Sample records for xenografts tumor growth

  1. Influence of histamine and serotonin antagonists on the growth of xenografted human colorectal tumors.

    PubMed

    Barkla, D H; Tutton, P J

    1981-12-01

    Four lines of human colorectal cancer were established and serially propagated as subcutaneous xenographs in immunosuppressed inbred CBA/Lac mice. Established xenografts were then used to investigate the influence of a serotonin antagonist (BW 501c) and a histamine H2 receptor antagonists (Cimetidine) on xenograft growth. The growth of each of the four tumor lines was significantly inhibited by BW 501c throughout the treatment, whereas the growth of only two tumor lines was significantly inhibited by Cimetidine treatment. The response of individual tumor lines was not predictable on the basis of either tumor histopathology or the natural growth rate of the untreated xenograft. A number of alternative, but not mutually exclusive, hypotheses are suggested to explain the results. One hypothesis proposes that colorectal tumors are composed of subpopulations of tumor cells that are variously dependent on or independent of amine hormones. Another hypothesis is that tumor cells exhibit temporal changes in hormone sensitivity to amine hormones during treatment. Finally, it is suggested that serotonin and/or histamine H2 antagonists may be useful in preventing the repopulation of colorectal carcinomas following antineoplastic therapy with the use of conventional drugs.

  2. KIT Signaling Promotes Growth of Colon Xenograft Tumors in Mice and is Upregulated in a Subset of Human Colon Cancers

    PubMed Central

    Chen, Evan C.; Karl, Taylor A.; Kalisky, Tomer; Gupta, Santosh K.; O’Brien, Catherine A.; Longacre, Teri A.; van de Rijn, Matt; Quake, Stephen R.; Clarke, Michael F.; Rothenberg, Michael E.

    2015-01-01

    Background & Aims Receptor tyrosine kinase (RTK) inhibitors have advanced colon cancer treatment. We investigated the role of the RTK KIT in development of human colon cancer. Methods An array of 137 patient-derived colon tumors and their associated xenografts were analyzed by immunohistochemistry to measure levels of KIT and its ligand KITLG. KIT and/or KITLG was stably knocked down by expression of small hairpin RNAs from lentiviral vectors in DLD1, HT29, LS174T, and COLO320 colon cancer cell lines, and in UM-COLON#8 and POP77 xenografts; cells transduced with only vector were used as controls. Cells were analyzed by real-time quantitative reverse transcription PCR, single-cell gene expression analysis, flow cytometry, and immunohistochemical, immunoblot, and functional assays. Xenograft tumors were grown from control and KIT-knockdown DLD1 and UM-COLON#8 cells in immunocompromised mice and compared. Some mice were given the RTK inhibitor imatinib following injection of cancer cells; tumor growth was measured based on bioluminescence. We assessed tumorigenicity using limiting dilution analysis. Results KIT and KITLG were expressed heterogeneously by a subset of human colon tumors. Knockdown of KIT decreased proliferation of colon cancer cell lines and growth of xenograft tumors in mice, compared with control cells. KIT knockdown cells had increased expression of enterocyte markers, decreased expression of cycling genes, and, unexpectedly, increased expression of LGR5-associated genes. No activating mutations in KIT were detected in DLD1, POP77, or UM-COLON#8 cell lines. However, KITLG-knockdown DLD1 cells formed smaller xenograft tumors than control cells. Gene expression analysis of single CD44+ cells indicated that KIT may promote growth via KITLG autocrine and/or paracrine signaling. Imatinib inhibited growth of KIT+ colon cancer organoids in culture and growth of xenograft tumors in mice. Cancer cells with endogenous KIT expression were more tumorigenic in

  3. KIT Signaling Promotes Growth of Colon Xenograft Tumors in Mice and Is Up-Regulated in a Subset of Human Colon Cancers.

    PubMed

    Chen, Evan C; Karl, Taylor A; Kalisky, Tomer; Gupta, Santosh K; O'Brien, Catherine A; Longacre, Teri A; van de Rijn, Matt; Quake, Stephen R; Clarke, Michael F; Rothenberg, Michael E

    2015-09-01

    Receptor tyrosine kinase (RTK) inhibitors have advanced colon cancer treatment. We investigated the role of the RTK KIT in development of human colon cancer. An array of 137 patient-derived colon tumors and their associated xenografts were analyzed by immunohistochemistry to measure levels of KIT and its ligand KITLG. KIT and/or KITLG was stably knocked down by expression of small hairpin RNAs from lentiviral vectors in DLD1, HT29, LS174T, and COLO320 DM colon cancer cell lines, and in UM-COLON#8 and POP77 xenografts; cells transduced with only vector were used as controls. Cells were analyzed by real-time quantitative reverse transcription polymerase chain reaction, single-cell gene expression analysis, flow cytometry, and immunohistochemical, immunoblot, and functional assays. Xenograft tumors were grown from control and KIT-knockdown DLD1 and UM-COLON#8 cells in immunocompromised mice and compared. Some mice were given the RTK inhibitor imatinib after injection of cancer cells; tumor growth was measured based on bioluminescence. We assessed tumorigenicity using limiting dilution analysis. KIT and KITLG were expressed heterogeneously by a subset of human colon tumors. Knockdown of KIT decreased proliferation of colon cancer cell lines and growth of xenograft tumors in mice compared with control cells. KIT knockdown cells had increased expression of enterocyte markers, decreased expression of cycling genes, and, unexpectedly, increased expression of LGR5 associated genes. No activating mutations in KIT were detected in DLD1, POP77, or UM-COLON#8 cells. However, KITLG-knockdown DLD1 cells formed smaller xenograft tumors than control cells. Gene expression analysis of single CD44(+) cells indicated that KIT can promote growth via KITLG autocrine and/or paracrine signaling. Imatinib inhibited growth of KIT(+) colon cancer organoids in culture and growth of xenograft tumors in mice. Cancer cells with endogenous KIT expression were more tumorigenic in mice. KIT and

  4. Hedgehog signal inhibitor forskolin suppresses cell proliferation and tumor growth of human rhabdomyosarcoma xenograft.

    PubMed

    Yamanaka, Hiroaki; Oue, Takaharu; Uehara, Shuichiro; Fukuzawa, Masahiro

    2011-02-01

    We have previously reported that the Hedgehog (Hh) signaling pathway is activated in pediatric malignancies. In this study, we examined the effect of the Hh signal inhibitor forskolin on the growth of rhabdomyosarcoma (RMS) in vivo and in vitro and thereby elucidated the possibility of considering Hh signaling pathway as a therapeutic target for RMS. We evaluated the messenger RNA expressions of Hh signal mediators in 3 human RMS cell lines using reverse transcriptase-polymerase chain reaction method. The effect of forskolin on the tumor cell proliferation was investigated using WST-1 assay (Dojindo Co, Kumamoto, Japan). We inoculated 10(7) tumor cells into the back of nude mice to create RMS xenograft tumor models. Forskolin was subcutaneously administered in the region around the tumor, and the effect on the tumor growth was evaluated. The messenger RNA expression of glioma-associated oncogene homolog 1, the marker of Hh signaling activation, was expressed at various levels in RMS cell lines. The proliferation of RMS cells was inhibited in a dose-dependent fashion by forskolin. Similarly, in the xenograft model, tumor growth was also significantly reduced by forskolin treatment. Our findings suggest that the Hh signaling pathway plays an important role in the tumorigenesis of RMS and that this pathway can be considered to be a potential molecular target of new treatment strategies for RMS. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Polyphenols in brewed green tea inhibit prostate tumor xenograft growth by localizing to the tumor and decreasing oxidative stress and angiogenesis

    PubMed Central

    Henning, Susanne M.; Wang, Piwen; Said, Jonathan; Magyar, Clara; Castor, Brandon; Doan, Ngan; Tosity, Carmen; Moro, Aune; Gao, Kun; Li, Luyi; Heber, David

    2011-01-01

    It has been demonstrated in various animal models that the oral administration of green tea (GT) extracts in drinking water can inhibit tumor growth, but the effects of brewed GT on factors promoting tumor growth, including oxidant damage of DNA and protein, angiogenesis, and DNA methylation, have not been tested in an animal model. To explore these potential mechanisms, brewed GT was administered instead of drinking water to male severe combined immunodeficiency (SCID) mice with androgen-dependent human LAPC4 prostate cancer cell subcutaneous xenografts. Tumor volume was decreased significantly in mice consuming GT, and tumor size was significantly correlated with GT polyphenol (GTP) content in tumor tissue. There was a significant reduction in hypoxia-inducible factor 1-alpha and vascular endothelial growth factor protein expression. GT consumption significantly reduced oxidative DNA and protein damage in tumor tissue as determined by 8-hydroxydeoxyguanosine/deoxyguanosine ratio and protein carbonyl assay, respectively. Methylation is known to inhibit antioxidative enzymes such as glutathione S-transferase pi (GSTp1) to permit reactive oxygen species promotion of tumor growth. GT inhibited tumor 5-cytosine DNA methyltransferase 1 (DNMT1) mRNA and protein expression significantly, which may contribute to the inhibition of tumor growth by reactivation of antioxidative enzymes. This study advances our understanding of tumor growth inhibition by brewed GT in an animal model by demonstrating tissue localization of GTPs in correlation with inhibition of tumor growth. Our results suggest that the inhibition of tumor growth is due to GTP-mediated inhibition of oxidative stress and angiogenesis in the LAPC4 xenograft prostate tumor in SCID mice. PMID:22405694

  6. Combining fisetin and ionizing radiation suppresses the growth of mammalian colorectal cancers in xenograft tumor models.

    PubMed

    Leu, Jyh-Der; Wang, Bo-Shen; Chiu, Shu-Jun; Chang, Chun-Yuan; Chen, Chien-Chih; Chen, Fu-Du; Avirmed, Shiirevnyamba; Lee, Yi-Jang

    2016-12-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone), which belongs to the flavonoid group of polyphenols and is found in a wide range of plants, has been reported to exhibit a number of biological activities in human cancer cells, including antioxidant, anti-inflammatory, antiangiogenic, anti-invasive and antiproliferative effects. Although previous in vitro studies have shown that fisetin treatment increases the apoptotic rate and enhances the radiosensitivity of human colorectal cancer cells, the in vivo effects of fisetin on tumor growth remain unclear. In the present study a murine xenograft tumor model was employed to investigate the therapeutic effects of fisetin in combination with radiation on CT-26 colon cancer cells and human HCT116 colorectal cancer cells. This revealed that intratumoral injection of fisetin significantly suppressed the growth of CT-26 tumors compared with the untreated control group, but had little effect on the growth of HCT116 tumors. However, fisetin in combination with 2-Gy radiation enhanced tumor suppressor activity in murine colon and human colorectal xenograft tumors, as compared with 2-Gy fractionated radiation administered alone for 5 days and fisetin alone. Interestingly, fisetin downregulated the expression of the oncoprotein securin in a p53-independent manner. However, securin-null HCT116 tumors showed only moderate sensitivity to fisetin treatment, and the combination of fisetin and radiation did not significantly suppress securin-null HCT116 tumor growth compared with normal HCT116 tumors. Therefore, the role of securin in mediating the effect of fisetin on colorectal cancer growth warrants further investigation. In conclusion, the results of the current study provide important preclinical data for evaluating the efficacy of fisetin and radiation combination treatment as an adjuvant chemoradiotherapy for human colorectal cancers.

  7. Irradiation combined with SU5416: Microvascular changes and growth delay in a human xenograft glioblastoma tumor line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuuring, Janneke; Department of Neurology, Groene Hart Hospital, Gouda; Bussink, Johan

    Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, whenmore » combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone.« less

  8. Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model.

    PubMed

    Koskimaki, Jacob E; Karagiannis, Emmanouil D; Tang, Benjamin C; Hammers, Hans; Watkins, D Neil; Pili, Roberto; Popel, Aleksander S

    2010-02-01

    Angiogenesis is the formation of neovasculature from a pre-existing vascular network. Progression of solid tumors including lung cancer is angiogenesis-dependent. We previously introduced a bioinformatics-based methodology to identify endogenous anti-angiogenic peptide sequences, and validated these predictions in vitro in human umbilical vein endothelial cell (HUVEC) proliferation and migration assays. One family of peptides with high activity is derived from the alpha-fibrils of type IV collagen. Based on the results from the in vitro screening, we have evaluated the ability of a 20 amino acid peptide derived from the alpha5 fibril of type IV collagen, pentastatin-1, to suppress vessel growth in an angioreactor-based directed in vivo angiogenesis assay (DIVAA). In addition, pentastatin-1 suppressed tumor growth with intraperitoneal peptide administration in a small cell lung cancer (SCLC) xenograft model in nude mice using the NCI-H82 human cancer cell line. Pentastatin-1 decreased the invasion of vessels into angioreactors in vivo in a dose dependent manner. The peptide also decreased the rate of tumor growth and microvascular density in vivo in a small cell lung cancer xenograft model. The peptide treatment significantly decreased the invasion of microvessels in angioreactors and the rate of tumor growth in the xenograft model, indicating potential treatment for angiogenesis-dependent disease, and for translational development as a therapeutic agent for lung cancer.

  9. Optimal Design for Informative Protocols in Xenograft Tumor Growth Inhibition Experiments in Mice.

    PubMed

    Lestini, Giulia; Mentré, France; Magni, Paolo

    2016-09-01

    Tumor growth inhibition (TGI) models are increasingly used during preclinical drug development in oncology for the in vivo evaluation of antitumor effect. Tumor sizes are measured in xenografted mice, often only during and shortly after treatment, thus preventing correct identification of some TGI model parameters. Our aims were (i) to evaluate the importance of including measurements during tumor regrowth and (ii) to investigate the proportions of mice included in each arm. For these purposes, optimal design theory based on the Fisher information matrix implemented in PFIM4.0 was applied. Published xenograft experiments, involving different drugs, schedules, and cell lines, were used to help optimize experimental settings and parameters using the Simeoni TGI model. For each experiment, a two-arm design, i.e., control versus treatment, was optimized with or without the constraint of not sampling during tumor regrowth, i.e., "short" and "long" studies, respectively. In long studies, measurements could be taken up to 6 g of tumor weight, whereas in short studies the experiment was stopped 3 days after the end of treatment. Predicted relative standard errors were smaller in long studies than in corresponding short studies. Some optimal measurement times were located in the regrowth phase, highlighting the importance of continuing the experiment after the end of treatment. In the four-arm designs, the results showed that the proportions of control and treated mice can differ. To conclude, making measurements during tumor regrowth should become a general rule for informative preclinical studies in oncology, especially when a delayed drug effect is suspected.

  10. Optimal design for informative protocols in xenograft tumor growth inhibition experiments in mice

    PubMed Central

    Lestini, Giulia; Mentré, France; Magni, Paolo

    2016-01-01

    Tumor growth inhibition (TGI) models are increasingly used during preclinical drug development in oncology for the in vivo evaluation of antitumor effect. Tumor sizes are measured in xenografted mice, often only during and shortly after treatment, thus preventing correct identification of some TGI model parameters. Our aims were i) to evaluate the importance of including measurements during tumor regrowth; ii) to investigate the proportions of mice included in each arm. For these purposes, optimal design theory based on the Fisher information matrix implemented in PFIM4.0 was applied. Published xenograft experiments, involving different drugs, schedules and cell lines, were used to help optimize experimental settings and parameters using the Simeoni TGI model. For each experiment, a two-arm design, i.e. control vs treatment, was optimized with or without the constraint of not sampling during tumor regrowth, i.e. “short” and “long” studies, respectively. In long studies, measurements could be taken up to 6 grams of tumor weight, whereas in short studies the experiment was stopped three days after the end of treatment. Predicted relative standard errors were smaller in long studies than in corresponding short studies. Some optimal measurement times were located in the regrowth phase, highlighting the importance of continuing the experiment after the end of treatment. In the four-arm designs, the results showed that the proportions of control and treated mice can differ. To conclude, making measurements during tumor regrowth should become a general rule for informative preclinical studies in oncology, especially when a delayed drug effect is suspected. PMID:27306546

  11. Interleukin-12 Inhibits Tumor Growth in a Novel Angiogenesis Canine Hemangiosarcoma Xenograft Model1

    PubMed Central

    Dickerson, Erin B; Steinberg, Howard; Breen, Matthew; Auerbach, Robert; Helfand, Stuart C

    2004-01-01

    Abstract We established a canine hemangiosarcoma cell line derived from malignant endothelial cells comprising a spontaneous tumor in a dog to provide a renewable source of endothelial cells for studies of angiogenesis in malignancy. Pieces of the hemangiosarcoma biopsy were engrafted subcutaneously in a bg/nu/XID mouse allowing the tumor cells to expand in vivo. A cell line, SB-HSA, was derived from the xenograft. SB-HSA cells expressed vascular endothelial growth factor (VEGF) receptors 1 and 2, CD31, CD146, and αvβ3 integrin, and produced several growth factors and cytokines, including VEGF, basic fibroblast growth factor, and interleukin (IL)-8 that are stimulatory to endothelial cell growth. These results indicated that the cells recapitulated features of mitotically activated endothelia. In vivo, SB-HSA cells stimulated robust angiogenic responses in mice and formed tumor masses composed of aberrant vascular channels in immunocompromised mice providing novel opportunities for investigating the effectiveness of antiangiogenic agents. Using this model, we determined that IL-12, a cytokine with both immunostimulatory and antiangiogenic effects, suppressed angiogenesis induced by, and tumor growth of, SB-HSA cells. The endothelial cell model we have described offers unique opportunities to pursue further investigations with IL-12, as well as other antiangiogenic approaches in cancer therapy. PMID:15140399

  12. The Growth of SGC-7901 Tumor Xenografts Was Suppressed by Chinese Bayberry Anthocyanin Extract through Upregulating KLF6 Gene Expression.

    PubMed

    Wang, Yue; Zhang, Xia-Nan; Xie, Wen-Hua; Zheng, Yi-Xiong; Cao, Jin-Ping; Cao, Pei-Rang; Chen, Qing-Jun; Li, Xian; Sun, Chong-de

    2016-09-27

    To investigate the antitumor effect of anthocyanins extracted from Chinese bayberry fruit ( Myrica rubra Sieb. et Zucc.), a nude mouse tumor xenograft model was established. Treatments with C3G (cyanidin-3-glucoside, an anthocyanin) significantly suppressed the growth of SGC-7901 tumor xenografts in a dose-dependent manner. Immunohistochemical staining showed a significant increase in p21 expression, indicating that the cell cycle of tumor xenografts was inhibited. qPCR screening showed that C3G treatment up-regulated the expression of the KLF6 gene, which is an important tumor suppressor gene inactivated in many human cancers. Western blot showed that C3G treatments markedly increased KLF6 and p21 protein levels, inhibited CDK4 and Cyclin D1 expression, but did not notably change the expression of p53. These results indicated that KLF6 up-regulates p21 in a p53-independent manner and significantly reduces tumor proliferation. This study provides important information for the possible mechanism of C3G-induced antitumor activity against gastric adenocarcinoma in vivo.

  13. The Growth of SGC-7901 Tumor Xenografts Was Suppressed by Chinese Bayberry Anthocyanin Extract through Upregulating KLF6 Gene Expression

    PubMed Central

    Wang, Yue; Zhang, Xia-nan; Xie, Wen-hua; Zheng, Yi-xiong; Cao, Jin-ping; Cao, Pei-rang; Chen, Qing-jun; Li, Xian; Sun, Chong-de

    2016-01-01

    To investigate the antitumor effect of anthocyanins extracted from Chinese bayberry fruit (Myrica rubra Sieb. et Zucc.), a nude mouse tumor xenograft model was established. Treatments with C3G (cyanidin-3-glucoside, an anthocyanin) significantly suppressed the growth of SGC-7901 tumor xenografts in a dose-dependent manner. Immunohistochemical staining showed a significant increase in p21 expression, indicating that the cell cycle of tumor xenografts was inhibited. qPCR screening showed that C3G treatment up-regulated the expression of the KLF6 gene, which is an important tumor suppressor gene inactivated in many human cancers. Western blot showed that C3G treatments markedly increased KLF6 and p21 protein levels, inhibited CDK4 and Cyclin D1 expression, but did not notably change the expression of p53. These results indicated that KLF6 up-regulates p21 in a p53-independent manner and significantly reduces tumor proliferation. This study provides important information for the possible mechanism of C3G-induced antitumor activity against gastric adenocarcinoma in vivo. PMID:27690088

  14. Identification of Sonic Hedgehog-Induced Stromal Factors That Stimulate Prostate Tumor Growth

    DTIC Science & Technology

    2006-11-01

    LN -Shh xenograft tumors is unabated after castration of the host mouse. However, castration of mice bearing LNCaP + Gli3-/- UGSM bi-clonal...canonical xenograft undergoes involution and growth arrest, growth of LN -Shh xenograft tumors is unabated after castration. As we have shown...signalingindependent of Shh ligand in tumor stroma accelerates tumor growth. We have identified potential stromal Shh target genes in xenograft tumors and have begun

  15. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacymore » and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.« less

  16. Synthetic progestins induce growth and metastasis of BT-474 human breast cancer xenografts in nude mice.

    PubMed

    Liang, Yayun; Benakanakere, Indira; Besch-Williford, Cynthia; Hyder, Ryyan S; Ellersieck, Mark R; Hyder, Salman M

    2010-01-01

    Previous studies have shown that sequential exposure to estrogen and progesterone or medroxyprogesterone acetate (MPA) stimulates vascularization and promotes the progression of BT-474 and T47-D human breast cancer cell xenografts in nude mice (Liang et al, Cancer Res 2007, 67:9929). In this follow-up study, the effects of progesterone, MPA, norgestrel (N-EL), and norethindrone (N-ONE) on BT-474 xenograft tumors were compared in the context of several different hormonal environments. N-EL and N-ONE were included in the study because synthetic progestins vary considerably in their biological effects and the effects of these two progestins on the growth of human tumor xenografts are not known. Estradiol-supplemented intact and ovariectomized immunodeficient mice were implanted with BT-474 cells. Progestin pellets were implanted simultaneously with estradiol pellets either 2 days before tumor cell injection (ie, combined) or 5 days after tumor cell injections (ie, sequentially). Progestins stimulated the growth of BT-474 xenograft tumors independent of exposure timing and protocol, MPA stimulated the growth of BT-474 xenograft tumors in ovariectomized mice, and progestins stimulated vascular endothelial growth factor elaboration and increased tumor vascularity. Progestins also increased lymph node metastasis of BT-474 cells. Therefore, progestins, including N-EL and N-ONE, induce the progression of breast cancer xenografts in nude mice and promote tumor metastasis. These observations suggest that women who ingest progestins for hormone therapy or oral contraception could be more at risk for developing breast cancer because of proliferation of existing latent tumor cells. Such risks should be considered in the clinical setting.

  17. AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis.

    PubMed

    Wilkinson, Robert W; Odedra, Rajesh; Heaton, Simon P; Wedge, Stephen R; Keen, Nicholas J; Crafter, Claire; Foster, John R; Brady, Madeleine C; Bigley, Alison; Brown, Elaine; Byth, Kate F; Barrass, Nigel C; Mundt, Kirsten E; Foote, Kevin M; Heron, Nicola M; Jung, Frederic H; Mortlock, Andrew A; Boyle, F Thomas; Green, Stephen

    2007-06-15

    In the current study, we examined the in vivo effects of AZD1152, a novel and specific inhibitor of Aurora kinase activity (with selectivity for Aurora B). The pharmacodynamic effects and efficacy of AZD1152 were determined in a panel of human tumor xenograft models. AZD1152 was dosed via several parenteral (s.c. osmotic mini-pump, i.p., and i.v.) routes. AZD1152 potently inhibited the growth of human colon, lung, and hematologic tumor xenografts (mean tumor growth inhibition range, 55% to > or =100%; P < 0.05) in immunodeficient mice. Detailed pharmacodynamic analysis in colorectal SW620 tumor-bearing athymic rats treated i.v. with AZD1152 revealed a temporal sequence of phenotypic events in tumors: transient suppression of histone H3 phosphorylation followed by accumulation of 4N DNA in cells (2.4-fold higher compared with controls) and then an increased proportion of polyploid cells (>4N DNA, 2.3-fold higher compared with controls). Histologic analysis showed aberrant cell division that was concurrent with an increase in apoptosis in AZD1152-treated tumors. Bone marrow analyses revealed transient myelosuppression with the drug that was fully reversible following cessation of AZD1152 treatment. These data suggest that selective targeting of Aurora B kinase may be a promising therapeutic approach for the treatment of a range of malignancies. In addition to the suppression of histone H3 phosphorylation, determination of tumor cell polyploidy and apoptosis may be useful biomarkers for this class of therapeutic agent. AZD1152 is currently in phase I trials.

  18. The Somatostatin Analog Rhenium Re-188-P2045 Inhibits the Growth of AR42J Pancreatic Tumor-xenografts

    PubMed Central

    Nelson, Carol A.; Azure, Michael T.; Adams, Christopher T.; Zinn, Kurt R.

    2015-01-01

    P2045 is a peptide analog of somatostatin with picomolar affinity for the somatostatin receptor subtype 2 (SSTR2) upregulated in some pancreatic tumors. Studies were conducted in rat AR42J pancreatic tumor-xenograft mice to determine if Re-188-P2045 could inhibit the growth of pancreatic cancer in an animal model. Methods Re-188-P2045 was intravenously administered every 3 days for 16 days to nude mice with AR42J tumor-xenografts that were ≈ 20 mm3 at study initiation. Tumor volumes were recorded throughout the dosing period. At necropsy all tissues were assessed for levels of radioactivity and evaluated for histological abnormalities. Clinical chemistry and hematology parameters were determined from terminal blood samples. The affinity of non-radioactive Re-185/187-P2045 for somatostatin receptors was compared in human NCI-H69 and rat AR42J tumor-cell membranes expressing predominantly SSTR2. Results In the 1.85 and 5.55 mBq groups tumor growth was inhibited in a dose-dependent fashion. In the 11.1 mBq group tumor growth was completely inhibited throughout the dosing period and for 12 days after the last administered dose. The radioactivity level in tumors 4 hours post-injection was 10%ID/g, which was 2-fold higher than in the kidneys. Re-188-P2045 was well tolerated in all dose-groups with no adverse clinical, histological, or hematological findings. The non-radioactive Re-185/187-P2045 bound more avidly (0.2 nM) to SSTR2 in human than rat tumor membranes suggesting that these studies are relevant to human studies. Conclusion Re-188-P2045 is a promising therapeutic candidate for patients with somatostatin-receptor-positive cancer. PMID:25359879

  19. Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model.

    PubMed

    Xu, Shan; Tian, Yuan; Hu, Yili; Zhang, Nijia; Hu, Sheng; Song, Dandan; Wu, Zhengshun; Wang, Yulan; Cui, Yanfang; Tang, Huiru

    2016-06-22

    The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs.

  20. Astaxanthin Inhibits PC-3 Xenograft Prostate Tumor Growth in Nude Mice

    PubMed Central

    Ni, Xiaofeng; Yu, Haining; Wang, Shanshan; Zhang, Chengcheng; Shen, Shengrong

    2017-01-01

    Prostate cancer (PCa), the most common malignancy in men, is a major cause of cancer deaths. A better understanding of the mechanisms that drive tumor initiation and progression may identify actionable targets to improve treatment of this patient group. As a dietary carotenoid, astaxanthin has been demonstrated to exert beneficial effects against inflammation, cardiovascular disease, oxidative damage, or different cancer sites. This study used intragastric administration of astaxanthin to detect its role on tumor proliferation, apoptosis, microRNA (miRNA) overexpression, and microbacteria composition change by establishing androgen-independent PCa cell PC-3 xenograft nude mice. Nude mice were inoculated with androgen-independent prostate cancer PC-3 cells subcutaneously. The intervention was started when tumors reached 0.5–0.6 cm in diameter. Mice were intragastrically administered 100 mg/kg astaxanthin (HA), 25 mg/kg astaxanthin (LA), or olive oil (TC). The results showed that 100 mg/kg astaxanthin significantly inhibited tumor growth compared to the TC group, with an inhibitory rate of 41.7%. A decrease of Ki67 and proliferating cell nuclear antigen (PCNA) as well as an increase of cleaved caspase-3 were observed in HA-treated tumors, along with increasing apoptotic cells, obtained by TUNEL assay. The HA significantly elevated the levels of tumor suppressors miR-375 and miR-487b in tumor tissues and the amount of Lactobacillus sp. and Lachnospiraceae in mice stools, while there was no significant difference between LA and TC groups. These results provide a promising regimen to enhance the therapeutic effect in a dietary supplement manner. PMID:28282880

  1. Astaxanthin Inhibits PC-3 Xenograft Prostate Tumor Growth in Nude Mice.

    PubMed

    Ni, Xiaofeng; Yu, Haining; Wang, Shanshan; Zhang, Chengcheng; Shen, Shengrong

    2017-03-08

    Prostate cancer (PCa), the most common malignancy in men, is a major cause of cancer deaths. A better understanding of the mechanisms that drive tumor initiation and progression may identify actionable targets to improve treatment of this patient group. As a dietary carotenoid, astaxanthin has been demonstrated to exert beneficial effects against inflammation, cardiovascular disease, oxidative damage, or different cancer sites. This study used intragastric administration of astaxanthin to detect its role on tumor proliferation, apoptosis, microRNA (miRNA) overexpression, and microbacteria composition change by establishing androgen-independent PCa cell PC-3 xenograft nude mice. Nude mice were inoculated with androgen-independent prostate cancer PC-3 cells subcutaneously. The intervention was started when tumors reached 0.5-0.6 cm in diameter. Mice were intragastrically administered 100 mg/kg astaxanthin (HA), 25 mg/kg astaxanthin (LA), or olive oil (TC). The results showed that 100 mg/kg astaxanthin significantly inhibited tumor growth compared to the TC group, with an inhibitory rate of 41.7%. A decrease of Ki67 and proliferating cell nuclear antigen (PCNA) as well as an increase of cleaved caspase-3 were observed in HA-treated tumors, along with increasing apoptotic cells, obtained by TUNEL assay. The HA significantly elevated the levels of tumor suppressors miR-375 and miR-487b in tumor tissues and the amount of Lactobacillus sp. and Lachnospiraceae in mice stools, while there was no significant difference between LA and TC groups. These results provide a promising regimen to enhance the therapeutic effect in a dietary supplement manner.

  2. Transcriptomic alterations in human prostate cancer cell LNCaP tumor xenograft modulated by dietary phenethyl isothiocyanate

    USDA-ARS?s Scientific Manuscript database

    Temporal growth of tumor xenografts in mice on a control diet was compared to mice supplemented daily with 3 µmol/g of the cancer preventive compound phenethyl isothiocyanate. Phenethyl isothiocyanate decreased the rate of tumor growth. The effects of phenethyl isothiocyanate on tumor growth were ex...

  3. Synthetic progestins induce growth and metastasis of BT-474 human breast cancer xenografts in nude mice

    PubMed Central

    Liang, Yayun; Benakanakere, Indira; Besch-Williford, Cynthia; Hyder, Ryyan S; Ellersieck, Mark R.; Hyder, Salman M

    2010-01-01

    Objective Previous studies showed that sequential exposure to estrogen and progesterone or medroxyprogesterone acetate (MPA) stimulates vascularization and promotes the progression of BT-474 and T47-D human breast cancer cell xenografts in nude mice (Liang et al, Cancer Res 2007, 67:9929). In this follow-up study, the effects of progesterone, MPA, norgestrel (N-EL) and norethindrone (N-ONE) on BT-474 xenograft tumors were compared in the context of several different hormonal environments. N-EL and N-ONE were included in the study since synthetic progestins vary considerably in their biological effects and the effects of these two progestins on the growth of human tumor xenografts are not known. Methods Estradiol-supplemented intact and ovariectomized Immunodeficient mice were implanted with BT-474 cells. Progestin pellets were implanted either simultaneously with estradiol pellets 2-days prior to tumor cell injection (i.e. combined), or 5-days following tumor cell injections (i.e. sequentially). Results Progestins stimulated the growth of BT-474 xenograft tumors independent of exposure timing and protocol, MPA stimulated the growth of BT-474 xenograft tumors in ovariectomized mice and progestins stimulated VEGF elaboration and increased tumor vascularity. Progestins also increased lymph node metastasis of BT-474 cells. Therefore, progestins, including N-EL and N-ONE, induce the progression of breast cancer xenografts in nude mice and promote tumor metastasis. Conclusions These observations suggests that women who ingest progestins for HT or oral contraception could be more at risk for developing breast cancer as a result of proliferation of existing latent tumor cells. Such risks should be considered in the clinical setting. PMID:20461021

  4. MicroRNA-627 Mediates the Epigenetic Mechanisms of Vitamin D to Suppress Proliferation of Human Colorectal Cancer Cells and Growth of Xenograft Tumors in Mice

    PubMed Central

    Padi, Sathish K.R.; Zhang, Qunshu; Rustum, Youcef M; Morrison, Carl; Guo, Bin

    2013-01-01

    Background & Aims Vitamin D protects against colorectal cancer by unclear mechanisms. We investigated the effects of calcitriol (1α,25-dihydroxyvitamin D3, the active form of vitamin D) on levels of different microRNAs (miRs) in colorectal cancer (CRC) cells from humans and xenograft tumors in mice. Methods Expression of microRNAs in CRC cell lines was examined using the Ambion mirVana miRNA Bioarray. The effects of calcitriol on expression of miR-627 and cell proliferation were determined by real-time PCR and WST-1 assay, respectively; growth of colorectal xenograft tumors was examined in nude mice. Real-time PCR was used to analyze levels of miR-627 in human colon adenocarcinoma samples and non-tumor colon mucosa tissues (controls). Results In HT-29 cells, miR-627 was the only microRNA significantly upregulated by calcitriol. Jumonji domain containing 1A (JMJD1A), which encodes a histone demethylase, was found to be a target of miR-627. By downregulating JMJD1A, miR-627 increased methylation of histone H3K9 and suppressed expression of proliferative factors such as GDF15. Calcitriol induced expression of miR-627, which downregulated JMJD1A and suppressed growth of xenograft tumors from HCT-116 cells in nude mice. Overexpression of miR-627 prevented proliferation of CRC cell lines in culture and growth of xenograft tumors in mice. Conversely, blocking the activity of miR-627 inhibited the tumor suppressive effects of calcitriol in cultured CRC cells and in mice. Levels of miR-627 were decreased in human colon adenocarcinoma samples, compared with controls. Conclusions miR-627 mediates tumor-suppressive epigenetic activities of vitamin D on CRC cells and xenograft tumors in mice. The mRNA that encodes the histone demethylase JMJD1A is a direct target of miR-627. Reagents designed to target JMJD1A or its mRNA, or increase the function of miR-627, might have the same antitumor activities of vitamin D without the hypercalcemic side effects. PMID:23619147

  5. Pim Kinases Promote Migration and Metastatic Growth of Prostate Cancer Xenografts

    PubMed Central

    Santio, Niina M.; Eerola, Sini K.; Paatero, Ilkka; Yli-Kauhaluoma, Jari; Anizon, Fabrice; Moreau, Pascale; Tuomela, Johanna; Härkönen, Pirkko; Koskinen, Päivi J.

    2015-01-01

    Background and methods Pim family proteins are oncogenic kinases implicated in several types of cancer and involved in regulation of cell proliferation, survival as well as motility. Here we have investigated the ability of Pim kinases to promote metastatic growth of prostate cancer cells in two xenograft models for human prostate cancer. We have also evaluated the efficacy of Pim-selective inhibitors to antagonize these effects. Results We show here that tumorigenic growth of both subcutaneously and orthotopically inoculated prostate cancer xenografts is enhanced by stable overexpression of either Pim-1 or Pim-3. Moreover, Pim-overexpressing orthotopic prostate tumors are highly invasive and able to migrate not only to the nearby prostate-draining lymph nodes, but also into the lungs to form metastases. When the xenografted mice are daily treated with the Pim-selective inhibitor DHPCC-9, both the volumes as well as the metastatic capacity of the tumors are drastically decreased. Interestingly, the Pim-promoted metastatic growth of the orthotopic xenografts is associated with enhanced angiogenesis and lymphangiogenesis. Furthermore, forced Pim expression also increases phosphorylation of the CXCR4 chemokine receptor, which may enable the tumor cells to migrate towards tissues such as the lungs that express the CXCL12 chemokine ligand. Conclusions Our results indicate that Pim overexpression enhances the invasive properties of prostate cancer cells in vivo. These effects can be reduced by the Pim-selective inhibitor DHPCC-9, which can reach tumor tissues without serious side effects. Thus, Pim-targeting therapies with DHPCC-9-like compounds may help to prevent progression of local prostate carcinomas to fatally metastatic malignancies. PMID:26075720

  6. Colorectal cancer patient-derived xenografted tumors maintain characteristic features of the original tumors.

    PubMed

    Cho, Yong Beom; Hong, Hye Kyung; Choi, Yoon-La; Oh, Ensel; Joo, Kyeung Min; Jin, Juyoun; Nam, Do-Hyun; Ko, Young-Hyeh; Lee, Woo Yong

    2014-04-01

    Despite significant improvements in colon cancer outcomes over the past few decades, preclinical development of more effective therapeutic strategies is still limited by the availability of clinically relevant animal models. To meet those clinical unmet needs, we generated a well-characterized in vivo preclinical platform for colorectal cancer using fresh surgical samples. Primary and metastatic colorectal tumor tissues (1-2 mm(3)) that originate from surgery were implanted into the subcutaneous space of nude mice and serially passaged in vivo. Mutation status, hematoxylin and eosin staining, short tandem repeat profiling, and array comparative genomic hybridization were used to validate the similarity of molecular characteristics between the patient tumors and tumors obtained from xenografts. From surgical specimens of 143 patients, 97 xenograft models were obtained in immunodeficient mice (establish rate = 67%). Thirty-nine xenograft models were serially expanded further in mice with a mean time to reach a size of 1000-1500 mm(3) of 90 ± 20 d. Histologic and immunohistochemical analyses revealed a high degree of pathologic similarity including histologic architecture and expression of CEA, CK7, and CD20 between the patient and xenograft tumors. Molecular analysis showed that genetic mutations, genomic alterations, and gene expression patterns of each patient tumor were also well conserved in the corresponding xenograft tumor. Xenograft animal models derived from fresh surgical sample maintained the key characteristic features of the original tumors, suggesting that this in vivo platform can be useful for preclinical development of novel therapeutic approaches to colorectal cancers. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Development of a Fully Human Anti-PDGFRβ Antibody That Suppresses Growth of Human Tumor Xenografts and Enhances Antitumor Activity of an Anti-VEGFR2 Antibody

    PubMed Central

    Shen, Juqun; Vil, Marie Danielle; Prewett, Marie; Damoci, Chris; Zhang, Haifan; Li, Huiling; Jimenez, Xenia; Deevi, Dhanvanthri S; Iacolina, Michelle; Kayas, Anthony; Bassi, Rajiv; Persaud, Kris; Rohoza-Asandi, Anna; Balderes, Paul; Loizos, Nick; Ludwig, Dale L; Tonra, James; Witte, Larry; Zhu, Zhenping

    2009-01-01

    Platelet-derived growth factor receptor β (PDGFRβ) is upregulated in most of solid tumors. It is expressed by pericytes/smooth muscle cells, fibroblast, macrophage, and certain tumor cells. Several PDGF receptor-related antagonists are being developed as potential antitumor agents and have demonstrated promising antitumor activity in both preclinical and clinical settings. Here, we produced a fully human neutralizing antibody, IMC-2C5, directed against PDGFRβ from an antibody phage display library. IMC-2C5 binds to both human and mouse PDGFRβ and blocks PDGF-B from binding to the receptor. IMC-2C5 also blocks ligand-stimulated activation of PDGFRβ and downstream signaling molecules in tumor cells. In animal studies, IMC-2C5 significantly delayed the growth of OVCAR-8 and NCI-H460 human tumor xenografts in nude mice but failed to show antitumor activities in OVCAR-5 and Caki-1 xenografts. Our results indicate that the antitumor efficacy of IMC-2C5 is primarily due to its effects on tumor stroma, rather than on tumor cells directly. Combination of IMC-2C5 and DC101, an anti-mouse vascular endothelial growth factor receptor 2 antibody, resulted in significantly enhanced antitumor activity in BxPC-3, NCI-H460, and HCT-116 xenografts, compared with DC101 alone, and the trend of additive effects to DC101 treatment in several other tumor models. ELISA analysis of NCI-H460 tumor homogenates showed that IMC-2C5 attenuated protein level of vascular endothelial growth factor and basic fibroblast growth factor elevated by DC101 treatment. Finally, IMC-2C5 showed a trend of additive effects when combined with DC101/chemotherapy in MIA-PaCa-2 and NCI-H460 models. Taken together, these results lend great support to the use of PDGFRβ antagonists in combination with other antiangiogenic agents in the treatment of a broad range of human cancers. PMID:19484148

  8. Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma.

    PubMed

    Babae, Negar; Bourajjaj, Meriem; Liu, Yijia; Van Beijnum, Judy R; Cerisoli, Francesco; Scaria, Puthupparampil V; Verheul, Mark; Van Berkel, Maaike P; Pieters, Ebel H E; Van Haastert, Rick J; Yousefi, Afrouz; Mastrobattista, Enrico; Storm, Gert; Berezikov, Eugene; Cuppen, Edwin; Woodle, Martin; Schaapveld, Roel Q J; Prevost, Gregoire P; Griffioen, Arjan W; Van Noort, Paula I; Schiffelers, Raymond M

    2014-08-30

    Tumor-angiogenesis is the multi-factorial process of sprouting of endothelial cells (EC) into micro-vessels to provide tumor cells with nutrients and oxygen. To explore miRNAs as therapeutic angiogenesis-inhibitors, we performed a functional screen to identify miRNAs that are able to decrease EC viability. We identified miRNA-7 (miR-7) as a potent negative regulator of angiogenesis. Introduction of miR-7 in EC resulted in strongly reduced cell viability, tube formation, sprouting and migration. Application of miR-7 in the chick chorioallantoic membrane assay led to a profound reduction of vascularization, similar to anti-angiogenic drug sunitinib. Local administration of miR-7 in an in vivo murine neuroblastoma tumor model significantly inhibited angiogenesis and tumor growth. Finally, systemic administration of miR-7 using a novel integrin-targeted biodegradable polymeric nanoparticles that targets both EC and tumor cells, strongly reduced angiogenesis and tumor proliferation in mice with human glioblastoma xenografts. Transcriptome analysis of miR-7 transfected EC in combination with in silico target prediction resulted in the identification of OGT as novel target gene of miR-7. Our study provides a comprehensive validation of miR-7 as novel anti-angiogenic therapeutic miRNA that can be systemically delivered to both EC and tumor cells and offers promise for miR-7 as novel anti-tumor therapeutic.

  9. Testosterone inhibits the growth of prostate cancer xenografts in nude mice.

    PubMed

    Song, Weitao; Soni, Vikram; Soni, Samit; Khera, Mohit

    2017-09-07

    Traditional beliefs of androgen's stimulating effects on the growth of prostate cancer (PCa) have been challenged in recent years. Our previous in vitro study indicated that physiological normal levels of androgens inhibited the proliferation of PCa cells. In this in vivo study, the ability of testosterone (T) to inhibit PCa growth was assessed by testing the tumor incidence rate and tumor growth rate of PCa xenografts on nude mice. Different serum testosterone levels were manipulated in male nude/nude athymic mice by orchiectomy or inserting different dosages of T pellets subcutaneously. PCa cells were injected subcutaneously to nude mice and tumor incidence rate and tumor growth rate of PCa xenografts were tested. The data demonstrated that low levels of serum T resulted in the highest PCa incidence rate (50%). This PCa incidence rate in mice with low T levels was significantly higher than that in mice treated with higher doses of T (24%, P < 0.01) and mice that underwent orchiectomy (8%, P < 0.001). Mice that had low serum T levels had the shortest tumor volume doubling time (112 h). This doubling time was significantly shorter than that in the high dose 5 mg T arm (158 h, P < 0.001) and in the orchiectomy arm (468 h, P < 0.001). These results indicated that low T levels are optimal for PCa cell growth. Castrate T levels, as seen after orchiectomy, are not sufficient to support PCa cell growth. Higher levels of serum T inhibited PCa cell growth.

  10. Improvement of Parameter Estimations in Tumor Growth Inhibition Models on Xenografted Animals: Handling Sacrifice Censoring and Error Caused by Experimental Measurement on Larger Tumor Sizes.

    PubMed

    Pierrillas, Philippe B; Tod, Michel; Amiel, Magali; Chenel, Marylore; Henin, Emilie

    2016-09-01

    The purpose of this study was to explore the impact of censoring due to animal sacrifice on parameter estimates and tumor volume calculated from two diameters in larger tumors during tumor growth experiments in preclinical studies. The type of measurement error that can be expected was also investigated. Different scenarios were challenged using the stochastic simulation and estimation process. One thousand datasets were simulated under the design of a typical tumor growth study in xenografted mice, and then, eight approaches were used for parameter estimation with the simulated datasets. The distribution of estimates and simulation-based diagnostics were computed for comparison. The different approaches were robust regarding the choice of residual error and gave equivalent results. However, by not considering missing data induced by sacrificing the animal, parameter estimates were biased and led to false inferences in terms of compound potency; the threshold concentration for tumor eradication when ignoring censoring was 581 ng.ml(-1), but the true value was 240 ng.ml(-1).

  11. Novel anti-angiogenic effects of formononetin in human colon cancer cells and tumor xenograft.

    PubMed

    Auyeung, Kathy Ka-Wai; Law, Pui-Ching; Ko, Joshua Ka-Shun

    2012-12-01

    Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus, a medicinal plant that possesses antitumorigenic properties. Our previous findings demonstrated that formononetin initiates growth-inhibitory and pro-apoptotic activities in human colon cancer cells. In the present study, we aimed to further examine the potential of formononetin in controlling angiogenesis and tumor cell invasiveness in human colon cancer cells and tumor xenografts. The results showed that formononetin downregulated the expression of the key pro-angiogenic factors, including vascular endothelial growth factor (VEGF) and matrix metalloproteinases. We also discovered that the invasiveness of metastatic colon cancer cells was alleviated following drug treatment. The potential anti-angiogenic effect of formononetin was examined in nude mouse xenografts. The tumor size and the number of proliferating cells were reduced in the tumor tissues obtained from the formononetin-treated group. The serum VEGF level was also reduced in the drug-treated animals when compared to the controls. These findings suggest that formononetin inhibits angiogenesis and tumor cell invasion, and thus support its use in the treatment of advanced and metastatic colon cancers.

  12. Nanoparticulate Tetrac Inhibits Growth and Vascularity of Glioblastoma Xenografts.

    PubMed

    Sudha, Thangirala; Bharali, Dhruba J; Sell, Stewart; Darwish, Noureldien H E; Davis, Paul J; Mousa, Shaker A

    2017-06-01

    Thyroid hormone as L-thyroxine (T 4 ) stimulates proliferation of glioma cells in vitro and medical induction of hypothyroidism slows clinical growth of glioblastoma multiforme (GBM). The proliferative action of T 4 on glioma cells is initiated nongenomically at a cell surface receptor for thyroid hormone on the extracellular domain of integrin αvβ3. Tetraiodothyroacetic acid (tetrac) is a thyroid hormone derivative that blocks T 4 action at αvβ3 and has anticancer and anti-angiogenic activity. Tetrac has been covalently bonded via a linker to a nanoparticle (Nanotetrac, Nano-diamino-tetrac, NDAT) that increases the potency of tetrac and broadens the anticancer properties of the drug. In the present studies of human GBM xenografts in immunodeficient mice, NDAT administered daily for 10 days subcutaneously as 1 mg tetrac equivalent/kg reduced tumor xenograft weight at animal sacrifice by 50%, compared to untreated control lesions (p < 0.01). Histopathological analysis of tumors revealed a 95% loss of the vascularity of treated tumors compared to controls at 10 days (p < 0.001), without intratumoral hemorrhage. Up to 80% of tumor cells were necrotic in various microscopic fields (p < 0.001 vs. control tumors), an effect attributable to devascularization. There was substantial evidence of apoptosis in other fields (p < 0.001 vs. control tumors). Induction of apoptosis in cancer cells is a well-described quality of NDAT. In summary, systemic NDAT has been shown to be effective by multiple mechanisms in treatment of GBM xenografts.

  13. CABOZANTINIB IS EFFECTIVE IN A SUBSET OF XENOGRAFT GBM TUMORS AND AFFECTS MULTIPLE SIGNALING PATHWAYS

    PubMed Central

    Mikkelsen, Tom; deCarvalho, Ana C.; Arnold, Kimberly; Mueller, Claudius; Petricoin, Emanuel F; Poisson, Laila M.; Irtenkauf, Susan; Hasselbach, Laura

    2014-01-01

    BACKGROUND: (blind field). METHODS: Neurospheres enriched in CSCs were cultured from resected GBM tumors. Sensitivity to cabozantinib was determined in vitro. Cells were treated (IC40) in triplicate, and cell lysates were analyzed by reverse phase protein microarrays (RPPAs). GBM CSCs were implanted intracranially into nude mice. Cabozantinib was administered by oral gavage at a dose of 60 mg/kg for 4 weeks (5 days/week) as a single agent or in combination with 40 mg/kg TMZ. Tumor growth and response to treatment were monitored by non-invasive in vivo bioluminescence imaging (BLI) using the Xenogen IVIS System (Caliper Life Sciences), and overall survival. RESULTS: Sensitivity to cabozantinib treatment varied for the different GBM CSCs. From 70 proteins and phosphoproteins measured, 29 distributed among several signaling pathways were significantly altered after treatment in both resistant and sensitive GBM CSCs, including Met, Ret, AKT, MAPK/ERK. Cabozantinib single agent treatment reduced GBM tumor growth and increased mouse survival in two xenograft lines. Cabozantinib monotherapy reduced tumor size, as measured by BLI, but had no significant effect on overall survival for another xenograft line, however, the combination treatment resulted in sensitization of these xenografts to TMZ treatment. RPPA confirmed downregulation of the described targets for XL184, including activated Met, VEGFR2 and Ret (in vitro). CONCLUSIONS: Consistent with the clinical experience, both sensitive and resistant GBMs are represented in our CSC xenografts. More extensive evaluation will likely identify baseline biomarkers which might be valuable in identifying potentially sensitive sub-populations for subsequent clinical trials. RPPA and next-gen sequencing (NGS) on terminal tumors is underway. SECONDARY CATEGORY: Tumor Biology.

  14. C086, a novel analog of curcumin, induces growth inhibition and down-regulation of NFκB in colon cancer cells and xenograft tumors.

    PubMed

    Chen, Chun; Liu, Yang; Chen, Yuanzhong; Xu, Jianhua

    2011-11-01

    New analogues of curcumin with improved properties are needed to meet therapeutic requirements. In this study, the effects of C086 on growth inhibition and NFκB pathway regulation were investigated in colon cancer cells and xenograft tumors. C086 exhibited potent antiproliferative activity in all 6 colon cancer cell lines. In a xenograft model of SW480 cells in nude mice, the oral administration of C086 showed significant growth suppression of SW480 tumors, and both Western blot and immunohistochemistry analyses showed decreased NFκB (p65) expression in tumor tissues. Using TNF-α to induce NFκB activation in SW480 cells, it was revealed that C086 inhibited IκBα phosphorylation and its subsequent degradation, and suppressed the nuclear translocation and DNA binding activity of NFκB. C-Myc, cyclin D1, and Bcl-2, NFκB-regulated gene products involving in cellular proliferation and antiapoptosis, were decreased in the C086 treated groups. This effect was accompanied by pro-apoptosis of C086 in colon cancer cells and lower expression of PCNA in C086 treated colon cancer xenografts. Immunostaining for CD31 showed that there were fewer microvessels in C086 treated SW480 tumors, and NFκB-targeted gene products involved in angiogenesis (i.e., vascular endothelial growth factor, matrix metalloproteinase-9) were also downregulated. C086 also inhibited bovine aortic endothelial cell (BAEC) proliferation and tube formation in Matrigel. Overall, our results suggest that C086 is a potent antitumor agent and has promising future in colon cancer. C086 suppressed NFκB activation through inhibition of IκBα phosphorylation. Downregulation of NFκB-regulated gene products contributed to the antiproliferation, pro-apoptosis, and antiangiogenesis effect of C086.

  15. Nicotine Promotes Cholangiocarcinoma Growth in Xenograft Mice.

    PubMed

    Martínez, Allyson K; Jensen, Kendal; Hall, Chad; O'Brien, April; Ehrlich, Laurent; White, Tori; Meng, Fanyin; Zhou, Tianhao; Greene, John; Bernuzzi, Francesca; Invernizzi, Pietro; Dostal, David E; Lairmore, Terry; Alpini, Gianfranco; Glaser, Shannon S

    2017-05-01

    Nicotine, the main addictive substance in tobacco, is known to play a role in the development and/or progression of a number of malignant tumors. However, nicotine's involvement in the pathogenesis of cholangiocarcinoma is controversial. Therefore, we studied the effects of nicotine on the growth of cholangiocarcinoma cells in vitro and the progression of cholangiocarcinoma in a mouse xenograft model. The predominant subunit responsible for nicotine-mediated proliferation in normal and cancer cells, the α7 nicotinic acetylcholine receptor (α7-nAChR), was more highly expressed in human cholangiocarcinoma cell lines compared with normal human cholangiocytes. Nicotine also stimulated the proliferation of cholangiocarcinoma cell lines and promoted α7-nAChR-dependent activation of proliferation and phosphorylation of extracellular-regulated kinase in Mz-ChA-1 cells. In addition, nicotine and PNU282987 (α7-nAChR agonist) accelerated the growth of the cholangiocarcinoma tumors in our xenograft mouse model and increased fibrosis, proliferation of the tumor cells, and phosphorylation of extracellular-regulated kinase activation. Finally, α7-nAChR was expressed at significantly higher levels in human cholangiocarcinoma compared with normal human control liver samples. Taken together, results of this study suggest that nicotine acts through α7-nAChR and plays a novel role in the pathogenesis of cholangiocarcinoma. Furthermore, nicotine may act as a mitogen in cholestatic liver disease processes, thereby facilitating malignant transformation. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Antitumor and antiangiogenic activities of anti-vascular endothelial growth factor hairpin ribozyme in human hepatocellular carcinoma cell cultures and xenografts.

    PubMed

    Li, Li-Hua; Guo, Zi-Jian; Yan, Ling-Ling; Yang, Ji-Cheng; Xie, Yu-Feng; Sheng, Wei-Hua; Huang, Zhao-Hui; Wang, Xue-Hao

    2007-12-21

    To study the effectiveness and mechanisms of anti- human vascular endothelial growth factor (hVEGF) hairpin ribozyme on angiogenesis, oncogenicity and tumor growth in a hepatocarcinoma cell line and a xenografted model. The artificial anti-hVEGF hairpin ribozyme was transfected into hepatocarcinoma cell line SMMC-7,721 and, subsequently, polymerase chain reaction (PCR) and reverse transcription polymerase chain reaction (RT-PCR) were performed to confirm the ribozyme gene integration and transcription. To determine the effects of ribozyme ,VEGF expression was detected by semiquantitative RT-PCR and enzyme liked immunosorbent assay (ELISA). MTT assay was carried out to measure the cell proliferation. Furthermore,the transfected and control cells were inoculated into nude mice respectively, the growth of cells in nude mice and angiogenesis were observed. VEGF expression was down-regulated sharply by ribozyme in transfected SMMC-7,721 cells and xenografted tumor. Compared to the control group, the transfected cells grew slower in cell cultures and xenografts, and the xenograft formation was delayed as well. In addition, the microvessel density of the xenografted tumor was obviously declined in the transfected group. As demonstrated by microscopy,reduction of VEGF production induced by ribozyme resulted in a significantly higher cell differentiation and less proliferation vigor in xenografted tumor. Anti-hVEGF hairpin ribozyme can effectively inhibit VEGF expression and growth of hepatocarcinoma in vitro and in vivo. VEGF is functionally related to cell proliferation, differentiation and tumori-genesis in hepatocarcinoma.

  17. Statistical inference for tumor growth inhibition T/C ratio.

    PubMed

    Wu, Jianrong

    2010-09-01

    The tumor growth inhibition T/C ratio is commonly used to quantify treatment effects in drug screening tumor xenograft experiments. The T/C ratio is converted to an antitumor activity rating using an arbitrary cutoff point and often without any formal statistical inference. Here, we applied a nonparametric bootstrap method and a small sample likelihood ratio statistic to make a statistical inference of the T/C ratio, including both hypothesis testing and a confidence interval estimate. Furthermore, sample size and power are also discussed for statistical design of tumor xenograft experiments. Tumor xenograft data from an actual experiment were analyzed to illustrate the application.

  18. Halofuginone suppresses growth of human uterine leiomyoma cells in a mouse xenograft model.

    PubMed

    Koohestani, Faezeh; Qiang, Wenan; MacNeill, Amy L; Druschitz, Stacy A; Serna, Vanida A; Adur, Malavika; Kurita, Takeshi; Nowak, Romana A

    2016-07-01

    Does halofuginone (HF) inhibit the growth of human uterine leiomyoma cells in a mouse xenograft model? HF suppresses the growth of human uterine leiomyoma cells in a mouse xenograft model through inhibiting cell proliferation and inducing apoptosis. Uterine leiomyomas are the most common benign tumors of the female reproductive tract. HF can suppress the growth of human uterine leiomyoma cells in vitro. The mouse xenograft model reflects the characteristics of human leiomyomas. Primary leiomyoma smooth muscle cells from eight patients were xenografted under the renal capsule of adult, ovariectomized NOD-scid IL2Rγ(null) mice (NSG). Mice were treated with two different doses of HF or vehicle for 4 weeks with six to eight mice per group. Mouse body weight measurements and immunohistochemical analysis of body organs were carried out to assess the safety of HF treatment. Xenografted tumors were measured and analyzed for cellular and molecular changes induced by HF. Ovarian steroid hormone receptors were evaluated for possible modulation by HF. Treatment of mice carrying human UL xenografts with HF at 0.25 or 0.50 mg/kg body weight for 4 weeks resulted in a 35-40% (P < 0.05) reduction in tumor volume. The HF-induced volume reduction was accompanied by increased apoptosis and decreased cell proliferation. In contrast, there was no significant change in the collagen content either at the transcript or protein level between UL xenografts in control and HF groups. HF treatment did not change the expression level of ovarian steroid hormone receptors. No adverse pathological effects were observed in other tissues from mice undergoing treatment at these doses. While this study did test the effects of HF on human leiomyoma cells in an in vivo model, HF was administered to mice whose tolerance and metabolism of the drug may differ from that in humans. Also, the longer term effects of HF treatment are yet unclear. The results of this study showing the effectiveness of HF in

  19. The B-Raf status of tumor cells may be a significant determinant of both antitumor and anti-angiogenic effects of pazopanib in xenograft tumor models.

    PubMed

    Gril, Brunilde; Palmieri, Diane; Qian, Yong; Anwar, Talha; Ileva, Lilia; Bernardo, Marcelino; Choyke, Peter; Liewehr, David J; Steinberg, Seth M; Steeg, Patricia S

    2011-01-01

    Pazopanib is an FDA approved Vascular Endothelial Growth Factor Receptor inhibitor. We previously reported that it also inhibits tumor cell B-Raf activity in an experimental brain metastatic setting. Here, we determine the effects of different B-Raf genotypes on pazopanib efficacy, in terms of primary tumor growth and anti-angiogenesis. A panel of seven human breast cancer and melanoma cell lines harboring different mutations in the Ras-Raf pathway was implanted orthotopically in mice, and tumor growth, ERK1/2, MEK1/2 and AKT activation, and blood vessel density and permeability were analyzed. Pazopanib was significantly inhibitory to xenografts expressing either exon 11 mutations of B-Raf, or HER2 activated wild type B-Raf; no significant inhibition of a xenograft expressing the common V600E B-Raf mutation was observed. Decreased pMEK staining in the responsive tumors confirmed that B-Raf was targeted by pazopanib. Interestingly, pazopanib inhibition of tumor cell B-Raf also correlated with its anti-angiogenic activity, as quantified by vessel density and area. In conclusion, using pazopanib, tumor B-Raf status was identified as a significant determinant of both tumor growth and angiogenesis.

  20. The B-Raf Status of Tumor Cells May Be a Significant Determinant of Both Antitumor and Anti-Angiogenic Effects of Pazopanib in Xenograft Tumor Models

    PubMed Central

    Gril, Brunilde; Palmieri, Diane; Qian, Yong; Anwar, Talha; Ileva, Lilia; Bernardo, Marcelino; Choyke, Peter; Liewehr, David J.; Steinberg, Seth M.; Steeg, Patricia S.

    2011-01-01

    Pazopanib is an FDA approved Vascular Endothelial Growth Factor Receptor inhibitor. We previously reported that it also inhibits tumor cell B-Raf activity in an experimental brain metastatic setting. Here, we determine the effects of different B-Raf genotypes on pazopanib efficacy, in terms of primary tumor growth and anti-angiogenesis. A panel of seven human breast cancer and melanoma cell lines harboring different mutations in the Ras-Raf pathway was implanted orthotopically in mice, and tumor growth, ERK1/2, MEK1/2 and AKT activation, and blood vessel density and permeability were analyzed. Pazopanib was significantly inhibitory to xenografts expressing either exon 11 mutations of B-Raf, or HER2 activated wild type B-Raf; no significant inhibition of a xenograft expressing the common V600E B-Raf mutation was observed. Decreased pMEK staining in the responsive tumors confirmed that B-Raf was targeted by pazopanib. Interestingly, pazopanib inhibition of tumor cell B-Raf also correlated with its anti-angiogenic activity, as quantified by vessel density and area. In conclusion, using pazopanib, tumor B-Raf status was identified as a significant determinant of both tumor growth and angiogenesis. PMID:21998674

  1. Inhibition of gamma-secretase activity impedes uterine serous carcinoma growth in a human xenograft model.

    PubMed

    Groeneweg, Jolijn W; Hall, Tracilyn R; Zhang, Ling; Kim, Minji; Byron, Virginia F; Tambouret, Rosemary; Sathayanrayanan, Sriram; Foster, Rosemary; Rueda, Bo R; Growdon, Whitfield B

    2014-06-01

    Uterine serous carcinoma (USC) represents an aggressive subtype of endometrial cancer. We sought to understand Notch pathway activity in USC and determine if pathway inhibition has anti-tumor activity. Patient USC tissue blocks were obtained and used to correlate clinical outcomes with Notch1 expression. Three established USC cell lines were treated with gamma-secretase inhibitor (GSI) in vitro. Mice harboring cell line derived or patient derived USC xenografts (PDXs) were treated with vehicle, GSI, paclitaxel and carboplatin (P/C), or combination GSI and P/C. Levels of cleaved Notch1 protein and Hes1 mRNA were determined in GSI treated samples. Statistical analysis was performed using the Wilcoxon rank sum and Kaplan-Meier methods. High nuclear Notch1 protein expression was observed in 58% of USC samples with no correlation with overall survival. GSI induced dose-dependent reductions in cell number and decreased levels of cleaved Notch1 protein and Hes1 mRNA in vitro. Treatment of mice with GSI led to decreased Hes1 mRNA expression in USC xenografts. In addition, GSI impeded tumor growth of cell line xenografts as well as UT1 USC PDXs. When GSI and P/C were combined, synergistic anti-tumor activity was observed in UT1 xenografts. Notch1 is expressed in a large subset of USC. GSI-mediated Notch pathway inhibition led to both reduced cell numbers in vitro and decreased tumor growth of USC some xenograft models. When combined with conventional chemotherapy, GSI augmented anti-tumor activity in one USC PDX line suggesting that targeting of the Notch signaling pathway is a potential therapeutic strategy for future investigation. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Lapatinib in Combination With Radiation Diminishes Tumor Regrowth in HER2+ and Basal-Like/EGFR+ Breast Tumor Xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sambade, Maria J.; Kimple, Randall J.; Camp, J. Terese

    2010-06-01

    Purpose: To determine whether lapatinib, a dual epidermal growth factor receptor (EGFR)/HER2 kinase inhibitor, can radiosensitize EGFR+ or HER2+ breast cancer xenografts. Methods and Materials: Mice bearing xenografts of basal-like/EGFR+ SUM149 and HER2+ SUM225 breast cancer cells were treated with lapatinib and fractionated radiotherapy and tumor growth inhibition correlated with alterations in ERK1 and AKT activation by immunohistochemistry. Results: Basal-like/EGFR+ SUM149 breast cancer tumors were completely resistant to treatment with lapatinib alone but highly growth impaired with lapatinib plus radiotherapy, exhibiting an enhancement ratio average of 2.75 and a fractional tumor product ratio average of 2.20 during the study period.more » In contrast, HER2+ SUM225 breast cancer tumors were highly responsive to treatment with lapatinib alone and yielded a relatively lower enhancement ratio average of 1.25 during the study period with lapatinib plus radiotherapy. Durable tumor control in the HER2+ SUM225 model was more effective with the combination treatment than either lapatinib or radiotherapy alone. Immunohistochemical analyses demonstrated that radiosensitization by lapatinib correlated with ERK1/2 inhibition in the EGFR+ SUM149 model and with AKT inhibition in the HER2+ SUM225 model. Conclusion: Our data suggest that lapatinib combined with fractionated radiotherapy may be useful against EGFR+ and HER2+ breast cancers and that inhibition of downstream signaling to ERK1/2 and AKT correlates with sensitization in EGFR+ and HER2+ cells, respectively.« less

  3. Growth inhibition of squamous cell carcinoma xenografts with the polyamine analogue BE 4444.

    PubMed

    Auchter, R M; Pickart, M A; Nash, G A; Qu, R P; Harari, P M

    1996-09-01

    The capacity of radiation to cure advanced head and neck squamous cell carcinoma is compromised by the proliferation of surviving tumor cells during the course of therapy (overall duration, often 7-9 weeks). Antiproliferative agents that inhibit tumor proliferation, even in the absence of direct cytotoxicity, may be useful adjuncts for concurrent use with radiation. Modulation of endogenous polyamine (PA) metabolism has the potential to inhibit cell growth. The PA analogue 1,19-bis(ethylamino)-5,10,15-triazanonadecane (BE 4444) is a synthetic compound that demonstrates antiproliferative effects in human tumor cells. To evaluate the PA analogue BE 4444 for its inhibitory effect on the growth of human squamous cell carcinoma xenografts in nude mice. Xenografts of human squamous cell carcinomas were grown in nude mice; then, BE 4444 was injected intraperitoneally (5 mg/kg) on a twice-daily schedule for 8 days. Tumor growth measurements were performed twice weekly for 8 weeks and compared with those of control mice that were injected with sterile saline solution on the same schedule. The PA levels in the tumor and normal tissue samples were assayed at the completion of treatment. Tumor volume in the BE 4444-treated mice was reduced by 62% compared with tumor volumes in control mice, and the tumor growth rate was reduced by 64%. This growth inhibition was maintained through completion of the experiment. Levels of endogenous PAs were not significantly different from control levels, suggesting that the mechanism of action for BE 4444 is not simply PA biosynthesis inhibition. The PA analogue BE 4444 is an inhibitor of human squamous cell cancer growth. Further studies are in progress to characterize the potential value of PA analogues as adjuncts to radiation therapy for rapidly proliferating squamous cell carcinoma of the head and neck.

  4. Novel LIMK2 Inhibitor Blocks Panc-1 Tumor Growth in a mouse xenograft model

    PubMed Central

    Rak, Roni; Haklai, Roni; Elad-Tzfadia, Galit; Wolfson, Haim J.; Carmeli, Shmuel; Kloog, Yoel

    2014-01-01

    LIM kinases (LIMKs) are important cell cytoskeleton regulators that play a prominent role in cancer manifestation and neuronal diseases. The LIMK family consists of two homologues, LIMK1 and LIMK2, which differ from one another in expression profile, intercellular localization, and function. The main substrate of LIMK is cofilin, a member of the actin-depolymerizing factor (ADF) protein family. When phosphorylated by LIMK, cofilin is inactive. LIMKs play a contributory role in several neurodevelopmental disorders and in cancer growth and metastasis. We recently reported the development and validation of a novel LIMK inhibitor, referred to here as T56-LIMKi, using a combination of computational methods and classical biochemistry techniques. Here we report that T56-LIMKi inhibits LIMK2 with high specificity, and shows little or no cross-reactivity with LIMK1. We found that T56-LIMKi decreases phosphorylated cofilin (p-cofilin) levels and thus inhibits growth of several cancerous cell lines, including those of pancreatic cancer, glioma and schwannoma. Because the most promising in-vitro effect of T56-LIMKi was observed in the pancreatic cancer cell line Panc-1, we tested the inhibitor on a nude mouse Panc-1 xenograft model. T56-LIMKi reduced tumor size and p-cofilin levels in the Panc-1 tumors, leading us to propose T56-LIMKi as a candidate drug for cancer therapy. PMID:25593987

  5. Novel LIMK2 Inhibitor Blocks Panc-1 Tumor Growth in a mouse xenograft model.

    PubMed

    Rak, Roni; Haklai, Roni; Elad-Tzfadia, Galit; Wolfson, Haim J; Carmeli, Shmuel; Kloog, Yoel

    2014-01-01

    LIM kinases (LIMKs) are important cell cytoskeleton regulators that play a prominent role in cancer manifestation and neuronal diseases. The LIMK family consists of two homologues, LIMK1 and LIMK2, which differ from one another in expression profile, intercellular localization, and function. The main substrate of LIMK is cofilin, a member of the actin-depolymerizing factor (ADF) protein family. When phosphorylated by LIMK, cofilin is inactive. LIMKs play a contributory role in several neurodevelopmental disorders and in cancer growth and metastasis. We recently reported the development and validation of a novel LIMK inhibitor, referred to here as T56-LIMKi, using a combination of computational methods and classical biochemistry techniques. Here we report that T56-LIMKi inhibits LIMK2 with high specificity, and shows little or no cross-reactivity with LIMK1. We found that T56-LIMKi decreases phosphorylated cofilin (p-cofilin) levels and thus inhibits growth of several cancerous cell lines, including those of pancreatic cancer, glioma and schwannoma. Because the most promising in-vitro effect of T56-LIMKi was observed in the pancreatic cancer cell line Panc-1, we tested the inhibitor on a nude mouse Panc-1 xenograft model. T56-LIMKi reduced tumor size and p-cofilin levels in the Panc-1 tumors, leading us to propose T56-LIMKi as a candidate drug for cancer therapy.

  6. The growth-inhibitory and apoptosis-inducing effect of deferoxamine combined with arsenic trioxide on HL-60 xenografts in nude mice.

    PubMed

    Yu, Runhong; Wang, Dao; Ren, Xiuhua; Zeng, Li; Liu, Yufeng

    2014-09-01

    The aim of this study is to investigate the growth-inhibitory and apoptosis-inducing effect of deferoxamine (DFO) combined with arsenic trioxide (ATO) on the human HL-60 xenografts in nude mice and its mechanism. The highly tumorigenic leukemia cell line HL-60 cells were inoculated subcutaneously into nude mice to establish a human leukemia xenograft model. The HL-60 xenograft nude mice models were randomly divided into four groups: control (Normal saline, NS), 50mg/kg DFO, 3mg/kg ATO, the combined treatment (50mg/kg DFO+1.5mg/kg ATO) once HL-60 cells were inoculated. Tumor sizes, growth curves, inhibitory rates, cell apoptosis, and the expression of apoptosis related markers were measured to evaluate the tumor growth. Xenografted tumors were observed in all nude mice since the 5th day of inoculation. The inhibitory rates of tumor weight were 2.67%, 10.69%, and 25.57% in DFO, ATO and combination therapy groups, respectively. The combination of DFO with ATO induces significantly more tumor cell apoptosis than either agent alone (p<0.05). The expression of NF-κBp65 and survivin proteins decreased significantly while the expression of Caspase-3 and Bax increased in the combination therapy group (p<0.05). Double immunofluorescence for Caspase-3 and NFκBp65 demonstrated an inverse relationship between Caspase-3-positive areas and NFκBp65-positive areas, as well as the co-localization of Bax and survivin in xenografted tumor cells. Combination of DFO and ATO has synergistic effects on tumor growth inhibition and apoptosis-inducing in vivo with no significant side effects. The DFO and ATO can up-regulate the expression of Caspase-3 and Bax, and down-regulate the expression of NF-κBp65 and survivin, especially for their combination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Antitumor activity of erlotinib (OSI-774, Tarceva) alone or in combination in human non-small cell lung cancer tumor xenograft models.

    PubMed

    Higgins, Brian; Kolinsky, Kenneth; Smith, Melissa; Beck, Gordon; Rashed, Mohammad; Adames, Violeta; Linn, Michael; Wheeldon, Eric; Gand, Laurent; Birnboeck, Herbert; Hoffmann, Gerhard

    2004-06-01

    Our objective was the preclinical assessment of the pharmacokinetics, monotherapy and combined antitumor activity of the epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor erlotinib in athymic nude mice bearing non-small cell lung cancer (NSCLC) xenograft models. Immunohistochemistry determined the HER1/EGFR status of the NSCLC tumor models. Pharmacokinetic studies assessed plasma drug concentrations of erlotinib in tumor- and non-tumor-bearing athymic nude mice. These were followed by maximum tolerated dose (MTD) studies for erlotinib and each chemotherapy. Erlotinib was then assessed alone and in combination with these chemotherapies in the NSCLC xenograft models. Complete necropsies were performed on most of the animals in each study to further assess antitumor or toxic effects. Erlotinib monotherapy dose-dependently inhibited tumor growth in the H460a tumor model, correlating with circulating levels of drug. There was antitumor activity at the MTD with each agent tested in both the H460a and A549 tumor models (erlotinib 100 mg/kg: 71 and 93% tumor growth inhibition; gemcitabine 120 mg/kg: 93 and 75% tumor growth inhibition; cisplatin 6 mg/kg: 81 and 88% tumor growth inhibition). When each compound was given at a fraction of the MTD, tumor growth inhibition was suboptimal. Combinations of gemcitabine or cisplatin with erlotinib were assessed at 25% of the MTD to determine efficacy. In both NSCLC models, doses of gemcitabine (30 mg/kg) or cisplatin (1.5 mg/kg) with erlotinib (25 mg/kg) at 25% of the MTD were well tolerated. For the slow growing A549 tumor, there was significant tumor growth inhibition in the gemcitabine/erlotinib and cisplatin/erlotinib combinations (above 100 and 98%, respectively), with partial regressions. For the faster growing H460a tumor, there was significant but less remarkable tumor growth inhibition in these same combinations (86 and 53% respectively). These results show that in NSCLC xenograft tumors with similar

  8. Patient-derived tumor xenografts of lung squamous cell carcinoma alter long non-coding RNA profile but not responsiveness to cisplatin.

    PubMed

    Lu, Dapeng; Luo, Peng; Zhang, Ju; Ye, Yuanyuan; Wang, Qi; Li, Ming; Zhou, Hangcheng; Xie, Mingran; Wang, Baolong

    2018-06-01

    Lung squamous cell carcinoma (LSCC), the second most common type of lung cancer, has received limited attention. Patient-derived tumor xenografts (PDTXs) are useful preclinical models to reproduce the diverse heterogeneity of cancer, but it is important to identify potential variations during their establishment. A total of 18 PDTXs were established from 37 the surgical specimens and 16 were serially passaged to third generation. Second- and third-generation xenografts had a faster growth rate in mice. The tumor implantation success rate was associated with poorer differentiation, larger tumor volume and higher expression of Ki-67. The xenografts largely retained histological and key immunophenotypic features (including p53, p63, cytokeratin5/6, and E-cadherin). However, increased Ki-67 expression was identified in partial xenografts. Long non-coding RNA (lncRNA) and mRNA expression in third-generation xenografts differed from that of matched primary tumors. Gene Ontology and pathway analysis showed that mRNAs involved in cell cycle, and metabolism regulation were generally upregulated in xenografts, while those associated with immune responses were typically downregulated. Furthermore, the responses of xenografts to cisplatin were consistent with clinical outcome. In the present study, PDTXs of SCC were successfully established, and closely resembled their original tumor regarding their immunophenotype and response to cisplatin. Overall, PDTXS of LSCC altered the lncRNA profile and increased the proliferative activity of cancer cells, whilst retaining responsiveness to cisplatin.

  9. Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer.

    PubMed

    Martey, Orleans; Nimick, Mhairi; Taurin, Sebastien; Sundararajan, Vignesh; Greish, Khaled; Rosengren, Rhonda J

    2017-01-01

    Patients with triple negative breast cancer have a poor prognosis due in part to the lack of targeted therapies. In the search for novel drugs, our laboratory has developed a second-generation curcumin derivative, 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidine-4-one (RL71), that exhibits potent in vitro cytotoxicity. To improve the clinical potential of this drug, we have encapsulated it in styrene maleic acid (SMA) micelles. SMA-RL71 showed improved biodistribution, and drug accumulation in the tumor increased 16-fold compared to control. SMA-RL71 (10 mg/kg, intravenously, two times a week for 2 weeks) also significantly suppressed tumor growth compared to control in a xenograft model of triple negative breast cancer. Free RL71 was unable to alter tumor growth. Tumors from SMA-RL71-treated mice showed a decrease in angiogenesis and an increase in apoptosis. The drug treatment also modulated various cell signaling proteins including the epidermal growth factor receptor, with the mechanisms for tumor suppression consistent with previous work with RL71 in vitro. The nanoformulation was also nontoxic as shown by normal levels of plasma markers for liver and kidney injury following weekly administration of SMA-RL71 (10 mg/kg) for 90 days. Thus, we report clinical potential following encapsulation of a novel curcumin derivative, RL71, in SMA micelles.

  10. Schedule-dependent inhibition of hypoxia-inducible factor-1alpha protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts.

    PubMed

    Rapisarda, Annamaria; Zalek, Jessica; Hollingshead, Melinda; Braunschweig, Till; Uranchimeg, Badarch; Bonomi, Carrie A; Borgel, Suzanne D; Carter, John P; Hewitt, Stephen M; Shoemaker, Robert H; Melillo, Giovanni

    2004-10-01

    We have previously shown that topotecan, a topoisomerase I poison, inhibits hypoxia-inducible factor (HIF)-1alpha protein accumulation by a DNA damage-independent mechanism. Here, we report that daily administration of topotecan inhibits HIF-1alpha protein expression in U251-HRE glioblastoma xenografts. Concomitant with HIF-1alpha inhibition, topotecan caused a significant tumor growth inhibition associated with a marked decrease of angiogenesis and expression of HIF-1 target genes in tumor tissue. These results provide a compelling rationale for testing topotecan in clinical trials to target HIF-1 in cancer patients.

  11. Inhibition on the growth of human MDA-MB-231 breast cancer cells in vitro and tumor growth in a mouse xenograft model by Se-containing polysaccharides from Pyracantha fortuneana.

    PubMed

    Yuan, Chengfu; Wang, Changdong; Wang, Junjie; Kumar, Vikas; Anwar, Firoz; Xiao, Fangxiang; Mushtaq, Gohar; Liu, Yufei; Kamal, Mohammad Amjad; Yuan, Ding

    2016-11-01

    Breast cancer is the second cause of cancer-related death among Women. Current therapies for breast cancer have adverse side-effects. Selenium (Se)-containing polysaccharides have multiple health benefits to humans. Pyracantha fortuneana (P. fortuneana) contains rich Se polysaccharides. We hypothesized that Se-containing polysaccharides from P. fortuneana possess anticancer activity on breast cancer via inhibiting growth and inducing apoptosis. This study aimed to assess the anticancer effect of Se-containing polysaccharides from P. fortuneana and the underlying mechanisms. Se-containing polysaccharides were purified. Their properties and monosaccharide compositions were analyzed. Their effects on cell growth, expression of cycle proteins, apoptosis and apoptosis-related protein, and tumor growth in mouse xenograft model were examined. This extract contained 93.7% (w/w) of carbohydrate, 2.1% (w/w) of uronic acid and 3.7μg/g of Se, and was considered as Se-conjugated polysaccharides (Se-PFPs). In vitro studies showed that treatment of triple negative breast cancer (TNBC) MDA-MB-231 cells with Se-PFPs (1) inhibited cell growth dose-dependently by arresting cells at G2 phase via inhibiting CDC25C-CyclinB1/CDC2 pathway; (2) caused apoptosis associated with increased p53, Bax, Puma and Noxa, decreased Bcl2, increased Bax/Bcl2 ratio and increased activities of caspases 3/9, suggesting its effect on p53-mediated cytochrome c-caspase pathway. Treatment of nude mice bearing MDA-MB-231-derived xenograft tumors with Se-PFPs significantly reduced tumor growth without altering body weight, confirming its antitumor activity without toxic side effects. Se-PFPs enhanced doxorubicin cytotoxic effects. It is concluded that Se-containing polysaccharides from P. fortuneana potently inhibit the growth and induce apoptosis of TNBC cells and can be potential anticancer agent for TNBC. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Antibody-directed neutralization of annexin II (ANX II) inhibits neoangiogenesis and human breast tumor growth in a xenograft model.

    PubMed

    Sharma, Meena; Blackman, Marc R; Sharma, Mahesh C

    2012-02-01

    Activation of the fibrinolytic pathway has long been associated with human breast cancer. Plasmin is the major end product of the fibrinolytic pathway and is critical for normal physiological functions. The mechanism by which plasmin is generated in breast cancer is not yet fully described. We previously identified annexin II (ANX II), a fibrinolytic receptor, in human breast tumor tissue samples and observed a strong positive correlation with advanced stage cancer (Sharma et al., 2006a). We further demonstrated that tissue plasminogen activator (tPA) binds to ANX II in invasive breast cancer MDA-MB231cells, which leads to plasmin generation (Sharma et al., 2010). We hypothesize that ANX II-dependent plasmin generation in breast tumor is necessary to trigger the switch to neoangiogenesis, thereby stimulating a more aggressive cancer phenotype. Our immunohistochemical studies of human breast tumor tissues provide compelling evidence of a strong positive correlation between ANX II expression and neoangiogenesis, and suggest that ANX II is a potential target to slow or inhibit breast tumor growth by inhibiting neoangiogenesis. We now report that administration of anti-ANX II antibody potently inhibits the growth of human breast tumor in a xenograft model. Inhibition of tumor growth is at least partly due to attenuation of neoangiogenic activity within the tumor. In vitro studies demonstrate that anti-ANX II antibody inhibits angiogenesis on three dimensional matrigel cultures by eliciting endothelial cell (EC) death likely due to apoptosis. Taken together, these data suggest that selective disruption of the fibrinolytic activity of ANX II may provide a novel strategy for specific inhibition of neoangiogenesis in human breast cancer. Published by Elsevier Inc.

  13. [Inhibitory effect of Biejiajian pills on HepG2 cell xenograft growth and expression of β-catenin and Tbx3 in nude mice].

    PubMed

    Wen, Bin; Sun, Hai-Tao; He, Song-Qi; LA, Lei; An, Hai-Yan; Pang, Jie

    2016-02-01

    To explore the molecular mechanism by which Biejiajian pills inhibit hepatocellular carcinoma in a nude mouse model bearing HepG2 cell xenograft. The inhibitory effect of Biejiajian pills on the growth of HepG2 cell xenograft in nude mice was observed. Immunohistochemical method was used to examine proliferating cell nuclear antigen (PCNA) expression in HepG2 cell xenograft, and TUNEL method was employed to detect the cell apoptosis; the expression levels of β-catenin and Tbx3 were measured by Western blotting. Biejiajian pills significantly suppressed the growth of HepG2 cell xenograft in nude mice. The tumor-bearing mice treated with a high and a moderate dose of Biejiajian pills showed significantly increased apoptosis rate of the tumor cells [(22.9±1.220)% and (14.7±0.50)%, respectively] compared with the control group [(5.5±0.90)%, P<0.05]. Treatment with Biejiajian pills significantly decreased the expressions of PNCA, β-catenin, and Tbx3 in the cell xenograft (P<0.05). Biejiajian pills can inhibit the growth of HepG2 cell xenograft in nude mice and promote tumor cell apoptosis possibly by inhibiting PNCA expression and the Wnt/β-catenin signaling pathway.

  14. Dual HER2 targeting impedes growth of HER2 gene-amplified uterine serous carcinoma xenografts.

    PubMed

    Groeneweg, Jolijn W; Hernandez, Silvia F; Byron, Virginia F; DiGloria, Celeste M; Lopez, Hector; Scialabba, Vanessa; Kim, Minji; Zhang, Ling; Borger, Darrell R; Tambouret, Rosemary; Foster, Rosemary; Rueda, Bo R; Growdon, Whitfield B

    2014-12-15

    Uterine serous carcinoma (USC) is an aggressive subtype of endometrial cancer that commonly harbors HER2 gene amplification. We investigated the effectiveness of HER2 inhibition using lapatinib and trastuzumab in vitro and in xenografts derived from USC cell lines and USC patient-derived xenografts. Immunohistochemistry and FISH were performed to assess HER2 expression in 42 primary USC specimens. ARK1, ARK2, and SPEC2 cell lines were treated with trastuzumab or lapatinib. Cohorts of mice harboring xenografts derived from ARK2 and SPEC2 cell lines and EnCa1 and EnCa2 primary human USC samples were treated with either vehicle, trastuzumab, lapatinib, or the combination of trastuzumab and lapatinib. Acute and chronic posttreatment tumor samples were assessed for downstream signaling alterations and examined for apoptosis and proliferation. HER2 gene amplification (24%) correlated significantly with HER2 protein overexpression (55%). All models were impervious to single-agent trastuzumab treatment. Lapatinib decreased in vitro proliferation of all cell lines and in vivo growth of HER2-amplified xenografts (ARK2, EnCa1). In addition, dual therapy with trastuzumab and lapatinib resulted in significant antitumor activity only in ARK2 and EnCa1 tumors. Dual HER2 therapy induced on target alteration of downstream MAPK and PI3K pathway mediators only in HER2-amplified models, and was associated with increased apoptosis and decreased proliferation. Although trastuzumab alone did not impact USC growth, dual anti-HER2 therapy with lapatinib led to improved inhibition of tumor growth in HER2-amplified USC and may be a promising avenue for future investigation. ©2014 American Association for Cancer Research.

  15. Antibody treatment of human tumor xenografts elicits active anti-tumor immunity in nude mice

    PubMed Central

    Liebman, Meredith A.; Roche, Marly I.; Williams, Brent R.; Kim, Jae; Pageau, Steven C.; Sharon, Jacqueline

    2007-01-01

    Athymic nude mice bearing subcutaneous tumor xenografts of the human anti-colorectal cancer cell line SW480 were used as a preclinical model to explore anti-tumor immunotherapies. Intratumor or systemic treatment of the mice with murine anti-SW480 serum, recombinant anti-SW480 polyclonal antibodies, or the anti-colorectal cancer monoclonal antibody CO17-1A, caused retardation or regression of SW480 tumor xenografts. Interestingly, when mice that had regressed their tumors were re-challenged with SW480 cells, these mice regressed the new tumors without further antibody treatment. Adoptive transfer of spleen cells from mice that had regressed their tumors conferred anti-tumor immunity to naïve nude mice. Pilot experiments suggest that the transferred anti-tumor immunity is mediated by T cells of both γδ and αβ lineages. These results demonstrate that passive anti-tumor immunotherapy can elicit active immunity and support a role for extra-thymic γδ and αβ T cells in tumor rejection. Implications for potential immunotherapies include injection of tumor nodules in cancer patients with anti-tumor antibodies to induce anti-tumor T cell immunity. PMID:17920694

  16. Aspirin induces apoptosis in vitro and inhibits tumor growth of human hepatocellular carcinoma cells in a nude mouse xenograft model

    PubMed Central

    HOSSAIN, MOHAMMAD AKBAR; KIM, DONG HWAN; JANG, JUNG YOON; KANG, YONG JUNG; YOON, JEONG-HYUN; MOON, JEON-OK; CHUNG, HAE YOUNG; KIM, GI-YOUNG; CHOI, YUNG HYUN; COPPLE, BRYAN L.; KIM, NAM DEUK

    2012-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are known to induce apoptosis in a variety of cancer cells, including colon, prostate, breast and leukemia. Among them, aspirin, a classical NSAID, shows promise in cancer therapy in certain types of cancers. We hypothesized that aspirin might affect the growth of liver cancer cells since liver is the principal site for aspirin metabolism. Therefore, we investigated the effects of aspirin on the HepG2 human hepatocellular carcinoma cell line in vitro and the HepG2 cell xenograft model in BALB/c nude mice. We found that treatment with aspirin inhibited cell growth and induced apoptosis involving both extrinsic and intrinsic pathways as measured by DNA ladder formation, alteration in the Bax/Bcl-2 ratio, activation of the caspase activities and related protein expressions. In vivo antitumor activity assay also showed that aspirin resulted in significant tumor growth inhibition compared to the control. Oral administration of aspirin (100 mg/kg/day) caused a significant reduction in the growth of HepG2 tumors in nude mice. These findings suggest that aspirin may be used as a promising anticancer agent against liver cancer. PMID:22179060

  17. FXR controls the tumor suppressor NDRG2 and FXR agonists reduce liver tumor growth and metastasis in an orthotopic mouse xenograft model.

    PubMed

    Deuschle, Ulrich; Schüler, Julia; Schulz, Andreas; Schlüter, Thomas; Kinzel, Olaf; Abel, Ulrich; Kremoser, Claus

    2012-01-01

    The farnesoid X receptor (FXR) is expressed predominantly in tissues exposed to high levels of bile acids and controls bile acid and lipid homeostasis. FXR(-/-) mice develop hepatocellular carcinoma (HCC) and show an increased prevalence for intestinal malignancies, suggesting a role of FXR as a tumor suppressor in enterohepatic tissues. The N-myc downstream-regulated gene 2 (NDRG2) has been recognized as a tumor suppressor gene, which is downregulated in human hepatocellular carcinoma, colorectal carcinoma and many other malignancies.We show reduced NDRG2 mRNA in livers of FXR(-/-) mice compared to wild type mice and both, FXR and NDRG2 mRNAs, are reduced in human HCC compared to normal liver. Gene reporter assays and Chromatin Immunoprecipitation data support that FXR directly controls NDRG2 transcription via IR1-type element(s) identified in the first introns of the human, mouse and rat NDRG2 genes. NDRG2 mRNA was induced by non-steroidal FXR agonists in livers of mice and the magnitude of induction of NDRG2 mRNA in three different human hepatoma cell lines was increased when ectopically expressing human FXR. Growth and metastasis of SK-Hep-1 cells was strongly reduced by non-steroidal FXR agonists in an orthotopic liver xenograft tumor model. Ectopic expression of FXR in SK-Hep1 cells reduced tumor growth and metastasis potential of corresponding cells and increased the anti-tumor efficacy of FXR agonists, which may be partly mediated via increased NDRG2 expression. FXR agonists may show a potential in the prevention and/or treatment of human hepatocellular carcinoma, a devastating malignancy with increasing prevalence and limited therapeutic options.

  18. [Inhibitory effect of migration-inducing gene-7-shRNA recombinant retrovirus combined with endostatin on growth and metastasis of hepatoma xenograft].

    PubMed

    Qu, B; Chen, G N; Sheng, G N; Yu, F; Lyu, Q; Gu, Y J; Guo, L; Lyu, Y

    2016-09-20

    Objective: To investigate the inhibitory effect of migration-inducing gene-7(Mig-7)interfered with retrovirus-mediated RNA(shRNA)combined with recombinant human endostatin(ES)on the growth and metastasis of subcutaneous xenograft of human hepatoma cells in nude mice. Methods: Two Mig-7-mRNA oligonucleotide sequences(Mig-7-shRNA-1 and Mig-7-shRNA-2)and one sequence as a negative control(Mig-7-shRNA-N)were designed. The specific Mig-7-shRNA recombinant retrovirus expression vector plasmid was constructed and used for the transfection of human hepatoma MHCC-97H cells with high expression of Mig-7. The subcutaneous xenograft tumor model of human hepatocellular carcinoma(HCC)in nude mice was established, and according to the condition of transfection and administration, the nude mice were divided into pSIREN-M1 group, pSIREN-MN group, ES group, and pSIREN-M1+ES group. The xenograft tumor volume, mass, and metastasis were compared between groups. Immunohistochemistry was used to observe the formation of vasculogenic mimicry(VM)in xenograft tumor and the difference in tumor microvascular density(MVD), and Western blot was used to measure the expression of Mig-7 and vascular endothelial growth factor(VEGF)in each group. A one-way analysis of variance was used for comparison between groups, and the Fisher's exact test was used for comparison of continuous data between groups. Results: Compared with the pSIREN-MN group, the pSIREN-M1 group had significantly lower xenograft tumor volume, mass, and metastasis rate, Mig-7 expression, and formation of VM( P < 0.05), as well as significantly higher VEGF expression and MVD( P < 0.05). Compared with the pSIREN-MN group, the ES group had significantly lower xenograft tumor volume, mass, and metastasis rate, VEGF expression, and MVD( P < 0.05), as well as significantly higher Mig-7 expression and formation of VM( P < 0.05). Compared with the pSIREN-M1 group and the ES group, the pSIREN-M1+ES group had significantly lower xenograft

  19. Effect of bevacizumab on angiogenesis and growth of canine osteosarcoma cells xenografted in athymic mice.

    PubMed

    Scharf, Valery F; Farese, James P; Coomer, Alastair R; Milner, Rowan J; Taylor, David P; Salute, Marc E; Chang, Myron N; Neal, Dan; Siemann, Dietmar W

    2013-05-01

    Objective-To investigate the effects of bevacizumab, a human monoclonal antibody against vascular endothelial growth factor, on the angiogenesis and growth of canine osteosarcoma cells xenografted in mice. Animals-27 athymic nude mice. Procedures-To each mouse, highly metastasizing parent osteosarcoma cells of canine origin were injected into the left gastrocnemius muscle. Each mouse was then randomly allocated to 1 of 3 treatment groups: high-dose bevacizumab (4 mg/kg, IP), low-dose bevacizumab (2 mg/kg, IP), or control (no treatment). Tumor growth (the number of days required for the tumor to grow from 8 to 13 mm), vasculature, histomorphology, necrosis, and pulmonary metastasis were evaluated. Results-Mice in the high-dose bevacizumab group had significantly delayed tumor growth (mean ± SD, 13.4 ± 3.8 days; range, 9 to 21 days), compared with that for mice in the low-dose bevacizumab group (mean ± SD, 9.4 ± 1.5 days; range, 7 to 11 days) or control group (mean ± SD, 7. 2 ± 1.5 days; range, 4 to 9 days). Mice in the low-dose bevacizumab group also had significantly delayed tumor growth, compared with that for mice in the control group. Conclusions and Clinical Relevance-Results indicated that bevacizumab inhibited growth of canine osteosarcoma cells xenografted in mice, which suggested that vascular endothelial growth factor inhibitors may be clinically useful for the treatment of osteosarcoma in dogs. Impact for Human Medicine-Canine osteosarcoma is used as a research model for human osteosarcoma; therefore, bevacizumab may be clinically beneficial for the treatment of osteosarcoma in humans.

  20. Antitumor effects with apoptotic death in human promyelocytic leukemia HL-60 cells and suppression of leukemia xenograft tumor growth by irinotecan HCl.

    PubMed

    Chen, Yung-Liang; Chueh, Fu-Shin; Yang, Jai-Sing; Hsueh, Shu-Ching; Lu, Chi-Cheng; Chiang, Jo-Hua; Lee, Ching-Sung; Lu, Hsu-Feng; Chung, Jing-Gung

    2015-07-01

    Irinotecan HCl (CPT-11) is an anticancer prodrug, but there is no available information addressing CPT-11-inhibited leukemia cells in in vitro and in vivo studies. Therefore, we investigated the cytotoxic effects of CPT-11 in promyelocytic leukemia HL-60 cells and in vivo and tumor growth in a leukemia xenograft model. Effects of CPT-11 on HL-60 cells were determined using flow cytometry, immunofluorescence staining, comet assay, real-time PCR, and Western blotting. CPT-11 demonstrated a dose- and time-dependent inhibition of cell growth, induction of apoptosis, and cell-cycle arrest at G0/G1 phase in HL-60 cells. CPT-11 promoted the release of AIF from mitochondria and its translocation to the nucleus. Bid, Bax, Apaf-1, caspase-9, AIF, Endo G, caspase-12, ATF-6b, Grp78, CDK2, Chk2, and cyclin D were all significantly upregulated and Bcl-2 was down-regulated by CPT-11 in HL-60 cells. Induction of cell-cycle arrest by CPT-11 was associated with changes in expression of key cell-cycle regulators such as CDK2, Chk2, and cyclin D in HL-60 cells. To test whether CPT-11 could augment antitumor activity in vivo, athymic BALB/c(nu/nu) nude mice were inoculated with HL-60 cells, followed by treatment with either CPT-11. The treatments significantly inhibited tumor growth and reduced tumor weight and volume in the HL-60 xenograft mice. The present study demonstrates the schedule-dependent antileukemia effect of CPT-11 using both in vitro and in vivo models. CPT-11 could potentially be a promising agent for the treatment of promyelocytic leukemia and requires further investigation. © 2014 Wiley Periodicals, Inc.

  1. Interleukin 35 Expression Correlates With Microvessel Density in Pancreatic Ductal Adenocarcinoma, Recruits Monocytes, and Promotes Growth and Angiogenesis of Xenograft Tumors in Mice.

    PubMed

    Huang, Chongbiao; Li, Zengxun; Li, Na; Li, Yang; Chang, Antao; Zhao, Tiansuo; Wang, Xiuchao; Wang, Hongwei; Gao, Song; Yang, Shengyu; Hao, Jihui; Ren, He

    2018-02-01

    Cells of the monocyte lineage contribute to tumor angiogenesis. Interleukin 35 (IL35) is a member of the IL12 family produced by regulatory, but not effector, T cells. IL35 is a dimer comprising the IL12 alpha and IL27 beta chains, encoded by IL12A and EBI3, respectively. Expression of IL35 is increased in pancreatic ductal adenocarcinomas (PDACs) compared with normal pancreatic tissues, and promotes metastasis. We investigated the role of IL35 in monocyte-induced angiogenesis of PDAC in mice. We measured levels of IL35 protein, microvessel density, and numbers of monocytes in 123 sequential PDAC tissues from patients who underwent surgery in China in 2010. We performed studies with the human PDAC cell lines CFPAC-1, BxPC-3, Panc-1, MIA-PaCa-2, and mouse PDAC cell line Pan02. Monocyte subsets were isolated by flow cytometry from human peripheral blood mononuclear cells. Fused human or mouse IL12A and EBI3 genes were overexpressed in PDAC cells or knocked down using small hairpin RNAs. Cells were grown as xenograft tumors in SCID mice; some mice were given injections of an IL35-neutralizing antibody and tumor growth was monitored. We performed chemotaxis assays to measure the ability of IL35 to recruit monocytes. We analyzed mRNA sequences of 179 PDACs in the Cancer Genome Atlas to identify correlations between expression of IL12A and EBI3 and monocyte markers. Monocytes incubated with IL35 or PDAC cell supernatants were analyzed in tube formation and endothelial migration assays. In PDAC samples from patients, levels of IL35 mRNA and protein correlated with microvessel density and infiltration of monocyte lineage cells. In cells and mice with xenograft tumors, IL35 increased recruitment of monocytes into PDAC tumors, which required CCL5. Upon exposure to IL35, monocytes increased expression of genes whose products promote angiogenesis (CXCL1 and CXCL8). IL35 activated transcription of CCL5, CXCL1, and CXCL8 by inducing GP130 signaling, via IL12RB2 and

  2. HeLa cell line xenograft tumor as a suitable cervical cancer model: growth kinetic characterization and immunohistochemistry array.

    PubMed

    Arjomandnejad, Motahareh; Muhammadnejad, Ahad; Haddadi, Mahnaz; Sherkat-Khameneh, Narjes; Rismanchi, Sanaz; Amanpour, Saeid; Muhammadnejad, Samad

    2014-04-01

    Cervical cancer is the seventh most common malignancy in both genders combined and the third most common cancer in women. Despite significant progress in treatments, cervical cancer is not completely curable. Therefore, further research is necessary in this area. Animal models are one of the most practical tools in the field of cancer research. The present study aimed to characterize the growth behavior and surface markers of HeLa cells after heterotopic and systemic inoculation to athymic nude mice. Ten 6-week old female athymic C57BL/6 nude mice were used in this study. HeLa cells were inoculated into the flank or tail vein. The tumor volume was calculated and growth curves were drawn. Tumor-bearing mice were sacrificed and the lesions obtained after harvesting were analyzed in a pathology lab. Subsequently, one slide per tumor was stained with hematoxylin and eosin (H&E) and other slides were stained immunohistochemically by cytokeratins (CK), vimentin, P53, CD34, and Ki-67. Tumor take rate, mean doubling time and latency period were 94.4%, 5.29 ± 3.57 days and 15.27 days, respectively. H&E results revealed highly malignant hyperchromatin epithelial cells. Immunohistochemical examination of the heterotopic tumors indicated greater expression of CK and less expression of vimentin compared to the metastatic ones. Sixty percent of cells were P53-positive and more than 80% were Ki-67-positive. CD34 expression indicated the intensity of angiogenesis in tumor. This study represents a comprehensive description of a HeLa xenograft model for in vivo investigations, enabling researchers to assess new treatments for cervical cancer.

  3. Chitosan nanoparticles inhibit the growth of human hepatocellular carcinoma xenografts through an antiangiogenic mechanism.

    PubMed

    Xu, Yinglei; Wen, Zhengshun; Xu, Zirong

    2009-12-01

    Chitosan nanoparticles (CNP) have demonstrated anticancer activity in vitro and in vivo by a few recent researches. However, the mechanisms involved in their potential anticancer activity remain to be elucidated. In this study, the effects of CNP on tumor growth were investigated using a model of nude mice xenografted with human hepatocellular carcinoma (HCC) (BEL-7402) cells. The results demonstrated that the treatment of these nude mice with CNP significantly inhibited tumor growth and induced tumor necrosis. Furthermore, microvessel density (MVD) determination by counting immunohistologically stained tumor microvessels suggested that CNP dose-dependent tumor suppression was correlated with the inhibition of tumor angiogenesis. Mechanistically, immunohistochemical and quantitative real-time reverse transcription-polymerase reaction assays provided evidence that CNP-mediated inhibition of tumor angiogenesis was linked to impaired levels of vascular endothelial growth factor receptor 2 (VEGFR2). Due to their low or non-toxicity, CNP and their derivatives may represent a novel class of anti-cancer drug.

  4. [Abnormal expression of insulin-like growth factor-I receptor and inhibitory effect of its transcription intervention on nude mice xenograft tumor].

