Science.gov

Sample records for xenon gas mixture

  1. Radiation properties of low-pressure discharges in rare-gas mixtures containing xenon

    NASA Astrophysics Data System (ADS)

    Gortchakov, S.; Uhrlandt, D.

    2005-02-01

    Glow discharges in mixtures of xenon with other rare gases can be used as alternatives to mercury-containing UV/VUV radiation sources and fluorescent lamps. The advantages of such sources are environmental compatibility, instant light output after switching on, and less pronounced temperature dependence. However, the optimum choice of the gas composition with respect to the maximum efficiency and power of the xenon resonance radiation as well as to a stable discharge operation still remains an open question. The dc cylindrical positive column of low-pressure discharges in rare-gas mixtures is studied by a detailed self-consistent kinetic description. The influence of the buffer gases helium, neon and argon as well as the appropriate choice of the xenon admixture are revealed by analysing different triple-gas mixtures. Changes in the global power budget and the radial structure of the plasma are discussed. A mixture of He and about 1-2% Xe arises as an optimum composition.

  2. A Method for Calculating Viscosity and Thermal Conductivity of a Helium-Xenon Gas Mixture

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.

    2006-01-01

    A method for calculating viscosity and thermal conductivity of a helium-xenon (He-Xe) gas mixture was employed, and results were compared to AiResearch (part of Honeywell) analytical data. The method of choice was that presented by Hirschfelder with Singh's third-order correction factor applied to thermal conductivity. Values for viscosity and thermal conductivity were calculated over a temperature range of 400 to 1200 K for He-Xe gas mixture molecular weights of 20.183, 39.94, and 83.8 kg/kmol. First-order values for both transport properties were in good agreement with AiResearch analytical data. Third-order-corrected thermal conductivity values were all greater than AiResearch data, but were considered to be a better approximation of thermal conductivity because higher-order effects of mass and temperature were taken into consideration. Viscosity, conductivity, and Prandtl number were then compared to experimental data presented by Taylor.

  3. LASER APPLICATIONS AND OTHER TOPICS IN LASER TECHNOLOGY: Xenon and hydrogen gas mixtures as laser active media

    NASA Astrophysics Data System (ADS)

    Zuev, V. S.; Kanaev, A. V.; Mikheev, L. D.

    1988-08-01

    It is suggested that gaseous mixtures of xenon and molecular hydrogen may be used as active media of Xe2 (172 nm) and XeH ( ~ 250 nm) photochemical lasers. By adding more than 3 Torr of hydrogen to xenon, amplification can be achieved in the 172 nm range as a result of quenching of the 1u/0u- absorbing state under optical pumping conditions. The hydrogen atoms produced by the quenching process can be utilized to populate XeH* by three-body recombination with Xe* ( 3P1/2) atoms.

  4. Preliminary performance of a 4.97-inch radial turbine operating in a Brayton power system with a helium-xenon gas mixture

    NASA Technical Reports Server (NTRS)

    Leroy, M. J., Jr.; Ream, L. W.; Curreri, J. S.

    1971-01-01

    The performance characteristics of the Brayton-rotating-unit's 4.97-inch radial turbine were investigated with the turbine part of a power conversion system. The following system parameters were varied: turbine inlet temperature from 1200 to 1600 F, compressor inlet temperature from 60 to 120 F, compressor outlet pressure from 20 to 45 psia, and shaft speed from 90-110 percent of rated speed (36000 rpm). The working fluid of the system was a gas mixture of helium-xenon with a nominal molecular weight of 83.8. Test results indicate that changes in system conditions have little effect on the turbine efficiency. At the design turbine inlet temperature of 1600 F and compressor inlet temperature of 80 F, an average turbine efficiency of 91 percent was obtained.

  5. Absorption spectroscopy of xenon and ethylene-noble gas mixtures at high pressure: towards Bose-Einstein condensation of vacuum ultraviolet photons

    NASA Astrophysics Data System (ADS)

    Wahl, Christian; Brausemann, Rudolf; Schmitt, Julian; Vewinger, Frank; Christopoulos, Stavros; Weitz, Martin

    2016-12-01

    Bose-Einstein condensation is a phenomenon well known for material particles as cold atomic gases, and this concept has in recent years been extended to photons confined in microscopic optical cavities. Essential for the operation of such a photon condensate is a thermalization mechanism that conserves the average particle number, as in the visible spectral regime can be realized by subsequent absorption re-emission processes in dye molecules. Here we report on the status of an experimental effort aiming at the extension of the concept of Bose-Einstein condensation of photons towards the vacuum ultraviolet spectral regime, with gases at high-pressure conditions serving as a thermalization medium for the photon gas. We have recorded absorption spectra of xenon gas at up to 30 bar gas pressure of the 5p^6-5p^56s transition with a wavelength close to 147 nm. Moreover, spectra of ethylene noble gas mixtures between 158 and 180 nm wavelength are reported.

  6. Ethane-xenon mixtures under shock conditions

    DOE PAGES

    Magyar, Rudolph J.; Root, Seth; Mattsson, Thomas; ...

    2015-04-22

    Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. In order to validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. Furthermore, themore » DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.« less

  7. Ethane-xenon mixtures under shock conditions

    NASA Astrophysics Data System (ADS)

    Flicker, Dawn; Magyar, Rudolph; Root, Seth; Cochrane, Kyle; Mattsson, Thomas

    2015-06-01

    Mixtures of light and heavy elements arise in inertial confinement fusion and planetary science. We present results on the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT/QMD) at elevated-temperature and pressure is used to obtain the properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate the QMD simulations, we performed high-precision shock compression experiments using Sandia's Z-Machine. A bond tracking analysis of the simulations correlates the sharp rise in the Hugoniot curve with completion of dissociation in ethane. DFT-based simulation results compare well with experimental data and are used to provide insight into the dissociation as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for ethane, Xe-ethane, polymethyl-pentene, and polystyrene, suggesting that a limiting compression exists for C-C bonded systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, Security Administration under contract DE-AC04-94AL85000.

  8. Ethane-xenon mixtures under shock conditions

    SciTech Connect

    Magyar, Rudolph J.; Root, Seth; Mattsson, Thomas; Cochrane, Kyle Robert; Flicker, Dawn G.

    2015-04-22

    Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. In order to validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. Furthermore, the DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.

  9. Scintillation luminescence for high-pressure xenon gas

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Hasebe, N.; Igarashi, T.; Kobayashi, M.-N.; Miyachi, T.; Miyajima, M.; Okada, H.; Okudaira, O.; Tezuka, C.; Yokoyama, E.; Doke, T.; Shibamura, E.; Dmitrenko, V. V.; Ulin, S. E.; Vlasik, K. F.

    2004-09-01

    Scintillation and ionization yields in xenon gas for 5.49MeV alpha-particles were measured in the range of pressure from 0.35 to 3.7MPa and the electric field strength (E) over the number density of xenon atoms (N), E/N from 0 to 5×10-18Vcm2. When our data are normalized at the data point measured by Saito et al., the number of scintillation photons is 2.3×105 while the number of ionization electrons is 2.0×105 at 2.6MPa and at 3.7×10-18Vcm2. The scintillation and ionization yields of xenon doped with 0.2% hydrogen, High-Pressure Xenon gas[H2-0.2%], at 2.6MPa was also measured. Scintillation yield of the Xe-H2 mixture gas is 80% as high as that of pure xenon. It is found that the scintillation yield is luminous enough to generate a trigger pulse of the high-pressure xenon time projection chamber, which is expected as a promising MeV Compton gamma-ray camera.

  10. A xenon gas purity monitor for EXO

    NASA Astrophysics Data System (ADS)

    Dobi, A.; Hall, C.; Herrin, S.; Odian, A.; Prescott, C. Y.; Rowson, P. C.; Ackerman, N.; Aharmin, B.; Auger, M.; Barbeau, P. S.; Barry, K.; Benitez-Medina, C.; Breidenbach, M.; Cook, S.; Counts, I.; Daniels, T.; DeVoe, R.; Dolinski, M. J.; Donato, K.; Fairbank, W.; Farine, J.; Giroux, G.; Gornea, R.; Graham, K.; Gratta, G.; Green, M.; Hagemann, C.; Hall, K.; Hallman, D.; Hargrove, C.; Karelin, A.; Kaufman, L. J.; Kuchenkov, A.; Kumar, K.; Lacey, J.; Leonard, D. S.; LePort, F.; Mackay, D.; MacLellan, R.; Mong, B.; Montero Díez, M.; Müller, A. R.; Neilson, R.; Niner, E.; O'Sullivan, K.; Piepke, A.; Pocar, A.; Pushkin, K.; Rollin, E.; Sinclair, D.; Slutsky, S.; Stekhanov, V.; Twelker, K.; Voskanian, N.; Vuilleumier, J.-L.; Wichoski, U.; Wodin, J.; Yang, L.; Yen, Y.-R.

    2011-12-01

    We discuss the design, operation, and calibration of two versions of a xenon gas purity monitor (GPM) developed for the EXO double beta decay program. The devices are sensitive to concentrations of oxygen well below 1 ppb at an ambient gas pressure of one atmosphere or more. The theory of operation of the GPM is discussed along with the interactions of oxygen and other impurities with the GPM's tungsten filament. Lab tests and experiences in commissioning the EXO-200 double beta decay experiment are described. These devices can also be used on other noble gases.

  11. The use of inert gas xenon for cryopreservation of leukocytes.

    PubMed

    Laptev, D S; Polezhaeva, T V; Zaitseva, O O; Khudyakov, A N; Solomina, O N; Utemov, S V

    2014-06-01

    We studied the possibility of cryopreservation of human blood nuclear cells under protection with inert gas xenon. A method for inducing clathrate anabiosis of leukocytes was developed that preserved the cells for practical use in biology and medicine.

  12. Radon depletion in xenon boil-off gas

    NASA Astrophysics Data System (ADS)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T. Marrodán; Simgen, H.

    2017-03-01

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of ^{222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of ≳ 4 for the ^{222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α -detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10^{-15} mol/mol level.

  13. Review of Helium and Xenon Pure Component and Mixture Transport Properties and Recommendation of Estimating Approach for Project Prometheus (Viscosity and Thermal Conductivity)

    NASA Astrophysics Data System (ADS)

    Haire, Melissa A.; Vargo, David D.

    2007-01-01

    The selected configuration for the Project Prometheus Space Nuclear Power Plant was a direct coupling of Brayton energy conversion loop(s) to a single reactor heat source through the gas coolant/working fluid. A mixture of helium (He) and xenon (Xe) gas was assumed as the coolant/working fluid. Helium has superior thermal conductivity while xenon is added to increase the gas atomic weight to benefit turbomachinery design. Both elements have the advantage of being non-reactive. HeXe transport properties (viscosity and thermal conductivity) were needed to calculate pressure drops and heat transfer rates. HeXe mixture data are limited, necessitating the use of semi-empirical correlations to calculate mixture properties. Several approaches are available. Pure component properties are generally required in the mixture calculations. While analytical methods are available to estimate pure component properties, adequate helium and xenon pure component data are available. This paper compares the sources of pure component data and the approaches to calculate mixture properties. Calculated mixture properties are compared to the limited mixture data and approaches are recommended to calculate both pure component and mixture properties. Given the limited quantity of HeXe mixture data (all at one atmosphere), additional testing may have been required for Project Prometheus to augment the existing data and confirm the selection of mixture property calculation methods.

  14. Review of Helium and Xenon Pure Component and Mixture Transport Properties and Recommendation of Estimating Approach for Project Prometheus (Viscosity and Thermal Conductivity)

    SciTech Connect

    Haire, Melissa A.; Vargo, David D.

    2007-01-30

    The selected configuration for the Project Prometheus Space Nuclear Power Plant was a direct coupling of Brayton energy conversion loop(s) to a single reactor heat source through the gas coolant/working fluid. A mixture of helium (He) and xenon (Xe) gas was assumed as the coolant/working fluid. Helium has superior thermal conductivity while xenon is added to increase the gas atomic weight to benefit turbomachinery design. Both elements have the advantage of being non-reactive. HeXe transport properties (viscosity and thermal conductivity) were needed to calculate pressure drops and heat transfer rates. HeXe mixture data are limited, necessitating the use of semi-empirical correlations to calculate mixture properties. Several approaches are available. Pure component properties are generally required in the mixture calculations. While analytical methods are available to estimate pure component properties, adequate helium and xenon pure component data are available. This paper compares the sources of pure component data and the approaches to calculate mixture properties. Calculated mixture properties are compared to the limited mixture data and approaches are recommended to calculate both pure component and mixture properties. Given the limited quantity of HeXe mixture data (all at one atmosphere), additional testing may have been required for Project Prometheus to augment the existing data and confirm the selection of mixture property calculation methods.

  15. Diffusion NMR methods applied to xenon gas for materials study

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

  16. Mobility and fluorescence of barium ions in xenon gas for the exo experiment

    NASA Astrophysics Data System (ADS)

    Benitez Medina, Julio Cesar

    The Enriched Xenon Observatory (EXO) is an experiment which aims to observe the neutrinoless double beta decay of 136Xe. The measurement of this decay would give information about the absolute neutrino mass and whether or not the neutrino is its own antiparticle. Since this is a very rare decay, the ability to reject background events by detecting the barium ion daughter from the double beta decay would be a major advantage. EXO is currently operating a detector with 200 kg of enriched liquid xenon, and there are plans to build a ton scale xenon detector. Measurements of the purity of liquid xenon in our liquid xenon test cell are reported. These results are relevant to the research on detection of single barium ions by our research group at Colorado State University. Details of the operation of the purity monitor are described. The effects of using a purifier, recirculation and laser ablation on the purity of liquid xenon are discussed. Mobility measurements of barium in xenon gas are reported for the first time. The variation of mobility with xenon gas pressure suggests that a significant fraction of molecular ions are formed when barium ions interact with xenon gas at high pressures. The measured mobility of Ba+ in Xe gas at different pressures is compared with the predicted theoretical value, and deviations are explained by a model that describes the fraction of molecular ions in Xe gas as a function of pressure. The results are useful for the analysis of experiments of fluorescence of Ba+ in xenon gas. It is also important to know the mobility of the ions in order to calculate the time they interact with an excitation laser in fluorescence experiments and in proposed 136 Ba+ daughter detection schemes. This thesis presents results of detection of laser induced fluorescence of Ba+ ions in Xe gas. Measurements of the pressure broadening of the excitation spectra of Ba+ in xenon gas are presented. Nonradiative decays due to gas collisions and optical pumping

  17. Characteristics of a high pressure gas proportional counter filled with xenon

    NASA Technical Reports Server (NTRS)

    Sakurai, H.; Ramsey, B. D.

    1991-01-01

    The characteristics of a conventional cylindrical geometry proportional counter filled with high pressure xenon gas up to 10 atm. were fundamentally investigated for use as a detector in hard X-ray astronomy. With a 2 percent methane gas mixture the energy resolutions at 10 atm. were 9.8 percent and 7.3 percent for 22 keV and 60 keV X-rays, respectively. From calculations of the Townsend ionization coefficient, it is shown that proportional counters at high pressure operate at weaker reduced electric field than low pressure counters. The characteristics of a parallel grid proportional counter at low pressure showed similar pressure dependence. It is suggested that this is the fundamental reason for the degradation of resolution observed with increasing pressure.

  18. Analgesic Effect of Xenon in Rat Model of Inflammatory Pain.

    PubMed

    Kukushkin, M L; Igon'kina, S I; Potapov, S V; Potapov, A V

    2017-02-01

    The analgesic effects of inert gas xenon were examined on rats. The formalin model of inflammatory pain, tail-flick test, and hot-plate test revealed the antinociceptive effects of subanesthetizing doses of inhalation anesthetic xenon. Inhalation of 50/50 xenon/oxygen mixture moderated the nociceptive responses during acute and tonic phases of inflammatory pain.

