analysis of gene regulation by PPARγ and PPARα/γ agonists favor the conclusion that glitazones and glitazars share most of their target genes and induce large differential changes in gene profiles in human hepatocytes depending on hepatocyte donor, the compound class and/or individual compound, thereby

  16. Preliminary Evaluation of Three-Dimensional Primary Human Hepatocyte Culture System for Assay of Drug-Metabolizing Enzyme-Inducing Potential.

    PubMed

    Arakawa, Hiroshi; Kamioka, Hiroki; Jomura, Tomoko; Koyama, Satoshi; Idota, Yoko; Yano, Kentaro; Kojima, Hajime; Ogihara, Takuo

    2017-01-01

    Drug-induced liver injury (DILI) is a common reason for withdrawal of candidate drugs from clinical trials, or of approved drugs from the market. DILI may be induced not only by intact parental drugs, but also by metabolites or intermediates, and therefore should be evaluated in the enzyme-induced state. Here, we present a protocol for assay of drug-metabolizing enzyme-inducing potential using three-dimensional (3D) primary cultures of human hepatocytes (hepatocyte spheroids). Hepatocyte spheroids could be used up to 21 d after seeding (pre-culture for 7 d and exposure to inducer for up to 14 d), based on preliminary evaluation of basal activities of CYP subtypes and mRNA expression of the corresponding transcription factor and xenobiotic receptors (aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR) and pregnane X receptor (PXR)). After 2 d exposure of hepatocyte spheroids to omeprazole, phenobarbital and rifampicin (typical inducers of CYP1A2, 2B6 and 3A4, respectively), CYP1A2, 2B6 and 3A4 mRNA expression levels were significantly increased. The mRNA induction of CYP2B6 remained reasonably stable between days 2 and 14 of exposure to inducers, while induction of both CYP1A2 and 3A4 continued to increase up to day 14. These enzyme activities were all significantly increased compared with the control until day 14. Our findings indicate that our 3D hepatocyte spheroids system would be especially suitable for long-term testing of enzyme activity induction by drugs, either to predict or to verify clinical events.

  17. The novel protein C3orf43 accelerates hepatocyte proliferation.

    PubMed

    Zhang, Chunyan; Chang, Cuifang; Li, Deming; Zhang, Fuchun; Xu, Cunshuan

    2017-01-01

    Our previous study found that single-pass membrane protein with coiled-coil domains 1 (C3orf43; XM_006248472.3) was significantly upregulated in the proliferative phase during liver regeneration. This indicates that C3orf43 plays a vital role in liver cell proliferation. However, its physiological functions remains unclear. The expressions of C3orf43 in BRL-3A cells transfected with C3orf43-siRNA (C3-siRNA) or overexpressing the vector plasmid pCDH-C3orf43 (pCDH-C3) were measured via RT-qPCR and western blot. Cell growth and proliferation were determined using MTT and flow cytometry. Cell proliferation-related gene expression was measured using RT-qPCR and western blot. It was found that upregulation of C3orf43 by pCDH-C3 promoted hepatocyte proliferation, and inhibition of C3orf43 by C3-siRNA led to the reduction of cell proliferation. The results of qRT-PCR and western blot assay showed that the C3-siRNA group downregulated the expression of cell proliferation-related genes like JUN, MYC, CCND1 and CCNA2, and the pCDH-C3 group upregulated the expression of those genes. These findings reveal that C3orf43 may contribute to hepatocyte proliferation and may have the potential to promote liver repair and regeneration.

  18. Keratinocyte growth factor induces proliferation of hepatocytes and epithelial cells throughout the rat gastrointestinal tract.

    PubMed Central

    Housley, R M; Morris, C F; Boyle, W; Ring, B; Biltz, R; Tarpley, J E; Aukerman, S L; Devine, P L; Whitehead, R H; Pierce, G F

    1994-01-01

    Keratinocyte growth factor (KGF), a member of the fibroblast growth factor (FGF) family, was identified as a specific keratinocyte mitogen after isolation from a lung fibroblast line. Recently, recombinant (r)KGF was found to influence proliferation and differentiation patterns of multiple epithelial cell lineages within skin, lung, and the reproductive tract. In the present study, we designed experiments to identify additional target tissues, and focused on the rat gastrointestinal (GI) system, since a putative receptor, K-sam, was originally identified in a gastric carcinoma. Expression of KGF receptor and KGF mRNA was detected within the entire GI tract, suggesting the gut both synthesized and responded to KGF. Therefore, rKGF was administered to adult rats and was found to induce markedly increased proliferation of epithelial cells from the foregut to the colon, and of hepatocytes, one day after systemic treatment. Daily treatment resulted in the marked selective induction of mucin-producing cell lineages throughout the GI tract in a dose-dependent fashion. Other cell lineages were either unaffected (e.g., Paneth cells), or relatively decreased (e.g., parietal cells, enterocytes) in rKGF-treated rats. The direct effect of rKGF was confirmed by demonstrating markedly increased carcinoembryonic antigen production in a human colon carcinoma cell line, LIM1899. Serum levels of albumin were specifically and significantly elevated after daily treatment. These results demonstrate rKGF can induce epithelial cell activation throughout the GI tract and liver. Further, endogenous KGF may be a normal paracrine mediator of growth within the gut. Images PMID:7962522

  19. [NF-kappaB-induced gp96 up-regulation promotes hepatocyte growth, cell cycle progression and transition].

    PubMed

    Feng, Cong; Wu, Bo; Fan, Hongxia; Li, Changfei; Meng, Songdong

    2014-10-04

    To investigate the mechanism of gp96 raised during hepatitis B virus (HBV) infection and the pathological mechanism. The mechanism of NF-KB activating gp96 expression was determined by bioinformatics analysis, luciferase reporter assay, real-time PCR and Western blot. The effect of over-expression and knockdown gp96 expression by transfection or RNA interference on hepatocyte proliferation, apoptosis and cell cycle was examined by CCK-8 and flow cytometry. The role of gp96 for HCC development was determined by epithelial-mesenchymal transition (EMT) and colony formation assay. NF-kB significantly increased the gp96 expression by binding to the NF-kappaB binding site. Over-expression and knockdown studies both show that gp96 promoted hepatocyte proliferation, inhibited apoptosis, and induced G0/G1 to S phase cell cycle progression. Moreover, gp96 induced epithelial-mesenchymal transition and increased colony formation ability of hepatocytes. Our results therefore provide insights in chronic HBV infection-induced gp96 expression, and indicate that elevated gp96 may contribute to HCC development during chronic inflammation.

  20. MicroRNA-21 accelerates hepatocyte proliferation in vitro via PI3K/Akt signaling by targeting PTEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan-nan, Bai; Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou 350001, Fujian Province; Zhao-yan, Yu

    2014-01-17

    Highlights: •miRNAs-expression patterns of primary hepatocytes under proliferative status. •miR-21 expression level peaked at 12 h after stimulated by EGF. •miR-21 drive rapid S phase entry of primary hepatocytes. •PI3K/Akt signaling was modulated via targeting PTEN by miR-21. -- Abstract: MicroRNAs (miRNAs) are involved in controlling hepatocyte proliferation during liver regeneration. In this study, we established the miRNAs-expression patterns of primary hepatocytes in vitro under stimulation of epidermal growth factor (EGF), and found that microRNA-21 (miR-21) was appreciably up-regulated and peaked at 12 h. In addition, we further presented evidences indicating that miR-21 promotes primary hepatocyte proliferation through in vitromore » transfecting with miR-21 mimics or inhibitor. We further demonstrated that phosphatidylinositol 3′-OH kinase (PI3K)/Akt signaling was altered accordingly, it is, by targeting phosphatase and tensin homologue deleted on chromosome 10, PI3K/Akt signaling is activated by miR-21 to accelerate hepatocyte rapid S-phase entry and proliferation in vitro.« less

  1. Spatio-temporal Model of Xenobiotic Distribution and Metabolism in an in Silico Mouse Liver Lobule

    NASA Astrophysics Data System (ADS)

    Fu, Xiao; Sluka, James; Clendenon, Sherry; Glazier, James; Ryan, Jennifer; Dunn, Kenneth; Wang, Zemin; Klaunig, James

    Our study aims to construct a structurally plausible in silico model of a mouse liver lobule to simulate the transport of xenobiotics and the production of their metabolites. We use a physiologically-based model to calculate blood-flow rates in a network of mouse liver sinusoids and simulate transport, uptake and biotransformation of xenobiotics within the in silico lobule. Using our base model, we then explore the effects of variations of compound-specific (diffusion, transport and metabolism) and compound-independent (temporal alteration of blood flow pattern) parameters, and examine their influence on the distribution of xenobiotics and metabolites. Our simulations show that the transport mechanism (diffusive and transporter-mediated) of xenobiotics and blood flow both impact the regional distribution of xenobiotics in a mouse hepatic lobule. Furthermore, differential expression of metabolic enzymes along each sinusoid's portal to central axis, together with differential cellular availability of xenobiotics, induce non-uniform production of metabolites. Thus, the heterogeneity of the biochemical and biophysical properties of xenobiotics, along with the complexity of blood flow, result in different exposures to xenobiotics for hepatocytes at different lobular locations. We acknowledge support from National Institute of Health GM 077138 and GM 111243.

  2. A refined characterisation of the NeoHepatocyte phenotype necessitates a reappraisal of the transdifferentiation hypothesis.

    PubMed

    Riquelme, Paloma; Wundt, Judith; Hutchinson, James A; Brulport, Marc; Jun, Yu; Sotnikova, Anna; Girreser, Ulrich; Braun, Felix; Gövert, Felix; Soria, Bernat; Nüssler, Andreas; Clement, Bernd; Hengstler, Jan G; Fändrich, Fred

    2009-03-01

    Under certain culture conditions human peripheral blood monocytes may be induced to express phenotypic markers of non-haematopoietic lineages, including hepatocyte-defining traits. One such example, the NeoHepatocyte, was previously shown to express a broad panel of hepatocyte-like marker antigens and metabolic activities, both in vitro and following engraftment in the liver of immunodeficient mice. In this report, a refined description of NeoHepatocytes, with regard to their expression of xenobiotic-metabolising enzymes, morphology, hepatocyte marker expression and cell surface phenotype, is presented in comparison with human macrophages in defined states of activation. Contrary to prior assertions, it would seem more likely that NeoHepatocytes express particular hepatocyte-defining genes during a normal programme of macrophage differentiation rather than undergoing a process of transdifferentiation to become hepatocyte-like cells.

  3. AMPKα1 controls hepatocyte proliferation independently of energy balance by regulating Cyclin A2 expression.

    PubMed

    Merlen, Grégory; Gentric, Géraldine; Celton-Morizur, Séverine; Foretz, Marc; Guidotti, Jacques-Emmanuel; Fauveau, Véronique; Leclerc, Jocelyne; Viollet, Benoit; Desdouets, Chantal

    2014-01-01

    AMP-activated protein kinase (AMPK) is an evolutionarily conserved sensor of cellular energy status that contributes to restoration of energy homeostasis by slowing down ATP-consuming pathways and activating ATP-producing pathways. Unexpectedly, in different systems, AMPK is also required for proper cell division. In the current study, we evaluated the potential effect of the AMPK catalytic subunit, AMPKα1, on hepatocyte proliferation. Hepatocyte proliferation was determined in AMPKα1 knockout and wild-type mice in vivo after two thirds partial hepatectomy, and in vitro in primary hepatocyte cultures. The activities of metabolic and cell cycle-related signaling pathways were measured. After partial hepatectomy, hepatocytes proliferated rapidly, correlating with increased AMPK phosphorylation. Deletion of AMPKα1 delayed liver regeneration by impacting on G1/S transition phase. The proliferative defect of AMPKα1-deficient hepatocytes was cell autonomous, and independent of energy balance. The priming phase, lipid droplet accumulation, protein anabolic responses and growth factor activation after partial hepatectomy occurred normally in the absence of AMPKα1 activity. By contrast, mRNA and protein expression of cyclin A2, a key driver of S phase progression, were compromised in the absence of AMPK activity. Importantly, AMPKα1 controlled cyclin A2 transcription mainly through the ATF/CREB element. Our study highlights a novel role for AMPKα1 as a positive regulator of hepatocyte division occurring independently of energy balance. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  4. MicroRNA-21 promotes proliferation of rat hepatocyte BRL-3A by targeting FASLG.

    PubMed

    Li, J J; Chan, W H; Leung, W Y; Wang, Y; Xu, C S

    2015-04-27

    Rat liver regeneration (RLR) induced by partial hepatectomy involves cell proliferation regulated by numerous factors, including microRNAs (miRNAs). miRNA high-throughput sequencing has been established and used to analyze miRNA expression profiles. This study showed that 39 miRNAs were related to RLR through the analysis of miRNA high-throughput sequencing. Their role toward rat normal hepatocyte line BRL-3A was studied by gain- and loss-of-function analyses, and one of them, microRNA-21 (miR-21), obviously upregulated and promoted BRL-3A cell proliferation. Using bioinformatics to search for miR-21 targets revealed that Fas ligand (FASLG) is one of miR-21's target genes. A dual-luciferase report assay and Western blot assay showed that miR-21 directly targeted the 3'-untranslated region of FASLG and inhibited the expression of FASLG, which suggests that miR-21 promoted BRL-3A cell proliferation by reducing FASLG expression.

  5. Effects of clofibric acid on mRNA expression profiles in primary cultures of rat, mouse and human hepatocytes.

    PubMed

    Richert, Lysiane; Lamboley, Christelle; Viollon-Abadie, Catherine; Grass, Peter; Hartmann, Nicole; Laurent, Stephane; Heyd, Bruno; Mantion, Georges; Chibout, Salah-Dine; Staedtler, Frank

    2003-09-01

    The mRNA expression profile in control and clofibric acid (CLO)-treated mouse, rat, and human hepatocytes was analyzed using species-specific oligonucleotide DNA microarrays (Affymetrix). A statistical empirical Bayes procedure was applied in order to select the significantly differentially expressed genes. Treatment with the peroxisome proliferator CLO induced up-regulation of genes involved in peroxisome proliferation and in cell proliferation as well as down-regulation of genes involved in apoptosis in hepatocytes of rodent but not of human origin. CLO treatment induced up-regulation of microsomal cytochrome P450 4a genes in rodent hepatocytes and in two of six human hepatocyte cultures. In addition, genes encoding phenobarbital-inducible cytochrome P450s were also up-regulated by CLO in rodent and human hepatocyte cultures. Up-regulation of phenobarbital-inducible UDP-glucuronosyl-transferase genes by CLO was observed in both rat and human but not in mouse hepatocytes. CLO treatment induced up-regulation of L-fatty acid binding protein (L-FABP) gene in hepatocytes of both rodent and human origin. However, while genes of the cytosolic, microsomal, and mitochondrial pathways involved in fatty acid transport and metabolism were up-regulated by CLO in both rodent and human hepatocyte cultures, genes of the peroxisomal pathway of lipid metabolism were up-regulated in rodents only. An up-regulation of hepatocyte nuclear factor 1alpha (HNF1alpha) by CLO was observed only in human hepatocyte cultures, suggesting that this trans-activating factor may play a key role in the regulation of fatty acid metabolism in human liver as well as in the nonresponsiveness of human liver to CLO-induced regulation of cell proliferation and apoptosis.

  6. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Rajesh; Xiang, Wenpei; Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1more » (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We

  7. Influence of long-term, high-dose dexamethasone administration on proliferation and apoptosis in porcine hepatocytes.

    PubMed

    Mikiewicz, Mateusz; Otrocka-Domagała, Iwona; Paździor-Czapula, Katarzyna; Rotkiewicz, Tadeusz

    2017-06-01

    The aim of this study was to examine the influence of long-term, high-dose dexamethasone administration on the liver, with particular emphasis on hepatocyte proliferation and apoptosis, using a swine model. The study included 48 large, female Polish breed pigs aged 3months (weighing ca. 30kg) divided into groups I (control; n=24) and II (dexamethasone; n=24) that receiving intra-muscular injections of monosodium phosphate dexamethasone for 29days. The pigs were euthanized on days subsequent to the experiment. Immediately after the euthanasia, the pig livers were sampled, fixed, and processed routinely for histopathology, histochemistry, and immunohistochemistry (for proliferating cell nuclear antigen, Bcl-2, and caspase-3). Apoptosis was visualized by terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL). Dexamethasone administration gradually caused hepatocyte glycogen degeneration and finally lipid degeneration, accompanied by sinusoid and central vein dilatation and nuclear chromatin condensation. The proliferating cell nuclear antigen index, mean number of argyrophilic nucleolar organizer regions and proliferation index of argyrophilic nucleolar organizer regions were lower, while Bcl-2 expression was higher in group II compared with group I. The results from this study suggest that safe high-dose dexamethasone administration time is difficult to establish. Long-term, high-dose dexamethasone administration can cause pronounced morphological changes in hepatocytes by diminishing their transcriptional and proliferation activity but also protects them from apoptosis by potentially affecting Bcl-2 expression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hepatocyte‐induced CD4+ T cell alloresponse is associated with major histocompatibility complex class II up‐regulation on hepatocytes and suppressible by regulatory T cells

    PubMed Central

    DeTemple, Daphne E.; Oldhafer, Felix; Falk, Christine S.; Chen‐Wacker, Chen; Figueiredo, Constanca; Kleine, Moritz; Ramackers, Wolf; Timrott, Kai; Lehner, Frank; Klempnauer, Juergen; Bock, Michael

    2018-01-01

    Hepatocyte transplantation is a promising therapeutic approach for various liver diseases. Despite the liver's tolerogenic potential, early immune‐mediated loss of transplanted cells is observed, and longterm acceptance has not been achieved yet. Patients deemed tolerant after liver transplantation presented an increased frequency of regulatory T cells (Tregs), which therefore also might enable reduction of posttransplant cell loss and enhance longterm allograft acceptance. We hence characterized hepatocyte‐induced immune reactions and evaluated the immunomodulatory potential of Tregs applying mixed lymphocyte cultures and mixed lymphocyte hepatocyte cultures. These were set up using peripheral blood mononuclear cells and primary human hepatocytes, respectively. Polyclonally expanded CD4+CD25highCD127low Tregs were added to cocultures in single‐/trans‐well setups with/without supplementation of anti‐interferon γ (IFNγ) antibodies. Hepatocyte‐induced alloresponses were then analyzed by multicolor flow cytometry. Measurements indicated that T cell response upon stimulation was associated with IFNγ‐induced major histocompatibility complex (MHC) class II up‐regulation on hepatocytes and mediated by CD4+ T cells. An indirect route of antigen presentation could be ruled out by use of fragmented hepatocytes and culture supernatants of hepatocytes. Allospecific proliferation was accompanied by inflammatory cytokine secretion. CD8+ T cells showed early up‐regulation of CD69 despite lack of cell proliferation in the course of coculture. Supplementation of Tregs effectively abrogated hepatocyte‐induced alloresponses and was primarily cell contact dependent. In conclusion, human hepatocytes induce a CD4+ T cell alloresponse in vitro, which is associated with MHC class II up‐regulation on hepatocytes and is susceptible to suppression by Tregs. Liver Transplantation 24 407–419 2018 AASLD. PMID:29365365

  9. [Endoplasmic reticulum stress mediates lipopolysaccharide-induced apoptosis in rat hepatocyte].

    PubMed

    Ji, Ying-Lei; Yan, Jun; Wang, Yan-Sha; Liu, Yi-Chang; Gu, Zhen-Yong

    2014-02-01

    To investigate the role of endoplasmic reticulum stress (ERS) in lipopolysaccharide (LPS)-induced hepatocyte apoptosis. Cells of the rat hepatocyte line BRL were cultured. The hepatocytes were treated with LPS, ERS inducer thapsigargin (TG), and ERS inhibitor 4-phenylbutyric acid (4-PBA), respectively or in their different combination. The cell viability was measured by MTT assay. The cyto-nuclear morphological changes of apoptosis cells were detected by the fluorescent dye Hoechst 33258. The apoptosis rate was assessed by flow cytometry with Annexin V-FITC/PI double-staining. Expressions of GRP78 as ERS marker protein, CHOP, caspase-12 and cleaved-caspase-3 as ERS related protein were detected by Western blotting. LPS could cause a decrease in cell viability and an increase in apoptosis rate in a dose- and time-dependent manner. The expression of GRP78, CHOP, caspase-12 and cleaved-caspase-3 proteins were significantly increased with LPS treatment. TG led to a marked decrease in cell viability and an increase in apoptosis rate, which aggravated the hepatocyte injury induced by LPS; whereas 4-PBA alleviated LPS-induced apoptosis. ERS mediates LPS-induced hepatocyte injuries, indicating that ERS may play a vital role in the pathogenesis of LPS-induced hepatocyte injuries.

  10. Low doses of TiO2-polyethylene glycol nanoparticles stimulate proliferation of hepatocyte cells

    NASA Astrophysics Data System (ADS)

    Sun, Qingqing; Kanehira, Koki; Taniguchi, Akiyoshi

    2016-01-01

    This paper describes the effect of low concentrations of 100 nm polyethylene glycol-modified TiO2 nanoparticles (TiO2-PEG NPs) on HepG2 hepatocellular carcinoma cells. Proliferation of HepG2 cells increased significantly when the cells were exposed to low doses (<100 μg ml-1) of TiO2-PEG NPs. These results were further confirmed by cell counting experiments and cell cycle assays. Cellular uptake assays were performed to determine why HepG2 cells proliferate with low-dose exposure to TiO2-PEG NPs. The results showed that exposure to lower doses of NPs led to less cellular uptake, which in turn decreased cytotoxicity. We therefore hypothesized that TiO2-PEG NPs could affect the activity of hepatocyte growth factor receptors (HGFRs), which bind to hepatocyte growth factor and stimulate cell proliferation. The localization of HGFRs on the surface of the cell membrane was detected via immunofluorescence staining and confocal microscopy. The results showed that HGFRs aggregate after exposure to TiO2-PEG NPs. In conclusion, our results indicate that TiO2-PEG NPs have the potential to promote proliferation of HepG2 cells through HGFR aggregation and suggest that NPs not only exhibit cytotoxicity but also affect cellular responses.

  11. Accelerated proliferation of hepatocytes in rats with iron overload after partial hepatectomy.

    PubMed

    An, Shucai; Soe, Kyaw; Akamatsu, Maki; Hishikawa, Yoshitaka; Koji, Takehiko

    2012-11-01

    Although iron overload is implicated in hepatocarcinogenesis, the precise mechanism was not known yet. In the present study, we investigated the effect of iron overload upon the induction of hepatocyte proliferation after 70% partial hepatectomy (PH) in rats fed with rat chow with 3% carbonyl iron for 3 months. In normal-diet rats, the increase in Ki-67 labeling index (LI) commenced at 24 h post-PH and the LIs of proliferating cell nuclear antigen (PCNA) incorporated 5-bromo-2'-deoxyuridine (BrdU) and phospho-histone H3 reached maximum values at 36 and 48 h after PH, respectively. In iron-overload rats, the above parameters occurred 12 h earlier compared to that of normal-diet rats, shortening the G0-G1 transition. Interestingly, nuclear staining for metallothionein (MT), which is essential for hepatocyte proliferation, was noted even at 0 h in iron-overload rats, while MT expression occurred at 6 h in the normal rats. Moreover, nuclear factor kappa B (NF-κB) expression, which is an essential early event leading to liver regeneration, was detected in Kupffer cells at 0 h in iron-overload rats. These results may indicate that overloaded iron, maybe through the induction of MT and NF-κB, may keep liver as a state ready to regenerate in response to PH, by bypassing signal transduction cascades involved in the initiation of liver regeneration.

  12. Radiation Exposure Enhances Hepatocyte Proliferation in Neonatal Mice but not in Adult Mice.

    PubMed

    Shang, Yi; Sawa, Yurika; Blyth, Benjamin J; Tsuruoka, Chizuru; Nogawa, Hiroyuki; Shimada, Yoshiya; Kakinuma, Shizuko

    2017-08-01

    There is a natural tendency to expect that irradiation of an infant organ prior to development-related expansion will result in a higher risk of developing cancer than that of fully-developed adult tissue, and this has generally been observed. However, if tissues also vary in their initial responses to radiation depending on age, the interplay between tissue- and age-dependent risk would potentially be quite complex. We have previously shown opposing age-dependent induction of apoptosis for the intestinal epithelium and hematopoietic cells in mice, but such data are not yet available for the liver. Here, we have examined markers of DNA damage, initiation of DNA damage responses, cell cycle arrest, apoptosis and proliferation, as well as gene expression, in the B6C3F1 mouse liver over the hours and days after irradiation of mice at 1 or 7 weeks of age. We found that induction and resolution of radiation-induced DNA damage is not accompanied by significant changes in these cellular end points in the adult liver, while in infant hepatocytes modest induction of p53 accumulation and p21-mediated cell cycle arrest in a small fraction of damaged cells was overshadowed by a further stimulation of proliferation over the relatively high levels already found in the neonatal liver. We observed distinct expression of genes that regulate cell division between the ages, which may contribute to the differential responses. These data suggest that the growth factor signaling environment of the infant liver may mediate radiation-induced proliferation and increased liver cancer risk after irradiation during early life.

  13. Non-viral FoxM1 gene delivery to hepatocytes enhances liver repopulation

    PubMed Central

    Xiang, D; Liu, C-C; Wang, M-J; Li, J-X; Chen, F; Yao, H; Yu, B; Lu, L; Borjigin, U; Chen, Y-X; Zhong, L; Wangensteen, K J; He, Z-Y; Wang, X; Hu, Y-P

    2014-01-01

    Hepatocyte transplantation as a substitute strategy of orthotopic liver transplantation is being studied for treating end-stage liver diseases. Several technical hurdles must be overcome in order to achieve the therapeutic liver repopulation, such as the problem of insufficient expansion of the transplanted hepatocytes in recipient livers. In this study, we analyzed the application of FoxM1, a cell-cycle regulator, to enhance the proliferation capacity of hepatocytes. The non-viral sleeping beauty (SB) transposon vector carrying FoxM1 gene was constructed for delivering FoxM1 into the hepatocytes. The proliferation capacities of hepatocytes with FoxM1 expression were examined both in vivo and in vitro. Results indicated that the hepatocytes with FoxM1 expression had a higher proliferation rate than wild-type (WT) hepatocytes in vitro. In comparison with WT hepatocytes, the hepatocytes with FoxM1 expression had an enhanced level of liver repopulation in the recipient livers at both sub-acute injury (fumaryl acetoacetate hydrolase (Fah)–/– mice model) and acute injury (2/3 partial hepatectomy mice model). Importantly, there was no increased risk of tumorigenicity with FoxM1 expression in recipients even after serial transplantation. In conclusion, expression of FoxM1 in hepatocytes enhanced the capacity of liver repopulation without inducing tumorigenesis. FoxM1 gene delivered by non-viral SB vector into hepatocytes may be a viable approach to promote therapeutic repopulation after hepatocyte transplantation. PMID:24853430

  14. Applicability of the Rayleigh equation for enantioselective metabolism of chiral xenobiotics by microsomes, hepatocytes and in-vivo retention in rabbit tissues

    PubMed Central

    Jammer, Shifra; Gelman, Faina; Lev, Ovadia

    2016-01-01

    In this study we propose a new approach for analyzing the enantioselective biodegradation of some antidepressant drugs mediated by human and rat liver microsomes by using the Rayleigh equation to describe the enantiomeric enrichment−conversion dependencies. Analysis of reported degradation data of additional six pesticides, an alpha blocker and a flame retardant by microsomes or hepatocytes in vitro reaffirmed the universality of the approach. In all the in vitro studied cases that involved enantioselective degradation, a Rayleigh dependence of the enantiomeric enrichment was observed. Published data regarding in vivo retention of myclobutanil in liver, kidney, muscle and brain tissues of rabbits following injection of the racemate were remodeled showing prevalence of the Rayleigh law for the chiral enrichment of the fungicide in the various tissues. This approach will revolutionize data organization in metabolic pathway research of target xenobiotics by either liver microsomes, hepatocytes or their organ-specific in vivo retention. The fact that the enantiomeric enrichment as a function of the conversion can be described by a single quantifier, will pave the road for the use of structure activity predictors of the enantiomeric enrichment and for mechanistic discrimination based on parametric dependence of the quantifier. PMID:27021918

  15. Endocrine disruption screening by protein and gene expression of vitellogenin in freshly isolated and cryopreserved rainbow trout hepatocytes.

    PubMed

    Markell, Lauren K; Mingoia, Robert T; Peterson, Heather M; Yao, Jianhong; Waters, Stephanie M; Finn, James P; Nabb, Diane L; Han, Xing

    2014-08-18

    Xenobiotics may activate the estrogen receptor, resulting in alteration of normal endocrine functions in animals and humans. Consequently, this necessitates development of assay end points capable of identifying estrogenic xenobiotics. In the present study, we screened the potential estrogenicity of chemicals via their ability to induce vitellogenin (VTG) expression in cultured primary hepatocytes from male trout. A routine method for VTG detection measures the secretion of the protein by enzyme-linked immunosorbent assay (ELISA) in freshly isolated trout hepatocytes. However, this lengthy (6 days) culturing procedure requires that hepatocyte isolation is performed each time the assay is run. We optimized this methodology by investigating the utility of cryopreserved hepatocytes, shortening the incubation time, performing a quantitative real-time PCR (qPCR) method for VTG quantification, and verifying the model system with reference chemicals 17β-estradiol, estrone, diethylstilbestrol, hexestrol, genistein, and a negative control, corticosterone. To test the performance of both freshly isolated and cryopreserved hepatocytes, mRNA was collected from hepatocytes following 24 h treatment for VTG gene expression analysis, whereas cell culture media was collected for a VTG ELISA 96 h post-treatment. EC50 values were obtained for each reference chemical except for corticosterone, which exhibited no induction of VTG gene or protein level. Our results show linear concordance between ELISA and qPCR detection methods. Although there was approximately 50% reduction in VTG inducibility following cryopreservation, linear concordance of EC50 values was found between freshly isolated and cryopreserved hepatocytes, indicating that cryopreservation does not alter the functional assessment of estrogen receptor activation and therefore VTG expression. These studies demonstrate that qPCR is a sensitive and specific method for detecting VTG gene expression that can be used together

  16. Wheat extracts as an efficient cryoprotective agent for primary cultures of rat hepatocytes.

    PubMed

    Hamel, Francine; Grondin, Mélanie; Denizeau, Francine; Averill-Bates, Diana A; Sarhan, Fathey

    2006-11-05

    Hepatocytes are an important physiological model for evaluation of metabolic and biological effects of xenobiotics. They do not proliferate in culture and are extremely sensitive to damage during freezing and thawing, even after the addition of classical cryoprotectants. Thus improved cryopreservation techniques are needed to reduce cell injury and functional impairment. Here, we describe a new and efficient cryopreservation method, which permits long-term storage and recovery of large quantities of healthy cells that maintain high hepatospecific functions. In culture, the morphology of hepatocytes cryopreserved with wheat protein extracts (WPE) was similar to that of fresh cells. Furthermore, hepatospecific functions such as albumin secretion and biotransformation of ammonium to urea were well maintained during 4 days in culture. Inductions of CYP1A1 and CYP2B in hepatocytes cryopreserved with WPEs were similar to those in fresh hepatocytes. These findings clearly show that WPEs are an excellent cryopreservant for primary hepatocytes. The extract was also found to cryopreserve other human and animal cell types such as lung carcinoma, colorectal adenocarcinoma, Chinese hamster ovary transfected with TGF-b1 cDNA, cervical cancer taken from Henrietta Lacks, intestinal epithelium, and T cell leukemia. WPEs have potential as a universal cryopreservant agent of mammalian cells. It is an economic, efficient and non-toxic agent. (c) 2006 Wiley Periodicals, Inc.

  17. Back to the future: transgenerational transmission of xenobiotic-induced epigenetic remodeling

    PubMed Central

    Jiménez-Chillarón, Josep C; Nijland, Mark J; Ascensão, António A; Sardão, Vilma A; Magalhães, José; Hitchler, Michael J; Domann, Frederick E; Oliveira, Paulo J

    2015-01-01

    Epigenetics, or regulation of gene expression independent of DNA sequence, is the missing link between genotype and phenotype. Epigenetic memory, mediated by histone and DNA modifications, is controlled by a set of specialized enzymes, metabolite availability, and signaling pathways. A mostly unstudied subject is how sub-toxic exposure to several xenobiotics during specific developmental stages can alter the epigenome and contribute to the development of disease phenotypes later in life. Furthermore, it has been shown that exposure to low-dose xenobiotics can also result in further epigenetic remodeling in the germ line and contribute to increase disease risk in the next generation (multigenerational and transgenerational effects). We here offer a perspective on current but still incomplete knowledge of xenobiotic-induced epigenetic alterations, and their possible transgenerational transmission. We also propose several molecular mechanisms by which the epigenetic landscape may be altered by environmental xenobiotics and hypothesize how diet and physical activity may counteract epigenetic alterations. PMID:25774863

  18. Epidermal growth factor- and hepatocyte growth factor-receptor activity in serum-free cultures of human hepatocytes.

    PubMed

    Runge, D M; Runge, D; Dorko, K; Pisarov, L A; Leckel, K; Kostrubsky, V E; Thomas, D; Strom, S C; Michalopoulos, G K

    1999-02-01

    Serum-free primary cultures of hepatocytes are a useful tool to study factors triggering hepatocyte proliferation and regeneration. We have developed a chemically defined serum-free system that allows human hepatocyte proliferation in the presence of epidermal growth factor and hepatocyte growth factor. DNA synthesis and accumulation were determined by [3H]thymidine incorporation and fluorometry, respectively. Western blot analyses and co-immunoprecipitations were used to investigate the association of proteins involved in epidermal growth factor and hepatocyte growth factor activation and signaling: epidermal growth factor receptor, hepatocyte growth factor receptor (MET), urokinase-type plasminogen activator and its receptor, and a member of the signal transducer and activator of transcription family, STAT-3. Primary human hepatocytes proliferated under serum-free conditions in a chemically defined medium for up to 12 days. Epidermal growth factor-receptor and MET were present and functional, decreasing over time. MET, urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor co-precipitated to varying degrees during the culture period. STAT-3 co-precipitated with epidermal growth factor-receptor and MET to varying degrees. Proliferation of human hepatocytes can improve by modification of a chemically defined medium originally used for rat hepatocyte cultures. In these long-term cultures of human hepatocytes, hepatocyte growth factor and epidermal growth factor can stimulate growth and differentiation by interacting with their receptors and initiating downstream signaling. This involves complex formation of the receptors with other plasma membrane components for MET (urokinase-type plasminogen activator in context of its receptor) and activation of STAT-3 for both receptors.

  19. Low doses of TiO2-polyethylene glycol nanoparticles stimulate proliferation of hepatocyte cells

    PubMed Central

    Sun, Qingqing; Kanehira, Koki; Taniguchi, Akiyoshi

    2016-01-01

    Abstract This paper describes the effect of low concentrations of 100 nm polyethylene glycol-modified TiO2 nanoparticles (TiO2-PEG NPs) on HepG2 hepatocellular carcinoma cells. Proliferation of HepG2 cells increased significantly when the cells were exposed to low doses (<100 μg ml–1) of TiO2-PEG NPs. These results were further confirmed by cell counting experiments and cell cycle assays. Cellular uptake assays were performed to determine why HepG2 cells proliferate with low-dose exposure to TiO2-PEG NPs. The results showed that exposure to lower doses of NPs led to less cellular uptake, which in turn decreased cytotoxicity. We therefore hypothesized that TiO2-PEG NPs could affect the activity of hepatocyte growth factor receptors (HGFRs), which bind to hepatocyte growth factor and stimulate cell proliferation. The localization of HGFRs on the surface of the cell membrane was detected via immunofluorescence staining and confocal microscopy. The results showed that HGFRs aggregate after exposure to TiO2-PEG NPs. In conclusion, our results indicate that TiO2-PEG NPs have the potential to promote proliferation of HepG2 cells through HGFR aggregation and suggest that NPs not only exhibit cytotoxicity but also affect cellular responses. PMID:27877913

  20. Generation of human pluripotent stem cell-derived hepatocyte-like cells for drug toxicity screening.

    PubMed

    Takayama, Kazuo; Mizuguchi, Hiroyuki

    2017-02-01

    Because drug-induced liver injury is one of the main reasons for drug development failures, it is important to perform drug toxicity screening in the early phase of pharmaceutical development. Currently, primary human hepatocytes are most widely used for the prediction of drug-induced liver injury. However, the sources of primary human hepatocytes are limited, making it difficult to supply the abundant quantities required for large-scale drug toxicity screening. Therefore, there is an urgent need for a novel unlimited, efficient, inexpensive, and predictive model which can be applied for large-scale drug toxicity screening. Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are able to replicate indefinitely and differentiate into most of the body's cell types, including hepatocytes. It is expected that hepatocyte-like cells generated from human ES/iPS cells (human ES/iPS-HLCs) will be a useful tool for drug toxicity screening. To apply human ES/iPS-HLCs to various applications including drug toxicity screening, homogenous and functional HLCs must be differentiated from human ES/iPS cells. In this review, we will introduce the current status of hepatocyte differentiation technology from human ES/iPS cells and a novel method to predict drug-induced liver injury using human ES/iPS-HLCs. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  1. The metabolism of aflatoxin B1 by hepatocytes isolated from rats following the in vivo administration of some xenobiotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metcalfe, S.A.; Neal, G.E.

    Isolated rat hepatocytes, an intact cellular system capable of performing phase I and phase II metabolism, have been used to investigate metabolism of aflatoxin B1. These cells were found to metabolise (/sup 14/C)aflatoxin B1 to aflatoxins M1 and Q1, and to radiolabelled polar material, presumably conjugates, as analysed by h.p.l.c., t.l.c. and radioactive determination. In vivo administration of the mixed function oxidase inducers, phenobarbitone and 3-methylcholanthrene, resulted in enhanced hepatocyte phase I (microsomal) metabolism of aflatoxin B1. In contrast to metabolism of AFB1 by in vitro subcellular systems increased production of polar material (conjugated metabolites) derived from (/sup 14/C)aflatoxin B1more » was also detected in hepatocytes isolated from these pretreated animals. Formation of aflatoxin Q1 by isolated hepatocytes appeared to be mediated by cytochrome P450-linked enzymes whereas cytochrome P448-linked enzymes were apparently involved in aflatoxin M1 production. Chronic feeding of aflatoxin B1 to rats enhanced hepatocyte production of conjugated material only and did not elevate cellular cytochrome P450 levels, thus suggesting that aflatoxin B1 is not an inducer of its own primary metabolism.« less

  2. Induced Mitogenic Activity in AML-12 Mouse Hepatocytes Exposed to Low-dose Ultra-Wideband Electromagnetic Radiation

    PubMed Central

    Dorsey, W. C.; Ford, B. D.; Roane, L.; Haynie, D. T.; Tchounwou, P. B.

    2005-01-01

    Ultra–wideband (UWB) technology has increased with the use of various civilian and military applications. In the present study, we hypothesized that low-dose UWB electromagnetic radiation (UWBR) could elicit a mitogenic effect in AML-12 mouse hepatocytes, in vitro. To test this hypothesis, we exposed AML-12 mouse hepatocytes, to UWBR in a specially constructed gigahertz transverse electromagnetic mode (GTEM) cell. Cells were exposed to UWBR for 2 h at a temperature of 23°C, a pulse width of 10 ns, a repetition rate of 1 kHz, and field strength of 5–20 kV/m. UWB pulses were triggered by an external pulse generator for UWBR exposure but were not triggered for the sham exposure. We performed an MTT Assay to assess cell viability for UWBR-treated and sham-exposed hepatocytes. Data from viability studies indicated a time-related increase in hepatocytes at time intervals from 8–24 h post exposure. UWBR exerted a statistically significant (p < 0.05) dose-dependent response in cell viability in both serum-treated and serum free medium (SFM) -treated hepatocytes. Western blot analysis of hepatocyte lysates demonstrated that cyclin A protein was induced in hepatocytes, suggesting that increased MTT activity after UWBR exposure was due to cell proliferation. This study indicates that UWBR has a mitogenic effect on AML-12 mouse hepatocytes and implicates a possible role for UWBR in hepatocarcinoma. PMID:16705798

  3. Characterization and Comprehensive Proteome Profiling of Exosomes Secreted by Hepatocytes

    PubMed Central

    Conde-Vancells, Javier; Rodriguez-Suarez, Eva; Embade, Nieves; Gil, David; Matthiesen, Rune; Valle, Mikel; Elortza, Felix; Lu, Shelly C.; Mato, Jose M.; Falcon-Perez, Juan M.

    2009-01-01

    Synopsis Exosomes constitute a discrete population of nanometer-sized (30-150 nm) vesicles formed in endocytic compartments and released to the extracellular environment by different cell types. In this work we demonstrated by electron microscopic, western blotting and proteomic analyses that primary hepatocytes secrete exosome-like vesicles containing proteins involved in metabolizing lipoproteins, endogenous compounds as well as xenobiotics. These new findings contribute to improve our knowledge about biology's hepatocyte and may have important diagnostic, prognosis and therapeutic implications in liver diseases Exosomes represent a discrete population of vesicles that are secreted from various cell types to the extracellular media. Their protein and lipid composition are a consequence of sorting events at the level of the multivesicular body, a central organelle which integrates endocytic and secretory pathways. Characterization of exosomes from different biological samples has shown the presence of common as well as cell-type specific proteins. Remarkably, the protein content of the exosomes is modified upon pathological or stress conditions. Hepatocytes play a central role in the body response to stress metabolizing potentially harmful endogenous substances as well as xenobiotics. In the present study we described and characterized for first time exosome secretion in non-tumoral hepatocytes, and using a systematic proteomic approach, we establish the first extensive proteome of a hepatocyte-derived exosome population which should be useful in furthering our understanding of the hepatic function and in the identification of components that may serve as biomarkers for hepatic alterations. Our analysis identifies a significant number of proteins previously described among exosomes derived from others cell types as well as proteins involved in metabolizing lipoproteins, endogenous compounds and xenobiotics, not previously described in exosomes. Furthermore, we

  4. DICHLOROACETIC ACID (DCA) INHIBITS PROLIFERATION AND APOPTOSIS IN NORMAL HEPATOCYTES OF MALE F344 RATS

    EPA Science Inventory

    Dichloroacetic acid (DCA} inhibits proliferation and apoptosis in nonnal hepatocytes of
    male F344 rats.

    Large segments of the population are chronically exposed to dichloroacetic acid (DCA}: DCA is a by product of the chlorine disinfection of drinking water, a metab...

  5. Lipid-induced Signaling Causes Release of Inflammatory Extracellular Vesicles from Hepatocytes

    PubMed Central

    Hirsova, Petra; Ibrahim, Samar H.; Krishnan, Anuradha; Verma, Vikas K.; Bronk, Steven F.; Werneburg, Nathan W.; Charlton, Michael R.; Shah, Vijay H.; Malhi, Harmeet; Gores, Gregory J.

    2016-01-01

    BACKGROUND & AIMS Hepatocyte cellular dysfunction and death induced by lipids, and macrophage-associated inflammation are characteristics of nonalcoholic steatohepatitis (NASH). The fatty acid palmitate can activate death receptor 5 (DR5) on hepatocytes, leading to their death, but little is known about how this process contributes to macrophage-associated inflammation. We investigated whether lipid-induced DR5 signaling results in release of extracellular vesicles (EV) from hepatocytes, and whether these can induce an inflammatory macrophage phenotype. METHODS Primary mouse and human hepatocytes and Huh7 cells were incubated with palmitate, its metabolite lysophosphatidylcholine, or diluent (control). The released EV were isolated, characterized, quantified, and applied to macrophages. C57BL/6 mice were placed on chow or a diet high in fat, fructose, and cholesterol to induce NASH. Some mice were also given the ROCK1 inhibitor fasudil; 2 weeks later, serum EVs were isolated and characterized by immunoblot and nanoparticle-tracking analyses. Livers were collected and analyzed by histology, immunohistochemistry, and quantitative PCR. RESULTS Incubation of primary hepatocytes and Huh7 cells with palmitate or lysophosphatidylcholine increased their release of EV, compared with control cells. This release was reduced by inactivating mediators of the DR5 signaling pathway or ROCK1 inhibition. Hepatocyte-derived EV contained TRAIL and induced expression of interleukin-1, beta (Il1b) and Il6 mRNAs in mouse bone marrow-derived macrophages. Activation of macrophages required DR5 and RIP1. Administration of the ROCK1 inhibitor fasudil to mice with NASH reduced serum levels of EV; this reduction was associated with decreased liver injury, inflammation, and fibrosis. CONCLUSIONS Lipids, which stimulate DR5, induce release of hepatocyte EV, which activate an inflammatory phenotype in macrophages. Strategies to inhibit ROCK1-dependent release of EV by hepatocytes might be

  6. Evaluation of medicinal plant hepatotoxicity in co-cultures of hepatocytes and monocytes.

    PubMed

    Saad, Bashar; Dakwar, Suha; Said, Omar; Abu-Hijleh, Ghassan; Al Battah, Feras; Kmeel, Abedelsalam; Aziazeh, Hassan

    2006-03-01

    Non-parenchymal cells might play an important role in the modulation of xenobiotic metabolism in liver and its pharmacological and toxicological consequences. Therefore, the role of cell-to-cell interactions in herbal induced liver toxicity was investigated in monocultures of cells from the human hepatocyte cell line (HepG2) and in co-cultures of cells from the HepG2 cell line and cells from the human monocyte cell line (THP1). Cells were treated with various concentrations (1-500 microg ml(-1)) of extracts of Pistacia palaestina, Juglans regia and Quercus ithaburensis for 24 h. Extracts from Cleome droserifolia, a known toxic plant, were taken as positive control. In the co-culture system, toxic effects were observed after exposure to extracts of Pistacia palestina and C. droserifolia. These two extracts significantly reduced by cell viability as measured the MTT test and the LDH assay. Whereas in hepatocyte cultures, only extracts of C. droserifolia were found to affect the cell viability. The production levels of albumin from hepatocytes were not affected by treatment with plant extracts in both culture systems. It seems that the observed reduction in cell viability after exposure to extracts of P. palestina in co-cultures but not in monocultures is a result of monocyte-derived factors. The use of liver cell co-cultures is therefore a useful approach to investigate the influence of intercellular communication on xenobiotic metabolism in liver.

  7. Evaluation of Medicinal Plant Hepatotoxicity in Co-cultures of Hepatocytes and Monocytes

    PubMed Central

    Saad, Bashar; Dakwar, Suha; Said, Omar; Abu-Hijleh, Ghassan; Battah, Feras Al; Kmeel, Abedelsalam; Aziazeh, Hassan

    2006-01-01

    Non-parenchymal cells might play an important role in the modulation of xenobiotic metabolism in liver and its pharmacological and toxicological consequences. Therefore, the role of cell-to-cell interactions in herbal induced liver toxicity was investigated in monocultures of cells from the human hepatocyte cell line (HepG2) and in co-cultures of cells from the HepG2 cell line and cells from the human monocyte cell line (THP1). Cells were treated with various concentrations (1–500 µg ml−1) of extracts of Pistacia palaestina, Juglans regia and Quercus ithaburensis for 24 h. Extracts from Cleome droserifolia, a known toxic plant, were taken as positive control. In the co-culture system, toxic effects were observed after exposure to extracts of Pistacia palestina and C. droserifolia. These two extracts significantly reduced by cell viability as measured the MTT test and the LDH assay. Whereas in hepatocyte cultures, only extracts of C. droserifolia were found to affect the cell viability. The production levels of albumin from hepatocytes were not affected by treatment with plant extracts in both culture systems. It seems that the observed reduction in cell viability after exposure to extracts of P. palestina in co-cultures but not in monocultures is a result of monocyte-derived factors. The use of liver cell co-cultures is therefore a useful approach to investigate the influence of intercellular communication on xenobiotic metabolism in liver. PMID:16550229

  8. Ferritin expression in rat hepatocytes and Kupffer cells after lead nitrate treatment.

    PubMed

    Fan, Yang; Yamada, Toshiyuki; Shimizu, Takeshi; Nanashima, Naoki; Akita, Miki; Suto, Kohji; Tsuchida, Shigeki

    2009-02-01

    Lead nitrate induces hepatocyte proliferation and subsequent apoptosis in rat livers. Iron is a constituent of heme and is also required for cell proliferation. In this study, the expression of ferritin light-chain (FTL), the major iron storage protein, was investigated in rat livers after a single intravenous injection of lead nitrate. Western blotting and immunohistochemistry revealed that FTL was increased in hepatocytes around the central veins and strongly expressed in nonparenchymal cells. Some FTL-positive nonparenchymal cells were identified as Kupffer cells that were positive for CD68. FTL-positive Kupffer cells occupied about 60% of CD68-positive cells in the periportal and perivenous areas. The relationships between FTL expression and apoptosis induction or the engulfment of apoptotic cells were examined. TUNEL-positive cells were increased in the treatment group, and enhanced expression of milk fat globule EGF-like 8 was demonstrated in some Kupffer cells and hepatocytes, indicating enhanced apoptosis induction and phagocytosis of apoptotic cells. FTL-positive Kupffer cells were not detected without lead nitrate treatment or in rat livers treated with clofibrate, which induces hepatocyte proliferation but not apoptosis. These results suggest that FTL expression in Kupffer cells after lead treatment is dependent on phagocytosis of apoptotic cells.

  9. [Effect of inducible nitric oxide on intracellular homeostasis of hepatocytes].

    PubMed

    Tang, Xi-Feng; Zhou, Dong-Yao; Kang, Ge-Fei

    2002-02-01

    To investigate the effects of inducible nitric oxide (NO) and exogenous NO on the intracellular homeostasis of the hepatocytes. Endogenous NO was induced by combined action of lipopolysaccharide (LPS) and cytokines in cultured rat hepatocytes, and exogenous NO was supplied by sodium nitroprusside (SNP) to stimulate the hepatocytes. The changes in intracellular malondialdehyde (MDA), reduced glutathione(GSH) and free calcium ([Ca2+]i) were observed. substantial increase by 7.97 times in intracellular MDA level and a decrease by 57.9% in GSH occurred in the hepatocytes after the cells had been incubated with LPS and cytokines for 24 h, which were reversed by 43.5% and 98.4% respectively by treatment with N(G)-monomethyl-L-arginine (NMMA), a competitive nitric oxide synthase (NOS) inhibitor. Verapamil significantly reduced both endogenous NO production and oxidative stress, while the effect of A23187 was not conspicuous. Incubation with chlorpromazine and Vitamine E (VitE), however, did not result in decreased release of NO by LPS- and cytokines-induced hepatocytes. After SNP exposure of the hepatocytes, the oxidative status was reversibly enhanced in a time-dependent manner. Short exposure to SNP led to a concentration-dependent inhibition of the rapid and transient increase in free calcium induced by K(+) depolarization and hepatopoietin-coupled calcium mobilization. Inducible NO may initiate and play a key role in the latter stages of metabolic and functional stress responses of hepatocytes against endotoxin and cytokines, when the reduction occurs in the capacity of NO to independently mediate lipid peroxidation and counteract oxidation. The inhibitory effect of NO on [Ca2+]i mobilization may be an important autoregulatory mechanism by means of negative feedback on protein kinase C-associated NOS induction.

  10. Parvovirus B19-Induced Apoptosis of Hepatocytes

    PubMed Central

    Poole, Brian D.; Karetnyi, Yuory V.; Naides, Stanley J.

    2004-01-01

    Parvovirus B19 (B19 virus) can persist in multiple tissues and has been implicated in a variety of diseases, including acute fulminant liver failure. The mechanism by which B19 virus induces liver failure remains unknown. Hepatocytes are nonpermissive for B19 virus replication. We previously reported that acute fulminant liver failure associated with B19 virus infection was characterized by hepatocellular dropout. We inoculated both primary hepatocytes and the hepatocellular carcinoma cell line Hep G2 with B19 virus and assayed for apoptosis by using annexin V staining. Reverse transcriptase PCR analysis and immunofluorescence demonstrated that B19 virus was able to infect the cells and produce its nonstructural protein but little or no structural capsid protein. Infection with B19 virus induced means of 28% of Hep G2 cells and 10% of primary hepatocytes to undergo apoptosis, which were four- and threefold increases, respectively, over background levels. Analysis of caspase involvement showed that B19 virus-inoculated cultures had a significant increase in the number of cells with active caspase 3. Inhibition studies demonstrated that caspases 3 and 9, but not caspase 8, are required for B19 virus-induced apoptosis. PMID:15220451

  11. β-2 spectrin is involved in hepatocyte proliferation through the interaction of TGFβ/Smad and PI3K/AKT signalling.

    PubMed

    Wang, Zhijun; Song, Yuhu; Tu, Wei; He, Xingxing; Lin, Jusheng; Liu, Fang

    2012-08-01

    Transforming growth factor (TGF) β signalling pathway plays a crucial role in liver regeneration following partial hepatectomy in mice. Evidence demonstrated that β-2 Spectrin is involved in TGFβ/Smad signalling pathway as a Smad3/4 adaptor protein. The aim of this study was to explore the role of β-2 Spectrin in hepatocyte proliferation. β-2 Spectrin expression was evaluated in mice receiving partial hepatectomy. The effect of siRNA against β-2 Spectrin on hepatocyte proliferation was determined. The interaction between TGFβ/Smad and PI3K/Akt signalling was investigated. Hepatic β-2 Spectrin decreased dramatically 2 days after 70% hepatectomy in mice. In AML-12 cells, hepatocyte proliferation was inhibited after the stimulation of TGF β1 and a reduction in β-2 Spectrin mediated by siRNA resulted in increase in proliferative response. Confocal results revealed that β-2 Spectrin represented a key regulator in TGFβ/Smad signalling through controlling Smad3/4 subcellular localization. Moreover, Alternation of Akt phosphorylation led to the change in subcellular localization of Smad2, 3, 4 and β-2 Spectrin, A reduction in Smad2, 3 and 4 mediated by siRNA resulted in the induction of pAkt expression. These findings reveal that β-2 Spectrin plays a crucial role in hepatocyte proliferation, which contributes to liver regeneration following hepatectomy in mice. In addition, PI3K/Akt is involved in TGFβ/Smad signalling pathway through the interaction with Smad proteins and β-2 Spectrin. © 2012 John Wiley & Sons A/S.

  12. Flow cytometric method for scoring rat liver micronuclei with simultaneous assessments of hepatocyte proliferation.

    PubMed

    Avlasevich, Svetlana L; Khanal, Sumee; Singh, Priyanka; Torous, Dorothea K; Bemis, Jeffrey C; Dertinger, Stephen D

    2018-04-01

    The current report describes a newly devised method for automatically scoring the incidence of rat hepatocyte micronuclei (MNHEP) via flow cytometry, with concurrent assessments of hepatocyte proliferation-frequency of Ki-67-positive nuclei, and the proportion of polyploid nuclei. Proof-of-concept data are provided from experiments performed with 6-week old male Crl:CD(SD) rats exposed to diethylnitrosamine (DEN) or quinoline (QUIN) for 3 or 14 consecutive days. Non-perfused liver tissue was collected 4 days after cessation of treatment in the case of 3-day studies, or 1 day after last administration in the case of 14-day studies for processing and flow cytometric analysis. In addition to livers, blood samples were collected one day after final treatment for micronucleated reticulocyte (MN-RET) measurements. Dose-dependent increases in MNHEP, Ki-67-positive nuclei, and polyploidy were observed in 3- and 14-day DEN studies. Both treatment schedules resulted in elevated %MNHEP for QUIN-exposed rats, and while cell proliferation effects were subtle, appreciable increases to normalized liver weights were observed. Whereas DEN caused markedly higher %MNHEP when exposure was extended to two weeks, QUIN-induced MNHEP were slightly increased with protracted dosing. Parallel microscopy-based MNHEP frequencies were highly correlated with flow cytometry-based measurements (four study/aggregate R 2  = 0.80). No increases in MN-RET were seen in any of the four studies. Collectively, these results suggest liver micronuclei are amenable to an automated scoring technique that provides objective analyses and higher information content relative to conventional microscopy. Additional work is needed to expand the number and types of chemicals tested, identify the most advantageous treatment schedules, and test the transferability of the method. Environ. Mol. Mutagen. 59:176-187, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  13. Strategies for immortalization of primary hepatocytes

    PubMed Central

    Eva, Ramboer; Bram, De Craene; Joery, De Kock; Tamara, Vanhaecke; Geert, Berx; Vera, Rogiers; Mathieu, Vinken

    2014-01-01

    The liver has the unique capacity to regenerate in response to a damaging event. Liver regeneration is hereby largely driven by hepatocyte proliferation, which in turn relies on cell cycling. The hepatocyte cell cycle is a complex process that is tightly regulated by several well-established mechanisms. In vitro, isolated hepatocytes do not longer retain this proliferative capacity. However, in vitro cell growth can be boosted by immortalization of hepatocytes. Well-defined immortalization genes can be artificially overexpressed in hepatocytes or the cells can be conditionally immortalized leading to controlled cell proliferation. This paper discusses the current immortalization techniques and provides a state-of-the-art overview of the actually available immortalized hepatocyte-derived cell lines and their applications. PMID:24911463

  14. Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium

    PubMed Central

    1996-01-01

    Mature adult parenchymal hepatocytes, typically of restricted capacity to proliferate in culture, can now enter into clonal growth under the influence of hepatocyte growth factor (scatter factor) (HGF/SF), epidermal growth factor (EGF), and transforming growth factor alpha (TGFalpha) in the presence of a new chemically defined medium (HGM). The expanding populations of hepatocytes lose expression of hepatocyte specific genes (albumin, cytochrome P450 IIB1), acquire expression of markers expressed by bile duct epithelium (cytokeratin 19), produce TGFalpha and acidic FGF and assume a very simplified morphologic phenotype by electron microscopy. A major change associated with this transition is the decrease in ratio between transcription factors C/EBPalpha and C/EBPbeta, as well as the emergence in the proliferating hepatocytes of transcription factors AP1, NFkappaB. The liver associated transcription factors HNFI, HNF3, and HNF4 are preserved throughout this process. After population expansion and clonal growth, the proliferating hepatocytes can return to mature hepatocyte phenotype in the presence of EHS gel (Matrigel). This includes complete restoration of electron microscopic structure and albumin expression. The hepatocyte cultures however can instead be induced to form acinar/ductular structures akin to bile ductules (in the presence of HGF/SF and type I collagen). These transformations affect the entire population of the hepatocytes and occur even when DNA synthesis is inhibited. Similar acinar/ductular structures are seen in embryonic liver when HGF/SF and its receptor are expressed at high levels. These findings strongly support the hypothesis that mature hepatocytes can function as or be a source of bipotential facultative hepatic stem cells (hepatoblasts). These studies also provide evidence for the growth factor and matrix signals that govern these complex phenotypic transitions of facultative stem cells which are crucial for recovery from acute and

  15. Human extrahepatic portal vein obstruction correlates with decreased factor VII and protein C transcription but increased hepatocyte proliferation.

    PubMed

    Chiu, Bill; Melin-Aldana, Hector; Superina, Riccardo A

    2007-10-01

    A 3-year-old girl developed extrahepatic portal vein obstruction (EHPVO) after a liver transplant. She had sequelae of portal hypertension that required another transplantation. The circumstances allowed for comparison of liver-dependent coagulation factor production between the second donor liver and the explanted liver with EHPVO. Liver samples from the explanted first graft and the second transplant were obtained. Fresh tissue was used to perform reverse transcription-polymerase chain reaction with primers against factors V, VII, as well as VIII, protein C, and paraffin-embedded sections for hepatocyte proliferation using Ki-67 antibody as well as for apoptosis using TUNEL assay. The transcription of factor VII and that of protein C were decreased in the explant as compared with the newly transplanted liver (factor VII, 77% of the donor; protein C, 88% of the donor). The transcription of factor V and that of factor VIII were unchanged. The explant had a greater percentage of proliferating hepatocytes than the new organ (0.85% +/- 0.75% vs 0.11% +/- 0.21%). The percentage of apoptotic cells was similar between the 2 livers (0.09% +/- 0.13% vs 0.09% +/- 0.13%). Idiopathic EHPVO is associated with a reduction in liver-dependent coagulation factor transcription and an increase in hepatocyte proliferation. Portal blood flow deprivation alters hepatic homeostasis and initiates mechanisms that attempt to restore liver-dependent coagulation factors.

  16. Transcription factors ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes.

    PubMed

    Zellmer, Sebastian; Schmidt-Heck, Wolfgang; Godoy, Patricio; Weng, Honglei; Meyer, Christoph; Lehmann, Thomas; Sparna, Titus; Schormann, Wiebke; Hammad, Seddik; Kreutz, Clemens; Timmer, Jens; von Weizsäcker, Fritz; Thürmann, Petra A; Merfort, Irmgard; Guthke, Reinhard; Dooley, Steven; Hengstler, Jan G; Gebhardt, Rolf

    2010-12-01

    The cellular basis of liver regeneration has been intensely investigated for many years. However, the mechanisms initiating hepatocyte "plasticity" and priming for proliferation are not yet fully clear. We investigated alterations in gene expression patterns during the first 72 hours of C57BL/6N mouse hepatocyte culture on collagen monolayers (CM), which display a high basal frequency of proliferation in the absence of cytokines. Although many metabolic genes were down-regulated, genes related to mitogen-activated protein kinase (MAPK) signaling and cell cycle were up-regulated. The latter genes showed an overrepresentation of transcription factor binding sites (TFBS) for ETF (TEA domain family member 2), E2F1 (E2F transcription factor 1), and SP-1 (Sp1 transcription factor) (P < 0.001), all depending on MAPK signaling. Time-dependent increase of ERK1/2 phosphorylation occurred during the first 48 hours (and beyond) in the absence of cytokines, accompanied by an enhanced bromodeoxyuridine labeling index of 20%. The MEK inhibitor PD98059 blunted these effects indicating MAPK signaling as major trigger for this cytokine-independent proliferative response. In line with these in vitro findings, liver tissue of mice challenged with CCl(4) displayed hepatocytes with intense p-ERK1/2 staining and nuclear SP-1 and E2F1 expression. Furthermore, differentially expressed genes in mice after partial hepatectomy contained overrepresented TFBS for ETF, E2F1, and SP-1 and displayed increased expression of E2F1. Cultivation of murine hepatocytes on CM primes cells for proliferation through cytokine-independent activation of MAPK signaling. The transcription factors ETF, E2F1, and SP-1 seem to play a pronounced role in mediating proliferation-dependent differential gene expression. Similar events, but on a shorter time-scale, occur very early after liver damage in vivo. Copyright © 2010 American Association for the Study of Liver Diseases.

  17. GGPPS deficiency aggravates CCl4-induced liver injury by inducing hepatocyte apoptosis.

    PubMed

    Chen, Wei-Bo; Lai, Shan-Shan; Yu, De-Cai; Liu, Jia; Jiang, Shan; Zhao, Dan-Dan; Ding, Yi-Tao; Li, Chao-Jun; Xue, Bin

    2015-04-28

    GGPPS catalyses the expression of GGPP, a key protein in the mevalonate metabolic pathway. HMG-CoA reductase inhibitor statins can induce liver injury by inhibiting GGPP. However, the function of GGPPS in liver injury has not yet been revealed. In this study, we found that GGPPS increased in liver injury and that GGPPS deletion augmented liver injury and fibrosis. GGPPS inhibition induced hepatocyte apoptosis, inflammation and TGF-β1 secretion, which activated hepatic stellate cells. Our findings imply that GGPPS deletion induces hepatocyte apoptosis, which makes the liver vulnerable to hepatotoxicity. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Oxidative stress is involved in Dasatinib-induced apoptosis in rat primary hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Tao; Luo, Peihua; Zhu, Hong

    2012-06-15

    Dasatinib, a multitargeted inhibitor of BCR–ABL and SRC kinases, exhibits antitumor activity and extends the survival of patients with chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL). However, some patients suffer from hepatotoxicity, which occurs through an unknown mechanism. In the present study, we found that Dasatinib could induce hepatotoxicity both in vitro and in vivo. Dasatinib reduced the cell viability of rat primary hepatocytes, induced the release of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) in vitro, and triggered the ballooning degeneration of hepatocytes in Sprague–Dawley rats in vivo. Apoptotic markers (chromatin condensation, cleaved caspase-3 andmore » cleaved PARP) were detected to indicate that the injury induced by Dasatinib in hepatocytes in vitro was mediated by apoptosis. This result was further validated in vivo using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays. Here we found that Dasatinib dramatically increased the level of reactive oxygen species (ROS) in hepatocytes, reduced the intracellular glutathione (GSH) content, attenuated the activity of superoxide dismutase (SOD), generated malondialdehyde (MDA), a product of lipid peroxidation, decreased the mitochondrial membrane potential, and activated nuclear factor erythroid 2-related factor 2 (Nrf2) and mitogen-activated protein kinases (MAPK) related to oxidative stress and survival. These results confirm that oxidative stress plays a pivotal role in Dasatinib-mediated hepatotoxicity. N-acetylcysteine (NAC), a typical antioxidant, can scavenge free radicals, attenuate oxidative stress, and protect hepatocytes against Dasatinib-induced injury. Thus, relieving oxidative stress is a viable strategy for reducing Dasatinib-induced hepatotoxicity. -- Highlights: ►Dasatinib shows potential hepatotoxicity both in vitro and in vivo. ►Apoptosis plays a vital role in

  19. Curcumin attenuates insulin resistance in hepatocytes by inducing Nrf2 nuclear translocation.

    PubMed

    Zhao, Shu-Guang; Li, Qiang; Liu, Zhen-Xiong; Wang, Jing-Jie; Wang, Xv-Xia; Qin, Ming; Wen, Qin-Sheng

    2011-01-01

    NF-E2-Related Factor-2 (Nrf2) is a transcription factor that plays a crucial role in the cellular protection against oxidative stress. Curcumin has been reported to induce Nrf2 nuclear translocation and upregulate the expression of numerous reactive oxygen species (ROS) detoxifying and antioxidant genes in hepatocytes. This study was designed to investigate whether curcumin-induced Nrf2 nuclear translocation could reduce ROS-mediated insulin resistance in cultured LO2 hepatocytes. Human LO2 hepatocytes were incubated with curcumine and glucose oxidase (GO) in the presence/absence of wortmannin (a phosphatidyinositol 3-kinase (PI3K) inhibitor), oxidative stress, cellular damage, Nrf2 nuclear translocation and insulin resistance were measured. GO exposure significantly increased intracellular ROS, glutathione (GSH) depletion, malondialdehyde (MDA) formation, and increased activities of cellular lactate dehydrogenase (LDH) and aspartate amino transferase (AST), as well as causing insulin resistance. Curcumin pretreatment significantly attenuated these disturbances in intracellular ROS, liver enzyme activity and significantly antagonized the lipid peroxidation, GSH depletion and insulin resistance induced by GO in LO2 hepatocytes. These effects paralleled Nrf2 nuclear translocation induced by curcumin. Wortmannin partially blocked curcumin-induced Nrf2 nuclear translocation. In addition, wortmannin prevented curcumin-induced improvements in intracellular ROS, MDA formation, GSH depletion, liver enzyme activity and insulin resistance in cultured LO2 hepatocytes. These findings suggest that curcumin could reduce ROS-mediated insulin resistance in hepatocytes, at least in part through nuclear translocation of Nrf2.

  20. Functional Maturation of Induced Pluripotent Stem Cell Hepatocytes in Extracellular Matrix—A Comparative Analysis of Bioartificial Liver Microenvironments

    PubMed Central

    Wang, Bo; Jakus, Adam E.; Baptista, Pedro M.; Soker, Shay; Soto-Gutierrez, Alejandro; Abecassis, Michael M.; Shah, Ramille N.

    2016-01-01

    ) scaffolds, the present study demonstrated that hepatocyte-like cells derived via induced pluripotent stem cell (iPSC) technology mature on 3D extracellular matrix scaffolds as a result of 3D matrix structure and scaffold biology. The result is an improved hepatic phenotype with increased synthetic and catalytic potency, an improvement on the blunted phenotype of iPSC-derived hepatocytes, a critical limitation of iPSC technology. These findings provide insight into the influence of 3D microenvironments on the viability, proliferation, and function of iPSC hepatocytes to yield a more mature population of cells for cell toxicity studies and disease modeling. PMID:27421950

  1. Resveratrol Inhibited Hydroquinone-Induced Cytotoxicity in Mouse Primary Hepatocytes

    PubMed Central

    Wang, Da-Hong; Ootsuki, Yoshie; Fujita, Hirofumi; Miyazaki, Masahiro; Yie, Qinxia; Tsutsui, Ken; Sano, Kuniaki; Masuoka, Noriyoshi; Ogino, Keiki

    2012-01-01

    Hydroquinone (1,4-benzenediol) has been widely used in clinical situations and the cosmetic industry because of its depigmenting effects. Most skin-lightening hydroquinone creams contain 4%–5% hydroquinone. We have investigated the role of resveratrol in prevention of hydroquinone induced cytotoxicity in mouse primary hepatocytes. We found that 400 µM hydroquinone exposure alone induced apoptosis of the cells and also resulted in a significant drop of cell viability compared with the control, and pretreatment of resveratrol to a final concentration of 0.5 mM 1 h before hydroquinone exposure did not show a significant improvement in the survival rate of the hepatocytes, however, relatively higher concentrations of resveratrol (≥1 mM) inhibited apoptosis of the mouse primary hepatocytes and increased cell viability in a dose-dependent manner, and in particular the survival rate of the hepatocytes was recovered from 28% to near 100% by 5 mM resveratrol. Interestingly, pretreatment with resveratrol for longer time (24 h), even in very low concentrations (50 µM, 100 µM), blocked the damage of hydroquinone to the cells. We also observed that resveratrol pretreatment suppressed hydroquinone-induced expression of cytochrome P450 2E1 mRNA dose-dependently. The present study suggests that resveratrol protected the cells against hydroquinone-induced toxicity through its antioxidant function and possibly suppressive effect on the expression of cytochrome P450 2E1. PMID:23202692

  2. Resveratrol inhibited hydroquinone-induced cytotoxicity in mouse primary hepatocytes.

    PubMed

    Wang, Da-Hong; Ootsuki, Yoshie; Fujita, Hirofumi; Miyazaki, Masahiro; Yie, Qinxia; Tsutsui, Ken; Sano, Kuniaki; Masuoka, Noriyoshi; Ogino, Keiki

    2012-09-19

    Hydroquinone (1,4-benzenediol) has been widely used in clinical situations and the cosmetic industry because of its depigmenting effects. Most skin-lightening hydroquinone creams contain 4%-5% hydroquinone. We have investigated the role of resveratrol in prevention of hydroquinone induced cytotoxicity in mouse primary hepatocytes. We found that 400 µM hydroquinone exposure alone induced apoptosis of the cells and also resulted in a significant drop of cell viability compared with the control, and pretreatment of resveratrol to a final concentration of 0.5 mM 1 h before hydroquinone exposure did not show a significant improvement in the survival rate of the hepatocytes, however, relatively higher concentrations of resveratrol (≥1 mM) inhibited apoptosis of the mouse primary hepatocytes and increased cell viability in a dose-dependent manner, and in particular the survival rate of the hepatocytes was recovered from 28% to near 100% by 5 mM resveratrol. Interestingly, pretreatment with resveratrol for longer time (24 h), even in very low concentrations (50 µM, 100 µM), blocked the damage of hydroquinone to the cells. We also observed that resveratrol pretreatment suppressed hydroquinone-induced expression of cytochrome P450 2E1 mRNA dose-dependently. The present study suggests that resveratrol protected the cells against hydroquinone-induced toxicity through its antioxidant function and possibly suppressive effect on the expression of cytochrome P450 2E1.

  3. Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress.

    PubMed

    Wages, Phillip A; Cheng, Wan-Yun; Gibbs-Flournoy, Eugene; Samet, James M

    2016-12-01

    Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular techniques. However, there is increasing evidence that low-level exposure to a variety of toxicants dysregulates cellular physiology by interfering with redox-dependent processes. The study of events involved in redox toxicology requires methodology capable of detecting transient modifications at relatively low signal strength. This article reviews the advantages of live-cell imaging for redox toxicology studies. Toxicological studies with xenobiotics of supra-physiological reactivity require careful consideration when using fluorogenic sensors in order to avoid potential artifacts and false negatives. Fortunately, experiments conducted for the purpose of validating the use of these sensors in toxicological applications often yield unexpected insights into the mechanisms through which xenobiotic exposure induces oxidant stress. Live-cell imaging using a new generation of small molecule and genetically encoded fluorophores with excellent sensitivity and specificity affords unprecedented spatiotemporal resolution that is optimal for redox toxicology studies. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Published by Elsevier B.V.

  4. Copper induces hepatocyte injury due to the endoplasmic reticulum stress in cultured cells and patients with Wilson disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oe, Shinji, E-mail: ooes@med.uoeh-u.ac.jp; Miyagawa, Koichiro, E-mail: koichiro@med.uoeh-u.ac.jp; Honma, Yuichi, E-mail: y-homma@med.uoeh-u.ac.jp

    Copper is an essential trace element, however, excess copper is harmful to human health. Excess copper-derived oxidants contribute to the progression of Wilson disease, and oxidative stress induces accumulation of abnormal proteins. It is known that the endoplasmic reticulum (ER) plays an important role in proper protein folding, and that accumulation of misfolded proteins disturbs ER homeostasis resulting in ER stress. However, copper-induced ER homeostasis disturbance has not been fully clarified. We treated human hepatoma cell line (Huh7) and immortalized-human hepatocyte cell line (OUMS29) with copper and chemical chaperones, including 4-phenylbutyrate and ursodeoxycholic acid. We examined copper-induced oxidative stress, ERmore » stress and apoptosis by immunofluorescence microscopy and immunoblot analyses. Furthermore, we examined the effects of copper on carcinogenesis. Excess copper induced not only oxidative stress but also ER stress. Furthermore, excess copper induced DNA damage and reduced cell proliferation. Chemical chaperones reduced this copper-induced hepatotoxicity. Excess copper induced hepatotoxicity via ER stress. We also confirmed the abnormality of ultra-structure of the ER of hepatocytes in patients with Wilson disease. These findings show that ER stress plays a pivotal role in Wilson disease, and suggests that chemical chaperones may have beneficial effects in the treatment of Wilson disease.« less

  5. Functional expression and regulation of drug transporters in monolayer- and sandwich-cultured mouse hepatocytes.

    PubMed

    Noel, Gregory; Le Vee, Marc; Moreau, Amélie; Stieger, Bruno; Parmentier, Yannick; Fardel, Olivier

    2013-04-11

    Primary hepatocyte cultures are now considered as convenient models for in vitro analyzing liver drug transport. However, if primary human and rat hepatocytes have been well-characterized with respect to drug transporter expression and regulation, much less is known for primary mouse hepatocytes. The present study was therefore designed to gain insights about this point. The profile of sinusoidal and canalicular drug transporter mRNA expression in short time (4h)-cultured mouse hepatocytes was found to be highly correlated with that of freshly isolated hepatocytes; by contrast, those of counterparts cultured for a longer time (until 4 days) either in monolayer configurations on plastic or collagen or in sandwich configuration with matrigel were profoundly altered: uptake drug transporters such as Oct1, Oatps and Oat2 were thus down-regulated, whereas most of efflux transporters such as Mdr1a/b, Mrp3, Mrp4 and Bcrp were induced. Moreover, short time-cultured hepatocytes exhibited the highest levels of sinusoidal influx transporter activities. Transporter-mediated drug secretion into canalicular networks was however only observed in sandwich-cultured hepatocytes. Mouse hepatocytes cultured either in monolayer or sandwich configurations were finally shown to exhibit up-regulation of referent transporters in response to exposure to prototypical activators of the drug sensing receptors pregnane X receptor, aryl hydrocarbon receptor or constitutive androstane receptor. Taken together, these data demonstrate the feasibility of using primary mouse hepatocytes for investigating potential interactions of xenobiotics with hepatic transporter activity or regulation, provided that adequate culture conditions are retained. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The potential of induced pluripotent stem cell derived hepatocytes.

    PubMed

    Hannoun, Zara; Steichen, Clara; Dianat, Noushin; Weber, Anne; Dubart-Kupperschmitt, Anne

    2016-07-01

    Orthotopic liver transplantation remains the only curative treatment for liver disease. However, the number of patients who die while on the waiting list (15%) has increased in recent years as a result of severe organ shortages; furthermore the incidence of liver disease is increasing worldwide. Clinical trials involving hepatocyte transplantation have provided encouraging results. However, transplanted cell function appears to often decline after several months, necessitating liver transplantation. The precise aetiology of the loss of cell function is not clear, but poor engraftment and immune-mediated loss appear to be important factors. Also, primary human hepatocytes (PHH) are not readily available, de-differentiate, and die rapidly in culture. Hepatocytes are available from other sources, such as tumour-derived human hepatocyte cell lines and immortalised human hepatocyte cell lines or porcine hepatocytes. However, all these cells suffer from various limitations such as reduced or differences in functions or risk of zoonotic infections. Due to their significant potential, one possible inexhaustible source of hepatocytes is through the directed differentiation of human induced pluripotent stem cells (hiPSCs). This review will discuss the potential applications and existing limitations of hiPSC-derived hepatocytes in regenerative medicine, drug screening, in vitro disease modelling and bioartificial livers. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  7. Nuclear receptor CAR (NR1I3) is essential for DDC-induced liver injury and oval cell proliferation in mouse liver

    PubMed Central

    Yamazaki, Yuichi; Moore, Rick; Negishi, Masahiko

    2014-01-01

    The liver is endowed with the ability to regenerate hepatocytes in response to injury. When this regeneration ability is impaired during liver injury, oval cells, which are considered to be postnatal hepatic progenitors, proliferate and differentiate into hepatocytes. Here we have demonstrated that 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) activates the nuclear receptor constitutive active/androstane receptor (CAR), resulting in proliferation of oval cells in mouse liver. Activation of CAR by DDC was shown by hepatic nuclear CAR accumulation and cytochrome P450 (CYP)2B10 mRNA induction after feeding a 0.1% DDC-containing diet to Car +/+ mice. After being fed the DDC diet, Car +/+, but not Car−/− mice, developed severe liver injury and an A6 antibody-stained ductular reaction in an area around the portal tract. Oval cell proliferation was confirmed by laser capture microdissection and real-time PCR; mRNAs for the two oval cell markers epithelial cell adhesion molecule and TROP2 were specifically induced in the periportal region of DDC diet-fed Car +/+, but not Car−/− mice. Although rates of both hepatocyte growth and death were initially enhanced only in DDC diet-fed Car +/+ mice, growth was attenuated when oval cells proliferated, whereas death continued unabated. DDC-induced liver injury, which differs from other CAR activators such as phenobarbital, occurred in the periportal region where cells developed hypertrophy, accumulated porphyrin crystals and inflammation developed, all in association with the proliferation of oval cells. Thus, CAR provides an excellent experimental model for further investigations into its roles in liver regeneration, as well as the development of diseases such as hepatocellular carcinoma. PMID:21826054

  8. Nuclear receptor CAR (NR1I3) is essential for DDC-induced liver injury and oval cell proliferation in mouse liver.

    PubMed

    Yamazaki, Yuichi; Moore, Rick; Negishi, Masahiko

    2011-11-01

    The liver is endowed with the ability to regenerate hepatocytes in response to injury. When this regeneration ability is impaired during liver injury, oval cells, which are considered to be postnatal hepatic progenitors, proliferate and differentiate into hepatocytes. Here we have demonstrated that 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) activates the nuclear receptor constitutive active/androstane receptor (CAR), resulting in proliferation of oval cells in mouse liver. Activation of CAR by DDC was shown by hepatic nuclear CAR accumulation and cytochrome P450 (CYP)2B10 mRNA induction after feeding a 0.1% DDC-containing diet to Car(+/+) mice. After being fed the DDC diet, Car(+/+), but not Car(-/-) mice, developed severe liver injury and an A6 antibody-stained ductular reaction in an area around the portal tract. Oval cell proliferation was confirmed by laser capture microdissection and real-time PCR; mRNAs for the two oval cell markers epithelial cell adhesion molecule and TROP2 were specifically induced in the periportal region of DDC diet-fed Car(+/+), but not Car(-/-) mice. Although rates of both hepatocyte growth and death were initially enhanced only in DDC diet-fed Car(+/+) mice, growth was attenuated when oval cells proliferated, whereas death continued unabated. DDC-induced liver injury, which differs from other CAR activators such as phenobarbital, occurred in the periportal region where cells developed hypertrophy, accumulated porphyrin crystals and inflammation developed, all in association with the proliferation of oval cells. Thus, CAR provides an excellent experimental model for further investigations into its roles in liver regeneration, as well as the development of diseases such as hepatocellular carcinoma.

  9. CD40 activation induces apoptosis in cultured human hepatocytes via induction of cell surface fas ligand expression and amplifies fas-mediated hepatocyte death during allograft rejection.

    PubMed

    Afford, S C; Randhawa, S; Eliopoulos, A G; Hubscher, S G; Young, L S; Adams, D H

    1999-01-18

    We propose that a novel mechanism of hepatocyte apoptosis, involving a cooperative interaction between CD40 and Fas, is involved in the hepatocyte loss of chronic liver allograft rejection. We detected increased hepatocyte expression of Fas, Fas ligand (FasL), and CD40 associated with dropout of centrilobular (acinar zone 3) hepatocytes in chronic allograft rejection. Expression of CD40 ligand (CD40L) was also increased but was largely restricted to CD68(+) macrophages. A functional role for CD40 and Fas in hepatocyte apoptosis was demonstrated in vitro using primary human hepatocytes and the HepG2 cell line in both of which apoptosis was induced, not only by cross-linking Fas directly but also via CD40 activation. Our data suggest that CD40 activation induces apoptosis via Fas because (a) ligation of CD40 upregulated hepatocyte FasL expression, and (b) apoptosis induced via activation of CD40 was prevented by a neutralizing monoclonal antibody to FasL. Thus, CD40 engagement triggers apoptosis of human hepatocytes and might amplify Fas-dependent hepatocyte apoptosis in chronic rejection and other inflammatory liver diseases in which Fas-mediated apoptosis is involved.

  10. Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition.

    PubMed

    Ishihara, Yasuhiro; Shiba, Dai; Shimamoto, Norio

    2006-07-15

    Two mechanisms have been proposed to explain quinone cytotoxicity: oxidative stress via the redox cycle and the arylation of intracellular nucleophiles. As the redox cycle is catalyzed by NADPH cytochrome P450 reductase, cytochrome P450 systems are expected to be related to the cytotoxicity induced by redox-cycling quinones. Thus, we investigated the relationship between cytochrome P450 systems and quinone toxicity for rat primary hepatocytes using an arylator, 1,4-benzoquinone (BQ), and a redox cycler, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ). The hepatocyte toxicity of both BQ and DMNQ increased in a time- and dose-dependent manner. Pretreatment with cytochrome P450 inhibitors, such as SKF-525A (SKF), ketoconazole and 2-methy-1,2-di-3-pyridyl-1-propanone, enhanced the hepatocyte toxicity induced by DMNQ but did not affect BQ-induced hepatocyte toxicity. The production of superoxide anion and the levels of glutathione disulfide and thiobarbituric-acid-reactive substances were increased by treatment with DMNQ, and SKF pretreatment further enhanced their increases. In addition, NADPH oxidation in microsomes was increased by treatment with DMNQ and further augmented by pretreatment with SKF, and a NADPH cytochrome P450 reductase inhibitor, diphenyleneiodonium chloride completely suppressed NADPH oxidations increased by treatment with either DMNQ- or DMNQ + SKF. Pretreatment with antioxidants, such as alpha-tocopherol, reduced glutathione, N-acetyl cysteine or an iron ion chelator deferoxamine, totally suppressed DMNQ- and DMNQ + SKF-induced hepatocyte toxicity. These results indicate that the hepatocyte toxicity of redox-cycling quinones is enhanced under cytochrome P450 inhibition, and that this enhancement is caused by the potentiation of oxidative stress.

  11. Live-cell Imaging Approaches for the Investigation of Xenobiotic-Induced Oxidant Stress

    EPA Science Inventory

    BACKGROUND: Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular t...

  12. Immunolocalization of hypochlorite-induced, catalase-bound free radical formation in mouse hepatocytes

    PubMed Central

    Bonini, Marcelo G.; Siraki, Arno G.; Atanassov, Boyko S.; Mason., Ronald P.

    2007-01-01

    The establishment of oxidants as mediators of signal transduction has renewed the interest of investigators in oxidant production and metabolism. In particular, H2O2 has been demonstrated to play pivotal roles in mediating cell differentiation, proliferation and death. Intracellular concentrations of H2O2 are modulated by its rate of production and its rate of decomposition by catalase and peroxidases. In inflammation and infection some of the H2O2 is converted to hypochlorous acid, a key mediator of the host immune response against pathogens. In vivo HOCl production is mediated by myeloperoxidase, which uses excess H2O2 to oxidize Cl−. Mashino and Fridovich (1988) observed that a high excess of HOCl over catalase inactivated the enzyme by mechanisms that remain unclear. The potential relevance of this as an alternative mechanism for catalase activity control and its potential impact on H2O2-mediated signaling and HOCl-production compelled us to explore in depth the HOCl-mediated catalase inactivation pathways. Here, we demonstrate that HOCl induces formation of catalase protein radicals and carbonyls, which are temporally correlated with catalase aggregation. Hypochlorite-induced catalase aggregation and free radical formation that paralleled the enzyme loss of function in vitro were also detected in mouse hepatocytes treated with the oxidant. Interestingly, the novel immunospin-trapping technique was applied to image radical production in the cells. Indeed, in HOCl-treated hepatocytes, catalase and protein-DMPO nitrone adducts were colocalized in the cells’ peroxisomes. In contrast, when hepatocytes from catalase-knockout mice were treated with hypochlorous acid, there was extensive production of free radicals in the plasma membrane. Because free radicals are short-lived species with fundamental roles in biology, the possibility of their detection and localization to cell compartments is expected to open new and stimulating research venues in the interface of

  13. AMPK Activation Prevents and Reverses Drug-Induced Mitochondrial and Hepatocyte Injury by Promoting Mitochondrial Fusion and Function

    PubMed Central

    Taniane, Caitlin; Farrell, Geoffrey; Arias, Irwin M.; Lippincott-Schwartz, Jennifer; Fu, Dong

    2016-01-01

    Mitochondrial damage is the major factor underlying drug-induced liver disease but whether conditions that thwart mitochondrial injury can prevent or reverse drug-induced liver damage is unclear. A key molecule regulating mitochondria quality control is AMP activated kinase (AMPK). When activated, AMPK causes mitochondria to elongate/fuse and proliferate, with mitochondria now producing more ATP and less reactive oxygen species. Autophagy is also triggered, a process capable of removing damaged/defective mitochondria. To explore whether AMPK activation could potentially prevent or reverse the effects of drug-induced mitochondrial and hepatocellular damage, we added an AMPK activator to collagen sandwich cultures of rat and human hepatocytes exposed to the hepatotoxic drugs, acetaminophen or diclofenac. In the absence of AMPK activation, the drugs caused hepatocytes to lose polarized morphology and have significantly decreased ATP levels and viability. At the subcellular level, mitochondria underwent fragmentation and had decreased membrane potential due to decreased expression of the mitochondrial fusion proteins Mfn1, 2 and/or Opa1. Adding AICAR, a specific AMPK activator, at the time of drug exposure prevented and reversed these effects. The mitochondria became highly fused and ATP production increased, and hepatocytes maintained polarized morphology. In exploring the mechanism responsible for this preventive and reversal effect, we found that AMPK activation prevented drug-mediated decreases in Mfn1, 2 and Opa1. AMPK activation also stimulated autophagy/mitophagy, most significantly in acetaminophen-treated cells. These results suggest that activation of AMPK prevents/reverses drug-induced mitochondrial and hepatocellular damage through regulation of mitochondrial fusion and autophagy, making it a potentially valuable approach for treatment of drug-induced liver injury. PMID:27792760

  14. Chronic alcohol feeding potentiates hormone‐induced calcium signalling in hepatocytes

    PubMed Central

    Bartlett, Paula J.; Antony, Anil Noronha; Agarwal, Amit; Hilly, Mauricette; Prince, Victoria L.; Combettes, Laurent; Hoek, Jan B.