    PubMed

    Yao, M; Yan, X D; Cai, Y; Gu, J J; Yang, X L; Pan, L H; Wang, L; Yao, D F

    2016-11-20

    Objective: To investigate the expression of insulin-like growth factor-I receptor (IGF-IR) in liver cancer and the inhibitory effect of its transcription intervention on nude mice xenograft tumor. Methods: A total of 40 patients with primary liver cancer were enrolled, and 40 samples of cancer lesions, peri-cancerous tissues (with a distance of 2 cm to the margin of cancer lesion), or distal liver tissues (with a distance of 5 cm to the margin of cancer lesion), with a weight of 200 mg, were collected after surgery. Some of these samples were used for pathological examination, and the rest were stored at -85°C. A total of 18 BALB/c nude mice aged 4-6 weeks with a body weight of 18-20 g (9 male and 9 female mice) were randomly divided into control group, negative control group, and co-intervention group, with 6 mice in each group, and fed under specific pathogen-free conditions. The cell line was cultured in the dimethyl sulfoxide complete medium containing 10% fetal bovine serum in a CO 2 incubator at 37°C. When the cell confluence reached 90% after cell inoculation, shRNA was divided into co-intervention group, negative control group, and untreated control group and were transfected to hepatoma cells using PolyJetTM transfection reagent. Stable cell clones obtained by G418 screening and used for the in vivo study. Immunohistochemistry, Western blotting, and quantitative real-time PCR were used to analyze the expression of IGF-IR in the human hepatoma tissue and cell line. The IGF-IR shRNA eukaryotic expression plasmids were established and screened for the most effective sequence; they were transfected to PLC/PRF/5 hepatoma cells, and the CCK-8 assay was used to analyze the changes in cell proliferation. The stable cell line screened out by G418 was inoculated to establish the subcutaneous xenograft tumor in nude mice. The tumor growth curve was plotted and histological examination was performed. Graphpad Prism 5.0 and SPSS 18.0 were used for plotting and data

  5. Xenograft tumors derived from malignant pleural effusion of the patients with non-small-cell lung cancer as models to explore drug resistance.

    PubMed

    Xu, Yunhua; Zhang, Feifei; Pan, Xiaoqing; Wang, Guan; Zhu, Lei; Zhang, Jie; Wen, Danyi; Lu, Shun

    2018-05-09

    Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations or anaplastic lymphoma kinase (ALK) fusions show dramatic responses to specific tyrosine kinase inhibitors (TKIs); however, after 10-12 months, secondary mutations arise that confer resistance. We generated a murine xenograft model using patient-derived NSCLC cells isolated from the pleural fluid of two patients with NSCLC to investigate the mechanisms of resistance against the ALK- and EGFR-targeted TKIs crizotinib and osimertinib, respectively. Genotypes of patient biopsies and xenograft tumors were determined by whole exome sequencing (WES), and patients and xenograft-bearing mice received targeted treatment (crizotinib or osimertinib) accordingly. Xenograft mice were also treated for prolonged periods to identify whether the development of drug resistance and/or treatment responses were associated with tumor size. Finally, the pathology of patients biopsies and xenograft tumors were compared histologically. The histological characteristics and chemotherapy responses of xenograft tumors were similar to the actual patients. WES showed that the genotypes of the xenograft and patient tumors were similar (an echinoderm microtubule-associated protein-like 4-ALK (EML4-ALK) gene fusion (patient/xenograft: CTC15035 EML4-ALK ) and EGFR L858R and T790M mutations (patient/xenograft: CTC15063 EGFR L858R, T790M )). After continuous crizotinib or osimertinib treatment, WES data suggested that acquired ALK E1210K mutation conferred crizotinib resistance in the CTC15035 EML4-ALK xenograft, while decreased frequencies of EGFR L858R and T790M mutations plus the appearance of v-RAF murine sarcoma viral oncogene homolog B (BRAF) G7V mutations and phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 alpha (PIK3C2A) A86fs frame shift mutations led to osimertinib resistance in the CTC15063 EGFR L858R, T790M xenografts. We successfully developed a new method of generating

  6. Proscillaridin A is cytotoxic for glioblastoma cell lines and controls tumor xenograft growth in vivo.

    PubMed

    Denicolaï, Emilie; Baeza-Kallee, Nathalie; Tchoghandjian, Aurélie; Carré, Manon; Colin, Carole; Jiglaire, Carine Jiguet; Mercurio, Sandy; Beclin, Christophe; Figarella-Branger, Dominique

    2014-11-15

    Glioblastoma is the most frequent primary brain tumor in adults. Because of molecular and cellular heterogeneity, high proliferation rate and significant invasive ability, prognosis of patients is poor. Recent therapeutic advances increased median overall survival but tumor recurrence remains inevitable. In this context, we used a high throughput screening approach to bring out novel compounds with anti-proliferative and anti-migratory properties for glioblastoma treatment. Screening of the Prestwick chemical library® of 1120 molecules identified proscillaridin A, a cardiac glycoside inhibitor of the Na(+)/K(+) ATPase pump, with most significant effects on glioblastoma cell lines. In vitro effects of proscillaridin A were evaluated on GBM6 and GBM9 stem-like cell lines and on U87-MG and U251-MG cell lines. We showed that proscillaridin A displayed cytotoxic properties, triggered cell death, induced G2/M phase blockade in all the glioblastoma cell lines and impaired GBM stem self-renewal capacity even at low concentrations. Heterotopic and orthotopic xenotransplantations were used to confirm in vivo anticancer effects of proscillaridin A that both controls xenograft growth and improves mice survival. Altogether, results suggest that proscillaridin A is a promising candidate as cancer therapies in glioblastoma. This sustains previous reports showing that cardiac glycosides act as anticancer drugs in other cancers.

  7. Local Delivery of Cannabinoid-Loaded Microparticles Inhibits Tumor Growth in a Murine Xenograft Model of Glioblastoma Multiforme

    PubMed Central

    Gil-Alegre, Maria Esther; Torres, Sofía; García-Taboada, Elena; Aberturas, María del Rosario; Molpeceres, Jesús

    2013-01-01

    Cannabinoids, the active components of marijuana and their derivatives, are currently investigated due to their potential therapeutic application for the management of many different diseases, including cancer. Specifically, Δ9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD) – the two major ingredients of marijuana – have been shown to inhibit tumor growth in a number of animal models of cancer, including glioma. Although there are several pharmaceutical preparations that permit the oral administration of THC or its analogue nabilone or the oromucosal delivery of a THC- and CBD-enriched cannabis extract, the systemic administration of cannabinoids has several limitations in part derived from the high lipophilicity exhibited by these compounds. In this work we analyzed CBD- and THC-loaded poly-ε-caprolactone microparticles as an alternative delivery system for long-term cannabinoid administration in a murine xenograft model of glioma. In vitro characterization of THC- and CBD-loaded microparticles showed that this method of microencapsulation facilitates a sustained release of the two cannabinoids for several days. Local administration of THC-, CBD- or a mixture (1∶1 w:w) of THC- and CBD-loaded microparticles every 5 days to mice bearing glioma xenografts reduced tumour growth with the same efficacy than a daily local administration of the equivalent amount of those cannabinoids in solution. Moreover, treatment with cannabinoid-loaded microparticles enhanced apoptosis and decreased cell proliferation and angiogenesis in these tumours. Our findings support that THC- and CBD-loaded microparticles could be used as an alternative method of cannabinoid delivery in anticancer therapies. PMID:23349970

  8. Local delivery of cannabinoid-loaded microparticles inhibits tumor growth in a murine xenograft model of glioblastoma multiforme.

    PubMed

    Hernán Pérez de la Ossa, Dolores; Lorente, Mar; Gil-Alegre, Maria Esther; Torres, Sofía; García-Taboada, Elena; Aberturas, María Del Rosario; Molpeceres, Jesús; Velasco, Guillermo; Torres-Suárez, Ana Isabel

    2013-01-01

    Cannabinoids, the active components of marijuana and their derivatives, are currently investigated due to their potential therapeutic application for the management of many different diseases, including cancer. Specifically, Δ(9)-Tetrahydrocannabinol (THC) and Cannabidiol (CBD) - the two major ingredients of marijuana - have been shown to inhibit tumor growth in a number of animal models of cancer, including glioma. Although there are several pharmaceutical preparations that permit the oral administration of THC or its analogue nabilone or the oromucosal delivery of a THC- and CBD-enriched cannabis extract, the systemic administration of cannabinoids has several limitations in part derived from the high lipophilicity exhibited by these compounds. In this work we analyzed CBD- and THC-loaded poly-ε-caprolactone microparticles as an alternative delivery system for long-term cannabinoid administration in a murine xenograft model of glioma. In vitro characterization of THC- and CBD-loaded microparticles showed that this method of microencapsulation facilitates a sustained release of the two cannabinoids for several days. Local administration of THC-, CBD- or a mixture (1:1 w:w) of THC- and CBD-loaded microparticles every 5 days to mice bearing glioma xenografts reduced tumour growth with the same efficacy than a daily local administration of the equivalent amount of those cannabinoids in solution. Moreover, treatment with cannabinoid-loaded microparticles enhanced apoptosis and decreased cell proliferation and angiogenesis in these tumours. Our findings support that THC- and CBD-loaded microparticles could be used as an alternative method of cannabinoid delivery in anticancer therapies.

  9. Stereotactic intracranial implantation and in vivo bioluminescent imaging of tumor xenografts in a mouse model system of glioblastoma multiforme.

    PubMed

    Baumann, Brian C; Dorsey, Jay F; Benci, Joseph L; Joh, Daniel Y; Kao, Gary D

    2012-09-25

    Glioblastoma multiforme (GBM) is a high-grade primary brain cancer with a median survival of only 14.6 months in humans despite standard tri-modality treatment consisting of surgical resection, post-operative radiation therapy and temozolomide chemotherapy. New therapeutic approaches are clearly needed to improve patient survival and quality of life. The development of more effective treatment strategies would be aided by animal models of GBM that recapitulate human disease yet allow serial imaging to monitor tumor growth and treatment response. In this paper, we describe our technique for the precise stereotactic implantation of bio-imageable GBM cancer cells into the brains of nude mice resulting in tumor xenografts that recapitulate key clinical features of GBM. This method yields tumors that are reproducible and are located in precise anatomic locations while allowing in vivo bioluminescent imaging to serially monitor intracranial xenograft growth and response to treatments. This method is also well-tolerated by the animals with low perioperative morbidity and mortality.

  10. Sodium Selenite Radiosensitizes Hormone-Refractory Prostate Cancer Xenograft Tumors but Not Intestinal Crypt Cells In Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian Junqiang; Ning Shouchen; Knox, Susan J., E-mail: sknox@stanford.ed

    Purpose: We have previously shown that sodium selenite (SSE) increases radiation-induced cell killing of human prostate carcinoma cells in vitro. In this study we further evaluated the in vivo radiosensitizing effect of SSE in prostate cancer xenograft tumors and normal radiosensitive intestinal crypt cells. Methods and Materials: Immunodeficient (SCID) mice with hormone-independent LAPC-4 (HI-LAPC-4) and PC-3 xenograft tumors (approximately 200 mm{sup 3}) were divided into four groups: control (untreated), radiation therapy (XRT, local irradiation), SSE (2 mg/kg, intraperitoneally, 3 times/week), and XRT plus SSE. The XRT was given at the beginning of the regimen as a single dose of 5more » Gy for HI-LAPC-4 tumors and a single dose of 7 Gy followed by a fractional dose of 3 Gy/d for 5 days for PC-3 tumors. The tumor volume was measured 3 times per week. The radiosensitizing effect of SSE on normal intestinal epithelial cells was assessed by use of a crypt cell microcolony assay. Results: In the efficacy study, SSE alone significantly inhibited the tumor growth in HI-LAPC-4 tumors but not PC-3 tumors. Sodium selenite significantly enhanced the XRT-induced tumor growth inhibition in both HI-LAPC-4 and PC-3 tumors. In the toxicity study, SSE did not affect the intestinal crypt cell survival either alone or in combination with XRT. Conclusions: Sodium selenite significantly enhances the effect of radiation on well-established hormone-independent prostate tumors and does not sensitize the intestinal epithelial cells to radiation. These results suggest that SSE may increase the therapeutic index of XRT for the treatment of prostate cancer.« less

  11. Synthetic curcumin analog EF31 inhibits the growth of head and neck squamous cell carcinoma xenografts

    PubMed Central

    Zhu, Shijun; Moore, Terry W.; Lin, Xiaoqian; Morii, Nao; Mancini, Alessandra; Howard, Randy B.; Culver, Deborah; Arrendale, Richard F.; Reddy, Prabhakar; Evers, Taylor J.; Zhang, Hongzheng; Sica, Gabriel; Chen, Zhuo G.; Sun, Aiming; Fu, Haian; Khuri, Fadlo R.; Shin, Dong M.; Snyder, James P.; Shoji, Mamoru

    2013-01-01

    Objectives are to examine the efficacy of new synthetic curcumin analogs EF31 in head and neck squamous cell carcinoma in vitro and in vivo, and study their pharmacokinetic and toxicologic effects in vivo. The synthesis of EF31 was described for the first time. Solubility of EF24, EF31 was compared using nephelometric analysis. Human head and neck squamous cell carcinoma Tu212 xenograft tumors were established in athymic nude mice and treated with EF31 i.p. once daily five days a week for about 5 – 6 weeks. The long term effect of EF31 on the NF-κB signaling system in the tumors was examined by Western blot analysis. EF31 at 25 mg/kg, i.p. inhibited tumor growth almost completely. Solubility of EF24 and EF31 are <10, 13 μg/mL or <32, 47 μM, respectively. The serum chemistry profiles of treated mice were within the limits of normal, it revealed a linear increase of Cmax. EF31 decreased the level of phosphorylation of NF-κB p65. In conclusion, the novel synthetic curcumin analogs EF31 is efficacious in inhibiting the growth of Tu212 xenograft tumors and may be useful for treating head and neck squamous cell carcinoma. The long term EF31 treatment inhibited NF-kB p65 phosphorylation in xenografts, implicating downregulation of cancer promoting transcription factors such as angiogenesis and metastasis. PMID:22532032

  12. Synthetic curcumin analog EF31 inhibits the growth of head and neck squamous cell carcinoma xenografts.

    PubMed

    Zhu, Shijun; Moore, Terry W; Lin, Xiaoqian; Morii, Nao; Mancini, Alessandra; Howard, Randy B; Culver, Deborah; Arrendale, Richard F; Reddy, Prabhakar; Evers, Taylor J; Zhang, Hongzheng; Sica, Gabriel; Chen, Zhuo G; Sun, Aiming; Fu, Haian; Khuri, Fadlo R; Shin, Dong M; Snyder, James P; Shoji, Mamoru

    2012-06-01

    Objectives are to examine the efficacy, pharmacokinetics, and toxicology of a synthetic curcumin analog EF31 in head and neck squamous cell carcinoma. The synthesis of EF31 was described for the first time. Solubility of EF24 and EF31 was compared using nephelometric analysis. Human head and neck squamous cell carcinoma Tu212 xenograft tumors were established in athymic nude mice and treated with EF31 i.p. once daily five days a week for about 5-6 weeks. The long term effect of EF31 on the NF-κB signaling system in the tumors was examined by Western blot analysis. EF31 at 25 mg kg(-1), i.p. inhibited tumor growth almost completely. Solubilities of EF24 and EF31 are <10 and 13 μg mL(-1) or <32 and 47 μM, respectively. The serum chemistry profiles of treated mice were within the limits of normal, they revealed a linear increase of C(max). EF31 decreased the level of phosphorylation of NF-κB p65. In conclusion, the novel synthetic curcumin analog EF31 is efficacious in inhibiting the growth of Tu212 xenograft tumors and may be useful for treating head and neck squamous cell carcinoma. The long term EF31 treatment inhibited NF-κB p65 phosphorylation in xenografts, implicating downregulation of cancer promoting transcription factors such as angiogenesis and metastasis.

  13. Epidermal Growth Factor Receptor Expression Modulates Antitumor Efficacy of Vandetanib or Cediranib Combined With Radiotherapy in Human Glioblastoma Xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachsberger, Phyllis R., E-mail: Phyllis.wachsberger@jeffersonhospital.org; Lawrence, Yaacov R.; Liu Yi

    2012-01-01

    Purpose: The purpose of this study was to determine the ability of radiation therapy (RT) combined with the tyrosine kinase inhibitors (TKI) vandetanib (antiepidermal growth factor receptor [EGFR] plus antivascular endothelial growth factor receptor [anti-VEGFR]) and cediranib (anti-VEGFR) to inhibit glioblastoma multiforme (GBM) growth. A secondary aim was to investigate how this regimen is modulated by tumor EGFR expression. Methods and Materials: Radiosensitivity was assessed by clonogenic cell survival assay. VEGF secretion was quantified by enzyme-linked immunosorbent assay. GBM (U87MG wild-type EGFR [wtEGFR] and U87MG EGFR-null) xenografts were treated with vandetanib, cediranib, and RT, alone or in combinations. Excised tumormore » sections were stained for proliferative and survival biomarkers. Results: In vitro, U87MG wtEGFR and U87 EGFR-null cells had similar growth kinetics. Neither TKI affected clonogenic cell survival following RT. However, in vivo, exogenous overexpression of wtEGFR decreased tumor doubling time (T2x) in U87MG xenografts (2.70 vs. 4.41 days for U87MG wtEGFR vs. U87MG vector, respectively). In U87MG EGFR-null cells, TKI combined with radiation was no better than radiation therapy alone. In U87MG wtEGFR, RT in combination with vandetanib (but not with cediranib) significantly increased tumor T2x compared with RT alone (T2x, 10.4 days vs. 4.8 days; p < 0.001). In vivo, growth delay correlated with suppression of pAkt, survivin, and Ki67 expression in tumor samples. The presence of EGFR augmented RT-stimulated VEGF release; this effect was inhibited by vandetanib. Conclusions: EGFR expression promoted tumor growth in vivo but not in vitro, suggesting a microenvironmental effect. GBM xenografts expressing EGFR exhibited greater sensitivity to both cediranib and vandetanib than EGFR-null tumors. Hence EGFR status plays a major role in determining a tumor's in vivo response to radiation combined with TKI, supporting a 'personalized

  14. Genetically Engineered Cancer Models, But Not Xenografts, Faithfully Predict Anticancer Drug Exposure in Melanoma Tumors

    PubMed Central

    Combest, Austin J.; Roberts, Patrick J.; Dillon, Patrick M.; Sandison, Katie; Hanna, Suzan K.; Ross, Charlene; Habibi, Sohrab; Zamboni, Beth; Müller, Markus; Brunner, Martin; Sharpless, Norman E.

    2012-01-01

    Background. Rodent studies are a vital step in the development of novel anticancer therapeutics and are used in pharmacokinetic (PK), toxicology, and efficacy studies. Traditionally, anticancer drug development has relied on xenograft implantation of human cancer cell lines in immunocompromised mice for efficacy screening of a candidate compound. The usefulness of xenograft models for efficacy testing, however, has been questioned, whereas genetically engineered mouse models (GEMMs) and orthotopic syngeneic transplants (OSTs) may offer some advantages for efficacy assessment. A critical factor influencing the predictability of rodent tumor models is drug PKs, but a comprehensive comparison of plasma and tumor PK parameters among xenograft models, OSTs, GEMMs, and human patients has not been performed. Methods. In this work, we evaluated the plasma and tumor dispositions of an antimelanoma agent, carboplatin, in patients with cutaneous melanoma compared with four different murine melanoma models (one GEMM, one human cell line xenograft, and two OSTs). Results. Using microdialysis to sample carboplatin tumor disposition, we found that OSTs and xenografts were poor predictors of drug exposure in human tumors, whereas the GEMM model exhibited PK parameters similar to those seen in human tumors. Conclusions. The tumor PKs of carboplatin in a GEMM of melanoma more closely resembles the tumor disposition in patients with melanoma than transplanted tumor models. GEMMs show promise in becoming an improved prediction model for intratumoral PKs and response in patients with solid tumors. PMID:22993143

  15. Orthotopic xenografts of RCC retain histological, immunophenotypic and genetic features of tumors in patients

    PubMed Central

    Grisanzio, Chiara; Seeley, Apryle; Chang, Michelle; Collins, Michael; Di Napoli, Arianna; Cheng, Su-Chun; Percy, Andrew; Beroukhim, Rameen; Signoretti, Sabina

    2013-01-01

    Renal cell carcinoma (RCC) is an aggressive malignancy with limited responsiveness to existing treatments. In vivo models of human cancer, including RCC, are critical for developing more effective therapies. Unfortunately, current RCC models do not accurately represent relevant properties of the human disease. The goal of this study was to develop clinically relevant animal models of RCC for preclinical investigations. We transplanted intact human tumor tissue fragments orthotopically in immunodeficient mice. The xenografts were validated by comparing the morphologic, phenotypic, and genetic characteristics of the kidney tumor tissues before and after implantation. Twenty kidney tumors were transplanted into mice. Successful tumor growth was detected in 19 cases (95%). The histopathologic and immunophenotypic features of the xenografts and those of the original tumors largely overlapped in all the cases. Evaluation of genetic alterations in a subset of 10 cases demonstrated that the grafts largely retained the genetic features of the pre-implantation RCC tissues. Indeed, primary tumors and corresponding grafts displayed identical VHL mutations. Moreover, an identical pattern of DNA copy amplification or loss was observed in 6 of 10 cases (60%). In summary, orthotopic engrafting of RCC tissue fragments can be successfully used to generate animal models that closely resemble RCC in patients. These models will be invaluable for in vivo preclinical drug testing, and for deeper understanding of kidney carcinogenesis. PMID:21710693

  16. Nanosuspension delivery of paclitaxel to xenograft mice can alter drug disposition and anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Chiang, Po-Chang; Gould, Stephen; Nannini, Michelle; Qin, Ann; Deng, Yuzhong; Arrazate, Alfonso; Kam, Kimberly R.; Ran, Yingqing; Wong, Harvey

    2014-04-01

    Paclitaxel is a common chemotherapeutic agent that is effective against various cancers. The poor aqueous solubility of paclitaxel necessitates a large percentage of Cremophor EL:ethanol (USP) in its commercial formulation which leads to hypersensitivity reactions in patients. We evaluate the use of a crystalline nanosuspension versus the USP formulation to deliver paclitaxel to tumor-bearing xenograft mice. Anti-tumor efficacy was assessed following intravenous administration of three 20 mg/kg doses of paclitaxel. Paclitaxel pharmacokinetics and tissue distribution were evaluated, and differences were observed between the two formulations. Plasma clearance and tissue to plasma ratio of mice that were dosed with the nanosuspension are approximately 33- and 11-fold higher compared to those of mice that were given the USP formulation. Despite a higher tumor to plasma ratio for the nanosuspension treatment group, absolute paclitaxel tumor exposure was higher for the USP group. Accordingly, a higher anti-tumor effect was observed in the xenograft mice that were dosed with the USP formulation (90% versus 42% tumor growth inhibition). This reduction in activity of nanoparticle formulation appeared to result from a slower than anticipated dissolution in vivo. This study illustrates a need for careful consideration of both dose and systemic solubility prior utilizing nanosuspension as a mode of intravenous delivery.

  17. Human tumor xenografts in mouse as a model for evaluating therapeutic efficacy of monoclonal antibodies or antibody-drug conjugate targeting receptor tyrosine kinases.

    PubMed

    Feng, Liang; Wang, Wei; Yao, Hang-Ping; Zhou, Jianwei; Zhang, Ruiwen; Wang, Ming-Hai

    2015-01-01

    Targeting receptor tyrosine kinases by therapeutic monoclonal antibodies and antibody-drug conjugates has met with tremendous success in clinical oncology. Currently, numerous therapeutic monoclonal antibodies are under preclinical development. The potential for moving candidate antibodies into clinical trials relies heavily on therapeutic efficacy validated by human tumor xenografts in mice. Here we describe methods used to determine therapeutic efficacy of monoclonal antibodies or antibody-drug conjugates specific to human receptor tyrosine kinase using human tumor xenografts in mice as the model. The end point of the study is to determine whether treatment of tumor-bearing mice with a monoclonal antibody or antibody-drug conjugates results in significant delay of tumor growth.

  18. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chian, Song; Thapa, Ruby; Chi, Zhexu

    Highlights: • Luteolin inhibits the Nrf2 pathway in mouse liver and in xenografted tumors. • Luteolin markedly inhibits the growth of xenograft tumors. • Luteolin enhances the anti-cancer effect of cisplatin in mice in vivo. • Luteolin could serve as an adjuvant in the chemotherapy of NSCLC. - Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is over-expressed in many types of tumor, promotes tumor growth, and confers resistance to anticancer therapy. Hence, Nrf2 is regarded as a novel therapeutic target in cancer. Previously, we reported that luteolin is a strong inhibitor of Nrf2 in vitro. Here, we showed thatmore » luteolin reduced the constitutive expression of NAD(P)H quinone oxidoreductase 1 in mouse liver in a time- and dose-dependent manner. Further, luteolin inhibited the expression of antioxidant enzymes and glutathione transferases, decreasing the reduced glutathione in the liver of wild-type mice under both constitutive and butylated hydroxyanisole-induced conditions. In contrast, such distinct responses were not detected in Nrf2{sup −/−} mice. In addition, oral administration of luteolin, either alone or combined with intraperitoneal injection of the cytotoxic drug cisplatin, greatly inhibited the growth of xenograft tumors from non-small-cell lung cancer (NSCLC) cell line A549 cells grown subcutaneously in athymic nude mice. Cell proliferation, the expression of Nrf2, and antioxidant enzymes were all reduced in tumor xenograft tissues. Furthermore, luteolin enhanced the anti-cancer effect of cisplatin. Together, our findings demonstrated that luteolin inhibits the Nrf2 pathway in vivo and can serve as an adjuvant in the chemotherapy of NSCLC.« less

  19. Thymoquinone Inhibits Tumor Growth and Induces Apoptosis in a Breast Cancer Xenograft Mouse Model: The Role of p38 MAPK and ROS

    PubMed Central

    Woo, Chern Chiuh; Hsu, Annie; Kumar, Alan Prem; Sethi, Gautam; Tan, Kwong Huat Benny

    2013-01-01

    Due to narrow therapeutic window of cancer therapeutic agents and the development of resistance against these agents, there is a need to discover novel agents to treat breast cancer. The antitumor activities of thymoquinone (TQ), a compound isolated from Nigella sativa oil, were investigated in breast carcinoma in vitro and in vivo. Cell responses after TQ treatment were assessed by using different assays including MTT assay, annexin V-propidium iodide staining, Mitosox staining and Western blot. The antitumor effect was studied by breast tumor xenograft mouse model, and the tumor tissues were examined by histology and immunohistochemistry. The level of anti-oxidant enzymes/molecules in mouse liver tissues was measured by commercial kits. Here, we show that TQ induced p38 phosphorylation and ROS production in breast cancer cells. These inductions were found to be responsible for TQ’s anti-proliferative and pro-apoptotic effects. Moreover, TQ-induced ROS production regulated p38 phosphorylation but not vice versa. TQ treatment was found to suppress the tumor growth and this effect was further enhanced by combination with doxorubicin. TQ also inhibited the protein expression of anti-apoptotic genes, such as XIAP, survivin, Bcl-xL and Bcl-2, in breast cancer cells and breast tumor xenograft. Reduced Ki67 and increased TUNEL staining were observed in TQ-treated tumors. TQ was also found to increase the level of catalase, superoxide dismutase and glutathione in mouse liver tissues. Overall, our results demonstrated that the anti-proliferative and pro-apoptotic effects of TQ in breast cancer are mediated through p38 phosphorylation via ROS generation. PMID:24098377

  20. Radiotherapy and chemotherapy change vessel tree geometry and metastatic spread in a small cell lung cancer xenograft mouse tumor model

    PubMed Central

    Bethge, Anja; Schumacher, Udo

    2017-01-01

    Background Tumor vasculature is critical for tumor growth, formation of distant metastases and efficiency of radio- and chemotherapy treatments. However, how the vasculature itself is affected during cancer treatment regarding to the metastatic behavior has not been thoroughly investigated. Therefore, the aim of this study was to analyze the influence of hypofractionated radiotherapy and cisplatin chemotherapy on vessel tree geometry and metastasis formation in a small cell lung cancer xenograft mouse tumor model to investigate the spread of malignant cells during different treatments modalities. Methods The biological data gained during these experiments were fed into our previously developed computer model “Cancer and Treatment Simulation Tool” (CaTSiT) to model the growth of the primary tumor, its metastatic deposit and also the influence on different therapies. Furthermore, we performed quantitative histology analyses to verify our predictions in xenograft mouse tumor model. Results According to the computer simulation the number of cells engrafting must vary considerably to explain the different weights of the primary tumor at the end of the experiment. Once a primary tumor is established, the fractal dimension of its vasculature correlates with the tumor size. Furthermore, the fractal dimension of the tumor vasculature changes during treatment, indicating that the therapy affects the blood vessels’ geometry. We corroborated these findings with a quantitative histological analysis showing that the blood vessel density is depleted during radiotherapy and cisplatin chemotherapy. The CaTSiT computer model reveals that chemotherapy influences the tumor’s therapeutic susceptibility and its metastatic spreading behavior. Conclusion Using a system biological approach in combination with xenograft models and computer simulations revealed that the usage of chemotherapy and radiation therapy determines the spreading behavior by changing the blood vessel geometry

  1. Human Xenografts Are Not Rejected in a Naturally Occurring Immunodeficient Porcine Line: A Human Tumor Model in Pigs

    PubMed Central

    Basel, Matthew T.; Balivada, Sivasai; Beck, Amanda P.; Kerrigan, Maureen A.; Pyle, Marla M.; Dekkers, Jack C.M.; Wyatt, Carol R.; Rowland, Robert R.R.; Anderson, David E.; Bossmann, Stefan H.

    2012-01-01

    Abstract Animal models for cancer therapy are invaluable for preclinical testing of potential cancer treatments; however, therapies tested in such models often fail to translate into clinical settings. Therefore, a better preclinical model for cancer treatment testing is needed. Here we demonstrate that an immunodeficient line of pigs can host and support the growth of xenografted human tumors and has the potential to be an effective animal model for cancer therapy. Wild-type and immunodeficient pigs were injected subcutaneously in the left ear with human melanoma cells (A375SM cells) and in the right ear with human pancreatic carcinoma cells (PANC-1). All immunodeficient pigs developed tumors that were verified by histology and immunohistochemistry. Nonaffected littermates did not develop tumors. Immunodeficient pigs, which do not reject xenografted human tumors, have the potential to become an extremely useful animal model for cancer therapy because of their similarity in size, anatomy, and physiology to humans. PMID:23514746

  2. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits growth of PC-3 human prostate cancer xenografts in vivo.

    PubMed

    Srivastava, Sanjay K; Xiao, Dong; Lew, Karen L; Hershberger, Pamela; Kokkinakis, Demetrius M; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V

    2003-10-01

    We have shown previously that allyl isothiocyanate (AITC), a constituent of cruciferous vegetables, significantly inhibits survival of PC-3 and LNCaP human prostate cancer cells in culture, whereas proliferation of a normal prostate epithelial cell line is minimally affected by AITC even at concentrations that are highly cytotoxic to the prostate cancer cells. The present studies were designed to test the hypothesis that AITC administration may retard growth of human prostate cancer xenografts in vivo. Bolus i.p. injection of 10 micromol AITC, three times per week (Monday, Wednesday and Friday) beginning the day of tumor cell implantation, significantly inhibited the growth of PC-3 xenograft (P < 0.05 by two-way ANOVA). For example, 26 days after tumor cell implantation, the average tumor volume in control mice (1025 +/- 205 mm3) was approximately 1.7-fold higher compared with AITC-treated mice. Histological analysis of tumors excised at the termination of the experiment revealed a statistically significant increase in number of apoptotic bodies with a concomitant decrease in cells undergoing mitosis in the tumors of AITC-treated mice compared with that of control mice. Western blot analysis indicated an approximately 70% reduction in the levels of anti-apoptotic protein Bcl-2 in the tumor lysate of AITC-treated mice compared with that of control mice. Moreover, the tumors from AITC-treated mice, but not control mice, exhibited cleavage of BID, which is known to promote apoptosis. Statistically significant reduction in the expression of several proteins that regulate G2/M progression, including cyclin B1, cell division cycle (Cdc)25B and Cdc25C (44, 45 and 90% reduction, respectively, compared with control), was also observed in the tumors of AITC-treated mice relative to control tumors. In conclusion, the results of the present study indicate that AITC administration inhibits growth of PC-3 xenografts in vivo by inducing apoptosis and reducing mitotic activity.

  3. Mitochondrial deficiency impairs hypoxic induction of HIF-1 transcriptional activity and retards tumor growth

    PubMed Central

    Koido, Masaru; Haga, Naomi; Furuno, Aki; Tsukahara, Satomi; Sakurai, Junko; Tani, Yuri; Sato, Shigeo; Tomida, Akihiro

    2017-01-01

    Mitochondria can be involved in regulating cellular stress response to hypoxia and tumor growth, but little is known about that mechanistic relationship. Here, we show that mitochondrial deficiency severely retards tumor xenograft growth with impairing hypoxic induction of HIF-1 transcriptional activity. Using mtDNA-deficient ρ0 cells, we found that HIF-1 pathway activation was comparable in slow-growing ρ0 xenografts and rapid-growing parental xenografts. Interestingly, we found that ex vivo ρ0 cells derived from ρ0 xenografts exhibited slightly increased HIF-1α expression and modest HIF-1 pathway activation regardless of oxygen concentration. Surprisingly, ρ0 cells, as well as parental cells treated with oxidative phosphorylation inhibitors, were unable to boost HIF-1 transcriptional activity during hypoxia, although HIF-1α protein levels were ordinarily increased in these cells under hypoxic conditions. These findings indicate that mitochondrial deficiency causes loss of hypoxia-induced HIF-1 transcriptional activity and thereby might lead to a constitutive HIF-1 pathway activation as a cellular adaptation mechanism in tumor microenvironment. PMID:28060746

  4. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhenhai, E-mail: tomsyu@163.com; Huang, Liangqian; Qiao, Pengyun

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. Thesemore » findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer.« less

  5. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells.

    PubMed

    Yu, Zhenhai; Huang, Liangqian; Qiao, Pengyun; Jiang, Aifang; Wang, Li; Yang, Tingting; Tang, Shengjian; Zhang, Wei; Ren, Chune

    2016-05-13

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models.

    PubMed

    Zhao, Genshi; Li, Wei-Ying; Chen, Daohong; Henry, James R; Li, Hong-Yu; Chen, Zhaogen; Zia-Ebrahimi, Mohammad; Bloem, Laura; Zhai, Yan; Huss, Karen; Peng, Sheng-Bin; McCann, Denis J

    2011-11-01

    The fibroblast growth factor receptors (FGFR) are tyrosine kinases that are present in many types of endothelial and tumor cells and play an important role in tumor cell growth, survival, and migration as well as in maintaining tumor angiogenesis. Overexpression of FGFRs or aberrant regulation of their activities has been implicated in many forms of human malignancies. Therefore, targeting FGFRs represents an attractive strategy for development of cancer treatment options by simultaneously inhibiting tumor cell growth, survival, and migration as well as tumor angiogenesis. Here, we describe a potent, selective, small-molecule FGFR inhibitor, (R)-(E)-2-(4-(2-(5-(1-(3,5-Dichloropyridin-4-yl)ethoxy)-1H-indazol-3yl)vinyl)-1H-pyrazol-1-yl)ethanol, designated as LY2874455. This molecule is active against all 4 FGFRs, with a similar potency in biochemical assays. It exhibits a potent activity against FGF/FGFR-mediated signaling in several cancer cell lines and shows an excellent broad spectrum of antitumor activity in several tumor xenograft models representing the major FGF/FGFR relevant tumor histologies including lung, gastric, and bladder cancers and multiple myeloma, and with a well-defined pharmacokinetic/pharmacodynamic relationship. LY2874455 also exhibits a 6- to 9-fold in vitro and in vivo selectivity on inhibition of FGF- over VEGF-mediated target signaling in mice. Furthermore, LY2874455 did not show VEGF receptor 2-mediated toxicities such as hypertension at efficacious doses. Currently, this molecule is being evaluated for its potential use in the clinic.

  7. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth.

    PubMed

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M; Graves, Edward E; Erler, Janine T; Kambham, Neeraja; Feazell, Jonathan; Yang, George P; Koong, Albert; Giaccia, Amato J

    2009-02-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed colocalization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer.

  8. MAb 806 Enhances the Efficacy of Ionizing Radiation in Glioma Xenografts Expressing the de2-7 Epidermal Growth Factor Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johns, Terrance G.; McKay, Michael J.; Cvrljevic, Anna N.

    2010-10-01

    Purpose: Mutations of the epidermal growth factor receptor (EGFR) are common in glioma. The most frequent mutation, de2-7 EGFR/EGFRvIII, occurs in approximately 40% of high-grade gliomas and confers resistance to ionizing radiation (IR). We have previously shown that mAb 806, a novel EGFR-specific antibody, is able to inhibit the growth of U87MG.{Delta}2-7 glioma xenografts expressing the de2-7 EGFR and may have potential as a therapeutic. Methods and Materials: Nude mice bearing U87MG.{Delta}2-7 xenografts were treated with mAb 806 and/or IR. Comparison of tumor volumes, the effect of treatment on angiogenesis as determined by mean vessel density, and expression changes inmore » prosurvival protein pAkt between treatment groups were undertaken. Results: Treatment of mice bearing U87MG.{Delta}2-7 xenografts with mAb 806 and IR resulted in schedule-dependent radiosensitization. Maximal benefit was obtained when antibody treatment was given before irradiation, with the greatest inhibition of both tumor angiogenesis and tumor growth. Combination treatment mediated radiosensitization by selectively blocking the phosphorylation of the prosurvival protein Akt at serine 473, a process that is independent of DNA-dependent protein kinase catalytic subunit. Conclusions: Our results provide a rationale for the use of mAb 806 in combination with IR for the treatment of glioma and potentially other solid tumors bearing the de2-7 EGFR.« less

  9. Oxygen-dependent regulation of tumor growth and metastasis in human breast cancer xenografts.

    PubMed

    Yttersian Sletta, Kristine; Tveitarås, Maria K; Lu, Ning; Engelsen, Agnete S T; Reed, Rolf K; Garmann-Johnsen, Annette; Stuhr, Linda

    2017-01-01

    Tumor hypoxia is relevant for tumor growth, metabolism, resistance to chemotherapy and metastasis. We have previously shown that hyperoxia, using hyperbaric oxygen treatment (HBOT), attenuates tumor growth and shifts the phenotype from mesenchymal to epithelial (MET) in the DMBA-induced mammary tumor model. This study describes the effect of HBOT on tumor growth, angiogenesis, chemotherapy efficacy and metastasis in a triple negative MDA-MB-231 breast cancer model, and evaluates tumor growth using a triple positive BT-474 breast cancer model. 5 x 105 cancer cells were injected s.c. in the groin area of NOD/SCID female mice. The BT-474 group was supplied with Progesterone and Estradiol pellets 2-days prior to tumor cell injection. Mice were divided into controls (1 bar, pO2 = 0.2 bar) or HBOT (2.5 bar, pO2 = 2.5 bar, 90 min, every third day until termination of the experiments). Treatment effects were determined by assessment of tumor growth, proliferation (Ki67-staining), angiogenesis (CD31-staining), metastasis (immunostaining), EMT markers (western blot), stromal components collagen type I, Itgb1 and FSP1 (immunostaining) and chemotherapeutic efficacy (5FU). HBOT significantly suppressed tumor growth in both the triple positive and negative tumors, and both MDA-MB-231 and BT-474 showed a decrease in proliferation after HBOT. No differences were found in angiogenesis or 5FU efficacy between HBOT and controls. Nevertheless, HBOT significantly reduced both numbers and total area of the metastastatic lesions, as well as reduced expression of N-cadherin, Axl and collagen type I measured in the MDA-MB-231 model. No change in stromal Itgb1 and FSP1 was found in either tumor model. Despite the fact that behavior and prognosis of the triple positive and negative subtypes of cancer are different, the HBOT had a similar suppressive effect on tumor growth, indicating that they share a common oxygen dependent anti-tumor mechanism. Furthermore, HBOT significantly reduced the

  10. A potent combination of the novel PI3K inhibitor, GDC-0941, with imatinib in gastrointestinal stromal tumor xenografts: long-lasting responses after treatment withdrawal

    PubMed Central

    Floris, Giuseppe; Wozniak, Agnieszka; Sciot, Raf; Li, Haifu; Friedman, Lori; Van Looy, Thomas; Wellens, Jasmien; Vermaelen, Peter; Deroose, Christophe M.; Fletcher, Jonathan A.; Debiec-Rychter, Maria; Schöffski, Patrick

    2015-01-01

    Introduction Oncogenic signaling in gastrointestinal stromal tumors (GIST) is sustained via PI3K/AKT pathway. We used a panel of six GIST xenograft models to assess efficacy of GDC-0941 as single agent or in combination with imatinib (IMA). Experimental design Nude mice (n=136) were grafted bilaterally with human GIST carrying divers KIT mutations. Mice were orally dosed over four weeks, grouped as follows: A) control; B) GDC-0941; C) IMA and D) GDC+IMA treatments. Xenografts re-growth after treatment discontinuation was assessed in group C and D for additional four weeks. Tumor response was assessed by volume measurements, micro-PET imaging, histopathology and immunoblotting. Moreover genomic alterations in PTEN/PI3K/AKT pathway were evaluated. Results In all models, GDC-0941 caused tumor growth stabilization, inhibiting tumor cells proliferation but did not induce apoptosis. Under GDC+IMA, profound tumor regression, superior to either treatment alone, was observed. This effect was associated with the best histologic response, a nearly complete proliferation arrest and increased apoptosis. Tumor re-growth assays confirmed superior activity of GDC+IMA over IMA; in three out of six models tumor volume remained reduced and stable even after treatment discontinuation. A positive correlation between response to GDC+IMA and PTEN loss, both on gene and protein levels, was found. Conclusion GDC+IMA has significant antitumor efficacy in GIST xenografts, inducing more substantial tumor regression, apoptosis and durable effects than IMA. Notably, after treatment withdrawal, tumor regression was sustained in tumors exposed to GDC+IMA, which was not observed under IMA. Assessment of PTEN status may represent a useful predictive biomarker for patient selection. PMID:23231951

  11. Chlorella sorokiniana induces mitochondrial-mediated apoptosis in human non-small cell lung cancer cells and inhibits xenograft tumor growth in vivo.

    PubMed

    Lin, Ping-Yi; Tsai, Ching-Tsan; Chuang, Wan-Ling; Chao, Ya-Hsuan; Pan, I-Horng; Chen, Yu-Kuo; Lin, Chi-Chen; Wang, Bing-Yen

    2017-02-01

    Lung cancer is one of the leading causes of cancer related deaths worldwide. Marine microalgae are a source of biologically active compounds and are widely consumed as a nutritional supplement in East Asian countries. It has been reported that Chlorella or Chlorella extracts have various beneficial pharmacological compounds that modulate immune responses; however, no studies have investigated the anti-cancer effects of Chlorella sorokiniana (CS) on non-small cell lung cancer (NSCLC). In this study, we evaluated the anti-cancer effects of CS in two human NSCLC cell lines (A549 and CL1-5 human lung adenocarcinoma cells), and its effects on tumor growth in a subcutaneous xenograft tumor model. We also investigated the possible molecular mechanisms governing the pharmacological function of CS. Our results showed that exposure of the two cell lines to CS resulted in a concentration-dependent reduction in cell viability. In addition, the percentage of apoptotic cells increased in a dose-dependent manner, suggesting that CS might induce apoptosis in human NSCLC cells. Western blot analysis revealed that exposure to CS resulted in increased protein expression of the cleaved/activated forms of caspase-3, caspase-9, and PARP, except caspase-8. ZDEVD (caspase-3 inhibitor) and Z-LEHD (caspase-9 inhibitor) were sufficient at preventing apoptosis in both A549 and CL1-5 cells, proving that CS induced cell death via the mitochondria-mediated apoptotic pathway. Exposure of A549 and CL1-5 cells to CS for 24 h resulted in decreased expression of Bcl-2 protein and increased expression of Bax protein as well as decreased expression of two IAP family proteins, survivin and XIAP. We demonstrated that CS induces mitochondrial-mediated apoptosis in NSCLC cells via downregulation of Bcl-2, XIAP and survivin. In addition, we also found that the tumors growth of subcutaneous xenograft in vivo was markedly inhibited after oral intake of CS.

  12. Survivin inhibitor YM155 suppresses gastric cancer xenograft growth in mice without affecting normal tissues.

    PubMed

    Cheng, Xiao Jiao; Lin, Jia Cheng; Ding, Yan Fei; Zhu, Liming; Ye, Jing; Tu, Shui Ping

    2016-02-09

    Survivin overexpression is associated with poor prognosis of human gastric cancer, and is a target for gastric cancer therapy. YM155 is originally identified as a specific inhibitor of survivin. In this study, we investigated the antitumor effect of YM155 on human gastric cancer. Our results showed that YM155 treatment significantly inhibited cell proliferation, reduced colony formation and induced apoptosis of gastric cancer cells in a dose-dependent manner. Accordingly, YM155 treatment significantly decreased survivin expression without affecting XIAP expression and increased the cleavage of apoptosis-associated proteins caspase 3, 7, 8, 9. YM155 significantly inhibited sphere formation of gastric cancer cells, suppressed expansion and growth of the formed spheres (cancer stem cell-like cells, CSCs) and downregulated the protein levels of β-catenin, c-Myc, Cyclin D1 and CD44 in gastric cancer cells. YM155 infusion at 5 mg/kg/day for 7 days markedly inhibited growth of gastric cancer xenograft in a nude mouse model. Immunohistochemistry staining and Western Blot showed that YM155 treatment inhibited expression of survivin and CD44, induced apoptosis and reduced CD44+ CSCs in xenograft tumor tissues in vivo. No obvious pathological changes were observed in organs (e.g. heart, liver, lung and kidney) in YM155-treated mice. Our results demonstrated that YM155 inhibits cell proliferation, induces cell apoptosis, reduces cancer stem cell expansion, and inhibits xenograft tumor growth in gastric cancer cells. Our results elucidate a new mechanism by which YM155 inhibits gastric cancer growth by inhibition of CSCs. YM155 may be a promising agent for gastric cancer treatment.

  13. A combination of p53-activating APR-246 and phosphatidylserine-targeting antibody potently inhibits tumor development in hormone-dependent mutant p53-expressing breast cancer xenografts

    PubMed Central

    Liang, Yayun; Mafuvadze, Benford; Besch-Williford, Cynthia; Hyder, Salman M

    2018-01-01

    Background Between 30 and 40% of human breast cancers express a defective tumor suppressor p53 gene. Wild-type p53 tumor suppressor protein promotes cell-cycle arrest and apoptosis and inhibits vascular endothelial growth factor–dependent angiogenesis, whereas mutant p53 protein (mtp53) lacks these functions, resulting in tumor cell survival and metastasis. Restoration of p53 function is therefore a promising drug-targeted strategy for combating mtp53-expressing breast cancer. Methods In this study, we sought to determine whether administration of APR-246, a small-molecule drug that restores p53 function, in combination with 2aG4, an antibody that targets phosphatidylserine residues on tumor blood vessels and disrupts tumor vasculature, effectively inhibits advanced hormone-dependent breast cancer tumor growth. Results APR-246 reduced cell viability in mtp53-expressing BT-474 and T47-D human breast cancer cells in vitro, and significantly induced apoptosis in a dose-dependent manner. However, APR-246 did not reduce cell viability in MCF-7 breast cancer cells, which express wild-type p53. We next examined APR-246’s anti-tumor effects in vivo using BT-474 and T47-D tumor xenografts established in female nude mice. Tumor-bearing mice were treated with APR-246 and/or 2aG4 and tumor volume followed over time. Tumor growth was more effectively suppressed by combination treatment than by either agent alone, and combination therapy completely eradicated some tumors. Immunohistochemistry analysis of tumor tissue sections demonstrated that combination therapy more effectively induced apoptosis and reduced cell proliferation in tumor xenografts than either agent alone. Importantly, combination therapy dramatically reduced the density of blood vessels, which serve as the major route for tumor metastasis, in tumor xenografts compared with either agent alone. Conclusion Based on our findings, we contend that breast tumor growth might effectively be controlled by simultaneous

  14. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification;Epidermal growth factor receptor; Radiotherapy; Squamous cell carcinoma; Biomarker; Local tumor control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang

    2011-07-15

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blotmore » and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.« less

  15. Patient-derived xenograft in zebrafish embryos: a new platform for translational research in neuroendocrine tumors.

    PubMed

    Gaudenzi, Germano; Albertelli, Manuela; Dicitore, Alessandra; Würth, Roberto; Gatto, Federico; Barbieri, Federica; Cotelli, Franco; Florio, Tullio; Ferone, Diego; Persani, Luca; Vitale, Giovanni

    2017-08-01

    Preclinical research on neuroendocrine tumors usually involves immortalized cell lines and few animal models. In the present study we described an in vivo model based on patient-derived xenografts of neuroendocrine tumor cells in zebrafish (Danio rerio) embryos, allowing a rapid analysis of the angiogenic and invasive potential. Patient-derived neuroendocrine tumor cells were transplanted in 48 hours post-fertilization Tg(fli1a:EGFP) y1 zebrafish embryos that express enhanced green fluorescent protein in the entire vasculature. Neuroendocrine tumor cells, stained with CM-Dil, were injected into the subperidermal (perivitelline) space, close to the developing subintestinal venous plexus. A proper control group, represented by zebrafish injected with only D-PBS, was included in this study. Angiogenic and invasive potentials of each patient-derived xenograft were evaluated by both epifluorescence and confocal microscopes. Six out of eight neuroendocrine tumor samples were successfully transplanted in zebrafish embryos. Although the implanted tumor mass had a limited size (about 100 cells for embryos), patient-derived xenografts showed pro-angiogenic (5 cases) and invasive (6 cases) behaviors within 48 hours post injection. Patient-derived xenograft in zebrafish embryos appears to be a reliable in vivo preclinical model for neuroendocrine tumors, tumors with often limited cell availability. The rapidity of this procedure makes our model a promising platform to perform preclinical drug screening and opens a new scenario for personalized treatment in patients with neuroendocrine tumors.

  16. [Influence of rosiglitazone and all-trans-retinoic acid on angiogenesis and growth of myeloma xenograft in nude mice].

    PubMed

    Huang, Hai-wen; Chen, Ping; Li, Bing-zong; Fu, Jin-xiang; Li, Jun; Zhang, Xiao-hui; Liu, Rui; Fan, Yin-yin; Zhang, Hong; Chow, Howard C H; Leung, Anska Y H; Liang, Raymond

    2012-09-01

    To observe the effect of rosiglitazone (RGZ) and all-trans-retinoic acid (ATRA) on the growth of myeloma xenograft in nude mice and to explore the influence of RGZ and ATRA on VEGF expression and angiogenesis in the tumor. VEGF gene expression in myeloma cell line U266 cells was analyzed by semi-quantitative RT-PCR after incubation with RGZ, ATRA, or RGZ + ATRA for 24 h. Myeloma xenograft was established by subcutaneous injection of 10(7) U266 cells in the scapula area of 4-week old nude mice. 7 days later, the nude mice were administered with RGZ, ATRA or RGZ + ATRA, respectively, by intraperitoneal injection once every day for 21 days. The control mice were given equal volume of normal saline instead of the drug. On the 21(st) day of treatment, the mice were sacrificed and the tumors were taken off, and the tumor volume and weight were measured. The tumors were examined by histopathology with HE staining, and microvessel density (MVD), CD34 and VEGF expression in the tumors were analyzed by immunohistochemical staining. VEGF mRNA was highly expressed in U266 cells and was decreased in a dose-dependent manner after incubation with RGZ. The VEGF mRNA level was further more decreased after RGZ + ATRA treatment. Xenografts of U266 cells were developed in all nude mice. The volume and weight of xenografts in the RGZ group were (785 ± 262) mm(3) and (1748 ± 365) mg, respectively, significantly lower than those of the control group (both P < 0.01). More significant inhibition was in the RGZ + ATRA group, (154 ± 89) mm(3) and (626 ± 102) mg, respectively, both were P < 0.05 vs. the RGZ group. RGZ inhibited the angiogenesis in U266 xenografts and immunohistochemical staining showed that the tumor MVD and VEGF expression were significantly decreased by RGZ treatment, and further more inhibited in the RGZ + ATRA group. VEGF protein was expressed in all xenografts in the nude mice. Its immunohistochemical staining intensity was 2.20 ± 0.40 in the control group

  17. Antitumor effect of bevacizumab in a xenograft model of canine hemangiopericytoma.

    PubMed

    Michishita, Masaki; Uto, Tatsuya; Nakazawa, Ryota; Yoshimura, Hisashi; Ogihara, Kikumi; Naya, Yuko; Tajima, Tsuyoshi; Azakami, Daigo; Kishikawa, Seigo; Arai, Toshiro; Takahashi, Kimimasa

    2013-01-01

    Canine hemangiopericytoma (CHP) is characterized by frequent local recurrence and increased invasiveness. Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis in tumors. The aim of the present study was to investigate the effect of a single dose of bevacizumab on a xenograft model of CHP. VEGF protein was secreted from cultured CHP cells and interacted with bevacizumab. Bevacizumab treatment suppressed tumor growth by inhibiting tumor angiogenesis, whereas no significant differences were observed in the proliferation index and apoptosis rates of treated and untreated mice. Thus, bevacizumab had antitumor effects in a xenograft model of CHP.

  18. A novel mouse model of human prostate cancer to study intraprostatic tumor growth and the development of lymph node metastases.

    PubMed

    Linxweiler, Johannes; Körbel, Christina; Müller, Andreas; Hammer, Markus; Veith, Christian; Bohle, Rainer M; Stöckle, Michael; Junker, Kerstin; Menger, Michael D; Saar, Matthias

    2018-06-01

    In this study, we aimed to establish a versatile in vivo model of prostate cancer, which adequately mimics intraprostatic tumor growth, and the natural routes of metastatic spread. In addition, we analyzed the capability of high-resolution ultrasonography (hrUS), in vivo micro-CT (μCT), and 9.4T MRI to monitor tumor growth and the development of lymph node metastases. A total of 5 × 10 5 VCaP cells or 5 × 10 5 cells of LuCaP136- or LuCaP147 spheroids were injected into the prostate of male CB17-SCID mice (n = 8 for each cell type). During 12 weeks of follow-up, orthotopic tumor growth, and metastatic spread were monitored by repetitive serum-PSA measurements and imaging studies including hrUS, μCT, and 9.4T MRI. At autopsy, primary tumors and metastases were harvested and examined by histology and immunohistochemistry (CK5, CK8, AMACR, AR, Ki67, ERG, and PSA). From imaging results and PSA-measurements, tumor volume doubling time, tumor-specific growth rate, and PSA-density were calculated. All 24 mice developed orthotopic tumors. The tumor growth could be reliably monitored by a combination of hrUS, μCT, MRI, and serum-PSA measurements. In most animals, lymph node metastases could be detected after 12 weeks, which could also be well visualized by hrUS, and MRI. Immunohistochemistry showed positive signals for CK8, AMACR, and AR in all xenograft types. CK5 was negative in VCaP- and focally positive in LuCaP136- and LuCaP147-xenografts. ERG was positive in VCaP- and negative in LuCaP136- and LuCaP147-xenografts. Tumor volume doubling times and tumor-specific growth rates were 21.2 days and 3.9 %/day for VCaP-, 27.6 days and 3.1 %/day for LuCaP136- and 16.2 days and 4.5 %/day for LuCaP147-xenografts, respectively. PSA-densities were 433.9 ng/mL per milliliter tumor for VCaP-, 6.5 ng/mL per milliliter tumor for LuCaP136-, and 11.2 ng/mL per milliliter tumor for LuCaP147-xenografts. By using different monolayer and 3D spheroid cell cultures in an

  19. Blockade of the ERK pathway enhances the therapeutic efficacy of the histone deacetylase inhibitor MS-275 in human tumor xenograft models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Toshiaki; Ozaki, Kei-ichi; Fujio, Kohsuke

    2013-04-19

    Highlights: •Blockade of the ERK pathway enhances the anticancer efficacy of HDAC inhibitors. •MEK inhibitors sensitize human tumor xenografts to HDAC inhibitor cytotoxicity. •Such the enhanced efficacy is achieved by a transient blockade of the ERK pathway. •This drug combination provides a promising therapeutic strategy for cancer patients. -- Abstract: The ERK pathway is up-regulated in various human cancers and represents a prime target for mechanism-based approaches to cancer treatment. Specific blockade of the ERK pathway alone induces mostly cytostatic rather than pro-apoptotic effects, however, resulting in a limited therapeutic efficacy of the ERK kinase (MEK) inhibitors. We previously showedmore » that MEK inhibitors markedly enhance the ability of histone deacetylase (HDAC) inhibitors to induce apoptosis in tumor cells with constitutive ERK pathway activation in vitro. To evaluate the therapeutic efficacy of such drug combinations, we administered the MEK inhibitor PD184352 or AZD6244 together with the HDAC inhibitor MS-275 in nude mice harboring HT-29 or H1650 xenografts. Co-administration of the MEK inhibitor markedly sensitized the human xenografts to MS-275 cytotoxicity. A dose of MS-275 that alone showed only moderate cytotoxicity thus suppressed the growth of tumor xenografts almost completely as well as induced a marked reduction in tumor cellularity when administered with PD184352 or AZD6244. The combination of the two types of inhibitor also induced marked oxidative stress, which appeared to result in DNA damage and massive cell death, specifically in the tumor xenografts. The enhanced therapeutic efficacy of the drug combination was achieved by a relatively transient blockade of the ERK pathway. Administration of both MEK and HDAC inhibitors represents a promising chemotherapeutic strategy with improved safety for cancer patients.« less

  20. Anti-tumor activity of high-dose EGFR tyrosine kinase inhibitor and sequential docetaxel in wild type EGFR non-small cell lung cancer cell nude mouse xenografts

    PubMed Central

    Tang, Ning; Zhang, Qianqian; Fang, Shu; Han, Xiao; Wang, Zhehai

    2017-01-01

    Treatment of non-small-cell lung cancer (NSCLC) with wild-type epidermal growth factor receptor (EGFR) is still a challenge. This study explored antitumor activity of high-dose icotinib (an EGFR tyrosine kinase inhibitor) plus sequential docetaxel against wild-type EGFR NSCLC cells-generated nude mouse xenografts. Nude mice were subcutaneously injected with wild-type EGFR NSCLC A549 cells and divided into different groups for 3-week treatment. Tumor xenograft volumes were monitored and recorded, and at the end of experiments, tumor xenografts were removed for Western blot and immunohistochemical analyses. Compared to control groups (negative control, regular-dose icotinib [IcoR], high-dose icotinib [IcoH], and docetaxel [DTX]) and regular icotinib dose (60 mg/kg) with docetaxel, treatment of mice with a high-dose (1200 mg/kg) of icotinib plus sequential docetaxel for 3 weeks (IcoH-DTX) had an additive effect on suppression of tumor xenograft size and volume (P < 0.05). Icotinib-containing treatments markedly reduced phosphorylation of EGFR, mitogen activated protein kinase (MAPK), and protein kinase B (Akt), but only the high-dose icotinib-containing treatments showed an additive effect on CD34 inhibition (P < 0.05), an indication of reduced microvessel density in tumor xenografts. Moreover, high-dose icotinib plus docetaxel had a similar effect on mouse weight loss (a common way to measure adverse reactions in mice), compared to the other treatment combinations. The study indicate that the high dose of icotinib plus sequential docetaxel (IcoH-DTX) have an additive effect on suppressing the growth of wild-type EGFR NSCLC cell nude mouse xenografts, possibly through microvessel density reduction. Future clinical trials are needed to confirm the findings of this study. PMID:27852073

  1. Mesenchymal stem cell-based NK4 gene therapy in nude mice bearing gastric cancer xenografts

    PubMed Central

    Zhu, Yin; Cheng, Ming; Yang, Zhen; Zeng, Chun-Yan; Chen, Jiang; Xie, Yong; Luo, Shi-Wen; Zhang, Kun-He; Zhou, Shu-Feng; Lu, Nong-Hua

    2014-01-01

    Mesenchymal stem cells (MSCs) have been recognized as promising delivery vehicles for gene therapy of tumors. Gastric cancer is the third leading cause of worldwide cancer mortality, and novel treatment modalities are urgently needed. NK4 is an antagonist of hepatocyte growth factor receptors (Met) which are often aberrantly activated in gastric cancer and thus represent a useful candidate for targeted therapies. This study investigated MSC-delivered NK4 gene therapy in nude mice bearing gastric cancer xenografts. MSCs were transduced with lentiviral vectors carrying NK4 complementary DNA or enhanced green fluorescent protein (GFP). Such transduction did not change the phenotype of MSCs. Gastric cancer xenografts were established in BALB/C nude mice, and the mice were treated with phosphate-buffered saline (PBS), MSCs-GFP, Lenti-NK4, or MSCs-NK4. The tropism of MSCs toward gastric cancer cells was determined by an in vitro migration assay using MKN45 cells, GES-1 cells and human fibroblasts and their presence in tumor xenografts. Tumor growth, tumor cell apoptosis and intratumoral microvessel density of tumor tissue were measured in nude mice bearing gastric cancer xenografts treated with PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4 via tail vein injection. The results showed that MSCs migrated preferably to gastric cancer cells in vitro. Systemic MSCs-NK4 injection significantly suppressed the growth of gastric cancer xenografts. MSCs-NK4 migrated and accumulated in tumor tissues after systemic injection. The microvessel density of tumor xenografts was decreased, and tumor cellular apoptosis was significantly induced in the mice treated with MSCs-NK4 compared to control mice. These findings demonstrate that MSC-based NK4 gene therapy can obviously inhibit the growth of gastric cancer xenografts, and MSCs are a better vehicle for NK4 gene therapy than lentiviral vectors. Further studies are warranted to explore the efficacy and safety of the MSC-based NK4 gene therapy in

  2. Tumor-line specific causes of intertumor heterogeneity in blood supply in human melanoma xenografts.

    PubMed

    Simonsen, Trude G; Gaustad, Jon-Vidar; Leinaas, Marit N; Rofstad, Einar K

    2013-01-01

    The efficacy of most cancer treatments is strongly influenced by the tumor blood supply. The results of experimental studies using xenografted tumors to evaluate novel cancer treatments may therefore vary considerably depending on the blood supply of the specific tumor model being used. Mechanisms underlying intertumor heterogeneity in the blood supply of xenografted tumors derived from same tumor line are poorly understood, and were investigated here by using intravital microscopy to assess tumor blood supply and vascular morphology in human melanomas growing in dorsal window chambers in BALB/c nu/nu mice. Two melanoma lines, A-07 and R-18, were included in the study. These lines differed substantially in angiogenic profiles. Thus, when the expression of 84 angiogenesis-related genes was investigated with a quantitative PCR array, 25% of these genes showed more than a 10-fold difference in expression. Furthermore, A-07 tumors showed higher vascular density, higher vessel tortuosity, higher vessel diameters, shorter vessel segments, and more chaotic vascular architecture than R-18 tumors. Both lines showed large intertumor heterogeneity in blood supply. In the A-07 line, tumors with low microvascular density, long vessel segment, and high vessel tortuosity showed poor blood supply, whereas in the R-18 line, poor tumor blood supply was associated with low tumor arteriolar diameters. Thus, tumor-line specific causes of intertumor heterogeneity in blood supply were identified in human melanoma xenografts, and these tumor-line specific mechanisms were possibly a result of tumor-line specific angiogenic profiles. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. A xenograft model reveals that PU.1 functions as a tumor suppressor for multiple myeloma in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Nao; Endo, Shinya; Ueno, Shikiko

    We previously demonstrated that PU.1 expression is down-regulated in the majority of myeloma cell lines and primary myeloma cells from patients. We introduced the tet-off system into the human myeloma cell lines U266 and KMS12PE that conditionally express PU.1 and demonstrated that PU.1 induces cell cycle arrest and apoptosis in myeloma cells in vitro. Here, we established a mouse xenograft model of myeloma using these cell lines to analyze the effects of PU.1 on the phenotype of myeloma cells in vivo. When doxycycline was added to the drinking water of mice engrafted with these myeloma cells, all mice had continuous growth ofmore » subcutaneous tumors and could not survived more than 65 days. In contrast, mice that were not exposed to doxycycline did not develop subcutaneous tumors and survived for at least 100 days. We next generated mice engrafted with subcutaneous tumors 5–10 mm in diameter that were induced by exposure to doxycycline. Half of the mice stopped taking doxycycline-containing water, whereas the other half kept taking the water. Although the tumors in the mice taking doxycycline continued to grow, tumor growth in the mice not taking doxycycline was significantly suppressed. The myeloma cells in the tumors of the mice not taking doxycycline expressed PU.1 and TRAIL and many of such cells were apoptotic. Moreover, the expression of a cell proliferation marker Ki67 was significantly decreased in tumors from the mice not taking doxycycline, compared with that of tumors from the mice continuously taking doxycycline. The present data strongly suggest that PU.1 functions as a tumor suppressor of myeloma cells in vivo. - Highlights: • PU.1 suppresses xenograft myeloma cell growth and prolongs survival periods of mice. • PU.1 induces TRAIL expression and apoptosis in myeloma cells in vivo. • PU.1 suppresses Ki67 expression in myeloma cells in vivo. • Up-regulation of PU.1 is a promising strategy for generating anti-myeloma agents.« less

  4. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types.

    PubMed

    Iliopoulos, Dimitrios; Hirsch, Heather A; Struhl, Kevin

    2011-05-01

    Metformin, the first-line drug for treating diabetes, selectively kills the chemotherapy resistant subpopulation of cancer stem cells (CSC) in genetically distinct types of breast cancer cell lines. In mouse xenografts, injection of metformin and the chemotherapeutic drug doxorubicin near the tumor is more effective than either drug alone in blocking tumor growth and preventing relapse. Here, we show that metformin is equally effective when given orally together with paclitaxel, carboplatin, and doxorubicin, indicating that metformin works together with a variety of standard chemotherapeutic agents. In addition, metformin has comparable effects on tumor regression and preventing relapse when combined with a four-fold reduced dose of doxorubicin that is not effective as a monotherapy. Finally, the combination of metformin and doxorubicin prevents relapse in xenografts generated with prostate and lung cancer cell lines. These observations provide further evidence for the CSC hypothesis for cancer relapse, an experimental rationale for using metformin as part of combinatorial therapy in a variety of clinical settings, and for reducing the chemotherapy dose in cancer patients.

  5. Vorinostat, an HDAC inhibitor attenuates epidermoid squamous cell carcinoma growth by dampening mTOR signaling pathway in a human xenograft murine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurundkar, Deepali; Srivastava, Ritesh K.; Chaudhary, Sandeep C.

    Histone deacetylase (HDAC) inhibitors are potent anticancer agents and show efficacy against various human neoplasms. Vorinostat is a potent HDAC inhibitor and has shown potential to inhibit growth of human xenograft tumors. However, its effect on the growth of skin neoplasm remains undefined. In this study, we show that vorinostat (2 μM) reduced expression of HDAC1, 2, 3, and 7 in epidermoid carcinoma A431 cells. Consistently, it increased acetylation of histone H3 and p53. Vorinostat (100 mg/kg body weight, IP) treatment reduced human xenograft tumor growth in highly immunosuppressed nu/nu mice. Histologically, the vorinostat-treated tumor showed features of well-differentiation withmore » large necrotic areas. Based on proliferating cell nuclear antigen (PCNA) staining and expression of cyclins D1, D2, E, and A, vorinostat seems to impair proliferation by down-regulating the expression of these proteins. However, it also induced apoptosis. The mechanism by which vorinostat blocks proliferation and makes tumor cells prone to apoptosis, involved inhibition of mTOR signaling which was accompanied by reduction in cell survival AKT and extracellular-signal regulated kinase (ERK) signaling pathways. Our data provide a novel mechanism-based therapeutic intervention for cutaneous squamous cell carcinoma (SCC). Vorinostat may be utilized to cure skin neoplasms in organ transplant recipient (OTR). These patients have high morbidity and surgical removal of these lesions which frequently develop in these patients, is difficult. -- Highlights: ► Vorinostat reduces SCC growth in a xenograft murine model. ► Vorinostat dampens proliferation and induces apoptosis in tumor cells. ► Diminution in mTOR, Akt and ERK signaling underlies inhibition in proliferation. ► Vorinostat by inhibiting HDACs inhibits epithelial–mesenchymal transition.« less

  6. 6-Methoxyethylamino-numonafide inhibits hepatocellular carcinoma xenograft growth as a single agent and in combination with sorafenib.

    PubMed

    Liu, Yanning; Lou, Guohua; Norton, John T; Wang, Chen; Kandela, Irawati; Tang, Shuai; Shank, Nathaniel I; Gupta, Pankaj; Huang, Min; Avram, Michael J; Green, Richard; Mazar, Andrew; Appella, Daniel; Chen, Zhi; Huang, Sui

    2017-12-01

    Hepatocellular carcinoma (HCC) is the third leading form of cancer worldwide, and its incidence is increasing rapidly in the United States, tripling over the past 3 decades. The current chemotherapeutic strategies against localized and metastatic HCC are ineffective. Here we report that 6-methoxyethylamino-numonafide (MEAN) is a potent growth inhibitor of murine xenografts of 2 human HCC cell lines. At the same dose and with the same treatment strategies, MEAN was more efficacious in inhibiting tumor growth in mice than sorafenib, the only approved drug for HCC. Treatment by MEAN at an effective dose for 6 wk was well tolerated by animals. Combined therapy using both sorafenib and MEAN enhanced tumor growth inhibition over monotherapy with either agent. Additional experiments revealed that MEAN inhibited tumor growth through mechanisms distinct from those of either its parent compound, amonafide, or sorafenib. MEAN suppressed C-MYC expression and increased expression of several tumor suppressor genes, including Src homology region 2 domain-containing phosphatase-1 ( SHP-1 ) and TXNIP (thioredoxin-interacting protein). As an encouraging feature for envisioned clinical application, the IC 50 of MEAN was not significantly changed in several drug-resistant cell lines with activated P-glycoprotein drug efflux pumps compared to drug-sensitive parent cells, demonstrating the ability of MEAN to be effective in cells resistant to existing chemotherapy regimens. MEAN is a promising candidate for clinical development as a single-agent therapy or in combination with sorafenib for the management of HCC.-Liu, Y., Lou, G., Norton, J. T., Wang, C., Kandela, I., Tang, S., Shank, N. I., Gupta, P., Huang, M., Avram, M. J., Green, R., Mazar, A., Appella, D., Chen, Z., Huang, S. 6-Methoxyethylamino-numonafide inhibits hepatocellular carcinoma xenograft growth as a single agent and in combination with sorafenib. © FASEB.

  7. A Real-Time Non-invasive Auto-bioluminescent Urinary Bladder Cancer Xenograft Model.

    PubMed

    John, Bincy Anu; Xu, Tingting; Ripp, Steven; Wang, Hwa-Chain Robert

    2017-02-01

    The study was to develop an auto-bioluminescent urinary bladder cancer (UBC) xenograft animal model for pre-clinical research. The study used a humanized, bacteria-originated lux reporter system consisting of six (luxCDABEfrp) genes to express components required for producing bioluminescent signals in human UBC J82, J82-Ras, and SW780 cells without exogenous substrates. Immune-deficient nude mice were inoculated with Lux-expressing UBC cells to develop auto-bioluminescent xenograft tumors that were monitored by imaging and physical examination. Lux-expressing auto-bioluminescent J82-Lux, J82-Ras-Lux, and SW780-Lux cell lines were established. Xenograft tumors derived from tumorigenic Lux-expressing auto-bioluminescent J82-Ras-Lux cells allowed a serial, non-invasive, real-time monitoring by imaging of tumor development prior to the presence of palpable tumors in animals. Using Lux-expressing auto-bioluminescent tumorigenic cells enabled us to monitor the entire course of xenograft tumor development through tumor cell implantation, adaptation, and growth to visible/palpable tumors in animals.

  8. Decreasing CNPY2 Expression Diminishes Colorectal Tumor Growth and Development through Activation of p53 Pathway.

    PubMed

    Yan, Ping; Gong, Hui; Zhai, Xiaoyan; Feng, Yi; Wu, Jun; He, Sheng; Guo, Jian; Wang, Xiaoxia; Guo, Rui; Xie, Jun; Li, Ren-Ke

    2016-04-01

    Neovascularization drives tumor development, and angiogenic factors are important neovascularization initiators. We recently identified the secreted angiogenic factor CNPY2, but its involvement in cancer has not been explored. Herein, we investigate CNPY2's role in human colorectal cancer (CRC) development. Tumor samples were obtained from CRC patients undergoing surgery. Canopy 2 (CNPY2) expression was analyzed in tumor and adjacent normal tissue. Stable lines of human HCT116 cells expressing CNPY2 shRNA or control shRNA were established. To determine CNPY2's effects on tumor xenografts in vivo, human CNPY2 shRNA HCT116 cells and controls were injected into nude mice, separately. Cellular apoptosis, growth, and angiogenesis in the xenografts were evaluated. CNPY2 expression was significantly higher in CRC tissues. CNPY2 knockdown in HCT116 cells inhibited growth and migration and promoted apoptosis. In xenografts, CNPY2 knockdown prevented tumor growth and angiogenesis and promoted apoptosis. Knockdown of CNPY2 in the HCT116 CRC cell line reversibly increased p53 activity. The p53 activation increased cyclin-dependent kinase inhibitor p21 and decreased cyclin-dependent kinase 2, thereby inhibiting tumor cell growth, inducing cell apoptosis, and reducing angiogenesis both in vitro and in vivo. CNPY2 may play a critical role in CRC development by enhancing cell proliferation, migration, and angiogenesis and by inhibiting apoptosis through negative regulation of the p53 pathway. Therefore, CNPY2 may represent a novel CRC therapeutic target and prognostic indicator. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Reduced 64Cu uptake and tumor growth inhibition by knockdown of human copper transporter 1 in xenograft mouse model of prostate cancer.

    PubMed

    Cai, Huawei; Wu, Jiu-sheng; Muzik, Otto; Hsieh, Jer-Tsong; Lee, Robert J; Peng, Fangyu

    2014-04-01

    Copper is an element required for cell proliferation and angiogenesis. Human prostate cancer xenografts with increased (64)Cu radioactivity were visualized previously by PET using (64)CuCl2 as a radiotracer ((64)CuCl2 PET). This study aimed to determine whether the increased tumor (64)Cu radioactivity was due to increased cellular uptake of (64)Cu mediated by human copper transporter 1 (hCtr1) or simply due to nonspecific binding of ionic (64)CuCl2 to tumor tissue. In addition, the functional role of hCtr1 in proliferation of prostate cancer cells and tumor growth was also assessed. A lentiviral vector encoding short-hairpin RNA specific for hCtr1 (Lenti-hCtr1-shRNA) was constructed for RNA interference-mediated knockdown of hCtr1 expression in prostate cancer cells. The degree of hCtr1 knockdown was determined by Western blot, and the effect of hCtr1 knockdown on copper uptake and proliferation were examined in vitro by cellular (64)Cu uptake and cell proliferation assays. The effects of hCtr1 knockdown on tumor uptake of (64)Cu were determined by PET quantification and tissue radioactivity assay. The effects of hCtr1 knockdown on tumor growth were assessed by PET/CT and tumor size measurement with a caliper. RNA interference-mediated knockdown of hCtr1 was associated with the reduced cellular uptake of (64)Cu and the suppression of prostate cancer cell proliferation in vitro. At 24 h after intravenous injection of the tracer (64)CuCl2, the (64)Cu uptake by the tumors with knockdown of hCtr1 (4.02 ± 0.31 percentage injected dose per gram [%ID/g] in Lenti-hCtr1-shRNA-PC-3 and 2.30 ± 0.59 %ID/g in Lenti-hCtr1-shRNA-DU-145) was significantly lower than the (64)Cu uptake by the control tumors without knockdown of hCtr1 (7.21 ± 1.48 %ID/g in Lenti-SCR-shRNA-PC-3 and 5.57 ± 1.20 %ID/g in Lenti-SCR-shRNA-DU-145, P < 0.001) by PET quantification. Moreover, the volumes of prostate cancer xenograft tumors with knockdown of hCtr1 (179 ± 111 mm(3) for Lenti-hCtr1-sh

  10. Changes in tumor cell heterogeneity after chemotherapy treatment in a xenograft model of glioblastoma.

    PubMed

    Welker, Alessandra M; Jaros, Brian D; An, Min; Beattie, Christine E

    2017-07-25

    Glioblastoma (GBM) is a highly aggressive brain cancer with limited treatments and poor patient survival. GBM tumors are heterogeneous containing a complex mixture of dividing cells, differentiated cells, and cancer stem cells. It is unclear, however, how these different cell populations contribute to tumor growth or whether they exhibit differential responses to chemotherapy. Here we set out to address these questions using a zebrafish xenograft transplant model (Welker et al., 2016). We found that a small population of differentiated vimentin-positive tumor cells, but a majority of Sox2-positive putative cancer stem cells, were dividing during tumor growth. We also observed co-expression of Sox2 and GFAP, another suggested marker of glioma cancer stem cells, indicating that the putative cancer stem cells in GBM9 tumors expressed both of these markers. To determine how these different tumor cell populations responded to chemotherapy, we treated animals with temozolomide (TMZ) and assessed these cell populations immediately after treatment and 5 and 10days after treatment cessation. As expected we found a significant decrease in dividing cells after treatment. We also found a significant decrease in vimentin-positive cells, but not in Sox2 or GFAP-positive cells. However, the Sox2-positive cells significantly increased 5days after TMZ treatment. These data support that putative glioma cancer stem cells are more resistant to TMZ treatment and may contribute to tumor regrowth after chemotherapy. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. CETUXIMAB AND IRINOTECAN INTERACT SYNERGISTICALLY TO INHIBIT THE GROWTH OF ORTHOTOPIC ANAPLASTIC THYROID CARCINOMA XENOGRAFTS IN NUDE MICE

    PubMed Central

    Kim, Seungwon; Prichard, Christopher N.; Younes, Maher N.; Yazici, Yasemin D.; Jasser, Samar A.; Bekele, B. Nebiyou; Myers, Jeffrey N.

    2006-01-01

    Objective Anaplastic thyroid carcinoma (ATC) remains one of the most lethal known human cancers. Targeted molecular therapy with cetuximab, a monoclonal antibody against EGFR, offers new treatment potentials for patient with ATC. Cetuximab has also been reported to have synergistic effects when combined with irinotecan, a topoisomerase inhibitor. Therefore, we hypothesized that cetuximab and irinotecan would be effective in inhibiting the growth and progression of ATC in a murine orthotopic model. Design The in vitro anti-proliferative effects of cetuximab and irinotecan on ATC cell line ARO were examined. We also studied the in vivo effects of cetuximab and irinotecan on the growth, invasion, and metastasis of orthotopic ATC tumors in nude mice. The in vivo antitumor efficacy of cetuximab/irinotecan combination was also compared with that of doxorubicin. Results Cetuximab alone did not show any anti-proliferative or pro-apoptotic effect on this cell line. However, when combined with irinotecan, cetuximab potentiated the in vitro anti-proliferative and pro-apoptotic effect of irinotecan. Cetuximab, irinotecan, and cetuximab/irinotecan combination resulted in 77%, 79%, and 93% in vivo inhibition of tumor growth, respectively. Incidences of lymph node metastasis, laryngeal invasion, and tumor microvessel density were also significantly decreased in these treatment groups. Furthermore, the cetuximab/irinotecan combination was significantly more effective than doxorubicin in inhibiting the growth of orthotopic ATC xenografts. Conclusions Combination therapy with cetuximab/irinotecan inhibits the growth and progression of orthotopic ATC xenografts in nude mice. Given the lack of curative options for patients with ATC, combination therapy with cetuximab and irinotecan treatment warrants further study. PMID:16428506

  12. Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell-like spheroids, and tumor xenografts through multiple cell signaling pathways.

    PubMed

    Bijangi-Vishehsaraei, Khadijeh; Reza Saadatzadeh, M; Wang, Haiyan; Nguyen, Angie; Kamocka, Malgorzata M; Cai, Wenjing; Cohen-Gadol, Aaron A; Halum, Stacey L; Sarkaria, Jann N; Pollok, Karen E; Safa, Ahmad R

    2017-12-01

    OBJECTIVE Defects in the apoptotic machinery and augmented survival signals contribute to drug resistance in glioblastoma (GBM). Moreover, another complexity related to GBM treatment is the concept that GBM development and recurrence may arise from the expression of GBM stem cells (GSCs). Therefore, the use of a multifaceted approach or multitargeted agents that affect specific tumor cell characteristics will likely be necessary to successfully eradicate GBM. The objective of this study was to investigate the usefulness of sulforaphane (SFN)-a constituent of cruciferous vegetables with a multitargeted effect-as a therapeutic agent for GBM. METHODS The inhibitory effects of SFN on established cell lines, early primary cultures, CD133-positive GSCs, GSC-derived spheroids, and GBM xenografts were evaluated using various methods, including GSC isolation and the sphere-forming assay, analysis of reactive oxygen species (ROS) and apoptosis, cell growth inhibition assay, comet assays for assessing SFN-triggered DNA damage, confocal microscopy, Western blot analysis, and the determination of in vivo efficacy as assessed in human GBM xenograft models. RESULTS SFN triggered the significant inhibition of cell survival and induced apoptotic cell death, which was associated with caspase 3 and caspase 7 activation. Moreover, SFN triggered the formation of mitochondrial ROS, and SFN-triggered cell death was ROS dependent. Comet assays revealed that SFN increased single- and double-strand DNA breaks in GBM. Compared with the vehicle control cells, a significantly higher amount of γ-H2AX foci correlated with an increase in DNA double-strand breaks in the SFN-treated samples. Furthermore, SFN robustly inhibited the growth of GBM cell-induced cell death in established cell cultures and early-passage primary cultures and, most importantly, was effective in eliminating GSCs, which play a major role in drug resistance and disease recurrence. In vivo studies revealed that SFN

  13. Development of [11C]vemurafenib employing a carbon-11 carbonylative Stille coupling and preliminary evaluation in mice bearing melanoma tumor xenografts.

    PubMed

    Slobbe, Paul; Windhorst, Albert D; Adamzek, Kevin; Bolijn, Marije; Schuit, Robert C; Heideman, Daniëlle A M; van Dongen, Guus A M S; Poot, Alex J

    2017-06-13

    Over the last decade kinase inhibitors have witnessed tremendous growth as anti-cancer drugs. Unfortunately, despite their promising clinical successes, a large portion of patients does not benefit from these targeted therapeutics. Vemurafenib is a serine/threonine kinase inhibitor approved for the treatment of melanomas specifically expressing the BRAFV600E mutation. The aim of this study was to develop vemurafenib as PET tracer to determine its potential for identification of tumors sensitive to vemurafenib treatment. Therefore, vemurafenib was labeled with carbon-11 and analyzed for its tumor targeting potential in melanoma xenografts Colo829 (BRAFV600E) and MeWo (BRAFwt) using autoradiography on tissue sections, in vitro tumor cell uptake studies and biodistribution studies in xenografted athymic nu/nu mice. [11C]vemurafenib was synthesized in 21 ± 4% yield (decay corrected, calculated from [11C]CO) in > 99% radiochemical purity and a specific activity of 55 ± 18 GBq/μmol. Similar binding of [11C]vemurafenib was shown during autoradiography and cellular uptake studies in both cell lines. Plasma metabolite analysis demonstrated > 95% intact [11C]vemurafenib in vivo at 45 minutes after injection, indicating excellent stability. Biodistribution studies confirmed the in vitro results, showing similar tumor-to-background ratios in both xenografts models. These preliminary results suggest that identification of BRAFV600E mutations in vivo using PET with [11C]vemurafenib will be challenging.

  14. Temporal morphologic changes in human colorectal carcinomas following xenografting.

    PubMed

    Barkla, D H; Tutton, P J

    1983-03-01

    The temporal morphologic changes of human colorectal carcinomas following xenografting into immunosuppressed mice were investigated by the use of light and transmission electron microscopy. The results show that colorectal carcinomas undergo a series of morphologic changes during the initial 30-day period following transplantation. During the initial 1-5-day period the majority of tumor cells die, and during the following 5-10-day period the necrotic debris created during the 1-5-day period is removed by host-supplied inflammatory cells. Only small groups of peripherally placed tumor cells survived at the end of the first 10 days. During the 10-20-day period the tumor cell populations of xenografts were reestablished by a morphologically heterogeneous population of tumor cells, and during the 20-30 day period consolidation of this process continued and some xenografts showed macroscopic evidence of growth. The authors hypothesize that human colorectal carcinomas, like the antecedent epithelium, contain subpopulations of undifferentiated cells that give rise to populations of more-differentiated cells.

  15. c-Ski overexpression promotes tumor growth and angiogenesis through inhibition of transforming growth factor-beta signaling in diffuse-type gastric carcinoma.

    PubMed

    Kiyono, Kunihiko; Suzuki, Hiroshi I; Morishita, Yasuyuki; Komuro, Akiyoshi; Iwata, Caname; Yashiro, Masakazu; Hirakawa, Kosei; Kano, Mitsunobu R; Miyazono, Kohei

    2009-10-01

    c-Ski, originally identified as a proto-oncogene product, is an important negative regulator of transforming growth factor (TGF)-beta family signaling through interaction with Smad2, Smad3, and Smad4. High expression of c-Ski has been found in some cancers, including gastric cancer. We previously showed that disruption of TGF-beta signaling by dominant-negative TGF-beta type II receptor in a diffuse-type gastric carcinoma model accelerated tumor growth through induction of tumor angiogenesis by decreased expression of the anti-angiogenic factor thrombospondin (TSP)-1. Here, we examined the function of c-Ski in human diffuse-type gastric carcinoma OCUM-2MLN cells. Overexpression of c-Ski inhibited TGF-beta signaling in OCUM-2MLN cells. Interestingly, c-Ski overexpression resulted in extensive acceleration of the growth of subcutaneous xenografts in BALB/c nu/nu female mice (6 weeks of age). Similar to tumors expressing dominant-negative TGF-beta type II receptor, histochemical studies revealed less fibrosis and increased angiogenesis in xenografted tumors expressing c-Ski compared to control tumors. Induction of TSP-1 mRNA by TGF-beta was attenuated by c-Ski in vitro, and expression of TSP-1 mRNA was decreased in tumors expressing c-Ski in vivo. These findings suggest that c-Ski overexpression promotes the growth of diffuse-type gastric carcinoma through induction of angiogenesis.

  16. [Inhibitory effect of imrecoxib combined with lobaplatin on tumor growth and lymph node metastasis of human lung cancer xenografts in nude mice].

    PubMed

    Wang, D C; Wang, L C; Wang, L J; Chen, G; Zhao, Y X; Zhao, Z F; Li, Y H

    2016-05-23

    To evaluate the inhibitory effect of imrecoxib combined with lobaplatin on tumor growth and lymph node metastasis of human lung adenocarcinoma xenografts in nude mice, and to explore its possible mechanisms. Human lung cancer A549 cells were injected into Bal B/c nude mice subcutaneously. Twenty-eight healthy male nude mice were randomly divided into 4 groups: the control group, imrecoxib group, lobaplatin group and imrecoxib combined with lobaplatin group. Each group was treated with appropriate drugs and the tumor size was measured every five days. The expression of ezrin and E-cadherin protein was detected by immunohistochemistry and flow cytometry. Ezrin and E-cadherin mRNA were detected by real-time PCR. The tumor inhibition rates of imrecoxib group, lobaplatin group and combination group were 36.7%, 54.6% and 69.2%, respectively. The tumor volumes of imrecoxib group [(905.33±113.31) mm(3)] and combination group [(507.74±77.50) mm(3)] were significantly lower than that of the control group (1355.33±189.04) mm(3) (P<0.05), and the tumor weights were significantly reduced [(1.13±0.14) g, (0.63±0.10) g respectively] vs. (1.69±0.24) g (P<0.05). The expressions of ezrin protein and mRNA in the imrecoxib group and combined treatment group were significantly lower than that of the control group (136.53±35.52, 74.72±19.48 vs. 175.62±21.16 for protein expression level; 0.54±0.03, 0.36±0.03 vs. 1.02±0.02 for mRNA expression level, respectively, P<0.05 for both), while the expression of E-cadherin protein and mRNA in the imrecoxib group and combined treatment group was significantly higher than that of the control group (253.78±38.87, 308.94±24.67 vs. 213.66±30.31 for protein expression level; 2.19±0.02, 3.02±0.02 vs. 1.05±0.03 for mRNA expression level, respectively, P<0.05 for both). There was a significant negative correlation between ezrin protein and E-cadherin protein (r=-0.737, P<0.01), as well as between ezrin mRNA and E-cadherin mRNA (r=-0

  17. Monitoring the development of xenograft triple-negative breast cancer models using diffusion-weighted magnetic resonance imaging.

    PubMed

    Stephen, Renu M; Pagel, Mark D; Brown, Kathy; Baker, Amanda F; Meuillet, Emmanuelle J; Gillies, Robert J

    2012-11-01

    Evaluations of tumor growth rates and molecular biomarkers are traditionally used to assess new mouse models of human breast cancers. This study investigated the utility of diffusion weighted (DW)-magnetic resonance imaging (MRI) for evaluating cellular proliferation of new tumor models of triple-negative breast cancer, which may augment traditional analysis methods. Eleven human breast cancer cell lines were used to develop xenograft tumors in severe combined immunodeficient mice, with two of these cell lines exhibiting sufficient growth to be serially passaged. DW-MRI was performed to measure the distributions of the apparent diffusion coefficient (ADC) in these two tumor xenograft models, which showed a correlation with tumor growth rates and doubling times during each passage. The distributions of the ADC values were also correlated with expression of Ki67, a biomarker of cell proliferation, and hypoxia inducible factor (HIF)-1α and vascular endothelial growth factor receptor-2 (VEGFR2), which are essential proteins involved in regulating aerobic glycolysis and angiogenesis that support tumor cell proliferation. Although phosphatase and tensin homolog (PTEN) levels were different between the two xenograft models, AKT levels did not differ nor did they correlate with tumor growth. This last result demonstrates the complexity of signaling protein pathways and the difficulty in interpreting the effects of protein expression on tumor cell proliferation. In contrast, DW-MRI may be a more direct assessment of tumor growth and cancer cell proliferation.

  18. Dual mTORC1/2 inhibition in a preclinical xenograft tumor model of endometrial cancer

    PubMed Central

    Korets, Sharmilee Bansal; Musa, Fernanda; Curtin, John; Blank, Stephanie V.; Schneider, Robert J.

    2015-01-01

    Objectives Up to 70% of endometrioid endometrial cancers carry PTEN gene deletions that can upregulate mTOR activity. Investigational mTOR kinase inhibitors may provide a novel therapeutic approach for these tumors. Using a xenograft tumor model of endometrial cancer, we assessed the activity of mTOR and downstream effector proteins in the mTOR translational control pathway after treatment with a dual mTOR Complex 1 and 2 (mTORC1/2) catalytic inhibitor (PP242) compared to that of an allosteric mTOR Complex 1 (mTORC1) inhibitor (everolimus, RAD001). Methods Grade 3 endometrioid endometrial cancer cells (AN3CA) were xenografted into nude mice. Animals were treated with PP242; PP242 and carboplatin; carboplatin; RAD001; RAD001 and carboplatin. Mean tumor volume was compared across groups by ANOVA. Immunoblot analysis was performed to assess mTORC1/2 activity using P-Akt, P-S6 and P-4E-BP1. Results The mean tumor volume of PP242 + carboplatin was significantly lower than in all other treatment groups, P<0.001 (89% smaller). The RAD001 + carboplatin group was also smaller, but this did not reach statistical significance (P=0.097). Immunoblot analysis of tumor lysates treated with PP242 demonstrated inhibition of activated P-Akt. Conclusions Catalytic mTORC1/2 inhibition demonstrates clear efficacy in tumor growth control that is enhanced by the addition of a DNA damage agent, carboplatin. Targeting mTORC1/2 leads to inhibition of Akt activation and strong downregulation of effectors of mTORC1, resulting in downregulation of protein synthesis. Based on this study, mTORC1/2 kinase inhibitors warrant further investigation as a potential treatment for endometrial cancer. PMID:24316308

  19. Growth characteristics and metastatic properties of human breast cancer xenografts in immunodeficient mice.

    PubMed Central

    Visonneau, S.; Cesano, A.; Torosian, M. H.; Miller, E. J.; Santoli, D.

    1998-01-01

    We evaluated the growth and metastatic potential of two human breast cancer cell lines and 16 patient-derived biopsy specimens, representing the most common histological types of breast carcinomas, upon subcutaneous implantation into severe combined immunodeficient (SCID) mice. The method of engraftment we used, based on implantation of intact tissue specimens and complete immunosuppression of the host, provided an easier system to grow human breast carcinoma specimens in mouse models and resulted in a 50% success rate of tumor take. No correlation was found between growth in SCID mice and pathological diagnosis, grading, or estrogen/progesterone receptor expression by the tumor biopsy specimen. Serial passage of the tumor fragments in SCID mice resulted in increased metastasis rates and more rapid emergence of a palpable tumor mass. A tumor from a patient with infiltrating ductal carcinoma, which grew aggressively and metastasized in 100% of the female SCID mice, was also successfully engrafted in 100% of nonobese diabetic (NOD)/SCID female mice, but systemic spread was minimal. Fragments of the same tumor grew in only 33% of male SCID mice with very limited metastases. A strong correlation (r = 0.997) was observed between tumor burden and the presence of soluble (serum) interleukin-2 receptor, a marker associated with a subset of human breast tumors. All together, these data indicate the usefulness of SCID/human breast tumor xenografts for measuring tumor progression and evaluating novel therapeutic approaches to breast cancer. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:9588898

  20. Serotonergic system antagonists target breast tumor initiating cells and synergize with chemotherapy to shrink human breast tumor xenografts

    PubMed Central

    Gwynne, William D; Hallett, Robin M; Girgis-Gabardo, Adele; Bojovic, Bojana; Dvorkin-Gheva, Anna; Aarts, Craig; Dias, Kay; Bane, Anita; Hassell, John A

    2017-01-01

    Breast tumors comprise an infrequent tumor cell population, termed breast tumor initiating cells (BTIC), which sustain tumor growth, seed metastases and resist cytotoxic therapies. Hence therapies are needed to target BTIC to provide more durable breast cancer remissions than are currently achieved. We previously reported that serotonergic system antagonists abrogated the activity of mouse BTIC resident in the mammary tumors of a HER2-overexpressing model of breast cancer. Here we report that antagonists of serotonin (5-hydroxytryptamine; 5-HT) biosynthesis and activity, including US Federal Food and Drug Administration (FDA)-approved antidepressants, targeted BTIC resident in numerous breast tumor cell lines regardless of their clinical or molecular subtype. Notably, inhibitors of tryptophan hydroxylase 1 (TPH1), required for 5-HT biosynthesis in select non-neuronal cells, the serotonin reuptake transporter (SERT) and several 5-HT receptors compromised BTIC activity as assessed by functional sphere-forming assays. Consistent with these findings, human breast tumor cells express TPH1, 5-HT and SERT independent of their molecular or clinical subtype. Exposure of breast tumor cells ex vivo to sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), reduced BTIC frequency as determined by transplanting drug-treated tumor cells into immune-compromised mice. Moreover, another SSRI (vilazodone; Viibryd) synergized with chemotherapy to shrink breast tumor xenografts in immune-compromised mice by inhibiting tumor cell proliferation and inducing their apoptosis. Collectively our data suggest that antidepressants in combination with cytotoxic anticancer therapies may be an appropriate treatment regimen for testing in clinical trials. PMID:28404880

  1. Serotonergic system antagonists target breast tumor initiating cells and synergize with chemotherapy to shrink human breast tumor xenografts.

    PubMed

    Gwynne, William D; Hallett, Robin M; Girgis-Gabardo, Adele; Bojovic, Bojana; Dvorkin-Gheva, Anna; Aarts, Craig; Dias, Kay; Bane, Anita; Hassell, John A

    2017-05-09

    Breast tumors comprise an infrequent tumor cell population, termed breast tumor initiating cells (BTIC), which sustain tumor growth, seed metastases and resist cytotoxic therapies. Hence therapies are needed to target BTIC to provide more durable breast cancer remissions than are currently achieved. We previously reported that serotonergic system antagonists abrogated the activity of mouse BTIC resident in the mammary tumors of a HER2-overexpressing model of breast cancer. Here we report that antagonists of serotonin (5-hydroxytryptamine; 5-HT) biosynthesis and activity, including US Federal Food and Drug Administration (FDA)-approved antidepressants, targeted BTIC resident in numerous breast tumor cell lines regardless of their clinical or molecular subtype. Notably, inhibitors of tryptophan hydroxylase 1 (TPH1), required for 5-HT biosynthesis in select non-neuronal cells, the serotonin reuptake transporter (SERT) and several 5-HT receptors compromised BTIC activity as assessed by functional sphere-forming assays. Consistent with these findings, human breast tumor cells express TPH1, 5-HT and SERT independent of their molecular or clinical subtype. Exposure of breast tumor cells ex vivo to sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), reduced BTIC frequency as determined by transplanting drug-treated tumor cells into immune-compromised mice. Moreover, another SSRI (vilazodone; Viibryd) synergized with chemotherapy to shrink breast tumor xenografts in immune-compromised mice by inhibiting tumor cell proliferation and inducing their apoptosis. Collectively our data suggest that antidepressants in combination with cytotoxic anticancer therapies may be an appropriate treatment regimen for testing in clinical trials.

  2. Cisplatin and photodynamic therapy exert synergistic inhibitory effects on small-cell lung cancer cell viability and xenograft tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, You-Shuang; Peng, Yin-Bo; Yao, Min

    Lung cancer is the leading cause of cancer death worldwide. Small-cell lung cancer (SCLC) is an aggressive type of lung cancer that shows an overall 5-year survival rate below 10%. Although chemotherapy using cisplatin has been proven effective in SCLC treatment, conventional dose of cisplatin causes adverse side effects. Photodynamic therapy, a form of non-ionizing radiation therapy, is increasingly used alone or in combination with other therapeutics in cancer treatment. Herein, we aimed to address whether low dose cisplatin combination with PDT can effectively induce SCLC cell death by using in vitro cultured human SCLC NCI-H446 cells and in vivo tumor xenograft model.more » We found that both cisplatin and PDT showed dose-dependent cytotoxic effects in NCI-H446 cells. Importantly, co-treatment with low dose cisplatin (1 μM) and PDT (1.25 J/cm{sup 2}) synergistically inhibited cell viability and cell migration. We further showed that the combined therapy induced a higher level of intracellular ROS in cultured NCI-H446 cells. Moreover, the synergistic effect by cisplatin and PDT was recapitulated in tumor xenograft as revealed by a more robust increase in the staining of TUNEL (a marker of cell death) and decrease in tumor volume. Taken together, our findings suggest that low dose cisplatin combination with PDT can be an effective therapeutic modality in the treatment of SCLC patients.« less

  3. α-Mangostin: a dietary antioxidant derived from the pericarp of Garcinia mangostana L. inhibits pancreatic tumor growth in xenograft mouse model.

    PubMed

    Hafeez, Bilal Bin; Mustafa, Ala; Fischer, Joseph W; Singh, Ashok; Zhong, Weixiong; Shekhani, Mohammed Ozair; Meske, Louise; Havighurst, Thomas; Kim, KyungMann; Verma, Ajit Kumar

    2014-08-10

    Pancreatic cancer (PC) is the most aggressive malignant disease, ranking as the fourth most leading cause of cancer-related death among men and women in the United States. In this study, we provide evidence of chemotherapeutic effects of α-mangostin, a dietary antioxidant isolated from the pericarp of Garcinia mangostana L. against human PC. The chemotherapeutic effect of α-mangostin was determined using four human PC cells (PL-45, PANC1, BxPC3, and ASPC1). α-Mangostin resulted in a significant inhibition of PC cells viability without having any effects on normal human pancreatic duct epithelial cells. α-Mangostin showed a dose-dependent increase of apoptosis in PC cells. Also, α-mangostin inhibited the expression levels of pNF-κB/p65Ser552, pStat3Ser727, and pStat3Tyr705. α-Mangostin inhibited DNA binding activity of nuclear factor kappa B (NF-κB) and signal transducer and activator 3 (Stat3). α-Mangostin inhibited the expression levels of matrix metallopeptidase 9 (MMP9), cyclin D1, and gp130; however, increased expression of tissue inhibitor of metalloproteinase 1 (TIMP1) was observed in PC cells. In addition, i.p. administration of α-mangostin (6 mg/kg body weight, 5 days a week) resulted in a significant inhibition of both primary (PL-45) and secondary (ASPC1) human PC cell-derived orthotopic and ectopic xenograft tumors in athymic nude mice. No sign of toxicity was observed in any of the mice administered with α-mangostin. α-Mangostin treatment inhibited the biomarkers of cell proliferation (Ki-67 and proliferating cell nuclear antigen [PCNA]) in the xenograft tumor tissues. We present, for the first time, that dietary antioxidant α-mangostin inhibits the growth of PC cells in vitro and in vivo. These results suggest the potential therapeutic efficacy of α-mangostin against human PC.

  4. King cobra (Ophiophagus hannah) venom L-amino acid oxidase induces apoptosis in PC-3 cells and suppresses PC-3 solid tumor growth in a tumor xenograft mouse model.

    PubMed

    Lee, Mui Li; Fung, Shin Yee; Chung, Ivy; Pailoor, Jayalakshmi; Cheah, Swee Hung; Tan, Nget Hong

    2014-01-01

    King cobra (Ophiophagus hannah) venom L-amino acid oxidase (OH-LAAO), a heat stable enzyme, has been shown to exhibit very potent anti-proliferative activity against human breast and lung tumorigenic cells but not in their non-tumorigenic counterparts. We further examine its in vitro and in vivo anti-tumor activity in a human prostate adenocarcinoma (PC-3) model. OH-LAAO demonstrated potent cytotoxicity against PC-3 cells with IC50 of 0.05 µg/mL after 72 h incubation in vitro. It induced apoptosis as evidenced with an increase in caspase-3/7 cleavages and an increase in annexin V-stained cells. To examine its in vivo anti-tumor activity, we treated PC-3 tumor xenograft implanted subcutaneously in immunodeficient NU/NU (nude) mice with 1 µg/g OH-LAAO given intraperitoneally (i.p.). After 8 weeks of treatment, OH-LAAO treated PC-3 tumors were markedly inhibited, when compared to the control group (P <0.05). TUNEL staining analysis on the tumor sections showed a significantly increase of apoptotic cells in the LAAO-treated animals. Histological examinations of the vital organs in these two groups showed no significant differences with normal tissues, indicating no obvious tissue damage. The treatment also did not cause any significant changes on the body weight of the mice during the duration of the study. These observations suggest that OH-LAAO cytotoxic effects may be specific to tumor xenografts and less to normal organs. Given its potent anti-tumor activities shown in vitro as well as in vivo, the king cobra venom LAAO can potentially be developed to treat prostate cancer and other solid tumors.

  5. Development of [11C]vemurafenib employing a carbon-11 carbonylative Stille coupling and preliminary evaluation in mice bearing melanoma tumor xenografts

    PubMed Central

    Slobbe, Paul; Windhorst, Albert D.; Adamzek, Kevin; Bolijn, Marije; Schuit, Robert C.; Heideman, Daniëlle A.M.; van Dongen, Guus A.M.S.; Poot, Alex J.