  19. [Effects of xenon and krypton-containing breathing mixtures on clinical and biochemical blood indices in animals].

    PubMed

    Kussmaul', A R; Bogacheva, M A; Shkurat, T P; Pavlov, B N

    2007-01-01

    Effects of 24-hr breathing air mixtures containing xenon (XBM) and krypton (KBM) were compared in terms of hormonal status, and blood biochemical indices and morphology in laboratory animals. Some changes observed in blood and hormone indices could be a nonspecific adaptive response. Hence, we should elicit whether these effects are quickly reversible or long. For several indices krypton was a more favorable factor than xenon. However, some of its effects invite to delve into effects of different krypton concentrations on organism.

  20. Human Regional Pulmonary Gas Exchange with Xenon Polarization Transfer (XTC)

    NASA Astrophysics Data System (ADS)

    Muradian, Iga; Butler, James; Hrovat, Mirko; Topulos, George; Hersman, Elizabeth; Ruset, Iulian; Covrig, Silviu; Frederick, Eric; Ketel, Stephen; Hersman, F. W.; Patz, Samuel

    2007-03-01

    Xenon Transfer Contrast (XTC) is an existing imaging method (Ruppert et al, Magn Reson Med, 51:676-687, 2004) that measures the fraction F of ^129Xe magnetization that diffuses from alveolar gas spaces to septal parenchymal tissue in lungs in a specified exchange time. As previously implemented, XTC is a 2-breath method and has been demonstrated in anesthetized animals. To use XTC in humans and to avoid issues associated with obtaining identical gas volumes on subsequent breath-hold experiments as well as precise image registration in post-processing, a single breath XTC method was developed that acquires three consecutive gradient echo images in an 8s acquisition. We report here initial measurements of the mean and variance of F for 5 normal healthy subjects as well as 7 asymptomatic smokers. The experiments were performed at two lung volumes (˜45 and 65% of TLC). We found that both the mean and variance of F increased with smoking history. In comparison, standard pulmonary function tests such as DLCO FEV1 showed no correlation with smoking history.

  1. A technique for administering xenon gas anesthesia during surgical procedures in mice.

    PubMed

    Ruder, Arne Mathias; Schmidt, Michaela; Ludiro, Alessia; Riva, Marco A; Gass, Peter

    2014-11-01

    Carrying out invasive procedures in animals requires the administration of anesthesia. Xenon gas offers advantages as an anesthetic agent compared with other agents, such as its protection of the brain and heart from hypoxia-induced damage. The high cost of xenon gas has limited its use as an anesthetic in animal experiments, however. The authors designed and constructed simple boxes for the induction and maintenance of xenon gas and isoflurane anesthesia in small rodents in order to minimize the amount of xenon gas that is wasted. While using their anesthesia delivery system to anesthetize pregnant mice undergoing caesarean sections, they measured the respiratory rates of the anesthetized mice, the survival of the pups and the percentages of oxygen and carbon dioxide within the system to confirm the system's safety.

  2. Double phase (liquid/gas) xenon scintillation detector for WIMPs direct search

    NASA Astrophysics Data System (ADS)

    Yamashita, M.; Doke, T.; Kikuchi, J.; Suzuki, S.

    2003-10-01

    A double phase (liquid/gas) xenon prototype detector of a 0.3 l active volume for WIMPs direct search has been constructed and tested. Proportional scintillation signals are observed by a multi-wire anode mounted in gas phase after ionization electrons drifted successfully long distance in liquid xenon. Both direct and proportional scintillation were used to discriminate electron recoil from nuclear recoil. Basic performances of the detector and the rejection efficiency of background gamma rays were demonstrated.

  3. Monte Carlo model for electron degradation in xenon gas

    PubMed Central

    Bhardwaj, Anil

    2016-01-01

    We have developed a Monte Carlo model for studying the local degradation of electrons in the energy range 9–10 000 eV in xenon gas. Analytically fitted form of electron impact cross sections for elastic and various inelastic processes are fed as input data to the model. The two-dimensional numerical yield spectrum (NYS), which gives information on the number of energy loss events occurring in a particular energy interval, is obtained as the output of the model. The NYS is fitted analytically, thus obtaining the analytical yield spectrum (AYS). The AYS can be used to calculate electron fluxes, which can be further employed for the calculation of volume production rates. Using the yield spectrum, mean energy per ion pair and efficiencies of inelastic processes are calculated. The value for mean energy per ion pair for Xe is 22 eV at 10 keV. Ionization dominates for incident energies greater than 50 eV and is found to have an efficiency of approximately 65% at 10 keV. The efficiency for the excitation process is approximately 30% at 10 keV. PMID:27118913

  4. AXEL-a high pressure xenon gas TPC for neutrinoless double beta decay search

    NASA Astrophysics Data System (ADS)

    Nakamura, Kiseki; Ichikawa, Atsuko K.; Nakaya, Tsuyoshi; Minamino, Akihiro; Ban, Sei; Yanagita, Saori; Tanaka, Shunsuke; Hirose, Masanori; Sekiya, Hiroyuki; Ueshima, Kota; Miuchi, Kentaro

    2017-02-01

    To search for neutrinoless double beta decay, we have started developing a high pressure xenon gas time projection chamber as the AXEL (A Xenon ElectroLuminescence detector) project since 2014. We proposed a new scheme to measure energy deposit using electroluminescence lights to achieve high energy resolution, large mass and strong background rejection power. Important performances of compositions of our new readout scheme are shown: electric field simulation, VUV sensitivity of MPPC in high pressure gaseous xenon, response of MPPC for large amount of photons. To demonstrate as a whole system, we constructed a small prototype detector using 64 MPPCs filled with 4 bar xenon gas. Result of measurement with a 57Co gamma-ray source are shown.

  5. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  6. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Hunter, Scott R.

    1988-01-01

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches.

  7. Equations of State for Mixtures: Results from DFT Simulations of Xenon/Ethane Mixtures Compared to High Accuracy Validation Experiments on Z

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph

    2013-06-01

    We report a computational and validation study of equation of state (EOS) properties of liquid / dense plasma mixtures of xenon and ethane to explore and to illustrate the physics of the molecular scale mixing of light elements with heavy elements. Accurate EOS models are crucial to achieve high-fidelity hydrodynamics simulations of many high-energy-density phenomena such as inertial confinement fusion and strong shock waves. While the EOS is often tabulated for separate species, the equation of state for arbitrary mixtures is generally not available, requiring properties of the mixture to be approximated by combining physical properties of the pure systems. The main goal of this study is to access how accurate this approximation is under shock conditions. Density functional theory molecular dynamics (DFT-MD) at elevated-temperature and pressure is used to assess the thermodynamics of the xenon-ethane mixture. The simulations are unbiased as to elemental species and therefore provide comparable accuracy when describing total energies, pressures, and other physical properties of mixtures as they do for pure systems. In addition, we have performed shock compression experiments using the Sandia Z-accelerator on pure xenon, ethane, and various mixture ratios thereof. The Hugoniot results are compared to the DFT-MD results and the predictions of different rules for combing EOS tables. The DFT-based simulation results compare well with the experimental points, and it is found that a mixing rule based on pressure equilibration performs reliably well for the mixtures considered. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Physiological response of rats to delivery of helium and xenon: implications for hyperpolarized noble gas imaging

    NASA Technical Reports Server (NTRS)

    Ramirez, M. P.; Sigaloff, K. C.; Kubatina, L. V.; Donahue, M. A.; Venkatesh, A. K.; Albert, M. S.; ALbert, M. S. (Principal Investigator)

    2000-01-01

    The physiological effects of various hyperpolarized helium and xenon MRI-compatible breathing protocols were investigated in 17 Sprague-Dawley rats, by continuous monitoring of blood oxygen saturation, heart rate, EKG, temperature and endotracheal pressure. The protocols included alternating breaths of pure noble gas and oxygen, continuous breaths of pure noble gas, breath-holds of pure noble gas for varying durations, and helium breath-holds preceded by two helium rinses. Alternate-breath protocols up to 128 breaths caused a decrease in oxygen saturation level of less than 5% for either helium or xenon, whereas 16 continuous-breaths caused a 31.5% +/- 2.3% decrease in oxygen saturation for helium and a 30.7% +/- 1. 3% decrease for xenon. Breath-hold protocols up to 25 s did not cause the oxygen saturation to fall below 90% for either of the noble gases. Oxygen saturation values below 90% are considered pathological. At 30 s of breath-hold, the blood oxygen saturation dropped precipitously to 82% +/- 0.6% for helium, and to 76.5% +/- 7. 4% for xenon. Breath-holds longer than 10 s preceded by pre-rinses caused oxygen saturation to drop below 90%. These findings demonstrate the need for standardized noble gas inhalation procedures that have been carefully tested, and for continuous physiological monitoring to ensure the safety of the subject. We find short breath-hold and alternate-breath protocols to be safe procedures for use in hyperpolarized noble gas MRI experiments. Copyright 2000 John Wiley & Sons, Ltd.

  9. Xenon-nitrogen chemistry: gas-phase generation and theoretical investigation of the xenon-difluoronitrenium ion F2N-Xe+.

    PubMed

    Operti, Lorenza; Rabezzana, Roberto; Turco, Francesca; Borocci, Stefano; Giordani, Maria; Grandinetti, Felice

    2011-09-12

    The xenon-difluoronitrenium ion F(2)N-Xe(+) , a novel xenon-nitrogen species, was obtained in the gas phase by the nucleophilic displacement of HF from protonated NF(3) by Xe. According to Møller-Plesset (MP2) and CCSD(T) theoretical calculations, the enthalpy and Gibbs energy changes (ΔH and ΔG) of this process are predicted to be -3 kcal mol(-1) . The conceivable alternative formation of the inserted isomers FN-XeF(+) is instead endothermic by approximately 40-60 kcal mol(-1) and is not attainable under the employed ion-trap mass spectrometric conditions. F(2)N-Xe(+) is theoretically characterized as a weak electrostatic complex between NF(2)(+) and Xe, with a Xe-N bond length of 2.4-2.5 Å, and a dissociation enthalpy and free energy into its constituting fragments of 15 and 8 kcal mol(-1), respectively. F(2)N-Xe(+) is more fragile than the xenon-nitrenium ions (FO(2)S)(2)NXe(+), F(5)SN(H)Xe(+), and F(5)TeN(H)Xe(+) observed in the condensed phase, but it is still stable enough to be observed in the gas phase. Other otherwise elusive xenon-nitrogen species could be obtained under these experimental conditions.

  10. Ternary gas mixture for diffuse discharge switch

    DOEpatents

    Christophorou, Loucas G.; Hunter, Scott R.

    1988-01-01

    A new diffuse discharge gas switch wherein a mixture of gases is used to take advantage of desirable properties of the respective gases. There is a conducting gas, an insulating gas, and a third gas that has low ionization energy resulting in a net increase in the number of electrons available to produce a current.

  11. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    NASA Astrophysics Data System (ADS)

    Chu, X. X.; Zhang, M. M.; Zhang, D. X.; Xu, D.; Qian, Y.; Liu, W.

    2014-01-01

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H2 from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H2 in helium recycle gas are less than 1 ppb.

  12. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    SciTech Connect

    Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W.; Zhang, M. M.; Xu, D.

    2014-01-29

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

  13. Fitting formula for the injection volume of a gas chromatograph for radio-xenon sampling in the lower troposphere.

    PubMed

    Shu-jiang, Liu; Zhan-ying, Chen; Shi-lian, Wang; Yin-zhong, Chang; Qi, Li; Yuan-qing, Fan; Yun-gang, Zhao; Huai-mao, Jia; Xin-jun, Zhang; Jun, Wang

    2014-06-01

    GC is usually used for xenon concentration and radon removal in the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty. In a gas chromatograph, the injection volume is defined to calculate the column capacity. In this paper, the injection volume was investigated and a fitting formula for the injection volume was derived and discussed subsequently. As a consequence, the xenon injection volume exponentially decreased with the column temperature increased, but exponentially increased as the flow rate increased.

  14. Structural Plasticity of the Phage P22 Tail Needle gp26 Probed with Xenon Gas

    SciTech Connect

    Olia, A.; Casjens, S; Cingolani, G

    2009-01-01

    The tail needle, gp26, is a highly stable homo-trimeric fiber found in the tail apparatus of bacteriophage P22. In the mature virion, gp26 is responsible for plugging the DNA exit channel, and likely plays an important role in penetrating the host cell envelope. In this article, we have determined the 1.98 A resolution crystal structure of gp26 bound to xenon gas. The structure led us to identify a calcium and a chloride ion intimately bound at the interior of alpha-helical core, as well as seven small cavities occupied by xenon atoms. The two ions engage in buried polar interactions with gp26 side chains that provide specificity and register to gp26 helical core, thus enhancing its stability. Conversely, the distribution of xenon accessible cavities correlates well with the flexibility of the fiber observed in solution and in the crystal structure. We suggest that small internal cavities in gp26 between the helical core and the C-terminal tip allow for flexible swinging of the latter, without affecting the overall stability of the protein. The C-terminal tip may be important in scanning the bacterial surface in search of a cell-envelope penetration site, or for recognition of a yet unidentified receptor on the surface of the host.

  15. Test beam studies of the TRD prototype filled with different gas mixtures based on Xe, Kr, and Ar

    NASA Astrophysics Data System (ADS)

    Celebi, E.; Brooks, T.; Joos, M.; Rembser, C.; Gurbuz, S.; Cetin, S. A.; Konovalov, S. P.; Tikhomirov, V. O.; Zhukov, K.; Fillipov, K. A.; Romaniouk, A.; Smirnov, S. Yu; Teterin, P. E.; Vorobev, K. A.; Boldyrev, A. S.; Maevsky, A.; Derendarz, D.

    2017-01-01

    Towards the end of LHC Run1, gas leaks were observed in some parts of the Transition Radiation Tracker (TRT) of ATLAS. Due to these leaks, primary Xenon based gas mixture was replaced with Argon based mixture in various parts. Test-beam studies with a dedicated Transition Radiation Detector (TRD) prototype were carried out in 2015 in order to understand transition radiation performance with mixtures based on Argon and Krypton. We present and discuss the results of these test-beam studies with different active gas compositions.

  16. Dielectric gas mixtures containing sulfur hexafluoride

    DOEpatents

    Cooke, Chathan M.

    1979-01-01

    Electrically insulating gaseous media of unexpectedly high dielectric strength comprised of mixtures of two or more dielectric gases are disclosed wherein the dielectric strength of at least one gas in each mixture increases at less than a linear rate with increasing pressure and the mixture gases are present in such proportions that the sum of their electrical discharge voltages at their respective partial pressures exceeds the electrical discharge voltage of each individual gas at the same temperature and pressure as that of the mixture.

  17. Development and evaluation of a silver mordenite composite sorbent for the partitioning of xenon from krypton in gas compositions

    DOE PAGES

    Garn, Troy G.; Greenhalgh, Mitchell; Law, Jack D.

    2015-12-22

    A new engineered form composite sorbent for the selective separation of xenon from krypton in simulant composition off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A sodium mordenite powder was incorporated into a macroporous polymer binder, formed into spherical beads and successfully converted to a 9 wt.% silver form composite sorbent. The final engineered form sorbent retained the characteristic surface area indicative of sodium mordenite powder. The sorbent was evaluated for xenon adsorption potential with capacities measured as high as 30 millimoles of xenon per kilogram of sorbent achieved at ambient temperature andmore » 460 millimoles of xenon per kilogram sorbent at 220 K. Xenon/krypton selectivity was calculated to be 22.4 with a 1020 µL/L xenon, 150 µL/L krypton in a balance of air feed gas at 220 K. Furthermore, adsorption/desorption thermal cycling effects were evaluated with results indicating sorbent performance was not significantly impacted while undergoing numerous adsorption/desorption thermal cycles.« less

  18. Development and evaluation of a silver mordenite composite sorbent for the partitioning of xenon from krypton in gas compositions

    SciTech Connect

    Garn, Troy G.; Greenhalgh, Mitchell; Law, Jack D.