    2017-01-01

    Key points Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined.We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca2+‐mobilizing hormones resulting in a leftward shift in the concentration–response relationship and the transition from oscillatory to more sustained and prolonged Ca2+ increases.Our data demonstrate that alcohol‐dependent adaptation in the Ca2+ signalling pathway occurs at the level of hormone‐induced inositol 1,4,5 trisphosphate (IP3) production and does not involve changes in the sensitivity of the IP3 receptor or size of internal Ca2+ stores.We suggest that prolonged and aberrant hormone‐evoked Ca2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol‐induced hepatocyte injury. Abstract ‘Adaptive’ responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide‐dependent cytosolic calcium ([Ca2+]i) increases, which can adversely affect mitochondrial Ca2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose–response for Ca2+‐mobilizing hormones resulting in more sustained and prolonged [Ca2+]i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone‐induced calcium increases in control livers, but not after chronic alcohol‐feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone‐induced inositol 1,4,5 trisphosphate (IP3) accumulation and

  15. Chronic alcohol feeding potentiates hormone-induced calcium signalling in hepatocytes.

    PubMed

    Bartlett, Paula J; Antony, Anil Noronha; Agarwal, Amit; Hilly, Mauricette; Prince, Victoria L; Combettes, Laurent; Hoek, Jan B; Gaspers, Lawrence D

    2017-05-15

    Chronic alcohol consumption causes a spectrum of liver diseases, but the pathogenic mechanisms driving the onset and progression of disease are not clearly defined. We show that chronic alcohol feeding sensitizes rat hepatocytes to Ca 2+ -mobilizing hormones resulting in a leftward shift in the concentration-response relationship and the transition from oscillatory to more sustained and prolonged Ca 2+ increases. Our data demonstrate that alcohol-dependent adaptation in the Ca 2+ signalling pathway occurs at the level of hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) production and does not involve changes in the sensitivity of the IP 3 receptor or size of internal Ca 2+ stores. We suggest that prolonged and aberrant hormone-evoked Ca 2+ increases may stimulate the production of mitochondrial reactive oxygen species and contribute to alcohol-induced hepatocyte injury. ABSTRACT: 'Adaptive' responses of the liver to chronic alcohol consumption may underlie the development of cell and tissue injury. Alcohol administration can perturb multiple signalling pathways including phosphoinositide-dependent cytosolic calcium ([Ca 2+ ] i ) increases, which can adversely affect mitochondrial Ca 2+ levels, reactive oxygen species production and energy metabolism. Our data indicate that chronic alcohol feeding induces a leftward shift in the dose-response for Ca 2+ -mobilizing hormones resulting in more sustained and prolonged [Ca 2+ ] i increases in both cultured hepatocytes and hepatocytes within the intact perfused liver. Ca 2+ increases were initiated at lower hormone concentrations, and intercellular calcium wave propagation rates were faster in alcoholics compared to controls. Acute alcohol treatment (25 mm) completely inhibited hormone-induced calcium increases in control livers, but not after chronic alcohol-feeding, suggesting desensitization to the inhibitory actions of ethanol. Hormone-induced inositol 1,4,5 trisphosphate (IP 3 ) accumulation and phospholipase C

  16. Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital.

    PubMed

    Schraplau, Anne; Schewe, Bettina; Neuschäfer-Rube, Frank; Ringel, Sebastian; Neuber, Corinna; Kleuser, Burkhard; Püschel, Gerhard P

    2015-02-03

    Xenobiotics may interfere with the hypothalamic-pituitary-thyroid endocrine axis by inducing enzymes that inactivate thyroid hormones and thereby reduce the metabolic rate. This induction results from an activation of xeno-sensing nuclear receptors. The current study shows that benzo[a]pyrene, a frequent contaminant of processed food and activator of the arylhydrocarbon receptor (AhR) activated the promoter and induced the transcription of the nuclear receptor constitutive androstane receptor (CAR, NR1I3) in rat hepatocytes. Likewise, phenobarbital induced the AhR transcription. This mutual induction of the nuclear receptors enhanced the phenobarbital-dependent induction of the prototypic CAR target gene Cyp2b1 as well as the AhR-dependent induction of UDP-glucuronosyltransferases. In both cases, the induction by the combination of both xenobiotics was more than the sum of the induction by either substance alone. By inducing the AhR, phenobarbital enhanced the benzo[a]pyrene-dependent reduction of thyroid hormone half-life and the benzo[a]pyrene-dependent increase in the rate of thyroid hormone glucuronide formation in hepatocyte cultures. CAR ligands might thus augment the endocrine disrupting potential of AhR activators by an induction of the AhR. Copyright © 2014. Published by Elsevier Ireland Ltd.

  17. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes.

    PubMed

    Wang, Yue; Gao, Hong; Na, Xiao-Lin; Dong, Shu-Ying; Dong, Hong-Wei; Yu, Jia; Jia, Li; Wu, Yong-Hui

    2016-11-30

    The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL) for 24 h in the presence or absence of N -acetyl-l-cysteine (NAC). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH), activities of superoxide dismutase (SOD) and catalase (CAT), mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes.

  18. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes

    PubMed Central

    Wang, Yue; Gao, Hong; Na, Xiao-Lin; Dong, Shu-Ying; Dong, Hong-Wei; Yu, Jia; Jia, Li; Wu, Yong-Hui

    2016-01-01

    The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL) for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH), activities of superoxide dismutase (SOD) and catalase (CAT), mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes. PMID:27916916

  19. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montesano, Roberto; Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hithertomore » unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.« less

  20. Dexamethasone treatment induces the reprogramming of pancreatic acinar cells to hepatocytes and ductal cells.

    PubMed

    Al-Adsani, Amani; Burke, Zoë D; Eberhard, Daniel; Lawrence, Katherine L; Shen, Chia-Ning; Rustgi, Anil K; Sakaue, Hiroshi; Farrant, J Mark; Tosh, David

    2010-10-27

    The pancreatic exocrine cell line AR42J-B13 can be reprogrammed to hepatocytes following treatment with dexamethasone. The question arises whether dexamethasone also has the capacity to induce ductal cells as well as hepatocytes. AR42J-B13 cells were treated with and without dexamethasone and analyzed for the expression of pancreatic exocrine, hepatocyte and ductal markers. Addition of dexamethasone inhibited pancreatic amylase expression, induced expression of the hepatocyte marker transferrin as well as markers typical of ductal cells: cytokeratin 7 and 19 and the lectin peanut agglutinin. However, the number of ductal cells was low compared to hepatocytes. The proportion of ductal cells was enhanced by culture with dexamethasone and epidermal growth factor (EGF). We established several features of the mechanism underlying the transdifferentiation of pancreatic exocrine cells to ductal cells. Using a CK19 promoter reporter, we show that a proportion of the ductal cells arise from differentiated pancreatic exocrine-like cells. We also examined whether C/EBPβ (a transcription factor important in the conversion of pancreatic cells to hepatocytes) could alter the conversion from acinar cells to a ductal phenotype. Overexpression of an activated form of C/EBPβ in dexamethasone/EGF-treated cells provoked the expression of hepatocyte markers and inhibited the expression of ductal markers. Conversely, ectopic expression of a dominant-negative form of C/EBPβ, liver inhibitory protein, inhibited hepatocyte formation in dexamethasone-treated cultures and enhanced the ductal phenotype. These results indicate that hepatocytes and ductal cells may be induced from pancreatic exocrine AR42J-B13 cells following treatment with dexamethasone. The conversion from pancreatic to hepatocyte or ductal cells is dependent upon the expression of C/EBPβ.

  1. Hepatocyte-based in vitro model for assessment of drug-induced cholestasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sagnik, E-mail: Sagnik.Chatterjee@pharm.kuleuven.be; Richert, Lysiane, E-mail: l.richert@kaly-cell.com; Augustijns, Patrick, E-mail: Patrick.Augustijns@pharm.kuleuven.be

    Early detection of drug-induced cholestasis remains a challenge during drug development. We have developed and validated a biorelevant sandwich-cultured hepatocytes- (SCH) based model that can identify compounds causing cholestasis by altering bile acid disposition. Human and rat SCH were exposed (24–48 h) to known cholestatic and/or hepatotoxic compounds, in the presence or in the absence of a concentrated mixture of bile acids (BAs). Urea assay was used to assess (compromised) hepatocyte functionality at the end of the incubations. The cholestatic potential of the compounds was expressed by calculating a drug-induced cholestasis index (DICI), reflecting the relative residual urea formation bymore » hepatocytes co-incubated with BAs and test compound as compared to hepatocytes treated with test compound alone. Compounds with clinical reports of cholestasis, including cyclosporin A, troglitazone, chlorpromazine, bosentan, ticlopidine, ritonavir, and midecamycin showed enhanced toxicity in the presence of BAs (DICI ≤ 0.8) for at least one of the tested concentrations. In contrast, the in vitro toxicity of compounds causing hepatotoxicity by other mechanisms (including diclofenac, valproic acid, amiodarone and acetaminophen), remained unchanged in the presence of BAs. A safety margin (SM) for drug-induced cholestasis was calculated as the ratio of lowest in vitro concentration for which was DICI ≤ 0.8, to the reported mean peak therapeutic plasma concentration. SM values obtained in human SCH correlated well with reported % incidence of clinical drug-induced cholestasis, while no correlation was observed in rat SCH. This in vitro model enables early identification of drug candidates causing cholestasis by disturbed BA handling. - Highlights: • Novel in vitro assay to detect drug-induced cholestasis • Rat and human sandwich-cultured hepatocytes (SCH) as in vitro models • Cholestatic compounds sensitize SCH to toxic effects of accumulating bile acids

  2. Divergent mechanisms of insulin-like growth factor I and II on rat hepatocyte proliferation.

    PubMed

    Raper, S; Kothary, P; Ishoo, E; Dikin, M; Kokudo, N; Hashimoto, M; DeMatteo, R P

    1995-07-21

    Insulin-like growth factors I and II are peptides with a structural homology for proinsulin, and are involved in hepatocyte proliferation. IGF-I and IGF-II, however, have different metabolic roles, and their mechanisms of action are incompletely known. We hypothesized that IGF-I and IGF-II act by different signal transduction pathways. To test this hypothesis, hepatocytes from 200 g male Sprague-Dawley rats were isolated by a two-step collagenase perfusion technique and plated at a density of 10(5) cells/16 mm Primaria plate. Proliferation was measured by [3H]thymidine ([3H]thy) incorporation into DNA, and an autoradiographic nuclear labeling index (LI). To analyze signal transduction, cyclic AMP (cAMP) levels were measured 5 min after addition of reagents by a radioimmunoassay. Reagents (doses) used were: IGF-I (2 nM), IGF-II (2 nM), the inhibitory peptide somatostatin-14 (SS14) (10 nM), and the adenylyl cyclase antagonist dideoxyadenosine (DDA) (10 microM). A summary of the findings is as follows: (1) IGF-I stimulates [3H]thy, LI and cAMP accumulation. (2) IGF-II stimulates [3H]thy and LI but not cAMP; (3) IGF-I but not IGF-II effects are inhibited by SS14 and DDA. We conclude that the hepatotrophic effects of IGF-I and IGF-II occur by different mechanisms: IGF-I is cAMP-dependent, IGF-II is cAMP-independent.

  3. Generation of Hepatocytes from Pluripotent Stem Cells for Drug Screening and Developmental Modeling.

    PubMed

    Gieseck, Richard L; Vallier, Ludovic; Hannan, Nicholas R F

    2015-01-01

    Hepatocytes produced from the differentiation of human pluripotent stem cells can be used to study human development and liver disease, to investigate the toxicological response of novel drug candidates, and as an alternative source of primary cells for transplantation therapies. Here, we describe a method to produce hepatocytes by differentiating human pluripotent stem cells into definitive endoderm, patterning definitive endoderm into anterior definitive endoderm, specifying anterior definitive endoderm into hepatic endoderm, and differentiating hepatic endoderm into immature hepatocytes. These cells are further matured in either two-dimensional or three-dimensional culture conditions to produce cells capable of metabolizing xenobiotics and generating liver-specific proteins, such as albumin and alpha 1 antitrypsin.

  4. DISTINCT FUNCTIONS OF JNK AND C-JUN IN OXIDANT-INDUCED HEPATOCYTE DEATH

    PubMed Central

    Amir, Muhammad; Liu, Kun; Zhao, Enpeng; Czaja, Mark J.

    2013-01-01

    Overactivation of c-Jun N-terminal kinase (JNK)/c-Jun signaling is a central mechanism of hepatocyte injury and death including that from oxidative stress. However, the functions of JNK and c-Jun are still unclear, and this pathway also inhibits hepatocyte death. Previous studies of menadione-induced oxidant stress demonstrated that toxicity resulted from sustained JNK/c-Jun activation as death was blocked by the c-Jun dominant negative TAM67. To further delineate the function of JNK/c-Jun signaling in hepatocyte injury from oxidant stress, the effects of direct JNK inhibition on menadione-induced death were examined. In contrast to the inhibitory effect of TAM67, pharmacological JNK inhibition by SP600125 sensitized the rat hepatocyte cell line RALA255-10G to death from menadione. SP600125 similarly sensitized mouse primary hepatocytes to menadione toxicity. Death from SP600125/menadione was c-Jun dependent as it was blocked by TAM67, but independent of c-Jun phosphorylation. Death occurred by apoptosis and necrosis and activation of the mitochondrial death pathway. Short hairpin RNA knockdowns of total JNK or JNK2 sensitized to death from menadione, whereas a jnk1 knockdown was protective. Jnk2 null mouse primary hepatocytes were also sensitized to menadione death. JNK inhibition magnified decreases in cellular ATP content and β-oxidation induced by menadione. This effect mediated cell death as chemical inhibition of β-oxidation also sensitized cells to death from menadione, and supplementation with the β-oxidation substrate oleate blocked death. Components of the JNK/c-Jun signaling pathway have opposing functions in hepatocyte oxidant stress with JNK2 mediating resistance to cell death and c-Jun promoting death. PMID:22644775

  5. Salvianolic acid B protects hepatocytes from H2O2 injury by stabilizing the lysosomal membrane.

    PubMed

    Yan, Xiao-Feng; Zhao, Pei; Ma, Dong-Yan; Jiang, Yi-Lu; Luo, Jiao-Jiao; Liu, Liu; Wang, Xiao-Ling

    2017-08-07

    To investigate the capability of salvianolic acid B (Sal B) to protect hepatocytes from hydrogen peroxide (H 2 O 2 )/carbon tetrachloride (CCl 4 )-induced lysosomal membrane permeabilization. Cell Counting Kit-8 assay was used to measure cell viability. Apoptosis and death were assayed through flow cytometry. BrdU incorporation was used to detect cell proliferation. Serum alanine aminotransferase activity and liver malondialdehyde (MDA) content were measured. Liver histopathological changes were evaluated using hematoxylin-eosin staining. Lysosomal membrane permeability was detected with LysoTracker Green-labeled probes and acridine orange staining. The levels of protein carbonyl content (PCC), cathepsins (Cat)B/D, and lysosome-associated membrane protein 1 (LAMP1) were evaluated through western blotting. Cytosol CatB activity analysis was performed with chemiluminescence detection. The mRNA level of LAMP1 was evaluated through quantitative real-time polymerase chain reaction. Results indicated that H 2 O 2 induced cell injury/death. Sal B attenuated H 2 O 2 -induced cell apoptosis and death, restored the inhibition of proliferation, decreased the amount of PCC, and stabilized the lysosome membrane by increasing the LAMP1 protein level and antagonizing CatB/D leakage into the cytosol. CCl 4 also triggered hepatocyte death. Furthermore, Sal B effectively rescued hepatocytes by increasing LAMP1 expression and by reducing lysosomal enzyme translocation to the cytosol. Sal B protected mouse embryonic hepatocytes from H 2 O 2 /CCl 4 -induced injury/death by stabilizing the lysosomal membrane.

  6. Methionine sulfoxide reductase A protects hepatocytes against acetaminophen-induced toxicity via regulation of thioredoxin reductase 1 expression.

    PubMed

    Singh, Mahendra Pratap; Kwak, Geun-Hee; Kim, Ki Young; Kim, Hwa-Young

    2017-06-03

    Thioredoxin reductase 1 (TXNRD1) is associated with susceptibility to acetaminophen (APAP)-induced liver damage. Methionine sulfoxide reductase A (MsrA) is an antioxidant and protein repair enzyme that specifically catalyzes the reduction of methionine S-sulfoxide residues. We have previously shown that MsrA deficiency exacerbates acute liver injury induced by APAP. In this study, we used primary hepatocytes to investigate the underlying mechanism of the protective effect of MsrA against APAP-induced hepatotoxicity. MsrA gene-deleted (MsrA -/- ) hepatocytes showed higher susceptibility to APAP-induced cytotoxicity than wild-type (MsrA +/+ ) cells, consistent with our previous in vivo results. MsrA deficiency increased APAP-induced glutathione depletion and reactive oxygen species production. APAP treatment increased Nrf2 activation more profoundly in MsrA -/- than in MsrA +/+ hepatocytes. Basal TXNRD1 levels were significantly higher in MsrA -/- than in MsrA +/+ hepatocytes, while TXNRD1 depletion in both MsrA -/- and MsrA +/+ cells resulted in increased resistance to APAP-induced cytotoxicity. In addition, APAP treatment significantly increased TXNRD1 expression in MsrA -/- hepatocytes, while no significant change was observed in MsrA +/+ cells. Overexpression of MsrA reduced APAP-induced cytotoxicity and TXNRD1 expression levels in APAP-treated MsrA -/- hepatocytes. Collectively, our results suggest that MsrA protects hepatocytes from APAP-induced cytotoxicity through the modulation of TXNRD1 expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress☆,☆☆

    PubMed Central

    Wages, Phillip A.; Cheng, Wan-Yun; Gibbs-Flournoy, Eugene; Samet, James M.

    2017-01-01

    Background Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular techniques. However, there is increasing evidence that low-level exposure to a variety of toxicants dysregulates cellular physiology by interfering with redox-dependent processes. Scope of review The study of events involved in redox toxicology requires methodology capable of detecting transient modifications at relatively low signal strength. This article reviews the advantages of live-cell imaging for redox toxicology studies. Major conclusions Toxicological studies with xenobiotics of supra-physiological reactivity require careful consideration when using fluorogenic sensors in order to avoid potential artifacts and false negatives. Fortunately, experiments conducted for the purpose of validating the use of these sensors in toxicological applications often yield unexpected insights into the mechanisms through which xenobiotic exposure induces oxidant stress. General significance Live-cell imaging using a new generation of small molecule and genetically encoded fluorophores with excellent sensitivity and specificity affords unprecedented spatiotemporal resolution that is optimal for redox toxicology studies. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. PMID:27208426

  8. Immunogenicity and immunomodulatory properties of hepatocyte-like cells derived from human amniotic epithelial cells.

    PubMed

    Tee, Jing Yang; Vaghjiani, Vijesh; Liu, Yu Han; Murthi, Padma; Chan, James; Manuelpillai, Ursula

    2013-01-01

    Hepatocyte transplantation is being trialled as an alternative to whole organ transplant for patients with acute liver failure and liver specific metabolic diseases. Due to the scarcity of human hepatocytes, hepatocyte-like cells (HLC) generated from stem cells may become a viable alternative to hepatocyte transplantation. Human amniotic epithelial cells (hAEC) from the placenta have stem cell-like properties and can be differentiated into HLC. Naïve hAEC have low immunogenicity and exert immunomodulatory effects that may facilitate allogeneic transplantation. However, whether the immunogenicity and immunomodulatory properties alter with differentiation into HLC are unknown. We further characterized HLC generated from hAEC, examined changes in human leucocyte antigens (HLA) and co-stimulatory molecules and effects exerted by the HLC on human peripheral blood mononuclear cells (PBMC). HLC derived from hAEC expressed proteins found in hepatocytes, had CYP3A4 drug metabolizing enzyme activity and secreted urea. IFN-γ treatment increased HLA Class IA, Class II and co-stimulatory molecule CD40 expression in the HLC. IFN-γ treated HLC stimulated proliferation of PBMC in one-way mixed lymphocyte reactions and were more immunogenic than undifferentiated hAEC. However, the HLC showed immunomodulatory properties and inhibited mitogen induced PBMC proliferation in vitro. PBMC proliferation may have been inhibited by IL-6, TGF-β1, PGE2 and HLA-G secreted by the HLC. The retention of immunomodulatory properties may enable HLC grafts to survive for longer periods despite the immunogenicity of the HLC.

  9. High Efficient Differentiation of Functional Hepatocytes from Porcine Induced Pluripotent Stem Cells

    PubMed Central

    Ao, Ying; Mich-Basso, Jocelyn Danielle; Lin, Bo; Yang, Lei

    2014-01-01

    Hepatocyte transplantation is considered to be a promising therapy for patients with liver diseases. Induced pluripotent stem cells (iPSCs) provide an unlimited source for the generation of functional hepatocytes. In this study, we generated iPSCs from porcine ear fibroblasts (PEFs) by overexpressing Sox2, Klf4, Oct4, and c-Myc (SKOM), and developed a novel strategy for the efficient differentiation of hepatocyte-like cells from porcine iPSCs by following the processes of early liver development. The differentiated cells displayed the phenotypes of hepatocytes, exhibited classic hepatocyte-associated bio-functions, such as LDL uptake, glycogen storage and urea secretion, as well as possessed the metabolic activities of cytochrome P-450 (CYP) 3A and 2C. Furthermore, we compared the hepatocyte differentiation efficacy of our protocol with another published method, and the results demonstrated that our differentiation strategy could significantly improve the generation of morphological and functional hepatocyte-like cells from porcine iPSCs. In conclusion, this study establishes an efficient method for in vitro generation of functional hepatocytes from porcine iPSCs, which could represent a promising cell source for preclinical testing of cell-based therapeutics for liver failure and for pharmacological applications. PMID:24949734

  10. HGF Secreted by Activated Kupffer Cells Induces Apoptosis of Plasmodium-Infected Hepatocytes

    PubMed Central

    Gonçalves, Lígia Antunes; Rodo, Joana; Rodrigues-Duarte, Lurdes; de Moraes, Luciana Vieira; Penha-Gonçalves, Carlos

    2017-01-01

    Malaria liver stage infection is an obligatory parasite development step and represents a population bottleneck in Plasmodium infections, providing an advantageous target for blocking parasite cycle progression. Parasite development inside hepatocytes implies a gross cellular insult evoking innate host responses to counteract intra-hepatocytic infection. Using primary hepatocyte cultures, we investigated the role of Kupffer cell-derived hepatocyte growth factor (HGF) in malaria liver stage infection. We found that Kupffer cells from Plasmodium-infected livers produced high levels of HGF, which trigger apoptosis of infected hepatocytes through a mitochondrial-independent apoptosis pathway. HGF action in infected hepatocyte primary cultures results in a potent reduction of parasite yield by specifically sensitizing hepatocytes carrying established parasite exo-erythrocytic forms to undergo apoptosis. This apoptosis mechanism is distinct from cell death that is spontaneously induced in infected cultures and is governed by Fas signaling modulation through a mitochondrial-dependent apoptosis pathway. This work indicates that HGF and Fas signaling pathways are part of an orchestrated host apoptosis response that occurs during malaria liver stage infection, decreasing the success of infection of individual hepatocytes. Our results raise the hypothesis that paracrine signals derived from Kupffer cell activation are implicated in directing death of hepatocytes infected with the malaria parasite. PMID:28220125

  11. HGF Secreted by Activated Kupffer Cells Induces Apoptosis of Plasmodium-Infected Hepatocytes.

    PubMed

    Gonçalves, Lígia Antunes; Rodo, Joana; Rodrigues-Duarte, Lurdes; de Moraes, Luciana Vieira; Penha-Gonçalves, Carlos

    2017-01-01

    Malaria liver stage infection is an obligatory parasite development step and represents a population bottleneck in Plasmodium infections, providing an advantageous target for blocking parasite cycle progression. Parasite development inside hepatocytes implies a gross cellular insult evoking innate host responses to counteract intra-hepatocytic infection. Using primary hepatocyte cultures, we investigated the role of Kupffer cell-derived hepatocyte growth factor (HGF) in malaria liver stage infection. We found that Kupffer cells from Plasmodium -infected livers produced high levels of HGF, which trigger apoptosis of infected hepatocytes through a mitochondrial-independent apoptosis pathway. HGF action in infected hepatocyte primary cultures results in a potent reduction of parasite yield by specifically sensitizing hepatocytes carrying established parasite exo-erythrocytic forms to undergo apoptosis. This apoptosis mechanism is distinct from cell death that is spontaneously induced in infected cultures and is governed by Fas signaling modulation through a mitochondrial-dependent apoptosis pathway. This work indicates that HGF and Fas signaling pathways are part of an orchestrated host apoptosis response that occurs during malaria liver stage infection, decreasing the success of infection of individual hepatocytes. Our results raise the hypothesis that paracrine signals derived from Kupffer cell activation are implicated in directing death of hepatocytes infected with the malaria parasite.

  12. Enzyme induction and cytotoxicity in human hepatocytes by chlorpyrifos and N,N-diethyl-m-toluamide (DEET).

    PubMed

    Das, Parikshit C; Cao, Yan; Rose, Randy L; Cherrington, Nathan; Hodgson, Ernest

    2008-01-01

    Xenobiotics, including drugs and environmental chemicals, can influence cytochrome P450 (CYP) levels by altering the transcription of CYP genes. To minimize potential drug-pesticide and pesticide-pesticide interactions it is important to evaluate the potential of pesticides to induce CYP isoforms and to cause cytotoxicity in humans. The present study was designed to examine chlorpyrifos and DEET mediated induction of CYP isoforms and also to characterize their potential cytotoxic effects on primary human hepatocytes. DEET significantly induced CYP3A4, CYP2B6, CYP2A6 and CYP1A2 mRNA expression while chlorpyrifos induced CYP1A1, CYP1A2 and CYP3A4 mRNA, and to a lesser extent, CYP1B1 and CYP2B6 mRNA in primary human hepatocytes. Chlorpyrifos and DEET also mediated the expression of CYP isoforms, particularly CYP3A4, CYP2B6 and CYP1A1, as shown by CYP3A4-specific protein expression, testosterone metabolism and CYP1Al-specific activity assays. DEET is a mild, while chlorpyrifos is a relatively potent, inducer of adenylate kinase and caspase-3/7, an indicator of apoptosis, while inducing 15-20% and 25-30% cell death, respectively. Therefore, DEET and chlorpyrifos mediated induction of CYP mRNA and functional CYP isoforms together with their cytotoxic potential in human hepatocytes suggests that exposure to chlorpyrifos and/or DEET should be considered in human health impact analysis.

  13. 2,4,8-trihydroxybicyclo [3.2.1]octan-3-one scavenges free radicals and protects against xenobiotic-induced cytotoxicity.

    PubMed

    Srivastava, Anup; Jagan Mohan Rao, L; Shivanandappa, T

    2012-03-01

    Currently, there is a great deal of interest in the study of natural compounds with free-radical-scavenging activity because of their potential role in maintaining human health and preventing diseases. In this paper, we report the antioxidant and cytoprotective properties of 2,4,8-trihydroxybicyclo [3.2.1]octan-3-one (TBO) isolated from the aqueous extract of Decalepis hamiltonii roots. Our results show that TBO is a potent scavenger of superoxide (O(2)·-), hydroxyl (·OH), nitric oxide (·NO) and lipid peroxide (LOO·) - physiologically relevant free radicals with IC(50) values in nmolar (42-281) range. TBO also exhibited concentration-dependent secondary antioxidant activities such as reducing power, metal-chelating activity and inhibition of protein carbonylation. Further, TBO at nmolar concentration prevented CuSO(4)-induced human LDL oxidation. Apart from the in vitro free-radical-scavenging activity, TBO demonstrated cytoprotective activity in primary hepatocytes and Ehrlich ascites tumour (EAT) cells against oxidative-stress-inducing xenobiotics. The mechanism of cytoprotective action involved maintaining the intracellular glutathione (GSH), scavenging of reactive oxygen species (ROS) and inhibiting lipid peroxidation (LPO). Based on the results, it is suggested that TBO is a novel bioactive molecule with implications in both prevention and amelioration of diseases involving oxidative stress as well as in the general well-being.

  14. Radiation hepatology of the rat: The effects of the proliferation stimulus induced by subtotal hepatectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geraci, J.P.; Mariano, M.S.

    1994-11-01

    The effect of an 80 to 90% hepatectomy in stimulating proliferation immediately after irradiation of the liver was studied. A dose of 15 Gy was not lethal for animals with intact livers, but all animals with subtotal hepatectomies exposed to this dose died from apparent liver failure 28 to 60 days after exposure. To elucidate the mechanism for this mortality, plasma aspartate aminotransferase, retention of intravenous injected rose bengal, liver weight and liver hydroxyproline content were measured 0 to 90 days after 15 Gy irradiation of the liver to determine temporal changes in necrosis, function, mass and fibrosis, respectively, inmore » animals with either intact livers or livers with subtotal resection. Irradiation of the liver had no significant effect on these parameters in animals with intact livers. In subtotally hepatectomized animals the same radiation dose that suppressed liver mass restoration significantly increased hepatocyte necrosis within 7 days, which was followed by increased liver hydroxyproline concentration and hepatic dysfunction. This radiation-induced temporal change in hepatic dysfunction correlated with increased concentration of hydroxyproline but not with liver mass, indicating that liver fibrosis was the cause of hepatic dysfunction. Since similar sequelae are produced in intact livers after higher doses and longer intervals after irradiation, the proliferation stimulus induced by partial hepatectomy must accelerate the expression of damage and lower the radiation tolerance of the liver. However, in subtotally hepatectomized animals radiation-induced hepatocyte necrosis precedes fibrosis, whereas the reverse is normally true for animals with intact livers. 35 refs., 5 figs.« less

  15. Paternal nicotine exposure alters hepatic xenobiotic metabolism in offspring

    PubMed Central

    Vallaster, Markus P; Kukreja, Shweta; Bing, Xin Y; Ngolab, Jennifer; Zhao-Shea, Rubing; Gardner, Paul D; Tapper, Andrew R; Rando, Oliver J

    2017-01-01

    Paternal environmental conditions can influence phenotypes in future generations, but it is unclear whether offspring phenotypes represent specific responses to particular aspects of the paternal exposure history, or a generic response to paternal ‘quality of life’. Here, we establish a paternal effect model based on nicotine exposure in mice, enabling pharmacological interrogation of the specificity of the offspring response. Paternal exposure to nicotine prior to reproduction induced a broad protective response to multiple xenobiotics in male offspring. This effect manifested as increased survival following injection of toxic levels of either nicotine or cocaine, accompanied by hepatic upregulation of xenobiotic processing genes, and enhanced drug clearance. Surprisingly, this protective effect could also be induced by a nicotinic receptor antagonist, suggesting that xenobiotic exposure, rather than nicotinic receptor signaling, is responsible for programming offspring drug resistance. Thus, paternal drug exposure induces a protective phenotype in offspring by enhancing metabolic tolerance to xenobiotics. DOI: http://dx.doi.org/10.7554/eLife.24771.001 PMID:28196335

  16. Fuzheng Huayu recipe alleviates hepatic fibrosis via inhibiting TNF-α induced hepatocyte apoptosis.

    PubMed

    Tao, Yan-yan; Yan, Xiu-chuan; Zhou, Tao; Shen, Li; Liu, Zu-long; Liu, Cheng-hai

    2014-11-18

    What was the relationship of Fuzheng Huayu recipe (FZHY) inhibiting hepatocyte apoptosis and HSC activation at different stage of liver fibrosis? In order to answer this question, the study was carried out to dynamically observe FZHY's effect on hepatocyte apoptosis and HSC activation and further explored underling mechanism of FZHY against hepatocyte apoptosis. Mice were randomly divided into four groups: normal, model, FZHY, and N-acetylcystein (NAC) groups. Acute hepatic injury and liver fibrosis in mice were induced by CCl4. Three days before the first CCl4 injection, treatment with FZHY powder or NAC respectively was started. In vitro, primary hepatocytes were pretreated with FZHY medicated serum or Z-VAD-FMK and then incubated with ActD and TNF-α. Primary HSCs were treated with DNA from apoptotic hepatocytes incubated by Act D/TNF-α or FZHY medicated. Liver sections were analyzed for HE staining and immunohistochemical evaluation of apoptosis. Serum ALT and AST, Alb content and TNF-α expression in liver tissue were detected. Hyp content was assayed and collagen deposition was visualized. Expressions of α-SMA and type I collagen were analyzed by immunofluorescence and immunoblotting. Flow cytometry, immunofluorescence, and DNA ladder for hepatocyte apoptosis and immunoblotting for TNF-R1, Bcl-2 and Bax were also analyzed. Mice showed characteristic features of massive hepatocytes apoptosis in early stage of liver injury and developed severe hepatic fibrosis in later phase. FZHY treatment significantly alleviated acute liver injury and hepatocyte apoptosis, and inhibited liver fibrosis by decreasing α-SMA expression and hepatic Hyp content. In vitro, primary hepatocytes were induced by TNF-α and Act D. The anti-apoptotic effect of FZHY was generated by reducing TNFR1 expression and balancing the expressions of Bcl-2 and Bax. Meanwhile, the nuclear DNA from apoptotic hepatocytes stimulated HSC activation in a dose dependent manner, and the DNA from

  17. Billion-scale production of hepatocyte-like cells from human induced pluripotent stem cells.

    PubMed

    Yamashita, Tomoki; Takayama, Kazuo; Sakurai, Fuminori; Mizuguchi, Hiroyuki

    2018-02-19

    Human induced pluripotent stem (iPS) cell-derived hepatocyte-like cells are expected to be utilized in drug screening and regenerative medicine. However, hepatocyte-like cells have not been fully used in such applications because it is difficult to produce such cells on a large scale. In this study, we tried to establish a method to mass produce hepatocyte-like cells using a three-dimensional (3D) cell culture bioreactor called the Rotary Cell Culture System (RCCS). RCCS enabled us to obtain homogenous hepatocyte-like cells on a billion scale (>10 9  cells). The gene expression levels of some hepatocyte markers (alpha-1 antitrypsin, cytochrome (CYP) 1A2, CYP2D6, and hepatocyte nuclear factor 4alpha) were higher in 3D-cultured hepatocyte-like cells than in 2D-cultured hepatocyte-like cells. This result suggests that RCCS could provide more suitable conditions for hepatocyte maturation than the conventional 2D cell culture conditions. In addition, more than 90% of hepatocyte-like cells were positive for albumin and could uptake low-density lipoprotein in the culture medium. We succeeded in the large-scale production of homogenous and functional hepatocyte-like cells from human iPS cells. This technology will be useful in drug screening and regenerative medicine, which require enormous numbers of hepatocyte-like cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Disruption of Redox Homeostasis in Tumor Necrosis Factor-Induced Apoptosis in a Murine Hepatocyte Cell Line

    PubMed Central

    Pierce, Robert H.; Campbell, Jean S.; Stephenson, Alyssa B.; Franklin, Christopher C.; Chaisson, Michelle; Poot, Martin; Kavanagh, Terrance J.; Rabinovitch, Peter S.; Fausto, Nelson

    2000-01-01

    Tumor necrosis factor (TNF) is a mediator of the acute phase response in the liver and can initiate proliferation and cause cell death in hepatocytes. We investigated the mechanisms by which TNF causes apoptosis in hepatocytes focusing on the role of oxidative stress, antioxidant defenses, and mitochondrial damage. The studies were conducted in cultured AML12 cells, a line of differentiated murine hepatocytes. As is the case for hepatocytes in vivo, AML12 cells were not sensitive to cell death by TNF alone, but died by apoptosis when exposed to TNF and a small dose of actinomycin D (Act D). Morphological signs of apoptosis were not detected until 6 hours after the treatment and by 18 hours ∼50% of the cells had died. Exposure of the cells to TNF+Act D did not block NFκB nuclear translocation, DNA binding, or its overall transactivation capacity. Induction of apoptosis was characterized by oxidative stress indicated by the loss of NAD(P)H and glutathione followed by mitochondrial damage that included loss of mitochondrial membrane potential, inner membrane structural damage, and mitochondrial condensation. These changes coincided with cytochrome C release and the activation of caspases-8, -9, and -3. TNF-induced apoptosis was dependent on glutathione levels. In cells with decreased levels of glutathione, TNF by itself in the absence of transcriptional blocking acted as an apoptotic agent. Conversely, the antioxidant α-lipoic acid, that protected against the loss of glutathione in cells exposed to TNF+Act D completely prevented mitochondrial damage, caspase activation, cytochrome C release, and apoptosis. The results demonstrate that apoptosis induced by TNF+Act D in AML12 cells involves oxidative injury and mitochondrial damage. As injury was regulated to a larger extent by the glutathione content of the cells, we suggest that the combination of TNF+Act D causes apoptosis because Act D blocks the transcription of genes required for antioxidant defenses. PMID

  19. The role of S1PR2 in bile acid-induced cholangiocyte proliferation and cholestasis-induced liver injury in mice

    PubMed Central

    Wang, Yongqing; Aoki, Hiroaki; Yang, Jing; Peng, Kesong; Liu, Runping; Li, Xiaojiaoyang; Qiang, Xiaoyan; Sun, Lixin; Gurley, Emily C; Lai, Guanhua; Zhang, Luyong; Liang, Guang; Nagahashi, Masayuki; Takabe, Kazuaki; Pandak, William M; Hylemon, Phillip B.; Zhou, Huiping

    2017-01-01

    Bile duct obstruction is a potent stimulus for cholangiocyte proliferation, especially for large cholangiocytes. Our previous studies reported that conjugated bile acids (CBAs) activate the AKT and ERK1/2 signaling pathways via the sphingosine 1-phosphate receptor 2 (S1PR2) in hepatocytes and cholangiocarcinoma cells. It also has been reported that taurocholate (TCA) promotes large cholangiocyte proliferation and protects cholangiocytes from bile duct ligation (BDL)-induced apoptosis. However, the role of S1PR2 in bile acid-mediated cholangiocyte proliferation and cholestatic liver injury has not been elucidated. Here we report that S1PR2 is the predominant S1PR expressed in cholangiocytes. Both TCA- and S1P-induced activation of ERK1/2 and AKT were inhibited by JTE-013, a specific antagonist of S1PR2, in cholangiocytes. In addition, TCA- and S1P-induced cell proliferation and migration were inhibited by JTE-013 and a specific shRNA of S1PR2 as well as chemical inhibitors of ERK1/2 and AKT in mouse cholangiocytes. In BDL mice, the expression of S1PR2 was upregulated in whole liver and cholangiocytes. S1PR2 deficiency significantly reduced BDL-induced cholangiocyte proliferation and cholestatic injury as indicated by significant reduction of inflammation and liver fibrosis in S1PR2−/− mice. Treatment of BDL mice with JTE-013 significantly reduced total bile acid levels in the serum and cholestatic liver injury. This study suggests that the CBA-induced activation of S1PR2-mediated signaling pathways plays a critical role in obstructive cholestasis and may represent a novel therapeutic target for cholestatic liver diseases. PMID:28120434

  20. Rifampicin exacerbates isoniazid-induced toxicity in human but not in rat hepatocytes in tissue-like cultures

    PubMed Central

    Shen, C; Meng, Q; Zhang, G; Hu, W

    2007-01-01

    Background and purpose: Rifampicin has been extensively reported to exacerbate the hepatotoxicity of isoniazid in patients with tuberculosis. However, this was controversially claimed by previous reports using rat models. This study evaluated the effect of rifampicin on isoniazid-induced hepatocyte toxicity by using human and rat hepatocytes in tissue-like culture. Experimental approach: Hepatocytes in tissue-like gel entrapment were used to examine isoniazid toxicity, as shown by cell viability, intracellular glutathione content and albumin secretion. For demonstration of the differential effects of rifampicin on human and rat hepatocytes, induction by rifampicin of cytochrome P450 (CYP) 2E1, a major enzyme associated with isoniazid hepatotoxicity, was detected by 4-nitrocatechol formation and RT-PCR analysis. Key results: Rifampicin (12 μM) enhanced isoniazid-induced toxicity in human hepatocytes but not in rat hepatocytes. Enhanced CYP 2E1 enzymic activity and mRNA expression were similarly detected in human hepatocytes but not in rat hepatocytes. Both rat and human hepatocytes in gel entrapment were more sensitive to isoniazid treatment compared with the corresponding hepatocytes in a monolayer culture. Conclusions and implications: The difference in induction of CYP 2E1 by rifampicin between rat and human hepatocytes accounted for the difference in exacerbation of isoniazid hepatocyte toxicity by rifampicin, with more significant toxicity in gel entrapment than in monolayer cultures. Thus, human hepatocytes in tissue-like cultures (gel entrapment) could be an effective model for hepatotoxicity research in vitro, closer to the in vivo situation. PMID:18071298

  1. Hepatocyte Growth Factor Is Required for Mesenchymal Stromal Cell Protection Against Bleomycin-Induced Pulmonary Fibrosis

    PubMed Central

    Cahill, Emer F.; Kennelly, Helen; Carty, Fiona; Mahon, Bernard P.

    2016-01-01

    The incidence of idiopathic pulmonary fibrosis is on the rise and existing treatments have failed to halt or reverse disease progression. Mesenchymal stromal cells (MSCs) have potent cytoprotective effects, can promote tissue repair, and have demonstrated efficacy in a range of fibrotic lung diseases; however, the exact mechanisms of action remain to be elucidated. Chemical antagonists and short hairpin RNA knockdown were used to identify the mechanisms of action used by MSCs in promoting wound healing, proliferation, and inhibiting apoptosis. Using the bleomycin induced fibrosis model, the protective effects of early or late MSC administration were examined. The role for hepatocyte growth factor (HGF) in MSC protection against bleomycin lung injury was examined using HGF knockdown MSC. Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling assay was performed on ex vivo lung sections to examine the effects of MSC on apoptosis. MSC conditioned media (CM) enhanced wound closure and inhibited apoptosis of pulmonary cells in vitro. HGF was required for MSC CM enhancement of epithelial cell proliferation and inhibition of apoptosis. In contrast, MSC required COX-2 for CM to inhibit fibroblast proliferation. In a murine model, early administration of MSC protected against bleomycin induced lung fibrosis and correlated with reduced levels of the proinflammatory cytokine interleukin-1β, reduced levels of apoptosis, and significantly increased levels of HGF. These protective effects were in part mediated by MSC derived HGF as HGF knockdown MSC were unable to protect against fibrosis in vivo. These findings delineate the mechanisms of MSC protection in a preclinical model of fibrotic lung disease. Significance The mechanisms used by mesenchymal stromal cells (MSCs) in mediating protective effects in chronic models of lung disease are not understood and remain to be elucidated. These findings from in vitro studies highlight an important role for the MSC

  2. Novel Regulation of Ski Protein Stability and Endosomal Sorting by Actin Cytoskeleton Dynamics in Hepatocytes*

    PubMed Central

    Vázquez-Victorio, Genaro; Caligaris, Cassandre; Del Valle-Espinosa, Eugenio; Sosa-Garrocho, Marcela; González-Arenas, Nelly R.; Reyes-Cruz, Guadalupe; Briones-Orta, Marco A.; Macías-Silva, Marina

    2015-01-01

    TGF-β-induced antimitotic signals are highly regulated during cell proliferation under normal and pathological conditions, such as liver regeneration and cancer. Up-regulation of the transcriptional cofactors Ski and SnoN during liver regeneration may favor hepatocyte proliferation by inhibiting TGF-β signals. In this study, we found a novel mechanism that regulates Ski protein stability through TGF-β and G protein-coupled receptor (GPCR) signaling. Ski protein is distributed between the nucleus and cytoplasm of normal hepatocytes, and the molecular mechanisms controlling Ski protein stability involve the participation of actin cytoskeleton dynamics. Cytoplasmic Ski is partially associated with actin and localized in cholesterol-rich vesicles. Ski protein stability is decreased by TGF-β/Smads, GPCR/Rho signals, and actin polymerization, whereas GPCR/cAMP signals and actin depolymerization promote Ski protein stability. In conclusion, TGF-β and GPCR signals differentially regulate Ski protein stability and sorting in hepatocytes, and this cross-talk may occur during liver regeneration. PMID:25561741

  3. Transcriptional regulation of xenobiotic detoxification in Drosophila

    PubMed Central

    Misra, Jyoti R.; Horner, Michael A.; Lam, Geanette; Thummel, Carl S.

    2011-01-01

    Living organisms, from bacteria to humans, display a coordinated transcriptional response to xenobiotic exposure, inducing enzymes and transporters that facilitate detoxification. Several transcription factors have been identified in vertebrates that contribute to this regulatory response. In contrast, little is known about this pathway in insects. Here we show that the Drosophila Nrf2 (NF-E2-related factor 2) ortholog CncC (cap ‘n’ collar isoform-C) is a central regulator of xenobiotic detoxification responses. A binding site for CncC and its heterodimer partner Maf (muscle aponeurosis fibromatosis) is sufficient and necessary for robust transcriptional responses to three xenobiotic compounds: phenobarbital (PB), chlorpromazine, and caffeine. Genetic manipulations that alter the levels of CncC or its negative regulator, Keap1 (Kelch-like ECH-associated protein 1), lead to predictable changes in xenobiotic-inducible gene expression. Transcriptional profiling studies reveal that more than half of the genes regulated by PB are also controlled by CncC. Consistent with these effects on detoxification gene expression, activation of the CncC/Keap1 pathway in Drosophila is sufficient to confer resistance to the lethal effects of the pesticide malathion. These studies establish a molecular mechanism for the regulation of xenobiotic detoxification in Drosophila and have implications for controlling insect populations and the spread of insect-borne human diseases. PMID:21896655

  4. Palm kernel cake extract exerts hepatoprotective activity in heat-induced oxidative stress in chicken hepatocytes.

    PubMed

    Oskoueian, Ehsan; Abdullah, Norhani; Idrus, Zulkifli; Ebrahimi, Mahdi; Goh, Yong Meng; Shakeri, Majid; Oskoueian, Armin

    2014-10-02

    Palm kernel cake (PKC), the most abundant by-product of oil palm industry is believed to contain bioactive compounds with hepatoprotective potential. These compounds may serve as hepatoprotective agents which could help the poultry industry to alleviate adverse effects of heat stress on liver function in chickens. This study was performed to evaluate the hepatoprotective potential of PKC extract in heat-induced oxidative stress in chicken hepatocytes. The nature of the active metabolites and elucidation of the possible mechanism involved were also investigated. The PKC extract possessed free radical scavenging activity with values significantly (p < 0.05) lower than silymarin as the reference antioxidant. Heat-induced oxidative stress in chicken hepatocyte impaired the total protein, lipid peroxidation and antioxidant enzymes activity significantly (p < 0.05). Treatment of heat-induced hepatocytes with PKC extract (125 μg/ml) and silymarin as positive control increased these values significantly (p < 0.05). The real time PCR and western blot analyses revealed the significant (p < 0.05) up-regulation of oxidative stress biomarkers including TNF-like, IFN-γ and IL-1β genes; NF-κB, COX-2, iNOS and Hsp70 proteins expression upon heat stress in chicken hepatocytes. The PKC extract and silymarin were able to alleviate the expression of all of these biomarkers in heat-induced chicken hepatocytes. The gas chromatography-mass spectrometry analysis of PKC extract showed the presence of fatty acids, phenolic compounds, sugar derivatives and other organic compounds such as furfural which could be responsible for the observed hepatoprotective activity. Palm kernel cake extract could be a potential agent to protect hepatocytes function under heat induced oxidative stress.

  5. Calcium-mediated signaling and calmodulin-dependent kinase regulate hepatocyte-inducible nitric oxide synthase expression.

    PubMed

    Zhang, Baochun; Crankshaw, Will; Nesemeier, Ryan; Patel, Jay; Nweze, Ikenna; Lakshmanan, Jaganathan; Harbrecht, Brian G

    2015-02-01

    Induced nitric oxide synthase (iNOS) is induced in hepatocytes by shock and inflammatory stimuli. Excessive NO from iNOS mediates shock-induced hepatic injury and death, so understanding the regulation of iNOS will help elucidate the pathophysiology of septic shock. In vitro, cytokines induce iNOS expression through activation of signaling pathways including mitogen-activated protein kinases and nuclear factor κB. Cytokines also induce calcium (Ca(2+)) mobilization and activate calcium-mediated intracellular signaling pathways, typically through activation of calmodulin-dependent kinases (CaMK). Calcium regulates NO production in macrophages but the role of calcium and calcium-mediated signaling in hepatocyte iNOS expression has not been defined. Primary rat hepatocytes were isolated, cultured, and induced to produce NO with proinflammatory cytokines. Calcium mobilization and Ca(2+)-mediated signaling were altered with ionophore, Ca(2+) channel blockers, and inhibitors of CaMK. The Ca(2+) ionophore A23187 suppressed cytokine-stimulated NO production, whereas Ethylene glycol tetraacetic acid and nifedipine increased NO production, iNOS messenger RNA, and iNOS protein expression. Inhibition of CaMK with KN93 and CBD increased NO production but the calcineurin inhibitor FK 506 decreased iNOS expression. These data demonstrate that calcium-mediated signaling regulates hepatocyte iNOS expression and does so through a mechanism independent of calcineurin. Changes in intracellular calcium levels may regulate iNOS expression during hepatic inflammation induced by proinflammatory cytokines. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Differential Regulation of Gene Expression by Cholesterol Biosynthesis Inhibitors That Reduce (Pravastatin) or Enhance (Squalestatin 1) Nonsterol Isoprenoid Levels in Primary Cultured Mouse and Rat Hepatocytes

    PubMed Central

    Rondini, Elizabeth A.; Duniec-Dmuchowski, Zofia; Cukovic, Daniela; Dombkowski, Alan A.

    2016-01-01

    Squalene synthase inhibitors (SSIs), such as squalestatin 1 (SQ1), reduce cholesterol biosynthesis but cause the accumulation of isoprenoids derived from farnesyl pyrophosphate (FPP), which can modulate the activity of nuclear receptors, including the constitutive androstane receptor (CAR), farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs). In comparison, 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (e.g., pravastatin) inhibit production of both cholesterol and nonsterol isoprenoids. To characterize the effects of isoprenoids on hepatocellular physiology, microarrays were used to compare orthologous gene expression from primary cultured mouse and rat hepatocytes that were treated with either SQ1 or pravastatin. Compared with controls, 47 orthologs were affected by both inhibitors, 90 were affected only by SQ1, and 51 were unique to pravastatin treatment (P < 0.05, ≥1.5-fold change). When the effects of SQ1 and pravastatin were compared directly, 162 orthologs were found to be differentially coregulated between the two treatments. Genes involved in cholesterol and unsaturated fatty acid biosynthesis were up-regulated by both inhibitors, consistent with cholesterol depletion; however, the extent of induction was greater in rat than in mouse hepatocytes. SQ1 induced several orthologs associated with microsomal, peroxisomal, and mitochondrial fatty acid oxidation and repressed orthologs involved in cell cycle regulation. By comparison, pravastatin repressed the expression of orthologs involved in retinol and xenobiotic metabolism. Several of the metabolic genes altered by isoprenoids were inducible by a PPARα agonist, whereas cytochrome P450 isoform 2B was inducible by activators of CAR. Our findings indicate that SSIs uniquely influence cellular lipid metabolism and cell cycle regulation, probably due to FPP catabolism through the farnesol pathway. PMID:27225895

  7. Interleukin-1β induces tumor necrosis factor-α secretion from rat hepatocytes.

    PubMed

    Yoshigai, Emi; Hara, Takafumi; Inaba, Hiroyuki; Hashimoto, Iwao; Tanaka, Yoshito; Kaibori, Masaki; Kimura, Tominori; Okumura, Tadayoshi; Kwon, A-Hon; Nishizawa, Mikio

    2014-05-01

    Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine involved in various inflammatory diseases. The only production of TNF-α in the liver is thought to be from hepatic macrophages known as Kupffer cells, predominantly in response to bacterial lipopolysaccharide (LPS). Primary cultured rat hepatocytes were used to analyze TNF-α expression in response to the pro-inflammatory cytokine, interleukin-1β (IL-1β). Livers of rats subjected to LPS-induced endotoxemia were analyzed. Immunocytochemistry and enzyme-linked immunosorbent assays demonstrated that IL-1β-treated rat hepatocytes secreted TNF-α, and RNA analyses indicated that TNF-α mRNA was induced specifically by IL-1β. Northern blot analysis showed that not only mRNA, but also a natural antisense transcript (asRNA), was transcribed from the rat Tnf gene in IL-1β-treated hepatocytes. TNF-α was detected in the hepatocytes of LPS-treated rats. Both TNF-α mRNA and asRNA were expressed in the hepatocytes of LPS-treated rats, human hepatocellular carcinoma and human monocyte/macrophage cells. To disrupt the interaction between TNF-α asRNA and TNF-α mRNA, sense oligonucleotides corresponding to TNF-α mRNA were introduced into rat hepatocytes resulting in significantly increased levels of TNF-α mRNA. One of these sense oligonucleotides increased a half-life of TNF-α mRNA, suggesting that the TNF-α asRNA may reduce the stability of TNF-α mRNA. IL-1β-stimulated rat hepatocytes are a newly identified source of TNF-α in the liver. TNF-α mRNA and asRNA are expressed in rats and humans, and the TNF-α asRNA reduces the stability of the TNF-α mRNA. Hepatocytes and TNF-α asRNA may be therapeutic targets to regulate levels of TNF-α mRNA. © 2013 The Japan Society of Hepatology.

  8. Pigment Epithelium Derived Factor Peptide Protects Murine Hepatocytes from Carbon Tetrachloride-Induced Injury

    PubMed Central

    Shih, Shou-Chuan; Ho, Tsung-Chuan; Chen, Show-Li; Tsao, Yeou-Ping

    2016-01-01

    Fibrogenesis is induced by repeated injury to the liver and reactive regeneration and leads eventually to liver cirrhosis. Pigment epithelium derived factor (PEDF) has been shown to prevent liver fibrosis induced by carbon tetrachloride (CCl4). A 44 amino acid domain of PEDF (44-mer) was found to have a protective effect against various insults to several cell types. In this study, we investigated the capability of synthetic 44-mer to protect against liver injury in mice and in primary cultured hepatocytes. Acute liver injury, induced by CCl4, was evident from histological changes, such as cell necrosis, inflammation and apoptosis, and a concomitant reduction of glutathione (GSH) and GSH redox enzyme activities in the liver. Intraperitoneal injection of the 44-mer into CCl4-treated mice abolished the induction of AST and ALT and markedly reduced histological signs of liver injury. The 44-mer treatment can reduce hepatic oxidative stress as evident from lower levels of lipid hydroperoxide, and higher levels of GSH. CCl4 caused a reduction of Bcl-xL, PEDF and PPARγ, which was markedly restored by the 44-mer treatment. Consequently, the 44-mer suppressed liver fibrosis induced by repeated CCl4 injury. Furthermore, our observations in primary culture of rat hepatocytes showed that PEDF and the 44-mer protected primary rat hepatocytes against apoptosis induced by serum deprivation and TGF-β1. PEDF/44-mer induced cell protective STAT3 phosphorylation. Pharmacological STAT3 inhibition prevented the antiapoptotic action of PEDF/44-mer. Among several PEDF receptor candidates that may be responsible for hepatocyte protection, we demonstrated that PNPLA2 was essential for PEDF/44-mer-mediated STAT3 phosphorylation and antiapoptotic activity by using siRNA to selectively knockdown PNPLA2. In conclusion, the PEDF 44-mer protects hepatocytes from single and repeated CCl4 injury. This protective effect may stem from strengthening the counter oxidative stress capacity and

  9. Nature and mechanisms of hepatocyte apoptosis induced by D-galactosamine/lipopolysaccharide challenge in mice.

    PubMed

    Wu, Yi-Hang; Hu, Shao-Qing; Liu, Jun; Cao, Hong-Cui; Xu, Wei; Li, Yong-Jun; Li, Lan-Juan

    2014-06-01

    Apoptosis plays a role in the normal development of liver. However, overactivation thereof may lead to hepatocellular damage. The aim of this study was to assess D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced hepatocyte apoptotic changes in mice and clarify the mechanisms involved in this process. DNA ladder detection was employed to determine the induction condition of hepatic apoptosis. An initial test indicated that typical hepatocyte apoptosis was observed at 6-10 h after the intraperitoneal injection of D-GalN (700 mg/kg) and LPS (10 µg/kg). Subsequently, we evaluated hepatocyte apoptosis at 8 h after administering D-GalN/LPS by histopathological analysis, terminal deoxynucleotidyl transferase-mediated dUTP nick end‑labeling (TUNEL) detection, flow cytometry and electron microscopy analysis. To clarify the apoptosis-related gene expression, the expression levels of tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), caspase-3, and Fas/Fas ligand (FasL) were determined by serum enzyme immunoassay, immunohistochemistry and western blot analysis. Strong apoptotic positive signals following D-GalN/LPS injection were observed from the results of the serum analysis, histopathological and immunohistochemical analyses, DNA ladder detection, TUNEL detection, flow cytometry and electron microscopy analysis. Additionally, apoptotic hepatocytes were mainly at the late stage of cell apoptosis. The expression of TNF-α, TGF-β1, caspase-3 and Fas/FasL was significantly increased. In conclusion, this study evaluated the D-GalN/LPS-induced hepatocyte apoptotic changes and clarified the apoptosis-related gene expression in mice. The hepatocyte apoptosis induced by D-GalN/LPS may be mainly regulated by the death receptor pathway. TGF-β signaling pathway may also play a vital role in this process of hepatocyte apoptosis.

  10. Human hepatocytes derived from pluripotent stem cells: a promising cell model for drug hepatotoxicity screening.

    PubMed

    Gómez-Lechón, María José; Tolosa, Laia

    2016-09-01

    Drug-induced liver injury (DILI) is a frequent cause of failure in both clinical and post-approval stages of drug development, and poses a key challenge to the pharmaceutical industry. Current animal models offer poor prediction of human DILI. Although several human cell-based models have been proposed for the detection of human DILI, human primary hepatocytes remain the gold standard for preclinical toxicological screening. However, their use is hindered by their limited availability, variability and phenotypic instability. In contrast, pluripotent stem cells, which include embryonic and induced pluripotent stem cells (iPSCs), proliferate extensively in vitro and can be differentiated into hepatocytes by the addition of soluble factors. This provides a stable source of hepatocytes for multiple applications, including early preclinical hepatotoxicity screening. In addition, iPSCs also have the potential to establish genotype-specific cells from different individuals, which would increase the predictivity of toxicity assays allowing more successful clinical trials. Therefore, the generation of human hepatocyte-like cells derived from pluripotent stem cells seems to be promising for overcoming limitations of hepatocyte preparations, and it is expected to have a substantial repercussion in preclinical hepatotoxicity risk assessment in early drug development stages.

  11. miR-26a regulates mouse hepatocyte proliferation via directly targeting the 3' untranslated region of CCND2 and CCNE2.

    PubMed

    Zhou, Jian; Ju, Wei-Qiang; Yuan, Xiao-Peng; Zhu, Xiao-Feng; Wang, Dong-Ping; He, Xiao-Shun

    2016-02-01

    The deficiency of liver regeneration needs to be addressed in the fields of liver surgery, split liver transplantation and living donor liver transplantation. Researches of microRNAs would broaden our understandings on the mechanisms of various diseases. Our previous research confirmed that miR-26a regulated liver regeneration in mice; however, the relationship between miR-26a and its target, directly or indirectly, remains unclear. Therefore, the present study further investigated the mechanism of miR-26a in regulating mouse hepatocyte proliferation. An established mouse liver cell line, Nctc-1469, was transfected with Ad5-miR-26a-EGFP, Ad5-anti-miR-26a-EGFP or Ad5-EGFP vector. Cell proliferation was assessed by MTS, cell apoptosis and cell cycle by flow cytometry, and gene expression by Western blotting and quantitative real-time PCR. Dual-luciferase reporter assays were used to test targets of miR-26a. Compared with the Ad5-EGFP group, Ad5-anti-miR-26a-EGFP down-regulated miR-26a and increased proliferation of hepatocytes, with more cells entering the G1 phase of cell cycle (82.70%+/-1.45% vs 75.80%+/-3.92%), and decreased apoptosis (5.50%+/-0.35% vs 6.73%+/-0.42%). CCND2 and CCNE2 were the direct targeted genes of miR-26a. miR-26a down-regulation up-regulated CCND2 and CCNE2 expressions and down-regulated p53 expression in Nctc-1469 cells. On the contrary, miR-26a over-expression showed the opposite results. miR-26a regulated mouse hepatocyte proliferation by directly targeting the 3' untranslated regions of cyclin D2/cyclin E2; miR-26a also regulated p53-mediated apoptosis. Our data suggested that miR-26a may be a promising regulator in liver regeneration.

  12. Effects of a Model Inducer, Phenobarbital, on Thyroid Hormone Glucuronidation in Rat Hepatocytes

    EPA Science Inventory

    In vivo, hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations. This decrease in circulating TH occurs in part through extrathyroidal mechanisms. Specifically, through the induction of hepatic xenobiotic metabolizing enzymes...

  13. Differentiation of hepatocytes from induced pluripotent stem cells derived from human hair follicle mesenchymal stem cells.

    PubMed

    Shi, Xu; Lv, Shuang; He, Xia; Liu, Xiaomei; Sun, Meiyu; Li, Meiying; Chi, Guangfan; Li, Yulin

    2016-10-01

    Due to the limitations of organ donors and immune rejection in severe liver diseases, stem cell-based therapy presents a promising application for tissue repair and regeneration. As a novel cell source, mesenchymal stem cells separated from human hair follicles (HF-MSCs) are convenient to obtain and have no age limit. To date, the differentiation of HF-MSCs into hepatocytes has not been reported. In this study, we explored whether HF-MSCs and HF-MSC-derived-induced pluripotent stem cells (HF-iPS) could differentiate into hepatocytes in vitro. Flow cytometry, Oil Red O stain and Alizarin Red stain were used to identify the characteristics of HF-MSCs. The expression of liver-specific gene was detected by immunofluorescence and Quantitative Polymerase Chain Reaction. Periodic Acid-Schiff stain, Indocyanine Green stain and Low-Density Lipoprotein stain were performed to evaluate the functions of induced hepatocyte-like cells (HLCs). HF-MSCs were unable to differentiate into HLCs using previously reported procedures for MSCs from other tissues. However, HF-iPS efficiently induced the generation of HLCs that expressed hepatocyte markers and drug metabolism-related genes. HF-iPS can be used as novel and alternative cellular tools for inducing hepatocytes in vitro, simultaneously benefiting from utilizing HF-MSCs as a noninvasive and convenient cell source for reprogramming.

  14. Naked gene therapy of hepatocyte growth factor for dextran sulfate sodium-induced colitis in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanbe, Takamasa; Murai, Rie; Mukoyama, Tomoyuki

    Ulcerative colitis (UC) is progressive and relapsing disease. To explore the therapeutic effects of naked gene therapy of hepatocyte growth factor (HGF) on UC, the SR{alpha} promoter driving HGF gene was intrarectally administered to the mice in which colitis was induced by dextran sulfate sodium (DSS). Expression of the transgene was seen in surface epithelium, lamina propria, and muscularis mucosae. The HGF-treated mice showed reduced colonic mucosal damage and increased body weights, compared with control mice (P < 0.01 and P < 0.05, respectively). The HGF-treated mice displayed increased number of PCNA-positive cells and decreased number of apoptotic cells thanmore » in control mice (P < 0.01, each). Phosphorylated AKT was dramatically increased after HGF gene administration, however, phosphorylated ERK1/2 was not altered. Microarray analysis revealed that HGF induced expression of proliferation- and apoptosis-associated genes. These data suggest that naked HGF gene delivery causes therapeutic effects through regulation of many downstream genes.« less

  15. Intra- and inter-laboratory reliability of a cryopreserved trout hepatocyte assay for the prediction of chemical bioaccumulation potential

    EPA Science Inventory

    Cryopreserved trout hepatocytes provide a convenient in vitro system for measuring the intrinsic clearance of xenobiotics. Measured clearance rates can then be extrapolated to the whole animal as a means of improving modeled bioaccumulation predictions. To date, however, the in...

  16. Differentiation of human foreskin fibroblast-derived induced pluripotent stem cells into hepatocyte-like cells.

    PubMed

    Wang, Jianjun; Zhao, Ping; Wan, Zhihong; Jin, Xueyuan; Cheng, Yongqian; Yan, Tao; Qing, Song; Ding, Ning; Xin, Shaojie

    2016-10-01

    The aim of this study was to investigate the differentiation potential of induced pluripotent stem cells (iPSCs) derived from human foreskin fibroblasts (HFFs) into hepatocyte-like cells (HLCs). The iPSCs were firstly induced by transduction of OCT4, SOX2, KLF4, and c-MYC into HFFs using retrovirus. Afterwards, expressions of pluripotency factors were identified by semiquantitative reverse transcription-polymerase chain reaction and immunofluorescence staining, and karyotype, embryoid, and teratoma were observed by microscope. Then, iPSCs were gradually differentiated into endoderm cells, hepatic progenitor cells, and mature HLCs by special culture medium. During this process, differentiation efficiency into each kind of cells was evaluated by detecting SOX17, HNF4a, and ALB using flow cytometry, respectively. Besides, enzyme-linked immunosorbent assay was conducted to detect the secretion of ALB in iPSC-induced HLCs and quantitative reverse transcription-polymerase chain reaction was performed to detect the expression levels of hepatocyte-specific genes. The iPSCs were successfully induced by HFFs, which exhibited typical embryonic stem cells morphology, positive alkaline phosphatase staining, normal diploid karyotype, and positive expression of various pluripotency factors. Meanwhile, spherical embryoid and teratoma with 3 germ layers were formed by iPSCs. The iPSCs were consecutively induced into endoderm cells, hepatic progenitor cells and mature HLCs, and the differentiation efficiency was 55.7 ± 2.9%, 45.7 ± 4.8%, and 35.0 ± 3.9%, respectively. Besides, the secretion of ALB and expression of various hepatocyte-specific genes was highly detected in iPSC-induced HLCs. The iPSCs were successfully derived from HFFs and then differentiated into HLCs, which proved a new source for hepatocyte transplantation. HFFs were successfully induced into iPSCs by transduction of OCT4, SOX2, KLF4, and c-MYC. Positive expressions of various pluripotency factors were

  17. Glycyrrhetinic acid suppressed NF-κB activation in TNF-α-induced hepatocytes.

    PubMed

    Chen, Hong-Jhang; Kang, Shih-Pei; Lee, I-Jung; Lin, Yun-Lian

    2014-01-22

    Tumor necrosis factor-alpha (TNF-α) is a crucial inflammatory cytokine when hepatocytes are damaged. Glycyrrhiza uralensis Fisch. (Chinese licorice) has been widely used in Chinese herbal prescriptions for the treatment of liver diseases and as a food additive. Nuclear factor-kappa B (NF-κB) reporter gene assay in TNF-α-induced HepG2 was used as a screening platform. IκBα phosphorylation and p65 translocation were measured by Western blotting, and nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) gene expression were further confirmed in rat primary hepatocytes. Results showed that TNF-α enhanced NF-κB activity was significantly attenuated by glycyrrhetinic acid in a concentration-dependent manner in the NF-κB reporter gene assay. Glycyrrhetinic acid decreased the gene expression of iNOS through inhibited IκBα phosphorylation and p65 translocation in protein level. Furthermore, NO production and iNOS expression were reduced by glycyrrhetinic acid in TNF-α-induced rat primary hepatocytes. These results suggest that glycyrrhetinic acid may provide hepatoprotection against chronic liver inflammation through attenuating NF-κB activation to alleviate the inflammation.

  18. Tributyltin induces apoptotic signaling in hepatocytes through pathways involving the endoplasmic reticulum and mitochondria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grondin, Melanie; Marion, Michel; Denizeau, Francine

    2007-07-01

    Tri-n-butyltin is a widespread environmental toxicant, which accumulates in the liver. This study investigates whether tri-n-butyltin induces pro-apoptotic signaling in rat liver hepatocytes through pathways involving the endoplasmic reticulum and mitochondria. Tri-n-butyltin activated the endoplasmic reticulum pathway of apoptosis, which was demonstrated by the activation of the protease calpain, its translocation to the plasma membrane, followed by cleavage of the calpain substrates, cytoskeletal protein vinculin, and caspase-12. Caspase-12 is localized to the cytoplasmic side of the endoplasmic reticulum and is involved in apoptosis mediated by the endoplasmic reticulum. Tri-n-butyltin also caused translocation of the pro-apoptotic proteins Bax and Bad frommore » the cytosol to mitochondria, as well as changes in mitochondrial membrane permeability, events which can activate the mitochondrial death pathway. Tri-n-butyltin induced downstream apoptotic events in rat hepatocytes at the nuclear level, detected by chromatin condensation and by confocal microscopy using acridine orange. We investigated whether the tri-n-butyltin-induced pro-apoptotic events in hepatocytes could be linked to perturbation of intracellular calcium homeostasis, using confocal microscopy. Tri-n-butyltin caused changes in intracellular calcium distribution, which were similar to those induced by thapsigargin. Calcium was released from a subcellular compartment, which is likely to be the endoplasmic reticulum, into the cytosol. Cytosolic acidification, which is known to trigger apoptosis, also occurred and involved the Cl{sup -}/HCO{sub 3} {sup -} exchanger. Pro-apoptotic events in hepatocytes were inhibited by the calcium chelator, Bapta-AM, and by a calpain inhibitor, which suggests that changes in intracellular calcium homeostasis are involved in tri-n-butyltin-induced apoptotic signaling in rat hepatocytes.« less

  19. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics

    PubMed Central

    Vorrink, Sabine U.; Ullah, Shahid; Schmidt, Staffan; Nandania, Jatin; Velagapudi, Vidya; Beck, Olof; Ingelman-Sundberg, Magnus; Lauschke, Volker M.

    2017-01-01

    Adverse reactions or lack of response to medications are important concerns for drug development programs. However, faithful predictions of drug metabolism and toxicity are difficult because animal models show only limited translatability to humans. Furthermore, current in vitro systems, such as hepatic cell lines or primary human hepatocyte (PHH) 2-dimensional (2D) monolayer cultures, can be used only for acute toxicity tests because of their immature phenotypes and inherent instability. Therefore, the migration to novel phenotypically stable models is of prime importance for the pharmaceutical industry. Novel 3-dimensional (3D) culture systems have been shown to accurately mimic in vivo hepatic phenotypes on transcriptomic and proteomic level, but information about their metabolic stability is lacking. Using a combination of targeted and untargeted high-resolution mass spectrometry, we found that PHHs in 3D spheroid cultures remained metabolically stable for multiple weeks, whereas metabolic patterns of PHHs from the same donors cultured as conventional 2D monolayers rapidly deteriorated. Furthermore, pharmacokinetic differences between donors were maintained in 3D spheroid cultures, enabling studies of interindividual variability in drug metabolism and toxicity. We conclude that the 3D spheroid system is metabolically stable and constitutes a suitable model for in vitro studies of long-term drug metabolism and pharmacokinetics.—Vorrink, S. U., Ullah, S., Schmid, S., Nandania, J., Velagapudi, V., Beck, O., Ingelman-Sundberg, M., Lauschke, V. M. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics. PMID:28264975

  20. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics.

    PubMed

    Vorrink, Sabine U; Ullah, Shahid; Schmidt, Staffan; Nandania, Jatin; Velagapudi, Vidya; Beck, Olof; Ingelman-Sundberg, Magnus; Lauschke, Volker M

    2017-06-01

    Adverse reactions or lack of response to medications are important concerns for drug development programs. However, faithful predictions of drug metabolism and toxicity are difficult because animal models show only limited translatability to humans. Furthermore, current in vitro systems, such as hepatic cell lines or primary human hepatocyte (PHH) 2-dimensional (2D) monolayer cultures, can be used only for acute toxicity tests because of their immature phenotypes and inherent instability. Therefore, the migration to novel phenotypically stable models is of prime importance for the pharmaceutical industry. Novel 3-dimensional (3D) culture systems have been shown to accurately mimic in vivo hepatic phenotypes on transcriptomic and proteomic level, but information about their metabolic stability is lacking. Using a combination of targeted and untargeted high-resolution mass spectrometry, we found that PHHs in 3D spheroid cultures remained metabolically stable for multiple weeks, whereas metabolic patterns of PHHs from the same donors cultured as conventional 2D monolayers rapidly deteriorated. Furthermore, pharmacokinetic differences between donors were maintained in 3D spheroid cultures, enabling studies of interindividual variability in drug metabolism and toxicity. We conclude that the 3D spheroid system is metabolically stable and constitutes a suitable model for in vitro studies of long-term drug metabolism and pharmacokinetics.-Vorrink, S. U., Ullah, S., Schmid, S., Nandania, J., Velagapudi, V., Beck, O., Ingelman-Sundberg, M., Lauschke, V. M. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics. © The Author(s).

  1. Protective effect of kombucha tea against tertiary butyl hydroperoxide induced cytotoxicity and cell death in murine hepatocytes.

    PubMed

    Bhattacharya, Semantee; Manna, Prasenjit; Gachhui, Ratan; Sil, Parames C

    2011-07-01

    Kombucha (KT), a fermented black tea (BT), is known to have many beneficial properties. In the present study, antioxidant property of KT has been investigated against tertiary butyl hydroperoxide (TBHP) induced cytotoxicity using murine hepatocytes. TBHP, a reactive oxygen species inducer, causes oxidative stress resulting in organ pathophysiology. Exposure to TBHP caused a reduction in cell viability, increased membrane leakage and disturbed the intra-cellular antioxidant machineries in hepatocytes. TBHP exposure disrupted mitochondrial membrane potential and induced apoptosis as evidenced by flow cytometric analyses. KT treatment, however, counteracted the changes in mitochondrial membrane potential and prevented apoptotic cell death of the hepatocytes. BT treatment also reverted TBHP induced hepatotoxicity, however KT was found to be more efficient. This may be due to the formation of antioxidant molecules like D-saccharic acid-1,4-lactone (DSL) during fermentation process and are absent in BT. Moreover, the radical scavenging activities of KT were found to be higher than BT. Results of the study showed that KT has the potential to ameliorate TBHP induced oxidative insult and cell death in murine hepatocytes more effectively than BT.

  2. An integrative model links multiple inputs and signaling pathways to the onset of DNA synthesis in hepatocytes

    PubMed Central

    Huard, Jérémy; Mueller, Stephanie; Gilles, Ernst D; Klingmüller, Ursula; Klamt, Steffen

    2012-01-01

    During liver regeneration, quiescent hepatocytes re-enter the cell cycle to proliferate and compensate for lost tissue. Multiple signals including hepatocyte growth factor, epidermal growth factor, tumor necrosis factor α, interleukin-6, insulin and transforming growth factor β orchestrate these responses and are integrated during the G1 phase of the cell cycle. To investigate how these inputs influence DNA synthesis as a measure for proliferation, we established a large-scale integrated logical model connecting multiple signaling pathways and the cell cycle. We constructed our model based upon established literature knowledge, and successively improved and validated its structure using hepatocyte-specific literature as well as experimental DNA synthesis data. Model analyses showed that activation of the mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways was sufficient and necessary for triggering DNA synthesis. In addition, we identified key species in these pathways that mediate DNA replication. Our model predicted oncogenic mutations that were compared with the COSMIC database, and proposed intervention targets to block hepatocyte growth factor-induced DNA synthesis, which we validated experimentally. Our integrative approach demonstrates that, despite the complexity and size of the underlying interlaced network, logical modeling enables an integrative understanding of signaling-controlled proliferation at the cellular level, and thus can provide intervention strategies for distinct perturbation scenarios at various regulatory levels. PMID:22443451

  3. Microbial-derived lithocholic acid and vitamin K2 drive the metabolic maturation of pluripotent stem cells-derived and fetal hepatocytes.

    PubMed

    Avior, Yishai; Levy, Gahl; Zimerman, Michal; Kitsberg, Daniel; Schwartz, Robert; Sadeh, Ronen; Moussaieff, Arieh; Cohen, Merav; Itskovitz-Eldor, Joseph; Nahmias, Yaakov

    2015-07-01

    The liver is the main organ responsible for the modification, clearance, and transformational toxicity of most xenobiotics owing to its abundance in cytochrome P450 (CYP450) enzymes. However, the scarcity and variability of primary hepatocytes currently limits their utility. Human pluripotent stem cells (hPSCs) represent an excellent source of differentiated hepatocytes; however, current protocols still produce fetal-like hepatocytes with limited mature function. Interestingly, fetal hepatocytes acquire mature CYP450 expression only postpartum, suggesting that nutritional cues may drive hepatic maturation. We show that vitamin K2 and lithocholic acid, a by-product of intestinal flora, activate pregnane X receptor (PXR) and subsequent CYP3A4 and CYP2C9 expression in hPSC-derived and isolated fetal hepatocytes. Differentiated cells produce albumin and apolipoprotein B100 at levels equivalent to primary human hepatocytes, while demonstrating an 8-fold induction of CYP450 activity in response to aryl hydrocarbon receptor (AhR) agonist omeprazole and a 10-fold induction in response to PXR agonist rifampicin. Flow cytometry showed that over 83% of cells were albumin and hepatocyte nuclear factor 4 alpha (HNF4α) positive, permitting high-content screening in a 96-well plate format. Analysis of 12 compounds showed an R(2) correlation of 0.94 between TC50 values obtained in stem cell-derived hepatocytes and primary cells, compared to 0.62 for HepG2 cells. Finally, stem cell-derived hepatocytes demonstrate all toxicological endpoints examined, including steatosis, apoptosis, and cholestasis, when exposed to nine known hepatotoxins. Our work provides fresh insights into liver development, suggesting that microbial-derived cues may drive the maturation of CYP450 enzymes postpartum. Addition of these cues results in the first functional, inducible, hPSC-derived hepatocyte for predictive toxicology. © 2015 by the American Association for the Study of Liver Diseases.

  4. The Simplest Flowchart Stating the Mechanisms for Organic Xenobiotics-induced Toxicity: Can it Possibly be Accepted as a "Central Dogma" for Toxic Mechanisms?

    PubMed

    Park, Yeong-Chul; Lee, Sundong; Cho, Myung-Haing

    2014-09-01

    Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems.

  5. Attenuation of alcohol-induced apoptosis of hepatocytes in rat livers by polyenylphosphatidylcholine (PPC).

    PubMed

    Mi, L J; Mak, K M; Lieber, C S

    2000-02-01

    Alcohol consumption increases apoptosis of hepatocytes. This effect appears to be mediated by the induction of hepatic cytochrome P-4502E1(CYP2E1) and its generation of free radicals, which results in an enhanced lipid peroxidation that initiates apoptosis. Because polyenylphosphatidylcholine (PPC), a soybean extract rich in polyunsaturated phosphatidylcholines, decreases the induction of ethanol-specific CYP2E1 and opposes oxidative stress, we hypothesized that PPC supplementation may attenuate hepatocyte apoptosis caused by ethanol ingestion. Twenty-eight male Sprague Dawley rats were pair-fed Lieber-DeCarli liquid diets containing 36% of energy as alcohol or an isocaloric amount of carbohydrate for 28 days. Half of the rats were given PPC (3 g/liter), whereas the other half received the same amount of linoleate (as safflower oil) and of choline as the bitartrate. An additional dose of alcohol (3 g/kg) was given intragastrically 90 min before the livers were removed. We assessed apoptosis in formalin-fixed, paraffin-embedded liver sections by using the TUNEL (terminal transferase dUTP nick end labeling) assay. Apoptotic hepatocytes were identified by positive TUNEL staining in conjunction with condensation of nucleoplasm or margination of chromatin. In each rat, 20,000 to 60,000 hepatocytes were counted by light microscopy by using Image-Pro Plus computer software, and the incidence of apoptosis was expressed as the percentage of total hepatocytes. Alcohol feeding resulted in a 4.5-fold increase in apoptosis of hepatocytes compared to pair-fed control rats; PPC supplementation decreased the alcohol-induced apoptosis to less than half. No difference in the incidence of apoptosis between the control and PPC-supplemented rats was found in the absence of alcohol. Apoptosis was distributed randomly in the liver lobules of the rats fed the control diet, whereas the alcohol-induced apoptosis was significantly increased in the perivenular area. PPC supplementation

  6. Xenobiotic-Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by Toxcast Chemicals

    EPA Science Inventory

    Primary human hepatocyte cultures are useful in vitro model systems of human liver because when cultured under appropriate conditions the hepatocytes retain liver-like functionality such as metabolism, transport, and cell signaling. This model system was used to characterize the ...

  7. Oncostatin M induces upregulation of claudin-2 in rodent hepatocytes coinciding with changes in morphology and function of tight junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imamura, Masafumi; Department of Pathology, Sapporo Medical University School of Medicine, S1. W17. Sapporo 060-8556; Kojima, Takashi

    2007-05-15

    In rodent livers, integral tight junction (TJ) proteins claudin-1, -2, -3, -5 and -14 are detected and play crucial roles in the barrier to keep bile in bile canaculi away from the blood circulation. Claudin-2 shows a lobular gradient increasing from periportal to pericentral hepatocytes, whereas claudin-1 and -3 are expressed in the whole liver lobule. Although claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells, the physiological functions and regulation of claudin-2 in hepatocytes remain unclear. Oncostatin M (OSM) is a multifunctional cytokine implicated in the differentiation of hepatocytes that induces formation of E-cadherin-based adherens junctions inmore » fetal hepatocytes. In this study, we examined whether OSM could induce expression and function of claudin-2 in rodent hepatocytes, immortalized mouse and primary cultured proliferative rat hepatocytes. In the immortalized mouse and primary cultured proliferative rat hepatocytes, treatment with OSM markedly increased mRNA and protein of claudin-2 together with formation of developed networks of TJ strands. The increase of claudin-2 enhanced the paracellular barrier function which depended on molecular size. The increase of claudin-2 expression induced by OSM in rodent hepatocytes was regulated through distinct signaling pathways including PKC. These results suggest that expression of claudin-2 in rodent hepatocytes may play a specific role as controlling the size of paracellular permeability in the barrier to keep bile in bile canaculi.« less

  8. Study of Valproic Acid-Enhanced Hepatocyte Steatosis

    PubMed Central

    Chang, Renin; Chou, Mei-Chia; Hung, Li-Ying; Wang, Mu-En; Hsu, Meng-Chieh; Chiu, Chih-Hsien

    2016-01-01

    Valproic acid (VPA) is one of the most widely used antiepilepsy drugs. However, several side effects, including weight gain and fatty liver, have been reported in patients following VPA treatment. In this study, we explored the molecular mechanisms of VPA-induced hepatic steatosis using FL83B cell line-based in vitro model. Using fluorescent lipid staining technique, we found that VPA enhanced oleic acid- (OLA-) induced lipid accumulation in a dose-dependent manner in hepatocytes; this may be due to upregulated lipid uptake, triacylglycerol (TAG) synthesis, and lipid droplet formation. Real-time PCR results showed that, following VPA treatment, the expression levels of genes encoding cluster of differentiation 36 (Cd36), low-density lipoprotein receptor-related protein 1 (Lrp1), diacylglycerol acyltransferase 2 (Dgat2), and perilipin 2 (Plin2) were increased, that of carnitine palmitoyltransferase I a (Cpt1a) was not affected, and those of acetyl-Co A carboxylase α (Acca) and fatty acid synthase (Fasn) were decreased. Furthermore, using immunofluorescence staining and flow cytometry analyses, we found that VPA also induced peroxisome proliferator-activated receptor γ (PPARγ) nuclear translocation and increased levels of cell-surface CD36. Based on these results, we propose that VPA may enhance OLA-induced hepatocyte steatosis through the upregulation of PPARγ- and CD36-dependent lipid uptake, TAG synthesis, and lipid droplet formation. PMID:27034954

  9. Membrane Phospholipid Augments Cytochrome P4501a Enzymatic Activity by Modulating Structural Conformation during Detoxification of Xenobiotics

    PubMed Central

    Ghosh, Manik C.; Ray, Arun K.

    2013-01-01

    Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment. PMID:23469105

  10. Membrane phospholipid augments cytochrome P4501a enzymatic activity by modulating structural conformation during detoxification of xenobiotics.

    PubMed

    Ghosh, Manik C; Ray, Arun K

    2013-01-01

    Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment.

  11. Lipid-induced toxicity stimulates hepatocytes to release angiogenic microparticles that require Vanin-1 for uptake by endothelial cells

    PubMed Central

    Povero, Davide; Eguchi, Akiko; Niesman, Ingrid R.; Andronikou, Nektaria; de Mollerat du Jeu, Xavier; Mulya, Anny; Berk, Michael; Lazic, Milos; Thapaliya, Samjana; Parola, Maurizio; Patel, Hemal H.; Feldstein, Ariel E.

    2014-01-01

    Angiogenesis is a key pathological feature of experimental and human steatohepatitis, a common chronic liver disease that is associated with obesity. We demonstrated that hepatocytes generated a type of membrane-bound vesicle, microparticles, in response to conditions that mimicked the lipid accumulation that occurs in the liver in some forms of steatohepatitis and that these microparticles promoted angiogenesis. When applied to an endothelial cell line, medium conditioned by murine hepatocytes or a human hepatocyte cell line exposed to saturated free fatty acids induced migration and tube formation, two processes required for angiogenesis. Medium from hepatocytes in which caspase 3 was inhibited or medium in which the microparticles were removed by ultracentrifugation lacked proangiogenic activity. Isolated hepatocyte-derived microparticles induced migration and tube formation of an endothelial cell line in vitro and angiogenesis in mice, processes that depended on internalization of microparticles. Microparticle internalization required the interaction of the ectoenzyme Vanin-1 (VNN1), an abundant surface protein on the microparticles, with lipid raft domains of endothelial cells. Large quantities of hepatocyte-derived microparticles were detected in the blood of mice with diet-induced steatohepatitis, and microparticle quantity correlated with disease severity. Genetic ablation of caspase 3 or RNA interference directed against VNN1 protected mice from steatohepatitis-induced pathological angiogenesis in the liver and resulted in a loss of the proangiogenic effects of microparticles. Our data identify hepatocyte-derived microparticles as critical signals that contribute to angiogenesis and liver damage in steatohepatitis and suggest a therapeutic target for this condition. PMID:24106341

  12. The Simplest Flowchart Stating the Mechanisms for Organic Xenobiotics-induced Toxicity: Can it Possibly be Accepted as a “Central Dogma” for Toxic Mechanisms?

    PubMed Central

    Lee, Sundong; Cho, Myung-Haing

    2014-01-01

    Xenobiotics causing a variety of toxicity in biological systems could be classified as two types, inorganic and organic chemicals. It is estimated that the organic xenobiotics are responsible for approximately 80~90% of chemical-induced toxicity in human population. In the class for toxicology, we have encountered some difficulties in explaining the mechanisms of toxicity caused especially by organic chemicals. Here, a simple flowchart was introduced for explaining the mechanism of toxicity caused by organic xenobiotics, as the central dogma of molecular biology. This flowchart, referred to as a central dogma, was described based on a view of various aspects as follows: direct-acting chemicals vs. indirect-acting chemicals, cytochrome P450-dependent vs. cytochrome P450-independent biotransformation, reactive intermediates, reactivation, toxicokinetics vs. toxicodynamics, and reversibility vs. irreversibility. Thus, the primary objective of this flowchart is to help better understanding of the organic xenobiotics-induced toxic mechanisms, providing a major pathway for toxicity occurring in biological systems. PMID:25343011

  13. Alterations of hepatocyte function with free radical generators and reparation or prevention with coffee polyphenols.