    2017-01-01

    Over the last decade kinase inhibitors have witnessed tremendous growth as anti-cancer drugs. Unfortunately, despite their promising clinical successes, a large portion of patients does not benefit from these targeted therapeutics. Vemurafenib is a serine/threonine kinase inhibitor approved for the treatment of melanomas specifically expressing the BRAFV600E mutation. The aim of this study was to develop vemurafenib as PET tracer to determine its potential for identification of tumors sensitive to vemurafenib treatment. Therefore, vemurafenib was labeled with carbon-11 and analyzed for its tumor targeting potential in melanoma xenografts Colo829 (BRAFV600E) and MeWo (BRAFwt) using autoradiography on tissue sections, in vitro tumor cell uptake studies and biodistribution studies in xenografted athymic nu/nu mice. [11C]vemurafenib was synthesized in 21 ± 4% yield (decay corrected, calculated from [11C]CO) in > 99% radiochemical purity and a specific activity of 55 ± 18 GBq/μmol. Similar binding of [11C]vemurafenib was shown during autoradiography and cellular uptake studies in both cell lines. Plasma metabolite analysis demonstrated > 95% intact [11C]vemurafenib in vivo at 45 minutes after injection, indicating excellent stability. Biodistribution studies confirmed the in vitro results, showing similar tumor-to-background ratios in both xenografts models. These preliminary results suggest that identification of BRAFV600E mutations in vivo using PET with [11C]vemurafenib will be challenging. PMID:28418885

  6. Diffuse Reflectance Spectroscopy (DRS) of radiation-induced re-oxygenation in sensitive and resistant head and neck tumor xenografts

    NASA Astrophysics Data System (ADS)

    Dadgar, Sina; Rodríguez Troncoso, Joel; Rajaram, Narasimhan

    2018-02-01

    Currently, anatomical assessment of tumor volume performed several weeks after completion of treatment is the clinical standard to determine whether a cancer patient has responded to a treatment. However, functional changes within the tumor could potentially provide information regarding treatment resistance or response much earlier than anatomical changes. We have used diffuse reflectance spectroscopy to assess the short and long-term re-oxygenation kinetics of a human head and neck squamous cell carcinoma xenografts in response to radiation therapy. First, we injected UM-SCC-22B cell line into the flank of 50 mice to grow xenografts. Once the tumor volume reached 200 mm3 (designated as Day 1), the mice were distributed into radiation and control groups. Members of radiation group underwent a clinical dose of radiation of 2 Gy/day on Days 1, 4, 7, and 10 for a cumulative dose of 8 Gy. DRS spectra of these tumors were collected for 14 days during and after therapy, and the collected spectra of each tumor were converted to its optical properties using a lookup table-base inverse model. We found statistically significant differences in tumor growth rate between two groups which is in indication of the sensitivity of this cell line to radiation. We further acquired significantly different contents of hemoglobin and scattering magnitude and size in two groups. The scattering has previously been associated with necrosis. We furthermore found significantly different time-dependent changes in vascular oxygenation and tumor hemoglobin concentration in post-radiation days.

  7. CDDO-Me inhibits tumor growth and prevents recurrence of pancreatic ductal adenocarcinoma.

    PubMed

    Gao, Xiaohua; Deeb, Dorrah; Liu, Yongbo; Liu, Patricia; Zhang, Yiguan; Shaw, Jiajiu; Gautam, Subhash C

    2015-12-01

    Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) has shown potent antitumorigenic activity against a wide range of cancer cell lines in vitro and inhibited the growth of liver, lung and prostate cancer in vivo. In the present study, we examined the antitumor activity of CDDO-Me for pancreatic ductal adenocarcinoma (PDAC) cells with and without activating K-ras mutations. Treatment of K-ras mutant MiaPaCa-2 and K-ras normal BxPC-3 cells with CDDO-Me elicited strong antiproliferative and proapoptopic responses in both cell lines in culture. The inhibition of cell proliferation and induction of apoptosis was accompanied by the inhibition of antiapoptotic/prosurvival p-Akt, NF-кB and p-mTOR signaling proteins. For testing efficacy of CDDO-Me in vivo heterotopic and orthotopic xenografts were generated by implanting BxPC-3 and MiaPaCa-2 cells subcutaneously and in the pancreatic tail, respectively. Treatment with CDDO-Me significantly inhibited the growth of BxPC-3 xenografts and reduced the levels of p-Akt and p-mTOR in tumor tissue. In mice with orthotopic MiaPaCa-2 xenografts, treatment with CDDO-Me prolonged the survival of mice when administered following the surgical resection of tumors. The latter was attributed to the eradication of residual PDAC remaining after resection of tumors. These preclinical data demonstrate the potential of CDDO-Me for treating primary PDAC tumors and for preventing relapse/recurrence through the destruction of residual disease.

  8. A potent combination of the novel PI3K Inhibitor, GDC-0941, with imatinib in gastrointestinal stromal tumor xenografts: long-lasting responses after treatment withdrawal.

    PubMed

    Floris, Giuseppe; Wozniak, Agnieszka; Sciot, Raf; Li, Haifu; Friedman, Lori; Van Looy, Thomas; Wellens, Jasmien; Vermaelen, Peter; Deroose, Christophe M; Fletcher, Jonathan A; Debiec-Rychter, Maria; Schöffski, Patrick

    2013-02-01

    Oncogenic signaling in gastrointestinal stromal tumors (GIST) is sustained via PI3K/AKT pathway. We used a panel of six GIST xenograft models to assess efficacy of GDC-0941 as single agent or in combination with imatinib (IMA). Nude mice (n = 136) were grafted bilaterally with human GIST carrying diverse KIT mutations. Mice were orally dosed over four weeks, grouped as follows: (A) control; (B) GDC-0941; (C) imatinib, and (D) GDC+IMA treatments. Xenografts regrowth after treatment discontinuation was assessed in groups C and D for an additional four weeks. Tumor response was assessed by volume measurements, micro-PET imaging, histopathology, and immunoblotting. Moreover, genomic alterations in PTEN/PI3K/AKT pathway were evaluated. In all models, GDC-0941 caused tumor growth stabilization, inhibiting tumor cell proliferation, but did not induce apoptosis. Under GDC+IMA, profound tumor regression, superior to either treatment alone, was observed. This effect was associated with the best histologic response, a nearly complete proliferation arrest and increased apoptosis. Tumor regrowth assays confirmed superior activity of GDC+IMA over imatinib; in three of six models, tumor volume remained reduced and stable even after treatment discontinuation. A positive correlation between response to GDC+IMA and PTEN loss, both on gene and protein levels, was found. GDC+IMA has significant antitumor efficacy in GIST xenografts, inducing more substantial tumor regression, apoptosis, and durable effects than imatinib. Notably, after treatment withdrawal, tumor regression was sustained in tumors exposed to GDC+IMA, which was not observed under imatinib. Assessment of PTEN status may represent a useful predictive biomarker for patient selection.

  9. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    PubMed

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  10. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    PubMed Central

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  11. The presence of a membrane-bound progesterone receptor induces growth of breast cancer with norethisterone but not with progesterone: A xenograft model.

    PubMed

    Zhao, Yue; Ruan, Xiangyan; Wang, Husheng; Li, Xue; Gu, Muqing; Wang, Lijuan; Li, Yanglu; Seeger, Harald; Mueck, Alfred O

    2017-08-01

    During menopausal hormone therapy (MHT) a possible increase in breast cancer risk is thought to depend mainly on the progestogen component. In vitro studies have shown that the progesterone receptor membrane component 1 (PGRMC1) is important for tumor proliferation induced by progestogens. The primary aim of this study was to compare for the first time the natural progestogen, progesterone (P), with a synthetic progestogen, norethisterone (NET), using a xenograft model. MCF7 cells, transfected with PGRMC1 plasmid or empty vector, were injected into nude mice and estradiol (E2) pellets were implanted. After 12days, NET or P or placebo pellets were implanted. Tumor volumes in all groups (6 mice/group) were monitored for 6-7 weeks. Immunohistochemical expression of PGRMC1 and KI-67 was assessed. These experiments were repeated using T47D cells. Compared with the control condition, E2 and sequential E2/NET combination increased xenograft tumor growth with MCF7 and T47D cells that transgenically expressed PGRMC1 (p<0.01); progesterone did not increase growth. Breast cancer cells transfected with empty vectors did not respond to either progestogen. Comparing KI-67 and PGRMC1 expression, the Pearson correlation was r=0.848, p=0.002. E2 plus NET increases tumor growth in human breast cancer cells overexpressing PGRMC1, but there is no change with progesterone. To our knowledge, this is the first comparison of both progestogens in vivo using nude mice, which are frequently used in xenograft models. Clinical trials are needed to determine whether women with overexpression of PGRMC1 are at increased risk of breast cancer if NET instead of progesterone is used in MHT. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Correlation of tissue-plasma partition coefficients between normal tissues and subcutaneous xenografts of human tumor cell lines in mouse as a prediction tool of drug penetration in tumors.

    PubMed

    Poulin, Patrick; Hop, Cornelis Eca; Salphati, Laurent; Liederer, Bianca M

    2013-04-01

    Understanding drug distribution and accumulation in tumors would be informative in the assessment of efficacy in targeted therapy; however, existing methods for predicting tissue drug distribution focus on normal tissues and do not incorporate tumors. The main objective of this study was to describe the relationships between tissue-plasma concentration ratios (Kp ) of normal tissues and those of subcutaneous xenograft tumors under nonsteady-state conditions, and establish regression equations that could potentially be used for the prediction of drug levels in several human tumor xenografts in mouse, based solely on a Kp value determined in a normal tissue (e.g., muscle). A dataset of 17 compounds was collected from the literature and from Genentech. Tissue and plasma concentration data in mouse were obtained following oral gavage or intraperitoneal administration. Linear regression analyses were performed between Kp values in several normal tissues (muscle, lung, liver, or brain) and those in human tumor xenografts (CL6, EBC-1, HT-29, PC3, U-87, MCF-7-neo-Her2, or BT474M1.1). The tissue-plasma ratios in normal tissues reasonably correlated with the tumor-plasma ratios in CL6, EBC-1, HT-29, U-87, BT474M1.1, and MCF-7-neo-Her2 xenografts (r(2) in the range 0.62-1) but not with the PC3 xenograft. In general, muscle and lung exhibited the strongest correlation with tumor xenografts, followed by liver. Regression coefficients from brain were low, except between brain and the glioblastoma U-87 xenograft (r(2) in the range 0.62-0.94). Furthermore, reasonably strong correlations were observed between muscle and lung and between muscle and liver (r(2) in the range 0.67-0.96). The slopes of the regressions differed depending on the class of drug (strong vs. weak base) and type of tissue (brain vs. other tissues and tumors). Overall, this study will contribute to our understanding of tissue-plasma partition coefficients for tumors and facilitate the use of physiologically

  13. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model

    PubMed Central

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-01-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer. PMID:26840261

  14. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model.

    PubMed

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-03-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer.

  15. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers.

    PubMed

    Bradford, James R; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T

    2016-04-12

    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX).Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment.In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery.

  16. Prostate-targeted biodegradable nanoparticles loaded with androgen receptor silencing constructs eradicate xenograft tumors in mice

    PubMed Central

    Yang, Jun; Xie, Sheng-Xue; Huang, Yiling; Ling, Min; Liu, Jihong; Ran, Yali; Wang, Yanlin; Thrasher, J Brantley; Berkland, Cory; Li, Benyi

    2012-01-01

    Background Prostate cancer is the major cause of cancer death in men and the androgen receptor (AR) has been shown to play a critical role in the progression of the disease. Our previous reports showed that knocking down the expression of the AR gene using a siRNA-based approach in prostate cancer cells led to apoptotic cell death and xenograft tumor eradication. In this study, we utilized a biodegradable nanoparticle to deliver the therapeutic AR shRNA construct specifically to prostate cancer cells. Materials & methods The biodegradable nanoparticles were fabricated using a poly(dl-lactic-co-glycolic acid) polymer and the AR shRNA constructs were loaded inside the particles. The surface of the nanoparticles were then conjugated with prostate-specific membrane antigen aptamer A10 for prostate cancer cell-specific targeting. Results A10-conjugation largely enhanced cellular uptake of nanoparticles in both cell culture- and xenograft-based models. The efficacy of AR shRNA encapsulated in nanoparticles on AR gene silencing was confirmed in PC-3/AR-derived xenografts in nude mice. The therapeutic property of A10-conjugated AR shRNA-loaded nanoparticles was evaluated in xenograft models with different prostate cancer cell lines: 22RV1, LAPC-4 and LNCaP. Upon two injections of the AR shRNA-loaded nanoparticles, rapid tumor regression was observed over 2 weeks. Consistent with previous reports, A10 aptamer conjugation significantly enhanced xenograft tumor regression compared with nonconjugated nanoparticles. Discussion These data demonstrated that tissue-specific delivery of AR shRNA using a biodegradable nanoparticle approach represents a novel therapy for life-threatening prostate cancers. PMID:22583574

  17. A Small Molecule Inhibitor of ETV1, YK-4-279, Prevents Prostate Cancer Growth and Metastasis in a Mouse Xenograft Model

    PubMed Central

    Rahim, Said; Minas, Tsion; Hong, Sung-Hyeok; Justvig, Sarah; Çelik, Haydar; Kont, Yasemin Saygideger; Han, Jenny; Kallarakal, Abraham T.; Kong, Yali; Rudek, Michelle A.; Brown, Milton L.; Kallakury, Bhaskar; Toretsky, Jeffrey A.; Üren, Aykut

    2014-01-01

    Background The erythroblastosis virus E26 transforming sequences (ETS) family of transcription factors consists of a highly conserved group of genes that play important roles in cellular proliferation, differentiation, migration and invasion. Chromosomal translocations fusing ETS factors to promoters of androgen responsive genes have been found in prostate cancers, including the most clinically aggressive forms. ERG and ETV1 are the most commonly translocated ETS proteins. Over-expression of these proteins in prostate cancer cells results in a more invasive phenotype. Inhibition of ETS activity by small molecule inhibitors may provide a novel method for the treatment of prostate cancer. Methods and Findings We recently demonstrated that the small molecule YK-4-279 inhibits biological activity of ETV1 in fusion-positive prostate cancer cells leading to decreased motility and invasion in-vitro. Here, we present data from an in-vivo mouse xenograft model. SCID-beige mice were subcutaneously implanted with fusion-positive LNCaP-luc-M6 and fusion-negative PC-3M-luc-C6 tumors. Animals were treated with YK-4-279, and its effects on primary tumor growth and lung metastasis were evaluated. YK-4-279 treatment resulted in decreased growth of the primary tumor only in LNCaP-luc-M6 cohort. When primary tumors were grown to comparable sizes, YK-4-279 inhibited tumor metastasis to the lungs. Expression of ETV1 target genes MMP7, FKBP10 and GLYATL2 were reduced in YK-4-279 treated animals. ETS fusion-negative PC-3M-luc-C6 xenografts were unresponsive to the compound. Furthermore, YK-4-279 is a chiral molecule that exists as a racemic mixture of R and S enantiomers. We established that (S)-YK-4-279 is the active enantiomer in prostate cancer cells. Conclusion Our results demonstrate that YK-4-279 is a potent inhibitor of ETV1 and inhibits both the primary tumor growth and metastasis of fusion positive prostate cancer xenografts. Therefore, YK-4-279 or similar compounds may be

  18. Serological aspects of rat tumour xenograft growth in athymic nude mice.

    PubMed Central

    Pimm, M. V.; Baldwin, R. W.

    1979-01-01

    The serum of athymic nude mice bearing rat tumour xenografts has been examined for tumour-specific antigen. With a sarcoma and a hepatoma, tumour-specific antigen expression continued in xenograft growths, and sera of tumour-bearing mice contained free antigen, assayed by its ability to neutralise reactivity of tumour-immune rat sera against tumour target cells in an indirect membrane-immunofluorescence test. In contrast, no anti-rat antibody was detectable in sera of mice bearing the xenografts, or rejecting cells injected in admixture with BCG. PMID:373782

  19. Dll4 Blockade Potentiates the Anti-Tumor Effects of VEGF Inhibition in Renal Cell Carcinoma Patient-Derived Xenografts

    PubMed Central

    Miles, Kiersten Marie; Seshadri, Mukund; Ciamporcero, Eric; Adelaiye, Remi; Gillard, Bryan; Sotomayor, Paula; Attwood, Kristopher; Shen, Li; Conroy, Dylan; Kuhnert, Frank; Lalani, Alshad S.; Thurston, Gavin; Pili, Roberto

    2014-01-01

    Background The Notch ligand Delta-like 4 (Dll4) is highly expressed in vascular endothelium and has been shown to play a pivotal role in regulating tumor angiogenesis. Blockade of the Dll4-Notch pathway in preclinical cancer models has been associated with non-productive angiogenesis and reduced tumor growth. Given the cross-talk between the vascular endothelial growth factor (VEGF) and Delta-Notch pathways in tumor angiogenesis, we examined the activity of a function-blocking Dll4 antibody, REGN1035, alone and in combination with anti-VEGF therapy in renal cell carcinoma (RCC). Methods and Results Severe combined immunodeficiency (SCID) mice bearing patient-derived clear cell RCC xenografts were treated with REGN1035 and in combination with the multi-targeted tyrosine kinase inhibitor sunitinib or the VEGF blocker ziv-aflibercept. Immunohistochemical and immunofluorescent analyses were carried out, as well as magnetic resonance imaging (MRI) examinations pre and 24 hours and 2 weeks post treatment. Single agent treatment with REGN1035 resulted in significant tumor growth inhibition (36–62%) that was equivalent to or exceeded the single agent anti-tumor activity of the VEGF pathway inhibitors sunitinib (38–54%) and ziv-aflibercept (46%). Importantly, combination treatments with REGN1035 plus VEGF inhibitors resulted in enhanced anti-tumor effects (72–80% growth inhibition), including some tumor regression. Magnetic resonance imaging showed a marked decrease in tumor perfusion in all treatment groups. Interestingly, anti-tumor efficacy of the combination of REGN1035 and ziv-aflibercept was also observed in a sunitinib resistant ccRCC model. Conclusions Overall, these findings demonstrate the potent anti-tumor activity of Dll4 blockade in RCC patient-derived tumors and a combination benefit for the simultaneous targeting of the Dll4 and VEGF signaling pathways, highlighting the therapeutic potential of this treatment modality in RCC. PMID:25393540

  20. Cabozantinib Is Active against Human Gastrointestinal Stromal Tumor Xenografts Carrying Different KIT Mutations.

    PubMed

    Gebreyohannes, Yemarshet K; Schöffski, Patrick; Van Looy, Thomas; Wellens, Jasmien; Vreys, Lise; Cornillie, Jasmien; Vanleeuw, Ulla; Aftab, Dana T; Debiec-Rychter, Maria; Sciot, Raf; Wozniak, Agnieszka

    2016-12-01

    In the majority of gastrointestinal stromal tumors (GIST), oncogenic signaling is driven by KIT mutations. Advanced GIST is treated with tyrosine kinase inhibitors (TKI) such as imatinib. Acquired resistance to TKI is mainly caused by secondary KIT mutations, but can also be attributed to a switch of KIT dependency to another receptor tyrosine kinase (RTK). We tested the efficacy of cabozantinib, a novel TKI targeting KIT, MET, AXL, and vascular endothelial growth factor receptors (VEGFR), in patient-derived xenograft (PDX) models of GIST, carrying different KIT mutations. NMRI nu/nu mice (n = 52) were bilaterally transplanted with human GIST: UZLX-GIST4 (KIT exon 11 mutation, imatinib sensitive), UZLX-GIST2 (KIT exon 9, imatinib dose-dependent resistance), or UZLX-GIST9 (KIT exon 11 and 17 mutations, imatinib resistant). Mice were grouped as control (untreated), imatinib (50 mg/kg/bid), and cabozantinib (30 mg/kg/qd) and treated orally for 15 days. Cabozantinib resulted in significant tumor regression in UZLX-GIST4 and -GIST2 and delayed tumor growth in -GIST9. In all three models, cabozantinib inhibited the proliferative activity, which was completely absent in UZLX-GIST4 and significantly reduced in -GIST2 and -GIST9. Increased apoptotic activity was observed only in UZLX-GIST4. Cabozantinib inhibited the KIT signaling pathway in UZLX-GIST4 and -GIST2. In addition, compared with both control and imatinib, cabozantinib significantly reduced microvessel density in all models. In conclusion, cabozantinib showed antitumor activity in GIST PDX models through inhibition of tumor growth, proliferation, and angiogenesis, in both imatinib-sensitive and imatinib-resistant models. Mol Cancer Ther; 15(12); 2845-52. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. [Establishment of a human bladder cancer cell line stably co-expressing hSPRY2 and luciferase genes and its subcutaneous tumor xenograft model in nude mice].

    PubMed

    Yin, Xiaotao; Li, Fanglong; Jin, Yipeng; Yin, Zhaoyang; Qi, Siyong; Wu, Shuai; Wang, Zicheng; Wang, Lin; Yu, Jiyun; Gao, Jiangping

    2017-03-01

    Objective To establish a human bladder cancer cell line stably co-expressing human sprouty2 (hSPRY2) and luciferase (Luc) genes simultaneously, and develop its subcutaneous tumor xenograft model in nude mice. Methods The hSPRY2 and Luc gene segments were amplified by PCR, and were cloned into lentiviral vector pCDH and pLVX respectively to produce corresponding lentivirus particles. The J82 human bladder cancer cells were infected with these two kinds of lentivirus particles, and then further screened by puromycin and G418. The expressions of hSPRY2 and Luc genes were detected by bioluminescence, immunofluorescence and Western blot analysis. The screened J82-hSPRY2/Luc cells were injected subcutaneously into BALB/c nude mice, and the growth of tumor was monitored dynamically using in vivo fluorescence imaging system. Results J82-hSPRY2/Luc cell line stably expressing hSPRY2 and Luc genes was established successfully. Bioluminescence, immunofluorescence and Western blot analysis validated the expressions of hSPRY2 and Luc genes. The in vivo fluorescence imaging system showed obvious fluorescence in subcutaneous tumor xenograft in nude mice. Conclusion The J82-hSPRY2/Luc bladder cancer cell line and its subcutaneous tumor xenograft model in nude mice have been established successfully.

  2. Temporal morphologic changes in human colorectal carcinomas following xenografting.

    PubMed Central

    Barkla, D. H.; Tutton, P. J.

    1983-01-01

    The temporal morphologic changes of human colorectal carcinomas following xenografting into immunosuppressed mice were investigated by the use of light and transmission electron microscopy. The results show that colorectal carcinomas undergo a series of morphologic changes during the initial 30-day period following transplantation. During the initial 1-5-day period the majority of tumor cells die, and during the following 5-10-day period the necrotic debris created during the 1-5-day period is removed by host-supplied inflammatory cells. Only small groups of peripherally placed tumor cells survived at the end of the first 10 days. During the 10-20-day period the tumor cell populations of xenografts were reestablished by a morphologically heterogeneous population of tumor cells, and during the 20-30 day period consolidation of this process continued and some xenografts showed macroscopic evidence of growth. The authors hypothesize that human colorectal carcinomas, like the antecedent epithelium, contain subpopulations of undifferentiated cells that give rise to populations of more-differentiated cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 PMID:6829710

  3. Orthotopic Patient-Derived Glioblastoma Xenografts in Mice.

    PubMed

    Xu, Zhongye; Kader, Michael; Sen, Rajeev; Placantonakis, Dimitris G

    2018-01-01

    Patient-derived xenografts (PDX) provide in vivo glioblastoma (GBM) models that recapitulate actual tumors. Orthotopic tumor xenografts within the mouse brain are obtained by injection of GBM stem-like cells derived from fresh surgical specimens. These xenografts reproduce GBM's histologic complexity and hallmark biological behaviors, such as brain invasion, angiogenesis, and resistance to therapy. This method has become essential for analyzing mechanisms of tumorigenesis and testing the therapeutic effect of candidate agents in the preclinical setting. Here, we describe a protocol for establishing orthotopic tumor xenografts in the mouse brain with human GBM cells.

  4. Disrupting Hypoxia-Induced Bicarbonate Transport Acidifies Tumor Cells and Suppresses Tumor Growth.

    PubMed

    McIntyre, Alan; Hulikova, Alzbeta; Ledaki, Ioanna; Snell, Cameron; Singleton, Dean; Steers, Graham; Seden, Peter; Jones, Dylan; Bridges, Esther; Wigfield, Simon; Li, Ji-Liang; Russell, Angela; Swietach, Pawel; Harris, Adrian L

    2016-07-01

    Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model.

    PubMed

    Morscher, Raphael Johannes; Aminzadeh-Gohari, Sepideh; Feichtinger, René Gunther; Mayr, Johannes Adalbert; Lang, Roland; Neureiter, Daniel; Sperl, Wolfgang; Kofler, Barbara

    2015-01-01

    Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer's oxidative phosphorylation system. Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2)]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content). Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention. Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting standard therapy regimens. Therefore, we propose

  6. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors.

    PubMed

    Lou, Yuanmei; McDonald, Paul C; Oloumi, Arusha; Chia, Stephen; Ostlund, Christina; Ahmadi, Ardalan; Kyle, Alastair; Auf dem Keller, Ulrich; Leung, Samuel; Huntsman, David; Clarke, Blaise; Sutherland, Brent W; Waterhouse, Dawn; Bally, Marcel; Roskelley, Calvin; Overall, Christopher M; Minchinton, Andrew; Pacchiano, Fabio; Carta, Fabrizio; Scozzafava, Andrea; Touisni, Nadia; Winum, Jean-Yves; Supuran, Claudiu T; Dedhar, Shoukat

    2011-05-01

    Carbonic anhydrase IX (CAIX) is a hypoxia and HIF-1-inducible protein that regulates intra- and extracellular pH under hypoxic conditions and promotes tumor cell survival and invasion in hypoxic microenvironments. Interrogation of 3,630 human breast cancers provided definitive evidence of CAIX as an independent poor prognostic biomarker for distant metastases and survival. shRNA-mediated depletion of CAIX expression in 4T1 mouse metastatic breast cancer cells capable of inducing CAIX in hypoxia resulted in regression of orthotopic mammary tumors and inhibition of spontaneous lung metastasis formation. Stable depletion of CAIX in MDA-MB-231 human breast cancer xenografts also resulted in attenuation of primary tumor growth. CAIX depletion in the 4T1 cells led to caspase-independent cell death and reversal of extracellular acidosis under hypoxic conditions in vitro. Treatment of mice harboring CAIX-positive 4T1 mammary tumors with novel CAIX-specific small molecule inhibitors that mimicked the effects of CAIX depletion in vitro resulted in significant inhibition of tumor growth and metastasis formation in both spontaneous and experimental models of metastasis, without inhibitory effects on CAIX-negative tumors. Similar inhibitory effects on primary tumor growth were observed in mice harboring orthotopic tumors comprised of lung metatstatic MDA-MB-231 LM2-4(Luc+) cells. Our findings show that CAIX is vital for growth and metastasis of hypoxic breast tumors and is a specific, targetable biomarker for breast cancer metastasis.

  7. Influence of prostaglandin analogues on epithelial cell proliferation and xenograft growth.

    PubMed Central

    Tutton, P. J.; Barkla, D. H.

    1980-01-01

    The influence of two prostaglandin (PG) analogues, 16,16-dimethyl PG E2 and 16,16-dimethyl PG F2 alpha and of the cyclo-oxygenase inhibitor, flurbiprofen, on epithelial cell proliferation was assessed using a stathmokinetic technique. The epithelia examined were those of the jejunal crypts, the colonic crypts and that of dimethylhydrazine-induced adenocarcinomas of rat colon. The influence of the two prostaglandin analogues, and of flurbiprofen, on the growth of a human colorectal tumour propagated as xenografts in immune-deprived mice was also assessed. The PG E2 analogue transiently inhibited xenograft growth, but was without effect on the mitotic rate in the rat tissues. The PG F2 alpha analogue was also found to inhibit xenograft growth but, unlike the PG E2 analogue, it was found to be a strong inhibitor of cell proliferation in rat colonic tumours, and an accelerator of proliferation in jejunal-crypt cells. The only statistically significant effect of flurbiprofen was to accelerate cell division in the rat colonic tumours. PMID:7362778

  8. Influence of prostaglandin analogues on epithelial cell proliferation and xenograft growth.

    PubMed

    Tutton, P J; Barkla, D H

    1980-01-01

    The influence of two prostaglandin (PG) analogues, 16,16-dimethyl PG E2 and 16,16-dimethyl PG F2 alpha and of the cyclo-oxygenase inhibitor, flurbiprofen, on epithelial cell proliferation was assessed using a stathmokinetic technique. The epithelia examined were those of the jejunal crypts, the colonic crypts and that of dimethylhydrazine-induced adenocarcinomas of rat colon. The influence of the two prostaglandin analogues, and of flurbiprofen, on the growth of a human colorectal tumour propagated as xenografts in immune-deprived mice was also assessed. The PG E2 analogue transiently inhibited xenograft growth, but was without effect on the mitotic rate in the rat tissues. The PG F2 alpha analogue was also found to inhibit xenograft growth but, unlike the PG E2 analogue, it was found to be a strong inhibitor of cell proliferation in rat colonic tumours, and an accelerator of proliferation in jejunal-crypt cells. The only statistically significant effect of flurbiprofen was to accelerate cell division in the rat colonic tumours.

  9. [Inhibitive effect of matrine modification X on the growth of human nasopharyngeal carcinoma CNE2 cell xenografts in nude mice].

    PubMed

    Shi, Shujing; Tang, Anzhou; Yin, Shaolin; Wang, Lisheng; Xie, Mao; Yi, Xiang

    2014-11-01

    To evaluate the inhibitive effect of matrine modification X on the growth of human nasopharyngeal carcinoma CNE2 cell xenografts in nude mice. Tumor model was established by subcutaneous inoculation of nasopharyngeal carcinoma cell CNE2 into nude mice, which was used to evaluate the antitumor effect of matrine modification X in vivo. The expression levels of Bax, Bcl-2, Caspase3 were detected by real-time PCR and western blot. The growth of xenografts in nude mice was significantly suppressed after application of matrine modification X in a dose-dependent manner. The inhibition rates were 32.55% and 44.89% when treated at medium and high dose respectively. Real-time fluorescence quantitative-PCR and Western Blot results showed that the expression of Bax and Caspase3 increased, while the expression of Bcl-2 decreased in a dose-dependent manner. The change of high dose group was obvious, and the difference was statistically significant (P < 0.05). Matrine modification X could significantly inhibit the growth of human nasopharyngeal carcinoma CNE2 cell xenografts in nude mice, probably by inducing the apoptosis of nasopharyngeal carcinoma cells, and the possible mechanism is related to regulating the expression level of Bax/Bcl-2 and Casepase3.

  10. α-Mangostin: A Dietary Antioxidant Derived from the Pericarp of Garcinia mangostana L. Inhibits Pancreatic Tumor Growth in Xenograft Mouse Model

    PubMed Central

    Mustafa, Ala; Fischer, Joseph W.; Singh, Ashok; Zhong, Weixiong; Shekhani, Mohammed Ozair; Meske, Louise; Havighurst, Thomas; Kim, KyungMann; Verma, Ajit Kumar

    2014-01-01

    Abstract Aims: Pancreatic cancer (PC) is the most aggressive malignant disease, ranking as the fourth most leading cause of cancer-related death among men and women in the United States. In this study, we provide evidence of chemotherapeutic effects of α-mangostin, a dietary antioxidant isolated from the pericarp of Garcinia mangostana L. against human PC. Results: The chemotherapeutic effect of α-mangostin was determined using four human PC cells (PL-45, PANC1, BxPC3, and ASPC1). α-Mangostin resulted in a significant inhibition of PC cells viability without having any effects on normal human pancreatic duct epithelial cells. α-Mangostin showed a dose-dependent increase of apoptosis in PC cells. Also, α-mangostin inhibited the expression levels of pNF-κB/p65Ser552, pStat3Ser727, and pStat3Tyr705. α-Mangostin inhibited DNA binding activity of nuclear factor kappa B (NF-κB) and signal transducer and activator 3 (Stat3). α-Mangostin inhibited the expression levels of matrix metallopeptidase 9 (MMP9), cyclin D1, and gp130; however, increased expression of tissue inhibitor of metalloproteinase 1 (TIMP1) was observed in PC cells. In addition, i.p. administration of α-mangostin (6 mg/kg body weight, 5 days a week) resulted in a significant inhibition of both primary (PL-45) and secondary (ASPC1) human PC cell-derived orthotopic and ectopic xenograft tumors in athymic nude mice. No sign of toxicity was observed in any of the mice administered with α-mangostin. α-Mangostin treatment inhibited the biomarkers of cell proliferation (Ki-67 and proliferating cell nuclear antigen [PCNA]) in the xenograft tumor tissues. Innovation: We present, for the first time, that dietary antioxidant α-mangostin inhibits the growth of PC cells in vitro and in vivo. Conclusion: These results suggest the potential therapeutic efficacy of α-mangostin against human PC. Antioxid. Redox Signal. 21, 682–699. PMID:24295217

  11. Negligible Colon Cancer Risk from Food-Borne Acrylamide Exposure in Male F344 Rats and Nude (nu/nu) Mice-Bearing Human Colon Tumor Xenografts

    PubMed Central

    Raju, Jayadev; Roberts, Jennifer; Sondagar, Chandni; Kapal, Kamla; Aziz, Syed A.; Caldwell, Don; Mehta, Rekha

    2013-01-01

    Acrylamide, a possible human carcinogen, is formed in certain carbohydrate-rich foods processed at high temperature. We evaluated if dietary acrylamide, at doses (0.5, 1.0 or 2.0 mg/kg diet) reflecting upper levels found in human foods, modulated colon tumorigenesis in two rodent models. Male F344 rats were randomized to receive diets without (control) or with acrylamide. 2-weeks later, rats in each group received two weekly subcutaneous injections of either azoxymethane (AOM) or saline, and were killed 20 weeks post-injections; colons were assessed for tumors. Male athymic nude (nu/nu) mice bearing HT-29 human colon adenocarcinoma cells-derived tumor xenografts received diets without (control) or with acrylamide; tumor growth was monitored and mice were killed 4 weeks later. In the F344 rat study, no tumors were found in the colons of the saline-injected rats. However, the colon tumor incidence was 54.2% and 66.7% in the control and the 2 mg/kg acrylamide-treated AOM-injected groups, respectively. While tumor multiplicity was similar across all diet groups, tumor size and burden were higher in the 2 mg/kg acrylamide group compared to the AOM control. These results suggest that acrylamide by itself is not a “complete carcinogen”, but acts as a “co-carcinogen” by exacerbating the effects of AOM. The nude mouse study indicated no differences in the growth of human colon tumor xenografts between acrylamide-treated and control mice, suggesting that acrylamide does not aid in the progression of established tumors. Hence, food-borne acrylamide at levels comparable to those found in human foods is neither an independent carcinogen nor a tumor promoter in the colon. However, our results characterize a potential hazard of acrylamide as a colon co-carcinogen in association with known and possibly other environmental tumor initiators/promoters. PMID:24040114

  12. Antitumor activity of ZD6126, a novel vascular-targeting agent, is enhanced when combined with ZD1839, an epidermal growth factor receptor tyrosine kinase inhibitor, and potentiates the effects of radiation in a human non-small cell lung cancer xenograft model.

    PubMed

    Raben, David; Bianco, Cataldo; Damiano, Vincenzo; Bianco, Roberto; Melisi, Davide; Mignogna, Chiara; D'Armiento, Francesco Paolo; Cionini, Luca; Bianco, A Raffaele; Tortora, Giampaolo; Ciardiello, Fortunato; Bunn, Paul

    2004-08-01

    Targeting the tumor vasculature may offer an alternative or complementary therapeutic approach to targeting growth factor signaling in lung cancer. The aim of these studies was to evaluate the antitumor effects in vivo of the combination of ZD6126, a tumor-selective vascular-targeting agent; ZD1839 (gefitinib, Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor; and ionizing radiation in the treatment of non-small cell lung cancer xenograft model. Athymic nude mice with established flank A549 human non-small cell lung cancer xenograft model xenografts were treated with fractionated radiation therapy, ZD6126, ZD1839, or combinations of each treatment. ZD6126 (150 mg/kg) was given i.p. the day after each course of radiation. Animals treated with ZD1839 received 100 mg/kg per dose per animal, 5 or 7 days/wk for 2 weeks. Immunohistochemistry was done to evaluate the effects on tumor growth using an anti-Ki67 monoclonal antibody. Effects on tumor-induced vascularization were quantified using an anti-factor VIII-related antigen monoclonal antibody. ZD6126 attenuated the growth of human A549 flank xenografts compared with untreated animals. Marked antitumor effects were observed when animals were treated with a combination of ZD6126 and fractionated radiation therapy with protracted tumor regression. ZD6126 + ZD1839 resulted in a greater tumor growth delay than either agent alone. Similar additive effects were seen with ZD1839 + fractionated radiation. Finally, the addition of ZD6126 to ZD1839 and radiation therapy seemed to further improve tumor growth control, with a significant tumor growth delay compared with animals treated with single agent or with double combinations. Immunohistochemistry showed that ZD1839 induced a marked reduction in A549 tumor cell proliferation. Both ZD1839 and ZD6126 treatment substantially reduced tumor-induced angiogenesis. ZD6126 caused marked vessel destruction through loss of endothelial cells and thrombosis

  13. Third-generation oncolytic herpes simplex virus inhibits the growth of liver tumors in mice.

    PubMed

    Nakatake, Richi; Kaibori, Masaki; Nakamura, Yusuke; Tanaka, Yoshito; Matushima, Hideyuki; Okumura, Tadayoshi; Murakami, Takashi; Ino, Yasushi; Todo, Tomoki; Kon, Masanori

    2018-03-01

    Multimodality therapies are used to manage patients with hepatocellular carcinoma (HCC), although advanced HCC is incurable. Oncolytic virus therapy is probably the next major breakthrough in cancer treatment. The third-generation oncolytic herpes simplex virus type 1 (HSV-1) T-01 kills tumor cells without damaging the surrounding normal tissues. Here we investigated the antitumor effects of T-01 on HCC and the host's immune response to HCC cells. The cytopathic activities of T-01 were tested in 14 human and 1 murine hepatoma cell line in vitro. In various mouse xenograft models, HuH-7, KYN-2, PLC/PRF/5 and HepG2 human cells and Hepa1-6 murine cells were used to investigate the in vivo efficacy of T-01. T-01 was cytotoxic to 13 cell lines (in vitro). In mouse xenograft models of subcutaneous, orthotopic and peritoneal tumor metastasis in athymic mice (BALB/c nu/nu), the growth of tumors formed by the human HCC cell lines and hepatoblastoma cell line was inhibited by T-01 compared with that of mock-inoculated tumors. In a bilateral Hepa1-6 subcutaneous tumor model in C57BL/6 mice, the growth of tumors inoculated with T-01 was inhibited, as was the case for contralateral tumors. T-01 also significantly reduced tumor growth. T-01 infection significantly enhanced antitumor efficacy via T cell-mediated immune responses. Results demonstrate that a third-generation oncolytic HSV-1 may serve as a novel treatment for patients with HCC. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  14. Relaxin receptor antagonist AT-001 synergizes with docetaxel in androgen-independent prostate xenografts.

    PubMed

    Neschadim, Anton; Pritzker, Laura B; Pritzker, Kenneth P H; Branch, Donald R; Summerlee, Alastair J S; Trachtenberg, John; Silvertown, Joshua D

    2014-06-01

    Androgen hormones and the androgen receptor (AR) pathway are the main targets of anti-hormonal therapies for prostate cancer. However, resistance inevitably develops to treatments aimed at the AR pathway resulting in androgen-independent or hormone-refractory prostate cancer (HRPC). Therefore, there is a significant unmet need for new, non-androgen anti-hormonal strategies for the management of prostate cancer. We demonstrate that a relaxin hormone receptor antagonist, AT-001, an analog of human H2 relaxin, represents a first-in-class anti-hormonal candidate treatment designed to significantly curtail the growth of androgen-independent human prostate tumor xenografts. Chemically synthesized AT-001, administered subcutaneously, suppressed PC3 xenograft growth by up to 60%. AT-001 also synergized with docetaxel, standard first-line chemotherapy for HRPC, to suppress tumor growth by more than 98% in PC3 xenografts via a mechanism involving the downregulation of hypoxia-inducible factor 1 alpha and the hypoxia-induced response. Our data support developing AT-001 for clinical use as an anti-relaxin hormonal therapy for advanced prostate cancer.

  15. U1 Adaptor Oligonucleotides Targeting BCL2 and GRM1 Suppress Growth of Human Melanoma Xenografts In Vivo

    PubMed Central

    Goraczniak, Rafal; Wall, Brian A; Behlke, Mark A; Lennox, Kim A; Ho, Eric S; Zaphiros, Nikolas H; Jakubowski, Christopher; Patel, Neil R; Zhao, Steven; Magaway, Carlo; Subbie, Stacey A; Jenny Yu, Lumeng; LaCava, Stephanie; Reuhl, Kenneth R; Chen, Suzie; Gunderson, Samuel I

    2013-01-01

    U1 Adaptor is a recently discovered oligonucleotide-based gene-silencing technology with a unique mechanism of action that targets nuclear pre-mRNA processing. U1 Adaptors have two distinct functional domains, both of which must be present on the same oligonucleotide to exert their gene-silencing function. Here, we present the first in vivo use of U1 Adaptors by targeting two different human genes implicated in melanomagenesis, B-cell lymphoma 2 (BCL2) and metabotropic glutamate receptor 1 (GRM1), in a human melanoma cell xenograft mouse model system. Using a newly developed dendrimer delivery system, anti-BCL2 U1 Adaptors were very potent and suppressed tumor growth at doses as low as 34 µg/kg with twice weekly intravenous (iv) administration. Anti-GRM1 U1 Adaptors suppressed tumor xenograft growth with similar potency. Mechanism of action was demonstrated by showing target gene suppression in tumors and by observing that negative control U1 Adaptors with just one functional domain show no tumor suppression activity. The anti-BCL2 and anti-GRM1 treatments were equally effective against cell lines harboring either wild-type or a mutant V600E B-RAF allele, the most common mutation in melanoma. Treatment of normal immune-competent mice (C57BL6) indicated no organ toxicity or immune stimulation. These proof-of-concept studies represent an in-depth (over 800 mice in ~108 treatment groups) validation that U1 Adaptors are a highly potent gene-silencing therapeutic and open the way for their further development to treat other human diseases. PMID:23673539

  16. [Expression of Jagged1 mRNA in human epithelial ovarian carcinoma tissues and effect of RNA interference of Jagged1 on growth of xenograft in nude mice].

    PubMed

    Liu, G Y; Gao, Z H; Li, L; Song, T T; Sheng, X G

    2016-06-25

    To investigate the expression of Jagged1 in human epithelial ovarian carcinoma tissues and the effect of Jagged1 on growth of xenograft in nude mice. (1) Forty-eight cases of ovarian cancer and 30 cases of patients with benign epithelial ovarian tumor in the Henan Province Xinxiang Central Hospital during Feb. 2011 to Mar. 2014 were enrolled in this study. The mRNA expression of Jagged1, Notch1 and the downstream target genes Hes1, Hey1 were analyzed by using realtime PCR method. (2) The ovarian cancer xenograft models in nude mice were constructed by injecting SKOV3 cells in axillary subcutaneouswere. The nude mice were randomly divided into Jagged1 interference group, blank plasmid group and control group. Each group had 10 mice. They were transfected with pcDNA3.1(+)-siRNA-Jagged1, blank plasmid pDC3.1 and phosphate buffer, respectively. The tumor volumes and tumor masses were measured 14 days after transfection and the inhibition rate was calculated. The relative mRNA expression of Jagged1, Notch1, Hes1 and Hey1 in xenograft tissues after transfection in each group was detected by using realtime PCR technique and the relative protein expression of Jagged1, Notch1, Hes1 and Hey1 in xenograft tissues was detected by utilizing western blot method. (1) The relative mRNA expression of Jagged1, Notch1, Hes1 and Hey1 in ovarian cancer tissues were higher than benign ovarian tumor tissues, the differences were statistically significant (P<0.01). (2) The tumor volume was (491± 68) mm(3) and tumor mass was (2.6±0.4) g in Jagged1 interference group, which were significantly lower than that in the blank plasmid group [(842±88) mm(3) and (4.4±0.8) g, respectively] and that in the control group [(851±90) mm(3) and (4.5±0.9) g, respectively; P<0.05], the tumor inhibition rate was 42.2% in Jagged1 interference group, which was significantly higher than that in the blank plasmid group and that in the control group (2.2% and 0, respectively), the differences were

  17. Therapeutic effects of autologous lymphocytes activated with trastuzumab for xenograft mouse models of human breast cancer.

    PubMed

    Nakagawa, Shinichiro; Matsuoka, Yusuke; Ichihara, Hideaki; Yoshida, Hitoji; Yoshida, Kenshi; Ueoka, Ryuichi

    2013-01-01

    Trastuzumab (TTZ) is molecular targeted drug used for metastatic breast cancer patients overexpressing human epidermal growth factor receptor 2 (HER2). Therapeutic effects of lymphocytes activated with TTZ (TTZ-LAK) using xenograft mouse models of human breast cancer (MDA-MB-453) cells were examined in vivo. Remarkable reduction of tumor volume in a xenograft mouse models intravenously treated with TTZ-LAK cells after the subcutaneously inoculated of MDA-MB-453 cells was verified in vivo. The migration of TTZ-LAK cells in tumor of mouse models subcutaneously inoculated MDA-MB-453 cells was observed on the basis of histological analysis using immunostaining with CD-3. Induction of apoptosis in tumor of xenograft mice treated with TTZ-LAK cells was observed in micrographs using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) method. It was noteworthy that the therapeutic effects of TTZ-LAK cells along with apoptosis were obtained for xenograft mouse models of human breast tumor in vivo.

  18. Radiosensitizing Pancreatic Cancer Xenografts by an Implantable Micro-Oxygen Generator.

    PubMed

    Cao, Ning; Song, Seung Hyun; Maleki, Teimour; Shaffer, Michael; Stantz, Keith M; Cao, Minsong; Kao, Chinghai; Mendonca, Marc S; Ziaie, Babak; Ko, Song-Chu

    2016-04-01

    Over the past decades, little progress has been made to improve the extremely low survival rates in pancreatic cancer patients. Extreme hypoxia observed in pancreatic tumors contributes to the aggressive and metastatic characteristics of this tumor and can reduce the effectiveness of conventional radiation therapy and chemotherapy. In an attempt to reduce hypoxia-induced obstacles to effective radiation treatment, we used a novel device, the implantable micro-oxygen generator (IMOG), for in situ tumor oxygenation. After subcutaneous implantation of human pancreatic xenograft tumors in athymic rats, the IMOG was wirelessly powered by ultrasonic waves, producing 30 μA of direct current (at 2.5 V), which was then utilized to electrolyze water and produce oxygen within the tumor. Significant oxygen production by the IMOG was observed and corroborated using the NeoFox oxygen sensor dynamically. To test the radiosensitization effect of the newly generated oxygen, the human pancreatic xenograft tumors were subcutaneously implanted in nude mice with either a functional or inactivated IMOG device. The tumors in the mice were then exposed to ultrasonic power for 10 min, followed by a single fraction of 5 Gy radiation, and tumor growth was monitored thereafter. The 5 Gy irradiated tumors containing the functional IMOG exhibited tumor growth inhibition equivalent to that of 7 Gy irradiated tumors that did not contain an IMOG. Our study confirmed that an activated IMOG is able to produce sufficient oxygen to radiosensitize pancreatic tumors, enhancing response to single-dose radiation therapy.

  19. Anti-tumor effects of ONC201 in combination with VEGF-inhibitors significantly impacts colorectal cancer growth and survival in vivo through complementary non-overlapping mechanisms.

    PubMed

    Wagner, Jessica; Kline, C Leah; Zhou, Lanlan; Khazak, Vladimir; El-Deiry, Wafik S

    2018-01-22

    Small molecule ONC201 is an investigational anti-tumor agent that upregulates intra-tumoral TRAIL expression and the integrated stress response pathway. A Phase I clinical trial using ONC201 therapy in advanced cancer patients has been completed and the drug has progressed into Phase II trials in several cancer types. Colorectal cancer (CRC) remains one of the leading causes of cancer worldwide and metastatic disease has a poor prognosis. Clinical trials in CRC and other tumor types have demonstrated that therapeutics targeting the vascular endothelial growth factor (VEGF) pathway, such as bevacizumab, are effective in combination with certain chemotherapeutic agents. We investigated the potential combination of VEGF inhibitors such as bevacizumab and its murine-counterpart; along with other anti-angiogenic agents and ONC201 in both CRC xenograft and patient-derived xenograft (PDX) models. We utilized non-invasive imaging and immunohistochemistry to determine potential mechanisms of action. Our results demonstrate significant tumor regression or complete tumor ablation in human xenografts with the combination of ONC201 with bevacizumab, and in syngeneic MC38 colorectal cancer xenografts using a murine VEGF-A inhibitor. Imaging demonstrated the impact of this combination on decreasing tumor growth and tumor metastasis. Our results indicate that ONC201 and anti-angiogenic agents act through distinct mechanisms while increasing tumor cell death and inhibiting proliferation. With the use of both a murine VEGF inhibitor in syngeneic models, and bevacizumab in human cell line-derived xenografts, we demonstrate that ONC201 in combination with anti-angiogenic therapies such as bevacizumab represents a promising approach for further testing in the clinic for the treatment of CRC.

  20. DHEA increases epithelial markers and decreases mesenchymal proteins in breast cancer cells and reduces xenograft growth.

    PubMed

    Colín-Val, Zaira; González-Puertos, Viridiana Yazmín; Mendoza-Milla, Criselda; Gómez, Erika Olivia; Huesca-Gómez, Claudia; López-Marure, Rebeca

    2017-10-15

    Breast cancer is one of the most common neoplasias and the leading cause of cancer death in women worldwide. Its high mortality rate is linked to a great metastatic capacity associated with the epithelial-mesenchymal transition (EMT). During this process, a decrease in epithelial proteins expression and an increase of mesenchymal proteins are observed. On the other hand, it has been shown that dehydroepiandrosterone (DHEA), the most abundant steroid in human plasma, inhibits migration of breast cancer cells; however, the underlying mechanisms have not been elucidated. In this study, the in vitro effect of DHEA on the expression pattern of some EMT-related proteins, such as E-cadherin (epithelial), N-cadherin, vimentin and Snail (mesenchymal) was measured by Western blot and immunofluorescence in MDA-MB-231 breast cancer cells with invasive, metastatic and mesenchymal phenotype. Also, the in vivo effect of DHEA on xenograft tumor growth in nude mice (nu - /nu - ) and on expression of the same epithelial and mesenchymal proteins in generated tumors was evaluated. We found that DHEA increased expression of E-cadherin and decreased N-cadherin, vimentin and Snail expression both in MD-MB-231 cells and in the formed tumors, possibly by DHEA-induced reversion of mesenchymal phenotype. These results were correlated with a tumor size reduction in mouse xenografts following DHEA administration either a week earlier or concurrent with breast cancer cells inoculation. In conclusion, DHEA could be useful in the treatment of breast cancer with mesenchymal phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Evaluation of Cytarabine Against Ewing Sarcoma Xenografts by the Pediatric Preclinical Testing Program

    PubMed Central

    Houghton, Peter J.; Morton, Christopher L.; Kang, Min; Reynolds, C. Patrick; Billups, Catherine A.; Favours, Edward; Payne-Turner, Debbie; Tucker, Chandra; Smith, Malcolm A.

    2015-01-01

    Treatment with the nucleoside analog cytarabine has been shown to mimic changes in gene expression associated with down-regulation of the EWS-FLI1 oncogene in Ewing sarcoma cell lines, selectively inhibit their growth in vitro, and cause tumor regression in athymic nude mice. For this report cytarabine was studied in vitro against a panel of 23 pediatric cancer cell lines and in vivo against 6 Ewing sarcoma xenografts. Acute lymphoblastic leukemia cell lines were the most sensitive to cytarabine in vitro (median IC50 9 nM), while Ewing sarcoma cell lines showed intermediate sensitivity (median IC50 232 nM). Cytarabine at a dose of 150 mg/kg administered daily 5× failed to significantly inhibit growth of five xenograft models, but reduced growth rate of the A673 xenograft by 50%. Cytarabine shows no differential in vitro activity against Ewing sarcoma cell lines and is ineffective in vivo against Ewing sarcoma xenografts at the dose and schedule studied. PMID:20979180

  2. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice

    PubMed Central

    Chen, Baoan; Cheng, Jian; Wu, Yanan; Gao, Feng; Xu, Wenlin; Shen, Huilin; Ding, Jiahua; Gao, Chong; Sun, Qian; Sun, Xinchen; Cheng, Hongyan; Li, Guohong; Chen, Wenji; Chen, Ningna; Liu, Lijie; Li, Xiaomao; Wang, Xuemei

    2009-01-01

    In this paper we establish the xenograft leukemia model with stable multidrug resistance in nude mice and to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe3O4 (MNP-Fe3O4) combined with daunorubicin (DNR) in vivo. Two subclones of K562 and K562/A02 cells were inoculated subcutaneously into the back of athymic nude mice (1 × 107 cells/each) respectively to establish leukemia xenograft models. Drug-resistant and sensitive tumor-bearing nude mice were assigned randomly into five groups which were treated with normal saline; DNR; NP-Fe3O4 combined with DNR; 5-BrTet combined with DNR; 5-BrTet and MNP-Fe3O4 combined with DNR, respectively. The incidence of formation, growth characteristics, weight, and volume of tumors were observed. The histopathologic examination of tumors and organs were detected. For resistant tumors, the protein levels of Bcl-2, and BAX were detected by Western blot. Bcl-2, BAX, and caspase-3 genes were also detected. For K562/A02 cells xenograft tumors, 5-BrTet and MNP-Fe3O4 combined with DNR significantly suppressed growth of tumor. A histopathologic examination of tumors clearly showed necrosis of the tumors. Application of 5-BrTet and MNP-Fe3O4 inhibited the expression of Bcl-2 protein and upregulated the expression of BAX and caspase-3 proteins in K562/A02 cells xenograft tumor. It is concluded that 5-BrTet and MNP-Fe3O4 combined with DNR had a significant tumor-suppressing effect on a MDR leukemia cells xenograft model. PMID:19421372

  3. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice.

    PubMed

    Chen, Baoan; Cheng, Jian; Wu, Yanan; Gao, Feng; Xu, Wenlin; Shen, Huilin; Ding, Jiahua; Gao, Chong; Sun, Qian; Sun, Xinchen; Cheng, Hongyan; Li, Guohong; Chen, Wenji; Chen, Ningna; Liu, Lijie; Li, Xiaomao; Wang, Xuemei

    2009-01-01

    In this paper we establish the xenograft leukemia model with stable multidrug resistance in nude mice and to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe(3)O(4) (MNP-Fe(3)O(4)) combined with daunorubicin (DNR) in vivo. Two subclones of K562 and K562/A02 cells were inoculated subcutaneously into the back of athymic nude mice (1 x 10(7) cells/each) respectively to establish leukemia xenograft models. Drug-resistant and sensitive tumor-bearing nude mice were assigned randomly into five groups which were treated with normal saline; DNR; NP-Fe(3)O(4) combined with DNR; 5-BrTet combined with DNR; 5-BrTet and MNP-Fe(3)O(4) combined with DNR, respectively. The incidence of formation, growth characteristics, weight, and volume of tumors were observed. The histopathologic examination of tumors and organs were detected. For resistant tumors, the protein levels of Bcl-2, and BAX were detected by Western blot. Bcl-2, BAX, and caspase-3 genes were also detected. For K562/A02 cells xenograft tumors, 5-BrTet and MNP-Fe(3)O(4) combined with DNR significantly suppressed growth of tumor. A histopathologic examination of tumors clearly showed necrosis of the tumors. Application of 5-BrTet and MNP-Fe(3)O(4) inhibited the expression of Bcl-2 protein and upregulated the expression of BAX and caspase-3 proteins in K562/A02 cells xenograft tumor. It is concluded that 5-BrTet and MNP-Fe(3)O(4) combined with DNR had a significant tumor-suppressing effect on a MDR leukemia cells xenograft model.

  4. SKI knockdown inhibits human melanoma tumor growth in vivo.

    PubMed

    Chen, Dahu; Lin, Qiushi; Box, Neil; Roop, Dennis; Ishii, Shunsuke; Matsuzaki, Koichi; Fan, Tao; Hornyak, Thomas J; Reed, Jon A; Stavnezer, Ed; Timchenko, Nikolai A; Medrano, Estela E

    2009-12-01

    The SKI protein represses the TGF-beta tumor suppressor pathway by associating with the Smad transcription factors. SKI is upregulated in human malignant melanoma tumors in a disease-progression manner and its overexpression promotes proliferation and migration of melanoma cells in vitro. The mechanisms by which SKI antagonizes TGF-beta signaling in vivo have not been fully elucidated. Here we show that human melanoma cells in which endogenous SKI expression was knocked down by RNAi produced minimal orthotopic tumor xenograft nodules that displayed low mitotic rate and prominent apoptosis. These minute tumors exhibited critical signatures of active TGF-beta signaling including high levels of nuclear Smad3 and p21(Waf-1), which are not found in the parental melanomas. To understand how SKI promotes tumor growth we used gain- and loss-of-function approaches and found that simultaneously to blocking the TGF-beta-growth inhibitory pathway, SKI promotes the switch of Smad3 from tumor suppression to oncogenesis by favoring phosphorylations of the Smad3 linker region in melanoma cells but not in normal human melanocytes. In this context, SKI is required for preventing TGF-beta-mediated downregulation of the oncogenic protein c-MYC, and for inducing the plasminogen activator inhibitor-1, a mediator of tumor growth and angiogenesis. Together, the results indicate that SKI exploits multiple regulatory levels of the TGF-beta pathway and its deficiency restores TGF-beta tumor suppressor and apoptotic activities in spite of the likely presence of oncogenic mutations in melanoma tumors.

  5. A ketogenic diet supplemented with medium-chain triglycerides enhances the anti-tumor and anti-angiogenic efficacy of chemotherapy on neuroblastoma xenografts in a CD1-nu mouse model.

    PubMed

    Aminzadeh-Gohari, Sepideh; Feichtinger, René Günther; Vidali, Silvia; Locker, Felix; Rutherford, Tricia; O'Donnel, Maura; Stöger-Kleiber, Andrea; Mayr, Johannes Adalbert; Sperl, Wolfgang; Kofler, Barbara

    2017-09-12

    Neuroblastoma (NB) is a pediatric malignancy characterized by a marked reduction in aerobic energy metabolism. Recent preclinical data indicate that targeting this metabolic phenotype by a ketogenic diet (KD), especially in combination with calorie restriction, slows tumor growth and enhances metronomic cyclophosphamide (CP) therapy of NB xenografts. Because calorie restriction would be contraindicated in most cancer patients, the aim of the present study was to optimize the KD such that the tumors are sensitized to CP without the need of calorie restriction. In a NB xenograft model, metronomic CP was combined with KDs of different triglyceride compositions and fed to CD1-nu mice ad libitum . Metronomic CP in combination with a KD containing 8-carbon medium-chain triglycerides exerted a robust anti-tumor effect, suppressing growth and causing a significant reduction of tumor blood-vessel density and intratumoral hemorrhage, accompanied by activation of AMP-activated protein kinase in NB cells. Furthermore, the KDs caused a significant reduction in the serum levels of essential amino acids, but increased those of serine, glutamine and glycine. Our data suggest that targeting energy metabolism by a modified KD may be considered as part of a multimodal treatment regimen to improve the efficacy of classic anti-NB therapy.

  6. [Effects of baicalin on HL-60 cell xenografts in nude mice and its mechanism].

    PubMed

    Zheng, Jing; Hu, Jian-Da; Huang, Yi; Chen, Ying-Yu; Li, Jing; Chen, Bu-Yuan

    2012-10-01

    This study was aimed to investigate the effects of baicalin on HL-60 cell xenografts in nude mice in vivo and explore its mechanism. Xenograft tumor model of HL-60 cells in nude mice was established, which was divided randomly into 6 groups: negative control group (injection of 5% NaHCO(3)), 25, 50 and 100 mg/kg baicalin groups, combination group (50 mg/kg baicalin + 2 mg/kg VP16) and positive control group (VP16 4 mg/kg). The nude mice with HL-60 cell xenografts were treated with drugs via intraperitoneal injection daily. After treatment for 14 days average weigh and inhibitory rate of transplanted tumor stripped from 5 nude mice in each group were calculated, and the ultrastructure change of xenografts cells were tested by transmission electron microscopy. Histopathologic examination was used to observed the change of main organs in nude mice. The expression of signaling molecular PI3K/Akt proteins extracted from xenografts was detected by Western blot. The effects of baicalin on overall survival time in nude mice with HL-60 cell xenografts were evaluated. The results showed that baicalin could inhibit the growth of transplanted tumors in dose-dependent manner. There were more necrotic and apoptotic cells in mice of baicalin-treated groups and combination group than that in mice of negative control group. Baicalin could inhibit the proliferation of HL-60 cells in vivo by down-regulating the PI3K/Akt/mTOR signal pathway, where the expressions of p-Akt, mTOR and p-mTOR proteins decreased compared with negative control group, and no significant difference of Akt expression was found between different groups. Compared with negative control group, the median survival time of mice in combination group was more prolongated (P < 0.05). It is concluded that baicalin can inhibit growth and induce apoptosis of HL-60 cell xenografts in nude mice, and prolong median survival time of nude mice. The possible mechanisms may be related to inhibition of Akt activity and down

  7. Crosstalk between stromal components and tumor cells of TNBC via secreted factors enhances tumor growth and metastasis

    PubMed Central

    Jin, Kideok; Pandey, Niranjan B.; Popel, Aleksander S.

    2017-01-01

    Triple negative breast cancer (TNBC) as a metastatic disease is currently incurable. Reliable and reproducible methods for testing drugs against metastasis are not available. Stromal cells may play a critical role in tumor progression and metastasis. In this study, we determined that fibroblasts and macrophages secreted IL-8 upon induction by tumor cell-conditioned media (TCM) from MDA-MB-231 cancer cells. Our data showed that the proliferation of MDA-MB-231 cells co-cultured with fibroblasts or macrophages was enhanced compared to the monoculture. Furthermore, TNBC cell migration, a key step in tumor metastasis, was promoted by conditioned media (CM) from TCM-induced fibroblasts or macrophages. Knockdown of the IL-8 receptor CXCR2 by CRISPR-Cas9 reduces MDA-MB-231 cell proliferation and migration compared to wild type. In a mouse xenograft tumor model, the growth of MDA-MB-231-CXCR2−/− tumor was significantly decreased compared to the growth of tumors from wild-type cells. In addition, the incidence of thoracic metastasis of MDA-MB-231-CXCR2−/− tumors was reduced compared to wild type. We found that the auto- and paracrine loop exists between TNBC cells and stroma, which results in enhanced IL-8 secretion from the stromal components. Significantly, inhibition of the IL-8 signaling pathway by reparixin, an inhibitor of the IL-8 receptor, CXCR1/2, reduced MDA-MB-231 tumor growth and metastasis. Taken together, these findings implicate IL-8 signaling as a critical event in TNBC tumor growth and metastasis via crosstalk with stromal components. PMID:28947965

  8. [5-aza-2'-deoxycytidine-induced inhibition of CDH13 expression and its inhibitory effect on methylation status in human colon cancer cells in vitro and on growth of xenograft in nude mice].

    PubMed

    Ren, Jian-zhen; Huo, Ji-rong

    2012-01-01

    To determine the inhibitory effect of 5-aza-2'-deoxycytidine (5-Aza-CdR) on the growth of human colon carcinoma cells and xenografts in nude mice, to observe its effect on CDH13 gene expression and methylation in the xenografts, and to explore the possible mechanisms. Human colon carcinoma cell line HCT116 cells were treated with 5-Aza-CdR, and the cell morphology was observe by phase contrast microscopy. The cell growth was assessed by MTT assay. A tumor-bearing mouse model was generated by subcutaneous inoculation of human colon carcinoma HCT116 cells into nude mice. The tumor growth in the nude mice was observed, the CDH13 gene expression and its methylation status in the tumors were detected using methylation specific PCR (MSP), RT-PCR, Western blotting and immunohistochemistry. After treatment with 5-Aza-CdR, the inhibition rate of the growth of cultured HCT116 cells was increased as the concentration was increasing. The growth of the xenografts in nude mice was significantly inhibited, and the methylated CDH13 gene was reactivated. After 4 weeks of 5-Aza-CdR treatment, no significant difference was found between the body weights of nude mice in the 5-Aza-CdR group [(18.06 ± 1.29) g] and control group [(17.07 ± 0.84) g], (P > 0.10), and the average volume of xenografts of the 5-Aza-CdR group was (907.00 ± 87.29) mm(3), significantly smaller than the (1370.93 ± 130.20) mm(3) in the control group (P < 0.005). No expression of CDH13 gene was found in the control group. The expression of CDH13 gene in the 5-Aza-CdR group was increased along with the increasing concentration of 5-Aza-CdR. 5-Aza-CdR inhibits the growth of human colon cancer cells in culture and in nude mice, and induces the cancer cells to re-express CDH13 in nude mice. Its mechanism may be that demethylation of the methylated CDH13 promoter induced by 5-Aza-CdR restores CDH13 expression and thus inhibits the tumor growth in nude mice.

  9. Evaluation of 6-([18F] fluoroacetamido)-1-hexanoic-anilide (18F-FAHA) as imaging probe in tumor xenograft mice model

    NASA Astrophysics Data System (ADS)

    Li, Fiona; Cho, Sung Ju; Yu, Lihai; Hudson, Robert H. E.; Luyt, Leonard G.; Pin, Christopher L.; Kovacs, Michael S.; Koropatnick, James; Lee, Ting-Yim

    2016-03-01

    Alteration in genetic expression is as important as gene mutation in cancer development and proliferation. Epigenetic changes affect gene expression without altering the DNA sequence. Histone deacetylase (HDAC), an enzyme facilitating histone remodelling, can lead to silencing of tumor suppressor genes making HDAC inhibitors viable anticancer drugs against tumors with increased activity of the enzyme. In this study we evaluated 18F-fluroacetamido-1-hexanoicanilide (18F-FAHA), an artificial HDAC substrate, as imaging probe of HDAC activity of human tumor xenografts in immunocompromised host mice. Human breast and melanoma cell lines, MDA-MB-468 and MDA-MB-435 respectively, known to overexpress HDAC activity were xenografted into immunocompromised mice and HDAC activity was imaged using 18F-FAHA. The melanoma group was treated with saline, SAHA (suberoylanilide hydroxamic acid, an approved anticancer HDAC inhibitor) in DMSO, or DMSO as positive control. Tracer kinetic modelling and SUV were used to estimate HDAC activity from dynamic PET data. Both breast tumor and melanoma group showed great variability in binding rate constant (BRC) of 18F-FAHA suggesting highly variable inter- and intra-tumoral HDAC activity. For the SAHA treated melanoma group, HDAC activity, as monitored by BRC of 18F-FAHA, decreased more than the two (positive and negative) control groups but not tumor growth. Our preliminary study showed that noninvasive PET imaging with 18F-FAHA has the potential to identify patients for whom treatment with HDAC inhibitors are appropriate, to assess the effectiveness of that treatment as an early marker of target reduction, and also eliminate the need for invasive tissue biopsy to individualize treatment.

  10. In vivo fluorescence imaging of hepatocellular carcinoma xenograft using near-infrared labeled epidermal growth factor receptor (EGFR) peptide

    PubMed Central

    Li, Z.; Zhou, Q.; Zhou, J.; Duan, X.; Zhu, J.; Wang, T. D.

    2016-01-01

    Minimally-invasive surgery of hepatocellular carcinoma (HCC) can be limited by poor tumor visualization with white light. We demonstrate systemic administration of a Cy5.5-labeled peptide specific for epidermal growth factor receptor (EGFR) to target HCC in vivo in a mouse xenograft model. We attached a compact imaging module to the proximal end of a medical laparoscope to collect near-infrared fluorescence and reflectance images concurrently at 15 frames/sec. We measured a mean target-to-background ratio of 2.99 ± 0.22 from 13 surgically exposed subcutaneous human HCC tumors in vivo in 5 mice. This integrated imaging methodology is promising to guide laparoscopic resection of HCC. PMID:27699089

  11. Targeted inhibition of EG-1 blocks breast tumor growth.

    PubMed

    Lu, Ming; Sartippour, Maryam R; Zhang, Liping; Norris, Andrew J; Brooks, Mai N

    2007-06-01

    EG-1 is a gene product that is significantly elevated in human breast cancer tissues. Previously, we have shown that EG-1 overexpression stimulates cellular proliferation both in vitro and in vivo. Here, we ask whether this molecule can be targeted for experimental therapeutic purpose. siRNA lentivirus and polyclonal antibodies were designed to suppress EG-1 expression. These agents were then used in cell culture proliferation assays and breast tumor xenograft models. Serum and urine from breast cancer patients were also analyzed for the presence of EG-1 peptide. We report here for the first time that endogenous EG-1 can be targeted to inhibit breast tumor growth. This inhibition, whether delivered via siRNA lentivirus or polyclonal antibody, resulted in decreased cellular proliferation in culture and smaller xenografts in mice. The effects were shown in both ER (estrogen receptor)-positive human breast cancer MCF-7 cells, as well as in ER-negative MDA-MB-231 cells. Furthermore, we detected soluble EG-1 in serum and urine of breast cancer patients. These observations demonstrate that EG-1 is relevant to human breast cancer, and is a molecular target worthy of translational efforts into effective breast cancer therapy.

  12. Fluence plays a critical role on the subsequent distribution of chemotherapy and tumor growth delay in murine mesothelioma xenografts pre-treated by photodynamic therapy.

    PubMed

    Wang, Yabo; Wang, Xingyu; Le Bitoux, Marie-Aude; Wagnieres, Georges; Vandenbergh, Hubert; Gonzalez, Michel; Ris, Hans-Beat; Perentes, Jean Y; Krueger, Thorsten

    2015-04-01

    The pre-conditioning of tumor vessels by low-dose photodynamic therapy (L-PDT) was shown to enhance the distribution of chemotherapy in different tumor types. However, how light dose affects drug distribution and tumor response is unknown. Here we determined the effect of L-PDT fluence on vascular transport in human mesothelioma xenografts. The best L-PDT conditions regarding drug transport were then combined with Lipoplatin(®) to determine tumor response. Nude mice bearing dorsal skinfold chambers were implanted with H-Meso1 cells. Tumors were treated by Visudyne(®) -mediated photodynamic therapy with 100 mW/cm(2) fluence rate and a variable fluence (5, 10, 30, and 50 J/cm(2) ). FITC-Dextran (FITC-D) distribution was assessed in real time in tumor and normal tissues. Tumor response was then determined with best L-PDT conditions combined to Lipoplatin(®) and compared to controls in luciferase expressing H-Meso1 tumors by size and whole body bioluminescence assessment (n = 7/group). Tumor uptake of FITC-D following L-PDT was significantly enhanced by 10-fold in the 10 J/cm(2) but not in the 5, 30, and 50 J/cm(2) groups compared to controls. Normal surrounding tissue uptake of FITC-D following L-PDT was significantly enhanced in the 30 J/cm(2) and 50 J/cm(2) groups compared to controls. Altogether, the FITC-D tumor to normal tissue ratio was significantly higher in the 10 J/cm(2) group compared others. Tumor growth was significantly delayed in animals treated by 10 J/cm2-L-PDT combined to Lipoplatin(®) compared to controls. Fluence of L-PDT is critical for the optimal distribution and effect of subsequently administered chemotherapy. These findings have an importance for the clinical translation of the vascular L-PDT concept in the clinics. © 2015 Wiley Periodicals, Inc.

  13. CD200-expressing human basal cell carcinoma cells initiate tumor growth.

    PubMed

    Colmont, Chantal S; Benketah, Antisar; Reed, Simon H; Hawk, Nga V; Telford, William G; Ohyama, Manabu; Udey, Mark C; Yee, Carole L; Vogel, Jonathan C; Patel, Girish K

    2013-01-22

    Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.

  14. A predictive pharmacokinetic-pharmacodynamic model of tumor growth kinetics in xenograft mice after administration of anticancer agents given in combination.

    PubMed

    Terranova, Nadia; Germani, Massimiliano; Del Bene, Francesca; Magni, Paolo

    2013-08-01

    In clinical oncology, combination treatments are widely used and increasingly preferred over single drug administrations. A better characterization of the interaction between drug effects and the selection of synergistic combinations represent an open challenge in drug development process. To this aim, preclinical studies are routinely performed, even if they are only qualitatively analyzed due to the lack of generally applicable mathematical models. This paper presents a new pharmacokinetic-pharmacodynamic model that, starting from the well-known single agent Simeoni TGI model, is able to describe tumor growth in xenograft mice after the co-administration of two anticancer agents. Due to the drug action, tumor cells are divided in two groups: damaged and not damaged ones. The damaging rate has two terms proportional to drug concentrations (as in the single drug administration model) and one interaction term proportional to their product. Six of the eight pharmacodynamic parameters assume the same value as in the corresponding single drug models. Only one parameter summarizes the interaction, and it can be used to compute two important indexes that are a clear way to score the synergistic/antagonistic interaction among drug effects. The model was successfully applied to four new compounds co-administered with four drugs already available on the market for the treatment of three different tumor cell lines. It also provided reliable predictions of different combination regimens in which the same drugs were administered at different doses/schedules. A good and quantitative measurement of the intensity and nature of interaction between drug effects, as well as the capability to correctly predict new combination arms, suggest the use of this generally applicable model for supporting the experiment optimal design and the prioritization of different therapies.

  15. Cyclin-dependent kinase inhibitor Dinaciclib (SCH727965) inhibits pancreatic cancer growth and progression in murine xenograft models

    PubMed Central

    Bisht, Savita; Karikari, Collins; Garrido-Laguna, Ignacio; Rasheed, Zeshaan; Ottenhof, Niki A; Dadon, Tikva; Alvarez, Hector; Fendrich, Volker; Rajeshkumar, NV; Matsui, William; Brossart, Peter; Hidalgo, Manuel; Bannerji, Rajat

    2011-01-01

    Pancreatic cancer is one of the most lethal of human malignancies, and potent therapeutic options are lacking. Inhibition of cell cycle progression through pharmacological blockade of cyclin-dependent kinases (CDK) has been suggested as a potential treatment option for human cancers with deregulated cell cycle control. Dinaciclib (SCH727965) is a novel small molecule multi-CDK inhibitor with low nanomolar potency against CDK1, CDK2, CDK5 and CDK9 that has shown favorable toxicity and efficacy in preliminary mouse experiments, and has been well tolerated in Phase I clinical trials. In the current study, the therapeutic efficacy of SCH727965 on human pancreatic cancer cells was tested using in vitro and in vivo model systems. Treatment with SCH727965 significantly reduced in vitro cell growth, motility and colony formation in soft agar of MIAPaCa-2 and Pa20C cells. These phenotypic changes were accompanied by marked reduction of phosphorylation of Retinoblastoma (Rb) and reduced activation of RalA. Single agent therapy with SCH727965 (40 mg/kg i.p. twice weekly) for 4 weeks significantly reduced subcutaneous tumor growth in 10/10 (100%) of tested low-passage human pancreatic cancer xenografts. Treatment of low passage pancreatic cancer xenografts with a combination of SCH727965 and gemcitabine was significantly more effective than either agent alone. Gene Set Enrichment Analysis identified overrepresentation of the Notch and Transforming Growth Factor-β (TGFβ) signaling pathways in the xenografts least responsive to SCH727965 treatment. Treatment with the cyclin-dependent kinase inhibitor SCH727965 alone or in combination is a highly promising novel experimental therapeutic strategy against pancreatic cancer. PMID:21768779

  16. Synthesis and Evaluation of the Tumor Cell Growth Inhibitory Potential of New Putative HSP90 Inhibitors.

    PubMed

    Bizarro, Ana; Sousa, Diana; Lima, Raquel T; Musso, Loana; Cincinelli, Raffaella; Zuco, Vantina; De Cesare, Michelandrea; Dallavalle, Sabrina; Vasconcelos, M Helena

    2018-02-13

    Heat shock protein 90 (HSP90) is a well-known target for cancer therapy. In a previous work, some of us have reported a series of 3-aryl-naphtho[2,3- d ]isoxazole-4,9-diones as inhibitors of HSP90. In the present work, various compounds with new chromenopyridinone and thiochromenopyridinone scaffolds were synthesized as potential HSP90 inhibitors. Their binding affinity to HSP90 was studied in vitro. Selected compounds ( 5 and 8 ) were further studied in various tumor cell lines regarding their potential to cause cell growth inhibition, alter the cell cycle profile, inhibit proliferation, and induce apoptosis. Their effect on HSP90 client protein levels was also confirmed in two cell lines. Finally, the antitumor activity of compound 8 was studied in A431 squamous cell carcinoma xenografts in nude mice. Our results indicated that treatment with compounds 5 and 8 decreased the proliferation of tumor cell lines and compound 8 induced apoptosis. In addition, these two compounds were able to downregulate selected proteins known as "clients" of HSP90. Finally, treatment of xenografted mice with compound 5 resulted in a considerable dose-dependent inhibition of tumor growth. Our results show that two new compounds with a chromenopyridinone and thiochromenopyridinone scaffold are promising putative HSP90 inhibitors causing tumor cell growth inhibition.

  17. Rosemary (Rosmarinus officinalis) extract modulates CHOP/GADD153 to promote androgen receptor degradation and decreases xenograft tumor growth.

    PubMed

    Petiwala, Sakina M; Berhe, Saba; Li, Gongbo; Puthenveetil, Angela G; Rahman, Ozair; Nonn, Larisa; Johnson, Jeremy J

    2014-01-01

    The Mediterranean diet has long been attributed to preventing or delaying the onset of cardiovascular disease, diabetes and various solid organ cancers. In this particular study, a rosemary extract standardized to carnosic acid was evaluated for its potential in disrupting the endoplasmic reticulum machinery to decrease the viability of prostate cancer cells and promote degradation of the androgen receptor. Two human prostate cancer cell lines, 22Rv1 and LNCaP, and prostate epithelial cells procured from two different patients undergoing radical prostatectomy were treated with standardized rosemary extract and evaluated by flow cytometry, MTT, BrdU, Western blot and fluorescent microscopy. A significant modulation of endoplasmic reticulum stress proteins was observed in cancer cells while normal prostate epithelial cells did not undergo endoplasmic reticulum stress. This biphasic response suggests that standardized rosemary extract may preferentially target cancer cells as opposed to "normal" cells. Furthermore, we observed standardized rosemary extract to decrease androgen receptor expression that appears to be regulated by the expression of CHOP/GADD153. Using a xenograft tumor model we observed standardized rosemary extract when given orally to significantly suppress tumor growth by 46% compared to mice not receiving standardized rosemary extract. In the last several years regulatory governing bodies (e.g. European Union) have approved standardized rosemary extracts as food preservatives. These results are especially significant as it is becoming more likely that individuals will be receiving standardized rosemary extracts that are a part of a natural preservative system in various food preparations. Taken a step further, it is possible that the potential benefits that are often associated with a "Mediterranean Diet" in the future may begin to extend beyond the Mediterranean diet as more of the population is consuming standardized rosemary extracts.

  18. Pulsatilla saponin A, an active molecule from Pulsatilla chinensis, induces cancer cell death and inhibits tumor growth in mouse xenograft models.

    PubMed

    Liu, Qiang; Chen, Weichang; Jiao, Yang; Hou, Jianquan; Wu, Qingyu; Liu, Yanli; Qi, Xiaofei

    2014-05-15

    Many natural compounds possess antitumor growth activities. Pulsatilla chinensis is an herb used in traditional Chinese medicine to treat infectious diseases. More recently, extracts from P chinensis have been shown to contain antitumor activities. In this study, we isolated Pulsatilla saponin A as an active compound from P chinensis extracts and tested its anticancer activity in vitro and in vivo. In cell culture, Pulsatilla saponin A significantly inhibited the growth of human hepatocellular carcinoma SMCC-7721 cells and pancreatic BXPC3 and SW1990 cancer cells. Similar inhibitory activities were observed when the compound was tested in mouse xenograft tumor models using human hepatocellular carcinoma Bel-7402 and pancreatic cancer SW1990 cells. In Comet assay and flow cytometric analysis of cell cycle distribution and annexin V expression, DNA damage, G2 arrest, and apoptosis were identified in Pulsatilla saponin A-treated cancer cells. Based on the results of Western blotting, p53 and cyclin B protein levels were higher, whereas Bcl-2 protein levels were lower in Pulsatilla saponin A-treated cancer cells than in vehicle-treated cells. Pulsatilla saponin A may exert its antitumor effect by inducing DNA damage and causing G2 arrest and apoptosis in cancer cells. Pulsatilla saponin A and its derivatives may be developed as a new class of anticancer agents. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  19. A Primary Xenograft Model of Small Cell Lung Cancer Reveals Irreversible Changes in Gene Expression Imposed by Culture In-Vitro

    PubMed Central

    Daniel, Vincent C.; Marchionni, Luigi; Hierman, Jared S.; Rhodes, Jonathan T.; Devereux, Wendy L.; Rudin, Charles M.; Yung, Rex; Parmigani, Giovanni; Dorsch, Marion; Peacock, Craig D.; Watkins, D. Neil

    2009-01-01

    Traditional approaches to the preclinical investigation of cancer therapies rely on the use of established cell lines maintained in serum-based growth media. This is particularly true of small cell lung cancer (SCLC), where surgically resected tissue is rarely available. Recent attention has focused on the need for better models that preserve the integrity of cancer stem cell populations, as well as three-dimensional tumor-stromal interactions. Here we describe a primary xenograft model of SCLC in which endobronchial tumor specimens obtained from chemo-naive patients are serially propagated in vivo in immunodeficient mice. In parallel, cell lines grown in conventional tissue culture conditions were derived from each xenograft line, passaged for 6 months, and then re-implanted to generate secondary xenografts. Using the Affymetrix platform, we analyzed gene expression in primary xenograft, xenograft-derived cell line, and secondary xenograft, and compared these data to similar analyses of unrelated primary SCLC samples and laboratory models. When compared to normal lung, primary tumors, xenografts and cell lines displayed a gene expression signature specific for SCLC. Comparison of gene expression within the xenograft model identified a group of tumor-specific genes expressed in primary SCLC and xenografts that was lost during the transition to tissue culture, and that was not regained when the tumors were re-established as secondary xenografts. Such changes in gene expression may be a common feature of many cancer cell culture systems, with functional implications for the use of such models for preclinical drug development. PMID:19351829

  20. [Inhibitory effect of VEGF antisense phosphorothioate oligodeoxynucleotides on the growth of human salivary adenoid cystic carcinoma xenografts in nude mice].

    PubMed

    Li, Xiao-guang; Wang, Xu-xia; Li, Teng-yu; Wang, Yan-xiu; Gao, Jing; Ni, Chun-xiao

    2012-12-01

    To investigate the inhibitory effect of VEGF antisense phosphorothioate oligodeoxynucleoiides on the growth of human salivary adenoid cystic carcinoma (SACC) xenografts in nude mice. The VEGF-ASODN was synthesised artificially. After the model of human SACC xenografts in nude mice was established, they were random1y divided into three groups: antisense group, scrambled group and normal saline group. A control group without cancer was also established. Antisense(66 μg), scrambled sequence(66 μg) and normal saline(once every 3 days and 7 times in all) were injected in three experimental groups, respectively. Two days after therapy, the mice were sacrificed. Serums were used for detection of VEGF protein. All tumors were measured and weighted. The quantity of VEGF mRNA and protein and PLI, MVD was detected by hybridization in situ and immunohistochemistry. SPSS13.0 software package was used for statistical analysis. The VEGF-ASODN could suppress the expression of VEGF in human SACC xenografts in nude mice and reduce VEGF protein in serum of nude mice significantly. It cou1d also reduce the volume and weight of xenografts and could reduce the expression of VEGF mRNA and its protein, PCNA and CD34. By inhibiting the expression of VEGF, VEGF-ASODN can inhabit proliferation of human SACC xenografts in nude mice.

  1. Enhanced antitumor effect of YM872 and AG1296 combination treatment on human glioblastoma xenograft models.

    PubMed

    Watanabe, Takashi; Ohtani, Toshiyuki; Aihara, Masanori; Ishiuchi, Shogo

    2013-04-01

    Blockade of Ca(++)-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) inhibits the proliferation of human glioblastoma by inhibiting Akt phosphorylation, which is independent of the phosphatidylinositol 3-kinase pathway. Inhibiting platelet-derived growth factor receptor (PDGFR)-mediated phosphorylation causes growth inhibition in glioblastoma cells. The authors of this study investigated the effects of YM872 and AG1296, singly and in combination and targeting different pathways upstream of Akt, on Akt-mediated tumor growth in glioblastoma cells in vivo and in vitro. The expression of AMPAR, PDGFR, and c-kit in glioblastoma cells was analyzed via immunofluorescence. Glioblastoma cells, both in culture and in xenografts grown in mice, were treated with YM872 and AG1296, singly or in combination. Inhibition of tumor growth was observed after treatment in the xenograft model. Cell proliferation assays were performed using anti-Ki 67 antibody in vivo and in vitro. The CD34-positive tumor vessel counts within the vascular hot spots of tumor specimens were evaluated. Phosphorylation of Akt was studied using Western blot analysis. Combined administration of YM872 and AG1296 had a significant enhanced effect on the inhibition of cell proliferation and reduction of tumor vascularity in the xenograft model. These agents singly and in combination demonstrated a significant reduction of Akt phosphorylation at Ser473 and inhibition of tumor proliferation in vitro, although combined administration had no enhanced antitumor effects. The strongly enhanced antitumor effect of this combination therapy in vivo rather than in vitro may be attributable to disruption of the aberrant vascular niche. This combination therapy might provide substantial benefits to patients with glioblastoma.

  2. Immunohistochemical demonstration of epidermal growth factor in human gastric cancer xenografts of nude mice.

    PubMed

    Yoshiyuki, T; Shimizu, Y; Onda, M; Tokunaga, A; Kiyama, T; Nishi, K; Mizutani, T; Matsukura, N; Tanaka, N; Akimoto, M

    1990-02-15

    Thirty-two surgical specimens and three cell lines of human gastric cancers were used for subcutaneous transplantation into nude mice, resulting in the establishment of eight (25%) xenografts from the surgical specimens and two (67%) from the cell lines. The localization of epidermal growth factor (EGF) in the surgical specimens and cell lines of the gastric cancers and their xenografts in nude mice was then investigated immunohistochemically. Epidermal growth factor was stained in the cytoplasm of the cancer cells, being detected in 16 (50%) of the 32 surgical specimens and in all of the cell lines. Seven (44%) of the sixteen EGF-positive surgical specimens and one (6%) of the 16 EGF-negative ones were tumorigenic in nude mice. All of the xenografts in nude mice were positive for EGF. The tumorigenicity of human gastric cancer xenografts in nude mice may, therefore, be correlated with the presence of EGF in cancer cells.

  3. Engineered Resistant-Starch (ERS) Diet Shapes Colon Microbiota Profile in Parallel with the Retardation of Tumor Growth in In Vitro and In Vivo Pancreatic Cancer Models.

    PubMed

    Panebianco, Concetta; Adamberg, Kaarel; Adamberg, Signe; Saracino, Chiara; Jaagura, Madis; Kolk, Kaia; Di Chio, Anna Grazia; Graziano, Paolo; Vilu, Raivo; Pazienza, Valerio

    2017-03-27

    Pancreatic cancer (PC) is ranked as the fourth leading cause of cancer-related deaths worldwide. Despite recent advances in treatment options, a modest impact on the outcome of the disease is observed so far. We have previously demonstrated that short-term fasting cycles have the potential to improve the efficacy of chemotherapy against PC. The aim of this study was to assess the effect of an engineered resistant-starch (ERS) mimicking diet on the growth of cancer cell lines in vitro, on the composition of fecal microbiota, and on tumor growth in an in vivo pancreatic cancer mouse xenograft model. BxPC-3, MIA PaCa-2 and PANC-1 cells were cultured in the control, and in the ERS-mimicking diet culturing condition, to evaluate tumor growth and proliferation pathways. Pancreatic cancer xenograft mice were subjected to an ERS diet to assess tumor volume and weight as compared to mice fed with a control diet. The composition and activity of fecal microbiota were further analyzed in growth experiments by isothermal microcalorimetry. Pancreatic cancer cells cultured in an ERS diet-mimicking medium showed decreased levels of phospho-ERK1/2 (extracellular signal-regulated kinase proteins) and phospho-mTOR (mammalian target of rapamycin) levels, as compared to those cultured in standard medium. Consistently, xenograft pancreatic cancer mice subjected to an ERS diet displayed significant retardation in tumor growth. In in vitro growth experiments, the fecal microbial cultures from mice fed with an ERS diet showed enhanced growth on residual substrates, higher production of formate and lactate, and decreased amounts of propionate, compared to fecal microbiota from mice fed with the control diet. A positive effect of the ERS diet on composition and metabolism of mouse fecal microbiota shown in vitro is associated with the decrease of tumor progression in the in vivo PC xenograft mouse model. These results suggest that engineered dietary interventions could be supportive as a

  4. Engineered Resistant-Starch (ERS) Diet Shapes Colon Microbiota Profile in Parallel with the Retardation of Tumor Growth in In Vitro and In Vivo Pancreatic Cancer Models

    PubMed Central

    Panebianco, Concetta; Adamberg, Kaarel; Adamberg, Signe; Saracino, Chiara; Jaagura, Madis; Kolk, Kaia; Di Chio, Anna Grazia; Graziano, Paolo; Vilu, Raivo; Pazienza, Valerio

    2017-01-01

    Background/aims: Pancreatic cancer (PC) is ranked as the fourth leading cause of cancer-related deaths worldwide. Despite recent advances in treatment options, a modest impact on the outcome of the disease is observed so far. We have previously demonstrated that short-term fasting cycles have the potential to improve the efficacy of chemotherapy against PC. The aim of this study was to assess the effect of an engineered resistant-starch (ERS) mimicking diet on the growth of cancer cell lines in vitro, on the composition of fecal microbiota, and on tumor growth in an in vivo pancreatic cancer mouse xenograft model. Materials and Methods: BxPC-3, MIA PaCa-2 and PANC-1 cells were cultured in the control, and in the ERS-mimicking diet culturing condition, to evaluate tumor growth and proliferation pathways. Pancreatic cancer xenograft mice were subjected to an ERS diet to assess tumor volume and weight as compared to mice fed with a control diet. The composition and activity of fecal microbiota were further analyzed in growth experiments by isothermal microcalorimetry. Results: Pancreatic cancer cells cultured in an ERS diet-mimicking medium showed decreased levels of phospho-ERK1/2 (extracellular signal-regulated kinase proteins) and phospho-mTOR (mammalian target of rapamycin) levels, as compared to those cultured in standard medium. Consistently, xenograft pancreatic cancer mice subjected to an ERS diet displayed significant retardation in tumor growth. In in vitro growth experiments, the fecal microbial cultures from mice fed with an ERS diet showed enhanced growth on residual substrates, higher production of formate and lactate, and decreased amounts of propionate, compared to fecal microbiota from mice fed with the control diet. Conclusion: A positive effect of the ERS diet on composition and metabolism of mouse fecal microbiota shown in vitro is associated with the decrease of tumor progression in the in vivo PC xenograft mouse model. These results suggest that

  5. A mathematical model for IL-6-mediated, stem cell driven tumor growth and targeted treatment

    PubMed Central

    Nör, Jacques Eduardo

    2018-01-01

    Targeting key regulators of the cancer stem cell phenotype to overcome their critical influence on tumor growth is a promising new strategy for cancer treatment. Here we present a modeling framework that operates at both the cellular and molecular levels, for investigating IL-6 mediated, cancer stem cell driven tumor growth and targeted treatment with anti-IL6 antibodies. Our immediate goal is to quantify the influence of IL-6 on cancer stem cell self-renewal and survival, and to characterize the subsequent impact on tumor growth dynamics. By including the molecular details of IL-6 binding, we are able to quantify the temporal changes in fractional occupancies of bound receptors and their influence on tumor volume. There is a strong correlation between the model output and experimental data for primary tumor xenografts. We also used the model to predict tumor response to administration of the humanized IL-6R monoclonal antibody, tocilizumab (TCZ), and we found that as little as 1mg/kg of TCZ administered weekly for 7 weeks is sufficient to result in tumor reduction and a sustained deceleration of tumor growth. PMID:29351275

  6. Knockdown of NF-E2-related factor 2 inhibits the proliferation and growth of U251MG human glioma cells in a mouse xenograft model.

    PubMed

    Ji, Xiang-Jun; Chen, Sui-Hua; Zhu, Lin; Pan, Hao; Zhou, Yuan; Li, Wei; You, Wan-Chun; Gao, Chao-Chao; Zhu, Jian-Hong; Jiang, Kuan; Wang, Han-Dong

    2013-07-01

    NF-E2-related factor 2 (Nrf2) is a pivotal transcription factor of cellular responses to oxidative stress and recent evidence suggests that Nrf2 plays an important role in cancer pathobiology. However, the underlying mechanism has yet to be elucidated, particularly in glioma. In the present study, we investigated the role of Nrf2 in the clinical prognosis, cell proliferation and tumor growth of human glioblastoma multiforme (GBM). We detected overexpression of Nrf2 protein levels in GBM compared to normal brain tissues. Notably, higher protein levels of Nrf2 were significantly associated with poorer overall survival and 1-year survival for GBM patients. Furthermore, we constructed the plasmid Si-Nrf2 and transduced it into U251MG cells to downregulate the expression of Nrf2 and established stable Nrf2 knockdown cells. The downregulation of Nrf2 suppressed cell proliferation in vitro and tumor growth in mouse xenograft models. We performed immunohistochemistry staining to detect the protein levels of Nrf2, Ki-67, caspase-3 and CD31 in the xenograft tumors and found that the expression levels of Nrf2 and Ki-67 were much lower in the Si-Nrf2 group compared to the Si-control group. In addition, the number of caspase-3-positive cells was significantly increased in the Si-Nrf2 group. By analysis of microvessel density (MVD) assessed by CD31, the MVD value in the Si-Nrf2 group decreased significantly compared to the Si-control group. These findings indicate that the knockdown of Nrf2 may suppress tumor growth by inhibiting cell proliferation, increasing cell apoptosis and inhibiting angiogenesis. These results highlight the potential of Nrf2 as a candidate molecular target to control GBM cell proliferation and tumor growth.

  7. In Vivo Activity and Pharmacokinetics of Nemorosone on Pancreatic Cancer Xenografts

    PubMed Central

    Wolf, Robert J.; Hilger, Ralf A.; Hoheisel, Jörg D.; Werner, Jens; Holtrup, Frank

    2013-01-01

    Pancreatic cancer is one of the leading cancer-related causes of death in the western world with an urgent need for new treatment strategies. Recently, hyperforin and nemorosone have been described as promising anti-cancer lead compounds. While hyperforin has been thoroughly investigated in vitro and in vivo, in vivo data for nemorosone are still missing. Thus, we investigated the growth-inhibitory potential of nemorosone on pancreatic cancer xenografts in NMRI nu/nu mice and determined basic pharmacokinetic parameters. Xenograft tumors were treated with nemorosone and gemcitabine, the current standard of care. Tumor sections were subjected to H&E as well as caspase 3 and Ki-67 staining. Nemorosone plasma kinetics were determined by HPLC and mass spectrometry. Induction of CYP3A4 and other metabolizing enzymes by nemorosone and hyperforin was tested on primary hepatocytes using qRT-PCR. At a dose of 50 mg/kg nemorosone per day, a significant growth-inhibitory effect was observed in pancreatic cancer xenografts. The compound was well tolerated and rapidly absorbed into the bloodstream with a half-life of approximately 30 min. Different metabolites were detected, possibly resembling CYP3A4-independent oxidation products. It is concluded that nemorosone is a potential anti-cancer lead compound with good bioavailability, little side-effects and promising growth-inhibitory effects, thus representing a valuable compound for a combination therapy approach. PMID:24040280

  8. Evaluation of anti-tumorigenic activity of BP3B against colon cancer with patient-derived tumor xenograft model.

    PubMed

    Kim, Hye-Youn; Kim, Jinhee; Ha Thi, Huyen Trang; Bang, Ok-Sun; Lee, Won-Suk; Hong, Suntaek

    2016-11-18

    KIOM-CRC#BP3B (BP3B) is a novel herbal prescription that is composed of three plant extracts. Our preliminary study identified that BP3B exhibited potent anti-proliferative activity against various types of cancer cell lines in vitro. Because the in vivo anti-tumor effect of BP3B is not evaluated before clinical trial, we want to test it using patient's samples. To confirm the in vivo anti-cancer effect of BP3B, we used genetically characterized patient-derived colon tumor xenograft (PDTX) mouse model. Anti-cancer activity was evaluated with apoptosis, proliferation, angiogenesis and histological analysis. Oral administration of BP3B significantly inhibited the tumor growth in two PDTX models. Furthermore, TUNEL assay showed that BP3B induced apoptosis of tumor tissues, which was associated with degradation of PARP and Caspase 8 and activation of Caspase 3. We also observed that BP3B inhibited cancer cell proliferation by down-regulation of Cyclin D1 and induction of p27 proteins. Inhibition of angiogenesis in BP3B-treated group was observed with immunofluorescence staining using CD31 and Tie-2 antibodies. These findings indicated that BP3B has a strong growth-inhibitory activity against colon cancer in in vivo model and will be a good therapeutic candidate for treatment of refractory colon cancer.

  9. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma.

    PubMed

    Mazzocca, Antonio; Fransvea, Emilia; Dituri, Francesco; Lupo, Luigi; Antonaci, Salvatore; Giannelli, Gianluigi

    2010-02-01

    Tumor-stroma interactions in hepatocellular carcinoma (HCC) are of key importance to tumor progression. In this study, we show that HCC invasive cells produce high levels of connective tissue growth factor (CTGF) and generate tumors with a high stromal component in a xenograft model. A transforming growth factor beta (TGF-beta) receptor inhibitor, LY2109761, inhibited the synthesis and release of CTGF, as well as reducing the stromal component of the tumors. In addition, the TGF-beta-dependent down-regulation of CTGF diminished tumor growth, intravasation, and metastatic dissemination of HCC cells by inhibiting cancer-associated fibroblast proliferation. By contrast, noninvasive HCC cells were found to produce low levels of CTGF. Upon TGF-beta1 stimulation, noninvasive HCC cells form tumors with a high stromal content and CTGF expression, which is inhibited by treatment with LY2109761. In addition, the acquired intravasation and metastatic spread of noninvasive HCC cells after TGF-beta1 stimulation was blocked by LY2109761. LY2109761 interrupts the cross-talk between cancer cells and cancer-associated fibroblasts, leading to a significant reduction of HCC growth and dissemination. Interestingly, patients with high CTGF expression had poor prognosis, suggesting that treatment aimed at reducing TGF-beta-dependent CTGF expression may offer clinical benefits. Taken together, our preclinical results indicate that LY2109761 targets the cross-talk between HCC and the stroma and provide a rationale for future clinical trials.

  10. Reversal of multidrug resistance in xenograft nude-mice by magnetic Fe(3)O(4) nanoparticles combined with daunorubicin and 5-bromotetrandrine.

    PubMed

    Wu, Ya-Nan; Chen, Bao-An; Cheng, Jian; Gao, Feng; Xu, Wen-Lin; Ding, Jia-Hua; Gao, Chong; Sun, Xin-Chen; Li, Guo-Hong; Chen, Wen-Ji; Liu, Li-Jie; Li, Xiao-Mao; Wang, Xue-Mei

    2009-02-01

    This study was aimed to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe(3)O(4) (Fe(3)O(4)-MNPs) combined with DNR in vivo. The xenograft leukemia model with stable multiple drug resistance in nude mice was established. The two sub-clones of K562 and K562/A02 cells were respectively inoculated subcutaneously into back of athymic nude mice (1 x 10(7) cells/each) to establish the leukemia xenograft models. Drug resistant and the sensitive tumor-bearing nude mice were both assigned randomly into 5 groups: group A was treated with NS; group B was treated with DNR; group C was treated with nanoparticle of Fe(3)O(4) combined with DNR; group D was treated with 5-BrTet combined with DNR; group E was treated with 5-bromotetrandrine and magnetic nanoparticle of Fe(3)O(4) combined with DNR. The incidence of tumor formation, growth characteristics, weight and volume of tumor were observed. The histopathologic examination of tumors and organs were carried out. The protein levels of BCL-2, BAX, and Caspase-3 in resistant tumors were detected by Western blot. The results indicated that 5-BrTet and magnetic nanoparticle of Fe(3)O(4) combined with DNR significantly suppressed growth of K562/A02 cell xenograft tumor, histopathologic examination of tumors showed the tumors necrosis obviously. Application of 5-BrTet and magnetic nanoparticle of Fe(3)O(4) inhibited the expression of BCL-2 protein and up-regulated the expression of BAX, and Caspase-3 protein in K562/A02 cell xenograft tumor. It is concluded that 5-bromotetrandrine and magnetic nanoparticle of Fe(3)O(4) combined with DNR have significant tumor-suppressing effect on MDR leukemia cell xenograft model.

  11. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors

    NASA Astrophysics Data System (ADS)

    Rubin, Joshua B.; Kung, Andrew L.; Klein, Robyn S.; Chan, Jennifer A.; Sun, Yanping; Schmidt, Karl; Kieran, Mark W.; Luster, Andrew D.; Segal, Rosalind A.

    2003-11-01

    The vast majority of brain tumors in adults exhibit glial characteristics. Brain tumors in children are diverse: Many have neuronal characteristics, whereas others have glial features. Here we show that activation of the Gi protein-coupled receptor CXCR4 is critical for the growth of both malignant neuronal and glial tumors. Systemic administration of CXCR4 antagonist AMD 3100 inhibits growth of intracranial glioblastoma and medulloblastoma xenografts by increasing apoptosis and decreasing the proliferation of tumor cells. This reflects the ability of AMD 3100 to reduce the activation of extracellular signal-regulated kinases 1 and 2 and Akt, all of which are pathways downstream of CXCR4 that promote survival, proliferation, and migration. These studies (i) demonstrate that CXCR4 is critical to the progression of diverse brain malignances and (ii) provide a scientific rationale for clinical evaluation of AMD 3100 in treating both adults and children with malignant brain tumors.

  12. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4.

    PubMed

    Todaro, Matilde; Alea, Mileidys Perez; Di Stefano, Anna B; Cammareri, Patrizia; Vermeulen, Louis; Iovino, Flora; Tripodo, Claudio; Russo, Antonio; Gulotta, Gaspare; Medema, Jan Paul; Stassi, Giorgio

    2007-10-11

    A novel paradigm in tumor biology suggests that cancer growth is driven by stem-like cells within a tumor. Here, we describe the identification and characterization of such cells from colon carcinomas using the stem cell marker CD133 that accounts around 2% of the cells in human colon cancer. The CD133(+) cells grow in vitro as undifferentiated tumor spheroids, and they are both necessary and sufficient to initiate tumor growth in immunodeficient mice. Xenografts resemble the original human tumor maintaining the rare subpopulation of tumorigenic CD133(+) cells. Further analysis revealed that the CD133(+) cells produce and utilize IL-4 to protect themselves from apoptosis. Consistently, treatment with IL-4Ralpha antagonist or anti-IL-4 neutralizing antibody strongly enhances the antitumor efficacy of standard chemotherapeutic drugs through selective sensitization of CD133(+) cells. Our data suggest that colon tumor growth is dictated by stem-like cells that are treatment resistant due to the autocrine production of IL-4.

  13. Effect of dasatinib in a xenograft mouse model of canine histiocytic sarcoma and in vitro expression status of its potential target EPHA2.