    2015-12-22

    A new engineered form composite sorbent for the selective separation of xenon from krypton in simulant composition off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A sodium mordenite powder was incorporated into a macroporous polymer binder, formed into spherical beads and successfully converted to a 9 wt.% silver form composite sorbent. The final engineered form sorbent retained the characteristic surface area indicative of sodium mordenite powder. The sorbent was evaluated for xenon adsorption potential with capacities measured as high as 30 millimoles of xenon per kilogram of sorbent achieved at ambient temperature and 460 millimoles of xenon per kilogram sorbent at 220 K. Xenon/krypton selectivity was calculated to be 22.4 with a 1020 µL/L xenon, 150 µL/L krypton in a balance of air feed gas at 220 K. Furthermore, adsorption/desorption thermal cycling effects were evaluated with results indicating sorbent performance was not significantly impacted while undergoing numerous adsorption/desorption thermal cycles.

  19. Improved gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    1980-03-28

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  20. Gas mixtures for gas-filled radiation detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1982-01-05

    Improved binary and ternary gas mixtures for gas-filled radiation detectors are provided. The components are chosen on the basis of the principle that the first component is one molecular gas or mixture of two molecular gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a noble gas having a very small cross section at and below about 1.0 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electric field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  1. Improved gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Maxey, D.V.; Carter, J.G.

    Improved binary and tertiary gas mixture for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below about 0.5 eV; whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  2. Gas mixtures for gas-filled particle detectors

    DOEpatents

    Christophorou, Loucas G.; McCorkle, Dennis L.; Maxey, David V.; Carter, James G.

    1980-01-01

    Improved binary and tertiary gas mixtures for gas-filled particle detectors are provided. The components are chosen on the basis of the principle that the first component is one gas or mixture of two gases having a large electron scattering cross section at energies of about 0.5 eV and higher, and the second component is a gas (Ar) having a very small cross section at and below aout 0.5 eV, whereby fast electrons in the gaseous mixture are slowed into the energy range of about 0.5 eV where the cross section for the mixture is small and hence the electron mean free path is large. The reduction in both the cross section and the electron energy results in an increase in the drift velocity of the electrons in the gas mixtures over that for the separate components for a range of E/P (pressure-reduced electron field) values. Several gas mixtures are provided that provide faster response in gas-filled detectors for convenient E/P ranges as compared with conventional gas mixtures.

  3. Simultaneous detection of xenon and krypton in equine plasma by gas chromatography-tandem mass spectrometry for doping control.

    PubMed

    Kwok, Wai Him; Choi, Timmy L S; So, Pui-Kin; Yao, Zhong-Ping; Wan, Terence S M

    2017-02-01

    Xenon can activate the hypoxia-inducible factors (HIFs). As such, it has been allegedly used in human sports for increasing erythropoiesis. Krypton, another noble gas with reported narcosis effect, can also be expected to be a potential and less expensive erythropoiesis stimulating agent. This has raised concern about the misuse of noble gases as doping agents in equine sports. The aim of the present study is to establish a method for the simultaneous detection of xenon and krypton in equine plasma for the purpose of doping control. Xenon- or krypton-fortified equine plasma samples were prepared according to reported protocols. The target noble gases were simultaneously detected by gas chromatography-triple quadrupole mass spectrometry using headspace injection. Three xenon isotopes at m/z 129, 131, and 132, and four krypton isotopes at m/z 82, 83, 84, and 86 were targeted in selected reaction monitoring mode (with the precursor ions and product ions at identical mass settings), allowing unambiguous identification of the target analytes. Limits of detection for xenon and krypton were about 19 pmol/mL and 98 pmol/mL, respectively. Precision for both analytes was less than 15%. The method has good specificity as background analyte signals were not observed in negative equine plasma samples (n = 73). Loss of analytes under different storage temperatures has also been evaluated. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Separation and purification of xenon

    DOEpatents

    Schlea, deceased, Carl Solomon

    1978-03-14

    Xenon is separated from a mixture of xenon and krypton by extractive distillation using carbon tetrafluoride as the partitioning agent. Krypton is flushed out of the distillation column with CF.sub.4 in the gaseous overhead stream while purified xenon is recovered from the liquid bottoms. The distillation is conducted at about atmospheric pressure or at subatmospheric pressure.

  5. An automated multidimensional preparative gas chromatographic system for isolation and enrichment of trace amounts of xenon from ambient air.

    PubMed

    Larson, Tuula; Östman, Conny; Colmsjö, Anders

    2011-04-01

    The monitoring of radioactive xenon isotopes is one of the principal methods for the detection of nuclear explosions in order to identify clandestine nuclear testing. In this work, a miniaturized, multiple-oven, six-column, preparative gas chromatograph was constructed in order to isolate trace quantities of radioactive xenon isotopes from ambient air, utilizing nitrogen as the carrier gas. The multidimensional chromatograph comprised preparative stainless steel columns packed with molecular sieves, activated carbon, and synthetic carbon adsorbents (e.g., Anasorb®-747 and Carbosphere®). A combination of purification techniques--ambient adsorption, thermal desorption, back-flushing, thermal focusing, and heart cutting--was selectively optimized to produce a well-defined xenon peak that facilitated reproducible heart cutting and accurate quantification. The chromatographic purification of a sample requires approximately 4 h and provides complete separation of xenon from potentially interfering components (such as water vapor, methane, carbon dioxide, and radon) with recovery and accuracy close to 100%. The preparative enrichment process isolates and concentrates a highly purified xenon gas fraction that is suitable for subsequent ultra-low-level γ-, ß/γ-spectroscopic or high-resolution mass spectrometric measurement (e.g., to monitor the gaseous fission products of nuclear explosions at remote locations). The Xenon Processing Unit is a free-standing, relatively lightweight, and transportable system that can be interfaced to a variety of sampling and detection systems. It has a relatively inexpensive, rugged, and compact modular (19-inch rack) design that provides easy access to all parts for maintenance and has a low power requirement.

  6. Mesoscale Backtracking by Means of Atmospheric Transport Modeling of Xenon Plumes Measured by Radionuclide Gas Stations

    NASA Astrophysics Data System (ADS)

    Armand, P. P.; Achim, P.; Taffary, T.

    2006-12-01

    The monitoring of atmospheric radioactive xenon concentration is performed for nuclear safety regulatory requirements. It is also planned to be used for the detection of hypothetical nuclear tests in the framework of the Comprehensive nuclear-Test-Ban Treaty (CTBT). In this context, the French Atomic Energy Commission designed a high sensitive and automated fieldable station, named SPALAX, to measure the activity concentrations of xenon isotopes in the atmosphere. SPALAX stations were set up in Western Europe and have been operated quite continuously for three years or more, detecting principally xenon-133 and more scarcely xenon-135, xenon-133m and xenon-131m. There are around 150 nuclear power plants in the European Union, research reactors, reprocessing plants, medical production and application facilities releasing radioactive xenon in normal or incidental operations. A numerical study was carried out aiming to explain the SPALAX measurements. The mesoscale Atmospheric Transport Modelling involves the MM5 suite (PSU- NCAR) to predict the wind fields on nested domains, and FLEXPART, a 3D Lagrangian particle dispersion code, used to simulate the backward transport of xenon plumes detected by the SPALAX. For every event of detection, at least one potential xenon source has a significant efficiency of emission. The identified likely sources are located quite close to the SPALAX stations (some tens of kilometres), or situated farther (a few hundreds of kilometres). A base line of some mBq per cubic meter in xenon-133 is generated by the nuclear power plants. Peaks of xenon-133 ranging from tens to hundreds of mBq per cubic meter originate from a radioisotope production facility. The calculated xenon source terms required to obtain the SPALAX measurements are discussed and seem consistent with realistic emissions from the xenon sources in Western Europe.

  7. Is xenon eldest?

    NASA Technical Reports Server (NTRS)

    Zahnle, K.

    1994-01-01

    It is well known that the solubility of noble gases in magmas decreases with increasing atomic weight. Xenon, the weightiest of the stable noble gases, is the least soluble atmospheric gas in magma. It is not unreasonable to suppose that the noble gases should have degassed from (or equilibrated with) a bubbling mantle in order of increasing solubility, such that xenon was the most rapidly degassed and helium the least. The apparent relative ages of the famous radiogenic noble gas isotopes agrees, at least qualitatively, with this premise. When atmospheric loss processes are assigned their proper place, several long-standing xenonological puzzles become added evidence for xenon's relative antiquity. Xenon being the afore-mentioned sense the oldest atmospheric gas, will have been most greatly subject to escape, be it impact-driven or EUV-driven. Nonradiogenic xenon's pronounced isotopic fractionation has already been attributed to escape; why it should be more fractionated than krypton would be assigned to xenon's greater atmospheric age. The small atmospheric inventory of xenon relative to the other nonradiogenic noblegases, known as the 'missing xenon' problem, could easily be explained by differential escape. The relatively tiny atmospheric inventories of the radiogenic daughter products of 129 Iodine and 244 Plutonium, both much smaller than would be expected from the inferred abundances of the parents in meteorites, offer a third and fourth data to support the hypothesis that Earth has lost most of its xenon.

  8. Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas targets

    NASA Astrophysics Data System (ADS)

    Kranzusch, Sebastian; Peth, Christian; Mann, Klaus

    2003-02-01

    At Laser-Laboratorium Göttingen laser-plasma sources were tested, which are going to be used for characterization of optical components and sensoric devices in the wavelength region from 11 to 13 nm. In all cases extreme ultraviolet (EUV) radiation is generated by focusing a Q-switched Nd:YAG laser into a pulsed gas puff target. By the use of xenon or oxygen as target gas, broadband as well as narrowband EUV radiation is obtained, respectively. Different types of valves and nozzles were tested in order to optimize the emitted radiation with respect to maximum EUV intensities, small source diameters, and positional stability. The investigation of these crucial source parameters was performed with specially designed EUV pinhole cameras, utilizing evaluation algorithms developed for standardized laser beam characterization. In addition, a rotatable pinhole camera was developed which allows both spatially and angular resolved monitoring of the soft x-ray emission characteristics. With the help of this camera a strong angular dependence of the EUV intensity was found. The data were compared with fluorescence measurements for visualization of the target gas jet. The experimental observations can be explained by reabsorption of the generated EUV radiation in the surrounding target gas, as supported by semiempirical model calculations based on the attenuation in the three-dimensional gas density according to Lambert-Beer's law. As a consequence of the presented investigations, an optimization of the EUV source with respect to intensity, plasma shape, and angular dependence is achieved, resulting in a spherical plasma of 200 μm diameter and a 50% increase of the EUV pulse energy.

  9. Separation of gas mixtures by supported complexes

    SciTech Connect

    Nelson, D.A.; Lilga, M.A.; Hallen, R.T.; Lyke, S.E.

    1986-08-01

    The goal of this program is to determine the feasibility of solvent-dissolved coordination complexes for the separation of gas mixtures under bench-scale conditions. In particular, mixtures such as low-Btu gas are examined for CO and H/sub 2/ separation. Two complexes, Pd/sub 2/(dpm)/sub 2/Br/sub 2/ and Ru(CO)/sub 2/(PPh/sub 3/)/sub 3/, were examined in a bench-scale apparatus for the separation of binary (CO-N/sub 2/ or H/sub 2/-N/sub 2/) and quinary (H/sub 2/, CO, CO/sub 2/, CH/sub 4/, and N/sub 2/) mixtures. The separation of CO-N/sub 2/ was enhanced by the presence of the palladium complex in the 1,1,2-trichloroethane (TCE) solvent, especially at high gas and low liquid rates. The five-component gas mixture separation with the palladium complex in TCE provided quite unexpected results based on physical solubility and chemical coordination. The complex retained CO, while the solvent retained CO/sub 2/, CH/sub 4/, and N/sub 2/ to varying degrees. This allowed the hydrogen content to be enhanced due to its low solubility in TCE and inertness to the complex. Thus, a one-step, hydrogen separation can be achieved from gas mixtures with compositions similar to that of oxygen-blown coal gas. A preliminary economic evaluation of hydrogen separation was made for a system based on the palladium complex. The palladium system has a separation cost of 50 to 60 cents/MSCF with an assumed capital investment of $1.60/MSCF of annual capacity charged at 30% per year. This assumes a 3 to 4 year life for the complex. Starting with a 90% hydrogen feed, PSA separation costs are in the range of 30 to 50 cents/MSCF. The ruthenium complex was not as successful for hydrogen or carbon monoxide separation due to unfavorable kinetics. The palladium complex was found to strip hydrogen gas from H/sub 2/S. The complex could be regenerated with mild oxidants which removed the sulfur as SO/sub 2/. 24 refs., 26 figs., 10 tabs.

  10. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    SciTech Connect

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  11. Adsorption of xenon and CH4 mixtures in zeolite NaA. 129Xe NMR and grand canonical Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Jameson, Cynthia J.; Jameson, A. Keith; Kostikin, Pavel; Baello, Bernoli I.

    2000-01-01

    Investigation of competitive adsorption is carried out using the Xe-CH4 mixture in zeolite NaA as a model system. The Xen clusters are trapped in the alpha cages of this zeolite for times sufficiently long that it is possible to observe individual peaks in the NMR spectrum for each cluster while the CH4 molecules are in fast exchange between the cages and also with the gas outside. The 129Xe nuclear magnetic resonance spectra of nine samples of varying Xe and CH4 loadings have been observed and analyzed to obtain the 129Xe chemical shifts and the intensities of the peaks which are dependent on the average methane and xenon occupancies. The distributions Pn, the fraction of cages containing n Xe atoms, regardless of the number of CH4 molecules are obtained directly from the relative intensities of the Xen peaks. From the observed 129Xe chemical shift of each Xen peak can be obtained the average number of CH4 molecules in the same cavity as n Xe atoms. Grand canonical Monte Carlo (GCMC) simulations of mixtures of Xe and CH4 in a rigid zeolite NaA lattice provide the detailed distributions and the average cluster shifts, as well as the distributions Pn. The agreement with experiment is reasonably good for all nine samples. The calculated absolute chemical shifts for the Xen peaks in all samples at 300 K range from 80 to 230 ppm and are in good agreement with experiment. We also consider a very simple strictly statistical model of a binary mixture, derived from the hypergeometric distribution, in which the component molecules are distinguishable but equivalent in competition for eight lattice sites per cage under mutual exclusion. The latter simple model provides a limiting case for the distributions, with which both the GCMC simulations and the properties of the actual Xe-CH4 system are compared. The ideal adsorbed solution theory gives a first approximation to the selectivity of the adsorption of the Xe and CH4 from a mixture of gases, but starts to fail at high

  12. THEORETICAL STUDY ON THE INTERACTION BETWEEN XENON AND POSITIVE SILVER CLUSTERS IN GAS PHASE AND ON THE (001) CHABAZITE SURFACE

    SciTech Connect

    Hunter, D.