    PubMed

    Saidi Merzouk, Amel; Hafida, Merzouk; Medjdoub, Amel; Loukidi, Bouchra; Cherrak, Sabri; Merzouk, Sid Ahmed; Elhabiri, Mourad

    2017-03-01

    Liver diseases are linked in the majority of cases to oxidative stress that antioxidants could neutralize with reducing liver injury. Chlorogenic acid, a coffee polyphenol, possesses antioxidant prosperities. The aim of this study was to evaluate in vitro preventive and corrective effects of cholorogenic acid in hepatocyte toxicity induced by free radicals. Hepatocytes were isolated from adult male Wistar rats. To determine corrective effects and reparation, cells were first exposed to two free radical generators (hydrogen peroxide/iron sulfate for hydroxyl radical formation, and phenazine methosulfate/nicotinamide adenine dinucleotide for superoxide anion formation) for 12H and thereafter treated by chlorogenic acid (1 and 10 μM final concentration) for another 12H. To show preventive effects, cells were pretreated by chlorogenic acid and thereafter exposed to free radical generators. Hepatocyte proliferation, glucose uptake, ATP contents, membrane fluidity and integrity, and intracellular redox status were investigated after 24H culture. The results showed that chlorogenic acid reversed the decrease in cell proliferation, glucose uptake and ATP levels, the increased LDH release and the reduced membrane fluidity and restored the oxidant/antioxidant status under oxidative stress. When pre-treated with chlorogenic acid, hepatocytes became very resistant to oxidative conditions and cellular homeostasis was maintained. In conclusion, chlorogenic acid displayed not only corrective but also preventive effects in hepatocytes exposed to oxidative stress and could be beneficial in patients with or at risk of liver diseases.

  14. Monocrotophos Induces the Expression and Activity of Xenobiotic Metabolizing Enzymes in Pre-Sensitized Cultured Human Brain Cells

    PubMed Central

    Tripathi, Vinay K.; Kumar, Vivek; Singh, Abhishek K.; Kashyap, Mahendra P.; Jahan, Sadaf; Pandey, Ankita; Alam, Sarfaraz; Khan, Feroz; Khanna, Vinay K.; Yadav, Sanjay; Lohani, Mohtshim; Pant, Aditya B.

    2014-01-01

    The expression and metabolic profile of cytochrome P450s (CYPs) is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y) and glial (U373-MG) cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC), cyclophosphamide (CPA), ethanol and known neurotoxicant- monocrotophos (MCP), a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h) of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against xenobiotics

  15. PHA665752, a small-molecule inhibitor of c-Met, inhibits hepatocyte growth factor-stimulated migration and proliferation of c-Met-positive neuroblastoma cells.

    PubMed

    Crosswell, Hal E; Dasgupta, Anindya; Alvarado, Carlos S; Watt, Tanya; Christensen, James G; De, Pradip; Durden, Donald L; Findley, Harry W

    2009-11-25

    c-Met is a tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF), and both c-Met and its ligand are expressed in a variety of tissues. C-Met/HGF/SF signaling is essential for normal embryogenesis, organogenesis, and tissue regeneration. Abnormal c-Met/HGF/SF signaling has been demonstrated in different tumors and linked to aggressive and metastatic tumor phenotypes. In vitro and in vivo studies have demonstrated inhibition of c-Met/HGF/SF signaling by the small-molecule inhibitor PHA665752. This study investigated c-Met and HGF expression in two neuroblastoma (NBL) cell lines and tumor tissue from patients with NBL, as well as the effects of PHA665752 on growth and motility of NBL cell lines. The effect of the tumor suppressor protein PTEN on migration and proliferation of tumor cells treated with PHA665752 was also evaluated. Expression of c-Met and HGF in NBL cell lines SH-EP and SH-SY5Y and primary tumor tissue was assessed by immunohistochemistry and quantitative RT-PCR. The effect of PHA665752 on c-Met/HGF signaling involved in NBL cell proliferation and migration was evaluated in c-Met-positive cells and c-Met-transfected cells. The transwell chemotaxis assay and the MTT assay were used to measure migration and proliferation/cell-survival of tumor cells, respectively. The PPAR-gamma agonist rosiglitazone was used to assess the effect of PTEN on PHA665752-induced inhibition of NBL cell proliferation/cell-survival and migration High c-Met expression was detected in SH-EP cells and primary tumors from patients with advanced-stage disease. C-Met/HGF signaling induced both migration and proliferation of SH-EP cells. Migration and proliferation/cell-survival were inhibited by PHA665752 in a dose-dependent manner. We also found that induced overexpression of PTEN following treatment with rosiglitazone significantly enhanced the inhibitory effect of PHA665752 on NBL-cell migration and proliferation. c-Met is highly expressed in most tumors

  16. Parasite-induced ER stress response in hepatocytes facilitates Plasmodium liver stage infection.

    PubMed

    Inácio, Patricia; Zuzarte-Luís, Vanessa; Ruivo, Margarida T G; Falkard, Brie; Nagaraj, Nagarjuna; Rooijers, Koos; Mann, Matthias; Mair, Gunnar; Fidock, David A; Mota, Maria M

    2015-08-01

    Upon infection of a mammalian host, Plasmodium parasites first replicate inside hepatocytes, generating thousands of new parasites. Although Plasmodium intra-hepatic development represents a substantial metabolic challenge to the host hepatocyte, how infected cells respond to and integrate this stress remains poorly understood. Here, we present proteomic and transcriptomic analyses, revealing that the endoplasmic reticulum (ER)-resident unfolded protein response (UPR) is activated in host hepatocytes upon Plasmodium berghei infection. The expression of XBP1s--the active form of the UPR mediator XBP1--and the liver-specific UPR mediator CREBH is induced by P. berghei infection in vivo. Furthermore, this UPR induction increases parasite liver burden. Altogether, our data suggest that ER stress is a central feature of P. berghei intra-hepatic development, contributing to the success of infection. © 2015 The Authors.

  17. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with,more » or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced

  18. Interferon-lambda (IFN-λ) induces signal transduction and gene expression in human hepatocytes, but not in lymphocytes or monocytes

    PubMed Central

    Dickensheets, Harold; Sheikh, Faruk; Park, Ogyi; Gao, Bin; Donnelly, Raymond P.

    2013-01-01

    This study compared the ability of IFN-α and IFN-λ to induce signal transduction and gene expression in primary human hepatocytes, PBLs, and monocytes. IFN-α drug products are widely used to treat chronic HCV infection; however, IFN-α therapy often induces hematologic toxicities as a result of the broad expression of IFNARs on many cell types, including most leukocytes. rIFN-λ1 is currently being tested as a potential alternative to IFN-α for treating chronic HCV. Although IFN-λ has been shown to be active on hepatoma cell lines, such as HepG2 and Huh-7, its ability to induce responses in primary human hepatocytes or leukocytes has not been examined. We found that IFN-λ induces activation of Jak/STAT signaling in mouse and human hepatocytes, and the ability of IFN-λ to induce STAT activation correlates with induction of numerous ISGs. Although the magnitude of ISG expression induced by IFN-λ in hepatocytes was generally lower than that induced by IFN-α, the repertoire of regulated genes was quite similar. Our findings demonstrate that although IFN-α and IFN-λ signal through distinct receptors, they induce expression of a common set of ISGs in hepatocytes. However, unlike IFN-α, IFN-λ did not induce STAT activation or ISG expression by purified lymphocytes or monocytes. This important functional difference may provide a clinical advantage for IFN-λ as a treatment for chronic HCV infection, as it is less likely to induce the leukopenias that are often associated with IFN-α therapy. PMID:23258595

  19. Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells.

    PubMed

    Zhao, Qinjun; Ren, Hongying; Li, Xiyuan; Chen, Zhong; Zhang, Xiangyu; Gong, Wei; Liu, Yongjun; Pang, Tianxiang; Han, Zhong Chao

    2009-01-01

    Mesenchymal stromal cells (MSC) isolated from several human tissues have been known to differentiate into the hepatic lineage in vitro, but the immunogenicity of the differentiated hepatocyte-like cells (DHC) has not been reported. Umbilical cord (UC) MSC are thought to be an attractive cell source for cell therapy because of their young age and low infection rate compared with adult tissue MSC. Hepatic differentiation of UC-MSC was induced with a 2-step protocol. The expressions of hepatic markers were detected by RT-PCR and immunofluorescence staining. Albumin production and urea secretion were measured by ELISA and colorimetric assay respectively. The immunosuppressive properties of DHC was detected by mixed lymphocyte culture. After incubation with specific growth factors, including hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), UC MSC exhibited a high hepatic differentiation ability in an adherent culture condition. The differentiated UC MSC showed hepatocyte-like morphology and expressed several liver-specific markers at gene and protein levels. Furthermore, the DHC exhibited hepatocyte-specific functions, including albumin secretion, low-density lipoprotein uptake and urea production. More importantly, DHC did not express major histocompatibility complex (MHC) II antigen and were not able to induce lymphocyte proliferation in mixed lymphocyte culture, as undifferentiated UC MSC did. Our results indicate that UC MSC are able to differentiate into functional hepatocyte-like cells that still retain their low immunogenicity in vitro. More importantly, DHC incorporated into the parenchyma of liver when transplanted into mice with CCl(4)-induced liver injury. Therefore, DHC may be an ideal source for cell therapy of liver diseases.

  20. Comparative study of toxicological and cell cycle effects of okadaic acid and dinophysistoxin-2 in primary rat hepatocytes.

    PubMed

    Rubiolo, J A; López-Alonso, H; Vega, F V; Vieytes, M R; Botana, L M

    2012-03-10

    To determine the relative toxicity and effects on the cell cycle of okadaic acid and dinophysistoxin-2 in primary hepatocyte cultures. Cytotoxicity was determined by the MTT method, caspase-3 activity and lactate dehydrogenase release to the medium. The cell cycle analysis was performed by imaging flow cytometry and the effect of the toxins on cell proliferation was studied by quantitative PCR and confocal microscopy. We show that dinophysistoxin-2 is less toxic than okadaic acid for primary hepatocytes with a similar difference in potency as that observed in vivo in mice after intraperitoneal injection. Both toxins induced apoptosis with caspase-3 increase. They also inhibited the hepatocytes cell cycle in G1 affecting diploid cells and diploid bi-nucleated cells. In proliferating hepatocytes exposed to the toxins, a decrease of p53 gene expression as well as a lower protein level was detected. Studies of the tubulin cytoskeleton in toxin treated cells, showed nuclear localization of this molecule and a granulated tubulin pattern in the cytoplasm. The results presented in this work show that the difference in toxicity between dinophysistoxin-2 and okadaic acid in cultured primary hepatocytes is the same as that observed in vivo after intraperitoneal injection. Okadaic acid and dinophysistoxin-2 arrest the cell cycle of hepatocytes at G1 even in diploid bi-nucleated cells. p53 and tubulin could be involved in the cell cycle inhibitory effect. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Transversal inducing differentiation of human amniotic epithelial cells into hepatocyte-like cells.

    PubMed

    Luo, Hongwu; Huang, Xiangjun; Huang, Feizhou; Liu, Xunyang

    2011-06-01

    To evaluate the in vitro differentiation of human amniotic epithelial cells (hAECs ) into hepatocyte-like cells. Combined approach of dexamethasone, HGF, IGF and other cytokines were used to induce the differentiation of hAECs into hepatocyte-like cells. The induction lasted 2 weeks. During the induction, the expression of albumin ALB, CYP1A1, CYP1A2, IGFR, c-met and key functional genes related to liver cells as well as transcription factors HNF3, HNF4 and C/EBPa were monitored by RT-PCR. Time dependent changes of the surface marker colony ALB, AFP and CK18 were analyzed by cell flow cytometry. After the 2 week induction, the expressions of liver hepatocyte-like cell functional genes such as albumin, CYP1A1, CYP1A2, c-met, and transcription factors such as HNF3, HNF4, C/EBPa and HNF1 were observed. Six days after the induction, hAECs mainly were stained AFP+, and the positive rate was (15.1 ± 2.1)%. While 10 days after the induction, part of the hAECs showed AFP+/ALB+ (6.5 ± 1.4)%; and on 14th day, hAECs only showed ALB+, and the rate was (13.9 ± 2.3)%. ALB+ cell increase indicated a gradual functional maturation from the hAECs to hepatocyte-like cells. Similaritly, the number of CK18+ cells in the whole population was also increased: On 10th day, the rate was (16.1 ± 1.2)%; on 14th day, that was (21.3 ± 4.6)%, which proved the above hypothesis of the trandifferentiation. By extending the induction time, the expression of functional genes increased gradually, and a maturing process of hAECs was detected by cell surface markers. The differentiation of hAECs induced in vitro has the characteristics of hepatocyte-like cells.

  2. Cytoprotection by fructose and other ketohexoses during bile salt-induced apoptosis of hepatocytes.

    PubMed

    Zeid, I M; Bronk, S F; Fesmier, P J; Gores, G J

    1997-01-01

    Toxic bile salts cause hepatocyte necrosis at high concentrations and apoptosis at lower concentrations. Although fructose prevents bile salt-induced necrosis, the effect of fructose on bile salt-induced apoptosis is unclear. Our aim was to determine if fructose also protects against bile salt-induced apoptosis. Fructose inhibited glycochenodeoxycholate (GCDC)-induced apoptosis in a concentration-dependent manner with a maximum inhibition of 72% +/- 10% at 10 mmol/L. First, we determined if fructose inhibited apoptosis by decreasing adenosine triphosphate (ATP) and intracellular pH (pHi). Although fructose decreased ATP to <25% of basal values, oligomycin (an ATP synthase inhibitor) did not inhibit apoptosis despite decreasing ATP to similar values. Fructose (10 mmol/L) decreased intracellular pH (pHi) by 0.2 U. However, extracellular acidification (pH 6.8), which decreased hepatocyte pHi 0.35 U and is known to inhibit necrosis, actually potentiated apoptosis 1.6-fold. Fructose cytoprotection also could not be explained by induction of bcl-2 transcription or metal chelation. Because we could not attribute fructose cytoprotection to metabolic effects, alterations in the expression of bcl-2, or metal chelation, we next determined if the poorly metabolized ketohexoses, tagatose and sorbose, also inhibited apoptosis; unexpectedly, both ketohexoses inhibited apoptosis. Because bile salt-induced apoptosis and necrosis are inhibited by fructose, these data suggest that similar processes initiate bile salt-induced hepatocyte necrosis and apoptosis. In contrast, acidosis, which inhibits necrosis, potentiates apoptosis. Thus, ketohexose-sensitive pathways appear to initiate both bile salt-induced cell apoptosis and necrosis, whereas dissimilar, pH-sensitive, effector mechanisms execute these two different cell death processes.

  3. Xenobiotic-induced apoptosis: significance and potential application as a general biomarker of response

    USGS Publications Warehouse

    Sweet, Leonard I.; Passino-Reader, Dora R.; Meier, Peter G.; Omann, Geneva M.

    1999-01-01

    The process of apoptosis, often coined programmed cell death, involves cell injury induced by a variety of stimuli including xenobiotics and is morphologically, biochemically, and physiologically distinct from necrosis. Apoptotic death is characterized by cellular changes such as cytoplasm shrinkage, chromatin condensation, and plasma membrane asymmetry. This form of cell suicide is appealing as a general biomarker of response in that it is expressed in multiple cell systems (e.g. immune, neuronal, hepatal, intestinal, dermal, reproductive), is conserved phylogenetically (e.g. fish, rodents, birds, sheep, amphibians, roundworms, plants, humans), is modulated by environmentally relevant levels of chemical contaminants, and indicates a state of stress of the organism. Further, apoptosis is useful as a biomarker as it serves as a molecular control point and hence may provide mechanistic information on xenobiotic stress. Studies reviewed here suggest that apoptosis is a sensitive and early indicator of acute and chronic chemical stress, loss of cellular function and structure, and organismal health. Examples are provided of the application of this methodology in studies of health of lake trout (Salvelinus namaycush) in the Laurentian Great Lakes.

  4. Parasite-induced ER stress response in hepatocytes facilitates Plasmodium liver stage infection

    PubMed Central

    Inácio, Patricia; Zuzarte-Luís, Vanessa; Ruivo, Margarida TG; Falkard, Brie; Nagaraj, Nagarjuna; Rooijers, Koos; Mann, Matthias; Mair, Gunnar; Fidock, David A; Mota, Maria M

    2015-01-01

    Upon infection of a mammalian host, Plasmodium parasites first replicate inside hepatocytes, generating thousands of new parasites. Although Plasmodium intra-hepatic development represents a substantial metabolic challenge to the host hepatocyte, how infected cells respond to and integrate this stress remains poorly understood. Here, we present proteomic and transcriptomic analyses, revealing that the endoplasmic reticulum (ER)-resident unfolded protein response (UPR) is activated in host hepatocytes upon Plasmodium berghei infection. The expression of XBP1s—the active form of the UPR mediator XBP1—and the liver-specific UPR mediator CREBH is induced by P. berghei infection in vivo. Furthermore, this UPR induction increases parasite liver burden. Altogether, our data suggest that ER stress is a central feature of P. berghei intra-hepatic development, contributing to the success of infection. PMID:26113366

  5. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yuchao; McGill, Mitchell R.; Dorko, Kenneth

    Acetaminophen (APAP) overdose is the most prevalent cause of drug-induced liver injury in western countries. Numerous studies have been conducted to investigate the mechanisms of injury after APAP overdose in various animal models; however, the importance of these mechanisms for humans remains unclear. Here we investigated APAP hepatotoxicity using freshly isolated primary human hepatocytes (PHH) from either donor livers or liver resections. PHH were exposed to 5 mM, 10 mM or 20 mM APAP over a period of 48 h and multiple parameters were assessed. APAP dose-dependently induced significant hepatocyte necrosis starting from 24 h, which correlated with the clinicalmore » onset of human liver injury after APAP overdose. Interestingly, cellular glutathione was depleted rapidly during the first 3 h. APAP also resulted in early formation of APAP-protein adducts (measured in whole cell lysate and in mitochondria) and mitochondrial dysfunction, indicated by the loss of mitochondrial membrane potential after 12 h. Furthermore, APAP time-dependently triggered c-Jun N-terminal kinase (JNK) activation in the cytosol and translocation of phospho-JNK to the mitochondria. Both co-treatment and post-treatment (3 h) with the JNK inhibitor SP600125 reduced JNK activation and significantly attenuated cell death at 24 h and 48 h after APAP. The clinical antidote N-acetylcysteine offered almost complete protection even if administered 6 h after APAP and a partial protection when given at 15 h. Conclusion: These data highlight important mechanistic events in APAP toxicity in PHH and indicate a critical role of JNK in the progression of injury after APAP in humans. The JNK pathway may represent a therapeutic target in the clinic. - Highlights: • APAP reproducibly causes cell death in freshly isolated primary human hepatocytes. • APAP induces adduct formation, JNK activation and mitochondrial dysfunction in PHH. • Mitochondrial adducts and JNK translocation are delayed in PHH

  6. [Pathological changes in hepatocytes of mice with obesity-induced type 2 diabetes by monosodium glutamate].

    PubMed

    Nakadate, Kazuhiko; Motojima, Kento; Kamata, Sumito; Yoshida, Testuro; Hikita, Masaaki; Wakamatsu, Hisanori

    2014-01-01

    Type 2 diabetes caused by chronic obesity is a major lifestyle-related disease. The present study aimed to determine the pathological changes in hepatocytes in chronic obesity. To develop our type 2 diabetes mouse model, we induced chronic obesity to mice by monosodium glutamate. By overeating, the mice significantly increased their body weight compared with age-matched healthy animals. To analyze the pathological changes in hepatocytes of chronic obesity before preclinical stage of type 2 diabetes, the mice were analyzed by hematoxylin-eosin staining of tissue sections at 15 w of age. In these mice, we observed eosin-negative accumulations of hepatocytes around central veins in the hepatic lobule. By Oil-Red O staining, the eosin-negative granules were identified in the lipid droplets. We then ascertained whether these lipid droplets of hepatocytes in the obese mice could be modified by diet. After 24 h of diet restriction, the lipid droplets of hepatocytes in the obese mice were swollen. Furthermore, after 48 h of the diet restriction, the lipid droplets continued swelling and the autophagy-like structures that were found in the healthy mice under the same condition in the obese mice were not observed. These results suggest that the obese mice might have delayed energy metabolism, which might have influenced the mechanisms of hepatocytes. These findings provide new insight into the functional changes in chronic obesity-induced type 2 diabetes and it is possible that the pathological feature make a contribution to promise the target of pharmacological therapy.

  7. Cross-interference of two model peroxisome proliferators in peroxisomal and estrogenic pathways in brown trout hepatocytes.

    PubMed

    Madureira, Tânia Vieira; Pinheiro, Ivone; Malhão, Fernanda; Lopes, Célia; Urbatzka, Ralph; Castro, L Filipe C; Rocha, Eduardo

    2017-06-01

    Peroxisome proliferators cause species-specific effects, which seem to be primarily transduced by peroxisome proliferator-activated receptor alpha (PPARα). Interestingly, PPARα has a close interrelationship with estrogenic signaling, and this latter has already been promptly activated in brown trout primary hepatocytes. Thus, and further exploring this model, we assess here the reactivity of two PPARα agonists in direct peroxisomal routes and, in parallel the cross-interferences in estrogen receptor (ER) mediated paths. To achieve these goals, three independent in vitro studies were performed using single exposures to clofibrate - CLF (50, 500 and 1000μM), Wy-14,643 - Wy (50 and 150μM), GW6471 - GW (1 and 10μM), and mixtures, including PPARα agonist or antagonist plus an ER agonist or antagonist. Endpoints included gene expression analysis of peroxisome/lipidic related genes (encoding apolipoprotein AI - ApoAI, fatty acid binding protein 1 - Fabp1, catalase - Cat, 17 beta-hydroxysteroid dehydrogenase 4 - 17β-HSD4, peroxin 11 alpha - Pex11α, PPARαBb, PPARαBa and urate oxidase - Uox) and those encoding estrogenic targets (ERα, ERβ-1 and vitellogenin A - VtgA). A quantitative morphological approach by using a pre-validated catalase immunofluorescence technique allowed checking possible changes in peroxisomes. Our results show a low responsiveness of trout hepatocytes to model PPARα agonists in direct target receptor pathways. Additionally, we unveiled interferences in estrogenic signaling caused by Wy, leading to an up-regulation VtgA and ERα at 150μM; these effects seem counteracted with a co-exposure to an ER antagonist. The present data stress the potential of this in vitro model for further exploring the physiological/toxicological implications related with this nuclear receptor cross-regulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Accessibility of hepatocyte protein thiols to monobromobimane.

    PubMed

    Weis, M; Cotgreave, I C; Moore, G A; Norbeck, K; Moldéus, P

    1993-03-10

    The amino-acid residue specificity of monobromobimane (mBBr) and its accessibility to cellular protein cysteine residues were investigated. mBBr reacted selectively with the sulfhydryl group of both the free amino acid cysteine and bovine serum albumin. Incubation of isolated hepatocytes with mBBr resulted in a concentration-dependent formation of protein-bound mBBr fluorescence in the cytosolic, mitochondrial and microsomal fractions, which was not fully saturated with up to 16 mM mBBr. SDS-PAGE resolution of the proteins revealed that the major portion of increased protein-bound mBBr fluorescence that occurred at high mBBr concentrations was due to covalent binding to proteins. A minor portion (10-16% in the microsomal fraction) of protein-bound mBBr fluorescence was removed by SDS-PAGE and is therefore concluded to be due to physical entrapment of fluorescent mBBr reaction products. The accessibility of mBBr, assayed as the degree of depletion of total protein cysteine residues, was similar to N-ethylmaleimide (NEM) in isolated microsomes. By contrast, in the cytosol a markedly lower amount of protein cysteine residues were labelled by mBBr as compared to NEM. In both organelle fractions p-BQ was the most efficient thiol-depleting reagent. It is concluded that mBBr is a suitable reagent for the analysis of the cellular protein thiol status and of its xenobiotic-induced alterations when used at high concentrations; however, it should be considered that, (i) the relative accessibility of mBBr and a particular xenobiotic to cellular protein thiol residues may be different, and (ii) physically entrapped fluorescent reaction products of mBBr should be removed when quantitating protein thiol levels.

  9. Ecologically Appropriate Xenobiotics Induce Cytochrome P450s in Apis mellifera

    PubMed Central

    Johnson, Reed M.; Mao, Wenfu; Pollock, Henry S.; Niu, Guodong; Schuler, Mary A.; Berenbaum, May R.

    2012-01-01

    Background Honey bees are exposed to phytochemicals through the nectar, pollen and propolis consumed to sustain the colony. They may also encounter mycotoxins produced by Aspergillus fungi infesting pollen in beebread. Moreover, bees are exposed to agricultural pesticides, particularly in-hive acaricides used against the parasite Varroa destructor. They cope with these and other xenobiotics primarily through enzymatic detoxificative processes, but the regulation of detoxificative enzymes in honey bees remains largely unexplored. Methodology/Principal Findings We used several approaches to ascertain effects of dietary toxins on bee susceptibility to synthetic and natural xenobiotics, including the acaricide tau-fluvalinate, the agricultural pesticide imidacloprid, and the naturally occurring mycotoxin aflatoxin. We administered potential inducers of cytochrome P450 enzymes, the principal biochemical system for Phase 1 detoxification in insects, to investigate how detoxification is regulated. The drug phenobarbital induces P450s in many insects, yet feeding bees with phenobarbital had no effect on the toxicity of tau-fluvalinate, a pesticide known to be detoxified by bee P450s. Similarly, no P450 induction, as measured by tau-fluvalinate tolerance, occurred in bees fed xanthotoxin, salicylic acid, or indole-3-carbinol, all of which induce P450s in other insects. Only quercetin, a common pollen and honey constituent, reduced tau-fluvalinate toxicity. In microarray comparisons no change in detoxificative gene expression was detected in phenobarbital-treated bees. However, northern blot analyses of guts of bees fed extracts of honey, pollen and propolis showed elevated expression of three CYP6AS P450 genes. Diet did not influence tau-fluvalinate or imidacloprid toxicity in bioassays; however, aflatoxin toxicity was higher in bees consuming sucrose or high-fructose corn syrup than in bees consuming honey. Conclusions/Significance These results suggest that regulation of

  10. [Antagonistic effect of N-acetylcysteine on apoptosis of L-02 hepatocyte induced by Cr(VI) with or without caspase inhibitor].

    PubMed

    Chen, Jing; Zhong, Caigao; Zeng, Ming; Liu, Xinmin; Deng, Yuanyuan; Xiao, Fang

    2010-11-01

    To explore the antagonistic effect of N-acetylcysteine (NAC) on hexevalent chromium (Cr(VI))-induced apoptosis in L-02 hepatocytes with or without caspase inhibitors. L-02 hepatocytes were randomly divided into a control group, and Cr( VI), Z-VAD-fmk + Cr(VI), NAC + Cr(VI), Z-VAD-fmk + NAC + Cr (VI) four treatment groups, in which L-02 hepatocytes were cultured with Cr (VI) at the dose of 20 micromol/L for 6h. The rates of apoptosis in all groups were detected by flow cytometry (FC) after staining with propidium iodide (PI). The changes of mitochondrial membrane potential (deltapsim) and permeability transition pore (PTP) were determined by fluorescent spectrometer. The DNA damages in hepatocytes were observed by the single cell gel electrophoresis (SCGE). Cr(VI) significantly induced apoptosis of L-02 hepatocytes at the dose of 20 micromol/L for 6 hours (P < 0.05). However, NAC significantly decreased the rates of apoptosis of L-02 hepatocytes and alleviated the damages to mitochondria and DNA caused by Cr(VI) in L-02 hepatocytes with or without caspase (P < 0.05). However, in comparition with the non caspase-inhibited group, the protective effects of NAC decreased in the caspase-inhibited group (P < 0.05). NAC could protect the apoptosis of L-02 hepatocyte induced with Cr(VI) with or without caspase inhibitor, and caspase could not play a decisive role in this process.

  11. Failure of hepatocyte marker-expressing hematopoietic progenitor cells to efficiently convert into hepatocytes in vitro.

    PubMed

    Lian, Gewei; Wang, Chengyan; Teng, Chunbo; Zhang, Cong; Du, Liying; Zhong, Qian; Miao, Chenglin; Ding, Mingxiao; Deng, Hongkui

    2006-03-01

    Whether bone marrow (BM) hematopoietic stem/progenitor cells can directly differentiate into nonhematopoietic cells remains controversial. The aim of this study is to further investigate the potentiality of BM hematopoietic progenitor cells to convert into hepatocytes in vitro. Different subsets of BM cells from C57/BL6 mice were isolated using markers of hematopoietic stem cells by magnetic cell sorting and by flow cytometry. These cells were induced to transdifferentiate to hepatocytes in vitro in the presence of various cytokines or of hepatocytes (or tissue) from damaged liver, which have been reported to stimulate the conversion. Hepatic gene markers in freshly isolated or cultured BM cells were determined by reverse transcriptase polymerase chain reaction and immunofluorescence. Freshly isolated hematopoietic progenitor cells (HPC) expressed a low level of messenger RNAs of hepatic cell-specific markers including albumin and alpha-fetoprotein (AFP), but did not significantly upregulate expression of these markers, even in the presence of cytokines or cocultured hepatocytes (or tissue). HPCs induced in vitro did not express the message of alpha-anti-trypsin-a mature hepatocyte marker. At protein level, the specific staining of AFP was not detected in the HPCs, either freshly isolated or in vitro induced. Albumin protein was detected in freshly isolated albumin mRNA-positive and -negative BM cell subpopulations. Albumin-stained BM cells disappeared after being induced for 5 days, but restained if mouse serum was supplemented in medium for a 24-hour extended culture, suggesting that albumin was absorbed by BM cells instead of de novo expression. HPCs expressed mRNAs of hepatic cell markers, but could not efficiently convert into hepatocytes in vitro under our experimental conditions. Our observation raises a cautionary note in determining whether in vitro transdifferentiation of BM cells to hepatocytes can actually take place.

  12. Hepatocyte nuclear factor-4alpha induces transdifferentiation of hematopoietic cells into hepatocytes.

    PubMed

    Khurana, Satish; Jaiswal, Amit K; Mukhopadhyay, Asok

    2010-02-12

    Hematopoietic stem cells can directly transdifferentiate into hepatocytes because of cellular plasticity, but the molecular basis of transdifferentiation is not known. Here, we show the molecular basis using lineage-depleted oncostatin M receptor beta-expressing (Lin(-)OSMRbeta(+)) mouse bone marrow cells in a hepatic differentiation culture system. Differentiation of the cells was marked by the expression of albumin. Hepatocyte nuclear factor (HNF)-4alpha was expressed and translocated into the nuclei of the differentiating cells. Suppression of its activation in OSM-neutralized culture medium inhibited cellular differentiation. Ectopic expression of full-length HNF4alpha in 32D myeloid cells resulted in decreased myeloid colony-forming potential and increased expression of hepatocyte-specific genes and proteins. Nevertheless, the neohepatocytes produced in culture expressed active P450 enzyme. The obligatory role of HNF4alpha in hepatic differentiation was confirmed by transfecting Lin(-)OSMRbeta(+) cells with dominant negative HNF4alpha in the differentiation culture because its expression inhibited the transcription of the albumin and tyrosine aminotransferase genes. The loss and gain of functional activities strongly suggested that HNF4alpha plays a central role in the transdifferentiation process. For the first time, this report demonstrates the mechanism of transdifferentiation of hematopoietic cells into hepatocytes, in which HNF4alpha serves as a molecular switch.

  13. Pregnane xenobiotic receptor in cancer pathogenesis and therapeutic response

    PubMed Central

    Pondugula, Satyanarayana R.; Mani, Sridhar

    2012-01-01

    Pregnane xenobiotic receptor (PXR) is an orphan nuclear receptor that regulates the metabolism of endobiotics and xenobiotics. PXR is promiscuous and unique in that it is activated by a diverse group of xenochemicals, including therapeutic anticancer drugs and naturally-occurring endocrine disruptors. PXR has been predominantly studied to understand its regulatory role in xenobiotic clearance in liver and intestine via induction of drug metabolizing enzymes and drug transporters. PXR, however, is widely expressed and has functional implications in other normal and malignant tissues, including breast, prostate, ovary, endometrium and bone. The differential expression of PXR and its target genes in cancer tissues has been suggested to determine the prognosis of chemotherapeutic outcome. In addition, the emerging evidence points to the implications of PXR in regulating apoptotic and antiapoptotic as well as growth factor signaling that promote tumor proliferation and metastasis. In this review, we highlight the recent progress made in understanding the role of PXR in cancer, discuss the future directions to further understand the mechanistic role of PXR in cancer, and conclude with the need to identify novel selective PXR modulators. PMID:22939994

  14. Stathmin Mediates Hepatocyte Resistance to Death from Oxidative Stress by down Regulating JNK

    PubMed Central

    Zhao, Enpeng; Amir, Muhammad; Lin, Yu; Czaja, Mark J.

    2014-01-01

    Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK). The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth. PMID:25285524

  15. Kupffer cells induce Notch-mediated hepatocyte conversion in a common mouse model of intrahepatic cholangiocarcinoma

    PubMed Central

    Terada, Maiko; Horisawa, Kenichi; Miura, Shizuka; Takashima, Yasuo; Ohkawa, Yasuyuki; Sekiya, Sayaka; Matsuda-Ito, Kanae; Suzuki, Atsushi

    2016-01-01

    Intrahepatic cholangiocarcinoma (ICC) is a malignant epithelial neoplasm composed of cells resembling cholangiocytes that line the intrahepatic bile ducts in portal areas of the hepatic lobule. Although ICC has been defined as a tumor arising from cholangiocyte transformation, recent evidence from genetic lineage-tracing experiments has indicated that hepatocytes can be a cellular origin of ICC by directly changing their fate to that of biliary lineage cells. Notch signaling has been identified as an essential factor for hepatocyte conversion into biliary lineage cells at the onset of ICC. However, the mechanisms underlying Notch signal activation in hepatocytes remain unclear. Here, using a mouse model of ICC, we found that hepatic macrophages called Kupffer cells transiently congregate around the central veins in the liver and express the Notch ligand Jagged-1 coincident with Notch activation in pericentral hepatocytes. Depletion of Kupffer cells prevents the Notch-mediated cell-fate conversion of hepatocytes to biliary lineage cells, inducing hepatocyte apoptosis and increasing mortality in mice. These findings will be useful for uncovering the pathogenic mechanism of ICC and developing prevenient and therapeutic strategies for this refractory disease. PMID:27698452

  16. The Chemically Inducible Plant Cytochrome P450 CYP76B1 Actively Metabolizes Phenylureas and Other Xenobiotics1

    PubMed Central

    Robineau, Tiburce; Batard, Yannick; Nedelkina, Svetlana; Cabello-Hurtado, Francisco; LeRet, Monique; Sorokine, Odile; Didierjean, Luc; Werck-Reichhart, Danièle

    1998-01-01

    Cytochrome P450s (P450s) constitute one of the major classes of enzymes that are responsible for detoxification of exogenous molecules both in animals and plants. On the basis of its inducibility by exogenous chemicals, we recently isolated a new plant P450, CYP76B1, from Jerusalem artichoke (Helianthus tuberosus) and showed that it was capable of dealkylating a model xenobiotic compound, 7-ethoxycoumarin. In the present paper we show that CYP76B1 is more strongly induced by foreign compounds than other P450s isolated from the same plant, and metabolizes with high efficiency a wide range of xenobiotics, including alkoxycoumarins, alkoxyresorufins, and several herbicides of the class of phenylureas. CYP76B1 catalyzes the double N-dealkylation of phenylureas with turnover rates comparable to those reported for physiological substrates and produces nonphytotoxic compounds. Potential uses for CYP76B1 thus include control of herbicide tolerance and selectivity, as well as soil and groundwater bioremediation. PMID:9808750

  17. Protective effects of ferulic acid and related polyphenols against glyoxal- or methylglyoxal-induced cytotoxicity and oxidative stress in isolated rat hepatocytes.

    PubMed

    Maruf, Abdullah Al; Lip, HoYin; Wong, Horace; O'Brien, Peter J

    2015-06-05

    Glyoxal (GO) and methylglyoxal (MGO) cause protein and nucleic acid carbonylation and oxidative stress by forming reactive oxygen and carbonyl species which have been associated with toxic effects that may contribute to cardiovascular disease, complications associated with diabetes mellitus, Alzheimer's and Parkinson's disease. GO and MGO can be formed through oxidation of commonly used reducing sugars e.g., fructose under chronic hyperglycemic conditions. GO and MGO form advanced glycation end products which lead to an increased potential for developing inflammatory diseases. In the current study, we have investigated the protective effects of ferulic acid and related polyphenols e.g., caffeic acid, p-coumaric acid, methyl ferulate, ethyl ferulate, and ferulaldehyde on GO- or MGO-induced cytotoxicity and oxidative stress (ROS formation, protein carbonylation and mitochondrial membrane potential maintenance) in freshly isolated rat hepatocytes. To investigate and compare the protective effects of ferulic acid and related polyphenols against GO- or MGO-induced toxicity, five hepatocyte models were used: (a) control hepatocytes, (b) GSH-depleted hepatocytes, (c) catalase-inhibited hepatocytes, (d) aldehyde dehydrogenase (ALDH2)-inhibited hepatocytes, and (e) hepatocyte inflammation system (a non-toxic H2O2-generating system). All of the polyphenols tested significantly decreased GO- or MGO-induced cytotoxicity, ROS formation and improved mitochondrial membrane potential in these models. The rank order of their effectiveness was caffeic acid∼ferulaldehyde>ferulic acid>ethyl ferulate>methyl ferulate>p-coumaric acid. Ferulic acid was found to decrease protein carbonylation in GSH-depleted hepatocytes. This study suggests that ferulic acid and related polyphenols can be used therapeutically to inhibit or decrease GO- or MGO-induced hepatotoxicity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Optimization of the isolation and cultivation of Cyprinus carpio primary hepatocytes.

    PubMed

    Yanhong, Fan; Chenghua, He; Guofang, Liu; Haibin, Zhang

    2008-10-01

    The aquatic environment is affected by numerous chemical contaminants. There is an increasing need to identify these chemicals and to evaluate their potential toxicity towards aquatic life. In this research we optimized techniques for primary cell culture of Cyprinus carpio hepatocytes as one adjunct model for ecotoxicological evaluation of the potential hazards of xenobiotics in the aquatic environment. In this study, Cyprinus carpio hepatocytes were isolated by mechanical separation, two-step collagenase perfusion, and pancreatin digestion. The hepatocytes or parenchymal cells could be separated from cell debris and from non-parenchymal cells by low-speed centrifugation (Percoll gradient centrifugation). The harvested hepatocytes were suspended in DMEM, M199 (cultured in 5% CO(2)), or L-15 (cultured without 5% CO(2)) medium then cultured at 17, 27, or 37 degrees C. Cell yield was counted by use of a hemocytometer, and the viability of the cells was assessed by use of the Trypan blue exclusion test. Results from these studies showed that the best method of isolation was pancreatin digestion (the cell yield was 2.7 x 10(8) per g (liver weight) and the viability was 98.4%) and the best medium was M199 (cultured in 5% CO(2)) or L-15 (cultured without 5% CO(2)). The optimum culture temperature was 27 degrees C. The primary hepatocytes culture of Cyprimus carpio grew well and satisfied requirements for most toxicological experiments in this condition.

  19. Role of the nuclear xenobiotic receptors CAR and PXR in induction of cytochromes P450 by non-dioxinlike polychlorinated biphenyls in cultured rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gährs, Maike; Roos, Robert; Andersson, Patrik L.

    Polychlorinated biphenyls (PCBs) are among the most ubiquitously detectable ‘persistent organic pollutants’. In contrast to ‘dioxinlike’ (DL) PCBs, less is known about the molecular mode of action of the larger group of the ‘non-dioxinlike’ (NDL) PCBs. Owing to the life-long exposure of the human population, a carcinogenic, i.e., tumor-promoting potency of NDL-PCBs has to be considered in human risk assessment. A major problem in risk assessment of NDL-PCBs is dioxin-like impurities that can occur in commercially available NDL-PCB standards. In the present study, we analyzed the induction of CYP2B1 and CYP3A1 in primary rat hepatocytes using a number of highlymore » purified NDL-PCBs with various degrees of chlorination and substitution patterns. Induction of these enzymes is mediated by the nuclear xenobiotic receptors CAR (Constitutive androstane receptor) and PXR (Pregnane X receptor). For CYP2B1 induction, concentration–response analysis revealed a very narrow window of EC{sub 50} estimates, being in the range of 1–4 μM for PCBs 28 and 52, and between 0.4 and 1 μM for PCBs 101, 138, 153 and 180. CYP3A1 induction was less sensitive to NDL-PCBs, the most pronounced induction being achieved at 100 μM with the higher chlorinated congeners. Using okadaic acid and small interfering RNAs targeting CAR and PXR, we could demonstrate that CAR plays a major role and PXR a minor role in NDL-PCB-driven induction of CYPs, both effects showing no stringent structure–activity relationship. As the only obvious relevant determinant, the degree of chlorination was found to be positively correlated with the inducing potency of the congeners. - Highlights: • We analyzed six highly purified NDL-PCBs for CYP2B1 and CYP3A1 expression. • CAR plays a major, PXR a minor role in NDL-PCB-driven induction of CYPs. • The degree of chlorination seems to be the major parameter for the inducing potency. • There exists a competition between CAR and PXR.

  20. Xenobiotic Metabolism and Gut Microbiomes

    PubMed Central

    Das, Anubhav; Srinivasan, Meenakshi; Ghosh, Tarini Shankar; Mande, Sharmila S.

    2016-01-01

    Humans are exposed to numerous xenobiotics, a majority of which are in the form of pharmaceuticals. Apart from human enzymes, recent studies have indicated the role of the gut bacterial community (microbiome) in metabolizing xenobiotics. However, little is known about the contribution of the plethora of gut microbiome in xenobiotic metabolism. The present study reports the results of analyses on xenobiotic metabolizing enzymes in various human gut microbiomes. A total of 397 available gut metagenomes from individuals of varying age groups from 8 nationalities were analyzed. Based on the diversities and abundances of the xenobiotic metabolizing enzymes, various bacterial taxa were classified into three groups, namely, least versatile, intermediately versatile and highly versatile xenobiotic metabolizers. Most interestingly, specific relationships were observed between the overall drug consumption profile and the abundance and diversity of the xenobiotic metabolizing repertoire in various geographies. The obtained differential abundance patterns of xenobiotic metabolizing enzymes and bacterial genera harboring them, suggest their links to pharmacokinetic variations among individuals. Additional analyses of a few well studied classes of drug modifying enzymes (DMEs) also indicate geographic as well as age specific trends. PMID:27695034

  1. Increased reprogramming of human fetal hepatocytes compared with adult hepatocytes in feeder-free conditions.

    PubMed

    Hansel, Marc C; Gramignoli, Roberto; Blake, William; Davila, Julio; Skvorak, Kristen; Dorko, Kenneth; Tahan, Veysel; Lee, Brian R; Tafaleng, Edgar; Guzman-Lepe, Jorge; Soto-Gutierrez, Alejandro; Fox, Ira J; Strom, Stephen C

    2014-01-01

    Hepatocyte transplantation has been used to treat liver disease. The availability of cells for these procedures is quite limited. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) may be a useful source of hepatocytes for basic research and transplantation if efficient and effective differentiation protocols were developed and problems with tumorigenicity could be overcome. Recent evidence suggests that the cell of origin may affect hiPSC differentiation. Thus, hiPSCs generated from hepatocytes may differentiate back to hepatocytes more efficiently than hiPSCs from other cell types. We examined the efficiency of reprogramming adult and fetal human hepatocytes. The present studies report the generation of 40 hiPSC lines from primary human hepatocytes under feeder-free conditions. Of these, 37 hiPSC lines were generated from fetal hepatocytes, 2 hiPSC lines from normal hepatocytes, and 1 hiPSC line from hepatocytes of a patient with Crigler-Najjar syndrome, type 1. All lines were confirmed reprogrammed and expressed markers of pluripotency by gene expression, flow cytometry, immunocytochemistry, and teratoma formation. Fetal hepatocytes were reprogrammed at a frequency over 50-fold higher than adult hepatocytes. Adult hepatocytes were only reprogrammed with six factors, while fetal hepatocytes could be reprogrammed with three (OCT4, SOX2, NANOG) or four factors (OCT4, SOX2, NANOG, LIN28 or OCT4, SOX2, KLF4, C-MYC). The increased reprogramming efficiency of fetal cells was not due to increased transduction efficiency or vector toxicity. These studies confirm that hiPSCs can be generated from adult and fetal hepatocytes including those with genetic diseases. Fetal hepatocytes reprogram much more efficiently than adult hepatocytes, although both could serve as useful sources of hiPSC-derived hepatocytes for basic research or transplantation.

  2. Lopimune-induced mitochondrial toxicity is attenuated by increased uncoupling protein-2 level in treated mouse hepatocytes.

    PubMed

    El Hoss, Sara; Bahr, Georges M; Echtay, Karim S

    2015-06-15

    Although the protease inhibitor (PI) Lopimune has proven to be effective, no studies have examined the side effects of Lopimune on mitochondrial bioenergetics in hepatocytes. The objective of the present study is to evaluate mitochondrial respiration, production of reactive oxygen species (ROS) and expression of uncoupling protein-2 (UCP2) in mouse hepatocytes following Lopimune administration. Mitochondria were extracted from mouse liver using differential centrifugation and hepatocytes were isolated by the collagenase perfusion procedure. Mitochondrial respiration was measured using a Rank Brothers oxygen electrode. ROS production in hepatocytes was monitored by flow cytometry using a 2',7'-dichlorofluorescin diacetate probe and UCP2 protein expression was detected by Western blotting. We found that Lopimune induced a significant decrease of approximately 30% in the respiratory control ratio (RCR) starting from day 4 until day 9 of treatment. This decrease was due to an increase in state 4 respiration, reflecting an increase in mitochondrial proton leak. State 2 and state 3 respirations were not affected. Moreover, ROS production significantly increased by about 2-fold after day 1 of treatment and decreased after day 3, returning to the resting level on day 5. Interestingly, UCP2 which is absent from control hepatocytes, was expressed starting from day 4 of treatment. Our findings indicate that Lopimune-induced proton leak, mediated by UCP2, may represent a response to inhibit the production of ROS as a negative feedback regulatory mechanism. These results imply a potential involvement of UCP2 in the regulation of oxidative stress and add new insights into the understanding of mitochondrial toxicity induced by PIs. © The Authors Journal compilation © 2015 Biochemical Society.

  3. Monoacylglycerol O-acyltransferase 1 is regulated by peroxisome proliferator-activated receptor γ in human hepatocytes and increases lipid accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jung Hwan; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752; Lee, Yoo Jeong

    2015-05-08

    Monoacylglycerol O-acyltransferase (MGAT) is an enzyme that is involved in triglyceride synthesis by catalyzing the formation of diacylglycerol from monoacylglycerol and fatty acyl CoAs. Recently, we reported that MGAT1 has a critical role in hepatic TG accumulation and that its suppression ameliorates hepatic steatosis in a mouse model. However, the function of MGAT enzymes in hepatic lipid accumulation has not been investigated in humans. Unlike in rodents, MGAT3 as well as MGAT1 and MGAT2 are present in humans. In this study, we evaluated the differences between MGAT subtypes and their association with peroxisome proliferator-activated receptor γ (PPARγ), a regulator ofmore » mouse MGAT1 expression. In human primary hepatocytes, basal expression of MGAT1 was lower than that of MGAT2 or MGAT3, but was strongly induced by PPARγ overexpression. A luciferase assay as well as an electromobility shift assay revealed that human MGAT1 promoter activity is driven by PPARγ by direct binding to at least two regions of the promoter in 293T and HepG2 cells. Moreover, siRNA-mediated suppression of MGAT1 expression significantly attenuated lipid accumulation by PPARγ overexpression in HepG2 cells, as evidenced by oil-red-O staining. These results suggest that human MGAT1 has an important role in fatty liver formation as a target gene of PPARγ, and blocking MGAT1 activity could be an efficient therapeutic way to reduce nonalcoholic fatty liver diseases in humans. - Highlights: • PPARγ promotes MGAT1 expression in human primary hepatocytes. • PPARγ directly regulates MGAT1 promoter activity. • Human MGAT1 promoter has at least two PPARγ-binding elements. • Inhibition of MGAT1 expression attenuates hepatic lipid accumulation in humans.« less

  4. A simple and economical route to generate functional hepatocyte-like cells from hESCs and their application in evaluating alcohol induced liver damage.

    PubMed

    Pal, Rajarshi; Mamidi, Murali Krishna; Das, Anjan Kumar; Gupta, Pawan Kumar; Bhonde, Ramesh

    2012-01-01

    The in vitro derived hepatocytes from human embryonic stem cells (hESC) is a promising tool to acquire improved knowledge of the cellular and molecular events underlying early human liver development under physiological and pathological conditions. Here we report a simple two-step protocol employing conditioned medium (CM) from human hepatocellular carcinoma cell line, HepG2 to generate functional hepatocyte-like cells from hESC. Immunocytochemistry, flow cytometry, quantitative RT-PCR, and biochemical analyses revealed that the endodermal progenitors appeared as pockets in culture, and the cascade of genes associated with the formation of definitive endoderm (HNF-3β, SOX-17, DLX-5, CXCR4) was consistent and in concurrence with the up-regulation of the markers for hepatic progenitors [alpha-feto protein (AFP), HNF-4α, CK-19, albumin, alpha-1-antitrypsin (AAT)], followed by maturation into functional hepatocytes [tyrosine transferase (TAT), tryptophan-2, 3-dioxygenase (TDO), glucose 6-phosphate (G6P), CYP3A4, CYP7A1]. We witnessed that the gene expression profile during this differentiation process recapitulated in vivo liver development demonstrating a gradual down-regulation of extra embryonic endodermal markers (SOX-7, HNF-1β, SNAIL-1, LAMININ-1, CDX2), and the generated hepatic cells performed multiple liver functions. Since prenatal alcohol exposure is known to provoke irreversible abnormalities in the fetal cells and developing tissues, we exposed in vitro generated hepatocytes to ethanol (EtOH) and found that EtOH treatment not only impairs the survival and proliferation, but also induces apoptosis and perturbs differentiation of progenitor cells into hepatocytes. This disruption was accompanied by alterations in the expression of genes and proteins involved in hepatogenesis. Our results provide new insights into the wider range of destruction caused by alcohol on the dynamic process of liver organogenesis. Copyright © 2011 Wiley Periodicals, Inc.

  5. Inhibition of DNA synthesis by chemical carcinogens in cultures of initiated and normal proliferating rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novicki, D.L.; Rosenberg, M.R.; Michalopoulos, G.

    1985-01-01

    Rat hepatocytes in primary culture can be stimulated to replicate under the influence of rat serum and sparse plating conditions. Higher replication rates are induced by serum from two-thirds partially hepatectomized rats. The effects of carcinogens and noncarcinogens on the ability of hepatocytes to synthesize DNA were examined by measuring the incorporation of (3H)thymidine by liquid scintillation counting and autoradiography. Hepatocyte DNA synthesis was not decreased by ethanol or dimethyl sulfoxide at concentrations less than 0.5%. No effect was observed when 0.1 mM ketamine, Nembutal, hypoxanthine, sucrose, ascorbic acid, or benzo(e)pyrene was added to cultures of replicating hepatocytes. Estrogen, testosterone,more » tryptophan, and vitamin E inhibited DNA synthesis by approximately 50% at 0.1 mM, a concentration at which toxicity was noticeable. Several carcinogens requiring metabolic activation as well as the direct-acting carcinogen N-methyl-N'-nitro-N-nitrosoguanidine interfered with DNA synthesis. Aflatoxin B1 inhibited DNA synthesis by 50% (ID50) at concentrations between 1 X 10(-8) and 1 X 10(-7) M. The ID50 for 2-acetylaminofluorene was between 1 X 10(-7) and 1 X 10(-6) M. Benzo(a)pyrene and 3'-methyl-4-dimethylaminoazobenzene inhibited DNA synthesis 50% between 1 X 10(-5) and 1 X 10(-4) M. Diethylnitrosamine and dimethylnitrosamine (ID50 between 1 X 10(-4) and 5 X 10(-4) M) and 1- and 2-naphthylamine (ID50 between 1 X 10(-5) and 5 X 10(-4) M) caused inhibition of DNA synthesis at concentrations which overlapped with concentrations that caused measurable toxicity.« less

  6. Inflammation-Induced Cell Proliferation Potentiates DNA Damage-Induced Mutations In Vivo

    PubMed Central

    Kiraly, Orsolya; Gong, Guanyu; Olipitz, Werner; Muthupalani, Sureshkumar; Engelward, Bevin P.

    2015-01-01

    Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. PMID:25647331

  7. Lipopolysaccharide potentiates the effect of hepatocyte growth factor on hepatocyte replication in rats by augmenting AP-1 activity.

    PubMed

    Gao, C; Jokerst, R; Gondipalli, P; Cai, S R; Kennedy, S; Flye, M W; Ponder, K P

    1999-12-01

    The liver regenerates by replication of differentiated hepatocytes after damage or removal of part of the liver. Although several growth factors and signaling pathways are activated during regeneration, it is unclear as to which of these are essential for hepatocyte replication. We show here that low- (1 mg/kg) and high- (10 mg/kg) dose hepatocyte growth factor (HGF) induced replication of 2.1% and 11.1% of hepatocytes in rats, respectively. Lipopolysaccharide (LPS), an inducer of the acute phase response, augmented hepatocyte replication in response to low- and high-dose HGF by 4- and 2-fold, respectively. HGF alone induced moderate levels of c-Jun-N-terminal kinase (JNK) and p44/p42 mitogen-activated protein kinase (MAPK), resulting in moderate levels of AP-1-DNA binding activity. The combination of LPS + HGF increased JNK and AP-1-DNA binding activity more than levels seen with LPS or HGF alone. The activation of Stat3 that was observed after administration of LPS + HGF, but not HGF alone, could contribute to increased transcription of AP-1 components. Because phosphorylation of the c-Jun component of AP-1 by JNK increases its ability to activate transcription, the AP-1 in hepatocytes from animals treated with LPS + HGF may be more active than in rats treated with LPS or HGF alone. LPS may contribute to hepatocyte replication by potentiating the effect of HGF on the activation of both AP-1-DNA binding and transcriptional activity.

  8. Xenobiotic metal-induced autoimmunity: mercury and silver differentially induce antinucleolar autoantibody production in susceptible H-2s, H-2q and H-2f mice

    PubMed Central

    Hansson, M; Abedi-Valugerdi, M

    2003-01-01

    Xenobiotic-metals such as mercury (Hg) and silver (Ag) induce an H-2 linked antinucleolar autoantibody (ANolA) production in susceptible mice. The mechanism for induction of ANolA synthesis is not well understood. However, it has been suggested that both metals interact with nucleolar proteins and reveal cryptic self-peptides to nontolerant autoreactive T cells, which in turn stimulate specific autoreactive B cells. In this study, we considered this suggestion and asked if mercury and silver display, if not identical, similar cryptic self-peptides, they would induce comparable ANolA responses in H-2 susceptible mice. We analysed the development of ANolA production in mercury- and/or silver-treated mice of H-2s, H-2q and H-2f genotypes. We found that while mercury stimulated ANolA synthesis in all strains tested, silver induced ANolA responses of lower magnitudes in only H-2s and H-2q mice, but not in H-2f mice. Resistance to silver in H-2f mice was independent of the dosage/time-period of silver-treatment and non-H-2 genes. Further studies showed that F1 hybrid crosses between silver-susceptible A.SW (H-2s) and -resistant A.CA (H-2f) mice were resistant to silver, but not mercury with regard to ANolA production. Additionally, the magnitudes of mercury-induced ANolA responses in the F1 hybrids were lower than those of their parental strains. The above differential ANolA responses to mercury and silver can be explained by various factors, including the different display of nucleolar cryptic peptides by these xenobiotics, determinant capture and coexistence of different MHC molecules. Our findings also suggest that the ability of a xenobiotic metal merely to create cryptic self-peptides may not be sufficient for the induction of an ANolA response. PMID:12605692

  9. Nrf2 Knockdown Disrupts the Protective Effect of Curcumin on Alcohol-Induced Hepatocyte Necroptosis.

    PubMed

    Lu, Chunfeng; Xu, Wenxuan; Zhang, Feng; Shao, Jiangjuan; Zheng, Shizhong

    2016-12-05

    It has emerged that hepatocyte necroptosis plays a critical role in chronic alcoholic liver disease (ALD). Our previous study has identified that the beneficial therapeutic effect of curcumin on alcohol-caused liver injury might be attributed to activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), whereas the role of curcumin in regulating necroptosis and the underlying mechanism remain to be determined. We first found that chronic alcohol consumption triggered obvious hepatocyte necroptosis, leading to increased expression of receptor-interacting protein 1, receptor-interacting protein 3, high-mobility group box 1, and phosphorylated mixed lineage kinase domain-like in murine livers. Curcumin dose-dependently ameliorated hepatocyte necroptosis and alleviated alcohol-caused decrease in hepatic Nrf2 expression in alcoholic mice. Then Nrf2 shRNA lentivirus was introduced to generate Nrf2-knockdown mice. Our results indicated that Nrf2 knockdown aggravated the effects of alcohol on liver injury and necroptosis and even abrogated the inhibitory effect of curcumin on necroptosis. Further, activated Nrf2 by curcumin inhibited p53 expression in both livers and cultured hepatocytes under alcohol stimulation. The next in vitro experiments, similar to in vivo ones, revealed that although Nrf2 knockdown abolished the suppression of curcumin on necroptosis of hepatocytes exposed to ethanol, p53 siRNA could clearly rescued the relative effect of curcumin. In summary, for the first time, we concluded that curcumin attenuated alcohol-induced hepatocyte necroptosis in a Nrf2/p53-dependent mechanism. These findings make curcumin an excellent candidate for ALD treatment and advance the understanding of ALD mechanisms associated with hepatocyte necroptosis.

  10. Optimization of the isolation and cultivation of Cyprinus carpio primary hepatocytes

    PubMed Central

    Yanhong, Fan; Chenghua, He; Guofang, Liu

    2008-01-01

    The aquatic environment is affected by numerous chemical contaminants. There is an increasing need to identify these chemicals and to evaluate their potential toxicity towards aquatic life. In this research we optimized techniques for primary cell culture of Cyprinus carpio hepatocytes as one adjunct model for ecotoxicological evaluation of the potential hazards of xenobiotics in the aquatic environment. In this study, Cyprinus carpio hepatocytes were isolated by mechanical separation, two-step collagenase perfusion, and pancreatin digestion. The hepatocytes or parenchymal cells could be separated from cell debris and from non-parenchymal cells by low-speed centrifugation (Percoll gradient centrifugation). The harvested hepatocytes were suspended in DMEM, M199 (cultured in 5% CO2), or L-15 (cultured without 5% CO2) medium then cultured at 17, 27, or 37 °C. Cell yield was counted by use of a hemocytometer, and the viability of the cells was assessed by use of the Trypan blue exclusion test. Results from these studies showed that the best method of isolation was pancreatin digestion (the cell yield was 2.7 × 108 per g (liver weight) and the viability was 98.4%) and the best medium was M199 (cultured in 5% CO2) or L-15 (cultured without 5% CO2). The optimum culture temperature was 27 °C. The primary hepatocytes culture of Cyprimus carpio grew well and satisfied requirements for most toxicological experiments in this condition. PMID:19002769

  11. The organic solute transporters alpha and beta are induced by hypoxia in human hepatocytes

    PubMed Central

    Schaffner, Carlos A; Mwinyi, Jessica; Gai, Zhibo; Thasler, Wolfgang E; Eloranta, Jyrki J; Kullak-Ublick, Gerd A

    2015-01-01

    Background & Aims The organic solute transporters alpha and beta (OSTα-OSTβ) form a heterodimeric transporter located at the basolateral membrane of intestinal epithelial cells and hepatocytes. Liver injury caused by ischaemia-reperfusion, cancer, inflammation or cholestasis can induce a state of hypoxia in hepatocytes. Here, we studied the effect of hypoxia on the expression of OSTα-OSTβ. Methods OSTα-OSTβ expression was measured in Huh7 cells and primary human hepatocytes (PHH) exposed to chenodeoxycholic acid (CDCA), hypoxia or both. OSTα-OSTβ promoter activity was analysed in luciferase reporter gene assays. Binding of hypoxia-inducible factor-1 alpha (HIF-1α) to the OSTα-OSTβ gene promoters was studied in electrophoretic mobility shift assays (EMSA). Results Expression of OSTα and OSTβ increased in PHH under conditions of hypoxia. Exposure of Huh7 cells or PHH to CDCA (50 μM) enhanced the effect of hypoxia on OSTα mRNA levels. In luciferase assays and EMSA, the inducing effect of low oxygen could be assigned to HIF-1α, which binds to hypoxia responsive elements (HRE) in the OSTα and OSTβ gene promoters. Site-directed mutagenesis of either the predicted HRE or the bile acid responsive FXR binding site abolished inducibility of the OSTα promoter, indicating that both elements need to be intact for induction by hypoxia and CDCA. In a rat model of chronic renal failure, the known increase in hepatic OSTα expression was associated with an increase in HIF-1α protein levels. Conclusion OSTα-OSTβ expression is induced by hypoxia. FXR and HIF-1α bind in close proximity to the OSTα gene promoter and produce synergistic effects on OSTα expression. PMID:24703425

  12. Protective effects of Sesamum indicum extract against oxidative stress induced by vanadium on isolated rat hepatocytes.

    PubMed

    Hosseini, Mir-Jamal; Shahraki, Jafar; Tafreshian, Saman; Salimi, Ahmad; Kamalinejad, Mohammad; Pourahmad, Jalal

    2016-08-01

    Vanadium toxicity is a challenging problem to human and animal health with no entirely understanding cytotoxic mechanisms. Previous studies in vanadium toxicity showed involvement of oxidative stress in isolated liver hepatocytes and mitochondria via increasing of ROS formation, release of cytochrome c and ATP depletion after incubation with different concentrations (25-200 µM). Therefore, we aimed to investigate the protective effects of Sesamum indicum seed extract (100-300 μg/mL) against oxidative stress induced by vanadium on isolated rat hepatocytes. Our results showed that quite similar to Alpha-tocopherol (100 µM), different concentrations of extract (100-300 μg/mL) protected the isolated hepatocyte against all oxidative stress/cytotoxicity markers induced by vanadium in including cell lysis, ROS generation, mitochondrial membrane potential decrease and lysosomal membrane damage. Besides, vanadium induced mitochondrial/lysosomal toxic interaction and vanadium reductive activation mediated by glutathione in vanadium toxicity was significantly (P < 0.05) ameliorated by Sesamum indicum extracts. These findings suggested a hepato-protective role for extracts against liver injury resulted from vanadium toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 979-985, 2016. © 2015 Wiley Periodicals, Inc.

  13. Lignans from Opuntia ficus-indica seeds protect rat primary hepatocytes and HepG2 cells against ethanol-induced oxidative stress.

    PubMed

    Kim, Jung Wha; Yang, Heejung; Kim, Hyeon Woo; Kim, Hong Pyo; Sung, Sang Hyun

    2017-01-01

    Bioactivity-guided isolation of Opuntia ficus-indica (Cactaceae) seeds against ethanol-treated primary rat hepatocytes yielded six lignan compounds. Among the isolates, furofuran lignans 4-6, significantly protected rat hepatocytes against ethanol-induced oxidative stress by reducing intracellular reactive oxygen species levels, preserving antioxidative defense enzyme activities, and maintaining the glutathione content. Moreover, 4 dose-dependently induced the heme oxygenase-1 expression in HepG2 cells.

  14. Oxidative stress triggers cytokinesis failure in hepatocytes upon isolation.

    PubMed

    Tormos, A M; Taléns-Visconti, R; Bonora-Centelles, A; Pérez, S; Sastre, J

    2015-01-01

    Primary hepatocytes are highly differentiated cells and proliferatively quiescent. However, the stress produced during liver digestion seems to activate cell cycle entry by proliferative/dedifferentiation programs that still remain unclear. The aim of this work was to assess whether the oxidative stress associated with hepatocyte isolation affects cell cycle and particularly cytokinesis, the final step of mitosis. Hepatocytes were isolated from C57BL/6 mice by collagenase perfusion in the absence and presence of N-acetyl cysteine (NAC). Polyploidy, cell cycle, and reactive oxygen species (ROS) were studied by flow cytometry (DNA, phospho-histone 3, and CellROX(®) Deep Red) and Western blotting (cyclins B1 and D1, and proliferating cell nuclear antigen). mRNA expression of cyclins A1, B1, B2, D1, and F by reverse transcription (RT)-PCR was also assessed. Glutathione levels were measured by mass spectrometry. Here we show that hepatocyte isolation enhanced cell cycle entry, increased hepatocyte binucleation, and caused marked glutathione oxidation. Addition of 5 mM NAC to the hepatocyte isolation media prevented glutathione depletion, partially blocked ROS production and cell cycle entry of hepatocytes, and avoided the blockade of mitosis progression, abrogating defective cytokinesis and diminishing the formation of binucleated hepatocytes during isolation. Therefore, addition of NAC to the isolation media decreased the generation of polyploid hepatocytes confirming that oxidative stress occurs during hepatocyte isolation and it is responsible, at least in part, for cytokinesis failure and hepatocyte binucleation.

  15. Involvement of Bcl-xL degradation and mitochondrial-mediated apoptotic pathway in pyrrolizidine alkaloids-induced apoptosis in hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji Lili; Shanghai R and D Centre for Standardization of Traditional Chinese Medicines, Shanghai 201203; Chen Ying

    2008-09-15

    Pyrrolizidine alkaloids (PAs) are natural hepatotoxins with worldwide distribution in more than 6000 high plants including medicinal herbs or teas. The aim of this study is to investigate the signal pathway involved in PAs-induced hepatotoxicity. Our results showed that clivorine, isolated from Ligularia hodgsonii Hook, decreased cell viability and induced apoptosis in L-02 cells and mouse hepatocytes. Western-blot results showed that clivorine induced caspase-3/-9 activation, mitochondrial release of cytochrome c and decreased anti-apoptotic Bcl-xL in a time (8-48 h)- and concentration (1-100 {mu}M)-dependent manner. Furthermore, inhibitors of pan-caspase, caspase-3 and caspase-9 significantly inhibited clivorine-induced apoptosis and rescued clivorine-decreased cell viability.more » Polyubiquitination of Bcl-xL was detected after incubation with 100 {mu}M clivorine for 40 h in the presence of proteasome specific inhibitor MG132, indicating possible degradation of Bcl-xL protein. Furthermore, pretreatment with MG132 or calpain inhibitor I for 2 h significantly enhanced clivorine-decreased Bcl-xL level and cell viability. All the other tested PAs such as senecionine, isoline and monocrotaline decreased mouse hepatocytes viability in a concentration-dependent manner. Clivorine (10 {mu}M) induced caspase-3 activation and decreased Bcl-xL was also confirmed in mouse hepatocytes. Meanwhile, another PA senecionine isolated from Senecio vulgaris L also induced apoptosis, caspase-3 activation and decreased Bcl-xL in mouse hepatocytes. In conclusion, our results suggest that PAs may share the same hepatotoxic signal pathway, which involves degradation of Bcl-xL protein and thus leading to the activation of mitochondrial-mediated apoptotic pathway.« less

  16. Hepatocytes Polyploidization and Cell Cycle Control in Liver Physiopathology

    PubMed Central

    Gentric, Géraldine; Desdouets, Chantal; Celton-Morizur, Séverine

    2012-01-01

    Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of “diploid-polyploid conversion” during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at the suckling-weaning transition, cytokinesis failure events induce the genesis of binucleated tetraploid liver cells. Insulin signalling, through regulation of the PI3K/Akt signalling pathway, is essential in the establishment of liver tetraploidization by controlling cytoskeletal organisation and consequently mitosis progression. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence, and both lead to a progressive loss of cell pluripotency associated to a markedly decreased replication capacity. Although adult liver is a quiescent organ, it retains a capacity to proliferate and to modulate its ploidy in response to various stimuli or aggression (partial hepatectomy, metabolic overload (i.e., high copper and iron hepatic levels), oxidative stress, toxic insult, and chronic hepatitis etc.). Here we review the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth. PMID:23150829

  17. Hepatocytes polyploidization and cell cycle control in liver physiopathology.

    PubMed

    Gentric, Géraldine; Desdouets, Chantal; Celton-Morizur, Séverine

    2012-01-01

    Most cells in mammalian tissues usually contain a diploid complement of chromosomes. However, numerous studies have demonstrated a major role of "diploid-polyploid conversion" during physiopathological processes in several tissues. In the liver parenchyma, progressive polyploidization of hepatocytes takes place during postnatal growth. Indeed, at the suckling-weaning transition, cytokinesis failure events induce the genesis of binucleated tetraploid liver cells. Insulin signalling, through regulation of the PI3K/Akt signalling pathway, is essential in the establishment of liver tetraploidization by controlling cytoskeletal organisation and consequently mitosis progression. Liver cell polyploidy is generally considered to indicate terminal differentiation and senescence, and both lead to a progressive loss of cell pluripotency associated to a markedly decreased replication capacity. Although adult liver is a quiescent organ, it retains a capacity to proliferate and to modulate its ploidy in response to various stimuli or aggression (partial hepatectomy, metabolic overload (i.e., high copper and iron hepatic levels), oxidative stress, toxic insult, and chronic hepatitis etc.). Here we review the mechanisms and functional consequences of hepatocytes polyploidization during normal and pathological liver growth.

  18. Dicer-dependent production of microRNA221 in hepatocytes inhibits p27 and is required for liver regeneration in mice.

    PubMed

    Oya, Yuki; Masuzaki, Ryota; Tsugawa, Daisuke; Ray, Kevin C; Dou, Yongchao; Karp, Seth J

    2017-05-01

    Dicer processes microRNAs (miRs) into active forms in a wide variety of tissues, including the liver. To determine the role of Dicer in liver regeneration, we performed a series of in vivo and in vitro studies in a murine 2/3 hepatectomy model. Dicer was downregulated after 2/3 hepatectomy, and loss of Dicer inhibited liver regeneration associated with decreased cyclin A2 and miR-221, as well as increased levels of the cell cycle inhibitor p27. In vitro, miR-221 inhibited p27 production in primary hepatocytes and increased hepatocyte proliferation. Specific reconstitution of miR-221 in hepatocyte-specific Dicer-null mice inhibited p27 and restored liver regeneration. In wild type mice, targeted inhibition of miR-221 using a cholesterol-conjugated miR-221 inhibited hepatocyte proliferation after 2/3 hepatectomy. These results identify Dicer production of miR-221 as an essential component of a miRNA-dependent mechanism for suppression of p27 that controls the rate of hepatocyte proliferation after partial hepatectomy. NEW & NOTEWORTHY Our findings demonstrate a direct role for microRNAs in controlling the rate of liver regeneration after injury. By deleting Dicer, an enzyme responsible for processing microRNAs into mature forms, we determined miR-221 is a critical microRNA in the physiological process of restoration of liver mass after injury. miR-221 suppresses p27, releasing its inhibitory effects on hepatocyte proliferation. Pharmaceuticals based on miR-221 may be useful to modulate hepatocyte proliferation in the setting of liver injury. Copyright © 2017 the American Physiological Society.

  19. Inter-laboratory comparison of xenobiotic clearance rates determined using cryopreserved trout hepatocytes for improving bioaccumulation predictions

    EPA Science Inventory

    Hepatic biotransformation is an important determinant of chemical bioaccumulation in fish. Consequently, bioaccumulation models can be improved using estimates of chemical biotransformation rates. Cryopreserved trout hepatocytes have been used to measure the clearance rates of so...

  20. Hexachlorobenzene induces cell proliferation, and aryl hydrocarbon receptor expression (AhR) in rat liver preneoplastic foci, and in the human hepatoma cell line HepG2. AhR is a mediator of ERK1/2 signaling, and cell cycle regulation in HCB-treated HepG2 cells.

    PubMed

    de Tomaso Portaz, Ana Clara; Caimi, Giselle Romero; Sánchez, Marcela; Chiappini, Florencia; Randi, Andrea S; Kleiman de Pisarev, Diana L; Alvarez, Laura

    2015-10-02

    Hexachlorobenzene (HCB) is a widespread environmental pollutant, and a liver tumor promoter in rodents. Depending on the particular cell lines studied, exposure to these compounds may lead to cell proliferation, terminal differentiation, or apoptosis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is involved in drug and xenobiotic metabolism. AhR can also modulate a variety of cellular and physiological processes that can affect cell proliferation and cell fate determination. The mechanisms by which AhR ligands, both exogenous and endogenous, affect these processes involve multiple interactions between AhR and other signaling pathways. In the present study, we examined the effect of HCB on cell proliferation and AhR expression, using an initiation-promotion hepatocarcinogenesis protocol in rat liver and in the human-derived hepatoma cell line, HepG2. Female Wistar rats were initiated with a single dose of 100 mg/kg of diethylnitrosamine (DEN) at the start of the experiment. Two weeks later, daily dosing of 100 mg/kg HCB was maintained for 10 weeks. Partial hepatectomy was performed 3 weeks after initiation. The number and area of glutathione S-transferase-P (GST-P)-positive foci, in the rat liver were used as biomarkers of liver precancerous lesions. Immunohistochemical staining showed an increase in proliferating cell nuclear antigen (PCNA)-positive cells, along with enhanced AhR protein expression in hepatocytes within GST-P-positive foci of (DEN HCB) group, when compared to DEN. In a similar manner, Western blot analysis demonstrated that HCB induced PCNA and AhR protein expression in HepG2 cells. Flow cytometry assay indicated that the cells were accumulated at S and G2/M phases of the cell cycle. HCB increased cyclin D1 protein levels and ERK1/2 phosphorylation in a dose-dependent manner. Treatment of cells with a selective MEK1 inhibitor, prevented HCB-stimulatory effect on PCNA and cyclinD1, indicating that these effects

  1. Efficient Generation of Functional Hepatocytes From Human Embryonic Stem Cells and Induced Pluripotent Stem Cells by HNF4α Transduction

    PubMed Central

    Takayama, Kazuo; Inamura, Mitsuru; Kawabata, Kenji; Katayama, Kazufumi; Higuchi, Maiko; Tashiro, Katsuhisa; Nonaka, Aki; Sakurai, Fuminori; Hayakawa, Takao; Kusuda Furue, Miho; Mizuguchi, Hiroyuki

    2012-01-01

    Hepatocyte-like cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are expected to be a useful source of cells drug discovery. Although we recently reported that hepatic commitment is promoted by transduction of SOX17 and HEX into human ESC- and iPSC-derived cells, these hepatocyte-like cells were not sufficiently mature for drug screening. To promote hepatic maturation, we utilized transduction of the hepatocyte nuclear factor 4α (HNF4α) gene, which is known as a master regulator of liver-specific gene expression. Adenovirus vector-mediated overexpression of HNF4α in hepatoblasts induced by SOX17 and HEX transduction led to upregulation of epithelial and mature hepatic markers such as cytochrome P450 (CYP) enzymes, and promoted hepatic maturation by activating the mesenchymal-to-epithelial transition (MET). Thus HNF4α might play an important role in the hepatic differentiation from human ESC-derived hepatoblasts by activating the MET. Furthermore, the hepatocyte like-cells could catalyze the toxication of several compounds. Our method would be a valuable tool for the efficient generation of functional hepatocytes derived from human ESCs and iPSCs, and the hepatocyte-like cells could be used for predicting drug toxicity. PMID:22068426

  2. Peroxisome proliferation due to di(2-ethylhexyl) phthalate (DEHP): species differences and possible mechanisms.

    PubMed Central

    Elcombe, C R; Mitchell, A M

    1986-01-01

    The exposure of cultured rat hepatocytes to mono(2-ethylhexyl)phthalate (MEHP) for 72 hr resulted in marked induction of peroxisomal enzyme activity (beta-oxidation; cyanide-insensitive palmitoyl CoA oxidase) and concomitant increases in the number of peroxisomes. Similar treatment of cultured guinea pig, marmoset, or human hepatocytes revealed little or no effect of MEHP. In order to eliminate possible confounding influences of biotransformation, the proximate peroxisome proliferator(s) derived from MEHP have been identified. Using cultured hepatocytes these agents were found to be metabolite VI [mono(2-ethyl-5-oxohexyl) phthalate] and metabolite IX [mono(2-ethyl-5-hydroxyhexyl) phthalate]. The addition of these "active" metabolites to cultured guinea pig, marmoset, or human hepatocytes again revealed little effect upon peroxisomes or related enzyme activities (peroxisomal beta-oxidation or microsomal lauric acid hydroxylation). These studies demonstrate a marked species difference in the response of hepatocytes to MEHP-elicited peroxisome proliferation. Preliminary studies have also suggested that peroxisome proliferation due to MEHP may be due to an initial biochemical lesion of fatty acid metabolism. Images FIGURE 4. a FIGURE 4. b PMID:3104023

  3. [Role of PI3K/Akt pathway in endoplasmic reticulum stress and apoptosis induced by saturated fatty acid in human steatotic hepatocytes].

    PubMed

    Qu, Mei; Shen, Wei

    2015-03-01

    To investigate the roles of PI3K/Akt signaling in the unfolded protein response (UPR) and non-UPR signaling pathways of endoplasmic reticulum stress and apoptosis in hepatocytes under conditions of saturated fatty acid-induced steatosis. A steatosis model of hepatocytes (L02 cell and HepG2 cell line) was induced by palmitate sodium saturated fatty acids.The hepatocytes were divided into normal control group,experimental group (treated with palmitate sodium) and intervention group (treated with palmitate sodium and LY294002, a PI3K/Akt inhibitor). Cell apoptosis was detected by flow cytometry with Annexin V/PI double-staining.Western blot analysis was used to examine the protein expression of GRP78, PI3K, P-PI3K,Akt, P-Akt, CHOP and Bax.The F test and t-test were used in statistical analyses. Flow cytometry showed that palmitate sodium induced cell apoptosis in steatotic hepatocytes;moreover, a significant increase in cell apoptosis was observed in the palmitate sodium-induced steatotic hepatocytes in the presence of LY294002.For the normal control group, the experimental group and the intervention group, the apoptosis ratios of L02 cells were 4.41 ± 0.78% vs. 6.01 ± 1.49% vs. 19.50 ± 2.53% after 24 hours of treatment,and 12.56 ± 2.78% vs. 29.72 ± 6.39% vs. 44.60 ± 4.17% after 48 hours of treatment in respectively (all P < 0.05),and of HepG2 cells were 11.16 ± 1.15% vs. 17.50 ± 6.83% vs. 30.41 ± 3.62% after 24 hours of treatment, and 22.37 ± 1.24% vs. 33.85 ± 5.79% vs. 48.56 ± 4.21% after 48 hours of treatment (all P < 0.05). Western blot analysis showed that expression of GRP78 was significantly upregulated in the palmitate sodium-induced steatosis hepatocytes, indicating activation of endoplasmic reticulum stress. In addition, the palmitate sodium treatment also activated the PI3K/Akt pathway,induced expression of CHOP and Bax of the UPR and non-UPR signaling pathways respectively. Moreover, Pretreatment with LY294002 inhibited the palmitate sodium

  4. Dietary fructose enhances the incidence of precancerous hepatocytes induced by administration of diethylnitrosamine in rat

    PubMed Central

    2013-01-01

    Background Nonalcoholic fatty liver disease (NAFLD) is a risk for hepatocellular carcinoma (HCC), but the association between a high-fructose diet and HCC is not fully understood. In this study, we investigated whether a high-fructose diet affects hepatocarcinogenesis induced by administration of diethylnitrosamine (DEN). Methods Seven-week-old male Sprague–Dawley rats were fed standard chow (controls), a high-fat diet (54% fat), or a high-fructose diet (66% fructose) for 8 weeks. All rats were given DEN at 50 μg/L in drinking water during the same period. Precancerous hepatocytes were detected by immunostaining of the placental form of glutathione-S-transferase (GST-P). The number of GST-P-positive hepatocytes was assessed in liver specimens. Results Serum levels of total cholesterol were similar among the three groups, but serum triglyceride, fasting blood glucose, and insulin levels were higher in the high-fructose group compared to the high-fat group. In contrast, hepatic steatosis was more severe in the high-fat group compared with the high-fructose and control groups, but the incidence of GST-P-positive specimens was significantly higher in the high-fructose group compared to the other two groups. The average number of GST-P-positive hepatocytes in GST-P positive specimens in the high-fructose group was also higher than those in the other two groups. This high prevalence of GST-P-positive hepatocytes was accompanied by higher levels of 8-hydroxydeoxyguanosine in serum and liver tissue. Conclusions These results indicate that dietary fructose, rather than dietary fat, increases the incidence of precancerous hepatocytes induced by administration of DEN via insulin resistance and oxidative stress in rat. Thus, excessive fructose intake may be a potential risk factor for hepatocarcinogenesis. PMID:24321741

  5. Exosomes from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells (hiPSC-MSCs) Protect Liver against Hepatic Ischemia/ Reperfusion Injury via Activating Sphingosine Kinase and Sphingosine-1-Phosphate Signaling Pathway.

    PubMed

    Du, Yingdong; Li, Dawei; Han, Conghui; Wu, Haoyu; Xu, Longmei; Zhang, Ming; Zhang, Jianjun; Chen, Xiaosong

    2017-01-01

    This study aimed to evaluate the effects of exosomes produced by human-induced pluripotent stem cell-derived mesenchymal stromal cells (hiPSC-MSCs-Exo) on hepatic ischemia-reperfusion (I/R) injury, as well as the underlying mechanisms. Exosomes derived from hiPSC-MSCs were isolated and characterized both biochemically and biophysically. hiPSC-MSCs-Exo were injected systemically into a murine ischemia/reperfusion injury model via the inferior vena cava, and then the therapeutic effects were evaluated. The serum levels of transaminases (aspartate aminotransferase (AST) and alanine aminotransferase (ALT), as well as histological changes were examined. Primary hepatocytes and human hepatocyte cell line HL7702 were used to test whether exosomes could induce hepatocytes proliferation in vitro. In addition, the expression levels of proliferation markers (proliferation cell nuclear antigen, PCNA; Phosphohistone-H3, PHH3) were measured by immunohistochemistry and Western blot. Moreover, SK inhibitor (SKI-II) and S1P1 receptor antagonist (VPC23019) were used to investigate the role of sphingosine kinase and sphingosine-1-phosphate-dependent pathway in the effects of hiPSC-MSCs-Exo on hepatocytes. hiPSCs were efficiently induced into hiPSC-MSCs that had typical MSC characteristics. hiPSC-MSCs-Exo had diameters ranging from 100 to 200 nm and expressed exosome markers (Alix, CD63 and CD81). After hiPSC-MSCs-Exo administration, hepatocyte necrosis and sinusoidal congestion were markedly suppressed in the ischemia/reperfusion injury model, with lower histopathological scores. The levels of hepatocyte injury markers AST and ALT were significantly lower in the treatment group compared to control, and the expression levels of proliferation markers (PCNA and PHH3) were greatly induced after hiPSC-MSCs-Exo administration. Moreover, hiPSC-MSCs-Exo also induced primary hepatocytes and HL7702 cells proliferation in vitro in a dose-dependent manner. We found that hiPSC-MSCs-Exo could

  6. Roles of hepatocyte and myeloid CXC chemokine receptor-2 in liver recovery and regeneration after ischemia/reperfusion in mice.

    PubMed

    Van Sweringen, Heather L; Sakai, Nozomu; Quillin, Ralph C; Bailey, Jeff; Schuster, Rebecca; Blanchard, John; Goetzman, Holly; Caldwell, Charles C; Edwards, Michael J; Lentsch, Alex B

    2013-01-01

    Previous studies have demonstrated the significance of signaling through the CXC chemokine receptor-2 (CXCR2) receptor in the process of recovery and regeneration of functional liver mass after hepatic ischemia/reperfusion (I/R). CXCR2 is constitutively expressed on both neutrophils and hepatocytes; however, the cell-specific roles of this receptor are unknown. In the present study, chimeric mice were created through bone marrow transplantation (BMT) using wild-type and CXCR2-knockout mice, yielding selective expression of CXCR2 on hepatocytes (Hep) and/or myeloid cells (My) in the following combinations: Hep+/My+; Hep-/My+; Hep+/My-; and Hep-/My-. These tools allowed us to assess the contributions of myeloid and hepatocyte CXCR2 in the recovery of the liver after I/R injury. Flow cytometry confirmed the adoption of the donor phenotype in neutrophils. Interestingly, Kupffer cells from all chimeras lacked CXCR2 expression. Recovery/regeneration of hepatic parenchyma was assessed by histologic assessment and measurement of hepatocyte proliferation. CXCR2(Hep+/My+) mice showed the least amount of liver recovery and hepatocyte proliferation, whereas CXCR2(Hep-/My-) mice had the greatest liver recovery and hepatocyte proliferation. CXCR2(Hep+/My-) mice had enhanced liver recovery, with hepatocyte proliferation similar to CXCR2(Hep-/My-) mice. Myeloid expression of CXCR2 directly regulated CXC chemokine expression levels after hepatic I/R, such that mice lacking myeloid CXCR2 had markedly increased chemokine expression, compared with mice expressing CXCR2 on myeloid cells. The data suggest that CXCR2 on myeloid cells is the predominant regulator of liver recovery and regeneration after I/R injury, whereas hepatocyte CXCR2 plays a minor, secondary role. These findings suggest that myeloid cell-directed therapy may significantly affect liver regeneration after liver resection or transplantation. Copyright © 2012 American Association for the Study of Liver Diseases.