    PubMed

    Ito, K; Miyamoto, R; Tani, H; Kurita, S; Kobayashi, M; Tamura, K; Bonkobara, M

    2018-02-01

    Canine histiocytic sarcoma (HS) is an aggressive and highly metastatic tumor. Previously, the kinase inhibitor dasatinib was shown to have potent growth inhibitory activity against HS cells in vitro, possibly via targeting the EPHA2 receptor. Here, the in vivo effect of dasatinib in HS cells was investigated using a xenograft mouse model. Moreover, the expression status of EPHA2 was examined in six HS cell lines, ranging from insensitive to highly sensitive to dasatinib. In the HS xenograft mouse model, dasatinib significantly suppressed tumor growth, as illustrated by a decrease in mitotic and Ki67 indices and an increase in apoptotic index in tumor tissues. On Western blot analysis, EPHA2 was only weakly detected in all HS cell lines, regardless of sensitivity to dasatinib. Dasatinib likely results in the inhibition of xenograft tumor growth via a mechanism other than targeting EPHA2. The findings of this study suggest that dasatinib is a targeted therapy drug worthy of further exploration for the treatment of canine HS. © 2017 John Wiley & Sons Ltd.

  14. Imaging of platelet-derived growth factor receptor β expression in glioblastoma xenografts using affibody molecule 111In-DOTA-Z09591.

    PubMed

    Tolmachev, Vladimir; Varasteh, Zohreh; Honarvar, Hadis; Hosseinimehr, Seyed Jalal; Eriksson, Olof; Jonasson, Per; Frejd, Fredrik Y; Abrahmsen, Lars; Orlova, Anna

    2014-02-01

    The overexpression and excessive signaling of platelet-derived growth factor receptor β (PDGFRβ) has been detected in cancers, atherosclerosis, and a variety of fibrotic diseases. Radionuclide in vivo visualization of PDGFRβ expression might help to select PDGFRβ targeting treatment for these diseases. The goal of this study was to evaluate the feasibility of in vivo radionuclide imaging of PDGFRβ expression using an Affibody molecule, a small nonimmunoglobulin affinity protein. The PDGFRβ-binding Z09591 Affibody molecule was site-specifically conjugated with a maleimido derivative of DOTA and labeled with (111)In. Targeting of the PDGFRβ-expressing U-87 MG glioblastoma cell line using (111)In-DOTA-Z09591 was evaluated in vitro and in vivo. DOTA-Z09591 was stably labeled with (111)In with preserved specific binding to PDGFRβ-expressing cells in vitro. The dissociation constant for (111)In-DOTA-Z09591 binding to U-87 MG cells was determined to be 92 ± 10 pM. In mice bearing U-87 MG xenografts, the tumor uptake of (111)In-DOTA-Z09591 was 7.2 ± 2.4 percentage injected dose per gram and the tumor-to-blood ratio was 28 ± 14 at 2 h after injection. In vivo receptor saturation experiments demonstrated that targeting of U-87 MG xenografts in mice was PDGFRβ-specific. U-87 MG xenografts were clearly visualized using small-animal SPECT/CT at 3 h after injection. This study demonstrates the feasibility of in vivo visualization of PDGFRβ-expressing xenografts using an Affibody molecule. Further development of radiolabeled Affibody molecules might provide a useful clinical imaging tool for PDGFRβ expression during various pathologic conditions.

  15. Dietary phenethyl isothiocyanate inhibition of androgen-responsive LNCaP prostate cancer cell tumor growth correlates with decreased angiogenesis

    USDA-ARS?s Scientific Manuscript database

    Phenethyl isothiocyanate (PEITC), found in certain cruciferous vegetables, has antitumor activity in several cancer models, including prostate cancer. In our xenograft model, dietary administration of PEITC (100-150 mg/kg/d) inhibited androgen-responsive LNCaP human prostate cancer cell tumor growth...

  16. High-fat Western diet-induced obesity contributes to increased tumor growth in mouse models of human colon cancer.

    PubMed

    O'Neill, Ann Marie; Burrington, Christine M; Gillaspie, Erin A; Lynch, Darin T; Horsman, Melissa J; Greene, Michael W

    2016-12-01

    Strong epidemiologic evidence links colon cancer to obesity. The increasing worldwide incidence of colon cancer has been linked to the spread of the Western lifestyle, and in particular consumption of a high-fat Western diet. In this study, our objectives were to establish mouse models to examine the effects of high-fat Western diet-induced obesity on the growth of human colon cancer tumor xenografts, and to examine potential mechanisms driving obesity-linked human colon cancer tumor growth. We hypothesize that mice rendered insulin resistant due to consumption of a high-fat Western diet will show increased and accelerated tumor growth. Homozygous Rag1 tm1Mom mice were fed either a low-fat Western diet or a high-fat Western diet (HFWD), then human colon cancer xenografts were implanted subcutaneously or orthotopically. Tumors were analyzed to detect changes in receptor tyrosine kinase-mediated signaling and expression of inflammatory-associated genes in epididymal white adipose tissue. In both models, mice fed an HFWD weighed more and had increased intra-abdominal fat, and tumor weight was greater compared with in the low-fat Western diet-fed mice. They also displayed significantly higher levels of leptin; however, there was a negative correlation between leptin levels and tumor size. In the orthotopic model, tumors and adipose tissue from the HFWD group displayed significant increases in both c-Jun N-terminal kinase activation and monocyte chemoattractant protein 1 expression, respectively. In conclusion, this study suggests that human colon cancer growth is accelerated in animals that are obese and insulin resistant due to the consumption of an HFWD. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effects of Combining Rapamycin and Resveratrol on Apoptosis and Growth of TSC2-Deficient Xenograft Tumors

    PubMed Central

    Alayev, Anya; Salamon, Rachel S.; Sun, Yang; Schwartz, Naomi S.; Li, Chenggang; Yu, Jane J.

    2015-01-01

    Lymphangioleiomyomatosis (LAM) is a rare neoplastic metastatic disease affecting women of childbearing age. LAM is caused by hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) as a consequence of tuberous sclerosis complex (TSC) 1/2 inactivation. Clinically, LAM results in cystic lung destruction. mTORC1 inhibition using rapamycin analogs (rapalogs) is partially effective in reducing disease progression and improving lung function. However, cessation of treatment results in continued progression of the disease. In the present study, we investigated the effectiveness of the combination of rapamycin treatment with resveratrol, an autophagy inhibitor, in the TSC2-null xenograft tumor model. We determined that this combination inhibits phosphatidylinositol-4,5-bisphosphate 3-kinase PI3K/Akt/mTORC1 signaling and activates apoptosis. Therefore, the combination of rapamycin and resveratrol may be an effective clinical strategy for treatment of LAM and other diseases with mTORC1 hyperactivation. PMID:25844891

  18. The influence of the combined treatment with Vadimezan (ASA404) and taxol on the growth of U251 glioblastoma xenografts

    PubMed Central

    2012-01-01

    Background One of the most important biological characteristics of Glioblastoma multiforme (GBM) is high vascular density. Vadimezan (ASA404, DMXAA) belongs to the class of small molecule vascular disrupting agents (VDA) that cause disruption of established tumor vessels and subsequent tumor hemorrhagic necrosis. Its selective antivascular effect is mediated by intratumoral induction of several cytokines including tumor necrosis factor-α (TNF-α), granulocyte-colony-stimulating factor (G-CSF), interleukin 6 (IL-6) and macrophage inflammatory protein 1α (MIP-1α). Preclinical studies have demonstrated that ASA404 acts synergistically with taxanes. In this study, we investigated if treatment of mice bearing U251 human glioblastoma xenografts with ASA404 and taxol may be synergistic. Therapy response was evaluated by measuring changes in tumor size and metabolic activity using 18F-FDG PET (Fluorodeoxyglucose - positron emision tomography) imaging. Methods U251 cells were inoculated s.c. in the right hind limb of NMRI-Foxn1nu athymic female nude mice. Animals were randomly assigned into 4 groups (7–9 animals/group) for treatment: control, taxol, ASA404, and ASA404 plus taxol. The animals received either a single dose of taxol (10 mg/kg), ASA404 (27.5 mg/kg), or taxol (10 mg/kg) plus ASA404 (27.5 mg/kg) administered i.p.; ASA404 was administred 24 h after the treatment with taxol. 4 and 24 h after treatment with ASA404 (28 and 48 h hours after treatment with taxol) 18 F-FDG PET scans were performed. Results The treatment with taxol did not affect the tumor growth in comparison to untreated controls. The treatment of animals with single dose ASA404 alone or in combination with taxol caused a significant delay in tumor growth. The combined treatment did not decrease the growth of the xenografts significantly more than ASA404 alone, but early changes in tumor 18 F-FDG uptake preceded subsequent growth inhibition. The tumor weights, which were

  19. HIV Nef-M1 Effects on Colorectal Cancer Growth in Tumor-induced Spleens and Hepatic Metastasis

    PubMed Central

    Harrington, Willie; Bond, Vincent; Huang, Ming Bo; Powell, Michael; Lillard, James; Manne, Upender; Bumpers, Harvey

    2010-01-01

    CXCR4 receptors have been implicated in tumorigenesis and proliferation, making it a potential target for colorectal cancer therapy. Expression of this chemokine receptor on cellular surfaces appears to promote metastasis by directly stimulating tumor cell migration and invasion. The receptor/ligand, CXCR4/SDF-1α, pair are critically important to angiogenesis and vascular remodeling which supports cancer proliferation. Our work has shown that a novel apoptotic peptide of HIV-1, Nef-M1, can act as a CXCR4 antagonist, inducing apoptosis in CXCR4 containing cells. Four colorectal tumor cell lines (HT-29, LS174t, SW480, WiDr), were evaluated for their response to Nef-M1 peptide via in vivo and in vitro. The presence of CXCR4 receptors on tumor cells was determined using immunohistochemical and RT-PCR analyses. Solid xenografts derived from tumor cell lines grown in SCID mice, were evaluated for the persistence of the receptor. Xenografts propagated in SCID mice from each of the four cell lines demonstrated high levels of receptor expression as well. The effects of Nef-M1 in vivo via splenic injected mice and subsequent hepatic metastasis also demonstrated dramatic reduction of primary tumor growth in the spleen and secondary invasion of the liver. We concluded that Nef-M1 peptide, through physical interaction(s) with CXCR4, drives apoptotic reduction in in vivo primary tumor growth and metastasis. PMID:20383296

  20. Novel MET/TIE2/VEGFR2 inhibitor altiratinib inhibits tumor growth and invasiveness in bevacizumab-resistant glioblastoma mouse models

    PubMed Central

    Piao, Yuji; Park, Soon Young; Henry, Verlene; Smith, Bryan D.; Tiao, Ningyi; Flynn, Daniel L.

    2016-01-01

    Background Glioblastoma highly expresses the proto-oncogene MET in the setting of resistance to bevacizumab. MET engagement by hepatocyte growth factor (HGF) results in receptor dimerization and autophosphorylation mediating tumor growth, invasion, and metastasis. Evasive revascularization and the recruitment of TIE2-expressing macrophages (TEMs) are also triggered by anti-VEGF therapy. Methods We investigated the activity of altiratinib (a novel balanced inhibitor of MET/TIE2/VEGFR2) against human glioblastoma stem cell lines in vitro and in vivo using xenograft mouse models. The biological activity of altiratinib was assessed in vitro by testing the expression of HGF-stimulated MET phosphorylation as well as cell viability after altiratinib treatment. Tumor volume, stem cell and mesenchymal marker levels, microvessel density, and TIE2-expressing monocyte infiltration were evaluated in vivo following treatment with a control, bevacizumab alone, bevacizumab combined with altiratinib, or altiratinib alone. Results In vitro, HGF-stimulated MET phosphorylation was completely suppressed by altiratinib in GSC17 and GSC267, and altiratinib markedly inhibited cell viability in several glioblastoma stem cell lines. More importantly, in multiple xenograft mouse models, altiratinib combined with bevacizumab dramatically reduced tumor volume, invasiveness, mesenchymal marker expression, microvessel density, and TIE2-expressing monocyte infiltration compared with bevacizumab alone. Furthermore, in the GSC17 xenograft model, altiratinib combined with bevacizumab significantly prolonged survival compared with bevacizumab alone. Conclusions Together, these data suggest that altiratinib may suppress tumor growth, invasiveness, angiogenesis, and myeloid cell infiltration in glioblastoma. Thus, altiratinib administered alone or in combination with bevacizumab may overcome resistance to bevacizumab and prolong survival in patients with glioblastoma. PMID:26965451

  1. Establishment and characterization of intraperitoneal xenograft models by co-injection of human tumor cells and extracellular matrix gel

    PubMed Central

    YAO, YUQIN; ZHOU, YONGJUN; SU, XIAOLAN; DAI, LEI; YU, LIN; DENG, HONGXIN; GOU, LANTU; YANG, JINLIANG

    2015-01-01

    Establishing a feasible intraperitoneal (i.p.) xenograft model in nude mice is a good strategy to evaluate the antitumor effect of drugs in vivo. However, the manipulation of human cancer cells in establishing a stable peritoneal carcinomatosis model in nude mice is problematic. In the present study, the ovarian and colorectal peritoneal tumor models were successfully established in nude mice by co-injection of human tumor cells and extracellular matrix gel. In ovarian tumor models, the mean number tumor nodes was significantly higher in the experimental group (intraperitoneal tumor cell co-injection with ECM gel) compared with the PBS control group on the 30th day (21.0±3.0 vs. 3.6±2.5; P<0.05). The same results were observed in the colorectal peritoneal tumor models on the 28th day. The colorectal peritoneal tumor model was further used to evaluate the chemotherapy effect of irinotecan (CPT-11). The mean weight of peritoneal tumor nodes in CPT-11 treatment group was significantly less than that of the control group (0.81±0.16 vs. 2.18±0.21 g; P<0.05). The results confirmed the value of these i.p. xenograft models in nude mice as efficient and feasible tools for preclinical evaluation. PMID:26788149

  2. Correlation of Somatostatin Receptor-2 Expression with Gallium-68-DOTA-TATE Uptake in Neuroblastoma Xenograft Models

    PubMed Central

    Vines, Douglass C.; Scollard, Deborah A.; Komal, Teesha; Ganguly, Milan; Do, Trevor; Wu, Bing; Alexander, Natasha; Besanger, Travis

    2017-01-01

    Peptide-receptor imaging and therapy with radiolabeled somatostatin analogs such as 68Ga-DOTA-TATE and 177Lu-DOTA-TATE have become an effective treatment option for SSTR-positive neuroendocrine tumors. The purpose of this study was to evaluate the correlation of somatostatin receptor-2 (SSTR2) expression with 68Ga-DOTA-TATE uptake and 177Lu-DOTA-TATE therapy in neuroblastoma (NB) xenograft models. We demonstrated variable SSTR2 expression profiles in eight NB cell lines. From micro-PET imaging and autoradiography, a higher uptake of 68Ga-DOTA-TATE was observed in SSTR2 high-expressing NB xenografts (CHLA-15) compared to SSTR2 low-expressing NB xenografts (SK-N-BE(2)). Combined autoradiography-immunohistochemistry revealed histological colocalization of SSTR2 and 68Ga-DOTA-TATE uptake in CHLA-15 tumors. With a low dose of 177Lu-DOTA-TATE (20 MBq/animal), tumor growth inhibition was achieved in the CHLA-15 high SSTR2 expressing xenograft model. Although, in vitro, NB cells showed variable expression levels of norepinephrine transporter (NET), a molecular target for 131I-MIBG therapy, low 123I-MIBG uptake was observed in all selected NB xenografts. In conclusion, SSTR2 expression levels are associated with 68Ga-DOTA-TATE uptake and antitumor efficacy of 177Lu-DOTA-TATE. 68Ga-DOTA-TATE PET is superior to 123I-MIBG SPECT imaging in detecting NB tumors in our model. Radiolabeled DOTA-TATE can be used as an agent for NB tumor imaging to potentially discriminate tumors eligible for 177Lu-DOTA-TATE therapy. PMID:29097943

  3. Correlation of Somatostatin Receptor-2 Expression with Gallium-68-DOTA-TATE Uptake in Neuroblastoma Xenograft Models.

    PubMed

    Zhang, Libo; Vines, Douglass C; Scollard, Deborah A; McKee, Trevor; Komal, Teesha; Ganguly, Milan; Do, Trevor; Wu, Bing; Alexander, Natasha; Vali, Reza; Shammas, Amer; Besanger, Travis; Baruchel, Sylvain

    2017-01-01

    Peptide-receptor imaging and therapy with radiolabeled somatostatin analogs such as 68 Ga-DOTA-TATE and 177 Lu-DOTA-TATE have become an effective treatment option for SSTR-positive neuroendocrine tumors. The purpose of this study was to evaluate the correlation of somatostatin receptor-2 (SSTR2) expression with 68 Ga-DOTA-TATE uptake and 177 Lu-DOTA-TATE therapy in neuroblastoma (NB) xenograft models. We demonstrated variable SSTR2 expression profiles in eight NB cell lines. From micro-PET imaging and autoradiography, a higher uptake of 68 Ga-DOTA-TATE was observed in SSTR2 high-expressing NB xenografts (CHLA-15) compared to SSTR2 low-expressing NB xenografts (SK-N-BE(2)). Combined autoradiography-immunohistochemistry revealed histological colocalization of SSTR2 and 68 Ga-DOTA-TATE uptake in CHLA-15 tumors. With a low dose of 177 Lu-DOTA-TATE (20 MBq/animal), tumor growth inhibition was achieved in the CHLA-15 high SSTR2 expressing xenograft model. Although, in vitro , NB cells showed variable expression levels of norepinephrine transporter (NET), a molecular target for 131 I-MIBG therapy, low 123 I-MIBG uptake was observed in all selected NB xenografts. In conclusion, SSTR2 expression levels are associated with 68 Ga-DOTA-TATE uptake and antitumor efficacy of 177 Lu-DOTA-TATE. 68 Ga-DOTA-TATE PET is superior to 123 I-MIBG SPECT imaging in detecting NB tumors in our model. Radiolabeled DOTA-TATE can be used as an agent for NB tumor imaging to potentially discriminate tumors eligible for 177 Lu-DOTA-TATE therapy.

  4. Monitoring Sunitinib-Induced Vascular Effects to Optimize Radiotherapy Combined with Soy Isoflavones in Murine Xenograft Tumor1

    PubMed Central

    Hillman, Gilda Gali; Singh-Gupta, Vinita; Al-Bashir, Areen K; Yunker, Christopher K; Joiner, Michael C; Sarkar, Fazlul H; Abrams, Judith; Haacke, E Mark

    2011-01-01

    Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to monitor vascular changes induced by sunitinib within a murine xenograft kidney tumor, we previously determined a dose that caused only partial destruction of blood vessels leading to “normalization” of tumor vasculature and improved blood flow. In the current study, kidney tumors were treated with this dose of sunitinib to modify the tumor microenvironment and enhance the effect of kidney tumor irradiation. The addition of soy isoflavones to this combined antiangiogenic and radiotherapy approach was investigated based on our studies demonstrating that soy isoflavones can potentiate the radiation effect on the tumors and act as antioxidants to protect normal tissues from treatment-induced toxicity. DCE-MRI was used to monitor vascular changes induced by sunitinib and schedule radiation when the uptake and washout of the contrast agent indicated regularization of blood flow. The combination of sunitinib with tumor irradiation and soy isoflavones significantly inhibited the growth and invasion of established kidney tumors and caused marked aberrations in the morphology of residual tumor cells. DCE-MRI studies demonstrated that the three modalities, sunitinib, radiation, and soy isoflavones, also exerted antiangiogenic effects resulting in increased uptake and clearance of the contrast agent. Interestingly, DCE-MRI and histologic observations of the normal contralateral kidneys suggest that soy could protect the vasculature of normal tissue from the adverse effects of sunitinib. An antiangiogenic approach that only partially destroys inefficient vessels could potentially increase the efficacy and delivery of cytotoxic therapies and radiotherapy for unresectable primary renal cell carcinoma tumors and metastatic disease. PMID:21461174

  5. Inhibition of Tumorigenesis by the Thyroid Hormone Receptor β in Xenograft Models

    PubMed Central

    Kim, Won Gu; Zhao, Li; Kim, Dong Wook; Willingham, Mark C.

    2014-01-01

    Background: Previous studies showed a close association between several types of human cancers and somatic mutations of thyroid hormone receptor β (TRβ) and reduced expression of TRβ due to epigenetic inactivation and/or deletion of the THRB gene. These observations suggest that TRβ could act as a tumor suppressor in carcinogenesis. However, the mechanisms by which TRβ could function to inhibit tumorigenesis are less well understood. Methods: We used the human follicular thyroid cancer cell lines (FTC-133 and FTC-236 cells) to elucidate how functional expression of the THRB gene could affect tumorigenesis. We stably expressed the THRB gene in FTC cells and evaluated the effects of the expressed TRβ on cancer cell proliferation, migration, and tumor growth in cell-based studies and xenograft models. Results: Expression of TRβ in FTC-133 cells, as compared with control FTC cells without TRβ, reduced cancer cell proliferation and impeded migration of tumor cells through inhibition of the AKT-mTOR-p70 S6K pathway. TRβ expression in FTC-133 and FTC-236 led to less tumor growth in xenograft models. Importantly, new vessel formation was significantly suppressed in tumors induced by FTC cells expressing TRβ compared with control FTC cells without TRβ. The decrease in vessel formation was mediated by the downregulation of vascular endothelial growth factor in FTC cells expressing TRβ. Conclusions: These findings indicate that TRβ acts as a tumor suppressor through downregulation of the AKT-mTOR-p70 S6K pathway and decreased vascular endothelial growth factor expression in FTC cells. The present results raise the possibility that TRβ could be considered as a potential therapeutic target for thyroid cancer. PMID:23731250

  6. Curcumin-Free Turmeric Exhibits Activity against Human HCT-116 Colon Tumor Xenograft: Comparison with Curcumin and Whole Turmeric

    PubMed Central

    Prasad, Sahdeo; Tyagi, Amit K.; Siddik, Zahid H.; Aggarwal, Bharat B.

    2017-01-01

    Extensive research within last two decades has indicated that curcumin extracted from turmeric (Curcuma longa), exhibits anticancer potential, in part through the modulation of inflammatory pathways. However, the residual antitumor activity of curcumin-free turmeric (CFT) relative to curcumin or turmeric is not well-understood. In the present study, therefore, we determined activities of these agents in both in vitro and in vivo models of human HCT-116 colorectal cancer (CRC). When examined in an in vitro antiproliferative, clonogenic or anti-inflammatory assay system, we found that curcumin was highly active whereas turmeric and CFT had relatively poor activity against CRC cells. However, when examined in vivo at an oral dose of either 100 or 500 mg/kg given to nude mice bearing CRC xenografts, all three preparations of curcumin, turmeric, and CFT similarly suppressed the growth of the xenograft. The effect of CFT on suppression of tumor growth was dose-dependent, with 500 mg/kg tending to be more effective than 100 mg/kg. Interestingly, 100 mg/kg curcumin or turmeric was found to be more effective than 500 mg/kg. When examined in vivo for the expression of biomarkers associated with cell survival (cIAP-1, Bcl-2, and survivin), proliferation (Ki-67 and cyclin D1) and metastasis (ICAM-1 and VEGF), all were down-modulated. These agents also suppressed inflammatory transcription factors (NF-κB and STAT3) in tumor cells. Overall, our results with CFT provide evidence that turmeric must contain additional bioactive compounds other than curcumin that, in contrast to curcumin, exhibit greater anticancer potential in vivo than in vitro against human CRC. Moreover, our study highlights the fact that the beneficial effects of turmeric and curcumin in humans may be more effectively realized at lower doses, whereas CFT could be given at higher doses without loss in favorable activity. PMID:29311914

  7. Intraductal delivery of adenoviruses targets pancreatic tumors in transgenic Ela-myc mice and orthotopic xenografts.

    PubMed

    José, Anabel; Sobrevals, Luciano; Miguel Camacho-Sánchez, Juan; Huch, Meritxell; Andreu, Núria; Ayuso, Eduard; Navarro, Pilar; Alemany, Ramon; Fillat, Cristina

    2013-01-01

    Gene-based anticancer therapies delivered by adenoviruses are limited by the poor viral distribution into the tumor. In the current work we have explored the feasibility of targeting pancreatic tumors through a loco-regional route. We have taken advantage of the ductal network in the pancreas to retrogradelly inject adenoviruses through the common bile duct in two different mouse models of pancreatic carcinogenesis: The transgenic Ela-myc mice that develop mixed neoplasms displaying both acinar-like and duct-like neoplastic cells affecting the whole pancreas; and mice bearing PANC-1 and BxPC-3 orthotopic xenografts that constitute a model of localized human neoplastic tumors. We studied tumor targeting and the anticancer effects of newly thymidine kinase-engineered adenoviruses both in vitro and in vivo, and conducted comparative studies between intraductal or intravenous administration. Our data indicate that the intraductal delivery of adenovirus efficiently targets pancreatic tumors in the two mouse models. The in vivo application of AduPARTKT plus ganciclovir (GCV) treatment induced tumor regression in Ela-myc mice. Moreover, the intraductal injection of ICOVIR15-TKT oncolytic adenoviruses significantly improved mean survival of mice bearing PANC-1 and BxPC-3 pancreatic xenografts from 30 to 52 days and from 20 to 68 days respectively (p less than 0.0001) when combined with GCV. Of notice, both AduPARTKT and ICOVIR15-TKT antitumoral responses were stronger by ductal viral application than intravenously, in line with the 38-fold increase in pancreas transduction observed upon ductal administration. In summary our data show that cytotoxic adenoviruses retrogradelly injected to the pancreas can be a feasible approach to treat localized pancreatic tumors.

  8. Thymic stromal lymphopoietin fosters human breast tumor growth by promoting type 2 inflammation

    PubMed Central

    Pedroza-Gonzalez, Alexander; Xu, Kangling; Wu, Te-Chia; Aspord, Caroline; Tindle, Sasha; Marches, Florentina; Gallegos, Michael; Burton, Elizabeth C.; Savino, Daniel; Hori, Toshiyuki; Tanaka, Yuetsu; Zurawski, Sandra; Zurawski, Gerard; Bover, Laura; Liu, Yong-Jun; Banchereau, Jacques

    2011-01-01

    The human breast tumor microenvironment can display features of T helper type 2 (Th2) inflammation, and Th2 inflammation can promote tumor development. However, the molecular and cellular mechanisms contributing to Th2 inflammation in breast tumors remain unclear. Here, we show that human breast cancer cells produce thymic stromal lymphopoietin (TSLP). Breast tumor supernatants, in a TSLP-dependent manner, induce expression of OX40L on dendritic cells (DCs). OX40L+ DCs are found in primary breast tumor infiltrates. OX40L+ DCs drive development of inflammatory Th2 cells producing interleukin-13 and tumor necrosis factor in vitro. Antibodies neutralizing TSLP or OX40L inhibit breast tumor growth and interleukin-13 production in a xenograft model. Thus, breast cancer cell–derived TSLP contributes to the inflammatory Th2 microenvironment conducive to breast tumor development by inducing OX40L expression on DCs. PMID:21339324

  9. Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors.

    PubMed

    Monsky, Wayne L; Mouta Carreira, Carla; Tsuzuki, Yoshikazu; Gohongi, Takeshi; Fukumura, Dai; Jain, Rakesh K

    2002-04-01

    The host microenvironment differs between primary and metastatic sites, affecting gene expression and various physiological functions. Here we show the differences in the physiological parameters between orthotopic primary and metastatic breast tumor xenografts using intravital microscopy and reveal the relationship between angiogenic gene expression and microvascular functions in vivo. ZR75-1, a human estrogen-dependent mammary carcinoma, was implanted into the mammary fat pad (primary site) of ovariectomized SCID female mice carrying estrogen pellets. The same tumor line was also grown in the cranial window (metastasis site). When tumors reached the diameter of 2.5 mm, angiogenesis, hemodynamics, and vascular permeability were measured by intravital microscopy, and expression of angiogenic growth factors was determined by quantitative reverse transcription-PCR. ZR75-1 tumors grown in the mammary fat pad had higher microvascular permeability but lower vascular density than the same tumors grown in the cranial window (2.5- and 0.7-fold, respectively). There was no significant difference in RBC velocity, vessel diameter, blood flow rate, and shear rate between two sites. The levels of vascular endothelial growth factor (VEGF), its receptors VEGFR1 and VEGFR2, and angiopoietin-1 mRNA tended to be higher in the mammary fat pad tumors than in the cranial tumors (1.5-, 1.5-, 3-, and 2-fold, respectively). The primary breast cancer exhibited higher vascular permeability, but the cranial tumor showed more angiogenesis, suggesting that the cranial environment is leakage resistant but proangiogenic. Collectively, host microenvironment is an important determinant of tumor gene expression and microvascular functions, and, thus, orthotopic breast tumor models should be useful for obtaining clinically relevant information.

  10. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.

    PubMed

    Jiang, Shu-Heng; Li, Jun; Dong, Fang-Yuan; Yang, Jian-Yu; Liu, De-Jun; Yang, Xiao-Mei; Wang, Ya-Hui; Yang, Min-Wei; Fu, Xue-Liang; Zhang, Xiao-Xin; Li, Qing; Pang, Xiu-Feng; Huo, Yan-Miao; Li, Jiao; Zhang, Jun-Feng; Lee, Ho-Young; Lee, Su-Jae; Qin, Wen-Xin; Gu, Jian-Ren; Sun, Yong-Wei; Zhang, Zhi-Gang

    2017-07-01

    Desmoplasia and poor vascularity cause severe metabolic stress in pancreatic ductal adenocarcinomas (PDACs). Serotonin (5-HT) is a neuromodulator with neurotransmitter and neuroendocrine functions that contributes to tumorigenesis. We investigated the role of 5-HT signaling in the growth of pancreatic tumors. We measured the levels of proteins that regulate 5-HT synthesis, packaging, and degradation in pancreata from Kras G12D/+ /Trp53 R172H/+ /Pdx1-Cre (KPC) mice, which develop pancreatic tumors, as well as in PDAC cell lines and a tissue microarray containing 81 human PDAC samples. We also analyzed expression levels of proteins involved in 5-HT synthesis and degradation by immunohistochemical analysis of a tissue microarray containing 311 PDAC specimens, and associated expression levels with patient survival times. 5-HT level in 14 matched PDAC tumor and non-tumor tissues were analyzed by ELISA. PDAC cell lines were incubated with 5-HT and cell survival and apoptosis were measured. We analyzed expression of the 5-HT receptor HTR2B in PDAC cells and effects of receptor agonists and antagonists, as well as HTR2B knockdown with small hairpin RNAs. We determined the effects of 5-HT stimulation on gene expression profiles of BxPC-3 cells. Regulation of glycolysis by 5-HT signaling via HTR2B was assessed by immunofluorescence and immunoprecipitation analyses, as well as by determination of the extracellular acid ratio, glucose consumption, and lactate production. Primary PDACs, with or without exposure to SB204741 (a selective antagonist of HTR2B), were grown as xenograft tumors in mice, and SB204741 was administered to tumor-bearing KPC mice; tumor growth and metabolism were measured by imaging analyses. In immunohistochemical analysis of a tissue microarray of PDAC specimens, increased levels of TPH1 and decreased level of MAOA, which regulate 5-HT synthesis and degradation, correlated with stage and size of PDACs and shorter patient survival time. We found levels

  11. Orthotopic glioblastoma stem-like cell xenograft model in mice to evaluate intra-arterial delivery of bevacizumab: from bedside to bench.

    PubMed

    Burkhardt, Jan-Karl; Hofstetter, Christoph P; Santillan, Alejandro; Shin, Benjamin J; Foley, Conor P; Ballon, Douglas J; Pierre Gobin, Y; Boockvar, John A

    2012-11-01

    Bevacizumab (BV), a humanized monocolonal antibody directed against vascular endothelial growth factor (VEGF), is a standard intravenous (IV) treatment for recurrent glioblastoma multiforme (GBM), that has been introduced recently as an intra-arterial (IA) treatment modality in humans. Since preclinical models have not been reported, we sought to develop a tumor stem cell (TSC) xenograft model to investigate IA BV delivery in vivo. Firefly luciferase transduced patient TSC were injected into the cortex of 35 nude mice. Tumor growth was monitored weekly using bioluminescence imaging. Mice were treated with either intraperitoneal (IP) or IA BV, with or without blood-brain barrier disruption (BBBD), or with IP saline injection (controls). Tumor tissue was analyzed using immunohistochemistry and western blot techniques. Tumor formation occurred in 31 of 35 (89%) mice with a significant signal increase over time (p=0.018). Post mortem histology revealed an infiltrative growth of TSC xenografts in a similar pattern compared to the primary human GBM. Tumor tissue analyzed at 24 hours after treatment revealed that IA BV treatment with BBBD led to a significantly higher intratumoral BV concentration compared to IA BV alone, IP BV or controls (p<0.05). Thus, we have developed a TSC-based xenograft mouse model that allows us to study IA chemotherapy. However, further studies are needed to analyze the treatment effects after IA BV to assess tumor progression and overall animal survival. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Resveratrol Enhances Antitumor Activity of TRAIL in Prostate Cancer Xenografts through Activation of FOXO Transcription Factor

    PubMed Central

    Ganapathy, Suthakar; Chen, Qinghe; Singh, Karan P.; Shankar, Sharmila; Srivastava, Rakesh K.

    2010-01-01

    Background Resveratrol (3, 4′, 5 tri-hydroxystilbene), a naturally occurring polyphenol, exhibits anti-inflammatory, antioxidant, cardioprotective and antitumor activities. We have recently shown that resveratrol can enhance the apoptosis-inducing potential of TRAIL in prostate cancer cells through multiple mechanisms in vitro. Therefore, the present study was designed to validate whether resveratrol can enhance the apoptosis-inducing potential of TRAIL in a xenograft model of prostate cancer. Methodology/Principal Findings Resveratrol and TRAIL alone inhibited growth of PC-3 xenografts in nude mice by inhibiting tumor cell proliferation (PCNA and Ki67 staining) and inducing apoptosis (TUNEL staining). The combination of resveratrol and TRAIL was more effective in inhibiting tumor growth than single agent alone. In xenografted tumors, resveratrol upregulated the expressions of TRAIL-R1/DR4, TRAIL-R2/DR5, Bax and p27/K IP1, and inhibited the expression of Bcl-2 and cyclin D1. Treatment of mice with resveratrol and TRAIL alone inhibited angiogenesis (as demonstrated by reduced number of blood vessels, and VEGF and VEGFR2 positive cells) and markers of metastasis (MMP-2 and MMP-9). The combination of resveratrol with TRAIL further inhibited number of blood vessels in tumors, and circulating endothelial growth factor receptor 2-positive endothelial cells than single agent alone. Furthermore, resveratrol inhibited the cytoplasmic phosphorylation of FKHRL1 resulting in its enhanced activation as demonstrated by increased DNA binding activity. Conclusions/Significance These data suggest that resveratrol can enhance the apoptosis-inducing potential of TRAIL by activating FKHRL1 and its target genes. The ability of resveratrol to inhibit tumor growth, metastasis and angiogenesis, and enhance the therapeutic potential of TRAIL suggests that resveratrol alone or in combination with TRAIL can be used for the management of prostate cancer. PMID:21209944

  13. A novel method to visually determine the intracellular pH of xenografted tumor in vivo by utilizing fluorescent protein as an indicator.

    PubMed

    Tanaka, Shotaro; Harada, Hiroshi; Hiraoka, Masahiro

    2015-09-04

    The alkalization of intracellular pH (pHin) advances together with enhancement of aerobic glycolysis within tumor cells (the Warburg effect), and that is responsible for the progression of tumor malignancy together with hypoxia and angiogenesis. But how they correlate each other during tumor growth is poorly understood, partly due to the lack of suitable imaging methods. In present study, we propose a novel method to visually determine the pHin of tumor xenograft model from fluorescent image ratios. We utilized tandemly-linked two fluorescent proteins as a pH indicator; yellow fluorescent protein (YFP, pH sensitive) as an indicator, and red fluorescent protein (RFP, pH insensitive) as a reference. This method can eliminate the influence of optical factors from tissue as well as of the diverse expression level of pH indicator in the grafted cells. In addition, that can be operated by filter-based fluorescent imagers that are generally used in small animal study. The efficacy of the pH indicator, RFP-YFP, was confirmed by studies using recombinant protein in vitro and HeLa cells expressing RFP-YFP in vivo. Furthermore, we prepared nude mice subcutaneously xenografted HeLa cells expressing RFP-YFP cells as tumor model. The image ratios (YFP/RFP) of the tumor at the day 5 after surgery clearly showed the heterogeneous distribution of diverse pHin cells in the tumor tissue. Concomitantly acquired angiography using near-infrared fluorescence (680 nm for emission) also indicated that the relative alkaline pHin cells located in the region far from tumor vessels in which tumor aerobic glycolysis would be facilitated by progression of hypoxia and nutrient starvation. Applying the present method for a multi-wavelength imaging concerning pO2 and/or nutrient starvation states in addition to pHin and angiogenesis would provide valuable information about complicated alteration of tumoral cell states during tumorigenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The Selective PI3K Inhibitor XL147 (SAR245408) Inhibits Tumor Growth and Survival and Potentiates the Activity of Chemotherapeutic Agents in Preclinical Tumor Models.

    PubMed

    Foster, Paul; Yamaguchi, Kyoko; Hsu, Pin P; Qian, Fawn; Du, Xiangnan; Wu, Jianming; Won, Kwang-Ai; Yu, Peiwen; Jaeger, Christopher T; Zhang, Wentao; Marlowe, Charles K; Keast, Paul; Abulafia, Wendy; Chen, Jason; Young, Jenny; Plonowski, Artur; Yakes, F Michael; Chu, Felix; Engell, Kelly; Bentzien, Frauke; Lam, Sanh T; Dale, Stephanie; Yturralde, Olivia; Matthews, David J; Lamb, Peter; Laird, A Douglas

    2015-04-01

    Dysregulation of PI3K/PTEN pathway components, resulting in hyperactivated PI3K signaling, is frequently observed in various cancers and correlates with tumor growth and survival. Resistance to a variety of anticancer therapies, including receptor tyrosine kinase (RTK) inhibitors and chemotherapeutic agents, has been attributed to the absence or attenuation of downregulating signals along the PI3K/PTEN pathway. Thus, PI3K inhibitors have therapeutic potential as single agents and in combination with other therapies for a variety of cancer indications. XL147 (SAR245408) is a potent and highly selective inhibitor of class I PI3Ks (α, β, γ, and δ). Moreover, broad kinase selectivity profiling of >130 protein kinases revealed that XL147 is highly selective for class I PI3Ks over other kinases. In cellular assays, XL147 inhibits the formation of PIP3 in the membrane, and inhibits phosphorylation of AKT, p70S6K, and S6 in multiple tumor cell lines with diverse genetic alterations affecting the PI3K pathway. In a panel of tumor cell lines, XL147 inhibits proliferation with a wide range of potencies, with evidence of an impact of genotype on sensitivity. In mouse xenograft models, oral administration of XL147 results in dose-dependent inhibition of phosphorylation of AKT, p70S6K, and S6 with a duration of action of at least 24 hours. Repeat-dose administration of XL147 results in significant tumor growth inhibition in multiple human xenograft models in nude mice. Administration of XL147 in combination with chemotherapeutic agents results in antitumor activity in xenograft models that is enhanced over that observed with the corresponding single agents. ©2015 American Association for Cancer Research.

  15. Imaging Axl expression in pancreatic and prostate cancer xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimmagadda, Sridhar, E-mail: snimmag1@jhmi.edu; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287; Pullambhatla, Mrudula

    2014-01-10

    Highlights: •Axl is overexpressed in a variety of cancers. •Axl overexpression confers invasive phenotype. •Axl imaging would be useful for therapeutic guidance and monitoring. •Axl expression imaging is demonstrated in pancreatic and prostate cancer xenografts. •Graded levels of Axl expression imaging is feasible. -- Abstract: The receptor tyrosine kinase Axl is overexpressed in and leads to patient morbidity and mortality in a variety of cancers. Axl–Gas6 interactions are critical for tumor growth, angiogenesis and metastasis. The goal of this study was to investigate the feasibility of imaging graded levels of Axl expression in tumors using a radiolabeled antibody. We radiolabeledmore » anti-human Axl (Axl mAb) and control IgG1 antibodies with {sup 125}I with high specific radioactivity and radiochemical purity, resulting in an immunoreactive fraction suitable for in vivo studies. Radiolabeled antibodies were investigated in severe combined immunodeficient mice harboring subcutaneous CFPAC (Axl{sup high}) and Panc1 (Axl{sup low}) pancreatic cancer xenografts by ex vivo biodistribution and imaging. Based on these results, the specificity of [{sup 125}I]Axl mAb was also validated in mice harboring orthotopic Panc1 or CFPAC tumors and in mice harboring subcutaneous 22Rv1 (Axl{sup low}) or DU145 (Axl{sup high}) prostate tumors by ex vivo biodistribution and imaging studies at 72 h post-injection of the antibody. Both imaging and biodistribution studies demonstrated specific and persistent accumulation of [{sup 125}I]Axl mAb in Axl{sup high} (CFPAC and DU145) expression tumors compared to the Axl{sup low} (Panc1 and 22Rv1) expression tumors. Axl expression in these tumors was further confirmed by immunohistochemical studies. No difference in the uptake of radioactivity was observed between the control [{sup 125}I]IgG1 antibody in the Axl{sup high} and Axl{sup low} expression tumors. These data demonstrate the feasibility of imaging Axl expression in

  16. Comparative analyses of gene copy number and mRNA expression in GBM tumors and GBM xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, J. Graeme; Yeh, Ru-Fang; Ray, Amrita

    2009-04-03

    Development of model systems that recapitulate the molecular heterogeneity observed among glioblastoma multiforme (GBM) tumors will expedite the testing of targeted molecular therapeutic strategies for GBM treatment. In this study, we profiled DNA copy number and mRNA expression in 21 independent GBM tumor lines maintained as subcutaneous xenografts (GBMX), and compared GBMX molecular signatures to those observed in GBM clinical specimens derived from the Cancer Genome Atlas (TCGA). The predominant copy number signature in both tumor groups was defined by chromosome-7 gain/chromosome-10 loss, a poor-prognosis genetic signature. We also observed, at frequencies similar to that detected in TCGA GBM tumors,more » genomic amplification and overexpression of known GBM oncogenes, such as EGFR, MDM2, CDK6, and MYCN, and novel genes, including NUP107, SLC35E3, MMP1, MMP13, and DDX1. The transcriptional signature of GBMX tumors, which was stable over multiple subcutaneous passages, was defined by overexpression of genes involved in M phase, DNA replication, and chromosome organization (MRC) and was highly similar to the poor-prognosis mitosis and cell-cycle module (MCM) in GBM. Assessment of gene expression in TCGA-derived GBMs revealed overexpression of MRC cancer genes AURKB, BIRC5, CCNB1, CCNB2, CDC2, CDK2, and FOXM1, which form a transcriptional network important for G2/M progression and/or checkpoint activation. Our study supports propagation of GBM tumors as subcutaneous xenografts as a useful approach for sustaining key molecular characteristics of patient tumors, and highlights therapeutic opportunities conferred by this GBMX tumor panel for testing targeted therapeutic strategies for GBM treatment.« less

  17. Progesterone is essential for maintenance and growth of uterine leiomyoma.

    PubMed

    Ishikawa, Hiroshi; Ishi, Kazutomo; Serna, Vanida Ann; Kakazu, Rafael; Bulun, Serdar E; Kurita, Takeshi

    2010-06-01

    Uterine leiomyomata (ULs) represent the most common tumor in women and can cause abnormal uterine bleeding, large pelvic masses, and recurrent pregnancy loss. Although the dependency of UL growth on ovarian steroids is well established, the relative contributions of 17beta-estradiol and progesterone are yet to be clarified. Conventionally, estradiol has been considered the primary stimulus for UL growth, and studies with cell culture and animal models support this concept. In contrast, no research model has clearly demonstrated a requirement of progesterone in UL growth despite accumulating clinical evidence for the essential role of progesterone in this tumor. To elucidate the functions of ovarian steroids in UL, we established a xenograft model reflecting characteristics of these tumors by grafting human UL tissue beneath the renal capsule of immunodeficient mice. Leiomyoma xenografts increased in size in response to estradiol plus progesterone through cell proliferation and volume increase in cellular and extracellular components. The xenograft growth induced by estradiol plus progesterone was blocked by the antiprogestin RU486. Furthermore, the volume of established UL xenografts decreased significantly after progesterone withdrawal. Surprisingly, treatment with estradiol alone neither increased nor maintained the tumor size. Although not mitogenic by itself, estradiol induced expression of progesterone receptor and supported progesterone action on leiomyoma xenografts. Taken together, our findings define that volume maintenance and growth of human UL are progesterone dependent.

  18. Therapeutic cure against human tumor xenografts in nude mice by a microtubule stabilization agent, fludelone, via parenteral or oral route.

    PubMed

    Chou, Ting-Chao; Dong, Huajin; Zhang, Xiuguo; Tong, William P; Danishefsky, Samuel J

    2005-10-15

    Epothilones, 16-membered macrolides isolated from a myxobacterium in soil, exert their antitumor effect, like Taxol, by induction of microtubule polymerization and microtubule stabilization. They are effective against tumor cells that are resistant to Taxol or vinblastine. We recently designed, via molecular editing and total synthesis, a new class of epothilones represented by 26-trifluoro-(E)-9,10-dehydro-12,13-desoxy-epothilone B (Fludelone), which has emerged as a lead candidate for clinical development. Treatment of nude mice bearing MX-1 human mammary carcinoma xenografts (as large as 3.4% body weight) with Fludelone (6-hour i.v. infusion, 25 mg/kg, q3d x 5, q3d x 4) led to complete disappearance and de facto "cure" (i.e., remission without a relapse for over 15% of the average life span of 2 years). The toxicities induced by bolus i.v. injection could be avoided through prolonged i.v. infusion, which allowed for a 10-fold increase in maximal tolerated dose. Complete remission of MX-1 xenografts was achieved with only one third of this maximal tolerated dose. Parallel studies with Taxol and Fludelone [20 mg/kg, 6-hour i.v. infusion (q2d x 4) x3] against HCT-116 human colon carcinoma xenografts revealed that both drugs achieved tumor remission; however, all Taxol-treated mice relapsed in approximately 1.3 months, whereas the Fludelone-treated mice were cured without any relapse for over 7 months. Furthermore, tumor remission was achieved by Fludelone against SK-OV-3 (ovary), PC-3 (prostate), and the Taxol-resistant CCRF-CEM/Taxol (leukemia) xenograft tumors. Most remarkably, p.o. administration of Fludelone (30 mg/kg, q2d x 7, q2d x 9, q2d x 5) against MX-1 xenografts achieved a nonrelapsing cure for as long as 8.4 months. The above results indicate that Fludelone is a highly promising compound for cancer chemotherapeutics.

  19. Rapamycin targeting mTOR and hedgehog signaling pathways blocks human rhabdomyosarcoma growth in xenograft murine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaylani, Samer Z.; Xu, Jianmin; Srivastava, Ritesh K.

    Graphical abstract: Intervention of poorly differentiated RMS by rapamycin: In poorly differentiated RMS, rapamycin blocks mTOR and Hh signaling pathways concomitantly. This leads to dampening in cell cycle regulation and induction of apoptosis. This study provides a rationale for the therapeutic intervention of poorly differentiated RMS by treating patients with rapamycin alone or in combination with other chemotherapeutic agents. -- Highlights: •Rapamycin abrogates RMS tumor growth by modulating proliferation and apoptosis. •Co-targeting mTOR/Hh pathways underlie the molecular basis of effectiveness. •Reduction in mTOR/Hh pathways diminish EMT leading to reduced invasiveness. -- Abstract: Rhabdomyosarcomas (RMS) represent the most common childhood soft-tissuemore » sarcoma. Over the past few decades outcomes for low and intermediate risk RMS patients have slowly improved while patients with metastatic or relapsed RMS still face a grim prognosis. New chemotherapeutic agents or combinations of chemotherapies have largely failed to improve the outcome. Based on the identification of novel molecular targets, potential therapeutic approaches in RMS may offer a decreased reliance on conventional chemotherapy. Thus, identification of effective therapeutic agents that specifically target relevant pathways may be particularly beneficial for patients with metastatic and refractory RMS. The PI3K/AKT/mTOR pathway has been found to be a potentially attractive target in RMS therapy. In this study, we provide evidence that rapamycin (sirolimus) abrogates growth of RMS development in a RMS xenograft mouse model. As compared to a vehicle-treated control group, more than 95% inhibition in tumor growth was observed in mice receiving parenteral administration of rapamycin. The residual tumors in rapamycin-treated group showed significant reduction in the expression of biomarkers indicative of proliferation and tumor invasiveness. These tumors also showed enhanced apoptosis

  20. An allosteric Akt inhibitor effectively blocks Akt signaling and tumor growth with only transient effects on glucose and insulin levels in vivo

    PubMed Central

    Cherrin, Craig; Haskell, Kathleen; Howell, Bonnie; Jones, Raymond; Leander, Karen; Robinson, Ronald; Watkins, Aubrey; Bilodeau, Mark; Hoffman, Jacob; Sanderson, Philip; Hartman, George; Mahan, Elizabeth; Prueksaritanont, Thomayant; Jiang, Guoqiang; She, Qing-Bai; Rosen, Neal; Sepp-Lorenzino, Laura; Defeo-Jones, Deborah; Huber, Hans E.

    2010-01-01

    The PI3K-Akt pathway is dysregulated in the majority of solid tumors. Pharmacological inhibition of Akt is a promising strategy for treating tumors resistant to growth factor receptor antagonists due to mutations in PI3K or PTEN. We have developed allosteric, isozyme-specific inhibitors of Akt activity and activation, as well as ex vivo kinase assays to measure inhibition of individual Akt isozymes in tissues. Here we describe the relationship between PK, Akt inhibition, hyperglycemia and tumor efficacy for a selective inhibitor of Akt1 and Akt2 (AKTi). In nude mice, AKTi treatment caused transient insulin resistance and reversible, dose-dependent hyperglycemia and hyperinsulinemia. Akt1 and Akt2 phosphorylation was inhibited in mouse lung with EC50 values of 1.6 and 7 μM, respectively, and with similar potency in other tissues and xenograft tumors. Weekly subcutaneous dosing of AKTi resulted in dose-dependent inhibition of LNCaP prostate cancer xenografts, an AR-dependent tumor with PTEN deletion and constitutively activated Akt. Complete tumor growth inhibition was achieved at 200 mpk, a dose that maintained inhibition of Akt1 and Akt2 of greater than 80% and 50%, respectively, for at least 12 hours in xenograft tumor and mouse lung. Hyperglycemia could be controlled by reducing Cmax, while maintaining efficacy in the LNCaP model, but not by insulin administration. AKTi treatment was well tolerated, without weight loss or gross toxicities. These studies supported the rationale for clinical development of allosteric Akt inhibitors and provide the basis for further refining of pharmacokinetic properties and dosing regimens of this class of inhibitors. PMID:20139722

  1. Light at night activates IGF-1R/PDK1 signaling and accelerates tumor growth in human breast cancer xenografts.

    PubMed

    Wu, Jinghai; Dauchy, Robert T; Tirrell, Paul C; Wu, Steven S; Lynch, Darin T; Jitawatanarat, Potjana; Burrington, Christine M; Dauchy, Erin M; Blask, David E; Greene, Michael W

    2011-04-01

    Regulation of diurnal and circadian rhythms and cell proliferation are coupled in all mammals, including humans. However, the molecular mechanisms by which diurnal and circadian rhythms regulate cell proliferation are relatively poorly understood. In this study, we report that tumor growth in nude rats bearing human steroid receptor-negative MCF-7 breast tumors can be significantly accelerated by exposing the rats to light at night (LAN). Under normal conditions of an alternating light/dark cycle, proliferating cell nuclear antigen (PCNA) levels in tumors were maximal in the early light phase but remained at very low levels throughout the daily 24-hour cycle period monitored. Surprisingly, PCNA was expressed in tumors continually at a high level throughout the entire 24-hour period in LAN-exposed nude rats. Daily fluctuations of Akt and mitogen activated protein kinase activation in tumors were also disrupted by LAN. These fluctuations did not track with PCNA changes, but we found that activation of the Akt stimulatory kinase phosphoinositide-dependent protein kinase 1 (PDK1) directly correlated with PCNA levels. Expression of insulin-like growth factor 1 receptor (IGF-1R), an upstream signaling molecule for PDK1, also correlated with fluctuations of PDK1/PCNA in the LAN group. In addition, circulating IGF-1 concentrations were elevated in LAN-exposed tumor-bearing nude rats. Finally, RNAi-mediated knockdown of PDK1 led to a reduction in PCNA expression and cell proliferation in vitro and tumor growth in vivo, indicating that PDK1 regulates breast cancer growth in a manner correlated with PCNA expression. Taken together, our findings demonstrate that LAN exposure can accelerate tumor growth in vivo, in part through continuous activation of IGF-1R/PDK1 signaling.

  2. Anticancer activity of TTAC-0001, a fully human anti-vascular endothelial growth factor receptor 2 (VEGFR-2/KDR) monoclonal antibody, is associated with inhibition of tumor angiogenesis

    PubMed Central

    Kim, Dong Geon; Jin, Younggeon; Jin, Juyoun; Yang, Heekyoung; Joo, Kyeung Min; Lee, Weon Sup; Shim, Sang Ryeol; Kim, Sung-Woo; Yoo, Jinsang; Lee, Sang Hoon; Yoo, Jin-San; Nam, Do-Hyun

    2015-01-01

    Vascular endothelial growth factor (VEGF) and its receptors are considered the primary cause of tumor-induced angiogenesis. Specifically, VEGFR-2/kinase insert domain receptor (KDR) is part of the major signaling pathway that plays a significant role in tumor angiogenesis, which is associated with the development of various types of tumor and metastasis. In particular, KDR is involved in tumor angiogenesis as well as cancer cell growth and survival. In this study, we evaluated the therapeutic potential of TTAC-0001, a fully human antibody against VEGFR-2/KDR. To assess the efficacy of the antibody and pharmacokinetic (PK) relationship in vivo, we tested the potency of TTAC-0001 in glioblastoma and colorectal cancer xenograft models. Antitumor activity of TTAC-0001 in preclinical models correlated with tumor growth arrest, induction of tumor cell apoptosis, and inhibition of angiogenesis. We also evaluated the combination effect of TTAC-0001 with a chemotherapeutic agent in xenograft models. We were able to determine the relationship between PK and the efficacy of TTAC-0001 through in vivo single-dose PK study. Taken together, our data suggest that targeting VEGFR-2 with TTAC-0001 could be a promising approach for cancer treatment. PMID:26325365

  3. A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice.

    PubMed

    Fokidis, H Bobby; Yieng Chin, Mei; Ho, Victor W; Adomat, Hans H; Soma, Kiran K; Fazli, Ladan; Nip, Ka Mun; Cox, Michael; Krystal, Gerald; Zoubeidi, Amina; Tomlinson Guns, Emma S

    2015-06-01

    Dietary factors continue to preside as dominant influences in prostate cancer prevalence and progression-free survival following primary treatment. We investigated the influence of a low carbohydrate diet, compared to a typical Western diet, on prostate cancer (PCa) tumor growth in vivo. LNCaP xenograft tumor growth was studied in both intact and castrated mice, representing a more advanced castration resistant PCa (CRPC). No differences in LNCaP tumor progression (total tumor volume) with diet was observed for intact mice (P = 0.471) however, castrated mice on the Low Carb diet saw a statistically significant reduction in tumor growth rate compared with Western diet fed mice (P = 0.017). No correlation with serum PSA was observed. Steroid profiles, alongside serum cholesterol and cholesteryl ester levels, were significantly altered by both diet and castration. Specifically, DHT concentration with the Low Carb diet was 58% that of the CRPC-bearing mice on the Western diet. Enzymes in the steroidogenesis pathway were directly impacted and tumors isolated from intact mice on the Low Carb diet had higher AKR1C3 protein levels and lower HSD17B2 protein levels than intact mice on the Western diet (ARK1C3: P = 0.074; HSD17B2: P = 0.091, with α = 0.1). In contrast, CRPC tumors from mice on Low Carb diets had higher concentrations of both HSD17B2 (P = 0.016) and SRD5A1 (P = 0.058 with α = 0.1) enzymes. There was no correlation between tumor growth in castrated mice for Low Carb diet versus Western diet and (a) serum insulin (b) GH serum levels (c) insulin receptor (IR) or (d) IGF-1R in tumor tissue. Intact mice fed Western diet had higher serum insulin which was associated with significantly higher blood glucose and tumor tissue IR. We conclude that both diet and castration have a significant impact on the endocrinology of mice bearing LNCaP xenograft tumors. The observed effects of diet on cholesterol and steroid regulation impact tumor tissue DHT specifically and are

  4. FH535, a β-catenin pathway inhibitor, represses pancreatic cancer xenograft growth and angiogenesis

    PubMed Central

    Gong, Fei-Ran; Zhou, Binhua P.; Lian, Lian; Shen, Bairong; Chen, Kai; Duan, Weiming; Wu, Meng-Yao; Tao, Min; Li, Wei

    2016-01-01

    The WNT/β-catenin pathway plays an important role in pancreatic cancer carcinogenesis. We evaluated the correlation between aberrant β-catenin pathway activation and the prognosis pancreatic cancer, and the potential of applying the β-catenin pathway inhibitor FH535 to pancreatic cancer treatment. Meta-analysis and immunohistochemistry showed that abnormal β-catenin pathway activation was associated with unfavorable outcome. FH535 repressed pancreatic cancer xenograft growth in vivo. Gene Ontology (GO) analysis of microarray data indicated that target genes responding to FH535 participated in stemness maintenance. Real-time PCR and flow cytometry confirmed that FH535 downregulated CD24 and CD44, pancreatic cancer stem cell (CSC) markers, suggesting FH535 impairs pancreatic CSC stemness. GO analysis of β-catenin chromatin immunoprecipitation sequencing data identified angiogenesis-related gene regulation. Immunohistochemistry showed that higher microvessel density correlated with elevated nuclear β-catenin expression and unfavorable outcome. FH535 repressed the secretion of the proangiogenic cytokines vascular endothelial growth factor (VEGF), interleukin (IL)-6, IL-8, and tumor necrosis factor-α, and also inhibited angiogenesis in vitro and in vivo. Protein and mRNA microarrays revealed that FH535 downregulated the proangiogenic genes ANGPT2, VEGFR3, IFN-γ, PLAUR, THPO, TIMP1, and VEGF. FH535 not only represses pancreatic CSC stemness in vitro, but also remodels the tumor microenvironment by repressing angiogenesis, warranting further clinical investigation. PMID:27323403

  5. Mass spectrometric imaging of red fluorescent protein in breast tumor xenografts.

    PubMed

    Chughtai, Kamila; Jiang, Lu; Post, Harm; Winnard, Paul T; Greenwood, Tiffany R; Raman, Venu; Bhujwalla, Zaver M; Heeren, Ron M A; Glunde, Kristine

    2013-05-01

    Mass spectrometric imaging (MSI) in combination with electrospray mass spectrometry (ESI-MS) is a powerful technique for visualization and identification of a variety of different biomolecules directly from thin tissue sections. As commonly used tools for molecular reporting, fluorescent proteins are molecular reporter tools that have enabled the elucidation of a multitude of biological pathways and processes. To combine these two approaches, we have performed targeted MS analysis and MALDI-MSI visualization of a tandem dimer (td)Tomato red fluorescent protein, which was expressed exclusively in the hypoxic regions of a breast tumor xenograft model. For the first time, a fluorescent protein has been visualized by both optical microscopy and MALDI-MSI. Visualization of tdTomato by MALDI-MSI directly from breast tumor tissue sections will allow us to simultaneously detect and subsequently identify novel molecules present in hypoxic regions of the tumor. MS and MALDI-MSI of fluorescent proteins, as exemplified in our study, is useful for studies in which the advantages of MS and MSI will benefit from the combination with molecular approaches that use fluorescent proteins as reporters.

  6. Nutritional and supranutritional levels of selenate differentially suppress prostate tumor growth in adult but not young nude mice.

    PubMed

    Holmstrom, Alexandra; Wu, Ryan T Y; Zeng, Huawei; Lei, K Y; Cheng, Wen-Hsing

    2012-09-01

    The inhibitory effect of oral methylseleninic acid or methylselenocysteine administration on cancer cell xenograft development in nude mice is well characterized; however, less is known about the efficacy of selenate and age on selenium chemoprevention. In this study, we tested whether selenate and duration on diets would regulate prostate cancer xenograft in nude mice. Thirty-nine homozygous NU/J nude mice were fed a selenium-deficient, Torula yeast basal diet alone (Se-) or supplemented with 0.15 (Se) or 1.0 (Se+) mg selenium/kg (as Na₂SeO₄) for 6 months in Experiment 1 and for 4 weeks in Experiment 2, followed by a 47-day PC-3 prostate cancer cell xenograft on the designated diet. In Experiment 1, the Se- diet enhanced the initial tumor development on days 11-17, whereas the Se+ diet suppressed tumor growth on days 35-47 in adult nude mice. Tumors grown in Se- mice were loosely packed and showed increased necrosis and inflammation as compared to those in Se and Se+ mice. In Experiment 2, dietary selenium did not affect tumor development or histopathology throughout the time course. In both experiments, postmortem plasma selenium concentrations in Se and Se+ mice were comparable and were twofold greater than those in Se- mice. Taken together, dietary selenate at nutritional and supranutritional levels differentially inhibit tumor development in adult, but not young, nude mice engrafted with PC-3 prostate cancer cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Setting up a wide panel of patient-derived tumor xenografts of non-small cell lung cancer by improving the preanalytical steps.

    PubMed

    Ilie, Marius; Nunes, Manoel; Blot, Lydia; Hofman, Véronique; Long-Mira, Elodie; Butori, Catherine; Selva, Eric; Merino-Trigo, Ana; Vénissac, Nicolas; Mouroux, Jérôme; Vrignaud, Patricia; Hofman, Paul

    2015-02-01

    With the ongoing need to improve therapy for non-small cell lung cancer (NSCLC) there has been increasing interest in developing reliable preclinical models to test novel therapeutics. Patient-derived tumor xenografts (PDX) are considered to be interesting candidates. However, the establishment of such model systems requires highly specialized research facilities and introduces logistic challenges. We aimed to establish an extensive well-characterized panel of NSCLC xenograft models in the context of a long-distance research network after careful control of the preanalytical steps. One hundred fresh surgically resected NSCLC specimens were shipped in survival medium at room temperature from a hospital-integrated biobank to animal facilities. Within 24 h post-surgery, tumor fragments were subcutaneously xenografted into immunodeficient mice. PDX characterization was performed by histopathological, immunohistochemical, aCGH and next-generation sequencing approaches. For this model system, the tumor take rate was 35%, with higher rates for squamous carcinoma (60%) than for adenocarcinoma (13%). Patients for whom PDX tumors were obtained had a significantly shorter disease-free survival (DFS) compared to patients for whom no PDX tumors (P = 0.039) were obtained. We established a large panel of PDX NSCLC models with a high frequency of mutations (29%) in EGFR, KRAS, NRAS, MEK1, BRAF, PTEN, and PI3KCA genes and with gene amplification (20%) of c-MET and FGFR1. This new patient-derived NSCLC xenograft collection, established regardless of the considerable time required and the distance between the clinic and the animal facilities, recapitulated the histopathology and molecular diversity of NSCLC and provides stable and reliable preclinical models for human lung cancer research. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  8. Evaluation of (188)Re-labeled NGR-VEGI protein for radioimaging and radiotherapy in mice bearing human fibrosarcoma HT-1080 xenografts.

    PubMed

    Ma, Wenhui; Shao, Yahui; Yang, Weidong; Li, Guiyu; Zhang, Yingqi; Zhang, Mingru; Zuo, Changjing; Chen, Kai; Wang, Jing

    2016-07-01

    Vascular endothelial growth inhibitor (VEGI) is an anti-angiogenic protein, which includes three isoforms: VEGI-174, VEGI-192, and VEGI-251. The NGR (asparagine-glycine-arginine)-containing peptides can specifically bind to CD13 (Aminopeptidase N) receptor which is overexpressed in angiogenic blood vessels and tumor cells. In this study, a novel NGR-VEGI fusion protein was prepared and labeled with (188)Re for radioimaging and radiotherapy in mice bearing human fibrosarcoma HT-1080 xenografts. Single photon emission computerized tomography (SPECT) imaging results revealed that (188)Re-NGR-VEGI exhibits good tumor-to-background contrast in CD13-positive HT-1080 tumor xenografts. The CD13 specificity of (188)Re-NGR-VEGI was further verified by significant reduction of tumor uptake in HT-1080 tumor xenografts with co-injection of the non-radiolabeled NGR-VEGI protein. The biodistribution results demonstrated good tumor-to-muscle ratio (4.98 ± 0.25) of (188)Re-NGR-VEGI at 24 h, which is consistent with the results from SPECT imaging. For radiotherapy, 18.5 MBq of (188)Re-NGR-VEGI showed excellent tumor inhibition effect in HT-1080 tumor xenografts with no observable toxicity, which was confirmed by the tumor size change and hematoxylin and eosin (H&E) staining of major mouse organs. In conclusion, these data demonstrated that (188)Re-NGR-VEGI has the potential as a theranostic agent for CD13-targeted tumor imaging and therapy.

  9. Chronophin is a glial tumor modifier involved in the regulation of glioblastoma growth and invasiveness.

    PubMed

    Schulze, M; Fedorchenko, O; Zink, T G; Knobbe-Thomsen, C B; Kraus, S; Schwinn, S; Beilhack, A; Reifenberger, G; Monoranu, C M; Sirén, A-L; Jeanclos, E; Gohla, A

    2016-06-16

    Glioblastoma is the most aggressive primary brain tumor in adults. Although the rapid recurrence of glioblastomas after treatment is a major clinical challenge, the relationships between tumor growth and intracerebral spread remain poorly understood. We have identified the cofilin phosphatase chronophin (gene name: pyridoxal phosphatase, PDXP) as a glial tumor modifier. Monoallelic PDXP loss was frequent in four independent human astrocytic tumor cohorts and increased with tumor grade. We found that aberrant PDXP promoter methylation can be a mechanism leading to further chronophin downregulation in glioblastomas, which correlated with shorter glioblastoma patient survival. Moreover, we observed an inverse association between chronophin protein expression and cofilin phosphorylation levels in glioma tissue samples. Chronophin-deficient glioblastoma cells showed elevated cofilin phosphorylation, an increase in polymerized actin, a higher directionality of cell migration, and elevated in vitro invasiveness. Tumor growth of chronophin-depleted glioblastoma cells xenografted into the immunodeficient mouse brain was strongly impaired. Our study suggests a mechanism whereby the genetic and epigenetic alterations of PDXP resulting in altered chronophin expression may regulate the interplay between glioma cell proliferation and invasion.

  10. 184AA3: a xenograft model of ER+ breast adenocarcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hines, William C.; Kuhn, Irene; Thi, Kate

    Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER +) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized. Xenografts of one cell line, 184AA3, consistently formed ER + adenocarcinomas that had a high proliferative rate and other features consistentmore » with “luminal B” intrinsic subtype. Squamous and spindle cell/mesenchymal differentiation was absent, in stark contrast to other cell lines that we examined or others have reported. We explored intratumoral heterogeneity produced by 184AA3 by immunophenotyping xenograft tumors and cultured cells, and characterized marker expression by immunofluorescence and flow cytometry. A CD44 High  subpopulation was discovered, yet their tumor forming ability was far less than CD44 Low  cells. Single cell cloning revealed the phenotypic plasticity of 184AA3, consistent with the intratumoral heterogeneity observed in xenografts. Characterization of ER expression in cultures revealed ER protein and signaling is intact, yet when estrogen was depleted in culture, and in vivo, it did not impact cell or tumor growth, analogous to therapeutically resistant ER +  cancers. In conclusion, this model is appropriate for studies of the etiology of ovarian hormone independent adenocarcinomas, for identification of therapeutic targets, predictive testing, and drug development.« less

  11. 184AA3: a xenograft model of ER+ breast adenocarcinoma

    DOE PAGES

    Hines, William C.; Kuhn, Irene; Thi, Kate; ...

    2015-12-12

    Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER +) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized. Xenografts of one cell line, 184AA3, consistently formed ER + adenocarcinomas that had a high proliferative rate and other features consistentmore » with “luminal B” intrinsic subtype. Squamous and spindle cell/mesenchymal differentiation was absent, in stark contrast to other cell lines that we examined or others have reported. We explored intratumoral heterogeneity produced by 184AA3 by immunophenotyping xenograft tumors and cultured cells, and characterized marker expression by immunofluorescence and flow cytometry. A CD44 High  subpopulation was discovered, yet their tumor forming ability was far less than CD44 Low  cells. Single cell cloning revealed the phenotypic plasticity of 184AA3, consistent with the intratumoral heterogeneity observed in xenografts. Characterization of ER expression in cultures revealed ER protein and signaling is intact, yet when estrogen was depleted in culture, and in vivo, it did not impact cell or tumor growth, analogous to therapeutically resistant ER +  cancers. In conclusion, this model is appropriate for studies of the etiology of ovarian hormone independent adenocarcinomas, for identification of therapeutic targets, predictive testing, and drug development.« less

  12. The Volume of Three-Dimensional Cultures of Cancer Cells InVitro Influences Transcriptional Profile Differences and Similarities with Monolayer Cultures and Xenografted Tumors.

    PubMed

    Boghaert, Erwin R; Lu, Xin; Hessler, Paul E; McGonigal, Thomas P; Oleksijew, Anatol; Mitten, Michael J; Foster-Duke, Kelly; Hickson, Jonathan A; Santo, Vitor E; Brito, Catarina; Uziel, Tamar; Vaidya, Kedar S

    2017-09-01

    Improving the congruity of preclinical models with cancer as it is manifested in humans is a potential way to mitigate the high attrition rate of new cancer therapies in the clinic. In this regard, three-dimensional (3D) tumor cultures in vitro have recently regained interest as they have been acclaimed to have higher similarity to tumors in vivo than to cells grown in monolayers (2D). To identify cancer functions that are active in 3D rather than in 2D cultures, we compared the transcriptional profiles (TPs) of two non-small cell lung carcinoma cell lines, NCI-H1650 and EBC-1 grown in both conditions to the TP of xenografted tumors. Because confluence, diameter or volume can hypothetically alter TPs, we made intra- and inter-culture comparisons using samples with defined dimensions. As projected by Ingenuity Pathway Analysis (IPA), a limited number of signal transduction pathways operational in vivo were better represented by 3D than by 2D cultures in vitro. Growth of 2D and 3D cultures as well as xenografts induced major changes in the TPs of these 3 modes of culturing. Alterations of transcriptional network activation that were predicted to evolve similarly during progression of 3D cultures and xenografts involved the following functions: hypoxia, proliferation, cell cycle progression, angiogenesis, cell adhesion, and interleukin activation. Direct comparison of TPs of 3D cultures and xenografts to monolayer cultures yielded up-regulation of networks involved in hypoxia, TGF and Wnt signaling as well as regulation of epithelial mesenchymal transition. Differences in TP of 2D and 3D cancer cell cultures are subject to progression of the cultures. The emulation of the predicted cell functions in vivo is therefore not only determined by the type of culture in vitro but also by the confluence or diameter of the 2D or 3D cultures, respectively. Consequently, the successful implementation of 3D models will require phenotypic characterization to verify the relevance of

  13. Mitogen-activated protein kinase inhibition reduces mucin 2 production and mucinous tumor growth.

    PubMed

    Dilly, Ashok K; Song, Xinxin; Zeh, Herbert J; Guo, Zong S; Lee, Yong J; Bartlett, David L; Choudry, Haroon A

    2015-10-01

    Excessive accumulation of mucin 2 (MUC2) protein (a gel-forming secreted mucin) within the peritoneal cavity is the major cause of morbidity and mortality in pseudomyxoma peritonei (PMP), a unique mucinous malignancy of the appendix. Mitogen-activated protein kinase (MAPK) signaling pathway is upregulated in PMP and has been shown to modulate MUC2 promoter activity. We hypothesized that targeted inhibition of the MAPK pathway would be a novel, effective, and safe therapeutic strategy to reduce MUC2 production and mucinous tumor growth. We tested RDEA119, a specific MEK1/2 (MAPK extracellular signal-regulated kinase [ERK] kinase) inhibitor, in MUC2-secreting LS174T cells, human PMP explant tissue, and in a unique intraperitoneal murine xenograft model of PMP. RDEA119 reduced ERK1/2 phosphorylation and inhibited MUC2 messenger RNA and protein expression in vitro. In the xenograft model, chronic oral therapy with RDEA119 inhibited mucinous tumor growth in an MAPK pathway-dependent manner and this translated into a significant improvement in survival. RDEA119 downregulated phosphorylated ERK1/2 and nuclear factor κB p65 protein signaling and reduced activating protein 1 (AP1) transcription factor binding to the MUC2 promoter in LS174T cells. This study provides a preclinical rationale for the use of MEK inhibitors to treat patients with PMP. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. [Effect of DJ-1 silencing by RNA interference on growth of xenografted human laryngeal squamous cell carcinoma Hep-2 cells in nude mice].

    PubMed

    Shen, Zhisen; Deng, Hongxia; Ye, Dong; Zhang, Jian; Qiu, Shijie; Li, Qun; Cui, Xiang

    2016-05-25

    Objective: To investigate the effect of silencing DJ-1 on xenografted human laryngeal squamous cell carcinoma (LSCC) Hep-2 cells in nude mice. Methods: Xenograft model of human LSCC was established by subcutaneous transplantation of Hep-2 cells in 24 nude mice. The LSCC-bearing nude mice were randomly divided into 3 groups ( n =8 in each):DJ-1 siRNA low dose group and DJ-1 siRNA high dose group were injected in tumors with 20 μg of DJ-1 siRNA or 40 μg of DJ-1 siRNA in 50 μL, respectively; control group was injected with 5% glucose solution in 50 μL, twice a week for 3 weeks. The weight and size of tumors were measured before injection. The animals were sacrificed 48 h after the final treatment, and the tumors were harvested and weighed. The apoptosis and proliferation of tumor cells were determined; the expressions of Caspase-3 and Ki-67 in tumor specimens were detected with immunohistochemistry. The expression of DJ-1, PTEN, survivin mRNA and protein in tumor tissues were detected by RT-PCR and Western blotting, respectively. Results: Tumor weight in low dose group[(0.66±0.15)g] and high dose group[(0.48±0.11)g] were significantly lower than that in control group[(0.83±0.16)g, all P <0.05]. The inhibition rates of low dose group and high dose group were (20.48±0.18)% and (42.16±0.13)%, respectively. Immunohistochemistry showed that the expression of Caspase-3 was increased and Ki-67 was reduced in tumor specimens, compared with the control group (all P <0.05). RT-PCR and Western blot results showed that in low dose group and high dose group the mRNA and protein expression of DJ-1 and survivin significantly decreased (all P <0.05), while PTEN mRNA and protein content increased (all P <0.05). Conclusion: High dose DJ-1 siRNA can inhibit the tumor growth in human LSCC xenograft nude mouse model, which indicates that down-regulating DJ-1 and survivin, and up-regulating PTEN expression may lead to blockage of PI3K-PKB/Akt signaling pathway and promoting tumor

  15. Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype.

    PubMed

    Hirt, Ulrich A; Waizenegger, Irene C; Schweifer, Norbert; Haslinger, Christian; Gerlach, Daniel; Braunger, Jürgen; Weyer-Czernilofsky, Ulrike; Stadtmüller, Heinz; Sapountzis, Ioannis; Bader, Gerd; Zoephel, Andreas; Bister, Bojan; Baum, Anke; Quant, Jens; Kraut, Norbert; Garin-Chesa, Pilar; Adolf, Günther R

    2018-02-23

    Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, has attracted interest as a target for pharmacological intervention in malignant diseases. Here, we describe BI 853520, a novel ATP-competitive inhibitor distinguished by high potency and selectivity. In vitro, the compound inhibits FAK autophosphorylation in PC-3 prostate carcinoma cells with an IC 50 of 1 nmol/L and blocks anchorage-independent proliferation of PC-3 cells with an EC 50 of 3 nmol/L, whereas cells grown in conventional surface culture are 1000-fold less sensitive. In mice, the compound shows long half-life, high volume of distribution and high oral bioavailability; oral dosing of immunodeficient mice bearing subcutaneous PC-3 prostate adenocarcinoma xenografts resulted in rapid, long-lasting repression of FAK autophosphorylation in tumor tissue. Daily oral administration of BI 853520 to nude mice at doses of 50 mg/kg was well tolerated for prolonged periods of time. In a diverse panel of 16 subcutaneous adenocarcinoma xenograft models in nude mice, drug treatment resulted in a broad spectrum of outcomes, ranging from group median tumor growth inhibition values >100% and tumor regression in subsets of animals to complete lack of sensitivity. Biomarker analysis indicated that high sensitivity is linked to a mesenchymal tumor phenotype, initially defined by loss of E-cadherin expression and subsequently substantiated by gene set enrichment analysis. Further, we obtained microRNA expression profiles for 13 models and observed that hsa-miR-200c-3p expression is strongly correlated with efficacy (R 2  = 0.889). BI 853520 is undergoing evaluation in early clinical trials.

  16. Autophagy inhibition synergistically enhances anti-cancer efficacy of RAMBA, VN/12-1 in SKBR-3 cells and tumor xenografts

    PubMed Central

    Godbole, Abhijit M.; Purushottamachar, Puranik; Martin, Marlena S.; Daskalakis, Constantine; Njar, Vincent C. O.

    2012-01-01

    VN/12-1 is a novel retinoic acid metabolism blocking agent (RAMBA) discovered in our laboratory. The purpose of the study was to elucidate the molecular mechanism of VN/12-1’s anticancer activity in breast cancer cell lines and in tumor xenografts. We investigated the effects of VN/12-1 on induction of autophagy andapoptosis in SKBR-3 cells. Further, we also examined the impact of pharmacological and genomic inhibition of autophagy on VN/12-1’s anti-cancer activity. Finally, the anti-tumor activity of VN/12-1 was evaluated as a single agent and in combination with autophagy inhibitor chloroquine (CHL) in an SKBR-3 mouse xenograft model. Short exposure of low dose (< 10 µM) of VN/12-1 induced endoplasmic reticulum stress (ERS), autophagy and inhibits G1-S phase transition and caused a protective response. However, higher dose of VN/12-1 initiates apoptosis in vitro. Inhibition of autophagy using either pharmacological inhibitors or RNA interference of Beclin-1 enhanced anti-cancer activity induced by VN/12-1 in SKBR-3 cells by triggering apoptosis. Importantly, VN/12-1 (5 mg/kg twice weekly) and the combination of VN/12-1 (5 mg/kg twice weekly) + chloroquine (50 mg/kg twice weekly) significantly suppressed established SKBR-3 tumor growth by 81.4% (p < 0.001 vs. control) and 96.2% (p < 0.001 vs. control), respectively. Our novel findings suggest that VN/12-1 may be useful as a single agent or in combination with autophagy inhibitors for treating human breast cancers. Our data provides a strong rationale for clinical evaluation of VN/12-1 as single agent or in combination with autophagy inhibitors. PMID:22334589

  17. A Versatile Technique for the In Vivo Imaging of Human Tumor Xenografts Using Near-Infrared Fluorochrome-Conjugated Macromolecule Probes

    PubMed Central

    Suemizu, Hiroshi; Kawai, Kenji; Higuchi, Yuichiro; Hashimoto, Haruo; Ogura, Tomoyuki; Itoh, Toshio; Sasaki, Erika; Nakamura, Masato

    2013-01-01

    Here, we present a versatile method for detecting human tumor xenografts in vivo, based on the enhanced permeability and retention (EPR) effect, using near-infrared (NIR) fluorochrome-conjugated macromolecule probes. Bovine serum albumin (BSA) and two immunoglobulins—an anti-human leukocyte antigen (HLA) monoclonal antibody and isotype control IgG2a—were labeled with XenoLight CF770 fluorochrome and used as NIR-conjugated macromolecule probes to study whole-body imaging in a variety of xenotransplantation mouse models. NIR fluorescent signals were observed in subcutaneously transplanted BxPC-3 (human pancreatic cancer) cells and HCT 116 (colorectal cancer) cells within 24 h of NIR-macromolecule probe injection, but the signal from the fluorochrome itself or from the NIR-conjugated small molecule (glycine) injection was not observed. The accuracy of tumor targeting was confirmed by the localization of the NIR-conjugated immunoglobulin within the T-HCT 116 xenograft (in which the orange-red fluorescent protein tdTomato was stably expressed by HCT 116 cells) in the subcutaneous transplantation model. However, there was no significant difference in the NIR signal intensity of the region of interest between the anti-HLA antibody group and the isotype control group in the subcutaneous transplantation model. Therefore, the antibody accumulation within the tumor in vivo is based on the EPR effect. The liver metastasis generated by an intrasplenic injection of T-HCT 116 cells was clearly visualized by the NIR-conjugated anti-HLA probe but not by the orange-red fluorescent signal derived from the tdTomato reporter. This result demonstrated the superiority of the NIR probes over the tdTomato reporter protein at enhancing tissue penetration. In another xenograft model, patient-derived xenografts (PDX) of LC11-JCK (human non-small cell lung cancer) were successfully visualized using the NIR-conjugated macromolecule probe without any genetic modification. These results

  18. Tumor-targeting Salmonella typhimurium A1-R regresses an osteosarcoma in a patient-derived xenograft model resistant to a molecular-targeting drug.

    PubMed

    Murakami, Takashi; Igarashi, Kentaro; Kawaguchi, Kei; Kiyuna, Tasuku; Zhang, Yong; Zhao, Ming; Hiroshima, Yukihiko; Nelson, Scott D; Dry, Sarah M; Li, Yunfeng; Yanagawa, Jane; Russell, Tara; Federman, Noah; Singh, Arun; Elliott, Irmina; Matsuyama, Ryusei; Chishima, Takashi; Tanaka, Kuniya; Endo, Itaru; Eilber, Fritz C; Hoffman, Robert M

    2017-01-31

    Osteosarcoma occurs mostly in children and young adults, who are treated with multiple agents in combination with limb-salvage surgery. However, the overall 5-year survival rate for patients with recurrent or metastatic osteosarcoma is 20-30% which has not improved significantly over 30 years. Refractory patients would benefit from precise individualized therapy. We report here that a patient-derived osteosarcoma growing in a subcutaneous nude-mouse model was regressed by tumor-targeting Salmonella typhimurium A1-R (S. typhimurium A1-R, p<0.001 compared to untreated control). The osteosarcoma was only partially sensitive to the molecular-targeting drug sorafenib, which did not arrest its growth. S. typhimurium A1-R was significantly more effective than sorafenib (P <0.001). S. typhimurium grew in the treated tumors and caused extensive necrosis of the tumor tissue. These data show that S. typhimurium A1-R is powerful therapy for an osteosarcoma patient-derived xenograft model.

  19. Tumor-targeting Salmonella typhimurium A1-R regresses an osteosarcoma in a patient-derived xenograft model resistant to a molecular-targeting drug

    PubMed Central

    Murakami, Takashi; Igarashi, Kentaro; Kawaguchi, Kei; Kiyuna, Tasuku; Zhang, Yong; Zhao, Ming; Hiroshima, Yukihiko; Nelson, Scott D.; Dry, Sarah M.; Li, Yunfeng; Yanagawa, Jane; Russell, Tara; Federman, Noah; Singh, Arun; Elliott, Irmina; Matsuyama, Ryusei; Chishima, Takashi; Tanaka, Kuniya; Endo, Itaru; Eilber, Fritz C.; Hoffman, Robert M.

    2017-01-01

    Osteosarcoma occurs mostly in children and young adults, who are treated with multiple agents in combination with limb-salvage surgery. However, the overall 5-year survival rate for patients with recurrent or metastatic osteosarcoma is 20-30% which has not improved significantly over 30 years. Refractory patients would benefit from precise individualized therapy. We report here that a patient-derived osteosarcoma growing in a subcutaneous nude-mouse model was regressed by tumor-targeting Salmonella typhimurium A1-R (S. typhimurium A1-R, p<0.001 compared to untreated control). The osteosarcoma was only partially sensitive to the molecular-targeting drug sorafenib, which did not arrest its growth. S. typhimurium A1-R was significantly more effective than sorafenib (P <0.001). S. typhimurium grew in the treated tumors and caused extensive necrosis of the tumor tissue. These data show that S. typhimurium A1-R is powerful therapy for an osteosarcoma patient-derived xenograft model. PMID:28030831

  20. Blockade of Tumor-Expressed PD-1 promotes lung cancer growth

    PubMed Central

    Du, Shisuo; McCall, Neal; Park, Kyewon; Guan, Qing; Fontina, Paolo; Ertel, Adam; Zhan, Tingting; Dicker, Adam P.; Lu, Bo

    2018-01-01

    ABSTRACT Anti-PD-1 immunotherapy is the standard of care for treating many patients with non-small cell lung cancer (NSCLC), yet mechanisms of treatment failure are emerging. We present a case of NSCLC, who rapidly progressed during a trial (NCT02318771) combining palliative radiotherapy and pembrolizumab. Planned tumor biopsy demonstrated PD-1 expression by NSCLC cells. We validated this observation by detecting PD-1 transcript in lung cancer cells and by co-localizing PD-1 and lung cancer-specific markers in resected lung cancer tissues. We further investigated the biological role of cancer-intrinsic PD-1 in a mouse lung cancer cell line, M109. Knockout or antibody blockade of PD-1 enhanced M109 viability in-vitro, while PD-1 overexpression and exposure to recombinant PD-L1 diminished viability. PD-1 blockade accelerated growth of M109-xenograft tumors with increased proliferation and decreased apoptosis in immune-deficient mice. This represents a first-time report of NSCLC-intrinsic PD-1 expression and a potential mechanism by which PD-1 blockade may promote cancer growth. PMID:29632720

  1. Blockade of Tumor-Expressed PD-1 promotes lung cancer growth.

    PubMed

    Du, Shisuo; McCall, Neal; Park, Kyewon; Guan, Qing; Fontina, Paolo; Ertel, Adam; Zhan, Tingting; Dicker, Adam P; Lu, Bo

    2018-01-01

    Anti-PD-1 immunotherapy is the standard of care for treating many patients with non-small cell lung cancer (NSCLC), yet mechanisms of treatment failure are emerging. We present a case of NSCLC, who rapidly progressed during a trial (NCT02318771) combining palliative radiotherapy and pembrolizumab. Planned tumor biopsy demonstrated PD-1 expression by NSCLC cells. We validated this observation by detecting PD-1 transcript in lung cancer cells and by co-localizing PD-1 and lung cancer-specific markers in resected lung cancer tissues. We further investigated the biological role of cancer-intrinsic PD-1 in a mouse lung cancer cell line, M109. Knockout or antibody blockade of PD-1 enhanced M109 viability in-vitro, while PD-1 overexpression and exposure to recombinant PD-L1 diminished viability. PD-1 blockade accelerated growth of M109-xenograft tumors with increased proliferation and decreased apoptosis in immune-deficient mice. This represents a first-time report of NSCLC-intrinsic PD-1 expression and a potential mechanism by which PD-1 blockade may promote cancer growth.

  2. [Inhibitory effects of luteolin on human gastric carcinoma xenografts in nude mice and its mechanism].

    PubMed

    Lu, Xue-ying; Li, Yan-hong; Xiao, Xiang-wen; Li, Xiao-bo

    2013-01-08

    To explore the in vivo anticancer effects of luteolin with BGC-823 gastric carcinoma xenografts in nude mice and elucidate its mechanism. After modeling of gastric carcinoma xenografts in nude mice, 40 BALB/c (nu/nu) nude mice were randomly divided into 5 groups (n = 8 each). And an intraperitoneal injection of luteolin was administered at 10 mg/kg (low-dose), 20 mg/kg (middle-dose) and 40 mg/kg (high-dose) groups. And 5-fluorouracil (30 mg/kg) and control groups were also established. The growth curves of xenografts in nude mice were drawn and weight inhibition rates measured. The morphological features were detected by hematoxylin and eosin staining. And the protein expression levels of vascular endothelial growth factor A (VEGF-A) and matrix metalloproteinase 9 (MMP-9) were measured by immunohistochemistry. In vivo tumor formation test showed that tumor volume in nude mice treated with luteolin was smaller than that of control group. Tumor weights of high-dose luteolin group were lighter than those of the control ((0.29 ± 0.01) vs (0.38 ± 0.03) g). And the difference was statistically significant (P < 0.01). The rate of tumor inhibition in high-dose luteolin group was up to 24.87%. Lymphocytic invasion of tumor tissue was observed under light microscope in the treatment groups. Results of immunohistochemistry showed the positive cell integral of VEGF in middle and high-dose luteolin groups were 1.25 ± 0.17 and 1.00 ± 0.07 respectively. Both were significantly lower than that of control group (1.50 ± 0.15, both P < 0.05). The positive cell integral of MMP-9 in high-dose luteolin group was markedly lower than that of control group (3.75 ± 1.43 vs 9.00 ± 1.08, P < 0.01). Luteolin can effectively inhibit the in vivo growth of gastric tumor. The mechanism may be correlated with the stimulation of immune response and the down-regulated expressions of VEGF-A and MMP-9.

  3. Hwanggeumchal sorghum Induces Cell Cycle Arrest, and Suppresses Tumor Growth and Metastasis through Jak2/STAT Pathways in Breast Cancer Xenografts

    PubMed Central

    Lim, Eun Joung; Joung, Youn Hee; Hong, Dae Young; Park, Eui U.; Park, Seung Hwa; Choi, Soo Keun; Moon, Eon-Soo; Cho, Byung Wook; Park, Kyung Do; Lee, Hak Kyo; Kim, Myong-Jo; Park, Dong-Sik; Yang, Young Mok

    2012-01-01

    Background Cancer is one of the highly virulent diseases known to humankind with a high mortality rate. Breast cancer is the most common cancer in women worldwide. Sorghum is a principal cereal food in many parts of the world, and is critical in folk medicine of Asia and Africa. In the present study, we analyzed the effects of HSE in metastatic breast cancer. Methodology/Principal Findings Preliminary studies conducted on MDA-MB 231 and MCF-7 xenograft models showed tumor growth suppression by HSE. Western blotting studies conducted both in vivo and in vitro to check the effect of HSE in Jak/STAT pathways. Anti-metastatic effects of HSE were confirmed using both MDA-MB 231 and MCF-7 metastatic animal models. These studies showed that HSE can modulate Jak/STAT pathways, and it hindered the STAT5b/IGF-1R and STAT3/VEGF pathways not only by down-regulating the expression of these signal molecules and but also by preventing their phosphorylation. The expression of angiogenic factors like VEGF, VEGF-R2 and cell cycle regulators like cyclin D, cyclin E, and pRb were found down-regulated by HSE. In addition, it also targets Brk, p53, and HIF-1α for anti-cancer effects. HSE induced G1 phase arrest and migration inhibition in MDA-MB 231 cells. The metastasis of breast cancer to the lungs also found blocked by HSE in the metastatic animal model. Conclusions/Significance Usage of HS as a dietary supplement is an inexpensive natural cancer therapy, without any side effects. We strongly recommend the use of HS as an edible therapeutic agent as it possesses tumor suppression, migration inhibition, and anti-metastatic effects on breast cancer. PMID:22792362

  4. Improved decision making for prioritizing tumor targeting antibodies in human xenografts: Utility of fluorescence imaging to verify tumor target expression, antibody binding and optimization of dosage and application schedule.

    PubMed

    Dobosz, Michael; Haupt, Ute; Scheuer, Werner

    2017-01-01

    Preclinical efficacy studies of antibodies targeting a tumor-associated antigen are only justified when the expression of the relevant antigen has been demonstrated. Conventionally, antigen expression level is examined by immunohistochemistry of formalin-fixed paraffin-embedded tumor tissue section. This method represents the diagnostic "gold standard" for tumor target evaluation, but is affected by a number of factors, such as epitope masking and insufficient antigen retrieval. As a consequence, variances and discrepancies in histological staining results can occur, which may influence decision-making and therapeutic outcome. To overcome these problems, we have used different fluorescence-labeled therapeutic antibodies targeting human epidermal growth factor receptor (HER) family members and insulin-like growth factor-1 receptor (IGF1R) in combination with fluorescence imaging modalities to determine tumor antigen expression, drug-target interaction, and biodistribution and tumor saturation kinetics in non-small cell lung cancer xenografts. For this, whole-body fluorescence intensities of labeled antibodies, applied as a single compound or antibody mixture, were measured in Calu-1 and Calu-3 tumor-bearing mice, then ex vivo multispectral tumor tissue analysis at microscopic resolution was performed. With the aid of this simple and fast imaging method, we were able to analyze the tumor cell receptor status of HER1-3 and IGF1R, monitor the antibody-target interaction and evaluate the receptor binding sites of anti-HER2-targeting antibodies. Based on this, the most suitable tumor model, best therapeutic antibody, and optimal treatment dosage and application schedule was selected. Predictions drawn from obtained imaging data were in excellent concordance with outcome of conducted preclinical efficacy studies. Our results clearly demonstrate the great potential of combined in vivo and ex vivo fluorescence imaging for the preclinical development and characterization of

  5. Impact of MLH1 expression on tumor evolution after curative surgical tumor resection in a murine orthotopic xenograft model for human MSI colon cancer.

    PubMed

    Meunier, Katy; Ferron, Marianne; Calmel, Claire; Fléjou, Jean-François; Pocard, Marc; Praz, Françoise

    2017-09-01

    Colorectal cancers (CRCs) displaying microsatellite instability (MSI) most often result from MLH1 deficiency. The aim of this study was to assess the impact of MLH1 expression per se on tumor evolution after curative surgical resection using a xenograft tumor model. Transplantable tumors established with the human MLH1-deficient HCT116 cell line and its MLH1-complemented isogenic clone, mlh1-3, were implanted onto the caecum of NOD/SCID mice. Curative surgical resection was performed at day 10 in half of the animals. The HCT116-derived tumors were more voluminous compared to the mlh1-3 ones (P = .001). Lymph node metastases and peritoneal carcinomatosis occurred significantly more often in the group of mice grafted with HCT116 (P = .007 and P = .035, respectively). Mlh1-3-grafted mice did not develop peritoneal carcinomatosis or liver metastasis. After surgical resection, lymph node metastases only arose in the group of mice implanted with HCT116 and the rate of cure was significantly lower than in the mlh1-3 group (P = .047). The murine orthotopic xenograft model based on isogenic human CRC cell lines allowed us to reveal the impact of MLH1 expression on tumor evolution in mice who underwent curative surgical resection and in mice whose tumor was left in situ. Our data indicate that the behavior of MLH1-deficient CRC is not only governed by mutations arising in genes harboring microsatellite repeated sequences but also from their defect in MLH1 as such. © 2017 Wiley Periodicals, Inc.

  6. Senescence from glioma stem cell differentiation promotes tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouchi, Rie; Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550; Okabe, Sachiko

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such asmore » IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.« less

  7. Dual mTORC1/2 blockade inhibits glioblastoma brain tumor initiating cells in vitro and in vivo and synergizes with temozolomide to increase orthotopic xenograft survival.

    PubMed

    Luchman, H Artee; Stechishin, Owen D M; Nguyen, Stephanie A; Lun, Xueqing Q; Cairncross, J Gregory; Weiss, Samuel

    2014-11-15

    The EGFR and PI3K/mTORC1/2 pathways are frequently altered in glioblastoma (GBM), but pharmacologic targeting of EGFR and PI3K signaling has failed to demonstrate efficacy in clinical trials. Lack of relevant models has rendered it difficult to assess whether targeting these pathways might be effective in molecularly defined subgroups of GBMs. Here, human brain tumor-initiating cell (BTIC) lines with different combinations of endogenous EGFR wild-type, EGFRvIII, and PTEN mutations were used to investigate response to the EGFR inhibitor gefitinib, mTORC1 inhibitor rapamycin, and dual mTORC1/2 inhibitor AZD8055 alone and in combination with temozolomide (TMZ) EXPERIMENTAL DESIGN: In vitro growth inhibition and cell death induced by gefitinib, rapamycin, AZD8055, and TMZ or combinations in human BTICs were assessed by alamarBlue, neurosphere, and Western blotting assays. The in vivo efficacy of AZD8055 was assessed in subcutaneous and intracranial BTIC xenografts. Kaplan-Meier survival studies were performed with AZD8055 and in combination with TMZ. We confirm that gefitinib and rapamycin have modest effects in most BTIC lines, but AZD8055 was highly effective at inhibiting Akt/mTORC2 activity and dramatically reduced the viability of BTICs regardless of their EGFR and PTEN mutational status. Systemic administration of AZD8055 effectively inhibited tumor growth in subcutaneous BTIC xenografts and mTORC1/2 signaling in orthotopic BTIC xenografts. AZD8055 was synergistic with the alkylating agent TMZ and significantly prolonged animal survival. These data suggest that dual inhibition of mTORC1/2 may be of benefit in GBM, including the subset of TMZ-resistant GBMs. ©2014 American Association for Cancer Research.

  8. Development of a novel preclinical pancreatic cancer research model: bioluminescence image-guided focal irradiation and tumor monitoring of orthotopic xenografts.

    PubMed

    Tuli, Richard; Surmak, Andrew; Reyes, Juvenal; Hacker-Prietz, Amy; Armour, Michael; Leubner, Ashley; Blackford, Amanda; Tryggestad, Erik; Jaffee, Elizabeth M; Wong, John; Deweese, Theodore L; Herman, Joseph M

    2012-04-01

    We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. BLI was correlated to positron emission tomography (PET)/computed tomography (CT) to estimate tumor dimensions. BLI and cone-beam CT (CBCT) were used to compare tumor centroid location and estimate setup error. BLI and CBCT fusion was performed to guide irradiation of tumors using the small animal radiation research platform (SARRP). DNA damage was assessed by γ-H2Ax staining. BLI was used to longitudinally monitor treatment response. Bioluminescence predicted tumor volume (R = 0.8984) and increased linearly as a function of time up to a 10-fold increase in tumor burden. BLI correlated with PET/CT and necropsy specimen in size (P < .05). Two-dimensional BLI centroid accuracy was 3.5 mm relative to CBCT. BLI-guided irradiated pancreatic tumors stained positively for γ-H2Ax, whereas surrounding normal tissues were spared. Longitudinal assessment of irradiated tumors with BLI revealed significant tumor growth delay of 20 days relative to controls. We have successfully applied the SARRP to a bioluminescent, orthotopic preclinical pancreas cancer model to noninvasively: 1) allow the identification of tumor burden before therapy, 2) facilitate image-guided focal radiation therapy, and 3) allow normalization of tumor burden and longitudinal assessment of treatment response.

  9. Comparison of planar, PET and well-counter measurements of total tumor radioactivity in a mouse xenograft model.

    PubMed

    Green, Michael V; Seidel, Jurgen; Williams, Mark R; Wong, Karen J; Ton, Anita; Basuli, Falguni; Choyke, Peter L; Jagoda, Elaine M

    2017-10-01

    Quantitative small animal radionuclide imaging studies are often carried out with the intention of estimating the total radioactivity content of various tissues such as the radioactivity content of mouse xenograft tumors exposed to putative diagnostic or therapeutic agents. We show that for at least one specific application, positron projection imaging (PPI) and PET yield comparable estimates of absolute total tumor activity and that both of these estimates are highly correlated with direct well-counting of these same tumors. These findings further suggest that in this particular application, PPI is a far more efficient data acquisition and processing methodology than PET. Forty-one athymic mice were implanted with PC3 human prostate cancer cells transfected with prostate-specific membrane antigen (PSMA (+)) and one additional animal (for a total of 42) with a control blank vector (PSMA (-)). All animals were injected with [ 18 F] DCFPyl, a ligand for PSMA, and imaged for total tumor radioactivity with PET and PPI. The tumors were then removed, assayed by well counting for total radioactivity and the values between these methods intercompared. PET, PPI and well-counter estimates of total tumor radioactivity were highly correlated (R 2 >0.98) with regression line slopes near unity (0.95xenograft tumor radioactivity can be measured with PET or PPI with an accuracy comparable to well counting if certain experimental and pharmacokinetic conditions are met. In this particular application, PPI is significantly more efficient than PET in making these measurements. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Long non-coding RNA CRNDE promotes tumor growth in medulloblastoma.

    PubMed

    Song, H; Han, L-M; Gao, Q; Sun, Y

    2016-06-01

    Medulloblastoma is the most common malignant brain tumor in children. Despite remarkable advances over the past decades, a novel therapeutic strategy is urgently required to increase long-term survival. This study aimed to understand the role of a long non-coding RNA (lncRNA), colorectal neoplasia differentially expressed (CRNDE), in medulloblastoma tumor growth. The transcript level of CRNDE was initially examined in dissected clinical tissues and cultured cancerous cells. Effects of CRNDE knockdown on cell viability and colony formation in vitro were assessed using the CCK-8 and colony formation assays, respectively. Cell cycle progression and survival were also determined after CRNDE knockdown. A xenograft mouse model of human medulloblastoma was established by injecting nude mice with medulloblastoma cells stably depleted of CRNDE expression. Our data suggest that transcript levels of CRNDE are elevated in clinical medulloblastoma tissues instead of in adjacent non-cancerous tissues. Knockdown of CRNDE significantly slowed cell proliferation rates and inhibited colony formation in Daoy and D341 cells. Tumor growth in vivo was also inhibited after CRNDE knockdown. Moreover, after knockdown of CRNDE, cell cycle progression was arrested in S phase and apoptosis was promoted by 15-20% in Daoy and D341 cells. In vivo data further showed that proliferating cell nuclei antigen (PCNA) was decreased, whereas the apoptosis initiator cleaved-caspase-3 was increased upon CRNDE knockdown in cancerous tissues from the mouse model. All these data suggest that CRNDE promotes tumor growth both in vitro and in vivo. This growth-promotion effect might be achieved via arresting cell cycle progression and inhibiting apoptosis. Therapeutics against CRNDE may be a novel strategy for the treatment of medulloblastoma.

  11. Long-term fluorescence lifetime imaging of a genetically encoded sensor for caspase-3 activity in mouse tumor xenografts

    NASA Astrophysics Data System (ADS)

    Zherdeva, Victoria; Kazachkina, Natalia I.; Shcheslavskiy, Vladislav; Savitsky, Alexander P.

    2018-03-01

    Caspase-3 is known for its role in apoptosis and programmed cell death regulation. We detected caspase-3 activation in vivo in tumor xenografts via shift of mean fluorescence lifetimes of a caspase-3 sensor. We used the genetically encoded sensor TR23K based on the red fluorescent protein TagRFP and chromoprotein KFP linked by 23 amino acid residues (TagRFP-23-KFP) containing a specific caspase cleavage DEVD motif to monitor the activity of caspase-3 in tumor xenografts by means of fluorescence lifetime imaging-Forster resonance energy transfer. Apoptosis was induced by injection of paclitaxel for A549 lung adenocarcinoma and etoposide and cisplatin for HEp-2 pharynx adenocarcinoma. We observed a shift in lifetime distribution from 1.6 to 1.9 ns to 2.1 to 2.4 ns, which indicated the activation of caspase-3. Even within the same tumor, the lifetime varied presumably due to the tumor heterogeneity and the different depth of tumor invasion. Thus, processing time-resolved fluorescence images allows detection of both the cleaved and noncleaved states of the TR23K sensor in real-time mode during the course of several weeks noninvasively. This approach can be used in drug screening, facilitating the development of new anticancer agents as well as improvement of chemotherapy efficiency and its adaptation for personal treatment.