    2009-03-16

    A systematic study on the adsorption of xenon on silver clusters in the gas phase and on the (001) surface of silver-exchanged chabazite is reported. Density functional theory at the B3LYP level with the cluster model was employed. The results indicate that the dominant part of the binding is the {sigma} donation, which is the charge transfer from the 5p orbital of Xe to the 5s orbital of Ag and is not the previously suggested d{sub {pi}}-d{sub {pi}} back-donation. A correlation between the binding energy and the degree of {sigma} donation is found. Xenon was found to bind strongly to silver cluster cations and not to neutral ones. The binding strength decreases as the cluster size increases for both cases, clusters in the gas-phase and on the chabazite surface. The Ag{sup +} cation is the strongest binding site for xenon both in gas phase and on the chabazite surface with the binding energies of 73.9 and 14.5 kJ/mol, respectively. The results also suggest that the smaller silver clusters contribute to the negative chemical shifts observed in the {sup 129}Xe NMR spectra in experiments.

  13. Low-energy ion emission from a xenon gas-puff laser-plasma X-ray source

    NASA Astrophysics Data System (ADS)

    Daido, H.; Yamagami, S.; Suzuki, M.; Azuma, H.; Choi, I. W.; Fiedorowicz, H.

    We have measured low-energy ion emission from a gas-puff laser-plasma X-ray source. The ions may cause the degradation of the condenser mirror of the extreme ultra-violet projection lithography system. A 0.7 J in 8 ns Nd:YAG laser at 1.06 μm was focused onto the xenon gas-puff target with an intensity of 1012 W/cm2. The silicon (111) plates, placed at a distance of 32 mm from the laser-interaction region, were exposed with the xenon ions. The average ion energy was measured to be less than 50 eV with a Faraday-cup detector placed close to the silicon plates. The xenon deposition occurred in the silicon plates with a depth of less than 40 nm. The deposition density was measured with a quadrupole secondary ion mass spectrometer to be 1021 /cm3 after 1500 laser shots. The energy-conversion efficiency from the laser energy into the ions is 0.1%/4 πsr/shot. For the lithography system, if we can remove such ion bombardment completely using novel techniques such as electro-magnetic devices or gas flow curtain techniques, the lifetime of the condenser mirror will be extended significantly.

  14. Dark matter directionality revisited with a high pressure xenon gas detector

    SciTech Connect

    Mohlabeng, Gopolang; Kong, Kyoungchul; Li, Jin; Para, Adam; Yoo, Jonghee

    2015-07-20

    An observation of the anisotropy of dark matter interactions in a direction-sensitive detector would provide decisive evidence for the discovery of galactic dark matter. Directional information would also provide a crucial input to understanding its distribution in the local Universe. Most of the existing directional dark matter detectors utilize particle tracking methods in a low-pressure gas time projection chamber. These low pressure detectors require excessively large volumes in order to be competitive in the search for physics beyond the current limit. In order to avoid these volume limitations, we consider a novel proposal, which exploits a columnar recombination effect in a high-pressure gas time projection chamber. The ratio of scintillation to ionization signals observed in the detector carries the angular information of the particle interactions. In this paper, we investigate the sensitivity of a future directional detector focused on the proposed high-pressure Xenon gas time projection chamber. We study the prospect of detecting an anisotropy in the dark matter velocity distribution. We find that tens of events are needed to exclude an isotropic distribution of dark matter interactions at 95% confidence level in the most optimistic case with head-to-tail information. However, one needs at least 10-20 times more events without head-to-tail information for light dark matter below ~50 GeV. For an intermediate mass range, we find it challenging to observe an anisotropy of the dark matter distribution. Our results also show that the directional information significantly improves precision measurements of dark matter mass and the elastic scattering cross section for a heavy dark matter.

  15. Dark matter directionality revisited with a high pressure xenon gas detector

    DOE PAGES

    Mohlabeng, Gopolang; Kong, Kyoungchul; Li, Jin; ...

    2015-07-20

    An observation of the anisotropy of dark matter interactions in a direction-sensitive detector would provide decisive evidence for the discovery of galactic dark matter. Directional information would also provide a crucial input to understanding its distribution in the local Universe. Most of the existing directional dark matter detectors utilize particle tracking methods in a low-pressure gas time projection chamber. These low pressure detectors require excessively large volumes in order to be competitive in the search for physics beyond the current limit. In order to avoid these volume limitations, we consider a novel proposal, which exploits a columnar recombination effect inmore » a high-pressure gas time projection chamber. The ratio of scintillation to ionization signals observed in the detector carries the angular information of the particle interactions. In this paper, we investigate the sensitivity of a future directional detector focused on the proposed high-pressure Xenon gas time projection chamber. We study the prospect of detecting an anisotropy in the dark matter velocity distribution. We find that tens of events are needed to exclude an isotropic distribution of dark matter interactions at 95% confidence level in the most optimistic case with head-to-tail information. However, one needs at least 10-20 times more events without head-to-tail information for light dark matter below ~50 GeV. For an intermediate mass range, we find it challenging to observe an anisotropy of the dark matter distribution. Our results also show that the directional information significantly improves precision measurements of dark matter mass and the elastic scattering cross section for a heavy dark matter.« less

  16. Modelling the behaviour of microbulk Micromegas in xenon/trimethylamine gas

    NASA Astrophysics Data System (ADS)

    Ruiz-Choliz, E.; González-Díaz, D.; Diago, A.; Castel, J.; Dafni, T.; Herrera, D. C.; Iguaz, F. J.; Irastorza, I. G.; Luzón, G.; Mirallas, H.; Şahin, Ö.; Veenhof, R.

    2015-11-01

    We model the response of a state of the art micro-hole single-stage charge amplification device ('microbulk' Micromegas) in a gaseous atmosphere consisting of xenon/trimethylamine at various concentrations and pressures. The amplifying structure, made with photo-lithographic techniques similar to those followed in the fabrication of gas electron multipliers (GEMs), consisted of a 100 μm-side equilateral-triangle pattern with 50 μm-diameter holes placed at its vertexes. Once the primary electrons are guided into the holes by virtue of an optimized field configuration, avalanches develop along the 50 μm-height channels etched out of the original doubly copper-clad polyimide foil. In order to properly account for the strong field gradients at the holes' entrance as well as for the fluctuations of the avalanche process (that ultimately determine the achievable energy resolution), we abandoned the hydrodynamic framework, resorting to a purely microscopic description of the electron trajectories as obtained from elementary cross-sections. We show that achieving a satisfactory description needs additional assumptions about atom-molecule (Penning) transfer reactions and charge recombination to be made.

  17. Dusty Plasma Structures in Gas Mixtures

    SciTech Connect

    Popova, D. V.; Antipov, S. N.; Petrov, O. F.; Fortov, V. E.

    2008-09-07

    The possibility of attainment of large Mach numbers is analyzed for the case of heavy ions drifting in a light gas. Under conditions of typical experiments with dust structures in plasmas, the use of the mixture of light and heavy gases is shown to make it possible to suppress the ion heating in the electric field and to form supersonic flows characterized by large Mach numbers. The drift of krypton ions in helium is considered as an example. Experiments with dc glow discharge at 1-10% of Kr show that the transition to the discharge in mixture leads to increase of interaction anisotropy and reinforcement of coupling of dust particles in the direction of ion drift. On the other hand, under certain conditions the phenomenon of abnormal 'heating' of dust particles was observed when the particles can obtain high kinetic energy which is several orders of magnitude higher than typical.

  18. Formation of Structured Water and Gas Hydrate by the Use of Xenon Gas in Vegetable Tissue

    NASA Astrophysics Data System (ADS)

    Ando, Hiroko; Suzuki, Toru; Kawagoe, Yoshinori; Makino, Yoshio; Oshita, Seiichi

    Freezing is a valuable technique for food preservation. However, vegetables are known to be softening remarkably after freezing and thawing process. It is expected to find alternative technique instead of freezing. Recently, the application of structured water and/or gas hydrate had been attempted to prolong the preservation of vegetable. In this study, the formation process of structure water and/or gas hydrate in pure water and carrot tissue was investigated by using NMR relaxation times, T1 and T2, of which applying condition was up to 0.4MPa and 0.8MPa at 5oC. Under the pressure of 0.4MPa, no gas hydrate was appeared, however, at 0.8MPa, formation of gas hydrate was recognized in both water and carrot tissue. Once the gas hydrate formation process in carrot tissue started, T1 and T2 increased remarkably. After that, as the gas hydrate developed, then T1 and T2 turned to decrease. Since this phenomenon was not observed in pure water, it is suggested that behavior of NMR relaxation time just after the formation of gas hydrate in carrot tissue may be peculiar to compartment system such as inter and intracellular spaces.

  19. Process for separating aggressive gases from gas mixtures

    SciTech Connect

    Graham, T.E.

    1984-03-06

    A process for separating large percentages of aggressive gases such as carbon dioxide from low temperature gas mixtures wherein the gas mixture is passed through a plurality of treatment zones in series. In each treatment zone the gas mixture is first compressed to a pressure such that the partial pressure of the carbon dioxide is not greater than the critical carbon dioxide partial pressure and the compressed gas mixture is then brought into contact with a membrane more permeable to carbon dioxide than other gases of the mixture such that carbon dioxide permeates the membrane to the other side thereof. The gas mixture is maintained in contact with the membrane a sufficient time to lower the partial pressure of the carbon dioxide in the non-permeated gas mixture to less than about 40 percent of said critical carbon dioxide partial pressure. The process is especially useful for separating carbon dioxide from methane and other gases.

  20. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The sample cell at the heart of CVX-2 will sit inside a thermostat providing three layers of insulation. The cell itself comprises a copper body that conducts heat efficiently and smoothes out thermal variations that that would destroy the xenon's uniformity. Inside the cell, the oscillating screen viscometer element is supported between two pairs of electrodes that deflect the screen and then measure screen motion.

  1. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Because xenon near the critical point will collapse under its own weight, experiments on Earth (green line) are limited as they get closer (toward the left) to the critical point. CVX in the microgravity of space (red line) moved into unmeasured territory that scientists had not been able to reach.

  2. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon

    PubMed Central

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Abstract Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results. Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon–oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images. Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects. Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images

  3. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Shear thirning will cause a normally viscous fluid -- such as pie filling or whipped cream -- to deform and flow more readily under high shear conditions. In shear thinning, a pocket of fluid will deform and move one edge forward, as depicted here.

  4. High-pressure Xenon Gas Electroluminescent TPC Concept for Simultaneous Searches for Neutrino-less Double Beta Decay & WIMP Dark Matter

    NASA Astrophysics Data System (ADS)

    Nygren, David

    2013-04-01

    Xenon is an especially attractive candidate for both direct WIMP and 0- decay searches. Although the current trend has exploited the liquid phase, gas phase xenon offers some remarkable performance advantages for energy resolution, topology visualization, and discrimination between electron and nuclear recoils. The NEXT-100 experiment, now beginning construction in the Canfranc Underground Laboratory, Spain, will operate at 12 bars with 100 kg of ^136Xe for the 0- decay search. I will describe recent results with small prototypes, indicating that NEXT-100 can provide about 0.5% FWHM energy resolution at the decay 2457.83 keV Q-value, as well as rejection of -rays by topology. However, sensitivity goals for WIMP dark matter and 0- decay searches indicate the need for ton-scale active masses; NEXT-100 provides the springboard to reach this scale with xenon gas. I describe a scenario for performing both searches in a single high-pressure ton-scale xenon gas detector, without significant compromise to either. In addition, -- even in a single, ton-scale, high-pressure xenon gas TPC, an intrinsic sensitivity to the nuclear recoil direction may exist -- plausibly offering an advance of more than two orders of magnitude relative to current low-pressure TPC concepts. I argue that, in an era of deepening fiscal austerity, such a dual-purpose detector may be possible, at acceptable cost, within the time frame of interest, and deserves our collective attention.

  5. The XENON dark matter experiment

    NASA Astrophysics Data System (ADS)

    Aprile, Elena; Xenon Collaboration

    The XENON experiment aims at the direct detection of dark matter in the form of WIMPs (Weakly Interacting Massive Particles) via their elastic scattering off Xenon nuclei. With a fiducial mass of 1000 kg of liquid xenon, a sufficiently low threshold of 16 keV recoil energy and an un-rejected background rate of 10 events per year, XENON would be sensitive to a WIMP-nucleon interaction cross section of ~10-46cm2, for WIMPs with masses above 50 GeV. The 1 tonne scale experiment (XENON1T) will be realized with an array of ten identical 100 kg detector modules (XENON100). The detectors are time projection chambers operated in dual (liquid/gas) phase, to detect simultaneously the ionization, through secondary scintillation in the gas, and primary scintillation in the liquid produced by low energy recoils. The distinct ratio of primary to secondary scintillation for nuclear recoils from WIMPs (or neutrons), and for electron recoils from background, is key to the event-by-event discrimination capability of XENON. A 3kg dual phase detector with light readout provided by an array of 7 photomultipliers is currently being tested, along with other prototypes dedicated to various measurements relevant to the XENON program. We present some of the results obtained to-date and briefly discuss the next step in the phased approach to the XENON experiment, i.e. the development and underground deployment of a 10 kg detector (XENON10) during 2005.

  6. Optimization of Dual-Energy Xenon-CT for Quantitative Assessment of Regional Pulmonary Ventilation

    PubMed Central

    Fuld, Matthew K.; Halaweish, Ahmed; Newell, John D.; Krauss, Bernhard; Hoffman, Eric A.

    2013-01-01

    Objective Dual-energy X-ray computed tomography (DECT) offers visualization of the airways and quantitation of regional pulmonary ventilation using a single breath of inhaled xenon gas. In this study we seek to optimize scanning protocols for DECT xenon gas ventilation imaging of the airways and lung parenchyma and to characterize the quantitative nature of the developed protocols through a series of test-object and animal studies. Materials and Methods The Institutional Animal Care and Use Committee approved all animal studies reported here. A range of xenon-oxygen gas mixtures (0, 20, 25, 33, 50, 66, 100%; balance oxygen) were scanned in syringes and balloon test-objects to optimize the delivered gas mixture for assessment of regional ventilation while allowing for the development of improved three-material decomposition calibration parameters. Additionally, to alleviate gravitational effects on xenon gas distribution, we replaced a portion of the oxygen in the xenon/oxygen gas mixture with helium and compared gas distributions in a rapid-prototyped human central-airway test-object. Additional syringe tests were performed to determine if the introduction of helium had any effect on xenon quantitation. Xenon gas mixtures were delivered to anesthetized swine in order to assess airway and lung parenchymal opacification while evaluating various DECT scan acquisition settings. Results Attenuation curves for xenon were obtained from the syringe test objects and were used to develop improved three-material decomposition parameters (HU enhancement per percent xenon: Within the chest phantom: 2.25 at 80kVp, 1.7 at 100 kVp, and 0.76 at 140 kVp with tin filtration; In open air: 2.5 at 80kVp, 1.95 at 100 kVp, and 0.81 at 140 kVp with tin filtration). The addition of helium improved the distribution of xenon gas to the gravitationally non-dependent portion of the airway tree test-object, while not affecting quantitation of xenon in the three-material decomposition DECT. 40%Xe

  7. Antiapoptotic activity of argon and xenon.

    PubMed

    Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido

    2013-08-15

    Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects.

  8. Noble Gas (Argon and Xenon)-Saturated Cold Storage Solutions Reduce Ischemia-Reperfusion Injury in a Rat Model of Renal Transplantation

    PubMed Central

    Irani, Y.; Pype, J.L.; Martin, A.R.; Chong, C.F.; Daniel, L.; Gaudart, J.; Ibrahim, Z.; Magalon, G.; Lemaire, M.; Hardwigsen, J.