  7. Caveolin-1 is enriched in the peroxisomal membrane of rat hepatocytes.

    PubMed

    Woudenberg, Jannes; Rembacz, Krzysztof P; van den Heuvel, Fiona A J; Woudenberg-Vrenken, Titia E; Buist-Homan, Manon; Geuken, Mariska; Hoekstra, Mark; Deelman, Leo E; Enrich, Carlos; Henning, Rob H; Moshage, Han; Faber, Klaas Nico

    2010-05-01

    Caveolae are a subtype of cholesterol-enriched lipid microdomains/rafts that are routinely detected as vesicles pinching off from the plasma membrane. Caveolin-1 is an essential component of caveolae. Hepatic caveolin-1 plays an important role in liver regeneration and lipid metabolism. Expression of caveolin-1 in hepatocytes is relatively low, and it has been suggested to also reside at other subcellular locations than the plasma membrane. Recently, we found that the peroxisomal membrane contains lipid microdomains. Like caveolin-1, hepatic peroxisomes are involved in lipid metabolism. Here, we analyzed the subcellular location of caveolin-1 in rat hepatocytes. The subcellular location of rat hepatocyte caveolin-1 was analyzed by cell fractionation procedures, immunofluorescence, and immuno-electron microscopy. Green fluorescent protein (GFP)-tagged caveolin-1 was expressed in rat hepatocytes. Lipid rafts were characterized after Triton X-100 or Lubrol WX extraction of purified peroxisomes. Fenofibric acid-dependent regulation of caveolin-1 was analyzed. Peroxisome biogenesis was studied in rat hepatocytes after RNA interference-mediated silencing of caveolin-1 and caveolin-1 knockout mice. Cell fractionation and microscopic analyses reveal that caveolin-1 colocalizes with peroxisomal marker proteins (catalase, the 70 kDa peroxisomal membrane protein PMP70, the adrenoleukodystrophy protein ALDP, Pex14p, and the bile acid-coenzyme A:amino acid N-acyltransferase BAAT) in rat hepatocytes. Artificially expressed GFP-caveolin-1 accumulated in catalase-positive organelles. Peroxisomal caveolin-1 is associated with detergent-resistant microdomains. Caveolin-1 expression is strongly repressed by the peroxisome proliferator-activated receptor-alpha agonist fenofibric acid. Targeting of peroxisomal matrix proteins and peroxisome number and shape were not altered in rat hepatocytes with 70%-80% reduced caveolin-1 levels and in livers of caveolin-1 knockout mice. Caveolin-1

  8. Okadaic acid-induced, naringin-sensitive phosphorylation of glycine N-methyltransferase in isolated rat hepatocytes.

    PubMed Central

    Møller, Michael T N; Samari, Hamid R; Fengsrud, Monica; Strømhaug, Per E; øStvold, Anne C; Seglen, Per O

    2003-01-01

    Glycine N-methyltransferase (GNMT) is an abundant cytosolic enzyme that catalyses the methylation of glycine into sarcosine, coupled with conversion of the methyl donor, S -adenosylmethionine (AdoMet), into S -adenosylhomocysteine (AdoHcy). GNMT is believed to play a role in monitoring the AdoMet/AdoHcy ratio, and hence the cellular methylation capacity, but regulation of the enzyme itself is not well understood. In the present study, treatment of isolated rat hepatocytes with the protein phosphatase inhibitor okadaic acid, was found to induce an overphosphorylation of GNMT, as shown by proteomic analysis. The analysis comprised two-dimensional gel electrophoretic separation of (32)P-labelled phosphoproteins and identification of individual protein spots by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry. The identity of GNMT was verified by N-terminal Edman sequencing of tryptic peptides. Chromatographic separation of proteolytic peptides and (32)P-labelled amino acids suggested that GNMT was phosphorylated within a limited region, and only at serine residues. GNMT phosphorylation could be suppressed by naringin, an okadaic acid-antagonistic flavonoid. To assess the possible functional role of GNMT phosphorylation, the effect of okadaic acid on hepatocytic AdoMet and AdoHcy levels was examined, using HPLC separation for metabolite analysis. Surprisingly, okadaic acid was found to have no effect on the basal levels of AdoMet or AdoHcy. An accelerated AdoMet-AdoHcy flux, induced by the addition of methionine (1 mM), was likewise unaffected by okadaic acid. 5-Aminoimidazole-4-carboxamide riboside, an activator of the hepatocytic AMP-activated protein kinase, similarly induced GNMT phosphorylation without affecting AdoMet and AdoHcy levels. Activation of cAMP-dependent protein kinase by dibutyryl-cAMP, reported to cause GNMT phosphorylation under cell-free conditions, also had little effect on hepatocytic AdoMet and AdoHcy levels

  9. Dynamics of an HBV/HCV infection model with intracellular delay and cell proliferation

    NASA Astrophysics Data System (ADS)

    Zhang, Fengqin; Li, Jianquan; Zheng, Chongwu; Wang, Lin

    2017-01-01

    A new mathematical model of hepatitis B/C virus (HBV/HCV) infection which incorporates the proliferation of healthy hepatocyte cells and the latent period of infected hepatocyte cells is proposed and studied. The dynamics is analyzed via Pontryagin's method and a newly proposed alternative geometric stability switch criterion. Sharp conditions ensuring stability of the infection persistent equilibrium are derived by applying Pontryagin's method. Using the intracellular delay as the bifurcation parameter and applying an alternative geometric stability switch criterion, we show that the HBV/HCV infection model undergoes stability switches. Furthermore, numerical simulations illustrate that the intracellular delay can induce complex dynamics such as persistence bubbles and chaos.

  10. Xenobiotics and the Glucocorticoid Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulliver, Linda S M, E-mail: linda.gulliver@otago.

    Glucocorticoid Receptor (GR) is present in virtually every human cell type. Representing a nuclear receptor superfamily, GR has several different isoforms essentially acting as ligand-dependent transcription factors, regulating glucocorticoid-responsive gene expression in both a positive and a negative manner. Although the natural ligand of the Glucocorticoid Receptor, glucocorticoids (GC) represent only some of the multiple ligands for GR. Xenobiotics, ubiquitous in the environment, bind to GR and are also capable of activating or repressing GR gene expression, thereby modulating GR cell and tissue-specific downstream effects in a multitude of ways that include responses to inflammatory, allergic, metabolic, neoplastic and autoimmunemore » processes. Many xenobiotics, if inadequately metabolized by xenobiotic metabolizing enzymes and not wholly eliminated, could have deleterious toxic effects with potentially lethal consequences. This review examines GR, the genomic and non-genomic actions of natural and synthetic GC and the body's handling of xenobiotic compounds, before reviewing what is presently known about GR's interactions with many of the more commonly encountered and some of the less well known GR-associated xenobiotics. GR promiscuity and crosstalk with other signaling pathways is discussed, alongside novel roles for GR that include mood disorder and addiction. A knowledge of GR interactions with xenobiotics is increasingly relevant when considering aging populations and the related prevalence of neoplastic disease, together with growing concerns around human exposure to mixtures of chemicals in the environment. Furthermore, escalating rates of obesity, Type 2 diabetes; autoimmune, allergy, addiction and mood disorder-related pathologies, require novel targeted interventions and GR appears a promising pharmacological candidate. - Highlights: • Biological impact of xenobiotics acting through Glucocorticoid Receptor. • Promiscuity of Glucocorticoid

  11. Globular adiponectin protects rat hepatocytes against acetaminophen-induced cell death via modulation of the inflammasome activation and ER stress: Critical role of autophagy induction.

    PubMed

    Kim, Eun Hye; Park, Pil-Hoon

    2018-05-24

    Acetaminophen (APAP) overdose treatment causes severe liver injury. Adiponectin, a hormone predominantly produced by adipose tissue, exhibits protective effects against APAP-induced hepatotoxicity. However, the underlying mechanisms are not clearly understood. In the present study, we examined the protective effect of globular adiponectin (gAcrp) on APAP-induced hepatocyte death and its underlying mechanisms. We found that APAP (2 mM)-induced hepatocyte death was prevented by inhibition of the inflammasome. In addition, treatment with gAcrp (0.5 and 1 μg/ml) inhibited APAP-induced activation of the inflammasome, judged by suppression of interleukin-1β maturation, caspase-1 activation, and apoptosis-associated speck-like protein (ASC) speck formation, suggesting that protective effects of gAcrp against APAP-induced hepatocyte death is mediated via modulation of the inflammasome. APAP also induced ER stress and treatment with tauroursodeoxycholic acid (TUDCA), an ER chaperone and inhibitor of ER stress, abolished APAP-induced inflammasomes activation, implying that ER stress acts as signaling event leading to the inflammasome activation in hepatocytes stimulated with APAP. Moreover, gAcrp significantly suppressed APAP-induced expression of ER stress marker genes. Finally, the modulatory effects of gAcrp on ER stress and inflammasomes activation were abrogated by treatment with autophagy inhibitors, while an autophagy inducer (rapamycin) suppressed APAP-elicited ER stress, demonstrating that autophagy induction plays a crucial role in the suppression of APAP-induced inflammasome activation and ER stress by gAcrp. Taken together, these results indicate that gAcrp protects hepatocytes against APAP-induced cell death by modulating ER stress and the inflammasome activation, at least in part, via autophagy induction. Copyright © 2018. Published by Elsevier Inc.

  12. Pancreatic β-cell proliferation in obesity.

    PubMed

    Linnemann, Amelia K; Baan, Mieke; Davis, Dawn Belt

    2014-05-01

    Because obesity rates have increased dramatically over the past 3 decades, type 2 diabetes has become increasingly prevalent as well. Type 2 diabetes is associated with decreased pancreatic β-cell mass and function, resulting in inadequate insulin production. Conversely, in nondiabetic obesity, an expansion in β-cell mass occurs to provide sufficient insulin and to prevent hyperglycemia. This expansion is at least in part due to β-cell proliferation. This review focuses on the mechanisms regulating obesity-induced β-cell proliferation in humans and mice. Many factors have potential roles in the regulation of obesity-driven β-cell proliferation, including nutrients, insulin, incretins, hepatocyte growth factor, and recently identified liver-derived secreted factors. Much is still unknown about the regulation of β-cell replication, especially in humans. The extracellular signals that activate proliferative pathways in obesity, the relative importance of each of these pathways, and the extent of cross-talk between these pathways are important areas of future study. © 2014 American Society for Nutrition.

  13. Peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP) but not PPAR-interacting protein (PRIP) is required for nuclear translocation of constitutive androstane receptor in mouse liver.

    PubMed

    Guo, Dongsheng; Sarkar, Joy; Ahmed, Mohamed R; Viswakarma, Navin; Jia, Yuzhi; Yu, Songtao; Sambasiva Rao, M; Reddy, Janardan K

    2006-08-25

    The constitutive androstane receptor (CAR) regulates transcription of phenobarbital-inducible genes that encode xenobiotic-metabolizing enzymes in liver. CAR is localized to the hepatocyte cytoplasm but to be functional, it translocates into the nucleus in the presence of phenobarbital-like CAR ligands. We now demonstrate that adenovirally driven EGFP-CAR, as expected, translocates into the nucleus of normal wild-type hepatocytes following phenobarbital treatment under both in vivo and in vitro conditions. Using this approach we investigated the role of transcription coactivators PBP and PRIP in the translocation of EGFP-CAR into the nucleus of PBP and PRIP liver conditional null mouse hepatocytes. We show that coactivator PBP is essential for nuclear translocation of CAR but not PRIP. Adenoviral expression of both PBP and EGFP-CAR restored phenobarbital-mediated nuclear translocation of exogenously expressed CAR in PBP null livers in vivo and in PBP null primary hepatocytes in vitro. CAR translocation into the nucleus of PRIP null livers resulted in the induction of CAR target genes such as CYP2B10, necessary for the conversion of acetaminophen to its hepatotoxic intermediate metabolite, N-acetyl-p-benzoquinone imine. As a consequence, PRIP-deficiency in liver did not protect from acetaminophen-induced hepatic necrosis, unlike that exerted by PBP deficiency. These results establish that transcription coactivator PBP plays a pivotal role in nuclear localization of CAR, that it is likely that PBP either enhances nuclear import or nuclear retention of CAR in hepatocytes, and that PRIP is redundant for CAR function.

  14. The Therapeutic Role of Xenobiotic Nuclear Receptors against Metabolic Syndrome.

    PubMed

    Pu, Shuqi; Wu, Xiaojie; Yang, Xiaoying; Zhang, Yunzhan; Dai, Yunkai; Zhang, Yueling; Wu, Xiaoting; Liu, Yan; Cui, Xiaona; Jin, Haiyong; Cao, Jianhong; Li, Ruliu; Cai, Jiazhong; Cao, Qizhi; Hu, Ling; Gao, Yong

    2018-06-10

    Xenobiotic nuclear receptors (XNRs) are nuclear receptors that characterized by coordinately regulating the expression of genes encoding drug-metabolizing enzymes and transporters to essentially eliminate and detoxify xenobiotics and endobiotics from the body, including the peroxisome proliferator-activated receptor (PPAR), the farnesoid X receptor (FXR), the liver X receptor (LXR), the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Heretofore, increasing evidences have suggested that these five XNRs are not only involved in the regulation of xeno-/endo-biotics detoxication but also the development of human diseases, such as cancer, obesity and diabetes. PPAR, FXR, LXR, PXR and CAR, as the receptors for numerous natural or synthetic compounds may be the most effective therapeutic targets in the treatment of metabolic diseases. In this review, we will focus on these five XNRs and their recently discovered functions in diabetes and its complications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Retinoid-xenobiotic interactions: the Ying and the Yang

    PubMed Central

    2015-01-01

    The literature provides compelling evidence pointing to tight metabolic interactions between retinoids and xenobiotics. These are extensive and important for understanding xenobiotic actions in the body. Within the body, retinoids affect xenobiotic metabolism and actions and conversely, xenobiotics affect retinoid metabolism and actions. This article summarizes data that establish the importance of retinoid-dependent metabolic pathways for sustaining the body’s responses to xenobiotic exposure, including the roles of all-trans- and 9-cis-retinoic acid for protecting mammals from harmful xenobiotic effects and for ensuring xenobiotic elimination from the body. This review will also consider molecular mechanisms underlying xenobiotic toxicity focusing on how this may contribute to retinoid deficiency and disruption of normal retinoid homeostasis. Special attention is paid to xenobiotic molecular targets (nuclear receptors, regulatory proteins, enzymes, and transporters) which affect retinoid metabolism and signaling. PMID:26311625

  16. Trifluoperazine inhibits acetaminophen-induced hepatotoxicity and hepatic reactive nitrogen formation in mice and in freshly isolated hepatocytes.

    PubMed

    Banerjee, Sudip; Melnyk, Stepan B; Krager, Kimberly J; Aykin-Burns, Nukhet; McCullough, Sandra S; James, Laura P; Hinson, Jack A

    2017-01-01

    The hepatotoxicity of acetaminophen (APAP) occurs by initial metabolism to N-acetyl-p-benzoquinone imine which depletes GSH and forms APAP-protein adducts. Subsequently, the reactive nitrogen species peroxynitrite is formed from nitric oxide (NO) and superoxide leading to 3-nitrotyrosine in proteins. Toxicity occurs with inhibited mitochondrial function. We previously reported that in hepatocytes the nNOS (NOS1) inhibitor NANT inhibited APAP toxicity, reactive nitrogen and oxygen species formation, and mitochondrial dysfunction. In this work we examined the effect of trifluoperazine (TFP), a calmodulin antagonist that inhibits calcium induced nNOS activation, on APAP hepatotoxicity and reactive nitrogen formation in murine hepatocytes and in vivo . In freshly isolated hepatocytes TFP inhibited APAP induced toxicity, reactive nitrogen formation (NO, GSNO, and 3-nitrotyrosine in protein), reactive oxygen formation (superoxide), loss of mitochondrial membrane potential, decreased ATP production, decreased oxygen consumption rate, and increased NADH accumulation. TFP did not alter APAP induced GSH depletion in the hepatocytes or the formation of APAP protein adducts which indicated that reactive metabolite formation was not inhibited. Since we previously reported that TFP inhibits the hepatotoxicity of APAP in mice without altering hepatic APAP-protein adduct formation, we examined the APAP treated mouse livers for evidence of reactive nitrogen formation. 3-Nitrotyrosine in hepatic proteins and GSNO were significantly increased in APAP treated mouse livers and decreased in the livers of mice treated with APAP plus TFP. These data are consistent with a hypothesis that APAP hepatotoxicity occurs with altered calcium metabolism, activation of nNOS leading to increased reactive nitrogen formation, and mitochondrial dysfunction.

  17. A Novel AKT Activator, SC79, Prevents Acute Hepatic Failure Induced by Fas-Mediated Apoptosis of Hepatocytes.

    PubMed

    Liu, Wei; Jing, Zhen-Tang; Wu, Shu-Xiang; He, Yun; Lin, Yan-Ting; Chen, Wan-Nan; Lin, Xin-Jian; Lin, Xu

    2018-05-01

    Acute liver failure is a serious clinical problem of which the underlying pathogenesis remains unclear and for which effective therapies are lacking. The Fas receptor/ligand system, which is negatively regulated by AKT, is known to play a prominent role in hepatocytic cell death. We hypothesized that AKT activation may represent a strategy to alleviate Fas-induced fulminant liver failure. We report here that a novel AKT activator, SC79, protects hepatocytes from apoptosis induced by agonistic anti-Fas antibody CH11 (for humans) or Jo2 (for mice) and significantly prolongs the survival of mice given a lethal dose of Jo2. Under Fas-signaling stimulation, SC79 inhibited Fas aggregation, prevented the recruitment of the adaptor molecule Fas-associated death domain (FADD) and procaspase-8 [or FADD-like IL-1β-converting enzyme (FLICE)] into the death-inducing signaling complex (DISC), but SC79 enhanced the recruitment of the long and short isoforms of cellular FLICE-inhibitory protein at the DISC. All of the SC79-induced hepatoprotective and DISC-interruptive effects were confirmed to have been reversed by the Akt inhibitor LY294002. These results strongly indicate that SC79 protects hepatocytes from Fas-induced fatal hepatic apoptosis. The potent alleviation of Fas-mediated hepatotoxicity by the relatively safe drug SC79 highlights the potential of our findings for immediate hepatoprotective translation. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Salt-inducible Kinase 3 Signaling Is Important for the Gluconeogenic Programs in Mouse Hepatocytes*

    PubMed Central

    Itoh, Yumi; Sanosaka, Masato; Fuchino, Hiroyuki; Yahara, Yasuhito; Kumagai, Ayako; Takemoto, Daisaku; Kagawa, Mai; Doi, Junko; Ohta, Miho; Tsumaki, Noriyuki; Kawahara, Nobuo; Takemori, Hiroshi

    2015-01-01

    Salt-inducible kinases (SIKs), members of the 5′-AMP-activated protein kinase (AMPK) family, are proposed to be important suppressors of gluconeogenic programs in the liver via the phosphorylation-dependent inactivation of the CREB-specific coactivator CRTC2. Although a dramatic phenotype for glucose metabolism has been found in SIK3-KO mice, additional complex phenotypes, dysregulation of bile acids, cholesterol, and fat homeostasis can render it difficult to discuss the hepatic functions of SIK3. The aim of this study was to examine the cell autonomous actions of SIK3 in hepatocytes. To eliminate systemic effects, we prepared primary hepatocytes and screened the small compounds suppressing SIK3 signaling cascades. SIK3-KO primary hepatocytes produced glucose more quickly after treatment with the cAMP agonist forskolin than the WT hepatocytes, which was accompanied by enhanced gluconeogenic gene expression and CRTC2 dephosphorylation. Reporter-based screening identified pterosin B as a SIK3 signaling-specific inhibitor. Pterosin B suppressed SIK3 downstream cascades by up-regulating the phosphorylation levels in the SIK3 C-terminal regulatory domain. When pterosin B promoted glucose production by up-regulating gluconeogenic gene expression in mouse hepatoma AML-12 cells, it decreased the glycogen content and stimulated an association between the glycogen phosphorylase kinase gamma subunit (PHKG2) and SIK3. PHKG2 phosphorylated the peptides with sequences of the C-terminal domain of SIK3. Here we found that the levels of active AMPK were higher both in the SIK3-KO hepatocytes and in pterosin B-treated AML-12 cells than in their controls. These results suggest that SIK3, rather than SIK1, SIK2, or AMPKs, acts as the predominant suppressor in gluconeogenic gene expression in the hepatocytes. PMID:26048985

  19. cAMP inhibits inducible nitric oxide synthase expression and NF-kappaB-binding activity in cultured rat hepatocytes.

    PubMed

    Harbrecht, B G; Taylor, B S; Xu, Z; Ramalakshmi, S; Ganster, R W; Geller, D A

    2001-08-01

    The inducible nitric oxide synthase (iNOS) is strongly expressed following inflammatory stimuli. Adenosine 3',5'-cyclic monophosphate (cAMP) increases iNOS expression and activity in a number of cell types but decreases cytokine-stimulated iNOS expression in hepatocytes. The mechanisms for this effect are unknown. Rat hepatocytes were stimulated with cytokines to induce iNOS and cultured with cAMP agonists dibutyryl-cAMP (dbcAMP), 8-bromo-cAMP, and forskolin (FSK). Nitric oxide synthesis was assessed by supernatant nitrite levels and iNOS expression was measured by Northern and Western blot analyses. Nuclear factor kappaB binding was assessed by electromobility shift assay. Cyclic AMP dose dependently decreased NO synthesis in response to a combination of proinflammatory cytokines or interleukin-1beta (IL-1beta) alone. The adenylate cyclase inhibitor SQ 22,536 increased cytokine- or IL-1beta-stimulated NO synthesis. dbcAMP decreased iNOS mRNA expression and iNOS protein expression. Both dbcAMP and glucagon decreased iNOS promoter activity in rat hepatocytes transfected with the murine iNOS promoter and decreased DNA binding of the transcription factor NF-kappaB. These data suggest that cAMP is important in hepatocyte iNOS expression and agents that alter cAMP levels may profoundly alter the response of hepatocytes to inflammatory stimuli through effects onthe iNOS promoter region and NF-kappaB. Copyright 2001 Academic Press.

  20. Energetic costs of pyrene metabolism in isolated hepatocytes of rainbow trout, Oncorhynchus mykiss.

    PubMed

    Bains, Onkar S; Kennedy, Christopher J

    2004-04-28

    The respiratory costs of pyrene exposure and biotransformation were examined in isolated hepatocytes of adult rainbow trout, Oncorhynchus mykiss. Baseline oxygen consumption rates measured at an acclimation temperature of 7.5 degrees C and during an acute temperature increase to 15 degrees C were 10.1 +/- 0.1 and 22.6 +/- 0.4 ng O(2)/min/mg cells, respectively. Hepatocytes exposed to pyrene at 1, 5 and 10 microg/ml exhibited concentration-dependent increases in oxygen consumption. Respiration rates of cells exposed to these concentrations at their acclimation temperature were 12.5 +/- 0.1, 14.7 +/- 0.1 and 17.1 +/- 0.2 ng O(2)/min/mg cells, respectively. Exposure of cells to pyrene at 15 degrees C also elevated oxygen consumption to a maximum of 34.4 +/- 0.3 ng O(2)/min/mg cells, however, the relationship with pyrene concentration was biphasic. The major metabolite identified through a series of solvent extractions, acid hydrolysis, and synchronous fluorometric spectroscopy was conjugated 1-hydroxypyrene. At 7.5 degrees C, increased pyrene metabolism correlated with increased hepatocyte respiration rates. At 15 degrees C, however, pyrene metabolism reached a maximum at 5 microg/ml, suggesting saturation of detoxification enzymes, which correlated with maximum respiration rates at this concentration. Measures of respiration by isolated mitochondria indicated that changes in hepatocyte oxygen consumption were not through direct effects of pyrene on mitochondria. This study indicates that significant respiratory costs may be accrued by teleost hepatocytes actively metabolizing and secreting xenobiotic compounds.

  1. Disappearance of GFP-Positive Hepatocytes Transplanted into the Liver of Syngeneic Wild-Type Rats Pretreated with Retrorsine

    PubMed Central

    Maeda, Hiromichi; Shigoka, Masatoshi; Wang, Yongchun; Fu, Yingxin; Wesson, Russell N.; Lin, Qing; Montgomery, Robert A.; Enzan, Hideaki; Sun, Zhaoli

    2014-01-01

    Background and Aim Green fluorescent protein (GFP) is a widely used molecular tag to trace transplanted cells in rodent liver injury models. The differing results from various previously reported studies using GFP could be attributed to the immunogenicity of GFP. Methods Hepatocytes were obtained from GFP-expressing transgenic (Tg) Lewis rats and were transplanted into the livers of wild-type Lewis rats after they had undergone a partial hepatectomy. The proliferation of endogenous hepatocytes in recipient rats was inhibited by pretreatment with retrorsine to enhance the proliferation of the transplanted hepatocytes. Transplantation of wild-type hepatocytes into GFP-Tg rat liver was also performed for comparison. Results All biopsy specimens taken seven days after transplantation showed engraftment of transplanted hepatocytes, with the numbers of transplanted hepatocytes increasing until day 14. GFP-positive hepatocytes in wild-type rat livers were decreased by day 28 and could not be detected on day 42, whereas the number of wild-type hepatocytes steadily increased in GFP-Tg rat liver. Histological examination showed degenerative change of GFP-positive hepatocytes and the accumulation of infiltrating cells on day 28. PCR analysis for the GFP transgene suggested that transplanted hepatocytes were eliminated rather than being retained along with the loss of GFP expression. Both modification of the immunological response using tacrolimus and bone marrow transplantation prolonged the survival of GFP-positive hepatocytes. In contrast, host immunization with GFP-positive hepatocytes led to complete loss of GFP-positive hepatocytes by day 14. Conclusion GFP-positive hepatocytes isolated from GFP-Tg Lewis rats did not survive long term in the livers of retrorsine-pretreated wild-type Lewis rats. The mechanism underlying this phenomenon most likely involves an immunological reaction against GFP. The influence of GFP immunogenicity on cell transplantation models should be

  2. [State of hepatocyte transplantation: a risk or a chance?].

    PubMed

    Leckel, K; Blaheta, R A; Markus, B H

    2003-04-01

    Over the past few years, hepatocyte transplantation has been considered as an alternative method for orthotopic liver transplantation for the treatment of various liver diseases. Beside curative approach for genetic metabolic deficiencies (familial hypercholesterolemia, hemophilia, etc.), it could be a useful tool for bridging the waiting period until an appropriate donor organ is obtained. In preclinical animal studies, hepatocytes injected intraperitoneally, intraportally or into the spleen settle down in the diseased liver. This enables genetic modification to correct inborn metabolic deficiencies and improves survival in acute liver failure. In 1992, the first clinical transplantation of isolated hepatocytes in 10 patients was performed. In 1998, Fox and coworkers described the successful transplantation of allogeneic liver cells in a child with Crigler-Najjar syndrome. Accomplished studies of Strom et al. resp. Bilir et al. of the same year proved the effectiveness of liver cell transplantation for transient treatment of acute liver failure. Prerequisite of this cell-based therapeutic strategy is a sufficient amount of highly differentiated hepatocytes, hence, a well established in-vitro cell-culture technique is necessary to yield a reproducible number of proliferating hepatocytes and to preserve the physiological cell function. This review discusses the different experimental approaches regarding the cultivation of human hepatocytes and also the use of alternative cell sources (like animal hepatocytes, immortalized cells of human origin, progenitor cells from fetal human liver/liver stem cells) for hepatocyte transplantation.

  3. Selection, proliferation and differentiation of bone marrow-derived liver stem cells with a culture system containing cholestatic serum in vitro.

    PubMed

    Cai, Yun-Feng; Zhen, Zuo-Jun; Min, Jun; Fang, Tian-Ling; Chu, Zhong-Hua; Chen, Ji-Sheng

    2004-11-15

    To explore the feasibility of direct separation, selective proliferation and differentiation of the bone marrow-derived liver stem cells (BDLSC) from bone marrow cells with a culture system containing cholestatic serum in vitro. Whole bone marrow cells of rats cultured in routine medium were replaced with conditioning selection media containing 20 mL/L, 50 mL/L, 70 mL/L, and 100 mL/L cholestatic sera, respectively, after they attached to the plates. The optimal concentration of cholestatic serum was determined according to the outcome of the selected cultures. Then the selected BDLSC were induced to proliferate and differentiate with the addition of hepatocyte growth factor (HGF). The morphology and phenotypic markers of BDLSC were characterized using immunohistochemistry, RT-PCR and electron microscopy. The metabolic functions of differentiated cells were also determined by glycogen staining and urea assay. Bone marrow cells formed fibroblast-like but not hepatocyte-like colonies in the presence of 20 mL/L cholestatic serum. In 70 mL/L cholestatic serum, BDLSC colonies could be selected but could not maintain good growth status. In 100 mL/L cholestatic serum, all of the bone marrow cells were unable to survive. A 50 mL/L cholestatic serum was the optimal concentration for the selection of BDLSC at which BDLSC could survive while the other populations of the bone marrow cells could not. The selected BDLSC proliferated and differentiated after HGF was added. Hepatocyte-like colony-forming units (H-CFU) then were formed. H-CFU expressed markers of embryonic hepatocytes (AFP, albumin and cytokeratin 8/18), biliary cells (cytokeratin 19), hepatocyte functional proteins (transthyretin and cytochrome P450-2b1), and hepatocyte nuclear factors (HNF-1alpha and HNF-3beta). They also had glycogen storage and urea synthesis functions, two of the critical features of hepatocytes. The selected medium containing cholestatic serum can select BDLSC from whole bone marrow cells. It

  4. Comparative gene expression profiles induced by PPAR{gamma} and PPAR{alpha}/{gamma} agonists in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogue, Alexandra; Universite de Rennes 1, 35065 Rennes Cedex; Biologie Servier, 45520 Gidy

    2011-07-01

    Species-differential toxic effects have been described with PPAR{alpha} and PPAR{gamma} agonists between rodent and human liver. PPAR{alpha} agonists (fibrates) are potent hypocholesterolemic agents in humans while they induce peroxisome proliferation and tumors in rodent liver. By contrast, PPAR{gamma} agonists (glitazones) and even dual PPAR{alpha}/{gamma} agonists (glitazars) have caused idiosyncratic hepatic and nonhepatic toxicities in human without evidence of any damage in rodent during preclinical studies. The mechanisms involved in such differences remain largely unknown. Several studies have identified the major target genes of PPAR{alpha} agonists in rodent liver while no comprehensive analysis has been performed on gene expression changes inducedmore » by PPAR{gamma} and dual PPAR{alpha}/{gamma} agonists. Here, we investigated transcriptomes of rat hepatocytes after 24 h treatment with two PPAR{gamma} (troglitazone and rosiglitazone) and two PPAR{alpha}/{gamma} (muraglitazar and tesaglitazar) agonists. Although, hierarchical clustering revealed a gene expression profile characteristic of each PPAR agonist class, only a limited number of genes was specifically deregulated by glitazars. Functional analyses showed that many genes known as PPAR{alpha} targets were also modulated by both PPAR{gamma} and PPAR{alpha}/{gamma} agonists and quantitative differences in gene expression profiles were observed between these two classes. Moreover, most major genes modulated in rat hepatocytes were also found to be deregulated in rat liver after tesaglitazar treatment. Taken altogether, these results support the conclusion that differential toxic effects of PPAR{alpha} and PPAR{gamma} agonists in rodent liver do not result from transcriptional deregulation of major PPAR target genes but rather from qualitative and/or quantitative differential responses of a small subset of genes.« less

  5. Insulin suppresses the AMPK signaling pathway to regulate lipid metabolism in primary cultured hepatocytes of dairy cows.

    PubMed

    Li, Xinwei; Li, Yu; Ding, Hongyan; Dong, Jihong; Zhang, Renhe; Huang, Dan; Lei, Lin; Wang, Zhe; Liu, Guowen; Li, Xiaobing

    2018-05-01

    Dairy cows with type II ketosis display hepatic fat accumulation and hyperinsulinemia, but the underlying mechanism is not completely clear. This study aimed to clarify the regulation of lipid metabolism by insulin in cow hepatocytes. In vitro, cow hepatocytes were treated with 0, 1, 10, or 100 nm insulin in the presence or absence of AICAR (an AMP-activated protein kinase alpha (AMPKα) activator). The results showed that insulin decreased AMPKα phosphorylation. This inactivation of AMPKα increased the gene and protein expression levels of carbohydrate responsive element-binding protein (ChREBP) and sterol regulatory element-binding protein-1c (SREBP-1c), which downregulated the expression of lipogenic genes, thereby decreasing lipid biosynthesis. Furthermore, AMPKα inactivation decreased the gene and protein expression levels of peroxisome proliferator-activated receptor-α (PPARα), which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation. In addition, insulin decreased the very low density lipoprotein (VLDL) assembly. Consequently, triglyceride content was significantly increased in insulin treated hepatocytes. Activation of AMPKα induced by AICAR could reverse the effect of insulin on PPARα, SREBP-1c, and ChREBP, thereby decreasing triglyceride content. These results indicate that insulin inhibits the AMPKα signaling pathway to increase lipid synthesis and decrease lipid oxidation and VLDL assembly in cow hepatocytes, thereby inducing TG accumulation. This mechanism could partly explain the causal relationship between hepatic fat accumulation and hyperinsulinemia in dairy cows with type II ketosis.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arpiainen, Satu; Jaervenpaeae, Sanna-Mari; Manninen, Aki

    The nutritional state of organisms and energy balance related diseases such as diabetes regulate the metabolism of xenobiotics such as drugs, toxins and carcinogens. However, the mechanisms behind this regulation are mostly unknown. The xenobiotic-metabolizing cytochrome P450 (CYP) 2A5 enzyme has been shown to be induced by fasting and by glucagon and cyclic AMP (cAMP), which mediate numerous fasting responses. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} triggers many of the important hepatic fasting effects in response to elevated cAMP levels. In the present study, we were able to show that cAMP causes a coordinated induction of PGC-1{alpha} and CYP2A5 mRNAsmore » in murine primary hepatocytes. Furthermore, the elevation of the PGC-1{alpha} expression level by adenovirus mediated gene transfer increased CYP2A5 transcription. Co-transfection of Cyp2a5 5' promoter constructs with the PGC-1{alpha} expression vector demonstrated that PGC-1{alpha} is able to activate Cyp2a5 transcription through the hepatocyte nuclear factor (HNF)-4{alpha} response element in the proximal promoter of the Cyp2a5 gene. Chromatin immunoprecipitation assays showed that PGC-1{alpha} binds, together with HNF-4{alpha}, to the same region at the Cyp2a5 proximal promoter. In conclusion, PGC-1{alpha} mediates the expression of CYP2A5 induced by cAMP in mouse hepatocytes through coactivation of transcription factor HNF-4{alpha}. This strongly suggests that PGC-1{alpha} is the major factor mediating the fasting response of CYP2A5.« less

  7. Two-signal requirement for growth-promoting function of Yap in hepatocytes

    PubMed Central

    Su, Tian; Bondar, Tanya; Zhou, Xu; Zhang, Cuiling; He, Hang; Medzhitov, Ruslan

    2015-01-01

    The transcriptional coactivator Yes-associated protein (Yap) promotes proliferation and inhibits apoptosis, suggesting that Yap functions as an oncogene. Most oncogenes, however, require a combination of at least two signals to promote proliferation. In this study, we present evidence that Yap activation is insufficient to promote growth in the otherwise normal tissue. Using a mosaic mouse model, we demonstrate that Yap overexpression in a fraction of hepatocytes does not lead to their clonal expansion, as proliferation is counterbalanced by increased apoptosis. To shift the activity of Yap towards growth, a second signal provided by tissue damage or inflammation is required. In response to liver injury, Yap drives clonal expansion, suppresses hepatocyte differentiation, and promotes a progenitor phenotype. These results suggest that Yap activation is insufficient to promote growth in the absence of a second signal thus coordinating tissue homeostasis and repair. DOI: http://dx.doi.org/10.7554/eLife.02948.001 PMID:25667983

  8. Hypoxia induces pulmonary fibroblast proliferation through NFAT signaling.

    PubMed

    Senavirathna, Lakmini Kumari; Huang, Chaoqun; Yang, Xiaoyun; Munteanu, Maria Cristina; Sathiaseelan, Roshini; Xu, Dao; Henke, Craig A; Liu, Lin

    2018-02-09

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and typically fatal lung disease with a very low survival rate. Excess accumulation of fibroblasts, myofibroblasts and extracellular matrix creates hypoxic conditions within the lungs, causing asphyxiation. Hypoxia is, therefore, one of the prominent features of IPF. However, there have been few studies concerning the effects of hypoxia on pulmonary fibroblasts. In this study, we investigated the molecular mechanisms of hypoxia-induced lung fibroblast proliferation. Hypoxia increased the proliferation of normal human pulmonary fibroblasts and IPF fibroblasts after exposure for 3-6 days. Cell cycle analysis demonstrated that hypoxia promoted the G1/S phase transition. Hypoxia downregulated cyclin D1 and A2 levels, while it upregulated cyclin E1 protein levels. However, hypoxia had no effect on the protein expression levels of cyclin-dependent kinase 2, 4, and 6. Chemical inhibition of hypoxia-inducible factor (HIF)-2 reduced hypoxia-induced fibroblast proliferation. Moreover, silencing of Nuclear Factor Activated T cell (NFAT) c2 attenuated the hypoxia-mediated fibroblasts proliferation. Hypoxia also induced the nuclear translocation of NFATc2, as determined by immunofluorescence staining. NFAT reporter assays showed that hypoxia-induced NFAT signaling activation is dependent on HIF-2, but not HIF-1. Furthermore, the inhibition or silencing of HIF-2, but not HIF-1, reduced the hypoxia-mediated NFATc2 nuclear translocation. Our studies suggest that hypoxia induces the proliferation of human pulmonary fibroblasts through NFAT signaling and HIF-2.

  9. MCD-induced steatohepatitis is associated with hepatic adiponectin resistance and adipogenic transformation of hepatocytes.

    PubMed

    Larter, Claire Z; Yeh, Matthew M; Williams, Jacqueline; Bell-Anderson, Kim S; Farrell, Geoffrey C

    2008-09-01

    In these studies, we tested the hypothesis that increased lipid intake would exacerbate the severity of nutritional steatohepatitis. C57Bl/6J mice were fed methionine-and-choline deficient (MCD) diets containing 20% (high) or 5% (low) fat by weight for 3 weeks and compared to lipid-matched controls. MCD feeding increased serum ALT levels and induced hepatic steatosis, lobular inflammation and ballooning degeneration of hepatocytes, irrespective of dietary fat content. Hepatic triglyceride accumulation was similar between high and low-fat MCD-fed mice, but lipoperoxide levels were approximately 3-fold higher in the high-fat MCD-fed animals. Serum adiponectin levels increased in MCD-fed mice, although to a lesser extent in high-fat fed animals. AMPK phosphorylation was correspondingly increased in muscle of MCD-fed mice, but hepatic AMPK phosphorylation decreased, and there was little evidence of PPAR alpha activation, suggesting impaired adiponectin action in the livers of MCD-fed animals. Hepatocyte PPAR gamma mRNA levels increased in MCD-fed mice, and were associated with increased aP2 expression, indicating adipogenic transformation of hepatocytes. Increased dietary lipid intake did not alter steatohepatitis severity in MCD-fed mice despite increased lipoperoxide accumulation. Instead, steatohepatitis was associated with impaired hepatic adiponectin action, and adipogenic transformation of hepatocytes in both low and high-fat MCD-fed mice.

  10. TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Feifei; Jiang, Yinan; Zheng, Qiping

    Research highlights: {yields} TEC is rapidly tyrosine-phosphorylated and activated by HGF-stimulation in vivo or after partial hepatectomy in mice. {yields} TEC enhances the activity of Elk and serum response element (SRE) in HGF signaling pathway in hepatocyte. {yields} TEC promotes hepatocyte proliferation through the Erk-MAPK pathway. -- Abstract: Background/aims: TEC, a member of the TEC family of non-receptor type protein tyrosine kinases, has recently been suggested to play a role in hepatocyte proliferation and liver regeneration. This study aims to investigate the putative mechanisms of TEC kinase regulation of hepatocyte differentiation, i.e. to explore which signaling pathway TEC is involvedmore » in, and how TEC is activated in hepatocyte after hepatectomy and hepatocyte growth factor (HGF) stimulation. Methods: We performed immunoprecipitation (IP) and immunoblotting (IB) to examine TEC tyrosine phosphorylation after partial hepatectomy in mice and HGF stimulation in WB F-344 hepatic cells. The TEC kinase activity was determined by in vitro kinase assay. Reporter gene assay, antisense oligonucleotide and TEC dominant negative mutant (TEC{sup KM}) were used to examine the possible signaling pathways in which TEC is involved. The cell proliferation rate was evaluated by {sup 3}H-TdR incorporation. Results: TEC phosphorylation and kinase activity were increased in 1 h after hepatectomy or HGF treatment. TEC enhanced the activity of Elk and serum response element (SRE). Inhibition of MEK1 suppressed TEC phosphorylation. Blocking TEC activity dramatically decreased the activation of Erk. Reduced TEC kinase activity also suppressed the proliferation of WB F-344 cells. These results suggest TEC is involved in the Ras-MAPK pathway and acts between MEK1 and Erk. Conclusions: TEC promotes hepatocyte proliferation and regeneration and is involved in HGF-induced Erk signaling pathway.« less

  11. Xenobiotics: Chapter 15

    USGS Publications Warehouse

    Bridges, Christine M.; Semlitsch, Raymond D.; Lannoo, Michael

    2005-01-01

    While a number of compounds have been reported as toxic to amphibians, until recently, there have been conspicuously few ecotoxicological studies concerning amphibians. Studies are now focusing on the effects of xenobiotics on amphibians, an interest likely stimulated by widespread reports of amphibian declines. It has been speculated that chemical contamination may be partially to blame for some documented amphibian declines, by disrupting growth, reproduction, and behavior. However, evidence that xenobiotics are directly to blame for population declines is sparse because environmental concentrations are typically not great enough to generate direct mortality. Although the effects of environmental contaminants on the amphibian immune system are currently unknown, it is possible that exposure to stressors such as organic pollutants (which enter ecosystems in the form of pesticides) may depress immune system function, thus allowing greater susceptibility to fungal infections. This chapter discusses toxicity testing for xenobiotics and presents the results of a study that has focused on the subtle effects of sublethal concentrations of the chemical carbaryl on tadpoles.

  12. Ductular reaction in hereditary hemochromatosis: the link between hepatocyte senescence and fibrosis progression.

    PubMed

    Wood, Marnie J; Gadd, Victoria L; Powell, Lawrie W; Ramm, Grant A; Clouston, Andrew D

    2014-03-01

    The development of portal fibrosis following the iron loading of hepatocytes is the first stage of fibrogenesis in hereditary hemochromatosis. In other chronic liver diseases it has been shown that a ductular reaction (DR) appears early, correlates with fibrosis progression, and is a consequence of activation of an alternative pathway of hepatocyte replication. This study was designed to investigate the presence of the DR in hemochromatosis and describe its associations. Liver biopsies from 63 C282Y homozygous patients were assessed for hepatic iron concentration (HIC) and graded for iron loading, fibrosis stage, steatosis, and inflammation. Immunostaining allowed quantification of the DR, hepatocyte senescence and proliferation, and analysis incorporated clinical data. Hepatocyte senescence was positively correlated with HIC, serum ferritin, and oxidative stress. A DR was demonstrated and occurred prior to histological fibrosis. HIC, age, hepatocyte senescence and proliferation, portal inflammation, and excessive alcohol consumption all had significant associations with the extent of the DR. In multivariate analysis, iron loading, hepatocyte replicative arrest, and portal inflammation remained independently and significantly associated with the DR. Of factors associated with fibrosis progression, the DR (odds ratio [OR] 10.86 P<0.0001) and the presence of portal inflammation (OR 4.31, P=0.028) remained significant after adjustment for cofactors. The extent of the DR regressed following therapeutic venesection. Iron loading of hepatocytes leads to impaired replication, stimulating the development of the DR in hemochromatosis and this correlates strongly with hepatic fibrosis. Portal inflammation occurs in hemochromatosis and is independently associated with the DR and fibrosis, and thus its role in this disease should be evaluated further. © 2014 by the American Association for the Study of Liver Diseases.

  13. A Txnrd1-dependent metabolic switch alters hepatic lipogenesis, glycogen storage, and detoxification

    PubMed Central

    Iverson, Sonya V.; Eriksson, Sofi; Xu, Jianqiang; Prigge, Justin R.; Talago, Emily A.; Meade, Tesia A.; Meade, Erin S.; Capecchi, Mario R.; Arnér, Elias S.J.; Schmidt, Edward E.

    2013-01-01

    Besides helping to maintain a reducing intracellular environment, the thioredoxin (Trx) system impacts bioenergetics and drug-metabolism. We show that hepatocyte-specific disruption of Txnrd1, encoding Trx reductase-1 (TrxR1), causes a metabolic switch in which lipogenic genes are repressed and periportal hepatocytes become engorged with glycogen. These livers also overexpress machinery for biosynthesis of glutathione and conversion of glycogen into UDP-glucuronate; they stockpile glutathione-S-transferases and UDP-glucuronyl-transferases; and they overexpress xenobiotic exporters. This realigned metabolic profile suggested that the mutant hepatocytes might be preconditioned to more effectively detoxify certain xenobiotic challenges. Hepatocytes convert the pro-toxin acetaminophen (APAP, paracetamol) into cytotoxic N-acetyl-p-benzoquinone imine (NAPQI). APAP defenses include glucuronidation of APAP or glutathionylation of NAPQI, allowing removal by xenobiotic exporters. We found that NAPQI directly inactivates TrxR1, yet Txnrd1-null livers were resistant to APAP-induced hepatotoxicity. Txnrd1-null livers did not have more effective gene expression responses to APAP challenge; however their constitutive metabolic state supported more robust GSH biosynthesis-, glutathionylation-, and glucuronidation-systems. Following APAP challenge, this effectively sustained the GSH system and attenuated damage. PMID:23743293

  14. Interactions among infections, nutrients and xenobiotics.

    PubMed

    Ilbäck, Nils-Gunnar; Friman, Göran

    2007-01-01

    During recent years there have been several incidents in which symptoms of disease have been linked to consumption of food contaminated by chemical substances (e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD). Furthermore, outbreaks of infections in food-producing animals have attracted major attention regarding the safety of consumers, e.g., Bovine Spongiform Encephalitis (BSE) and influenza in chicken. As shown for several xenobiotics in an increasing number of experimental studies, even low-dose xenobiotic exposure may impair immune function over time, as well as microorganism virulence, resulting in more severe infectious diseases and associated complications. Moreover, during ongoing infection, xenobiotic uptake and distribution are often changed resulting in increased toxic insult to the host. The interactions among infectious agents, nutrients, and xenobiotics have thus become a developing concern and new avenue of research in food toxicology as well as in food-borne diseases. From a health perspective, in the risk assessment of xenobiotics in our food and environment, synergistic effects among microorganisms, nutrients, and xenobiotics will have to be considered. Otherwise, such effects may gradually change the disease panorama in society.

  15. Transformation of primary human hepatocytes in hepatocellular carcinoma.

    PubMed

    Montalbano, Mauro; Rastellini, Cristiana; Wang, Xiaofu; Corsello, Tiziana; Eltorky, Mahmoud A; Vento, Renza; Cicalese, Luca

    2016-03-01

    Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Currently, there is limited knowledge of neoplastic transformation of hepatocytes in HCC. In clinical practice, the high rate of HCC local recurrence suggests the presence of different hepatocyte populations within the liver and particularly in the tumor proximity. The present study investigated primary human hepatocyte cultures obtained from liver specimens of patients affected by cirrhosis and HCC, their proliferation and transformation. Liver samples were obtained from seven HCC cirrhotic patients and from three patients with normal liver (NL). Immediately after surgery, cell outgrowth and primary cultures were obtained from the HCC lesion, the cirrhotic tissue proximal (CP, 1-3 cm) and distal (CD, >5 cm) to the margin of the neoplastic lesion, or from NL. Cells were kept in culture for 16 weeks. Morphologic analyses were performed and proliferation rate of the different cell populations compared over time. Glypican-3, Heppar1, Arginase1 and CD-44 positivity were tested. The degree of invasiveness of cells acquiring neoplastic characteristics was studied with a transwell migration assay. We observed that HCC cells maintained their morphology and unmodified neoplastic characteristics when cultured. Cells isolated from CP, showed a progressive morphologic transformation in HCC-like cells accompanied by modification of markers expression with signs of invasiveness. Absence of HCC contamination in the CP isolates was confirmed. In CD samples some of these characteristics were present and at significantly lower levels. With the present study, we are the first to have identified and describe the existence of human hepatocytes near the cancerous lesion that can transform in HCC in vitro.

  16. Activation of the miR-34a/SIRT1/p53 Signaling Pathway Contributes to the Progress of Liver Fibrosis via Inducing Apoptosis in Hepatocytes but Not in HSCs.

    PubMed

    Tian, Xiao-Feng; Ji, Fu-Jian; Zang, Hong-Liang; Cao, Hong

    2016-01-01

    Liver fibrosis results from a sustained wound healing response to chronic liver injury, and the activation of nonparenchymal hepatic stellate cells (HSCs) is the pivotal process. MicroRNA-34a (miR-34a) is the direct target gene of p53 and activates p53 through sirtuin 1 (SIRT1) simultaneously. The miR-34a/SIRT1/p53 signaling pathway thus forms a positive feedback loop wherein p53 induces miR-34a and miR-34a activates p53 by inhibiting SIRT1, playing an important role in cell proliferation and apoptosis. miR-34a expression has been found to be increased in animal models or in human patients with different liver diseases, including liver fibrosis. However, the exact role of this classical miR-34a/SIRT1/p53 signaling pathway in liver fibrosis remains unclear. In the present study, using a CCl4-induced rat liver fibrosis model, we found that the miR-34a/SIRT1/p53 signaling pathway was activated and could be inhibited by SIRT1 activator SRT1720. Further studies showed that the miR-34a/SIRT1/p53 signaling pathway was activated in hepatocytes but not in HSCs. The activation of this pathway in hepatocytes resulted in the apoptosis of hepatocytes and thus activated HSCs. Our data indicate that the miR-34a/SIRT1/p53 signaling pathway might be a promising therapeutic target for liver fibrosis.

  17. Natural Dietary Pigments: Potential Mediators against Hepatic Damage Induced by Over-The-Counter Non-Steroidal Anti-Inflammatory and Analgesic Drugs

    PubMed Central

    Jaramillo-Juárez, Fernando

    2018-01-01

    Over-the-counter (OTC) analgesics are among the most widely prescribed and purchased drugs around the world. Most analgesics, including non-steroidal anti-inflammatory drugs (NSAIDs) and acetaminophen, are metabolized in the liver. The hepatocytes are responsible for drug metabolism and detoxification. Cytochrome P450 enzymes are phase I enzymes expressed mainly in hepatocytes and they account for ≈75% of the metabolism of clinically used drugs and other xenobiotics. These metabolic reactions eliminate potentially toxic compounds but, paradoxically, also result in the generation of toxic or carcinogenic metabolites. Cumulative or overdoses of OTC analgesic drugs can induce acute liver failure (ALF) either directly or indirectly after their biotransformation. ALF is the result of massive death of hepatocytes induced by oxidative stress. There is an increased interest in the use of natural dietary products as nutritional supplements and/or medications to prevent or cure many diseases. The therapeutic activity of natural products may be associated with their antioxidant capacity, although additional mechanisms may also play a role (e.g., anti-inflammatory actions). Dietary antioxidants such as flavonoids, betalains and carotenoids play a preventive role against OTC analgesics-induced ALF. In this review, we will summarize the pathobiology of OTC analgesic-induced ALF and the use of natural pigments in its prevention and therapy. PMID:29364842

  18. Optimized laser-induced breakdown spectroscopy for determination of xenobiotic silver in monosodium glutamate and its verification using ICP-AES.

    PubMed

    Rehan, I; Gondal, M A; Rehan, K

    2018-04-20

    Laser-induced breakdown spectroscopy (LIBS) was applied as a potential tool for the determination of xenobiotic metal in monosodium glutamate (MSG). In order to achieve a high-sensitivity LIBS system required to determine trace amounts of metallic silver in MSG and to attain the best detection limit, the parameters used in our experiment (impact of focusing laser energy on the intensity of LIBS emission signals, the influence of focusing lens distance on the intensity of LIBS signals, and time responses of the plasma emissions) were optimized. The spectra of MSG were obtained in air using a suitable detector with an optical resolution of 0.06 nm, covering a spectral region from 220 to 720 nm. Along with the detection of xenobiotic silver, other elements such as Ca, Mg, S, and Na were also detected in MSG. To determine the concentration of xenobiotic silver in MSG, the calibration curve was plotted by preparing standard samples having different silver abundances in an MSG matrix. The LIBS results of each sample were cross-verified by analyzing with a standard analytical technique such as inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Both (LIBS and ICP-AES) results were in mutual agreement. The limit of detection of the LIBS setup was found to be 0.57 ppm for silver present in MSG samples.

  19. Hepatocyte Growth Factor and MET Support Mouse Enteric Nervous System Development, the Peristaltic Response, and Intestinal Epithelial Proliferation in Response to Injury

    PubMed Central

    Avetisyan, Marina; Wang, Hongtao; Schill, Ellen Merrick; Bery, Saya; Grider, John R.; Hassell, John A.; Stappenbeck, Thaddeus

    2015-01-01

    Factors providing trophic support to diverse enteric neuron subtypes remain poorly understood. We tested the hypothesis that hepatocyte growth factor (HGF) and the HGF receptor MET might support some types of enteric neurons. HGF and MET are expressed in fetal and adult enteric nervous system. In vitro, HGF increased enteric neuron differentiation and neurite length, but only if vanishingly small amounts (1 pg/ml) of glial cell line-derived neurotrophic factor were included in culture media. HGF effects were blocked by phosphatidylinositol-3 kinase inhibitor and by MET-blocking antibody. Both of these inhibitors and MEK inhibition reduced neurite length. In adult mice, MET was restricted to a subset of calcitonin gene-related peptide-immunoreactive (IR) myenteric plexus neurons thought to be intrinsic primary afferent neurons (IPANs). Conditional MET kinase domain inactivation (Metfl/fl; Wnt1Cre+) caused a dramatic loss of myenteric plexus MET-IR neurites and 1–1′-dioctodecyl-3,3,3′,3′-tetramethylindocarbocyamine perchlorate (DiI) labeling suggested reduced MET-IR neurite length. In vitro, Metfl/fl; Wnt1Cre+ mouse bowel had markedly reduced peristalsis in response to mucosal deformation, but normal response to radial muscle stretch. However, whole-bowel transit, small-bowel transit, and colonic-bead expulsion were normal in Metfl/fl; Wnt1Cre+ mice. Finally, Metfl/fl; Wnt1Cre+ mice had more bowel injury and reduced epithelial cell proliferation compared with WT animals after dextran sodium sulfate treatment. These results suggest that HGF/MET signaling is important for development and function of a subset IPANs and that these cells regulate intestinal motility and epithelial cell proliferation in response to bowel injury. SIGNIFICANCE STATEMENT The enteric nervous system has many neuronal subtypes that coordinate and control intestinal activity. Trophic factors that support these neuron types and enhance neurite growth after fetal development are not well

  20. Ginsenosides from stems and leaves of ginseng prevent ethanol-induced lipid accumulation in human L02 hepatocytes.

    PubMed

    Hu, Chao-Feng; Sun, Li-Ping; Yang, Qin-He; Lu, Da-Xiang; Luo, Sen

    2017-06-01

    To investigate the effect of ginsenosides from stems and leaves of ginseng on ethanol-induced lipid deposition in human L02 hepatocytes. L02 cells were exposed to ethanol for 36 h and treated with or without ginsenosides. The viability of L02 cells was evaluated by methylthiazolyldiphenyl-tetrazolium bromide assay and the triglyceride (TG) content was detected. Lipid droplets were determined by oil red O staining. Intracellular reactive oxygen species (ROS) production and the mitochondrial membrane potential were tested by flow cytometry. The ATP level was measured by reverse phase high performance liquid chromatography. The expression of cytochrome p450 2E1 (CYP2E1) and peroxisome proliferator-activated receptor α (PPARα) was detected by reverse transcriptase-polymerase chain reaction and Western blotting, respectively. Ethanol exposure resulted in the increase of TG level, lipid accumulation and ROS generation, and the decrease of mitochondrial membrane potential and ATP production in the cells. However, ginsenosides significantly reduced TG content (9.69±0.22 μg/mg protein vs. 4.93±0.49 μg/mg protein, P<0.01), and ROS formation (7254.8±385.7 vs. 5825.2±375.9, P<0.01). Meanwhile, improvements in mitochondrial membrane potential (10655.33±331.34 vs. 11129.52±262.35, P<0.05) and ATP level (1.20±0.18 nmol/mg protein vs. 2.53±0.25 nmol/mg protein, P<0.01) were observed by treatment with ginsenosides. Furthermore, ginsenosides could down-regulate CYP2E1 expression (P<0.01) and upregulate PPARα expression (P<0.01) in ethanol-treated cells. Ginsenosides could prevent ethanol-induced hepatocyte steatosis in vitro related to the inhibition of oxidative stress and the improvement of mitochondrial function. In addition, the modulation of CYP2E1 and PPARα expression may also play an important role in the protective effect of ginsenosides against lipid accumulation.

  1. Inter-laboratory comparison of clearance rates of xenobiotics by cryopreserved trout hepatocytes for the prediction of bioaccumulation potential

    EPA Science Inventory

    Hepatic biotransformation is an important determinant of chemical bioaccumulation in fish. Consequently, improvements to bioaccumulation models can be made using estimates of chemical biotransformation rates. Cryopreserved trout hepatocytes have previously been used to measure ...

  2. SPONTANEOUS REPOPULATION OF β-CATENIN NULL LIVERS WITH β-CATENIN POSITIVE HEPATOCYTES AFTER CHRONIC MURINE LIVER INJURY

    PubMed Central

    Thompson, Michael D.; Wickline, Emily D.; Bowen, William B.; Lu, Amy; Singh, Sucha; Misse, Amalea; Monga, Satdarshan P. S.

    2011-01-01

    Prolonged exposure of mice to diet containing 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) results in hepatobiliary injury, atypical ductular proliferation, oval cell appearance and limited fibrosis. Previously, we reported that short-term ingestion of DDC diet by hepatocyte-specific β-catenin conditional knockout (KO) mice, led to fewer A6-positive oval cells than wild-type (WT) littermates. To examine the role of β-catenin in chronic hepatic injury and repair, we exposed WT and KO mice to DDC for 80 and 150 days. Paradoxically, long-term DDC exposure led to significantly more A6-positive cells indicating greater atypical ductular proliferation in KO, which coincided with increased fibrosis and cholestasis. Surprisingly, at 80 and 150 days in KO, we observed a significant amelioration of hepatocyte injury. This coincided with extensive repopulation of β-catenin null livers with β-catenin-positive hepatocytes at 150 days, which was preceded by appearance of β-catenin-positive hepatocyte clusters at 80 days and a few β-catenin-positive hepatocytes at earlier times. Intriguingly, occasional β-catenin-positive hepatocytes that were negative for progenitor markers were also observed at baseline in the KO livers suggesting spontaneous escape from cre-mediated recombination. These cells with hepatocyte morphology expressed mature hepatocyte markers but lacked markers of hepatic progenitors. The gradual repopulation of KO livers with β-catenin-positive hepatocytes occurred only following DDC injury and coincided with a progressive loss of hepatic cre-recombinase expression. A few β-catenin-positive cholangiocytes were observed albeit only after long-term DDC-exposure and trailed the appearance of β-catenin-positive hepatocytes. In conclusion, in a chronic liver injury model, β-catenin-positive hepatocytes exhibit growth and survival advantages and repopulate KO livers eventually limiting hepatic injury and dysfunction despite increased fibrosis and

  3. Low asialoglycoprotein receptor expression as markers for highly proliferative potential hepatocytes.

    PubMed

    Ise, H; Sugihara, N; Negishi, N; Nikaido, T; Akaike, T

    2001-07-13

    Development of a reliable method to isolate highly proliferative potential hepatocytes will provide insight into the molecular mechanisms of liver regeneration, as well as proving crucial for the development of a biohybrid artificial liver. The aim of this study is to isolate highly proliferative, e.g., progenitor-like, hepatocytes. To this end, we fractionated hepatocytes expressing low and high levels of the asialoglycoprotein receptor (ASGP-R) based on the difference in their adhesion to poly[N-p-vinylbenzyl-O-beta-d-galactopyranosyl-(1-->4)-d-gluconamide] (PVLA), and examined the proliferative activity and gene expression of these fractionated hepatocytes. The results showed that approximately 0.5 to 1% of the total number of hepatocytes, which showed low adhesion to PVLA, expressed low levels of the ASGP-R, while the rest of hepatocyte population with high adhesion to PVLA expressed high levels of the ASGP-R. Interestingly hepatocytes with low ASGP-R expression levels had much higher DNA synthesizing activity (i.e., are much more proliferative) than those with high ASGP-R expression levels. Moreover, hepatocytes with low ASGP-R expression levels expressed higher levels of epidermal growth factor receptor (EGF-R), CD29 (beta1 integrin) and CD49f (alpha6 integrin) and lower levels of glutamine synthetase than those with high ASGP-R expression. These findings suggested that hepatocytes with low adhesion to PVLA due to their low ASGP-R expression could be potential candidates for progenitor-like hepatocytes due to their high proliferative capacity; hence, the low expression of the ASGP-R could be a unique marker for progenitor hepatocytes. The isolation of hepatocytes with different functional phenotypes using PVLA may provide a new research tool for a better understanding of the biology of hepatocytes and the mechanisms regulating their proliferation and differentiation in health and disease. Copyright 2001 Academic Press.

  4. Hepatocyte-specific ablation of spermine/spermidine-N1-acetyltransferase gene reduces the severity of CCl4-induced acute liver injury

    PubMed Central

    Barone, Sharon L.; Xu, Jie; Steinbergs, Nora; Schuster, Rebecca; Lentsch, Alex B.; Amlal, Hassane; Wang, Jiang; Casero, Robert A.; Soleimani, Manoocher

    2012-01-01

    Activation of spermine/spermidine-N1-acetyltransferase (SSAT) leads to DNA damage and growth arrest in mammalian cells, and its ablation reduces the severity of ischemic and endotoxic injuries. Here we have examined the role of SSAT in the pathogenesis of toxic liver injury caused by carbon tetrachloride (CCl4). The expression and activity of SSAT increase in the liver subsequent to CCl4 administration. Furthermore, the early liver injury after CCl4 treatment was significantly attenuated in hepatocyte-specific SSAT knockout mice (Hep-SSAT-Cko) compared with wild-type (WT) mice as determined by the reduced serum alanine aminotransferase levels, decreased hepatic lipid peroxidation, and less severe liver damage. Cytochrome P450 2e1 levels remained comparable in both genotypes, suggesting that SSAT deficiency does not affect the metabolism of CCl4. Hepatocyte-specific deficiency of SSAT also modulated the induction of cytokines involved in inflammation and repair as well as leukocyte infiltration. In addition, Noxa and activated caspase 3 levels were elevated in the livers of WT compared with Hep-SSAT-Cko mice. Interestingly, the onset of cell proliferation was significantly more robust in the WT compared with Hep-SSAT Cko mice. The inhibition of polyamine oxidases protected the animals against CCl4-induced liver injury. Our studies suggest that while the abrogation of polyamine back conversion or inhibition of polyamine oxidation attenuate the early injury, they may delay the onset of hepatic regeneration. PMID:22723264

  5. Hepatocyte-specific ablation of spermine/spermidine-N1-acetyltransferase gene reduces the severity of CCl4-induced acute liver injury.

    PubMed

    Zahedi, Kamyar; Barone, Sharon L; Xu, Jie; Steinbergs, Nora; Schuster, Rebecca; Lentsch, Alex B; Amlal, Hassane; Wang, Jiang; Casero, Robert A; Soleimani, Manoocher

    2012-09-01

    Activation of spermine/spermidine-N(1)-acetyltransferase (SSAT) leads to DNA damage and growth arrest in mammalian cells, and its ablation reduces the severity of ischemic and endotoxic injuries. Here we have examined the role of SSAT in the pathogenesis of toxic liver injury caused by carbon tetrachloride (CCl(4)). The expression and activity of SSAT increase in the liver subsequent to CCl(4) administration. Furthermore, the early liver injury after CCl(4) treatment was significantly attenuated in hepatocyte-specific SSAT knockout mice (Hep-SSAT-Cko) compared with wild-type (WT) mice as determined by the reduced serum alanine aminotransferase levels, decreased hepatic lipid peroxidation, and less severe liver damage. Cytochrome P450 2e1 levels remained comparable in both genotypes, suggesting that SSAT deficiency does not affect the metabolism of CCl(4). Hepatocyte-specific deficiency of SSAT also modulated the induction of cytokines involved in inflammation and repair as well as leukocyte infiltration. In addition, Noxa and activated caspase 3 levels were elevated in the livers of WT compared with Hep-SSAT-Cko mice. Interestingly, the onset of cell proliferation was significantly more robust in the WT compared with Hep-SSAT Cko mice. The inhibition of polyamine oxidases protected the animals against CCl(4)-induced liver injury. Our studies suggest that while the abrogation of polyamine back conversion or inhibition of polyamine oxidation attenuate the early injury, they may delay the onset of hepatic regeneration.

  6. Mitochondrial dysfunction in choline deficiency-induced apoptosis in cultured rat hepatocytes.

    PubMed

    Guo, Wei-Xing; Pye, Quentin N; Williamson, Kelly S; Stewart, Charles A; Hensley, Kenneth L; Kotake, Yashige; Floyd, Robert A; Broyles, Robert H

    2005-09-01

    Our recent studies have demonstrated that generation of ROS is associated with choline deficiency (CD)-induced apoptosis in CWSV-1 cells, an immortalized rat hepatocyte that becomes tumorigenic by stepwise culturing in decreasing levels of choline. In the present study, we investigated the effect of CD on loss of mitochondrial membrane potential (MMP), using the JC-1 probe by FASCAN assay. Our data demonstrate that MMP in CD-cultured cells was decreased in a time- and dose-dependent manner and that significant disruption occurred at 24 h, relative to high choline (HC, 70 microM) cultured cells. In order to investigate further the relationship among the CD-induced ROS, MMP collapse, and apoptosis, we examined the effects of different inhibitors on ROS production, MMP disruption, and apoptosis in CD or HC-cultured CWSV-1 cells. These data indicate that the disruption of MMP is an upstream event in CD-induced apoptosis, and mitochondrial dysfunction plays a key role in mediating CD-induced apoptosis in CWSV-1 cells.

  7. Enhancement or inhibition of PLCγ2 expression in rat hepatocytes by recombinant adenoviral vectors that contain full-length gene or siRNA.

    PubMed

    Chen, X G; Liu, Y M; Lv, Q X; Ma, J

    2017-01-01

    We investigated the effects of recombinant adenovirus vectors that overexpress or silence PLCγ2 on the expression of this gene during hepatocyte proliferation. Hepatocytes were isolated, identified by immunofluorescent cytochemical staining and infected by previously constructed Ad-PLCγ2 and Ad-PLCγ2 siRNA1, siRNA2 and siRNA3. Green fluorescent protein (GFP) expression was observed by fluorescence microscopy. Infection percentage was calculated by flow cytometry. mRNA and protein levels of PLCγ2 were detected by quantitative reverse transcription-PCR (qRT-PCR) and western blotting, respectively. The viability of the infected hepatocytes was measured by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. We found that nearly 97% of cells were positive for the hepatocyte marker, CK18. After infection of Ad-PLCγ2 and Ad-PLCγ2 siRNA, more than 99% of hepatocytes expressed GFP significantly, and mRNA and protein expression of PLCγ2 was up-regulated significantly in Ad-PLCγ2 infected hepatocytes, but down-regulated in Ad-PLCγ2 siRNA2 infected cells. The cell proliferation rate decreased in PLCγ2-overexpressing cells, while the rate increased in PLCγ2-silencing cells. We verified that recombinant Ad-PLCγ2 and Ad-PLCγ2 siRNA2 were constructed successfully. These two recombinant vectors promoted or decreased the expression of PLCγ2 in rat hepatocytes and affected the cell proliferation rate, which provides a useful tool for further investigation of the role of PLCγ2 in hepatocyte apoptosis.

  8. Carbohydrate Metabolism Is Perturbed in Peroxisome-deficient Hepatocytes Due to Mitochondrial Dysfunction, AMP-activated Protein Kinase (AMPK) Activation, and Peroxisome Proliferator-activated Receptor γ Coactivator 1α (PGC-1α) Suppression*

    PubMed Central

    Peeters, Annelies; Fraisl, Peter; van den Berg, Sjoerd; Ver Loren van Themaat, Emiel; Van Kampen, Antoine; Rider, Mark H.; Takemori, Hiroshi; van Dijk, Ko Willems; Van Veldhoven, Paul P.; Carmeliet, Peter; Baes, Myriam

    2011-01-01

    Hepatic peroxisomes are essential for lipid conversions that include the formation of mature conjugated bile acids, the degradation of branched chain fatty acids, and the synthesis of docosahexaenoic acid. Through unresolved mechanisms, deletion of functional peroxisomes from mouse hepatocytes (L-Pex5−/− mice) causes severe structural and functional abnormalities at the inner mitochondrial membrane. We now demonstrate that the peroxisomal and mitochondrial anomalies trigger energy deficits, as shown by increased AMP/ATP and decreased NAD+/NADH ratios. This causes suppression of gluconeogenesis and glycogen synthesis and up-regulation of glycolysis. As a consequence, L-Pex5−/− mice combust more carbohydrates resulting in lower body weights despite increased food intake. The perturbation of carbohydrate metabolism does not require a long term adaptation to the absence of functional peroxisomes as similar metabolic changes were also rapidly induced by acute elimination of Pex5 via adenoviral administration of Cre. Despite its marked activation, peroxisome proliferator-activated receptor α (PPARα) was not causally involved in these metabolic perturbations, because all abnormalities still manifested when peroxisomes were eliminated in a peroxisome proliferator-activated receptor α null background. Instead, AMP-activated kinase activation was responsible for the down-regulation of glycogen synthesis and induction of glycolysis. Remarkably, PGC-1α was suppressed despite AMP-activated kinase activation, a paradigm not previously reported, and they jointly contributed to impaired gluconeogenesis. In conclusion, lack of functional peroxisomes from hepatocytes results in marked disturbances of carbohydrate homeostasis, which are consistent with adaptations to an energy deficit. Because this is primarily due to impaired mitochondrial ATP production, these L-Pex5-deficient livers can also be considered as a model for secondary mitochondrial hepatopathies. PMID

  9. Mouse decellularised liver scaffold improves human embryonic and induced pluripotent stem cells differentiation into hepatocyte-like cells

    PubMed Central

    Scottoni, Federico; Crowley, Claire; Fiadeiro, Rebeca; Maghsoudlou, Panagiotis; Pellegata, Alessandro Filippo; Mazzacuva, Francesca; Gjinovci, Asllan; Lyne, Anne-Marie; Zulini, Justine; Little, Daniel; Mosaku, Olukunbi; Kelly, Deirdre; De Coppi, Paolo; Gissen, Paul

    2017-01-01

    Liver transplantation is the definitive treatment of liver failure but donor organ shortage limits its availability. Stem cells are highly expandable and have the potential to differentiate into any specialist cell. Use of patient-derived induced Pluripotent Stem Cells (hiPSCs) has the additional advantage for organ regeneration therapies by removing the need for immunosuppression. We compared hepatocyte differentiation of human embryonic stem cells (hESCs) and hiPSCs in a mouse decellularised liver scaffold (3D) with standard in vitro protocol (2D). Mouse livers were decellularised preserving micro-architecture, blood vessel network and extracellular matrix. hESCs and hiPSCs were primed towards the definitive endoderm. Cells were then seeded either in 3D or 2D cultures and the hepatocyte differentiation was continued. Both hESCs and hiPSCs differentiated more efficiently in 3D than in 2D, with higher and earlier expression of mature hepatocyte marker albumin, lipid and glycogen synthesis associated with a decrease in expression of fetal hepatocyte marker alpha-fetoprotein. Thus we conclude that stem cell hepatocyte differentiation in 3D culture promotes faster cell maturation. This finding suggests that optimised 3D protocols could allow generation of mature liver cells not achieved so far in standard 2D conditions and lead to improvement in cell models of liver disease and regenerative medicine applications. PMID:29261712

  10. The instant blood-mediated inflammatory reaction characterized in hepatocyte transplantation.

    PubMed

    Gustafson, Elisabet K; Elgue, Graciela; Hughes, Robin D; Mitry, Ragai R; Sanchez, Javier; Haglund, Ulf; Meurling, Staffan; Dhawan, Anil; Korsgren, Olle; Nilsson, Bo

    2011-03-27

    Hepatocyte transplantation (HcTx) has proven to be a safe procedure, although the functional results have been unsatisfactory, probably due to insufficient engraftment or a loss of transplanted mass or function. In this study, we investigate whether hepatocytes in contact with blood induce an inflammatory reaction leading to, similar to what happens in clinical islet transplantation, an instant blood-mediated inflammatory reaction (IBMIR) resulting in an early loss of transplanted cells. By using an experimental model that mimics the portal vein blood flow, we could study different parameters reflecting the effects on the innate immunity elicited by hepatocytes in contact with ABO-matched human blood. We report that all aspects of the IBMIR such as platelet and granulocyte consumption, coagulation, and complement activation were demonstrated. Addition of various specific inhibitors of coagulation allowed us to clearly delineate the various stages of the hepatocyte-triggered IBMIR and show that the reaction was triggered by tissue factor. Analysis of a case of clinical HcTx showed that hepatocyte-induced IBMIR also occurs in vivo. Both the inflammatory and the coagulation aspects were controlled by low-molecular-weight dextran sulfate. Isolated hepatocytes in contact with blood induce the IBMIR in vitro, and there are indications that these events are also relevant in vivo. According to these findings, HcTx would benefit from controlling a wider range of signals from the innate immune system.

  11. Molecular perturbations restrict potential for liver repopulation of hepatocytes isolated from non-heart-beating donor rats.

    PubMed

    Enami, Yuta; Joseph, Brigid; Bandi, Sriram; Lin, Juan; Gupta, Sanjeev

    2012-04-01

    Organs from non-heart-beating donors are attractive for use in cell therapy. Understanding the nature of molecular perturbations following reperfusion/reoxygenation will be highly significant for non-heart-beating donor cells. We studied non-heart-beating donor rats for global gene expression with Affymetrix microarrays, hepatic tissue integrity, viability of isolated hepatocytes, and engraftment and proliferation of transplanted cells in dipeptidyl peptidase IV-deficient rats. In non-heart-beating donors, liver tissue was morphologically intact for >24 hours with differential expression of 1, 95, or 372 genes, 4, 16, or 34 hours after death, respectively, compared with heart-beating donors. These differentially expressed genes constituted prominent groupings in ontological pathways of oxidative phosphorylation, adherence junctions, glycolysis/gluconeogenesis, and other discrete pathways. We successfully isolated viable hepatocytes from non-heart-beating donors, especially up to 4 hours after death, although the hepatocyte yield and viability were inferior to those of hepatocytes from heart-beating donors (P < 0.05). Similarly, although hepatocytes from non-heart-beating donors engrafted and proliferated after transplantation in recipient animals, this was inferior to hepatocytes from heart-beating donors (P < 0.05). Gene expression profiling in hepatocytes isolated from non-heart-beating donors showed far greater perturbations compared with corresponding liver tissue, including representation of pathways in focal adhesion, actin cytoskeleton, extracellular matrix-receptor interactions, multiple ligand-receptor interactions, and signaling in insulin, calcium, wnt, Jak-Stat, or other cascades. Liver tissue remained intact over prolonged periods after death in non-heart-beating donors, but extensive molecular perturbations following reperfusion/reoxygenation impaired the viability of isolated hepatocytes from these donors. Insights into molecular changes in

  12. Mitochondrial Respiratory Defect Causes Dysfunctional Lactate Turnover via AMP-activated Protein Kinase Activation in Human-induced Pluripotent Stem Cell-derived Hepatocytes*

    PubMed Central

    Im, Ilkyun; Jang, Mi-jin; Park, Seung Ju; Lee, Sang-Hee; Choi, Jin-Ho; Yoo, Han-Wook; Kim, Seyun; Han, Yong-Mahn

    2015-01-01

    A defective mitochondrial respiratory chain complex (DMRC) causes various metabolic disorders in humans. However, the pathophysiology of DMRC in the liver remains unclear. To understand DMRC pathophysiology in vitro, DMRC-induced pluripotent stem cells were generated from dermal fibroblasts of a DMRC patient who had a homoplasmic mutation (m.3398T→C) in the mitochondrion-encoded NADH dehydrogenase 1 (MTND1) gene and that differentiated into hepatocytes (DMRC hepatocytes) in vitro. DMRC hepatocytes showed abnormalities in mitochondrial characteristics, the NAD+/NADH ratio, the glycogen storage level, the lactate turnover rate, and AMPK activity. Intriguingly, low glycogen storage and transcription of lactate turnover-related genes in DMRC hepatocytes were recovered by inhibition of AMPK activity. Thus, AMPK activation led to metabolic changes in terms of glycogen storage and lactate turnover in DMRC hepatocytes. These data demonstrate for the first time that energy depletion may lead to lactic acidosis in the DMRC patient by reduction of lactate uptake via AMPK in liver. PMID:26491018

  13. Protopine and allocryptopine increase mRNA levels of cytochromes P450 1A in human hepatocytes and HepG2 cells independently of AhR.

    PubMed

    Vrba, Jiri; Vrublova, Eva; Modriansky, Martin; Ulrichova, Jitka

    2011-06-10

    The isoquinoline alkaloids protopine and allocryptopine are present in phytopreparations from medicinal plants, such as Fumaria officinalis. Since nothing is known about effects of the alkaloids on the expression of xenobiotic-metabolizing enzymes, we examined whether protopine or allocryptopine affect the expression of cytochromes P450 (CYPs) 1A1 and 1A2 in primary cultures of human hepatocytes and human hepatoma HepG2 cells. In HepG2 cells, protopine and allocryptopine significantly increased CYP1A1 mRNA levels after 24h exposure at concentrations from 25 and 10 μM, respectively, as shown by real-time PCR. Both protopine and allocryptopine also dose-dependently increased CYP1A1 and CYP1A2 mRNA levels in human hepatocytes. However, the effects of the tested alkaloids on both cell models were much lower than the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a prototypical CYP1A inducer. Using gene reporter assays performed in transiently transfected HepG2 cells, we demonstrated that the induction of CYP1A1 expression by either protopine or allocryptopine was associated with mild or negligible activation of the aryl hydrocarbon receptor. In contrast to TCDD, CYP1A mRNA levels induced by protopine or allocryptopine in both HepG2 cells and human hepatocytes did not result in elevated CYP1A protein or activity levels as shown by western blotting and EROD assays, respectively. We conclude that the use of products containing protopine and/or allocryptopine may be considered safe in terms of possible induction of CYP1A enzymes. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yannam, Govardhana Rao; Han, Bing; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevatedmore » alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.« less

  15. Model Based Targeting of IL-6-Induced Inflammatory Responses in Cultured Primary Hepatocytes to Improve Application of the JAK Inhibitor Ruxolitinib.

    PubMed

    Sobotta, Svantje; Raue, Andreas; Huang, Xiaoyun; Vanlier, Joep; Jünger, Anja; Bohl, Sebastian; Albrecht, Ute; Hahnel, Maximilian J; Wolf, Stephanie; Mueller, Nikola S; D'Alessandro, Lorenza A; Mueller-Bohl, Stephanie; Boehm, Martin E; Lucarelli, Philippe; Bonefas, Sandra; Damm, Georg; Seehofer, Daniel; Lehmann, Wolf D; Rose-John, Stefan; van der Hoeven, Frank; Gretz, Norbert; Theis, Fabian J; Ehlting, Christian; Bode, Johannes G; Timmer, Jens; Schilling, Marcel; Klingmüller, Ursula

    2017-01-01

    IL-6 is a central mediator of the immediate induction of hepatic acute phase proteins (APP) in the liver during infection and after injury, but increased IL-6 activity has been associated with multiple pathological conditions. In hepatocytes, IL-6 activates JAK1-STAT3 signaling that induces the negative feedback regulator SOCS3 and expression of APPs. While different inhibitors of IL-6-induced JAK1-STAT3-signaling have been developed, understanding their precise impact on signaling dynamics requires a systems biology approach. Here we present a mathematical model of IL-6-induced JAK1-STAT3 signaling that quantitatively links physiological IL-6 concentrations to the dynamics of IL-6-induced signal transduction and expression of target genes in hepatocytes. The mathematical model consists of coupled ordinary differential equations (ODE) and the model parameters were estimated by a maximum likelihood approach, whereas identifiability of the dynamic model parameters was ensured by the Profile Likelihood. Using model simulations coupled with experimental validation we could optimize the long-term impact of the JAK-inhibitor Ruxolitinib, a therapeutic compound that is quickly metabolized. Model-predicted doses and timing of treatments helps to improve the reduction of inflammatory APP gene expression in primary mouse hepatocytes close to levels observed during regenerative conditions. The concept of improved efficacy of the inhibitor through multiple treatments at optimized time intervals was confirmed in primary human hepatocytes. Thus, combining quantitative data generation with mathematical modeling suggests that repetitive treatment with Ruxolitinib is required to effectively target excessive inflammatory responses without exceeding doses recommended by the clinical guidelines.

  16. Regulation of Proteome Maintenance Gene Expression by Activators of Peroxisome Proliferator-Activated Receptor a (PPARa)

    EPA Science Inventory

    The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARa) is activated by a large number of xenobiotic and hypolipidemic compounds called peroxisome proliferator chemicals (PPC). One agonist of PPARa (WY-14,643) regulates responses in the mouse liver to chemic...

  17. Effective Hepatocyte Transplantation Using Rat Hepatocytes with Low Asialoglycoprotein Receptor Expression

    PubMed Central

    Ise, Hirohiko; Nikaido, Toshio; Negishi, Naoki; Sugihara, Nobuhiro; Suzuki, Fumitaka; Akaike, Toshihiro; Ikeda, Uichi

    2004-01-01

    Development of a reliable method of isolating highly proliferative potential hepatocytes provides information crucial to progress in the field of hepatocyte transplantation. The aim of this study was to develop reliable hepatocyte transplantation using highly proliferative, eg, progenitor-like hepatocytes, based on asialoglycoprotein receptor (ASGPR) expression levels for hepatocyte transplantation. We have previously reported that mouse hepatocytes with low ASGPR expression levels have highly proliferative potential and can be used as progenitor-like hepatocytes. We therefore fractionated F344 male rat hepatocytes expressing low and high levels of ASGPR and determined the liver repopulation capacity of hepatocytes according to low and high ASGPR expression in the liver. Next, 2 × 105 cells of each type were transplanted into female liver regenerative model dipeptidyl peptidase-deficient rats, and we estimated the rate of liver repopulation by the transplanted hepatocytes in the host liver, as determined by recognition of the Sry gene on the Y-chromosome. At 60 days after hepatocyte transplantation, the transplanted hepatocytes occupied ∼76% of the total hepatocyte mass in the case of the transplantation of hepatocytes with low ASGPR expression, but accounted for ∼12% and 17% of the mass in the case of the transplantation of hepatocytes with high ASGPR expression and unfractionated hepatocytes, respectively. In conclusion, these findings suggest that hepatocytes with low ASGPR expression can result in normal liver function and a high repopulation capacity in vivo. These results provide insight into development of a strategy for effective liver repopulation using transplanted hepatocytes. PMID:15277224

  18. Effective hepatocyte transplantation using rat hepatocytes with low asialoglycoprotein receptor expression.

    PubMed

    Ise, Hirohiko; Nikaido, Toshio; Negishi, Naoki; Sugihara, Nobuhiro; Suzuki, Fumitaka; Akaike, Toshihiro; Ikeda, Uichi

    2004-08-01

    Development of a reliable method of isolating highly proliferative potential hepatocytes provides information crucial to progress in the field of hepatocyte transplantation. The aim of this study was to develop reliable hepatocyte transplantation using highly proliferative, eg, progenitor-like hepatocytes, based on asialoglycoprotein receptor (ASGPR) expression levels for hepatocyte transplantation. We have previously reported that mouse hepatocytes with low ASGPR expression levels have highly proliferative potential and can be used as progenitor-like hepatocytes. We therefore fractionated F344 male rat hepatocytes expressing low and high levels of ASGPR and determined the liver repopulation capacity of hepatocytes according to low and high ASGPR expression in the liver. Next, 2 x 10(5) cells of each type were transplanted into female liver regenerative model dipeptidyl peptidase-deficient rats, and we estimated the rate of liver repopulation by the transplanted hepatocytes in the host liver, as determined by recognition of the Sry gene on the Y-chromosome. At 60 days after hepatocyte transplantation, the transplanted hepatocytes occupied approximately 76% of the total hepatocyte mass in the case of the transplantation of hepatocytes with low ASGPR expression, but accounted for approximately 12% and 17% of the mass in the case of the transplantation of hepatocytes with high ASGPR expression and unfractionated hepatocytes, respectively. In conclusion, these findings suggest that hepatocytes with low ASGPR expression can result in normal liver function and a high repopulation capacity in vivo. These results provide insight into development of a strategy for effective liver repopulation using transplanted hepatocytes.

  19. Leflunomide or A77 1726 protect from acetaminophen-induced cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latchoumycandane, Calivarathan; Seah, Quee Ming; Tan, Rachel C.H.

    2006-11-15

    Leflunomide, a disease-modifying anti-rheumatic drug, protects against T-cell-mediated liver injury by poorly understood mechanisms. The active metabolite of leflunomide, A77 1726 (teriflunomide) has been shown to inhibit stress-activated protein kinases (JNK pathway), which are key regulators of mitochondria-mediated cell death. Therefore, we hypothesized that leflunomide may protect from drugs that induce the mitochondrial permeability transition (mPT) by blocking the JNK signaling pathway. To this end, we exposed cultured immortalized human hepatocytes (HC-04) to the standard protoxicant drug acetaminophen (APAP), which induces CsA-sensitive mPT-mediated cell death. We determined the effects of leflunomide on the extent of APAP-induced hepatocyte injury and themore » upstream JNK-mediated mitochondrial signaling pathways. We found that leflunomide or A77 1726 concentration-dependently protected hepatocytes from APAP (1 mM)-induced mitochondrial permeabilization and lethal cell injury. This was not due to proximal inhibition of CYP-catalyzed APAP bioactivation to its thiol-reactive metabolite. Instead, we demonstrate that leflunomide (20 {mu}M) inhibited the APAP-induced early (3 h) activation (phosphorylation) of JNK1/2, thus inhibiting phosphorylation of the anti-apoptotic protein Bcl-2 and preventing P-Bcl-2-mediated induction of the mPT. This greatly attenuated mitochondrial cytochrome c release, which we used as a marker for mitochondrial permeabilization. The specific JNK2 inhibitor SP600125 similarly protected from APAP-induced cell death. In conclusion, these findings are consistent with our hypothesis that leflunomide protects from protoxicant-induced hepatocyte injury by inhibiting JNK signaling and preventing mPT induction.« less

  20. Fagopyrum tataricum (Buckwheat) Improved High-Glucose-Induced Insulin Resistance in Mouse Hepatocytes and Diabetes in Fructose-Rich Diet-Induced Mice

    PubMed Central

    Lee, Chia-Chen; Hsu, Wei-Hsuan; Shen, Siou-Ru; Cheng, Yu-Hsiang; Wu, She-Ching

    2012-01-01

    Fagopyrum tataricum (buckwheat) is used for the treatment of type 2 diabetes mellitus in Taiwan. This study was to evaluate the antihyperglycemic and anti-insulin resistance effects of 75% ethanol extracts of buckwheat (EEB) in FL83B hepatocytes by high-glucose (33 mM) induction and in C57BL/6 mice by fructose-rich diet (FRD; 60%) induction. The active compounds of EEB (100 μg/mL; 50 mg/kg bw), quercetin (6 μg/mL; 3 mg/kg bw), and rutin (23 μg/mL; 11.5 mg/kg bw) were also employed to treat FL83B hepatocytes and animal. Results indicated that EEB, rutin, and quercetin + rutin significantly improved 2-NBDG uptake via promoting Akt phosphorylation and preventing PPARγ degradation caused by high-glucose induction for 48 h in FL83B hepatocytes. We also found that EEB could elevate hepatic antioxidant enzymes activities to attenuate insulin resistance as well as its antioxidation caused by rutin and quercetin. Finally, EEB also inhibited increases in blood glucose and insulin levels of C57BL/6 mice induced by FRD. PMID:22548048

  1. A non-human primate model of human radiation-induced venocclusive liver disease and hepatocyte injury

    PubMed Central

    Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro; Roy-Chowdhury, Jayanta; Locker, Joseph; Abe, Michio; Enke, Charles A.; Baranowska-Kortylewicz, Janina; Solberg, Timothy D.; Guha, Chandan; Fox, Ira J.

    2014-01-01

    Background Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Since the characteristic venocclusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic venocclusive disease. Methods We performed a dose escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results At doses ≥40Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses where radiation-induced liver disease was mild or non-existent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions The cynomolgus monkey, as the first animal model of human venocclusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury. PMID:24315566

  2. LIVER REGENERATION STUDIES WITH RAT HEPATOCYTES IN PRIMARY CULTURE

    EPA Science Inventory

    Adult rat parenchymal hepatocytes in primary culture can be induced to enter into DNA synthesis and mitosis. The optimal conditions for hepatocyte replication are low plating density (less than 10,000 cells/sq cm) and 50% serum from two-thirds partially hepatectomized rats (48 hr...