  12. Contrast-enhanced ultrasound evaluation of pancreatic cancer xenografts in nude mice after irradiation with sub-threshold focused ultrasound for tumor ablation

    PubMed Central

    Wang, Rui; Guo, Qian; Chen, Yi Ni; Hu, Bing; Jiang, Li Xin

    2017-01-01

    We evaluated the efficacy of contrast-enhanced ultrasound for assessing tumors after irradiation with sub-threshold focused ultrasound (FUS) ablation in pancreatic cancer xenografts in nude mice. Thirty tumor-bearing nude mice were divided into three groups: Group A received sham irradiation, Group B received a moderate-acoustic energy dose (sub-threshold), and Group C received a high-acoustic energy dose. In Group B, B-mode ultrasound (US), color Doppler US, and dynamic contrast-enhanced ultrasound (DCE-US) studies were conducted before and after irradiation. After irradiation, tumor growth was inhibited in Group B, and the tumors shrank in Group C. In Group A, the tumor sizes were unchanged. In Group B, contrast-enhanced ultrasound (CEUS) images showed a rapid rush of contrast agent into and out of tumors before irradiation. After irradiation, CEUS revealed contrast agent perfusion only at the tumor periphery and irregular, un-perfused volumes of contrast agent within the tumors. DCE-US perfusion parameters, including peak intensity (PI) and area under the curve (AUC), had decreased 24 hours after irradiation. PI and AUC were increased 48 hours and 2weeks after irradiation. Time to peak (TP) and sharpness were increased 24 hours after irradiation. TP decreased at 48 hours and 2 weeks after irradiation. CEUS is thus an effective method for early evaluation after irradiation with sub-threshold FUS. PMID:28402267

  13. FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jun-Hai; Zhao, Chun-Liu; Ding, Lan-Bao

    2015-10-09

    The transcription factor forkhead box D3 (FOXD3), widely studied as a transcriptional repressor in embryogenesis, participates in the carcinogenesis of many cancers. However, the expression pattern and role of FOXD3 in non-small cell lung cancer (NSCLC) have not been well characterized. We report that FOXD3 is significantly downregulated in NSCLC cell lines and clinical tissues. FOXD3 overexpression significantly inhibits cell growth and results in G1 cell cycle arrest in NSCLC A549 and H1299 cells. In a xenograft tumor model, FOXD3 overexpression inhibits tumor growth and angiogenesis. Remarkably, expression of vascular endothelial growth factor (VEGF) was reduced in FOXD3 overexpression models bothmore » in vitro and in vivo. These findings suggest that FOXD3 plays a potential tumor suppressor role in NSCLC progression and represents a promising clinical prognostic marker and therapeutic target for this disease. - Highlights: • FOXD3 is downregulated in NSCLC cell lines and tissues. • FOXD3 overexpression inhibited cell proliferation in NSCLC cells. • FOXD3 overexpression led to decreased angiogenesis in NSCLC cells in vitro and in vivo.« less

  14. Monitoring of tumor growth and metastasis potential in MDA-MB-435s/ tk-luc human breast cancer xenografts

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Fang; Lin, Yi-Yu; Wang, Hsin-Ell; Liu, Ren-Shen; Pang, Fei; Hwang, Jeng-Jong

    2007-02-01

    Molecular imaging of reporter gene expression provides a rapid, sensitive and non-invasive monitoring of tumor behaviors. In this study, we reported the establishment of a novel animal model for longitudinal examination of tumor growth kinetics and metastatic spreading in vivo. The highly metastatic human breast carcinoma MDA-MB-435s cell line was engineered to stably express herpes simplex virus type 1 thymidine kinase (HSV-1- tk) and luciferase ( luc). Both 131I-FIAU and D-luciferin were used as reporter probes. For orthotopic tumor formation, MDA-MB-435s/ tk-luc cells were implanted into the first nipple of 6-week-old female NOD/SCID mice. For metastatic study, cells were injected via the lateral tail vein. Mice-bearing MDA-MB-435s/ tk-luc tumors were scanned for tumor growth and metastatsis using Xenogen IVIS50 system. Gamma scintigraphy and whole-body autoradiography were also applied to confirm the tumor localization. The results of bioluminescence imaging as well as histopathological finding showed that tumors could be detected in femur, spine, ovary, lungs, kidney, adrenal gland, lymph nodes and muscle at 16 weeks post i.v. injection, and correlated photons could be quantified. This MDA-MB-435s/ tk-luc human breast carcinoma-bearing mouse model combined with multimodalities of molecular imaging may facilitate studies on the molecular mechanisms of cancer invasion and metastasis.

  15. Cystatin E/M Suppresses Tumor Cell Growth through Cytoplasmic Retention of NF-κB

    PubMed Central

    Soh, Hendrick; Venkatesan, Natarajan; Veena, Mysore S.; Ravichandran, Sandhiya; Zinabadi, Alborz; Basak, Saroj K.; Parvatiyar, Kislay; Srivastava, Meera; Liang, Li-Jung; Gjertson, David W.; Torres, Jorge Z.; Moatamed, Neda A.

    2016-01-01

    We and others have shown that the cystatin E/M gene is inactivated in primary human tumors, pointing to its role as a tumor suppressor gene. However, the molecular mechanism of tumor suppression is not yet understood. Using plasmid-directed cystatin E/M gene overexpression, a lentivirus-mediated tetracycline-inducible vector system, and human papillomavirus 16 (HPV 16) E6 and E7 gene-immortalized normal human epidermal keratinocytes, we demonstrated intracellular and non-cell-autonomous apoptotic growth inhibition of tumor cell lines and that growth inhibition is associated with cytoplasmic retention of NF-κB. We further demonstrated decreased phosphorylation of IκB kinase (IKKβ) and IκBα in the presence of tumor necrosis factor alpha (TNF-α), confirming the role of cystatin E/M in the regulation of the NF-κB signaling pathway. Growth suppression of nude mouse xenograft tumors carrying a tetracycline-inducible vector system was observed with the addition of doxycycline in drinking water, confirming that the cystatin E/M gene is a tumor suppressor gene. Finally, immunohistochemical analyses of cervical carcinoma in situ and primary tumors have shown a statistically significant inverse relationship between the expression of cystatin E/M and cathepsin L and a direct relationship between the loss of cystatin E/M expression and nuclear expression of NF-κB. We therefore propose that the cystatin E/M suppressor gene plays an important role in the regulation of NF-κB. PMID:27090639

  16. Curcumin synergizes with 5-fluorouracil by impairing AMPK/ULK1-dependent autophagy, AKT activity and enhancing apoptosis in colon cancer cells with tumor growth inhibition in xenograft mice.

    PubMed

    Zhang, Pan; Lai, Ze-Lin; Chen, Hui-Fen; Zhang, Min; Wang, An; Jia, Tao; Sun, Wen-Qin; Zhu, Xi-Min; Chen, Xiao-Feng; Zhao, Zheng; Zhang, Jun

    2017-12-22

    -regulation of not only the phospho-Akt and phospho-mTOR expressions but the phospho-AMPK and phospho-ULK1 levels as well. The cellular activation of AMPK by addition of A-769662 to the pre-Cur combination resulted in reversed changes in expressions of the autophagy protein markers and apoptotic status compared to those of the pre-Cur combination treatment. The findings were validated in the xenograft mice, in which the tumor growth was significantly suppressed in the mice with 25-day combination treatment, and meanwhile expressions of the autophagy markers, P-AMPK and P-ULK1 were all reversely altered in line with those observed in HCT116 cells. Pre-treatment with curcumin followed by 5-Fu may mediate autophagy turnover both in vitro and in vivo via AMPK/ULK1-dependent autophagy inhibition and AKT modulation, which may account for the increased susceptibility of the colon cancer cells/xenograft to the cytotoxicity of 5-Fu.

  17. Loss of expression of the recycling receptor, FcRn, promotes tumor cell growth by increasing albumin consumption

    PubMed Central

    Khare, Priyanka; Schneider, Zita; Ober, Raimund J; Ward, Elizabeth Sally

    2017-01-01

    Tumor cells rely on high concentrations of amino acids to support their growth and proliferation. Although increased macropinocytic uptake and lysosomal degradation of the most abundant serum protein, albumin, in Ras-transformed cells can meet these demands, it is not understood how the majority of tumor cells that express wild type Ras achieve this. In the current study we reveal that the neonatal Fc receptor, FcRn, regulates tumor cell proliferation through the ability to recycle its ligand, albumin. By contrast with normal epithelial cells, we show that human FcRn is present at very low or undetectable levels in the majority of tumor cell lines analyzed. Remarkably, shRNA-mediated ablation of FcRn expression in an FcRn-positive tumor cell line results in a substantial growth increase of tumor xenografts, whereas enforced expression of this receptor by lentiviral transduction has the reverse effect. Moreover, intracellular albumin and glutamate levels are increased by the loss of FcRn-mediated recycling of albumin, combined with hypoalbuminemia in tumor-bearing mice. These studies identify a novel role for FcRn as a suppressor of tumor growth and have implications for the use of this receptor as a prognostic indicator and therapeutic target. PMID:27974681

  18. Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts

    PubMed Central

    Krauze, Michal T.; Noble, Charles O.; Kawaguchi, Tomohiro; Drummond, Daryl; Kirpotin, Dmitri B.; Yamashita, Yoji; Kullberg, Erika; Forsayeth, John; Park, John W.; Bankiewicz, Krystof S.

    2007-01-01

    We have previously shown that convection-enhanced delivery (CED) of highly stable nanoparticle/liposome agents encapsulating chemotherapeutic drugs is effective against intracranial rodent brain tumor xenografts. In this study, we have evaluated the combination of a newly developed nanoparticle/liposome containing the topoisomerase I inhibitor CPT-11 (nanoliposomal CPT-11 [nLs-CPT-11]), and PEGylated liposomal doxorubicin (Doxil) containing the topoisomerase II inhibitor doxorubicin. Both drugs were detectable in the CNS for more than 36 days after a single CED application. Tissue half-life was 16.7 days for nLs-CPT-11 and 10.9 days for Doxil. The combination of the two agents produced synergistic cytotoxicity in vitro. In vivo in U251MG and U87MG intracranial rodent xenograft models, CED of the combination was also more efficacious than either agent used singly. Analysis of the parameters involved in this approach indicated that tissue pharmacokinetics, tumor microanatomy, and biochemical interactions of the drugs all contributed to the therapeutic efficacy observed. These findings have implications for further clinical applications of CED-based treatment of brain tumors. PMID:17652269

  19. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma.

    PubMed

    Miao, Hongsheng; Choi, Bryan D; Suryadevara, Carter M; Sanchez-Perez, Luis; Yang, Shicheng; De Leon, Gabriel; Sayour, Elias J; McLendon, Roger; Herndon, James E; Healy, Patrick; Archer, Gary E; Bigner, Darell D; Johnson, Laura A; Sampson, John H

    2014-01-01

    Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and is uniformly lethal. T-cell-based immunotherapy offers a promising platform for treatment given its potential to specifically target tumor tissue while sparing the normal brain. However, the diffuse and infiltrative nature of these tumors in the brain parenchyma may pose an exceptional hurdle to successful immunotherapy in patients. Areas of invasive tumor are thought to reside behind an intact blood brain barrier, isolating them from effective immunosurveillance and thereby predisposing the development of "immunologically silent" tumor peninsulas. Therefore, it remains unclear if adoptively transferred T cells can migrate to and mediate regression in areas of invasive GBM. One barrier has been the lack of a preclinical mouse model that accurately recapitulates the growth patterns of human GBM in vivo. Here, we demonstrate that D-270 MG xenografts exhibit the classical features of GBM and produce the diffuse and invasive tumors seen in patients. Using this model, we designed experiments to assess whether T cells expressing third-generation chimeric antigen receptors (CARs) targeting the tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, would localize to and treat invasive intracerebral GBM. EGFRvIII-targeted CAR (EGFRvIII+ CAR) T cells demonstrated in vitro EGFRvIII antigen-specific recognition and reactivity to the D-270 MG cell line, which naturally expresses EGFRvIII. Moreover, when administered systemically, EGFRvIII+ CAR T cells localized to areas of invasive tumor, suppressed tumor growth, and enhanced survival of mice with established intracranial D-270 MG tumors. Together, these data demonstrate that systemically administered T cells are capable of migrating to the invasive edges of GBM to mediate antitumor efficacy and tumor regression.

  20. Soy isoflavone extracts stimulate the growth of nude mouse xenografts bearing estrogen-dependent human breast cancer cells (MCF-7)☆

    PubMed Central

    Wu, Qian; Yang, Ye; Yu, Jing; Jin, Nianzu

    2012-01-01

    We explored the effects of different lifetime exposures to soy isoflavone extracts on the growth of estrogen-dependent human breast cancer cells (MCF-7) implanted into athymic mice of different ovarian statuses. The athymic mice, ovariectomized or not, were implanted with MCF-7 cells. Mice were fed with low, moderate and high doses of soy isoflavone extract, at dietary concentrations of 6.25, 12.5 and 25 g/kg, in different reproductive models, respectively. The expression of ki-67 was detected by immunohistochemistry. pS2 expression in tumors was analyzed by real-time PCR. Estrogen level in the serum was measured by chemiluminescence enzyme immunoassay. Total genistein and daidzein levels in serum and urine were determined by liquid chromatography-electrospray tandem mass spectrometry (LC-ES/MS/MS). In Group A, on week 4, nude mice were exposed to different doses of soy iosflavone extracts. In Group B, the experimental diets were given to the nude mice following ovariectomy and tumor implantation. In both groups, 6.25 and 12.5 g/kg soy isoflavone extracts stimulated the growth of MCF-7 xenografts, increased pS2 expression, proliferation and estrogen level in serum. In both Group B (postmenopausal mouse model) and Group C (premenopausal mouse model), soy isoflavone extracts at doses of 6.25 and 12.5 g/kg showed stimulatory effects on the growth of MCF-7 tumors. In conclusion, administration of soy isoflavone extracts at doses of 6.25 and 12.5 g/kg during adolescence or later in life stimulated tumor growth in both menopausal and postmenopausal mouse models. PMID:23554729

  1. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models.

    PubMed

    Wu, Xiao Yu; Xu, Hao; Wu, Zhen Feng; Chen, Che; Liu, Jia Yun; Wu, Guan Nan; Yao, Xue Quan; Liu, Fu Kun; Li, Gang; Shen, Liang

    2015-12-29

    Most anti-angiogenic therapies currently being evaluated in clinical trials target vascular endothelial growth factor (VEGF) pathway, however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified formononetin as a novel agent with potential anti-angiogenic and anti-cancer activities. Formononetin demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor 2 (FGF2). In ex vivo and in vivo angiogenesis assays, formononetin suppressed FGF2-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of formononetin on different molecular components in treated endothelial cell, and found that formononetin suppressed FGF2-triggered activation of FGFR2 and protein kinase B (Akt) signaling. Moreover, formononetin directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer, formononetin showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Moreover, formononetin enhanced the effect of VEGFR2 inhibitor sunitinib on tumor growth inhibition. Taken together, our results indicate that formononetin targets the FGFR2-mediated Akt signaling pathway, leading to the suppression of tumor growth and angiogenesis.

  2. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models

    PubMed Central

    Wu, Zhen Feng; Chen, Che; Liu, Jia Yun; Wu, Guan Nan; Yao, Xue Quan; Liu, Fu Kun; Li, Gang; Shen, Liang

    2015-01-01

    Most anti-angiogenic therapies currently being evaluated in clinical trials target vascular endothelial growth factor (VEGF) pathway, however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified formononetin as a novel agent with potential anti-angiogenic and anti-cancer activities. Formononetin demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor 2 (FGF2). In ex vivo and in vivo angiogenesis assays, formononetin suppressed FGF2-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of formononetin on different molecular components in treated endothelial cell, and found that formononetin suppressed FGF2-triggered activation of FGFR2 and protein kinase B (Akt) signaling. Moreover, formononetin directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer, formononetin showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Moreover, formononetin enhanced the effect of VEGFR2 inhibitor sunitinib on tumor growth inhibition. Taken together, our results indicate that formononetin targets the FGFR2-mediated Akt signaling pathway, leading to the suppression of tumor growth and angiogenesis. PMID:26575424

  3. Berberine Inhibits Proliferation and Down-Regulates Epidermal Growth Factor Receptor through Activation of Cbl in Colon Tumor Cells

    PubMed Central

    Wang, Lihong; Cao, Hailong; Lu, Ning; Liu, Liping; Wang, Bangmao; Hu, Tianhui; Israel, Dawn A.; Peek, Richard M.; Polk, D. Brent; Yan, Fang

    2013-01-01

    Berberine, an isoquinoline alkaloid, is an active component of Ranunculaceae and Papaveraceae plant families. Berberine has been found to suppress growth of several tumor cell lines in vitro through the cell-type-dependent mechanism. Expression and activation of epidermal growth factor receptor (EGFR) is increased in colonic precancerous lesions and tumours, thus EGFR is considered a tumour promoter. The aim of this study was to investigate the effects and mechanisms of berberine on regulation of EGFR activity and proliferation in colonic tumor cell lines and in vivo. We reported that berberine significantly inhibited basal level and EGF-stimulated EGFR activation and proliferation in the immorto Min mouse colonic epithelial (IMCE) cells carrying the APC min mutation and human colonic carcinoma cell line, HT-29 cells. Berberine acted to inhibit proliferation through inducing G1/S and G2/M cell cycle arrest, which correlated with regulation of the checkpoint protein expression. In this study, we also showed that berberine stimulated ubiquitin ligase Cbl activation and Cbl's interaction with EGFR, and EGFR ubiquitinylation and down-regulation in these two cell lines in the presence or absence of EGF treatment. Knock-down Cbl expression blocked the effects of berberine on down-regulation of EGFR and inhibition of proliferation. Furthermore, berberine suppressed tumor growth in the HT-29 cell xenograft model. Cell proliferation and EGFR expression level was decreased by berberine treatment in this xenograft model and in colon epithelial cells of APC min/+ mice. Taken together, these data indicate that berberine enhances Cbl activity, resulting in down-regulation of EGFR expression and inhibition of proliferation in colon tumor cells. PMID:23457600

  4. Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth

    PubMed Central

    Benzekry, Sébastien; Lamont, Clare; Beheshti, Afshin; Tracz, Amanda; Ebos, John M. L.; Hlatky, Lynn; Hahnfeldt, Philip

    2014-01-01

    Despite internal complexity, tumor growth kinetics follow relatively simple laws that can be expressed as mathematical models. To explore this further, quantitative analysis of the most classical of these were performed. The models were assessed against data from two in vivo experimental systems: an ectopic syngeneic tumor (Lewis lung carcinoma) and an orthotopically xenografted human breast carcinoma. The goals were threefold: 1) to determine a statistical model for description of the measurement error, 2) to establish the descriptive power of each model, using several goodness-of-fit metrics and a study of parametric identifiability, and 3) to assess the models' ability to forecast future tumor growth. The models included in the study comprised the exponential, exponential-linear, power law, Gompertz, logistic, generalized logistic, von Bertalanffy and a model with dynamic carrying capacity. For the breast data, the dynamics were best captured by the Gompertz and exponential-linear models. The latter also exhibited the highest predictive power, with excellent prediction scores (≥80%) extending out as far as 12 days in the future. For the lung data, the Gompertz and power law models provided the most parsimonious and parametrically identifiable description. However, not one of the models was able to achieve a substantial prediction rate (≥70%) beyond the next day data point. In this context, adjunction of a priori information on the parameter distribution led to considerable improvement. For instance, forecast success rates went from 14.9% to 62.7% when using the power law model to predict the full future tumor growth curves, using just three data points. These results not only have important implications for biological theories of tumor growth and the use of mathematical modeling in preclinical anti-cancer drug investigations, but also may assist in defining how mathematical models could serve as potential prognostic tools in the clinic. PMID:25167199

  5. Classical mathematical models for description and prediction of experimental tumor growth.

    PubMed

    Benzekry, Sébastien; Lamont, Clare; Beheshti, Afshin; Tracz, Amanda; Ebos, John M L; Hlatky, Lynn; Hahnfeldt, Philip

    2014-08-01

    Despite internal complexity, tumor growth kinetics follow relatively simple laws that can be expressed as mathematical models. To explore this further, quantitative analysis of the most classical of these were performed. The models were assessed against data from two in vivo experimental systems: an ectopic syngeneic tumor (Lewis lung carcinoma) and an orthotopically xenografted human breast carcinoma. The goals were threefold: 1) to determine a statistical model for description of the measurement error, 2) to establish the descriptive power of each model, using several goodness-of-fit metrics and a study of parametric identifiability, and 3) to assess the models' ability to forecast future tumor growth. The models included in the study comprised the exponential, exponential-linear, power law, Gompertz, logistic, generalized logistic, von Bertalanffy and a model with dynamic carrying capacity. For the breast data, the dynamics were best captured by the Gompertz and exponential-linear models. The latter also exhibited the highest predictive power, with excellent prediction scores (≥80%) extending out as far as 12 days in the future. For the lung data, the Gompertz and power law models provided the most parsimonious and parametrically identifiable description. However, not one of the models was able to achieve a substantial prediction rate (≥70%) beyond the next day data point. In this context, adjunction of a priori information on the parameter distribution led to considerable improvement. For instance, forecast success rates went from 14.9% to 62.7% when using the power law model to predict the full future tumor growth curves, using just three data points. These results not only have important implications for biological theories of tumor growth and the use of mathematical modeling in preclinical anti-cancer drug investigations, but also may assist in defining how mathematical models could serve as potential prognostic tools in the clinic.

  6. Tumor radioimmunoimaging of chimeric antibody in nude mice with hepatoma xenograft

    PubMed Central

    Gong, Yi; Liu, Kang-Da; Zhou, Ge; Xue, Qiong; Chen, Shao-Liang; Tang, Zhao-You

    1998-01-01

    AIM: To study the radioimmunoimaging (RAII) using the human/mouse chimeric Ab to evaluate its targeting activity in animal models. METHODS: To chimeric Ab was labeled with 131I. RAII was performed at different intervals after injection of radio-labeled Abs in nude mice with human hepatoma xenograft, and tissue distribution of radioactivity was measured. Comparison was made in the chimeric Ab between the single segment Ab and previous murine mAb against HBxAg. RESULTS: The experimental objects developed tumor-positive image after 2 days of radio-labeled Abs injection, and the peak accumulation of radioactivity fell on the 7th day. The tumor/liver ratioactivity of the chimeric Ab, single segment Ab, anti-HBx mAb, and the control group was 281 ± 0.21, 2.44 ± 0.16, 4.60 ± 0.19, and 0.96 ± 0.14, respectively. CONCLUSION: The genetic engineering Abs have a considerable targeting activity which can be used as a novel humanized vector in the targeting treatment of liver cancer. PMID:11819217

  7. Growth inhibitory effects of the dual ErbB1/ErbB2 tyrosine kinase inhibitor PKI-166 on human prostate cancer xenografts.

    PubMed

    Mellinghoff, Ingo K; Tran, Chris; Sawyers, Charles L

    2002-09-15

    Experiments with human prostate cancer cell lines have shown that forced overexpression of the ErbB2-receptor tyrosine kinase (RTK) promotes androgen-independent growth and increases androgen receptor-transcriptional activity in a ligand-independent fashion. To investigate the relationship between ErbB-RTK signaling and androgen in genetically unmanipulated human prostate cancer, we performed biochemical and biological studies with the dual ErbB1/ErbB2 RTK inhibitor PKI-166 using human prostate cancer xenograft models with isogenic sublines reflecting the transition from androgen-dependent to androgen-independent growth. In the presence of low androgen concentrations, PKI-166 showed profound growth-inhibitory effects on tumor growth, which could be partially reversed by androgen add-back. At physiological androgen concentrations, androgen withdrawal greatly enhanced the ability of PKI-166 to retard tumor growth. The level of extracellular signal-regulated kinase activation correlated with the response to PKI-166 treatment, whereas the expression levels of ErbB1 and ErbB2 did not. These results suggest that ErbB1/ErbB2 RTKs play an important role in the biology of androgen-independent prostate cancer and provide a rationale for clinical evaluation of inhibitors targeted to this pathway.

  8. Lysophosphatidic Acid Acyltransferase β (LPAATβ) Promotes the Tumor Growth of Human Osteosarcoma

    PubMed Central

    Rastegar, Farbod; Gao, Jian-Li; Shenaq, Deana; Luo, Qing; Shi, Qiong; Kim, Stephanie H.; Jiang, Wei; Wagner, Eric R.; Huang, Enyi; Gao, Yanhong; Shen, Jikun; Yang, Ke; He, Bai-Cheng; Chen, Liang; Zuo, Guo-Wei; Luo, Jinyong; Luo, Xiaoji; Bi, Yang; Liu, Xing; Li, Mi; Hu, Ning; Wang, Linyuan; Luther, Gaurav; Luu, Hue H.; Haydon, Rex C.; He, Tong-Chuan

    2010-01-01

    Background Osteosarcoma is the most common primary malignancy of bone with poorly characterized molecular pathways important in its pathogenesis. Increasing evidence indicates that elevated lipid biosynthesis is a characteristic feature of cancer. We sought to investigate the role of lysophosphatidic acid acyltransferase β (LPAATβ, aka, AGPAT2) in regulating the proliferation and growth of human osteosarcoma cells. LPAATβ can generate phosphatidic acid, which plays a key role in lipid biosynthesis as well as in cell proliferation and survival. Although elevated expression of LPAATβ has been reported in several types of human tumors, the role of LPAATβ in osteosarcoma progression has yet to be elucidated. Methodology/Principal Findings Endogenous expression of LPAATβ in osteosarcoma cell lines is analyzed by using semi-quantitative PCR and immunohistochemical staining. Adenovirus-mediated overexpression of LPAATβ and silencing LPAATβ expression is employed to determine the effect of LPAATβ on osteosarcoma cell proliferation and migration in vitro and osteosarcoma tumor growth in vivo. We have found that expression of LPAATβ is readily detected in 8 of the 10 analyzed human osteosarcoma lines. Exogenous expression of LPAATβ promotes osteosarcoma cell proliferation and migration, while silencing LPAATβ expression inhibits these cellular characteristics. We further demonstrate that exogenous expression of LPAATβ effectively promotes tumor growth, while knockdown of LPAATβ expression inhibits tumor growth in an orthotopic xenograft model of human osteosarcoma. Conclusions/Significance Our results strongly suggest that LPAATβ expression may be associated with the aggressive phenotypes of human osteosarcoma and that LPAATβ may play an important role in regulating osteosarcoma cell proliferation and tumor growth. Thus, targeting LPAATβ may be exploited as a novel therapeutic strategy for the clinical management of osteosarcoma. This is especially

  9. Initiation and Characterization of Small Cell Lung Cancer Patient-Derived Xenografts from Ultrasound-Guided Transbronchial Needle Aspirates

    PubMed Central

    Anderson, Wade C.; Boyd, Michael B.; Aguilar, Jorge; Pickell, Brett; Laysang, Amy; Pysz, Marybeth A.; Bheddah, Sheila; Ramoth, Johanna; Slingerland, Brian C.; Dylla, Scott J.; Rubio, Edmundo R.

    2015-01-01

    Small cell lung cancer (SCLC) is a devastating disease with limited treatment options. Due to its early metastatic nature and rapid growth, surgical resection is rare. Standard of care treatment regimens remain largely unchanged since the 1980’s, and five-year survival lingers near 5%. Patient-derived xenograft (PDX) models have been established for other tumor types, amplifying material for research and serving as models for preclinical experimentation; however, limited availability of primary tissue has curtailed development of these models for SCLC. The objective of this study was to establish PDX models from commonly collected fine needle aspirate biopsies of primary SCLC tumors, and to assess their utility as research models of primary SCLC tumors. These transbronchial needle aspirates efficiently engrafted as xenografts, and tumor histomorphology was similar to primary tumors. Resulting tumors were further characterized by H&E and immunohistochemistry, cryopreserved, and used to propagate tumor-bearing mice for the evaluation of standard of care chemotherapy regimens, to assess their utility as models for tumors in SCLC patients. When treated with Cisplatin and Etoposide, tumor-bearing mice responded similarly to patients from whom the tumors originated. Here, we demonstrate that PDX tumor models can be efficiently established from primary SCLC transbronchial needle aspirates, even after overnight shipping, and that resulting xenograft tumors are similar to matched primary tumors in cancer patients by both histology and chemo-sensitivity. This method enables physicians at non-research institutions to collaboratively contribute to the rapid establishment of extensive PDX collections of SCLC, enabling experimentation with clinically relevant tissues and development of improved therapies for SCLC patients. PMID:25955027

  10. Intracellular Doppler Signatures of Platinum Sensitivity Captured by Biodynamic Profiling in Ovarian Xenografts

    NASA Astrophysics Data System (ADS)

    Merrill, Daniel; An, Ran; Sun, Hao; Yakubov, Bakhtiyor; Matei, Daniela; Turek, John; Nolte, David

    2016-01-01

    Three-dimensional (3D) tissue cultures are replacing conventional two-dimensional (2D) cultures for applications in cancer drug development. However, direct comparisons of in vitro 3D models relative to in vivo models derived from the same cell lines have not been reported because of the lack of sensitive optical probes that can extract high-content information from deep inside living tissue. Here we report the use of biodynamic imaging (BDI) to measure response to platinum in 3D living tissue. BDI combines low-coherence digital holography with intracellular Doppler spectroscopy to study tumor drug response. Human ovarian cancer cell lines were grown either in vitro as 3D multicellular monoculture spheroids or as xenografts in nude mice. Fragments of xenografts grown in vivo in nude mice from a platinum-sensitive human ovarian cell line showed rapid and dramatic signatures of induced cell death when exposed to platinum ex vivo, while the corresponding 3D multicellular spheroids grown in vitro showed negligible response. The differences in drug response between in vivo and in vitro growth have important implications for predicting chemotherapeutic response using tumor biopsies from patients or patient-derived xenografts.

  11. Grb2-SH3 ligand inhibits the growth of HER2+ cancer cells and has antitumor effects in human cancer xenografts alone and in combination with docetaxel

    PubMed Central

    Gril, Brunilde; Vidal, Michel; Assayag, Franck; Poupon, Marie-France; Liu, Wang-Qing; Garbay, Christiane

    2007-01-01

    HER2 represents an important signaling pathway in breast and other cancers. Herceptin has demonstrated clinical activity, but resistance is common. Thus, new therapeutic approaches to the HER2 pathway are needed. Grb2 is an adaptor protein involved in Ras-dependent signaling induced by HER2 receptors. A specific Grb2-SH3 ligand, designed and synthesized in our laboratory, called peptidimer-c, inhibited colony formation in HER2 over-expressing SKBr3 cancer cells. Combined treatment of peptidimer-c with docetaxel further inhibited both colony formation and tumor cell survival compared to docetaxel treatment alone. Efficacy of this combined treatment was correlated with a reduction in the phosphorylation of MAPK and AKT. Finally, peptidimer-c reduced the growth of a HER2+ human breast cancer (BK111) xenograft in nude mice and potentiated the anti-tumor effect of docetaxel in a HER2+ hormone-independent human prostate adenocarcinoma (PAC120 HID28) xenograft. These results validate Grb2 as a new target for the HER2 pathway. PMID:17372910

  12. 89Zr-DFO-AMG102 Immuno-PET to Determine Local Hepatocyte Growth Factor Protein Levels in Tumors for Enhanced Patient Selection.

    PubMed

    Price, Eric W; Carnazza, Kathryn E; Carlin, Sean D; Cho, Andrew; Edwards, Kimberly J; Sevak, Kuntal K; Glaser, Jonathan M; de Stanchina, Elisa; Janjigian, Yelena Y; Lewis, Jason S

    2017-09-01

    The hepatocyte growth factor (HGF) binding antibody rilotumumab (AMG102) was modified for use as a 89 Zr-based immuno-PET imaging agent to noninvasively determine the local levels of HGF protein in tumors. Because recent clinical trials of HGF-targeting therapies have been largely unsuccessful in several different cancers (e.g., gastric, brain, lung), we have synthesized and validated 89 Zr-DFO-AMG102 as a companion diagnostic for improved identification and selection of patients having high local levels of HGF in tumors. To date, patient selection has not been performed using the local levels of HGF protein in tumors. Methods: The chelator p -SCN-Bn-DFO was conjugated to AMG102, radiolabeling with 89 Zr was performed in high radiochemical yields and purity (>99%), and binding affinity of the modified antibody was confirmed using an enzyme-linked immunosorbent assay (ELISA)-type binding assay. PET imaging, biodistribution, autoradiography and immunohistochemistry, and ex vivo HGF ELISA experiments were performed on murine xenografts of U87MG (HGF-positive, MET-positive) and MKN45 (HGF-negative, MET-positive) and 4 patient-derived xenografts (MET-positive, HGF unknown). Results: Tumor uptake of 89 Zr-DFO-AMG102 at 120 h after injection in U87MG xenografts (HGF-positive) was high (36.8 ± 7.8 percentage injected dose per gram [%ID/g]), whereas uptake in MKN45 xenografts (HGF-negative) was 5.0 ± 1.3 %ID/g and a control of nonspecific human IgG 89 Zr-DFO-IgG in U87MG tumors was 11.5 ± 3.3 %ID/g, demonstrating selective uptake in HGF-positive tumors. Similar experiments performed in 4 different gastric cancer patient-derived xenograft models showed low uptake of 89 Zr-DFO-AMG102 (∼4-7 %ID/g), which corresponded with low HGF levels in these tumors (ex vivo ELISA). Autoradiography, immunohistochemical staining, and HGF ELISA assays confirmed that elevated levels of HGF protein were present only in U87MG tumors and that 89 Zr-DFO-AMG102 uptake was closely correlated

  13. Controlling cytoplasmic c-Fos controls tumor growth in the peripheral and central nervous system.

    PubMed

    Gil, Germán A; Silvestre, David C; Tomasini, Nicolás; Bussolino, Daniela F; Caputto, Beatriz L

    2012-06-01

    Some 20 years ago c-Fos was identified as a member of the AP-1 family of inducible transcription factors (Angel and Karin in Biochim Biophys Acta 1072:129-157, 1991). More recently, an additional activity was described for this protein: it associates to the endoplasmic reticulum and activates the biosynthesis of phospholipids (Bussolino et al. in FASEB J 15:556-558, 2001), (Gil et al. in Mol Biol Cell 15:1881-1894, 2004), the quantitatively most important components of cellular membranes. This latter activity of c-Fos determines the rate of membrane genesis and consequently of growth in differentiating PC12 cells (Gil et al. in Mol Biol Cell 15:1881-1894, 2004). In addition, it has been shown that c-Fos is over-expressed both in PNS and CNS tumors (Silvestre et al. in PLoS One 5(3):e9544, 2010). Herein, it is shown that c-Fos-activated phospholipid synthesis is required to support membrane genesis during the exacerbated growth characteristic of brain tumor cells. Specifically blocking c-Fos-activated phospholipid synthesis significantly reduces proliferation of tumor cells in culture. Blocking c-Fos expression also prevents tumor progression in mice intra-cranially xeno-grafted human brain tumor cells. In NPcis mice, an animal model of the human disease Neurofibromatosis Type I (Cichowski and Jacks in Cell 104:593-604, 2001), animals spontaneously develop tumors of the PNS and the CNS, provided they express c-Fos (Silvestre et al. in PLoS One 5(3):e9544, 2010). Treatment of PNS tumors with an antisense oligonucleotide that specifically blocks c-Fos expression also blocks tumor growth in vivo. These results disclose cytoplasmic c-Fos as a new target for effectively controlling brain tumor growth.

  14. Evaluation of a Centyrin-Based Near-Infrared Probe for Fluorescence-Guided Surgery of Epidermal Growth Factor Receptor Positive Tumors.

    PubMed

    Mahalingam, Sakkarapalayam M; Dudkin, Vadim Y; Goldberg, Shalom; Klein, Donna; Yi, Fang; Singhal, Sunil; O'Neil, Karyn T; Low, Philip S

    2017-11-15

    Tumor-targeted near-infrared fluorescent dyes have the potential to improve cancer surgery by enabling surgeons to locate and resect more malignant lesions where good visualization tools are required to ensure complete removal of malignant tissue. Although the tumor-targeted fluorescent dyes used in humans to date have been either small organic molecules or high molecular weight antibodies, low molecular weight protein scaffolds have attracted significant attention because they penetrate solid tumors almost as efficiently as small molecules, but can be infinitely mutated to bind almost any antigen. Here we describe the use of a 10 kDa protein scaffold, a Centyrin, to target a near-infrared fluorescent dye to tumors that overexpress the epidermal growth factor receptor (EGFR) for fluorescence-guided surgery (FGS). We have developed and optimized the dose and time required for imaging small tumor burdens with minimal background fluorescence in real-time fluorescence-guided surgery of EGFR-expressing tumor xenografts in murine models. We demonstrate that the Centyrin-near-infrared dye conjugate (CNDC) binds selectively to human EGFR + cancer cells with an EC 50 of 2 nM, localizes to EGFR + tumor xenografts in athymic nude mice and that uptake of the dye in xenografts is significantly reduced when EGFR are blocked by preinjection of excess unlabeled Centyrin. Taken together, these data suggest that CNDCs can be used for intraoperative identification and surgical removal of EGFR-expressing lesions and that Centyrins targeted to other tumor-specific antigens should prove similarly useful in fluorescence guided surgery of cancer. In addition, we demonstrate that the CNDC is detected in the NIR region of the spectrum and can be utilized for fluorescence-guided surgery (FGS). In addition, we propose that with its eventual complete clearance from EGFR-negative tissues and its quantitative retention in the tumor mass for >24 h, a Centyrin-targeted NIR dye should provide

  15. Pharmacokinetic-pharmacodynamic modeling of tumor growth inhibition and biomarker modulation by the novel phosphatidylinositol 3-kinase inhibitor GDC-0941.

    PubMed

    Salphati, Laurent; Wong, Harvey; Belvin, Marcia; Bradford, Delia; Edgar, Kyle A; Prior, Wei Wei; Sampath, Deepak; Wallin, Jeffrey J

    2010-09-01

    The phosphatidylinositol 3-kinase (PI3K) pathway is a major determinant of cell cycling and proliferation. Its deregulation, by activation or transforming mutations of the p110alpha subunit, is associated with the development of many cancers. 2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) is a novel small molecule inhibitor of PI3K currently being evaluated in the clinic as an anticancer agent. The objectives of these studies were to characterize the relationships between GDC-0941 plasma concentrations and tumor reduction in MCF7.1 breast cancer xenografts and to evaluate the association between the tumor pharmacodynamic biomarker [phosphorylated (p) Akt and phosphorylated proline-rich Akt substrate of 40 kDa (pPRAS40)] responses and antitumor efficacy. MCF7.1 tumor-bearing mice were treated for up to 3 weeks with GDC-0941 at various doses (12.5-200 mg/kg) and dosing schedules (daily to weekly). An indirect response model fitted to tumor growth data indicated that the GDC-0941 plasma concentration required for tumor stasis was approximately 0.3 muM. The relationship between GDC-0941 plasma concentrations and inhibition of pAkt and pPRAS40 in tumor was also investigated after a single oral dose of 12.5, 50, or 150 mg/kg. An indirect response model was fitted to the inhibition of Akt and PRAS40 phosphorylation data and provided IC(50) estimates of 0.36 and 0.29 muM for pAkt and pPRAS40, respectively. The relationship between pAkt inhibition and tumor volume was further explored using an integrated pharmacokinetic biomarker tumor growth model, which showed that a pAkt inhibition of at least 30% was required to achieve stasis after GDC-0941 treatment of the MCF7.1 xenograft.

  16. Nab-Paclitaxel Plus S-1 Shows Increased Antitumor Activity in Patient-Derived Pancreatic Cancer Xenograft Mouse Models.

    PubMed

    Li, Jian-Ang; Xu, Xue-Feng; Han, Xu; Fang, Yuan; Shi, Chen-Ye; Jin, Da-Yong; Lou, Wen-Hui

    2016-03-01

    To investigate the antitumor activity of nanoparticle albumin-bound paclitaxel (nab-paclitaxel) plus S-1 in patient-derived pancreatic cancer xenograft mouse models and to explore biomarkers that could predict drug efficacy. Ten patient-derived xenograft models were established. The third-generation tumor-bearing mice were randomized into 4 treatment groups: (1) control; (2) S-1; (3) nab-paclitaxel; (4) S-1 plus nab-paclitaxel. Resected tumors were tested by immunohistochemistry for the expression of thymidylate synthase, orotate phosphoribosyltransferase (OPRT), dihydropyrimidine dehydrogenase (DPD), secreted protein that is acidic and rich in cysteine, human epidermal growth factor receptor 2 (HER2), collagen-1, and CD31. Tumor growth inhibition of the S-1 group, nab-paclitaxel group, and combination group was 69.52%, 86.63%, 103.56%, respectively (P < 0.05). The efficacy of S-1 is better in thymidylate synthase-negative, OPRT-positive, and DPD-negative tumors. The efficacy of nab-paclitaxel is better in HER2-positive tumors. Collagen-1 was decreased and CD31 was increased in tumors treated with nab-paclitaxel and S-1 plus nab-paclitaxel compared with control or S-1. This preclinical study showed that S-1 plus nab-paclitaxel exerted significantly better antitumor activity than S-1 or nab-paclitaxel alone. Thymidylate synthase, OPRT, and DPD were possibly biomarkers of S-1 and HER2 of nab-paclitaxel.

  17. Ku80 cooperates with CBP to promote COX-2 expression and tumor growth

    PubMed Central

    Qin, Yu; Xuan, Yang; Jia, Yunlu; Hu, Wenxian; Yu, Wendan; Dai, Meng; Li, Zhenglin; Yi, Canhui; Zhao, Shilei; Li, Mei; Du, Sha; Cheng, Wei; Xiao, Xiangsheng; Chen, Yiming; Wu, Taihua; Meng, Songshu; Yuan, Yuhui; Liu, Quentin; Huang, Wenlin; Guo, Wei; Wang, Shusen; Deng, Wuguo

    2015-01-01

    Cyclooxygenase-2 (COX-2) plays an important role in lung cancer development and progression. Using streptavidin-agarose pulldown and proteomics assay, we identified and validated Ku80, a dimer of Ku participating in the repair of broken DNA double strands, as a new binding protein of the COX-2 gene promoter. Overexpression of Ku80 up-regulated COX-2 promoter activation and COX-2 expression in lung cancer cells. Silencing of Ku80 by siRNA down-regulated COX-2 expression and inhibited tumor cell growth in vitro and in a xenograft mouse model. Ku80 knockdown suppressed phosphorylation of ERK, resulting in an inactivation of the MAPK pathway. Moreover, CBP, a transcription co-activator, interacted with and acetylated Ku80 to co-regulate the activation of COX-2 promoter. Overexpression of CBP increased Ku80 acetylation, thereby promoting COX-2 expression and cell growth. Suppression of CBP by a CBP-specific inhibitor or siRNA inhibited COX-2 expression as well as tumor cell growth. Tissue microarray immunohistochemical analysis of lung adenocarcinomas revealed a strong positive correlation between levels of Ku80 and COX-2 and clinicopathologic variables. Overexpression of Ku80 was associated with poor prognosis in patients with lung cancers. We conclude that Ku80 promotes COX-2 expression and tumor growth and is a potential therapeutic target in lung cancer. PMID:25797267

  18. Peginterferon Beta-1a Shows Antitumor Activity as a Single Agent and Enhances Efficacy of Standard of Care Cancer Therapeutics in Human Melanoma, Breast, Renal, and Colon Xenograft Models.

    PubMed

    Boccia, Antonio; Virata, Cyrus; Lindner, Daniel; English, Nicki; Pathan, Nuzhat; Brickelmaier, Margot; Hu, Xiao; Gardner, Jennifer L; Peng, Liaomin; Wang, Xinzhong; Zhang, Xiamei; Yang, Lu; Perron, Keli; Yco, Grace; Kelly, Rebecca; Gamez, James; Scripps, Thomas; Bennett, Donald; Joseph, Ingrid B; Baker, Darren P

    2017-01-01

    Because of its tumor-suppressive effect, interferon-based therapy has been used for the treatment of melanoma. However, limited data are available regarding the antitumor effects of pegylated interferons, either alone or in combination with approved anticancer drugs. We report that treatment of human WM-266-4 melanoma cells with peginterferon beta-1a induced apoptotic markers. Additionally, peginterferon beta-1a significantly inhibited the growth of human SK-MEL-1, A-375, and WM-266-4 melanoma xenografts established in immunocompromised mice. Peginterferon beta-1a regressed large, established WM-266-4 xenografts in nude mice. Treatment of SK-MEL-1 tumor-bearing mice with a combination of peginterferon beta-1a and the MEK inhibitor PD325901 ((R)-N-(2,3-dihydroxypropoxy)-3,4-difluoro-2-(2-fluoro-4-iodophenylamino)benzamide) significantly improved tumor growth inhibition compared with either agent alone. Examination of the antitumor activity of peginterferon beta-1a in combination with approved anticancer drugs in breast and renal carcinomas revealed improved antitumor activity in these preclinical xenograft models, as did the combination of peginterferon beta-1a and bevacizumab in a colon carcinoma xenograft model.

  19. Fluorescence-guided surgery for cancer patients: a proof of concept study on human xenografts in mice and spontaneous tumors in pets

    PubMed Central

    Mery, Eliane; Golzio, Muriel; Guillermet, Stephanie; Lanore, Didier; Naour, Augustin Le; Thibault, Benoît; Tilkin-Mariamé, Anne Françoise; Bellard, Elizabeth; Delord, Jean Pierre; Querleu, Denis; Ferron, Gwenael; Couderc, Bettina

    2017-01-01

    Surgery is often the first treatment option for patients with cancer. Patient survival essentially depends on the completeness of tumor resection. This is a major challenge, particularly in cases of peritoneal carcinomatosis, where tumors are widely disseminated in the large peritoneal cavity. Any development to help surgeons visualize these residual cells would improve the completeness of the surgery. For non-disseminated tumors, imaging could be used to ensure that the tumor margins and the draining lymph nodes are free of tumor deposits. Near-infrared fluorescence imaging has been shown to be one of the most convenient imaging modalities. Our aim was to evaluate the efficacy of a near-infrared fluorescent probe targeting the αvβ3 integrins (Angiostamp™) for intraoperative detection of tumors using the Fluobeam® device. We determined whether different human tumor nodules from various origins could be detected in xenograft mouse models using both cancer cell lines and patient-derived tumor cells. We found that xenografts could be imaged by fluorescent staining irrespective of their integrin expression levels. This suggests imaging of the associated angiogenesis of the tumor and a broader potential utilization of Angiostamp™. We therefore performed a veterinary clinical trial in cats and dogs with local tumors or with spontaneous disseminated peritoneal carcinomatosis. Our results demonstrate that the probe can specifically visualize both breast and ovarian nodules, and suggest that Angiostamp™ is a powerful fluorescent contrast agent that could be used in both human and veterinary clinical trials for intraoperative detection of tumors. PMID:29312629

  20. Activation of tumor suppressor protein PP2A inhibits KRAS-driven tumor growth

    PubMed Central

    Sangodkar, Jaya; Perl, Abbey; Tohme, Rita; Kiselar, Janna; Kastrinsky, David B.; Izadmehr, Sudeh; Mazhar, Sahar; Wiredja, Danica D.; O’Connor, Caitlin M.; Hoon, Divya; Dhawan, Neil S.; Schlatzer, Daniela; Yao, Shen; Leonard, Daniel; Borczuk, Alain C.; Gokulrangan, Giridharan; Wang, Lifu; Svenson, Elena; Farrington, Caroline C.; Yuan, Eric; Avelar, Rita A.; Stachnik, Agnes; Smith, Blake; Gidwani, Vickram; Giannini, Heather M.; McQuaid, Daniel; McClinch, Kimberly; Wang, Zhizhi; Levine, Alice C.; Sears, Rosalie C.; Chen, Edward Y.; Duan, Qiaonan; Datt, Manish; Ma’ayan, Avi; DiFeo, Analisa; Sharma, Neelesh; Galsky, Matthew D.; Brautigan, David L.; Ioannou, Yiannis A.; Xu, Wenqing; Chance, Mark R.; Ohlmeyer, Michael

    2017-01-01

    Targeted cancer therapies, which act on specific cancer-associated molecular targets, are predominantly inhibitors of oncogenic kinases. While these drugs have achieved some clinical success, the inactivation of kinase signaling via stimulation of endogenous phosphatases has received minimal attention as an alternative targeted approach. Here, we have demonstrated that activation of the tumor suppressor protein phosphatase 2A (PP2A), a negative regulator of multiple oncogenic signaling proteins, is a promising therapeutic approach for the treatment of cancers. Our group previously developed a series of orally bioavailable small molecule activators of PP2A, termed SMAPs. We now report that SMAP treatment inhibited the growth of KRAS-mutant lung cancers in mouse xenografts and transgenic models. Mechanistically, we found that SMAPs act by binding to the PP2A Aα scaffold subunit to drive conformational changes in PP2A. These results show that PP2A can be activated in cancer cells to inhibit proliferation. Our strategy of reactivating endogenous PP2A may be applicable to the treatment of other diseases and represents an advancement toward the development of small molecule activators of tumor suppressor proteins. PMID:28504649

  1. Imaging Tiny Hepatic Tumor Xenografts via Endoglin-Targeted Paramagnetic/Optical Nanoprobe.

    PubMed

    Yan, Huihui; Gao, Xihui; Zhang, Yunfei; Chang, Wenju; Li, Jianhui; Li, Xinwei; Du, Qin; Li, Cong

    2018-05-23

    Surgery is the mainstay for treating hepatocellular carcinoma (HCC). However, it is a great challenge for surgeons to identify HCC in its early developmental stage. The diagnostic sensitivity for a tiny HCC with a diameter less than 1.0 cm is usually as low as 10-33% for computed tomography (CT) and 29-43% for magnetic resonance imaging (MRI). Although MRI is the preferred imaging modality for detecting HCC, with its unparalleled spatial resolution for soft tissue, the commercially available contrast agent, such as Gd 3+ -DTPA, cannot accurately define HCC because of its short circulation lifetime and lack of tumor-targeting specificity. Endoglin (CD105), a type I membrane glycoprotein, is highly expressed both in HCC cells and in the endothelial cells of neovasculature, which are abundant at the tumor periphery. In this work, a novel single-stranded DNA oligonucleotide-based aptamer was screened by systematic evolution of ligands in an exponential enrichment assay and showed a high binding affinity ( K D = 98 pmol/L) to endoglin. Conjugating the aptamers and imaging reporters on a G5 dendrimer created an HCC-targeting nanoprobe that allowed the successful visualization of orthotopic HCC xenografts with diameters as small as 1-4 mm. Significantly, the invasive tumor margin was clearly delineated, with a tumor to normal ratio of 2.7 by near-infrared (NIR) fluorescence imaging and 2.1 by T 1 -weighted MRI. This multimodal nanoprobe holds promise not only for noninvasively defining tiny HCC by preoperative MRI but also for guiding tumor excision via intraoperative NIR fluorescence imaging, which will probably gain benefit for the patient's therapeutic response and improve the survival rate.

  2. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer.

    PubMed

    Wen, Yang-An; Xing, Xiaopeng; Harris, Jennifer W; Zaytseva, Yekaterina Y; Mitov, Mihail I; Napier, Dana L; Weiss, Heidi L; Mark Evers, B; Gao, Tianyan

    2017-02-02

    Obesity has been associated with increased incidence and mortality of a wide variety of human cancers including colorectal cancer. However, the molecular mechanism by which adipocytes regulate the metabolism of colon cancer cells remains elusive. In this study, we showed that adipocytes isolated from adipose tissues of colon cancer patients have an important role in modulating cellular metabolism to support tumor growth and survival. Abundant adipocytes were found in close association with invasive tumor cells in colon cancer patients. Co-culture of adipocytes with colon cancer cells led to a transfer of free fatty acids that released from the adipocytes to the cancer cells. Uptake of fatty acids allowed the cancer cells to survive nutrient deprivation conditions by upregulating mitochondrial fatty acid β-oxidation. Mechanistically, co-culture of adipocytes or treating cells with fatty acids induced autophagy in colon cancer cells as a result of AMPK activation. Inhibition of autophagy attenuated the ability of cancer cells to utilize fatty acids and blocked the growth-promoting effect of adipocytes. In addition, we found that adipocytes stimulated the expression of genes associated with cancer stem cells and downregulated genes associated with intestinal epithelial cell differentiation in primary colon cancer cells and mouse tumor organoids. Importantly, the presence of adipocytes promoted the growth of xenograft tumors in vivo. Taken together, our results show that adipocytes in the tumor microenvironment serve as an energy provider and a metabolic regulator to promote the growth and survival of colon cancer cells.

  3. Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer

    PubMed Central

    Wen, Yang-An; Xing, Xiaopeng; Harris, Jennifer W; Zaytseva, Yekaterina Y; Mitov, Mihail I; Napier, Dana L; Weiss, Heidi L; Mark Evers, B; Gao, Tianyan

    2017-01-01

    Obesity has been associated with increased incidence and mortality of a wide variety of human cancers including colorectal cancer. However, the molecular mechanism by which adipocytes regulate the metabolism of colon cancer cells remains elusive. In this study, we showed that adipocytes isolated from adipose tissues of colon cancer patients have an important role in modulating cellular metabolism to support tumor growth and survival. Abundant adipocytes were found in close association with invasive tumor cells in colon cancer patients. Co-culture of adipocytes with colon cancer cells led to a transfer of free fatty acids that released from the adipocytes to the cancer cells. Uptake of fatty acids allowed the cancer cells to survive nutrient deprivation conditions by upregulating mitochondrial fatty acid β-oxidation. Mechanistically, co-culture of adipocytes or treating cells with fatty acids induced autophagy in colon cancer cells as a result of AMPK activation. Inhibition of autophagy attenuated the ability of cancer cells to utilize fatty acids and blocked the growth-promoting effect of adipocytes. In addition, we found that adipocytes stimulated the expression of genes associated with cancer stem cells and downregulated genes associated with intestinal epithelial cell differentiation in primary colon cancer cells and mouse tumor organoids. Importantly, the presence of adipocytes promoted the growth of xenograft tumors in vivo. Taken together, our results show that adipocytes in the tumor microenvironment serve as an energy provider and a metabolic regulator to promote the growth and survival of colon cancer cells. PMID:28151470

  4. Therapeutic Activity of Anti-AXL Antibody against Triple-Negative Breast Cancer Patient-Derived Xenografts and Metastasis.

    PubMed

    Leconet, Wilhem; Chentouf, Myriam; du Manoir, Stanislas; Chevalier, Clément; Sirvent, Audrey; Aït-Arsa, Imade; Busson, Muriel; Jarlier, Marta; Radosevic-Robin, Nina; Theillet, Charles; Chalbos, Dany; Pasquet, Jean-Max; Pèlegrin, André; Larbouret, Christel; Robert, Bruno

    2017-06-01

    Purpose: AXL receptor tyrosine kinase has been described as a relevant molecular marker and a key player in invasiveness, especially in triple-negative breast cancer (TNBC). Experimental Design: We evaluate the antitumor efficacy of the anti-AXL monoclonal antibody 20G7-D9 in several TNBC cell xenografts or patient-derived xenograft (PDX) models and decipher the underlying mechanisms. In a dataset of 254 basal-like breast cancer samples, genes correlated with AXL expression are enriched in EMT, migration, and invasion signaling pathways. Results: Treatment with 20G7-D9 inhibited tumor growth and bone metastasis formation in AXL-positive TNBC cell xenografts or PDX, but not in AXL-negative PDX, highlighting AXL role in cancer growth and invasion. In vitro stimulation of AXL-positive cancer cells by its ligand GAS6 induced the expression of several EMT-associated genes ( SNAIL, SLUG , and VIM ) through an intracellular signaling implicating the transcription factor FRA-1, important in cell invasion and plasticity, and increased their migration/invasion capacity. 20G7-D9 induced AXL degradation and inhibited all AXL/GAS6-dependent cell signaling implicated in EMT and in cell migration/invasion. Conclusions: The anti-AXL antibody 20G7-D9 represents a promising therapeutic strategy in TNBC with mesenchymal features by inhibiting AXL-dependent EMT, tumor growth, and metastasis formation. Clin Cancer Res; 23(11); 2806-16. ©2016 AACR . ©2016 American Association for Cancer Research.

  5. Development of a Novel Preclinical Pancreatic Cancer Research Model: Bioluminescence Image-Guided Focal Irradiation and Tumor Monitoring of Orthotopic Xenografts1

    PubMed Central

    Tuli, Richard; Surmak, Andrew; Reyes, Juvenal; Hacker-Prietz, Amy; Armour, Michael; Leubner, Ashley; Blackford, Amanda; Tryggestad, Erik; Jaffee, Elizabeth M; Wong, John; DeWeese, Theodore L; Herman, Joseph M

    2012-01-01

    PURPOSE: We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. MATERIALS AND METHODS: Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. BLI was correlated to positron emission tomography (PET)/computed tomography (CT) to estimate tumor dimensions. BLI and cone-beam CT (CBCT) were used to compare tumor centroid location and estimate setup error. BLI and CBCT fusion was performed to guide irradiation of tumors using the small animal radiation research platform (SARRP). DNA damage was assessed by γ-H2Ax staining. BLI was used to longitudinally monitor treatment response. RESULTS: Bioluminescence predicted tumor volume (R = 0.8984) and increased linearly as a function of time up to a 10-fold increase in tumor burden. BLI correlated with PET/CT and necropsy specimen in size (P < .05). Two-dimensional BLI centroid accuracy was 3.5 mm relative to CBCT. BLI-guided irradiated pancreatic tumors stained positively for γ-H2Ax, whereas surrounding normal tissues were spared. Longitudinal assessment of irradiated tumors with BLI revealed significant tumor growth delay of 20 days relative to controls. CONCLUSIONS: We have successfully applied the SARRP to a bioluminescent, orthotopic preclinical pancreas cancer model to noninvasively: 1) allow the identification of tumor burden before therapy, 2) facilitate image-guided focal radiation therapy, and 3) allow normalization of tumor burden and longitudinal assessment of treatment response. PMID:22496923

  6. RSPO3 antagonism inhibits growth and tumorigenicity in colorectal tumors harboring common Wnt pathway mutations.

    PubMed

    Fischer, Marcus M; Yeung, V Pete; Cattaruzza, Fiore; Hussein, Rajaa; Yen, Wan-Ching; Murriel, Christopher; Evans, James W; O'Young, Gilbert; Brunner, Alayne L; Wang, Min; Cain, Jennifer; Cancilla, Belinda; Kapoun, Ann; Hoey, Timothy

    2017-11-10

    Activating mutations in the Wnt pathway are a characteristic feature of colorectal cancer (CRC). The R-spondin (RSPO) family is a group of secreted proteins that enhance Wnt signaling and RSPO2 and RSPO3 gene fusions have been reported in CRC. We have previously shown that Wnt pathway blockers exhibit potent combinatorial activity with taxanes to inhibit tumor growth. Here we show that RSPO3 antagonism synergizes with paclitaxel based chemotherapies in patient-derived xenograft models (PDX) with RSPO3 fusions and in tumors with common CRC mutations such as APC, β-catenin, or RNF43. In these latter types of tumors that represent over 90% of CRC, RSPO3 is produced by stromal cells in the tumor microenvironment and the activating mutations appear to sensitize the tumors to Wnt-Rspo synergy. The combination of RSPO3 inhibition and taxane treatment provides an approach to effectively target oncogenic WNT signaling in a significant number of patients with colorectal and other intestinal cancers.

  7. Scaffold-integrated microchips for end-to-end in vitro tumor cell attachment and xenograft formation.

    PubMed

    Lee, Jungwoo; Kohl, Nathaniel; Shanbhang, Sachin; Parekkadan, Biju

    2015-12-01

    Microfluidic technologies have substantially advanced cancer research by enabling the isolation of rare circulating tumor cells (CTCs) for diagnostic and prognostic purposes. The characterization of isolated CTCs has been limited due to the difficulty in recovering and growing isolated cells with high fidelity. Here, we present a strategy that uses a 3D scaffold, integrated into a microfludic device, as a transferable substrate that can be readily isolated after device operation for serial use in vivo as a transplanted tissue bed. Hydrogel scaffolds were incorporated into a PDMS fluidic chamber prior to bonding and were rehydrated in the chamber after fluid contact. The hydrogel matrix completely filled the fluid chamber, significantly increasing the surface area to volume ratio, and could be directly visualized under a microscope. Computational modeling defined different flow and pressure regimes that guided the conditions used to operate the chip. As a proof of concept using a model cell line, we confirmed human prostate tumor cell attachment in the microfluidic scaffold chip, retrieval of the scaffold en masse, and serial implantation of the scaffold to a mouse model with preserved xenograft development. With further improvement in capture efficiency, this approach can offer an end-to-end platform for the continuous study of isolated cancer cells from a biological fluid to a xenograft in mice.

  8. Are special read alignment strategies necessary and cost-effective when handling sequencing reads from patient-derived tumor xenografts?

    PubMed

    Tso, Kai-Yuen; Lee, Sau Dan; Lo, Kwok-Wai; Yip, Kevin Y

    2014-12-23

    Patient-derived tumor xenografts in mice are widely used in cancer research and have become important in developing personalized therapies. When these xenografts are subject to DNA sequencing, the samples could contain various amounts of mouse DNA. It has been unclear how the mouse reads would affect data analyses. We conducted comprehensive simulations to compare three alignment strategies at different mutation rates, read lengths, sequencing error rates, human-mouse mixing ratios and sequenced regions. We also sequenced a nasopharyngeal carcinoma xenograft and a cell line to test how the strategies work on real data. We found the "filtering" and "combined reference" strategies performed better than aligning reads directly to human reference in terms of alignment and variant calling accuracies. The combined reference strategy was particularly good at reducing false negative variants calls without significantly increasing the false positive rate. In some scenarios the performance gain of these two special handling strategies was too small for special handling to be cost-effective, but it was found crucial when false non-synonymous SNVs should be minimized, especially in exome sequencing. Our study systematically analyzes the effects of mouse contamination in the sequencing data of human-in-mouse xenografts. Our findings provide information for designing data analysis pipelines for these data.

  9. Cetuximab intensifies the ADCC activity of adoptive NK cells in a nude mouse colorectal cancer xenograft model.

    PubMed

    Chen, Shanshan; Li, Xuechun; Chen, Rongming; Yin, Mingang; Zheng, Qiuhong

    2016-09-01

    Natural killer (NK) cells, discovered ~40 years ago, are believed to be the most effective cytotoxic lymphocytes to counteract cancer; however, adoptive NK cell therapy in vivo has encountered certain limitations, including a lack of specificity. The drug cetuximab can mediate antibody dependent cell mediated cytotoxicity (ADCC) activity through NK cells in vivo , and has been approved for the first-line treatment of epidermal growth factor receptor (EGFR)-positive metastatic colorectal cancer (CRC). However, the ADCC activity of adoptive NK cells, induced by cetuximab in a nude mouse CRC xenograft model, has not been previously reported. The aim of the present study was to explore the ADCC activity of cetuximab combined with adoptive NK cells in CRC xenograft models with various EGFR expressions. The nude mouse xenograft models were established by subcutaneously injecting LOVO or SW620 cells. The mice were then randomly divided into 6 groups: Phosphate-buffered saline, cetuximab, human immunoglobulin G (hIgG), NK cells, hIgG plus NK cells and cetuximab plus NK cells. The ADCC antitumor activity was evaluated in these CRC models. The results indicated that the cetuximab plus NK cells group showed the greatest tumor inhibition effect compared with the NK cells group in LOVO xenograft tumor models with positive EGFR expression. However, the combination of cetuximab and NK cells did not show a stronger tumor inhibitory effect against the SW620 xenograft tumor models compared with the efficiency of NK cells. In conclusion, cetuximab could intensify the ADCC antitumor activity of adoptive NK cells towards CRC with an increased EGFR expression. The combination of cetuximab and NK cells may be a potential immunotherapy for metastatic CRC patients with positive EGFR expression.

  10. Melatonin exerts anti-oral cancer effect via suppressing LSD1 in patient-derived tumor xenograft models

    PubMed Central

    Yang, Cheng-Yu; Lin, Chih-Kung; Tsao, Chang-Huei; Hsieh, Cheng-Chih; Lin, Gu-Jiun; Ma, Kuo-Hsing; Shieh, Yi-Shing; Sytwu, Huey-Kang; Chen, Yuan-Wu

    2017-01-01

    Aberrant activation of histone lysine-specific demethylase (LSD1) increases tumorigenicity; hence, LSD1 is considered a therapeutic target for various human cancers. Although melatonin, an endogenously produced molecule, may defend against various cancers, the precise mechanism involved in its anti-oral cancer effect remains unclear. Patient-derived tumor xenograft (PDTX) models are preclinical models that can more accurately reflect human tumor biology compared with cell line xenograft models. Here, we evaluated the anticancer activity of melatonin by using LSD1-overexpressing oral cancer PDTX models. By assessing oral squamous cell carcinoma (OSCC) tissue arrays through immunohistochemistry, we examined whether aberrant LSD1 overexpression in OSCC is associated with poor prognosis. We also evaluated the action mechanism of melatonin against OSCC with lymphatic metastases by using the PDTX models. Our results indicated that melatonin, at pharmacological concentrations, significantly suppresses cell proliferation in a dose- and time-dependent manner. The observed suppression of proliferation was accompanied by the melatonin-mediated inhibition of LSD1 in oral cancer PDTXs and oral cancer cell lines. In conclusion, we determined that the beneficial effects of melatonin in reducing oral cancer cell proliferation are associated with reduced LSD1 expression in vivo and in vitro. PMID:28422711

  11. A Murine Xenograft Model for Human CD30+ Anaplastic Large Cell Lymphoma

    PubMed Central

    Pfeifer, Walther; Levi, Edi; Petrogiannis-Haliotis, Tina; Lehmann, Leslie; Wang, Zhenxi; Kadin, Marshall E.

    1999-01-01

    To develop a model for the biology and treatment of CD30+ anaplastic large cell lymphoma (ALCL), we transplanted leukemic tumor cells from a 22-month-old girl with multiple relapsed ALCL. Tumor cells were inoculated intraperitoneally into a 4-week-old SCID/bg mouse and produced a disseminated tumor within 8 weeks; this tumor was serially transplanted by subcutaneous injections to other mice. Morphology, immunohistochemistry, and molecular genetics which demonstrated the NPM-ALK fusion protein, resulting from the t(2;5)(p23;q35), confirmed the identity of the xenograft with the original tumor. The tumor produced transcripts for interleukin-1α, tumor necrosis factor-α, and interferon-γ which could explain the patient’s B-symptoms. Treatment of mice with monoclonal antibody (HeFi-1) which activates CD30 antigen administered on day 1 after tumor transplantation prevented tumor growth. Treatment with HeFi-1 after tumors had reached a 0.2 cm3 volume caused tumor growth arrest and prevention of tumor dissemination. We conclude that transplantation of CD30+ ALCL to SCID/bg mice may provide a valuable model for the study of the biology and design of treatment modalities for CD30+ ALCL. PMID:10514417

  12. In vivo bioluminescence imaging using orthotopic xenografts towards patient's derived-xenograft Medulloblastoma models.

    PubMed

    Asadzadeh, Fatemeh; Ferrucci, Veronica; DE Antonellis, Pasqualino; Zollo, Massimo

    2017-03-01

    Medulloblastoma is a cerebellar neoplasia of the central nervous system. Four molecular subgrups have been identified (MBWNT, MBSHH, MBgroup3 and MBgroup4) with distinct genetics and clinical outcome. Among these, MBgroup3-4 are highly metastatic with the worst prognosis. The current standard therapy includes surgery, radiation and chemotherapy. Thus, specific treatments adapted to cure those different molecular subgroups are needed. The use of orthotopic xenograft models, together with the non-invasive in vivo biolumiscence imaging (BLI) technology, is emerging during preclinical studies to test novel therapeutics for medulloblastoma treatment. Orthotopic MB xenografts were performed by injection of Daoy-luc cells, that had been previously infected with lentiviral particles to stably express luciferase gene, into the fourth right ventricle of the cerebellum of ten nude mice. For the implantation, specific stereotactic coordinates were used. Seven days after the implantation the mice were imaged by acquisitions of bioluminescence imaging (BLI) using IVIS 3D Illumina Imaging System (Xenogen). Tumor growth was evaluated by quantifying the bioluminescence signals using the integrated fluxes of photons within each area of interest using the Living Images Software Package 3.2 (Xenogen-Perkin Elmer). Finally, histological analysis using hematoxylin-eosin staining was performed to confirm the presence of tumorigenic cells into the cerebellum of the mice. We describe a method to use the in vivo bioluminescent imaging (BLI) showing the potential to be used to investigate the potential antitumorigenic effects of a drug for in vivo medulloblastoma treatment. We also discuss other studies in which this technology has been applied to obtain a more comprehensive knowledge of medulloblastoma using orthotopic xenograft mouse models. There is a need to develop patient's derived-xenograft (PDX) model systems to test novel drugs for medulloblastoma treatment within each molecular sub

  13. Visualizing the effects of metformin on tumor growth, vascularity, and metabolism in head and neck cancer.

    PubMed

    Verma, Aparajita; Rich, Laurie J; Vincent-Chong, Vui King; Seshadri, Mukund

    2018-05-01

    The antidiabetic drug metformin (Met) is believed to inhibit tumor proliferation by altering the metabolism of cancer cells. In this study, we examined the effects of Met on tumor oxygenation, metabolism, and growth in head and neck squamous cell carcinoma (HNSCC) using non-invasive multimodal imaging. Severe combined immunodeficient (SCID) mice bearing orthotopic FaDu HNSCC xenografts were treated with Met (200 mg/kg, ip) once daily for 5 days. Tumor oxygen saturation (%sO 2 ) and hemoglobin concentration (HbT) were measured using photoacoustic imaging (PAI). Fluorescence imaging was employed to measure intratumoral uptake of 2-deoxyglucosone (2-DG) following Met treatment while magnetic resonance imaging (MRI) was utilized to measure tumor volume. Correlative immunostaining of tumor sections for markers of proliferation (Ki67) and vascularity (CD31) was also performed. At 5 days post-Met treatment, PAI revealed a significant increase (P < .05) in %sO 2 and HbT levels in treated tumors compared to untreated controls. Fluorescence imaging at this time point revealed a 46% decrease in mean 2-DG uptake compared to controls. No changes in hemodynamic parameters were observed in mouse salivary gland tissue. A significant decrease in Ki-67 staining (P < .001) and MR-based tumor volume was also observed in Met-treated tumors compared to controls with no change in CD31 + vessel count following Met therapy. Our results provide, for the first time, direct in vivo evidence of Met-induced changes in tumor microenvironmental parameters in HNSCC xenografts. Our findings highlight the utility of multimodal functional imaging for non-invasive mapping of the effects of Met in HNSCC. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. CP-31398 prevents the growth of p53-mutated colorectal cancer cells in vitro and in vivo.

    PubMed

    He, Xingxing; Kong, Xinjuan; Yan, Junwei; Yan, Jingjun; Zhang, Yunan; Wu, Qian; Chang, Ying; Shang, Haitao; Dou, Qian; Song, Yuhu; Liu, Fang

    2015-03-01

    Rescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Small molecule CP-31398 was shown to restore mutant p53 tumor suppressor functions in cancer cells. Here, we determined the effects of CP-31398 on the growth of p53-mutated colorectal cancer (CRC) cells in vitro and in vivo. CRC cells which carry p53 mutation in codon 273 were treated with CP-31398 and the control, and the effects of CP-31398 on cell cycle, cell apoptosis, and proliferation were determined. The expression of p53-responsive downstream genes was evaluated by quantitative reverse transcriptase PCR (RT-PCR) and Western blot. CP-31398 was administrated into xenograft tumors created by the inoculation of HT-29 cells, and then the effect of CP-31398 on the growth of xenograft tumors was examined. CP-31398 induced p53 downstream target molecules in cultured HT-29 cells, which resulted in the inhibition of CRC cell growth assessed by the determination of cell cycle, apoptosis, and cell proliferation. In xenograft tumors, CP-31398 modulated the expression of Bax, Bcl-2, caspase 3, cyclin D, and Mdm2 and then blocked the growth of xenograft tumors. CP-31398 would be developed as a therapeutic candidate for p53-mutated CRC due to the restoration of mutant p53 tumor suppressor functions.

  15. 2-(ω-Carboxyethyl)pyrrole Antibody as a New Inhibitor of Tumor Angiogenesis and Growth.

    PubMed

    Wu, Chunying; Wang, Xizhen; Tomko, Nicholas; Zhu, Junqing; Wang, William R; Zhu, Jinle; Wangf, Bin; Wang, Yanming; Salomon, Robert G

    2017-01-01

    Angiogenesis is a fundamental process in the progression, invasion, and metastasis of tumors. Therapeutic drugs such as bevacizumab and ranibuzumab have thus been developed to inhibit vascular endothelial growth factor (VEFG)-promoted angiogenesis. While these anti-angiogenic drugs have been commonly used in the treatment of cancer, patients often develop significant resistance that limits the efficacy of anti-VEGF therapies to a short period of time. This is in part due to the fact that an independent pathway of angiogenesis exists, which is mediated by 2-(ω-carboxyethyl)pyrrole (CEP) in a TLR2 receptor-dependent manner that can compensate for inhibition of the VEGF-mediated pathway. In this work, we evaluated a CEP antibody as a new tumor growth inhibitor that blocks CEP-induced angiogenesis. We first evaluated the effectiveness of a CEP antibody as a monotherapy to impede tumor growth in two human tumor xenograft models. We then determined the synergistic effects of bevacizumab and CEP antibody in a combination therapy, which demonstrated that blocking of the CEP-mediated pathway significantly enhanced the anti-angiogenic efficacy of bevacizumab in tumor growth inhibition indicating that CEP antibody is a promising chemotherapeutic drug. To facilitate potential translational studies of CEP-antibody, we also conducted longitudinal imaging studies and identified that FMISO-PET is a non-invasive imaging tool that can be used to quantitatively monitor the anti-angiogenic effects of CEP-antibody in the clinical setting. That treatment with CEP antibody induces hypoxia in tumor tissue WHICH was indicated by 43% higher uptake of [18F]FMISO in CEP antibody-treated tumor xenografs than in the control PBS-treated littermates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Next generation patient-derived prostate cancer xenograft models

    PubMed Central

    Lin, Dong; Xue, Hui; Wang, Yuwei; Wu, Rebecca; Watahiki, Akira; Dong, Xin; Cheng, Hongwei; Wyatt, Alexander W; Collins, Colin C; Gout, Peter W; Wang, Yuzhuo

    2014-01-01

    There is a critical need for more effective therapeutic approaches for prostate cancer. Research in this area, however, has been seriously hampered by a lack of clinically relevant, experimental in vivo models of the disease. This review particularly focuses on the development of prostate cancer xenograft models based on subrenal capsule grafting of patients’ tumor tissue into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. This technique allows successful development of transplantable, patient-derived cancer tissue xenograft lines not only from aggressive metastatic, but also from localized prostate cancer tissues. The xenografts have been found to retain key biological properties of the original malignancies, including histopathological and molecular characteristics, tumor heterogeneity, response to androgen ablation and metastatic ability. As such, they are highly clinically relevant and provide valuable tools for studies of prostate cancer progression at cellular and molecular levels, drug screening for personalized cancer therapy and preclinical drug efficacy testing; especially when a panel of models is used to cover a broader spectrum of the disease. These xenograft models could therefore be viewed as next-generation models of prostate cancer. PMID:24589467

  17. Effects of aurothiomalate treatment on canine osteosarcoma in a murine xenograft model.

    PubMed

    Scharf, Valery F; Farese, James P; Siemann, Dietmar W; Abbott, Jeffrey R; Kiupel, Matti; Salute, Marc E; Milner, Rowan J

    2014-03-01

    Osteosarcoma is a highly fatal cancer, with most patients ultimately succumbing to metastatic disease. The purpose of this study was to evaluate the effects of the antirheumatoid drug aurothiomalate on canine and human osteosarcoma cells and on canine osteosarcoma growth and metastasis in a mouse xenograft model. We hypothesized that aurothiomalate would decrease osteosarcoma cell survival, tumor cellular proliferation, tumor growth, and metastasis. After performing clonogenic assays, aurothiomalate or a placebo was administered to 54 mice inoculated with canine osteosarcoma. Survival, tumor growth, embolization, metastasis, histopathology, cell proliferation marker Ki67, and apoptosis marker caspase-3 were compared between groups. Statistical analysis was carried out using the Kaplan-Meier method with the log-rank test and one-way analysis of variance with the Tukey's test or Dunn's method. Aurothiomalate caused dose-dependent inhibition of osteosarcoma cell survival (P<0.001) and decreased tumor growth (P<0.001). Pulmonary macrometastasis and Ki67 labeling were reduced with low-dose aurothiomalate (P=0.033 and 0.005, respectively), and tumor emboli and pulmonary micrometastases were decreased with high-dose aurothiomalate (P=0.010 and 0.011, respectively). There was no difference in survival, tumor development, ulceration, mitotic indices, tumor necrosis, nonpulmonary metastases, and caspase-3 labeling. Aurothiomalate treatment inhibited osteosarcoma cell survival and reduced tumor cell proliferation, growth, embolization, and pulmonary metastasis. Given aurothiomalate's established utility in canine and human medicine, our results suggest that this compound may hold promise as an adjunctive therapy for osteosarcoma. Further translational research is warranted to better characterize the dose response of canine and human osteosarcoma to aurothiomalate.

  18. Gamma-Klotho exhibits multiple roles in tumor growth of human bladder cancer.

    PubMed

    Hori, Shunta; Miyake, Makito; Tatsumi, Yoshihiro; Morizawa, Yosuke; Nakai, Yasushi; Onishi, Sayuri; Onishi, Kenta; Iida, Kota; Gotoh, Daisuke; Tanaka, Nobumichi; Fujimoto, Kiyohide

    2018-04-13

    Alpha-Klotho (KLα) and beta-Klotho (KLβ) have recently been reported to correlate with cancer prognosis in some malignancies and we previously reported the association between KLα, KLβ, and urothelial carcinoma of the bladder (UCB), indicating that KLβ acts as a tumor promoter. However, the association between gamma-Klotho (KLγ) and cancer prognosis remains unclear. In the present study, we evaluated the association between KLγ and UCB. To evaluate the effect of KLγ on human bladder cancer cell lines in vitro assays were performed. Exogenous KLγ increased the ability of human bladder cancer cells to proliferate, migrate, invade, form colonies, and provide anchorage-independent growth potential. In in vivo assays, eighteen mice bearing xenografts inoculated using UM-UC-3, were randomly divided into three groups and treated with a small interfering RNA (siRNA) by intratumoral administration once a week for four weeks. Knockdown of KLγ with siRNA led to a dramatic change in tumor growth and suggested that KLγ had effects on tumor growth, including promotion of cell proliferation, inhibition of apoptosis, and enhancement of the epithelial-mesenchymal transition. To confirm the study, human tissue samples were used and patients were divided into two groups according to KLγ expression level. High expression of KLγ was significantly associated with higher stage and grade cancer and the presence of lymphovascular invasion compared to patients with lower expression of KLγ. Our results suggest that KLγ plays an important role in tumor invasion and progression and these results may lead to the development of new therapies and diagnostic methods for UCB.

  19. Gamma-Klotho exhibits multiple roles in tumor growth of human bladder cancer

    PubMed Central

    Hori, Shunta; Miyake, Makito; Tatsumi, Yoshihiro; Morizawa, Yosuke; Nakai, Yasushi; Onishi, Sayuri; Onishi, Kenta; Iida, Kota; Gotoh, Daisuke; Tanaka, Nobumichi; Fujimoto, Kiyohide

    2018-01-01

    Alpha-Klotho (KLα) and beta-Klotho (KLβ) have recently been reported to correlate with cancer prognosis in some malignancies and we previously reported the association between KLα, KLβ, and urothelial carcinoma of the bladder (UCB), indicating that KLβ acts as a tumor promoter. However, the association between gamma-Klotho (KLγ) and cancer prognosis remains unclear. In the present study, we evaluated the association between KLγ and UCB. To evaluate the effect of KLγ on human bladder cancer cell lines in vitro assays were performed. Exogenous KLγ increased the ability of human bladder cancer cells to proliferate, migrate, invade, form colonies, and provide anchorage-independent growth potential. In in vivo assays, eighteen mice bearing xenografts inoculated using UM-UC-3, were randomly divided into three groups and treated with a small interfering RNA (siRNA) by intratumoral administration once a week for four weeks. Knockdown of KLγ with siRNA led to a dramatic change in tumor growth and suggested that KLγ had effects on tumor growth, including promotion of cell proliferation, inhibition of apoptosis, and enhancement of the epithelial-mesenchymal transition. To confirm the study, human tissue samples were used and patients were divided into two groups according to KLγ expression level. High expression of KLγ was significantly associated with higher stage and grade cancer and the presence of lymphovascular invasion compared to patients with lower expression of KLγ. Our results suggest that KLγ plays an important role in tumor invasion and progression and these results may lead to the development of new therapies and diagnostic methods for UCB. PMID:29731962

  20. Antitumor effect of novel anti-podoplanin antibody NZ-12 against malignant pleural mesothelioma in an orthotopic xenograft model.

    PubMed

    Abe, Shinji; Kaneko, Mika Kato; Tsuchihashi, Yuki; Izumi, Toshihiro; Ogasawara, Satoshi; Okada, Naoto; Sato, Chiemi; Tobiume, Makoto; Otsuka, Kenji; Miyamoto, Licht; Tsuchiya, Koichiro; Kawazoe, Kazuyoshi; Kato, Yukinari; Nishioka, Yasuhiko

    2016-09-01

    Podoplanin (aggrus) is highly expressed in several types of cancers, including malignant pleural mesothelioma (MPM). Previously, we developed a rat anti-human podoplanin mAb, NZ-1, and a rat-human chimeric anti-human podoplanin antibody, NZ-8, derived from NZ-1, which induced antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity against podoplanin-positive MPM cell lines. In this study, we showed the antitumor effect of NZ-1, NZ-8, and NZ-12, a novel rat-human chimeric anti-human podoplanin antibody derived from NZ-1, in an MPM orthotopic xenograft SCID mouse model. Treatment with NZ-1 and rat NK (CD161a(+) ) cells inhibited the growth of tumors and the production of pleural effusion in NCI-H290/PDPN or NCI-H226 orthotopic xenograft mouse models. NZ-8 and human natural killer (NK) (CD56(+) ) cells also inhibited tumor growth and pleural effusion in MPM orthotopic xenograft mice. Furthermore, NZ-12 induced potent ADCC mediated by human MNC, compared with either NZ-1 or NZ-8. Antitumor effects were observed following treatment with NZ-12 and human NK (CD56(+) ) cells in MPM orthotopic xenograft mice. In addition, combined immunotherapy using the ADCC activity of NZ-12 mediated by human NK (CD56(+) ) cells with pemetrexed, led to enhanced antitumor effects in MPM orthotopic xenograft mice. These results strongly suggest that combination therapy with podoplanin-targeting immunotherapy using both NZ-12 and pemetrexed might provide an efficacious therapeutic strategy for the treatment of MPM. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  1. Optimization of Glioblastoma Mouse Orthotopic Xenograft Models for Translational Research.

    PubMed

    Irtenkauf, Susan M; Sobiechowski, Susan; Hasselbach, Laura A; Nelson, Kevin K; Transou, Andrea D; Carlton, Enoch T; Mikkelsen, Tom; deCarvalho, Ana C

    2017-08-01

    Glioblastoma is an aggressive primary brain tumor predominantly localized to the cerebral cortex. We developed a panel of patient-derived mouse orthotopic xenografts (PDOX) for preclinical drug studies by implanting cancer stem cells (CSC) cultured from fresh surgical specimens intracranially into 8-wk-old female athymic nude mice. Here we optimize the glioblastoma PDOX model by assessing the effect of implantation location on tumor growth, survival, and histologic characteristics. To trace the distribution of intracranial injections, toluidine blue dye was injected at 4 locations with defined mediolateral, anterioposterior, and dorsoventral coordinates within the cerebral cortex. Glioblastoma CSC from 4 patients and a glioblastoma nonstem-cell line were then implanted by using the same coordinates for evaluation of tumor location, growth rate, and morphologic and histologic features. Dye injections into one of the defined locations resulted in dye dissemination throughout the ventricles, whereas tumor cell implantation at the same location resulted in a much higher percentage of small multifocal ventricular tumors than did the other 3 locations tested. Ventricular tumors were associated with a lower tumor growth rate, as measured by in vivo bioluminescence imaging, and decreased survival in 4 of 5 cell lines. In addition, tissue oxygenation, vasculature, and the expression of astrocytic markers were altered in ventricular tumors compared with nonventricular tumors. Based on this information, we identified an optimal implantation location that avoided the ventricles and favored cortical tumor growth. To assess the effects of stress from oral drug administration, mice that underwent daily gavage were compared with stress-positive and -negative control groups. Oral gavage procedures did not significantly affect the survival of the implanted mice or physiologic measurements of stress. Our findings document the importance of optimization of the implantation site for

  2. Optimization of Glioblastoma Mouse Orthotopic Xenograft Models for Translational Research

    PubMed Central

    Irtenkauf, Susan M; Sobiechowski, Susan; Hasselbach, Laura A; Nelson, Kevin K; Transou, Andrea D; Carlton, Enoch T; Mikkelsen, Tom; deCarvalho, Ana C

    2017-01-01

    Glioblastoma is an aggressive primary brain tumor predominantly localized to the cerebral cortex. We developed a panel of patient-derived mouse orthotopic xenografts (PDOX) for preclinical drug studies by implanting cancer stem cells (CSC) cultured from fresh surgical specimens intracranially into 8-wk-old female athymic nude mice. Here we optimize the glioblastoma PDOX model by assessing the effect of implantation location on tumor growth, survival, and histologic characteristics. To trace the distribution of intracranial injections, toluidine blue dye was injected at 4 locations with defined mediolateral, anterioposterior, and dorsoventral coordinates within the cerebral cortex. Glioblastoma CSC from 4 patients and a glioblastoma nonstem-cell line were then implanted by using the same coordinates for evaluation of tumor location, growth rate, and morphologic and histologic features. Dye injections into one of the defined locations resulted in dye dissemination throughout the ventricles, whereas tumor cell implantation at the same location resulted in a much higher percentage of small multifocal ventricular tumors than did the other 3 locations tested. Ventricular tumors were associated with a lower tumor growth rate, as measured by in vivo bioluminescence imaging, and decreased survival in 4 of 5 cell lines. In addition, tissue oxygenation, vasculature, and the expression of astrocytic markers were altered in ventricular tumors compared with nonventricular tumors. Based on this information, we identified an optimal implantation location that avoided the ventricles and favored cortical tumor growth. To assess the effects of stress from oral drug administration, mice that underwent daily gavage were compared with stress-positive and ‑negative control groups. Oral gavage procedures did not significantly affect the survival of the implanted mice or physiologic measurements of stress. Our findings document the importance of optimization of the implantation site for

  3. 3-Bromopyruvate inhibits human gastric cancer tumor growth in nude mice via the inhibition of glycolysis.

    PubMed

    Xian, Shu-Lin; Cao, Wei; Zhang, Xiao-Dong; Lu, Yun-Fei

    2015-02-01

    Tumor cells primarily depend upon glycolysis in order to gain energy. Therefore, the inhibition of glycolysis may inhibit tumor growth. Our previous study demonstrated that 3-bromopyruvate (3-BrPA) inhibited gastric cancer cell proliferation in vitro . However, the ability of 3-BrPA to suppress tumor growth in vivo, and its underlying mechanism, have yet to be elucidated. The aim of the present study was to investigate the inhibitory effect of 3-BrPA in an animal model of gastric cancer. It was identified that 3-BrPA exhibited strong inhibitory effects upon xenograft tumor growth in nude mice. In addition, the antitumor function of 3-BrPA exhibited a dose-effect association, which was similar to that of the chemotherapeutic agent, 5-fluorouracil. Furthermore, 3-BrPA exhibited low toxicity in the blood, liver and kidneys of the nude mice. The present study hypothesized that the inhibitory effect of 3-BrPA is achieved through the inhibition of hexokinase activity, which leads to the downregulation of B-cell lymphoma 2 (Bcl-2) expression, the upregulation of Bcl-2-associated X protein expression and the subsequent activation of caspase-3. These data suggest that 3-BrPA may be a novel therapy for the treatment of gastric cancer.

  4. [Inhibitory effect of nimesulide and oxaliplatin on tumor growth and lymphatic metastasis of transplanted human lung cancer in nude mice].

    PubMed

    Lang, Zhe; Chen, Gang; Wang, Dong-chang

    2012-10-01

    This study was designed to evaluate the inhibitory effect of nimesulide in combination with oxaliplatin on tumor growth, expression of COX-2, VEGF-C, VEGFR-3, survivin and β-catenin, and lymphatic metastasis in lung cancer xenograft in nude mice, and to discuss the possible synergistic effect of nimesulide in combination with oxaliplatin. Human lung cancer A549 cells were injected into BALB/c nude mice subcutaneously. Thirty-three healthy male nude mice were randomly divided into 4 groups: the control group, nimesulide group, oxaliplatin group and nimesulide combined with oxaliplatin group. Transplanted tumor tissues were collected and the expressions of COX-2, VEGF-C, VEGFR-3, survivin, β-catenin protein were detected by immunohistochemistry, and RT-PCR assay was used to assess the expression of tumor COX-2, VEGF-C, VEGFR-3, survivin and β-catenin mRNA. SPSS 16.0 was used for statistical analysis. Data were present as (x(-) ± s), and the means were compared by analysis of variance test. Tumor inhibition rates of the nimesulide group, oxaliplatin group and nimesulide + oxaliplatin group were 39.73%, 48.04% and 65.94%, respectively. Immunohistochemical and RT-PCR analysis showed that compared with the control group, the expression levels of COX-2, VEGF-C, VEGFR-3, survivin and β-catenin of the nimesulide group were significantly reduced (all P < 0.05). Compared with the control group, statistical analysis of variance showed that the expression levels of COX-2, VEGF-C and VEGFR-3 of the oxaliplatin group were significantly increased (P < 0.05), the expression levels of survivin and β-catenin protein and mRNA of the oxaliplatin group were significantly reduced (P < 0.05). Compared with the control group, the expression levels of COX-2, VEGF-C, VEGFR-3, survivin and β-catenin of the nimesulide + oxaliplatin group were significantly reduced (all P < 0.05). Both nimesulide alone or in combination with oxaliplatin can significantly inhibit the growth of lung cancer

  5. A Dual Tracer 18F-FCH/18F-FDG PET Imaging of an Orthotopic Brain Tumor Xenograft Model.

    PubMed

    Fu, Yilong; Ong, Lai-Chun; Ranganath, Sudhir H; Zheng, Lin; Kee, Irene; Zhan, Wenbo; Yu, Sidney; Chow, Pierce K H; Wang, Chi-Hwa

    2016-01-01

    Early diagnosis of low grade glioma has been a challenge to clinicians. Positron Emission Tomography (PET) using 18F-FDG as a radio-tracer has limited utility in this area because of the high background in normal brain tissue. Other radiotracers such as 18F-Fluorocholine (18F-FCH) could provide better contrast between tumor and normal brain tissue but with high incidence of false positives. In this study, the potential application of a dual tracer 18F-FCH/18F-FDG-PET is investigated in order to improve the sensitivity of PET imaging for low grade glioma diagnosis based on a mouse orthotopic xenograft model. BALB/c nude mice with and without orthotopic glioma xenografts from U87 MG-luc2 glioma cell line are used for the study. The animals are subjected to 18F-FCH and 18F-FDG PET imaging, and images acquired from two separate scans are superimposed for analysis. The 18F-FCH counts are subtracted from the merged images to identify the tumor. Micro-CT, bioluminescence imaging (BLI), histology and measurement of the tumor diameter are also conducted for comparison. Results show that there is a significant contrast in 18F-FCH uptake between tumor and normal brain tissue (2.65 ± 0.98), but with a high false positive rate of 28.6%. The difficulty of identifying the tumor by 18F-FDG only is also proved in this study. All the tumors can be detected based on the dual tracer technique of 18F-FCH/18F-FDG-PET imaging in this study, while the false-positive caused by 18F-FCH can be eliminated. Dual tracer 18F-FCH/18F-FDG PET imaging has the potential to improve the visualization of low grade glioma. 18F-FCH delineates tumor areas and the tumor can be identified by subtracting the 18F-FCH counts. The sensitivity was over 95%. Further studies are required to evaluate the possibility of applying this technique in clinical trials.

  6. A Dual Tracer 18F-FCH/18F-FDG PET Imaging of an Orthotopic Brain Tumor Xenograft Model

    PubMed Central

    Ranganath, Sudhir H.; Zheng, Lin; Kee, Irene; Zhan, Wenbo; Yu, Sidney; Chow, Pierce K. H.; Wang, Chi-Hwa

    2016-01-01

    Early diagnosis of low grade glioma has been a challenge to clinicians. Positron Emission Tomography (PET) using 18F-FDG as a radio-tracer has limited utility in this area because of the high background in normal brain tissue. Other radiotracers such as 18F-Fluorocholine (18F-FCH) could provide better contrast between tumor and normal brain tissue but with high incidence of false positives. In this study, the potential application of a dual tracer 18F-FCH/18F-FDG-PET is investigated in order to improve the sensitivity of PET imaging for low grade glioma diagnosis based on a mouse orthotopic xenograft model. BALB/c nude mice with and without orthotopic glioma xenografts from U87 MG-luc2 glioma cell line are used for the study. The animals are subjected to 18F-FCH and 18F-FDG PET imaging, and images acquired from two separate scans are superimposed for analysis. The 18F-FCH counts are subtracted from the merged images to identify the tumor. Micro-CT, bioluminescence imaging (BLI), histology and measurement of the tumor diameter are also conducted for comparison. Results show that there is a significant contrast in 18F-FCH uptake between tumor and normal brain tissue (2.65 ± 0.98), but with a high false positive rate of 28.6%. The difficulty of identifying the tumor by 18F-FDG only is also proved in this study. All the tumors can be detected based on the dual tracer technique of 18F-FCH/ 18F-FDG-PET imaging in this study, while the false-positive caused by 18F-FCH can be eliminated. Dual tracer 18F-FCH/18F-FDG PET imaging has the potential to improve the visualization of low grade glioma. 18F-FCH delineates tumor areas and the tumor can be identified by subtracting the 18F-FCH counts. The sensitivity was over 95%. Further studies are required to evaluate the possibility of applying this technique in clinical trials. PMID:26844770

  7. Inhibition of breast tumor growth and angiogenesis by a medicinal herb: Ocimum sanctum

    PubMed Central

    Nangia-Makker, Pratima; Tait, Larry; Hogan, Victor; Shekhar, Malathy P.V.; Funasaka, Tatsuyoshi; Raz, Avraham

    2013-01-01

    Ocimum sanctum (OS) is a traditionally used medicinal herb, which shows anti-oxidant, anti-carcinogenic, radio-protective and free radical scavenging properties. So far no detailed studies have been reported on its effects on human cancers. Thus, we analyzed its effects on human breast cancer utilizing in vitro and in vivo methodologies. Aqueous extracts were prepared from the mature leaves of Ocimum sanctum cultivated devoid of pesticides. Tumor progression and angiogenesis related processes like chemotaxis, proliferation, apoptosis, 3-dimensional growth and morphogenesis, angiogenesis, and tumor growth were studied in the presence or absence of the extract and in some experiments a comparison was made with purified commercially available eugenol, apigenin and ursolic acid. Aqueous OS leaf extract inhibits proliferation, migration, anchorage independent growth, three dimensional growth and morphogenesis, and induction of COX-2 protein in breast cancer cells. A comparative analysis with eugenol, apigenin and ursolic acid showed that the inhibitory effects on chemotaxis and three dimensional morphogenesis of breast cancer cells were specific to OS extract. In addition, OS extracts also reduced tumor size and neoangiogenesis in a MCF10 DCIS.com xenograft model of human DCIS. This is the first detailed report showing that OS leaf extract may be of value as a breast cancer preventive and therapeutic agent and might be considered as additional additive in the arsenal of components aiming at combating breast cancer progression and metastasis. PMID:17437270

  8. Effects of Per2 overexpression on growth inhibition and metastasis, and on MTA1, nm23-H1 and the autophagy-associated PI3K/PKB signaling pathway in nude mice xenograft models of ovarian cancer

    PubMed Central

    WANG, ZHAOXIA; LI, LI; WANG, YANG

    2016-01-01

    The aim of the present study was to evaluate the association between Period2 (Per2) and the occurrence and development of ovarian cancer, in addition to evaluating the effect of this gene on the growth and metastasis of ovarian cancer in nude mice xenograft models. The detection of Per2 by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting methods at various stages of ovarian cancer in tumor tissue samples was conducted. Nude mice xenograft models of ovarian cancer were constructed using an ovarian cancer cell line and, using a gene transfection technique, exogenous infusion of the recombinant gene, Per2, was performed. To assess for the successful and stable expression of Per2 in the tumor tissue, levels of Per2 expression in the nude mice xenograft models were detected by RT-qPCR. During the experimental period, the tumor volumes were measured every three days. Two weeks following treatment cessation, the nude mice were sacrificed and the tumor weight and volume were measured. Furthermore, detection of the changes in expression levels of metastasis-associated gene 1 (MTA-1) and tumor metastasis suppressor gene, non-metastasis protein 23-H1 (nm23-H1), and the expression change of autophagy-associated signal transduction pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) kinase were analyzed. The findings demonstrated that with ovarian cancer stage development, the expression of Per2 gradually reduced or ceased. In addition, exogenous Per2 was successfully and stably expressed in nude mice tumor tissue samples. Furthermore, in the Per2 overexpression group, MTA-1 protein expression was significantly reduced when compared with the phosphate-buffered saline (PBS) control and empty plasmid groups, while nm23-H1 protein expression was significantly higher when compared with those two groups. The expression levels of PI3K and PKB kinase, which are marker proteins of the autophagy associated signaling pathway PI3

  9. Effects of Per2 overexpression on growth inhibition and metastasis, and on MTA1, nm23-H1 and the autophagy-associated PI3K/PKB signaling pathway in nude mice xenograft models of ovarian cancer.

    PubMed

    Wang, Zhaoxia; Li, Li; Wang, Yang

    2016-06-01

    The aim of the present study was to evaluate the association between Period2 (Per2) and the occurrence and development of ovarian cancer, in addition to evaluating the effect of this gene on the growth and metastasis of ovarian cancer in nude mice xenograft models. The detection of Per2 by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting methods at various stages of ovarian cancer in tumor tissue samples was conducted. Nude mice xenograft models of ovarian cancer were constructed using an ovarian cancer cell line and, using a gene transfection technique, exogenous infusion of the recombinant gene, Per2, was performed. To assess for the successful and stable expression of Per2 in the tumor tissue, levels of Per2 expression in the nude mice xenograft models were detected by RT‑qPCR. During the experimental period, the tumor volumes were measured every three days. Two weeks following treatment cessation, the nude mice were sacrificed and the tumor weight and volume were measured. Furthermore, detection of the changes in expression levels of metastasis‑associated gene 1 (MTA‑1) and tumor metastasis suppressor gene, non‑metastasis protein 23‑H1 (nm23‑H1), and the expression change of autophagy‑associated signal transduction pathway, phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (PKB) kinase were analyzed. The findings demonstrated that with ovarian cancer stage development, the expression of Per2 gradually reduced or ceased. In addition, exogenous Per2 was successfully and stably expressed in nude mice tumor tissue samples. Furthermore, in the Per2 overexpression group, MTA‑1 protein expression was significantly reduced when compared with the phosphate‑buffered saline (PBS) control and empty plasmid groups, while nm23‑H1 protein expression was significantly higher when compared with those two groups. The expression levels of PI3K and PKB kinase, which are marker proteins of the autophagy

  10. Stochastic models for tumoral growth

    NASA Astrophysics Data System (ADS)

    Escudero, Carlos

    2006-02-01

    Strong experimental evidence has indicated that tumor growth belongs to the molecular beam epitaxy universality class. This type of growth is characterized by the constraint of cell proliferation to the tumor border and the surface diffusion of cells at the growing edge. Tumor growth is thus conceived as a competition for space between the tumor and the host, and cell diffusion at the tumor border is an optimal strategy adopted for minimizing the pressure and helping tumor development. Two stochastic partial differential equations are reported in this paper in order to correctly model the physical properties of tumoral growth in (1+1) and (2+1) dimensions. The advantage of these models is that they reproduce the correct geometry of the tumor and are defined in terms of polar variables. An analysis of these models allows us to quantitatively estimate the response of the tumor to an unfavorable perturbation during growth.

  11. Prioritizing therapeutic targets using patient-derived xenograft models

    PubMed Central

    Lodhia, K.A; Hadley, A; Haluska, P; Scott, C.L

    2015-01-01

    Effective systemic treatment of cancer relies on the delivery of agents with optimal therapeutic potential. The molecular age of medicine has provided genomic tools that can identify a large number of potential therapeutic targets in individual patients, heralding the promise of personalized treatment. However, determining which potential targets actually drive tumor growth and should be prioritized for therapy is challenging. Indeed, reliable molecular matches of target and therapeutic agent have been stringently validated in the clinic for only a small number of targets. Patient-derived xenografts (PDX) are tumor models developed in immunocompromised mice using tumor procured directly from the patient. As patient surrogates, PDX models represent a powerful tool for addressing individualized therapy. Challenges include humanizing the immune system of PDX models and ensuring high quality molecular annotation, in order to maximise insights for the clinic. Importantly, PDX can be sampled repeatedly and in parallel, to reveal clonal evolution, which may predict mechanisms of drug resistance and inform therapeutic strategy design. PMID:25783201

  12. Ternary copper(II) complex: NCI60 screening, toxicity studies, and evaluation of efficacy in xenograft models of nasopharyngeal carcinoma.

    PubMed

    Ahmad, Munirah; Suhaimi, Shazlan-Noor; Chu, Tai-Lin; Abdul Aziz, Norazlin; Mohd Kornain, Noor-Kaslina; Samiulla, D S; Lo, Kwok-Wai; Ng, Chew-Hee; Khoo, Alan Soo-Beng

    2018-01-01

    Copper(II) ternary complex, [Cu(phen)(C-dmg)(H2O)]NO3 was evaluated against a panel of cell lines, tested for in vivo efficacy in nasopharyngeal carcinoma xenograft models as well as for toxicity in NOD scid gamma mice. The Cu(II) complex displayed broad spectrum cytotoxicity against multiple cancer types, including lung, colon, central nervous system, melanoma, ovarian, and prostate cancer cell lines in the NCI-60 panel. The Cu(II) complex did not cause significant induction of cytochrome P450 (CYP) 3A and 1A enzymes but moderately inhibited CYP isoforms 1A2, 2C9, 2C19, 2D6, 2B6, 2C8 and 3A4. The complex significantly inhibited tumor growth in nasopharyngeal carcinoma xenograft bearing mice models at doses which were well tolerated without causing significant or permanent toxic side effects. However, higher doses which resulted in better inhibition of tumor growth also resulted in toxicity.