    2011-01-01

    Background Following kidney transplantation, ischemia-reperfusion injury contributes to adverse outcomes. The purpose of this study was to determine whether a cold-storage solution saturated with noble gas (xenon or argon) could limit ischemia-reperfusion injury following cold ischemia. Methods Sixty Wistar rats were randomly allocated to 4 experimental groups. Kidneys were harvested and then stored for 6 h before transplantation in cold-storage solution (Celsior®) saturated with either air, nitrogen, xenon or argon. A syngenic orthotopic transplantation was performed. Renal function was determined on days 7 and 14 after transplantation. Transplanted kidneys were removed on day 14 for histological and immunohistochemical analyses. Results Creatinine clearance was significantly higher and urinary albumin significantly lower in the argon and xenon groups than in the other groups at days 7 and 14. These effects were considerably more pronounced for argon than for xenon. In addition, kidneys stored with argon, and to a lesser extent those stored with xenon, displayed preserved renal architecture as well as higher CD-10 and little active caspase-3 expression compared to other groups. Conclusion Argon- or xenon-satured cold-storage solution preserved renal architecture and function following transplantation by reducing ischemia-reperfusion injury. PMID:22470401

  9. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of liquid xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Resembling a tiny bit of window screen, the oscillator at the heart of CVX-2 will vibrate between two pairs of paddle-like electrodes. The slight bend in the shape of the mesh has no effect on the data. What counts are the mesh's displacement in the xenon fluid and the rate at which the displacement dampens. The unit shown here is encased in a small test cell and capped with a sapphire windown to contain the xenon at high pressure.

  10. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    SciTech Connect

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-10-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  11. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    SciTech Connect

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-09-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  12. Novel sorbent development and evaluation for the capture of krypton and xenon from nuclear fuel reprocessing off-gas stream

    SciTech Connect

    Garn, T.G.; Greenhalgh, M.R.; Law, J.D.

    2013-07-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, Idaho National Laboratory sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up. (authors)

  13. Electrical Breakdown in a Martian Gas Mixture

    NASA Technical Reports Server (NTRS)

    Buhler, C. R.; Calle, C. I.; Nelson, E.

    2003-01-01

    The high probability for dust interactions during Martian dust storms and dust devils combined with the cold, dry climate of Mars most likely result in airborne dust that is highly charged. On Earth, potential gradients up to 5 kV/m have been recorded and in some cases resulted in lightning. Although the Martian atmosphere is not conducive to lightning generation, it is widely believed that electrical discharge in the form of a corona occurs. In order to understand the breakdown of gases, Paschen measurements are taken which relate the minimum potential required to spark across a gap between two electrodes. The minimum potential is plotted versus the pressure-distance value for electrodes of a given geometry. For most gases, the potential decreases as the pressure decreases. For CO2, the minimum in the curve happens to be at Mars atmospheric pressures (5-7 mm Hg) for many distances and geometries. However, a very small amount (<0.1%) of mixing gases radically changes the curve, as noted by Leach. Here, we present the first experimental results of a Paschen curve for a Mars gas mixture compared with 100% pure CO2.

  14. Improving Students' Understanding of the Connections between the Concepts of Real-Gas Mixtures, Gas Ideal-Solutions, and Perfect-Gas Mixtures

    ERIC Educational Resources Information Center

    Privat, Romain; Jaubert, Jean-Noël; Moine, Edouard

    2016-01-01

    In many textbooks of chemical-engineering thermodynamics, a gas mixture obeying the fundamental law pV[subscript m] = RT is most often called ideal-gas mixture (in some rare cases, the term perfect-gas mixture can be found). These textbooks also define the fundamental concept of ideal solution which in theory, can be applied indifferently to…

  15. Adsorptive separation of xenon/krypton mixtures using a zirconium-based metal-organic framework with high hydrothermal and radioactive stabilities.

    PubMed

    Lee, Seung-Joon; Yoon, Tae-Ung; Kim, Ah-Reum; Kim, Seo-Yul; Cho, Kyung-Ho; Hwang, Young Kyu; Yeon, Jei-Won; Bae, Youn-Sang

    2016-12-15

    The separation of xenon/krypton mixtures is important for both environmental and industrial purposes. The potential of three hydrothermally stable MOFs (MIL-100(Fe), MIL-101(Cr), and UiO-66(Zr)) for use in Xe/Kr separation has been experimentally investigated. From the observed single-component Xe and Kr isotherms, isosteric heat of adsorption (Qst(o)), and IAST-predicted Xe/Kr selectivities, we observed that UiO-66(Zr) has the most potential as an adsorbent among the three candidate MOFs. We performed dynamic breakthrough experiments with an adsorption bed filled with UiO-66(Zr) to evaluate further the potential of UiO-66(Zr) for Xe/Kr separation under mixture flow conditions. Remarkably, the experimental breakthrough curves show that UiO-66(Zr) can efficiently separate the Xe/Kr mixture. Furthermore, UiO-66(Zr) maintains most of its Xe and Kr uptake capacity, as well as its crystallinity and internal surface area, even after exposure to gamma radiation (2kGy) for 7h and aging for 16 months under ambient conditions. This result indicates that UiO-66(Zr) can be considered to be a potential adsorbent for Xe/Kr mixtures under both ambient and radioactive conditions.

  16. Chemical recognition of gases and gas mixtures with terahertz waves

    NASA Astrophysics Data System (ADS)

    Jacobsen, R. H.; Mittleman, D. M.; Nuss, M. C.

    1996-12-01

    A time-domain chemical-recognition system for classifying gases and analyzing gas mixtures is presented. We analyze the free induction decay exhibited by gases excited by far-infrared (terahertz) pulses in the time domain, using digital signal-processing techniques. A simple geometric picture is used for the classification of the waveforms measured for unknown gas species. We demonstrate how the recognition system can be used to determine the partial pressures of an ammonia-water gas mixture.

  17. Regional Mapping of Gas Uptake by Blood and Tissue in the Human Lung using Hyperpolarized Xenon-129 MRI

    PubMed Central

    Qing, Kun; Ruppert, Kai; Jiang, Yun; Mata, Jaime F.; Miller, G. Wilson; Shim, Y. Michael; Wang, Chengbo; Ruset, Iulian C.; Hersman, F. William; Altes, Talissa A.; Mugler, John P.

    2013-01-01

    Purpose To develop a breath-hold acquisition for regional mapping of ventilation and the fractions of hyperpolarized xenon-129 (Xe129) dissolved in tissue (lung parenchyma and plasma) and red blood cells (RBCs), and to perform an exploratory study to characterize data obtained in human subjects. Materials and Methods A three-dimensional, multi-echo, radial-trajectory pulse sequence was developed to obtain ventilation (gaseous Xe129), tissue and RBC images in healthy subjects, smokers and asthmatics. Signal ratios (total dissolved Xe129 to gas, tissue-to-gas, RBC-to-gas and RBC-to-tissue) were calculated from the images for quantitative comparison. Results Healthy subjects demonstrated generally uniform values within coronal slices, and a gradient in values along the anterior-to-posterior direction. In contrast, images and associated ratio maps in smokers and asthmatics were generally heterogeneous and exhibited values mostly lower than those in healthy subjects. Whole-lung values of total dissolved Xe129 to gas, tissue-to-gas, and RBC-to-gas ratios in healthy subjects were significantly larger than those in diseased subjects. Conclusion Regional maps of tissue and RBC fractions of dissolved Xe129 were obtained from a short breath-hold acquisition, well tolerated by healthy volunteers and subjects with obstructive lung disease. Marked differences were observed in spatial distributions and overall amounts of Xe129 dissolved in tissue and RBCs among healthy subjects, smokers and asthmatics. PMID:23681559

  18. THE RECOVERY OF URANIUM FROM GAS MIXTURE

    DOEpatents

    Jury, S.H.

    1964-03-17

    A method of separating uranium from a mixture of uranium hexafluoride and other gases is described that comprises bringing the mixture into contact with anhydrous calcium sulfate to preferentially absorb the uranium hexafluoride on the sulfate. The calcium sulfate is then leached with a selective solvent for the adsorbed uranium. (AEC)

  19. Inferential determination of various properties of a gas mixture

    DOEpatents

    Morrow, Thomas B.; Behring, II, Kendricks A.

    2007-03-27

    Methods for inferentially determining various properties of a gas mixture, when the speed of sound in the gas is known at an arbitrary temperature and pressure. The method can be applied to natural gas mixtures, where the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for heating value calculations. The method may also be applied to inferentially determine density and molecular weight for gas mixtures other than natural gases.

  20. Devices for the Production of Reference Gas Mixtures.

    PubMed

    Fijało, Cyprian; Dymerski, Tomasz; Gębicki, Jacek; Namieśnik, Jacek

    2016-09-02

    For many years there has been growing demand for gaseous reference materials, which is connected with development in many fields of science and technology. As a result, new methodological and instrumental solutions appear that can be used for this purpose. Appropriate quality assurance/quality control (QA/QC) must be used to make sure that measurement data are a reliable source of information. Reference materials are a significant element of such systems. In the case of gas samples, such materials are generally called reference gas mixtures. This article presents the application and classification of reference gas mixtures, which are a specific type of reference materials, and the methods for obtaining them are described. Construction solutions of devices for the production of reference gas mixtures are detailed, and a description of a prototype device for dynamic production of reference gas mixtures containing aroma compounds is presented.

  1. [Xenon: From rare gaz to doping product].

    PubMed

    Tassel, Camille; Le Daré, Brendan; Morel, Isabelle; Gicquel, Thomas

    2016-04-01

    Doping is defined as the use of processes or substances to artificially increase physical or mental performance. Xenon is a noble gas used as an anesthetic and recently as a doping agent. Xenon is neuroprotective as an antagonist of NMDA glutamate receptors. Xenon stimulates the synthesis of erythropoietin (EPO) by increase of hypoxia inducible factor (HIF). Xenon would be a new doping product, maintaining doping methods ahead of detection.

  2. Krypton and xenon in Apollo 14 samples - Fission and neutron capture effects in gas-rich samples

    NASA Technical Reports Server (NTRS)

    Drozd, R.; Hohenberg, C.; Morgan, C.

    1975-01-01

    Gas-rich Apollo 14 breccias and trench soil are examined for fission xenon from the decay of the extinct isotopes Pu-244 and I-129, and some samples have been found to have an excess fission component which apparently was incorporated after decay elsewhere and was not produced by in situ decay. Two samples have excess Xe-129 resulting from the decay of I-129. The excess is correlated at low temperatures with excess Xe-128 resulting from neutron capture on I-127. This neutron capture effect is accompanied by related low-temperature excesses of Kr-80 and Kr-82 from neutron capture on the bromine isotopes. Surface correlated concentrations of iodine and bromine are calculated from the neutron capture excesses.

  3. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    DOE PAGES

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; ...

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at themore » 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.« less

  4. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    SciTech Connect

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A.B.; Nygren, D.

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at the 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.

  5. Composition for absorbing hydrogen from gas mixtures

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Lee, Myung W.

    1999-01-01

    A hydrogen storage composition is provided which defines a physical sol-gel matrix having an average pore size of less than 3.5 angstroms which effectively excludes gaseous metal hydride poisons while permitting hydrogen gas to enter. The composition is useful for separating hydrogen gas from diverse gas streams which may have contaminants that would otherwise render the hydrogen absorbing material inactive.

  6. Thermal Conductivity of Gas Mixtures in Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Brokaw, Richard S.

    1960-01-01

    The expression for the thermal conductivity of gas mixtures in chemical equilibrium is presented in a simpler and less restrictive form. This new form is shown to be equivalent to the previous equations.

  7. An experimental study of interaction-induced effects in the IR spectra of HI-Xe gas mixtures

    NASA Astrophysics Data System (ADS)

    Bulanin, M. O.; Domanskaya, A. V.; Kerl, K.; Maul, C.

    Significant interaction-induced perturbation of the dipole moment function for the hydrogen iodide molecule is demonstrated in the absorption spectra of gas mixtures with xenon at elevated pressures. The integrated IR intensity of the (0001) ← (0000) HI fundamental stretch mode is found to increase by about 50% and the intensity of the first vibrational overtone (0002) ← (0000) mode to decrease by an order of magnitude in the spectra of binary Xe:HI van der Waals dimers, compared to the absorption intensities of free HI. Strong m-dependent variation with the perturber gas densities of the spectral line intensities for unbound molecules renders the Herman-Wallis analysis of the vibration-rotation coupling effect on the dipole moment function invalid for the high-density gas systems.

  8. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2001 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure that is placed inside a pressure canister. A similar canister holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (not shown) of the National Institutes of Standards and Technology, Gaithersburg, MD. This is a detail view of MSFC 0100143.

  9. 2D multinuclear NMR, hyperpolarized xenon and gas storage in organosilica nanochannels with crystalline order in the walls.

    PubMed

    Comotti, Angiolina; Bracco, Silvia; Valsesia, Patrizia; Ferretti, Lisa; Sozzani, Piero

    2007-07-11

    The combination of 2D 1H-13C and 1H-29Si solid state NMR, hyperpolarized 129Xe NMR, synchrotron X-ray diffraction, together with adsorption measurements of vapors and gases for environmental and energetic relevance, was used to investigate the structure and the properties of periodic mesoporous hybrid p-phenylenesilica endowed with crystalline order in the walls. The interplay of 1H, 13C, and 29Si in the 2D heteronuclear correlation NMR measurements, together with the application of Lee-Goldburg homonuclear decoupling, revealed the spatial relationships (<5 angstroms) among various spin-active nuclei of the framework. Indeed, the through-space correlations in the 2D experiments evidenced, for the first time, the interfaces of the matrix walls with guest molecules confined in the nanochannels. Organic-inorganic and organic-organic heterogeneous interfaces between the matrix and the guests were identified. The open-pore structure and the easy accessibility of the nanochannels to the gas phase have been demonstrated by highly sensitive hyperpolarized (HP) xenon NMR, under extreme xenon dilution. Two-dimensional exchange experiments showed the exchange time to be as short as 2 ms. Through variable-temperature HP 129Xe NMR experiments we were able to achieve an unprecedented description of the nanochannel space and surface, a physisorption energy of 13.9 kJ mol-1, and the chemical shift value of xenon probing the internal surfaces. These results prompted us to measure the high storage capacity of the matrix towards benzene, hexafluorobenzene, ethanol, and carbon dioxide. Both host-guest, CH...pi, and OH...pi interactions contribute to the stabilization of the aromatic guests (benzene and hexafluorobenzene) on the extended surfaces. The full carbon dioxide loading in the channels could be detected by synchrotron radiation X-ray diffraction experiments. The selective adsorption of carbon dioxide (ca. 90 wt %) vs that of oxygen and hydrogen, together with the permanent

  10. A Decade of Xenon Chemistry

    ERIC Educational Resources Information Center

    Moody, G. J.

    1974-01-01

    Presents reactions for the formation of xenon compounds and compounds of the other inert gases. Provides bonding and structure theories for noble gas compounds and speculates on possible applications. (GS)

  11. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  12. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  13. [Xenon light therapy].

    PubMed

    Kanai, Akifumi

    2012-07-01

    The xenon light, generated by high-intensity electrical stimulation of xenon gas, is used to sterilize wounds, aid tissue repair, and relieve pain as a low-level light therapy. The light produced consists of non-coherent beams of multiple wavelengths in the ultraviolet to infrared spectrum. This broad-band light can be emitted in a continuous wave or pulsed mode, with the wave band chosen and the energy distribution controlled for the purpose. Specifically, wavelengths in the 500-700 nm range are suitable for treating superficial tissue, and wavelengths between 800 and 1,000 nm are suitable for deeper-seated tissues, due to longer optical penetration distances through tissue. One of the most common benefits in the xenon light therapy is considered to be the wide and deep irradiation of optimal rays to living tissue. Research into the use of xenon light for tissue repair and pain reduction is restricted within open-label studies and case reports. The present review expounded the effects of xenon light therapy on the basis of the available evidence in vitro and in vivo studies using a laser beam of single wavelength.