  3. Fibrinogen-like protein 1, a hepatocyte derived protein is an acute phase reactant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Zhilin; Ukomadu, Chinweike

    2008-01-25

    Fibrinogen-like protein 1 (FGL1) is a hepatocyte derived protein that is upregulated in regenerating rodent livers following partial hepatectomy. It has been implicated as a mitogen for liver cell proliferation. In this study, we show that recombinant human IL-6 induces FGL1 expression in Hep G2 cells in a pattern similar to those of acute phase reactants. Following induction of acute inflammation in rats by subcutaneous injection of turpentine oil, serum FGL1 levels are also enhanced. Although, a recent report suggests that FGL1 associates almost exclusively with the fibrin matrix, we report here that approximately 20% of the total plasma FGL1more » remains free. The enhancement of FGL1 levels in vitro by IL-6 and its induction after turpentine oil injection suggest that it is an acute phase reactant. Its presence in bound and free forms in the blood also implies biological roles that extend beyond the proposed autocrine effect it has on hepatocytes during regeneration.« less

  4. Repopulation of the fibrotic/cirrhotic rat liver by transplanted hepatic stem/progenitor cells and mature hepatocytes

    PubMed Central

    Yovchev, Mladen I.; Xue, Yuhua; Shafritz, David A.; Locker, Joseph; Oertel, Michael

    2013-01-01

    Background & Aim Considerable progress has been made in developing anti-fibrotic agents and other strategies to treat liver fibrosis; however, significant long-term restoration of functional liver mass has not yet been achieved. Therefore, we investigated whether transplanted hepatic stem/progenitor cells can effectively repopulate the liver with advanced fibrosis/cirrhosis. Methods Stem/progenitor cells derived from fetal livers or mature hepatocytes from DPPIV+ F344 rats were transplanted into DPPIV− rats with thioacetamide (TAA)-induced fibrosis/cirrhosis; rats were sacrificed 1, 2, or 4 months later. Liver tissues were analyzed by histochemistry, hydroxyproline determination, RT-PCR, and immunohistochemistry. Results After chronic TAA administration, DPPIV− F344 rats exhibited progressive fibrosis, cirrhosis and severe hepatocyte damage. Besides stellate cell activation, increased numbers of stem/progenitor cells (Dlk-1+, AFP+, CD133+, Sox-9+, FoxJ1+) were observed. In conjunction with partial hepatectomy (PH), transplanted stem/progenitor cells engrafted, proliferated competitively compared to host hepatocytes, differentiated into hepatocytic and biliary epithelial cells, and generated new liver mass with extensive long-term liver repopulation (40.8 ± 10.3%). Remarkably, more than 20% liver repopulation was achieved in the absence of PH, associated with reduced fibrogenic activity (e.g., expression of α-SMA, PDGFRβ, desmin, vimentin, TIMP1) and fibrosis (reduced collagen). Furthermore, hepatocytes can also replace liver mass with advanced fibrosis/cirrhosis, but to a lesser extent than FLSPCs. Conclusions This study is a Proof of Principle demonstration that transplanted epithelial stem/progenitor cells can restore injured parenchyma in a liver environment with advanced fibrosis/cirrhosis and exhibit anti-fibrotic effects. PMID:23840008

  5. Mode of action and human relevance analysis for nuclear receptor-mediated liver toxicity: A case study with phenobarbital as a model constitutive androstane receptor (CAR) activator

    PubMed Central

    Elcombe, Clifford R.; Peffer, Richard C.; Wolf, Douglas C.; Bailey, Jason; Bars, Remi; Bell, David; Cattley, Russell C.; Ferguson, Stephen S.; Geter, David; Goetz, Amber; Goodman, Jay I.; Hester, Susan; Jacobs, Abigail; Omiecinski, Curtis J.; Schoeny, Rita; Xie, Wen; Lake, Brian G.

    2014-01-01

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are important nuclear receptors involved in the regulation of cellular responses from exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non-genotoxic indirect CAR activator, which induces cytochrome P450 (CYP) and other xenobiotic metabolizing enzymes and is known to produce liver foci/tumors in mice and rats. From literature data, a mode of action (MOA) for PB-induced rodent liver tumor formation was developed. A MOA for PXR activators was not established owing to a lack of suitable data. The key events in the PB-induced liver tumor MOA comprise activation of CAR followed by altered gene expression specific to CAR activation, increased cell proliferation, formation of altered hepatic foci and ultimately the development of liver tumors. Associative events in the MOA include altered epigenetic changes, induction of hepatic CYP2B enzymes, liver hypertrophy and decreased apoptosis; with inhibition of gap junctional intercellular communication being an associative event or modulating factor. The MOA was evaluated using the modified Bradford Hill criteria for causality and other possible MOAs were excluded. While PB produces liver tumors in rodents, important species differences were identified including a lack of cell proliferation in cultured human hepatocytes. The MOA for PB-induced rodent liver tumor formation was considered to be qualitatively not plausible for humans. This conclusion is supported by data from a number of epidemiological studies conducted in human populations chronically exposed to PB in which there is no clear evidence for increased liver tumor risk. PMID:24180433

  6. Toyocamycin attenuates free fatty acid-induced hepatic steatosis and apoptosis in cultured hepatocytes and ameliorates nonalcoholic fatty liver disease in mice.

    PubMed

    Takahara, Ikuko; Akazawa, Yuko; Tabuchi, Maiko; Matsuda, Katsuya; Miyaaki, Hisamitsu; Kido, Youko; Kanda, Yasuko; Taura, Naota; Ohnita, Ken; Takeshima, Fuminao; Sakai, Yusuke; Eguchi, Susumu; Nakashima, Masahiro; Nakao, Kazuhiko

    2017-01-01

    A high serum level of saturated free fatty acids (FFAs) is associated with the development of nonalcoholic fatty liver disease (NAFLD). X-box binding protein-1 (XBP-1) is activated by FFA treatment upon splicing. XBP-1 is a transcription factor induced by the endoplasmic reticulum (ER) stress sensor endoribonuclease inositol-requiring enzyme 1 alpha (IRE1α). However, the role of XBP-1 in NAFLD remains relatively unexplored. Toyocamycin was recently reported to attenuate the activation of XBP-1, possibly by inducing a conformational change in IRE1α. In this study, we examined the effect of toyocamycin on hepatocyte lipoapoptosis and steatosis. We also explored the effects of toyocamycin in a mouse model of NAFLD. Huh-7 cells and isolated rat primary hepatocytes were treated with palmitic acid (PA), which is a saturated FFA, in the presence or absence of toyocamycin. In addition, male C57BL/6J mice were fed a diet rich in saturated fat, fructose, and cholesterol (FFC) for 4 months, after which the effect of toyocamycin was assessed. Toyocamycin attenuated FFA-induced steatosis. It also significantly reduced PA-induced hepatocyte lipoapoptosis. In addition, toyocamycin reduced the expression of cytosine-cytosine-adenosine-adenosine-thymidine enhancer-binding protein homologous protein (CHOP), which is a key player in ER stress-mediated apoptosis, as well as its downstream cell death modulator, death receptor 5. In the in vivo study, toyocamycin ameliorated the liver injury caused by FFC-induced NAFLD. It also reduced hepatic steatosis and the expression of lipogenic genes. The data we obtained suggest that toyocamycin attenuates hepatocyte lipogenesis and ameliorates NAFLD in vivo and may therefore be beneficial in the treatment of NAFLD in humans.

  7. High fat diet-induced oxidative stress blocks hepatocyte nuclear factor 4α and leads to hepatic steatosis in mice.

    PubMed

    Yu, Dongsheng; Chen, Gang; Pan, Minglin; Zhang, Jia; He, Wenping; Liu, Yang; Nian, Xue; Sheng, Liang; Xu, Bin

    2018-06-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease with manifestation of over-accumulation of fat in liver. Increasing evidences indicate that NAFLD may be in part caused by malfunction of very low density lipoprotein (VLDL) secretion. Hepatocyte nuclear factor 4α (HNF4α), a nuclear receptor protein, plays an important role in sustain hepatic lipid homeostasis via transcriptional regulation of genes involved in secretion of VLDL, such as apolipoprotein B (ApoB). However, the exact functional change of HNF4α in NAFLD remains to be elucidated. In the present study, we found that high fat diet (HFD) induced cytoplasmic retention of HNF4α in hepatocytes, which led to down-regulation of hepatic ApoB expression and its protein level in serum, as well as reduced secretion of VLDL. We further revealed that oxidative stress, elevated in fatty liver, was the key factor inducing the cytoplasmic retention of HNF4α in hepatocytes by activating protein kinase C (PKC)-mediated phosphorylation in HNF4α. Thus, our findings reveal a novel mechanism underlying HFD-induced fatty liver that oxidative stress impairs function of HNF4α on ApoB expression and VLDL secretion via PKC activation, eventually promoting fat accumulation in the liver. Therefore, oxidative stress/PKC/HNF4α pathway may be a novel target to treat diet-induced fatty liver. © 2017 Wiley Periodicals, Inc.

  8. Gender Differences in Response to Prolonged Every-Other-Day Feeding on the Proliferation and Apoptosis of Hepatocytes in Mice.

    PubMed

    Piotrowska, Katarzyna; Tarnowski, Maciej; Zgutka, Katarzyna; Pawlik, Andrzej

    2016-03-19

    Intermittent fasting decreases glucose and insulin levels and increases insulin sensitivity and lifespan. Decreased food intake influences the liver. Previous studies have shown gender differences in response to various types of caloric restriction, including every-other-day (EOD) feeding, in humans and rodents. Our goal was to show the influence of prolonged EOD feeding on the morphology, proliferation and apoptosis of livers from male and female mice. After nine months of an EOD diet, the livers from male and female mice were collected. We examined their morphology on histological slides using the Hematoxilin and Eosine (H_E) method and Hoechst staining of cell nuclei to evaluate the nuclear area of hepatocytes. We also evaluated the expression of mRNA for proto-oncogens, pro-survival proteins and apoptotic markers using Real Time Polimerase Chain Reaction (PCR). We noted increased lipid content in the livers of EOD fed female mice. EOD feeding lead to a decrease of proliferation and apoptosis in the livers of female and male mice, which suggest that tissue maintenance occurred during EOD feeding. Our experiment revealed sex-specific expression of mRNA for proto-oncogenes and pro-survival and pro-apoptotic genes in mice as well as sex-specific responses to the EOD treatment.

  9. Protective effect of black garlic extracts on tert-Butyl hydroperoxide-induced injury in hepatocytes via a c-Jun N-terminal kinase-dependent mechanism

    PubMed Central

    Lee, Ko-Chao; Teng, Chih-Chuan; Shen, Chien-Heng; Huang, Wen-Shih; Lu, Chien-Chang; Kuo, Hsing-Chun; Tung, Shui-Yi

    2018-01-01

    Black garlic has been reported to show multiple bioactivities against the development of different diseases. In the present study, the hepatoprotective effect of black garlic on injured liver cells was investigated. Rat clone-9 hepatocytes were used for all experiments; tert-Butyl hydroperoxide (tBHP) was used to induce injury of rat clone-9 hepatocytes. The contents of malondialdehyde (MDA) and glutathione (GSH); anti-oxidative enzyme activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx); and mRNA expression levels of interleukin (IL)-6 and IL-8 in rat clone-9 hepatocytes were determined to evaluate the level of cell damage. Black garlic extracts were demonstrated to significantly attenuate tBHP-induced cell death of rat clone-9 hepatocytes (P<0.05). Pretreatment with black garlic extracts antagonized GSH depletion, tBHP-increased MDA accumulation and the mRNA expression level of IL-6/IL-8, and tBHP-decreased antioxidative enzyme activities (all P<0.05). Moreover, the present study revealed that c-Jun N-terminal kinase signaling regulated black garlic-inhibited tBHP effects in rat clone-9 hepatocytes. Our findings demonstrate that black garlic has the hepatoprotective potential to block tBHP-damaged effects on cell death, lipid peroxidation, oxidative stress, and inflammation in rat clone-9 hepatocytes. Thus, the present study indicates that black garlic may be an excellent natural candidate in the development of adjuvant therapy and healthy foods for liver protection. PMID:29456651

  10. Molecular imaging of low-power laser irradiation induced cell proliferation

    NASA Astrophysics Data System (ADS)

    Gao, Xuejuan; Wang, Fang; Da, Xing

    2006-02-01

    Low-power laser irradiation (LPLI) has been shown to promote cell proliferation in various cell types, yet the mechanism of which has not been fully clarified. Studying the signaling pathways involved in the laser irradiation is important for understanding these processes. The Ras/Raf/MEK/ERK (extracellular-signal-regulated kinase) signaling pathway is a network that governs proliferation, differentiation and cell survival. Recent studies suggest that Ras/Raf signaling pathway is involved in the LPLI-induced cell proliferation. Protein kinase Cs (PKCs) have been recently presumed to be involved in the regulation of cell proliferation induced by LPLI. In present study, to monitor the direct interaction between Ras and Raf and PKCs activation after LPLI treatment in living cells in real time, Raichu-Ras reporter and C kinase activity reporter (CKAR) were utilized, both of which were constructed based on fluorescence resonance energy transfer (FRET) technique. Our results show that the direct interaction between Ras and Raf is monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved human lung adenocarcinoma cells (ASTC-a-1) expressing Raichu-Ras reporter using FRET imaging on laser scanning confocal microscope, and that the increasing dynamics of PKCs activity is also monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved ASTC-a-1 cells expressing CKAR reporter using the similar way. Taken together, LPLI induces the ASTC-a-1 cell proliferation by activated Ras directly interacting with Raf and by specifically activating PKCs.

  11. Calcium-dependent nitric oxide production is involved in the cytoprotective properties of n-acetylcysteine in glycochenodeoxycholic acid-induced cell death in hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Rubio, Sandra; Linares, Clara I.; Bello, Rosario I.

    The intracellular oxidative stress has been involved in bile acid-induced cell death in hepatocytes. Nitric oxide (NO) exerts cytoprotective properties in glycochenodeoxycholic acid (GCDCA)-treated hepatocytes. The study evaluated the involvement of Ca{sup 2+} on the regulation of NO synthase (NOS)-3 expression during N-acetylcysteine (NAC) cytoprotection against GCDCA-induced cell death in hepatocytes. The regulation of Ca{sup 2+} pools (EGTA or BAPTA-AM) and NO (L-NAME or NO donor) production was assessed during NAC cytoprotection in GCDCA-treated HepG2 cells. The stimulation of Ca{sup 2+} entrance was induced by A23187 in HepG2. Cell death, Ca{sup 2+} mobilization, NOS-1, -2 and -3 expression, AP-1 activation,more » and NO production were evaluated. GCDCA reduced intracellular Ca{sup 2+} concentration and NOS-3 expression, and enhanced cell death in HepG2. NO donor prevented, and L-NAME enhanced, GCDCA-induced cell death. The reduction of Ca{sup 2+} entry by EGTA, but not its release from intracellular stores by BAPTA-AM, enhanced cell death in GCDCA-treated cells. The stimulation of Ca{sup 2+} entrance by A23187 reduced cell death and enhanced NOS-3 expression in GCDCA-treated HepG2 cells. The cytoprotective properties of NAC were related to the recovery of intracellular Ca{sup 2+} concentration, NOS-3 expression and NO production induced by GCDCA-treated HepG2 cells. The increase of NO production by Ca{sup 2+}-dependent NOS-3 expression during NAC administration reduces cell death in GCDCA-treated hepatocytes.« less

  12. Energy determinants GAPDH and NDPK act as genetic modifiers for hepatocyte inclusion formation

    PubMed Central

    Weerasinghe, Sujith V.W.; Singla, Amika; Leonard, Jessica M.; Hanada, Shinichiro; Andrews, Philip C.; Lok, Anna S.; Omary, M. Bishr

    2011-01-01

    Genetic factors impact liver injury susceptibility and disease progression. Prominent histological features of some chronic human liver diseases are hepatocyte ballooning and Mallory-Denk bodies. In mice, these features are induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) in a strain-dependent manner, with the C57BL and C3H strains showing high and low susceptibility, respectively. To identify modifiers of DDC-induced liver injury, we compared C57BL and C3H mice using proteomic, biochemical, and cell biological tools. DDC elevated reactive oxygen species (ROS) and oxidative stress enzymes preferentially in C57BL livers and isolated hepatocytes. C57BL livers and hepatocytes also manifested significant down-regulation, aggregation, and nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). GAPDH knockdown depleted bioenergetic and antioxidant enzymes and elevated hepatocyte ROS, whereas GAPDH overexpression decreased hepatocyte ROS. On the other hand, C3H livers had higher expression and activity of the energy-generating nucleoside-diphosphate kinase (NDPK), and knockdown of hepatocyte NDPK augmented DDC-induced ROS formation. Consistent with these findings, cirrhotic, but not normal, human livers contained GAPDH aggregates and NDPK complexes. We propose that GAPDH and NDPK are genetic modifiers of murine DDC-induced liver injury and potentially human liver disease. PMID:22006949

  13. Polyphyllin I inhibits gastric cancer cell proliferation by downregulating the expression of fibroblast activation protein alpha (FAP) and hepatocyte growth factor (HGF) in cancer-associated fibroblasts.

    PubMed

    Dong, Ruizeng; Guo, Jianmin; Zhang, Zewei; Zhou, Yimin; Hua, Yonghong

    2018-03-18

    The aim of this study was to identify the anti-cancer mechanism of Polyphyllin I (PPI) on gastric cancer cells via its activity on cancer-associated fibroblasts (CAFs). We cultured purified gastric CAFs obtained from fresh human gastric cancer tissue and examined the effect of Polyphyllin I on CAF proliferation using a colorimetric viability assay. In addition, we established a nude mouse xenograft model to examine the effect of Polyphyllin I administration on tumorigenesis. Using Western analysis, we quantified protein expression of the CAF-derived cytokines fibroblast activation protein alpha (FAP), secreted protein acidic and cysteine rich (SPARC), stromal cell-derived factor 1 (SDF-1), hepatocyte growth factor tenascin-C (TNC), and hepatocyte growth factor (HGF) in both in vitro and in vivo models. We found that Polyphyllin I inhibits the proliferation of CAFs in a concentration-dependent manner. Following treatment with 2 μg/ml PPI for 24 h in vitro, the expression of FAP, SDF-1 and HGF protein in CAFs was significantly lower than that in the control group, but there was no significant difference in SPARC and TNC protein expression between the two groups. In the nude mouse xenograft model, the tumor inhibition rate was 45.5% when PPI was administered early and 29.4% with administration in the third week. The expression of FAP and HGF in the xenografts was significantly decreased, while the expression of SPARC, SDF-1, and TNC was largely unaltered. Altogether, these data suggest that Polyphyllin I can inhibit the proliferation of gastric cancer cells by downregulating the expression of FAP and HGF in CAFs in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Model Based Targeting of IL-6-Induced Inflammatory Responses in Cultured Primary Hepatocytes to Improve Application of the JAK Inhibitor Ruxolitinib

    PubMed Central

    Sobotta, Svantje; Raue, Andreas; Huang, Xiaoyun; Vanlier, Joep; Jünger, Anja; Bohl, Sebastian; Albrecht, Ute; Hahnel, Maximilian J.; Wolf, Stephanie; Mueller, Nikola S.; D'Alessandro, Lorenza A.; Mueller-Bohl, Stephanie; Boehm, Martin E.; Lucarelli, Philippe; Bonefas, Sandra; Damm, Georg; Seehofer, Daniel; Lehmann, Wolf D.; Rose-John, Stefan; van der Hoeven, Frank; Gretz, Norbert; Theis, Fabian J.; Ehlting, Christian; Bode, Johannes G.; Timmer, Jens; Schilling, Marcel; Klingmüller, Ursula

    2017-01-01

    IL-6 is a central mediator of the immediate induction of hepatic acute phase proteins (APP) in the liver during infection and after injury, but increased IL-6 activity has been associated with multiple pathological conditions. In hepatocytes, IL-6 activates JAK1-STAT3 signaling that induces the negative feedback regulator SOCS3 and expression of APPs. While different inhibitors of IL-6-induced JAK1-STAT3-signaling have been developed, understanding their precise impact on signaling dynamics requires a systems biology approach. Here we present a mathematical model of IL-6-induced JAK1-STAT3 signaling that quantitatively links physiological IL-6 concentrations to the dynamics of IL-6-induced signal transduction and expression of target genes in hepatocytes. The mathematical model consists of coupled ordinary differential equations (ODE) and the model parameters were estimated by a maximum likelihood approach, whereas identifiability of the dynamic model parameters was ensured by the Profile Likelihood. Using model simulations coupled with experimental validation we could optimize the long-term impact of the JAK-inhibitor Ruxolitinib, a therapeutic compound that is quickly metabolized. Model-predicted doses and timing of treatments helps to improve the reduction of inflammatory APP gene expression in primary mouse hepatocytes close to levels observed during regenerative conditions. The concept of improved efficacy of the inhibitor through multiple treatments at optimized time intervals was confirmed in primary human hepatocytes. Thus, combining quantitative data generation with mathematical modeling suggests that repetitive treatment with Ruxolitinib is required to effectively target excessive inflammatory responses without exceeding doses recommended by the clinical guidelines. PMID:29062282

  15. Novel developmental biology-based protocol of embryonic stem cell differentiation to morphologically sound and functional yet immature hepatocytes.

    PubMed

    Bukong, Terence N; Lo, Tracie; Szabo, Gyongyi; Dolganiuc, Angela

    2012-05-01

    Liver diseases are common in the United States and often require liver transplantation; however, donated organs are limited and thus alternative sources for liver cells are in high demand. Embryonic stem cells (ESC) can provide a continuous and readily available source of liver cells. ESC differentiation to liver cells is yet to be fully understood and comprehensive differentiation protocols are yet to be defined. Here, we aimed to achieve human (h)ESC differentiation into mature hepatocytes using defined recombinant differentiation factors and metabolites. Embryonic stem cell H1 line was sub-cultured on feeder layer. We induced hESCs into endodermal differentiation succeeded by early/late hepatic specification and finally into hepatocyte maturation using step combinations of Activin A and fibroblast growth factor (FGF)-2 for 7 days; followed by FGF-4 and bone morphogenic protein 2 (BMP2) for 7 days, succeeded by FGF-10 + hepatocyte growth factor 4 + epidermal growth factor for 14 days. Specific inhibitors/stimulators were added sequentially throughout differentiation. Cells were analysed by PCR, flow cytometry, microscopy or functional assays. Our hESC differentiation protocol resulted in viable cells with hepatocyte shape and morphology. We observed gradual changes in cell transcriptome, including up-regulation of differentiation-promoting GATA4, GATA6, POU5F1 and HNF4 transcription factors, steady levels of stemness-promoting SOX-2 and low levels of Nanog, as defined by PCR. The hESC-derived hepatocytes expressed alpha-antitrypsin, CD81, cytokeratin 8 and low density lipoprotein (LDL) receptor. The levels of alpha-fetoprotein and proliferation marker Ki-67 in hESC-derived hepatocytes remained elevated. Unlike stem cells, the hESC-derived hepatocytes performed LDL uptake, produced albumin and alanine aminotransferase and had functional alcohol dehydrogenase. We report a novel protocol for hESC differentiation into morphological and functional yet immature

  16. Proliferation of the human urothelium is induced by atypical β1 -adrenoceptors.

    PubMed

    Winder, M; Wasén, C; Aronsson, P; Giglio, D

    2015-09-01

    We wanted to assess whether β-adrenoceptors mediate proliferation in the normal and malignant urothelial cell lines UROtsa and T24, respectively. Urothelial cells were cultured for 24 h in the presence of the β-adrenoceptor agonists isoprenaline (β1/2/3 ), dobutamine (β1 ), salbutamol (β2 ), BRL 37344 (β3 ), CGP 12177 (a partial β-agonist) or β-adrenoceptor antagonists (metoprolol; β1 , propranolol; β1/2 ). Phosphorylation of kinases was screened with a Human Phospho-Kinase Array Kit (R&D systems). Intracellular pathways activated by proliferation of urothelial cells were characterized by incubating cells with the MEK1/2 inhibitor PD 98,059, the p38 kinase inhibitor losmapimod or with the Akt 1/2 kinase inhibitor. Proliferation was assessed with the MTT proliferation assay (ATCC). Western blot and immunocytochemistry were used for detection of the β1 -adrenoceptor. Isoprenaline and dobutamine induced proliferation, while salbutamol and BRL 37344 did not. Dobutamine-induced proliferation was not affected by metoprolol or propranolol but was instead antagonized by CGP 12177 in T24 but not in UROtsa. In response to stimulation with dobutamine, Akt1/2/3 was phosphorylated in UROtsa, while ERK1/2 and p38 were phosphorylated in T24. MEK1/2 inhibition blocked basal and dobutamine-induced proliferation in T24 but only basal proliferation in UROtsa. Losmapimod slightly inhibited basal proliferation in T24 but not dobutamine-induced proliferation. Akt 1/2 inhibitor blocked basal and dobutamine-induced proliferation in UROtsa. Immunocytochemistry and Western blot revealed expression of β1 -adrenoceptors in both urothelial cell lines. The present data show that the urothelium expresses atypical β1-adrenoceptors that activate intracellular kinases inducing urothelial proliferation. © 2016 John Wiley & Sons Ltd.

  17. Rapid generation of functional hepatocyte-like cells from human adipose-derived stem cells.

    PubMed

    Fu, Yanli; Deng, Jie; Jiang, Qingyuan; Wang, Yuan; Zhang, Yujing; Yao, Yunqi; Cheng, Fuyi; Chen, Xiaolei; Xu, Fen; Huang, Meijuan; Yang, Yang; Zhang, Shuang; Yu, Dechao; Zhao, Robert Chunhua; Wei, Yuquan; Deng, Hongxin

    2016-08-05

    Liver disease is a major cause of death worldwide. Orthotropic liver transplantation (OLT) represents the only effective treatment for patients with liver failure, but the increasing demand for organs is unfortunately so great that its application is limited. Hepatocyte transplantation is a promising alternative to OLT for the treatment of some liver-based metabolic disorders or acute liver failure. Unfortunately, the lack of donor livers also makes it difficult to obtain enough viable hepatocytes for hepatocyte-based therapies. Currently, a fundamental solution to this key problem is still lacking. Here we show a novel non-transgenic protocol that facilitates the rapid generation of functional induced hepatocytes (iHeps) from human adipose-derived stem cells (hADSCs), providing a source of available cells for autologous hepatocytes to treat liver disease. We used collagenase digestion to isolate hADSCs. The surface marker was detected by flow cytometry. The multipotential differentiation potency was detected by induction into adipocytes, osteocytes, and chondrocytes. Passage 3-7 hADSCs were induced into iHeps using an induction culture system composed of small molecule compounds and cell factors. Primary cultured hADSCs presented a fusiform or polygon appearance that became fibroblast-like after passage 3. More than 95 % of the cells expressed the mesenchymal cell markers CD29, CD44, CD166, CD105, and CD90. hADSCs possessed multipotential differentiation towards adipocytes, osteocytes, and chondrocytes. We rapidly induced hADSCs into iHeps within 10 days in vitro; the cellular morphology changed from fusiform to close-connected cubiform, which was similar to hepatocytes. After induction, most of the iHeps co-expressed albumin and alpha-1 antitrypsin; they also expressed mature hepatocyte special genes and achieved the basic functions of hepatocyte. Moreover, iHep transplantation could improve the liver function of acute liver-injured NPG mice and prolong life. We

  18. Nitric oxide regulates stretch-induced proliferation in C2C12 myoblasts.

    PubMed

    Soltow, Quinlyn A; Lira, Vitor A; Betters, Jenna L; Long, Jodi H D; Sellman, Jeff E; Zeanah, Elizabeth H; Criswell, David S

    2010-09-01

    Mechanical stretch of skeletal muscle activates nitric oxide (NO) production and is an important stimulator of satellite cell proliferation. Further, cyclooxygenase (COX) activity has been shown to promote satellite cell proliferation in response to stretch. Since COX-2 expression in skeletal muscle can be regulated by NO we sought to determine if NO is required for stretch-induced myoblast proliferation and whether supplemental NO can counter the effects of COX-2 and NF-kappaB inhibitors. C2C12 myoblasts were cultured for 24 h, then switched to medium containing either the NOS inhibitor, L-NAME (200 microM), the COX-2 specific inhibitor NS-398 (100 microM), the NF-kappaB inhibiting antioxidant, PDTC (5 mM), the nitric oxide donor, DETA-NONOate (10-100 microM) or no supplement (control) for 24 h. Subgroups of each treatment were exposed to 1 h of 15% cyclic stretch (1 Hz), and were then allowed to proliferate for 24 h before fixing. Proliferation was measured by BrdU incorporation during the last hour before fixing, and DAPI stain. Stretch induced a twofold increase in nuclear number compared to control, and this effect was completely inhibited by L-NAME, NS-398 or PDTC (P < 0.05). Although DETA-NONOate (10 microM) did not affect basal proliferation, the NO-donor augmented the stretch-induced increase in proliferation and rescued stretch-induced proliferation in NS-398-treated cells, but not in PDTC-treated cells. In conclusion, NO, COX-2, and NF-kappaB are necessary for stretch-induced proliferation of myoblasts. Although COX-2 and NF-kappaB are both involved in basal proliferation, NO does not affect basal growth. Thus, NO requires the synergistic effect of stretch in order to induce muscle cell proliferation.

  19. Lipid overloading during liver regeneration causes delayed hepatocyte DNA replication by increasing ER stress in mice with simple hepatic steatosis.

    PubMed

    Hamano, Mina; Ezaki, Hisao; Kiso, Shinichi; Furuta, Kunimaro; Egawa, Mayumi; Kizu, Takashi; Chatani, Norihiro; Kamada, Yoshihiro; Yoshida, Yuichi; Takehara, Tetsuo

    2014-02-01

    Impaired fatty liver regeneration has already been reported in many genetic modification models. However, in diet-induced simple hepatic steatosis, which showed similar phenotype with clinical pathology, whether liver regeneration is impaired or not remains unclear. In this study, we evaluated liver regeneration in mice with diet-induced simple hepatic steatosis, and focused on excess lipid accumulation occurring during liver regeneration. Mice were fed high fat diet (HFD) or control diet for 9-10 weeks. We analyzed intrahepatic lipid accumulation, DNA replication, and various signaling pathways including cell proliferation and ER stress during liver regeneration after partial hepatectomy. In addition, some of mice were pretreated with tauroursodeoxycholic acid (TUDCA), a chemical chaperone which alleviates ER stress, and then we estimated TUDCA effects on liver regeneration. The peak of hepatocyte BrdU incorporation, the expression of proliferation cell nuclear antigen (PCNA) protein, and the expressions of cell cycle-related genes were observed in delayed time in HFD mice. The expression of phosphorylated Erk1/2 was also delayed in HFD mice. The amounts of liver triglyceride were at least twofold higher in HFD mice at each time point. Intrahepatic palmitic acid was increased especially in HFD mice. ER stress induced during liver regeneration was significantly higher in HFD mice. In HFD mice, pretreatment with TUDCA reduced ER stress and resulted in improvement of delayed liver regeneration. In simple hepatic steatosis, lipid overloading occurring during liver regeneration might be caused ER stress and results in delayed hepatocyte DNA replication.

  20. The establishment and characterization of immortal hepatocyte cell lines from a mouse liver injury model.

    PubMed

    Risal, Prabodh; Cho, Baik Hwan; Sylvester, Karl G; Kim, Jae-Chun; Kim, Hyoung Tae; Jeong, Yeon Jun

    2011-09-01

    Hepatocytes are an important research tool used for numerous applications. However, a short life span and a limited capacity to replicate in vitro limit the usefulness of primary hepatocyte cultures. We have hypothesized that in vivo priming of hepatocyte could make them more susceptible to growth factors in the medium for continuous proliferation in vitro. Here, a novel approach used to establish hepatocyte cell lines that included hepatocyte priming in vivo prior to culture with a 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet was attempted. The cell line grew in a monolayer while maintaining a granular cytoplasm and a round nucleus. Electron microscopy displayed hepatocyte-like features including mitochondria, glycogen granules, and the presence of bile canaliculi. This cell line expressed many mature hepatocyte-specific genes including albumin, alpha1-antitrypsin, glucose 6-phosphatase, and tyrosine aminotransferase. Functional characteristic of hepatocytes like the ability to store glycogen, lipid, and synthesis of urea is well demonstrated by this cell line. These cells demonstrated anchorage dependent growth properties in soft agar and did not form tumors after transplantation into nude mice. This cell line can be sustained in culture for more than 100 passages (>1.5 years) without undergoing noticeable morphological changes or transformation. This novel method resulted in the establishment of an immortal, non-transformed hepatocyte cell line with functional characteristics that may aid research of cell metabolism, toxicology, and hepatocyte transplantation.

  1. Hepatocyte-specific deletion of LASS2 protects against diet-induced hepatic steatosis and insulin resistance.

    PubMed

    Fan, Shaohua; Wang, Yanyan; Wang, Cun; Jin, Haojie; Wu, Zheng; Lu, Jun; Zhang, Zifeng; Sun, Chunhui; Shan, Qun; Wu, Dongmei; Zhuang, Juan; Sheng, Ning; Xie, Ying; Li, Mengqiu; Hu, Bin; Fang, Jingyuan; Zheng, Yuanlin; Qin, Wenxin

    2018-05-20

    Homo sapienslongevity assurance homolog 2 of yeast LAG1 (LASS2) is expressed mostly in human liver. Here, we explored roles of LASS2 in pathogenesis of hepatic steatosis. Hepatocyte-specific LASS2 knockout (LASS2 -/- ) mice were generated using Cre-LoxP system. LASS2 -/- and wild-type (WT) mice were fed with chow or high-fat diet (HFD). We found LASS2 -/- mice were resistant to HFD-induced hepatic steatosis and insulin resistance. In HFD-fed mice, LASS2 deficiency significantly inhibited p38 MAPK and ERK1/ERK2 signaling in mouse liver. This effect was mediated by a significant increase of V-ATPase activity and a decrease of ROS level. We also observed that elevated expression of LASS2 in mouse hepatocyte cell line AML12 obviously decreased V-ATPase activity and increased ROS level by activation of p38 MAPK and ERK1/ERK2 signaling. Our findings indicate that LASS2 plays an important role in the pathogenesis of diet-induced hepatic steatosis and is a potential novel target for prevention and intervention of liver diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Spontaneous hepatic repopulation in transgenic mice expressing mutant human α1-antitrypsin by wild-type donor hepatocytes

    PubMed Central

    Ding, Jianqiang; Yannam, Govardhana R.; Roy-Chowdhury, Namita; Hidvegi, Tunda; Basma, Hesham; Rennard, Stephen I.; Wong, Ronald J.; Avsar, Yesim; Guha, Chandan; Perlmutter, David H.; Fox, Ira J.; Roy-Chowdhury, Jayanta

    2011-01-01

    α1-Antitrypsin deficiency is an inherited condition that causes liver disease and emphysema. The normal function of this protein, which is synthesized by the liver, is to inhibit neutrophil elastase, a protease that degrades connective tissue of the lung. In the classical form of the disease, inefficient secretion of a mutant α1-antitrypsin protein (AAT-Z) results in its accumulation within hepatocytes and reduced protease inhibitor activity, resulting in liver injury and pulmonary emphysema. Because mutant protein accumulation increases hepatocyte cell stress, we investigated whether transplanted hepatocytes expressing wild-type AAT might have a competitive advantage relative to AAT-Z–expressing hepatocytes, using transgenic mice expressing human AAT-Z. Wild-type donor hepatocytes replaced 20%–98% of mutant host hepatocytes, and repopulation was accelerated by injection of an adenovector expressing hepatocyte growth factor. Spontaneous hepatic repopulation with engrafted hepatocytes occurred in the AAT-Z–expressing mice even in the absence of severe liver injury. Donor cells replaced both globule-containing and globule-devoid cells, indicating that both types of host hepatocytes display impaired proliferation relative to wild-type hepatocytes. These results suggest that wild-type hepatocyte transplantation may be therapeutic for AAT-Z liver disease and may provide an alternative to protein replacement for treating emphysema in AAT-ZZ individuals. PMID:21505264

  3. Spontaneous hepatic repopulation in transgenic mice expressing mutant human α1-antitrypsin by wild-type donor hepatocytes.

    PubMed

    Ding, Jianqiang; Yannam, Govardhana R; Roy-Chowdhury, Namita; Hidvegi, Tunda; Basma, Hesham; Rennard, Stephen I; Wong, Ronald J; Avsar, Yesim; Guha, Chandan; Perlmutter, David H; Fox, Ira J; Roy-Chowdhury, Jayanta

    2011-05-01

    α1-Antitrypsin deficiency is an inherited condition that causes liver disease and emphysema. The normal function of this protein, which is synthesized by the liver, is to inhibit neutrophil elastase, a protease that degrades connective tissue of the lung. In the classical form of the disease, inefficient secretion of a mutant α1-antitrypsin protein (AAT-Z) results in its accumulation within hepatocytes and reduced protease inhibitor activity, resulting in liver injury and pulmonary emphysema. Because mutant protein accumulation increases hepatocyte cell stress, we investigated whether transplanted hepatocytes expressing wild-type AAT might have a competitive advantage relative to AAT-Z-expressing hepatocytes, using transgenic mice expressing human AAT-Z. Wild-type donor hepatocytes replaced 20%-98% of mutant host hepatocytes, and repopulation was accelerated by injection of an adenovector expressing hepatocyte growth factor. Spontaneous hepatic repopulation with engrafted hepatocytes occurred in the AAT-Z-expressing mice even in the absence of severe liver injury. Donor cells replaced both globule-containing and globule-devoid cells, indicating that both types of host hepatocytes display impaired proliferation relative to wild-type hepatocytes. These results suggest that wild-type hepatocyte transplantation may be therapeutic for AAT-Z liver disease and may provide an alternative to protein replacement for treating emphysema in AAT-ZZ individuals.

  4. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozeki, Nobuaki; Hase, Naoko; Yamaguchi, Hideyuki

    2015-05-01

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoproteinmore » (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of

  5. Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration

    PubMed Central

    Pu, Wenjuan; Zhang, Hui; Huang, Xiuzhen; Tian, Xueying; He, Lingjuan; Wang, Yue; Zhang, Libo; Liu, Qiaozhen; Li, Yan; Li, Yi; Zhao, Huan; Liu, Kuo; Lu, Jie; Zhou, Yingqun; Huang, Pengyu; Nie, Yu; Yan, Yan; Hui, Lijian; Lui, Kathy O.; Zhou, Bin

    2016-01-01

    Hepatocytes are functionally heterogeneous and are divided into two distinct populations based on their metabolic zonation: the periportal and pericentral hepatocytes. During liver injury and regeneration, the cellular dynamics of these two distinct populations remain largely elusive. Here we show that major facilitator super family domain containing 2a (Mfsd2a), previously known to maintain blood–brain barrier function, is a periportal zonation marker. By genetic lineage tracing of Mfsd2a+ periportal hepatocytes, we show that Mfsd2a+ population decreases during liver homeostasis. Nevertheless, liver regeneration induced by partial hepatectomy significantly stimulates expansion of the Mfsd2a+ periportal hepatocytes. Similarly, during chronic liver injury, the Mfsd2a+ hepatocyte population expands and completely replaces the pericentral hepatocyte population throughout the whole liver. After injury recovery, the adult liver re-establishes the metabolic zonation by reprogramming the Mfsd2a+-derived hepatocytes into pericentral hepatocytes. The evidence of entire zonation replacement during injury increases our understanding of liver biology and disease. PMID:27857132

  6. Wnt9a secreted from the walls of hepatic sinusoids is essential for morphogenesis, proliferation, and glycogen accumulation of chick hepatic epithelium.

    PubMed

    Matsumoto, Ken; Miki, Rika; Nakayama, Mizuho; Tatsumi, Norifumi; Yokouchi, Yuji

    2008-07-15

    Hepatic epithelial morphogenesis, including hepatoblast migration and proliferation in the septum transversum, requires the interaction of hepatic epithelium with the embryonic sinusoidal wall. No factors that mediate this interaction have yet been identified. As the beta-catenin pathway is active in hepatoblast proliferation, then Wnt ligands might activate the canonical Wnt pathway during liver development. Here, we investigated the role of Wnts in mediating epithelial vessel interactions in the developing chick liver. We found that Wnt9a was specifically expressed in both endothelial and stellate cells of the embryonic sinusoidal wall. Induced overexpression of Wnt9a resulted in hepatomegaly with hyperplasia of the hepatocellular cords, and in hyperproliferation of hepatocytes. Knockdown of Wnt9a caused a reduction in liver size, with hypoplasia of hepatocellular cord branching, and hypoproliferation of hepatoblasts, and also inhibited glycogen accumulation at later developmental stages. Wnt9a promoted in vivo stabilization of beta-catenin through binding with Frizzled 4, 7, and 9, and activated TOPflash reporter expression in vitro via Frizzled 7 and 9. Our results demonstrate that Wnt9a from the embryonic sinusoidal wall is required for the proper morphogenesis of chick hepatocellular cords, proliferation of hepatoblasts/hepatocytes, and glycogen accumulation in hepatocytes. Wnt9a signaling appears to be mediated by an Fzd7/9-beta-catenin pathway.

  7. TRANSPLANTATION OF HEPATOCYTES FROM GENETICALLY-ENGINEERED PIGS IN BABOONS

    PubMed Central

    Iwase, Hayato; Liu, Hong; Schmelzer, Eva; Ezzelarab, Mohamed; Wijkstrom, Martin; Hara, Hidetaka; Lee, Whayoung; Singh, Jagjit; Long, Cassandra; Lagasse, Eric; Gerlach, Jörg C.; Cooper, David K.C.; Gridelli, Bruno

    2017-01-01

    result of this disappointing experience, the following points need to be considered. (i) Were the isolated pig hepatocytes functionally viable? (ii) Are pig hepatocytes more immunogenic than pig hearts, kidneys, artery patch grafts, or islets? (iii) Does injection of pig cells (antigens) into the spleen and/or lymph nodes stimulate a greater immune response than when pig tissues are grafted at other sites? (iv) Did the presence of the recipient’s intact liver prevent survival and proliferation of pig hepatocytes? (v) Is pig CD47-primate SIRP-α compatibility essential? In conclusion, the transplantation of genetically-engineered pig hepatocytes into multiple sites in immunosuppressed baboons was associated with very early graft failure. Considerable further study is required before clinical trials should be undertaken. PMID:28130881

  8. N-WASP and WAVE2 acting downstream of phosphatidylinositol 3-kinase are required for myogenic cell migration induced by hepatocyte growth factor.

    PubMed

    Kawamura, Kazuhiro; Takano, Kazunori; Suetsugu, Shiro; Kurisu, Shusaku; Yamazaki, Daisuke; Miki, Hiroaki; Takenawa, Tadaomi; Endo, Takeshi

    2004-12-24

    During skeletal muscle regeneration caused by injury, muscle satellite cells proliferate and migrate toward the site of muscle injury. This migration is mainly induced by hepatocyte growth factor (HGF) secreted by intact myofibers and also released from injured muscle. However, the intracellular machinery for the satellite cell migration has not been elucidated. To examine the mechanisms of satellite cell migration, we utilized satellite cell-derived mouse C2C12 skeletal muscle cells. HGF induced reorganization of actin cytoskeleton to form lamellipodia in C2C12 myoblasts. HGF treatment facilitated both nondirectional migration of the myoblasts in phagokinetic track assay and directional chemotactic migration toward HGF in a three-dimensional migration chamber assay. Endogenous N-WASP and WAVE2 were concentrated in the lamellipodia at the leading edge of the migrating cells. Moreover, exogenous expression of wild-type N-WASP or WAVE2 promoted lamellipodial formation and migration. By contrast, expression of the dominant-negative mutant of N-WASP or WAVE2 and knockdown of N-WASP or WAVE2 expression by the RNA interference prevented the HGF-induced lamellipodial formation and migration. When the cells were treated with LY294002, an inhibitor of phosphatidylinositol 3-kinase, the HGF-induced lamellipodial formation and migration were abrogated. These results imply that both N-WASP and WAVE2, which are activated downstream of phosphati-dylinositol 3-kinase, are required for the migration through the lamellipodial formation of C2C12 cells induced by HGF.

  9. Reappraisal of xenobiotic-induced, oxidative stress-mediated cellular injury in chronic pancreatitis: A systematic review

    PubMed Central

    Siriwardena, Ajith K

    2014-01-01

    AIM: To reappraise the hypothesis of xenobiotic induced, cytochrome P450-mediated, micronutrient-deficient oxidative injury in chronic pancreatitis. METHODS: Individual searches of the Medline and Embase databases were conducted for each component of the theory of oxidative-stress mediated cellular injury for the period from 1st January 1990 to 31st December 2012 using appropriate medical subject headings. Boolean operators were used. The individual components were drawn from a recent update on theory of oxidative stress-mediated cellular injury in chronic pancreatitis. RESULTS: In relation to the association between exposure to volatile hydrocarbons and chronic pancreatitis the studies fail to adequately control for alcohol intake. Cytochrome P450 (CYP) induction occurs as a diffuse hepatic and extra-hepatic response to xenobiotic exposure rather than an acinar cell-specific process. GSH depletion is not consistently confirmed. There is good evidence of superoxide dismutase depletion in acute phases of injury but less to support a chronic intra-acinar depletion. Although the liver is the principal site of CYP induction there is no evidence to suggest that oxidative by-products are carried in bile and reflux into the pancreatic duct to cause injury. CONCLUSION: Pancreatic acinar cell injury due to short-lived oxygen free radicals (generated by injury mediated by prematurely activated intra-acinar trypsin) is an important mechanism of cell damage in chronic pancreatitis. However, in contemporary paradigms of chronic pancreatitis this should be seen as one of a series of cell-injury mechanisms rather than a sole mediator. PMID:24659895

  10. Rhodiola sachalinesis induces the expression of inducible nitric oxide synthase gene by murine fetal hepatocytes (BNL CL.2).

    PubMed

    Pae, H O; Seo, W G; Oh, G S; Kim, N Y; Kim, Y M; Kwon, T O; Shin, M K; Chai, K Y; Chung, H T

    2001-02-01

    We have examined the effect of the aqueous extract of Rhodiola sachalinensis root (RSE), a traditional herbal medicine, on nitric oxide (NO) synthesis in murine fetal hepatocytes (BNL CL.2) by measuring the stable end-product nitrite and the mRNA of inducible NO synthase (iNOS). Interferon-gamma (IFN-gamma) by itself failed to induce NO synthesis in BNL CL.2 cells. RSE also did not elicit NO synthesis at concentrations up to 1,000 microg/ml, but dose- and time-dependently induced NO synthesis in the presence of IFN-gamma in BNL CL.2 cells. Whereas RSE or IFN-gamma failed to induce detectable levels of iNOS mRNA, a combination of RSE and IFN-gamma markedly induced iNOS mRNA in BNL CL.2 cells. Thus, we found that RSE triggered IFN-gamma-primed BNL CL.2 cells to synthesize NO by inducing iNOS gene expression. The capability of RSE to induce NO synthesis might be related to the therapeutic efficacy of RSE on the liver diseases.

  11. Generation of functional hepatocytes from human spermatogonial stem cells.

    PubMed

    Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-02-23

    To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration.

  12. Generation of functional hepatocytes from human spermatogonial stem cells

    PubMed Central

    Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-01-01

    To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration. PMID:26840458

  13. A Subdominant CD8+ Cytotoxic T Lymphocyte (CTL) Epitope from the Plasmodium yoelii Circumsporozoite Protein Induces CTLs That Eliminate Infected Hepatocytes from Culture

    PubMed Central

    Franke, Eileen D.; Sette, Alessandro; Sacci, John; Southwood, Scott; Corradin, Giampietro; Hoffman, Stephen L.

    2000-01-01

    Previous studies indicated that the Plasmodium yoelii circumsporozoite protein (PyCSP) 57–70 region elicits T cells capable of eliminating infected hepatocytes in vitro. Herein, we report that the PyCSP58–67 sequence contains an H-2d binding motif, which binds purified Kd molecules in vitro with low affinity (3,267 nM) and encodes an H-2d-restricted cytotoxic T lymphocyte (CTL) epitope. Immunization of BALB/c mice with three doses of a multiple antigen peptide (MAP) construct containing four branches of amino acids 57 to 70 linked to a lysine-glycine core [MAP4(PyCSP57–70)] and Lipofectin as the adjuvant induced both T-cell proliferation and a peptide-specific CTL response that was PyCSP59–67 specific, H-2d restricted, and CD8+ T cell dependent. Immunization with either DNA encoding the PyCSP or irradiated sporozoites demonstrated that this CTL epitope is subdominant since it is not recognized in the context of whole CSP immunization. The biological relevance of this CTL response was underlined by the demonstration that it could mediate genetically restricted, CD8+- and nitric-oxide-dependent elimination of infected hepatocytes in vitro, as well as partial protection of BALB/c mice against sporozoite challenge. These findings indicate that subdominant epitopes with low major histocompatibility complex affinity can be used to engineer epitope-based vaccines and have implications for the selection of epitopes for subunit-based vaccines. PMID:10816491

  14. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C.-C.; Lii, C.-K.; Liu, K.-L.

    The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation bymore » n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 {mu}M arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression.« less

  15. Enhancement of proliferation in a rat hepatocyte co-culture model after mitogenic stimulation.

    EPA Science Inventory

    Primary mouse and rat hepatocyte cultures have long been the gold standard for assessment of cellular changes following chemical exposure. While helpful for assessing proliferative and responses in vitro, these cultures are limited to 1 or 2 days of incubation. Our motivation was...

  16. Tim2 is expressed in mouse fetal hepatocytes and regulates their differentiation.

    PubMed

    Watanabe, Natsumi; Tanaka, Minoru; Suzuki, Kaori; Kumanogoh, Atsushi; Kikutani, Hitoshi; Miyajima, Atsushi

    2007-05-01

    Liver development is regulated by various extracellular molecules such as cytokines and cell surface proteins. Although several such regulators have been identified, additional molecules are likely to be involved in liver development. To identify such molecules, we employed the signal sequence trap (SST) method to screen cDNAs encoding a secreted or membrane protein from fetal liver and obtained a number of clones. Among them, we found that T cell immunoglobulin and mucin domain 2 (Tim2) was expressed specifically on immature hepatocytes in the fetal liver. Tim2 has been shown to regulate immune responses, but its role in liver development had not been studied. We have examined the possible role of Tim2 in hepatocyte differentiation. At first, we prepared a soluble Tim2 fusion protein consisting of its extracellular domain and the Fc domain of human IgG (Tim2-hFc) and found that it bound to fetal and adult hepatocytes, suggesting that there are Tim2-binding molecules on hepatocytes. Second, Tim2-hFc inhibited the differentiation of hepatocytes in fetal liver primary culture, i.e., the expression of mature hepatic enzymes and accumulation of glycogen were severely reduced. Third, Tim2-hFc also inhibited proliferation of fetal hepatocytes. Fourth, down-regulation of Tim2 expression by small interfering RNA (siRNA) enhanced the expression of liver differentiation marker genes. It is strongly suggested that Tim2 is involved in the differentiation of fetal hepatocytes.

  17. Epigallocatechin-3-gallate ameliorates insulin resistance in hepatocytes.

    PubMed

    Ma, Shan-Bo; Zhang, Rui; Miao, Shan; Gao, Bin; Lu, Yang; Hui, Sen; Li, Long; Shi, Xiao-Peng; Wen, Ai-Dong

    2017-06-01

    Hyperglycemia is a typical pathogenic factor in a series of complications among patients with type II diabetes. Epigallocatechin-3-gallate (EGCG) is the major polyphenol extracted from green tea and is reported to be an antioxidant. The aim of the present study was to examine the effect of EGCG on insulin resistance in human HepG2 cells pretreated with high concentrations of glucose. The protein kinase B (AKT)/glycogen synthase kinase (GSK) pathways were analyzed using western blot analysis in HepG2 cells and primary mouse hepatocytes treated with high glucose and/or EGCG. Cellular glycogen content was determined using a glycogen assay kit. Reactive oxygen species (ROS) production was determined using dihydroethidium staining and flow cytometry. c‑JUN N‑terminal kinase (JNK)/insulin receptor substrate 1 (IRS1)/AKT/GSK signaling was explored using western blot analysis in HepG2 cells treated with high glucose and/or EGCG or N-acetyl-cysteine. High glucose significantly decreased the levels of phosphorylated AKT and GSK in HepG2 cells and mouse primary hepatocytes. Pretreatment with EGCG significantly restored the activation of AKT and GSK in HepG2 cells and primary hepatocytes exposed to high glucose. In HepG2 cells and primary hepatocytes, glycogen synthesis was improved by EGCG treatment in a dose‑dependent manner. High glucose significantly stimulated the production of ROS while EGCG protected high glucose‑induced ROS production. ROS is known to serve a major role in high glucose induced‑insulin resistance by increasing JNK and IRS1 serine phosphorylation. In the present study, EGCG was observed to enhance the insulin‑signaling pathway. EGCG ameliorated high glucose‑induced insulin resistance in the hepatocytes by potentially decreasing ROS‑induced JNK/IRS1/AKT/GSK signaling.

  18. Property of hepatitis B virus replication in Tupaia belangeri hepatocytes.

    PubMed

    Sanada, Takahiro; Tsukiyama-Kohara, Kyoko; Yamamoto, Naoki; Ezzikouri, Sayeh; Benjelloun, Soumaya; Murakami, Shuko; Tanaka, Yasuhito; Tateno, Chise; Kohara, Michinori

    2016-01-08

    The northern treeshrew (Tupaia belangeri) has been reported to be an effective candidate for animal infection model with hepatitis B virus (HBV). The objective of our study was to analyze the growth characteristics of HBV in tupaia hepatocytes and the host response to HBV infection. We established primary tupaia hepatocytes (3-6-week old tupaia) and infected them with HBV genotypes A, B and C, and all the genotypes proliferated as well as those in human primary hepatocytes (>10(5) copies/ml in culture supernatant). We next generated a chimeric mouse with tupaia liver by transplantation of tupaia primary hepatocytes to urokinase-type plasminogen activator cDNA (cDNA-uPA)/severe combined immunodeficient (SCID) mice and the replacement ratio with tupaia hepatocytes was found to be more than 95%. Infection of chimeric mice with HBV (genotypes B, C, and D) resulted in HBV-DNA level of 10(4)-10(6) copies/ml after 8 weeks of infection, which were almost similar to that in humanized chimeric mouse. In contrast, serum HBV level in adult tupaia (1-year-old tupaia) was quite low (<10(3) copies/ml). Understanding the differences in the response to HBV infection in primary tupaia hepatocytes, chimeric mouse, and adult tupaia will contribute to elucidating the mechanism of persistent HBV infection and viral eradication. Thus, T. belangeri was found to be efficient for studying the host response to HBV infection, thereby providing novel insight into the pathogenesis of HBV. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Hepatocytes and IL-15: a favorable microenvironment for T cell survival and CD8+ T cell differentiation.

    PubMed

    Correia, Margareta P; Cardoso, Elsa M; Pereira, Carlos F; Neves, Rui; Uhrberg, Markus; Arosa, Fernando A

    2009-05-15

    Human intrahepatic lymphocytes are enriched in CD1d-unrestricted T cells coexpressing NKR. Although the origin of this population remains controversial, it is possible to speculate that the hepatic microenvironment, namely epithelial cells or the cytokine milieu, may play a role in its shaping. IL-15 is constitutively expressed in the liver and has a key role in activation and survival of innate and tissue-associated immune cells. In this in vitro study, we examined whether hepatocyte cell lines and/or IL-15 could play a role in the generation of NK-like T cells. The results show that both HepG2 cells and a human immortalized hepatocyte cell line increase survival and drive basal proliferation of T cells. In addition, IL-15 was capable of inducing Ag-independent up-regulation of NKR, including NKG2A, Ig-like receptors, and de novo expression of CD56 and NKp46 in CD8(+)CD56(-) T cells. In conclusion, our study suggests that hepatocytes and IL-15 create a favorable microenvironment for T cells to growth and survive. It can be proposed that the increased percentage of intrahepatic nonclassical NKT cells could be in part due to a local CD8(+) T cell differentiation.

  20. 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression.

    PubMed

    Lewis, Phillip L; Green, Richard M; Shah, Ramille N

    2018-03-15

    Three dimensional (3D) printing is highly amenable to the fabrication of tissue-engineered organs of a repetitive microstructure such as the liver. The creation of uniform and geometrically repetitive tissue scaffolds can also allow for the control over cellular aggregation and nutrient diffusion. However, the effect of differing geometries, while controlling for pore size, has yet to be investigated in the context of hepatocyte function. In this study, we show the ability to precisely control pore geometry of 3D-printed gelatin scaffolds. An undifferentiated hepatocyte cell line (HUH7) demonstrated high viability and proliferation when seeded on 3D-printed scaffolds of two different geometries. However, hepatocyte specific functions (albumin secretion, CYP activity, and bile transport) increases in more interconnected 3D-printed gelatin cultures compared to a less interconnected geometry and to 2D controls. Additionally, we also illustrate the disparity between gene expression and protein function in simple 2D culture modes, and that recreation of a physiologically mimetic 3D environment is necessary to induce both expression and function of cultured hepatocytes. Three dimensional (3D) printing provides tissue engineers the ability spatially pattern cells and materials in precise geometries, however the biological effects of scaffold geometry on soft tissues such as the liver have not been rigorously investigated. In this manuscript, we describe a method to 3D print gelatin into well-defined repetitive geometries that show clear differences in biological effects on seeded hepatocytes. We show that a relatively simple and widely used biomaterial, such as gelatin, can significantly modulate biological processes when fabricated into specific 3D geometries. Furthermore, this study expands upon past research into hepatocyte aggregation by demonstrating how it can be manipulated to enhance protein function, and how function and expression may not precisely correlate in

  1. Proteome analysis of a hepatocyte-specific BIRC5 (survivin)-knockout mouse model during liver regeneration.

    PubMed

    Bracht, Thilo; Hagemann, Sascha; Loscha, Marius; Megger, Dominik A; Padden, Juliet; Eisenacher, Martin; Kuhlmann, Katja; Meyer, Helmut E; Baba, Hideo A; Sitek, Barbara

    2014-06-06

    The Baculoviral IAP repeat-containing protein 5 (BIRC5), also known as inhibitor of apoptosis protein survivin, is a member of the chromosomal passenger complex and a key player in mitosis. To investigate the function of BIRC5 in liver regeneration, we analyzed a hepatocyte-specific BIRC5-knockout mouse model using a quantitative label-free proteomics approach. Here, we present the analyses of the proteome changes in hepatocyte-specific BIRC5-knockout mice compared to wildtype mice, as well as proteome changes during liver regeneration induced by partial hepatectomy in wildtype mice and mice lacking hepatic BIRC5, respectively. The BIRC5-knockout mice showed an extensive overexpression of proteins related to cellular maintenance, organization and protein synthesis. Key regulators of cell growth, transcription and translation MTOR and STAT1/STAT2 were found to be overexpressed. During liver regeneration proteome changes representing a response to the mitotic stimulus were detected in wildtype mice. Mainly proteins corresponding to proliferation, cell cycle and cytokinesis were up-regulated. The hepatocyte-specific BIRC5-knockout mice showed impaired liver regeneration, which had severe consequences on the proteome level. However, several proteins with function in mitosis were found to be up-regulated upon the proliferative stimulus. Our results show that the E3 ubiquitin-protein ligase UHRF1 is strongly up-regulated during liver regeneration independently of BIRC5.

  2. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation.

    PubMed

    Svensson Holm, Ann-Charlotte B; Bengtsson, Torbjörn; Grenegård, Magnus; Lindström, Eva G

    2012-03-10

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Cadmium exposure exacerbates hyperlipidemia in cholesterol-overloaded hepatocytes via autophagy dysregulation.

    PubMed

    Rosales-Cruz, Patricia; Domínguez-Pérez, Mayra; Reyes-Zárate, Elizabeth; Bello-Monroy, Oscar; Enríquez-Cortina, Cristina; Miranda-Labra, Roxana; Bucio, Leticia; Gómez-Quiroz, Luis Enrique; Rojas-Del Castillo, Emilio; Gutiérrez-Ruíz, María Concepción; Souza-Arroyo, Verónica

    2018-04-01

    Metabolic factors are the major risk of non-alcoholic fatty liver disease, although other factors may contribute steatosis. Cadmium exposure produces histopathological and molecular changes in liver, which are consistent with steatosis. In the present study, we describe the effect of low cadmium acute treatment on hepatocytes obtained from mice fed with a high cholesterol diet. Our data suggest that hepatocytes with cholesterol overload promote an adaptive response against cadmium-induced acute toxicity by up-regulating anti-apoptotic proteins, managing ROS overproduction, increasing GSH synthesis and MT-II content to avoid protein oxidation. Cadmium treatment increases lipid content in cholesterol-fed mice hepatocytes because of an impaired autophagy process. Our data suggest an essential function of macroautophagy in the regulation of lipid storage induced by Cd on hepatocytes, that implies that alterations in this pathway may be a mechanism that aggravates hepatic steatosis. Copyright © 2018. Published by Elsevier B.V.

  4. Mixed microencapsulation of rat primary hepatocytes and Sertoli cells improves the metabolic function in a D-galactosamine and lipopolysaccharide-induced rat model of acute liver failure.

    PubMed

    Zheng, Ming-Hua; Lin, Hai-Long; Qiu, Li-Xin; Cui, Yao-Li; Sun, Qing-Feng; Chen, Yong-Ping

    2009-01-01

    Hepatocyte transplantation is an alternative to transplantation of the whole liver. Compared with xenogeneic hepatocytes, primary hepatocytes have some advantages, such as a more powerful function and a smaller frequency of rejection caused by the host. Cell microencapsulation prevents direct access of host cells to the graft but cannot impede transfer of transplant-derived peptides, which can cross the physical barrier. Sertoli cells are central to the immune privilege demonstrated in the testis, and their actions have been utilized to protect cell transplants. Co-microencapsulating Sertoli cells with HepG2 cells has proved to be a valuable strategy in hepatocyte transplantation. Thus mixed microcapsules of primary rat hepatocytes and primary Sertoli cells may improve metabolic function in a d-galactosamine and lipopolysaccharide-induced rat model of acute liver failure.

  5. Helicobacter hepaticus induces an inflammatory response in primary human hepatocytes.

    PubMed

    Kleine, Moritz; Worbs, Tim; Schrem, Harald; Vondran, Florian W R; Kaltenborn, Alexander; Klempnauer, Jürgen; Förster, Reinhold; Josenhans, Christine; Suerbaum, Sebastian; Bektas, Hüseyin

    2014-01-01

    Helicobacter hepaticus can lead to chronic hepatitis and hepatocellular carcinoma in certain strains of mice. Until now the pathogenic role of Helicobacter species on human liver tissue is still not clarified though Helicobacter species identification in human liver cancer was successful in case controlled studies. Therefore we established an in vitro model to investigate the interaction of primary human hepatocytes (PHH) with Helicobacter hepaticus. Successful co-culturing of PHH with Helicobacter hepaticus was confirmed by visualization of motile bacteria by two-photon-microscopy. Isolated human monocytes were stimulated with PHH conditioned media. Changes in mRNA expression of acute phase cytokines and proteins in PHH and stimulated monocytes were determined by Real-time PCR. Furthermore, cytokines and proteins were analyzed in PHH culture supernatants by ELISA. Co-cultivation with Helicobacter hepaticus induced mRNA expression of Interleukin-1 beta (IL-1β), Tumor necrosis factor-alpha, Interleukin-8 (IL-8) and Monocyte chemotactic protein-1 (MCP-1) in PHH (p<0.05) resulting in a corresponding increase of IL-8 and MCP-1 concentrations in PHH supernatants (p<0.05). IL-8 and IL-1β mRNA expression was induced in monocytes stimulated with Helicobacter hepaticus infected PHH conditioned media (p<0.05). An increase of Cyclooxygenase-2 mRNA expression was observed, with a concomitant increase of prostaglandin E2 concentration in PHH supernatants at 24 and 48 h (p<0.05). In contrast, at day 7 of co-culture, no persistent elevation of cytokine mRNA could be detected. High expression of intercellular adhesion molecule-1 on PHH cell membranes after co-culture was shown by two-photon-microscopy and confirmed by flow-cytometry. Finally, expression of Cytochrome P450 3A4 and albumin mRNA were downregulated, indicating an impairment of hepatocyte synthesis function by Helicobacter hepaticus presence. This is the first in vitro model demonstrating a pathogenic effect of a

  6. Carboxylesterase 1 Is Regulated by Hepatocyte Nuclear Factor 4α and Protects Against Alcohol- and MCD diet-induced Liver Injury.

    PubMed

    Xu, Jiesi; Xu, Yang; Li, Yuanyuan; Jadhav, Kavita; You, Min; Yin, Liya; Zhang, Yanqiao

    2016-04-14

    The liver is a major organ that controls hepatic and systemic homeostasis. Dysregulation of liver metabolism may cause liver injury. Previous studies have demonstrated that carboxylesterase 1 (CES1) regulates hepatic triglyceride metabolism and protects against liver steatosis. In the present study, we investigated whether CES1 played a role in the development of alcoholic liver disease (ALD) and methionine and choline-deficient (MCD) diet-induced liver injury. Both hepatocyte nuclear factor 4α (HNF4α) and CES1 were markedly reduced in patients with alcoholic steatohepatitis. Alcohol repressed both HNF4α and CES1 expression in primary hepatocytes. HNF4α regulated CES1 expression by directly binding to the proximal promoter of CES1. Global inactivation of CES1 aggravated alcohol- or MCD diet-induced liver inflammation and liver injury, likely as a result of increased production of acetaldehyde and reactive oxygen species and mitochondrial dysfunctions. Knockdown of hepatic CES1 exacerbated ethanol-induced steatohepatitis. These data indicate that CES1 plays a crucial role in protection against alcohol- or MCD diet-induced liver injury.

  7. Whole-body γ-irradiation decelerates rat hepatocyte polyploidization.

    PubMed

    Ikhtiar, Adnan M

    2015-07-01

    To characterize hepatocyte polyploidization induced by intermediate dose of γ-ray. Male Wistar strain rats were whole-body irradiated (WBI) with 2 Gy of γ-ray at the age of 1 month, and 5-6 rats were sacrificed monthly at 0-25 months after irradiation. The nuclear DNA content of individual hepatocytes was measured by flow cytometry, then hepatocytes were classified into various ploidy classes. Survival percentage, after exposure up to the end of the study, did not indicate any differences between the irradiated groups and controls. The degree of polyploidization in hepatocytes of irradiated rats, was significantly lower than that for the control after 1 month of exposure, and it continued to be lower after up to 8 months. Thereafter, the degree of polyploidization in the irradiated group slowly returned to the control level when the irradiated rats reached the age of 10 months. Intermediate dose of ionizing radiation, in contrast to high doses, decelerate hepatocyte polyploidization, which may coincides with the hypothesis of the beneficial effects of low doses of ionizing radiation.

  8. Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshigai, Emi; Ritsumeikan Global Innovation Research Organization; Machida, Toru

    Highlights: •Nobiletin is a polymethoxylated flavone that is abundant in citrus peels. •Nobiletin is a major constituent of the Citrus unshiu peel extract. •Nobiletin suppresses induction of NO and reduces iNOS expression in hepatocytes. •Nobiletin reduces the iNOS promoter activity and the DNA-binding activity of NF-κB. -- Abstract: Background: Nobiletin is a polymethoxylated flavone that is abundant in the peels of citrus fruits, such as Citrus unshiu (Satsuma mandarin) and Citrus sinensis. The dried peels of C. unshiu (chinpi) have been included in several formulae of Japanese Kampo medicines. Nobiletin may suppress the induction of inducible nitric oxide synthase (iNOS),more » which synthesizes the inflammatory mediator nitric oxide (NO) in hepatocytes. Methods: A C. unshiu peel (CUP) extract was prepared. Primary cultured rat hepatocytes were treated with the CUP extract or nobiletin in the presence of interleukin 1β (IL-1β), which induces iNOS expression. NO production and iNOS gene expression were analyzed. Results: High-performance liquid chromatography analyses revealed that the nobiletin content in the CUP extract was 0.14%. Nobiletin dose-dependently reduced the NO levels and decreased iNOS expression at the protein, mRNA and antisense transcript levels. Flavone, which does not contain any methoxy groups, also suppressed iNOS induction. Nobiletin reduced the transcriptional activity of iNOS promoter-luciferase constructs and the DNA-binding activity of nuclear factor κB (NF-κB) in the nuclei. Conclusions: The suppression of iNOS induction by nobiletin suggests that nobiletin may be responsible for the anti-inflammatory effects of citrus peels and have a therapeutic potential for liver diseases.« less

  9. Selective insulin resistance in hepatocyte senescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aravinthan, Aloysious; Challis, Benjamin; Shannon, Nicholas

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied inmore » three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.« less

  10. The Involvement of Hepatocyte Growth Factor-MET-Matrix Metalloproteinase 1 Signaling in Bladder Cancer Invasiveness and Proliferation. Effect of the MET Inhibitor, Cabozantinib (XL184), on Bladder Cancer Cells.

    PubMed

    Shintani, Terumichi; Kusuhara, Yoshito; Daizumoto, Kei; Dondoo, Tsogt-Ochir; Yamamoto, Hiroki; Mori, Hidehisa; Fukawa, Tomoya; Nakatsuji, Hiroyoshi; Fukumori, Tomoharu; Takahashi, Masayuki; Kanayama, Hiroomi

    2017-03-01

    To clarify the invasive mechanisms of muscle-invasive bladder cancer (BCa) would be useful for the determination of appropriate treatment strategies. We previously showed that hepatocyte growth factor (HGF)-MET signaling is correlated with invasiveness of BCa cells. Here, we investigated the effects of the MET inhibitor, cabozantinib (XL184), on BCa cells. We first conducted Western blot analysis to investigate MET expression in BCa cell lines. Next, we examined the effect of cabozantinib on their proliferation and invasive abilities using MTT and Matrigel invasion assays, respectively. Invasion assays were performed using the xCELLigence system. Additionally, to investigate the biological function of HGF-MET signaling, we analyzed gene expression profiles and performed real-time polymerase chain reaction analyses of 5637 cells that were cultivated with or without HGF stimulation, with or without cabozantinib. MET was highly expressed in 4 of 5 BCa cell lines, and 5637 and T24 cells showed especially high protein expression of MET. Cabozantinib suppressed cell proliferation and invasion (cell index; mock, 1.49 vs HGF, 2.26 vs HGF + XL184, 1.47, P < .05). Gene expression profile analysis indicated that matrix metalloproteinase 1 (MMP1) was significantly elevated at the mRNA level with addition of HGF. Moreover, cabozantinib suppressed HGF-induced MMP1 expression in 5637 T24 cells. These data indicate that cabozantinib suppressed MMP1 expression by blocking HGF-MET signaling and that HGF-MET-MMP1 signaling is involved in the invasiveness and proliferation of BCa cells. These results suggest that cabozantinib might prove useful for future treatment of muscle-invasive BCa. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Nucleophosmin/B23 is a proliferate shuttle protein associated with nuclear matrix.

    PubMed

    Yun, Jing-Ping; Chew, Eng Ching; Liew, Choong-Tsek; Chan, John Y H; Jin, Mei-Lin; Ding, Ming-Xiao; Fai, Yam Hin; Li, H K Richard; Liang, Xiao-Man; Wu, Qiu-Liang

    2003-12-15

    It has become obvious that a better understanding and potential elucidation of the nucleolar phosphoprotein B23 involving in functional interrelationship between nuclear organization and gene expression. In present study, protein B23 expression were investigated in the regenerative hepatocytes at different periods (at days 0, 1, 2, 3, 4, 7) during liver regeneration after partial hepatectomy on the rats with immunohistochemistry and Western blot analysis. Another experiment was done with immunolabeling methods and two-dimensional (2-D) gel electrophoresis for identification of B23 in the regenerating hepatocytes and HepG2 cells (hepatoblastoma cell line) after sequential extraction with detergents, nuclease, and salt. The results showed that its expression in the hepatocytes had a locative move and quantitative change during the process of liver regeneration post-operation. Its immunochemical localization in the hepatocytes during the process showed that it moved from nucleoli of the hepatocytes in the stationary stage to nucleoplasm, cytoplasm, mitotic spindles, and mitotic chromosomes of the hepatocytes in the regenerating livers. It was quantitatively increased progressively to peak level at day 3 post-operation and declined gradually to normal level at day 7. It was detected in nuclear matrix protein (NMP) composition extracted from the regenerating hepatocytes and HepG2 cells and identified with isoelectric point (pI) value of 5.1 and molecular weight of 40 kDa. These results indicated that B23 was a proliferate shuttle protein involving in cell cycle and cell proliferation associated with nuclear matrix. Copyright 2003 Wiley-Liss, Inc.

  12. Protective effects of melittin on transforming growth factor-{beta}1 injury to hepatocytes via anti-apoptotic mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Woo-Ram; Park, Ji-Hyun; Kim, Kyung-Hyun

    Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-{beta}1-induced apoptosis in hepatocytes. TGF-{beta}1-treated hepatocytesmore » were exposed to low doses (0.5 and 1 {mu}g/mL) and high dose (2 {mu}g/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-{beta}1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-{beta}1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-{beta}1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-{beta}1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-{beta}1-mediated injury. - Highlights: > We investigated the anti-apoptotic effect of melittin on TGF-{beta}1-induced hepatocyte. > TGF-{beta}1 induces hepatocyte apoptosis. > TGF-{beta}1-treated hepatocytes were exposed to low doses and high dose of melittin. > Optimal dose of melittin exerts anti-apoptotic effects to hepatocytes.« less

  13. Peroxisome proliferator-activated receptor gamma (PPARγ) in brown trout: Interference of estrogenic and androgenic inputs in primary hepatocytes.

    PubMed

    Lopes, Célia; Madureira, Tânia Vieira; Ferreira, Nádia; Pinheiro, Ivone; Castro, L Filipe C; Rocha, Eduardo

    2016-09-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a pivotal regulator of lipid and glucose metabolism in vertebrates. Here, we isolated and characterized for the first time the PPARγ gene from brown trout (Salmo trutta f. fario). Hormones have been reported to interfere with the regulatory function of PPARγ in various organisms, albeit with little focus on fish. Thus, primary hepatocytes isolated from juveniles of brown trout were exposed to 1, 10 and 50μM of ethinylestradiol (EE2) or testosterone (T). A significant (3 fold) decrease was obtained in response to 50μM of EE2 and to 10 and 50μM of T (13 and 14 folds), while a 3 fold increase was observed at 1μM of EE2. Therefore, trout PPARγ seems a target for natural/synthetic compounds with estrogenic or androgenic properties and so, we advocate considering PPARγ as another alert sensor gene when assessing the effects of sex-steroid endocrine disruptors. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Transplantation of hepatocytes from genetically engineered pigs into baboons.

    PubMed

    Iwase, Hayato; Liu, Hong; Schmelzer, Eva; Ezzelarab, Mohamed; Wijkstrom, Martin; Hara, Hidetaka; Lee, Whayoung; Singh, Jagjit; Long, Cassandra; Lagasse, Eric; Gerlach, Jörg C; Cooper, David K C; Gridelli, Bruno

    2017-03-01

    need to be considered. (i) Were the isolated pig hepatocytes functionally viable? (ii) Are pig hepatocytes more immunogenic than pig hearts, kidneys, artery patch grafts, or islets? (iii) Does injection of pig cells (antigens) into the spleen and/or lymph nodes stimulate a greater immune response than when pig tissues are grafted at other sites? (iv) Did the presence of the recipient's intact liver prevent survival and proliferation of pig hepatocytes? (v) Is pig CD47-primate SIRP-α compatibility essential? In conclusion, the transplantation of genetically engineered pig hepatocytes into multiple sites in immunosuppressed baboons was associated with very early graft failure. Considerable further study is required before clinical trials should be undertaken. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Activation of PPARbeta/delta induces endothelial cell proliferation and angiogenesis.

    PubMed

    Piqueras, Laura; Reynolds, Andrew R; Hodivala-Dilke, Kairbaan M; Alfranca, Arántzazu; Redondo, Juan M; Hatae, Toshihisa; Tanabe, Tadashi; Warner, Timothy D; Bishop-Bailey, David

    2007-01-01

    The role of the nuclear receptor peroxisome-proliferator activated receptor (PPAR)-beta/delta in endothelial cells remains unclear. Interestingly, the selective PPARbeta/delta ligand GW501516 is in phase II clinical trials for dyslipidemia. Here, using GW501516, we have assessed the involvement of PPARbeta/delta in endothelial cell proliferation and angiogenesis. Western blot analysis indicated PPARbeta/delta was expressed in primary human umbilical and aortic endothelial cells, and in the endothelial cell line, EAHy926. Treatment with GW501516 increased human endothelial cell proliferation and morphogenesis in cultures in vitro, endothelial cell outgrowth from murine aortic vessels in vitro, and angiogenesis in a murine matrigel plug assay in vivo. GW501516 induced vascular endothelial cell growth factor mRNA and peptide release, as well as adipose differentiation-related protein (ADRP), a PPARbeta/delta target gene. GW501516-induced proliferation, morphogenesis, vascular endothelial growth factor (VEGF), and ADRP were absent in endothelial cells transfected with dominant-negative PPARbeta/delta. Furthermore, treatment of cells with cyclo-VEGFI, a VEGF receptor1/2 antagonist, abolished GW501516-induced endothelial cell proliferation and tube formation. PPARbeta/delta is a novel regulator of endothelial cell proliferation and angiogenesis through VEGF. The use of GW501516 to treat dyslipidemia may need to be carefully monitored in patients susceptible to angiogenic disorders.

  16. Rice Koji Extract Enhances Lipid Metabolism through Proliferator-Activated Receptor Alpha (PPARα) Activation in Mouse Liver.

    PubMed

    Takahashi, Haruya; Chi, Hsin-Yi; Mohri, Shinsuke; Kamakari, Kosuke; Nakata, Keiji; Ichijo, Noriyoshi; Nakata, Rieko; Inoue, Hiroyasu; Goto, Tsuyoshi; Kawada, Teruo

    2016-11-23

    Koji is made from grains fermented with Aspergillus oryzae and is essential for the production of many traditional Japanese foods. Many previous studies have shown that koji contributes to the improvement of dyslipidemia. However, little is known regarding the underlying mechanism of this effect. Furthermore, the compound contributing to the activation of lipid metabolism is unknown. We demonstrated that rice koji extract (RKE) induces the mRNA expression of peroxisome proliferator-activated receptor alpha (PPARα) target genes, which promotes lipid metabolism in murine hepatocytes. This effect was not observed in PPARα-KO hepatocytes. We also demonstrated that RKE contained linolenic acid (LIA), oleic acid (OA), and hydroxyoctadecadienoic acids (HODEs), which activate PPARα, using LC-MS analysis. Our findings suggest that RKE, containing LIA, OA, and HODEs, could be valuable in improving dyslipidemia via PPARα activation.

  17. [Augmenter of liver regeneration promotes the proliferation of HL-7702 cells in carbon tetrachloride-induced acute liver injury via increasing autophagy].

    PubMed

    Han, W J; Shi, H B; Shi, H L; Song, J Y; Ren, F; Duan, Z P; Chen, Y

    2016-10-20

    Objective: To investigate the protective effect of augmenter of liver regeneration (ALR) against acute liver injury and related mechanisms. Methods: HL-7702 cells were divided into normal control group, carbon tetrachloride (CCl 4 )-induced acute liver injury group, ALR+CCl 4 intervention group, 3-methyladenine (3-MA)+CCl 4 intervention group, and ALR+3-MA+CCl 4 intervention group. The ALR+CCl 4 and ALR+3-MA+CCl 4 intervention groups were transfected with ALR plasmids at 8 hours before CCl 4 treatment. All groups except the normal control group were treated with CCl 4 , and 30 minutes later, the 3-MA+CCl 4 and ALR+3-MA+CCl 4 intervention groups were treated with 3-MA. The cells were collected at 24 hours after CCl 4 treatment. The HL-7702 cells and supernatant were collected to measure the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) (IU/L). Western blot was used to measure the levels of ALR, cyclin D, cyclin E, proliferating cell nuclear antigen (PCNA), autophagy-related gene 7 (Atg7), and autophagy genes LC3, p62, and Beclin-1. Quantitative real-time PCR was used to measure the mRNA expression of ALR. A one-way analysis of variance was used for comparison of means between any two groups. Results: The ALR+CCl 4 intervention group had significant increases in the protein and mRNA expression of ALR compared with the acute liver injury group (both P < 0.05). The CCl 4 -induced acute liver injury group had significant increases in the protein and mRNA expression of ALR compared with the normal control group (both P < 0.05). Compared with the CCl 4 -induced acute liver injury group, the ALR+CCl 4 intervention group had significant reductions in ALT (0.73±0.17 IU/L vs 1.43±0.38 IU/L, P < 0.05) and AST (19.85±1.83 IU/L vs 56.73±6.25 IU/L, P < 0.05) in supernatant, significantly increased expression of cyclin D, cyclin E, PCNA, LC3, Atg7, and Beclin-1 in hepatocytes, and significantly reduced expression of p62, which suggested that ALR

  18. Effects of clofibric acid alone and in combination with 17β-estradiol on mRNA abundance in primary hepatocytes isolated from rainbow trout.

    PubMed

    Sovadinová, I; Liedtke, A; Schirmer, K

    2014-09-01

    Clofibric acid (CA) is the active substance of lipid lowering drugs. It is resistant to degradation, polar in nature, and has been found ubiquitously in the aquatic environment. Though CA is classified as a peroxisomal proliferator in rodents and is considered as a potential endocrine disruptor, little information exists on the effects of CA in aquatic organisms, such as fish. In the present study, we examined the mRNA levels of peroxisome proliferator- and estrogen-sensitive genes on the exposure of primary rainbow trout (Oncorhynchus mykiss) hepatocytes to CA alone and in combination with the natural female sex hormone, 17β-estradiol (E2). Our results demonstrate that rainbow trout hepatocytes are relatively refractory to the effects of CA on the PPAR signaling pathway and lipid metabolism. Moreover, CA did not show recognizable estrogenic activity, but after the induction of vitellogenesis by E2, CA significantly reduced vitellogenin (VTG) mRNA abundance. Apparently, the indirect repression of VTG transcription, independent of estrogen receptors, occurred. The mechanism is not yet clearly understood but may involve disruption of the stabilization of VTG mRNA known to be induced by E2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Functioning of Microsomal Cytochrome P450s: Murburn Concept Explains the Metabolism of Xenobiotics in Hepatocytes.

    PubMed

    Manoj, Kelath Murali; Parashar, Abhinav; Gade, Sudeep K; Venkatachalam, Avanthika

    2016-01-01

    Using oxygen and NADPH, the redox enzymes cytochrome P450 (CYP) and its reductase (CPR) work in tandem to carry out the phase I metabolism of a vast majority of drugs and xenobiotics. As per the erstwhile understanding of the catalytic cycle, binding of the substrate to CYP's heme distal pocket allows CPR to pump electrons through a CPR-CYP complex. In turn, this trigger (a thermodynamic push of electrons) leads to the activation of oxygen at CYP's heme-center, to give Compound I, a two-electron deficient enzyme reactive intermediate. The formation of diffusible radicals and reactive oxygen species (DROS, hitherto considered an undesired facet of the system) was attributed to the heme-center. Recently, we had challenged these perceptions and proposed the murburn ("mured burning" or "mild unrestricted burning") concept to explain heme enzymes' catalytic mechanism, electron-transfer phenomena and the regulation of redox equivalents' consumption. Murburn concept incorporates a one-electron paradigm, advocating obligatory roles for DROS. The new understanding does not call for high-affinity substrate-binding at the heme distal pocket of the CYP (the first and the most crucial step of the erstwhile paradigm) or CYP-CPR protein-protein complexations (the operational backbone of the erstwhile cycle). Herein, the dynamics of reduced nicotinamide nucleotides' consumption, peroxide formation and depletion, product(s) formation, etc. was investigated with various controls, by altering reaction variables, environments and through the incorporation of diverse molecular probes. In several CYP systems, control reactions lacking the specific substrate showed comparable or higher peroxide in milieu, thereby discrediting the foundations of the erstwhile hypothesis. The profiles obtained by altering CYP:CPR ratios and the profound inhibitions observed upon the incorporation of catalytic amounts of horseradish peroxidase confirm the obligatory roles of DROS in milieu, ratifying

  20. Pro-apoptotic effect of fly ash leachates in hepatocytes of freshwater fish (Channa punctata Bloch).

    PubMed

    Ali, Mehboob; Rahman, Shakilur; Rehman, Hasibur; Bhatia, Kanchan; Ansari, Rizwan A; Raisuddin, Sheikh

    2007-02-01

    The pro-apoptotic effect of fly ash leachates (FAL) was studied in the hepatocytes of an Indian freshwater fish, Channa punctata Bloch. Hepatocytes were exposed to different concentrations of '7-day' FAL for 24 and 48h and various parameters of apoptosis were studied using standardized procedures. FAL-induced apoptosis in hepatocytes was indicated by cytological examination, DNA fragmentation and DNA laddering. The induction in cytochrome-c release, caspases 3, 7, 10 and 9 activities and lactate dehydrogenase level provide mechanistic platform for FAL-induced apoptosis. Cytological examination showed an unambiguous apoptotic effect of ash leachates in fish hepatocytes. Exposed hepatocytes also showed increased production of H(2)O(2), superoxide ions and an increase in lipid peroxidation (LPO). The present study suggests a possible role of reactive oxygen species (ROS) in FAL-induced apoptosis in hepatocytes. Lactate dehydrogenase, LPO and apoptosis as biomarkers of cytotoxicity have recently been used for assessment of ecotoxicological impact of environmental chemicals. Our findings show that these biomarkers may also be used for evaluation of ecotoxicological impact of complex chemical mixture such as fly ash and its leachates.

  1. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Wen-Ta; Li, Hui-Chun; Lee, Shen-Kao

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made itmore » more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.« less

  2. 3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing.

    PubMed

    Takayama, Kazuo; Kawabata, Kenji; Nagamoto, Yasuhito; Kishimoto, Keisuke; Tashiro, Katsuhisa; Sakurai, Fuminori; Tachibana, Masashi; Kanda, Katsuhiro; Hayakawa, Takao; Furue, Miho Kusuda; Mizuguchi, Hiroyuki

    2013-02-01

    Although it is expected that hepatocyte-like cells differentiated from human embryonic stem (ES) cells or induced pluripotent stem (iPS) cells will be utilized in drug toxicity testing, the actual applicability of hepatocyte-like cells in this context has not been well examined so far. To generate mature hepatocyte-like cells that would be applicable for drug toxicity testing, we established a hepatocyte differentiation method that employs not only stage-specific transient overexpression of hepatocyte-related transcription factors but also a three-dimensional spheroid culture system using a Nanopillar Plate. We succeeded in establishing protocol that could generate more matured hepatocyte-like cells than our previous protocol. In addition, our hepatocyte-like cells could sensitively predict drug-induced hepatotoxicity, including reactive metabolite-mediated toxicity. In conclusion, our hepatocyte-like cells differentiated from human ES cells or iPS cells have potential to be applied in drug toxicity testing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Controlled cell morphology and liver-specific function of engineered primary hepatocytes by fibroblast layer cell densities.

    PubMed

    Sakai, Yusuke; Koike, Makiko; Kawahara, Daisuke; Hasegawa, Hideko; Murai, Tomomi; Yamanouchi, Kosho; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Fujita, Fumihiko; Kuroki, Tamotsu; Eguchi, Susumu

    2018-03-05

    Engineered primary hepatocytes, including co-cultured hepatocyte sheets, are an attractive to basic scientific and clinical researchers because they maintain liver-specific functions, have reconstructed cell polarity, and have high transplantation efficiency. However, co-culture conditions regarding engineered primary hepatocytes were suboptimal in promoting these advantages. Here we report that the hepatocyte morphology and liver-specific function levels are controlled by the normal human diploid fibroblast (TIG-118 cell) layer cell density. Primary rat hepatocytes were plated onto TIG-118 cells, previously plated 3 days before at 1.04, 5.21, and 26.1×10 3  cells/cm 2 . Hepatocytes plated onto lower TIG-118 cell densities expanded better during the early culture period. The hepatocytes gathered as colonies and only exhibited small adhesion areas because of the pushing force from proliferating TIG-118 cells. The smaller areas of each hepatocyte result in the development of bile canaliculi. The highest density of TIG-118 cells downregulated albumin synthesis activity of hepatocytes. The hepatocytes may have undergone apoptosis associated with high TGF-β1 concentration and necrosis due to a lack of oxygen. These occurrences were supported by apoptotic chromatin condensation and high expression of both proteins HIF-1a and HIF-1b. Three types of engineered hepatocyte/fibroblast sheets comprising different TIG-118 cell densities were harvested after 4 days of hepatocyte culture and showed a complete cell sheet format without any holes. Hepatocyte morphology and liver-specific function levels are controlled by TIG-118 cell density, which helps to design better engineered hepatocytes for future applications such as in vitro cell-based assays and transplantable hepatocyte tissues. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Revisiting the liver in human yellow fever: virus-induced apoptosis in hepatocytes associated with TGF-beta, TNF-alpha and NK cells activity.