  13. Melanoma patient derived xenografts acquire distinct Vemurafenib resistance mechanisms

    PubMed Central

    Monsma, David J; Cherba, David M; Eugster, Emily E; Dylewski, Dawna L; Davidson, Paula T; Peterson, Chelsea A; Borgman, Andrew S; Winn, Mary E; Dykema, Karl J; Webb, Craig P; MacKeigan, Jeffrey P; Duesbery, Nicholas S; Nickoloff, Brian J; Monks, Noel R

    2015-01-01

    Variable clinical responses, tumor heterogeneity, and drug resistance reduce long-term survival outcomes for metastatic melanoma patients. To guide and accelerate drug development, we characterized tumor responses for five melanoma patient derived xenograft models treated with Vemurafenib. Three BRAFV600E models showed acquired drug resistance, one BRAFV600E model had a complete and durable response, and a BRAFV600V model was expectedly unresponsive. In progressing tumors, a variety of resistance mechanisms to BRAF inhibition were uncovered, including mutant BRAF alternative splicing, NRAS mutation, COT (MAP3K8) overexpression, and increased mutant BRAF gene amplification and copy number. The resistance mechanisms among the patient derived xenograft models were similar to the resistance pathways identified in clinical specimens from patients progressing on BRAF inhibitor therapy. In addition, there was both inter- and intra-patient heterogeneity in resistance mechanisms, accompanied by heterogeneous pERK expression immunostaining profiles. MEK monotherapy of Vemurafenib-resistant tumors caused toxicity and acquired drug resistance. However, tumors were eradicated when Vemurafenib was combined the MEK inhibitor. The diversity of drug responses among the xenograft models; the distinct mechanisms of resistance; and the ability to overcome resistance by the addition of a MEK inhibitor provide a scheduling rationale for clinical trials of next-generation drug combinations. PMID:26101714

  14. Diffuse optical spectroscopy monitoring of oxygen state and hemoglobin concentration during SKBR-3 tumor model growth

    NASA Astrophysics Data System (ADS)

    Orlova, A. G.; Kirillin, M. Yu; Volovetsky, A. B.; Shilyagina, N. Yu; Sergeeva, E. A.; Golubiatnikov, G. Yu; Turchin, I. V.

    2017-01-01

    Tumor oxygenation and hemoglobin content are the key indicators of the tumor status which can be efficiently employed for prognosis of tumor development and choice of treatment strategy. We report on monitoring of these parameters in SKBR-3 (human breast adenocarcinoma) tumors established as subcutaneous tumor xenografts in athymic nude mice by diffuse optical spectroscopy (DOS). A simple continuous wave fiber probe DOS system is employed. Optical properties extraction approach is based on diffusion approximation. Statistically significant difference between measured values of normal tissue and tumor are demonstrated. Hemoglobin content in tumor increases from 7.0  ±  4.2 μM to 30.1  ±  16.1 μM with tumor growth from 150  ±  80 mm3 to 1300  ±  650 mm3 which is determined by gradual increase of deoxyhemoglobin content while measured oxyhemoglobin content does not demonstrate any statistically significant variations. Oxygenation in tumor falls quickly from 52.8  ±  24.7% to 20.2  ±  4.8% preceding acceleration of tumor growth. Statistical analysis indicated dependence of oxy-, deoxy- and total hemoglobin on tumor volume (p  <  0.01). DOS measurements of oxygen saturation are in agreement with independent measurements of oxygen partial pressure by polarography (Pearson’s correlation coefficient equals 0.8).

  15. Tumor-specific novel taxoid-monoclonal antibody conjugates.

    PubMed

    Ojima, Iwao; Geng, Xudong; Wu, Xinyuan; Qu, Chuanxing; Borella, Christopher P; Xie, Hongsheng; Wilhelm, Sharon D; Leece, Barbara A; Bartle, Laura M; Goldmacher, Victor S; Chari, Ravi V J

    2002-12-19

    Taxoids bearing methyldisulfanyl(alkanoyl) groups for taxoid-antibody immunoconjugates were designed, synthesized and their activities evaluated. A highly cytotoxic C-10 methyldisulfanylpropanoyl taxoid was conjugated to monoclonal antibodies recognizing the epidermal growth factor receptor (EGFR) expressed in human squamous cancers. These conjugates were shown to possess remarkable target-specific antitumor activity in vivo against EGFR-expressing A431 tumor xenografts in severe combined immune deficiency mice, resulting in complete inhibition of tumor growth in all the treated mice.

  16. Effects of high-energy shock waves combined with biological response modifiers or Adriamycin on a human kidney cancer xenograft.

    PubMed

    Oosterhof, G O; Smiths, G A; deRuyter, J E; Schalken, J A; Debruyne, F M

    1990-01-01

    We have studied the effect of high-energy shock waves (HESW) alone or in combination with biological response modifiers (BRMs) or Adriamycin on the growth of the NU-1 human kidney cancer xenograft. When HESW are administered repeatedly (four sessions of 800 shock waves on days 0, 2, 4 and 6) a prolonged delay in tumor growth was found compared with that following a single administration. This effect was temporary, and several days after stopping the HESW administration the tumor regained its original growth potential (same doubling time). Tumor growth was suppressed for a longer period by the combination of 4 sessions of HESW and a single administration of Adriamycin, 5 mg/kg. Combination of HESW treatment with interferon alpha (5.0 ng/g body weight, three times/week) and tumor necrosis factor alpha (500 ng/g body weight, 5 days/week) s.c. around the tumor resulted in a complete cessation of tumor growth. While Adriamycin had an additive effect on HESW treatment, the combination with BRMs was highly synergistic.

  17. Quilamine HQ1-44, an iron chelator vectorized toward tumor cells by the polyamine transport system, inhibits HCT116 tumor growth without adverse effect.

    PubMed

    Renaud, Stéphanie; Corcé, Vincent; Cannie, Isabelle; Ropert, Martine; Lepage, Sylvie; Loréal, Olivier; Deniaud, David; Gaboriau, François

    2015-08-01

    Tumor cell growth requires large iron quantities and the deprivation of this metal induced by synthetic metal chelators is therefore an attractive method for limiting the cancer cell proliferation. The antiproliferative effect of the Quilamine HQ1-44, a new iron chelator vectorized toward tumor cells by a polyamine chain, is related to its high selectivity for the Polyamine Transport System (PTS), allowing its preferential uptake by tumoral cells. The difference in PTS activation between healthy cells and tumor cells enables tumor cells to be targeted, whereas the strong dependence of these cells on iron ensures a secondary targeting. Here, we demonstrated in vitro that HQ1-44 inhibits DNA synthesis and cell proliferation of HCT116 cells by modulating the intracellular metabolism of both iron and polyamines. Moreover, in vivo, in xenografted athymic nude mice, we found that HQ1-44 was as effective as cis-platin in reducing HCT116 tumor growth, without its side effects. Furthermore, as suggested by in vitro data, the depletion in exogenous or endogenous polyamines, known to activate the PTS, dramatically enhanced the antitumor efficiency of HQ1-44. These data support the need for further studies to assess the value of HQ1-44 as an adjuvant treatment in cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Lysophosphatidic acid-induced ADAM12 expression mediates human adipose tissue-derived mesenchymal stem cell-stimulated tumor growth.

    PubMed

    Do, Eun Kyoung; Kim, Young Mi; Heo, Soon Chul; Kwon, Yang Woo; Shin, Sang Hun; Suh, Dong-Soo; Kim, Ki-Hyung; Yoon, Man-Soo; Kim, Jae Ho

    2012-11-01

    Lysophosphatidic acid (LPA) is involved in mesenchymal stem cell-stimulated tumor growth in vivo. However, the molecular mechanism by which mesenchymal stem cells promote tumorigenesis remains elusive. In the present study, we demonstrate that conditioned medium from A549 human lung adenocarcinoma cells (A549 CM) induced the expression of ADAM12, a disintegrin and metalloproteases family member, in human adipose tissue-derived mesenchymal stem cells (hASCs). A549 CM-stimulated ADAM12 expression was abrogated by pretreatment of hASCs with the LPA receptor 1 inhibitor Ki16425 or by small interfering RNA-mediated silencing of LPA receptor 1, suggesting a key role for the LPA-LPA receptor 1 signaling axis in A549 CM-stimulated ADAM12 expression. Silencing of ADAM12 expression using small interfering RNA or short hairpin RNA abrogated LPA-induced expression of both α-smooth muscle actin, a marker of carcinoma-associated fibroblasts, and ADAM12 in hASCs. Using a xenograft transplantation model of A549 cells, we demonstrated that silencing of ADAM12 inhibited the hASC-stimulated in vivo growth of A549 xenograft tumors and the differentiation of transplanted hASCs to α-smooth muscle actin-positive carcinoma-associated fibroblasts. LPA-conditioned medium from hASCs induced the adhesion of A549 cells and silencing of ADAM12 inhibited LPA-induced expression of extracellular matrix proteins, periostin and βig-h3, in hASCs and LPA-conditioned medium-stimulated adhesion of A549 cells. These results suggest a pivotal role for LPA-stimulated ADAM12 expression in tumor growth and the differentiation of hASCs to carcinoma-associated fibroblasts expressing α-smooth muscle actin, periostin, and βig-h3. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Fish oil slows prostate cancer xenograft growth relative to other dietary fats and is associated with decreased mitochondrial and insulin pathway gene expression.

    PubMed

    Lloyd, J C; Masko, E M; Wu, C; Keenan, M M; Pilla, D M; Aronson, W J; Chi, J-Ta; Freedland, S J

    2013-12-01

    Previous mouse studies suggest that decreasing dietary fat content can slow prostate cancer (PCa) growth. To our knowledge, no study has yet compared the effect of multiple different fats on PCa progression. We sought to systematically compare the effect of fish oil, olive oil, corn oil and animal fat on PCa progression. A total of 96 male severe combined immunodeficient mice were injected with LAPC-4 human PCa cells. Two weeks following injection, mice were randomized to a Western diet based on fish oil, olive oil, corn oil or animal fat (35% kilocalories from fat). Animals were euthanized when tumor volumes reached 1000 mm(3). Serum was collected at death and assayed for PSA, insulin, insulin-like growth factor-1 (IGF-1), IGF-1-binding protein-3 and prostaglandin E-2 (PGE-2) levels. Tumors were also assayed for PGE-2 and cyclooxygenase-2 levels, and global gene expression was analyzed using Affymetrix microarrays. Mice weights and tumor volumes were equivalent across groups at randomization. Overall, fish oil consumption was associated with improved survival relative to other dietary groups (P=0.014). On gene expression analyses, the fish oil group had decreased signal in pathways related to mitochondrial physiology and insulin synthesis/secretion. In this xenograft model, we found that consuming a diet in which fish oil was the only fat source slowed tumor growth and improved survival compared with that in mice consuming diets composed of olive oil, corn oil or animal fat. Although prior studies showed that the amount of fat is important for PCa growth, this study suggests that the type of dietary fat consumed may also be important.

  20. Anti-Tumor Effect of Adipose Tissue Derived-Mesenchymal Stem Cells Expressing Interferon-β and Treatment with Cisplatin in a Xenograft Mouse Model for Canine Melanoma

    PubMed Central

    Ahn, Jin ok; Lee, Hee woo; Seo, Kyoung won; Kang, Sung keun; Ra, Jeong chan; Youn, Hwa young

    2013-01-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are attractive cell-therapy vehicles for the delivery of anti-tumor molecules into the tumor microenvironment. The innate tropism of AT-MSCs for tumors has important implications for effective cellular delivery of anti-tumor molecules, including cytokines, interferon, and pro-drugs. The present study was designed to determine the possibility that the combination of stem cell-based gene therapy with low-dose cisplatin would improve therapeutic efficacy against canine melanoma. The IFN-β transduced canine AT-MSCs (cAT-MSC-IFN-β) inhibited the growth of LMeC canine melanoma cells in direct and indirect in vitro co-culture systems. In animal experiments using BALB/c nude mouse xenografts, which developed by injecting LMeC cells, the combination treatment of cAT-MSC-IFN-β and low-dose cisplatin significantly reduced tumor volume compared with the other treatment groups. Fluorescent microscopic analysis with a TUNEL (terminal deoxynucleotidyl transferase-mediated nick-end labeling) assay of tumor section provided evidence for homing of cAT-MSC-IFN-β to the tumor site and revealed that the combination treatment of cAT-MSC-IFN-β with low-dose cisplatin induced high levels of cell apoptosis. These findings may prove useful in further explorations of the application of these combined approaches to the treatment of malignant melanoma and other tumors. PMID:24040358

  1. Combination therapy in a xenograft model of glioblastoma: enhancement of the antitumor activity of temozolomide by an MDM2 antagonist.

    PubMed

    Wang, Haiyan; Cai, Shanbao; Bailey, Barbara J; Reza Saadatzadeh, M; Ding, Jixin; Tonsing-Carter, Eva; Georgiadis, Taxiarchis M; Zachary Gunter, T; Long, Eric C; Minto, Robert E; Gordon, Kevin R; Sen, Stephanie E; Cai, Wenjing; Eitel, Jacob A; Waning, David L; Bringman, Lauren R; Wells, Clark D; Murray, Mary E; Sarkaria, Jann N; Gelbert, Lawrence M; Jones, David R; Cohen-Gadol, Aaron A; Mayo, Lindsey D; Shannon, Harlan E; Pollok, Karen E

    2017-02-01

    OBJECTIVE Improvement in treatment outcome for patients with glioblastoma multiforme (GBM) requires a multifaceted approach due to dysregulation of numerous signaling pathways. The murine double minute 2 (MDM2) protein may fulfill this requirement because it is involved in the regulation of growth, survival, and invasion. The objective of this study was to investigate the impact of modulating MDM2 function in combination with front-line temozolomide (TMZ) therapy in GBM. METHODS The combination of TMZ with the MDM2 protein-protein interaction inhibitor nutlin3a was evaluated for effects on cell growth, p53 pathway activation, expression of DNA repair proteins, and invasive properties. In vivo efficacy was assessed in xenograft models of human GBM. RESULTS In combination, TMZ/nutlin3a was additive to synergistic in decreasing growth of wild-type p53 GBM cells. Pharmacodynamic studies demonstrated that inhibition of cell growth following exposure to TMZ/nutlin3a correlated with: 1) activation of the p53 pathway, 2) downregulation of DNA repair proteins, 3) persistence of DNA damage, and 4) decreased invasion. Pharmacokinetic studies indicated that nutlin3a was detected in human intracranial tumor xenografts. To assess therapeutic potential, efficacy studies were conducted in a xenograft model of intracranial GBM by using GBM cells derived from a recurrent wild-type p53 GBM that is highly TMZ resistant (GBM10). Three 5-day cycles of TMZ/nutlin3a resulted in a significant increase in the survival of mice with GBM10 intracranial tumors compared with single-agent therapy. CONCLUSIONS Modulation of MDM2/p53-associated signaling pathways is a novel approach for decreasing TMZ resistance in GBM. To the authors' knowledge, this is the first study in a humanized intracranial patient-derived xenograft model to demonstrate the efficacy of combining front-line TMZ therapy and an inhibitor of MDM2 protein-protein interactions.

  2. Preclinical evaluation of the anti-tumor effects of the natural isoflavone genistein in two xenograft mouse models monitored by [18F]FDG, [18F]FLT, and [64Cu]NODAGA-cetuximab small animal PET.

    PubMed

    Honndorf, Valerie S; Wiehr, Stefan; Rolle, Anna-Maria; Schmitt, Julia; Kreft, Luisa; Quintanilla-Martinez, Letitia; Kohlhofer, Ursula; Reischl, Gerald; Maurer, Andreas; Boldt, Karsten; Schwarz, Michael; Schmidt, Holger; Pichler, Bernd J

    2016-05-10

    The natural phytoestrogen genistein is known as protein kinase inhibitor and tumor suppressor in various types of cancers. We studied its antitumor effect in two different xenograft models using positron emission tomography (PET) in vivo combined with ex vivo histology and nuclear magnetic resonance (NMR) metabolic fingerprinting. A431 and Colo205 tumor-bearing mice were treated with vehicle or genistein (500 mg/kg/d) over a period of 12 days. Imaging was performed with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and 3'-deoxy-3'-[18F]fluorothymidine ([18F] FLT). In a second study A431 tumor-bearing mice were treated with vehicle, genistein (500 mg/kg/d), cetuximab (1 mg/3d) or a combination of the compounds and imaged using [18F]FDG, [18F]FLT and [64Cu]NODAGA-cetuximab. Data were compared to histology and principal components analysis (PCA) of NMR fingerprinting data. Genistein reduced tumor growth significantly in both xenografts. [18F] FLT uptake was consistent in both models and corresponded to histological findings and also PCA whereas [18F]FDG and [64Cu]NODAGA-cetuximab were not suitable for therapy monitoring. As mono-therapy the natural isoflavone genistein has a powerful therapeutic effect in vivo on A431 and Colo205 tumors. [18F]FLT has superior consistency compared to the other tested tracers in therapy monitoring, while the treatment effect could be shown on the molecular level by histology and metabolic fingerprinting.

  3. Combining metformin and nelfinavir exhibits synergistic effects against the growth of human cervical cancer cells and xenograft in nude mice

    PubMed Central

    Xia, Chenglai; Chen, Ruihong; Chen, Jinman; Qi, Qianqian; Pan, Yanbin; Du, Lanying; Xiao, Guohong; Jiang, Shibo

    2017-01-01

    Human cervical cancer is the fourth most common carcinoma in women worldwide. However, the emergence of drug resistance calls for continuously developing new anticancer drugs and combination chemotherapy regimens. The present study aimed to investigate the anti-cervical cancer effects of metformin, a first-line therapeutic drug for type 2 diabetes mellitus, and nelfinavir, an HIV protease inhibitor, when used alone or in combination. We found that both metformin and nelfinavir, when used alone, were moderately effective in inhibiting proliferation, inducing apoptosis and suppressing migration and invasion of human cervical cell lines HeLa, SiHa and CaSki. When used in combination, these two drugs acted synergistically to inhibit the growth of human cervical cancer cells in vitro and cervical cancer cell xenograft in vivo in nude mice, and suppress cervical cancer cell migration and invasion. The protein expression of phosphoinositide 3-kinase catalytic subunit PI3K(p110α), which can promote tumor growth, was remarkably downregulated, while the tumor suppressor proteins p53 and p21 were substantially upregulated following the combinational treatment in vitro and in vivo. These results suggest that clinical use of metformin and nelfinavir in combination is expected to have synergistic antitumor efficacy and significant potential for the treatment of human cervical cancer. PMID:28252027

  4. Combining metformin and nelfinavir exhibits synergistic effects against the growth of human cervical cancer cells and xenograft in nude mice.

    PubMed

    Xia, Chenglai; Chen, Ruihong; Chen, Jinman; Qi, Qianqian; Pan, Yanbin; Du, Lanying; Xiao, Guohong; Jiang, Shibo

    2017-03-02

    Human cervical cancer is the fourth most common carcinoma in women worldwide. However, the emergence of drug resistance calls for continuously developing new anticancer drugs and combination chemotherapy regimens. The present study aimed to investigate the anti-cervical cancer effects of metformin, a first-line therapeutic drug for type 2 diabetes mellitus, and nelfinavir, an HIV protease inhibitor, when used alone or in combination. We found that both metformin and nelfinavir, when used alone, were moderately effective in inhibiting proliferation, inducing apoptosis and suppressing migration and invasion of human cervical cell lines HeLa, SiHa and CaSki. When used in combination, these two drugs acted synergistically to inhibit the growth of human cervical cancer cells in vitro and cervical cancer cell xenograft in vivo in nude mice, and suppress cervical cancer cell migration and invasion. The protein expression of phosphoinositide 3-kinase catalytic subunit PI3K(p110α), which can promote tumor growth, was remarkably downregulated, while the tumor suppressor proteins p53 and p21 were substantially upregulated following the combinational treatment in vitro and in vivo. These results suggest that clinical use of metformin and nelfinavir in combination is expected to have synergistic antitumor efficacy and significant potential for the treatment of human cervical cancer.

  5. EF24 inhibits tumor growth and metastasis via suppressing NF-kappaB dependent pathways in human cholangiocarcinoma

    PubMed Central

    Yin, Da-long; Liang, Ying-jian; Zheng, Tong-sen; Song, Rui-peng; Wang, Jia-bei; Sun, Bo-shi; Pan, Shang-ha; Qu, Lian-dong; Liu, Jia-ren; Jiang, Hong-chi; Liu, Lian-xin

    2016-01-01

    A synthetic monoketone analog of curcumin, termed 3, 5-bis (2-flurobenzylidene) piperidin-4-one (EF24), has been reported to inhibit the growth of a variety of cancer cells both in vitro and in vivo. However, whether EF24 has anticancer effects on cholangiocarcinoma (CCA) cells and the mechanisms remain to be investigated. The aim of our study was to evaluate the molecular mechanisms underlying the anticancer effects of EF24 on CCA tumor growth and metastasis. Cell proliferation, apoptosis, migration, invasion, tumorigenesis and metastasis were examined. EF24 exhibited time- and dose-dependent inhibitory effects on HuCCT-1, TFK-1 and HuH28 human CCA cell lines. EF24 inhibited CCA cell proliferation, migration, and induced G2/M phase arrest. EF24 induced cell apoptosis along with negative regulation of NF-κB- X-linked inhibitor of apoptosis protein (XIAP) signaling pathway. XIAP inhibition by lentivirus mediated RNA interference enhanced EF24-induced apoptosis, while XIAP overexpression reduced it in CCA cells. In vivo, EF24 significantly suppressed the growth of CCA tumor xenografts and tumor metastasis while displaying low toxicity levels. Our findings indicate that EF24 is a potent antitumor agent that inhibits tumor growth and metastasis by inhibiting NF-κB dependent signaling pathways. EF24 may represent a novel approach for CCA treatment. PMID:27571770

  6. EF24 inhibits tumor growth and metastasis via suppressing NF-kappaB dependent pathways in human cholangiocarcinoma.

    PubMed

    Yin, Da-Long; Liang, Ying-Jian; Zheng, Tong-Sen; Song, Rui-Peng; Wang, Jia-Bei; Sun, Bo-Shi; Pan, Shang-Ha; Qu, Lian-Dong; Liu, Jia-Ren; Jiang, Hong-Chi; Liu, Lian-Xin

    2016-08-30

    A synthetic monoketone analog of curcumin, termed 3, 5-bis (2-flurobenzylidene) piperidin-4-one (EF24), has been reported to inhibit the growth of a variety of cancer cells both in vitro and in vivo. However, whether EF24 has anticancer effects on cholangiocarcinoma (CCA) cells and the mechanisms remain to be investigated. The aim of our study was to evaluate the molecular mechanisms underlying the anticancer effects of EF24 on CCA tumor growth and metastasis. Cell proliferation, apoptosis, migration, invasion, tumorigenesis and metastasis were examined. EF24 exhibited time- and dose-dependent inhibitory effects on HuCCT-1, TFK-1 and HuH28 human CCA cell lines. EF24 inhibited CCA cell proliferation, migration, and induced G2/M phase arrest. EF24 induced cell apoptosis along with negative regulation of NF-κB- X-linked inhibitor of apoptosis protein (XIAP) signaling pathway. XIAP inhibition by lentivirus mediated RNA interference enhanced EF24-induced apoptosis, while XIAP overexpression reduced it in CCA cells. In vivo, EF24 significantly suppressed the growth of CCA tumor xenografts and tumor metastasis while displaying low toxicity levels. Our findings indicate that EF24 is a potent antitumor agent that inhibits tumor growth and metastasis by inhibiting NF-κB dependent signaling pathways. EF24 may represent a novel approach for CCA treatment.

  7. Overexpression of membrane metalloendopeptidase inhibits substance P stimulation of cholangiocarcinoma growth.

    PubMed

    Meng, Fanyin; DeMorrow, Sharon; Venter, Julie; Frampton, Gabriel; Han, Yuyan; Francis, Heather; Standeford, Holly; Avila, Shanika; McDaniel, Kelly; McMillin, Matthew; Afroze, Syeda; Guerrier, Micheleine; Quezada, Morgan; Ray, Debolina; Kennedy, Lindsey; Hargrove, Laura; Glaser, Shannon; Alpini, Gianfranco

    2014-05-01

    Substance P (SP) promotes cholangiocyte growth during cholestasis by activating its receptor, NK1R. SP is a proteolytic product of tachykinin (Tac1) and is deactivated by membrane metalloendopeptidase (MME). This study aimed to evaluate the functional role of SP in the regulation of cholangiocarcinoma (CCA) growth. NK1R, Tac1, and MME expression and SP secretion were assessed in human CCA cells and nonmalignant cholangiocytes. The proliferative effects of SP (in the absence/presence of the NK1R inhibitor, L-733,060) and of L-733,060 were evaluated. In vivo, the effect of L-733,060 treatment or MME overexpression on tumor growth was evaluated by using a xenograft model of CCA in nu/nu nude mice. The expression of Tac1, MME, NK1R, PCNA, CK-19, and VEGF-A was analyzed in the resulting tumors. Human CCA cell lines had increased expression of Tac1 and NK1R, along with reduced levels of MME compared with nonmalignant cholangiocytes, resulting in a subsequent increase in SP secretion. SP treatment increased CCA cell proliferation in vitro, which was blocked by L-733,060. Treatment with L-733,060 alone inhibited CCA proliferation in vitro and in vivo. Xenograft tumors derived from MME-overexpressed human Mz-ChA-1 CCA cells had a slower growth rate than those derived from control cells. Expression of PCNA, CK-19, and VEGF-A decreased, whereas MME expression increased in the xenograft tumors treated with L-733,060 or MME-overexpressed xenograft tumors compared with controls. The study suggests that SP secreted by CCA promotes CCA growth via autocrine pathway. Blockade of SP secretion and NK1R signaling may be important for the management of CCA.

  8. Chinese Red Yeast Rice Inhibition of Prostate Tumor Growth in SCID mice

    PubMed Central

    Hong, Mee Young; Henning, Susanne; Moro, Aune; Seeram, Navindra P.; Zhang, Yanjun; Heber, David

    2011-01-01

    Prostate cancer is a slowly developing but very common cancer in males that may be amenable to preventive strategies that are not toxic. Chinese red yeast rice (RYR), a food herb made by fermenting Monascus purpureus Went yeast on white rice, contains a mixture of eight different monacolins that inhibit cholesterogenesis in addition to red pigments with antioxidant properties. Monacolin K is identical to lovastatin (LV), but lovastatin unlike RYR can be used in individuals intolerant to statins due to muscle pain. Both LV and RYR inhibit de novo cholesterogenesis, which is critical to the growth of tumor cells. Long-term use of statin drugs has been associated with a reduced risk of prostate cancer. We have previously shown that RYR inhibited androgen-dependent and AR-overexpressing androgen-independent prostate cancer cell proliferation in vitro. The present study was designed to determine whether RYR and LV inhibit prostate tumor growth in SCID mice. RYR significantly reduced tumor volumes of androgen-dependent and androgen-independent prostate xenograft tumors compared to animals receiving vehicle alone (P<0.05). Inhibition by RYR was greater than that observed with LV at the dose found in RYR demonstrating that other compounds in RYR contributed to the antiproliferative effect. There was a significant correlation of tumor volume to serum cholesterol (P<0.001). RYR decreased gene expression of androgen synthesizing enzymes (HSD3B2, AKR1C3 and SRD5A1) in both type of tumors (P<0.05). Clinical studies of RYR for prostate cancer prevention in the increasing population of men undergoing active surveillance should be considered. PMID:21278313

  9. Ursodeoxycholic acid induces apoptosis in hepatocellular carcinoma xenografts in mice.

    PubMed

    Liu, Hui; Xu, Hong-Wei; Zhang, Yu-Zhen; Huang, Ya; Han, Guo-Qing; Liang, Tie-Jun; Wei, Li-Li; Qin, Cheng-Yong; Qin, Cheng-Kun

    2015-09-28

    To evaluate the efficacy of ursodeoxycholic acid (UDCA) as a chemotherapeutic agent for the treatment of hepatocellular carcinoma (HCC). BALB/c nude mice were randomized into four groups 24 h before subcutaneous injection of hepatocarcinoma BEL7402 cells suspended in phosphate buffered saline (PBS) into the right flank. The control group (n = 10) was fed a standard diet while treatment groups (n = 10 each) were fed a standard daily diet supplemented with different concentrations of UDCA (30, 50 and 70 mg/kg per day) for 21 d. Tumor growth was measured once each week, and tumor volume (V) was calculated with the following equation: V = (L × W(2)) × 0.52, where L is the length and W is the width of the xenograft. After 21 d, mice were killed under ether anesthesia, and tumors were excised and weighed. Apoptosis was evaluated through detection of DNA fragmentation with gel electrophoresis and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Western blot analysis was performed to determine the expression of apoptosis-related proteins BAX, BCL2, APAF1, cleaved caspase-9, and cleaved caspase-3. UDCA suppressed tumor growth relative to controls. The mean tumor volumes were the following: control, 1090 ± 89 mm(3); 30 mg/kg per day, 612 ± 46 mm(3); 50 mg/kg per day, 563 ± 38 mm(3); and 70 mg/kg per day, 221 ± 26 mm(3). Decreased tumor volumes reached statistical significance relative to control xenografts (30 mg/kg per day, P < 0.05; 50 mg/kg per day, P < 0.05; 70 mg/kg per day, P < 0.01). Increasing concentrations of UDCA led to increased DNA fragmentation observed on gel electrophoresis and in the TUNEL assay (control, 1.6% ± 0.3%; 30 mg/kg per day, 2.9% ± 0.5%; 50 mg/kg per day, 3.15% ± 0.7%, and 70 mg/kg per day, 4.86% ± 0.9%). Western blot analysis revealed increased expression of BAX, APAF1, cleaved-caspase-9 and cleaved-caspase-3 proteins, which induce apoptosis, but decreased expression of BCL2 protein, which

  10. Ursodeoxycholic acid induces apoptosis in hepatocellular carcinoma xenografts in mice

    PubMed Central

    Liu, Hui; Xu, Hong-Wei; Zhang, Yu-Zhen; Huang, Ya; Han, Guo-Qing; Liang, Tie-Jun; Wei, Li-Li; Qin, Cheng-Yong; Qin, Cheng-Kun

    2015-01-01

    AIM: To evaluate the efficacy of ursodeoxycholic acid (UDCA) as a chemotherapeutic agent for the treatment of hepatocellular carcinoma (HCC). METHODS: BALB/c nude mice were randomized into four groups 24 h before subcutaneous injection of hepatocarcinoma BEL7402 cells suspended in phosphate buffered saline (PBS) into the right flank. The control group (n = 10) was fed a standard diet while treatment groups (n = 10 each) were fed a standard daily diet supplemented with different concentrations of UDCA (30, 50 and 70 mg/kg per day) for 21 d. Tumor growth was measured once each week, and tumor volume (V) was calculated with the following equation: V = (L × W2) × 0.52, where L is the length and W is the width of the xenograft. After 21 d, mice were killed under ether anesthesia, and tumors were excised and weighed. Apoptosis was evaluated through detection of DNA fragmentation with gel electrophoresis and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Western blot analysis was performed to determine the expression of apoptosis-related proteins BAX, BCL2, APAF1, cleaved caspase-9, and cleaved caspase-3. RESULTS: UDCA suppressed tumor growth relative to controls. The mean tumor volumes were the following: control, 1090 ± 89 mm3; 30 mg/kg per day, 612 ± 46 mm3; 50 mg/kg per day, 563 ± 38 mm3; and 70 mg/kg per day, 221 ± 26 mm3. Decreased tumor volumes reached statistical significance relative to control xenografts (30 mg/kg per day, P < 0.05; 50 mg/kg per day, P < 0.05; 70 mg/kg per day, P < 0.01). Increasing concentrations of UDCA led to increased DNA fragmentation observed on gel electrophoresis and in the TUNEL assay (control, 1.6% ± 0.3%; 30 mg/kg per day, 2.9% ± 0.5%; 50 mg/kg per day, 3.15% ± 0.7%, and 70 mg/kg per day, 4.86% ± 0.9%). Western blot analysis revealed increased expression of BAX, APAF1, cleaved-caspase-9 and cleaved-caspase-3 proteins, which induce apoptosis, but decreased expression of BCL2

  11. ONYX-411, a conditionally replicative oncolytic adenovirus, induces cell death in anaplastic thyroid carcinoma cell lines and suppresses the growth of xenograft tumors in nude mice

    PubMed Central

    Reddi, HV; Madde, P; Reichert-Eberhardt, AJ; Galanis, EC; Copland, JA; McIver, B; Grebe, SKG; Eberhardt, NL

    2011-01-01

    Anaplastic thyroid carcinoma (ATC) is the most aggressive thyroid cancer variant, accounting for 1–2% of all cases, but 33% of deaths, and exhibiting an average life expectancy of 5 months. ATC is largely unresponsive to radioactive iodine, chemotherapy, external beam radiation or surgery, underscoring the need for new and effective therapies. We evaluated the therapeutic potential of an oncolytic adenovirus, ONYX-411, that replicates selectively in and kills cells with dysfunction of the retinoblastoma (RB) pathway. In the present study, we report that ONYX-411 is able to induce cell death in eight human anaplastic carcinoma cell lines in vitro. The cytopathic effect of the virus is specific to cells with RB dysfunction, which appears to be frequent in ATC. We confirmed the expression of the coxsackie adenovirus receptor, CAR, in all ATC cell lines, demonstrating the potentially universal application of this oncolytic viral therapy to ATC. In addition, the growth of xenograft tumors induced in athymic mice with the ARO and DRO cell lines was significantly reduced by ONYX-411 treatment. These results indicate that ONYX-411 can be a potential therapeutic agent for the treatment of ATC, rendering this class of conditionally replicating adenoviruses an attractive candidate for clinical trials. PMID:18583996

  12. Development of patient-derived xenograft models from a spontaneously immortal low-grade meningioma cell line, KCI-MENG1.

    PubMed

    Michelhaugh, Sharon K; Guastella, Anthony R; Varadarajan, Kaushik; Klinger, Neil V; Parajuli, Prahlad; Ahmad, Aamir; Sethi, Seema; Aboukameel, Amro; Kiousis, Sam; Zitron, Ian M; Ebrahim, Salah A; Polin, Lisa A; Sarkar, Fazlul H; Bollig-Fischer, Aliccia; Mittal, Sandeep

    2015-07-15

    There is a paucity of effective therapies for recurrent/aggressive meningiomas. Establishment of improved in vitro and in vivo meningioma models will facilitate development and testing of novel therapeutic approaches. A primary meningioma cell line was generated from a patient with an olfactory groove meningioma. The cell line was extensively characterized by performing analysis of growth kinetics, immunocytochemistry, telomerase activity, karyotype, and comparative genomic hybridization. Xenograft models using immunocompromised SCID mice were also developed. Histopathology of the patient tumor was consistent with a WHO grade I typical meningioma composed of meningothelial cells, whorls, and occasional psammoma bodies. The original tumor and the early passage primary cells shared the standard immunohistochemical profile consistent with low-grade, good prognosis meningioma. Low passage KCI-MENG1 cells were composed of two cell types with spindle and round morphologies, showed linear growth curve, had very low telomerase activity, and were composed of two distinct unrelated clones on cytogenetic analysis. In contrast, high passage cells were homogeneously round, rapidly growing, had high telomerase activity, and were composed of a single clone with a near triploid karyotype containing 64-66 chromosomes with numerous aberrations. Following subcutaneous and orthotopic transplantation of low passage cells into SCID mice, firm tumors positive for vimentin and progesterone receptor (PR) formed, while subcutaneous implant of high passage cells yielded vimentin-positive, PR-negative tumors, concordant with a high-grade meningioma. Although derived from a benign meningioma specimen, the newly-established spontaneously immortal KCI-MENG1 meningioma cell line can be utilized to generate xenograft tumor models with either low- or high-grade features, dependent on the cell passage number (likely due to the relative abundance of the round, near-triploid cells). These human

  13. Antisense oligonucleotide–mediated MDM4 exon 6 skipping impairs tumor growth

    PubMed Central

    Dewaele, Michael; Tabaglio, Tommaso; Willekens, Karen; Bezzi, Marco; Teo, Shun Xie; Low, Diana H.P.; Koh, Cheryl M.; Rambow, Florian; Fiers, Mark; Rogiers, Aljosja; Radaelli, Enrico; Al-Haddawi, Muthafar; Tan, Soo Yong; Hermans, Els; Amant, Frederic; Yan, Hualong; Lakshmanan, Manikandan; Koumar, Ratnacaram Chandrahas; Lim, Soon Thye; Derheimer, Frederick A.; Campbell, Robert M.; Bonday, Zahid; Tergaonkar, Vinay; Shackleton, Mark; Blattner, Christine; Marine, Jean-Christophe; Guccione, Ernesto

    2015-01-01

    MDM4 is a promising target for cancer therapy, as it is undetectable in most normal adult tissues but often upregulated in cancer cells to dampen p53 tumor-suppressor function. The mechanisms that underlie MDM4 upregulation in cancer cells are largely unknown. Here, we have shown that this key oncogenic event mainly depends on a specific alternative splicing switch. We determined that while a nonsense-mediated, decay-targeted isoform of MDM4 (MDM4-S) is produced in normal adult tissues as a result of exon 6 skipping, enhanced exon 6 inclusion leads to expression of full-length MDM4 in a large number of human cancers. Although this alternative splicing event is likely regulated by multiple splicing factors, we identified the SRSF3 oncoprotein as a key enhancer of exon 6 inclusion. In multiple human melanoma cell lines and in melanoma patient–derived xenograft (PDX) mouse models, antisense oligonucleotide–mediated (ASO-mediated) skipping of exon 6 decreased MDM4 abundance, inhibited melanoma growth, and enhanced sensitivity to MAPK-targeting therapeutics. Additionally, ASO-based MDM4 targeting reduced diffuse large B cell lymphoma PDX growth. As full-length MDM4 is enhanced in multiple human tumors, our data indicate that this strategy is applicable to a wide range of tumor types. We conclude that enhanced MDM4 exon 6 inclusion is a common oncogenic event and has potential as a clinically compatible therapeutic target. PMID:26595814

  14. Establishment of primary cell culture and an intracranial xenograft model of pediatric ependymoma: a prospect for therapy development and understanding of tumor biology.

    PubMed

    Pavon, Lorena Favaro; Sibov, Tatiana Tais; Caminada de Toledo, Silvia Regina; Mara de Oliveira, Daniela; Cabral, Francisco Romero; Gabriel de Souza, Jean; Boufleur, Pamela; Marti, Luciana C; Malheiros, Jackeline Moraes; Ferreira da Cruz, Edgar; Paiva, Fernando F; Malheiros, Suzana M F; de Paiva Neto, Manoel A; Tannús, Alberto; Mascarenhas de Oliveira, Sérgio; Silva, Nasjla Saba; Cappellano, Andrea Maria; Petrilli, Antonio Sérgio; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio

    2018-04-24

    Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients ( n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model.

  15. Establishment of primary cell culture and an intracranial xenograft model of pediatric ependymoma: a prospect for therapy development and understanding of tumor biology

    PubMed Central

    Pavon, Lorena Favaro; Sibov, Tatiana Tais; Caminada de Toledo, Silvia Regina; Mara de Oliveira, Daniela; Cabral, Francisco Romero; Gabriel de Souza, Jean; Boufleur, Pamela; Marti, Luciana C.; Malheiros, Jackeline Moraes; Ferreira da Cruz, Edgar; Paiva, Fernando F.; Malheiros, Suzana M.F.; de Paiva Neto, Manoel A.; Tannús, Alberto; Mascarenhas de Oliveira, Sérgio; Silva, Nasjla Saba; Cappellano, Andrea Maria; Petrilli, Antonio Sérgio; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio

    2018-01-01

    Background Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. Results We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. Conclusions We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. Methods In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients (n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model. PMID:29774098

  16. Tumor Xenograft Response to Redox-Active Therapies Assessed by Magnetic Resonance Imaging Using a Thiol-Bearing DOTA Complex of Gadolinium1

    PubMed Central

    Guntle, Gerald P; Jagadish, Bhumasamudram; Mash, Eugene A; Powis, Garth; Dorr, Robert T; Raghunand, Natarajan

    2012-01-01

    Gd-LC6-SH is a thiol-bearing DOTA complex of gadolinium designed to bind plasma albumin at the conserved Cys34 site. The binding of Gd-LC6-SH shows sensitivity to the presence of competing thiols. We hypothesized that Gd-LC6-SH could provide magnetic resonance imaging (MRI) enhancement that is sensitive to tumor redox state and that the prolonged retention of albumin-bound Gd-LC6-SH in vivo can be exploited to identify a saturating dose above which the shortening of MRI longitudinal relaxation time (T1) of tissue is insensitive to the injected gadolinium dose. In the Mia-PaCa-2 pancreatic tumor xenograft model in SCID mice, both the small-molecule Gd-DTPA-BMA and the macromolecule Galbumin MRI contrast agents produced dose-dependent decreases in tumor T1. By contrast, the decreases in tumor T1 provided by Gd-LC6-SH at 0.05 and 0.1 mmol/kg were not significantly different at longer times after injection. SCID mice bearing Mia-PaCa-2 or NCI-N87 tumor xenografts were treated with either the glutathione synthesis inhibitor buthionine sulfoximine or the thiol-oxidizing anticancer drug Imexon, respectively. In both models, there was a significantly greater increase in tumor R1 (=1/T1) 60 minutes after injection of Gd-LC6-SH in drug-treated animals relative to saline-treated controls. In addition, Mercury Orange staining for nonprotein sulfhydryls was significantly decreased by drug treatment relative to controls in both tumor models. In summary, these studies show that thiol-bearing complexes of gadolinium such as Gd-LC6-SH can serve as redox-sensitive MRI contrast agents for detecting differences in tumor redox status and can be used to evaluate the effects of redox-active drugs. PMID:22741038

  17. Fish Oil Slows Prostate Cancer Xenograft Growth Relative to Other Dietary Fats and is Associated with Decreased Mitochondrial and Insulin Pathway Gene Expression

    PubMed Central

    Lloyd, Jessica C.; Masko, Elizabeth M.; Wu, Chenwei; Keenan, Melissa M.; Pilla, Danielle M.; Aronson, William J.; Chi, Jen-Tsan A.; Freedland, Stephen J.

    2013-01-01

    Background Previous mouse studies suggest that decreasing dietary fat content can slow prostate cancer (PCa) growth. To our knowledge, no study has yet compared the effect of multiple different fats on PCa progression. We sought to systematically compare the effect of fish oil, olive oil, corn oil, and animal fat on PCa progression. Methods A total of 96 male SCID mice were injected with LAPC-4 human PCa cells. Two weeks following injection, mice were randomized to a fish oil, olive oil, corn oil, or animal fat-based Western diet (35% kcals from fat). Animals were euthanized when tumors reached 1,000mm3. Serum was collected at sacrifice and assayed for PSA, insulin, IGF-1, IGFBP-3, and PGE-2 levels. Tumors were also assayed for PGE-2 and COX-2 levels and global gene expression analyzed using Affymetrix microarrays. Results Mice weights and tumor volumes were equivalent across groups at randomization. Overall, fish oil consumption was associated with improved survival, relative to other dietary groups (p=0.014). On gene expression analyses, the fish oil group had decreased signal in pathways related to mitochondrial physiology and insulin synthesis/secretion. Conclusions In this xenograft model, we found that consuming a diet in which fish oil was the only fat source slowed tumor growth and improved survival, compared to mice consuming diets composed of olive oil, corn oil, or animal fat. While prior studies showed that the amount of fat is important for PCa growth, the current study suggests that type of dietary fat consumed may also be important. PMID:23877027

  18. Geometrical approach to tumor growth.

    PubMed

    Escudero, Carlos

    2006-08-01

    Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells and particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former paper [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyze the unexplored three-dimensional case, for which interesting conclusions on tumor growth are derived.

  19. A comparison of 111In- or 64Cu-DOTA-trastuzumab Fab fragments for imaging subcutaneous HER2-positive tumor xenografts in athymic mice using microSPECT/CT or microPET/CT.

    PubMed

    Chan, Conrad; Scollard, Deborah A; McLarty, Kristin; Smith, Serena; Reilly, Raymond M

    2011-08-17

    Our objective was to compare 111In- or 64Cu-DOTA-trastuzumab Fab fragments for imaging small or large s.c. tumor xenografts in athymic mice that display a wide range of human epidermal growth factor receptor-2 (HER2) expression using microSPECT/CT or microPET/CT. Trastuzumab Fab were labeled with 111In or 64Cu by conjugation to 1,4,7,10-tetraazacyclododecane N, N', N'', N'''-tetraacetic acid (DOTA). The purity of 111In- and 64Cu-DOTA-trastuzumab Fab was measured by SDS-PAGE and HPLC. HER2 binding affinity was determined in saturation radioligand binding assays using SKBR-3 cells (1.3 × 106 HER2/cell). MicroSPECT/CT and microPET/CT were performed in athymic mice bearing s.c. BT-20 and MDA-MB-231 xenografts with low (0.5 to 1.6 × 105 receptors/cell), MDA-MB-361 tumors with intermediate (5.1 × 105 receptors/cell) or SKOV-3 xenografts with high HER2 expression (1.2 × 106 receptors/cell) at 24 h p.i. of 70 MBq (10 μg) of 111In-DOTA-trastuzumab Fab or 22 MBq (10 μg) of 64Cu-DOTA-trastuzumab Fab or irrelevant 111In- or 64Cu-DOTA-rituximab Fab. Tumor and normal tissue uptake were quantified in biodistribution studies. 111In- and 64Cu-DOTA-trastuzumab were > 98% radiochemically pure and bound HER2 with high affinity (Kd = 20.4 ± 2.5 nM and 40.8 ± 3.5 nM, respectively). MDA-MB-361 and SKOV-3 tumors were most clearly imaged using 111In- and 64Cu-DOTA-trastuzumab Fab. Significantly higher tumor/blood (T/B) ratios were found for 111In-DOTA-trastuzumab Fab than 111In-DOTA-rituximab Fab for BT-20, MDA-MB-231 and MDA-MB-361 xenografts, and there was a direct association between T/B ratios and HER2 expression. In contrast, tumor uptake of 64Cu-DOTA-trastuzumab Fab was significantly higher than 64Cu-DOTA-rituximab Fab in MDA-MB-361 tumors but no direct association with HER2 expression was found. Both 111In- and 64Cu-DOTA-trastuzumab Fab imaged small (5 to 10 mm) or larger (10 to 15 mm) MDA-MB-361 tumors. Higher blood, liver, and spleen radioactivity were observed for 64Cu

  20. A comparison of 111In- or 64Cu-DOTA-trastuzumab Fab fragments for imaging subcutaneous HER2-positive tumor xenografts in athymic mice using microSPECT/CT or microPET/CT

    PubMed Central

    2011-01-01

    Background Our objective was to compare 111In- or 64Cu-DOTA-trastuzumab Fab fragments for imaging small or large s.c. tumor xenografts in athymic mice that display a wide range of human epidermal growth factor receptor-2 (HER2) expression using microSPECT/CT or microPET/CT. Methods Trastuzumab Fab were labeled with 111In or 64Cu by conjugation to 1,4,7,10-tetraazacyclododecane N, N', N'', N'''-tetraacetic acid (DOTA). The purity of 111In- and 64Cu-DOTA-trastuzumab Fab was measured by SDS-PAGE and HPLC. HER2 binding affinity was determined in saturation radioligand binding assays using SKBR-3 cells (1.3 × 106 HER2/cell). MicroSPECT/CT and microPET/CT were performed in athymic mice bearing s.c. BT-20 and MDA-MB-231 xenografts with low (0.5 to 1.6 × 105 receptors/cell), MDA-MB-361 tumors with intermediate (5.1 × 105 receptors/cell) or SKOV-3 xenografts with high HER2 expression (1.2 × 106 receptors/cell) at 24 h p.i. of 70 MBq (10 μg) of 111In-DOTA-trastuzumab Fab or 22 MBq (10 μg) of 64Cu-DOTA-trastuzumab Fab or irrelevant 111In- or 64Cu-DOTA-rituximab Fab. Tumor and normal tissue uptake were quantified in biodistribution studies. Results 111In- and 64Cu-DOTA-trastuzumab were > 98% radiochemically pure and bound HER2 with high affinity (Kd = 20.4 ± 2.5 nM and 40.8 ± 3.5 nM, respectively). MDA-MB-361 and SKOV-3 tumors were most clearly imaged using 111In- and 64Cu-DOTA-trastuzumab Fab. Significantly higher tumor/blood (T/B) ratios were found for 111In-DOTA-trastuzumab Fab than 111In-DOTA-rituximab Fab for BT-20, MDA-MB-231 and MDA-MB-361 xenografts, and there was a direct association between T/B ratios and HER2 expression. In contrast, tumor uptake of 64Cu-DOTA-trastuzumab Fab was significantly higher than 64Cu-DOTA-rituximab Fab in MDA-MB-361 tumors but no direct association with HER2 expression was found. Both 111In- and 64Cu-DOTA-trastuzumab Fab imaged small (5 to 10 mm) or larger (10 to 15 mm) MDA-MB-361 tumors. Higher blood, liver, and spleen

  1. Hypoxia Potentiates the Radiation-Sensitizing Effect of Olaparib in Human Non-Small Cell Lung Cancer Xenografts by Contextual Synthetic Lethality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yanyan; Verbiest, Tom; Devery, Aoife M.

    Purpose: Poly(ADP-ribose) polymerase (PARP) inhibitors potentiate radiation therapy in preclinical models of human non-small cell lung cancer (NSCLC) and other types of cancer. However, the mechanisms underlying radiosensitization in vivo are incompletely understood. Herein, we investigated the impact of hypoxia on radiosensitization by the PARP inhibitor olaparib in human NSCLC xenograft models. Methods and Materials: NSCLC Calu-6 and Calu-3 cells were irradiated in the presence of olaparib or vehicle under normoxic (21% O{sub 2}) or hypoxic (1% O{sub 2}) conditions. In vitro radiosensitivity was assessed by clonogenic survival assay and γH2AX foci assay. Established Calu-6 and Calu-3 subcutaneous xenografts were treated with olaparib (50 mg/kg, dailymore » for 3 days), radiation (10 Gy), or both. Tumors (n=3/group) were collected 24 or 72 hours after the first treatment. Immunohistochemistry was performed to assess hypoxia (carbonic anhydrase IX [CA9]), vessels (CD31), DNA double strand breaks (DSB) (γH2AX), and apoptosis (cleaved caspase 3 [CC3]). The remaining xenografts (n=6/group) were monitored for tumor growth. Results: In vitro, olaparib showed a greater radiation-sensitizing effect in Calu-3 and Calu-6 cells in hypoxic conditions (1% O{sub 2}). In vivo, Calu-3 tumors were well-oxygenated, whereas Calu-6 tumors had extensive regions of hypoxia associated with down-regulation of the homologous recombination protein RAD51. Olaparib treatment increased unrepaired DNA DSB (P<.001) and apoptosis (P<.001) in hypoxic cells of Calu-6 tumors following radiation, whereas it had no significant effect on radiation-induced DNA damage response in nonhypoxic cells of Calu-6 tumors or in the tumor cells of well-oxygenated Calu-3 tumors. Consequently, olaparib significantly increased radiation-induced growth inhibition in Calu-6 tumors (P<.001) but not in Calu-3 tumors. Conclusions: Our data suggest that hypoxia potentiates the radiation-sensitizing effects

  2. Oral picropodophyllin (PPP) is well tolerated in vivo and inhibits IGF-1R expression and growth of uveal melanoma.

    PubMed

    Economou, Mario A; Andersson, Sandra; Vasilcanu, Diana; All-Ericsson, Charlotta; Menu, Eline; Girnita, Ada; Girnita, Leonard; Axelson, Magnus; Seregard, Stefan; Larsson, Olle

    2008-11-01

    The cyclolignan picropodophyllin (PPP) efficiently blocks the activity of insulin-like growth factor-1 receptor (IGF-1R) and inhibits growth of uveal melanoma cells in vitro and in vivo. In this study, we aimed to investigate the efficiency of orally administered PPP on growth of uveal melanoma xenografts. Further, we focused on the effect of PPP on vascular endothelial growth factor (VEGF) in vivo and evaluated its effects in combination with other established anti-tumor agents in vitro. Four different uveal melanoma cell lines (OCM-1, OCM-3, OCM-8, 92-1) were treated with PPP alone and in combination with imatinib mesylate, cisplatin, 5-FU and doxorubicin. Cell viability was determined by XTT assay. SCID mice xenografted with uveal melanoma cells were used to determine anti-tumor efficacy of oral PPP in vivo. Tumor samples obtained from the in vivo experiments were analyzed for VEGF and IGF-1R expression by western blotting. PPP was found to be superior to the other anti-tumor agents in killing uveal melanoma cells. Oral PPP inhibited uveal melanoma growth in vivo and was well tolerated by the animals. PPP decreased VEGF expression in the tumors. Oral PPP is well tolerated in vivo and caused total growth inhibition of uveal melanoma xenografts as well as it decreased the levels of VEGF in the tumors.

  3. pO{sub 2} Fluctuation Pattern and Cycling Hypoxia in Human Cervical Carcinoma and Melanoma Xenografts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellingsen, Christine; Ovrebo, Kirsti Marie; Galappathi, Kanthi

    2012-07-15

    Purpose: Blood perfusion in tumors is spatially and temporally heterogeneous, resulting in local fluctuations in tissue oxygen tension (pO{sub 2}) and tissue regions showing cycling hypoxia. In this study, we investigated whether the pO{sub 2} fluctuation pattern and the extent of cycling hypoxia differ between tumor types showing high (e.g., cervical carcinoma xenograft) and low (e.g., melanoma xenograft) fractions of connective tissue-associated blood vessels. Methods and Materials: Two cervical carcinoma lines (CK-160 and TS-415) and two melanoma lines (A-07 and R-18) transplanted into BALB/c nu/nu mice were included in the study. Tissue pO{sub 2} was measured simultaneously in two positionsmore » in each tumor by using a two-channel OxyLite fiber-optic oxygen-sensing device. The extent of acute and chronic hypoxia was assessed by combining a radiobiological and a pimonidazole-based immunohistochemical assay of tumor hypoxia. Results: The proportion of tumor regions showing pO{sub 2} fluctuations, the pO{sub 2} fluctuation frequency in these regions, and the relative amplitude of the pO{sub 2} fluctuations were significantly higher in the melanoma xenografts than in the cervical carcinoma xenografts. Cervical carcinoma and melanoma xenografts did not differ significantly in the fraction of acutely hypoxic cells or the fraction of chronically hypoxic cells. However, the ratio between fraction of acutely hypoxic cells and fraction of chronically hypoxic cells was significantly higher in melanoma than in cervical carcinoma xenografts. Conclusions: Temporal heterogeneity in blood flow and tissue pO{sub 2} in tumors may depend on tumor histology. Connective tissue surrounding microvessels may stabilize blood flow and pO{sub 2} and, thus, protect tumor tissue from cycling hypoxia.« less

  4. Regional Control of Tumor Growth

    PubMed Central

    Zaslavsky, Alexander; Chen, Catherine; Grillo, Jenny; Baek, Kwan-Hyuck; Holmgren, Lars; Yoon, Sam S.; Folkman, Judah; Ryeom, Sandra

    2010-01-01

    Tumors implanted near the scapulae have been shown to grow four-times faster than the same tumors implanted at the iliac crest. While there were marked differences in the vascularization of tumors from these two different sites, the mechanism controlling regional angiogenesis was not identified. Here we demonstrate site-specific growth of intraperitoneal tumor implants in the mouse abdomen. Our data indicate that the angiogenic response of the host differs significantly between the upper and lower sites in the mouse abdomen and reveals that the expansion of tumor mass is restricted at sites with low angiogenic responses such as the bowel mesentery in the lower abdomen. We show that in this model, this suppression of angiogenesis is due to an expression gradient of thrombospondin-1, a potent endogenous angiogenesis inhibitor. Mice with a targeted deletion of thrombospondin-1 no longer demonstrate regional restriction of tumor growth. The physiological relevance of these findings may be seen in patients with peritoneal carcinomatosis, whereby tumors spread within the peritoneal cavity and show differential growth in the upper and lower abdomen. We hypothesize that the difference in tumor growth in these patients may be due to a gradient of thrombospondin-1 expression in stroma. Finally, our studies suggest that upregulation of thrombospondin-1 in tumor cells is one method to suppress the growth of tumors in the upper abdomen. PMID:20736295

  5. Lidocaine Induces Apoptosis and Suppresses Tumor Growth in Human Hepatocellular Carcinoma Cells In Vitro and in a Xenograft Model In Vivo.

    PubMed

    Xing, Wei; Chen, Dong-Tai; Pan, Jia-Hao; Chen, Yong-Hua; Yan, Yan; Li, Qiang; Xue, Rui-Feng; Yuan, Yun-Fei; Zeng, Wei-An

    2017-05-01

    Recent epidemiologic studies have focused on the potential beneficial effects of regional anesthetics, and the differences in cancer prognosis may be the result of anesthetics on cancer biologic behavior. However, the function and underlying mechanisms of lidocaine in hepatocellular carcinoma both in vitro and in vivo have been poorly studied. Human HepG2 cells were treated with lidocaine. Cell viability, colony formation, cell cycle, and apoptosis were assessed. The effects of lidocaine on apoptosis-related and mitogen-activated protein kinase protein expression were evaluated by Western blot analysis. The antitumor activity of lidocaine in hepatocellular carcinoma with or without cisplatin was investigated with in vitro experiments and also with animal experiments. Lidocaine inhibited the growth of HepG2 cells in a dose- and time-dependent manner. The authors also found that lidocaine arrested cells in the G0/G1 phase of the cell cycle (63.7 ± 1.7% vs. 72.4 ± 3.2%; P = 0.0143) and induced apoptosis (1.7 ± 0.3% vs. 5.0 ± 0.7%; P = 0.0009). Lidocaine may exert these functions by causing an increase in Bax protein and activated caspase-3 and a corresponding decrease in Bcl-2 protein through the extracellular signal-regulated kinase 1/2 and p38 pathways. More importantly, for the first time, xenograft experiments (n = 8 per group) indicated that lidocaine suppressed tumor development (P < 0.0001; lidocaine vs. control) and enhanced the sensitivity of cisplatin (P = 0.0008; lidocaine plus cisplatin vs. cisplatin). The authors' findings suggest that lidocaine may exert potent antitumor activity in hepatocellular carcinoma. Furthermore, combining lidocaine with cisplatin may be a novel treatment option for hepatocellular carcinoma.

  6. The anti-apoptotic BAG3 protein is expressed in lung carcinomas and regulates small cell lung carcinoma (SCLC) tumor growth.

    PubMed

    Chiappetta, Gennaro; Basile, Anna; Barbieri, Antonio; Falco, Antonia; Rosati, Alessandra; Festa, Michelina; Pasquinelli, Rosa; Califano, Daniela; Palma, Giuseppe; Costanzo, Raffaele; Barcaroli, Daniela; Capunzo, Mario; Franco, Renato; Rocco, Gaetano; Pascale, Maria; Turco, Maria Caterina; De Laurenzi, Vincenzo; Arra, Claudio

    2014-08-30

    BAG3, member the HSP70 co-chaperones family, has been shown to play a relevant role in the survival, growth and invasiveness of different tumor types. In this study, we investigate the expression of BAG3 in 66 specimens from different lung tumors and the role of this protein in small cell lung cancer (SCLC) tumor growth. Normal lung tissue did not express BAG3 while we detected the expression of BAG3 by immunohistochemistry in all the 13 squamous cell carcinomas, 13 adenocarcinomas and 4 large cell carcinomas. Furthermore, we detected BAG3 expression in 22 of the 36 SCLCs analyzed. The role on SCLC cell survival was determined by down-regulating BAG3 levels in two human SCLC cell lines, i.e. H69 and H446, in vitro and measuring cisplatin induced apoptosis. Indeed down-regulation of BAG3 determines increased cell death and sensitizes cells to cisplatin treatment. The effect of BAG3 down-regulation on tumor growth was also investigated in an in vivo xenograft model by treating mice with an adenovirus expressing a specific bag3 siRNA. Treatment with bag3 siRNA-Ad significantly reduced tumor growth and improved animal survival. In conclusion we show that a subset of SCLCs over express BAG3 that exerts an anti-apoptotic effect resulting in resistance to chemotherapy.

  7. Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ.

    PubMed

    Joo, Kyeung Min; Kim, Jinkuk; Jin, Juyoun; Kim, Misuk; Seol, Ho Jun; Muradov, Johongir; Yang, Heekyoung; Choi, Yoon-La; Park, Woong-Yang; Kong, Doo-Sik; Lee, Jung-Il; Ko, Young-Hyeh; Woo, Hyun Goo; Lee, Jeongwu; Kim, Sunghoon; Nam, Do-Hyun

    2013-01-31

    Frequent discrepancies between preclinical and clinical results of anticancer agents demand a reliable translational platform that can precisely recapitulate the biology of human cancers. Another critical unmet need is the ability to predict therapeutic responses for individual patients. Toward this goal, we have established a library of orthotopic glioblastoma (GBM) xenograft models using surgical samples of GBM patients. These patient-specific GBM xenograft tumors recapitulate histopathological properties and maintain genomic characteristics of parental GBMs in situ. Furthermore, in vivo irradiation, chemotherapy, and targeted therapy of these xenograft tumors mimic the treatment response of parental GBMs. We also found that establishment of orthotopic xenograft models portends poor prognosis of GBM patients and identified the gene signatures and pathways signatures associated with the clinical aggressiveness of GBMs. Together, the patient-specific orthotopic GBM xenograft library represent the preclinically and clinically valuable "patient tumor's phenocopy" that represents molecular and functional heterogeneity of GBMs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. LOXL4 knockdown enhances tumor growth and lung metastasis through collagen-dependent extracellular matrix changes in triple-negative breast cancer.

    PubMed

    Choi, Sul Ki; Kim, Hoe Suk; Jin, Tiefeng; Moon, Woo Kyung

    2017-02-14

    Lysyl oxidase (LOX) family genes catalyze collagen cross-link formation. To determine the effects of lysyl oxidase-like 4 (LOXL4) expression on breast tumor formation and metastasis, we evaluated primary tumor growth and lung metastasis in mice injected with LOXL4-knockdown MDA-MB-231 triple-negative human breast cancer cells. In addition, we analyzed overall survival in breast cancer patients based on LOXL4 expression using a public online database. In the mouse xenograft model, LOXL4 knockdown increased primary tumor growth and lung colonization as well as collagen I and IV, lysine hydroxylase 1 and 2, and prolyl 4-hydroxylase subunit alpha 1 and 2 levels. Second harmonic generation imaging revealed that LOXL4 knockdown resulted in the thickening of collagen bundles within tumors. In addition, weak LOXL4 expression was associated with poor overall survival in breast cancer patients from the BreastMark dataset, and this association was strongest in triple-negative breast cancer patients. These results demonstrate that weak LOXL4 expression leads to remodeling of the extracellular matrix through induction of collagen synthesis, deposition, and structural changes. These alterations in turn promote tumor growth and metastasis and are associated with poor clinical outcomes in triple-negative breast cancer.

  9. Luteolin Inhibits Human Prostate Tumor Growth by Suppressing Vascular Endothelial Growth Factor Receptor 2-Mediated Angiogenesis

    PubMed Central

    Pratheeshkumar, Poyil; Son, Young-Ok; Budhraja, Amit; Wang, Xin; Ding, Songze; Wang, Lei; Hitron, Andrew; Lee, Jeong-Chae; Kim, Donghern; Divya, Sasidharan Padmaja; Chen, Gang; Zhang, Zhuo; Luo, Jia; Shi, Xianglin

    2012-01-01

    Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis. Luteolin is a common dietary flavonoid found in fruits and vegetables. We studied the antiangiogenic activity of luteolin using in vitro, ex vivo, and in vivo models. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Gelatin zymographic analysis demonstrated the inhibitory effect of luteolin on the activation of matrix metalloproteinases MMP-2 and MMP-9. Western blot analysis showed that luteolin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 in HUVECs. Proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. CD31 and CD34 immunohistochemical staining further revealed that the microvessel density could be remarkably suppressed by luteolin. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions. Taken together, our findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PMID:23300633

  10. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo

    PubMed Central

    Wang, Piwen; Solorzano, Walter; Diaz, Tanya; Magyar, Clara E.; Henning, Susanne M.; Vadgama, Jaydutt V.

    2017-01-01

    The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa, has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (< 2μM) significantly inhibited the proliferation of LNCaP and LAPC-4 cells by 30-50% at 48h compared to control, and inhibited WPE1-NA22 cells by 75%, while did not affect normal prostate epithelial cells. Male severe combined immunodeficiency (SCID) mice were implanted subcutaneously with LAPC-4 cells for in vivo studies. In one experiment, the intervention started one week after tumor implantation. Mice received arctigenin at 50mg/kg (LD) or 100mg/kg (HD) b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD) and 70% (HD) compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo, which provides a high promise in its translation to human application

  11. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo.

    PubMed

    Wang, Piwen; Solorzano, Walter; Diaz, Tanya; Magyar, Clara E; Henning, Susanne M; Vadgama, Jaydutt V

    2017-06-01

    The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa , has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (< 2μM) significantly inhibited the proliferation of LNCaP and LAPC-4 cells by 30-50% at 48h compared to control, and inhibited WPE1-NA22 cells by 75%, while did not affect normal prostate epithelial cells. Male severe combined immunodeficiency (SCID) mice were implanted subcutaneously with LAPC-4 cells for in vivo studies. In one experiment, the intervention started one week after tumor implantation. Mice received arctigenin at 50mg/kg (LD) or 100mg/kg (HD) b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD) and 70% (HD) compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo , which provides a high promise in its translation to human application.

  12. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis

    PubMed Central

    Alimonti, Andrea; Nardella, Caterina; Chen, Zhenbang; Clohessy, John G.; Carracedo, Arkaitz; Trotman, Lloyd C.; Cheng, Ke; Varmeh, Shohreh; Kozma, Sara C.; Thomas, George; Rosivatz, Erika; Woscholski, Rudiger; Cognetti, Francesco; Scher, Howard I.; Pandolfi, Pier Paolo

    2010-01-01

    Irreversible cell growth arrest, a process termed cellular senescence, is emerging as an intrinsic tumor suppressive mechanism. Oncogene-induced senescence is thought to be invariably preceded by hyperproliferation, aberrant replication, and activation of a DNA damage checkpoint response (DDR), rendering therapeutic enhancement of this process unsuitable for cancer treatment. We previously demonstrated in a mouse model of prostate cancer that inactivation of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (Pten) elicits a senescence response that opposes tumorigenesis. Here, we show that Pten-loss–induced cellular senescence (PICS) represents a senescence response that is distinct from oncogene-induced senescence and can be targeted for cancer therapy. Using mouse embryonic fibroblasts, we determined that PICS occurs rapidly after Pten inactivation, in the absence of cellular proliferation and DDR. Further, we found that PICS is associated with enhanced p53 translation. Consistent with these data, we showed that in mice p53-stabilizing drugs potentiated PICS and its tumor suppressive potential. Importantly, we demonstrated that pharmacological inhibition of PTEN drives senescence and inhibits tumorigenesis in vivo in a human xenograft model of prostate cancer. Taken together, our data identify a type of cellular senescence that can be triggered in nonproliferating cells in the absence of DNA damage, which we believe will be useful for developing a “pro-senescence” approach for cancer prevention and therapy. PMID:20197621

  13. Dietary Fat Stimulates Pancreatic Cancer Growth and Promotes Fibrosis of the Tumor Microenvironment through the Cholecystokinin Receptor.

    PubMed

    Nadella, Sandeep; Burks, Julian; Al-Sabban, Abdulhameed; Inyang, Gloria; Wang, Juan; Tucker, Robin D; Zamanis, Marie E; Bukowski, William; Shivapurkar, Narayan; Smith, Jill P

    2018-06-21

    The gastrointestinal peptide cholecystokinin (CCK) is released from the duodenum in response to dietary fat to aid in digestion, and plasma CCK levels are elevated with the consumption of high fat diets. CCK is also a trophic peptide for the pancreas and has also been shown to stimulate growth of pancreatic cancer. In the current investigation, we studied the influence of a diet high in saturated fat on growth of pancreatic cancer in syngeneic murine models before the mice became obese to exclude the confounding factors associated with obesity. The high fat diet significantly increased growth and metastasis of pancreatic cancer compared to the control diet, and the stimulatory effect was blocked by the CCK-receptor antagonist proglumide. We then selectively knocked out the CCK receptor on the pancreatic cancer cells using CRISPR technology and showed that without CCK receptors, dietary fat was unable to stimulate cancer growth. Next we demonstrated that dietary fat failed to influence pancreatic cancer xenograft growth in genetically engineered CCK peptide knockout mice. The tumor associated fibrosis that is so prevalent in the pancreatic cancer microenvironment was significantly decreased with CCK receptor antagonist therapy since fibroblasts also have CCK receptors. The CCK receptor antagonist proglumide also altered tumor metalloprotease expression and increased tumor suppressor genes by a PCR array. Our studies confirm that a diet high in saturated fat promotes growth of pancreatic cancer and the action is mediated by the CCK- receptor pathway.

  14. Bradykinin Promotes Cell Proliferation, Migration, Invasion, and Tumor Growth of Gastric Cancer Through ERK Signaling Pathway.

    PubMed

    Wang, Guojun; Sun, Junfeng; Liu, Guanghui; Fu, Yang; Zhang, Xiefu

    2017-12-01

    Bradykinin (BK) has been reported to be involved in the progression of diverse types of cancer. In the present study, we investigated the possible role of BK in cell proliferation, migration, invasion, and tumor growth of gastric cancer (GC). Cell proliferation was evaluated by MTT assays. Cell migration and invasion were assessed by Transwell assays. Tumor growth of nude mice was detected by establishing subcutaneous xenograft tumor model. Silencing of bradykinin B1 receptor (B1R) and the bradykinin B2 receptor (B2R) was performed by transfecting cells with si-B1R and si-B2R, respectively. The protein expression levels of phospho-ERK1/2 (p-ERK1/2), matrix metalloproteinase (MMP)-2, MMP-9, and E-Cadherin were examined by Western blot. Data revealed that BK promoted cell proliferation, migration, invasion, and the in vivo tumor growth of GC cells SGC-7901 and HGC-27. Furthermore, BK elevated the protein levels of p-ERK1/2, MMP-2, and MMP-9, but reduced E-Cadherin. In addition, by repressing B2R using si-B2R or inhibiting ERK signaling pathway using PD98059, BK-mediated promotion of cell proliferation, migration, and invasion and upregulation of p-ERK1/2, MMP-2/9, as well as downregulation of E-Cadherin were attenuated. Taken together, the present study demonstrated that BK promoted cell proliferation, migration, invasion, and tumor growth by binding to B2R via ERK signaling pathway. Our findings may provide promising options for the further treatment of GC. J. Cell. Biochem. 118: 4444-4453, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Synthesis and Evaluation of a Novel 64Cu- and 67Ga-Labeled Neurokinin 1 Receptor Antagonist for in Vivo Targeting of NK1R-Positive Tumor Xenografts.

    PubMed

    Zhang, Hanwen; Kanduluru, Ananda Kumar; Desai, Pooja; Ahad, Afruja; Carlin, Sean; Tandon, Nidhi; Weber, Wolfgang A; Low, Philip S

    2018-04-18

    Neurokinin 1 receptor (NK1R) is expressed in gliomas and neuroendocrine malignancies and represents a promising target for molecular imaging and targeted radionuclide therapy. The goal of this study was to synthesize and evaluate a novel NK1R ligand (NK1R-NOTA) for targeting NK1R-expressing tumors. Using a carboxymethyl moiety linked to L-733060 as a starting reagent, NK1R-NOTA was synthesized in a three-step reaction and then labeled with 64 Cu (or 67 Ga for in vitro studies) in the presence of CH 3 COONH 4 buffer. The radioligand affinity and cellular uptake were evaluated with NK1R-transduced HEK293 cells (HEK293-NK1R) and NK1R nontransduced HEK293 cells (HEK293-WT) and their xenografts. Radiolabeled NK1R-NOTA was obtained with a radiochemical purity of >95% and specific activities of >7.0 GBq/μmol for 64 Cu and >5.0 GBq/μmol for 67 Ga. Both 64 Cu- and 67 Ga-labeled NK1R-NOTA demonstrated high levels of uptake in HEK293-NK1R cells, whereas co-incubation with an excess of NK1R ligand L-733060 reduced the level of uptake by 90%. Positron emission tomography (PET) imaging showed that [ 64 Cu]NK1R-NOTA had a accumulated rapidly in HEK293-NK1R xenografts and a 10-fold lower level of uptake in HEK293-WT xenografts. Radioactivity was cleared by gastrointestinal tract and urinary systems. Biodistribution studies confirmed that the tumor-to-organ ratios were ≥5 for all studied organs at 1 h p.i., except kidneys, liver, and intestine, and that the tumor-to-intestine and tumor-to-kidney ratios were also improved 4 and 20 h post-injection. [ 64 Cu]NK1R-NOTA is a promising ligand for PET imaging of NK1R-expressing tumor xenografts. Delayed imaging with [ 64 Cu]NK1R-NOTA improves image contrast because of the continuous clearance of radioactivity from normal organs.

  16. [The mechanism of inhibition effect of adenovirus-mediated ING4 on human lung adenocarcinoma xenografts in nude mice].

    PubMed

    Huang, Jinhong; Yang, Jicheng; Ling, Chunhua; Zhao, Daguo; Xie, Yufeng; You, Zhenhua

    2014-02-01

    The inhibitor of growth 4 (ING4) is an important tumor suppressive gene.It has been proven that ING4 could inhibite the proliferation of many tumors. e aim of this study is to investigate the inhibitory effect and anti-cancer mechanism of adenovirus-mediated ING4 gene on SPC-A1 human lung adenocarcinoma in nude mice. A human lung adenocarcinoma xenograft model was established with SPC-A1 cells in nude mice. A total of 15 tumor-bearing nude mice were randomly divided into three groups, namely, PBS, Ad-GFP, and Ad-ING4. e mice in the three groups were intratumorally injected every other day. Their tumor volumes were continually recorded. The treatment tumors were then removed from the mice and weighed. Tumor inhibition rates were calculated. Cell apoptosis was examined by TUNEL method. Caspase-3, COX-2, Fas, and FasL expressions were investigated by immunohistochemistry SP assay. Both tumor weight and volume in the Ad-ING4 group were significantly decreased. The tumor inhibition rate of the mice in the Ad-ING4 group (33.17% ± 5.24%) was statistically different from that of the mice in the Ad-GFP group (1.31% ± 0.31%; P<0.05). The apoptotic index of the mice in the Ad-ING4 group (69.23% ± 6.53%) was also significantly different from those in PBS (17.04% ± 1.10%) and Ad-GFP groups (18.81% ± 1.93%; P<0.05). Based on immunohistochemistry SP assay, the results showed that Ad-ING4 may not only upregulate the expressions of caspase-3, Fas, and FasL but also downregulate the expression of COX-2. ING4 gene elicited a remarkable growth inhibitory e-ect on human lung adenocarcinoma xenografts in nude mice. e mechanism is possibly related to an increase in tumor cell apoptosis.

  17. Comparison of the effects of the antiestrogens EM-800 and tamoxifen on the growth of human breast ZR-75-1 cancer xenografts in nude mice.

    PubMed

    Couillard, S; Gutman, M; Labrie, C; Bélanger, A; Candas, B; Labrie, F

    1998-01-01

    Although estrone supplementation in ovariectomized (OVX) nude mice bearing ZR-75-1 xenografts caused a 365% increase in average tumor size during the 4-month treatment period, administration of the antiestrogen EM-800 at the daily oral doses of 50, 150, or 400 microg completely prevented estrogen-stimulated tumor growth. At the same doses of tamoxifen, tumor size was inhibited to 189, 117, and 120% above pretreatment values. However, when EM-800 (150 microg/day) was added to the daily 150- and 400-microg doses of tamoxifen, final tumor size was decreased further to 12 and 38% above pretreatment values, respectively. EM-800 (400 microg daily) administered to estrone-supplemented OVX mice caused complete, partial, and stable responses in 11, 22, and 49% of estrone-stimulated tumors, respectively, whereas 19% (7 of 37) progressed. At the same dose of tamoxifen, the corresponding responses were 3% (complete response), 3% (partial response), and 25% (no change), whereas 69% (22 of 32) of tumors progressed. In the absence of estrone supplementation, tamoxifen (400 microg) alone administered to OVX mice stimulated tumor growth to 161% compared with initial size whereas the same dose of EM-800 reduced tumor size by 55%, a value superimposable to that observed in OVX control animals. The agonistic effect of tamoxifen is thus illustrated by the observation that 73% of tumors progressed when tamoxifen was administered alone to OVX animals whereas no tumor progressed with EM-800. The present data strongly suggest that at least part of the initial lack of response and resistance to tamoxifen during tamoxifen treatment in women is due to the estrogenic activity of this compound, whereas the new antiestrogen EM-800 exerts pure antagonistic action.

  18. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts.

    PubMed

    Zhong, Yinan; Zhang, Jian; Cheng, Ru; Deng, Chao; Meng, Fenghua; Xie, Fang; Zhong, Zhiyuan

    2015-05-10

    The existence of drug resistance poses a major obstacle for the treatment of various malignant human cancers. Here, we report on reduction-sensitive reversibly crosslinked hyaluronic acid (HA) nanoparticles based on HA-Lys-LA conjugates (Lys: l-lysine methyl ester, LA: lipoic acid) for active targeting delivery of doxorubicin (DOX) to CD44+ breast cancers in vitro and in vivo, effectively overcoming drug resistance (ADR). HA-Lys-LA with degrees of substitution of 5, 10 and 28% formed robust nano-sized nanoparticles (152-219nm) following auto-crosslinking. DOX-loaded crosslinked nanoparticles revealed inhibited DOX release under physiological conditions while fast drug release in the presence of 10mM glutathione (GSH). Notably, MTT assays showed that DOX-loaded crosslinked HA-Lys-LA10 nanoparticles possessed an apparent targetability and a superior antitumor activity toward CD44 receptor overexpressing DOX-resistant MCF-7 human breast cancer cells (MCF-7/ADR). The in vivo pharmacokinetics and biodistribution studies in MCF-7/ADR tumor xenografts in nude mice showed that DOX-loaded crosslinked HA-Lys-LA10 nanoparticles had a prolonged circulation time and a remarkably high accumulation in the tumor (12.71%ID/g). Notably, DOX-loaded crosslinked HA-Lys-LA10 nanoparticles exhibited effective inhibition of tumor growth while continuous tumor growth was observed for mice treated with free drug. The Kaplan-Meier survival curves showed that in contrast to control groups, all mice treated with DOX-loaded crosslinked HA-Lys-LA10 nanoparticles survived over an experimental period of 44days. Importantly, DOX-loaded crosslinked HA nanoparticles caused low side effects. The reversibly crosslinked hyaluronic acid nanoparticles with excellent biocompatibility, CD44-targetability, and effective reversal of drug resistance have a great potential in cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. 1'-Acetoxychavicol acetate inhibits growth of human oral carcinoma xenograft in mice and potentiates cisplatin effect via proinflammatory microenvironment alterations.

    PubMed

    In, Lionel L A; Arshad, Norhafiza M; Ibrahim, Halijah; Azmi, Mohamad Nurul; Awang, Khalijah; Nagoor, Noor Hasima

    2012-10-09

    Oral cancers although preventable, possess a low five-year survival rate which has remained unchanged over the past three decades. In an attempt to find a more safe, affordable and effective treatment option, we describe here the use of 1'S-1'-acetoxychavicol acetate (ACA), a component of Malaysian ginger traditionally used for various medicinal purposes. Whether ACA can inhibit the growth of oral squamous cell carcinoma (SCC) cells alone or in combination with cisplatin (CDDP), was explored both in vitro using MTT assays and in vivo using Nu/Nu mice. Occurrence of apoptosis was assessed using PARP and DNA fragmentation assays, while the mode of action were elucidated through global expression profiling followed by Western blotting and IHC assays. We found that ACA alone inhibited the growth of oral SCC cells, induced apoptosis and suppressed its migration rate, while minimally affecting HMEC normal cells. ACA further enhanced the cytotoxic effects of CDDP in a synergistic manner as suggested by combination index studies. We also found that ACA inhibited the constitutive activation of NF-κB through suppression of IKKα/β activation. Human oral tumor xenografts studies in mice revealed that ACA alone was as effective as CDDP in reducing tumor volume, and further potentiated CDDP effects when used in combination with minimal body weight loss. The effects of ACA also correlated with a down-regulation of NF-κB regulated gene (FasL and Bim), including proinflammatory (NF-κB and COX-2) and proliferative (cyclin D1) biomarkers in tumor tissue. Overall, our results suggest that ACA inhibits the growth of oral SCC and further potentiates the effect of standard CDDP treatment by modulation of proinflammatory microenvironment. The current preclinical data could form the basis for further clinical trials to improve the current standards for oral cancer care using this active component from the Malaysian ginger.

  20. Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts

    PubMed Central

    Thierry, Alain R.; Mouliere, Florent; Gongora, Celine; Ollier, Jeremy; Robert, Bruno; Ychou, Marc; Del Rio, Maguy; Molina, Franck

    2010-01-01

    Although circulating DNA (ctDNA) could be an attractive tool for early cancer detection, diagnosis, prognosis, monitoring or prediction of response to therapies, knowledge on its origin, form and rate of release is poor and often contradictory. Here, we describe an experimental system to systematically examine these aspects. Nude mice were xenografted with human HT29 or SW620 colorectal carcinoma (CRC) cells and ctDNA was analyzed by Q–PCR with highly specific and sensitive primer sets at different times post-graft. We could discriminate ctDNA from normal (murine) cells and from mutated and non-mutated tumor (human) cells by using species-specific KRAS or PSAT1 primers and by assessing the presence of the BRAF V600E mutation. The concentration of human (mutated and non-mutated) ctDNA increased significantly with tumor growth. Conversely, and differently from previous studies, low, constant level of mouse ctDNA was observed, thus facilitating the study of mutated and non-mutated tumor derived ctDNA. Finally, analysis of ctDNA fragmentation confirmed the predominance of low-size fragments among tumor ctDNA from mice with bigger tumors. Higher ctDNA fragmentation was also observed in plasma samples from three metastatic CRC patients in comparison to healthy individuals. Our data confirm the predominance of mononucleosome-derived fragments in plasma from xenografted animals and, as a consequence, of apoptosis as a source of ctDNA, in particular for tumor-derived ctDNA. Altogether, our results suggest that ctDNA features vary during CRC tumor development and our experimental system might be a useful tool to follow such variations. PMID:20494973

  1. Filamentous, mixed micelles of triblock copolymers enhance tumor localization of indocyanine green in a murine xenograft model

    PubMed Central

    Kim, Tae Hee; Mount, Christopher W; Dulken, Benjamin W; Ramos, Jenelyn; Fu, Caroline J; Khant, Htet A; Chiu, Wah; Gombotz, Wayne R; Pun, Suzie H

    2012-01-01

    Polymeric micelles formed by the self-assembly of amphiphilic block copolymers can be used to encapsulate hydrophobic drugs for tumor-delivery applications. Filamentous carriers with high aspect ratios offer potential advantages over spherical carriers, including prolonged circulation times. In this work, mixed micelles comprised of poly (ethylene oxide)-poly-[(R)-3-hydroxybutyrate]-poly (ethylene oxide) (PEO-PHB-PEO) and Pluronic F-127 (PF-127) were used to encapsulate a near-infrared fluorophore. The micelle formulations were assessed for tumor accumulation after tail vein injection to xenograft tumor-bearing mice by non-invasive optical imaging. The mixed micelle formulation that facilitated the highest tumor accumulation was shown by cryo-electron microscopy to be filamentous in structure compared to spherical structures of pure PF-127 micelles. In addition, increased dye loading efficiency and dye stability was attained in this mixed micelle formulation compared to pure PEO-PHB-PEO micelles. Therefore, the optimized PEO-PHB-PEO/PF-127 mixed micelle formulation offers advantages for cancer delivery over micelles formed from the individual copolymer components. PMID:22118658

  2. Coriolus versicolor (Yunzhi) extract attenuates growth of human leukemia xenografts and induces apoptosis through the mitochondrial pathway.

    PubMed

    Ho, Cheong-Yip; Kim, Chi-Fai; Leung, Kwok-Nam; Fung, Kwok-Pui; Tse, Tak-Fu; Chan, Helen; Lau, Clara Bik-San

    2006-09-01

    Coriolus versicolor (CV), also called Yunzhi, has been demonstrated to exert anti-tumor effects on various types of cancer cells. Our previous studies have demonstrated that a standardized aqueous ethanol extract prepared from CV inhibited the proliferation of human leukemia cells via induction of apoptosis. The present study aimed to evaluate the underlying mechanisms of apoptosis through modulation of Bax, Bcl-2 and cytochrome c protein expressions in a human pro-myelocytic leukemia (HL-60) cell line, as well as the potential of the CV extract as anti-leukemia agent using the athymic mouse xenograft model. Our results demonstrated that the CV extract dose-dependently suppressed the proliferation of HL-60 cells (IC50 = 150.6 microg/ml), with increased nucleosome production from apoptotic cells. Expression of pro-apoptotic protein Bax was significantly up-regulated in HL-60 cells treated with the CV extract, especially after 16 and 24 h. Meanwhile, expression of anti-apoptotic protein Bcl-2 was concomitantly down-regulated, as reflected by the increased Bax/Bcl-2 ratio. The CV extract markedly, but transiently, promoted the release of cytochrome c from mitochondria to cytosol after 24-h incubation. In vivo studies in the athymic nude mouse xenograft model also confirmed the growth-inhibitory activity of the CV extract on human leukemia cells. In conclusion, the CV extract attenuated the human leukemia cell proliferation in vivo, and in vitro possibly by inducing apoptosis through the mitochondrial pathway. The CV extract is likely to be valuable for the treatment of some forms of human leukemia.

  3. Patient-derived xenografts as preclinical neuroblastoma models.

    PubMed

    Braekeveldt, Noémie; Bexell, Daniel

    2018-05-01

    The prognosis for children with high-risk neuroblastoma is often poor and survivors can suffer from severe side effects. Predictive preclinical models and novel therapeutic strategies for high-risk disease are therefore a clinical imperative. However, conventional cancer cell line-derived xenografts can deviate substantially from patient tumors in terms of their molecular and phenotypic features. Patient-derived xenografts (PDXs) recapitulate many biologically and clinically relevant features of human cancers. Importantly, PDXs can closely parallel clinical features and outcome and serve as excellent models for biomarker and preclinical drug development. Here, we review progress in and applications of neuroblastoma PDX models. Neuroblastoma orthotopic PDXs share the molecular characteristics, neuroblastoma markers, invasive properties and tumor stroma of aggressive patient tumors and retain spontaneous metastatic capacity to distant organs including bone marrow. The recent identification of genomic changes in relapsed neuroblastomas opens up opportunities to target treatment-resistant tumors in well-characterized neuroblastoma PDXs. We highlight and discuss the features and various sources of neuroblastoma PDXs, methodological considerations when establishing neuroblastoma PDXs, in vitro 3D models, current limitations of PDX models and their application to preclinical drug testing.

  4. Immunomodulation of Tumor Growth

    PubMed Central

    Prehn, Richmond T.

    1974-01-01

    Most and perhaps all neoplasms arouse an immune response in their hosts. Unfortunately, this response is seldom effective in limiting tumor growth. Immunologic surveillance, as originally conceived, probably does not exist. The early weak response to nascent tumors stimulates rather than inhibits their growth. A truly tumor-limiting reaction occurs only in exceptional tumor systems, and then it is relatively late and ineffectual. Immunity may be of great importance in limiting the activity of oncogenic viruses, but is probably seldom the determiner of whether or not an already transformed cell gives rise to a lethal cancer. PMID:4548632

  5. High-Dose, Single-Fraction Irradiation Rapidly Reduces Tumor Vasculature and Perfusion in a Xenograft Model of Neuroblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jani, Ashish; Shaikh, Fauzia; Barton, Sunjay

    Purpose: To characterize the effects of high-dose radiation therapy (HDRT) on neuroblastoma tumor vasculature, including the endothelial cell (EC)–pericyte interaction as a potential target for combined treatment with antiangiogenic agents. Methods and Materials: The vascular effects of radiation therapy were examined in a xenograft model of high-risk neuroblastoma. In vivo 3-dimensional contrast-enhanced ultrasonography (3D-CEUS) imaging and immunohistochemistry (IHC) were performed. Results: HDRT significantly reduced tumor blood volume 6 hours after irradiation compared with the lower doses used in conventionally fractionated radiation. There was a 63% decrease in tumor blood volume after 12-Gy radiation compared with a 24% decrease after 2 Gy. Analysis ofmore » tumor vasculature by lectin angiography showed a significant loss of small vessel ends at 6 hours. IHC revealed a significant loss of ECs at 6 and 72 hours after HDRT, with an accompanying loss of immature and mature pericytes at 72 hours. Conclusions: HDRT affects tumor vasculature in a manner not observed at lower doses. The main observation was an early reduction in tumor perfusion resulting from a reduction of small vessel ends with a corresponding loss of endothelial cells and pericytes.« less

  6. The effects of a picosecond pulsed electric field on angiogenesis in the cervical cancer xenograft models.

    PubMed

    Wu, Limei; Yao, Chenguo; Xiong, Zhengai; Zhang, Ruizhe; Wang, Zhiliang; Wu, Yutong; Qin, Qin; Hua, Yuanyuan

    2016-04-01

    The application of picosecond pulsed electric field (psPEF) is a new biomedical engineering technique used in cancer therapy. However, its effects on cervical cancer angiogenesis are not clear. Therefore, the aim of the present study is to investigate the effects of psPEF on angiogenesis in cervical cancer xenograft models. Xenograft tumors were created by subcutaneously inoculating nude mice (athymic BALB/c nu/nu mice) with HeLa cells, then were placed closely between tweezer-type plate electrodes and subjected to psPEF with a gradually increased electric field intensity (0kV/cm, 50kV/cm, 60kV/cm, 70kV/cm). The direct effect on tumor tissue was observed by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). The changes of blood vessels and oxygen saturation (sO2) of tumors were monitored in vivo by photoacoustic tomography (PAT). The microvessel density (MVD), vascular endothelial growth factor (VEGF) and hypoxia-inducible transcription factors (HIF-1α and HIF-2α) were detected by immunohistochemical technique (IHC). Their protein expressions and gene transcription levels were evaluated using western blot (WB) and quantitative reverse transcription and polymerase chain reaction (RT-PCR). PsPEF induced obvious necrosis of cervical cancer tissue; with the increasing of electric field intensity, the MVD, vascular PA signal and sO2 values declined significantly. The protein expression and gene transcription levels of VEGF, HIF1α and HIF2α were significantly decreased at the same time. PsPEF exhibited dramatic anti-tumor and anti-angiogenesis effects in cervical cancer xenograft models by exerting direct effect on cancer cells and vascular endothelial cells and indirect effect on tumor angiogenesis-related factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. G Protein-Coupled Estrogen Receptor-Selective Ligands Modulate Endometrial Tumor Growth

    PubMed Central

    Petrie, Whitney K.; Dennis, Megan K.; Dai, Donghai; Arterburn, Jeffrey B.; Smith, Harriet O.; Hathaway, Helen J.; Prossnitz, Eric R.

    2013-01-01

    Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene), the phytoestrogen genistein, and the “ERα-selective” agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of “ER-targeted” therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth. PMID:24379833

  8. G protein-coupled estrogen receptor-selective ligands modulate endometrial tumor growth.

    PubMed

    Petrie, Whitney K; Dennis, Megan K; Hu, Chelin; Dai, Donghai; Arterburn, Jeffrey B; Smith, Harriet O; Hathaway, Helen J; Prossnitz, Eric R

    2013-01-01

    Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene), the phytoestrogen genistein, and the "ERα-selective" agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of "ER-targeted" therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth.

  9. Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors

    PubMed Central

    Krampitz, Geoffrey Wayne; George, Benson M.; Willingham, Stephen B.; Volkmer, Jens-Peter; Weiskopf, Kipp; Jahchan, Nadine; Newman, Aaron M.; Sahoo, Debashis; Zemek, Allison J.; Yanovsky, Rebecca L.; Nguyen, Julia K.; Schnorr, Peter J.; Mazur, Pawel K.; Sage, Julien; Longacre, Teri A.; Visser, Brendan C.; Poultsides, George A.; Norton, Jeffrey A.; Weissman, Irving L.

    2016-01-01

    Pancreatic neuroendocrine tumors (PanNETs) are a type of pancreatic cancer with limited therapeutic options. Consequently, most patients with advanced disease die from tumor progression. Current evidence indicates that a subset of cancer cells is responsible for tumor development, metastasis, and recurrence, and targeting these tumor-initiating cells is necessary to eradicate tumors. However, tumor-initiating cells and the biological processes that promote pathogenesis remain largely uncharacterized in PanNETs. Here we profile primary and metastatic tumors from an index patient and demonstrate that MET proto-oncogene activation is important for tumor growth in PanNET xenograft models. We identify a highly tumorigenic cell population within several independent surgically acquired PanNETs characterized by increased cell-surface protein CD90 expression and aldehyde dehydrogenase A1 (ALDHA1) activity, and provide in vitro and in vivo evidence for their stem-like properties. We performed proteomic profiling of 332 antigens in two cell lines and four primary tumors, and showed that CD47, a cell-surface protein that acts as a “don’t eat me” signal co-opted by cancers to evade innate immune surveillance, is ubiquitously expressed. Moreover, CD47 coexpresses with MET and is enriched in CD90hi cells. Furthermore, blocking CD47 signaling promotes engulfment of tumor cells by macrophages in vitro and inhibits xenograft tumor growth, prevents metastases, and prolongs survival in vivo. PMID:27035983

  10. Biochemomechanical poroelastic theory of avascular tumor growth

    NASA Astrophysics Data System (ADS)

    Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao; Gao, Huajian

    2016-09-01

    Tumor growth is a complex process involving genetic mutations, biochemical regulations, and mechanical deformations. In this paper, a thermodynamics-based nonlinear poroelastic theory is established to model the coupling among the mechanical, chemical, and biological mechanisms governing avascular tumor growth. A volumetric growth law accounting for mechano-chemo-biological coupled effects is proposed to describe the development of solid tumors. The regulating roles of stresses and nutrient transport in the tumor growth are revealed under different environmental constraints. We show that the mechano-chemo-biological coupling triggers anisotropic and heterogeneous growth, leading to the formation of layered structures in a growing tumor. There exists a steady state in which tumor growth is balanced by resorption. The influence of external confinements on tumor growth is also examined. A phase diagram is constructed to illustrate how the elastic modulus and thickness of the confinements jointly dictate the steady state of tumor volume. Qualitative and quantitative agreements with experimental observations indicate the developed model is capable of capturing the essential features of avascular tumor growth in various environments.

  11. Suppression of Tumor Growth and Muscle Wasting in a Transgenic Mouse Model of Pancreatic Cancer by the Novel Histone Deacetylase Inhibitor AR-42.

    PubMed

    Henderson, Sally E; Ding, Li-Yun; Mo, Xiaokui; Bekaii-Saab, Tanios; Kulp, Samuel K; Chen, Ching-Shih; Huang, Po-Hsien

    2016-12-01

    Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States. This study was aimed at evaluating the efficacy of AR-42 (formerly OSU-HDAC42), a novel histone deacetylase (HDAC) inhibitor currently in clinical trials, in suppressing tumor growth and/or cancer-induced muscle wasting in murine models of PDAC. The in vitro antiproliferative activity of AR-42 was evaluated in six human pancreatic cancer cell lines (AsPC-1, COLO-357, PANC-1, MiaPaCa-2, BxPC-3, SW1990). AsPC-1 subcutaneous xenograft and transgenic KP fl/fl C (LSL-Kras G12D ;Trp53 flox/flox ;Pdx-1-Cre) mouse models of pancreatic cancer were used to evaluate the in vivo efficacy of AR-42 in suppressing tumor growth and/or muscle wasting. Growth suppression in AR-42-treated cells was observed in all six human pancreatic cancer cell lines with dose-dependent modulation of proliferation and apoptotic markers, which was associated with the hallmark features of HDAC inhibition, including p21 upregulation and histone H3 hyperacetylation. Oral administration of AR-42 at 50 mg/kg every other day resulted in suppression of tumor burden in the AsPC-1 xenograft and KP fl/fl C models by 78% and 55%, respectively, at the end of treatment. Tumor suppression was associated with HDAC inhibition, increased apoptosis, and inhibition of proliferation. Additionally, AR-42 as a single agent preserved muscle size and increased grip strength in KP fl/fl C mice. Finally, the combination of AR-42 and gemcitabine in transgenic mice demonstrated a significant increase in survival than either agent alone. These results suggest that AR-42 represents a therapeutically promising strategy for the treatment of pancreatic cancer. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Heat shock protein 70-2 (HSP70-2) is a novel therapeutic target for colorectal cancer and is associated with tumor growth.

    PubMed

    Jagadish, Nirmala; Parashar, Deepak; Gupta, Namita; Agarwal, Sumit; Suri, Vaishali; Kumar, Rajive; Suri, Vitusha; Sadasukhi, Trilok Chand; Gupta, Anju; Ansari, Abdul S; Lohiya, Nirmal Kumar; Suri, Anil

    2016-07-29

    Colorectal cancer (CRC) is the third leading cause of cancer related deaths worldwide both in men and women. Our recent studies have indicated an association of heat shock protein 70-2 (HSP70-2) with bladder urothelial carcinoma. In the present study, we investigated the association of HSP70-2 with various malignant properties of colorectal cancer cells and clinic-pathological features of CRC in clinical specimens. HSP70-2 mRNA and protein was investigated expression by RT-PCR, immunohistochemistry, immunofluorescence, flow cytometry and Western blotting in CRC clinical specimens and COLO205 and HCT116 cell lines. Plasmid-based gene silencing approach was employed to study the association of HSP70-2 with various malignant properties of COLO205 and HCT116 cells in in vitro and with tumor progression in in vivo COLO205 human xenograft mice model. HSP70-2 expression was detected in 78 % of CRC patients irrespective of various stages and grades by RT-PCR and IHC. Our analysis further revealed that HSP70-2 expression was detected in both COLO205 and HCT116 cell lines. Ablation of HSP70-2 expression resulted in reduced cellular growth, colony forming ability, migratory and invasive ability of CRC cells. In addition, ablation of HSP70-2 expression showed significant reduction in tumor growth in COLO205 human xenograft in in vivo mouse model. Collectively, our results indicate that HSP70-2 is associated with CRC clinical specimens. In addition, down regulation of HSP70-2 expression reduces cellular proliferation and tumor growth indicating that HSP70-2 may be a potential therapeutic target for CRC treatment.

  13. Light exposure at night disrupts host/cancer circadian regulatory dynamics: impact on the Warburg effect, lipid signaling and tumor growth prevention.

    PubMed

    Blask, David E; Dauchy, Robert T; Dauchy, Erin M; Mao, Lulu; Hill, Steven M; Greene, Michael W; Belancio, Victoria P; Sauer, Leonard A; Davidson, Leslie

    2014-01-01

    The central circadian clock within the suprachiasmatic nucleus (SCN) plays an important role in temporally organizing and coordinating many of the processes governing cancer cell proliferation and tumor growth in synchrony with the daily light/dark cycle which may contribute to endogenous cancer prevention. Bioenergetic substrates and molecular intermediates required for building tumor biomass each day are derived from both aerobic glycolysis (Warburg effect) and lipid metabolism. Using tissue-isolated human breast cancer xenografts grown in nude rats, we determined that circulating systemic factors in the host and the Warburg effect, linoleic acid uptake/metabolism and growth signaling activities in the tumor are dynamically regulated, coordinated and integrated within circadian time structure over a 24-hour light/dark cycle by SCN-driven nocturnal pineal production of the anticancer hormone melatonin. Dim light at night (LAN)-induced melatonin suppression disrupts this circadian-regulated host/cancer balance among several important cancer preventative signaling mechanisms, leading to hyperglycemia and hyperinsulinemia in the host and runaway aerobic glycolysis, lipid signaling and proliferative activity in the tumor.

  14. The unidirectional hypoxia-activated prodrug OCT1002 inhibits growth and vascular development in castrate-resistant prostate tumors.

    PubMed

    Nesbitt, Heather; Worthington, Jenny; Errington, Rachel J; Patterson, Laurence H; Smith, Paul J; McKeown, Stephanie R; McKenna, Declan J

    2017-11-01

    OCT1002 is a unidirectional hypoxia-activated prodrug (uHAP) OCT1002 that can target hypoxic tumor cells. Hypoxia is a common feature in prostate tumors and is known to drive disease progression and metastasis. It is, therefore, a rational therapeutic strategy to directly target hypoxic tumor cells in an attempt to improve treatment for this disease. Here we tested OCT1002 alone and in combination with standard-of-care agents in hypoxic models of castrate-resistant prostate cancer (CRPC). The effect of OCT1002 on tumor growth and vasculature was measured using murine PC3 xenograft and dorsal skin fold (DSF) window chamber models. The effects of abiraterone, docetaxel, and cabazitaxel, both singly and in combination with OCT1002, were also compared. The hypoxia-targeting ability of OCT1002 effectively controls PC3 tumor growth. The effect was evident for at least 42 days after exposure to a single dose (30 mg/kg) and was comparable to, or better than, drugs currently used in the clinic. In DSF experiments OCT1002 caused vascular collapse in the PC3 tumors and inhibited the revascularization seen in controls. In this model OCT1002 also enhanced the anti-tumor effects of abiraterone, cabazitaxel, and docetaxel; an effect which was accompanied by a more prolonged reduction in tumor vasculature density. These studies provide the first evidence that OCT1002 can be an effective agent in treating hypoxic, castrate-resistant prostate tumors, either singly or in combination with established chemotherapeutics for prostate cancer. © 2017 Wiley Periodicals, Inc.

  15. Preclinical anti-tumor activity of antibody-targeted chemotherapy with CMC-544 (inotuzumab ozogamicin), a CD22-specific immunoconjugate of calicheamicin, compared with non-targeted combination chemotherapy with CVP or CHOP.

    PubMed

    DiJoseph, John F; Dougher, Maureen M; Evans, Deborah Y; Zhou, Bin-Bing; Damle, Nitin K

    2011-04-01

    CMC-544 (inotuzumab ozogamicin) is a CD22-specific immunoconjugate of calicheamicin currently being evaluated in patients with non-Hodgkin's B-cell lymphoma (BCL). CHOP and CVP represent untargeted combination chemotherapy comprised of cyclophosphamide, vincristine and prednisone with or without doxorubicin, commonly used in the treatment of NHL. Here, we describe anti-tumor efficacy of CMC-544, CHOP or CVP against human BCL xenografts. In vitro, human BCLs were cultured with CMC-544 or individual constituents of CHOP for inhibition of their growth. In vivo, immunocompromised mice with established BCL xenografts were administered CHOP, CVP or CMC-544 to monitor their survival and BCL growth. In vitro, CMC-544 was more potent in causing growth inhibition of various BCL than cyclophosphamide, doxorubicin, vincristine or dexamethasone. In vivo, treatment with CHOP or CVP inhibited growth of BCL xenografts for up to 40 days after which BCL relapsed. Tumor growth inhibition by CMC-544 (>100 days) lasted longer than that by CHOP or CVP. BCL xenografts that relapsed after the treatment with CHOP or CVP were far less responsive to CHOP or CVP re-treatment but regressed upon subsequent treatment with CMC-544. CVP could be co-administered with suboptimal doses of CMC-544, while CHOP could be administered on alternant days with CMC-544 to cause enhanced regression of established BCL xenografts. Preclinically, CMC-544 provides greater therapeutic benefit than CVP or CHOP against BCL xenografts. CMC-544 may also be co-administered with standard chemotherapeutic regimens in the treatment of B-NHL for superior anti-tumor activity.