  14. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon: Results of a preliminary study.

    PubMed

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results.Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon-oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images.Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects.Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images reflected

  15. Reduced viscosity interpreted for fluid/gas mixtures

    NASA Technical Reports Server (NTRS)

    Lewis, D. H.

    1981-01-01

    Analysis predicts decrease in fluid viscosity by comparing pressure profile of fluid/gas mixture with that of power-law fluid. Fluid is taken to be viscous, non-Newtonian, and incompressible; the gas to be ideal; the flow to be inertia-free, isothermal, and one dimensional. Analysis assists in design of flow systems for petroleum, coal, polymers, and other materials.

  16. Gas sampling system for reactive gas-solid mixtures

    DOEpatents

    Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.

    1990-01-01

    An apparatus and method for sampling gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extends in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  17. Gas sampling system for reactive gas-solid mixtures

    DOEpatents

    Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.

    1989-01-01

    An apparatus and method for sampling a gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extend in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  18. Electron attachment of oxygen in a drift chamber filled with xenon + 10% methane

    NASA Astrophysics Data System (ADS)

    Chiba, Y.; Hayashibara, I.; Ohsugi, T.; Sakanoue, T.; Taketani, A.; Terunuma, N.; Suzuki, Y.; Tsukamoto, A.; Yamamoto, H.; Fukushima, Y.; Kohriki, T.; Nakamura, S.; Sakuda, M.; Watase, Y.

    1988-06-01

    The existence of O 2 contamination attenuates the pulse height and degrades its resolution in a drift chamber filled with xenon-methane (90/10) gas. The first measurement of the electron attachment coefficient due to oxygen in such a mixture is reported.

  19. On thermal conductivity of gas mixtures containing hydrogen

    NASA Astrophysics Data System (ADS)

    Zhukov, Victor P.; Pätz, Markus

    2016-12-01

    A brief review of formulas used for the thermal conductivity of gas mixtures in CFD simulations of rocket combustion chambers is carried out in the present work. In most cases, the transport properties of mixtures are calculated from the properties of individual components using special mixing rules. The analysis of different mixing rules starts from basic equations and ends by very complex semi-empirical expressions. The formulas for the thermal conductivity are taken for the analysis from the works on modelling of rocket combustion chambers. H_2- O_2 mixtures are chosen for the evaluation of the accuracy of the considered mixing rules. The analysis shows that two of them, of Mathur et al. (Mol Phys 12(6):569-579, 1967), and of Mason and Saxena (Phys Fluids 1(5):361-369, 1958), have better agreement with the experimental data than other equations for the thermal conductivity of multicomponent gas mixtures.

  20. Investigating noble gas mixtures for use in TPCs

    NASA Astrophysics Data System (ADS)

    Jungbluth, Anna

    2017-01-01

    MITPC is a gas-based time projection chamber used for detecting fast, MeV-scale neutrons. MITPC relies on a CCD camera and the TPC (time projection chamber) technique to visualize and reconstruct tracks of neutron-induced nuclear recoils within a chosen gas. The standard version of the detector uses a mixture of 600 torr gas composed of 87.5% helium-4 and and 12.5% tetrafluoromethane (CF4) for precise measurements of the energy and direction of neutron-induced nuclear recoils. Previous studies demonstrated advantages of using neon as a replacement gas for helium-4. This talk will present a discussion of studies performed with helium and neon, as well as argon and krypton as primary neutron targets in the gas mixture with CF4.

  1. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... containing nonflammable or nonexplosive gas mixtures. 75.1106-6 Section 75.1106-6 Mineral Resources MINE... containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures, which provide for the emission of such gas under a pressure...

  2. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... containing nonflammable or nonexplosive gas mixtures. 75.1106-6 Section 75.1106-6 Mineral Resources MINE... containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures, which provide for the emission of such gas under a pressure...

  3. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... containing nonflammable or nonexplosive gas mixtures. 75.1106-6 Section 75.1106-6 Mineral Resources MINE... containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures, which provide for the emission of such gas under a pressure...

  4. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... containing nonflammable or nonexplosive gas mixtures. 75.1106-6 Section 75.1106-6 Mineral Resources MINE... containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures, which provide for the emission of such gas under a pressure...

  5. 30 CFR 75.1106-6 - Exemption of small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... containing nonflammable or nonexplosive gas mixtures. 75.1106-6 Section 75.1106-6 Mineral Resources MINE... containing nonflammable or nonexplosive gas mixtures. Small low pressure gas cylinders containing nonflammable or nonexplosive gas mixtures, which provide for the emission of such gas under a pressure...

  6. Recovery of purified helium or hydrogen from gas mixtures

    DOEpatents

    Merriman, J.R.; Pashley, J.H.; Stephenson, M.J.; Dunthorn, D.I.

    1974-01-15

    A process is described for the removal of helium or hydrogen from gaseous mixtures also containing contaminants. The gaseous mixture is contacted with a liquid fluorocarbon in an absorption zone maintained at superatomspheric pressure to preferentially absorb the contaminants in the fluorocarbon. Unabsorbed gas enriched in hydrogen or helium is withdrawn from the absorption zone as product. Liquid fluorocarbon enriched in contaminants is withdrawn separately from the absorption zone. (10 claims)

  7. Critical Viscosity of Xenon investigators

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Dr. Dr. Robert F. Berg (right), principal investigator and Dr. Micheal R. Moldover (left), co-investigator, for the Critical Viscosity of Xenon (CVX/CVX-2) experiment. They are with the National Institutes of Standards and Technology, Gaithersburg, MD. The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of chemicals.

  8. Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air

    SciTech Connect

    Gulati, P.; Prakash, R.; Pal, U. N.; Kumar, M.; Vyas, V.

    2014-07-07

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308 nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl{sub 2} deteriorates the performance of the developed source and around 2% Cl{sub 2} in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

  9. First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment

    DOE PAGES

    Ferrario, P.

    2016-01-19

    The NEXT experiment aims to observe the neutrinoless double beta decay of xenon in a high-pressure 136Xe gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Qββ. This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype. Single electrons resulting from the interactions of 22Na 1275 keV gammas and electron-positron pairs produced by conversions of gammas from the 228Th decay chain were used tomore » represent the background and the signal in a double beta decay. Furthermore, these data were used to develop algorithms for the reconstruction of tracks and the identification of the energy deposited at the end-points, providing an extra background rejection factor of 24.3 ± 1.4 (stat.)%, while maintaining an efficiency of 66.7 ± 1% for signal events.« less

  10. First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment

    SciTech Connect

    Ferrario, P.

    2016-01-19

    The NEXT experiment aims to observe the neutrinoless double beta decay of xenon in a high-pressure 136Xe gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Qββ. This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype. Single electrons resulting from the interactions of 22Na 1275 keV gammas and electron-positron pairs produced by conversions of gammas from the 228Th decay chain were used to represent the background and the signal in a double beta decay. Furthermore, these data were used to develop algorithms for the reconstruction of tracks and the identification of the energy deposited at the end-points, providing an extra background rejection factor of 24.3 ± 1.4 (stat.)%, while maintaining an efficiency of 66.7 ± 1% for signal events.

  11. Gas mixture studies for streamer operated Resistive Plate Chambers

    NASA Astrophysics Data System (ADS)

    Paoloni, A.; Longhin, A.; Mengucci, A.; Pupilli, F.; Ventura, M.

    2016-06-01

    Resistive Plate Chambers operated in streamer mode are interesting detectors in neutrino and astro-particle physics applications (like OPERA and ARGO experiments). Such experiments are typically characterized by large area apparatuses with no stringent requirements on detector aging and rate capabilities. In this paper, results of cosmic ray tests performed on a RPC prototype using different gas mixtures are presented, the principal aim being the optimization of the TetraFluoroPropene concentration in Argon-based mixtures. The introduction of TetraFluoroPropene, besides its low Global Warming Power, is helpful because it simplifies safety requirements allowing to remove also isobutane from the mixture. Results obtained with mixtures containing SF6, CF4, CO2, N2 and He are also shown, presented both in terms of detectors properties (efficiency, multiple-streamer probability and time resolution) and in terms of streamer characteristics.

  12. A study of gas mixtures for the ATLAS MDT

    SciTech Connect

    Zhao, T.; He, L.

    1996-06-01

    Results of a gas study for the ATLAS Monitored Drift Tubes (MDT) are reported. The electron drift velocity, Lorentz angle and tube radius to drift time relations are calculated for selected gas mixtures by using the CERN drift chamber simulation code GARFIELD/MAGBOLTZ. The drift tube efficiency, gas gain, avalanche size and self-quenching streamer (SQS) mode fraction as functions of anode voltage are measured by using radioactive sources. Discussions of the results, including effects of nitrogen and water vapor, are presented.

  13. ELECTROCHEMICAL SEPARATION AND CONCENTRATION OF HYDROGEN SULFIDE FROM GAS MIXTURES

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  14. Electrochemical separation and concentration of hydrogen sulfide from gas mixtures

    DOEpatents

    Winnick, Jack; Sather, Norman F.; Huang, Hann S.

    1984-10-30

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4 -- or, in the case of H.sub.2 S, to S--. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  15. Xenon Additives Detection in Helium Micro-Plasma Gas Analytical Sensor

    NASA Astrophysics Data System (ADS)

    Tsyganov, Alexander; Kudryavtsev, Anatoliy; Mustafaev, Alexander

    2012-10-01

    Electron energy spectra of Xe atoms at He filled micro-plasma afterglow gas analyzer were observed using Collisional Electron Spectroscopy (CES) method [1]. According to CES, diffusion path confinement for characteristic electrons makes it possible to measure electrons energy distribution function (EEDF) at a high (up to atmospheric) gas pressure. Simple geometry micro-plasma CES sensor consists of two plane parallel electrodes detector and microprocessor-based acquisition system providing current-voltage curve measurement in the afterglow of the plasma discharge. Electron energy spectra are deduced as 2-nd derivative of the measured current-voltage curve to select characteristic peaks of the species to be detected. Said derivatives were obtained by the smoothing-differentiating procedure using spline least-squares approximation of a current-voltage curve. Experimental results on CES electron energy spectra at 10-40 Torr in pure He and in admixture with 0.3% Xe are discussed. It demonstrates a prototype of the new miniature micro-plasma sensors for industry, safety and healthcare applications. [1]. A.A.Kudryavtsev, A.B.Tsyganov. US Patent 7,309,992. Gas analysis method and ionization detector for carrying out said method, issued December 18, 2007.

  16. Gravimetric methods for the preparation of standard gas mixtures

    NASA Astrophysics Data System (ADS)

    Milton, M. J. T.; Vargha, G. M.; Brown, A. S.

    2011-10-01

    The most widely used method for the preparation of primary standard gas mixtures involves weighing the individual components into a cylinder. We present a new mathematical description of the method and its uncertainties. We use this to demonstrate how strategies for serial dilution can be identified that minimize the uncertainty in the final mixture and show how they can be implemented practically. We review published reports of high accuracy gravimetry and give examples of relative uncertainties in the composition of standards approaching 1 part-per-million in the best cases and in the range of 100 to 1000 parts-per-million more typically.

  17. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    DOEpatents

    Hupp, Joseph T.; Mulfort, Karen L.; Snurr, Randall Q.; Bae, Youn-Sang

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  18. Application of Two Phase (Liquid/Gas) Xenon Gamma-Camera for the Detection of Special Nuclear Material and PET Medical Imaging

    SciTech Connect

    McKinsey, Daniel Nicholas

    2013-08-27

    The McKinsey group at Yale has been awarded a grant from DTRA for the building of a Liquid Xenon Gamma Ray Color Camera (LXe-GRCC), which combines state-of-the-art detection of LXe scintillation light and time projection chamber (TPC) charge readout. The DTRA application requires a movable detector and hence only a single phase (liquid) xenon detector can be considered in this case. We propose to extend the DTRA project to applications that allow a two phase (liquid/gas) xenon TPC. This entails additional (yet minimal) hardware and extension of the research effort funded by DTRA. The two phase detector will have better energy and angular resolution. Such detectors will be useful for PET medical imaging and detection of special nuclear material in stationary applications (e.g. port of entry). The expertise of the UConn group in gas phase TPCs will enhance the capabilities of the Yale group and the synergy between the two groups will be very beneficial for this research project as well as the education and research projects of the two universities. The LXe technology to be used in this project has matured rapidly over the past few years, developed for use in detectors for nuclear physics and astrophysics. This technology may now be applied in a straightforward way to the imaging of gamma rays. According to detailed Monte Carlo simulations recently performed at Yale University, energy resolution of 1% and angular resolution of 3 degrees may be obtained for 1.0 MeV gamma rays, using existing technology. With further research and development, energy resolution of 0.5% and angular resolution of 1.3 degrees will be possible at 1.0 MeV. Because liquid xenon is a high density, high Z material, it is highly efficient for scattering and capturing gamma rays. In addition, this technology scales elegantly to large detector areas, with several square meter apertures possible. The Yale research group is highly experienced in the development and use of noble liquid detectors for

  19. Trapping of xenon gas in closed inner spaces of carbon nanomaterials for stable gas storage under high-vacuum condition

    NASA Astrophysics Data System (ADS)

    Kobayashi, Keita; Yasuda, Hidehiro

    2017-01-01

    Xe gas can be trapped in the closed inner spaces of glassy carbon derived from C60 fullerene by thermal coalescence of C60 in Xe atmosphere and in cap-opened carbon nanotubes (CNTs) covered with an ionic liquid by soaking Xe-adsorbing CNTs in an ionic liquid. The trapped Xe gas is detected by energy dispersive X-ray spectrometry using a spectrometer mounted on an analytical transmission electron microscope. The closed inner spaces store gas molecules even under high-vacuum condition (˜10-5 Pa).

  20. Plasma polymerization of an ethylene-nitrogen gas mixture

    NASA Technical Reports Server (NTRS)

    Hudis, M.; Wydeven, T.

    1975-01-01

    A procedure has been developed whereby nitrogen can be incorporated into an organic film from an ethylene-nitrogen gas mixture using an internal electrode capacitively coupled radio frequency reactor. The presence of nitrogen has been shown directly by infrared transmittance spectra and electron spectroscopic chemical analysis data, and further indirect evidence was provided by dielectric measurements and by the reverse osmosis properties of the film. Preparation of a nitrogen containing film did not require vapor from an organic nitrogen containing liquid monomer. Some control over the bonding and stoichiometry of the polymer film was provided by the added degree of freedom of the nitrogen partial pressure in the gas mixture. This new parameter strongly affected the dielectric properties of the plasma polymerized film and could affect the reverse osmosis behavior.

  1. Pulsed electron beam propagation in argon and nitrogen gas mixture

    SciTech Connect

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Zhirkov, I. S.

    2015-10-15

    The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N{sub 2}). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 ± 3, 300 ± 3, and 50 ± 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively.

  2. Gettering of hydrogen and methane from a helium gas mixture

    SciTech Connect

    Cárdenas, Rosa Elia; Stewart, Kenneth D.; Cowgill, Donald F.

    2014-11-01

    In this study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H{sub 2} and CH{sub 4} can be removed simultaneously from the mixture using two SAES St 172{sup ®} getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. The optimum combination involved operating one getter at 650 °C to decompose the methane, and the second at 110 °C to remove the hydrogen. This approach eliminated the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.

  3. Gettering of Hydrogen and Methane from a Helium Gas Mixture

    DOE PAGES

    Cardenas, Rosa E.; Stewart, Kenneth D.; Cowgill, Donald F.