    PubMed

    Quaresma, Juarez A S; Barros, Vera L R S; Pagliari, Carla; Fernandes, Elaine R; Guedes, Fernanda; Takakura, Cleusa F H; Andrade, Heitor F; Vasconcelos, Pedro F C; Duarte, Maria I S

    2006-02-05

    Flavivirus infection as dengue and yellow fever persists as a terrible menace to pandemics, due to Aedes prevalence in the Americas. Yellow fever is characterized by hepatocyte damage, with steatosis, apoptosis and necrosis, mainly in the midzonal region of the liver, but the injury mechanism has not been studied at the light of recent knowledge, such as the advances in cell death mechanisms, inflammatory response and cytokine cell expression tools. We studied 53 human liver paraffin embedded blocks from patients who died with yellow fever, all with histological demonstration of higher prevalence of apoptosis over necrosis and mild disproportionate inflammatory response. Viral antigens were found most frequently in hepatocytes from the midzonal area than other lobule areas, as detected by specific immunohistochemistry. Infiltrating cell subpopulations showed mainly CD4+ T lymphocytes, with small numbers of CD8+ cytotoxic lymphocytes, CD20+ B lymphocytes, NKT+ cells and S100+ dendritic cells in the sites of inflammation, as compared to normal and leptospirosis liver blocks. Some cells expressed TNF-alpha and IFN-gamma, but a much more intense proportion of TGF-beta expressing cells were found, suggesting both a Th1 and Th3 patterns of immune response in yellow fever. Most affected hepatocyte presented apoptosis markers that appear at the cell death main pathway in this infection. Viral antigens, which production could interfere in hepatocyte biology, could induce the activation of apoptosis cascade, but TGF-beta was also an apoptosis promoter. Our finding supports the key effect of the yellow fever virus in hepatocyte injury, resulting in prevalence of apoptosis over necrosis, aside from a TGF-beta action induced by the inflammatory response.

  5. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics.

    PubMed

    Abhilash, P C; Jamil, Sarah; Singh, Nandita

    2009-01-01

    , PCBs etc. Another approach to enhancing phytoremediation ability is the construction of plants that secrete chemical degrading enzymes into the rhizosphere. Recent studies revealed that accelerated ethylene production in response to stress induced by contaminants is known to inhibit root growth and is considered as major limitation in improving phytoremediation efficiency. However, this can be overcome by the selective expression of bacterial ACC deaminase (which regulates ethylene levels in plants) in plants together with multiple genes for the different phases of xenobiotic degradation. This review examines the recent developments in use of transgenic-plants for the enhanced metabolism, degradation and phytoremediation of organic xenobiotics and its future directions.

  6. Non-alcoholic steatohepatitis pathogenesis: sublethal hepatocyte injury as a driver of liver inflammation

    PubMed Central

    Ibrahim, Samar H; Hirsova, Petra; Gores, Gregory J

    2018-01-01

    A subset of patients with non-alcoholic fatty liver disease develop an inflammatory condition, termed nonalcoholic steatohepatitis (NASH). NASH is characterised by hepatocellular injury, innate immune cell-mediated inflammation and progressive liver fibrosis. The mechanisms whereby hepatic inflammation occurs in NASH remain incompletely understood, but appear to be linked to the proinflammatory microenvironment created by toxic lipid-induced hepatocyte injury, termed lipotoxicity. In this review, we discuss the signalling pathways induced by sublethal hepatocyte lipid overload that contribute to the pathogenesis of NASH. Furthermore, we will review the role of proinflammatory, proangiogenic and profibrotic hepatocyte-derived extracellular vesicles as disease biomarkers and pathogenic mediators during lipotoxicity. We also review the potential therapeutic strategies to block the feed-forward loop between sublethal hepatocyte injury and liver inflammation. PMID:29367207

  7. Peroxisome proliferators induce apoptosis in hepatoma cells.

    PubMed

    Canuto, R A; Muzio, G; Bonelli, G; Maggiora, M; Autelli, R; Barbiero, G; Costelli, P; Brossa, O; Baccino, F M

    1998-01-01

    In the AH-130 hepatoma, a poorly differentiated tumor, maintained by weekly transplantations in rats, a low percentage of cells spontaneously underwent apoptosis, mainly during the transition from logarithmic- to stationary-growth phase. It was possible to induce massive apoptosis of cells by treating them with clofibrate, a peroxisome proliferator and hypolipidemic drug. Similar results were obtained with HepG2 cells. With 1 mM clofibrate, apoptosis began to manifest itself after 1 h of treatment in vitro, and was assessed by morphological analysis, by DNA fragmentation carried out with agarose gel electrophoresis, and with flow cytometric determination of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling. The mechanisms whereby clofibrate induces apoptosis are still unclear. Since the peroxisome proliferator-activated receptor was expressed at a very low level and was not stimulated by clofibrate in the AH-130 hepatoma cells, its involvement seems unlikely. Moreover, lipid peroxidation was not increased after clofibrate treatment. Phospholipids and cholesterol were significantly decreased. The decreased cholesterol content might suggest an inhibition of the mevalonate pathway and, therefore, of isoprenylation of proteins involved in cell proliferation.

  8. Glutathione transferases P1/P2 regulate the timing of signaling pathway activations and cell cycle progression during mouse liver regeneration

    PubMed Central

    Pajaud, J; Ribault, C; Ben Mosbah, I; Rauch, C; Henderson, C; Bellaud, P; Aninat, C; Loyer, P; Morel, F; Corlu, A

    2015-01-01

    Glutathione transferases (GST) are phase II enzymes catalyzing the detoxification of endogenous noxious compounds and xenobiotics. They also regulate phosphorylation activities of MAPKinases in a catalytic-independent manner. Previous studies have demonstrated the regulation of JNK-dependent pathway by GSTP1/2. Considering the crucial role of JNK in the early steps of the hepatocyte cell cycle, we sought to determine whether GSTP1/2 were essential for hepatocyte proliferation following partial hepatectomy (PH). Using a conventional double knockout mouse model for the Gstp1 and Gstp2 genes, we found that the lack of GSTP1/P2 reduced the rate of DNA replication and mitotic index during the first wave of hepatocyte proliferation. The lowered proliferation was associated with the decrease in TNFalpha and IL-6 plasma concentrations, reduced hepatic HGF expression and delayed and/or altered activation of STAT3, JNK and ERK1/2 signaling pathways. In addition, the expression and/or activation of cell cycle regulators such as Cyclin D1, CDK4, E2F1 and MCM7 was postponed demonstrating that the absence of GSTP1/2 delayed the entry into and progression through the G1 phase of the cell cycle and impaired the synchrony of proliferation in hepatocytes following PH. Furthermore, while JNK and its downstream targets c-Jun and ATF2 were activated during the early steps of the liver regeneration in wild-type animals, the constitutively active JNK found in the quiescent liver of Gstp1/2 knockout mice underwent a decrease in its activity after PH. Transient induction of antioxidant enzymes and nitric oxide synthase were also delayed or repressed during the regenerative response. Altogether our results demonstrate that GSTP1/2 are a critical regulators of hepatocyte proliferation in the initial phases of liver regeneration. PMID:25590808

  9. The role of peroxisome proliferator-activated receptor-{beta}/{delta} in epidermal growth factor-induced HaCaT cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Pengfei; Jiang Bimei; Yang Xinghua

    2008-10-15

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, anmore » EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.« less

  10. Acetaminophen induces xenobiotic-metabolizing enzymes in rat: Impact of a uranium chronic exposure.

    PubMed

    Rouas, Caroline; Souidi, Maâmar; Grandcolas, Line; Grison, Stephane; Baudelin, Cedric; Gourmelon, Patrick; Pallardy, Marc; Gueguen, Yann

    2009-11-01

    The extensive use of uranium in civilian and military applications increases the risk of human chronic exposure. Uranium is a slightly radioactive heavy metal with a predominantly chemical toxicity, especially in kidney but also in liver. Few studies have previously shown some effects of uranium on xenobiotic-metabolizing enzymes (XME) that might disturb drug pharmacokinetic. The aim of this study was to determine whether a chronic (9 months) non-nephrotoxic low dose exposure to depleted uranium (DU, 1mg/rat/day) could modify the liver XME, using a single non-hepatotoxic acetaminophen (APAP) treatment (50mg/kg). Most of XME analysed were induced by APAP treatment at the gene expression level but at the protein level only CYP3A2 was significantly increased 3h after APAP treatment in DU-exposed rats whereas it remained at a basal level in unexposed rats. In conclusion, these results showed that a chronic non-nephrotoxic DU exposure specially modify CYP3A2 after a single therapeutic APAP treatment. Copyright © 2009 Elsevier B.V. All rights reserved.

  11. Effects of phenobarbital on thyroid hormone contabolism in rat hepatocytes

    EPA Science Inventory

    Hepatic enzyme inducers such as phenobarbital (PB) decrease circulating thyroid hormone (TH) concentrations in rodents. PB induction of hepatic xenobiotic metabolizing enzymes increases thyroid hormones catabolism and biliary elimination. This study examines the catabolism and cl...

  12. Cadmium supplement triggers endoplasmic reticulum stress response and cytotoxicity in primary chicken hepatocytes.

    PubMed

    Shao, Cheng-Cheng; Li, Nan; Zhang, Zi-Wei; Su, Jian; Li, Shu; Li, Jin-Long; Xu, Shi-Wen

    2014-08-01

    Cadmium (Cd), a potent hepatotoxin, has been reported to induce endoplasmic reticulum (ER) stress in various cell types. However, whether such effect exists in bird is still unclear. To delineate the effects of Cd exposure on ER stress response, we examined the expression of 78-kDa glucose-regulated protein (GRP78) and alteration in calcium homeostasis in primary chicken hepatocytes treated with 2-22 µM Cd for 24 h. A significant decrease of cell viability was observed in chicken hepatocytes following Cd administration. In cells treated with Cd, GRP78 protein levels increased in a dose-dependent manner. In addition, GRP78 and GRP94mRNA levels were elevated in response to Cd exposure. The increase of the intracellular Ca(2+) concentration in chicken hepatocytes was found during Cd exposure. Cd significantly decreased the CaM mRNA levels in hepatocytes. These results show that Cd regulates the expression of GRP78 and calcium homeostasis in chicken hepatocytes, suggesting that ER stress induced by Cd plays an important role in the mechanisms of Cd cytotoxicity to the bird hepatocytes. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Black cohosh inhibits 17β-estradiol-induced cell proliferation of endometrial adenocarcinoma cells.

    PubMed

    Park, So Yun; Kim, Hee Ja; Lee, Sa Ra; Choi, Youn-Hee; Jeong, Kyungah; Chung, Hyewon

    2016-10-01

    This study was conducted to investigate the effect of black cohosh (BC) extract on the proliferation and apoptosis of Ishikawa cells. Ishikawa human endometrial adenocarcinoma cells were treated with or without BC (1, 5, 10 and 25 μM) and cell proliferation and cytotoxicity were measured by CCK-8 assays and flow cytometry analysis. Additionally, Ishikawa cells were treated with 17β-estradiol (E2), E2 + progesterone and E2 + BC (5 and 10 μM) and the effect of BC and progesterone on E2-induced cell proliferation was analyzed. BC decreased the proliferation of Ishikawa cells at a dose-dependent rate compared with the control group (p < 0.05). The proliferation of Ishikawa cells increased in the presence of E2, whereas the subsequent addition of progesterone or BC decreased proliferation to the level of the control group (p < 0.05). The inhibitory effect of BC on E2-induced cell proliferation was greater than the inhibitory effect of progesterone. In conclusion, BC induces apoptosis in Ishikawa cells and suppresses E2-induced cell proliferation in Ishikawa cells. BC could be considered a candidate co-treatment agent of estrogen-dependent tumors, especially those involving endometrial cells.

  14. The Effects of Betaine on the Nuclear Fractal Dimension, Chromatin Texture, and Proliferative Activity in Hepatocytes in Mouse Model of Nonalcoholic Fatty Liver Disease.

    PubMed

    Vesković, Milena; Labudović-Borović, Milica; Zaletel, Ivan; Rakočević, Jelena; Mladenović, Dušan; Jorgačević, Bojan; Vučević, Danijela; Radosavljević, Tatjana

    2018-04-01

    The effects of betaine on hepatocytes chromatin architecture changes were examined by using fractal and gray-level co-occurrence matrix (GLCM) analysis in methionine/choline-deficient (MCD) diet-induced, nonalcoholic fatty liver disease (NAFLD). Male C57BL/6 mice were divided into groups: (1) Control: standard diet; (2) BET: standard diet and betaine supplementation through drinking water (solution 1.5%); (3) MCD group: MCD diet for 6 weeks; (4) MCD+BET: fed with MCD diet + betaine for 6 weeks. Liver tissue was collected for histopathology, immunohistochemistry, and determination of fractal dimension and GLCM parameters. MCD diet induced diffuse micro- and macrovesicular steatosis accompanied with increased Ki67-positive hepatocyte nuclei. Steatosis and Ki67 immunopositivity were less prominent in the MCD+BET group compared with the MCD group. Angular second moment (ASM) and inverse difference moment (IDM) (textural homogeneity markers) were significantly increased in the MCD+BET group versus the MCD group (p<0.001), even though no difference between the MCD and the control group was evident. Heterogeneity parameters, contrast, and correlation were significantly increased in the MCD group versus the control (p<0.001). On the other hand, betaine treatment significantly reduced correlation, contrast, and entropy compared with the MCD group (p<0.001). Betaine attenuated MCD diet-induced NAFLD by reducing fat accumulation and inhibiting hepatocyte proliferation. Betaine supplementation increased nuclear homogeneity and chromatin complexity with reduction of entropy, contrast, and correlation.

  15. β-Adrenergic induction of lipolysis in hepatocytes is inhibited by ethanol exposure.

    PubMed

    Schott, Micah B; Rasineni, Karuna; Weller, Shaun G; Schulze, Ryan J; Sletten, Arthur C; Casey, Carol A; McNiven, Mark A

    2017-07-14

    In liver steatosis ( i.e. fatty liver), hepatocytes accumulate many large neutral lipid storage organelles known as lipid droplets (LDs). LDs are important in the maintenance of energy homeostasis, but the signaling mechanisms that stimulate LD metabolism in hepatocytes are poorly defined. In adipocytes, catecholamines target the β-adrenergic (β-AR)/cAMP pathway to activate cytosolic lipases and induce their recruitment to the LD surface. Therefore, the goal of this study was to determine whether hepatocytes, like adipocytes, also undergo cAMP-mediated lipolysis in response to β-AR stimulation. Using primary rat hepatocytes and human hepatoma cells, we found that treatment with the β-AR agent isoproterenol caused substantial LD loss via activation of cytosolic lipases adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). β-Adrenergic stimulation rapidly activated PKA, which led to the phosphorylation of ATGL and HSL and their recruitment to the LD surface. To test whether this β-AR-dependent lipolysis pathway was altered in a model of alcoholic fatty liver, primary hepatocytes from rats fed a 6-week EtOH-containing Lieber-DeCarli diet were treated with cAMP agonists. Compared with controls, EtOH-exposed hepatocytes showed a drastic inhibition in β-AR/cAMP-induced LD breakdown and the phosphorylation of PKA substrates, including HSL. This observation was supported in VA-13 cells, an EtOH-metabolizing human hepatoma cell line, which displayed marked defects in both PKA activation and isoproterenol-induced ATGL translocation to the LD periphery. In summary, these findings suggest that β-AR stimulation mobilizes cytosolic lipases for LD breakdown in hepatocytes, and perturbation of this pathway could be a major consequence of chronic EtOH insult leading to fatty liver.

  16. Effect of trifluoperazine on toxicity, HIF-1α induction and hepatocyte regeneration in acetaminophen toxicity in mice1

    PubMed Central

    Chaudhuri, Shubhra; McCullough, Sandra S.; Hennings, Leah; Brown, Aliza T.; Li, Shun-Hwa; Simpson, Pippa M.; Hinson, Jack A.; James, Laura P.

    2012-01-01

    Oxidative stress and mitochondrial permeability transition (MPT) are important mechanisms in acetaminophen (APAP) toxicity. The MPT inhibitor trifluoperazine (TFP) reduced MPT, oxidative stress, and toxicity in freshly isolated hepatocytes treated with APAP. Since hypoxia inducible factor-one alpha (HIF-1α is induced very early in APAP toxicity, a role for oxidative stress in the induction has been postulated. In the present study, the effect of TFP on toxicity and HIF-1α induction in B6C3F1 male mice treated with APAP was examined. Mice received TFP (10 mg/kg, oral gavage) prior to APAP (200 mg/kg IP) and at 7 and 36 h after APAP. Measures of metabolism (hepatic glutathione and APAP protein adducts) were comparable in the two groups of mice. Toxicity was decreased in the APAP/TFP mice at 2, 4, and 8 h, compared to the APAP mice. At 24 and 48 h, there were no significant differences in toxicity between the two groups. TFP lowered HIF-1α induction but also reduced the expression of proliferating cell nuclear antigen, a marker of hepatocyte regeneration. TFP can also inhibit phospholipase A2, and cytosolic and secretory PLA2 activity levels were reduced in the APAP/TFP mice compared to the APAP mice. TFP also lowered prostaglandin E2 expression, a known mechanism of cytoprotection. In summary, the MPT inhibitor TFP delayed the onset of toxicity and lowered HIF-1α induction in APAP treated mice. TFP also reduced PGE2 expression and hepatocyte regeneration, likely through a mechanism involving PLA2. PMID:22902588

  17. [Differentiation of human umbilical cord derived mesenchymal stem cells into low immunogenic and functional hepatocyte-like cells in vitro].

    PubMed

    Ren, Hong-ying; Zhao, Qin-jun; Xing, Wen; Yang, Shao-guang; Lu, Shi-hong; Ren, Qian; Zhang, Lei; Han, Zhong-chao

    2010-04-01

    To investigate the biological function of hepatocyte-like cells derived from mesenchymal stem cells that isolated from human umbilical cord UC-MSCs in vitro, and to detect the changes in the immunogenicity of the differentiated hepatocyte-like cells (DHC). Transdifferentiation of UC-MSCs into hepatic lineage in vitro was induced in modified two-step induction medium. The expressions of hepatic specific markers were detected by RT-PCR analysis and immunofluorescence staining at different time points after induction. The levels of albumin and urea in the supernatants of cultures were measured by enzyme-linked immunosorbent assay. Furthermore, the immunosuppressive property of DHC was detected by one-way mixed lymphocyte culture. The mRNA and proteins of alpha fetoprotein (AFP), albumin (ALB),and cytokeratin-19 (CK-19) were expressed in naive UC-MSCs at low levels. DHC highly expressed hepatic markers AFP, ALB, CK-19, and tryptophan 2, 3-dioxygenase 14 and 28 days after hepatic differentiation and were accompanied by an increased production of ALB and urea in supernatant in a time-dependent manner. DHC did not express human leukocyte antigen DR antigen and significantly decreased the lymphocyte proliferation. UC-MSCs are able to differentiate into functional hepatocyte-like cells in vitro, while the immunogenicity of DHC remains low.

  18. Resveratrol protects primary rat hepatocytes against oxidative stress damage: activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes.

    PubMed

    Rubiolo, Juan Andrés; Mithieux, Gilles; Vega, Félix Victor

    2008-09-04

    Oxidative stress is recognized as an important factor in the development of liver pathologies. The reactive oxygen species endogenously generated or as a consequence of xenobiotic metabolism are eliminated by enzymatic and nonenzymatic cellular systems. Besides endogen defences, the antioxidant consumption in the diet has an important role in the protection against the development of diseases product of oxidative damage. Resveratrol is a naturally occurring compound which is part of the human diet. This molecule has been shown to have many biological properties, including antioxidant activity. We decided to test if resveratrol could protect primary hepatocytes in culture from oxidative stress damage and if so, to determine if this compound affects the cellular detoxifying systems and their regulation through the Nrf2 transcription factor that regulates the expression of antioxidant and phase II detoxifying enzymes. Cell death by necrosis was detected by measuring the activity of lactate dehydrogenase liberated to the medium. The activities of antioxidant and phase II enzymes were measured using previously described methods. Activation of the Nrf2 transcription factor was studied by confocal microscopy and the Nrf2 and its coding mRNA levels were determined by western blot and quantitative PCR respectively. Resveratrol pre-treatment effectively protected hepatocytes in culture exposed to oxidative stress, increasing the activities of catalase, superoxide dismutase, glutathione peroxidase, NADPH quinone oxidoreductase and glutathione-S-transferase. Resveratrol increases the level of Nrf2 and induces its translocation to the nucleus. Also, it increases the concentration of the coding mRNA for Nrf2. In this work we show that resveratrol could be a useful drug for the protection of liver cells from oxidative stress induced damage.

  19. Xenobiotic metabolizing enzyme (XME) expression in aging humans.

    EPA Science Inventory

    In the presence of foreign compounds, metabolic homeostasis of the organism is maintained by the liver’s ability to detoxify and eliminate these xenobiotics. This is accomplished, in part, by the expression of XMEs, which metabolize xenobiotics and determine whether exposure will...

  20. Reactive oxygen species mediate human hepatocyte injury during hypoxia/reoxygenation.

    PubMed

    Bhogal, Ricky Harminder; Curbishley, Stuart M; Weston, Christopher J; Adams, David H; Afford, Simon C

    2010-11-01

    Increasing evidence shows that reactive oxygen species (ROS) may be critical mediators of liver damage during the relative hypoxia of ischemia/reperfusion injury (IRI) associated with transplant surgery or of the tissue microenvironment created as a result of chronic hepatic inflammation or infection. Much work has been focused on Kupffer cells or liver resident macrophages with respect to the generation of ROS during IRI. However, little is known about the contribution of endogenous hepatocyte ROS production or its potential impact on the parenchymal cell death associated with IRI and chronic hepatic inflammation. For the first time, we show that human hepatocytes isolated from nondiseased liver tissue and human hepatocytes isolated from diseased liver tissue exhibit marked differences in ROS production in response to hypoxia/reoxygenation (H-R). Furthermore, several different antioxidants are able to abrogate hepatocyte ROS-induced cell death during hypoxia and H-R. These data provide clear evidence that endogenous ROS production by mitochondria and nicotinamide adenine dinucleotide phosphate oxidase drives human hepatocyte apoptosis and necrosis during hypoxia and H-R and may therefore play an important role in any hepatic diseases characterized by a relatively hypoxic liver microenvironment. In conclusion, these data strongly suggest that hepatocytes and hepatocyte-derived ROS are active participants driving hepatic inflammation. These novel findings highlight important functional/metabolic differences between hepatocytes isolated from normal donor livers, hepatocytes isolated from normal resected tissue obtained during surgery for malignant neoplasms, and hepatocytes isolated from livers with end-stage disease. Furthermore, the targeting of hepatocyte ROS generation with antioxidants may offer therapeutic potential for the adjunctive treatment of IRI and chronic inflammatory liver diseases. © 2010 AASLD.

  1. Cardiac resident macrophages are involved in hypoxia-induced postnatal cardiomyocyte proliferation

    PubMed Central

    Liu, Bo; Zhang, Hua-Gang; Zhu, Yun; Jiang, Yun-Han; Luo, Gui-Ping; Tang, Fu-Qin; Jian, Zhao; Xiao, Ying-Bin

    2017-01-01

    Induction of cardiomyocyte proliferation, the most promising approach to reverse myocardial attrition, has been gaining importance as a therapy for cardiovascular disease. Hypoxia and macrophages were previously independently reported to promote cardiomyocyte proliferation in mice. However, whether hypoxia promotes cardiomyocyte proliferation in humans, and the association between hypoxia and macrophages in cardiomyocyte proliferation, have not to the best of our knowledge been previously investigated. The present study investigated the cardiomyocyte proliferation in 22 acyanotic and 29 cyanotic patients. Cardiomyocyte proliferation in a hypoxic mouse model (15% O2) was subsequently performed and the macrophage subsets were analyzed. A C-C chemokine receptor type 2 (CCR2) inhibitor was used to increase the number of resident macrophages in order to investigate the effect of macrophages on cardiomyocyte proliferation. The results demonstrated that cardiomyocyte proliferation in the cyanotic infant group was significantly increased compared with the acyanotic infant group and the hypoxia-treated C57BL/6J neonates confirmed the hypoxia-induced cardiomyocyte proliferation. However, hypoxia did not induce the proliferation of isolated cardiomyocytes. Notably, hypoxia treatment increased the number of cardiac resident macrophages in neonate hearts. Furthermore, increasing the number of resident macrophages significantly enhanced cardiomyocyte proliferation. In conclusion, postnatal hypoxia promoted cardiomyocyte proliferation in humans and animals, and cardiac resident macrophages may be involved in this process. Therefore, this novel mechanism may provide a promising strategy for cardiovascular disease treatment. PMID:28393210

  2. Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides.

    PubMed

    Poupardin, Rodolphe; Reynaud, Stéphane; Strode, Clare; Ranson, Hilary; Vontas, John; David, Jean-Philippe

    2008-05-01

    The effect of exposure of Aedes aegypti larvae to sub-lethal doses of the pyrethroid insecticide permethrin, the organophosphate temephos, the herbicide atrazine, the polycyclic aromatic hydrocarbon fluoranthene and the heavy metal copper on their subsequent tolerance to insecticides, detoxification enzyme activities and expression of detoxification genes was investigated. Bioassays revealed a moderate increase in larval tolerance to permethrin following exposure to fluoranthene and copper while larval tolerance to temephos increased moderately after exposure to atrazine, copper and permethrin. Cytochrome P450 monooxygenases activities were induced in larvae exposed to permethrin, fluoranthene and copper while glutathione S-transferase activities were induced after exposure to fluoranthene and repressed after exposure to copper. Microarray screening of the expression patterns of all detoxification genes following exposure to each xenobiotic with the Aedes Detox Chip identified multiple genes induced by xenobiotics and insecticides. Further expression studies using real-time quantitative PCR confirmed the induction of multiple CYP genes and one carboxylesterase gene by insecticides and xenobiotics. Overall, this study reveals the potential of xenobiotics found in polluted mosquito breeding sites to affect their tolerance to insecticides, possibly through the cross-induction of particular detoxification genes. Molecular mechanisms involved and impact on mosquito control strategies are discussed.

  3. Dissecting modes of action of non-genotoxic carcinogens in primary mouse hepatocytes.

    PubMed

    Schaap, Mirjam M; Zwart, Edwin P; Wackers, Paul F K; Huijskens, Ilse; van de Water, Bob; Breit, Timo M; van Steeg, Harry; Jonker, Martijs J; Luijten, Mirjam

    2012-11-01

    Under REACH, the European Community Regulation on chemicals, the testing strategy for carcinogenicity is based on in vitro and in vivo genotoxicity assays. Given that non-genotoxic carcinogens are negative for genotoxicity and chronic bioassays are no longer regularly performed, this class of carcinogens will go undetected. Therefore, test systems detecting non-genotoxic carcinogens, or even better their modes of action, are required. Here, we investigated whether gene expression profiling in primary hepatocytes can be used to distinguish different modes of action of non-genotoxic carcinogens. For this, primary mouse hepatocytes were exposed to 16 non-genotoxic carcinogens with diverse modes of action. Upon profiling, pathway analysis was performed to obtain insight into the biological relevance of the observed changes in gene expression. Subsequently, both a supervised and an unsupervised comparison approach were applied to recognize the modes of action at the transcriptomic level. These analyses resulted in the detection of three of eight compound classes, that is, peroxisome proliferators, metalloids and skin tumor promotors. In conclusion, gene expression profiles in primary hepatocytes, at least in rodent hepatocytes, appear to be useful to detect some, certainly not all, modes of action of non-genotoxic carcinogens.

  4. Kukoamine B promotes TLR4-independent lipopolysaccharide uptake in murine hepatocytes.

    PubMed

    Yang, Dong; Zheng, Xinchuan; Wang, Ning; Fan, Shijun; Yang, Yongjun; Lu, Yongling; Chen, Qian; Liu, Xin; Zheng, Jiang

    2016-09-06

    Free bacterial lipopolysaccharide (LPS) is generally removed from the bloodstream through hepatic uptake via TLR4, the LPS pattern recognition receptor, but mechanisms for internalization and clearance of conjugated LPS are less clear. Kukoamine B (KB) is a novel cationic alkaloid that interferes with LPS binding to TLR4. In this study, KB accelerated blood clearance of LPS. KB also enhanced LPS distribution in the hepatic tissues of C57 BL/6 mice, along with LPS uptake in primary hepatocytes and HepG2 cells. By contrast, KB inhibited LPS internalization in Kupffer and RAW 264.7 cells. Loss of TLR4 did not affect LPS uptake into KB-treated hepatocytes. We also detected selective upregulation of the asialoglycoprotein receptor (ASGPR) upon KB treatment, and ASGPR colocalized with KB in cultured hepatocytes. Molecular docking showed that KB bound to ASGPR in a manner similar to GalNAc, a known ASGPR agonist. GalNAc dose-dependently reduced KB internalization, suggesting it competes with KB for ASGPR binding, and ASGPR knockdown also impaired LPS uptake into hepatocytes. Finally, while KB enhanced LPS uptake, it was protective against LPS-induced inflammation and hepatocyte injury. Our study provides a new mechanism for conjugated LPS hepatic uptake induced by the LPS neutralizer KB and mediated by membrane ASGPR binding.

  5. Detection of Necroptosis in Ligand-Mediated and Hypoxia-Induced Injury of Hepatocytes Using a Novel Optic Probe Detecting Receptor-Interacting Protein (RIP)1/RIP3 Binding.

    PubMed

    Haga, Sanae; Kanno, Akira; Ozawa, Takeaki; Morita, Naoki; Asano, Mami; Ozaki, Michitaka

    2017-07-21

    Liver injury is often observed in various pathological conditions including posthepatectomy state and cancer chemotherapy. It occurs mainly as a consequence of the combined necrotic and apoptotic types of cell death. In order to study liver/hepatocyte injury by necrotic type of cell death, we studied signal-regulated necrosis (necroptosis) by newly developing an optic probe detecting receptor-interacting protein (RIP)1/RIP3 binding, an essential process for necroptosis induction. In the mouse hepatocyte cell line, TIB-73 cells, TNF-a/cycloheximide (T/C) induced RIP1/3 binding only when caspase activity was suppressed by z-VAD-fmk (zVAD), a caspase-specific inhibitor. T/C/zVADinduced RIP1/3-binding was inhibited by necrostatin-1 (Nec-1), an allosteric inhibitor of RIP1. The reduced cell survival by T/C/zVAD was improved by Nec-1. These facts indicate that T/C induces necroptosis of hepatocytes when apoptotic pathway is inhibited/unavailable. FasL also induced cell death which was only partially inhibited by zVAD, indicating the possible involvement of necroptosis other than apoptosis. FasL activated caspase-3 and, similarly, induced RIP1/3-binding when caspases were inactivated. Interestingly, FasL-induced RIP1/3 binding was significantly suppressed by the antioxidants, Trolox and N-acetyl cysteine (NAC), suggesting the involvement of reactive oxygen species (ROS) in FasL-induced necroptotic cellular processes. H₂O₂, by itself, induced RIP1/3 binding that was suppressed by Nec-1, but not by zVAD. Hypoxia induced RIP1/3 binding after reoxygenation, which was suppressed by Nec-1 or by the antioxidants. Cell death induced by hypoxia/reoxygenation (H/R) was also improved by Nec-1. Similar to H₂O₂, H/R did not require caspase inhibition for RIP1/3 binding, suggesting the involvement of a caspase-independent mechanism for non-ligand induced and/or redox-mediated necroptosis. These data indicate that ROS induce necroptosis, and mediate the FasL- and hypoxia-induced

  6. Osthole inhibits proliferation and induces apoptosis in human osteosarcoma cells.

    PubMed

    Ding, Yong; Lu, Xiongwei; Hu, Xiaopeng; Ma, Jie; Ding, Huan

    2014-02-01

    The purpose of this study was to investigate the effect of osthole on osteosarcoma cell proliferation and apoptosis. Cell counting Kit-8 assay was performed to establish the effects of osthole on osteosarcoma MG-63 cell proliferation. Annexin V-FITC/PI was performed to analyze the apoptotic rate of the cells. The inhibitory effects of osthole on the expression of BCL-2, BAX, and caspase-3 were detected by Western blotting. Osthole inhibited the growth of human osteosarcoma MG-63 cells by inhibiting cell proliferation and induced cell apoptosis. Western blotting demonstrated that osthole downregulated the expressions of BCL-2 and caspase-3 and upregulated the expression of BAX in human osteosarcoma cells. Osthole can inhibit osteosarcoma cell proliferation and induced apoptosis effectively in a dose-dependent manner through downregulating the expression of BCL-2 and caspase-3 proteins levels and upregulating the expression of BAX proteins levels.

  7. Antioxidant Effects of Lycopene and Ubiquinol-10 on the Oxidative Stress in Rat Hepatocytes Induced by Tert-Buthyl Hydroperoxide.

    PubMed

    Safari, Mohammad-Reza

    2010-03-01

    Free radicals especially reactive oxygen metabolites can damage DNA, protein, enzymes, and membrane lipids. Lipid peroxidation in hepatocyte membrane may be involved in hepatic diseases. Antioxidants may inhibit this reaction. Due to oxidant-antioxidant imbalance, free radicals may cause destructive effects. For several years, scientists tried to find antioxidant compounds. In this study, the effects of lycopene and ubiquinol-10 on the oxidative stress in rat hepatocytes induced by t-buthyl hydroperoxide was determined. First, rat hepatocytes were isolated and then incubated in the presence of tert-buthyl hydroperoxide and the amount of malondialdehyde, as a marker of lipid peroxidation, was determined. Then, this reaction was performed in the presence of various concentrations of each lycopene and ubiquinol-10, and the malondialdehyde level was determined. The results of this study showed that in the presence of various concentrations of lycopene and ubiquinol-10 the levels of lipid peroxidation products significantly decreased (P<0.05). Thus, lycopene and ubiquinol-10 have inhibitory effects on lipid peroxidation reaction. This study showed the potential utility of lycopene and ubiquinol-10 in prevention of hepatic dysfunction.

  8. Quantitation of cytokine mRNA expression as an endpoint for prediction and diagnosis of xenobiotic-induced hypersensitivity reactions.

    PubMed

    Gaspard, I; Kerdine, S; Pallardy, M; Lebrec, H

    1999-09-01

    Xenobiotic-induced hypersensitivity reactions are immune-mediated effects that involve specific antibodies and/or effector and regulatory T lymphocytes. Cytokines are key mediators of such responses and must be considered as possible endpoints for predicting sensitizing potency of drugs and chemicals, as well as for helping diagnosis of allergy. Detecting cytokine production at the protein level has been shown to not be always sensitive enough. This paper describes three examples of the utilization of semiquantitative or competitive reverse transcription polymerase chain reaction analysis of interleukin-4, interferon gamma, and interleukin-1beta mRNAs as endpoints for assessing T-cell or dendritic cell responses to sensitizing drugs (beta-lactam antibiotics) or chemicals (dinitrochlorobenzene). Copyright 1999 Academic Press.

  9. Primary hepatocytes and their cultures in liver apoptosis research

    PubMed Central

    Vinken, Mathieu; Maes, Michaël; Oliveira, André G.; Cogliati, Bruno; Marques, Pedro E.; Menezes, Gustavo B.; Dagli, Maria Lúcia Zaidan; Vanhaecke, Tamara; Rogiers, Vera

    2014-01-01

    Apoptosis not only plays a key role in physiological demise of defunct hepatocytes, but is also associated with a plethora of acute and chronic liver diseases as well as with hepatotoxicity. The present paper focuses on the modelling of this mode of programmed cell death in primary hepatocyte cultures. Particular attention is paid to the activation of spontaneous apoptosis during the isolation of hepatocytes from the liver, its progressive manifestation upon the subsequent establishment of cell cultures and simultaneously to strategies to counteract this deleterious process. In addition, currently applied approaches to experimentally induce controlled apoptosis in this in vitro setting for mechanistic research purposes and thereby its detection using relevant biomarkers are reviewed. PMID:24013573

  10. Caspase Inhibition Prevents Tumor Necrosis Factor-α-Induced Apoptosis and Promotes Necrotic Cell Death in Mouse Hepatocytes in Vivo and in Vitro.

    PubMed

    Ni, Hong-Min; McGill, Mitchell R; Chao, Xiaojuan; Woolbright, Benjamin L; Jaeschke, Hartmut; Ding, Wen-Xing

    2016-10-01

    How different cell death modes and cell survival pathways cross talk remains elusive. We determined the interrelation of apoptosis, necrosis, and autophagy in tumor necrosis factor (TNF)-α/actinomycin D (ActD) and lipopolysaccharide/D-galactosamine (GalN)-induced hepatotoxicity in vitro and in vivo. We found that TNF-α/ActD-induced apoptosis was completely blocked by a general caspase inhibitor ZVAD-fmk at 24 hours but hepatocytes still died by necrosis at 48 hours. Inhibition of caspases also protected mice against lipopolysaccharide/GalN-induced apoptosis and liver injury at the early time point, but this protection was diminished after prolonged treatment by switching apoptosis to necrosis. Inhibition of receptor-interacting protein kinase (RIP)1 by necrostatin 1 partially inhibited TNF-α/ZVAD-induced necrosis in primary hepatocytes. Pharmacologic inhibition of autophagy or genetic deletion of Atg5 in hepatocytes did not protect against TNF-α/ActD/ZVAD-induced necrosis. Moreover, pharmacologic inhibition of RIP1 or genetic deletion of RIP3 failed to protect and even exacerbated liver injury after mice were treated with lipopolysaccharide/GalN and a pan-caspase inhibitor. In conclusion, our results suggest that different cell death mode and cell survival pathways are closely integrated during TNF-α-induced liver injury when both caspases and NF-κB are blocked. Moreover, results from our study also raised concerns about the safety of currently ongoing clinical trials that use caspase inhibitors. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism

    PubMed Central

    Duparc, Thibaut; Plovier, Hubert; Marrachelli, Vannina G; Van Hul, Matthias; Essaghir, Ahmed; Ståhlman, Marcus; Matamoros, Sébastien; Geurts, Lucie; Pardo-Tendero, Mercedes M; Druart, Céline; Delzenne, Nathalie M; Demoulin, Jean-Baptiste; van der Merwe, Schalk W; van Pelt, Jos; Bäckhed, Fredrik; Monleon, Daniel; Everard, Amandine; Cani, Patrice D

    2017-01-01

    Objective To examine the role of hepatocyte myeloid differentiation primary-response gene 88 (MyD88) on glucose and lipid metabolism. Design To study the impact of the innate immune system at the level of the hepatocyte and metabolism, we generated mice harbouring hepatocyte-specific deletion of MyD88. We investigated the impact of the deletion on metabolism by feeding mice with a normal control diet or a high-fat diet for 8 weeks. We evaluated body weight, fat mass gain (using time-domain nuclear magnetic resonance), glucose metabolism and energy homeostasis (using metabolic chambers). We performed microarrays and quantitative PCRs in the liver. In addition, we investigated the gut microbiota composition, bile acid profile and both liver and plasma metabolome. We analysed the expression pattern of genes in the liver of obese humans developing non-alcoholic steatohepatitis (NASH). Results Hepatocyte-specific deletion of MyD88 predisposes to glucose intolerance, inflammation and hepatic insulin resistance independently of body weight and adiposity. These phenotypic differences were partially attributed to differences in gene expression, transcriptional factor activity (ie, peroxisome proliferator activator receptor-α, farnesoid X receptor (FXR), liver X receptors and STAT3) and bile acid profiles involved in glucose, lipid metabolism and inflammation. In addition to these alterations, the genetic deletion of MyD88 in hepatocytes changes the gut microbiota composition and their metabolomes, resembling those observed during diet-induced obesity. Finally, obese humans with NASH displayed a decreased expression of different cytochromes P450 involved in bioactive lipid synthesis. Conclusions Our study identifies a new link between innate immunity and hepatic synthesis of bile acids and bioactive lipids. This dialogue appears to be involved in the susceptibility to alterations associated with obesity such as type 2 diabetes and NASH, both in mice and humans. PMID

  12. Endothelial transcription factor KLF2 negatively regulates liver regeneration via induction of activin A

    PubMed Central

    Manavski, Yosif; Abel, Tobias; Hu, Junhao; Kleinlützum, Dina; Buchholz, Christian J.; Belz, Christina; Augustin, Hellmut G.; Dimmeler, Stefanie

    2017-01-01

    Endothelial cells (ECs) not only are important for oxygen delivery but also act as a paracrine source for signals that determine the balance between tissue regeneration and fibrosis. Here we show that genetic inactivation of flow-induced transcription factor Krüppel-like factor 2 (KLF2) in ECs results in reduced liver damage and augmentation of hepatocyte proliferation after chronic liver injury by treatment with carbon tetrachloride (CCl4). Serum levels of GLDH3 and ALT were significantly reduced in CCl4-treated EC-specific KLF2-deficient mice. In contrast, transgenic overexpression of KLF2 in liver sinusoidal ECs reduced hepatocyte proliferation. KLF2 induced activin A expression and secretion from endothelial cells in vitro and in vivo, which inhibited hepatocyte proliferation. However, loss or gain of KLF2 expression did not change capillary density and liver fibrosis, but significantly affected hepatocyte proliferation. Taken together, the data demonstrate that KLF2 induces an antiproliferative secretome, including activin A, which attenuates liver regeneration. PMID:28348240

  13. Species-specific differences in peroxisome proliferation, catalase, and SOD2 upregulation as well as toxicity in human, mouse, and rat hepatoma cells induced by the explosive and environmental pollutant 2,4,6-trinitrotoluene.

    PubMed

    Naumenko, Ekaterina Anatolevna; Ahlemeyer, Barbara; Baumgart-Vogt, Eveline

    2017-03-01

    2,4,6-Trinitrotoluene (TNT) has been widely used as an explosive substance and its toxicity is still of interest as it persisted in polluted areas. TNT is metabolized in hepatocytes which are prone to its toxicity. Since analysis of the human liver or hepatocytes is restricted due to ethical reasons, we investigated the effects of TNT on cell viability, reactive oxygen species (ROS) production, peroxisome proliferation, and antioxidative enzymes in human (HepG2), mouse (Hepa 1-6), and rat (H4IIEC3) hepatoma cell lines. Under control conditions, hepatoma cells of all three species were highly comparable exhibiting identical proliferation rates and distribution of their cell cycle phases. However, we found strong differences in TNT toxicity with the lowest IC 50 values (highest cell death rate) for rat cells, whereas human and mouse cells were three to sevenfold less sensitive. Moreover, a strong decrease in cellular dehydrogenase activity (MTT assay) and increased ROS levels were noted. TNT caused peroxisome proliferation with rat hepatoma cells being most responsive followed by those from mouse and human. Under control conditions, rat cells contained fivefold higher peroxisomal catalase and mitochondrial SOD2 activities and a twofold higher capacity to reduce MTT than human and mouse cells. TNT treatment caused an increase in catalase and SOD2 mRNA and protein levels in human and mouse, but not in rat cells. Similarly, human and mouse cells upregulated SOD2 activity, whereas rat cells failed therein. We conclude that TNT induced oxidative stress, peroxisome proliferation and mitochondrial damage which are highest in rat cells rendering them most susceptible toward TNT. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 989-1006, 2017. © 2016 Wiley Periodicals, Inc.

  14. Synergy between sulforaphane and selenium in the up-regulation of thioredoxin reductase and protection against hydrogen peroxide-induced cell death in human hepatocytes.

    PubMed

    Li, Dan; Wang, Wei; Shan, Yujuan; Barrera, Lawrence N; Howie, Alexander F; Beckett, Geoffrey J; Wu, Kun; Bao, Yongping

    2012-07-15

    Dietary isothiocyanates and selenium are chemopreventive agents and potent inducers of antioxidant enzymes. It has been previously shown that sulforaphane and selenium have a synergistic effect on the upregulation of thioredoxin reductase-1 (TrxR-1) in human hepatoma HepG2 cells. In this paper, further evidence is presented to show that sulforaphane and selenium synergistically induce TrxR-1 expression in immortalised human hepatocytes. Sulforaphane was found to be more toxic toward hepatocytes than HepG2 cells with IC50=25.1 and 56.4 μM, respectively. Sulforaphane can protect against hydrogen peroxide-induced cell death and this protection was enhanced by co-treatment with selenium. Using siRNA to knock down TrxR-1 or Nrf2, sulforaphane (5 μM)-protected cell viability was reduced from 73% to 46% and 34%, respectively, suggesting that TrxR-1 is an important enzyme in protection against hydrogen peroxide-induced cell death. Sulforaphane-induced TrxR-1 expression was positively associated with significant levels of Nrf2 translocation into the nucleus, but co-treatment with selenium showed no significant increase in Nrf2 translocation. Moreover, MAPK (ERK, JNK and p38) and PI3K/Akt signalling pathways were found to play no significant role in sulforaphane-induced Nrf2 translocation into the nucleus. However, blocking ERK and JNK signalling pathways decreased sulforaphane-induced TrxR-1 mRNA by about 20%; whereas blocking p38 and PI3K/AKT increased TrxR-1 transcription. In summary, a combination of sulforaphane and selenium resulted in a synergistic upregulation of TrxR-1 that contributed to the enhanced protection against free radical-mediated oxidative damage in human hepatocytes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Preventing hepatocyte oxidative stress cytotoxicity with Mangifera indica L. extract (Vimang).

    PubMed

    Remirez, Diadelis; Tafazoli, Shahrzad; Delgado, Rene; Harandi, Asghar A; O'Brien, Peter J

    2005-01-01

    Vimang is an aqueous extract of Mangifera indica used in Cuba to improve the quality of life in patients suffering from inflammatory diseases. In the present study we evaluated the effects of Vimang at preventing reactive oxygen species (ROS) formation and lipid peroxidation in intact isolated rat hepatocytes. Vimang at 20, 50 and 100 microg/ml inhibited hepatocyte ROS formation induced by glucose-glucose oxidase. Hepatocyte cytotoxicity and lipid peroxidation induced by cumene hydroperoxide was also inhibited by Vimang in a dose and time dependent manner at the same concentration. Vimang also inhibited superoxide radical formation by xanthine oxidase and hypoxanthine. The superoxide radical scavenging and antioxidant activity of the Vimang extract was likely related to its gallates, catechins and mangiferin content. To our knowledge, this is the first report of cytoprotective antioxidant effects of Vimang in cellular oxidative stress models.

  16. Phenobarbital induces cell cycle transcriptional responses in mouse liver humanized for constitutive androstane and pregnane x receptors.

    PubMed

    Luisier, Raphaëlle; Lempiäinen, Harri; Scherbichler, Nina; Braeuning, Albert; Geissler, Miriam; Dubost, Valerie; Müller, Arne; Scheer, Nico; Chibout, Salah-Dine; Hara, Hisanori; Picard, Frank; Theil, Diethilde; Couttet, Philippe; Vitobello, Antonio; Grenet, Olivier; Grasl-Kraupp, Bettina; Ellinger-Ziegelbauer, Heidrun; Thomson, John P; Meehan, Richard R; Elcombe, Clifford R; Henderson, Colin J; Wolf, C Roland; Schwarz, Michael; Moulin, Pierre; Terranova, Rémi; Moggs, Jonathan G

    2014-06-01

    The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice. Wild-type and CAR(h)-PXR(h) mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CAR(KO)-PXR(KO) mouse livers and largely reversible in wild-type and CAR(h)-PXR(h) mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CAR(h)-PXR(h) mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.

  17. Resveratrol Differentially Regulates NAMPT and SIRT1 in Hepatocarcinoma Cells and Primary Human Hepatocytes

    PubMed Central

    Schuster, Susanne; Penke, Melanie; Gorski, Theresa; Petzold-Quinque, Stefanie; Damm, Georg; Gebhardt, Rolf; Kiess, Wieland; Garten, Antje

    2014-01-01

    Resveratrol is reported to possess chemotherapeutic properties in several cancers. In this study, we wanted to investigate the molecular mechanisms of resveratrol-induced cell cycle arrest and apoptosis as well as the impact of resveratrol on NAMPT and SIRT1 protein function and asked whether there are differences in hepatocarcinoma cells (HepG2, Hep3B cells) and non-cancerous primary human hepatocytes. We found a lower basal NAMPT mRNA and protein expression in hepatocarcinoma cells compared to primary hepatocytes. In contrast, SIRT1 was significantly higher expressed in hepatocarcinoma cells than in primary hepatocytes. Resveratrol induced cell cycle arrest in the S- and G2/M- phase and apoptosis was mediated by activation of p53 and caspase-3 in HepG2 cells. In contrast to primary hepatocytes, resveratrol treated HepG2 cells showed a reduction of NAMPT enzymatic activity and increased p53 acetylation (K382). Resveratrol induced NAMPT release from HepG2 cells which was associated with increased NAMPT mRNA expression. This effect was absent in primary hepatocytes where resveratrol was shown to function as NAMPT and SIRT1 activator. SIRT1 inhibition by EX527 resembled resveratrol effects on HepG2 cells. Furthermore, a SIRT1 overexpression significantly decreased both p53 hyperacetylation and resveratrol-induced NAMPT release as well as S-phase arrest in HepG2 cells. We could show that NAMPT and SIRT1 are differentially regulated by resveratrol in hepatocarcinoma cells and primary hepatocytes and that resveratrol did not act as a SIRT1 activator in hepatocarcinoma cells. PMID:24603648

  18. Inflammation-induced synthesis of proteoheparan sulfate: a novel acute-phase reactant in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djovkar, A.; Gressner, A.M.

    1987-03-01

    The synthesis of proteoheparan sulfate in hepatocytes is positively regulated under acute-phase conditions produced either by turpentine or deep back incision. In both cases the incorporation of (/sup 35/S)sulfate and (/sup 14/C)glucosamine is doubled during a 4-h incubation period if compared with control rat hepatocytes. Neither the fractional secretion rate of heparan sulfate into the medium (less than 0.1 of cell-associated glycosaminoglycans) nor the composition of newly formed proteoglycans in hepatocytes are affected during acute phase reaction.

  19. Differential Roles of Cell Death-inducing DNA Fragmentation Factor-α-like Effector (CIDE) Proteins in Promoting Lipid Droplet Fusion and Growth in Subpopulations of Hepatocytes*♦

    PubMed Central

    Xu, Wenyi; Wu, Lizhen; Yu, Miao; Chen, Feng-Jung; Arshad, Muhammad; Xia, Xiayu; Ren, Hao; Yu, Jinhai; Xu, Li; Xu, Dijin; Li, John Zhong; Li, Peng; Zhou, Linkang

    2016-01-01

    Lipid droplets (LDs) are dynamic subcellular organelles whose growth is closely linked to obesity and hepatic steatosis. Cell death-inducing DNA fragmentation factor-α-like effector (CIDE) proteins, including Cidea, Cideb, and Cidec (also called Fsp27), play important roles in lipid metabolism. Cidea and Cidec are LD-associated proteins that promote atypical LD fusion in adipocytes. Here, we find that CIDE proteins are all localized to LD-LD contact sites (LDCSs) and promote lipid transfer, LD fusion, and growth in hepatocytes. We have identified two types of hepatocytes, one with small LDs (small LD-containing hepatocytes, SLHs) and one with large LDs (large LD-containing hepatocytes, LLHs) in the liver. Cideb is localized to LDCSs and promotes lipid exchange and LD fusion in both SLHs and LLHs, whereas Cidea and Cidec are specifically localized to the LDCSs and promote lipid exchange and LD fusion in LLHs. Cideb-deficient SLHs have reduced LD sizes and lower lipid exchange activities. Fasting dramatically induces the expression of Cidea/Cidec and increases the percentage of LLHs in the liver. The majority of the hepatocytes from the liver of obese mice are Cidea/Cidec-positive LLHs. Knocking down Cidea or Cidec significantly reduced lipid storage in the livers of obese animals. Our data reveal that CIDE proteins play differential roles in promoting LD fusion and lipid storage; Cideb promotes lipid storage under normal diet conditions, whereas Cidea and Cidec are responsible for liver steatosis under fasting and obese conditions. PMID:26733203

  20. Serum-Free Medium and Mesenchymal Stromal Cells Enhance Functionality and Stabilize Integrity of Rat Hepatocyte Spheroids

    PubMed Central

    Bao, Ji; Fisher, James E.; Lillegard, Joseph B.; Wang, William; Amiot, Bruce; Yu, Yue; Dietz, Allan B.; Nahmias, Yaakov; Nyberg, Scott L.

    2013-01-01

    Long-term culture of hepatocyte spheroids with high ammonia clearance is valuable for therapeutic applications, especially the bioartificial liver. However, the optimal conditions are not well studied. We hypothesized that liver urea cycle enzymes can be induced by high protein diet and maintain on a higher expression level in rat hepatocyte spheroids by serum-free medium (SFM) culture and coculture with mesenchymal stromal cells (MSCs). Rats were feed normal protein diet (NPD) or high protein diet (HPD) for 7 days before liver digestion and isolation of hepatocytes. Hepatocyte spheroids were formed and maintained in a rocked suspension culture with or without MSCs in SFM or 10% serum-containing medium (SCM). Spheroid viability, kinetics of spheroid formation, hepatic functions, gene expression, and biochemical activities of rat hepatocyte spheroids were tested over 14 days of culture. We observed that urea cycle enzymes of hepatocyte spheroids can be induced by high protein diet. SFM and MSCs enhanced ammonia clearance and ureagenesis and stabilized integrity of hepatocyte spheroids compared to control conditions over 14 days. Hepatocytes from high protein diet-fed rats formed spheroids and maintained a high level of ammonia detoxification for over 14 days in a novel SFM. Hepatic functionality and spheroid integrity were further stabilized by coculture of hepatocytes with MSCs in the spheroid microenvironment. These findings have direct application to development of the spheroid reservoir bioartificial liver. PMID:23006214

  1. Hypothyroidism Induces a Moderate Steatohepatitis Accompanied by Liver Regeneration, Mast Cells Infiltration, and Changes in the Expression of the Farnesoid X Receptor.

    PubMed

    Rodríguez-Castelán, J; Corona-Pérez, A; Nicolás-Toledo, L; Martínez-Gómez, M; Castelán, F; Cuevas-Romero, E

    2017-03-01

    Hypothyroidism is associated with the development of non-alcoholic steatohepatitis, but cellular mechanisms have been scarcely analyzed. Thyroid hormones regulate the synthesis and secretion of bile acids that are endogenous ligands of the farnesoid receptor (FXRα), which have been involved in the development of non-alcoholic steatohepatitis. However, the relationship between thyroid hormones and FXRα expression in the liver is yet unknown. Control ( n =6) and methimazole-induced hypothyroid ( n =6) female rabbits were used to evaluate the amount of lipids and glycogen, vascularization, hepatocytes proliferation, immune cells infiltration, and expression of FXRα. Student- t or Mann-Whitney U tests were carried out to determine significant differences. Hypothyroidism induced steatosis, glycogen loss, fibrosis, and a minor vascularization in the liver. In contrast, hypothyroidism increased the proliferation of hepatocytes and the infiltration of mast cells, but did not modify the number of immune cells into sinusoids. These changes were associated with a minor anti-FXRα immunoreactivity of periportal hepatocytes and pericentral immune cells. Our results suggest that hypothyroidism induces a moderate non-alcoholic steatohepatitis, alllowing the hepatic regeneration. The FXRα may be involved in the development of non-alcoholic steatohepatitis in hypothyroid subjects. © Georg Thieme Verlag KG Stuttgart · New York.

  2. SerpinB1 Promotes Pancreatic β Cell Proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas

    2016-01-01

    Compensatory β-cell growth in response to insulin resistance is a common feature in diabetes. We recently reported that liver-derived factors participate in this compensatory response in the liver insulin receptor knockout (LIRKO) mouse, a model of significant islet hyperplasia. Here we show that serpinB1 is a liver-derived secretory protein that controls β-cell proliferation. SerpinB1 is abundant in the hepatocyte secretome and sera derived from LIRKO mice. SerpinB1 and small molecule compounds that partially mimic serpinB1 activity enhanced proliferation of zebrafish, mouse and human β-cells. We report that serpinB1-induced β-cell replication requires protease inhibition activity and mice lacking serpinB1 exhibit attenuatedmore » β-cell replication in response to insulin resistance. Finally, SerpinB1-treatment of islets modulated signaling proteins in growth and survival pathways such as MAPK, PKA and GSK3. Together, these data implicate SerpinB1 as a protein that can potentially be harnessed to enhance functional β-cell mass in patients with diabetes.« less

  3. Differential Roles of Cell Death-inducing DNA Fragmentation Factor-α-like Effector (CIDE) Proteins in Promoting Lipid Droplet Fusion and Growth in Subpopulations of Hepatocytes.

    PubMed

    Xu, Wenyi; Wu, Lizhen; Yu, Miao; Chen, Feng-Jung; Arshad, Muhammad; Xia, Xiayu; Ren, Hao; Yu, Jinhai; Xu, Li; Xu, Dijin; Li, John Zhong; Li, Peng; Zhou, Linkang

    2016-02-26

    Lipid droplets (LDs) are dynamic subcellular organelles whose growth is closely linked to obesity and hepatic steatosis. Cell death-inducing DNA fragmentation factor-α-like effector (CIDE) proteins, including Cidea, Cideb, and Cidec (also called Fsp27), play important roles in lipid metabolism. Cidea and Cidec are LD-associated proteins that promote atypical LD fusion in adipocytes. Here, we find that CIDE proteins are all localized to LD-LD contact sites (LDCSs) and promote lipid transfer, LD fusion, and growth in hepatocytes. We have identified two types of hepatocytes, one with small LDs (small LD-containing hepatocytes, SLHs) and one with large LDs (large LD-containing hepatocytes, LLHs) in the liver. Cideb is localized to LDCSs and promotes lipid exchange and LD fusion in both SLHs and LLHs, whereas Cidea and Cidec are specifically localized to the LDCSs and promote lipid exchange and LD fusion in LLHs. Cideb-deficient SLHs have reduced LD sizes and lower lipid exchange activities. Fasting dramatically induces the expression of Cidea/Cidec and increases the percentage of LLHs in the liver. The majority of the hepatocytes from the liver of obese mice are Cidea/Cidec-positive LLHs. Knocking down Cidea or Cidec significantly reduced lipid storage in the livers of obese animals. Our data reveal that CIDE proteins play differential roles in promoting LD fusion and lipid storage; Cideb promotes lipid storage under normal diet conditions, whereas Cidea and Cidec are responsible for liver steatosis under fasting and obese conditions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Gingerol Inhibits Serum-Induced Vascular Smooth Muscle Cell Proliferation and Injury-Induced Neointimal Hyperplasia by Suppressing p38 MAPK Activation.

    PubMed

    Jain, Manish; Singh, Ankita; Singh, Vishal; Maurya, Preeti; Barthwal, Manoj Kumar

    2016-03-01

    Gingerol inhibits growth of cancerous cells; however, its role in vascular smooth muscle cell (VSMC) proliferation is not known. The present study investigated the effect of gingerol on VSMC proliferation in cell culture and during neointima formation after balloon injury. Rat VSMCs or carotid arteries were harvested at 15 minutes, 30 minutes, 1, 6, 12, and 24 hours of fetal bovine serum (FBS; 10%) stimulation or balloon injury, respectively. Gingerol prevented FBS (10%)-induced proliferation of VSMCs in a dose-dependent manner (50 μmol/L-400 μmol/L). The FBS-induced proliferating cell nuclear antigen (PCNA) upregulation and p27(Kip1) downregulation were also attenuated in gingerol (200 μmol/L) pretreated cells. Fetal bovine serum-induced p38 mitogen-activated protein kinase (MAPK) activation, PCNA upregulation, and p27(Kip1) downregulation were abrogated in gingerol (200 μmol/L) and p38 MAPK inhibitor (SB203580, 10 μmol/L) pretreated cells. Balloon injury induced time-dependent p38 MAPK activation in the carotid artery. Pretreatment with gingerol (200 μmol/L) significantly attenuated injury-induced p38 MAPK activation, PCNA upregulation, and p27(Kip1) downregulation. After 14 days of balloon injury, intimal thickening, neointimal proliferation, and endothelial dysfunction were significantly prevented in gingerol pretreated arteries. In isolated organ bath studies, gingerol (30 nmol/L-300 μmol/L) inhibited phenylephrine-induced contractions and induced dose-dependent relaxation of rat thoracic aortic rings in a partially endothelium-dependent manner. Gingerol prevented FBS-induced VSMC proliferation and balloon injury-induced neointima formation by regulating p38 MAPK. Vasodilator effect of gingerol observed in the thoracic aorta was partially endothelium dependent. Gingerol is thus proposed as an attractive agent for modulating VSMC proliferation, vascular reactivity, and progression of vascular proliferative diseases. © The Author(s) 2015.

  5. A Dual Role of Caspase-8 in Triggering and Sensing Proliferation-Associated DNA Damage, a Key Determinant of Liver Cancer Development.

    PubMed

    Boege, Yannick; Malehmir, Mohsen; Healy, Marc E; Bettermann, Kira; Lorentzen, Anna; Vucur, Mihael; Ahuja, Akshay K; Böhm, Friederike; Mertens, Joachim C; Shimizu, Yutaka; Frick, Lukas; Remouchamps, Caroline; Mutreja, Karun; Kähne, Thilo; Sundaravinayagam, Devakumar; Wolf, Monika J; Rehrauer, Hubert; Koppe, Christiane; Speicher, Tobias; Padrissa-Altés, Susagna; Maire, Renaud; Schattenberg, Jörn M; Jeong, Ju-Seong; Liu, Lei; Zwirner, Stefan; Boger, Regina; Hüser, Norbert; Davis, Roger J; Müllhaupt, Beat; Moch, Holger; Schulze-Bergkamen, Henning; Clavien, Pierre-Alain; Werner, Sabine; Borsig, Lubor; Luther, Sanjiv A; Jost, Philipp J; Weinlich, Ricardo; Unger, Kristian; Behrens, Axel; Hillert, Laura; Dillon, Christopher; Di Virgilio, Michela; Wallach, David; Dejardin, Emmanuel; Zender, Lars; Naumann, Michael; Walczak, Henning; Green, Douglas R; Lopes, Massimo; Lavrik, Inna; Luedde, Tom; Heikenwalder, Mathias; Weber, Achim

    2017-09-11

    Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apoptotic function of caspase-8, but no caspase-3 or caspase-8 cleavage. It may represent a DNA damage-sensing mechanism in hepatocytes that can act via JNK and subsequent phosphorylation of the histone variant H2AX. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Lipopolysaccharide Stimulates p62-Dependent Autophagy-Like Aggregate Clearance in Hepatocytes

    PubMed Central

    Deng, Meihong; Sun, Qian; Loughran, Patricia; Billiar, Timothy R.; Scott, Melanie J.

    2014-01-01

    Impairment of autophagy has been associated with liver injury. TLR4-stimulation by LPS upregulates autophagy in hepatocytes, although the signaling pathways involved remain elusive. The objective of this study was to determine the signaling pathway leading to LPS-stimulated autophagy in hepatocytes. Cell lysates from livers of wild type (WT; C57BL/6) mice given LPS (5 mg/kg-IP) and hepatocytes from WT, TLR4ko, and MyD88ko mice treated with LPS (100 ng/mL) up to 24 h were collected. LC3II, p62/SQSTM1, Nrf2, and beclin1 levels were determined by immunoblot, immunofluorescence, and qPCR. Autophagy-like activation was measured by GFP-LC3-puncta formation and LC3II-expression. Beclin1, Nrf2, p62, MyD88, and TIRAP were knocked-down using siRNA. LC3II-expression increased in both liver and hepatocytes after LPS and was dependent on TLR4. Beclin1 expression did not increase after LPS in hepatocytes and beclin1-knockdown did not affect LC3II levels. In hepatocytes given LPS, expression of p62 increased and p62 colocalized with LC3. p62-knockdown prevented LC3II puncta formation. LPS-induced LC3II/p62-puncta also required MyD88/TIRAP signaling and localization of both Nrf2 and NFκB transcription factors to the nucleus to upregulate p62-expression. Therefore, TLR4-activation by LPS in hepatocytes induces a p62-mediated, not beclin1-mediated, autophagy-like clearance pathway that is hepatoprotective by clearing aggregate-prone or misfolded proteins from the cytosol and preserving energy homeostasis under stress. PMID:24683544

  7. Lipopolysaccharide stimulates p62-dependent autophagy-like aggregate clearance in hepatocytes.

    PubMed

    Chen, Christine; Deng, Meihong; Sun, Qian; Loughran, Patricia; Billiar, Timothy R; Scott, Melanie J

    2014-01-01

    Impairment of autophagy has been associated with liver injury. TLR4-stimulation by LPS upregulates autophagy in hepatocytes, although the signaling pathways involved remain elusive. The objective of this study was to determine the signaling pathway leading to LPS-stimulated autophagy in hepatocytes. Cell lysates from livers of wild type (WT; C57BL/6) mice given LPS (5 mg/kg-IP) and hepatocytes from WT, TLR4ko, and MyD88ko mice treated with LPS (100 ng/mL) up to 24 h were collected. LC3II, p62/SQSTM1, Nrf2, and beclin1 levels were determined by immunoblot, immunofluorescence, and qPCR. Autophagy-like activation was measured by GFP-LC3-puncta formation and LC3II-expression. Beclin1, Nrf2, p62, MyD88, and TIRAP were knocked-down using siRNA. LC3II-expression increased in both liver and hepatocytes after LPS and was dependent on TLR4. Beclin1 expression did not increase after LPS in hepatocytes and beclin1-knockdown did not affect LC3II levels. In hepatocytes given LPS, expression of p62 increased and p62 colocalized with LC3. p62-knockdown prevented LC3II puncta formation. LPS-induced LC3II/p62-puncta also required MyD88/TIRAP signaling and localization of both Nrf2 and NF κ B transcription factors to the nucleus to upregulate p62-expression. Therefore, TLR4-activation by LPS in hepatocytes induces a p62-mediated, not beclin1-mediated, autophagy-like clearance pathway that is hepatoprotective by clearing aggregate-prone or misfolded proteins from the cytosol and preserving energy homeostasis under stress.

  8. Macrophage activation by factors released from acetaminophen-injured hepatocytes: Potential role of HMGB1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragomir, Ana-Cristina; Laskin, Jeffrey D.; Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu

    2011-06-15

    Toxic doses of acetaminophen (AA) cause hepatocellular necrosis. Evidence suggests that activated macrophages contribute to the pathogenic process; however, the factors that activate these cells are unknown. In these studies, we assessed the role of mediators released from AA-injured hepatocytes in macrophage activation. Treatment of macrophages with conditioned medium (CM) collected 24 hr after treatment of mouse hepatocytes with 5 mM AA (CM-AA) resulted in increased production of reactive oxygen species (ROS). Macrophage expression of heme oxygenase-1 (HO-1) and catalase mRNA was also upregulated by CM-AA, as well as cyclooxygenase (COX)-2 and 12/15-lipoxygenase (LOX). CM-AA also upregulated expression of themore » proinflammatory chemokines, MIP-1{alpha} and MIP-2. The effects of CM-AA on expression of COX-2, MIP-1{alpha} and MIP-2 were inhibited by blockade of p44/42 MAP kinase, suggesting a biochemical mechanism mediating macrophage activation. Hepatocytes injured by AA were found to release HMGB1, a potent macrophage activator. This was inhibited by pretreatment of hepatocytes with ethyl pyruvate (EP), which blocks HMGB1 release. EP also blocked CM-AA induced ROS production and antioxidant expression, and reduced expression of COX-2, but not MIP-1{alpha} or MIP-2. These findings suggest that HMGB1 released by AA-injured hepatocytes contributes to macrophage activation. This is supported by our observation that expression of the HMGB1 receptor RAGE is upregulated in macrophages in response to CM-AA. These data indicate that AA-injured hepatocytes contribute to the inflammatory environment in the liver through the release of mediators such as HMGB1. Blocking HMGB1/RAGE may be a useful approach to limiting classical macrophage activation and AA-induced hepatotoxicity. - Research Highlights: > These studies analyze macrophage activation by mediators released from acetaminophen-damaged hepatocytes. > Factors released from acetaminophen-injured hepatocytes induce

  9. Hepatocyte Polarity

    PubMed Central

    Treyer, Aleksandr; Müsch, Anne

    2013-01-01

    Hepatocytes, like other epithelia, are situated at the interface between the organism’s exterior and the underlying internal milieu and organize the vectorial exchange of macromolecules between these two spaces. To mediate this function, epithelial cells, including hepatocytes, are polarized with distinct luminal domains that are separated by tight junctions from lateral domains engaged in cell-cell adhesion and from basal domains that interact with the underlying extracellular matrix. Despite these universal principles, hepatocytes distinguish themselves from other nonstriated epithelia by their multipolar organization. Each hepatocyte participates in multiple, narrow lumina, the bile canaliculi, and has multiple basal surfaces that face the endothelial lining. Hepatocytes also differ in the mechanism of luminal protein trafficking from other epithelia studied. They lack polarized protein secretion to the luminal domain and target single-spanning and glycosylphosphatidylinositol-anchored bile canalicular membrane proteins via transcytosis from the basolateral domain. We compare this unique hepatic polarity phenotype with that of the more common columnar epithelial organization and review our current knowledge of the signaling mechanisms and the organization of polarized protein trafficking that govern the establishment and maintenance of hepatic polarity. The serine/threonine kinase LKB1, which is activated by the bile acid taurocholate and, in turn, activates adenosine monophosphate kinase-related kinases including AMPK1/2 and Par1 paralogues has emerged as a key determinant of hepatic polarity. We propose that the absence of a hepatocyte basal lamina and differences in cell-cell adhesion signaling that determine the positioning of tight junctions are two crucial determinants for the distinct hepatic and columnar polarity phenotypes. PMID:23720287

  10. Ketose induced respiratory inhibition in isolated hepatocytes.

    PubMed

    Martínez, P; Carrascosa, J M; Núñez de Castro, I

    1987-06-01

    The addition of 10 mM fructose or 10 mM tagatose to a suspension of hepatocytes caused respiratory inhibition, whereas no change in oxygen uptake was observed following the addition of glucose. However, incubations in the presence of fructose showed a high, aerobic glycolytic activity. Tagatose is phosphorylated to tagatose 1-phosphate but is not further metabolized by cell free liver extract. Moreover, the addition of fructose to glucagon treated cells also caused the Crabtree-like effect. The concentration of adenine nucleotides and inorganic phosphate (Pi) in the mitochondrial and cytosolic compartments during incubation (time 30 min) was determined by the digitonin fractionation procedure. In the presence of 10 mM fructose or tagatose, the total adenine nucleotide pools decreased by 40%; however, glucose produced no change. The addition of ketoses diminished the asymmetric distribution of extramitochondrial (ATP/ADP)e ratio and intramitochondrial (ATP/ADP)i ratio. At the same time the total mitochondrial Pi fell from 17 mM to 6-7 mM. The mitochondrial membrane potential (-161 mV) in the presence of fructose showed no changes during the 30 min experimental period. An increase in the NADH/NAD+ ratio was observed. These results suggest that in hepatocytes the inhibition of respiration is not necessarily linked with the enhanced aerobic glycolysis, by competition for common substrates.

  11. Independent, parallel pathways to CXCL10 induction in HCV-infected hepatocytes.

    PubMed

    Brownell, Jessica; Wagoner, Jessica; Lovelace, Erica S; Thirstrup, Derek; Mohar, Isaac; Smith, Wesley; Giugliano, Silvia; Li, Kui; Crispe, I Nicholas; Rosen, Hugo R; Polyak, Stephen J

    2013-10-01

    The pro-inflammatory chemokine CXCL10 is induced by HCV infection in vitro and in vivo, and is associated with outcome of IFN (interferon)-based therapy. We studied how hepatocyte sensing of early HCV infection via TLR3 (Toll-like receptor 3) and RIG-I (retinoic acid inducible gene I) led to expression of CXCL10. CXCL10, type I IFN, and type III IFN mRNAs and proteins were measured in PHH (primary human hepatocytes) and hepatocyte lines harboring functional or non-functional TLR3 and RIG-I pathways following HCV infection or exposure to receptor-specific stimuli. HuH7 human hepatoma cells expressing both TLR3 and RIG-I produced maximal CXCL10 during early HCV infection. Neutralization of type I and type III IFNs had no impact on virus-induced CXCL10 expression in TLR3+/RIG-I+ HuH7 cells, but reduced CXCL10 expression in PHH. PHH cultures were positive for monocyte, macrophage, and dendritic cell mRNAs. Immunodepletion of non-parenchymal cells (NPCs) eliminated marker expression in PHH cultures, which then showed no IFN requirement for CXCL10 induction during HCV infection. Immunofluorescence studies also revealed a positive correlation between intracellular HCV Core and CXCL10 protein expression (r(2) = 0.88, p ≤ 0.001). While CXCL10 induction in hepatocytes during the initial phase of HCV infection is independent of hepatocyte-derived type I and type III IFNs, NPC-derived IFNs contribute to CXCL10 induction during HCV infection in PHH cultures. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  12. Inhibition of GSK3 differentially modulates NF-{kappa}B, CREB, AP-1 and {beta}-catenin signaling in hepatocytes, but fails to promote TNF-{alpha}-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetschel, Frank; Kern, Claudia; Lang, Simona

    2008-04-01

    Glycogen synthase kinase-3 (GSK-3) is known to modulate cell survival and apoptosis through multiple intracellular signaling pathways. However, its hepatoprotective function and its role in activation of NF-{kappa}B and anti-apoptotic factors are poorly understood and remain controversial. Here we investigated whether inhibition of GSK-3 could induce apoptosis in the presence of TNF-{alpha} in primary mouse hepatocytes. We show that pharmacological inhibition of GSK-3 in primary mouse hepatocytes does not lead to TNF-{alpha}-induced apoptosis despite reduced NF-{kappa}B activity. Enhanced stability of I{kappa}B-{alpha} appears to be responsible for lower levels of nuclear NF-{kappa}B and hence reduced transactivation. Additionally, inhibition of GSK-3 wasmore » accompanied by marked upregulation of {beta}-catenin, AP-1, and CREB transcription factors. Stimulation of canonical Wnt signaling and CREB activity led to elevated levels of anti-apoptotic factors. Hence, survival of primary mouse hepatocytes may be caused by the activation and/or upregulation of other key regulators of liver homeostasis and regeneration. These signaling molecules may compensate for the compromised anti-apoptotic function of NF-{kappa}B and allow survival of hepatocytes in the presence of TNF-{alpha} and GSK-3 inhibition.« less

  13. IL-1β-induced and p38MAPK-dependent activation of the mitogen-activated protein kinase-activated protein kinase 2 (MK2) in hepatocytes: Signal transduction with robust and concentration-independent signal amplification

    PubMed Central

    Kulawik, Andreas; Engesser, Raphael; Ehlting, Christian; Raue, Andreas; Albrecht, Ute; Hahn, Bettina; Lehmann, Wolf-Dieter; Gaestel, Matthias; Klingmüller, Ursula; Häussinger, Dieter; Timmer, Jens; Bode, Johannes G.

    2017-01-01

    The IL-1β induced activation of the p38MAPK/MAPK-activated protein kinase 2 (MK2) pathway in hepatocytes is important for control of the acute phase response and regulation of liver regeneration. Many aspects of the regulatory relevance of this pathway have been investigated in immune cells in the context of inflammation. However, very little is known about concentration-dependent activation kinetics and signal propagation in hepatocytes and the role of MK2. We established a mathematical model for IL-1β-induced activation of the p38MAPK/MK2 pathway in hepatocytes that was calibrated to quantitative data on time- and IL-1β concentration-dependent phosphorylation of p38MAPK and MK2 in primary mouse hepatocytes. This analysis showed that, in hepatocytes, signal transduction from IL-1β via p38MAPK to MK2 is characterized by strong signal amplification. Quantification of p38MAPK and MK2 revealed that, in hepatocytes, at maximum, 11.3% of p38MAPK molecules and 36.5% of MK2 molecules are activated in response to IL-1β. The mathematical model was experimentally validated by employing phosphatase inhibitors and the p38MAPK inhibitor SB203580. Model simulations predicted an IC50 of 1–1.2 μm for SB203580 in hepatocytes. In silico analyses and experimental validation demonstrated that the kinase activity of p38MAPK determines signal amplitude, whereas phosphatase activity affects both signal amplitude and duration. p38MAPK and MK2 concentrations and responsiveness toward IL-1β were quantitatively compared between hepatocytes and macrophages. In macrophages, the absolute p38MAPK and MK2 concentration was significantly higher. Finally, in line with experimental observations, the mathematical model predicted a significantly higher half-maximal effective concentration for IL-1β-induced pathway activation in macrophages compared with hepatocytes, underscoring the importance of cell type-specific differences in pathway regulation. PMID:28223354

  14. Antioxidant Effects of Lycopene and Ubiquinol-10 on the Oxidative Stress in Rat Hepatocytes Induced by Tert-Buthyl Hydroperoxide

    PubMed Central

    2010-01-01

    Free radicals especially reactive oxygen metabolites can damage DNA, protein, enzymes, and membrane lipids. Lipid peroxidation in hepatocyte membrane may be involved in hepatic diseases. Antioxidants may inhibit this reaction. Due to oxidant-antioxidant imbalance, free radicals may cause destructive effects. For several years, scientists tried to find antioxidant compounds. In this study, the effects of lycopene and ubiquinol-10 on the oxidative stress in rat hepatocytes induced by t-buthyl hydroperoxide was determined. First, rat hepatocytes were isolated and then incubated in the presence of tert-buthyl hydroperoxide and the amount of malondialdehyde, as a marker of lipid peroxidation, was determined. Then, this reaction was performed in the presence of various concentrations of each lycopene and ubiquinol-10, and the malondialdehyde level was determined. The results of this study showed that in the presence of various concentrations of lycopene and ubiquinol-10 the levels of lipid peroxidation products significantly decreased (P<0.05). Thus, lycopene and ubiquinol-10 have inhibitory effects on lipid peroxidation reaction. This study showed the potential utility of lycopene and ubiquinol-10 in prevention of hepatic dysfunction. PMID:27683352

  15. L-ascorbic acid 2-phosphate and fibroblast growth factor-2 treatment maintains differentiation potential in bone marrow-derived mesenchymal stem cells through expression of hepatocyte growth factor.

    PubMed

    Bae, Sung Hae; Ryu, Hoon; Rhee, Ki-Jong; Oh, Ji-Eun; Baik, Soon Koo; Shim, Kwang Yong; Kong, Jee Hyun; Hyun, Shin Young; Pack, Hyun Sung; Im, Changjo; Shin, Ha Cheol; Kim, Yong Man; Kim, Hyun Soo; Eom, Young Woo; Lee, Jong In

    2015-04-01

    l-ascorbic acid 2-phosphate (Asc-2P) acts as an antioxidant and a stimulator of hepatocyte growth factor (HGF) production. Previously, we reported that depletion of growth factors such as fibroblast growth factor (FGF)-2, epidermal growth factor (EGF), FGF-4 and HGF during serial passage could induce autophagy, senescence and down-regulation of stemness (proliferation via FGF-2/-4 and differentiation via HGF). In this study, we investigated the proliferation and differentiation potential of BMSCs by FGF-2 and Asc-2P. Co-treatment with FGF-2 and Asc-2P induced optimal proliferation of BMSCs and increased the accumulation rate of BMSC numbers during a 2-month culture period. Moreover, differentiation potential was maintained by co-treatment with FGF-2 and Asc-2P via HGF expression. Adipogenic differentiation potential by FGF-2 and Asc-2P was dramatically suppressed by c-Met inhibitors (SU11274). These data suggest that co-treatment with FGF-2 and Asc-2P would be beneficial in obtaining BMSCs that possess "stemness" during long-term culture.

  16. The PPARdelta agonist GW501516 suppresses interleukin-6-mediated hepatocyte acute phase reaction via STAT3 inhibition.

    PubMed

    Kino, T; Rice, K C; Chrousos, G P

    2007-05-01

    Interleukin-6 and downstream liver effectors acute phase reactants are implicated in the systemic inflammatory reaction. Peroxisome proliferator-activated receptor delta (PPARdelta), which binds to and is activated by a variety of fatty acids, was recently shown to have anti-inflammatory actions. We examined the ability of the synthetic PPARdelta agonist GW501516 to suppress interleukin-6-induced expression of acute phase proteins in human hepatoma HepG2 cells and rat primary hepatocytes. Results GW501516 dose-dependently suppressed interleukin-6-induced mRNA expression of the acute phase protein alpha1-antichymotrypsin in HepG2 cells. The compound also suppressed interleukin-6-induced mRNA expression of alpha2-acid glycoprotein, beta-fibrinogen and alpha2-macroglobulin in and the secretion of C-reactive protein by rat primary hepatocytes. Depletion of the PPARdelta receptor, but not of PPARalpha or gamma, attenuated the suppressive effect of GW501516 on interleukin-6-induced alpha1-antichymotrypsin mRNA expression, indicating that PPARdelta specifically mediated this effect. Since interleukin-6 stimulates the transcriptional activity of the alpha1-antichymotrypsin promoter by activating the signal transducer and activator of transcription (STAT) 3, we examined functional interaction of this transcription factor and PPARdelta on this promoter. Overexpression of PPARdelta enhanced the suppressive effect of GW501516 on STAT3-activated transcriptional activity of the alpha1-antichymotrypsin promoter, while GW501516 suppressed interleukin-6-induced binding of this transcription factor to this promoter. These findings indicate that agonist-activated PPARdelta interferes with interleukin-6-induced acute phase reaction in the liver by inhibiting the transcriptional activity of STAT3. PPARdelta agonists might be useful for the suppression of systemic inflammatory reactions in which IL-6 plays a central role.

  17. Xenobiotics and loss of cell adhesion drive distinct transcriptional outcomes by aryl hydrocarbon receptor signaling.

    PubMed

    Hao, Nan; Lee, Kian Leong; Furness, Sebastian G B; Bosdotter, Cecilia; Poellinger, Lorenz; Whitelaw, Murray L

    2012-12-01

    The aryl hydrocarbon receptor (AhR) is a signal-regulated transcription factor, which is canonically activated by the direct binding of xenobiotics. In addition, switching cells from adherent to suspension culture also activates the AhR, representing a nonxenobiotic, physiological activation of AhR signaling. Here, we show that the AhR is recruited to target gene enhancers in both ligand [isopropyl-2-(1,3-dithietane-2-ylidene)-2-[N-(4-methylthiazol-2-yl)carbamoyl]acetate (YH439)]-treated and suspension cells, suggesting a common mechanism of target gene induction between these two routes of AhR activation. However, gene expression profiles critically differ between xenobiotic- and suspension-activated AhR signaling. Por and Cldnd1 were regulated predominantly by ligand treatments, whereas, in contrast, ApoER2 and Ganc were regulated predominantly by the suspension condition. Classic xenobiotic-metabolizing AhR targets such as Cyp1a1, Cyp1b1, and Nqo1 were regulated by both ligand and suspension conditions. Temporal expression patterns of AhR target genes were also found to vary, with examples of transient activation, transient repression, or sustained alterations in expression. Furthermore, sequence analysis coupled with chromatin immunoprecipitation assays and reporter gene analysis identified a functional xenobiotic response element (XRE) in the intron 1 of the mouse Tiparp gene, which was also bound by hypoxia-inducible factor-1α during hypoxia and features a concatemer of four XRE cores (GCGTG). Our data suggest that this XRE concatemer site concurrently regulates the expression of both the Tiparp gene and its cis antisense noncoding RNA after ligand- or suspension-induced AhR activation. This work provides novel insights into how AhR signaling drives different transcriptional programs via the ligand versus suspension modes of activation.

  18. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siu, W.P.; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan

    2008-03-15

    Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (> 500 {mu}M) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 {mu}M) fully inhibited diclofenac-induced cell injury, suggesting thatmore » mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca{sup 2+} chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca{sup 2+}-Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury.« less

  19. Regeneration of hepatocyte 'buds' in cirrhosis from intrabiliary stem cells.

    PubMed

    Falkowski, Olga; An, Hee Jung; Ianus, I Andreea; Chiriboga, Luis; Yee, Herman; West, A Brian; Theise, Neil D

    2003-09-01

    In massive hepatic necrosis, hepatic stem cells constitute a canal of Hering derived, cytokeratin 19 (CK19) positive 'ductular reaction' (DR). Whether DRs in cirrhosis are activated stem cells (so called 'buds') or biliary metaplasia of cholestatic, injured hepatocytes is still debated. We investigate derivation of intraseptal hepatocytes (ISHs) from DRs and from the biliary tree in cirrhosis. Explants of hepatitis B and C, alcohol, primary biliary cirrhosis and primary sclerosing cholangitis-related cirrhosis were examined. ISHs were quantified and their associations with DRs and cholestasis recorded. 3D-reconstruction of ISHs and nearby bile ducts was performed in blocks from hepatitis C and primary sclerosing cholangitis cirrhosis. Seven hundred seventy five/830 (94%) ISHs were associated with CK19 positive DRs. ISHs without ductular reactions were more likely to show cholestatic features (P<0.0001). In 3D, ISHs were seen to bud directly from the biliary tree. In summary: ISHs: (1) are usually associated with stem cell-like DRs; (2) are rarely cholestatic, leaving the associated DRs unexplained; and (3) are linked to the biliary tree in 3D. Dynamic proliferation rates in hepatitis C over time suggest that hepatocyte replication diminishes in late stages, with an associated activation of the biliary stem cell compartment. We therefore suggest that the biliary tree, from at least its smaller branches up to the canals of Hering, are composed of or at least harbor facultative hepatic stem cells, and that ISH largely represent 'buds' of newly formed hepatocytes.

  20. Localization of peroxisome proliferator-activated receptor in mouse and rat-tissues and demonstration of its nuclear translocation in transfected cv-1 cells.

    PubMed

    Huang, Q; Yeldandi, A; Alvares, K; Ide, H; Reddy, J; Rao, M

    1995-02-01

    Hepatocarcinogenesis in rodents induced by nongenotoxic peroxisome proliferators is postulated to be a receptor-mediated process. The peroxisome proliferator-activated receptors (PPAR) are members of the steroid hormone receptor superfamily, which participate in ligand-dependent transcriptional activation of peroxisomal fatty acid beta oxidation enzyme system genes in liver parenchymal cells of rats and mice. In order to study the tissue distribution and cellular localization of PPAR, we raised polyclonal antibodies against PPAR using a recombinant rat PPAR (rPPAR) expressed as a glutathione-S-transferase-rPPAR fusion protein. On immunoblot analysis the antibodies specifically recognized a 55 kDa PPAR protein in rat, mouse and human liver homogenates. Immunoblotting also showed that in the mouse and rat, PPAR is expressed in liver, kidney and heart, and only weakly in brain and testis. Immunohistochemical localization in the rat and mouse revealed that PPAR is highly expressed in perivenular (i.e., those surrounding hepatic vein) hepatocytes and very weakly in the cytoplasm of remaining hepatocytes. In the kidney, PPAR was visualized predominantly in the p(3) segments of proximal convoluted tubular epithelium. CV-1 cells transiently transfected with rPPAR cDNA construct showed predominant cytoplasmic fluorescence; treatment of these cells with ciprofibrate, a peroxisome proliferator, resulted in the nuclear translocation of PPAR signal.