  16. MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4

    PubMed Central

    Hong, Candice Sun; Graham, Nicholas A.; Gu, Wen; Camacho, Carolina Espindola; Mah, Vei; Maresh, Erin L.; Alavi, Mohammed; Bagryanova, Lora; Krotee, Pascal A. L.; Gardner, Brian K.; Behbahan, Iman Saramipoor; Horvath, Steve; Chia, David; Mellinghoff, Ingo K.; Hurvitz, Sara A.; Dubinett, Steven M.; Critchlow, Susan E.; Kurdistani, Siavash K.; Goodglick, Lee; Braas, Daniel; Graeber, Thomas G.; Christofk, Heather R.

    2016-01-01

    SUMMARY Monocarboxylate Transporter 1 (MCT1) inhibition is thought to block tumor growth through disruption of lactate transport and glycolysis. Here we show MCT1 inhibition impairs proliferation of glycolytic breast cancer cells co-expressing MCT1 and MCT4 via disruption of pyruvate rather than lactate export. MCT1 expression is elevated in glycolytic breast tumors, and high MCT1 expression predicts poor prognosis in breast and lung cancer patients. Acute MCT1 inhibition reduces pyruvate export but does not consistently alter lactate transport or glycolytic flux in breast cancer cells that co-express MCT1 and MCT4. Despite the lack of glycolysis impairment, MCT1 loss-of-function decreases breast cancer cell proliferation and blocks growth of mammary fat pad xenograft tumors. Our data suggest MCT1 expression is elevated in glycolytic cancers to promote pyruvate export, which when inhibited enhances oxidative metabolism and reduces proliferation. This study presents an alternative molecular consequence of MCT1 inhibitors further supporting their use as anti-cancer therapeutics. PMID:26876179

  17. MCT1 Modulates Cancer Cell Pyruvate Export and Growth of Tumors that Co-express MCT1 and MCT4.

    PubMed

    Hong, Candice Sun; Graham, Nicholas A; Gu, Wen; Espindola Camacho, Carolina; Mah, Vei; Maresh, Erin L; Alavi, Mohammed; Bagryanova, Lora; Krotee, Pascal A L; Gardner, Brian K; Behbahan, Iman Saramipoor; Horvath, Steve; Chia, David; Mellinghoff, Ingo K; Hurvitz, Sara A; Dubinett, Steven M; Critchlow, Susan E; Kurdistani, Siavash K; Goodglick, Lee; Braas, Daniel; Graeber, Thomas G; Christofk, Heather R

    2016-02-23

    Monocarboxylate transporter 1 (MCT1) inhibition is thought to block tumor growth through disruption of lactate transport and glycolysis. Here, we show MCT1 inhibition impairs proliferation of glycolytic breast cancer cells co-expressing MCT1 and MCT4 via disruption of pyruvate rather than lactate export. MCT1 expression is elevated in glycolytic breast tumors, and high MCT1 expression predicts poor prognosis in breast and lung cancer patients. Acute MCT1 inhibition reduces pyruvate export but does not consistently alter lactate transport or glycolytic flux in breast cancer cells that co-express MCT1 and MCT4. Despite the lack of glycolysis impairment, MCT1 loss-of-function decreases breast cancer cell proliferation and blocks growth of mammary fat pad xenograft tumors. Our data suggest MCT1 expression is elevated in glycolytic cancers to promote pyruvate export that when inhibited, enhances oxidative metabolism and reduces proliferation. This study presents an alternative molecular consequence of MCT1 inhibitors, further supporting their use as anti-cancer therapeutics. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. PTEN Loss Does Not Predict for Response to RAD001 (Everolimus) in a Glioblastoma Orthotopic Xenograft Test Panel

    PubMed Central

    Yang, Lin; Clarke, Michelle J.; Carlson, Brett L.; Mladek, Ann C.; Schroeder, Mark A.; Decker, Paul; Wu, Wenting; Kitange, Gaspar J.; Grogan, Patrick T.; Goble, Jennie M.; Uhm, Joon; Galanis, Evanthia; Giannini, Caterina; Lane, Heidi A.; James, C. David; Sarkaria, Jann N.

    2014-01-01

    Purpose Hyperactivation of the phosphatidylinositol 3-kinase/Akt signaling through disruption of PTEN function is common in glioblastoma multiforme, and these genetic changes are predicted to enhance sensitivity to mammalian target of rapamycin (mTOR) inhibitors such as RAD001 (everolimus). Experimental Design To test whether PTEN loss could be used as a predictive marker for mTOR inhibitor sensitivity, the response of 17 serially transplantable glioblastoma multiforme xenografts was evaluated in an orthotopic therapy evaluation model. Of these 17 xenograft lines, 7 have either genomic deletion or mutation of PTEN. Results Consistent with activation of Akt signaling, there was a good correlation between loss of PTEN function and elevated levels of Akt phosphorylation. However, of the 7 lines with disrupted PTEN function, only 1 tumor line (GBM10) was significantly sensitive to RAD001 therapy (25% prolongation in median survival), whereas1 of 10 xenograft lines with wild-type PTEN was significantly sensitive to RAD001 (GS22; 34% prolongation in survival). Relative to placebo, 5 days of RAD001 treatment was associated with a marked 66% reduction in the MIB1 proliferation index in the sensitive GBM10 line (deleted PTEN) compared with a 25% and 7% reduction in MIB1 labeling index in the insensitive GBM14 (mutant PTEN) and GBM15 (wild-type PTEN) lines, respectively. Consistent with a cytostatic antitumor effect, bioluminescent imaging of luciferase-transduced intracranial GBM10 xenografts showed slowed tumor growth without significant tumor regression during RAD001 therapy. Conclusion These data suggest that loss of PTEN function is insufficient to adequately predict responsiveness to mTOR inhibitors in glioblastoma multiforme. PMID:18559622

  19. Vitexins, nature-derived lignan compounds, induce apoptosis and suppress tumor growth

    PubMed Central

    Zhou, YingJun; Liu, Yiliang Ellie; Cao, JianGuo; Zeng, GuangYao; Shen, Cui; Li, YanLan; Zhou, MeiChen; Chen, Yiding; Pu, Weiping; Potters, Louis; Shi, Eric Y.

    2009-01-01

    Purpose Lignans such as secoisolariciresinol diglucoside (SDG) in flaxseed, are metabolizes to bioactive mammalian lignans of END and ENL. Because mammalian lignans have chemical structural similarity to the natural estrogen, they are thought to behave like selective estrogen receptor modulators (SERM) and therefore have anticancer effect against hormone-related cancers. We isolated a series of lignan compounds, named as Vitexins, from the seed of Chinese herb Vitex Negundo. Experimental Design We purified several Vitexin lignan compounds. Cytotoxic and antitumor effects were analyzed in cancer cells and in tumor xenograft models. In vivo metabolism of Vitexins was determined in rat. Results Contrasts to the classical lignans, Vitexins were not metabolized to END and ENL. A mixture of Vitexins EVn-50 and purified Vitexin compound VB1 have cytotoxic effect on breast, prostate, and ovarian cancer cells and induces apoptosis with cleavage in PARP protein, up-regulation of Bax, and down-regulation of Bcl-2. This induction of apoptosis seems to be mediated by activation of caspases because inhibition of caspases activity significantly reduced induced apoptosis. We demonstrated a broad antitumor activity of EVn-50 on seven tumor xenograft models including breast, prostate, liver, and cervical cancers. Consistent with in vitro data, EVn-50 treatment induced apoptosis, down-regulated of Bcl-2, and up-regulated Bax in tumor xenografts. Conclusion Vitexin is a class of nature lignan compounds, whose action and anticancer effect is mediated by the mechanisms different from the classical lignans. Vitexin induced antitumor effect and cytotoxic activity is exerted through proapoptotic process, which is mediated by a decreased Bcl-2/Bax ratio and activation of caspases. PMID:19671865

  20. Protective Effect of Perindopril on Tumor Progression and Angiogenesis in Animal Model of Breast Cancer.

    PubMed

    Patel, Snehal S; Nakka, Surender

    2017-01-01

    Studies have shown that the renin angiotensin system via angiogenesis is involved in tumor development. Therefore, objective of the present study was to examine the effect of perindopril on tumor growth and angiogenesis in animal models of breast cancer. In the present study, the effect of perindopril on tumor development of mammary gland cancer induced by 7,12-dimethylbenz[a]anthracene, mouse tumor xenograft and corneal micropocket model has been investigated. Anti-angiogenic effect by chick yolk sac membrane assay has also been studied. In the present study, it has been found that perindopril produced a significant inhibition of tumor growth, in DMBA induced breast cancer. Treatment also produced significant suppression of cancer biomarkers such as lactate dehydrogenase, gamma glutamyl transferase and inflammatory markers such as C-reactive protein, erythrocyte sedimentation rate. Histopathological analysis also showed that perindopril was able to inhibit tumor development by the inhibition of hyperplastic lesions. Perindopril produced significant inhibition of tumor growth, in a mouse xenograft model and caused inhibition of neovascularization in the corneal micropocket model. In chick yolk sac membrane assay, perindopril showed inhibition of vascular growth and reduced blood vessel formation. Therefore, perindopril is widely used in clinical practice, may represent a neo-adjuvant therapy for treatment of breast cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. The retinamide VNLG-152 inhibits f-AR/AR-V7 and MNK-eIF4E signaling pathways to suppress EMT and castration-resistant prostate cancer xenograft growth.

    PubMed

    Ramamurthy, Vidya P; Ramalingam, Senthilmurugan; Gediya, Lalji K; Njar, Vincent C O

    2018-03-01

    VNLG-152 is a novel retinamide (NR) shown to suppress growth and progression of genetically diverse prostate cancer cells via inhibition of androgen receptor signaling and eukaryotic initiation factor 4E (eIF4E) translational machinery. Herein, we report therapeutic effects of VNLG-152 on castration-resistant prostate cancer (CRPC) growth and metastatic phenotype in a CRPC tumor xenograft model. Administration of VNLG-152 significantly and dose-dependently suppressed the growth of aggressive CWR22Rv1 tumors by 63.4% and 76.3% at 10 and 20 mg·kg -1 bw, respectively (P < 0.0001), vs. vehicle with no host toxicity. Strikingly, the expression of full-length androgen receptor (f-AR)/androgen receptor splice variant-7 (AR-V7), mitogen-activated protein kinase-interacting kinases 1 and 2 (MNK1/2), phosphorylated eIF4E and their associated target proteins, including prostate-specific antigen, cyclin D1 and Bcl-2, were strongly decreased in VNLG-152-treated tumors signifying inhibition of f-AR/AR-V7 and MNK-eIF4E signaling in VNLG-152-treated CWR22Rv1 tumors as observed in vitro. VNLG-152 also suppressed the epithelial to mesenchymal transition in CWR22Rv1 tumors as evidenced by repression of N-cadherin, β-catenin, claudin, Slug, Snail, Twist, vimentin and matrix metalloproteinases (MMP-2 and MMP-9) with upsurge in E-cadherin. These results highlight the promising use of VNLG-152 in CRPC therapy and justify its further development towards clinical trials. © 2018 Federation of European Biochemical Societies.

  2. VHL-regulated miR-204 Suppresses Tumor Growth through Inhibition of LC3B-mediated Autophagy in Renal Clear Cell Carcinoma

    PubMed Central

    Mikhaylova, Olga; Stratton, Yiwen; Hall, Daniel; Kellner, Emily; Ehmer, Birgit; Drew, Angela F.; Gallo, Catherine A.; Plas, David R.; Biesiada, Jacek; Meller, Jarek; Czyzyk-Krzeska, Maria F.

    2012-01-01

    Summary The von Hippel-Lindau tumor-suppressor gene (VHL) is lost in most clear cell renal cell carcinomas (ccRCC). Here, using human ccRCC specimens, VHL-deficient cells, and xenograft models, we show that miR-204 is a VHL-regulated tumor suppressor acting by inhibiting macroautophagy, with MAP1LC3B (LC3B) as a direct and functional target. Importantly, higher tumor grade of human ccRCC was correlated with a concomitant decrease in miR-204 and increase in LC3B levels, indicating that LC3B-mediated macroautophagy is necessary for RCC progression. VHL, in addition to inducing endogenous miR-204, triggered the expression of LC3C, an HIF-regulated LC3B paralog, that suppressed tumor growth. These data reveal a function of VHL as a tumor suppressing regulator of autophagic programs. PMID:22516261

  3. The Application of Heptamethine Cyanine Dye DZ-1 and Indocyanine Green for Imaging and Targeting in Xenograft Models of Hepatocellular Carcinoma

    PubMed Central

    Zhang, Caiqin; Zhao, Yong; Zhang, He; Chen, Xue; Zhao, Ningning; Tan, Dengxu; Zhang, Hai; Shi, Changhong

    2017-01-01

    Near infrared fluorescence (NIRF) imaging has strong potential for widespread use in noninvasive tumor imaging. Indocyanine green (ICG) is the only Food and Drug Administration (FDA) -approved NIRF dye for clinical diagnosis; however, it is unstable and poorly targets tumors. DZ-1 is a novel heptamethine cyanine NIRF dye, suitable for imaging and tumor targeting. Here, we compared the fluorescence intensity and metabolism of DZ-1 and ICG. Additionally, we assayed their specificities and abilities to target tumor cells, using cultured hepatocellular carcinoma (HCC) cell lines, a nude mouse subcutaneous xenograft model of liver cancer, and a rabbit orthotopic transplantation model. We found that DZ-1 accumulates in tumor tissue and specifically recognizes HCC in subcutaneous and orthotopic models. The NIRF intensity of DZ-1 was one order of magnitude stronger than that of ICG, and DZ-1 showed excellent intraoperative tumor targeting in the rabbit model. Importantly, ICG accumulated at tumor sites, as well as in the liver and kidney. Furthermore, DZ-1 analog-gemcitabine conjugate (NIRG) exhibited similar tumor-specific targeting and imaging properties, including inhibition of tumor growth, in HCC patient-derived xenograft (PDX) mice. DZ-1 and NIRG demonstrated superior tumor-targeting specificity, compared to ICG. We show that DZ-1 is an effective molecular probe for specific imaging, targeting, and therapy in HCC. PMID:28635650

  4. The Application of Heptamethine Cyanine Dye DZ-1 and Indocyanine Green for Imaging and Targeting in Xenograft Models of Hepatocellular Carcinoma.

    PubMed

    Zhang, Caiqin; Zhao, Yong; Zhang, He; Chen, Xue; Zhao, Ningning; Tan, Dengxu; Zhang, Hai; Shi, Changhong

    2017-06-21

    Near infrared fluorescence (NIRF) imaging has strong potential for widespread use in noninvasive tumor imaging. Indocyanine green (ICG) is the only Food and Drug Administration (FDA) -approved NIRF dye for clinical diagnosis; however, it is unstable and poorly targets tumors. DZ-1 is a novel heptamethine cyanine NIRF dye, suitable for imaging and tumor targeting. Here, we compared the fluorescence intensity and metabolism of DZ-1 and ICG. Additionally, we assayed their specificities and abilities to target tumor cells, using cultured hepatocellular carcinoma (HCC) cell lines, a nude mouse subcutaneous xenograft model of liver cancer, and a rabbit orthotopic transplantation model. We found that DZ-1 accumulates in tumor tissue and specifically recognizes HCC in subcutaneous and orthotopic models. The NIRF intensity of DZ-1 was one order of magnitude stronger than that of ICG, and DZ-1 showed excellent intraoperative tumor targeting in the rabbit model. Importantly, ICG accumulated at tumor sites, as well as in the liver and kidney. Furthermore, DZ-1 analog-gemcitabine conjugate (NIRG) exhibited similar tumor-specific targeting and imaging properties, including inhibition of tumor growth, in HCC patient-derived xenograft (PDX) mice. DZ-1 and NIRG demonstrated superior tumor-targeting specificity, compared to ICG. We show that DZ-1 is an effective molecular probe for specific imaging, targeting, and therapy in HCC.

  5. Insulin-like growth factor binding protein 5 suppresses tumor growth and metastasis of human osteosarcoma.

    PubMed

    Su, Y; Wagner, E R; Luo, Q; Huang, J; Chen, L; He, B-C; Zuo, G-W; Shi, Q; Zhang, B-Q; Zhu, G; Bi, Y; Luo, J; Luo, X; Kim, S H; Shen, J; Rastegar, F; Huang, E; Gao, Y; Gao, J-L; Yang, K; Wietholt, C; Li, M; Qin, J; Haydon, R C; He, T-C; Luu, H H

    2011-09-15

    Osteosarcoma (OS) is the most common primary malignancy of bone. There is a critical need to identify the events that lead to the poorly understood mechanism of OS development and metastasis. The goal of this investigation is to identify and characterize a novel marker of OS progression. We have established and characterized a highly metastatic OS subline that is derived from the less metastatic human MG63 line through serial passages in nude mice via intratibial injections. Microarray analysis of the parental MG63, the highly metastatic MG63.2 subline, as well as the corresponding primary tumors and pulmonary metastases revealed insulin-like growth factor binding protein 5 (IGFBP5) to be one of the significantly downregulated genes in the metastatic subline. Confirmatory quantitative RT-PCR on 20 genes of interest demonstrated IGFBP5 to be the most differentially expressed and was therefore chosen to be one of the genes for further investigation. Adenoviral mediated overexpression and knockdown of IGFBP5 in the MG63 and MG63.2 cell lines, as well as other OS lines (143B and MNNG/HOS) that are independent of our MG63 lines, were employed to examine the role of IGFBP5. We found that overexpression of IGFBP5 inhibited in vitro cell proliferation, migration and invasion of OS cells. Additionally, IGFBP5 overexpression promoted apoptosis and cell cycle arrest in the G1 phase. In an orthotopic xenograft animal model, overexpression of IGFBP5 inhibited OS tumor growth and pulmonary metastases. Conversely, siRNA-mediated knockdown of IGFBP5 promoted OS tumor growth and pulmonary metastases in vivo. Immunohistochemical staining of patient-matched primary and metastatic OS samples demonstrated decreased IGFBP5 expression in the metastases. These results suggest 1) a role for IGFBP5 as a novel marker that has an important role in the pathogenesis of OS, and 2) that the loss of IGFBP5 function may contribute to more metastatic phenotypes in OS.

  6. Effect of a nutrient mixture on the localization of extracellular matrix proteins in HeLa human cervical cancer xenografts in female nude mice.

    PubMed

    Roomi, M Waheed; Cha, John; Kalinovsky, Tatiana; Roomi, Nusrath; Niedzwiecki, Aleksandra; Rath, Matthias

    2015-09-01

    Cervical cancer is one of the most commonly diagnosed cancers and a significant cause of mortality in women worldwide. Although cervical cancer is fully treatable in the early stages, once it has metastasized, patient outcome is poor. The objective of the present study was to investigate the effect of dietary supplementation with a nutrient mixture (NM) containing lysine, ascorbic acid, proline, green tea extract and other micronutrients on the expression of extracellular matrix (ECM) proteins in HeLa cell xenografts in nude female mice. After housing for 1 week, female athymic nude mice between 5 and 6 weeks of age (n=12) were inoculated subcutaneously with 3×10 6 HeLa cells in phosphate-buffered saline and Matrigel and randomly divided into two groups. These were the control group, in which the mice were fed with regular mouse chow, and the NM group, in which the mice were fed with the regular diet supplemented with 0.5% NM (w/w). After 4 weeks, the tumors were excised and processed for histology. Tumor growth was evaluated and the tumors were stained for the ECM proteins collagen I, collagen IV, fibronectin, laminin, periodic acid-Schiff (PAS) and elastin. NM strongly inhibited (by 59%, P=0.001) the growth of HeLa xenografts in nude mice. Tumors from control mice exhibited little to no collagen I expression either internally or in the fibrous capsule, while tumors from the NM group expressed collagen I in the fibrous capsule and within the tumor. Tumors from the control group showed diffuse cytoplasmic and capsular collagen IV with abundant nucleated cells. NM treatment substantially increased collagen IV production and induced a dense fibrous network of collagen IV with chambers that surrounded live nucleated cells and large amounts of necrotic cell debris. Tumors from the mice fed with the NM exhibited a well-defined border of fibronectin in the capsule and intense areas of staining internally whereas control group tumors showed less overall fibronectin with

  7. Generation of human acute lymphoblastic leukemia xenografts for use in oncology drug discovery

    PubMed Central

    Holmfeldt, Linda

    2015-01-01

    The establishment of reproducible mouse models of acute lymphoblastic leukemia (ALL) is necessary to provide in vivo therapeutic models that recapitulate human ALL, and for amplification of limiting amounts of primary tumor material. A frequently used model is the primary xenograft model that utilizes immunocompromised mice and involves injection of primary patient tumor specimens into mice, and subsequent serial passaging of the tumors by retransplants of cells harvested from the mouse bone marrow and spleen. The tumors generated can then be used for genomic profiling, ex vivo compound testing, mechanistic studies and retransplantation. This unit describes detailed procedures for the establishment and maintenance of primary ALL xenograft panels for potential use in basic research or translational studies. PMID:25737157

  8. Targeting hypoxic microenvironment of pancreatic xenografts with the hypoxia-activated prodrug TH-302

    PubMed Central

    Lohse, Ines; Rasowski, Joanna; Cao, Pinjiang; Pintilie, Melania; Do, Trevor; Tsao, Ming-Sound; Hill, Richard P.; Hedley, David W.

    2016-01-01

    Previous reports have suggested that the hypoxic microenvironment provides a niche that supports tumor stem cells, and that this might explain clinical observations linking hypoxia to metastasis. To test this, we examined the effects of a hypoxia-activated prodrug, TH-302, on the tumor-initiating cell (TIC) frequency of patient-derived pancreatic xenografts (PDX). The frequencies of TIC, measured by limiting dilution assay, varied widely in 11 PDX models, and were correlated with rapid growth but not with the levels of hypoxia. Treatment with either TH-302 or ionizing radiation (IR), to target hypoxic and well-oxygenated regions, respectively, reduced TIC frequency, and the combination of TH-302 and IR was much more effective in all models tested. The combination was also more effective than TH-302 or IR alone controlling tumor growth, particularly treating the more rapidly-growing/hypoxic models. These findings support the clinical utility of hypoxia targeting in combination with radiotherapy to treat pancreatic cancers, but do not provide strong evidence for a hypoxic stem cell niche. PMID:27248663

  9. Targeting hypoxic microenvironment of pancreatic xenografts with the hypoxia-activated prodrug TH-302.

    PubMed

    Lohse, Ines; Rasowski, Joanna; Cao, Pinjiang; Pintilie, Melania; Do, Trevor; Tsao, Ming-Sound; Hill, Richard P; Hedley, David W

    2016-06-07

    Previous reports have suggested that the hypoxic microenvironment provides a niche that supports tumor stem cells, and that this might explain clinical observations linking hypoxia to metastasis. To test this, we examined the effects of a hypoxia-activated prodrug, TH-302, on the tumor-initiating cell (TIC) frequency of patient-derived pancreatic xenografts (PDX).The frequencies of TIC, measured by limiting dilution assay, varied widely in 11 PDX models, and were correlated with rapid growth but not with the levels of hypoxia. Treatment with either TH-302 or ionizing radiation (IR), to target hypoxic and well-oxygenated regions, respectively, reduced TIC frequency, and the combination of TH-302 and IR was much more effective in all models tested. The combination was also more effective than TH-302 or IR alone controlling tumor growth, particularly treating the more rapidly-growing/hypoxic models. These findings support the clinical utility of hypoxia targeting in combination with radiotherapy to treat pancreatic cancers, but do not provide strong evidence for a hypoxic stem cell niche.

  10. Correlation of FMISO simulations with pimonidazole-stained tumor xenografts: A question of O{sub 2} consumption?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wack, L. J., E-mail: linda-jacqueline.wack@med.uni

    Purpose: To compare a dedicated simulation model for hypoxia PET against tumor microsections stained for different parameters of the tumor microenvironment. The model can readily be adapted to a variety of conditions, such as different human head and neck squamous cell carcinoma (HNSCC) xenograft tumors. Methods: Nine different HNSCC tumor models were transplanted subcutaneously into nude mice. Tumors were excised and immunoflourescently labeled with pimonidazole, Hoechst 33342, and CD31, providing information on hypoxia, perfusion, and vessel distribution, respectively. Hoechst and CD31 images were used to generate maps of perfused blood vessels on which tissue oxygenation and the accumulation of themore » hypoxia tracer FMISO were mathematically simulated. The model includes a Michaelis–Menten relation to describe the oxygen consumption inside tissue. The maximum oxygen consumption rate M{sub 0} was chosen as the parameter for a tumor-specific optimization as it strongly influences tracer distribution. M{sub 0} was optimized on each tumor slice to reach optimum correlations between FMISO concentration 4 h postinjection and pimonidazole staining intensity. Results: After optimization, high pixel-based correlations up to R{sup 2} = 0.85 were found for individual tissue sections. Experimental pimonidazole images and FMISO simulations showed good visual agreement, confirming the validity of the approach. Median correlations per tumor model varied significantly (p < 0.05), with R{sup 2} ranging from 0.20 to 0.54. The optimum maximum oxygen consumption rate M{sub 0} differed significantly (p < 0.05) between tumor models, ranging from 2.4 to 5.2 mm Hg/s. Conclusions: It is feasible to simulate FMISO distributions that match the pimonidazole retention patterns observed in vivo. Good agreement was obtained for multiple tumor models by optimizing the oxygen consumption rate, M{sub 0}, whose optimum value differed significantly between tumor models.« less

  11. Impact of Circulating Cholesterol Levels on Growth and Intratumoral Androgen Concentration of Prostate Tumors

    PubMed Central

    Pelton, Kristine; Freeman, Michael R.; Montgomery, R. Bruce

    2012-01-01

    Prostate cancer (PCa) is the second most common cancer in men. Androgen deprivation therapy (ADT) leads to tumor involution and reduction of tumor burden. However, tumors eventually reemerge that have overcome the absence of gonadal androgens, termed castration resistant PCa (CRPC). Theories underlying the development of CRPC include androgen receptor (AR) mutation allowing for promiscuous activation by non-androgens, AR amplification and overexpression leading to hypersensitivity to low androgen levels, and/or tumoral uptake and conversion of adrenally derived androgens. More recently it has been proposed that prostate tumor cells synthesize their own androgens through de novo steroidogenesis, which involves the step-wise synthesis of androgens from cholesterol. Using the in vivo LNCaP PCa xenograft model, previous data from our group demonstrated that a hypercholesterolemia diet potentiates prostatic tumor growth via induction of angiogenesis. Using this same model we now demonstrate that circulating cholesterol levels are significantly associated with tumor size (R = 0.3957, p = 0.0049) and intratumoral levels of testosterone (R = 0.41, p = 0.0023) in LNCaP tumors grown in hormonally intact mice. We demonstrate tumoral expression of cholesterol uptake genes as well as the spectrum of steroidogenic enzymes necessary for androgen biosynthesis from cholesterol. Moreover, we show that circulating cholesterol levels are directly correlated with tumoral expression of CYP17A, the critical enzyme required for de novo synthesis of androgens from cholesterol (R = 0.4073, p = 0.025) Since hypercholesterolemia does not raise circulating androgen levels and the adrenal gland of the mouse synthesizes minimal androgens, this study provides evidence that hypercholesterolemia increases intratumoral de novo steroidogenesis. Our results are consistent with the hypothesis that cholesterol-fueled intratumoral androgen synthesis may accelerate the growth of

  12. Grb2-SH3 ligand inhibits the growth of HER2+ cancer cells and has antitumor effects in human cancer xenografts alone and in combination with docetaxel.

    PubMed

    Gril, Brunilde; Vidal, Michel; Assayag, Franck; Poupon, Marie-France; Liu, Wang-Qing; Garbay, Christiane

    2007-07-15

    HER2 represents an important signaling pathway in breast and other cancers. Herceptin has demonstrated clinical activity, but resistance is common. Thus, new therapeutic approaches to the HER2 pathway are needed. Grb2 is an adaptor protein involved in Ras-dependent signaling induced by HER2 receptors. A specific Grb2-SH3 ligand, designed and synthesized in our laboratory, called peptidimer-c, inhibited colony formation in HER2 overexpressing SKBr3 cancer cells. Combined treatment of peptidimer-c with docetaxel further inhibited both colony formation and tumor cell survival compared to docetaxel treatment alone. Efficacy of this combined treatment was correlated with a reduction in the phosphorylation of MAPK and AKT. Finally, peptidimer-c reduced the growth of a HER2(+) human breast cancer (BK111) xenograft in nude mice and potentiated the antitumor effect of docetaxel in a HER2+ hormone-independent human prostate adenocarcinoma (PAC120 HID28) xenograft. These results validate Grb2 as a new target for the HER2 pathway. (c) 2007 Wiley-Liss, Inc.

  13. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth.

    PubMed

    Tu, Shui Ping; Jin, Huanyu; Shi, Jin Dong; Zhu, Li Ming; Suo, Ya; Lu, Gang; Liu, Anna; Wang, Timothy C; Yang, Chung S

    2012-02-01

    Myeloid-derived suppressor cells (MDSC) accumulate in the spleen and tumors and contribute to tumor growth, angiogenesis, and progression. In this study, we examined the effects of curcumin on the activation and differentiation of MDSCs, their interaction with human cancer cells, and related tumor growth. Treatment with curcumin in the diet or by intraperitoneal injection significantly inhibited tumorigenicity and tumor growth, decreased the percentages of MDSCs in the spleen, blood, and tumor tissues, reduced interleukin (IL)-6 levels in the serum and tumor tissues in a human gastric cancer xenograft model and a mouse colon cancer allograft model. Curcumin treatment significantly inhibited cell proliferation and colony formation of cancer cells and decreased the secretion of murine IL-6 by MDSCs in a coculture system. Curcumin treatment inhibited the expansion of MDSCs, the activation of Stat3 and NF-κB in MDSCs, and the secretion of IL-6 by MDSCs, when MDSCs were cultured in the presence of IL-1β, or with cancer cell- or myofibroblast-conditioned medium. Furthermore, curcumin treatment polarized MDSCs toward a M1-like phenotype with an increased expression of CCR7 and decreased expression of dectin 1 in vivo and in vitro. Our results show that curcumin inhibits the accumulation of MDSCs and their interaction with cancer cells and induces the differentiation of MDSCs. The induction of MDSC differentiation and inhibition of the interaction of MDSCs with cancer cells are potential strategies for cancer prevention and therapy. ©2011 AACR.

  14. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth

    PubMed Central

    Tu, Shui Ping; Jin, Huanyu; Shi, Jin Dong; Zhu, Li Ming; Suo, Ya; Lu, Gang; Liu, Anna; Wang, Timothy C.; Yang, Chung S.

    2011-01-01

    Myeloid-derived suppressor cells (MDSCs) accumulate in the spleen and tumors and contribute to tumor growth, angiogenesis and progression. In this study, we examined the effects of curcumin on the activation and differentiation of MDSCs, their interaction with human cancer cells and related tumor growth. Treatment with curcumin in the diet or by i.p. injection significantly inhibited tumorigenecity and tumor growth, decreased the percentages of MDSCs in the spleen, blood and tumor tissues, reduced IL-6 levels in the serum and tumor tissues in a human gastric cancer xenograft model and a mouse colon cancer allograft model. Curcumin treatment significantly inhibited cell proliferation and colony formation of cancer cells and decreased the secretion of murine interleukin (IL)-6 by MDSCs in a co-culture system. Curcumin treatment inhibited the expansion of MDSCs, the activation of Stat3 and NF-κB in MDSCs, and the secretion of IL-6 by MDSCs when MDSCs were cultured in the presence of IL-1β, or with cancer cell- or myofibroblast-conditioned medium. Furthermore, curcumin treatment polarized MDSCs toward a M1-like phenotype with an increased expression of CCR7 and decreased expression of dectin 1 in vivo and in vitro. Our results demonstrate that curcumin inhibits the accumulation of MDSCs and their interaction with cancer cells and induces the differentiation of MDSCs. The induction of MDSC differentiation and inhibition of the interaction of MDSCs with cancer cells are potential strategies for cancer prevention and therapy. PMID:22030090

  15. Chronic anti-inflammatory drug therapy inhibits gel-forming mucin production in a murine xenograft model of human pseudomyxoma peritonei.

    PubMed

    Choudry, Haroon Asif; Mavanur, Arun; O'Malley, Mark E; Zeh, Herbert J; Guo, Z Sheng; Bartlett, David L

    2012-05-01

    Intraperitoneal accumulation of mucinous ascites in pseudomyxoma peritonei (PMP) promotes an inflammatory/fibrotic reaction that progresses to bowel obstruction and eventual patient demise. Cytokines and inflammation-associated transcription factor binding sites, such as glucocorticoid response elements and COX-2, regulate secretory mucin, specifically MUC2, production. We hypothesized that anti-inflammatory drugs targeting inflammation-associated pathways may reduce mucin production and subsequent disease morbidity in PMP. The effects of dexamethasone and Celebrex were assessed in mucin-secreting human colon cancer LS174T cells in vitro and murine xenograft models of LS174T and human appendiceal PMP in vivo by serial parametric measurements, MUC2 transcripts via real-time RT-PCR, and MUC2 protein expression via immunofluorescence assays. Dexamethasone significantly inhibited basal MUC2 mRNA levels in LS174T cells, inhibited mucinous tumor accumulation in an intraperitoneal PMP xenograft model, and prolonged survival in a subcutaneous LS174T xenograft model. Celebrex significantly inhibited sodium butyrate-stimulated MUC2 mRNA levels in LS174T cells and demonstrated a statistically nonsignificant trend toward reduced mucinous tumor growth and prolonged survival in the xenograft models. MUC2 protein analysis by immunofluorescence demonstrated a dual effect of dexamethasone on mucin production and tumor cell count. Inflammatory mediators are known to regulate mucin production and may promote overexpression of MUC2 by neoplastic cells with goblet cell phenotype in PMP. Anti-inflammatory drugs, dexamethasone and Celebrex, could inhibit extracellular mucin production in PMP by targeting inflammatory cascades and, therefore, may decrease compressive symptoms, increase the disease-free interval, and reduce the extent or frequency of morbid cytoreductive surgeries.

  16. Fibroblast spheroids as a model to study sustained fibroblast quiescence and their crosstalk with tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmenperä, Pertteli, E-mail: pertteli.salmenpera@helsinki.fi; Karhemo, Piia-Riitta; Räsänen, Kati

    Stromal fibroblasts have an important role in regulating tumor progression. Normal and quiescent fibroblasts have been shown to restrict and control cancer cell growth, while cancer-associated, i. e. activated fibroblasts have been shown to enhance proliferation and metastasis of cancer cells. In this study we describe generation of quiescent fibroblasts in multicellular spheroids and their effects on squamous cell carcinoma (SCC) growth in soft-agarose and xenograft models. Quiescent phenotype of fibroblasts was determined by global down-regulation of expression of genes related to cell cycle and increased expression of p27. Interestingly, microarray analysis showed that fibroblast quiescence was associated with similarmore » secretory phenotype as seen in senescence and they expressed senescence-associated-β-galactosidase. Quiescent fibroblasts spheroids also restricted the growth of RT3 SCC cells both in soft-agarose and xenograft models unlike proliferating fibroblasts. Restricted tumor growth was associated with marginally increased tumor cell senescence and cellular differentiation, showed with senescence-associated-β-galactosidase and cytokeratin 7 staining. Our results show that the fibroblasts spheroids can be used as a model to study cellular quiescence and their effects on cancer cell progression. - Highlights: • Fibroblasts acquire a sustained quiescence when grown as multicellular spheroids. • This quiescence is associated with drastic change in gene expression. • Fibroblasts spheroids secrete various inflammation-linked cytokines and chemokines. • Fibroblasts spheroids reduced growth of RT3 SCC cells in xenograft model.« less

  17. Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis.

    PubMed

    Gao, Caixia; Yan, Xinyan; Wang, Bo; Yu, Lina; Han, Jichun; Li, Defang; Zheng, Qiusheng

    2016-10-31

    Most cancer cells preferentially rely on glycolysis to produce the energy (adenosine triphosphate, ATP) for growth and proliferation. Emerging evidence demonstrates that the apoptosis in cancer cells could be closely associated with the inhibition of glycolysis. In this study, we have found that jolkinolide B (JB), a bioactive diterpenoid extracted from the root of Euphorbia fischeriana Steud, induced tumor cells apoptosis and decreased the production of ATP and lactic acid in mouse melanoma B16F10 cells. Furthermore, we found that JB downregulated the mRNA expression of glucose transporter genes (Glut1, Glut3 and Glut4) and glycolysis-related kinase genes (Hk2 and Ldha) in B16F10 cells. Moreover, treatment with JB upregulated the mRNA expression of pro-apoptosis genes (Bax), downregulated the mRNA expression of anti-apoptosis genes (Bcl-2, Caspase-3 and Caspase-9), decreased the potential of mitochondrial membrane and increased reactive oxygen species (ROS) levels in B16F10 cells. Finally, intragastric administration of JB suppressed tumor growth and induced tumor apoptosis in mouse xenograft model of murine melanoma B16F10 cells. Taken together, these results suggest that JB could induce apoptosis through the mitochondrial pathway and inhibit tumor growth. The inhibition of glycolysis could play a crucial role in the induction of apoptosis in JB-treated B16F10 cells.

  18. Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis

    PubMed Central

    Gao, Caixia; Yan, Xinyan; Wang, Bo; Yu, Lina; Han, Jichun; Li, Defang; Zheng, Qiusheng

    2016-01-01

    Most cancer cells preferentially rely on glycolysis to produce the energy (adenosine triphosphate, ATP) for growth and proliferation. Emerging evidence demonstrates that the apoptosis in cancer cells could be closely associated with the inhibition of glycolysis. In this study, we have found that jolkinolide B (JB), a bioactive diterpenoid extracted from the root of Euphorbia fischeriana Steud, induced tumor cells apoptosis and decreased the production of ATP and lactic acid in mouse melanoma B16F10 cells. Furthermore, we found that JB downregulated the mRNA expression of glucose transporter genes (Glut1, Glut3 and Glut4) and glycolysis-related kinase genes (Hk2 and Ldha) in B16F10 cells. Moreover, treatment with JB upregulated the mRNA expression of pro-apoptosis genes (Bax), downregulated the mRNA expression of anti-apoptosis genes (Bcl-2, Caspase-3 and Caspase-9), decreased the potential of mitochondrial membrane and increased reactive oxygen species (ROS) levels in B16F10 cells. Finally, intragastric administration of JB suppressed tumor growth and induced tumor apoptosis in mouse xenograft model of murine melanoma B16F10 cells. Taken together, these results suggest that JB could induce apoptosis through the mitochondrial pathway and inhibit tumor growth. The inhibition of glycolysis could play a crucial role in the induction of apoptosis in JB-treated B16F10 cells. PMID:27796318

  19. CHL1 gene acts as a tumor suppressor in human neuroblastoma.

    PubMed

    Ognibene, Marzia; Pagnan, Gabriella; Marimpietri, Danilo; Cangelosi, Davide; Cilli, Michele; Benedetti, Maria Chiara; Boldrini, Renata; Garaventa, Alberto; Frassoni, Francesco; Eva, Alessandra; Varesio, Luigi; Pistoia, Vito; Pezzolo, Annalisa

    2018-05-25

    Neuroblastoma is an aggressive, relapse-prone childhood tumor of the sympathetic nervous system that accounts for 15% of pediatric cancer deaths. A distal portion of human chromosome 3p is often deleted in neuroblastoma, this region may contain one or more putative tumor suppressor genes. A 2.54 Mb region at 3p26.3 encompassing the smallest region of deletion pinpointed CHL1 gene, the locus for neuronal cell adhesion molecule close homolog of L1. We found that low CHL1 expression predicted poor outcome in neuroblastoma patients. Here we have used two inducible cell models to analyze the impact of CHL1 on neuroblastoma biology. Over-expression of CHL1 induced neurite-like outgrowth and markers of neuronal differentiation in neuroblastoma cells, halted tumor progression, inhibited anchorage-independent colony formation, and suppressed the growth of human tumor xenografts. Conversely, knock-down of CHL1 induced neurite retraction and activation of Rho GTPases, enhanced cell proliferation and migration, triggered colony formation and anchorage-independent growth, accelerated growth in orthotopic xenografts mouse model. Our findings demonstrate unambiguously that CHL1 acts as a regulator of proliferation and differentiation of neuroblastoma cells through inhibition of the MAPKs and Akt pathways. CHL1 is a novel candidate tumor suppressor in neuroblastoma, and its associated pathways may represent a promising target for future therapeutic interventions.

  20. Imatinib and Dasatinib Inhibit Hemangiosarcoma and Implicate PDGFR-β and Src in Tumor Growth12

    PubMed Central

    Dickerson, Erin B; Marley, Kevin; Edris, Wade; Tyner, Jeffrey W; Schalk, Vidya; MacDonald, Valerie; Loriaux, Marc; Druker, Brian J; Helfand, Stuart C

    2013-01-01

    Hemangiosarcoma, a natural model of human angiosarcoma, is an aggressive vascular tumor diagnosed commonly in dogs. The documented expression of several receptor tyrosine kinases (RTKs) by these tumors makes them attractive targets for therapeutic intervention using tyrosine kinase inhibitors (TKIs). However, we possess limited knowledge of the effects of TKIs on hemangiosarcoma as well as other soft tissue sarcomas. We report here on the use of the TKIs imatinib and dasatinib in canine hemangiosarcoma and their effects on platelet-derived growth factor receptor β (PDGFR-β) and Src inhibition. Both TKIs reduced cell viability, but dasatinib was markedly more potent in this regard, mediating cytotoxic effects orders of magnitude greater than imatinib. Dasatinib also inhibited the phosphorylation of the shared PDGFR-β target at a concentration approximately 1000 times less than that needed by imatinib and effectively blocked Src phosphorylation. Both inhibitors augmented the response to doxorubicin, suggesting that clinical responses likely will be improved using both drugs in combination; however, dasatinib was significantly (P < .05) more effective in this context. Despite the higher concentrations needed in cell-based assays, imatinib significantly inhibited tumor growth (P < .05) in a tumor xenograft model, highlighting that disruption of PDGFR-β/PDGF signaling may be important in targeting the angiogenic nature of these tumors. Treatment of a dog with spontaneously occurring hemangiosarcoma established that clinically achievable doses of dasatinib may be realized in dogs and provides a means to investigate the effect of TKIs on soft tissue sarcomas in a large animal model. PMID:23544168

  1. Antitumor effect of Deoxypodophyllotoxin on human breast cancer xenograft transplanted in BALB/c nude mice model.

    PubMed

    Khaled, Meyada; Belaaloui, Ghania; Jiang, Zhen-Zhou; Zhu, Xiong; Zhang, Lu-Yong

    2016-10-01

    Recently, biologically active compounds isolated from plants used in herbal medicine have been the center of interest. Deoxypodophyllotoxin (DPT), structurally closely related to the lignan podophyllotoxin, was found to be a potent antitumor and antiproliferative agent, in several tumor cells, in vitro. However, DPT has not been used clinically yet because of the lack of in vivo studies. This study is the first report demonstrating the antitumor effect of DPT on MDA-MB-231 human breast cancer xenografts in nude mice. DPT, significantly, inhibited the growth of MDA-MB-231 xenograft in BALB/c nude mice. The T/C value (the value of the relative tumor volume of treatment group compared to the control group) of groups treated with 5, 10, and 20 mg/kg of intravenous DPT-HP-β-CD was 42.87%, 34.04% and 9.63%, respectively, suggesting the positive antitumor activity of DPT. In addition, the antitumor effect of DPT-HP-β-CD (20 mg/kg) in human breast cancer MDA-MB-231 xenograft was more effective than etoposide (VP-16) (20 mg/kg) and docetaxel (20 mg/kg). These findings suggest that this drug is a promising chemotherapy candidate against human breast carcinoma. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  2. The Anti-Proliferative Effect of Boron Neutron Capture Therapy in a Prostate Cancer Xenograft Model.

    PubMed

    Takahara, Kiyoshi; Inamoto, Teruo; Minami, Koichiro; Yoshikawa, Yuki; Takai, Tomoaki; Ibuki, Naokazu; Hirano, Hajime; Nomi, Hayahito; Kawabata, Shinji; Kiyama, Satoshi; Miyatake, Shin-Ichi; Kuroiwa, Toshihiko; Suzuki, Minoru; Kirihata, Mitsunori; Azuma, Haruhito

    2015-01-01

    Boron neutron capture therapy (BNCT) is a selective radiation treatment for tumors that preferentially accumulate drugs carrying the stable boron isotope, 10B. BNCT has been evaluated clinically as an alternative to conventional radiation therapy for the treatment of brain tumors, and more recently, recurrent advanced head and neck cancer. Here we investigated the effect of BNCT on prostate cancer (PCa) using an in vivo mouse xenograft model that we have developed. Mice bearing the xenotransplanted androgen-independent human PCa cell line, PC3, were divided into four groups: Group 1: untreated controls; Group 2: Boronophenylalanine (BPA); Group 3: neutron; Group 4: BPA-mediated BNCT. We compared xenograft growth among these groups, and the body weight and any motility disturbance were recorded. Immunohistochemical (IHC) studies of the proliferation marker, Ki-67, and TUNEL staining were performed 9 weeks after treatment. The in vivo studies demonstrated that BPA-mediated BNCT significantly delayed tumor growth in comparison with the other groups, without any severe adverse events. There was a significant difference in the rate of freedom from gait abnormalities between the BPA-mediated BNCT group and the other groups. The IHC studies revealed that BNCT treatment significantly reduced the number of Ki-67-positive cells in comparison with the controls (mean ± SD 6.9 ± 1.5 vs 12.7 ± 4.0, p<0.05), while there was no difference in the number of apoptotic cells, suggesting that BPA-mediated BNCT reduced PCa progression without affecting apoptosis at 9 weeks post-treatment. This study has provided the first preclinical proof-of-principle data to indicate that BPA-mediated BNCT reduces the in vivo growth of PCa. Although further studies will be necessary, BNCT might be a novel potential treatment for PCa.

  3. The Anti-Proliferative Effect of Boron Neutron Capture Therapy in a Prostate Cancer Xenograft Model

    PubMed Central

    Yoshikawa, Yuki; Takai, Tomoaki; Ibuki, Naokazu; Hirano, Hajime; Nomi, Hayahito; Kawabata, Shinji; Kiyama, Satoshi; Miyatake, Shin-Ichi; Kuroiwa, Toshihiko; Suzuki, Minoru; Kirihata, Mitsunori; Azuma, Haruhito

    2015-01-01

    Purpose Boron neutron capture therapy (BNCT) is a selective radiation treatment for tumors that preferentially accumulate drugs carrying the stable boron isotope, 10B. BNCT has been evaluated clinically as an alternative to conventional radiation therapy for the treatment of brain tumors, and more recently, recurrent advanced head and neck cancer. Here we investigated the effect of BNCT on prostate cancer (PCa) using an in vivo mouse xenograft model that we have developed. Materials and Methods Mice bearing the xenotransplanted androgen-independent human PCa cell line, PC3, were divided into four groups: Group 1: untreated controls; Group 2: Boronophenylalanine (BPA); Group 3: neutron; Group 4: BPA-mediated BNCT. We compared xenograft growth among these groups, and the body weight and any motility disturbance were recorded. Immunohistochemical (IHC) studies of the proliferation marker, Ki-67, and TUNEL staining were performed 9 weeks after treatment. Results The in vivo studies demonstrated that BPA-mediated BNCT significantly delayed tumor growth in comparison with the other groups, without any severe adverse events. There was a significant difference in the rate of freedom from gait abnormalities between the BPA-mediated BNCT group and the other groups. The IHC studies revealed that BNCT treatment significantly reduced the number of Ki-67-positive cells in comparison with the controls (mean±SD 6.9±1.5 vs 12.7±4.0, p<0.05), while there was no difference in the number of apoptotic cells, suggesting that BPA-mediated BNCT reduced PCa progression without affecting apoptosis at 9 weeks post-treatment. Conclusions This study has provided the first preclinical proof-of-principle data to indicate that BPA-mediated BNCT reduces the in vivo growth of PCa. Although further studies will be necessary, BNCT might be a novel potential treatment for PCa. PMID:26325195

  4. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts.

    PubMed

    Tsang, Chi Man; Cheung, Yuk Chun; Lui, Vivian Wai-Yan; Yip, Yim Ling; Zhang, Guitao; Lin, Victor Weitao; Cheung, Kenneth Chat-Pan; Feng, Yibin; Tsao, Sai Wah

    2013-12-31

    Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC.

  5. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts

    PubMed Central

    2013-01-01

    Background Cortidis rhizoma (Huanglian) and its major therapeutic component, berberine, have drawn extensive attention in recent years for their anti-cancer properties. Growth inhibitory effects of berberine on multiple types of human cancer cells have been reported. Berberine inhibits invasion, induces cell cycle arrest and apoptosis in human cancer cells. The anti-inflammatory property of berberine, involving inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) activation, has also been documented. Methods In this study, we have examined the effects of berberine on tumorigenicity and growth of nasopharyngeal carcinoma (NPC) cells and their relationship to STAT3 signaling using both in vivo and in vitro models. Results Berberine effectively inhibited the tumorigenicity and growth of an EBV-positive NPC cell line (C666-1) in athymic nude mice. Inhibition of tumorigenic growth of NPC cells in vivo was correlated with effective inhibition of STAT3 activation in NPC cells inside the tumor xenografts grown in nude mice. In vitro, berberine inhibited both constitutive and IL-6-induced STAT3 activation in NPC cells. Inhibition of STAT3 activation by berberine induced growth inhibition and apoptotic response in NPC cells. Tumor-associated fibroblasts were found to secret IL-6 and the conditioned medium harvested from the fibroblasts also induced STAT3 activation in NPC cells. Furthermore, STAT3 activation by conditioned medium of tumor-associated fibroblasts could be blocked by berberine or antibodies against IL-6 and IL-6R. Conclusions Our observation that berberine effectively inhibited activation of STAT3 induced by tumor-associated fibroblasts suggests a role of berberine in modulating the effects of tumor stroma on the growth of NPC cells. The effective inhibition of STAT3 activation in NPC cells by berberine supports its potential use in the treatment of NPC. PMID:24380387

  6. Heterogenous ribonucleoprotein A18 (hnRNP A18) promotes tumor growth by increasing protein translation of selected transcripts in cancer cells.

    PubMed

    Chang, Elizabeth T; Parekh, Palak R; Yang, Qingyuan; Nguyen, Duc M; Carrier, France

    2016-03-01

    The heterogenous ribonucleoprotein A18 (hnRNP A18) promotes tumor growth by coordinating the translation of selected transcripts associated with proliferation and survival. hnRNP A18 binds to and stabilizes the transcripts of pro-survival genes harboring its RNA signature motif in their 3'UTRs. hnRNP A18 binds to ATR, RPA, TRX, HIF-1α and several protein translation factor mRNAs on polysomes and increases de novo protein translation under cellular stress. Most importantly, down regulation of hnRNP A18 decreases proliferation, invasion and migration in addition to significantly reducing tumor growth in two mouse xenograft models, melanoma and breast cancer. Moreover, tissue microarrays performed on human melanoma, prostate, breast and colon cancer indicate that hnRNP A18 is over expressed in 40 to 60% of these malignant tissue as compared to normal adjacent tissue. Immunohistochemistry data indicate that hnRNP A18 is over expressed in the stroma and hypoxic areas of human tumors. These data thus indicate that hnRNP A18 can promote tumor growth in in vivo models by coordinating the translation of pro-survival transcripts to support the demands of proliferating cells and increase survival under cellular stress. hnRNP A18 therefore represents a new target to selectively inhibit protein translation in tumor cells.

  7. MicroRNA-340 suppresses osteosarcoma tumor growth and metastasis by directly targeting ROCK1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xin; Wei, Min; Wang, Wei, E-mail: rjwangwei@126.com

    2013-08-09

    Highlights: •miR-340 is downregulated in OS cell lines and tissues. •miR-340 suppresses OS cell proliferation, migration and invasion. •miR-340 suppresses tumor growth and metastasis of OS cells in nude mice. •ROCK1 is a target gene of miR-340. •ROCK1 is involved in miR-340-induced suppression of OS cell proliferation, migration and invasion. -- Abstract: MicroRNAs (miRNAs) play key roles in cancer development and progression. In the present study, we investigated the role of miR-340 in the progression and metastasis of osteosarcoma (OS). Our results showed that miR-340 was frequently downregulated in OS tumors and cell lines. Overexpression of miR-340 in OS cellmore » lines significantly inhibited cell proliferation, migration, and invasion in vitro, and tumor growth and metastasis in a xenograft mouse model. ROCK1 was identified as a target of miR-340, and ectopic expression of miR-340 downregulated ROCK1 by direct binding to its 3′ untranslated region. siRNA-mediated silencing of ROCK1 phenocopied the effects of miR-340 overexpression, whereas restoration of ROCK1 in miR-340-overexpressing OS cells reversed the suppressive effects of miR-340. Together, these findings indicate that miR-340 acts as a tumor suppressor and its downregulation in tumor tissues may contribute to the progression and metastasis of OS through a mechanism involving ROCK1, suggesting miR-340 as a potential new diagnostic and therapeutic target for the treatment of OS.« less

  8. Novel Midkine Inhibitor iMDK Inhibits Tumor Growth and Angiogenesis in Oral Squamous Cell Carcinoma.

    PubMed

    Masui, Masanori; Okui, Tatsuo; Shimo, Tsuyoshi; Takabatake, Kiyofumi; Fukazawa, Takuya; Matsumoto, Kenichi; Kurio, Naito; Ibaragi, Soichiro; Naomoto, Yoshio; Nagatsuka, Hitoshi; Sasaki, Akira

    2016-06-01

    Midkine is a heparin-binding growth factor highly expressed in various human malignant tumors. However, its role in the growth of oral squamous cell carcinoma is not well understood. In this study, we analyzed the antitumor effect of a novel midkine inhibitor (iMDK) against oral squamous cell carcinoma. Administration of iMDK induced a robust antitumor response and suppressed cluster of differentiation 31 (CD31) expression in oral squamous cell carcinoma HSC-2 cells and SAS cells xenograft models. iMDK inhibited the proliferation of these cells dose-dependently, as well as the expression of midkine and phospho-extracellular signal-regulated kinase in HSC-2 and SAS cells. Moreover, iMDK significantly inhibited vascular endothelial growth factor and induced tube growth of human umbilical vein endothelial cells in a dose-dependent fashion. These findings suggest that midkine is critically involved in oral squamous cell carcinoma and iMDK can be effectively used for the treatment of oral squamous cell carcinoma. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Silencing VDAC1 Expression by siRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo

    PubMed Central

    Arif, Tasleem; Vasilkovsky, Lilia; Refaely, Yael; Konson, Alexander; Shoshan-Barmatz, Varda

    2014-01-01

    Alterations in cellular metabolism and bioenergetics are vital for cancer cell growth and motility. Here, the role of the mitochondrial protein voltage-dependent anion channel (VDAC1), a master gatekeeper regulating the flux of metabolites and ions between mitochondria and the cytoplasm, in regulating the growth of several cancer cell lines was investigated by silencing VDAC1 expression using small interfering RNA (siRNA). A single siRNA specific to the human VDAC1 sequence at nanomolar concentrations led to some 90% decrease in VDAC1 levels in the lung A549 and H358, prostate PC-3, colon HCT116, glioblastoma U87, liver HepG2, and pancreas Panc-1 cancer cell lines. VDAC1 silencing persisted 144 hours post-transfection and resulted in profound inhibition of cell growth in cancer but not in noncancerous cells, with up to 90% inhibition being observed over 5 days that was prolonged by a second transfection. Cells expressing low VDAC1 levels showed decreased mitochondrial membrane potential and adenoside triphosphate (ATP) levels, suggesting limited metabolite exchange between mitochondria and cytosol. Moreover, cells silenced for VDAC1 expression showed decreased migration, even in the presence of the wound healing accelerator basic fibroblast growth factor (bFGF). VDAC1-siRNA inhibited cancer cell growth in a Matrigel-based assay in host nude mice. Finally, in a xenograft lung cancer mouse model, chemically modified VDAC1-siRNA not only inhibited tumor growth but also resulted in tumor regression. This study thus shows that VDAC1 silencing by means of RNA interference (RNAi) dramatically inhibits cancer cell growth and tumor development by disabling the abnormal metabolic behavior of cancer cells, potentially paving the way for a more effective pipeline of anticancer drugs. PMID:24781191

  10. External beam radiotherapy synergizes 188Re-liposome against human esophageal cancer xenograft and modulates 188Re-liposome pharmacokinetics

    PubMed Central

    Chang, Chih-Hsien; Liu, Shin-Yi; Chi, Chih-Wen; Yu, Hsiang-Lin; Chang, Tsui-Jung; Tsai, Tung-Hu; Lee, Te-Wei; Chen, Yu-Jen

    2015-01-01

    External beam radiotherapy (EBRT) treats gross tumors and local microscopic diseases. Radionuclide therapy by radioisotopes can eradicate tumors systemically. Rhenium 188 (188Re)-liposome, a nanoparticle undergoing clinical trials, emits gamma rays for imaging validation and beta rays for therapy, with biodistribution profiles preferential to tumors. We designed a combinatory treatment and examined its effects on human esophageal cancer xenografts, a malignancy with potential treatment resistance and poor prognosis. Human esophageal cancer cell lines BE-3 (adenocarcinoma) and CE81T/VGH (squamous cell carcinoma) were implanted and compared. The radiochemical purity of 188Re-liposome exceeded 95%. Molecular imaging by NanoSPECT/CT showed that BE-3, but not CE81T/VGH, xenografts could uptake the 188Re-liposome. The combination of EBRT and 188Re-liposome inhibited tumor regrowth greater than each treatment alone, as the tumor growth inhibition rate was 30% with EBRT, 25% with 188Re-liposome, and 53% with the combination treatment at 21 days postinjection. Combinatory treatment had no additive adverse effects and significant biological toxicities on white blood cell counts, body weight, or liver and renal functions. EBRT significantly enhanced the excretion of 188Re-liposome into feces and urine. In conclusion, the combination of EBRT with 188Re-liposome might be a potential treatment modality for esophageal cancer. PMID:26056445

  11. Herpes simplex virus amplicon delivery of a hypoxia-inducible soluble vascular endothelial growth factor receptor (sFlk-1) inhibits angiogenesis and tumor growth in pancreatic adenocarcinoma.

    PubMed

    Reinblatt, Maura; Pin, Richard H; Bowers, William J; Federoff, Howard J; Fong, Yuman

    2005-12-01

    Tumor hypoxia induces vascular endothelial growth factor (VEGF) expression, which stimulates angiogenesis and tumor proliferation. The VEGF signaling pathway is inhibited by soluble VEGF receptors (soluble fetal liver kinase 1; sFlk-1), which bind VEGF and block its interaction with endothelial cells. Herpes simplex virus (HSV) amplicons are replication-incompetent viruses used for gene delivery. We attempted to attenuate angiogenesis and inhibit pancreatic tumor growth through HSV amplicon-mediated expression of sFlk-1 under hypoxic control. A multimerized hypoxia-responsive enhancer (10 x HRE) was cloned upstream of the sFlk-1 gene (10 x HRE/sFlk-1). A novel HSV amplicon expressing 10 x HRE/sFlk-1 was genetically engineered (HSV10 x HRE/sFlk-1).Human pancreatic adenocarcinoma cells (AsPC1) were transduced with HSV10 x HRE/sFlk-1 and incubated in normoxia (21% oxygen) or hypoxia (1% oxygen). Capillary inhibition was evaluated by human umbilical vein endothelial cell assay. Western blot assessed sFlk-1 expression. AsPC1 flank tumor xenografts (n = 24) were transduced with HSV10 x HRE/sFlk-1. Media from normoxic AsPC1 transduced with HSV10 x HRE/sFlk-1 yielded a 36% reduction in capillary formation versus controls (P < .05), whereas hypoxic AsPC1 yielded a 76% reduction (P < .005). Western blot of AsPC1 transduced with HSV10 x HRE/sFlk-1 demonstrated greater sFlk-1 expression in hypoxia versus normoxia. AsPC1 flank tumors treated with HSV10 x HRE/sFlk-1 exhibited a 59% reduction in volume versus controls (P < .000001). HSV amplicon delivery of a hypoxia-inducible soluble VEGF receptor significantly reduces new vessel formation and tumor growth. Tumor hypoxia can thus be used to direct antiangiogenic therapy to pancreatic adenocarcinoma.

  12. The paradoxical effects of splenectomy on tumor growth.

    PubMed

    Prehn, Richmond T

    2006-06-26

    There is a vast and contradictory literature concerning the effect of the spleen and particularly of splenectomy on tumor growth. Sometimes splenectomy seems to inhibit tumor growth, but in other cases it seems, paradoxically, to facilitate both oncogenesis and the growth of established tumors. In this essay I have selected from this large literature a few papers that seem particularly instructive, in the hope of extracting some understanding of the rules governing this paradoxical behavior. In general, whether splenectomy enhances or inhibits tumor growth seems to depend primarily upon the ratio of spleen to tumor. Small proportions of spleen cells usually stimulate tumor growth, in which case splenectomy is inhibitory. Larger proportions of the same cells, especially if they are from immunized animals, usually inhibit tumor growth, in which case splenectomy results in tumor stimulation.

  13. A novel patient-derived xenograft model for claudin-low triple-negative breast cancer.

    PubMed

    Matossian, Margarite D; Burks, Hope E; Bowles, Annie C; Elliott, Steven; Hoang, Van T; Sabol, Rachel A; Pashos, Nicholas C; O'Donnell, Benjamen; Miller, Kristin S; Wahba, Bahia M; Bunnell, Bruce A; Moroz, Krzysztof; Zea, Arnold H; Jones, Steven D; Ochoa, Augusto C; Al-Khami, Amir A; Hossain, Fokhrul; Riker, Adam I; Rhodes, Lyndsay V; Martin, Elizabeth C; Miele, Lucio; Burow, Matthew E; Collins-Burow, Bridgette M

    2018-06-01

    Triple-negative breast cancer (TNBC) subtypes are clinically aggressive and cannot be treated with targeted therapeutics commonly used in other breast cancer subtypes. The claudin-low (CL) molecular subtype of TNBC has high rates of metastases, chemoresistance and recurrence. There exists an urgent need to identify novel therapeutic targets in TNBC; however, existing models utilized in target discovery research are limited. Patient-derived xenograft (PDX) models have emerged as superior models for target discovery experiments because they recapitulate features of patient tumors that are limited by cell-line derived xenograft methods. We utilize immunohistochemistry, qRT-PCR and Western Blot to visualize tumor architecture, cellular composition, genomic and protein expressions of a new CL-TNBC PDX model (TU-BcX-2O0). We utilize tissue decellularization techniques to examine extracellular matrix composition of TU-BcX-2O0. Our laboratory successfully established a TNBC PDX tumor, TU-BCX-2O0, which represents a CL-TNBC subtype and maintains this phenotype throughout subsequent passaging. We dissected TU-BCx-2O0 to examine aspects of this complex tumor that can be targeted by developing therapeutics, including the whole and intact breast tumor, specific cell populations within the tumor, and the extracellular matrix. Here, we characterize a claudin-low TNBC patient-derived xenograft model that can be utilized for therapeutic research studies.

  14. Inhibition of growth of PC-82 human prostate cancer line xenografts in nude mice by bombesin antagonist RC-3095 or combination of agonist [D-Trp6]-luteinizing hormone-releasing hormone and somatostatin analog RC-160.

    PubMed

    Milovanovic, S R; Radulovic, S; Groot, K; Schally, A V

    1992-01-01

    The effects of treatment with a bombesin receptor antagonist [D-Tpi6, Leu13 psi (CH2NH) Leu14]BN(6-14)(RC-3095) and the combination of an agonist of luteinizing hormone-releasing hormone [D-Trp6]-LH-RH and somatostatin analog D-Phe-Cys-Tyr-D-Trp-Lys-Val- Cys-Trp-NH2 (RC-160) were studied in nude mice bearing xenografts of the hormone-dependent human prostate tumor PC-82. During the 5 weeks of treatment, tumor growth was decreased in all treated groups compared with controls. Bombesin antagonist RC-3095 and the combination of [D-Trp6]-LH-RH and RC-160 caused a greater inhibition of tumor growth than [D-Trp6]-LH-RH or RC-160 alone as based on measurement of tumor volume and percentage change in tumor volume. The largest decrease in tumor weight was also seen in the groups treated with the bombesin antagonist and with the combination of RC-160 and [D-Trp6]-LH-RH. Serum prostatic-specific antigen levels were greatly decreased, and insulin-like growth factor I (IGF-I) as well as growth hormone levels were reduced in all treated groups. Specific binding sites for [D-Trp6]-LH-RH, epidermal growth factor (EGF), IGF-I, and somatostatin (SS-14) were found in the tumor membranes. Receptors for EGF were significantly down-regulated by treatment with the bombesin antagonist or RC-160. Combination of LH-RH agonists with somatostatin analog RC-160 might be considered for improvement of hormonal therapy for prostate cancer. The finding that bombesin antagonist RC-3095 inhibits the growth of PC-82 prostate cancer suggests the merit of further studies to evaluate the possible usefulness of antagonists of bombesin in the management of prostatic carcinoma.

  15. CKD-516 displays vascular disrupting properties and enhances anti-tumor activity in combination with chemotherapy in a murine tumor model.

    PubMed

    Moon, Chang Hoon; Lee, Seung Ju; Lee, Ho Yong; Dung, Le Thi Kim; Cho, Wha Ja; Cha, HeeJeong; Park, Jeong Woo; Min, Young Joo

    2014-06-01

    CKD-516 is a benzophenone analog in which the B ring is modified by replacement with a carbonyl group. The study assessed CKD-516 as a vascular disrupting agent or anti-cancer drug. To assess the effect of S516 on vascularization, we analyzed the effect on human umbilical vein endothelial cells (HUVECs). To determine the inhibition of cell proliferation of S516, we used H460 lung carcinoma cells. The alteration of microtubules was analyzed using immunoblot, RT-PCR and confocal imaging. To evaluate the anti-tumor effects of gemcitabine and/or CKD-516, H460 xenograft mice were treated with CKD-516 (2.5 mg/kg) and/or gemcitabine (40 mg/kg), and tumor growth was compared with vehicle-treated control. For histologic analysis, liver, spleen and tumor tissues from H460 xenograft mice were obtained 12 and 24 h after CKD-516 injection. Cytoskeletal changes of HUVECs treated with 10 nM S516 were assessed by immunoblot and confocal imaging. S516 disrupted tubulin assembly and resulted in microtubule dysfunction, which induced cell cycle arrest (G2/M). S516 markedly enhanced the depolymerization of microtubules, perhaps due to the vascular disrupting properties of S516. Interestingly, S516 decreased the amount of total tubulin protein in HUVECs. Especially, S516 decreased mRNA expression α-tubulin (HUVECs only) and β-tubulin (HUVECs and H460 cells) at an early time point (4 h). Immunocytochemical analysis showed that S516 changed the cellular microtubule network and inhibited the formation of polymerized microtubules. Extensive central necrosis of tumors was evident by 12 h after treatment with CKD-516 (2.5 mg/kg, i.p.). In H460 xenografts, CKD-516 combined with gemcitabine significantly delayed tumor growth up to 57 % and 36 % as compared to control and gemcitabine alone, respectively. CKD-516 is a novel agent with vascular disrupting properties and enhances anti-tumor activity in combination with chemotherapy.

  16. Effects of PHA-665752 and vemurafenib combination treatment on in vitro and murine xenograft growth of human colorectal cancer cells with BRAFV600E mutations.

    PubMed

    Zhi, Jie; Li, Zhongxin; Lv, Jian; Feng, Bo; Yang, Donghai; Xue, Liang; Zhao, Zhaolong; Zhang, Yanni; Wu, Jianhua; Jv, Yingchao; Jia, Yitao

    2018-03-01

    It remains unknown whether blockade of B-Raf proto-oncogene, serine/threonine kinase (BRAF) V600E signaling and MET proto-oncogene, receptor tyrosine kinase (c-Met) signaling is effective in suppressing the growth of human colorectal cancer (CRC) cells. The present study investigated the effects of the vemurafenib alone and in combination with c-Met inhibitor PHA-665752 on the growth of human CRC cells in vitro and in mouse xenografts. HT-29 and RKO CRC cell lines with BRAF V600E mutations and mice bearing HT-29 xenografts were treated with vemurafenib in the absence or presence of PHA-665752. Cell viability and cycle phase were respectively examined by using the MTT and flow cytometry assay. Immunohistochemistry was conducted to detect the protein expression levels of hepatocyte growth factor (HGF), phosphorylated (p)-c-Met, p-AKT serine/threonine kinase (AKT) and p-extracellular signal-regulated kinase (p-ERK). The MTT assay demonstrated that the growth of RKO and HT-29 cells was inhibited by PHA-665752 in a time- and dose-dependent manner (P<0.05), however no significant suppressive effects were observed with vemurafenib. Relative to the PHA-665752 or vemurafenib stand-alone treatment groups, the combination of PHA-665752 and vemurafenib had a significant inhibitory effect on the proliferation of CRC cell lines (P<0.05). The mean tumor volume in mice treated with vemurafenib in combination with PHA-665752 was significantly smaller compared with those treated with only vemurafenib or PHA-665752 (P<0.05). Flow cytometry assay revealed that the G0/G1 phase frequency was significantly increased in the combination group compared with any other treatment groups (P<0.05). Immunohistochemistry demonstrated that vemurafenib in combination with PHA-665752 effectively induced the expression of p-c-Met, p-AKT and p-ERK, however had no effect on HGF.

  17. Inhibition of basal-like breast cancer growth by FTY720 in combination with epidermal growth factor receptor kinase blockade.

    PubMed

    Martin, Janet L; Julovi, Sohel M; Lin, Mike Z; de Silva, Hasanthi C; Boyle, Frances M; Baxter, Robert C

    2017-08-04

    New molecular targets are needed for women with triple-negative breast cancer (TNBC). This pre-clinical study investigated the combination of the EGFR inhibitor gefitinib with the sphingosine kinase (SphK) inhibitor FTY720 (Fingolimod), aiming to block tumorigenic signaling downstream of IGFBP-3, which is abundantly expressed in basal-like TNBC. In studies of breast cancer cell growth in culture, proliferation was monitored by IncuCyte live-cell imaging, and protein abundance was determined by western blotting. In vivo studies of mammary tumor growth used two models: orthotopic xenograft tumors derived from three basal-like TNBC cell lines, grown in immune-deficient mice, and syngeneic murine 4T1 tumors grown in immune-competent mice. Protein abundance in tumor tissue was assessed by immunohistochemistry. Quantitated by live-cell imaging, the inhibitor combination showed synergistic cytostatic activity in basal-like cell lines across several TNBC molecular subtypes, the synergy being decreased by IGFBP-3 downregulation. Suppression of the tumorigenic mediator CD44 by gefitinib was potentiated by FTY720, consistent with CD44 involvement in the targeted pathway. In MDA-MB-468 and HCC1806 orthotopic TNBC xenograft tumors in nude mice, the drug combination inhibited tumor growth and prolonged mouse survival, although this effect was not significant for the gefitinib-resistant cell line HCC70. Combination treatment of murine 4T1 TNBC tumors in syngeneic BALB/c mice was more effective in immune-competent than immune-deficient (nude) mice, and a relative loss of tumor CD3 (T-cell) immunoreactivity caused by FTY720 treatment alone was alleviated by the drug combination, suggesting that, even at an FTY720 dose causing relative lymphopenia, the combination is still effective in an immune-competent setting. Immunohistochemistry of xenograft tumors showed significant enhancement of caspase-3 cleavage and suppression of Ki67 and phospho-EGFR by the drug combination, but SphK1

  18. The paradoxical effects of splenectomy on tumor growth

    PubMed Central

    Prehn, Richmond T

    2006-01-01

    Background There is a vast and contradictory literature concerning the effect of the spleen and particularly of splenectomy on tumor growth. Sometimes splenectomy seems to inhibit tumor growth, but in other cases it seems, paradoxically, to facilitate both oncogenesis and the growth of established tumors. Approach In this essay I have selected from this large literature a few papers that seem particularly instructive, in the hope of extracting some understanding of the rules governing this paradoxical behavior. Conclusion In general, whether splenectomy enhances or inhibits tumor growth seems to depend primarily upon the ratio of spleen to tumor. Small proportions of spleen cells usually stimulate tumor growth, in which case splenectomy is inhibitory. Larger proportions of the same cells, especially if they are from immunized animals, usually inhibit tumor growth, in which case splenectomy results in tumor stimulation. PMID:16800890

  19. Extracellular domain shedding influences specific tumor uptake and organ distribution of the EGFR PET tracer 89Zr-imgatuzumab.

    PubMed

    Pool, Martin; Kol, Arjan; Lub-de Hooge, Marjolijn N; Gerdes, Christian A; de Jong, Steven; de Vries, Elisabeth G E; Terwisscha van Scheltinga, Anton G T

    2016-10-18

    Preclinical positron emission tomography (PET) imaging revealed a mismatch between in vivo epidermal growth factor receptor (EGFR) expression and EGFR antibody tracer tumor uptake. Shed EGFR ectodomain (sEGFR), which is present in cancer patient sera, can potentially bind tracer and therefore influence tracer kinetics. To optimize EGFR-PET, we examined the influence of sEGFR levels on tracer kinetics and tumor uptake of EGFR monoclonal antibody 89Zr-imgatuzumab in varying xenograft models. Human cancer cell lines A431 (EGFR overexpressing, epidermoid), A549 and H441 (both EGFR medium expressing, non-small cell lung cancer) were xenografted in mice. Xenografted mice received 10, 25 or 160 μg 89Zr-imgatuzumab, co-injected with equal doses 111In-IgG control. MicroPET scans were made 24, 72 and 144 h post injection, followed by biodistribution analysis. sEGFR levels in liver and plasma samples were determined by ELISA. 89Zr-imgatuzumab uptake in A431 tumors was highest (29.8 ± 5.4 %ID/g) in the 160 μg dose group. Contrary, highest uptake in A549 and H441 tumors was found at the lowest (10 μg) 89Zr-imgatuzumab dose. High 89Zr-imgatuzumab liver accumulation was found in A431 xenografted mice, which decreased with antibody dose increments. 89Zr-imgatuzumab liver uptake in A549 and H441 xenografted mice was low at all doses. sEGFR levels in liver and plasma of A431 bearing mice were up to 1000-fold higher than levels found in A549, H441 and non-tumor xenografted mice. 89Zr-imgatuzumab effectively visualizes EGFR-expressing tumors. High sEGFR levels can redirect 89Zr-imgatuzumab to the liver, in which case tumor visualization can be improved by increasing tracer antibody dose.

  20. Hepatocyte growth factor sensitizes brain tumors to c-MET kinase inhibition

    PubMed Central

    Zhang, Ying; Farenholtz, Kaitlyn E.; Yang, Yanzhi; Guessous, Fadila; diPierro, Charles G.; Calvert, Valerie S.; Deng, Jianghong; Schiff, David; Xin, Wenjun; Lee, Jae K.; Purow, Benjamin; Christensen, James; Petricoin, Emanuel; Abounader, Roger

    2013-01-01

    Purpose The receptor tyrosine kinase (RTK) c-MET and its ligand hepatocyte growth factor (HGF) are deregulated and promote malignancy in cancer and brain tumors. Consequently, clinically applicable c-MET inhibitors have been developed. The purpose of this study was to investigate the not well known molecular determinants that predict responsiveness to c-MET inhibitors, and to explore new strategies for improving inhibitor efficacy in brain tumors. Experimental design We investigated the molecular factors and pathway activation signatures that determine sensitivity to c-MET inhibitors in a panel of glioblastoma and medulloblastoma cells, glioblastoma stem cells (GSCs), and established cell line-derived xenografts using functional assays, reverse protein microarrays, and in vivo tumor volume measurements, but validation with animal survival analyses remains to be done. We also explored new approaches for improving the efficacy of the inhibitors in vitro and in vivo. Results We found that HGF co-expression is a key predictor of response to c-MET inhibition among the examined factors, and identified an ERK/JAK/p53 pathway activation signature that differentiates c-MET inhibition in responsive and non-responsive cells. Surprisingly, we also found that short pre-treatment of cells and tumors with exogenous HGF moderately but statistically significantly enhanced the anti-tumor effects of c-MET inhibition. We observed a similar ligand-induced sensitization effect to an EGFR small molecule kinase inhibitor. Conclusions These findings allow the identification of a subset of patients that will be responsive to c-MET inhibition, and propose ligand pre-treatment as a potential new strategy for improving the anti-cancer efficacy of RTK inhibitors. PMID:23386689

  1. Interleukin-8 Promotes Canine Hemangiosarcoma Growth by Regulating the Tumor Microenvironment

    PubMed Central

    Kim, Jong-Hyuk; Frantz, Aric M.; Anderson, Katie L.; Graef, Ashley J.; Scott, Milcah C.; Robinson, Sally; Sharkey, Leslie C.; O’Brien, Timothy D.; Dickerson, Erin B.; Modiano, Jaime F.

    2014-01-01

    Interleukin-8 (IL-8) gene expression is highly up-regulated in canine hemangiosarcoma (HSA); however, its role in the pathogenesis of this disease is unknown. We investigated the expression of IL-8 in canine HSA tissues and cell lines, as well and the effects of IL-8 on canine HSA in vitro, and in vivo using a mouse xenograft model for the latter. Constitutive expression of IL-8 mRNA, IL-8 protein, and IL-8 receptor were variable among different tumor samples and cell lines, but they showed stable steady states in each cell line. Upon the addition of IL-8, HSA cells showed transient intracellular calcium fluxes, suggesting that their IL-8 receptors are functional and that IL-8 binding activates relevant signaling pathways. Yet, neither addition of exogenous IL-8 nor blockade of endogenous IL-8 by neutralizing anti-IL-8 antibody (α-IL-8 Ab) affected HSA cell proliferation or survival in vitro. To assess potential effects of IL-8 in other tumor constituents, we stratified HSA cell lines and whole tumor samples into “IL-8 high” and “IL-8 low” groups. Genome-wide gene expression profiling showed that samples in the “IL-8 high” tumor group were enriched for genes associated with a “reactive microenvironment,” including activation of coagulation, inflammation, and fibrosis networks. Based on these findings, we hypothesized that the effects of IL-8 on these tumors were mostly indirect, regulating interactions with the microenvironment. This hypothesis was supported by in vivo xenograft experiments where survival and engraftment of tumor cells was inhibited by administration of neutralizing α-IL-8 Ab. Together, our results suggest that IL-8 contributes to establishing a permissive microenvironment during the early stages of tumorigenesis in HSA. PMID:24582862

  2. Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment.

    PubMed

    Kim, Jong-Hyuk; Frantz, Aric M; Anderson, Katie L; Graef, Ashley J; Scott, Milcah C; Robinson, Sally; Sharkey, Leslie C; O'Brien, Timothy D; Dickerson, Erin B; Modiano, Jaime F

    2014-04-15

    Interleukin-8 (IL-8) gene expression is highly up-regulated in canine hemangiosarcoma (HSA); however, its role in the pathogenesis of this disease is unknown. We investigated the expression of IL-8 in canine HSA tissues and cell lines, as well and the effects of IL-8 on canine HSA in vitro, and in vivo using a mouse xenograft model for the latter. Constitutive expression of IL-8 mRNA, IL-8 protein, and IL-8 receptor were variable among different tumor samples and cell lines, but they showed stable steady states in each cell line. Upon the addition of IL-8, HSA cells showed transient intracellular calcium fluxes, suggesting that their IL-8 receptors are functional and that IL-8 binding activates relevant signaling pathways. Yet, neither addition of exogenous IL-8 nor blockade of endogenous IL-8 by neutralizing anti-IL-8 antibody (α-IL-8 Ab) affected HSA cell proliferation or survival in vitro. To assess potential effects of IL-8 in other tumor constituents, we stratified HSA cell lines and whole tumor samples into "IL-8 high" and "IL-8 low" groups. Genome-wide gene expression profiling showed that samples in the "IL-8 high" tumor group were enriched for genes associated with a "reactive microenvironment," including activation of coagulation, inflammation, and fibrosis networks. Based on these findings, we hypothesized that the effects of IL-8 on these tumors were mostly indirect, regulating interactions with the microenvironment. This hypothesis was supported by in vivo xenograft experiments where survival and engraftment of tumor cells was inhibited by administration of neutralizing α-IL-8 Ab. Together, our results suggest that IL-8 contributes to establishing a permissive microenvironment during the early stages of tumorigenesis in HSA. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Oral picropodophyllin (PPP) is well tolerated in vivo and inhibits IGF-1R expression and growth of uveal melanoma.

    PubMed

    Economou, Mario A; Andersson, Sandra; Vasilcanu, Diana; All-Ericsson, Charlotta; Menu, Eline; Girnita, Ada; Girnita, Leonard; Axelson, Magnus; Seregard, Stefan; Larsson, Olle

    2008-06-01

    The cyclolignan picropodophyllin (PPP) efficiently blocks the activity of insulinlike growth factor-1 receptor (IGF-1R) and inhibits the growth of uveal melanoma cells in vitro and in vivo. In this study, the authors investigated the efficiency of orally administered PPP on the growth of uveal melanoma xenografts. In addition, they focused on the effect of PPP on vascular endothelial growth factor (VEGF) in vivo and evaluated its effects in combination with other established antitumor agents in vitro. Four different uveal melanoma cell lines (OCM-1, OCM-3, OCM-8, 92-1) were treated with PPP alone and in combination with imatinib mesylate, cisplatin, 5-fluorouracil, and doxorubicin. Cell viability was determined by XTT assay. SCID mice that underwent xenografting with uveal melanoma cells were used to determine antitumor efficacy of oral PPP in vivo. Five mice were used per group. Tumor samples obtained from the in vivo experiments were analyzed for VEGF and IGF-1R expression by Western blotting. PPP was found to be superior to the other antitumor agents in killing uveal melanoma cells in all four cell lines (IC50 < 0.05 microM). Oral PPP inhibited uveal melanoma growth in vivo in OCM-3 (P = 0.03) and OCM-8 (P = 0.01) xenografts and was well tolerated by the animals. PPP decreased VEGF expression in the OCM-1 (P = 0.006) and OCM-8 (P = 0.01) tumors. Oral PPP was well tolerated in vivo, caused total growth inhibition of uveal melanoma xenografts, and decreased VEGF levels in the tumors.

  4. Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopic tumor xenograft model.

    PubMed

    Ekdawi, Sandra N; Stewart, James M P; Dunne, Michael; Stapleton, Shawn; Mitsakakis, Nicholas; Dou, Yannan N; Jaffray, David A; Allen, Christine

    2015-06-10

    Existing paradigms in nano-based drug delivery are currently being challenged. Assessment of bulk tumor accumulation has been routinely considered an indicative measure of nanomedicine potency. However, it is now recognized that the intratumoral distribution of nanomedicines also impacts their therapeutic effect. At this time, our understanding of the relationship between the bulk (i.e., macro-) tumor accumulation of nanocarriers and their intratumoral (i.e., micro-) distribution remains limited. Liposome-based drug formulations, in particular, suffer from diminished efficacy in vivo as a result of transport-limiting properties, combined with the heterogeneous nature of the tumor microenvironment. In this report, we perform a quantitative image-based assessment of macro- and microdistribution of liposomes. Multi-scalar assessment of liposome distribution was enabled by a stable formulation which co-encapsulates an iodinated contrast agent and a near-infrared fluorescence probe, for computed tomography (CT) and optical microscopy, respectively. Spatio-temporal quantification of tumor uptake in orthotopic xenografts was performed using CT at the bulk tissue level, and within defined sub-volumes of the tumor (i.e., rim, periphery and core). Tumor penetration and relative distribution of liposomes were assessed by fluorescence microscopy of whole tumor sections. Microdistribution analysis of whole tumor images exposed a heterogeneous distribution of both liposomes and tumor vasculature. Highest levels of liposome uptake were achieved and maintained in the well-vascularized tumor rim over the study period, corresponding to a positive correlation between liposome and microvascular density. Tumor penetration of liposomes was found to be time-dependent in all regions of the tumor however independent of location in the tumor. Importantly, a multi-scalar comparison of liposome distribution reveals that macro-accumulation in tissues (e.g., blood, whole tumor) may not reflect

  5. Human fibulin-3 protein variant expresses anti-cancer effects in the malignant glioma extracellular compartment in intracranial xenograft models

    PubMed Central

    Li, Yanyan; Hu, Yuan; Liu, Chuanjin; Wang, Qingyue; Han, Xiaoxiao; Han, Yong; Xie, Xue-Shun; Chen, Xiong-Hui; Li, Xiang; Siegel, Eric R.; Afrasiabi, Kambiz; Linskey, Mark E.; Zhou, You-Xin; Zhou, Yi-Hong

    2017-01-01

    Background Decades of cytotoxic and more recently immunotherapy treatments for malignant glioma have had limited success due to dynamic intra-tumoral heterogeneity. The dynamic interplay of cancer cell subpopulations has been found to be under the control of proteins in the cancer microenvironment. EGF-containing fibulin-like extracellular matrix protein (EFEMP1) (also fibulin-3) has the multiple functions of suppressing cancer growth and angiogenesis, while promoting cancer cell invasion. EFEMP1-derived tumor suppressor protein (ETSP) retains EFEMP1’s anti-growth and anti-angiogenic functions while actually inhibiting cancer cell invasion. Methods In this study, we examined the therapeutic effect on glioblastoma multiforme (GBM) of an in vitro synthesized protein, ZR30, which is based on the sequence of ETSP, excluding the signaling peptide. Results ZR30 showed the same effects as ETSP in blocking EGFR/NOTCH/AKT signaling pathways, when applied to cultures of multiple GBM cell lines and primary cultures. ZR30’s inhibition of MMP2 activation was shown not only for GBM cells, but also for other types of cancer cells having overexpression of MMP2. A significant improvement in survival of mice with orthotopic human GBM xenografts was observed after a single, intra-tumoral injection of ZR30. Using a model mimicking the intra-tumoral heterogeneity of GBM with cell subpopulations carrying different invasive and proliferative phenotypes, we demonstrated an equal and simultaneous tumor suppressive effect of ZR30 on both tumor cell subpopulations, with suppression of FOXM1 and activation of SEMA3B expressions in the xenografts. Conclusion Overall, the data support a complementary pleiotrophic therapeutic effect of ZR30 acting in the extracellular compartment of GBM. PMID:29290950

  6. Effect of p27 gene combined with Pientzehuang ([characters: see text]) on tumor growth in osteosarcoma-bearing nude mice.

    PubMed

    Ren, Shou-song; Yuan, Fang; Liu, Ying-hong; Zhou, Le-tian; Li, Jun

    2015-11-01

    To observe the effect of p27 gene recombinant adenovirus combined with Chinese medicine Pientzehuang ([characters: see text]) on the growth of xenografted human osteosarcoma in nude mice. Tissue transplantation was used to construct the orthotopic model of human osteosarcoma Saos-2 cell in nude mice. Thirty tumor-bearing nude mice were randomly divided into 5 groups with 6 mice in each group: blank control group (model of osteosarcoma), empty vector group (recombinant adeno-associated virus-multiple cloning site), Pientzehuang group, p27 gene group and combined treatment group (p27 gene combined with Pientzehuang). The effect of combined treatment on human osteosarcoma was analyzed through the tumor formation, tumor volume and inhibition rate of tumor growth. The expression of p27 was measured by immunohistochemical staining and Western blot. The orthotopic model of osteosarcoma in nude mice was successfully constructed. The general appearance of tumor-bearing nude mice in Pientzehuang and p27 gene groups was markedly improved compared with the blank control group; and in the combined treatment group it was significantly improved compared with the Pientzehuang and p27 gene groups. The tumor growth in the Pientzehuang and p27 gene groups was significantly inhibited compared with the blank control group P<0.05); while in the combined treatment group it was markedly inhibited compared with the Pientzehuang and p27 gene groups (P<0.05). The rates of tumor growth inhibition were 34.1%, 56.5% and 63.8% in the Pientzehuang, p27 gene and combined treatment groups, respectively. Meanwhile, the protein expression of p27 gene in the p27 gene group was significantly increased compared with the blank control group (P<0.05); and it was significantly increased in the combined treatment group compared with the p27 gene and Pientzehuang groups (P<0.05). p27 gene introduced by adenovirus combined with Pientzehuang can inhibit the growth of human osteosarcoma cell Saos-2 in nude mice.

  7. Gallium Maltolate Disrupts Tumor Iron Metabolism and Retards the Growth of Glioblastoma by Inhibiting Mitochondrial Function and Ribonucleotide Reductase.

    PubMed

    Chitambar, Christopher R; Al-Gizawiy, Mona M; Alhajala, Hisham S; Pechman, Kimberly R; Wereley, Janine P; Wujek, Robert; Clark, Paul A; Kuo, John S; Antholine, William E; Schmainda, Kathleen M

    2018-06-01

    Gallium, a metal with antineoplastic activity, binds transferrin (Tf) and enters tumor cells via Tf receptor1 (TfR1); it disrupts iron homeostasis leading to cell death. We hypothesized that TfR1 on brain microvascular endothelial cells (BMEC) would facilitate Tf-Ga transport into the brain enabling it to target TfR-bearing glioblastoma. We show that U-87 MG and D54 glioblastoma cell lines and multiple glioblastoma stem cell (GSC) lines express TfRs, and that their growth is inhibited by gallium maltolate (GaM) in vitro After 24 hours of incubation with GaM, cells displayed a loss of mitochondrial reserve capacity followed by a dose-dependent decrease in oxygen consumption and a decrease in the activity of the iron-dependent M2 subunit of ribonucleotide reductase (RRM2). IHC staining of rat and human tumor-bearing brains showed that glioblastoma, but not normal glial cells, expressed TfR1 and RRM2, and that glioblastoma expressed greater levels of H- and L-ferritin than normal brain. In an orthotopic U-87 MG glioblastoma xenograft rat model, GaM retarded the growth of brain tumors relative to untreated control ( P = 0.0159) and reduced tumor mitotic figures ( P = 0.045). Tumors in GaM-treated animals displayed an upregulation of TfR1 expression relative to control animals, thus indicating that gallium produced tumor iron deprivation. GaM also inhibited iron uptake and upregulated TfR1 expression in U-87 MG and D54 cells in vitro We conclude that GaM enters the brain via TfR1 on BMECs and targets iron metabolism in glioblastoma in vivo, thus inhibiting tumor growth. Further development of novel gallium compounds for brain tumor treatment is warranted. Mol Cancer Ther; 17(6); 1240-50. ©2018 AACR . ©2018 American Association for Cancer Research.

  8. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo.

    PubMed

    He, Yan; Du, Zhiyun; Ma, Shijing; Liu, Yue; Li, Dongli; Huang, Huarong; Jiang, Sen; Cheng, Shupeng; Wu, Wenjing; Zhang, Kun; Zheng, Xi

    2016-01-01

    Silver nanoparticles (AgNPs) have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB) transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID) mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention.

  9. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo

    PubMed Central

    He, Yan; Du, Zhiyun; Ma, Shijing; Liu, Yue; Li, Dongli; Huang, Huarong; Jiang, Sen; Cheng, Shupeng; Wu, Wenjing; Zhang, Kun; Zheng, Xi

    2016-01-01

    Silver nanoparticles (AgNPs) have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB) transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID) mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention. PMID:27217750

  10. Longitudinal evaluation of the metabolic response of a tumor xenograft model to single fraction radiation therapy using magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Tessier, A. G.; Yahya, A.; Larocque, M. P.; Fallone, B. G.; Syme, A.

    2014-09-01

    Proton magnetic resonance spectroscopy (MRS) was used to evaluate the metabolic profile of human glioblastoma multiform brain tumors grown as xenografts in nude mice before, and at multiple time points after single fraction radiation therapy. Tumors were grown over the thigh in 16 mice in this study, of which 5 served as untreated controls and 11 had their tumors treated to 800 cGy with 200 kVp x-rays. Spectra were acquired within 24 h pre-treatment, and then at 3, 7 and 14 d post-treatment using a 9.4 T animal magnetic resonance (MR) system. For the untreated control tumors, spectra (1-2 per mouse) were acquired at different stages of tumor growth. Spectra were obtained with the PRESS pulse sequence using a 3  ×  3 × 3 mm3 voxel. Analysis was performed with the LCModel software platform. Six metabolites were profiled for this analysis: alanine (Ala), myo-inositol (Ins), taurine (Tau), creatine and phosphocreatine (Cr + PCr), glutamine and glutamate (Glu + Gln), and total choline (glycerophosphocholine + phosphocholine) (GPC + PCh). For the treated cohort, most metabolite/water concentration ratios were found to decrease in the short term at 3 and 7 d post-treatment, followed by an increase at 14 d post-treatment toward pre-treatment values. The lowest concentrations were observed at 7 d post-treatment, with magnitudes (relative to pre-treatment concentration ratios) of: 0.42  ±  24.6% (Ala), 0.43  ±  15.3% (Ins), 0.68  ±  27.9% (Tau), 0.52  ±  14.6% (GPC+PCh), 0.49  ±  21.0% (Cr + PCr) and 0.78  ±  24.5% (Glu + Gln). Control animals did not demonstrate any significant correlation between tumor volume and metabolite concentration, indicating that the observed kinetics were the result of the therapeutic intervention. We have demonstrated the feasibility of using MRS to follow multiple metabolic markers over time for the purpose of evaluating therapeutic response of tumors to radiation therapy. This study provides

  11. Evaluation of efficacy of a new MEK inhibitor, RO4987655, in human tumor xenografts by [(18)F] FDG-PET imaging combined with proteomic approaches.

    PubMed

    Tegnebratt, Tetyana; Ruge, Elisabeth; Bader, Sabine; Ishii, Nobuya; Aida, Satoshi; Yoshimura, Yasushi; Ooi, Chia-Huey; Lu, Li; Mitsios, Nicholas; Meresse, Valerie; Mulder, Jan; Pawlak, Michael; Venturi, Miro; Tessier, Jean; Stone-Elander, Sharon

    2014-12-01

    Inhibition of mitogen-activated protein kinase (MEK, also known as MAPK2, MAPKK), a key molecule of the Ras/MAPK (mitogen-activated protein kinase) pathway, has shown promising effects on B-raf-mutated and some RAS (rat sarcoma)-activated tumors in clinical trials. The objective of this study is to examine the efficacy of a novel allosteric MEK inhibitor RO4987655 in K-ras-mutated human tumor xenograft models using [(18)F] FDG-PET imaging and proteomics technology. [(18)F] FDG uptake was studied in human lung carcinoma xenografts from day 0 to day 9 of RO4987655 therapy using microPET Focus 120 (CTI Concorde Microsystems, Knoxville, TN, USA). The expression levels of GLUT1 and hexokinase 1 were examined using semi-quantitative fluorescent immunohistochemistry (fIHC). The in vivo effects of RO4987655 on MAPK/PI3K pathway components were assessed by reverse phase protein arrays (RPPA). We have observed modest metabolic decreases in tumor [(18)F] FDG uptake after MEK inhibition by RO4987655 as early as 2 h post-treatment. The greatest [(18)F] FDG decreases were found on day 1, followed by a rebound in [(18)F] FDG uptake on day 3 in parallel with decreasing tumor volumes. Molecular analysis of the tumors by fIHC did not reveal statistically significant correlations of GLUT1 and hexokinase 1 expressions with the [(18)F] FDG changes. RPPA signaling response profiling revealed not only down-regulation of pERK1/2, pMKK4, and pmTOR on day 1 after RO4987655 treatment but also significant up-regulation of pMEK1/2, pMEK2, pC-RAF, and pAKT on day 3. The up-regulation of these markers is interpreted to be indicative of a reactivation of the MAPK and activation of the compensatory PI3K pathway, which can also explain the rebound in [(18)F] FDG uptake following MEK inhibition with RO4987655 in the K-ras-mutated human tumor xenografts. We have performed the first preclinical evaluation of a new MEK inhibitor, RO4987655, using a combination of [(18)F] FDG-PET imaging and molecular

  12. CCL5/CCR5 axis induces vascular endothelial growth factor-mediated tumor angiogenesis in human osteosarcoma microenvironment.

    PubMed

    Wang, Shih-Wei; Liu, Shih-Chia; Sun, Hui-Lung; Huang, Te-Yang; Chan, Chia-Han; Yang, Chen-Yu; Yeh, Hung-I; Huang, Yuan-Li; Chou, Wen-Yi; Lin, Yu-Min; Tang, Chih-Hsin

    2015-01-01

    Chemokines modulate angiogenesis and metastasis that dictate cancer development in tumor microenvironment. Osteosarcoma is the most frequent bone tumor and is characterized by a high metastatic potential. Chemokine CCL5 (previously called RANTES) has been reported to facilitate tumor progression and metastasis. However, the crosstalk between chemokine CCL5 and vascular endothelial growth factor (VEGF) as well as tumor angiogenesis in human osteosarcoma microenvironment has not been well explored. In this study, we found that CCL5 increased VEGF expression and production in human osteosarcoma cells. The conditioned medium (CM) from CCL5-treated osteosarcoma cells significantly induced tube formation and migration of human endothelial progenitor cells. Pretreatment of cells with CCR5 antibody or transfection with CCR5 specific siRNA blocked CCL5-induced VEGF expression and angiogenesis. CCL5/CCR5 axis demonstrably activated protein kinase Cδ (PKCδ), c-Src and hypoxia-inducible factor-1 alpha (HIF-1α) signaling cascades to induce VEGF-dependent angiogenesis. Furthermore, knockdown of CCL5 suppressed VEGF expression and attenuated osteosarcoma CM-induced angiogenesis in vitro and in vivo. CCL5 knockdown dramatically abolished tumor growth and angiogenesis in the osteosarcoma xenograft animal model. Importantly, we demonstrated that the expression of CCL5 and VEGF were correlated with tumor stage according the immunohistochemistry analysis of human osteosarcoma tissues. Taken together, our findings provide evidence that CCL5/CCR5 axis promotes VEGF-dependent tumor angiogenesis in human osteosarcoma microenvironment through PKCδ/c-Src/HIF-1α signaling pathway. CCL5 may represent a potential therapeutic target against human osteosarcoma. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Tumor p38MAPK signaling enhances breast carcinoma vascularization and growth by promoting expression and deposition of pro-tumorigenic factors.

    PubMed

    Limoge, Michelle; Safina, Alfiya; Truskinovsky, Alexander M; Aljahdali, Ieman; Zonneville, Justin; Gruevski, Aleksandar; Arteaga, Carlos L; Bakin, Andrei V

    2017-09-22

    The breast carcinoma microenvironment strikingly influences cancer progression and response to therapy. Various cell types in the carcinoma microenvironment show significant activity of p38 mitogen-activated protein kinase (MAPK), although the role of p38MAPK in breast cancer progression is still poorly understood. The present study examined the contribution of tumor p38MAPK to breast carcinoma microenvironment and metastatic capacity. Inactivation of p38MAPK signaling in metastatic breast carcinoma cells was achieved by forced expression of the kinase-inactive mutant of p38/MAPK14 (a dominant-negative p38, dn-p38). Disruption of tumor p38MAPK signaling reduced growth and metastases of breast carcinoma xenografts. Importantly, dn-p38 markedly decreased tumor blood-vessel density and lumen sizes. Mechanistic studies revealed that p38 controls expression of pro-angiogenic extracellular factors such as matrix protein Fibronectin and cytokines VEGFA, IL8, and HBEGF. Tumor-associated fibroblasts enhanced tumor growth and vasculature as well as increased expression of the pro-angiogenic factors. These effects were blunted by dn-p38. Metadata analysis showed elevated expression of p38 target genes in breast cancers and this was an unfavorable marker of disease recurrence and poor-outcome. Thus, our study demonstrates that tumor p38MAPK signaling promotes breast carcinoma growth, invasive and metastatic capacities. Importantly, p38 enhances carcinoma vascularization by facilitating expression and deposition of pro-angiogenic factors. These results argue that p38MAPK is a valuable target for anticancer therapy affecting tumor vasculature. Anti-p38 drugs may provide new therapeutic strategies against breast cancer, including metastatic disease.

  14. Tumor p38MAPK signaling enhances breast carcinoma vascularization and growth by promoting expression and deposition of pro-tumorigenic factors

    PubMed Central

    Limoge, Michelle; Safina, Alfiya; Truskinovsky, Alexander M.; Aljahdali, Ieman; Zonneville, Justin; Gruevski, Aleksandar; Arteaga, Carlos L.; Bakin, Andrei V.

    2017-01-01

    The breast carcinoma microenvironment strikingly influences cancer progression and response to therapy. Various cell types in the carcinoma microenvironment show significant activity of p38 mitogen-activated protein kinase (MAPK), although the role of p38MAPK in breast cancer progression is still poorly understood. The present study examined the contribution of tumor p38MAPK to breast carcinoma microenvironment and metastatic capacity. Inactivation of p38MAPK signaling in metastatic breast carcinoma cells was achieved by forced expression of the kinase-inactive mutant of p38/MAPK14 (a dominant-negative p38, dn-p38). Disruption of tumor p38MAPK signaling reduced growth and metastases of breast carcinoma xenografts. Importantly, dn-p38 markedly decreased tumor blood-vessel density and lumen sizes. Mechanistic studies revealed that p38 controls expression of pro-angiogenic extracellular factors such as matrix protein Fibronectin and cytokines VEGFA, IL8, and HBEGF. Tumor-associated fibroblasts enhanced tumor growth and vasculature as well as increased expression of the pro-angiogenic factors. These effects were blunted by dn-p38. Metadata analysis showed elevated expression of p38 target genes in breast cancers and this was an unfavorable marker of disease recurrence and poor-outcome. Thus, our study demonstrates that tumor p38MAPK signaling promotes breast carcinoma growth, invasive and metastatic capacities. Importantly, p38 enhances carcinoma vascularization by facilitating expression and deposition of pro-angiogenic factors. These results argue that p38MAPK is a valuable target for anticancer therapy affecting tumor vasculature. Anti-p38 drugs may provide new therapeutic strategies against breast cancer, including metastatic disease. PMID:28977919

  15. A ruthenium(II) complex inhibits tumor growth in vivo with fewer side-effects compared with cisplatin.

    PubMed

    Wang, Jin-Quan; Zhang, Ping-Yu; Ji, Liang-Nian; Chao, Hui

    2015-05-01

    The antitumor activity of a ruthenium(II) polypyridyl complex, Δ-[Ru(bpy)2(HPIP)](ClO4)2 (Δ-Ru1, where bpy=2,2'-bipyridine, HPIP=2-(2-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline), was evaluated. The in vivo experiments showed that Δ-Ru1 inhibited the growth of a human cervical carcinoma cell line (HeLa) xenotransplanted into nude mice with efficiency similar to that of cisplatin. Histopathology examination of the tumors from treated xenograft models was consistent with apoptosis in tumor cells. Importantly, in striking contrast with cisplatin, Δ-Ru1 did not cause any detectable side effects on the kidney, liver, peripheral neuronal system, or the hematological system at the pharmacologically effective dose. The preclinical studies reported here provide support for the clinical use of Δ-Ru1 as an exciting new drug candidate with lower toxicity than cisplatin, endowed with proapoptotic properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Predictive Modeling of Neuroblastoma Growth Dynamics in Xenograft Model After Bevacizumab Anti-VEGF Therapy.