    2014-10-21

    In our study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H2 and CH4 can be removed simultaneously from the mixture using two SAES St 172® getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. Moreover, the optimum combination involved operating one getter at 650°C to decompose the methane, and the second at 110°C to remove the hydrogen. Finally, this approach eliminatedmore » the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.« less

  4. Gettering of Hydrogen and Methane from a Helium Gas Mixture

    SciTech Connect

    Cardenas, Rosa E.; Stewart, Kenneth D.; Cowgill, Donald F.

    2014-10-21

    In our study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H2 and CH4 can be removed simultaneously from the mixture using two SAES St 172® getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. Moreover, the optimum combination involved operating one getter at 650°C to decompose the methane, and the second at 110°C to remove the hydrogen. Finally, this approach eliminated the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.

  5. Predicting detection probabilities for gas mixtures over HSI backgrounds

    SciTech Connect

    Tardiff, Mark F.; Walsh, Stephen J.; Anderson, Kevin K.; Chilton, Lawrence

    2009-12-29

    Detecting and identifying weak gaseous plumes using thermal image data acquired by airborne detectors is an area of ongoing research. This contribution investigates the relative detectability of gas mixtures over different backgrounds and a range of plume temperatures that are warmer and cooler than the ground. The focus of this analysis to support mission planning. When the mission is intended to collect evidence of particular chemicals, the analysis presented is this report can be used to determine conditions under which useful data can be acquired. Initial analyses can be used to determine whether LWIR is useful for the anticipated gas, temperature, and background combination.

  6. Process for testing a xenon gas feed system of a hollow cathode assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2004-01-01

    The design and manufacturing processes for Hollow Cathode Assemblies (HCA's) that operate over a broad range of emission currents up to 30 Amperes, at low potentials, with lifetimes in excess of 17,500 hours. The processes include contamination control procedures which cover hollow cathode component cleaning procedures, gas feed system designs and specifications, and hollow cathode activation and operating procedures to thereby produce cathode assemblies that have demonstrated stable and repeatable operating conditions, for both the discharge current and voltage. The HCA of this invention provides lifetimes of greater than 10,000 hours, and expected lifetimes of greater than 17,500 hours, whereas the present state-of-the-art is less than 500 hours at emission currents in excess of 1 Ampere. Stable operation is provided over a large range of operating emission currents, up to a 6:1 ratio, and this HCA can emit electron currents of up to 30 Amperes in magnitude to an external anode that simulates the current drawn to a space plasma, at voltages of less than 20 Volts.

  7. Barium Tagging for nEXO in Liquid and Gas Xenon

    NASA Astrophysics Data System (ADS)

    Kravitz, Scott; Brunner, Thomas; Fudenberg, Dan; nEXO Collaboration

    2015-04-01

    nEXO is a next-generation multi-ton experiment currently under development to search for neutrinoless double-beta decay of Xe-136. A positive observation will determine the neutrino to be a Majorana particle. In order to greatly reduce backgrounds for this search, the nEXO collaboration is developing several techniques to recover and identify the decay daughter, Ba-136 (``barium tagging''). This technique may be available for a second phase of the nEXO detector and will improve the sensitivity to probe the neutrino mass scale beyond the inverted hierarchy. A setup to demonstrate Ba ion capture on a probe and subsequent identification through resonance ionization spectroscopy has been developed, and is being used to investigate possible probe substrates, including graphene. For a gas phase detector, appropriate for a later stage, a separate apparatus to extract Ba ions using an RF-only funnel has been constructed and demonstrates extraction of ions from high-pressure Xe to vacuum consistent with simulations. We will describe the status of these systems and the present results of this R&D program.

  8. A study of the xenon effect in type-II clathrate hydrate synthesis; Commencing with hydrogen, argon and xenon uptake into a propane clathrate hydrate

    NASA Astrophysics Data System (ADS)

    Abbondondola, Joanne Angela

    It has been proposed that clathrate hydrates can be a possible storage medium for alternative fuels, such as hydrogen. The type-II propane gas hydrate is a viable choice because there are twice as many small cages as large cages and the small cavities are available for hydrogen storage. However, propane hydrate formation is a kinetically slow process which makes it commercially unattractive. Our objectives were twofold; (1) to quantify hydrogen, argon and xenon sorption into a preformed type-II propane hydrate at near-ambient conditions and (2) to investigate the effect of xenon on the rate of type-II propane hydrate formation. The propane hydrate is synthesized from 250 mum ice grains, and is estimated to have a porosity of 65 %. Hydrogen is rapidly absorbed by the hydrate sample and approaches the equilibrium vapor pressure in an hour before a very slow residual absorption process ensues. For an initial hydrogen pressure of 1.5 MPa, about 4.5 % of the available 512 cages are occupied by hydrogen after one hour, and 4.9 % after 18 hours. In contrast, for both argon and xenon significantly more gas is absorbed by the hydrate, but at a much slower rate: about 5% as fast for xenon and 1% as fast for argon. We conclude that hydrogen readily diffuses through the propane hydrate microcrystal structure, while argon and xenon are probably absorbed by growing new double hydrate while consuming the propane hydrate. Thus, although considerably higher pressures would be required to store significant quantities of hydrogen in propane hydrate, it appears that the crystal can be loaded and emptied in relatively short amounts of time. Experimental results show that propane is incorporated into clathrate hydrate cages more rapidly using propane-xenon mixtures than for pure propane gas. For a 0.92 xenon: propane mix, 60% of the theoretical yield of propane enclathration is achieved in 20 minutes, versus several days for pure propane. It appears that xenon serves to nucleate the

  9. Magnetic resonance imaging of convection in laser-polarized xenon

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Tseng, C. H.; Wong, G. P.; Cory, D. G.; Walsworth, R. L.

    2000-01-01

    We demonstrate nuclear magnetic resonance (NMR) imaging of the flow and diffusion of laser-polarized xenon (129Xe) gas undergoing convection above evaporating laser-polarized liquid xenon. The large xenon NMR signal provided by the laser-polarization technique allows more rapid imaging than one can achieve with thermally polarized gas-liquid systems, permitting shorter time-scale events such as rapid gas flow and gas-liquid dynamics to be observed. Two-dimensional velocity-encoded imaging shows convective gas flow above the evaporating liquid xenon, and also permits the measurement of enhanced gas diffusion near regions of large velocity variation.

  10. Solid Xenon Project

    NASA Astrophysics Data System (ADS)

    Balakishiyeva, Durdana N.; Mahapatra, Rupak; Saab, Tarek; Yoo, Jonghee

    2010-08-01

    Crystals like Germanium and Silicon need to be grown in specialized facilities which is time and money costly. It takes many runs to test the detector once it's manufactured and mishaps are very probable. It is of a great challenge to grow big germanium crystals and that's why stacking them up in a tower is the only way at the moment to increase testing mass. Liquid Noble gas experiments experiencing contamination problems, their predicted energy resolution at 10 keV and lower energy range is not as good as predicted. Every experiment is targeting one specific purpose, looking for one thing. Why not to design an experiment that is diverse and build a detector that can search for Dark Matter, Solar Axions, Neutrinoless Double Beta decay, etc. Solid Xenon detector is such detector. We designed a simple Xenon crystal growing chamber that was put together at Fermi National Accelerator Laboratory. The first phase of this experiment was to demonstrate that a good, crack free Xenon crystal can be grown (regardless of many failed attempts by various groups) and our first goal, 1 kg crystal, was successful.

  11. Solid Xenon Project

    SciTech Connect

    Balakishiyeva, Durdana N.; Saab, Tarek; Mahapatra, Rupak; Yoo, Jonghee

    2010-08-30

    Crystals like Germanium and Silicon need to be grown in specialized facilities which is time and money costly. It takes many runs to test the detector once it's manufactured and mishaps are very probable. It is of a great challenge to grow big germanium crystals and that's why stacking them up in a tower is the only way at the moment to increase testing mass. Liquid Noble gas experiments experiencing contamination problems, their predicted energy resolution at 10 keV and lower energy range is not as good as predicted. Every experiment is targeting one specific purpose, looking for one thing. Why not to design an experiment that is diverse and build a detector that can search for Dark Matter, Solar Axions, Neutrinoless Double Beta decay, etc. Solid Xenon detector is such detector. We designed a simple Xenon crystal growing chamber that was put together at Fermi National Accelerator Laboratory. The first phase of this experiment was to demonstrate that a good, crack free Xenon crystal can be grown (regardless of many failed attempts by various groups) and our first goal, 1 kg crystal, was successful.

  12. Method for the simultaneous preparation of Radon-211, Xenon-125, Xenon-123, Astatine-211, Iodine-125 and Iodine-123

    DOEpatents

    Mirzadeh, Saed; Lambrecht, Richard M.

    1987-01-01

    A method for simultaneously preparing Radon-211, Astatine-211, Xenon-125, Xenon-123, Iodine-125 and Iodine-123 in a process that includes irradiating a fertile metal material then using a one-step chemical procedure to collect a first mixture of about equal amounts of Radon-211 and Xenon-125, and a separate second mixture of about equal amounts of Iodine-123 and Astatine-211.

  13. Laser beam characterization of the ATLAS RPC gas mixture

    NASA Astrophysics Data System (ADS)

    Chiodini, G.; Coluccia, M. R.; Gorini, E.; Grancagnolo, F.; Primavera, M.

    2007-10-01

    A measurement of the electrons drift velocity in C 2H 2F 4-based gas mixture has been performed and results have been compared with calculations. Primary ionization is induced in the gas via double photon ionization process by mean of a pulsed Nitrogen laser. The results of the drift velocity, obtained at room temperature and normal pressure, are presented as a function of the electric field strength. To perform the measurements we used a small sized RPC prototype with a 2 mm gas gap delimited by 2mm-thick linseed-oil-treated bakelite plates with resistivity of about 1.71×10Ω cm at 20°C.

  14. Xenon Fractionation and Archean Hydrogen Escape

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  15. Disentangling xenon components in Nakhla: martian atmosphere, spallation and martian interior^1

    NASA Astrophysics Data System (ADS)

    Gilmour, J. D.; Whitby, J. A.; Turner, G.

    2001-01-01

    A powdered sample of Nakhla was separated into 3 subsamples. One was left otherwise untreated, one was washed in water and one etched with HNO 3 removing 6% of the original mass. We report results of isotopic analysis of xenon released by laser step heating on aliquots of each of these subsamples; some aliquots were neutron irradiated before isotopic analysis (to allow determination of I, Ba and U as daughter xenon isotopes) and some were not. There is evidence that water soluble phases contain both martian atmospheric xenon and a component with low 129Xe/ 132Xe, either martian interior xenon or terrestrial atmosphere. Higher temperature data from unirradiated aliquots of the water and acid treated samples reveal two-component mixing. One is a trapped xenon component with 129Xe/ 132Xe = 2.350 ± 0.026, isotopically identical to the martian atmosphere as measured in shock glass from shergottites. It is associated with leachable iodine, suggesting it is trapped close to grain boundaries. It may be a result of shock incorporation of adsorbed atmospheric gas. The second component is best explained as an intimate mixture of martian interior xenon and spallation xenon. The martian interior component is present at a concentration of ˜10 -12 cm 3 STP g -1 132Xe, around 40 times lower than that observed in Chassigny. Its association with spallation xenon (produced from Ba and light rare earth elements) suggests it is in the feldspathic mesostasis. We propose that it was trapped during crystallisation and reflects the mantle source of the parental magma.

  16. Superconducting cable cooling system by helium gas and a mixture of gas and liquid helium

    DOEpatents

    Dean, John W.

    1977-01-01

    Thermally contacting, oppositely streaming cryogenic fluid streams in the same enclosure in a closed cycle that changes from a cool high pressure helium gas to a cooler reduced pressure helium fluid comprised of a mixture of gas and boiling liquid so as to be near the same temperature but at different pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid in a go leg from a refrigerator at one end of the line as a high pressure helium gas near the normal boiling temperature of helium; then circulating the gas through an expander at the other end of the line where the gas becomes a mixture of reduced pressure gas and boiling liquid at its boiling temperature; then by circulating the mixture in a return leg that is separated from but in thermal contact with the gas in the go leg and in the same enclosure therewith; and finally returning the resulting low pressure gas to the refrigerator for compression into a high pressure gas at T.sub.2 is a closed cycle, where T.sub.1 >T.sub.2, the temperature distribution is such that the line temperature is nearly constant along its length from the refrigerator to the expander due to the boiling of the liquid in the mixture. A heat exchanger between the go and return lines removes the gas from the liquid in the return leg while cooling the go leg.

  17. Remote sensing of high temperature H2O CO2 CO mixture with a correlated k-distribution fictitious gas method and the single-mixture gas assumption

    NASA Astrophysics Data System (ADS)

    Caliot, C.; Le Maoult, Y.; El Hafi, M.; Flamant, G.

    2006-11-01

    Infrared spectra of high temperature H2O CO2 CO mixtures are calculated using narrow band models in order to simulate hot jet signature at long distance. The correlated k-distribution with fictitious gas (CKFG) approach generally gives accurate data in such situations (especially for long atmospheric paths) but results in long computation time in cases involving mixtures of gases. This time may be reduced if the mixture is treated as a single gas (single-mixture gas assumption, SMG). Thus the lines of the single-mixture gas are assigned to the fictitious gases. In this study, the accuracy of two narrow band models is evaluated. The first narrow band model considers one single-mixture gas and no fictitious gas (CK-SMG) whereas the second model accounts for one single-mixture gas and three fictitious gases (CKFG-SMG). Both narrow band models are compared with reference spectra calculated with a line-by-line (LBL) approach. As expected, the narrow band accuracy is improved by the fictitious gas (FG) assumption particularly when long atmospheric paths are involved. Concerning the SMG assumption, it may lead to an underestimation of about 10% depending on the variation of the gas mixture composition ratio. Nevertheless, in most of realistic situations the SMG assumption results in negligible errors and may be used for remote sensing of plume signature.

  18. Aerobic fitness in patients with fibrositis. A controlled study of respiratory gas exchange and 133-xenon clearance from exercising muscle

    SciTech Connect

    Bennett, R.M.; Clark, S.R.; Goldberg, L.; Nelson, D.; Bonafede, R.P.; Porter, J.; Specht, D.

    1989-04-01

    Aerobic fitness was evaluated in 25 women with fibrositis, by having them exercise to volitional exhaustion on an electronically braked cycle ergometer. Compared with published standards, greater than 80% of the fibrositis patients were not physically fit, as assessed by maximal oxygen uptake. Compared with matched sedentary controls, fibrositis patients accurately perceived their level of exertion in relation to oxygen consumption and attained a similar level of lactic acidosis, as assessed by their respiratory quotient and ventilatory threshold. Exercising muscle blood flow was estimated by 133-xenon clearance in a subgroup of 16 fibrositis patients and compared with that in 16 matched sedentary controls; the fibrositis patients exhibited reduced 133-xenon clearance. These results indicate a need to include aerobic fitness as a matched variable in future controlled studies of fibrositis and suggest that the detraining phenomenon may be of relevance to the etiopathogenesis of the disease.

  19. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOEpatents

    Hunter, Scott R.; Christophorou, Loucas G.

    1990-01-01

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue of the combined physio-electric properties of the mixture components.

  20. Chemical discrimination in turbulent gas mixtures with MOX sensors validated by gas chromatography-mass spectrometry.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Vergara, Alexander; Huerta, Ramón

    2014-10-16

    Chemical detection systems based on chemo-resistive sensors usually include a gas chamber to control the sample air flow and to minimize turbulence. However, such a kind of experimental setup does not reproduce the gas concentration fluctuations observed in natural environments and destroys the spatio-temporal information contained in gas plumes. Aiming at reproducing more realistic environments, we utilize a wind tunnel with two independent gas sources that get naturally mixed along a turbulent flow. For the first time, chemo-resistive gas sensors are exposed to dynamic gas mixtures generated with several concentration levels at the sources. Moreover, the ground truth of gas concentrations at the sensor location was estimated by means of gas chromatography-mass spectrometry. We used a support vector machine as a tool to show that chemo-resistive transduction can be utilized to reliably identify chemical components in dynamic turbulent mixtures, as long as sufficient gas concentration coverage is used. We show that in open sampling systems, training the classifiers only on high concentrations of gases produces less effective classification and that it is important to calibrate the classification method with data at low gas concentrations to achieve optimal performance.