  1. Osteosarcoma cells induce endothelial cell proliferation during neo-angiogenesis.

    PubMed

    de Nigris, Filomena; Mancini, Francesco Paolo; Schiano, Concetta; Infante, Teresa; Zullo, Alberto; Minucci, Pellegrino Biagio; Al-Omran, Mohammed; Giordano, Antonio; Napoli, Claudio

    2013-04-01

    Understanding the mechanisms inducing endothelial cell (EC) proliferation following tumor microenvironment stimuli may be important for the development of antiangiogenic therapies. Here, we show that cyclin-dependent kinase 2 and 5 (Cdk2, Cdk5) are important mediators of neoangiogenesis in in vitro and in vivo systems. Furthermore, we demonstrate that a specific Yin Yang 1 (YY1) protein-dependent signal from osteosarcoma (SaOS) cells determines proliferation of human aortic endothelial cells (HAECs). Following tumor cell stimuli, HAECs overexpress Cdk2 and Cdk5, display increased Cdk2 activity, undergo enhanced proliferation, and form capillary-like structures. Moreover, Roscovitine, an inhibitor of Cdks, blunted overexpression of Cdk2 and Cdk5 and Cdk2 activity induced by the YY1-dependent signal secreted by SaOS cells. Furthermore, Roscovitine decreased HAEC proliferation and angiogenesis (the latter by 70% in in vitro and 50% in in vivo systems; P < 0.01 vs. control). Finally, the finding that Roscovitine triggers apoptosis in SaOS cells as well as in HAECs by activating caspase-3/7 indicates multiple mechanisms for the potential antitumoral effect of Roscovitine. Present work suggests that Cdk2 and Cdk5 might be pharmacologically accessible targets for both antiangiogenic and antitumor therapy. Copyright © 2012 Wiley Periodicals, Inc.

  2. Differentiation of embryonic stem cells into hepatocytes that coexpress coagulation factors VIII and IX.

    PubMed

    Cao, Jun; Shang, Chang-zhen; Lü, Li-hong; Qiu, De-chuan; Ren, Meng; Chen, Ya-jin; Min, Jun

    2010-11-01

    To establish an efficient culture system to support embryonic stem (ES) cell differentiation into hepatocytes that coexpress F-VIII and F-IX. Mouse E14 ES cells were cultured in differentiation medium containing sodium butyrate (SB), basic fibroblast growth factor (bFGF), and/or bone morphogenetic protein 4 (BMP4) to induce the differentiation of endoderm cells and hepatic progenitor cells. Hepatocyte growth factor, oncostatin M, and dexamethasone were then used to induce the maturation of ES cell-derived hepatocytes. The mRNA expression levels of endoderm-specific genes and hepatocyte-specific genes, including the levels of F-VIII and F-IX, were detected by RT-PCR and real-time PCR during various stages of differentiation. Protein expression was examined by immunofluorescence and Western blot. At the final stage of differentiation, flow cytometry was performed to determine the percentage of cells coexpressing F-VIII and F-IX, and ELISA was used to detect the levels of F-VIII and F-IX protein secreted into the culture medium. The expression of endoderm-specific and hepatocyte-specific markers was upregulated to highest level in response to the combination of SB, bFGF, and BMP4. Treatment with the three inducers during hepatic progenitor differentiation significantly enhanced the mRNA and protein levels of F-VIII and F-IX in ES cell-derived hepatocytes. More importantly, F-VIII and F-IX were coexpressed with high efficiency at the final stage of differentiation, and they were also secreted into the culture medium. We have established a novel in vitro differentiation protocol for ES-derived hepatocytes that coexpress F-VIII and F-IX that may provide a foundation for stem cell replacement therapy for hemophilia.

  3. Cyclin D2 induces proliferation of cardiac myocytes and represses hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busk, Peter K.; Hinrichsen, Rebecca; Bartkova, Jirina

    2005-03-10

    The myocytes of the adult mammalian heart are considered unable to divide. Instead, mitogens induce cardiomyocyte hypertrophy. We have investigated the effect of adenoviral overexpression of cyclin D2 on myocyte proliferation and morphology. Cardiomyocytes in culture were identified by established markers. Cyclin D2 induced DNA synthesis and proliferation of cardiomyocytes and impaired hypertrophy induced by angiotensin II and serum. At the molecular level, cyclin D2 activated CDK4/6 and lead to pRB phosphorylation and downregulation of the cell cycle inhibitors p21{sup Waf1/Cip1} and p27{sup Kip1}. Expression of the CDK4/6 inhibitor p16 inhibited proliferation and cyclin D2 overexpressing myocytes became hypertrophic undermore » such conditions. Inhibition of hypertrophy by cyclin D2 correlated with downregulation of p27{sup Kip1}. These data show that hypertrophy and proliferation are highly related processes and suggest that cardiomyocyte hypertrophy is due to low amounts of cell cycle activators unable to overcome the block imposed by cell cycle inhibitors. Cell cycle entry upon hypertrophy may be converted to cell division by increased expression of activators such as cyclin D2.« less

  4. Polyploidization delay in rat hepatocytes under liver growth inhibition by hypokinesia

    NASA Technical Reports Server (NTRS)

    Faktor, V. M.; Malyutin, V. F.; Li, S. Y.; Brodskiy, V. Y.

    1981-01-01

    A study of young rats, weighing 55 to 59 g, after being for 10 days in conditions of limited mobility, shows a retardation of body growth as well as that of liver growth. The decrease in the rate of growth is accompanied by a reduction of cell proliferation and by delay polyploidization of hepatocytes in the liver of experimental rats. The materials, methods, and results of research are discussed.

  5. Action of insulin on the surface morphology of hepatocytes: role of phosphatidylinositol 3-kinase in insulin-induced shape change of microvilli.

    PubMed

    Lange, K; Brandt, U; Gartzke, J; Bergmann, J

    1998-02-25

    In previous studies we have shown that the insulin-responding glucose transporter isoform of 3T3-L1 adipocytes, GluT4, is almost completely located on microvilli. Furthermore, insulin caused the integration of these microvilli into the plasma membrane, suggesting that insulin-induced stimulation of glucose uptake may be due to the destruction of the cytoskeletal diffusion barrier formed by the actin filament bundle of the microvillar shaft regions [Lange et al. (1990) FEBS Lett. 261, 459-463; Lange et al. (1990) FEBS Lett. 276, 39-41]. Similar shape changes in microvilli were observed when the transport rates of adipocytes were modulated by glucose feeding or starvation. Here we demonstrate that the action of insulin on the surface morphology of hepatocytes is identical to that on 3T3L1 adipocytes; small and narrow microvilli on the surface of unstimulated hepatocytes were rapidly shortened and dilated on top of large domed surface areas. The aspect and mechanism of this effect are closely related to "membrane ruffling" induced by insulin and other growth factors. Pretreatment of hepatocytes with the PI 3-kinase inhibitor wortmannin (100 nM), which completely prevents transport stimulation by insulin in adipocytes and other cell types, also inhibited insulin-induced shape changes in microvilli on the hepatocyte surface. In contrast, vasopressin-induced microvillar shape changes in hepatocytes [Lange et al. (1997) Exp. Cell Res. 234, 486-497] were insensitive to wortmannin pretreatment. These findings indicate that PI 3-kinase products are necessary for stimulation of submembrane microfilament dynamics and that cytoskeletal reorganization is critically involved in insulin stimulation of transport processes. The mechanism of the insulin-induced cytoskeletal reorganization can be explained on the basis of the recent finding of Lu et al. [Biochemistry 35(1996) 14027-14034] that PI 3-kinase products exhibit much higher affinity for the profilin-actin complex than the

  6. Maintenance of in vivo induced cytochrome P-450s in hepatocyte monolayers at non freezing temperatures.

    PubMed

    Evans, Peter J

    2015-04-01

    Cytochrome P450s (CYPs) induced in rats by 3-methylcholanthrene (3-MC), phenobarbital (PB) and dexamethasone (Dex) were investigated. The inducers had no effect on hepatocyte yield, viability, attachment or spreading on collagen. 3-MC induced ethoxyresorufin deethylase (EROD). Under normothermic conditions the activity fell in culture. However, it was maintained when cells were preserved at 10°C under a gelatin gel. Upon reactivation the activity mirrored that of freshly isolated cells at 37°C. Induced levels were stable for at least 6h , the time to form a confluent monolayer. The investigation was extended to other CYPs by looking at patterns of testosterone metabolism. Phenobarbital had the greatest influence in terms of the quantity and number of metabolites. Culture at 37°C decreased the peaks dramatically within 24 h. All 7 peaks were maintained in the preservation system. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Xenobiotic Transporter Expression along the Male Genital Tract1

    PubMed Central

    Klein, David M.; Wright, Stephen H.; Cherrington, Nathan J.

    2015-01-01

    The male genital tract plays an important role in protecting sperm by forming a distinct compartment separate from the body which limits exposure to potentially toxic substrates. Transporters along this tract can influence the distribution of xenobiotics into the male genital tract through efflux back into the blood or facilitating the accumulation of toxicants. The aim of this study was to quantitatively determine the constitutive mRNA expression of 30 xenobiotic transporters in caput and cauda regions of the epididymis, vas deferens, prostate, and seminal vesicles from adult Sprague-Dawley rats. The epididymis was found to express at least moderate levels of 18 transporters, vas deferens 15, seminal vesicles 23, and prostate 18. Constitutive expression of these xenobiotic transporters in the male genital tract may provide insight into the xenobiotics that can potentially be transported into these tissues and may provide the molecular mechanism for site specific toxicity of select agents. PMID:24814985

  8. Carcinogen-induced mdr overexpression is associated with xenobiotic resistance in rat preneoplastic liver nodules and hepatocellular carcinomas.

    PubMed

    Fairchild, C R; Ivy, S P; Rushmore, T; Lee, G; Koo, P; Goldsmith, M E; Myers, C E; Farber, E; Cowan, K H

    1987-11-01

    We have previously reported the isolation of a human breast cancer cell line resistant to doxorubicin (adriamycin; AdrR MCF-7 cells) that has also developed the phenotype of multidrug resistance (MDR). MDR in this cell line is associated with increased expression of mdr (P glycoprotein) gene sequences. The development of MDR in AdrR MCF-7 cells is also associated with changes in the expression of several phase I and phase II drug-detoxifying enzymes. These changes are remarkably similar to those associated with development of xenobiotic resistance in rat hyperplastic liver nodules, a well-studied model system of chemical carcinogenesis. Using an mdr-encoded cDNA sequence isolated from AdrR MCF-7 cells, we have examined the expression of mdr sequences in rat livers under a variety of experimental conditions. The expression of mdr increased 3-fold in regenerating liver. It was also elevated (3- to 12-fold) in several different samples of rat hyperplastic nodules and in four of five hepatomas that developed in this system. This suggests that overexpression of mdr, a gene previously associated with resistance to antineoplastic agents, may also be involved in the development of resistance to xenobiotics in rat hyperplastic nodules. In addition, although the acute administration of 2-acetylaminofluorene induced an 8-fold increase in hepatic mdr-encoded RNA, performance of a partial hepatectomy either before or after administration of 2-acetylaminofluorene resulted in a greater than 80-fold increase in mdr gene expression over that in normal untreated livers. This represents an important in vivo model system in which to study the acute regulation of this drug resistance gene.

  9. Acrolein cytotoxicity in hepatocytes involves endoplasmic reticulum stress, mitochondrial dysfunction and oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammad, Mohammad K.; Alcohol Research Center, University of Louisville; Avila, Diana

    2012-11-15

    Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying acrolein hepatotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiological concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidantmore » capacity, and activated the stress-signaling MAP-kinases JNK, p42/44 and p38. Our data demonstrate for the first time in human hepatocytes, that acrolein triggered endoplasmic reticulum (ER) stress and activated eIF2α, ATF-3 and -4, and Gadd153/CHOP, resulting in cell death. Notably, the protective/adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER-protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein. -- Highlights: ► Human primary hepatocytes and cultured cell lines are used. ► Multiple cell death signaling pathways are activated by acrolein. ► Novel

  10. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro.

    PubMed

    Dykens, James A; Jamieson, Joseph; Marroquin, Lisa; Nadanaciva, Sashi; Billis, Puja A; Will, Yvonne

    2008-12-01

    As a class, the biguanides induce lactic acidosis, a hallmark of mitochondrial impairment. To assess potential mitochondrial impairment, we evaluated the effects of metformin, buformin and phenformin on: 1) viability of HepG2 cells grown in galactose, 2) respiration by isolated mitochondria, 3) metabolic poise of HepG2 and primary human hepatocytes, 4) activities of immunocaptured respiratory complexes, and 5) mitochondrial membrane potential and redox status in primary human hepatocytes. Phenformin was the most cytotoxic of the three with buformin showing moderate toxicity, and metformin toxicity only at mM concentrations. Importantly, HepG2 cells grown in galactose are markedly more susceptible to biguanide toxicity compared to cells grown in glucose, indicating mitochondrial toxicity as a primary mode of action. The same rank order of potency was observed for isolated mitochondrial respiration where preincubation (40 min) exacerbated respiratory impairment, and was required to reveal inhibition by metformin, suggesting intramitochondrial bio-accumulation. Metabolic profiling of intact cells corroborated respiratory inhibition, but also revealed compensatory increases in lactate production from accelerated glycolysis. High (mM) concentrations of the drugs were needed to inhibit immunocaptured respiratory complexes, supporting the contention that bioaccumulation is involved. The same rank order was found when monitoring mitochondrial membrane potential, ROS production, and glutathione levels in primary human hepatocytes. In toto, these data indicate that biguanide-induced lactic acidosis can be attributed to acceleration of glycolysis in response to mitochondrial impairment. Indeed, the desired clinical outcome, viz., decreased blood glucose, could be due to increased glucose uptake and glycolytic flux in response to drug-induced mitochondrial dysfunction.

  11. Switch from type II to I Fas/CD95 death signaling upon in vitro culturing of primary hepatocytes

    PubMed Central

    Walter, Dorothée; Schmich, Kathrin; Vogel, Sandra; Pick, Robert; Kaufmann, Thomas; Hochmuth, Florian Christoph; Haber, Angelika; Neubert, Karin; McNelly, Sabine; von Weizsäcker, Fritz; Merfort, Irmgard; Maurer, Ulrich; Strasser, Andreas; Borner, Christoph

    2010-01-01

    Fas/CD95-induced apoptosis of hepatocytes in vivo proceeds through the so-called type II pathway, requiring the pro-apoptotic BH3-only Bcl-2 family member Bid for mitochondrial death signaling. Consequently, Bid-deficient mice are protected from anti-Fas antibody injection induced fatal hepatitis. Here we report the unexpected finding that freshly isolated mouse hepatocytes, cultured on collagen or Matrigel™, become independent of Bid for Fas-induced apoptosis, thereby switching death signaling from type II to type I. In such in vitro cultures, FasL activates caspase-3 without Bid cleavage, Bax/Bak activation or cytochrome c release, and neither Bid ablation nor Bcl-2 overexpression is protective. The type II to type I switch depends on extracellular matrix adhesion, as primary hepatocytes in suspension die in a Bid-dependent manner. Moreover, the switch is specific for FasL-induced apoptosis as collagen-plated Bid-deficient hepatocytes are protected from TNFα/ActD-induced apoptosis. Conclusion Our data suggest a selective crosstalk between extracellular matrix and Fas-mediated signaling which favours mitochondria-independent type I apoptosis induction. PMID:19003879

  12. Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-β1 mediated epithelial-mesenchymal transition in mouse hepatocytes.

    PubMed

    Shrestha, Nirajan; Chand, Lokendra; Han, Myung Kwan; Lee, Seung Ok; Kim, Chan Young; Jeong, Yeon Jun

    2016-07-01

    Glutamine, traditionally a non-essential amino acid, now has been considered as essential in serious illness and injury. It is a major precursor for glutathione synthesis. However, the anti-fibrotic effect of glutamine and its molecular mechanism in experimental liver fibrosis have not been explored. In the present study we aimed to examine the potential role of glutamine in carbon tetrachloride (CCl4) induced liver fibrosis and TGF-β1 mediated epithelial mesenchymal transition (EMT) and apoptosis in mouse hepatocytes. Liver fibrosis was induced by intraperitoneal injection of CCl4 three times a week for 10 weeks. Glutamine treatment effectively attenuated liver injury and oxidative stress. Collagen content was significantly decreased in liver sections of glutamine treated mice compared to CCl4 model mice. Furthermore, glutamine decreased expression level of α-SMA and TGF-β in liver tissue. Our in vitro study showed that TGF-β1 treatment in hepatocytes resulted in loss of E-cadherin and increased expression of mesenchymal markers and EMT related transcription factor. In addition, TGF-β1 increased the expression of apoptotic markers. However, glutamine interestingly suppressed TGF-β1 mediated EMT and apoptosis. In conclusion, our results suggest that glutamine ameliorates CCl4 induced liver fibrosis and suppresses TGF-β1 induced EMT progression and apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecht, Emelia; Zago, Michela; Sarill, Miles

    2014-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR{sup −/−}) and wild-type (AhR{supmore » +/+}) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR{sup −/−} cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR{sup −/−} compared to AhR{sup +/+} cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR{sup +/+} fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR{sup +/+} lung fibroblasts in response to serum, corresponding to a decrease in p27{sup KIP1} protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27{sup KIP1} in AhR{sup −/−} fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates

  14. A transgenic rat hepatocyte - Kupffer cell co-culture model for evaluation of direct and macrophage-related effect of poly(amidoamine) dendrimers.

    PubMed

    Jemnitz, Katalin; Bátai-Konczos, Attila; Szabó, Mónika; Ioja, Enikő; Kolacsek, Orsolya; Orbán, Tamás I; Török, György; Homolya, László; Kovács, Eszter; Jablonkai, István; Veres, Zsuzsa

    2017-02-01

    Increasing number of papers demonstrate that Kupffer cells (KCs) play a role in the development of drug induced liver injury (DILI). Furthermore, elevated intracellular Ca 2+ level of hepatocytes is considered as a common marker of DILI. Here we applied an in vitro model based on hepatocyte mono- and hepatocyte/KC co-cultures (H/KC) isolated from transgenic rats stably expressing the GCaMP2 fluorescent Ca 2+ sensor protein to investigate the effects of polycationic (G5), polyanionic (G4.5) and polyethylene-glycol coated neutral (G5 Peg) dendrimers known to accumulate in the liver, primarily in KCs. Following dendrimer exposure, hepatocyte homeostasis was measured by MTT cytotoxicity assay and by Ca 2+ imaging, while hepatocyte functions were studied by CYP2B1/2 inducibility, and bilirubin and taurocholate transport. G5 was significantly more cytotoxic than G4.5 for hepatocytes and induced Ca 2+ oscillation and sustained Ca 2+ signals at 1μM and10 μM, respectively both in hepatocytes and KCs. Dendrimer-induced Ca 2+ signals in hepatocytes were attenuated by macrophages. Activation of KCs by lipopolysaccharide and G5 decreased the inducibility of CYP2B1/2, which was restored by depleting the KCs with gadolinium-chloride and pentoxyphylline, suggesting a role of macrophages in the hindrance of CYP2B1/2 induction by G5 and lipopolysaccharide. In the H/KC, but not in the hepatocyte mono-culture, G5 reduced the canalicular efflux of bilirubin and stimulated the uptake and canalicular efflux of taurocholate. In conclusion, H/KC provides a good model for the prediction of hepatotoxic potential of drugs, especially of nanomaterials known to be trapped by macrophages, activation of which presumably contributes to DILI. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Pleiotrophin enhances PDGFB-induced gliomagenesis through increased proliferation of neural progenitor cells

    PubMed Central

    Zhang, Lei; Laaniste, Liisi; Jiang, Yiwen; Alafuzoff, Irina; Uhrbom, Lene; Dimberg, Anna

    2016-01-01

    Pleiotrophin (PTN) augments tumor growth by increasing proliferation of tumor cells and promoting vascular abnormalization, but its role in early gliomagenesis has not been evaluated. Through analysis of publically available datasets, we demonstrate that increased PTN mRNA expression is associated with amplification of chromosome 7, identified as one of the earliest steps in glioblastoma development. To elucidate the role of PTN in tumor initiation we employed the RCAS/tv-a model that allows glioma induction by RCAS-virus mediated expression of oncogenes in neural progenitor cells. Intracranial injection of RCAS-PTN did not induce glioma formation when administrated alone, but significantly enhanced RCAS-platelet derived growth factor (PDGF)B-induced gliomagenesis. PTN co-treatment augmented PDGFB-induced Akt activation in neural progenitor cells in vitro, and enhanced neural sphere size associated with increased proliferation. Our data indicates that PTN expression is associated with chromosome 7 gain, and that PTN enhances PDGFB-induced gliomagenesis by stimulating proliferation of neural progenitor cells. PMID:27806344

  16. Pleiotrophin enhances PDGFB-induced gliomagenesis through increased proliferation of neural progenitor cells.

    PubMed

    Zhang, Lei; Laaniste, Liisi; Jiang, Yiwen; Alafuzoff, Irina; Uhrbom, Lene; Dimberg, Anna

    2016-12-06

    Pleiotrophin (PTN) augments tumor growth by increasing proliferation of tumor cells and promoting vascular abnormalization, but its role in early gliomagenesis has not been evaluated. Through analysis of publically available datasets, we demonstrate that increased PTN mRNA expression is associated with amplification of chromosome 7, identified as one of the earliest steps in glioblastoma development. To elucidate the role of PTN in tumor initiation we employed the RCAS/tv-a model that allows glioma induction by RCAS-virus mediated expression of oncogenes in neural progenitor cells. Intracranial injection of RCAS-PTN did not induce glioma formation when administrated alone, but significantly enhanced RCAS-platelet derived growth factor (PDGF)B-induced gliomagenesis. PTN co-treatment augmented PDGFB-induced Akt activation in neural progenitor cells in vitro, and enhanced neural sphere size associated with increased proliferation. Our data indicates that PTN expression is associated with chromosome 7 gain, and that PTN enhances PDGFB-induced gliomagenesis by stimulating proliferation of neural progenitor cells.

  17. Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation.

    PubMed

    Leighton, F; Bergseth, S; Rørtveit, T; Christiansen, E N; Bremer, J

    1989-06-25

    The fate of the acetyl-CoA units released during peroxisomal fatty acid oxidation was studied in isolated hepatocytes from normal and peroxisome-proliferated rats. Ketogenesis and hydrogen peroxide generation were employed as indicators of mitochondrial and peroxisomal fatty acid oxidation, respectively. Butyric and hexanoic acids were employed as mitochondrial substrates, 1, omega-dicarboxylic acids as predominantly peroxisomal substrates, and lauric acid as a substrate for both mitochondria and peroxisomes. Ketogenesis from dicarboxylic acids was either absent or very low in normal and peroxisome-proliferated hepatocytes, but free acetate release was detected at rates that could account for all the acetyl-CoA produced in peroxisomes by dicarboxylic and also by monocarboxylic acids. Mitochondrial fatty acid oxidation also led to free acetate generation but at low rates relative to ketogenesis. The origin of the acetate released was confirmed employing [1-14C]dodecanedioic acid. Thus, the activity of peroxisomes might contribute significantly to the free acetate generation known to occur during fatty acid oxidation in rats and possibly also in humans.

  18. HEPATOCYTE GROWTH FACTOR ACTS AS A MITOGEN AND CHEMOATTRACTANT FOR POSTNATAL SUBVENTRICULAR ZONE-OLFACTORY BULB NEUROGENESIS

    PubMed Central

    Wang, Tsu-Wei; Zhang, Huailin; Gyetko, Margaret R.; Parent, Jack M.

    2011-01-01

    Neural progenitor cells persist throughout life in the forebrain subventricular zone (SVZ). They generate neuroblasts that migrate to the olfactory bulb and differentiate into interneurons, but mechanisms underlying these processes are poorly understood. Hepatocyte growth factor/scatter factor (HGF/SF) is a pleiotropic factor that influences cell motility, proliferation and morphogenesis in neural and non-neural tissues. HGF and its receptor, c-Met, are present in the rodent SVZ-olfactory bulb pathway. Using in vitro neurogenesis assays and in vivo studies of partially HGF-deficient mice, we find that HGF promotes SVZ cell proliferation and progenitor cell maintenance, while slowing differentiation and possibly altering cell fate choices. HGF also acts as a chemoattractant for SVZ neuroblasts in co-culture assays. Decreased HGF signaling induces ectopic SVZ neuroblast migration and alters the timing of migration to the olfactory bulb. These results suggest that HGF influences multiple steps in postnatal forebrain neurogenesis. HGF is a mitogen for SVZ neural progenitors, and regulates their differentiation and olfactory bulb migration. PMID:21683144

  19. Multiple division cycles and long-term survival of hepatocytes are distinctly regulated by extracellular signal-regulated kinases ERK1 and ERK2.

    PubMed

    Frémin, Christophe; Bessard, Anne; Ezan, Frédéric; Gailhouste, Luc; Régeard, Morgane; Le Seyec, Jacques; Gilot, David; Pagès, Gilles; Pouysségur, Jacques; Langouët, Sophie; Baffet, Georges

    2009-03-01

    We investigated the specific role of the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 1 (ERK1)/ERK2 pathway in the regulation of multiple cell cycles and long-term survival of normal hepatocytes. An early and sustained epidermal growth factor (EGF)-dependent MAPK activation greatly improved the potential of cell proliferation. In this condition, almost 100% of the hepatocytes proliferated, and targeting ERK1 or ERK2 via RNA interference revealed the specific involvement of ERK2 in this regulation. However, once their first cell cycle was performed, hepatocytes failed to undergo a second round of replication and stayed blocked in G1 phase. We demonstrated that sustained EGF-dependent activation of the MAPK/ERK kinase (MEK)/ERK pathway was involved in this blockage as specific transient inhibition of the cascade repotentiated hepatocytes to perform a new wave of replication and multiple cell cycles. We identified this mechanism by showing that this blockage was in part supported by ERK2-dependent p21 expression. Moreover, continuous MEK inhibition was associated with a lower apoptotic engagement, leading to an improvement of survival up to 3 weeks. Using RNA interference and ERK1 knockout mice, we extended these results by showing that this improved survival was due to the specific inhibition of ERK1 expression/phosphorylation and did not involve ERK2. Our results emphasize that transient MAPK inhibition allows multiple cell cycles in primary cultures of hepatocytes and that ERK2 has a key role in the regulation of S phase entry. Moreover, we revealed a major and distinct role of ERK1 in the regulation of hepatocyte survival. Taken together, our results represent an important advance in understanding long-term survival and cell cycle regulation of hepatocytes.

  20. [Study on the interface of human hepatocyte/micropore polypropylene ultrafiltration membrane].

    PubMed

    Peng, Cheng-Hong; Han, Bao-San; Gao, Chang-You; Ma, Zu-Wei; Zhao, Zhi-Ming; Wang, Yong; Liu, Hong; Zhang, Gui-di; Yang, Mei-Juan

    2004-09-02

    To found a new interface of human hepatocyte/micropore polypropylene ultrafiltration membrane (MPP) with good cytocompatibility so as to construct bioartificial bioreactor with polypropylene hollow fibers in future. MPP ultrafiltration membrane underwent chemical grafting modification through ultraviolet irradiation and Fe(2+) reduction. The contact angles of MPP and the modified MPP membranes were measured. Human hepatic cells L-02 were cultured. MPP and modified MPP membranes were spread on the wells of culture plate and human hepatic cells and cytodex 3 were inoculated on them. Different kinds of microscopy were used to observe the morphology of these cells. The water contact angle of MPP and the modified MPP membranes decreased from 78 degrees +/- 5 degrees to 27 degrees +/- 4 degrees (P < 0.05), which indicated that the hydrophilicity of the membrane was improved obviously after the grafting modification. Human hepatocyte L-02 did not adhere to and spread on the modified MPP membrane surface, and only grew on the microcarrier cytodex 3 with higher density and higher proliferation ratio measured by MTT. Grafting modification of acrylamide on MPP membrane is a good method to improve the human hepatocyte cytocompatibility with MPP ultrafiltration membrane.

  1. Chitooligosaccharides protect human embryonic hepatocytes against oxidative stress induced by hydrogen peroxide.

    PubMed

    Xu, Qingsong; Ma, Pan; Yu, Weiting; Tan, Chengyu; Liu, Hongtao; Xiong, Chuannan; Qiao, Ying; Du, Yuguang

    2010-06-01

    Chitooligosaccharides (COS) has many biological activities, such as antitumor activity and hepatoprotective effect. Herein, we investigated the protective effect of COS against hydrogen peroxide (H2O2)-induced oxidative stress on human embryonic hepatocytes (L02 cells) and its scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical in vitro. The results showed that the lost cell viability induced by H2O2 was markedly restored after 24 h pre-incubation with COS (0.1-0.4 mg/ml). This rescue effect could be related to the antioxidant property of COS, in which we showed that the radical scavenging activity of COS reached 80% at concentration of 2 mg/ml. In addition, COS could prevent cell apoptosis induced by H2O2, as shown by the inhibition of the cleavage of poly (adenosine diphosphate-ribose) polymerase and increased expression of the anti-apoptotic protein Bcl-xL. Furthermore, we have utilized confocal laser microscopy to observe cellular uptake of COS, an important step for COS to exert its effects on target cells. Taken together, our findings suggested that COS could effectively protect L02 cells against oxidative stress, which might be useful in clinical setting during the treatment of oxidative stress-related liver damages.

  2. Annexin V-induced rat Leydig cell proliferation involves Ect2 via RhoA/ROCK signaling pathway.

    PubMed

    Jing, Jun; Chen, Li; Fu, Hai-Yan; Fan, Kai; Yao, Qi; Ge, Yi-Feng; Lu, Jin-Chun; Yao, Bing

    2015-03-24

    This study investigated the effect of annexin V on the proliferation of primary rat Leydig cells and the potential mechanism. Our results showed that annexin V promoted rat Leydig cell proliferation and cell cycle progression in a dose- and time-dependent manner. Increased level of annexin V also enhanced Ect2 protein expression. However, siRNA knockdown of Ect2 attenuated annexin V-induced proliferation of rat Leydig cells. Taken together, these data suggest that increased level of annexin V induced rat Leydig cell proliferation and cell cycle progression via Ect2. Since RhoA activity was increased following Ect2 activation, we further investigated whether Ect2 was involved in annexin V-induced proliferation via the RhoA/ROCK pathway, and the results showed that annexin V increased RhoA activity too, and this effect was abolished by the knockdown of Ect2. Moreover, inhibition of the RhoA/ROCK pathway by a ROCK inhibitor, Y27632, also attenuated annexin V-induced proliferation and cell cycle progression. We thus conclude that Ect2 is involved in annexin V-induced rat Leydig cell proliferation through the RhoA/ROCK pathway.

  3. Donor-Dependent and Other Nondefined Factors Have Greater Influence on the Hepatic Phenotype Than the Starting Cell Type in Induced Pluripotent Stem Cell Derived Hepatocyte-Like Cells.

    PubMed

    Heslop, James A; Kia, Richard; Pridgeon, Christopher S; Sison-Young, Rowena L; Liloglou, Triantafillos; Elmasry, Mohamed; Fenwick, Stephen W; Mills, John S; Kitteringham, Neil R; Goldring, Chris E; Park, Bong K

    2017-05-01

    Drug-induced liver injury is the greatest cause of post-marketing drug withdrawal; therefore, substantial resources are directed toward triaging potentially dangerous new compounds at all stages of drug development. One of the major factors preventing effective screening of new compounds is the lack of a predictive in vitro model of hepatotoxicity. Primary human hepatocytes offer a metabolically relevant model for which the molecular initiating events of hepatotoxicity can be examined; however, these cells vary greatly between donors and dedifferentiate rapidly in culture. Induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) offer a reproducible, physiologically relevant and genotypically normal model cell; however, current differentiation protocols produce HLCs with a relatively immature phenotype. During the reprogramming of somatic cells, the epigenome undergoes dramatic changes; however, this "resetting" is a gradual process, resulting in an altered differentiation propensity, skewed toward the lineage of origin, particularly in early passage cultures. We, therefore, performed a comparison of human hepatocyte- and dermal fibroblast-derived iPSCs, assessing the impact of epigenetic memory at all stages of HLC differentiation. These results provide the first isogenic assessment of the starting cell type in human iPSC-derived HLCs. Despite a trend toward improvement in hepatic phenotype in albumin secretion and gene expression, few significant differences in hepatic differentiation capacity were found between hepatocyte and fibroblast-derived iPSCs. We conclude that the donor and inter-clonal differences have a greater influence on the hepatocyte phenotypic maturity than the starting cell type. Therefore, it is not necessary to use human hepatocytes for generating iPSC-derived HLCs. Stem Cells Translational Medicine 2017;6:1321-1331. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of Alpha

  4. Induction of peroxisomal beta-oxidation by a microbial catabolite of cholic acid in rat liver and cultured rat hepatocytes.

    PubMed Central

    Nishimaki-Mogami, T; Takahashi, A; Toyoda, K; Hayashi, Y

    1993-01-01

    The capability of (4R)-4-(2,3,4,6,6a beta,7,8,9,9a alpha,9b beta-decahydro-6a beta-methyl-3-oxo-1H-cyclopental[f]quinolin-7 beta-yl)valeric acid (DCQVA), a catabolite of cholic acid produced by enterobacteria, to induce peroxisome proliferation in vivo and in vitro was studied. Rats given 0.3% DCQVA in the diet for 2 weeks showed marked increases in peroxisomal beta-oxidation, mitochondrial 2,4-dienoyl-CoA reductase and microsomal laurate omega-oxidation activities in the liver compared with control rats given the diet without DCQVA. Cultured rat hepatocytes treated with DCQVA for 72 h also exhibited greatly enhanced beta-oxidation activity. The increased activity was concentration-dependent and the effective concentrations were comparable with those of clofibric acid that produced the same degree of induction in the assay. The results demonstrate that DCQVA is a potent peroxisome proliferator that occurs naturally in rat intestine. PMID:8216219

  5. Hepatotoxin N-nitrosomorpholine-induced carcinogenesis in rat liver: ex vivo exploration of preneoplastic and neoplastic hepatocytes.

    PubMed

    Jeong, Jin Sook; Lee, Sang Hyeung; Jung, Kap Joong; Choi, Yong C; Park, Woong Yang; Kim, In Hoo; Kim, Sang Soon

    2003-02-01

    N-nitrosomorpholine (NNM) is a hepatotoxic and hepatocarcinogenic agent. This agent was administered in the form of drinking water which contained 200 mg of NNM/liter. Its time-dependent intake profile showed four phases over 20 weeks, followed by a fifth phase where only water was supplied. Most frequently, hepatocellular carcinoma appeared between the end of phase IV and the beginning of phase V. At 5 weeks of NNM administration, foci of altered hepatocytes (FAH) containing 100-1000 hepatocytes could be isolated together with free hepatocytes by the collagenase perfusion method. When these foci were grown on the William's Medium E containing hormonally defined medium, they were able to survive approximately twice as long as normal hepatocytes At 10 weeks of NNM administration, few FAH were isolated together with free hepatocytes. The hepatocytes which had been placed under extended chemical stress showed increased heat tolerance (7 to 8 h) at 43 degrees C, while normal hepatocytes could survive 3 to 4 h. At the neoplastic phase spanning the end of the 20 weeks of the NNM administration and water phase, the rats bearing hepatocellular carcinoma entered the terminal stage, where observable tumor masses could be isolated from the tumor bearing liver and tested for ex vivo growth in tissue culture. After stabilization of the isolated primary hepatoma cells through 10 passages of propagation on William's Medium E or minimal Eagle's medium containing 10% FBS, their gene expression profile was analyzed by DNA microarray and compared with the profile of normal hepatocytes. The comparison revealed that upregulation involved ribosome-dependent protein synthesis, including 40S ribosomal proteins (S4, S7, S18, S20), 60S ribosomal proteins (L6, L21, L32, L37, P1), initiation factor 4A, and elongation factor 1alpha.

  6. Optimization of upcyte® human hepatocytes for the in vitro micronucleus assay.

    PubMed

    Nörenberg, Astrid; Heinz, Stefan; Scheller, Katharina; Hewitt, Nicola J; Braspenning, Joris; Ott, Michael

    2013-12-12

    "Upcyte(®) human hepatocytes" have the unique property of combining proliferation with the expression of drug metabolising activities. In our current study, we evaluated whether these cells would be suitable for early in vitro micronucleus (MN) tests. A treatment period of 96 h without a recovery period was most reliable for detecting MN formation in upcyte(®) hepatocytes from Donor 740. The basal MN rate in upcyte(®) hepatocytes varied considerably between donors (7-28%); therefore, modifications to the assay medium were tested to determine whether they could decrease inherent MN formation. Optimal medium supplements were 10 ng/ml oncostatin M for the pre-culture and recovery periods and 25 ng/ml epidermal growth factor and 10 ng/ml oncostatin M for the treatment period. Using the optimised conditions and outcome criteria, the upcyte(®) hepatocyte MN assay could correctly identify directly acting (e.g. mitomycin C, etoposide) and metabolically activated genotoxins (e.g. benzo[a]pyrene, cyclophosphamide). "True negative" and "false positive" compounds were also correctly identified as negative. The basal %MN in upcyte(®) hepatocytes from Donor 740 treated with DMSO, cyclophosphamide or MMC, was essentially unaffected by the growth stage ranging from population doublings of 14-61, suggesting that billions of cells could be produced from a single donor for standardised drug toxicity testing. In conclusion, we have established and optimised an in vitro MN test by using upcyte(®) hepatocytes to correctly identify known direct and metabolically activated genotoxicants as well as "false positives" and true negative compounds. The almost unlimited supply of cells from a single donor and optimised test conditions increase reproducibility in early and more predictive in vitro MN tests. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Id2 leaves the chromatin of the E2F4–p130-controlled c-myc promoter during hepatocyte priming for liver regeneration

    PubMed Central

    Rodríguez, José L.; Sandoval, Juan; Serviddio, Gaetano; Sastre, Juan; Morante, María; Perrelli, Maria-Giulia; Martínez-Chantar, María L.; Viña, José; Viña, Juan R.; Mato, José M.; Ávila, Matías A.; Franco, Luis; López-Rodas, Gerardo; Torres, Luis

    2006-01-01

    The Id (inhibitor of DNA binding or inhibitor of differentiation) helix–loop–helix proteins are involved in the regulation of cell growth, differentiation and cancer. The fact that the molecular mechanisms of liver regeneration are not completely understood prompted us to study the fate of Id2 in proliferating liver. Id2 increases in liver regeneration after partial hepatectomy, following the early induction of its gene. Co-immunoprecipitation shows that Id2 forms a complex with E2F4, p130 and mSin3A in quiescent liver and all these components are present at the c-myc promoter as shown using ChIP (chromatin immunoprecipitation). Activation of c-myc during hepatocyte priming (G0–G1 transition) correlates with the dissociation of Id2 and HDAC (histone deacetylase), albeit p130 remains bound at least until 6 h. Moreover, as the G0–G1 transition progresses, Id2 and HDAC again bind the c-myc promoter concomitantly with the repression of this gene. The time course of c-myc binding to the Id2 promoter, as determined by ChIP assays is compatible with a role of the oncoprotein as a transcriptional inducer of Id2 in liver regeneration. Immunohistochemical analysis shows that Id2 also increases in proliferating hepatocytes after bile duct ligation. In this case, the pattern of Id2 presence in the c-myc promoter parallels that found in regenerating liver. Our results may suggest a control role for Id2 in hepatocyte priming, through a p130 dissociation-independent regulation of c-myc. PMID:16776654

  8. Involvement of prolyl isomerase PIN1 in the cell cycle progression and proliferation of hepatic oval cells.

    PubMed

    Risal, Prabodh; Shrestha, Nirajan; Chand, Lokendra; Sylvester, Karl G; Jeong, Yeon Jun

    2017-04-01

    Liver regenerates remarkably after toxic injury or surgical resection. In the case of failure of resident hepatocytes to restore loss, repopulation is carried out by induction, proliferation, and differentiation of the progenitor cell. Although, some signaling pathways have been verified to contribute oval cell-mediated liver regeneration, role of Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1(Pin1) in the oval cells proliferation is unknown. In the present study, we evaluate the role of Pin1 in oval cells proliferation. In our study, the expression of Pin1 in the mice liver increased after three weeks feeding of 3, 5-diethoxycarbonyl-1, 4-dihydrocollidine (DDC) diet along with the proliferation of oval cells. The expression of Pin1 was higher in oval cells compared to the hepatocytes.Pin1 inhibition by Juglone reduced oval cell proliferation, which was restored to normal when oval cells were treated with IGF-1. Consistent with increased cell growth, expression of Pin1, β-catenin and PCNA were increased in IGF-1 treated cells in a time dependent manner. In FACS analysis, siRNA-mediated knockdown of the Pin1 protein in the oval cells significantly increased the numbers of cells in G0/G1 phase. Furthermore, hepatocyte when treated with TGF-β showed marked reduction in cell proliferation and expression of Pin1 whereas this effect was not seen in the oval cells treated with TGF-β. In conclusion, Pin1 plays important role in the cell cycle progression and increase oval cells proliferation which may be crucial in chronic liver injury. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease.

    PubMed

    Bell, Catherine C; Hendriks, Delilah F G; Moro, Sabrina M L; Ellis, Ewa; Walsh, Joanne; Renblom, Anna; Fredriksson Puigvert, Lisa; Dankers, Anita C A; Jacobs, Frank; Snoeys, Jan; Sison-Young, Rowena L; Jenkins, Rosalind E; Nordling, Åsa; Mkrtchian, Souren; Park, B Kevin; Kitteringham, Neil R; Goldring, Christopher E P; Lauschke, Volker M; Ingelman-Sundberg, Magnus

    2016-05-04

    Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI.

  10. Hepatocytes Determine the Hypoxic Microenvironment and Radiosensitivity of Colorectal Cancer Cells Through Production of Nitric Oxide That Targets Mitochondrial Respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Heng; Verovski, Valeri N.; Leonard, Wim

    2013-03-01

    Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assessmore » hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes.« less

  11. Genomic analysis of the aging rodent and human liver: impact on xenobiotic metabolism

    EPA Science Inventory

    Metabolic homeostasis of the organism is maintained by the liver’s ability to detoxify and eliminate xenobiotics. This is accomplished, in part, by xenobiotic metabolizing enzymes (XMEs), which metabolize xenobiotics and determine whether exposure will result in toxicity. Some ev...

  12. Effect of copper chloride exposure on the membrane potential and cytosolic free calcium in primary cultured chicken hepatocytes.

    PubMed

    Jia, Xuexia; Chen, Long; Li, Jingtao; Su, Rongsheng; Shi, Dayou; Tang, Zhaoxin

    2012-09-01

    This study was conducted to examine the effects of copper on membrane potential and cytosolic free calcium in isolated primary chicken hepatocytes which were exposed to different concentration of Cu(2+) (0, 10, 50, 100 μM) or a mixture of Cu(2+) and vitamin C (50 and 50 μM, respectively). Viability, membrane potential, and cytosolic free Ca(2+) of monolayer cultured hepatocytes were investigated at the indicated time point. Results showed that, among the different concentrations of Cu(2+) exposure, the viability of hepatocytes treated with 100 μM Cu(2+) was the worst at the 12th and 24th hours. The effects of Cu(2+) on viability and proliferation were time and dose dependent. Further investigation indicated that Cu(2+) exposure significantly enhanced cytosolic free Ca(2+) in hepatocytes, compared to that in control group, at the 24th hour. Meanwhile, membrane potential was noticeably reduced in hepatocytes increasing concentration of Cu(2+). Taking these results together, we have shown that Cu(2+) can cause toxicity to primary chicken hepatocytes in excessive dose and the effect of Cu(2+) exposure on membrane potential is not site specific, which is probably mediated by the changes of cytosolic free Ca(2+).

  13. Apamin inhibits hepatic fibrosis through suppression of transforming growth factor β1-induced hepatocyte epithelial-mesenchymal transition.

    PubMed

    Lee, Woo-Ram; Kim, Kyung-Hyun; An, Hyun-Jin; Kim, Jung-Yeon; Lee, Sun-Jae; Han, Sang-Mi; Pak, Sok Cheon; Park, Kwan-kyu

    2014-07-18

    Apamin is an integral part of bee venom, as a peptide component. It has long been known as a highly selective block Ca(2+)-activated K(+) (SK) channels. However, the cellular mechanism and anti-fibrotic effect of apamin in TGF-β1-induced hepatocytes have not been explored. In the present study, we investigated the anti-fibrosis or anti-EMT mechanism by examining the effect of apamin on TGF-β1-induced hepatocytes. AML12 cells were seeded at ∼60% confluence in complete growth medium. Twenty-four hours later, the cells were changed to serum free medium containing the indicated concentrations of apamin. After 30 min, the cells were treated with 2 ng/ml of TGF-β1 and co-cultured for 48 h. Also, we investigated the effects of apamin on the CCl4-induced liver fibrosis animal model. Treatment of AML12 cells with 2 ng/ml of TGF-β1 resulted in loss of E-cadherin protein at the cell-cell junctions and concomitant increased expression of vimentin. In addition, phosphorylation levels of ERK1/2, Akt, Smad2/3 and Smad4 were increased by TGF-β1 stimulation. However, cells treated concurrently with TGF-β1 and apamin retained high levels of localized expression of E-cadherin and showed no increase in vimentin. Specifically, treatment with 2 μg/ml of apamin almost completely blocked the phosphorylation of ERK1/2, Akt, Smad2/3 and Smad4 in AML12 cells. In addition, apamin exhibited prevention of pathological changes in the CCl4-injected animal models. These results demonstrate the potential of apamin for the prevention of EMT progression induced by TGF-β1 in vitro and CCl4-injected in vivo. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. ROS-dependent HMGA2 upregulation mediates Cd-induced proliferation in MRC-5 cells.

    PubMed

    Xie, Huaying; Wang, Jiayue; Jiang, Liping; Geng, Chengyan; Li, Qiujuan; Mei, Dan; Zhao, Lian; Cao, Jun

    2016-08-01

    Cadmium (Cd) is a heavy metal widely found in a number of environmental matrices, and the exposure to Cd is increasing nowadays. In this study, the role of high mobility group A2 (HMGA2) in Cd-induced proliferation was investigated in MRC-5 cells. Exposure to Cd (2μM) for 48h significantly enhanced the growth of MRC-5 cells, increased reactive oxygen species (ROS) production, and induced both mRNA and protein expression of HMGA2. Evidence for Cd-induced reduction of the number of G0/G1 phase cells and an increase in the number of cells in S phase and G2/M phase was sought by flow cytometric analysis. Western blot analysis showed that cyclin D1, cyclin B1, and cyclin E were upregulated in Cd-treated cells. Further study revealed that N-acetyl cysteine (NAC) markedly prevented Cd-induced proliferation of MRC-5 cells, ROS generation, and the increasing protein level of HMGA2. Silencing of HMGA2 gene by siRNA blocked Cd-induced cyclin D1, cyclin B1, and cyclin E expression and reduction of the number of G0/G1 phase cells. Combining, our data showed that Cd-induced ROS formation provoked HMGA2 upregulation, caused cell cycle changes, and led to cell proliferation. This suggests that HMGA2 might be an important biomarker in Cd-induced cell proliferation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism.

    PubMed

    Duparc, Thibaut; Plovier, Hubert; Marrachelli, Vannina G; Van Hul, Matthias; Essaghir, Ahmed; Ståhlman, Marcus; Matamoros, Sébastien; Geurts, Lucie; Pardo-Tendero, Mercedes M; Druart, Céline; Delzenne, Nathalie M; Demoulin, Jean-Baptiste; van der Merwe, Schalk W; van Pelt, Jos; Bäckhed, Fredrik; Monleon, Daniel; Everard, Amandine; Cani, Patrice D

    2017-04-01

    To examine the role of hepatocyte myeloid differentiation primary-response gene 88 (MyD88) on glucose and lipid metabolism. To study the impact of the innate immune system at the level of the hepatocyte and metabolism, we generated mice harbouring hepatocyte-specific deletion of MyD88 . We investigated the impact of the deletion on metabolism by feeding mice with a normal control diet or a high-fat diet for 8 weeks. We evaluated body weight, fat mass gain (using time-domain nuclear magnetic resonance), glucose metabolism and energy homeostasis (using metabolic chambers). We performed microarrays and quantitative PCRs in the liver. In addition, we investigated the gut microbiota composition, bile acid profile and both liver and plasma metabolome. We analysed the expression pattern of genes in the liver of obese humans developing non-alcoholic steatohepatitis (NASH). Hepatocyte-specific deletion of MyD88 predisposes to glucose intolerance, inflammation and hepatic insulin resistance independently of body weight and adiposity. These phenotypic differences were partially attributed to differences in gene expression, transcriptional factor activity (ie, peroxisome proliferator activator receptor-α, farnesoid X receptor (FXR), liver X receptors and STAT3) and bile acid profiles involved in glucose, lipid metabolism and inflammation. In addition to these alterations, the genetic deletion of MyD88 in hepatocytes changes the gut microbiota composition and their metabolomes, resembling those observed during diet-induced obesity. Finally, obese humans with NASH displayed a decreased expression of different cytochromes P450 involved in bioactive lipid synthesis. Our study identifies a new link between innate immunity and hepatic synthesis of bile acids and bioactive lipids. This dialogue appears to be involved in the susceptibility to alterations associated with obesity such as type 2 diabetes and NASH, both in mice and humans. Published by the BMJ Publishing Group Limited

  16. Human Placental Lactogen Induces CYP2E1 Expression via PI 3-Kinase Pathway in Female Human Hepatocytes

    PubMed Central

    Lee, Jin Kyung; Chung, Hye Jin; Fischer, Liam; Fischer, James; Gonzalez, Frank J.

    2014-01-01

    The state of pregnancy is known to alter hepatic drug metabolism. Hormones that rise during pregnancy are potentially responsible for the changes. Here we report the effects of prolactin (PRL), placental lactogen (PL), and growth hormone variant (GH-v) on expression of major hepatic cytochromes P450 expression and a potential molecular mechanism underlying CYP2E1 induction by PL. In female human hepatocytes, PRL and GH-v showed either no effect or small and variable effects on mRNA expression of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5. On the other hand, PL increased expression level of CYP2E1 mRNA with corresponding increases in CYP2E1 protein and activity levels. Results from hepatocytes and HepaRG cells indicate that PL does not affect the expression or activity of HNF1α, the known transcriptional activator of basal CYP2E1 expression. Furthermore, transient transfection studies and Western blot results showed that STAT signaling, the previously known mediator of PL actions in certain tissues, does not play a role in CYP2E1 induction by PL. A chemical inhibitor of PI3-kinase signaling significantly repressed the CYP2E1 induction by PL in human hepatocytes, suggesting involvement of PI3-kinase pathway in CYP2E1 regulation by PL. CYP2E1-humanized mice did not exhibit enhanced CYP2E1 expression during pregnancy, potentially because of interspecies differences in PL physiology. Taken together, these results indicate that PL induces CYP2E1 expression via PI3-kinase pathway in human hepatocytes. PMID:24408518

  17. Metabolic activation of 3-hydroxyanisole by isolated rat hepatocytes.

    PubMed

    Moridani, Majid Y; Cheon, Sophia S; Khan, Sumsullah; O'Brien, Peter J

    2003-01-06

    A tyrosinase-directed therapeutic approach for malignant melanoma therapy uses the depigmenting phenolic agents such as 4-hydroxyanisole (4-HA) to form cytotoxic o-quinones. However, renal and hepatic toxicity was reported as side effects in a recent 4-HA clinical trial. In search of novel therapeutics, the cytotoxicity of the isomers 4-HA, 3-HA and 2-HA were investigated. In the following, the order of the HAs induced hepatotoxicity in mice, as measured by increased in vivo plasma transaminase activity, or in isolated rat hepatocytes, as measured by trypan blue exclusion, was 3-HA > 2-HA > 4-HA. Hepatocyte GSH depletion preceded HA induced cytotoxicity and a 4-MC-SG conjugate was identified by LC/MS/MS mass spectrometry analysis when 3-HA was incubated with NADPH/microsomes/GSH. 3-HA induced hepatocyte GSH depletion or GSH depletion when 3-HA was incubated with NADPH/microsomes was prevented by CYP 2E1 inhibitors. Dicumarol (an NAD(P)H: quinone oxidoreductase inhibitor) potentiated 3-HA- or 4-methoxycatechol (4-MC) induced toxicity whereas sorbitol (an NADH generating nutrient) greatly prevented cytotoxicity indicating a quinone-mediated cytotoxic mechanism. Ethylendiamine (an o-quinone trap) largely prevented 3-HA and 4-MC-induced cytotoxicity indicating that o-quinone was involved in cytotoxicity. Dithiothreitol (DTT) greatly reduced 3-HA and 4-MC induced toxicity. The ferric chelator deferoxamine slightly decreased 3-HA and 4-MC induced cytotoxicity whereas the antioxidants pyrogallol or TEMPOL greatly prevented the toxicity suggesting that oxidative stress contributed to 3-HA induced cytotoxicity. In summary, ring hydroxylation but not O-demethylation/epoxidation seems to be the bioactivation pathway for 3-HA in rat liver. The cytotoxic mechanism for 3-HA and its metabolite 4-MC likely consists cellular protein alkylation and oxidative stress. These results suggest that 3-HA is not suitable for treatment of melanoma. Copyright 2002 Elsevier Science B.V.

  18. Effects of edaravone, a radical scavenger, on hepatocyte transplantation.

    PubMed

    Hayashi, Chihiro; Ito, Masahiro; Ito, Ryoutaro; Murakumo, Akiko; Yamamoto, Naoki; Hiramatsu, Noriko; Fox, Ira J; Horiguchi, Akihiko

    2014-12-01

    Hepatocyte transplantation (HTx) has yielded significant improvements in liver function and survival in experimentally induced acute liver failure and liver-based metabolic disease. However, transplantation is inefficient, and it is thought that transplanted hepatocytes have a shortened lifespan because of inflammation involving excess nitric oxide (NO). The present study aimed to clarify whether edaravone, a free radical scavenger used to treat ischemic stroke, could reduce ischemic changes in hepatocyte-transplanted livers. Edaravone (3 mg/kg) was administered intravenously 24 h before HTx to Nagase analbuminemic rats (NARs). Hepatocytes were isolated, and 30 × 10(6) cells were injected in a 1.0-ml volume directly into the spleens of NARs. All experimental groups studied received FK506 to control rejection. Animals in Group A received medium-only; Group B received HTx only; and Group C received HTx and edaravone. Forty-eight hours after transplantation, the hepatocytes from animals were isolated and analyzed for staining with propidium iodide- and annexin-V using flow cytometry. Liver sections were also studied by immunostaining for albumin, and TUNEL. Peripheral blood serum albumin levels were measured on post-transplant days 0, 3, 5, 7, 10 and 14 using ELISA. The edaravone-treated animals demonstrated an increased number of engrafted donor hepatocytes in the liver. The edaravone-treated liver sections also contained fewer TUNEL-positive cells and animals that received edaravone had higher serum albumin levels post-transplantation. Hepatocytes were also found to have increased in numbers 2 weeks following treatment with edaravone. Edaravone administration during HTx can suppress apoptosis near the transplanted cells, increasing engraftment. These studies indicate its potential usefulness for future clinical application. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  19. Propofol pretreatment attenuates LPS-induced granulocyte-macrophage colony-stimulating factor production in cultured hepatocytes by suppressing MAPK/ERK activity and NF-{kappa}B translocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jawan, Bruno; Kao, Y.-H.; Department of Biological Sciences, National Sun Yat-Sen University, 70 Lien-Hai Road, Kaohsiung 804, Taiwan

    Propofol (PPF), a widely used intravenous anesthetic for induction and maintenance of anesthesia during surgeries, was found to possess suppressive effect on host immunity. This study aimed at investigating whether PPF plays a modulatory role in the lipopolysaccharide (LPS)-induced inflammatory cytokine expression in a cell line of rat hepatocytes. Morphological observation and viability assay showed that PPF exhibits no cytotoxicity at concentrations up to 300 {mu}M after 48 h incubation. Pretreatment with 100 {mu}M PPF for 24 h prior to LPS stimulation was performed to investigate the modulatory effect on LPS-induced inflammatory gene production. The results of semi-quantitative RT-PCR demonstratedmore » that PPF pretreatment significantly suppressed the LPS-induced toll-like receptor (TLR)-4, CD14, tumor necrosis factor (TNF)-{alpha}, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression. Western blotting analysis showed that PPF pretreatment potentiated the LPS-induced TLR-4 downregulation. Flow cytometrical analysis revealed that PPF pretreatment showed no modulatory effect on the LPS-upregulated CD14 expression on hepatocytes. In addition, PPF pretreatment attenuated the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and I{kappa}B{alpha}, as well as the nuclear translocation of NF-{kappa}B primed by LPS. Moreover, addition of PD98059, a MAPK kinase inhibitor, significantly suppressed the LPS-induced NF-{kappa}B nuclear translocation and GM-CSF production, suggesting that the PPF-attenuated GM-CSF production in hepatocytes may be attributed to its suppressive effect on MAPK/ERK signaling pathway. In conclusion, PPF as an anesthetic may clinically benefit those patients who are vulnerable to sepsis by alleviating sepsis-related inflammatory response in livers.« less

  20. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykens, James A.; Jamieson, Joseph; Marroquin, Lisa

    2008-12-01

    As a class, the biguanides induce lactic acidosis, a hallmark of mitochondrial impairment. To assess potential mitochondrial impairment, we evaluated the effects of metformin, buformin and phenformin on: 1) viability of HepG2 cells grown in galactose, 2) respiration by isolated mitochondria, 3) metabolic poise of HepG2 and primary human hepatocytes, 4) activities of immunocaptured respiratory complexes, and 5) mitochondrial membrane potential and redox status in primary human hepatocytes. Phenformin was the most cytotoxic of the three with buformin showing moderate toxicity, and metformin toxicity only at mM concentrations. Importantly, HepG2 cells grown in galactose are markedly more susceptible to biguanidemore » toxicity compared to cells grown in glucose, indicating mitochondrial toxicity as a primary mode of action. The same rank order of potency was observed for isolated mitochondrial respiration where preincubation (40 min) exacerbated respiratory impairment, and was required to reveal inhibition by metformin, suggesting intramitochondrial bio-accumulation. Metabolic profiling of intact cells corroborated respiratory inhibition, but also revealed compensatory increases in lactate production from accelerated glycolysis. High (mM) concentrations of the drugs were needed to inhibit immunocaptured respiratory complexes, supporting the contention that bioaccumulation is involved. The same rank order was found when monitoring mitochondrial membrane potential, ROS production, and glutathione levels in primary human hepatocytes. In toto, these data indicate that biguanide-induced lactic acidosis can be attributed to acceleration of glycolysis in response to mitochondrial impairment. Indeed, the desired clinical outcome, viz., decreased blood glucose, could be due to increased glucose uptake and glycolytic flux in response to drug-induced mitochondrial dysfunction.« less

  1. Curcumin and docosahexaenoic acid block insulin-induced colon carcinoma cell proliferation.

    PubMed

    Fenton, Jenifer I; McCaskey, Sarah J

    2013-03-01

    Diets high in fish and curcumin are associated with a decreased risk of CRC. Insulin resistance and obesity are associated with increased CRC risk and higher reoccurrence rates. We utilized cell culture to determine if dietary compounds could reduce insulin-induced cell proliferation comparing the response in normal and metastatic colon epithelial cells. We treated model normal murine colon epithelial cells (YAMC) and adenocarcinoma cells (MC38) with docosahexaenoic acid (DHA) or curcumin alone and then co-treatments of the diet-derived compound and insulin were combined. Cell proliferation was stimulated with insulin (1 ug/mL) to model insulin resistance in obesity. Despite the presence of insulin, proliferation was reduced in the MC38 cells treated with 10 μM curcumin (p<0.001) and 50 μM DHA (p<0.001). Insulin stimulated MAPK and MEK phosphorylation was inhibited by DHA and curcumin in MC38 cancer cells. Here we show that curcumin and DHA can block insulin-induced colon cancer cell proliferation in vitro via a MEK mediated mechanism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Switch from type II to I Fas/CD95 death signaling on in vitro culturing of primary hepatocytes.

    PubMed

    Walter, Dorothée; Schmich, Kathrin; Vogel, Sandra; Pick, Robert; Kaufmann, Thomas; Hochmuth, Florian Christoph; Haber, Angelika; Neubert, Karin; McNelly, Sabine; von Weizsäcker, Fritz; Merfort, Irmgard; Maurer, Ulrich; Strasser, Andreas; Borner, Christoph

    2008-12-01

    Fas/CD95-induced apoptosis of hepatocytes in vivo proceeds through the so-called type II pathway, requiring the proapoptotic BH3-only Bcl-2 family member Bid for mitochondrial death signaling. Consequently, Bid-deficient mice are protected from anti-Fas antibody injection induced fatal hepatitis. We report the unexpected finding that freshly isolated mouse hepatocytes, cultured on collagen or Matrigel, become independent of Bid for Fas-induced apoptosis, thereby switching death signaling from type II to type I. In such in vitro cultures, Fas ligand (FasL) activates caspase-3 without Bid cleavage, Bax/Bak activation or cytochrome c release, and neither Bid ablation nor Bcl-2 overexpression is protective. The type II to type I switch depends on extracellular matrix adhesion, as primary hepatocytes in suspension die in a Bid-dependent manner. Moreover, the switch is specific for FasL-induced apoptosis as collagen-plated Bid-deficient hepatocytes are protected from tumor necrosis factor alpha/actinomycin D (TNFalpha/ActD)-induced apoptosis. Our data suggest a selective crosstalk between extracellular matrix and Fas-mediated signaling that favors mitochondria-independent type I apoptosis induction.

  3. Deficiency of angiotensinogen in hepatocytes markedly decreases blood pressure in lean and obese male mice.

    PubMed

    Yiannikouris, Frederique; Wang, Yu; Shoemaker, Robin; Larian, Nika; Thompson, Joel; English, Victoria L; Charnigo, Richard; Su, Wen; Gong, Ming; Cassis, Lisa A

    2015-10-01

    We recently demonstrated that adipocyte deficiency of angiotensinogen (AGT) ablated high-fat diet-induced elevations in plasma angiotensin II (Ang II) concentrations and obesity-hypertension in male mice. Hepatocytes are the predominant source of systemic AGT. Therefore, in this study, we defined the contribution of hepatocyte-derived AGT to obesity-induced elevations in plasma AGT concentrations and hypertension. Male Agt(fl/fl) mice expressing albumin-driven Cre recombinase were bred to female Agt(fl/fl) mice to generate Agt(fl/fl) or hepatocyte AGT-deficient male mice (Agt(Alb)). Mice were fed a low-fat or high-fat diet for 16 weeks. Hepatocyte AGT deficiency had no significant effect on body weight. Plasma AGT concentrations were increased in obese Agt(fl/fl) mice. Hepatocyte AGT deficiency markedly reduced plasma AGT and Ang II concentrations in lean and obese mice. Moreover, hepatocyte AGT deficiency reduced the content and release of AGT from adipose explants. Systolic blood pressure was markedly decreased in lean (by 18 mm Hg) and obese Agt(Alb) mice (by 54 mm Hg) compared with Agt(fl/fl) controls. To define mechanisms, we quantified effects of Ang II on mRNA abundance of megalin, an AGT uptake transporter, in 3T3-L1 adipocytes. Ang II stimulated adipocyte megalin mRNA abundance and decreased media AGT concentrations. These results demonstrate that hepatocytes are the predominant source of systemic AGT in both lean and obese mice. Moreover, reductions in plasma angiotensin concentrations in obese hepatocyte AGT-deficient mice may have limited megalin-dependent uptake of AGT into adipocytes for the production of Ang II in the development of obesity-hypertension. © 2015 American Heart Association, Inc.

  4. Construction of the Database of Rat Repeated-dose Toxicity Tests of Pesticides for the Toxicological Characterization of Hepatocyte Hypertrophy.

    PubMed

    Masuda, Akane; Masuda, Miyabi; Kawano, Takuya; Kitsunai, Yoko; Nakayama, Haruka; Nakajima, Hiroyuki; Kojima, Hiroyuki; Kitamura, Shigeyuki; Uramaru, Naoto; Hosaka, Takuomi; Sasaki, Takamitsu; Yoshinari, Kouichi

    2017-01-01

    Liver and hepatocyte hypertrophy can be induced by exposure to chemical compounds, but the mechanisms and toxicological characteristics of these phenomena have not yet been investigated extensively. In particular, it remains unclear whether the hepatocyte hypertrophy induced by chemical compounds should be judged as an adaptive response or an adverse effect. Thus, understanding of the toxicological characteristics of hepatocyte hypertrophy is of great importance to the safety evaluation of pesticides and other chemical compounds. To this end, we have constructed a database of potentially toxic pesticides. Using risk assessment reports of pesticides that are publicly available from the Food Safety Commission of Japan, we extracted all observations/findings that were based on 90-day subacute toxicity tests and 2-year chronic toxicity and carcinogenicity tests in rats. Analysis of the database revealed that hepatocyte hypertrophy was observed for 37-47% of the pesticides investigated (varying depending on sex and testing period), and that centrilobular hepatocyte hypertrophy was the most frequent among the various types of hepatocyte hypertrophy in both the 90-day and 2-year studies. The database constructed in this study enables us to investigate the relationships between hepatocyte hypertrophy and other toxicological observations/findings, and thus will be useful for characterizing hepatocyte hypertrophy.

  5. Activation of the Nrf2-ARE Pathway in Hepatocytes Protects Against Steatosis in Nutritionally Induced Non-alcoholic Steatohepatitis in Mice

    PubMed Central

    Lee, Lung-Yi; Köhler, Ulrike A.; Zhang, Li; Roenneburg, Drew; Werner, Sabine; Johnson, Jeffrey A.; Foley, David P.

    2014-01-01

    Oxidative stress is implicated in the development of non-alcoholic steatohepatitis (NASH). The Nrf2-antioxidant response element pathway protects cells from oxidative stress. Studies have shown that global Nrf2 deficiency hastens the progression of NASH. The purpose of this study was to determine whether long-term hepatocyte-specific activation of Nrf2 mitigates NASH progression. Transgenic mice expressing a constitutively active Nrf2 construct in hepatocytes (AlbCre+/caNrf2+) and littermate controls were generated. These mice were fed standard or methionine-choline-deficient (MCD) diet, a diet used to induce NASH development in rodents. After 28 days of MCD dietary feeding, mice developed significant increases in steatosis, inflammation, oxidative stress, and HSC activation compared with those mice on standard diet. AlbCre+/caNrf2+ animals had significantly decreased serum transaminases and reduced steatosis when compared with the AlbCre+/caNrf2− animals. This significant reduction in steatosis was associated with increased expression of genes involved in triglyceride export (MTTP) and β-oxidation (CPT2). However, there were no differences in the increased oxidative stress, inflammation, and HSC activation from MCD diet administration between the AlbCre+/caNrf2− and AlbCre+/caNrf2+ animals. We conclude that hepatocyte-specific activation of Nrf2-mediated gene expression decreased hepatocellular damage and steatosis in a dietary model of NASH. However, hepatocyte-specific induction of Nrf2-mediated gene expression alone is insufficient to mitigate inflammation, oxidative stress, and HSC activation in this nutritional NASH model. PMID:25294219

  6. Mineral pitch induces apoptosis and inhibits proliferation via modulating reactive oxygen species in hepatic cancer cells.

    PubMed

    Pant, Kishor; Gupta, Parul; Damania, Preeti; Yadav, Ajay K; Gupta, Aanchal; Ashraf, Anam; Venugopal, Senthil K

    2016-05-27

    Mineral Pitch (MP) is a dark brown coloured humic matter originating from high altitude rocks. It is an Ayurvedic medicinal food, commonly used by the people of the Himalayan regions of Nepal and India for various body ailments. The Huh-7 cells were treated with different concentrations of MP for 24 h, and both apoptosis and proliferation was determined by the TUNEL and MTT assays respectively. The formation of ROS and nitric oxide was analysed by DCFH-DA and Griess reagent respectively. The expression of miRNA-21 and miRNA-22 were checked by the real time PCR. Effect of miRNA-22 on proliferation and c-myc was studied by over-expressing miRNA-22 premiRs in Huh-7 cells. We found that MP enhanced anti-cancer effects by inducing apoptosis and inhibiting proliferation. MP induced both ROS and NO, upon neutralizing them, there was a partial recovery of apoptosis and proliferation. MP also induced miRNA-22 expression, while miRNA-21 expression was inhibited. Over-expression of miRNA-22 resulted in a significant inhibition of proliferation. miRNA-22 directly targeted c-myc gene, thereby inhibited proliferation. These results clearly show that MP induces its anti-cancer activity by more than one pathway. The data clearly indicate that MP induced apoptosis via the production of ROS, and inhibited proliferation by inducing miRNA-22 and inhibiting miRNA-21 in Huh-7 cells.

  7. Enhancement of DEN-induced liver tumorigenesis in heme oxygenase-1 G143H mutant transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Jianfeng; Wang, Dayong; Xiao, Haifeng

    Heme oxygenase (HO) is the rate-limiting enzyme in heme metabolism. HO-1 exhibits anti-oxidative and anti-inflammatory function via the actions of its metabolite, respectively. A growing body of evidence demonstrates that HO-1 is implicated in the pathogenesis and progression of several types of cancer. However, whether HO-1 takes part in healthy-premalignant-malignant transformation is still undefined. In this study, we took advantage of transgenic mice which over-expressed HO-1 dominant negative mutant (HO-1 G143H) and observed its susceptibility to DEN-induced hepatocarcinogenesis. Our results indicate that HO-1 G143H mutant accelerates the progression of tumorigenesis and tumor growth. The mechanism is closely related to enhancementmore » of ROS production which induce more hepatocytes death and secretion of inflammatory cytokines, proliferation of surviving hepatocytes. Our result provides the direct evidence that HO-1 plays an important protective role in liver carcinogenesis. Alternatively, we suggest the possible explanation on effect of HO-1 promoter polymorphism which involved in tumorigenesis. - Highlights: • Enhancement of DEN-induced hepatocarcinogenesis in HO-1 G143H Tg mice. • HO-1G143H mutant enhanced DEN-induced ROS production and liver injury. • HO-1G143H mutant aggravated DEN-induced changes of inflammatory factors and cell proliferation.« less

  8. Hepatocytes express functional NOD1 and NOD2 receptors: A role for NOD1 in hepatocyte CC and CXC chemokine production

    PubMed Central

    Scott, Melanie J.; Chen, Christine; Sun, Qian; Billiar, Timothy R.

    2010-01-01

    Background & Aims NOD-like receptors are recently described cytosolic pattern recognition receptors. NOD1 and NOD2 are members of this family that recognize bacterial cell wall components, diaminopimelic acid and muramyl dipeptide, respectively. Both NOD1 and NOD2 have been associated with many inflammatory diseases, although their role in liver inflammation and infection has not been well studied. Materials and Methods We investigated the role of NOD receptors in mouse liver by assessing expression and activation of NOD1 and NOD2 in liver and primary isolated hepatocytes from C57BL/6 mice. Results Both NOD1 and NOD2 mRNA and protein were highly expressed in hepatocytes and liver. RIP2, the main signaling partner for NODs, was also expressed. Stimulation of hepatocytes with NOD1 ligand (C12-iEDAP) induced NFκB activation, activation of MAP kinases and expression of chemokines CCL5 (RANTES) and CXCL1 (KC). C12-iEDAP also synergized with interferon (IFN)γ to increase iNOS expression and production of nitric oxide. Despite activating NFκB, NOD1 ligand did not upregulate hepatocyte production of the acute phase proteins lipopolysaccharide binding protein, serum amyloid A, or soluble CD14 in cell culture supernatants, or upregulate mRNA expression of lipopolysaccharide binding protein, serum amyloid A, C-reactive protein, or serum amyloid P. NOD2 ligand (MDP) did not activate hepatocytes when given alone, but did synergize with Toll-like receptor ligands, lipopolysaccharide (LPS), and polyI:C to activate NFκB and MAPK. Conclusions All together these data suggest an important role for hepatocyte NOD1 in attracting leukocytes to the liver during infection and for hepatic NLRs to augment innate immune responses to pathogens. PMID:20615568

  9. Melatonin attenuates oxidative stress, liver damage and hepatocyte apoptosis after bile-duct ligation in rats.

    PubMed

    Aktas, Cevat; Kanter, Mehmet; Erboga, Mustafa; Mete, Rafet; Oran, Mustafa

    2014-10-01

    The goal of this study was to evaluate the possible protective effects of melatonin against cholestatic oxidative stress, liver damage and hepatocyte apoptosis in the common rats with bile duct ligation (BDL). A total of 24 male Wistar albino rats were divided into three groups: control, BDL and BDL + received melatonin; each group contains eight animals. Melatonin-treated BDL rats received daily melatonin 100 mg/kg/day via intraperitoneal injection. The application of BDL clearly increased the malondialdehyde (MDA) levels and decreased the superoxide dismutase (SOD) and glutathione (GSH) activities. Melatonin treatment significantly decreased the elevated tissue MDA levels and increased the reduced SOD and GSH enzyme levels in the tissues. The changes demonstrate that the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, mononuclear cells and neutrophil infiltration into the widened portal areas as observed in the BDL group. The data indicate that melatonin attenuates BDL-induced cholestatic liver injury, bile duct proliferation and fibrosis. The α-smooth muscle actin (α-SMA) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in the BDL were observed to be reduced with the melatonin treatment. These results suggest that administration of melatonin is a potentially beneficial agent to reduce liver damage in BDL by decreasing oxidative stress. © The Author(s) 2012.

  10. Apigenin inhibits TGF-β1-induced proliferation and migration of airway smooth muscle cells.

    PubMed

    Li, Li-Hua; Lu, Bin; Wu, Hong-Ke; Zhang, Hao; Yao, Fei-Fei

    2015-01-01

    It is well known that the proliferation and migration of ASM cells (ASMCs) plays an important role in the pathogenesis of airway remodeling in asthma. Previous studies reported that apigenin can inhibit airway remodeling in a mouse asthma model. However, its effects on the proliferation and migration of ASMCs in asthma remain unknown. Therefore, the aim of our present study was to investigate the effects of apigenin on ASMC proliferation and migration, and explore the possible molecular mechanism. We found that apigenin inhibited transforming growth factor-β1 (TGF-β1)-induced ASMC proliferation. The cell cycle was blocked at G1/S-interphase by apigenin. It also suppressed TGF-β1-induced ASMCs migration. Furthermore, apigenin inhibited TGF-β1-induced Smad 2 and Smad 3 phosphorylation in ASMCs. Taken together, these results suggested that apigenin inhibited the proliferation and migration of TGF-β1-stimulated ASMCs by inhibiting Smad signaling pathway. These data might provide useful information for treating asthma and show that apigenin has potential for attenuating airway remodeling.

  11. The use of cultured hepatocytes to investigate the metabolism of drugs and mechanisms of drug hepatotoxicity.

    PubMed

    Gómez-Lechón, M J; Ponsoda, X; Bort, R; Castell, J V

    2001-01-01

    Hepatotoxins can be classified as intrinsic when they exert their effects on all individuals in a dose-dependent manner, and as idiosyncratic when their effects are the consequence of an abnormal metabolism of the drug by susceptible individuals (metabolic idiosyncrasy) or of an immune-mediated injury to hepatocytes (allergic hepatitis). Some xenobiotics are electrophilic, and others are biotransformed by the liver into highly reactive metabolites that are usually more toxic than the parent compound. This activation process is the key to many hepatotoxic phenomena. Mitochondria are a frequent target of hepatotoxic drugs, and the alteration of their function has immediate effects on the energy balance of cells (depletion of ATP). Lipid peroxidation, oxidative stress, alteration of Ca(2+) homeostasis, and covalent binding to cell macromolecules are the molecular mechanisms that are frequently involved in the toxicity of xenobiotics. Against these potential hazards, cells have their own defence mechanisms (for example, glutathione, DNA repair, suicide inactivation). Ultimately, toxicity is the balance between bioactivation and detoxification, which determines whether a reactive metabolite elicits a toxic effect. The ultimate goal of in vitro experiments is to generate the type of scientific information needed to identify compounds that are potentially toxic to man. For this purpose, both the design of the experiments and the interpretation of the results are critical.

  12. Leptin activates STAT and ERK2 pathways and induces gastric cancer cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pai, Rama; Lin Cal; Tran, Teresa

    2005-06-17

    Although leptin is known to induce proliferative response in gastric cancer cells, the mechanism(s) underlying this action remains poorly understood. Here, we provide evidence that leptin-induced gastric cancer cell proliferation involves activation of STAT and ERK2 signaling pathways. Leptin-induced STAT3 phosphorylation is independent of ERK2 activation. Leptin increases SHP2 phosphorylation and enhances binding of Grb2 to SHP2. Inhibition of SHP2 expression with siRNA but not SHP2 phosphatase activity abolished leptin-induced ERK2 activation. While JAK inhibition with AG490 significantly reduced leptin-induced ERK2, STAT3 phosphorylation, and cell proliferation, SHP2 inhibition only partially reduced cancer cell proliferation. Immunostaining of gastric cancer tissues displayedmore » local overexpression of leptin and its receptor indicating that leptin might be produced and act locally in a paracrine or autocrine manner. These findings indicate that leptin promotes cancer growth by activating multiple signaling pathways and therefore blocking its action at the receptor level could be a rational therapeutic strategy.« less

  13. Detoxification function of the Arabidopsis sulphotransferase AtSOT12 by sulphonation of xenobiotics.

    PubMed

    Chen, Jinhua; Gao, Liqiong; Baek, Dongwon; Liu, Chunlin; Ruan, Ying; Shi, Huazhong

    2015-08-01

    Cytosolic sulphotransferases have been implicated in inactivation of endogenous steroid hormones and detoxification of xenobiotics in human and animals. Yet, the function of plant sulphotransferases in xenobiotic sulphonation and detoxification has not been reported. In this study, we show that the Arabidopsis sulphotransferase AtSOT12 could sulphonate the bacterial-produced toxin cycloheximide. Loss-of-function mutant sot12 exhibited hypersensitive phenotype to cycloheximide, and expression of AtSOT12 protein in yeast cells conferred resistance to this toxic compound. AtSOT12 exhibited broad specificity and could sulphonate a variety of xenobiotics including phenolic and polycyclic compounds. Enzyme kinetics analysis indicated that AtSOT12 has different selectivity for simple phenolics with different side chains, and the position of the side chain in the simple phenolic compounds affects substrate binding affinity and catalytic efficiency. We proposed that the broad specificity and induced production of AtSOT12 may have rendered this enzyme to not only modify endogenous molecules such as salicylic acid as we previously reported, but also sulphonate pathogen-produced toxic small molecules to protect them from infection. Sulphonation of small molecules in plants may constitute a rapid way to inactivate or change the physiochemical properties of biologically active molecules that could have profound effects on plant growth, development and defence. © 2015 John Wiley & Sons Ltd.

  14. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease

    PubMed Central

    Bell, Catherine C.; Hendriks, Delilah F. G.; Moro, Sabrina M. L.; Ellis, Ewa; Walsh, Joanne; Renblom, Anna; Fredriksson Puigvert, Lisa; Dankers, Anita C. A.; Jacobs, Frank; Snoeys, Jan; Sison-Young, Rowena L.; Jenkins, Rosalind E.; Nordling, Åsa; Mkrtchian, Souren; Park, B. Kevin; Kitteringham, Neil R.; Goldring, Christopher E. P.; Lauschke, Volker M.; Ingelman-Sundberg, Magnus

    2016-01-01

    Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI. PMID:27143246

  15. Downregulation of the small GTPase SAR1A: a key event underlying alcohol-induced Golgi fragmentation in hepatocytes

    PubMed Central

    Petrosyan, Armen; Cheng, Pi-Wan; Clemens, Dahn L.; Casey, Carol A.

    2015-01-01

    The hepatic asialoglycoprotein receptor (ASGP-R) is posttranslationally modified in the Golgi en route to the plasma membrane, where it mediates clearance of desialylated serum glycoproteins. It is known that content of plasma membrane-associated ASGP-R is decreased after ethanol exposure, although the mechanisms remain elusive. Previously, we found that formation of compact Golgi requires dimerization of the largest Golgi matrix protein giantin. We hypothesize that ethanol-impaired giantin function may be related to altered trafficking of ASGP-R. Here we report that in HepG2 cells expressing alcohol dehydrogenase and hepatocytes of ethanol-fed rats, ethanol metabolism results in Golgi disorganization. This process is initiated by dysfunction of SAR1A GTPase followed by altered COPII vesicle formation and impaired Golgi delivery of the protein disulfide isomerase A3 (PDIA3), an enzyme that catalyzes giantin dimerization. Additionally, we show that SAR1A gene silencing in hepatocytes mimics the effect of ethanol: dedimerization of giantin, arresting PDIA3 in the endoplasmic reticulum (ER) and large-scale alterations in Golgi architecture. Ethanol-induced Golgi fission has no effect on ER-to-Golgi transportation of ASGP-R, however, it results in its deposition in cis-medial-, but not trans-Golgi. Thus, alcohol-induced deficiency in COPII vesicle formation predetermines Golgi fragmentation which, in turn, compromises the Golgi-to-plasma membrane transportation of ASGP-R. PMID:26607390

  16. Therapeutic effect comparison of hepatocyte-like cells and bone marrow mesenchymal stem cells in acute liver failure of rats.

    PubMed

    Li, Dongliang; Fan, Jingjing; He, Xiuhua; Zhang, Xia; Zhang, Zhiqiang; Zeng, Zhiyu; Ruan, Mei; Cai, Lirong

    2015-01-01

    To evaluate the therapeutic efficacy of rat bone marrow mesenchymal stem cells (BMSCs) induced into hepatocyte-like cells and of un-induced BMSCs in acute liver failure rats. BMSCs in highly homogenous passage 3 were cultured using the whole bone marrow adherent culture method. Hepatic-related characters were confirmed with morphology, RT-PCR analysis, glycogen staining and albumin (ALB) immunofluorescence assay. Carbon tetrachloride (CCl4) was injected intraperitoneally to establish an acute rat liver failure model. Hepatocyte-like cells or un-induced BMSCs were respectively injected into the models to examine rats' appearance, liver function assay and liver tissue pathology. Hepatocyte-like morphology, higher expression of cytokeratin 18 (CK18) mRNA and ALB protein, and glycogen accumulation were confirmed in the induced BMSCs. The transplanted DAPI-labeled BMSCs were localized in the liver tissue 3-14 days after transplantation. The levels of liver function indicators (AST, ALT, ALP, and TBIL) from transplanted rats were significant decreased and pathology was improved, indicating the recovery of liver function. However, the differences were statistically insignificant. Both hepatocyte-like cells and un-induced BMSCs had a similarly positively therapeutic efficacy on liver regeneration in rat liver failure model.

  17. COX-2/mPGES-1/PGE2 cascade activation mediates uric acid-induced mesangial cell proliferation.

    PubMed

    Li, Shuzhen; Sun, Zhenzhen; Zhang, Yue; Ruan, Yuan; Chen, Qiuxia; Gong, Wei; Yu, Jing; Xia, Weiwei; He, John Ci-Jiang; Huang, Songming; Zhang, Aihua; Ding, Guixia; Jia, Zhanjun

    2017-02-07

    Hyperuricemia is not only the main feature of gout but also a cause of gout-related organ injuries including glomerular hypertrophy and sclerosis. Uric acid (UA) has been proven to directly cause mesangial cell (MC) proliferation with elusive mechanisms. The present study was undertaken to examined the role of inflammatory cascade of COX-2/mPGES-1/PGE2 in UA-induced MC proliferation. In the dose- and time-dependent experiments, UA increased cell proliferation shown by the increased total cell number, DNA synthesis rate, and the number of cells in S and G2 phases in parallel with the upregulation of cyclin A2 and cyclin D1. Interestingly, UA-induced cell proliferation was accompanied with the upregulation of COX-2 and mPGES-1 at both mRNA and protein levels. Strikingly, inhibition of COX-2 via a specific COX-2 inhibitor NS-398 markedly blocked UA-induced MC proliferation. Meanwhile, UA-induced PGE2 production was almost entirely abolished. Furthermore, inhibiting mPGES-1 by a siRNA approach in MCs also ameliorated UA-induced MC proliferation in line with a significant blockade of PGE2 secretion. More importantly, in gout patients, we observed a significant elevation of urinary PGE2 excretion compared with healthy controls, indicating a translational potential of this study to the clinic. In conclusion, our findings indicated that COX-2/mPGES-1/PGE2 cascade activation mediated UA-induced MC proliferation. This study offered new insights into the understanding and the intervention of UA-related glomerular injury.

  18. An Inducible Transgenic Mouse Model for Immune Mediated Hepatitis Showing Clearance of Antigen Expressing Hepatocytes by CD8+ T Cells

    PubMed Central

    Cebula, Marcin; Ochel, Aaron; Hillebrand, Upneet; Pils, Marina C.; Schirmbeck, Reinhold; Hauser, Hansjörg; Wirth, Dagmar

    2013-01-01

    The liver has the ability to prime immune responses against neo antigens provided upon infections. However, T cell immunity in liver is uniquely modulated by the complex tolerogenic property of this organ that has to also cope with foreign agents such as endotoxins or food antigens. In this respect, the nature of intrahepatic T cell responses remains to be fully characterized. To gain deeper insight into the mechanisms that regulate the CD8+ T cell responses in the liver, we established a novel OVA_X_CreERT2 mouse model. Upon tamoxifen administration OVA antigen expression is observed in a fraction of hepatocytes, resulting in a mosaic expression pattern. To elucidate the cross-talk of CD8+ T cells with antigen-expressing hepatocytes, we adoptively transferred Kb/OVA257-264-specific OT-I T cells to OVA_X_CreERT2 mice or generated triple transgenic OVA_X CreERT2_X_OT-I mice. OT-I T cells become activated in OVA_X_CreERT2 mice and induce an acute and transient hepatitis accompanied by liver damage. In OVA_X_CreERT2_X_OT-I mice, OVA induction triggers an OT-I T cell mediated, fulminant hepatitis resulting in 50% mortality. Surviving mice manifest a long lasting hepatitis, and recover after 9 weeks. In these experimental settings, recovery from hepatitis correlates with a complete loss of OVA expression indicating efficient clearance of the antigen-expressing hepatocytes. Moreover, a relapse of hepatitis can be induced upon re-induction of cured OVA_X_CreERT2_X_OT-I mice indicating absence of tolerogenic mechanisms. This pathogen-free, conditional mouse model has the advantage of tamoxifen inducible tissue specific antigen expression that reflects the heterogeneity of viral antigen expression and enables the study of intrahepatic immune responses to both de novo and persistent antigen. It allows following the course of intrahepatic immune responses: initiation, the acute phase and antigen clearance. PMID:23869228

  19. Targeting CCl4 -induced liver fibrosis by RNA interference-mediated inhibition of cyclin E1 in mice.

    PubMed

    Bangen, Jörg-Martin; Hammerich, Linda; Sonntag, Roland; Baues, Maike; Haas, Ute; Lambertz, Daniela; Longerich, Thomas; Lammers, Twan; Tacke, Frank; Trautwein, Christian; Liedtke, Christian

    2017-10-01

    Initiation and progression of liver fibrosis requires proliferation and activation of resting hepatic stellate cells (HSCs). Cyclin E1 (CcnE1) is the regulatory subunit of the cyclin-dependent kinase 2 (Cdk2) and controls cell cycle re-entry. We have recently shown that genetic inactivation of CcnE1 prevents activation, proliferation, and survival of HSCs and protects from liver fibrogenesis. The aim of the present study was to translate these findings into preclinical applications using an RNA interference (RNAi)-based approach. CcnE1-siRNA (small interfering RNA) efficiently inhibited CcnE1 gene expression in murine and human HSC cell lines and in primary HSCs, resulting in diminished proliferation and increased cell death. In C57BL/6 wild-type (WT) mice, delivery of stabilized siRNA using a liposome-based carrier targeted approximately 95% of HSCs, 70% of hepatocytes, and 40% of CD45 + cells after single injection. Acute CCl 4 -mediated liver injury in WT mice induced endogenous CcnE1 expression and proliferation of surviving hepatocytes and nonparenchymal cells, including CD45 + leukocytes. Pretreatment with CcnE1-siRNA reverted CcnE1 induction to baseline levels of healthy mice, which was associated with reduced liver injury, diminished proliferation of hepatocytes and leukocytes, and attenuated overall inflammatory response. For induction of liver fibrosis, WT mice were challenged with CCl 4 for 4-6 weeks. Co-treatment with CcnE1-siRNA once a week was sufficient to continuously block CcnE1 expression and cell-cycle activity of hepatocytes and nonparenchymal cells, resulting in significantly ameliorated liver fibrosis and inflammation. Importantly, CcnE1-siRNA also prevented progression of liver fibrosis if applied after onset of chronic liver injury. Therapeutic targeting of CcnE1 in vivo using RNAi is feasible and has high antifibrotic activity. (Hepatology 2017;66:1242-1257). © 2017 by the American Association for the Study of Liver Diseases.