    PubMed

    He, Yixuan; Kodali, Anita; Wallace, Dorothy I

    2018-06-14

    Neuroblastoma is the leading cause of cancer death in young children. Although treatment for neuroblastoma has improved, the 5-year survival rate of patients still remains less than half. Recent studies have indicated that bevacizumab, an anti-VEGF drug used in treatment of several other cancer types, may be effective for treating neuroblastoma as well. However, its effect on neuroblastoma has not been well characterized. While traditional experiments are costly and time-consuming, mathematical models are capable of simulating complex systems quickly and inexpensively. In this study, we present a model of vascular tumor growth of neuroblastoma IMR-32 that is complex enough to replicate experimental data across a range of tumor cell properties measured in a suite of in vitro and in vivo experiments. The model provides quantitative insight into tumor vasculature, predicting a linear relationship between vasculature and tumor volume. The tumor growth model was coupled with known pharmacokinetics and pharmacodynamics of the VEGF blocker bevacizumab to study its effect on neuroblastoma growth dynamics. The results of our model suggest that total administered bevacizumab concentration per week, as opposed to dosage regimen, is the major determining factor in tumor suppression. Our model also establishes an exponentially decreasing relationship between administered bevacizumab concentration and tumor growth rate.

  17. Targeting Therapy Resistant Tumor Vessels

    DTIC Science & Technology

    2008-08-01

    No 6 C8161 s.c. xenografts No 5 K14-HPV16 skin cancer No 4 MDA-MB-435 orthotopic xenografts No 4 AGR TRAMP PIN lesions TRAMP PIN lesions Yes 18 TRAMP...CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b. ABSTRACT U c...Summary We developed three tumor models under this project: 4T1 mouse breast cancer and MDA-MB-435 human cancer xenograft tumors treated with anti

  18. Establishment, maintenance and in vitro and in vivo applications of primary human glioblastoma multiforme (GBM) xenograft models for translational biology studies and drug discovery.

    PubMed

    Carlson, Brett L; Pokorny, Jenny L; Schroeder, Mark A; Sarkaria, Jann N

    2011-03-01

    Development of clinically relevant tumor model systems for glioblastoma multiforme (GBM) is important for advancement of basic and translational biology. One model that has gained wide acceptance in the neuro-oncology community is the primary xenograft model. This model entails the engraftment of patient tumor specimens into the flank of nude mice and subsequent serial passage of these tumors in the flank of mice. These tumors are then used to establish short-term explant cultures or intracranial xenografts. This unit describes detailed procedures for establishment, maintenance, and utilization of a primary GBM xenograft panel for the purpose of using them as tumor models for basic or translational studies.

  19. 1’-Acetoxychavicol acetate inhibits growth of human oral carcinoma xenograft in mice and potentiates cisplatin effect via proinflammatory microenvironment alterations

    PubMed Central

    2012-01-01

    Background Oral cancers although preventable, possess a low five-year survival rate which has remained unchanged over the past three decades. In an attempt to find a more safe, affordable and effective treatment option, we describe here the use of 1’S-1’-acetoxychavicol acetate (ACA), a component of Malaysian ginger traditionally used for various medicinal purposes. Methods Whether ACA can inhibit the growth of oral squamous cell carcinoma (SCC) cells alone or in combination with cisplatin (CDDP), was explored both in vitro using MTT assays and in vivo using Nu/Nu mice. Occurrence of apoptosis was assessed using PARP and DNA fragmentation assays, while the mode of action were elucidated through global expression profiling followed by Western blotting and IHC assays. Results We found that ACA alone inhibited the growth of oral SCC cells, induced apoptosis and suppressed its migration rate, while minimally affecting HMEC normal cells. ACA further enhanced the cytotoxic effects of CDDP in a synergistic manner as suggested by combination index studies. We also found that ACA inhibited the constitutive activation of NF-κB through suppression of IKKα/β activation. Human oral tumor xenografts studies in mice revealed that ACA alone was as effective as CDDP in reducing tumor volume, and further potentiated CDDP effects when used in combination with minimal body weight loss. The effects of ACA also correlated with a down-regulation of NF-κB regulated gene (FasL and Bim), including proinflammatory (NF-κB and COX-2) and proliferative (cyclin D1) biomarkers in tumor tissue. Conclusion Overall, our results suggest that ACA inhibits the growth of oral SCC and further potentiates the effect of standard CDDP treatment by modulation of proinflammatory microenvironment. The current preclinical data could form the basis for further clinical trials to improve the current standards for oral cancer care using this active component from the Malaysian ginger. PMID:23043547

  20. Combination of rapamycin and garlic-derived S-allylmercaptocysteine induces colon cancer cell apoptosis and suppresses tumor growth in xenograft nude mice through autophagy/p62/Nrf2 pathway.

    PubMed

    Li, Siying; Yang, Guang; Zhu, Xiaosong; Cheng, Lin; Sun, Yueyue; Zhao, Zhongxi

    2017-09-01

    The natural plant-derived product S-allylmercapto-cysteine (SAMC) has been studied in cancer therapy as a single and combination chemotherapeutic agent. The present study was employed to verify the combination use of SAMC and rapamycin that is the mTOR inhibitor with anticancer ability but has limited efficacy due to drug resistance, and to explore the underlying mechanisms. We combined rapamycin and SAMC for colorectal cancer treatment in the HCT‑116 cancer cells and a xenograft murine model. The in vivo study was established by xenografting HCT‑116 cells in BALB/c nude mice. It was found that the combination therapy had enhanced tumor-suppressing ability with the upregulation of the Bax/Bcl-2 ratio as a consequence of activated apoptosis, inhibition of autophagic activity and prevention of Akt phosphorylation. The rapamycin and SAMC combination activated antioxidant transcription expressions of Nrf2 and downstream gene NQO1. Concomitantly, autophagosome cargo p62 was downregulated, indicating that the p62 played a negative-regulatory role between Nrf2 and autophagy. Our results show that the combination of SAMC and rapamycin enhanced the anticancer ability, which could be used for the treatment of colorectal cancer. The underling mechanism of autophagy/p62/Nrf2 pathway discovered may provide a new direction for drug development, especially for traditional Chinese medicines.

  1. The use of longitudinal 18F-FET MicroPET imaging to evaluate response to irinotecan in orthotopic human glioblastoma multiforme xenografts.

    PubMed

    Nedergaard, Mette K; Kristoffersen, Karina; Michaelsen, Signe R; Madsen, Jacob; Poulsen, Hans S; Stockhausen, Marie-Thérése; Lassen, Ulrik; Kjaer, Andreas

    2014-01-01

    Brain tumor imaging is challenging. Although 18F-FET PET is widely used in the clinic, the value of 18F-FET MicroPET to evaluate brain tumors in xenograft has not been assessed to date. The aim of this study therefore was to evaluate the performance of in vivo 18F-FET MicroPET in detecting a treatment response in xenografts. In addition, the correlations between the 18F-FET tumor accumulation and the gene expression of Ki67 and the amino acid transporters LAT1 and LAT2 were investigated. Furthermore, Ki67, LAT1 and LAT2 gene expression in xenograft and archival patient tumors was compared. Human GBM cells were injected orthotopically in nude mice and 18F-FET uptake was followed by weekly MicroPET/CT. When tumor take was observed, mice were treated with CPT-11 or saline weekly. After two weeks of treatment the brain tumors were isolated and quantitative polymerase chain reaction were performed on the xenograft tumors and in parallel on archival patient tumor specimens. The relative tumor-to-brain (T/B) ratio of SUV max was significantly lower after one week (123 ± 6%, n = 7 vs. 147 ± 6%, n = 7; p = 0.018) and after two weeks (142 ± 8%, n = 5 vs. 204 ± 27%, n = 4; p = 0.047) in the CPT-11 group compared with the control group. Strong negative correlations between SUV max T/B ratio and LAT1 (r = -0.62, p = 0.04) and LAT2 (r = -0.67, p = 0.02) were observed. In addition, a strong positive correlation between LAT1 and Ki67 was detected in xenografts. Furthermore, a 1.6 fold higher expression of LAT1 and a 23 fold higher expression of LAT2 were observed in patient specimens compared to xenografts. 18F-FET MicroPET can be used to detect a treatment response to CPT-11 in GBM xenografts. The strong negative correlation between SUV max T/B ratio and LAT1/LAT2 indicates an export transport function. We suggest that 18F-FET PET may be used for detection of early treatment response in patients.

  2. Identification of Biomarkers of Necrosis in Xenografts Using Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fernández, Roberto; Garate, Jone; Lage, Sergio; Terés, Silvia; Higuera, Mónica; Bestard-Escalas, Joan; López, Daniel H.; Guardiola-Serrano, Francisca; Escribá, Pablo V.; Barceló-Coblijn, Gwendolyn; Fernández, José A.

    2016-02-01

    Xenografts are commonly used to test the effect of new drugs on human cancer. However, because of their heterogeneity, analysis of the results is often controversial. Part of the problem originates in the existence of tumor cells at different metabolic stages: from metastatic to necrotic cells, as it happens in real tumors. Imaging mass spectrometry is an excellent solution for the analysis of the results as it yields detailed information not only on the composition of the tissue but also on the distribution of the biomolecules within the tissue. Here, we use imaging mass spectrometry to determine the distribution of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and their plasmanyl- and plasmenylether derivatives (PC-P/O and PE-P/O) in xenografts of five different tumor cell lines: A-549, NCI-H1975, BX-PC3, HT29, and U-87 MG. The results demonstrate that the necrotic areas showed a higher abundance of Na+ adducts and of PC-P/O species, whereas a large abundance of PE-P/O species was found in all the xenografts. Thus, the PC/PC-ether and Na+/K+ ratios may highlight the necrotic areas while an increase on the number of PE-ether species may be pointing to the existence of viable tumor tissues. Furthermore, the existence of important changes in the concentration of Na+ and K+ adducts between different tissues has to be taken into account while interpreting the imaging mass spectrometry results.

  3. Modeling triple-negative breast cancer heterogeneity: effects of stromal macrophages, fibroblasts and tumor vasculature.

    PubMed

    Norton, Kerri-Ann; Jin, Kideok; Popel, Aleksander S

    2018-05-08

    A hallmark of breast tumors is its spatial heterogeneity that includes its distribution of cancer stem cells and progenitor cells, but also heterogeneity in the tumor microenvironment. In this study we focus on the contributions of stromal cells, specifically macrophages, fibroblasts, and endothelial cells on tumor progression. We develop a computational model of triple-negative breast cancer based on our previous work and expand it to include macrophage infiltration, fibroblasts, and angiogenesis. In vitro studies have shown that the secretomes of tumor-educated macrophages and fibroblasts increase both the migration and proliferation rates of triple-negative breast cancer cells. In vivo studies also demonstrated that blocking signaling of selected secreted factors inhibits tumor growth and metastasis in mouse xenograft models. We investigate the influences of increased migration and proliferation rates on tumor growth, the effect of the presence on fibroblasts or macrophages on growth and morphology, and the contributions of macrophage infiltration on tumor growth. We find that while the presence of macrophages increases overall tumor growth, the increase in macrophage infiltration does not substantially increase tumor growth and can even stifle tumor growth at excessive rates. Copyright © 2018. Published by Elsevier Ltd.

  4. Malignant pericytes expressing GT198 give rise to tumor cells through angiogenesis.

    PubMed

    Zhang, Liyong; Wang, Yan; Rashid, Mohammad H; Liu, Min; Angara, Kartik; Mivechi, Nahid F; Maihle, Nita J; Arbab, Ali S; Ko, Lan

    2017-08-01

    Angiogenesis promotes tumor development. Understanding the crucial factors regulating tumor angiogenesis may reveal new therapeutic targets. Human GT198 ( PSMC3IP or Hop2) is an oncoprotein encoded by a DNA repair gene that is overexpressed in tumor stromal vasculature to stimulate the expression of angiogenic factors. Here we show that pericytes expressing GT198 give rise to tumor cells through angiogenesis. GT198 + pericytes and perivascular cells are commonly present in the stromal compartment of various human solid tumors and rodent xenograft tumor models. In human oral cancer, GT198 + pericytes proliferate into GT198 + tumor cells, which migrate into lymph nodes. Increased GT198 expression is associated with increased lymph node metastasis and decreased progression-free survival in oral cancer patients. In rat brain U-251 glioblastoma xenografts, GT198 + pericytes of human tumor origin encase endothelial cells of rat origin to form mosaic angiogenic blood vessels, and differentiate into pericyte-derived tumor cells. The net effect is continued production of glioblastoma tumor cells from malignant pericytes via angiogenesis. In addition, activation of GT198 induces the expression of VEGF and promotes tube formation in cultured U251 cells. Furthermore, vaccination using GT198 protein as an antigen in mouse xenograft of GL261 glioma delayed tumor growth and prolonged mouse survival. Together, these findings suggest that GT198-expressing malignant pericytes can give rise to tumor cells through angiogenesis, and serve as a potential source of cells for distant metastasis. Hence, the oncoprotein GT198 has the potential to be a new target in anti-angiogenic therapies in human cancer.

  5. Cancer-associated fibroblasts in a human HEp-2 established laryngeal xenografted tumor are not derived from cancer cells through epithelial-mesenchymal transition, phenotypically activated but karyotypically normal.

    PubMed

    Wang, Mei; Wu, Chun-Ping; Pan, Jun-Yan; Zheng, Wen-Wei; Cao, Xiao-Juan; Fan, Guo-Kang

    2015-01-01

    Cancer-associated fibroblasts (CAFs) play a crucial role in cancer progression and even initiation. However, the origins of CAFs in various cancer types remain controversial, and one of the important hypothesized origins is through epithelial-mesenchymal transition (EMT) from cancer cells. In this study, we investigated whether the HEp-2 laryngeal cancer cells are able to generate CAFs via EMT during tumor formation, which is now still unknown. The laryngeal xenografted tumor model was established by inoculating the HEp-2 laryngeal cancer cell line in nude mice. Primary cultured CAFs from the tumor nodules and matched normal fibroblasts (NFs) from the adjacent connective tissues were subcultured, purified, and verified by immunofluorescence. Migration, invasion, and proliferation potentials were compared between the CAFs and NFs. A co-culture of CAFs with HEp-2 cells and a co-injection of CAFs with HEp-2 cells in nude mice were performed to examine the cancer-promoting potential of CAFs to further verify their identity. Karyotypic analyses of the CAFs, NFs, and HEp-2 cells were conducted. A co-culture of NFs with HEp-2 cells was also performed to examine the expression of activated markers of CAFs. A pathological examination confirmed that the laryngeal xenografted tumor model was successfully established, containing abundant CAFs. Immunocytochemical staining verified the purities and identities of the CAFs and NFs. Although the CAFs manifested higher migration, invasion, proliferation, and cancer-promoting capacities compared with the NFs, an analysis of chromosomes revealed that both the CAFs and NFs showed typical normal mouse karyotypes. In addition, the NFs co-cultured with HEp-2 cells did not show induced expressions of activated markers of CAFs. Our findings reveal that the CAFs in the HEp-2 established laryngeal xenografted tumor are not of laryngeal cancer origin but of mouse origin, indicating that the HEp-2 laryngeal cancer cells cannot generate their

  6. Cancer-Associated Fibroblasts in a Human HEp-2 Established Laryngeal Xenografted Tumor Are Not Derived from Cancer Cells through Epithelial-Mesenchymal Transition, Phenotypically Activated but Karyotypically Normal

    PubMed Central

    Wang, Mei; Wu, Chun-Ping; Pan, Jun-Yan; Zheng, Wen-Wei; Cao, Xiao-Juan; Fan, Guo-Kang

    2015-01-01

    Cancer-associated fibroblasts (CAFs) play a crucial role in cancer progression and even initiation. However, the origins of CAFs in various cancer types remain controversial, and one of the important hypothesized origins is through epithelial-mesenchymal transition (EMT) from cancer cells. In this study, we investigated whether the HEp-2 laryngeal cancer cells are able to generate CAFs via EMT during tumor formation, which is now still unknown. The laryngeal xenografted tumor model was established by inoculating the HEp-2 laryngeal cancer cell line in nude mice. Primary cultured CAFs from the tumor nodules and matched normal fibroblasts (NFs) from the adjacent connective tissues were subcultured, purified, and verified by immunofluorescence. Migration, invasion, and proliferation potentials were compared between the CAFs and NFs. A co-culture of CAFs with HEp-2 cells and a co-injection of CAFs with HEp-2 cells in nude mice were performed to examine the cancer-promoting potential of CAFs to further verify their identity. Karyotypic analyses of the CAFs, NFs, and HEp-2 cells were conducted. A co-culture of NFs with HEp-2 cells was also performed to examine the expression of activated markers of CAFs. A pathological examination confirmed that the laryngeal xenografted tumor model was successfully established, containing abundant CAFs. Immunocytochemical staining verified the purities and identities of the CAFs and NFs. Although the CAFs manifested higher migration, invasion, proliferation, and cancer-promoting capacities compared with the NFs, an analysis of chromosomes revealed that both the CAFs and NFs showed typical normal mouse karyotypes. In addition, the NFs co-cultured with HEp-2 cells did not show induced expressions of activated markers of CAFs. Our findings reveal that the CAFs in the HEp-2 established laryngeal xenografted tumor are not of laryngeal cancer origin but of mouse origin, indicating that the HEp-2 laryngeal cancer cells cannot generate their

  7. Inhibition of human cervical carcinoma growth by cytokine-induced killer cells in nude mouse xenograft model.

    PubMed

    Kim, Hwan Mook; Lim, Jaeseung; Kang, Jong Soon; Park, Song-Kyu; Lee, Kiho; Kim, Jee Youn; Kim, Yeon Jin; Hong, Jin Tae; Kim, Youngsoo; Han, Sang-Bae

    2009-03-01

    Cervical cancer is a major cause of cancer mortality in women worldwide and is an important public health problem for adult women in developing countries. Despite aggressive treatment with surgery and chemoradiation, the outcomes for cervical cancer patients remain poor. In this study, the antitumor activity of cytokine-induced killer (CIK) cells against human cervical cancer was evaluated in vitro and in vivo. Human peripheral blood mononuclear cells were cultured with IL-2-containing medium in anti-CD3 antibody-coated flasks for 5 days, followed by incubation in IL-2-containing medium for 9 days. The resulting populations of CIK cells comprised 95% CD3(+), 3% CD3(-)CD56(+), 35% CD3(+)CD56(+), 11% CD4(+), <1% CD4(+)CD56(+), 80% CD8(+), and 25% CD8(+)CD56(+). At an effector-target cell ratio of 100:1, CIK cells destroyed 56% of KB-3-1 human cervical cancer cells, as measured by the (51)Cr-release assay. In addition, CIK cells at doses of 3 and 10 million cells per mouse inhibited 34% and 57% of KB-3-1 tumor growth in nude mouse xenograft assays, respectively. This study suggests that CIK cells may be used as an adoptive immunotherapy for cervical cancer patients.

  8. Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity

    PubMed Central

    Graff, Jeremy R.; Konicek, Bruce W.; Vincent, Thomas M.; Lynch, Rebecca L.; Monteith, David; Weir, Spring N.; Schwier, Phil; Capen, Andrew; Goode, Robin L.; Dowless, Michele S.; Chen, Yuefeng; Zhang, Hong; Sissons, Sean; Cox, Karen; McNulty, Ann M.; Parsons, Stephen H.; Wang, Tao; Sams, Lillian; Geeganage, Sandaruwan; Douglass, Larry E.; Neubauer, Blake Lee; Dean, Nicholas M.; Blanchard, Kerry; Shou, Jianyong; Stancato, Louis F.; Carter, Julia H.; Marcusson, Eric G.

    2007-01-01

    Expression of eukaryotic translation initiation factor 4E (eIF4E) is commonly elevated in human and experimental cancers, promoting angiogenesis and tumor growth. Elevated eIF4E levels selectively increase translation of growth factors important in malignancy (e.g., VEGF, cyclin D1) and is thereby an attractive anticancer therapeutic target. Yet to date, no eIF4E-specific therapy has been developed. Herein we report development of eIF4E-specific antisense oligonucleotides (ASOs) designed to have the necessary tissue stability and nuclease resistance required for systemic anticancer therapy. In mammalian cultured cells, these ASOs specifically targeted the eIF4E mRNA for destruction, repressing expression of eIF4E-regulated proteins (e.g., VEGF, cyclin D1, survivin, c-myc, Bcl-2), inducing apoptosis, and preventing endothelial cells from forming vessel-like structures. Most importantly, intravenous ASO administration selectively and significantly reduced eIF4E expression in human tumor xenografts, significantly suppressing tumor growth. Because these ASOs also target murine eIF4E, we assessed the impact of eIF4E reduction in normal tissues. Despite reducing eIF4E levels by 80% in mouse liver, eIF4E-specific ASO administration did not affect body weight, organ weight, or liver transaminase levels, thereby providing the first in vivo evidence that cancers may be more susceptible to eIF4E inhibition than normal tissues. These data have prompted eIF4E-specific ASO clinical trials for the treatment of human cancers. PMID:17786246

  9. [Effect of depsides salts from Salvia miltiorrhiza on human hepatoma cell line SMMC-7721 subcutaneous xenografts in nude mice].

    PubMed

    Li, Xiangping; Song, Zhouye; Zhong, Haiying; Gong, Zhicheng; Yin, Tao; Zhang, Zanling; Zhou, Boting

    2015-02-01

    To exlpore the eff ect of depsides salts from Salvia miltiorrhiza on human hepatoma cell line SMMC-7721 xenograft tumors and the possible mechanisms. A total of 36 nude mice were divided into 6 groups: A model group, a negative control group, a positive control group, and 3 treatment groups at low, middle or high dose (n=6). The tumor model of nude mice was given depsides salts at a dose of 10, 20 or 50 mg/kg every 3 day for 16 days. Then samples of subcutaneous tumors in nude mice were collected. The morphological changes of tumor samples were observed by HE staining and the expression of vascular endothelial growth factor (VEGF) and the tumor antigen Ki67 was detected by immunohistochemical method. The tumor growth was inhibited by all doses of depsides salts. The morphology of tumors was shrinkage, broken and irregularly arranged compared with the tumors in the model group and the negative control group. Morphological changes were more obvious in tumors with treatment at high dose. Expression of VEGF and Ki67 in treatment groups and the positive control group were lower than that in the model group and the negative control group, with a significant difference (P<0.05). Depsides salts from Salvia miltiorrhiza can inhibit the growth of human hepatoma cell line SMMC-7721 tumor in nude mice, which is related to the inhibition of Ki67 and VEGF.

  10. Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jong-Hyuk, E-mail: jhkim@umn.edu; Masonic Cancer Center, University of Minnesota, Minneapolis, MN; Frantz, Aric M.

    Interleukin-8 (IL-8) gene expression is highly up-regulated in canine hemangiosarcoma (HSA); however, its role in the pathogenesis of this disease is unknown. We investigated the expression of IL-8 in canine HSA tissues and cell lines, as well and the effects of IL-8 on canine HSA in vitro, and in vivo using a mouse xenograft model for the latter. Constitutive expression of IL-8 mRNA, IL-8 protein, and IL-8 receptor were variable among different tumor samples and cell lines, but they showed stable steady states in each cell line. Upon the addition of IL-8, HSA cells showed transient intracellular calcium fluxes, suggestingmore » that their IL-8 receptors are functional and that IL-8 binding activates relevant signaling pathways. Yet, neither addition of exogenous IL-8 nor blockade of endogenous IL-8 by neutralizing anti-IL-8 antibody (α-IL-8 Ab) affected HSA cell proliferation or survival in vitro. To assess potential effects of IL-8 in other tumor constituents, we stratified HSA cell lines and whole tumor samples into “IL-8 high” and “IL-8 low” groups. Genome-wide gene expression profiling showed that samples in the “IL-8 high” tumor group were enriched for genes associated with a “reactive microenvironment,” including activation of coagulation, inflammation, and fibrosis networks. Based on these findings, we hypothesized that the effects of IL-8 on these tumors were mostly indirect, regulating interactions with the microenvironment. This hypothesis was supported by in vivo xenograft experiments where survival and engraftment of tumor cells was inhibited by administration of neutralizing α-IL-8 Ab. Together, our results suggest that IL-8 contributes to establishing a permissive microenvironment during the early stages of tumorigenesis in HSA. - Highlights: • IL-8 is expressed in canine hemangiosarcoma tumor samples and cell lines. • IL-8 transduces a relevant biological signal in canine hemangiosarcoma cells. • IL-8 gene signature is

  11. Influence of in vivo growth on human glioma cell line gene expression: Convergent profiles under orthotopic conditions

    PubMed Central

    Camphausen, Kevin; Purow, Benjamin; Sproull, Mary; Scott, Tamalee; Ozawa, Tomoko; Deen, Dennis F.; Tofilon, Philip J.

    2005-01-01

    Defining the molecules that regulate tumor cell survival is an essential prerequisite for the development of targeted approaches to cancer treatment. Whereas many studies aimed at identifying such targets use human tumor cells grown in vitro or as s.c. xenografts, it is unclear whether such experimental models replicate the phenotype of the in situ tumor cell. To begin addressing this issue, we have used microarray analysis to define the gene expression profile of two human glioma cell lines (U251 and U87) when grown in vitro and in vivo as s.c. or as intracerebral (i.c.) xenografts. For each cell line, the gene expression profile generated from tissue culture was significantly different from that generated from the s.c. tumor, which was significantly different from those grown i.c. The disparity between the i.c gene expression profiles and those generated from s.c. xenografts suggests that whereas an in vivo growth environment modulates gene expression, orthotopic growth conditions induce a different set of modifications. In this study the U251 and U87 gene expression profiles generated under the three growth conditions were also compared. As expected, the profiles of the two glioma cell lines were significantly different when grown as monolayer cultures. However, the glioma cell lines had similar gene expression profiles when grown i.c. These results suggest that tumor cell gene expression, and thus phenotype, as defined in vitro is affected not only by in vivo growth but also by orthotopic growth, which may have implications regarding the identification of relevant targets for cancer therapy. PMID:15928080

  12. Fractal dimension and universality in avascular tumor growth

    NASA Astrophysics Data System (ADS)

    Ribeiro, Fabiano L.; dos Santos, Renato Vieira; Mata, Angélica S.

    2017-04-01

    For years, the comprehension of the tumor growth process has been intriguing scientists. New research has been constantly required to better understand the complexity of this phenomenon. In this paper, we propose a mathematical model that describes the properties, already known empirically, of avascular tumor growth. We present, from an individual-level (microscopic) framework, an explanation of some phenomenological (macroscopic) aspects of tumors, such as their spatial form and the way they develop. Our approach is based on competitive interaction between the cells. This simple rule makes the model able to reproduce evidence observed in real tumors, such as exponential growth in their early stage followed by power-law growth. The model also reproduces (i) the fractal-space distribution of tumor cells and (ii) the universal growth behavior observed in both animals and tumors. Our analyses suggest that the universal similarity between tumor and animal growth comes from the fact that both can be described by the same dynamic equation—the Bertalanffy-Richards model—even if they do not necessarily share the same biological properties.

  13. Irradiation-Dependent Effects on Tumor Perfusion and Endogenous and Exogenous Hypoxia Markers in an A549 Xenograft Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fokas, Emmanouil, E-mail: emmanouil.fokas@yahoo.d; Haenze, Joerg; Kamlah, Florentine

    2010-08-01

    Purpose: Hypoxia is a major determinant of tumor radiosensitivity, and microenvironmental changes in response to ionizing radiation (IR) are often heterogenous. We analyzed IR-dependent changes in hypoxia and perfusion in A549 human lung adenocarcinoma xenografts. Materials and Methods: Immunohistological analysis of two exogenously added chemical hypoxic markers, pimonidazole and CCI-103F, and of the endogenous marker Glut-1 was performed time dependently after IR. Tumor vessels and apoptosis were analyzed using CD31 and caspase-3 antibodies. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and fluorescent beads (Hoechst 33342) were used to monitor vascular perfusion. Results: CCI-103F signals measuring the fraction of hypoxic areas aftermore » IR were significantly decreased by approximately 50% when compared with pimonidazole signals, representing the fraction of hypoxic areas from the same tumors before IR. Interestingly, Glut-1 signals were significantly decreased at early time point (6.5 h) after IR returning to the initial levels at 30.5 h. Vascular density showed no difference between irradiated and control groups, whereas apoptosis was significantly induced at 10.5 h post-IR. DCE-MRI indicated increased perfusion 1 h post-IR. Conclusions: The discrepancy between the hypoxic fractions of CCI-103F and Glut-1 forces us to consider the possibility that both markers reflect different metabolic alterations of tumor microenvironment. The reliability of endogenous markers such as Glut-1 to measure reoxygenation in irradiated tumors needs further consideration. Monitoring tumor microvascular response to IR by DCE-MRI and measuring tumor volume alterations should be encouraged.« less

  14. MR Imaging Biomarkers to Monitor Early Response to Hypoxia-Activated Prodrug TH-302 in Pancreatic Cancer Xenografts.

    PubMed

    Zhang, Xiaomeng; Wojtkowiak, Jonathan W; Martinez, Gary V; Cornnell, Heather H; Hart, Charles P; Baker, Amanda F; Gillies, Robert

    2016-01-01

    TH-302 is a hypoxia-activated prodrug known to activate selectively under the hypoxic conditions commonly found in solid tumors. It is currently being evaluated in clinical trials, including two trials in Pancreatic Ductal Adenocarcinomas (PDAC). The current study was undertaken to evaluate imaging biomarkers for prediction and response monitoring of TH-302 efficacy in xenograft models of PDAC. Dynamic contrast-enhanced (DCE) and diffusion weighted (DW) magnetic resonance imaging (MRI) were used to monitor acute effects on tumor vasculature and cellularity, respectively. Three human PDAC xenografts with known differential responses to TH-302 were imaged prior to, and at 24 h and 48 hours following a single dose of TH-302 or vehicle to determine if imaging changes presaged changes in tumor volumes. DW-MRI was performed at five b-values to generate apparent diffusion coefficient of water (ADC) maps. For DCE-MRI, a standard clinically available contrast reagent, Gd-DTPA, was used to determine blood flow into the tumor region of interest. TH-302 induced a dramatic decrease in the DCE transfer constant (Ktrans) within 48 hours after treatment in the sensitive tumors, Hs766t and Mia PaCa-2, whereas TH-302 had no effect on the perfusion behavior of resistant SU.86.86 tumors. Tumor cellularity, estimated from ADC, was significantly increased 24 and 48 hours after treatment in Hs766t, but was not observed in the Mia PaCa-2 and SU.86.86 groups. Notably, growth inhibition of Hs766t was observed immediately (day 3) following initiation of treatment, but was not observed in MiaPaCa-2 tumors until 8 days after initiation of treatment. Based on these preclinical findings, DCE-MRI measures of vascular perfusion dynamics and ADC measures of cell density are suggested as potential TH-302 response biomarkers in clinical trials.

  15. Protein phosphatase 2A inhibition enhances radiation sensitivity and reduces tumor growth in chordoma.

    PubMed

    Hao, Shuyu; Song, Hua; Zhang, Wei; Seldomridge, Ashlee; Jung, Jinkyu; Giles, Amber J; Hutchinson, Marsha-Kay; Cao, Xiaoyu; Colwell, Nicole; Lita, Adrian; Larion, Mioara; Maric, Dragan; Abu-Asab, Mones; Quezado, Martha; Kramp, Tamalee; Camphausen, Kevin; Zhuang, Zhengping; Gilbert, Mark R; Park, Deric M

    2018-05-18

    Standard therapy for chordoma consists of surgical resection followed by high-dose irradiation. Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase involved in signal transduction, cell cycle progression, cell differentiation, and DNA repair. LB100 is a small-molecule inhibitor of PP2A designed to sensitize cancer cells to DNA damage from irradiation and chemotherapy. A recently completed phase I trial of LB100 in solid tumors demonstrated its safety. Here, we show the therapeutic potential of LB100 in chordoma. Three patient-derived chordoma cell lines were used: U-CH1, JHC7, and UM-Chor1. Cell proliferation was determined with LB100 alone and in combination with irradiation. Cell cycle progression was assessed by flow cytometry. Quantitative γ-H2AX immunofluorescence and immunoblot evaluated the effect of LB100 on radiation-induced DNA damage. Ultrastructural evidence for nuclear damage was investigated using Raman imaging and transmission electron microscopy. A xenograft model was established to determine potential clinical utility of adding LB100 to irradiation. PP2A inhibition in concert with irradiation demonstrated in vitro growth inhibition. The combination of LB100 and radiation also induced accumulation at the G2/M phase of the cell cycle, the stage most sensitive to radiation-induced damage. LB100 enhanced radiation-induced DNA double-strand breaks. Animals implanted with chordoma cells and treated with the combination of LB100 and radiation demonstrated tumor growth delay. Combining LB100 and radiation enhanced DNA damage-induced cell death and delayed tumor growth in an animal model of chordoma. PP2A inhibition by LB100 treatment may improve the effectiveness of radiation therapy for chordoma.

  16. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1.

    PubMed

    Xue, Mei; Chen, Wei; Xiang, An; Wang, Ruiqi; Chen, He; Pan, Jingjing; Pang, Huan; An, Hongli; Wang, Xiang; Hou, Huilian; Li, Xu

    2017-08-25

    To overcome the hostile hypoxic microenvironment of solid tumors, tumor cells secrete a large number of non-coding RNA-containing exosomes that facilitate tumor development and metastasis. However, the precise mechanisms of tumor cell-derived exosomes during hypoxia are unknown. Here, we aim to clarify whether hypoxia affects tumor growth and progression by transferring long non-coding RNA-urothelial cancer-associated 1 (lncRNA-UCA1) enriched exosomes secreted from bladder cancer cells. We used bladder cancer 5637 cells with high expression of lncRNA-UCA1 as exosome-generating cells and bladder cancer UMUC2 cells with low expression of lncRNA-UCA1 as recipient cells. Exosomes derived from 5637 cells cultured under normoxic or hypoxic conditions were isolated and identified by transmission electron microscopy, nanoparticle tracking analysis and western blotting analysis. These exosomes were co-cultured with UMUC2 cells to evaluate cell proliferation, migration and invasion. We further investigated the roles of exosomal lncRNA-UCA1 derived from hypoxic 5637 cells by xenograft models. The availability of lncRNA-UCA1 in serum-derived exosomes as a biomarker for bladder cancer was also assessed. We found that hypoxic exosomes derived from 5637 cells promoted cell proliferation, migration and invasion, and hypoxic exosomal RNAs could be internalized by three bladder cancer cell lines. Importantly, lncRNA-UCA1 was secreted in hypoxic 5637 cell-derived exosomes. Compared with normoxic exosomes, hypoxic exosomes derived from 5637 cells showed the higher expression levels of lncRNA-UCA1. Moreover, Hypoxic exosomal lncRNA-UCA1 could promote tumor growth and progression though epithelial-mesenchymal transition, in vitro and in vivo. In addition, the expression levels of lncRNA-UCA1 in the human serum-derived exosomes of bladder cancer patients were higher than that in the healthy controls. Together, our results demonstrate that hypoxic bladder cancer cells remodel tumor

  17. Inhibiting platelet-derived growth factor beta reduces Ewing's sarcoma growth and metastasis in a novel orthotopic human xenograft model.

    PubMed

    Wang, Yong Xin; Mandal, Deendayal; Wang, Suizhau; Hughes, Dennis; Pollock, Raphael E; Lev, Dina; Kleinerman, Eugenie; Hayes-Jordan, Andrea

    2009-01-01

    Despite aggressive therapy, Ewing's sarcoma (ES) patients have a poor five-year overall survival of only 20-40%. Pulmonary metastasis is the most common form of demise in these patients. The pathogenesis of pulmonary metastasis is poorly understood and few orthotopic models exist that allow study of spontaneous pulmonary metastasis in ES. We have developed a novel orthotopic xenograft model in which spontaneous pulmonary metastases develop. While the underlying biology of ES is incompletely understood, in addition to the EWS-FLI-1 mutation, it is known that platelet-derived growth factor receptor beta (PDGFR-beta) is highly expressed in ES. Hypothesizing that PDGFR-beta expression is indicative of a specific role for this receptor protein in ES progression, the effect of PDGFR-beta inhibition on ES growth and metastasis was assessed in this novel orthotopic ES model. Silencing PDGFR-beta reduced spontaneous growth and metastasis in ES. Preclinical therapeutically relevant findings such as these may ultimately lead to new treatment initiatives in ES.

  18. CRISPR/Cas9 Technology-Based Xenograft Tumors as Candidate Reference Materials for Multiple EML4-ALK Rearrangements Testing.

    PubMed

    Peng, Rongxue; Zhang, Rui; Lin, Guigao; Yang, Xin; Li, Ziyang; Zhang, Kuo; Zhang, Jiawei; Li, Jinming

    2017-09-01

    The echinoderm microtubule-associated protein-like 4 and anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (EML4-ALK) rearrangement is an important biomarker that plays a pivotal role in therapeutic decision making for non-small-cell lung cancer (NSCLC) patients. Ensuring accuracy and reproducibility of EML4-ALK testing by fluorescence in situ hybridization, immunohistochemistry, RT-PCR, and next-generation sequencing requires reliable reference materials for monitoring assay sensitivity and specificity. Herein, we developed novel reference materials for various kinds of EML4-ALK testing. CRISPR/Cas9 was used to edit various NSCLC cell lines containing EML4-ALK rearrangement variants 1, 2, and 3a/b. After s.c. inoculation, the formalin-fixed, paraffin-embedded (FFPE) samples from xenografts were prepared and tested for suitability as candidate reference materials by fluorescence in situ hybridization, immunohistochemistry, RT-PCR, and next-generation sequencing. Sample validation and commutability assessments showed that all types of FFPE samples derived from xenograft tumors have typical histological structures, and EML4-ALK testing results were similar to the clinical ALK-positive NSCLC specimens. Among the four methods for EML4-ALK detection, the validation test showed 100% concordance. Furthermore, these novel FFPE reference materials showed good stability and homogeneity. Without limitations on variant types and production, our novel FFPE samples based on CRISPR/Cas9 editing and xenografts are suitable as candidate reference materials for the validation, verification, internal quality control, and proficiency testing of EML4-ALK detection. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  19. Inhibition of NFκB and Pancreatic Cancer Cell and Tumor Growth by Curcumin Is Dependent on Specificity Protein Down-regulation*

    PubMed Central

    Jutooru, Indira; Chadalapaka, Gayathri; Lei, Ping; Safe, Stephen

    2010-01-01

    Curcumin activates diverse anticancer activities that lead to inhibition of cancer cell and tumor growth, induction of apoptosis, and antiangiogenic responses. In this study, we observed that curcumin inhibits Panc28 and L3.6pL pancreatic cancer cell and tumor growth in nude mice bearing L3.6pL cells as xenografts. In addition, curcumin decreased expression of p50 and p65 proteins and NFκB-dependent transactivation and also decreased Sp1, Sp3, and Sp4 transcription factors that are overexpressed in pancreatic cancer cells. Because both Sp transcription factors and NFκB regulate several common genes such as cyclin D1, survivin, and vascular endothelial growth factor that contribute to the cancer phenotype, we also investigated interactions between Sp and NFκB transcription factors. Results of Sp1, Sp3, and Sp4 knockdown by RNA interference demonstrate that both p50 and p65 are Sp-regulated genes and that inhibition of constitutive or tumor necrosis factor-induced NFκB by curcumin is dependent on down-regulation of Sp1, Sp3, and Sp4 proteins by this compound. Curcumin also decreased mitochondrial membrane potential and induced reactive oxygen species in pancreatic cancer cells, and this pathway is required for down-regulation of Sp proteins in these cells, demonstrating that the mitochondriotoxic effects of curcumin are important for its anticancer activities. PMID:20538607

  20. Muscle Contraction Arrests Tumor Growth

    DTIC Science & Technology

    2006-09-01

    AD_________________ Award Number: W81XWH-05-1-0464 TITLE: Muscle Contraction Arrests Tumor Growth...DATE 01-09-2006 2. REPORT TYPE Annual 3. DATES COVERED 1 Sep 2005 – 31 Aug 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Muscle ... Contraction Arrests Tumor Growth 5b. GRANT NUMBER W81XWH-05-1-0464 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kim Westerlind, Ph.D. 5d. PROJECT NUMBER

  1. Establishment of a neuroblastoma mouse model by subcutaneous xenograft transplantation and its use to study metastatic neuroblastoma.

    PubMed

    Gao, Q; Chen, C F; Dong, Q; Hou, L; Chen, X; Zhi, Y L; Li, X; Lu, H T; Zhang, H Y

    2015-12-08

    The aim of this study was to establish a metastatic human neuroblastoma (NB) mouse model by xenograft in order to study the metastatic mechanisms of NB. A human NB cell line was obtained from a 5-year-old patient and cultured in vitro. A suspension of these cells was subcutaneously inoculated into nude mice at the right flank next to the forelimb. The biological characteristics of the developed subcutaneous and metastatic tumors were analyzed by hematoxylin and eosin staining. The expression of the tumor marker neuron-specific enolase was determined by immunohistochemistry, and the invasive ability of metastatic tumors was examined by a Matrigel invasion assay. DNA microarray analyses were performed to examine the metastasis-related gene expression. Our results showed that tumors grew in 75% of the mice injected with NB cells and the rate of metastasis was 21%. The xenograft tumors retained the morphological and biological characteristics of the NB specimen from the pediatric patient. Neuron-specific enolase was highly expressed in both subcutaneous and metastatic tumors. The metastatic tumor cells possessed a higher invasive capability than the primary NB cells. The expression of 25 metastasis-related genes was found to be significantly altered in metastatic tumors compared to primary tumors, including RECK, MMP2, VEGF, MMP3, and CXCL12. In conclusion, we successfully established a human NB xenograft model with high tumor-bearing and metastatic rates in nude mice, providing an ideal animal model for the in vivo study of NB.

  2. Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π-Π Stacking Stabilized Polymeric Micelles

    PubMed Central

    Shi, Yang; van der Meel, Roy; Theek, Benjamin; Blenke, Erik Oude; Pieters, Ebel H.E.; Fens, Marcel H.A.M.; Ehling, Josef; Schiffelers, Raymond M.; Storm, Gert; van Nostrum, Cornelus F.; Lammers, Twan; Hennink, Wim E.

    2015-01-01

    Treatment of cancer patients with taxane-based chemotherapeutics, such as paclitaxel (PTX), is complicated by their narrow therapeutic index. Polymeric micelles are attractive nanocarriers for tumor-targeted delivery of PTX, as they can be tailored to encapsulate large amounts of hydrophobic drugs and achieve prolonged circulation kinetics. As a result, PTX deposition in tumors is increased while drug exposure to healthy tissues is reduced. However, many PTX-loaded micelle formulations suffer from low stability and fast drug release in the circulation, limiting their suitability for systemic drug targeting. To overcome these limitations, we have developed paclitaxel (PTX)-loaded micelles which are stable without chemical crosslinking and covalent drug attachment. These micelles are characterized by excellent loading capacity and strong drug retention, attributed to π-π stacking interaction between PTX and the aromatic groups of the polymer chains in the micellar core. The micelles are based on methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers, which improved the pharmacokinetics and the biodistribution of PTX, and substantially increased PTX tumor accumulation (by more than 2000%; as compared to Taxol® or control micellar formulations). Improved biodistribution and tumor accumulation were confirmed by hybrid μCT-FMT imaging using near-infrared labeled micelles and payload. The PTX-loaded micelles were well tolerated at different doses while they induced complete tumor regression in two different xenograft models (i.e. A431 and MDA-MB-468). Our findings consequently indicate that π-π stacking-stabilized polymeric micelles are promising carriers to improve the delivery of highly hydrophobic drugs to tumors and to increase their therapeutic index. PMID:25831471

  3. Action of hexachlorobenzene on tumor growth and metastasis in different experimental models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontillo, Carolina Andrea, E-mail: caroponti@hotmail.com; Rojas, Paola, E-mail: parojas2010@gmail.com; Chiappini, Florencia, E-mail: florenciachiappini@hotmail.com

    Hexachlorobenzene (HCB) is a widespread organochlorine pesticide, considered a possible human carcinogen. It is a dioxin-like compound and a weak ligand of the aryl hydrocarbon receptor (AhR). We have found that HCB activates c-Src/HER1/STAT5b and HER1/ERK1/2 signaling pathways and cell migration, in an AhR-dependent manner in MDA-MB-231 breast cancer cells. The aim of this study was to investigate in vitro the effect of HCB (0.005, 0.05, 0.5, 5 μM) on cell invasion and metalloproteases (MMPs) 2 and 9 activation in MDA-MB-231 cells. Furthermore, we examined in vivo the effect of HCB (0.3, 3, 30 mg/kg b.w.) on tumor growth, MMP2more » and MMP9 expression, and metastasis using MDA-MB-231 xenografts and two syngeneic mouse breast cancer models (spontaneous metastasis using C4-HI and lung experimental metastasis using LM3). Our results show that HCB (5 μM) enhances MMP2 expression, as well as cell invasion, through AhR, c-Src/HER1 pathway and MMPs. Moreover, HCB increases MMP9 expression, secretion and activity through a HER1 and AhR-dependent mechanism, in MDA-MB-231 cells. HCB (0.3 and 3 mg/kg b.w.) enhances subcutaneous tumor growth in MDA-MB-231 and C4-HI in vivo models. In vivo, using MDA-MB-231 model, the pesticide (0.3, 3 and 30 mg/kg b.w.) activated c-Src, HER1, STAT5b, and ERK1/2 signaling pathways and increased MMP2 and MMP9 protein levels. Furthermore, we observed that HCB stimulated lung metastasis regardless the tumor hormone-receptor status. Our findings suggest that HCB may be a risk factor for human breast cancer progression. - Highlights: ► HCB enhances MMP2 and MMP9 expression and cell invasion in MDA-MB-231, in vitro. ► HCB-effects are mediated through AhR, HER1 and/or c-Src. ► HCB increases subcutaneous tumor growth in MDA-MB-231 and C4-HI in vivo models. ► HCB activates c-Src/HER1 pathway and increases MMPs levels in MDA-MB-231 tumors. ► HCB stimulates lung metastasis in C4-HI and LM3 in vivo models.« less

  4. Oseltamivir phosphate monotherapy ablates tumor neovascularization, growth, and metastasis in mouse model of human triple-negative breast adenocarcinoma

    PubMed Central

    Haxho, Fiona; Allison, Stephanie; Alghamdi, Farah; Brodhagen, Lacey; Kuta, Victoria EL; Abdulkhalek, Samar; Neufeld, Ronald J; Szewczuk, Myron R

    2014-01-01

    Background Triple-negative breast cancers (TNBCs) lack the estrogen, progesterone, and epidermal growth factor (EGF) receptor-2 (HER2/neu) receptors. Patients with TNBC have typical high grading, more frequent relapses, and exhibit poorer outcomes or prognosis compared with the other subtypes of breast cancers. Currently, there are no targeted therapies that are effective for TNBC. Preclinical antitumor activity of oseltamivir phosphate (OP) therapy was investigated to identify its role in tumor neovascularization, growth, invasiveness, and long-term survival in a mouse model of human TNBC. Methods Live cell sialidase, water soluble tetrazolium, WST-1 cell viability, and immunohistochemistry assays were used to evaluate sialidase activity, cell survival, and the expression levels of tumor E-cadherin, N-cadherin, and host endothelial CD31+/PECAM-1 cells in archived paraffin-embedded TNBC MDA-MB-231 tumors grown in RAGxCγ double mutant mice. Results OP, anti-Neu1 antibodies, and matrix metalloproteinase-9-specific inhibitor blocked Neu1 activity associated with EGF-stimulated TNBC MDA-MB-231 cells. OP treatment of MDA-MB-231 and MCF-7 cells and their long-term tamoxifen-resistant clones reproducibly and dose-dependently reduced the sialidase activity associated with EGF-stimulated live cells and the cell viability after 72 hours of incubation. Combination of 1 μM cisplatin, 5-FU, paclitaxel, gemcitabine, or tamoxifen with OP dosages ≥300 μg/mL significantly reduced cell viability at 24, 48, and 72 hours when compared to the chemodrug alone. Heterotopic xenografts of MDA-MB-231 tumors developed robust and bloody tumor vascularization in RAG2xCγ double mutant mice. OP treatment at 30 mg/kg daily intraperitoneally reduced tumor vascularization and growth rate as well as significantly reduced tumor weight and spread to the lungs compared with the untreated cohorts. OP treatment at 50 mg/kg completely ablated tumor vascularization, tumor growth and spread to the

  5. Hypoxic Tumor Kinase Signaling Mediated by STAT5A in Development of Castration-Resistant Prostate Cancer

    PubMed Central

    Røe, Kathrine; Bratland, Åse; Vlatkovic, Ljiljana; Ragnum, Harald Bull; Saelen, Marie Grøn; Olsen, Dag Rune; Marignol, Laure; Ree, Anne Hansen

    2013-01-01

    In this study, we hypothesized that androgen-deprivation therapy (ADT) in prostate cancer, although initially efficient, induces changes in the tumor kinome, which subsequently promote development of castration-resistant (CR) disease. Recognizing the correlation between tumor hypoxia and poor prognosis in prostate cancer, we further hypothesized that such changes might be influenced by hypoxia. Microarrays with 144 kinase peptide substrates were applied to analyze CWR22 prostate carcinoma xenograft samples from ADT-naïve, androgen-deprived (AD), long-term AD (ADL), and CR disease stages. The impact of hypoxia was assessed by matching the xenograft kinase activity profiles with those acquired from hypoxic and normoxic prostate carcinoma cell cultures, whereas the clinical relevance was evaluated by analyzing prostatectomy tumor samples from patients with locally advanced disease, either in ADT-naïve or early CR disease stages. By using this novel peptide substrate microarray method we revealed high kinase activity mediated by signal transducer and activator of transcription 5A (STAT5A) in CR prostate cancer. Additionally, we uncovered high STAT5A kinase activity already in regressing ADL xenografts, before renewed CR growth was evidenced. Finally, since increased STAT5A kinase activity also was detected after exposing prostate carcinoma cells to hypoxia, we propose long-term ADT to induce tumor hypoxia and stimulate STAT5A kinase activity, subsequently leading to renewed CR tumor growth. Hence, the study detected STAT5A as a candidate to be further investigated for its potential as marker of advanced prostate cancer and as possible therapeutic target protein. PMID:23675504

  6. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ping; Fu, Shilong; Cao, Zhifei

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressivemore » ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice

  7. Tumor-targeted SN38 inhibits growth of early stage non-small cell lung cancer (NSCLC) in a KRas/p53 transgenic mouse model.

    PubMed

    Deneka, Alexander Y; Haber, Leora; Kopp, Meghan C; Gaponova, Anna V; Nikonova, Anna S; Golemis, Erica A

    2017-01-01

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide, with a 5-year survival of only ~16%. Potential strategies to address NSCLC mortality include improvements in early detection and prevention, and development of new therapies suitable for use in patients with early and late stage diagnoses. Controlling the growth of early stage tumors could yield significant clinical benefits for patients with comorbidities that make them poor candidates for surgery: however, many drugs that limit cancer growth are not useful in the setting of long-term use or in comorbid patients, because of associated toxicities. In this study, we explored the use of a recently described small molecule agent, STA-8666, as a potential agent for controlling early stage tumor growth. STA-8666 uses a cleavable linker to merge a tumor-targeting moiety that binds heat shock protein 90 (HSP90) with the cytotoxic chemical SN38, and has been shown to have high efficacy and low toxicity, associated with efficient tumor targeting, in preclinical studies using patient-derived and other xenograft models for pancreatic, bladder, and small cell lung cancer. Using a genetically engineered model of NSCLC arising from induced mutation of KRas and knockout of Trp53, we continuously dosed mice with STA-8666 from immediately after tumor induction for 15 weeks. STA-8666 significantly slowed the rate of tumor growth, and was well tolerated over this extended dosing period. STA-8666 induced DNA damage and apoptosis, and reduced proliferation and phosphorylation of the proliferation-associated protein ERK1/2, selectively in tumor tissue. In contrast, STA-8666 did not affect tumor features, such as degree of vimentin staining, associated with epithelial-mesenchymal transition (EMT), or downregulate tumor expression of HSP90. These data suggest STA-8666 and other similar targeted compounds may be useful additions to control the growth of early stage NSCLC in patient populations.

  8. Biodistribution and Safety Assessment of Bladder Cancer Specific Recombinant Oncolytic Adenovirus in Subcutaneous Xenografts Tumor Model in Nude Mice

    PubMed Central

    Wang, Fang; Wang, Zhiping; Tian, Hongwei; Qi, Meijiao; Zhai, Zhenxing; Li, Shuwen; Li, Renju; Zhang, Hongjuan; Wang, Wenyun; Fu, Shenjun; Lu, Jianzhong; Rodriguez, Ronald; Guo, Yinglu; Zhou, Liqun

    2012-01-01

    Background The previous works about safety evaluation for constructed bladder tissue specific adenovirus are poorly documented. Thus, we investigated the biodistribution and body toxicity of bladder specific oncolytic adenovirus Ad-PSCAE-UPII-E1A (APU-E1A) and Ad-PSCAE-UPII-E1A-AR (APU-E1A-AR), providing meaningful information prior to embarking on human clinical trials. Materials and Method Conditionally replicate recombinant adenovirus (CRADs) APU-E1A, APU-EIA-AR were constructed with bladder tissue specific Uroplakin II (UP II) promoter to induce the expression of Ad5E1A gene and E1A-AR fusing gene, and PSCAE was inserted at upstream of promoter to enhance the function of promoter. Based on the cytopathic and anti-tumor effect of bladder cancer, these CRADs were intratumorally injected into subcutaneous xenografts tumor in nude mice. We then determined the toxicity through general health and behavioral assessment, hepatic and hematological toxicity evaluation, macroscopic and microscopic postmortem analyses. The spread of the transgene E1A of adenovirus was detected with RT-PCR and Western blot. Virus replication and distribution were examined with APU-LUC administration and Luciferase Assay. Results General assessment and body weight of the animals did not reveal any alteration in general behavior. The hematological alterations of groups which were injected with 5×108 pfu or higher dose (5×109 pfu) of APU-E1A and APU-E1A-AR showed no difference in comparison with PBS group, and only slight increased transaminases in contrast to PBS group at 5×109 pfu of APU-E1A and APU-E1A-AR were observed. E1A transgene did not disseminate to organs outside of xenograft tumor. Virus replication was not detected in other organs beside tumor according to Luciferase Assay. Conclusions Our study showed that recombinant adenovirus APU-E1A-AR and APU-E1A appear safe with 5×107 pfu and 5×108 pfu intratumorally injection in mice, without any discernable effects on general health

  9. Biodistribution and safety assessment of bladder cancer specific recombinant oncolytic adenovirus in subcutaneous xenografts tumor model in nude mice.

    PubMed

    Wang, Fang; Wang, Zhiping; Tian, Hongwei; Qi, Meijiao; Zhai, Zhenxing; Li, Shuwen; Li, Renju; Zhang, Hongjuan; Wang, Wenyun; Fu, Shenjun; Lu, Jianzhong; Rodriguez, Ronald; Guo, Yinglu; Zhou, Liqun

    2012-04-01

    The previous works about safety evaluation for constructed bladder tissue specific adenovirus are poorly documented. Thus, we investigated the biodistribution and body toxicity of bladder specific oncolytic adenovirus Ad-PSCAE-UPII-E1A (APU-E1A) and Ad-PSCAE-UPII-E1A-AR (APU-E1A-AR), providing meaningful information prior to embarking on human clinical trials. Conditionally replicate recombinant adenovirus (CRADs) APU-E1A, APU-EIA-AR were constructed with bladder tissue specific UroplakinII(UPII) promoter to induce the expression of Ad5E1A gene and E1A-AR fusing gene, and PSCAE was inserted at upstream of promoter to enhance the function of promoter. Based on the cytopathic and anti-tumor effect of bladder cancer, these CRADs were intratumorally injected into subcutaneous xenografts tumor in nude mice. We then determined the toxicity through general health and behavioral assessment, hepatic and hematological toxicity evaluation, macroscopic and microscopic postmortem analyses. The spread of the transgene E1A of adenovirus was detected with RT-PCR and Western blot. Virus replication and distribution were examined with APU-LUC administration and Luciferase Assay. General assessment and body weight of the animals did not reveal any alteration in general behavior. The hematological alterations of groups which were injected with 5x10(8) pfu or higher dose (5x10(9) pfu) of APU-E1A and APU-E1A-AR showed no difference in comparison with PBS group, and only slight increased transaminases in contrast to PBS group at 5x10(9) pfu of APU-E1A and APU-E1A-AR were observed. E1A transgene did not disseminate to organs outside of xenograft tumor. Virus replication was not detected in other organs beside tumor according to Luciferase Assay. Our study showed that recombinant adenovirus APU-E1A-AR and APU-E1A appear safe with 5x10(7) pfu and 5x10(8) pfu intratumorally injection in mice, without any discernable effects on general health and behavior.

  10. Inhibitory effect of vitamin C in combination with vitamin K3 on tumor growth and metastasis of Lewis lung carcinoma xenografted in C57BL/6 mice.

    PubMed

    Chen, Ming-Feng; Yang, Chih-Min; Su, Cheng-Ming; Liao, Jiunn-Wang; Hu, Miao-Lin

    2011-01-01

    Vitamin C in combination with vitamin K3 (vit CK3) has been shown to inhibit tumor growth and lung metastasis in vivo, but the mechanism of action is poorly understood. Herein, C57BL/6 mice were implanted (s.c.) with Lewis lung carcinoma (LLC) for 9 days before injection (i.p.) with low-dose (100 mg vit C/kg + 1 mg vit K3/kg), high-dose (1,000 mg vit C/kg + 10 mg vit K3/kg) vit CK3 twice a week for an additional 28 days. As expected, vit CK3 or cisplatin (6 mg/kg, as a positive control) significantly and dose-dependently inhibited tumor growth and lung metastasis in LLC-bearing mice. Vit CK3 restored the body weight of tumor-bearing mice to the level of tumor-free mice. Vit CK3 significantly decreased activities of plasma metalloproteinase (MMP)-2, -9, and urokinase plasminogen activator (uPA). In lung tissues, vit CK3 1) increased protein expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), TIMP-2, nonmetastatic protein 23 homolog 1 and plasminogen activator inhibitor-1; 2) reduced protein expression of MMP-2 and MMP-9; and 3) inhibited the proliferating cell nuclear antigen (PCNA). These results demonstrate that vit CK3 inhibits primary tumor growth and exhibits antimetastastic potential in vivo through attenuated tumor invasion and proliferation.

  11. Longitudinal evaluation of the metabolic response of a tumor xenograft model to single fraction radiation therapy using magnetic resonance spectroscopy.

    PubMed

    Tessier, A G; Yahya, A; Larocque, M P; Fallone, B G; Syme, A

    2014-09-07

    Proton magnetic resonance spectroscopy (MRS) was used to evaluate the metabolic profile of human glioblastoma multiform brain tumors grown as xenografts in nude mice before, and at multiple time points after single fraction radiation therapy. Tumors were grown over the thigh in 16 mice in this study, of which 5 served as untreated controls and 11 had their tumors treated to 800 cGy with 200 kVp x-rays. Spectra were acquired within 24 h pre-treatment, and then at 3, 7 and 14 d post-treatment using a 9.4 T animal magnetic resonance (MR) system. For the untreated control tumors, spectra (1-2 per mouse) were acquired at different stages of tumor growth. Spectra were obtained with the PRESS pulse sequence using a 3  ×  3 × 3 mm(3) voxel. Analysis was performed with the LCModel software platform. Six metabolites were profiled for this analysis: alanine (Ala), myo-inositol (Ins), taurine (Tau), creatine and phosphocreatine (Cr + PCr), glutamine and glutamate (Glu + Gln), and total choline (glycerophosphocholine + phosphocholine) (GPC + PCh). For the treated cohort, most metabolite/water concentration ratios were found to decrease in the short term at 3 and 7 d post-treatment, followed by an increase at 14 d post-treatment toward pre-treatment values. The lowest concentrations were observed at 7 d post-treatment, with magnitudes (relative to pre-treatment concentration ratios) of: 0.42  ±  24.6% (Ala), 0.43  ±  15.3% (Ins), 0.68  ±  27.9% (Tau), 0.52  ±  14.6% (GPC+PCh), 0.49  ±  21.0% (Cr + PCr) and 0.78  ±  24.5% (Glu + Gln). Control animals did not demonstrate any significant correlation between tumor volume and metabolite concentration, indicating that the observed kinetics were the result of the therapeutic intervention. We have demonstrated the feasibility of using MRS to follow multiple metabolic markers over time for the purpose of evaluating therapeutic response of tumors to radiation therapy

  12. Novel Dedifferentiated Liposarcoma Xenograft Models Reveal PTEN Down-Regulation as a Malignant Signature and Response to PI3K Pathway Inhibition

    PubMed Central

    Smith, Kathleen B.; Tran, Linh M.; Tam, Brenna M.; Shurell, Elizabeth M.; Li, Yunfeng; Braas, Daniel; Tap, William D.; Christofk, Heather R.; Dry, Sarah M.; Eilber, Fritz C.; Wu, Hong

    2014-01-01

    Liposarcoma is a type of soft tissue sarcoma that exhibits poor survival and a high recurrence rate. Treatment is generally limited to surgery and radiation, which emphasizes the need for better understanding of this disease. Because very few in vivo and in vitro models can reproducibly recapitulate the human disease, we generated several xenograft models from surgically resected human dedifferentiated liposarcoma. All xenografts recapitulated morphological and gene expression characteristics of the patient tumors after continuous in vivo passages. Importantly, xenograftability was directly correlated with disease-specific survival of liposarcoma patients. Thus, the ability for the tumor of a patient to engraft may help identify those patients who will benefit from more aggressive treatment regimens. Gene expression analyses highlighted the association between xenograftability and a unique gene expression signature, including down-regulated PTEN tumor-suppressor gene expression and a progenitor-like phenotype. When treated with the PI3K/AKT/mTOR pathway inhibitor rapamycin alone or in combination with the multikinase inhibitor sorafenib, all xenografts responded with increased lipid content and a more differentiated gene expression profile. These human xenograft models may facilitate liposarcoma research and accelerate the generation of readily translatable preclinical data that could ultimately influence patient care. PMID:23416162

  13. A novel far-red fluorescent xenograft model of ovarian carcinoma for preclinical evaluation of HER2-targeted immunotoxins

    PubMed Central

    Zdobnova, Tatiana; Sokolova, Evgeniya; Stremovskiy, Oleg; Karpenko, Dmitry; Telford, William; Turchin, Ilya; Balalaeva, Irina; Deyev, Sergey

    2015-01-01

    We have created a novel fluorescent model of a human ovarian carcinoma xenograft overexpressing receptor HER2, a promising molecular target of solid tumors. The model is based on a newly generated SKOV-kat cell line stably expressing far-red fluorescent protein Katushka. Katushka is most suitable for the in vivo imaging due to an optimal combination of high brightness and emission in the “window of tissue transparency”. The relevance of the fluorescent model for the in vivo monitoring of tumor growth and response to treatment was demonstrated using a newly created HER2-targeted recombinant immunotoxin based on the 4D5scFv antibody and a fragment of the Pseudomonas exotoxin A. PMID:26436696

  14. Establishing prostate cancer patient derived xenografts: lessons learned from older studies.

    PubMed

    Russell, Pamela J; Russell, Peter; Rudduck, Christina; Tse, Brian W C; Williams, Elizabeth D; Raghavan, Derek

    2015-05-01

    Understanding the progression of prostate cancer to androgen-independence/castrate resistance and development of preclinical testing models are important for developing new prostate cancer therapies. This report describes studies performed 30 years ago, which demonstrate utility and shortfalls of xenografting to preclinical modeling. We subcutaneously implanted male nude mice with small prostate cancer fragments from transurethral resection of the prostate (TURP) from 29 patients. Successful xenografts were passaged into new host mice. They were characterized using histology, immunohistochemistry for marker expression, flow cytometry for ploidy status, and in some cases by electron microscopy and response to testosterone. Two xenografts were karyotyped by G-banding. Tissues from 3/29 donors (10%) gave rise to xenografts that were successfully serially passaged in vivo. Two, (UCRU-PR-1, which subsequently was replaced by a mouse fibrosarcoma, and UCRU-PR-2, which combined epithelial and neuroendocrine features) have been described. UCRU-PR-4 line was a poorly differentiated prostatic adenocarcinoma derived from a patient who had undergone estrogen therapy and bilateral castration after his cancer relapsed. Histologically, this comprised diffusely infiltrating small acinar cell carcinoma with more solid aggregates of poorly differentiated adenocarcinoma. The xenografted line showed histology consistent with a poorly differentiated adenocarcinoma and stained positively for prostatic acid phosphatase (PAcP), epithelial membrane antigen (EMA) and the cytokeratin cocktail, CAM5.2, with weak staining for prostate specific antigen (PSA). The line failed to grow in female nude mice. Castration of three male nude mice after xenograft establishment resulted in cessation of growth in one, growth regression in another and transient growth in another, suggesting that some cells had retained androgen sensitivity. The karyotype (from passage 1) was 43-46, XY, dic(1;12)(p11;p11

  15. Establishing Prostate Cancer Patient Derived Xenografts: Lessons Learned From Older Studies

    PubMed Central

    Russell, Pamela J; Russell, Peter; Rudduck, Christina; Tse, Brian W-C; Williams, Elizabeth D; Raghavan, Derek

    2015-01-01

    Background Understanding the progression of prostate cancer to androgen-independence/castrate resistance and development of preclinical testing models are important for developing new prostate cancer therapies. This report describes studies performed 30 years ago, which demonstrate utility and shortfalls of xenografting to preclinical modeling. Methods We subcutaneously implanted male nude mice with small prostate cancer fragments from transurethral resection of the prostate (TURP) from 29 patients. Successful xenografts were passaged into new host mice. They were characterized using histology, immunohistochemistry for marker expression, flow cytometry for ploidy status, and in some cases by electron microscopy and response to testosterone. Two xenografts were karyotyped by G-banding. Results Tissues from 3/29 donors (10%) gave rise to xenografts that were successfully serially passaged in vivo. Two, (UCRU-PR-1, which subsequently was replaced by a mouse fibrosarcoma, and UCRU-PR-2, which combined epithelial and neuroendocrine features) have been described. UCRU-PR-4 line was a poorly differentiated prostatic adenocarcinoma derived from a patient who had undergone estrogen therapy and bilateral castration after his cancer relapsed. Histologically, this comprised diffusely infiltrating small acinar cell carcinoma with more solid aggregates of poorly differentiated adenocarcinoma. The xenografted line showed histology consistent with a poorly differentiated adenocarcinoma and stained positively for prostatic acid phosphatase (PAcP), epithelial membrane antigen (EMA) and the cytokeratin cocktail, CAM5.2, with weak staining for prostate specific antigen (PSA). The line failed to grow in female nude mice. Castration of three male nude mice after xenograft establishment resulted in cessation of growth in one, growth regression in another and transient growth in another, suggesting that some cells had retained androgen sensitivity. The karyotype (from passage 1) was 43

  16. Mek inhibition results in marked antitumor activity against metastatic melanoma patient-derived melanospheres and in melanosphere-generated xenografts

    PubMed Central

    2013-01-01

    One of the key oncogenic pathways involved in melanoma aggressiveness, development and progression is the RAS/BRAF/MEK pathway, whose alterations are found in most patients. These molecular anomalies are promising targets for more effective anti-cancer therapies. Some Mek inhibitors showed promising antitumor activity, although schedules and doses associated with low systemic toxicity need to be defined. In addition, it is now accepted that cancers can arise from and be maintained by the cancer stem cells (CSC) or tumor-initiating cells (TIC), commonly expanded in vitro as tumorspheres from several solid tumors, including melanoma (melanospheres). Here, we investigated the potential targeting of MEK pathway by exploiting highly reliable in vitro and in vivo pre-clinical models of melanomas based on melanospheres, as melanoma initiating cells (MIC) surrogates. MEK inhibition, through PD0325901, provided a successful strategy to affect survival of mutated-BRAF melanospheres and growth of wild type-BRAF melanospheres. A marked citotoxicity was observed in differentated melanoma cells regardless BRAF mutational status. PD0325901 treatment, dramatically inhibited growth of melanosphere-generated xenografts and determined impaired tumor vascularization of both mutated- and wild type-BRAF tumors, in the absence of mice toxicity. These results suggest that MEK inhibition might represent a valid treatment option for patients with both mutated- or wild type-BRAF melanomas, affecting tumor growth through multiple targets. PMID:24238212

  17. Frequent Infection of Human Cancer Xenografts with Murine Endogenous Retroviruses in Vivo

    PubMed Central

    Naseer, Asif; Terry, Anne; Gilroy, Kathryn; Kilbey, Anna; Watts, Ciorsdaidh; Mackay, Nancy; Bell, Margaret; Mason, Susan; Blyth, Karen; Cameron, Ewan; Neil, James C.

    2015-01-01

    Infection of human cancer xenografts in mice with murine leukemia viruses (MLVs) is a long-standing observation, but the likelihood of infection in vivo and its biological consequences are poorly understood. We therefore conducted a prospective study in commonly used xenograft recipient strains. From BALB/c nude mice engrafted with MCF7 human mammary carcinoma cells, we isolated a virus that was virtually identical to Bxv1, a locus encoding replication-competent xenotropic MLV (XMLV). XMLV was detected in 9/17 (53%) independently isolated explants. XMLV was not found in primary leukemias or in THP1 leukemia cells grown in Bxv1-negative NSG (NOD/SCID/γCnull) mice, although MCF7 explants harbored replication-defective MLV proviruses. To assess the significance of infection for xenograft behavior in vivo, we examined changes in growth and global transcription in MCF7 and the highly susceptible Raji Burkitt lymphoma cell line chronically infected with XMLV. Raji cells showed a stronger transcriptional response that included up-regulation of chemokines and effectors of innate antiviral immunity. In conclusion, the risk of de novo XMLV infection of xenografts is high in Bxv1 positive mice, while infection can have positive or negative effects on xenograft growth potential with significant consequences for interpretation of many xenograft studies. PMID:25912714

  18. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor.

    PubMed

    Barrow, Alexander D; Edeling, Melissa A; Trifonov, Vladimir; Luo, Jingqin; Goyal, Piyush; Bohl, Benjamin; Bando, Jennifer K; Kim, Albert H; Walker, John; Andahazy, Mary; Bugatti, Mattia; Melocchi, Laura; Vermi, William; Fremont, Daved H; Cox, Sarah; Cella, Marina; Schmedt, Christian; Colonna, Marco

    2018-01-25

    Many tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRβ signaling. By screening a secretome library, we found that the human immunoreceptor NKp44, encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells, recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of interferon gamma (IFN)-γ and tumor necrosis factor alpha (TNF-α) that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, while cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Citral reduces breast tumor growth by inhibiting the cancer stem cell marker ALDH1A3.

    PubMed

    Thomas, Margaret Lois; de Antueno, Roberto; Coyle, Krysta Mila; Sultan, Mohammad; Cruickshank, Brianne Marie; Giacomantonio, Michael Anthony; Giacomantonio, Carman Anthony; Duncan, Roy; Marcato, Paola

    2016-11-01

    Breast cancer stem cells (CSCs) can be identified by increased Aldefluor fluorescence caused by increased expression of aldehyde dehydrogenase 1A3 (ALDH1A3), as well as ALDH1A1 and ALDH2. In addition to being a CSC marker, ALDH1A3 regulates gene expression via retinoic acid (RA) signaling and plays a key role in the progression and chemotherapy resistance of cancer. Therefore, ALDH1A3 represents a druggable anti-cancer target of interest. Since to date, there are no characterized ALDH1A3 isoform inhibitors, drugs that were previously described as inhibiting the activity of other ALDH isoforms were tested for anti-ALDH1A3 activity. Twelve drugs (3-hydroxy-dl-kynurenine, benomyl, citral, chloral hydrate, cyanamide, daidzin, DEAB, disulfiram, gossypol, kynurenic acid, molinate, and pargyline) were compared for their efficacy in inducing apoptosis and reducing ALDH1A3, ALDH1A1 and ALDH2-associated Aldefluor fluorescence in breast cancer cells. Citral was identified as the best inhibitor of ALDH1A3, reducing the Aldefluor fluorescence in breast cancer cell lines and in a patient-derived tumor xenograft. Nanoparticle encapsulated citral specifically reduced the enhanced tumor growth of MDA-MB-231 cells overexpressing ALDH1A3. To determine the potential mechanisms of citral-mediated tumor growth inhibition, we performed cell proliferation, clonogenic, and gene expression assays. Citral reduced ALDH1A3-mediated colony formation and expression of ALDH1A3-inducible genes. In conclusion, citral is an effective ALDH1A3 inhibitor and is able to block ALDH1A3-mediated breast tumor growth, potentially via blocking its colony forming and gene expression regulation activity. The promise of ALDH1A3 inhibitors as adjuvant therapies for patients with tumors that have a large population of high-ALDH1A3 CSCs is discussed. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  20. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells

    PubMed Central

    Scholler, John; Monslow, James; Avery, Diana; Newick, Kheng; O'Brien, Shaun; Evans, Rebecca A.; Bajor, David J.; Clendenin, Cynthia; Durham, Amy C; Buza, Elizabeth L; Vonderheide, Robert H; June, Carl H

    2015-01-01

    Malignant cells drive the generation of a desmoplastic and immunosuppressive tumor microenvironment. Cancer-associated stromal cells (CASCs) are a heterogeneous population that provides both negative and positive signals for tumor cell growth and metastasis. Fibroblast activation protein (FAP) is a marker of a major subset of CASCs in virtually all carcinomas. Clinically, FAP expression serves as an independent negative prognostic factor for multiple types of human malignancies. Prior studies established that depletion of FAP+ cells inhibits tumor growth by augmenting anti-tumor immunity. However, the potential for immune-independent effects on tumor growth have not been defined. Herein, we demonstrate that FAP+ CASCs are required for maintenance of the provisional tumor stroma since depletion of these cells, by adoptive transfer of FAP-targeted chimeric antigen receptor (CAR) T cells, reduced extracellular matrix proteins and glycosaminoglycans. Adoptive transfer of FAP-CAR T cells also decreased tumor vascular density and restrained growth of desmoplastic human lung cancer xenografts and syngeneic murine pancreatic cancers in an immune-independent fashion. Adoptive transfer of FAP-CAR T cells also restrained autochthonous pancreatic cancer growth. These data distinguish the function of FAP+ CASCs from other CASC subsets and provide support for further development of FAP+ stromal cell-targeted therapies for the treatment of solid tumors. PMID:25979873

  1. Maturation of the developing human fetal prostate in a rodent xenograft model

    PubMed Central

    Saffarini, Camelia M.; McDonnell, Elizabeth V.; Amin, Ali; Spade, Daniel J.; Huse, Susan M.; Kostadinov, Stefan; Hall, Susan J.; Boekelheide, Kim

    2015-01-01

    Background Prostate cancer is the most commonly diagnosed non-skin cancer in men. The etiology of prostate cancer is unknown, although both animal and epidemiologic data suggest that early life exposures to various toxicants, may impact DNA methylation status during development, playing an important role. Methods We have developed a xenograft model to characterize the growth and differentiation of human fetal prostate implants (gestational age 12-24 weeks) that can provide new data on the potential role of early life stressors on prostate cancer. The expression of key immunohistochemical markers responsible for prostate maturation was evaluated, including p63, cytokeratin 18, α-smooth muscle actin, vimentin, caldesmon, Ki-67, prostate specific antigen, estrogen receptor-α, and androgen receptor. Xenografts were separated into epithelial and stromal compartments using laser capture microdissection (LCM), and the DNA methylation status was assessed in >480,000 CpG sites throughout the genome. Results Xenografts demonstrated growth and maturation throughout the 200 days of post-implantation evaluation. DNA methylation profiles of laser capture micro-dissected tissue demonstrated tissue-specific markers clustered by their location in either the epithelium or stroma of human prostate tissue. Differential methylated promoter region CpG-associated gene analysis revealed significantly more stromal than epithelial DNA methylation in the 30 and 90-day xenografts. Functional classification analysis identified CpG-related gene clusters in methylated epithelial and stromal human xenografts. Conclusion This study of human fetal prostate tissue establishes a xenograft model that demonstrates dynamic growth and maturation, allowing for future mechanistic studies of the developmental origins of later life proliferative prostate disease. PMID:24038131

  2. Radiolabeled novel mAb 4G1 for immunoSPECT imaging of EGFRvIII expression in preclinical glioblastoma xenografts.

    PubMed

    Liu, Xujie; Dong, Chengyan; Shi, Jiyun; Ma, Teng; Jin, Zhongxia; Jia, Bing; Liu, Zhaofei; Shen, Li; Wang, Fan

    2017-01-24

    Epidermal growth factor receptor mutant III (EGFRvIII) is exclusively expressed in tumors, such as glioblastoma, breast cancer and hepatocellular carcinoma, but never in normal organs. Increasing evidence suggests that EGFRvIII has clinical significance in glioblastoma prognosis due to its enhanced tumorigenicity and chemo/radio resistance, thus the development of an imaging approach to early detect EGFRvIII expression with high specificity is urgently needed. To illustrate this point, we developed a novel anti-EGFRvIII monoclonal antibody 4G1 through mouse immunization, cell fusion and hybridoma screening and then confirmed its specificity and affinity by a serial of assays. Following biodistribution and small animal single-photon emission computed tomography (SPECT/CT) imaging of 125I-4G1 in EGFRvIII positive/negative tumor-bearing mice were performed and evaluated to verify the tumor accumulation of this radiotracer. The biodistribution indicated that 125I-4G1 showed prominent tumor accumulation at 24 h post-injection, which reached maximums of 11.20 ± 0.75% ID/g and 13.98 ± 0.57% ID/g in F98npEGFRvIII and U87vIII xenografts, respectively. In contrast, 125I-4G1 had lower tumor accumulation in F98npEGFR and U87MG xenografts. Small animal SPECT/CT imaging revealed that 125I-4G1 had a higher tumor uptake in EGFRvIII-positive tumors than that in EGFRvIII-negative tumors. This study demonstrates that radiolabeled 4G1 can serve as a valid probe for the imaging of EGFRvIII expression, and would be valuable into the clinical translation for the diagnosis, prognosis, guiding therapy, and therapeutic efficacy evaluation of tumors.

  3. Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model

    PubMed Central

    Swift, Brenna E.; Williams, Brent A.; Kosaka, Yoko; Wang, Xing-Hua; Medin, Jeffrey A.; Viswanathan, Sowmya; Martinez-Lopez, Joaquin; Keating, Armand

    2012-01-01

    Background Novel therapies capable of targeting drug resistant clonogenic MM cells are required for more effective treatment of multiple myeloma. This study investigates the cytotoxicity of natural killer cell lines against bulk and clonogenic multiple myeloma and evaluates the tumor burden after NK cell therapy in a bioluminescent xenograft mouse model. Design and Methods The cytotoxicity of natural killer cell lines was evaluated against bulk multiple myeloma cell lines using chromium release and flow cytometry cytotoxicity assays. Selected activating receptors on natural killer cells were blocked to determine their role in multiple myeloma recognition. Growth inhibition of clonogenic multiple myeloma cells was assessed in a methylcellulose clonogenic assay in combination with secondary replating to evaluate the self-renewal of residual progenitors after natural killer cell treatment. A bioluminescent mouse model was developed using the human U266 cell line transduced to express green fluorescent protein and luciferase (U266eGFPluc) to monitor disease progression in vivo and assess bone marrow engraftment after intravenous NK-92 cell therapy. Results Three multiple myeloma cell lines were sensitive to NK-92 and KHYG-1 cytotoxicity mediated by NKp30, NKp46, NKG2D and DNAM-1 activating receptors. NK-92 and KHYG-1 demonstrated 2- to 3-fold greater inhibition of clonogenic multiple myeloma growth, compared with killing of the bulk tumor population. In addition, the residual colonies after treatment formed significantly fewer colonies compared to the control in a secondary replating for a cumulative clonogenic inhibition of 89–99% at the 20:1 effector to target ratio. Multiple myeloma tumor burden was reduced by NK-92 in a xenograft mouse model as measured by bioluminescence imaging and reduction in bone marrow engraftment of U266eGFPluc cells by flow cytometry. Conclusions This study demonstrates that NK-92 and KHYG-1 are capable of killing clonogenic and bulk

  4. Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model.

    PubMed

    Swift, Brenna E; Williams, Brent A; Kosaka, Yoko; Wang, Xing-Hua; Medin, Jeffrey A; Viswanathan, Sowmya; Martinez-Lopez, Joaquin; Keating, Armand

    2012-07-01

    Novel therapies capable of targeting drug resistant clonogenic MM cells are required for more effective treatment of multiple myeloma. This study investigates the cytotoxicity of natural killer cell lines against bulk and clonogenic multiple myeloma and evaluates the tumor burden after NK cell therapy in a bioluminescent xenograft mouse model. The cytotoxicity of natural killer cell lines was evaluated against bulk multiple myeloma cell lines using chromium release and flow cytometry cytotoxicity assays. Selected activating receptors on natural killer cells were blocked to determine their role in multiple myeloma recognition. Growth inhibition of clonogenic multiple myeloma cells was assessed in a methylcellulose clonogenic assay in combination with secondary replating to evaluate the self-renewal of residual progenitors after natural killer cell treatment. A bioluminescent mouse model was developed using the human U266 cell line transduced to express green fluorescent protein and luciferase (U266eGFPluc) to monitor disease progression in vivo and assess bone marrow engraftment after intravenous NK-92 cell therapy. Three multiple myeloma cell lines were sensitive to NK-92 and KHYG-1 cytotoxicity mediated by NKp30, NKp46, NKG2D and DNAM-1 activating receptors. NK-92 and KHYG-1 demonstrated 2- to 3-fold greater inhibition of clonogenic multiple myeloma growth, compared with killing of the bulk tumor population. In addition, the residual colonies after treatment formed significantly fewer colonies compared to the control in a secondary replating for a cumulative clonogenic inhibition of 89-99% at the 20:1 effector to target ratio. Multiple myeloma tumor burden was reduced by NK-92 in a xenograft mouse model as measured by bioluminescence imaging and reduction in bone marrow engraftment of U266eGFPluc cells by flow cytometry. This study demonstrates that NK-92 and KHYG-1 are capable of killing clonogenic and bulk multiple myeloma cells. In addition, multiple myeloma

  5. Nanofitin as a New Molecular-Imaging Agent for the Diagnosis of Epidermal Growth Factor Receptor Over-Expressing Tumors.

    PubMed

    Goux, Marine; Becker, Guillaume; Gorré, Harmony; Dammicco, Sylvestre; Desselle, Ariane; Egrise, Dominique; Leroi, Natacha; Lallemand, François; Bahri, Mohamed Ali; Doumont, Gilles; Plenevaux, Alain; Cinier, Mathieu; Luxen, André

    2017-09-20

    Epidermal growth-factor receptor (EGFR) is involved in cell growth and proliferation and is over-expressed in malignant tissues. Although anti-EGFR-based immunotherapy became a standard of care for patients with EGFR-positive tumors, this strategy of addressing cancer tumors by targeting EGFR with monoclonal antibodies is less-developed for patient diagnostic and monitoring. Indeed, antibodies exhibit a slow blood clearance, which is detrimental for positron emission tomography (PET) imaging. New molecular probes are proposed to overcome such limitations for patient monitoring, making use of low-molecular-weight protein scaffolds as alternatives to antibodies, such as Nanofitins with better pharmacokinetic profiles. Anti-EGFR Nanofitin B10 was reformatted by genetic engineering to exhibit a unique cysteine moiety at its C-terminus, which allows the development of a fast and site-specific radiolabeling procedure with 18 F-4-fluorobenzamido-N-ethylamino-maleimide ( 18 F-FBEM). The in vivo tumor targeting and imaging profile of the anti-EGFR Cys-B10 Nanofitin was investigated in a double-tumor xenograft model by static small-animal PET at 2 h after tail-vein injection of the radiolabeled Nanofitin 18 F-FBEM-Cys-B10. The image showed that the EGFR-positive tumor (A431) is clearly delineated in comparison to the EGFR-negative tumor (H520) with a significant tumor-to-background contrast. 18 F-FBEM-Cys-B10 demonstrated a significantly higher retention in A431 tumors than in H520 tumors at 2.5 h post-injection with a A431-to-H520 uptake ratio of 2.53 ± 0.18 and a tumor-to-blood ratio of 4.55 ± 0.63. This study provides the first report of Nanofitin scaffold used as a targeted PET radiotracer for in vivo imaging of EGFR-positive tumor, with the anti-EGFR B10 Nanofitin used as proof-of-concept. The fast generation of specific Nanofitins via a fully in vitro selection process, together with the excellent imaging features of the Nanofitin scaffold, could facilitate the

  6. Analysis of MUC4 expression in human pancreatic cancer xenografts in immunodeficient mice.

    PubMed

    Ansari, Daniel; Bauden, Monika P; Sasor, Agata; Gundewar, Chinmay; Andersson, Roland

    2014-08-01

    Mucin 4 (MUC4) is a cell surface glycoprotein that is overexpressed in most pancreatic tumors. The aim of the present study was to characterize MUC4 expression in experimental pancreatic cancer in order to clarify the correlation between MUC4 and pancreatic cancer histology in vivo. Pancreatic xenograft tumors were generated in immunodeficient mice (n=15) by subcutaneous injection of MUC4(+) human pancreatic cancer cell lines Capan-1, HPAF-II or CD18/HPAF. MUC4 immunoreactivity was compared between the cancer models. Alpha-smooth muscle actin (α-SMA) was used to identify cancer-associated fibroblasts and the amount of collagen fibers was quantified with sirius red. Tumor incidence was 100%. Tumor size showed no difference across groups (p=0.796). The median MUC4 count was highest in Capan-1 tumors (p=0.002). α-SMA and collagen extent were also highest in Capan-1 tumors (p=0.018). The Capan-1 xenograft model could serve as a valuable resource to test new therapeutic strategies targeting MUC4 in pancreatic cancer. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. [Lentiviral vector-mediated short hairpin RNA targeting survivin inhibits abdominal growth of human endometrium xenograft in nude mice].

    PubMed

    Peng, Dongxian; He, Yuanli

    2015-02-01

    To investigate the inhibitory effect of lentiviral vector-mediated short hairpin RNA targeting survivin (LV-survivin shRNA) on the growth of human endometrium xenograft in the abdominal cavity of nude mice. The endometrium xenografts from 8 women with endometriosis were injected into the peritoneal cavities of 45 nude mice. The mice were then randomly assigned to receive intraperitoneal injection of LV-survivin shRNA, pGCL-NC-GFP (negative control) or PBS (blank control). Two weeks later, the number and morphometry of endometriotic lesions were quantified and the expression of survivin protein were detected by immunohistochemistry. The formation of endometriotic lesions was significantly suppressed in mice receiving LV-survivin shRNA injection as compared with those in the two control groups (P/0.001). The mice in LV-survivin-shRNA group showed significantly down-regulated expression levels of survivin protein compared with those in the negative and blank control groups, presenting also necrosis in the endometriosis-like lesions in microscopic observation. Lentiviral vector-mediated shRNA can effectively inhibit the expression of survivin in human endometrium xengrafts and suppress the formation and growth of endometriotic lesions in the abdominal cavities of nude mice.

  8. Maintenance Treatment with Cetuximab and BAY86-9766 Increases Antitumor Efficacy of Irinotecan plus Cetuximab in Human Colorectal Cancer Xenograft Models.

    PubMed

    Troiani, Teresa; Napolitano, Stefania; Martini, Giulia; Martinelli, Erika; Cardone, Claudia; Normanno, Nicola; Vitagliano, Donata; Morgillo, Floriana; Fenizia, Francesca; Lambiase, Matilde; Formisano, Luigi; Bianco, Roberto; Ciardiello, Davide; Ciardiello, Fortunato

    2015-09-15

    The use of cetuximab in the treatment of metastatic colorectal cancer is limited by development of resistance. We have investigated in three models of highly epidermal growth factor receptor (EGFR)-dependent colorectal cancer xenografts, the effect of maintenance therapy with different kinase inhibitors alone or in combination with cetuximab, after cytotoxic treatment induction with irinotecan plus cetuximab. SW48, LIM 1215, and GEO colorectal cancer cell lines were engrafted into nude mice and treated for 3 weeks with irinotecan and/or cetuximab. The combined treatment induced a significant reduction of tumor size. A subsequent experiment was performed in all three xenograft models in which after an induction treatment with irinotecan plus cetuximab, mice were randomly assigned to one of the following treatments: control, cetuximab, regorafenib, a selective PIK3CA inhibitor (PIK3CAi), a selective MEK inhibitor (MEKi), and/or the combination of each inhibitor with cetuximab. The cetuximab plus MEKi treatment determined the best antitumor activity with suppression of tumor growth. This effect was prolonged for 13 to 15 weeks after cessation of therapy and was accompanied by prolonged survival. Antitumor activity was accompanied by inhibition of the MAPK and MEK pathways. Moreover, in the cetuximab plus MEKi-treated SW48 xenograft group, KRAS mutations as a mechanism of acquired resistance were detected in 25% of cases compared with 75% KRAS mutations in the MEKi-treated group. A possible strategy to prevent and/or overcome resistance to anti-EGFR inhibitors in metastatic colorectal cancer is a maintenance therapy with cetuximab plus MEKi after an initial treatment with irinotecan plus cetuximab. ©2015 American Association for Cancer Research.

  9. Silymarin suppressed lung cancer growth in mice via inhibiting myeloid-derived suppressor cells.

    PubMed

    Wu, Tiancong; Liu, Wen; Guo, Wenjie; Zhu, Xixu

    2016-07-01

    In this study, we investigated the antitumor activity of Silymarin in a mouse model of colon cancer xenograft of Lewis lung cancer (LLC) cells. Silymarin significantly suppressed tumor growth and induced apoptosis of cells in tumor tissues at a dose of 25 and 50mg/kg. Silymarin treatment enhanced the infiltration and function of CD8(+) T cells. In the meantime, Silymarin decreased the level of IL-10 while elevated the level of IL-2 and IFN-γ in the serum of tumor-bearing mice. Finally, Silymarin reduced the proportion of myeloid-derived suppressor cells (MDSC) in the tumor tissue and also the mRNA expressions of inducible nitric oxide synthases-2 (iNOS2), arginase-1 (Arg-1) and MMP9, which indicated that the function of MDSC in tumor tissues were suppressed. Altogether, our data here showed that Silymarin inhibited the MDSC and promoted the infiltration and function of CD8(+) T cells thus suppressed the growth of LLC xenografts, which provides evidence for the possible use of Silymarin against lung cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Establishment and characterization of a human papillomavirus type 16-positive tonsillar carcinoma xenograft in BALB/c nude mice.

    PubMed

    Letsolo, Boitelo T; Faust, Helena; Ekblad, Lars; Wennerberg, Johan; Forslund, Ola

    2016-03-01

    Among head and neck cancers, human papillomavirus type 16 (HPV16) is associated with tonsillar carcinomas. Despite this, no HPV16-positive tonsillar cancer cell line has been established in nude mice. Fresh tonsillar carcinoma biopsies were obtained from 23 patients and implanted subcutaneously into nude mice (BALB/c, nu/nu). After 7 months, one xenograft was established. The primary tumor harbored 2.7 copies (95% confidence interval = 2.4-2.9) of HPV16/cell and displayed 99.9% (7904/7906) nucleotide identity to HPV16 (EU118173.1). The xenograft showed increased methylation in two E2-binding sites of the HPV16 genome. Both episomal and integrated HPV16 were detected in the original tumor and in 14 xenografts from the second passage. From this passage, a viral load of 6.4 copies/cell (range = 4.6-9.6) and 3.7 (range = 1.0-5.5) E7-mRNA transcripts/HPV16-genome were detected. This xenograft represents the first established HPV16-positive tonsillar tumor in nude mice and could provide an experimental system of HPV16-positive tonsillar cancers. © 2015 Wiley Periodicals, Inc.

  11. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wei; Chai, Hongyan; Li, Ying

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressingmore » cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP

  12. In vivo preservation of steroid specificity in CWR22 xenografts having a mutated androgen receptor.

    PubMed

    Shao, Tsang C; Li, Huiling; Eid, Wael; Ittmann, Michael; Unni, Emmanual; Cunningham, Glenn R

    2003-09-15

    In vitro studies of CWR22 tumor cells lack steroid specificity. We sought to determine if CWR22 xenografts also lack steroid specificity. We injected castrated nude mice with CWR22 tumor cells (6 x 10(6) cells) and implanted Alzet osmotic pumps that delivered approximately 1 mg steroid/kg body weight/day. Serum PSA levels were detectable in intact mice and castrated mice treated with testosterone (T), but not in those treated with estradiol (E(2)), progesterone (P), or flutamide (F). T maintained mean tumor weight similar to that in intact mice (P = NS). We observed no tumors in castrated mice or mice treated with E(2), P, or F, and tumor histology was consistent with weights. The mutation of the androgen receptor (H874Y) that occurs in the CWR22 xenograft model of human prostate cancer does not significantly affect in vivo steroid specificity for E(2), P, or F. Copyright 2003 Wiley-Liss, Inc.

  13. Information dynamics in carcinogenesis and tumor growth.

    PubMed

    Gatenby, Robert A; Frieden, B Roy

    2004-12-21

    The storage and transmission of information is vital to the function of normal and transformed cells. We use methods from information theory and Monte Carlo theory to analyze the role of information in carcinogenesis. Our analysis demonstrates that, during somatic evolution of the malignant phenotype, the accumulation of genomic mutations degrades intracellular information. However, the degradation is constrained by the Darwinian somatic ecology in which mutant clones proliferate only when the mutation confers a selective growth advantage. In that environment, genes that normally decrease cellular proliferation, such as tumor suppressor or differentiation genes, suffer maximum information degradation. Conversely, those that increase proliferation, such as oncogenes, are conserved or exhibit only gain of function mutations. These constraints shield most cellular populations from catastrophic mutator-induced loss of the transmembrane entropy gradient and, therefore, cell death. The dynamics of constrained information degradation during carcinogenesis cause the tumor genome to asymptotically approach a minimum information state that is manifested clinically as dedifferentiation and unconstrained proliferation. Extreme physical information (EPI) theory demonstrates that altered information flow from cancer cells to their environment will manifest in-vivo as power law tumor growth with an exponent of size 1.62. This prediction is based only on the assumption that tumor cells are at an absolute information minimum and are capable of "free field" growth that is, they are unconstrained by external biological parameters. The prediction agrees remarkably well with several studies demonstrating power law growth in small human breast cancers with an exponent of 1.72+/-0.24. This successful derivation of an analytic expression for cancer growth from EPI alone supports the conceptual model that carcinogenesis is a process of constrained information degradation and that malignant

  14. Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI

    NASA Astrophysics Data System (ADS)

    Pei, Linmin; Reza, Syed M. S.; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M.

    2017-03-01

    In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. To model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.

  15. Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI.

    PubMed

    Pei, Linmin; Reza, Syed M S; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M

    2017-02-11

    In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. In order to model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.

  16. Tumor-Promoting Desmoplasia Is Disrupted by Depleting FAP-Expressing Stromal Cells.

    PubMed

    Lo, Albert; Wang, Liang-Chuan S; Scholler, John; Monslow, James; Avery, Diana; Newick, Kheng; O'Brien, Shaun; Evans, Rebecca A; Bajor, David J; Clendenin, Cynthia; Durham, Amy C; Buza, Elizabeth L; Vonderheide, Robert H; June, Carl H; Albelda, Steven M; Puré, Ellen

    2015-07-15

    Malignant cells drive the generation of a desmoplastic and immunosuppressive tumor microenvironment. Cancer-associated stromal cells (CASC) are a heterogeneous population that provides both negative and positive signals for tumor cell growth and metastasis. Fibroblast activation protein (FAP) is a marker of a major subset of CASCs in virtually all carcinomas. Clinically, FAP expression serves as an independent negative prognostic factor for multiple types of human malignancies. Prior studies established that depletion of FAP(+) cells inhibits tumor growth by augmenting antitumor immunity. However, the potential for immune-independent effects on tumor growth have not been defined. Herein, we demonstrate that FAP(+) CASCs are required for maintenance of the provisional tumor stroma because depletion of these cells, by adoptive transfer of FAP-targeted chimeric antigen receptor (CAR) T cells, reduced extracellular matrix proteins and glycosaminoglycans. Adoptive transfer of FAP-CAR T cells also decreased tumor vascular density and restrained growth of desmoplastic human lung cancer xenografts and syngeneic murine pancreatic cancers in an immune-independent fashion. Adoptive transfer of FAP-CAR T cells also restrained autochthonous pancreatic cancer growth. These data distinguish the function of FAP(+) CASCs from other CASC subsets and provide support for further development of FAP(+) stromal cell-targeted therapies for the treatment of solid tumors. ©2015 American Association for Cancer Research.

  17. Molecular and functional characterization of tumor-induced factor (TIF): Hamster homolog of CXCL3 (GROγ) displays tumor suppressive activity.

    PubMed

    Jin, Lili; Li, Zhou-Fang; Wang, Da-Kui; Sun, Meina; Qi, Wei; Ma, Qiang; Zhang, Li; Chu, Chun; Chan, Elaine Y M; Lee, Susanna S T; Wise, Helen; To, Ka-Fai; Shi, Ying; Zhou, Naiming; Cheung, Wing-Tai

    2018-02-01

    Previously our lab has created a mouse ovarian xenograft model of copy number variation (CNV)-mediated G protein-coupled receptor (GPCR) MAS-driven tumorigenesis, and RNA profiling identified a putative chemokine tumor-induced factor (Tif). Sequence analysis and chemotactic study suggested that Tif was likely to be a hamster homolog of human GROγ (CXCL3) [IJC 125 (2009): 1316-1327]. In the present study, we report the molecular and functional characterization of the Tif gene. Genomic study of CHO-K1 cells indicated that Tif gene consisted of 4 exons, characterized with an antisense B1 element which is embedded in the fourth exon. Two Tif transcripts were identified which shared identical sequences except that a string of 71-nt derived from the antisense B1 element was deficient in the shorter transcript. Of interests, B1-like RNA ladder was detected in xenografts. Functional studies showed that TIF induced chemotaxis and neovessel formation. Pharmacological studies suggested that TIF activated Gi-coupled CXCR2 and induced both calcium mobilization and ERK1/2 phosphorylation, and suppressed forskolin-stimulated cAMP accumulation. In addition, secreted matured TIF functioned as an autocrine factor and promoted anchorage-independent growth. Unexpectedly, TIF delayed the onset of tumor formation, possibly via suppressing proliferation of stromal fibroblasts. However, TIF did not exert any inhibitory effect on tumor growth. Potentially, TIF could be used for preventing cancer relapse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation of the effects of hyaluronic acid-carboxymethyl cellulose barrier on ovarian tumor progression

    PubMed Central

    2014-01-01

    Background Hyaluronic acid is a prognostic factor in ovarian cancers. It is also a component of Hyaluronic Acid-Carboxymethyl Cellulose (HA-CMC) barrier, an anti-adhesion membrane widely used during abdominal surgeries in particular for ovarian carcinosis. 70% of patients who undergo ovarian surgery will relapse due to the persistence of cancer cells. This study’s objective was to determine the oncological risk from use of this material, in the presence of residual disease, despite the benefit gained by it decreasing post-surgical adhesions in order to provide an unambiguous assessment of its appropriateness for use in ovarian surgical management. Methods We assessed the effects of HA-CMC barrier on the in vitro proliferation of human ovarian tumor cell lines (OVCAR-3, IGROV-1 and SKOV-3). We next evaluated, in vivo in nude mice, the capacity of this biomaterial to regulate the tumor progression of subcutaneous and intraperitoneal models of ovarian tumor xenografts. Results We showed that HA-CMC barrier does not increase in vitro proliferation of ovarian cancer cell lines compared to control. In vivo, HA-CMC barrier presence with subcutaneous xenografts induced neither an increase in tumor volume nor cell proliferation (Ki67 and mitotic index). With the exception of an increased murine carcinosis score in peritoneum, the presence of HA-CMC barrier with intraperitoneal xenografts modified neither macro nor microscopic tumor growth. Finally, protein analysis of survival (Akt), proliferation (ERK) and adhesion (FAK) pathways highlighted no activation on the xenografts imputable to HA-CMC barrier. Conclusions For the most part, our results support the lack of tumor progression activation due to HA-CMC barrier. We conclude that the benefits gained from using HA-CMC barrier membrane during ovarian cancer surgeries seem to outweigh the potential oncological risks. PMID:24739440

  19. Altering calcium influx for selective destruction of breast tumor.

    PubMed

    Yu, Han-Gang; McLaughlin, Sarah; Newman, Mackenzie; Brundage, Kathleen; Ammer, Amanda; Martin, Karen; Coad, James

    2017-03-04

    Human triple-negative breast cancer has limited therapeutic choices. Breast tumor cells have depolarized plasma membrane potential. Using this unique electrical property, we aim to develop an effective selective killing of triple-negative breast cancer. We used an engineered L-type voltage-gated calcium channel (Cec), activated by membrane depolarization without inactivation, to induce excessive calcium influx in breast tumor cells. Patch clamp and flow cytometry were used in testing the killing selectivity and efficiency of human breast tumor cells in vitro. Bioluminescence and ultrasound imaging were used in studies of human triple-negative breast cancer cell MDA-MB-231 xenograft in mice. Histological staining, immunoblotting and immunohistochemistry were used to investigate mechanism that mediates Cec-induced cell death. Activating Cec channels expressed in human breast cancer MCF7 cells produced enormous calcium influx at depolarized membrane. Activating the wild-type Cav1.2 channels expressed in MCF7 cells also produced a large calcium influx at depolarized membrane, but this calcium influx was diminished at the sustained membrane depolarization due to channel inactivation. MCF7 cells expressing Cec died when the membrane potential was held at -10 mV for 1 hr, while non-Cec-expressing MCF7 cells were alive. MCF7 cell death was 8-fold higher in Cec-expressing cells than in non-Cec-expressing cells. Direct injection of lentivirus containing Cec into MDA-MB-231 xenograft in mice inhibited tumor growth. Activated caspase-3 protein was detected only in MDA-MB-231 cells expressing Cec, along with a significantly increased expression of activated caspase-3 in xenograft tumor treated with Cec. We demonstrated a novel strategy to induce constant calcium influx that selectively kills human triple-negative breast tumor cells.

  20. Novel dedifferentiated liposarcoma xenograft models reveal PTEN down-regulation as a malignant signature and response to PI3K pathway inhibition.

    PubMed

    Smith, Kathleen B; Tran, Linh M; Tam, Brenna M; Shurell, Elizabeth M; Li, Yunfeng; Braas, Daniel; Tap, William D; Christofk, Heather R; Dry, Sarah M; Eilber, Fritz C; Wu, Hong

    2013-04-01

    Liposarcoma is a type of soft tissue sarcoma that exhibits poor survival and a high recurrence rate. Treatment is generally limited to surgery and radiation, which emphasizes the need for better understanding of this disease. Because very few in vivo and in vitro models can reproducibly recapitulate the human disease, we generated several xenograft models from surgically resected human dedifferentiated liposarcoma. All xenografts recapitulated morphological and gene expression characteristics of the patient tumors after continuous in vivo passages. Importantly, xenograftability was directly correlated with disease-specific survival of liposarcoma patients. Thus, the ability for the tumor of a patient to engraft may help identify those patients who will benefit from more aggressive treatment regimens. Gene expression analyses highlighted the association between xenograftability and a unique gene expression signature, including down-regulated PTEN tumor-suppressor gene expression and a progenitor-like phenotype. When treated with the PI3K/AKT/mTOR pathway inhibitor rapamycin alone or in combination with the multikinase inhibitor sorafenib, all xenografts responded with increased lipid content and a more differentiated gene expression profile. These human xenograft models may facilitate liposarcoma research and accelerate the generation of readily translatable preclinical data that could ultimately influence patient care. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.