  20. Hepatocyte transplantation and advancements in alternative cell sources for liver-based regenerative medicine.

    PubMed

    Lee, Charlotte A; Sinha, Siddharth; Fitzpatrick, Emer; Dhawan, Anil

    2018-06-01

    Human hepatocyte transplantation has been actively perused as an alternative to liver replacement for acute liver failure and liver-based metabolic defects. Current challenges in this field include a limited cell source, reduced cell viability following cryopreservation and poor engraftment of cells into the recipient liver with consequent limited life span. As a result, alternative stem cell sources such as pluripotent stem cells, fibroblasts, hepatic progenitor cells, amniotic epithelial cells and mesenchymal stem/stromal cells (MSCs) can be used to generate induced hepatocyte like cells (HLC) with each technique exhibiting advantages and disadvantages. HLCs may have comparable function to primary human hepatocytes and could offer patient-specific treatment. However, long-term functionality of transplanted HLCs and the potential oncogenic risks of using stem cells have yet to be established. The immunomodulatory effects of MSCs are promising, and multiple clinical trials are investigating their effect in cirrhosis and acute liver failure. Here, we review the current status of hepatocyte transplantation, alternative cell sources to primary human hepatocytes and their potential in liver regeneration. We also describe recent clinical trials using hepatocytes derived from stem cells and their role in improving the phenotype of several liver diseases.

  1. Fibroblast growth factor 7 inhibits cholesterol 7{alpha}-hydroxylase gene expression in hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Zhichao; Yu, Xuemei; Wu, Weibin

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer FGF7 strongly and rapidly down-regulates the expression of CYP7A1 in hepatocytes. Black-Right-Pointing-Pointer FGF7 suppresses the expression of CYP7A1 via FGFR2 and downstream JNK activation. Black-Right-Pointing-Pointer Blocking FGF7 abrogates HSC-induced inhibition of CYP7A1 expression in hepatocytes. -- Abstract: Cholesterol 7{alpha}-hydroxylase (CYP7A1) is the initial and rate-limiting enzyme for bile acid synthesis. Transcription of the CYP7A1 gene is regulated by bile acids, nuclear receptors and cytokines. Fibroblast growth factor 7 (FGF7) secreted from activated hepatic stellate cells (HSC) during chronic liver fibrosis regulates hepatocyte survival and liver regeneration. In the carbon tetrachloride (CCl{sub 4})-induced fibrotic mouse liver, we demonstrated thatmore » the expression of CYP7A1 was largely decreased while the expression of FGF7 was significantly increased. We further demonstrated that FGF7 inhibited CYP7A1 gene expression in hepatocytes. Knockdown study by short interfering RNA, kinase inhibition and phosphorylation assays revealed that the suppression of CYP7A1 expression by FGF7 was mediated by FGFR2 and its downstream JNK signaling cascade. The FGF7 neutralizing antibody restored CYP7A1 expression in Hep3B cells treated with conditioned medium from HSC. In summary, the data suggest that FGF7 is a novel regulator of CYP7A1 expression in hepatocytes and may prevent hepatocytes from accumulating toxic bile acids during liver injury and fibrosis.« less

  2. Agmatine inhibits chronic morphine exposure-induced impairment of hippocampal neural progenitor proliferation in adult rats.

    PubMed

    Liu, Ying; Lu, Guan-Yi; Chen, Wen-Qiang; Li, Yun-Feng; Wu, Ning; Li, Jin

    2018-01-05

    Our previous studies have shown that agmatine inhibited opioid dependence, yet the neural mechanism remains unclear. Growing evidence showed that opioids decrease neurogenesis in the adult hippocampal subgranular zone by inhibiting neural progenitor proliferation. However, whether agmatine affects chronic opioid exposure-induced impairment to hippocampal neural progenitor cell proliferation remains unknown. In the present study, we investigated the role of agmatine in hippocampal neural progenitors in morphine dependence rats. We found that chronic administration of morphine for 12 days induced morphine dependence in rats. This treatment not only decreased the proliferation of hippocampal neural progenitors in the granule cell layer, but also decreased the levels of hippocampal cAMP, pCREB and BDNF. However, these alterations can be restored to normal levels by co-treatment of agmatine (10mg/kg, s.c.). In vitro treatment with agmatine (10µM) for two days significantly increased proliferation of the cultured hippocampal neural progenitors. Concurrent treatment of agmatine (10µM) with morphine (10 or 50µM) reversed the supression of morphine-induced neural progenitor proliferation. In conclusion, we found that agmatine abolished chronic morphine-induced decrease in proliferation of hippocampal progenitors in vivo and in vitro, which may be due to the increase in cAMP-CREB-BDNF signaling. The enhancement of agmatine to proliferation of hippocampal progenitors may be one of the important mechanisms involved in the inhibition of morphine dependence by agmatine. Copyright © 2017. Published by Elsevier B.V.

  3. Hepatocyte Produced Matrix Metalloproteinases Are Regulated by CD147 in Liver Fibrogenesis

    PubMed Central

    Morgan, Alison J.; Tu, Thomas; Wen, Victoria W.; Yee, Christine; Mridha, Auvro; Lee, Maggie; d'Avigdor, William; Locarnini, Stephen A.; McCaughan, Geoffrey W.; Warner, Fiona J.; McLennan, Susan V.; Shackel, Nicholas A.

    2014-01-01

    Background The classical paradigm of liver injury asserts that hepatic stellate cells (HSC) produce, remodel and turnover the abnormal extracellular matrix (ECM) of fibrosis via matrix metalloproteinases (MMPs). In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC. Methods Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention. Results In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14) increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls. Conclusion We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a

  4. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis.

    PubMed

    Calabro, Sarah R; Maczurek, Annette E; Morgan, Alison J; Tu, Thomas; Wen, Victoria W; Yee, Christine; Mridha, Auvro; Lee, Maggie; d'Avigdor, William; Locarnini, Stephen A; McCaughan, Geoffrey W; Warner, Fiona J; McLennan, Susan V; Shackel, Nicholas A

    2014-01-01

    The classical paradigm of liver injury asserts that hepatic stellate cells (HSC) produce, remodel and turnover the abnormal extracellular matrix (ECM) of fibrosis via matrix metalloproteinases (MMPs). In extrahepatic tissues MMP production is regulated by a number of mechanisms including expression of the glycoprotein CD147. Previously, we have shown that CD147 is expressed on hepatocytes but not within the fibrotic septa in cirrhosis [1]. Therefore, we investigated if hepatocytes produce MMPs, regulated by CD147, which are capable of remodelling fibrotic ECM independent of the HSC. Non-diseased, fibrotic and cirrhotic livers were examined for MMP activity and markers of fibrosis in humans and mice. CD147 expression and MMP activity were co-localised by in-situ zymography. The role of CD147 was studied in-vitro with siRNA to CD147 in hepatocytes and in-vivo in mice with CCl4 induced liver injury using ãCD147 antibody intervention. In liver fibrosis in both human and mouse tissue MMP expression and activity (MMP-2, -9, -13 and -14) increased with progressive injury and localised to hepatocytes. Additionally, as expected, MMPs were abundantly expressed by activated HSC. Further, with progressive fibrosis there was expression of CD147, which localised to hepatocytes but not to HSC. Functionally significant in-vitro regulation of hepatocyte MMP production by CD147 was demonstrated using siRNA to CD147 that decreased hepatocyte MMP-2 and -9 expression/activity. Further, in-vivo α-CD147 antibody intervention decreased liver MMP-2, -9, -13, -14, TGF-β and α-SMA expression in CCl4 treated mice compared to controls. We have shown that hepatocytes produce active MMPs and that the glycoprotein CD147 regulates hepatocyte MMP expression. Targeting CD147 regulates hepatocyte MMP production both in-vitro and in-vivo, with the net result being reduced fibrotic matrix turnover in-vivo. Therefore, CD147 regulation of hepatocyte MMP is a novel pathway that could be targeted by

  5. Mechanism of free radical generation in platelets and primary hepatocytes: A novel electron spin resonance study.

    PubMed

    Wang, Chiun-Lang; Yang, Po-Sheng; Tsao, Jeng-Ting; Jayakumar, Thanasekaran; Wang, Meng-Jiy; Sheu, Joen-Rong; Chou, Duen-Suey

    2018-01-01

    Oxygen free radicals have been implicated in the pathogenesis of toxic liver injury and are thought to be involved in cardiac dysfunction in the cirrhotic heart. Therefore, direct evidence for the electron spin resonance (ESR) detection of how D‑galactosamine (GalN), an established experimental hepatotoxic substance, induced free radicals formation in platelets and primary hepatocytes is presented in the present study. ESR results demonstrated that GalN induced hydroxyl radicals (OH•) in a resting human platelet suspension; however, radicals were not produced in a cell free Fenton reaction system. The GalN‑induced OH• formation was significantly inhibited by the cyclooxygenase (COX) inhibitor indomethasin, though it was not affected by the lipoxygenase (LOX) or cytochrome P450 inhibitors, AA861 and 1‑aminobenzotriazole (ABT), in platelets. In addition, the present study demonstrated that baicalein induced semiquinone free radicals in platelets, which were significantly reduced by the COX inhibitor without affecting the formed OH•. In the mouse primary hepatocytes, the formation of arachidonic acid (AA) induced carbon‑centered radicals that were concentration dependently enhanced by GalN. These radicals were inhibited by AA861, though not affected by indomethasin or ABT. In addition, GalN did not induce platelet aggregation prior to or following collagen pretreatment in human platelets. The results of the present study indicated that GalN and baicalein may induce OH• by COX and LOX in human platelets. GalN also potentiated AA induced carbon‑centered radicals in hepatocytes via cytochrome P450. The present study presented the role of free radicals in the pathophysiological association between platelets and hepatocytes.

  6. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, C.F.; Carneiro, A.B.; Silveira, A.B.

    2009-12-18

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10 mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner . To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasitemore » proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.« less

  7. Genistein as a potential inducer of the anti-atherogenic enzyme paraoxonase-1: studies in cultured hepatocytes in vitro and in rat liver in vivo

    PubMed Central

    Schrader, Charlotte; Ernst, Insa M A; Sinnecker, Heike; Soukup, Sebastian T; Kulling, Sabine E; Rimbach, Gerald

    2012-01-01

    A number of cardioprotective effects, including the reduced oxidation of the low-density lipoprotein (LDL) particles, have been attributed to dietary soy isoflavones. Paraoxonase 1 (PON1), an enzyme mainly synthesized in the liver, may exhibit anti-atherogenic activity by protecting LDL from oxidation. Thus, dietary and pharmacological inducers of PON1 may decrease cardiovascular disease risk. Using a luciferase reporter gene assay we screened different flavonoids for their ability to induce PON1 in Huh7 hepatocytes in culture. Genistein was the most potent flavonoid with regard to its PON1-inducing activity, followed by daidzein, luteolin, isorhamnetin and quercetin. Other flavonoids such as naringenin, cyanidin, malvidin and catechin showed only little or no PON1-inducing activity. Genistein-mediated PON1 transactivation was partly inhibited by the oestrogen-receptor antagonist fulvestrant as well as by the aryl hydrocarbon receptor antagonist 7-ketocholesterol. In contrast to genistein, the conjugated genistein metabolites genistein-7-glucuronide, genistein-7-sulfate and genistein-7,4′-disulfate were only weak inducers of PON1 transactivation. Accordingly, dietary genistein supplementation (2 g/kg diet over three weeks) in growing rats did not increase hepatic PON1 mRNA and protein levels as well as plasma PON1 activity. Thus, genistein may be a PON1 inducer in cultured hepatocytes in vitro, but not in rats in vivo. PMID:22304296

  8. PPARs and Xenobiotic-Induced Adverse Effects:Relevance to Human Health

    EPA Science Inventory

    The peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that act as transcription factors and play important roles in the regulation ofa variety of biological processes, such as adipocyte proliferation and differentiation, glucose h...

  9. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Qing-Mei, E-mail: 34713316@qq.com; Jiang, Ping, E-mail: jiangping@163.com; Yang, Min, E-mail: YangMin@163.com

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferationmore » and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and

  10. A role for Hippo/YAP-signaling in FGF-induced lens epithelial cell proliferation and fibre differentiation.

    PubMed

    Dawes, L J; Shelley, E J; McAvoy, J W; Lovicu, F J

    2018-04-01

    Recent studies indicate an important role for the transcriptional co-activator Yes-associated protein (YAP), and its regulatory pathway Hippo, in controlling cell growth and fate during lens development; however, the exogenous factors that promote this pathway are yet to be identified. Given that fibroblast growth factor (FGF)-signaling is an established regulator of lens cell behavior, the current study investigates the relationship between this pathway and Hippo/YAP-signaling during lens cell proliferation and fibre differentiation. Rat lens epithelial explants were cultured with FGF2 to induce epithelial cell proliferation or fibre differentiation. Immunolabeling methods were used to detect the expression of Hippo-signaling components, Total and Phosphorylated YAP, as well as fibre cell markers, Prox-1 and β-crystallin. FGF-induced lens cell proliferation was associated with a strong nuclear localisation of Total-YAP and low-level immuno-staining for phosphorylated-YAP. FGF-induced lens fibre differentiation was associated with a significant increase in cytoplasmic phosphorylated YAP (inactive state) and enhanced expression of core Hippo-signaling components. Inhibition of YAP with Verteporfin suppressed FGF-induced lens cell proliferation and ablated cell elongation during lens fibre differentiation. Inhibition of either FGFR- or MEK/ERK-signaling suppressed FGF-promoted YAP nuclear translocation. Here we propose that FGF promotes Hippo/YAP-signaling during lens cell proliferation and differentiation, with FGF-induced nuclear-YAP expression playing an essential role in promoting the proliferation of lens epithelial cells. An FGF-induced switch from proliferation to differentiation, hence regulation of lens growth, may play a key role in mediating Hippo suppression of YAP transcriptional activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Cell proliferation in dimethylhydrazine-induced colonic adenocarcinomata following cytotoxic drug treatment.

    PubMed

    Tutton, P J; Barkla, D H

    1978-08-25

    A stathmokinetic technique was used to study cell proliferation in dimethylhydrazine-induced adenocarcinomata of rat colon following treatment with cytotoxic drugs. The rate of cell division was significantly increased three days after treatment with 5,7-dihydroxytryptamine and seven days after treatment with 5-fluorouracil. Acceleration of tumour cell proliferation following 5,7-dihydroxytryptamine treatment was inhibited by treating animals with the antiseritoninergic drug Xylamidine Tosylate. Acceleration of tumour cell proliferation following 5-fluorouracil treatment was inhibited by treating animals either with the antiseritoninergic drug BW501 or with the histamine H2-receptor blocking drug Cimetidine.

  12. Glucose fluctuation increased hepatocyte apoptosis under lipotoxicity and the involvement of mitochondrial permeability transition opening.

    PubMed

    Yin, Xueyao; Zheng, Fenping; Pan, Qianqian; Zhang, Saifei; Yu, Dan; Xu, Zhiye; Li, Hong

    2015-12-01

    Oxidative stress is considered to be an important factor in producing lethal hepatocyte injury associated with nonalcoholic fatty liver disease (NAFLD). Glucose fluctuation, more pronounced in patients with diabetes, has been recognized as an even stronger oxidative stress inducer than the sustained hyperglycemia. Here, we investigated the role of glucose variability in the development of the NAFLD based on hepatocyte apoptosis and possible mechanisms. To achieve this goal we studied C57BL/6J mice that were maintained on a high fat diet (HFD) and injected with glucose (3 g/kg) twice daily to induce intermittent high glucose (IHG). We also studied hepatic L02 cells incubated with palmitic acid (PA) to induce steatosis. The following experimental groups were compared: normal glucose (NG), sustained high glucose (SHG) and IHG with or without PA. We found that, although hepatic enzyme levels and liver lipid deposition were comparable between HFD mice injected with glucose or saline, the glucose injected mice displayed marked hepatocyte apoptosis and inflammation, accompanied by increased lipid peroxide in liver. In vitro, in the presence of PA, IHG increased L02 cell apoptosis and oxidative stress and produced pronounced mitochondrial dysfunction relative to the NG and SHG groups. Furthermore, treatment with the mitochondrial permeability transition (MPT) inhibitor, cyclosporin A (1.5 μmol/l), prevented mitochondrial dysfunction, oxidative stress and hepatocyte apoptosis. Our data suggests that IHG under lipotoxicity might contribute to the development of NAFLD by increasing oxidative stress and hepatocyte apoptosis via MPT and its related mitochondrial dysfunction. © 2015 Society for Endocrinology.

  13. Progesterone-induced miR-133a inhibits the proliferation of endometrial epithelial cells.

    PubMed

    Pan, J-L; Yuan, D-Z; Zhao, Y-B; Nie, L; Lei, Y; Liu, M; Long, Y; Zhang, J-H; Blok, L J; Burger, C W; Yue, L-M

    2017-03-01

    This study aimed to understand the role of miR-133a in progesterone actions, explore the regulative mechanism of the progesterone receptor, and investigate the effects of miR-133a on the progesterone-inhibited proliferation of mouse endometrial epithelial cells. The expression of miR-133a induced by progesterone was detected by quantitative real-time PCR both in vivo and in vitro. Ishikawa subcell lines stably transfected with progesterone receptor subtypes were used to determine the receptor mechanism of progesterone inducing miR-133a. Specific miR-133a mimics or inhibitors were transfected into mouse uteri and primary cultured endometrial epithelial cells to overexpress or downregulate the miR-133a. The roles of miR-133a in the cell cycle and proliferation of endometrial epithelial cells were analysed by flow cytometry and Edu incorporation analysis. The protein levels of cyclinD2 in uterine tissue sections and primary cultured endometrial epithelial cells were determined by immunohistochemistry and Western blot analysis. Progesterone could induce miR-133a expression in a PRB-dependent manner in endometrial epithelial cells. miR-133a inhibited endometrial epithelial cell proliferation by arresting cell cycle at the G 1 -S transition. Moreover, miR-133a acted as an inhibitor in downregulating cyclinD2 in endometrial epithelial cells. We showed for the first time that progesterone-induced miR-133a inhibited the proliferation of endometrial epithelial cells by downregulating cyclinD2. Our research indicated an important mechanism for progesterone inhibiting the proliferation of endometrial epithelial cells by inducing special miRNAs to inhibit positive regulatory proteins in the cell cycle. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  14. Upregulation of LYAR induces neuroblastoma cell proliferation and survival.

    PubMed

    Sun, Yuting; Atmadibrata, Bernard; Yu, Denise; Wong, Matthew; Liu, Bing; Ho, Nicholas; Ling, Dora; Tee, Andrew E; Wang, Jenny; Mungrue, Imran N; Liu, Pei Y; Liu, Tao

    2017-09-01

    The N-Myc oncoprotein induces neuroblastoma by regulating gene transcription and consequently causing cell proliferation. Paradoxically, N-Myc is well known to induce apoptosis by upregulating pro-apoptosis genes, and it is not clear how N-Myc overexpressing neuroblastoma cells escape N-Myc-mediated apoptosis. The nuclear zinc finger protein LYAR has recently been shown to modulate gene expression by forming a protein complex with the protein arginine methyltransferase PRMT5. Here we showed that N-Myc upregulated LYAR gene expression by binding to its gene promoter. Genome-wide differential gene expression studies revealed that knocking down LYAR considerably upregulated the expression of oxidative stress genes including CHAC1, which depletes intracellular glutathione and induces oxidative stress. Although knocking down LYAR expression with siRNAs induced oxidative stress, neuroblastoma cell growth inhibition and apoptosis, co-treatment with the glutathione supplement N-acetyl-l-cysteine or co-transfection with CHAC1 siRNAs blocked the effect of LYAR siRNAs. Importantly, high levels of LYAR gene expression in human neuroblastoma tissues predicted poor event-free and overall survival in neuroblastoma patients, independent of the best current markers for poor prognosis. Taken together, our data suggest that LYAR induces proliferation and promotes survival of neuroblastoma cells by repressing the expression of oxidative stress genes such as CHAC1 and suppressing oxidative stress, and identify LYAR as a novel co-factor in N-Myc oncogenesis.

  15. Pluripotent stem cell derived hepatocyte like cells and their potential in toxicity screening.

    PubMed

    Greenhough, Sebastian; Medine, Claire N; Hay, David C

    2010-12-30

    Despite considerable progress in modelling human liver toxicity, the requirement still exists for efficient, predictive and cost effective in vitro models to reduce attrition during drug development. Thousands of compounds fail in this process, with hepatotoxicity being one of the significant causes of failure. The cost of clinical studies is substantial, therefore it is essential that toxicological screening is performed early on in the drug development process. Human hepatocytes represent the gold standard model for evaluating drug toxicity, but are a limited resource. Current alternative models are based on immortalised cell lines and animal tissue, but these are limited by poor function, exhibit species variability and show instability in culture. Pluripotent stem cells are an attractive alternative as they are capable of self-renewal and differentiation to all three germ layers, and thereby represent a potentially inexhaustible source of somatic cells. The differentiation of human embryonic stem cells and induced pluripotent stem cells to functional hepatocyte like cells has recently been reported. Further development of this technology could lead to the scalable production of hepatocyte like cells for liver toxicity screening and clinical therapies. Additionally, induced pluripotent stem cell derived hepatocyte like cells may permit in vitro modelling of gene polymorphisms and genetic diseases. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Dynamic regulation of EZH2 from HPSc to hepatocyte-like cell fate

    PubMed Central

    Helsen, Nicky; Vanhove, Jolien; Boon, Ruben; Xu, Zhuofei; Ordovas, Laura; Verfaillie, Catherine M.

    2017-01-01

    Currently, drug metabolization and toxicity studies rely on the use of primary human hepatocytes and hepatoma cell lines, which both have conceivable limitations. Human pluripotent stem cell (hPSC)—derived hepatocyte-like cells (HLCs) are an alternative and valuable source of hepatocytes that can overcome these limitations. EZH2 (enhancer of zeste homolog 2), a transcriptional repressor of the polycomb repressive complex 2 (PRC2), may play an important role in hepatocyte development, but its role during in vitro hPSC-HLC differentiation has not yet been assessed. We here demonstrate dynamic regulation of EZH2 during hepatic differentiation of hPSC. To enhance EZH2 expression, we inducibly overexpressed EZH2 between d0 and d8, demonstrating a significant improvement in definitive endoderm formation, and improved generation of HLCs. Despite induction of EZH2 overexpression until d8, EZH2 transcript and protein levels decreased from d4 onwards, which might be caused by expression of microRNAs predicted to inhibit EZH2 expression. In conclusion, our studies demonstrate that EZH2 plays a role in endoderm formation and hepatocyte differentiation, but its expression is tightly post-transcriptionally regulated during this process. PMID:29091973

  17. Cytotoxicity evaluation using cryopreserved primary human hepatocytes in various culture formats.

    PubMed

    Richert, Lysiane; Baze, Audrey; Parmentier, Céline; Gerets, Helga H J; Sison-Young, Rowena; Dorau, Martina; Lovatt, Cerys; Czich, Andreas; Goldring, Christopher; Park, B Kevin; Juhila, Satu; Foster, Alison J; Williams, Dominic P

    2016-09-06

    Sixteen training compounds selected in the IMI MIP-DILI consortium, 12 drug-induced liver injury (DILI) positive compounds and 4 non-DILI compounds, were assessed in cryopreserved primary human hepatocytes. When a ten-fold safety margin threshold was applied, the non-DILI-compounds were correctly identified 2h following a single exposure to pooled human hepatocytes (n=13 donors) in suspension and 14-days following repeat dose exposure (3 treatments) to an established 3D-microtissue co-culture (3D-MT co-culture, n=1 donor) consisting of human hepatocytes co-cultured with non-parenchymal cells (NPC). In contrast, only 5/12 DILI-compounds were correctly identified 2h following a single exposure to pooled human hepatocytes in suspension. Exposure of the 2D-sandwich culture human hepatocyte monocultures (2D-sw) for 3days resulted in the correct identification of 11/12 DILI-positive compounds, whereas exposure of the human 3D-MT co-cultures for 14days resulted in identification of 9/12 DILI-compounds; in addition to ximelagatran (also not identified by 2D-sw monocultures, Sison-Young et al., 2016), the 3D-MT co-cultures failed to detect amiodarone and bosentan. The sensitivity of the 2D human hepatocytes co-cultured with NPC to ximelagatran was increased in the presence of lipopolysaccharide (LPS), but only at high concentrations, therefore preventing its classification as a DILI positive compound. In conclusion (1) despite suspension human hepatocytes having the greatest metabolic capacity in the short term, they are the least predictive of clinical DILI across the MIP-DILI test compounds, (2) longer exposure periods than 72h of human hepatocytes do not allow to increase DILI-prediction rate, (3) co-cultures of human hepatocytes with NPC, in the presence of LPS during the 72h exposure period allow the assessment of innate immune system involvement of a given drug. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Optimum conditions for detecting hepatic micronuclei caused by numerical chromosome aberration inducers in mice.

    PubMed

    Igarashi, Miyuki; Setoguchi, Mayumi; Takada, Sanae; Itoh, Satoru; Furuhama, Kazuhisa

    2007-08-15

    To ascertain an optimum condition for detecting micronuclei in the liver caused by numerical aberration inducers, either carbendazim (125-1000mg/kg, p.o.), colchicine (0.375-1.5mg/kg, i.v.), cytochalasin B (2.5-20mg/kg, i.v.), diazepam (3.13-25mg/kg, i.v.), noscapine (7.8-62.5mg/kg, i.v.), paclitaxel (1-100mg/kg, i.v.) or trichlorfon (18.75-150mg/kg, i.v.) was administered once to male Slc:ddY mice 1 day before or after partial hepatectomy (PH, Day 1). Five days after PH (on Day 6), hepatic micronuclei were determined in conjunction with classifications of the main nuclei and relative liver weights as a proliferative indicator or a dysfunction marker of cell division. Additionally, hepatocyte proliferation index (HPI) was calculated by using mono-, bi- and multinucleated cell counts. Treatment of mice with six compounds, except for colchicine, after PH showed higher incidence of micronucleated hepatocytes (MNH) than that before PH, and also increases in binucleated and multinucleated cells. Especially for carbendazim, diazepam, noscapine and trichlorfon, the dosing after PH was essential for the detecting numerical aberration. Colchicine evidently increased HPI and decreased relative liver weights without MNH induction on Day 6. On Day 8 when HPI and relative liver weights almost returned to the basal range, a significant increase in MNH was noted. This implied that the strong inhibition of colchicine on hepatocyte proliferation may obstruct the induction of MNH on Day 6. In conclusion, to detect the potential numerical aberration, exposure of mice to test chemicals should be performed 1 day after PH, during which enhanced proliferation of hepatocytes was seen, and it would be better to analyze the liver specimens on Day 6 or more post-PH.

  19. Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor

    PubMed Central

    Stamateris, Rachel E.; Sharma, Rohit B.; Kong, Yahui; Ebrahimpour, Pantea; Panday, Deepika; Ranganath, Pavana; Zou, Baobo; Levitt, Helena; Parambil, Nisha Abraham; O’Donnell, Christopher P.; García-Ocaña, Adolfo

    2016-01-01

    An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces β-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced β-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal–related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced β-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation. PMID:26740601

  20. Expression of Interferon Lambda 4 Is Associated with Reduced Proliferation and Increased Cell Death in Human Hepatic Cells

    PubMed Central

    Onabajo, Olusegun O.; Porter-Gill, Patricia; Paquin, Ashley; Rao, Nina; Liu, Luyang; Tang, Wei; Brand, Nathan

    2015-01-01

    Interferon lambda 4 (IFN-λ4) is a novel type-III interferon that can be generated only in individuals carrying a ΔG frame-shift allele of an exonic genetic variant (rs368234815-ΔG/TT). The rs368234815-ΔG allele is strongly associated with decreased clearance of hepatitis C virus (HCV) infection. Here, we further explored the biological function of IFN-λ4 expressed in human hepatic cells—a hepatoma cell line HepG2 and fresh primary human hepatocytes (PHHs). We performed live confocal imaging, cell death and proliferation assays, mRNA expression profiling, protein detection, and antibody blocking assays using transient and inducible stable in vitro systems. Not only did we observe significant intracellular retention of IFN-λ4 but also detected secreted IFN-λ4 in the culture media of expressing cells. Secreted IFN-λ4 induced strong activation of the interferon-stimulated genes (ISGs) in IFN-λ4-expressing and surrounding cells in transwell assays. Specifically, in PHHs, secreted IFN-λ4 induced expression of the CXCL10 transcript and a corresponding pro-inflammatory chemokine, IP-10. In IFN-λ4-expressing HepG2 cells, we also observed decreased proliferation and increased cell death. All IFN-λ4-induced phenotypes—activation of ISGs, decreased proliferation, and increased cell death—could be inhibited by an anti-IFN-λ4-specific antibody. Our study offers new insights into biology of IFN-λ4 and its possible role in HCV clearance. PMID:26134097

  1. Human Mesenchymal Stem Cells Provide Protection against Radiation-Induced Liver Injury by Antioxidative Process, Vasculature Protection, Hepatocyte Differentiation, and Trophic Effects

    PubMed Central

    Francois, Sabine; Mouiseddine, Moubarak; Allenet-Lepage, Bénédicte; Voswinkel, Jan; Douay, Luc; Benderitter, Marc; Chapel, Alain

    2013-01-01

    To evaluate the potential therapeutic effect of the infusion of hMSCs for the correction of liver injuries, we performed total body radiation exposure of NOD/SCID mice. After irradiation, mir-27b level decreases in liver, increasing the directional migration of hMSCs by upregulating SDF1α. A significant increase in plasmatic transaminases levels, apoptosis process in the liver vascular system, and in oxidative stress were observed. hMSC injection induced a decrease in transaminases levels and oxidative stress, a disappearance of apoptotic cells, and an increase in Nrf2, SOD gene expression, which might reduce ROS production in the injured liver. Engrafted hMSCs expressed cytokeratin CK18 and CK19 and AFP genes indicating possible hepatocyte differentiation. The presence of hMSCs expressing VEGF and Ang-1 in the perivascular region, associated with an increased expression of VEGFr1, r2 in the liver, can confer a role of secreting cells to hMSCs in order to maintain the endothelial function. To explain the benefits to the liver of hMSC engraftment, we find that hMSCs secreted NGF, HGF, and anti-inflammatory molecules IL-10, IL1-RA contributing to prevention of apoptosis, increasing cell proliferation in the liver which might correct liver dysfunction. MSCs are potent candidates to repair and protect healthy tissues against radiation damages. PMID:24369528

  2. Proteasomal interaction as a critical activity modulator of the human constitutive androstane receptor

    PubMed Central

    Chen, Tao; Laurenzana, Elizabeth M.; Coslo, Denise M.; Chen, Fengming; Omiecinski, Curtis J.

    2014-01-01

    The CAR (constitutive androstane receptor; NR1I3) is a critical xenobiotic sensor that regulates xenobiotic metabolism, drug clearance, energy and lipid homoeostasis, cell proliferation and development. Although constitutively active, in hepatocytes CAR is normally held quiescent through a tethering mechanism in the cytosol, anchored to a protein complex that includes several components, including heat-shock protein 90. Release and subsequent nuclear translocation of CAR is triggered through either direct binding to ligand activators such as CITCO {6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime} or through indirect chemical activation, such as with PB (phenobarbital). In the present study, we demonstrate that proteasomal inhibition markedly disrupts CAR function, repressing CAR nuclear trafficking, disrupting CAR’s interaction with nuclear co-activators and inhibiting induction of CAR target gene responses in human primary hepatocytes following treatment with either PB or CITCO. Paradoxically, these effects occur following accumulation of ubiquitinated hCAR (human CAR). Furthermore, a non-proteolytic function was indicated by its interaction with a SUG1 (suppressor for Gal1), a subunit of the 26S proteasome. Taken together, these data demonstrate that the proteasome complex functions at multiple levels to regulate the functional biology of hCAR activity. PMID:24224465

  3. GPER mediates estrogen-induced signaling and proliferations in human breast epithelial cells, and normal and malignant breast

    PubMed Central

    Scaling, Allison L.

    2014-01-01

    17β-estradiol (estrogen), through receptor binding and activation, is required for mammary gland development. Estrogen stimulates epithelial proliferation in the mammary gland, promoting ductal elongation and morphogenesis. In addition to a developmental role, estrogen promotes proliferation in tumorigenic settings, particularly breast cancer. The proliferative effects of estrogen in the normal breast and breast tumors are attributed to estrogen receptor α. Although in vitro studies have demonstrated that the G protein-coupled estrogen receptor (GPER, previously called GPR30) can modulate proliferation in breast cancer cells both positively and negatively depending on cellular context, its role in proliferation in the intact normal or malignant breast remains unclear. Estrogen-induced GPER-dependent proliferation was assessed in the immortalized non-tumorigenic human breast epithelial cell line, MCF10A, and an ex vivo organ culture model employing human breast tissue from reduction mammoplasty or tumor resections. Stimulation by estrogen and the GPER-selective agonist G-1 increased the mitotic index in MCF10A cells and proportion of cells in the cell cycle in human breast and breast cancer explants, suggesting increased proliferation. Inhibition of candidate signaling pathways that may link GPER activation to proliferation revealed a dependence on Src, epidermal growth factor receptor transactivation by heparin-bound EGF and subsequent ERK phosphorylation. Proliferation was not dependent on matrix metalloproteinase cleavage of membrane bound pro-HB-EGF. The contribution of GPER to estrogen-induced proliferation in MCF10A cells and breast tissue was confirmed by the ability of GPER-selective antagonist G36 to abrogate estrogen- and G-1-induced proliferation, and the ability of siRNA knockdown of GPER to reduce estrogen- and G-1-induced proliferation in MCF10A cells. This is the first study to demonstrate GPER-dependent proliferation in primary normal and malignant

  4. BAG-1 enhances cell-cell adhesion, reduces proliferation and induces chaperone-independent suppression of hepatocyte growth factor-induced epidermal keratinocyte migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinitt, C.A.M.; Wood, J.; Lee, S.S.

    2010-08-01

    Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF)more » in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.« less

  5. Immortalization of Human Fetal Hepatocyte by Ectopic Expression of Human Telomerase Reverse Transcriptase, Human Papilloma Virus (E7) and Simian Virus 40 Large T (SV40 T) Antigen Towards Bioartificial Liver Support.

    PubMed

    Giri, Shibashish; Bader, Augustinus

    2014-09-01

    Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5-7 days. The remaining transfected hepatocytes persisted for 2-4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose consumption. We established a

  6. Fermented wheat powder induces the antioxidant and detoxifying system in primary rat hepatocytes.

    PubMed

    La Marca, Margherita; Beffy, Pascale; Pugliese, Annalisa; Longo, Vincenzo

    2013-01-01

    Many plants exhibit antioxidant properties which may be useful in the prevention of oxidative stress reactions, such as those mediated by the formation of free radical species in different pathological situations. In recent years a number of studies have shown that whole grain products in particular have strong antioxidant activity. Primary cultures of rat hepatocytes were used to investigate whether and how a fermented powder of wheat (Lisosan G) is able to modulate antioxidant and detoxifying enzymes, and whether or not it can activate Nrf2 transcription factor or inhibit NF-kB activation. All of the antioxidant and detoxifying enzymes studied were significantly up-regulated by 0.7 mg/ml Lisosan G treatment. In particular, quinone oxidoreductase and heme oxygenase-1 were induced, although to different degrees, at the transcriptional, protein and/or activity levels by the treatment. As for the Nrf2 transcription factor, a partial translocation of its protein from the cytosol to the nucleus after 1 h of Lisosan G treatment was revealed by immunoblotting. Lisosan G was also observed to decrease H2O2-induced toxicity Taken together, these results show that this powder of wheat is an effective inducer of ARE/Nrf2-regulated antioxidant and detoxifying genes and has the potential to inhibit the translocation of NF-kB into the nucleus.

  7. Sry HMG Box Protein 9-positive (Sox9+) Epithelial Cell Adhesion Molecule-negative (EpCAM−) Biphenotypic Cells Derived from Hepatocytes Are Involved in Mouse Liver Regeneration*

    PubMed Central

    Tanimizu, Naoki; Nishikawa, Yuji; Ichinohe, Norihisa; Akiyama, Haruhiko; Mitaka, Toshihiro

    2014-01-01

    It has been shown that mature hepatocytes compensate tissue damages not only by proliferation and/or hypertrophy but also by conversion into cholangiocyte-like cells. We found that Sry HMG box protein 9-positive (Sox9+) epithelial cell adhesion molecule-negative (EpCAM−) hepatocyte nuclear factor 4α-positive (HNF4α+) biphenotypic cells showing hepatocytic morphology appeared near EpCAM+ ductular structures in the livers of mice fed 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-containing diet. When Mx1-Cre:ROSA mice, which were injected with poly(I:C) to label mature hepatocytes, were fed with the DDC diet, we found LacZ+Sox9+ cells near ductular structures. Although Sox9+EpCAM− cells adjacent to expanding ducts likely further converted into ductular cells, the incidence was rare. To know the cellular characteristics of Sox9+EpCAM− cells, we isolated them as GFP+EpCAM− cells from DDC-injured livers of Sox9-EGFP mice. Sox9+EpCAM− cells proliferated and could differentiate to functional hepatocytes in vitro. In addition, Sox9+EpCAM− cells formed cysts with a small central lumen in collagen gels containing Matrigel® without expressing EpCAM. These results suggest that Sox9+EpCAM− cells maintaining biphenotypic status can establish cholangiocyte-type polarity. Interestingly, we found that some of the Sox9+ cells surrounded luminal spaces in DDC-injured liver while they expressed HNF4α. Taken together, we consider that in addition to converting to cholangiocyte-like cells, Sox9+EpCAM− cells provide luminal space near expanded ductular structures to prevent deterioration of the injuries and potentially supply new hepatocytes to repair damaged tissues. PMID:24482234

  8. High-Fat Diets Alter the Modulatory Effects of Xenobiotics on Cytochrome P450 Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Natalie C.; Webb-Robertson, Bobbie-Jo M.; Clauss, Therese R.

    Cytochrome P450 monooxygenases (P450) are key to the metabolism of myriad endogenous chemicals and xenobiotics, including the majority of therapeutic drugs. Dysregulated P450 activities can lead to altered drug metabolism and toxicity, oxidative stress, and inflammation; all physiological states frequently charged as the impetus for various chronic pathologies. We characterized the impact of common xenobiotic exposures, specifically high-fat diet and active or passive cigarette smoke, on the functional capacity of hepatic and pulmonary P450s. We employed an activity-based protein profiling approach to characterize the identity and activity level of measured individual P450 isoforms. Our results confirm expectations of significant alterationsmore » in pulmonary P450s due to cigarette smoke, but now reveal the repressive impact of high-fat diet-induced obesity on many hepatic P450s activities, and the dynamic alterations due to concomitant diet and smoke exposures on liver and lung P450 activities impacting drug metabolism and pathways of inflammation.« less

  9. Hepatocyte growth factor in renal failure: promise and reality.

    PubMed

    Vargas, G A; Hoeflich, A; Jehle, P M

    2000-04-01

    Can science discover some secrets of Greek mythology? In the case of Prometheus, we can now suppose that his amazing hepatic regeneration was caused by a peptide growth factor called hepatocyte growth factor (HGF). Increasing evidence indicates that HGF acts as a multifunctional cytokine on different cell types. This review addresses the molecular mechanisms that are responsible for the pleiotropic effects of HGF. HGF binds with high affinity to its specific tyrosine kinase receptor c-met, thereby stimulating not only cell proliferation and differentiation, but also cell migration and tumorigenesis. The three fundamental principles of medicine-prevention, diagnosis, and therapy-may be benefited by the rational use of HGF. In renal tubular cells, HGF induces mitogenic and morphogenetic responses. In animal models of toxic or ischemic acute renal failure, HGF acts in a renotropic and nephroprotective manner. HGF expression is rapidly up-regulated in the remnant kidney of nephrectomized rats, inducing compensatory growth. In a mouse model of chronic renal disease, HGF inhibits the progression of tubulointerstitial fibrosis and kidney dysfunction. Increased HGF mRNA transcripts were detected in mesenchymal and tubular epithelial cells of rejecting kidney. In transplanted patients, elevated HGF levels may indicate renal rejection. When HGF is considered as a therapeutic agent in human medicine, for example, to stimulate kidney regeneration after acute injury, strategies need to be developed to stimulate cell regeneration and differentiation without an induction of tumorigenesis.

  10. Effect of PGE2 on thymocyte proliferation induced by Con A or IL-4 + PMA.

    PubMed

    Daculsi, R; Vaillier, D; Bezian, J H; Gualde, N

    1993-02-01

    Prostaglandin E2 (PGE2) is known to inhibit peripheral T-lymphocyte and thymocyte proliferation activated by antigens, mitogens or anti-CD3 antibodies. In this study, we have investigated, the effect of PGE2 on thymocyte proliferation induced by the combination of IL-4 plus PMA. PGE2 inhibits the proliferation of thymocytes activated by ConA, whatever the culture period; in contrast PGE2 shifts the kinetics of thymocyte proliferation after stimulation by IL-4 plus PMA, but does not sustain the proliferation beyond day 3. This effect depends upon cell density, IL-4 concentration and on the time that PGE2 is added to the culture. By use of the cAMP inducer, forskolin, or a cAMP analog, db-cAMP, we observed the same results, PGE2 increases the proliferation of CD8+ corticoresistant thymocytes (CRT) activated by IL-4 plus PMA, but inhibits that of CD4+ CRT. These results suggest that PGE2 can regulate thymocyte proliferation differently according to the activation pathway and the thymic subpopulations.

  11. Repolarization of hepatocytes in culture.

    PubMed

    Talamini, M A; Kappus, B; Hubbard, A

    1997-01-01

    We have evaluated the biochemical, morphological, and functional redevelopment of polarity in freshly isolated hepatocytes cultured using a double layer collagen gel sandwich technique. Western blot analysis showed increased cellular levels of the cell adhesion protein uvomorulin as cultured hepatocytes repolarized. Immunofluorescence studies using antibodies against domain-specific membrane proteins showed polarity as early as 48 hours, although the pattern of the polymeric Immunoglobulin-A receptor (pIgA-R) differed from in vivo liver. Electron microscopy showed developing bile canaliculi at 1 day. However, the functional presence of tight junctions was absent at 1 day, but present at 5 days. We further showed functional polarity to be present at 4 days by documenting the ability of cultured hepatocytes to metabolize and excrete fluorescein diacetate into visible bile canaliculi. We conclude that hepatocytes cultured appropriately develop morphological and functional polarity. Hepatocyte culture is therefore a useful tool for the study of mechanisms responsible for the development of polarized function.

  12. Cytotoxic effects and aromatase inhibition by xenobiotic endocrine disrupters alone and in combination.

    PubMed

    Benachour, Nora; Moslemi, Safa; Sipahutar, Herbert; Seralini, Gilles-Eric

    2007-07-15

    Xenobiotics may cause long-term adverse effects in humans, especially at the embryonic level, raising questions about their levels of exposure, combined effects, and crucial endpoints. We are interested in the possible interactions between xenobiotic endocrine disrupters, cellular viability and androgen metabolism. Accordingly, we tested aroclor 1254 (A1254), atrazine (AZ), o,p'-DDT, vinclozolin (VZ), p,p'-DDE, bisphenol A (BPA), chlordecone (CD), nonylphenol (NP), tributylin oxide (TBTO), and diethylstilbestrol (DES) for cellular toxicity against human embryonic 293 cells, and activity against cellular aromatase, but also on placental microsomes and on the purified equine enzyme. Cellular viability was affected in 24 h by all the xenobiotics with a threshold at 50 microM (except for TBTO and DES, 10 microM threshold), and aromatase was inhibited at non-toxic doses. In combination synergism was observed reducing the threshold values of toxicity to 4-10 microM, and aromatase activity by 50% in some cases. In placental microsomes the most active xenobiotics rapidly inhibited microsomal aromatase in a manner independent of NADPH metabolism. Prolonged exposures to low doses in cells generally amplified by 50 times aromatase inhibition. These xenobiotics may act by inhibition of the active site or by allosteric effects on the enzyme. Bioaccumulation is a feature of some xenobiotics, especially chlordecone, DDT and DDE, and low level chronic exposures can also affect cell signaling mechanisms. This new information about the mechanism of action of these xenobiotics will assist in improved molecular design with a view to providing safer compounds for use in the (human) environment.

  13. Crocin prevents platelet‑derived growth factor BB‑induced vascular smooth muscle cells proliferation and phenotypic switch.

    PubMed

    Tong, Lijian; Qi, Guoxian

    2018-06-01

    The phenotypic switch of vascular smooth muscle cells (VSMCs) is a major initiating factor for atherosclerotic cardiovascular diseases. Platelet‑derived growth factor‑BB (PDGF‑BB) initiates a number of biological processes that contribute to VSMC proliferation and phenotypic switch. Crocin, a component of saffron, has been reported to inhibit atheromatous plaque formation. However, the effects of crocin on PDGF‑BB‑induced VSMC proliferation and phenotypic switch remain unclear. The aim of the present study was to investigate the role of crocin on PDGF‑BB‑induced VSMCs proliferation and phenotypic switch and its underlying mechanisms. Cell proliferation and markers of VSMCs phenotypic switch were measured using a Cell Counting Kit‑8 assay and western blot analysis, respectively. The signaling pathways involved in the effects of crocin on VSMCs were validated by western blot analysis with or without the use of specific pathway inhibitors. Crocin significantly inhibited PDGF‑BB‑induced VSMCs proliferation compared with the PDGF‑BB only group (P<0.05). In addition, crocin significantly abrogated the PDGF‑BB‑induced increase in contractile protein α‑smooth muscle actin, calponin and decrease in synthetic proteins osteopontin (OPN) in a concentration dependent manner (P<0.05). In addition, crocin slowed PDGF‑BB‑induced Janus kinase (JAK)‑signal transducer and activator of transcription 3 (STAT3) and extracellular signal‑regulated kinase (ERK)/Kruppel‑like factor 4 (KLF4) signaling activation in VSMCs. By applying the JAK inhibitor (AG490) and ERK1/2 inhibitor (U0126), the results suggested that the crocin inhibited PDGF‑BB‑induced VSMCs phenotypic switch through the JAK/STAT3 and ERK/KLF4 signaling pathways. These results suggested that crocin may effectively prevent PDGF‑BB‑induced VSMCs proliferation and phenotypic switch and may be a promising candidate for the therapy of atherosclerotic cardiovascular diseases.

  14. Repressive effect of the phytoestrogen genistein on estradiol-induced uterine leiomyoma cell proliferation.

    PubMed

    Miyake, Asako; Takeda, Takashi; Isobe, Aki; Wakabayashi, Atsuko; Nishimoto, Fumihito; Morishige, Ken-Ichirou; Sakata, Masahiro; Kimura, Tadashi

    2009-06-01

    Uterine leiomyomas are the most common gynecological benign tumor and greatly affect reproductive health and well-being. They are the predominant indication for hysterectomy in premenopausal women. Current epidemiological study reported that soy products intake is inversely associated with diseases leading to hysterectomy. Genistein is a soy-derived phytoestrogen and its inhibitory effect on leiomyoma cell proliferation is reported. In this study, we investigated the siginificant inhibitory effect of genistein on estradiol (E(2))-induced leiomyoma cells proliferation. The Eker rat-derived uterine leiomyoma cell line ELT-3 cells were used. Cell proliferation was assessed by counting the number of cells. The expression of estrogen receptors and peroxisome proliferator-activated receptor-gamma (PPARgamma) was evaluated by Western blot analysis. PPARgamma was expressed in ELT-3 cells and genistein acted as PPARgamma ligand. This inhibitory effect of genistein was attenuated by the treatment of cells with PPARgamma antagonist bisphenol A diglycidyl ether (BADGE) or GW9662. These experimental findings in vitro show that the repressive effect of genistein on E(2)-induced ELT-3 cell proliferation is through the activation of PPARgamma. Genistein may be useful as an alternative therapy for leiomyoma.

  15. A single amino acid controls the functional switch of human constitutive androstane receptor (CAR) 1 to the xenobiotic-sensitive splicing variant CAR3.

    PubMed

    Chen, Tao; Tompkins, Leslie M; Li, Linhao; Li, Haishan; Kim, Gregory; Zheng, Yuxin; Wang, Hongbing

    2010-01-01

    The constitutive androstane receptor (CAR) is constitutively activated in immortalized cell lines independent of xenobiotic stimuli. This feature of CAR has limited its use as a sensor for xenobiotic-induced expression of drug-metabolizing enzymes. Recent reports, however, reveal that a splicing variant of human CAR (hCAR3), which contains an insertion of five amino acids (APYLT), exhibits low basal but xenobiotic-inducible activities in cell-based reporter assays. Nonetheless, the underlying mechanisms of this functional shift are not well understood. We have now generated chimeric constructs containing various residues of the five amino acids of hCAR3 and examined their response to typical hCAR activators. Our results showed that the retention of alanine (hCAR1+A) alone is sufficient to confer the constitutively activated hCAR1 to the xenobiotic-sensitive hCAR3. It is noteworthy that hCAR1+A was significantly activated by a series of known hCAR activators, and displayed activation superior to that of hCAR3. Moreover, intracellular localization assays revealed that hCAR1+A exhibits nuclear accumulation upon 6-(4-chlorophenyl) imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl) oxime (CITCO) treatment in COS1 cells, which differs from the spontaneous nuclear distribution of hCAR1 and the nontranslocatable hCAR3. Mammalian two-hybrid and glutathione S-transferase pull-down assays further demonstrated that hCAR1+A interacts with the coactivator SRC-1 and GRIP-1 at low level before activation, while at significantly enhanced level in the presence of CITCO. Thus, the alanine residue in the insertion of hCAR3 seems in charge of the xenobiotic response of hCAR3 through direct and indirect mechanisms. Activation of hCAR1+A may represent a sensitive avenue for the identification of hCAR activators.

  16. A Single Amino Acid Controls the Functional Switch of Human Constitutive Androstane Receptor (CAR) 1 to the Xenobiotic-Sensitive Splicing Variant CAR3

    PubMed Central

    Chen, Tao; Tompkins, Leslie M.; Li, Linhao; Li, Haishan; Kim, Gregory; Zheng, Yuxin

    2010-01-01

    The constitutive androstane receptor (CAR) is constitutively activated in immortalized cell lines independent of xenobiotic stimuli. This feature of CAR has limited its use as a sensor for xenobiotic-induced expression of drug-metabolizing enzymes. Recent reports, however, reveal that a splicing variant of human CAR (hCAR3), which contains an insertion of five amino acids (APYLT), exhibits low basal but xenobiotic-inducible activities in cell-based reporter assays. Nonetheless, the underlying mechanisms of this functional shift are not well understood. We have now generated chimeric constructs containing various residues of the five amino acids of hCAR3 and examined their response to typical hCAR activators. Our results showed that the retention of alanine (hCAR1+A) alone is sufficient to confer the constitutively activated hCAR1 to the xenobiotic-sensitive hCAR3. It is noteworthy that hCAR1+A was significantly activated by a series of known hCAR activators, and displayed activation superior to that of hCAR3. Moreover, intracellular localization assays revealed that hCAR1+A exhibits nuclear accumulation upon 6-(4-chlorophenyl) imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl) oxime (CITCO) treatment in COS1 cells, which differs from the spontaneous nuclear distribution of hCAR1 and the nontranslocatable hCAR3. Mammalian two-hybrid and glutathione S-transferase pull-down assays further demonstrated that hCAR1+A interacts with the coactivator SRC-1 and GRIP-1 at low level before activation, while at significantly enhanced level in the presence of CITCO. Thus, the alanine residue in the insertion of hCAR3 seems in charge of the xenobiotic response of hCAR3 through direct and indirect mechanisms. Activation of hCAR1+A may represent a sensitive avenue for the identification of hCAR activators. PMID:19820207

  17. Fabrication of 3D-culture platform with sandwich architecture for preserving liver-specific functions of hepatocytes using 3D bioprinter.

    PubMed

    Arai, Kenichi; Yoshida, Toshiko; Okabe, Motonori; Goto, Mitsuaki; Mir, Tanveer Ahmad; Soko, Chika; Tsukamoto, Yoshinari; Akaike, Toshihiro; Nikaido, Toshio; Zhou, Kaixuan; Nakamura, Makoto

    2017-06-01

    The development of new three-dimensional (3D) cell culture system that maintains the physiologically relevant signals of hepatocytes is essential in drug discovery and tissue engineering research. Conventional two-dimensional (2D) culture yields cell growth, proliferation, and differentiation. However, gene expression and signaling profiles can be different from in vivo environment. Here, we report the fabrication of a 3D culture system using an artificial scaffold and our custom-made inkjet 3D bioprinter as a new strategy for studying liver-specific functions of hepatocytes. We built a 3D culture platform for hepatocytes-attachment and formation of cell monolayer by interacting the galactose chain of galactosylated alginate gel (GA-gel) with asialoglycoprotein receptor (ASGPR) of hepatocytes. The 3D geometrical arrangement of cells was controlled by using 3D bioprinter, and cell polarity was controlled with the galactosylated hydrogels. The fabricated GA-gel was able to successfully promote adhesion of hepatocytes. To observe liver-specific functions and to mimic hepatic cord, an additional parallel layer of hepatocytes was generated using two gel sheets. These results indicated that GA-gel biomimetic matrices can be used as a 3D culture system that could be effective for the engineering of liver tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1583-1592, 2017. © 2017 Wiley Periodicals, Inc.

  18. Role of canonical transient receptor potential channel-3 in acetylcholine-induced mouse airway smooth muscle cell proliferation.

    PubMed

    Chen, Xiao-Xu; Zhang, Jia-Hua; Pan, Bin-Hua; Ren, Hui-Li; Feng, Xiu-Ling; Wang, Jia-Ling; Xiao, Jun-Hua

    2017-10-15

    Canonical transient receptor potential channel-3 (TRPC3)-encoded Ca 2+ -permeable nonselective cation channel (NSCC) has been proven to be an important native constitutively active channel in airway smooth muscle cell (ASMC), which plays significant roles in physiological and pathological conditions by controlling Ca 2+ homeostasis in ASMC. Acetylcholine (ACh) is generally accepted as a contractile parasympathetic neurotransmitter in the airway. Recently studies have revealed the pathological role of ACh in airway remodeling, however, the mechanisms remain unclear. Here, we investigated the role of TRPC3 in ACh-induced ASMC proliferation. Primary mouse ASMCs were cultured with or without ACh treatment, then cell viability, TRPC3 expression, NSCC currents and [Ca 2+ ] i changes were examined by MTT assay, cell counting, Western blotting, standard whole-cell patch clamp recording and calcium imaging, respectively. Small interfering RNA (siRNA) technology was used to confirm the contribution of TRPC3 to ACh-induced ASMC proliferation. TRPC3 blocker Gd 3+ , antibody or siRNA largely inhibited ACh-induced up-regulation of TRPC3 protein, enhancement of NSCC currents, resting [Ca 2+ ] i and KCl-induced changes in [Ca 2+ ] i , eventually inhibiting ACh-induced ASMC proliferation. Our data suggested ACh could induce ASMC proliferation, and TRPC3 may be involved in ACh-induced ASMC proliferation that occurs with airway remodeling. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Physiological Ranges of Matrix Rigidity Modulate Primary Mouse Hepatocyte Function In Part Through Hepatocyte Nuclear Factor 4 Alpha

    PubMed Central

    Desai, Seema S.; Tung, Jason C.; Zhou, Vivian X.; Grenert, James P.; Malato, Yann; Rezvani, Milad; Español-Suñer, Regina; Willenbring, Holger; Weaver, Valerie M.; Chang, Tammy T.

    2016-01-01

    Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of hepatic-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150Pa and increased to 1–6kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α) whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase (FAK). In addition, blockade of the Rho/Rho-associated protein kinase (ROCK) pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. Conclusion Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/ROCK pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. PMID:26755329

  20. Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes

    PubMed Central

    Choudhury, Mahua; Park, Pil-Hoon; Jackson, Daniel; Shukla, Shivendra D.

    2010-01-01

    The relationship between ethanol induced oxidative stress and acetylation of histone H3 at lysine 9 (H3AcK9) remains unknown and was therefore investigated in primary cultures of rat hepatocytes. Cells were treated with ethanol and a select group of pharmacological agents and the status of H3AcK9 and reactive oxygen species (ROS) were monitored. When hepatocytes were exposed to ethanol (50 mM, 24 hr) in the presence of N-acetyl cystein (ROS reducer) or dietary antioxidants (quercetin, resveratrol), or NADPH oxidase inhibitor apocynin, ethanol induced increases in ROS and H3AcK9, both were significantly reduced. On the other hand, l-buthionine-sulfoximine (ROS inducer) and inhibitor of mitochondrial complex I (rotenone) and III (antimycin) increased ethanol induced H3AcK9 (p<0.01). Oxidative stress also affected ethanol induced alcohol dehydrogenase 1 (ADH1) mRNA expression. These results demonstrate for the first time that oxidative stress is involved in the ethanol induced histone H3 acetylation in hepatocytes. PMID:20705415

  1. Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes.

    PubMed

    Choudhury, Mahua; Park, Pil-Hoon; Jackson, Daniel; Shukla, Shivendra D

    2010-09-01

    The relationship between ethanol-induced oxidative stress and acetylation of histone H3 at lysine 9 (H3AcK9) remains unknown and was therefore investigated in primary cultures of rat hepatocytes. Cells were treated with ethanol, and a select group of pharmacological agents and the status of H3AcK9 and reactive oxygen species (ROS) were monitored. Pretreatment of hepatocytes with N-acetyl cystein (ROS reducer), or dietary antioxidants (quercetin, reserveratrol), or NADPH (reduced nicotinamide adenine dinucleotide phosphate) oxidase inhibitor apocynin, significantly reduced ethanol (50 mM, 24 h) induced increases in ROS and H3AcK9. In contrast, l-buthionine sulfoximine (ROS inducer) and inhibitor of mitochondrial complexes I (rotenone) and III (antimycin) increased ethanol-induced H3AcK9 (P<.01). Oxidative stress also affected ethanol-induced alcohol dehydrogenase 1 mRNA expression. These results demonstrate for the first time that oxidative stress is involved in the ethanol-induced histone H3 acetylation in hepatocytes. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Adaptation to environmental stress in Daphnia magna simultaneously exposed to a xenobiotic.

    PubMed

    Coors, Anja; Hammers-Wirtz, Monika; Ratte, Hans Toni

    2004-07-01

    In standardized ecotoxicological testing chemicals are investigated under optimal conditions for the test organisms despite the fact that environmental factors such as predation pressure and food availability are important parameters regulating natural populations. Food limitation and predator presence can induce shifts in life-history traits in various Daphnia species, especially trade-offs in reproductive biomass allocation. These adaptive responses are thought to ensure survival of the population in a highly variable environment. A xenobiotic dispersant (used in textile dyeing processes) also shifted the biomass allocation of Daphnia magna. To assess whether the dispersant could hinder D. magna adaptation to varying environmental conditions, we conducted experiments with food level and presence of Chaoborus larvae as environmental factors and simultaneous exposure to the dispersant. At low food level and in presence of the predator, D. magna produced fewer but larger sized neonates, regardless of dispersant exposure. The dispersant shifted biomass allocation towards more but smaller sized offspring in all experiments. However, the adaptive response to the environmental factors and the dispersant effect cancelled each other out in that they induced independently from each other opposite shifts in biomass allocation. In summary, the dispersant exposure resulted not in an inhibition of the adaptive response but in a reduction of the value of the response. Our study with this model substance demonstrates that xenobiotics can affect the adaptation of organisms to environmental stress which can result in effects likely to be overlooked in standardized testing.

  3. Location of rRNA transcription to the nucleolar components: disappearance of the fibrillar centers in nucleoli of regenerating rat hepatocytes.

    PubMed

    Montanaro, Lorenzo; Govoni, Marzia; Orrico, Catia; Treré, Davide; Derenzini, Massimo

    2011-01-01

    The precise location of rDNA transcription to the components of mammalian cell nucleolus is still debated. This was due to the fact that all the molecules necessary for rRNA synthesis are located in two of the three components, the fibrillar centers (FCs) and the dense fibrillar component (DFC), which together with the granular component (GC) are considered to be constantly present in mammalian cell nucleoli. In the present study we demonstrated that in nucleoli of many regenerating rat hepatocytes at 15 h after partial hepatectomy the FCs were no longer present, only the DFC and the GC being detected. At this time of regeneration the rRNA transcriptional activity was three fold that of resting hepatocytes, while the synthesis of DNA was not yet significantly increased, indicating that these nucleolar changes were due to the rRNA synthesis up-regulation. The DFC appeared to be organized in numerous, small, roundish tufts of fibrils. The silver staining procedure for AgNOR proteins, which are associated with the ribosomal genes, selectively and homogeneously stained these fibrillar tufts. Immuno-gold visualization of the Upstream Binding Factor (UBF), which is associated with the promoter region and the transcribed portion of the rRNA 45S gene, demonstrated that UBF was selectively located in the fibrillar tufts. We concluded that in proliferating rat hepatocytes the increased synthesis of rRNA induced an activation of the rRNA transcription machinery located in the fibrillar centers which, by becoming associated with the ribonucleoprotein transcripts, assumed the morphological pattern of the DFC.

  4. Preparation of Degradable Biological Carrier With LCC and its Application in Culture of Hepatocytes

    NASA Astrophysics Data System (ADS)

    Zhao, H. K.; Chen, X. K.; Wu, H. F.; Li, J. L.; Xie, Y. M.

    2018-05-01

    The purpose of this article is to extract lignin-carbohydrate complexes (LCC) with poplar as raw material, which was used to prepare bio-carrier by freeze-drying method. The chemical properties and morphological of LCC porous biological carriers were analyzed by GPC, FT-IR, scanning electron microscopy (SEM) and optical microscopy. The FT-IR spectrum results indicated that LCC which are composed of lignin and polysaccharide, with a typical LCC structure. Galactose have a specific ability to recognize liver cells owing to the presence of receptors on hepatocytes. Cell counting results showed that the cells increases fastest while the proliferation rate of the liver cell in LCC is obviously higher than that of control group. These results indicated that poplar LCC is very biocompatible, in which it might be a great potential biological carrier material for human hepatocyte culture.

  5. Coordinated Changes in Xenobiotic Metabolizing Enzyme Gene Expression in Aging Male Rats

    EPA Science Inventory

    In order to gain better insight on aging and susceptibility, we characterized the expression of xenobiotic metabolizing enzymes (XMEs) from the livers of rats to evaluate the change in capacity to respond to xenobiotics across the adult lifespan. Gene expression profiles for XMEs...

  6. Liver-enriched transcription factors are critical for the expression of hepatocyte marker genes in mES-derived hepatocyte-lineage cells.

    PubMed

    Kheolamai, Pakpoom; Dickson, Alan J

    2009-04-23

    Induction of stem cell differentiation toward functional hepatocytes is hampered by lack of knowledge of the hepatocyte differentiation processes. The overall objective of this project is to characterize key stages in the hepatocyte differentiation process. We established a mouse embryonic stem (mES) cell culture system which exhibited changes in gene expression profiles similar to those observed in the development of endodermal and hepatocyte-lineage cells previously described in the normal mouse embryo. Transgenic mES cells were established that permitted isolation of enriched hepatocyte-lineage populations. This approach has isolated mES-derived hepatocyte-lineage cells that express several markers of mature hepatocytes including albumin, glucose-6-phosphatase, tyrosine aminotransferase, cytochrome P450-3a, phosphoenolpyruvate carboxykinase and tryptophan 2,3-dioxygenase. In addition, our results show that the up-regulation of the expression levels of hepatocyte nuclear factor-3alpha, -4alpha, -6, and CCAAT-enhancer binding protein-beta might be critical for passage into late-stage differentiation towards functional hepatocytes. These data present important steps for definition of regulatory phenomena that direct specific cell fate determination. The mES cell culture system generated in this study provides a model for studying transition between stages of the hepatocyte development and has significant potential value for studying the molecular basis of hepatocyte differentiation in vitro.

  7. Butyl benzyl phthalate suppresses the ATP-induced cell proliferation in human osteosarcoma HOS cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, P.-S., E-mail: pslediting@mail.scu.edu.t; Chen, C.-Y.

    2010-05-01

    Butyl benzyl phthalate (BBP), an endocrine disruptor present in the environment, exerts its genomic effects via intracellular steroid receptors and elicits non-genomic effects by interfering with membrane ion-channel receptors. We previously found that BBP blocks the calcium signaling coupled with P2X receptors in PC12 cells (Liu and Chen, 2006). Osteoblast P2X receptors were recently reported to play a role in cell proliferation and bone remodeling. In this present study, the effects of BBP on ATP-induced responses were investigated in human osteosarcoma HOS cells. These receptors mRNA had been detected, named P2X4, P2X7, P2Y2, P2Y4, P2Y5, P2Y9, and P2Y11, in humanmore » osteosarcoma HOS cells by RT-PCR. The enhancement of cell proliferation and the decrease of cytoviability had both been shown to be coupled to stimulation via different concentrations of ATP. BBP suppressed the ATP-induced calcium influx (mainly coupled with P2X) and cell proliferation but not the ATP-induced intracellular calcium release (mainly coupled with P2Y) and cytotoxicity in human osteosarcoma HOS cells. Suramin, a common P2 receptor's antagonist, blocked the ATP-induced calcium signaling, cell proliferation, and cytotoxicity. We suggest that P2X is mainly responsible for cell proliferation, and P2Y might be partially responsible for the observed cytotoxicity. BBP suppressed the calcium signaling coupled with P2X, suppressing cell proliferation. Since the importance of P2X receptors during bone metastasis has recently become apparent, the possible toxic risk of environmental BBP during bone remodeling is a public problem of concern.« less

  8. Docosahexaneoic acid (22:6,n-3) regulates rat hepatocyte SREBP-1 nuclear abundance by Erk- and 26S proteasome-dependent pathways

    PubMed Central

    Botolin, Daniela; Wang, Yun; Christian, Barbara; Jump, Donald B.

    2009-01-01

    Insulin induces and dietary n-3 PUFAs suppress hepatic de novo lipogenesis by controlling sterol-regulatory element binding protein-1 nuclear abundance (nSREBP-1). Our goal was to define the mechanisms involved in this regulatory process. Insulin treatment of rat primary hepatocytes rapidly augments nSREBP-1 and mRNASREBP-1c while suppressing mRNAInsig-2 but not mRNAInsig-1. These events are preceded by rapid but transient increases in Akt and Erk phosphorylation. Removal of insulin from hepatocytes leads to a rapid decline in nSREBP-1 [half-time (T1/2) ~ 10 h] that is abrogated by inhibitors of 26S proteasomal degradation. 22:6,n-3, the major n-3 PUFA accumulating in livers of fish oil-fed rats, suppresses hepatocyte levels of nSREBP-1, mRNASREBP-1c, and mRNAInsig-2 but modestly and transiently induces mRNAInsig-1. More importantly, 22:6,n-3 accelerates the disappearance of hepatocyte nSREBP-1 (T1/2 ~ 4 h) through a 26S proteasome-dependent process. 22:6,n-3 has minimal effects on microsomal SREBP-1 and sterol-regulatory element binding protein cleavage-activating protein or nuclear SREBP-2. 22:6,n-3 transiently inhibits insulin-induced Akt phosphorylation but induces Erk phosphorylation. Inhibitors of Erk phosphorylation, but not overexpressed constitutively active Akt, rapidly attenuate 22:6,n-3 suppression of nSREBP-1. Thus, 22:6,n-3 suppresses hepatocyte nSREBP-1 through 26S proteasome- and Erk-dependent pathways. These studies reveal a novel mechanism for n-3 PUFA regulation of hepatocyte nSREBP-1 and lipid metabolism.—Botolin, D., Y. Wang, B. Christian, and D. B. Jump. Docosahexaneoic acid (22:6,n-3) regulates rat hepatocyte SREBP-1 nuclear abundance by Erk- and 26S proteasome-dependent pathways. PMID:16222032

  9. Three Dimensional Primary Hepatocyte Culture

    NASA Technical Reports Server (NTRS)

    Yoffe, Boris

    1998-01-01

    Our results demonstrated for the first time the feasibility of culturing PHH in microgravity bioreactors that exceeded the longest period obtained using other methods. Within the first week of culture, isolated hepatocytes started to form aggregates, which continuously increased in size (up to 1 cm) and macroscopically appeared as a multidimensional tissue-like assembly. To improve oxygenation and nutrition within the spheroids we performed experiments with the biodegradable nonwoven fiber-based polymers made from PolyGlycolic Acid (PGA). It has been shown that PGA scaffolds stimulate isolated cells to regenerate tissue with defined sizes and shapes and are currently being studied for various tissue-engineering applications. Our data demonstrated that culturing hepatocytes in the presence of PGA scaffolds resulted in more efficient cell assembly and formations of larger cell spheroids (up to 3 cm in length, see figure). The histology of cell aggregates cultured with PGA showed polymer fibers with attached hepatocytes. We initiated experiments to co-culture primary human hepatocytes with human microvascular endothelial cells in the bioreactor. The presence of endothelial cells in co-cultures were established by immunohistochemistry using anti-CD34 monoclonal Ab. Our preliminary data demonstrated that cultures of purified hepatocytes with human microvascular endothelial cells exhibited better growth and expressed higher levels of albumin MRNA for a longer period of time than cultures of ppfified, primary human hepatocytes cultured alone. We also evaluated microsomal deethylation activity of hepatocytes cultured in the presence of endothelial cells.In summary, we have established liver cell culture, which mimicked the structure and function of the parent tissue.

  10. Hepatoprotective effects of Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] on alcohol-damaged primary rat hepatocyte culture in vitro.

    PubMed

    Jiang, Wenhua; Bian, Yuzhu; Wang, Zhenghui; Chang, Thomas Ming Swi

    2017-02-01

    We have prepared a novel nanobiotherapeutic, Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase], which not only transports both oxygen and carbon dioxide but also a therapeutic antioxidant. Our previous study in a severe sustained 90 min hemorrhagic shock rat model shows that it has a hepatoprotective effect. We investigate its hepatoprotective effect further in this present report using an alcohol-damaged primary hepatocyte culture model. Results show that it significantly reduced ethanol-induced AST release, lipid peroxidation, and ROS production in rat primary hepatocytes culture. It also significantly enhanced the viability of ethanol-treated hepatocytes. Thus, the result shows that Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] also has some hepatoprotective effects against alcohol-induced injury in in vitro rat primary hepatocytes cell culture. This collaborate our previous observation of its hepatoprotective effect in a severe sustained 90-min hemorrhagic shock rat model.

  11. Isolated hepatocytes--past, present and future.

    PubMed

    Berry, M N; Grivell, A R; Grivell, M B; Phillips, J W

    1997-07-01

    The first technique for large-scale preparation of isolated hepatocytes was described in 1953 and involved perfusion of rat liver under pressure with a Ca(2+)-free solution containing a chelating agent. Various modifications of this technique were in use over the next ten years, until it was demonstrated that cells prepared in this manner were grossly damaged, losing most of their cytoplasmic enzymes during the preparative procedure. The successful preparation of intact isolated hepatocytes by collagenase-treatment of liver was achieved in 1967, and the widespread use of intact hepatocyte suspensions was accelerated by the development soon after of high-yield preparative techniques involving perfusion of the liver with a medium containing collagenase. The introduction of the isolated hepatocyte preparation has enabled experimental studies that otherwise would not be feasible. Important advances have been the use of cultured hepatocytes, frequently of human origin, for the investigation of the metabolism and toxicology of potential therapeutic agents. Success in this field has been achieved through the steady improvement in techniques for the maintenance in culture of differentiated hepatocytes, and in particular their cytochrome P450 complexes. Another area showing considerable promise is the employment of hepatocytes, generally from a porcine source, in temporary support systems for patients with acute liver failure. Our own studies have concentrated on the demonstration of long-range interactions between hepatocyte compartments which suggest that energy transfer between cell compartments can take place without ATP turnover.

  12. Hepatocyte growth factor induces resistance to anti-epidermal growth factor receptor antibody in lung cancer.

    PubMed

    Yamada, Tadaaki; Takeuchi, Shinji; Kita, Kenji; Bando, Hideaki; Nakamura, Takahiro; Matsumoto, Kunio; Yano, Seiji

    2012-02-01

    Epidermal growth factor receptor (EGFR) is an attractive drug target in lung cancer, with several anti-EGFR antibodies and small-molecule inhibitors showing efficacy in lung cancer patients. Patients, however, may develop resistance to EGFR inhibitors. We demonstrated previously that hepatocyte growth factor (HGF) induced resistance to EGFR tyrosine kinase inhibitors in lung cancers harboring EGFR mutations. We therefore determined whether HGF could induce resistance to the anti-EGFR antibody (EGFR Ab) cetuximab in lung cancer cells, regardless of EGFR gene status. Cetuximab sensitivity and signal transduction in lung cancer cells were examined in the presence or absence of HGF, HGF-producing fibroblasts, and cells tranfected with the HGF gene in vitro and in vivo. HGF induced resistance to cetuximab in H292 (EGFR wild) and Ma-1(EGFR mutant) cells. Western blotting showed that HGF-induced resistance was mediated by the Met/Gab1/Akt signaling pathway. Resistance of H292 and Ma-1 cells to cetuximab was also induced by coculture with lung fibroblasts producing high levels of HGF and by cells stably transfected with the HGF gene. This resistance was abrogated by treatment with anti-HGF neutralizing antibody. HGF-mediated resistance is a novel mechanism of resistance to EGFR Ab in lung cancers, with fibroblast-derived HGF inducing cetuximab resistance in H292 tumors in vivo. The involvement of HGF-Met-mediated signaling should be assessed in acquired resistance to EGFR Ab in lung cancer, regardless of EGFR gene status.

  13. Efavirenz and 8-hydroxyefavirenz induce cell death via a JNK- and BimEL-dependent mechanism in primary human hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bumpus, Namandje N., E-mail: nbumpus1@jhmi.edu

    Chronic use of efavirenz (EFV) has been linked to incidences of hepatotoxicity in patients receiving EFV to treat HIV-1. While recent studies have demonstrated that EFV stimulates hepatic cell death a role for the metabolites of efavirenz in this process has yet to be examined. In the present study, incubation of primary human hepatocytes with synthetic 8-hydroxyEFV (8-OHEFV), which is the primary metabolite of EFV, resulted in cell death, caspase-3 activation and reactive oxygen species formation. The metabolite exerted these effects at earlier time points and using lower concentrations than were required for the parent compound. In addition, pharmacological inhibitionmore » of cytochrome P450-dependent metabolism of EFV using 1-aminobenzotriazole markedly decreased reactive oxygen species formation and cell death. Treatment of primary human hepatocytes with EFV and 8-OHEFV also stimulated phosphorylation of c-Jun N-terminal kinase (JNK) as well as phosphorylation of the JNK substrate c-Jun. Further, the mRNA and protein expression of an isoform of Bim (Bcl-2 interacting mediator of cell death) denoted as BimEL, which is proapoptotic and has been shown to be modulated by JNK, was increased. Inhibition of JNK using SP600125 prevented the EFV- and 8-OHEFV-mediated cell death. Silencing of Bim using siRNA transfected into hepatocytes also prevented cell death resulting from 8-OHEFV-treatment. These data suggest that the oxidative metabolite 8-OHEFV is a more potent inducer of hepatic cell death than the parent compound EFV. Further, activation of the JNK signaling pathway and BimEL mRNA expression appear to be required for EFV- and 8-OHEFV-mediated hepatocyte death. -- Highlights: Black-Right-Pointing-Pointer 8-Hydroxyefavirenz is a more potent stimulator of cell death than efavirenz. Black-Right-Pointing-Pointer Efavirenz and 8-hydroxyefavirenz increase JNK activity and BimEL mRNA expression. Black-Right-Pointing-Pointer JNK and Bim are required for efavirenz- and

  14. Single cell analysis of low-power laser irradiation-induced activation of signaling pathway in cell proliferation

    NASA Astrophysics Data System (ADS)

    Xing, Da; Gao, Xuejuan

    2007-02-01

    Low-power laser irradiation (LPLI) has been shown to promote cell proliferation in various cell types, yet the mechanism of which has not been fully clarified. Investigating the signaling pathways involved in the laser irradiation is important for understanding these processes. The small G protein Ras works as a binary switch in many important intracellular signaling pathways and, therefore, has been one of the focal targets of signal-transduction investigations and drug development. The Ras/Raf/MEK/ERK (extracellular-signal-regulated kinase) signaling pathway is a network that governs proliferation, differentiation and cell survival. Recent studies suggest that Ras/Raf signaling pathway is involved in the LPLI-induced cell proliferation. On the other hand, Protein kinase Cs (PKCs), the Ca 2+ activated, phospholipid-dependent serine/threonine protein kinases, have been recently presumed to be involved in the regulation of cell proliferation induced by LPLI. In this report, to monitor the direct activations of Ras and PKCs after LPLI treatment in living cells in real time, Raichu-Ras reporter and C kinase activity reporter (CKAR) were utilized, both of which were constructed based on fluorescence resonance energy transfer (FRET) technique. The direct activation of Ras is predominantly initiated from the different microdomains of the plasma membrane. The results are monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved COS-7 cells expressing Raichu-Ras reporter using FRET imaging on laser scanning confocal microscope. Furthermore, the increasing activation of PKCs is also monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved human lung adenocarcinoma cells (ASTC-a-1) expressing CKAR reporter using the similar way. Taken together, the dynamic increases of H-Ras and PKCs activities are observed during the processes of cell proliferation induced by LPLI.

  15. Physiological ranges of matrix rigidity modulate primary mouse hepatocyte function in part through hepatocyte nuclear factor 4 alpha.

    PubMed

    Desai, Seema S; Tung, Jason C; Zhou, Vivian X; Grenert, James P; Malato, Yann; Rezvani, Milad; Español-Suñer, Regina; Willenbring, Holger; Weaver, Valerie M; Chang, Tammy T

    2016-07-01

    Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of liver-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150 Pa and increased to 1-6 kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α), whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase. In addition, blockade of the Rho/Rho-associated protein kinase pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/Rho-associated protein kinase pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. (Hepatology 2016;64:261-275). © 2016 by the American Association for the Study of Liver Diseases.

  16. Free fatty acids block glucose-induced β-cell proliferation in mice by inducing cell cycle inhibitors p16 and p18.

    PubMed

    Pascoe, Jordan; Hollern, Douglas; Stamateris, Rachel; Abbasi, Munira; Romano, Lia C; Zou, Baobo; O'Donnell, Christopher P; Garcia-Ocana, Adolfo; Alonso, Laura C

    2012-03-01

    Pancreatic β-cell proliferation is infrequent in adult humans and is not increased in type 2 diabetes despite obesity and insulin resistance, suggesting the existence of inhibitory factors. Free fatty acids (FFAs) may influence proliferation. In order to test whether FFAs restrict β-cell proliferation in vivo, mice were intravenously infused with saline, Liposyn II, glucose, or both, continuously for 4 days. Lipid infusion did not alter basal β-cell proliferation, but blocked glucose-stimulated proliferation, without inducing excess β-cell death. In vitro exposure to FFAs inhibited proliferation in both primary mouse β-cells and in rat insulinoma (INS-1) cells, indicating a direct effect on β-cells. Two of the fatty acids present in Liposyn II, linoleic acid and palmitic acid, both reduced proliferation. FFAs did not interfere with cyclin D2 induction or nuclear localization by glucose, but increased expression of inhibitor of cyclin dependent kinase 4 (INK4) family cell cycle inhibitors p16 and p18. Knockdown of either p16 or p18 rescued the antiproliferative effect of FFAs. These data provide evidence for a novel antiproliferative form of β-cell glucolipotoxicity: FFAs restrain glucose-stimulated β-cell proliferation in vivo and in vitro through cell cycle inhibitors p16 and p18. If FFAs reduce proliferation induced by obesity and insulin resistance, targeting this pathway may lead to new treatment approaches to prevent diabetes.

  17. Antioxidant and cytoprotective properties of D-tagatose in cultured murine hepatocytes.

    PubMed

    Paterna, J C; Boess, F; Stäubli, A; Boelsterli, U A

    1998-01-01

    D-Tagatose is a zero-energy producing ketohexose that is a powerful cytoprotective agent against chemically induced cell injury. To further explore the underlying mechanisms of cytoprotection, we investigated the effects of D-tagatose on both the generation of superoxide anion radicals and the consequences of oxidative stress driven by prooxidant compounds in intact cells. Primary cultures of hepatocytes derived from male C57BL/6 mice were exposed to the redox cycling drug nitrofurantoin (NFT). Lethal cell injury induced by 300 microM NFT was completely prevented by high concentrations (20 mM) of D-tagatose, whereas equimolar concentrations of glucose, mannitol, or xylose were ineffective. The extent of NFT-induced intracellular superoxide anion radical formation was not altered by D-tagatose, indicating that the ketohexose did not inhibit the reductive bioactivation of NFT. However, the NFT-induced decline of the intracellular GSH content was largely prevented by D-tagatose. The sugar also afforded complete protection against NFT toxicity in hepatocytes that had been chemically depleted of GSH. Furthermore, the ketohexose fully protected from increases in both membrane lipid peroxidation and protein carbonyl formation. In addition, D-tagatose completely prevented oxidative cell injury inflicted by toxic iron overload with ferric nitrilotriacetate (100 microM). In contrast, D-tagatose did not protect against lethal cell injury induced by tert-butyl hydroperoxide, a prooxidant which acts by hydroxyl radical-independent mechanisms and which is partitioned in the lipid bilayer. These results indicate that D-tagatose, which is a weak iron chelator, can antagonize the iron-dependent toxic consequences of intracellular oxidative stress in hepatocytes. The antioxidant properties of D-tagatose may result from sequestering the redox-active iron, thereby protecting more critical targets from the damaging potential of hydroxyl radical.

  18. Metabolic and redox barriers in the skin exposed to drugs and xenobiotics.

    PubMed

    Korkina, Liudmila

    2016-01-01

    Growing exposure of human skin to environmental and occupational hazards, to numerous skin care/beauty products, and to topical drugs led to a biomedical concern regarding sustainability of cutaneous chemical defence that is essential for protection against intoxication. Since skin is the largest extra-hepatic drug/xenobiotic metabolising organ where redox-dependent metabolic pathways prevail, in this review, publications on metabolic processes leading to redox imbalance (oxidative stress) and its autocrine/endocrine impact to cutaneous drug/xenobiotic metabolism were scrutinised. Chemical and photo-chemical skin barriers contain metabolic and redox compartments: their protective and homeostatic functions. The review will examine the striking similarity of adaptive responses to exogenous chemical/photo-chemical stressors and endogenous toxins in cutaneous metabolic and redox system; the role(s) of xenobiotics/drugs and phase II enzymes in the endogenous antioxidant defence and maintenance of redox balance; redox regulation of interactions between metabolic and inflammatory responses in skin cells; skin diseases sharing metabolic and redox problems (contact dermatitis, lupus erythematosus, and vitiligo) Due to exceptional the redox dependence of cutaneous metabolic pathways and interaction of redox active metabolites/exogenous antioxidants with drug/xenobiotic metabolism, metabolic tests of topical xenobiotics/drugs should be combined with appropriate redox analyses and performed on 3D human skin models.

  19. FABP4 induces vascular smooth muscle cell proliferation and migration through a MAPK-dependent pathway.

    PubMed

    Girona, Josefa; Rosales, Roser; Plana, Núria; Saavedra, Paula; Masana, Lluís; Vallvé, Joan-Carles

    2013-01-01

    The migration and proliferation of vascular smooth muscle cells play crucial roles in the development of atherosclerotic lesions. This study examined the effects of fatty acid binding protein 4 (FABP4), an adipokine that is associated with cardiovascular risk, endothelial dysfunction and proinflammatory effects, on the migration and proliferation of human coronary artery smooth muscle cells (HCASMCs). A DNA 5-bromo-2'-deoxy-uridine (BrdU) incorporation assay indicated that FABP4 significantly induced the dose-dependent proliferation of HCASMCs with a maximum stimulatory effect at 120 ng/ml (13% vs. unstimulated cells, p<0.05). An anti-FABP4 antibody (40 ng/ml) significantly inhibited the induced cell proliferation, demonstrating the specificity of the FABP4 proliferative effect. FABP4 significantly induced HCASMC migration in a dose-dependent manner with an initial effect at 60 ng/ml (12% vs. unstimulated cells, p<0.05). Time-course studies demonstrated that FABP4 significantly increased cell migration compared with unstimulated cells from 4 h (23%vs. 17%, p<0.05) to 12 h (74%vs. 59%, p<0.05). Pretreatment with LY-294002 (5 µM) and PD98059 (10 µM) blocked the FABP4-induced proliferation and migration of HCASMCs, suggesting the activation of a kinase pathway. On a molecular level, we observed an up-regulation of the MAPK pathway without activation of Akt. We found that FABP4 induced the active forms of the nuclear transcription factors c-jun and c-myc, which are regulated by MAPK cascades, and increased the expression of the downstream genes cyclin D1 and MMP2, CCL2, and fibulin 4 and 5, which are involved in cell cycle regulation and cell migration. These findings indicate a direct effect of FABP4 on the migration and proliferation of HCASMCs, suggesting a role for this adipokine in vascular remodelling. Taken together, these results demonstrate that the FABP4-induced DNA synthesis and cell migration are mediated primarily through a MAPK-dependent pathway that

  20. Green tea polyphenols and tannic acid act as potent inhibitors of phorbol ester-induced nitric oxide generation in rat hepatocytes independent of their antioxidant properties.

    PubMed

    Srivastava, R C; Husain, M M; Hasan, S K; Athar, M

    2000-05-29

    The deleterious effects of excessive release of nitric oxide (NO) have been implicated in the tissue damage and inflammation. In this study, the effect of various flavonoids and other oxidant scavenging chemical agents have been studied for their ability to inhibit 12-O-tetradecanoyl phorbol 13-acetate (TPA)-induced NO generation in rat hepatocyte. Hepatocytes activated with TPA (25-200 nM) released NO in a concentration- and time-dependent manner. Green tea polyphenols (GTP) and tannic acid (TA) were most effective in inhibiting TPA-induced NO generation (90%). These agents were also effective in inhibiting NO formation when added 2 h following TPA addition. The other oxidant scavengers, such as L-histidine, sodium azide, vitamin E and sodium benzoate, were not found to be effective even up to 1.0 mM concentration. These results suggest that TA and GTP are potent inhibitors of NOS activity and the inhibition of TPA-induced NO generation by these polyphenols is independent of their antioxidant activity. It is tempting to speculate that these agents could be utilized in the pharmacological manipulations of NO-dependent pathophysiological responses.