  1. Anticonvulsant effect of xenon on neonatal asphyxial seizures.

    PubMed

    Azzopardi, Denis; Robertson, Nicola J; Kapetanakis, Andrew; Griffiths, James; Rennie, Janet M; Mathieson, Sean R; Edwards, A David

    2013-09-01

    Xenon, a monoatomic gas with very high tissue solubility, is a non-competitive inhibitor of N-methyl-D-aspartate (NMDA) glutamate receptor, has antiapoptotic effects and is neuroprotective following hypoxic ischaemic injury in animals. Xenon may be expected to have anticonvulsant effects through glutamate receptor blockade, but this has not previously been demonstrated clinically. We examined seizure activity on the real time and amplitude integrated EEG records of 14 full-term infants with perinatal asphyxial encephalopathy treated within 12 h of birth with 30% inhaled xenon for 24 h combined with 72 h of moderate systemic hypothermia. Seizures were identified on 5 of 14 infants. Seizures stopped during xenon therapy but recurred within a few minutes of withdrawing xenon and stopped again after xenon was restarted. Our data show that subanaesthetic levels of xenon may have an anticonvulsant effect. Inhaled xenon may be a valuable new therapy in this hard-to-treat population.

  2. Critical Viscosity of Xenon team

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure (at left) that is placed inside a pressure canister. A similar canister (right) holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (left) of the National Institutes of Standards and Technology, Gaithersburg, MD.

  3. Critical Viscosity of Xenon team

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure (at left) that is placed inside a pressure canister. A similar canister (right) holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (not shown) of the National Institutes of Standards and Technology, Gaithersburg, MD.

  4. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  5. Separation of SF6 from gas mixtures using gas hydrate formation.

    PubMed

    Cha, Inuk; Lee, Seungmin; Lee, Ju Dong; Lee, Gang-woo; Seo, Yongwon

    2010-08-15

    This study aims to examine the thermodynamic feasibility of separating sulfur hexafluoride (SF(6)), which is widely used in various industrial fields and is one of the most potent greenhouse gases, from gas mixtures using gas hydrate formation. The key process variables of hydrate phase equilibria, pressure-composition diagram, formation kinetics, and structure identification of the mixed gas hydrates, were closely investigated to verify the overall concept of this hydrate-based SF(6) separation process. The three-phase equilibria of hydrate (H), liquid water (L(W)), and vapor (V) for the binary SF(6) + water mixture and for the ternary N(2) + SF(6) + water mixtures with various SF(6) vapor compositions (10, 30, 50, and 70%) were experimentally measured to determine the stability regions and formation conditions of pure and mixed hydrates. The pressure-composition diagram at two different temperatures of 276.15 and 281.15 K was obtained to investigate the actual SF(6) separation efficiency. The vapor phase composition change was monitored during gas hydrate formation to confirm the formation pattern and time needed to reach a state of equilibrium. Furthermore, the structure of the mixed N(2) + SF(6) hydrate was confirmed to be structure II via Raman spectroscopy. Through close examination of the overall experimental results, it was clearly verified that highly concentrated SF(6) can be separated from gas mixtures at mild temperatures and low pressure conditions.

  6. Relativistic rise measurement for heavy cosmic rays in xenon

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Parnell, T. A.; Watts, J., Jr.

    1982-01-01

    Potential advantages of the use of the relativistic rise of energy loss in gas-filled counters for cosmic ray energy measurement have been noted by Tueller et al. (1979) and Gregory and Parnell (1979). Gregory and Parnell have reported measurements on the relativistic rise for cosmic ray iron nuclei in parallel plate ionization chambers 8.4 cm thick filled with a xenon and methane mixture. The present investigation is concerned with the observed rise and ionization signal fluctuations for a sample of elements from carbon through iron in the cosmic rays. The results are compared with a calculation of the energy deposit within the ion chamber.

  7. [Effect of inert gas xenon on the functional state of nucleated cells of peripheral blood during freezing].

    PubMed

    Laptev, D S; Polezhaeva, T V; Zaitseva, O O; Khudyakov, A N; Utemov, S V; Knyazev, M G; Kostyaev, A A

    2015-01-01

    A new method of preservation of nucleated cells in the electric refrigerator with xenon. After slow freezing and storage is even one day at -80 °C persists for more than 60% leukocytes. Cell membranes are resistant to the vital dye. In 85% of granulocytes stored baseline lysosomal-cationic protein, reduced lipid peroxidation and antioxidant activity. Cryopreservation of biological objects in inert gases is a promising direction in the practice of medicine and can be an alternative to the traditional method using liquid nitrogen.

  8. Xenon Feed System Progress

    DTIC Science & Technology

    2006-01-01

    From - To) 13-06-2006 Technical Paper 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER F04611-00-C-0055 Xenon Feed System Progress (Preprint) 5b. GRANT...propulsion xenon feed system for a flight technology demonstration program. Major accomplishments include: 1) Utilization of the Moog...successfully fed xenon to a 200 watt Hall Effect Thruster in a Technology Demonstration Program. The feed system has demonstrated throttling of xenon

  9. Venus, Earth, Xenon

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2013-12-01

    Xenon has been regarded as an important goal of many proposed missions to Venus. This talk is intended to explain why. Despite its being the heaviest gas found in natural planetary atmospheres, there is more evidence that Xe escaped from Earth than for any element apart from helium: (i) Atmospheric Xe is very strongly mass fractionated (at about 4% per amu) from any known solar system source. This suggests fractionating escape that preferentially left the heavy Xe isotopes behind. (ii) Xe is underabundant compared to Kr, a lighter noble gas that is not strongly mass fractionated in air. (iii) Radiogenic Xe is strongly depleted by factors of several to ~100 compared to the quantities expected from radioactive decay of primordial solar system materials. In these respects Xe on Mars is similar to Xe on Earth, but with one key difference: Xe on Mars is readily explained by a simple process like hydrodynamic escape that acts on an initially solar or meteoritic Xe. This is not so for Earth. Earth's Xe cannot be derived by an uncontrived mass fractionating process acting on any known type of Solar System Xe. Earth is a stranger, made from different stuff than any known meteorite or Mars or even the Sun. Who else is in Earth's family? Comets? We know nothing. Father Zeus? Data from Jupiter are good enough to show that jovian Xe is not strongly mass-fractionated but not good enough to determine whether Jupiter resembles the Earth or the Sun. Sister Venus? Noble gas data from Venus are incomplete, with Kr uncertain and Xe unmeasured. Krypton was measured by several instruments on several spacecraft. The reported Kr abundances are discrepant and were once highly controversial. These discrepancies appear to have been not so much resolved as forgotten. Xenon was not detected on Venus. Upper limits were reported for the two most abundant xenon isotopes 129Xe and 132Xe. From the limited data it is not possible to tell whether Venus's affinities lie with the solar wind, or with

  10. Quantitative NMR spectroscopy for gas analysis for production of primary reference gas mixtures

    NASA Astrophysics Data System (ADS)

    Meyer, K.; Rademann, K.; Panne, U.; Maiwald, M.

    2017-02-01

    Due to its direct correlation to the number of spins within a sample quantitative NMR spectroscopy (qNMR) is a promising method with absolute comparison abilities in complex systems in technical, as well as metrological applications. Most of the samples studied with qNMR are in liquid state in diluted solutions, while gas-phase applications represent a rarely applied case. Commercially available NMR equipment was used for purity assessment of liquid and liquefied hydrocarbons serving as raw materials for production of primary reference gas standards. Additionally, gas-phase studies were performed within an online NMR flow probe, as well as in a high-pressure NMR setup to check feasibility as verification method for the composition of gas mixtures.

  11. Quantitative NMR spectroscopy for gas analysis for production of primary reference gas mixtures.

    PubMed

    Meyer, K; Rademann, K; Panne, U; Maiwald, M

    2017-02-01

    Due to its direct correlation to the number of spins within a sample quantitative NMR spectroscopy (qNMR) is a promising method with absolute comparison abilities in complex systems in technical, as well as metrological applications. Most of the samples studied with qNMR are in liquid state in diluted solutions, while gas-phase applications represent a rarely applied case. Commercially available NMR equipment was used for purity assessment of liquid and liquefied hydrocarbons serving as raw materials for production of primary reference gas standards. Additionally, gas-phase studies were performed within an online NMR flow probe, as well as in a high-pressure NMR setup to check feasibility as verification method for the composition of gas mixtures.

  12. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  13. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOEpatents

    Hunter, S.R.; Christophorou, L.G.

    1988-04-27

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.

  14. High-frequency sound wave propagation in binary gas mixtures flowing through microchannels

    NASA Astrophysics Data System (ADS)

    Bisi, M.; Lorenzani, S.

    2016-05-01

    The propagation of high-frequency sound waves in binary gas mixtures flowing through microchannels is investigated by using the linearized Boltzmann equation based on a Bhatnagar-Gross-Krook (BGK)-type approach and diffuse reflection boundary conditions. The results presented refer to mixtures whose constituents have comparable molecular mass (like Ne-Ar) as well as to disparate-mass gas mixtures (composed of very heavy plus very light molecules, like He-Xe). The sound wave propagation model considered in the present paper allows to analyze the precise nature of the forced-sound modes excited in different gas mixtures.

  15. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    DOEpatents

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  16. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    DOEpatents

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  17. Status and Plans for the XENON Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Gaitskell, R. J.; Collaborotion, Xenon

    2005-04-01

    The XENON experiment aims at the direct detection of dark matter in the form of WIMPs (Weakly Interacting Massive Particles) via their elastic scattering off Xenon nuclei. With a fiducial mass of 1000 kg of liquid xenon, a sufficiently low threshold of 16 keV recoil energy and an un-rejected background rate of 10 events per year, XENON would be sensitive to a WIMP-nucleon interaction cross section of ~ 10-46cm2, for WIMPs with masses above 50 GeV. A 1 tonne scale experiment (XENON1T) would be realized with an array of ten identical 100 kg detector modules (XENON100). The detectors are time projection chambers operated in dual (liquid/gas) phase, to detect simultaneously the ionization, through secondary scintillation in the gas, and primary scintillation in the liquid produced by low energy recoils. The distinct ratio of primary to secondary scintillation for nuclear recoils from WIMPs (or neutrons), and for electron recoils from background, is key to the event-by-event discrimination capability of XENON. A 3kg dual phase detector with light readout provided by an array of 7 photomultipliers is currently being tested, along with other prototypes dedicated to various measurements relevant to the XENON program. We present some of the results obtained to-date and briefly discuss the next step in the phased approach to the XENON experiment, i.e. the development and underground deployment of a 10 kg detector (XENON10) during 2005.

  18. Xenon adsorption in NaA zeolite cavities

    NASA Astrophysics Data System (ADS)

    McCormick, A. V.; Chmelka, B. F.

    Adsorption of xenon atoms in the α-cages of NaA zeolite has been studied using 129Xe NMR spectroscopy to probe directly the distribution and configuration of molecules in confined, microporous environments. The 129Xe NMR spectrum is sensitive to subtle changes in xenon environment, so relative populations of α-cages containing different numbers of xenon guests can be determined and the effects of other co-adsorbed species monitored. On the basis of 129Xe NMR spectra, the distribution of xenon atoms among NaA α-cages is shown to exhibit a marked dependence on the pressure at which the xenon guests are introduced. 129Xe NMR spectra recorded at 200 K reveal that xenon atoms in the NaA α-cages experience diminished mobility (resembling condensation phenomena) at higher temperatures than in the bulk gas of equivalent density. Thus, the chemical potential of adsorbed xenon can be investigated experimentally as a function of both temperature and guest density. The density dependence of the 129Xe chemical shift in Xe/NaA and in bulk xenon gas shows that Xe-Xe interactions in the proximity of the NaA cage wall are important in α-cages containing more than five xenon guests. This trend is linked to entropic effects which may enhance xenon adsorption in the confined environment of the NaA α-cages.

  19. Dissipation process of binary gas mixtures in thermally relativistic flow

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke

    2016-04-01

    In this paper, dissipation process of binary gas mixtures in thermally relativistic flows is discussed with focus on characteristics of diffusion flux. As an analytical object, we consider the relativistic rarefied-shock layer around a triangular prism. Numerical results for the diffusion flux are compared with the Navier-Stokes-Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox et al (1976 Physica A 84 165-74). In the case of uniform flow with small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of a wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is similar to that of the NSF order approximation inside the shock wave, unlike the pressure deviator, dynamic pressure and heat flux, even when the Lorentz contraction in the uniform flow becomes large, because the diffusion flux does not depend on the generic Knudsen number from its definition in Eckart’s frame. Finally, the author concludes that for accuracy diffusion flux must be calculated using the particle four-flow and averaged four velocity, which are formulated using the four velocity defined by each species of hard spherical particles.

  20. Metastable sound speed in gas-liquid mixtures

    NASA Technical Reports Server (NTRS)

    Bursik, J. W.; Hall, R. M.

    1979-01-01

    A new method of calculating speed of sound for two-phase flow is presented. The new equation assumes no phase change during the propagation of an acoustic disturbance and assumes that only the total entropy of the mixture remains constant during the process. The new equation predicts single-phase values for the speed of sound in the limit of all gas or all liquid and agrees with available two-phase, air-water sound speed data. Other expressions used in the two-phase flow literature for calculating two-phase, metastable sound speed are reviewed and discussed. Comparisons are made between the new expression and several of the previous expressions -- most notably a triply isentropic equation as used, a triply isentropic equation as used, among others, by Karplus and by Wallis. Appropriate differences are pointed out and a thermodynamic criterion is derived which must be satisfied in order for the triply isentropic expression to be thermodynamically consistent. This criterion is not satisfied for the cases examined, which included two-phase nitrogen, air-water, two-phase parahydrogen, and steam-water. Consequently, the new equation derived is found to be superior to the other equations reviewed.

  1. Two-dimensional simulation of the development of an inhomogeneous volume discharge in a Ne/Xe/HCl gas mixture

    SciTech Connect

    Bychkov, Yu. I. Yampolskaya, S. A.; Yastremskii, A. G.

    2013-05-15

    The kinetic processes accompanying plasma column formation in an inhomogeneous discharge in a Ne/Xe/HCl gas mixture at a pressure of 4 atm were investigated by using a two-dimensional model. Two cathode spots spaced by 0.7 cm were initiated by distorting the cathode surface at local points, which resulted in an increase in the field strength in the cathode region. Three regimes differing in the charging voltage, electric circuit inductance, and electric field strength at the local cathode points were considered. The spatiotemporal distributions of the discharge current; the electron density; and the densities of excited xenon atoms, HCl(v = 0) molecules in the ground state, and HCl(v > 0) molecules in vibrational levels were calculated. The development of the discharge with increasing the electron density from 10{sup 4} to 10{sup 16} cm{sup -3} was analyzed, and three characteristic stages in the evolution of the current distribution were demonstrated. The width of the plasma column was found to depend on the energy deposited in the discharge. The width of the plasma column was found to decrease in inverse proportion to the deposited energy due to spatiotemporal variations in the rates of electron production and loss. The calculated dependences of the cross-sectional area of the plasma column on the energy deposited in the discharge agree with the experimental results.

  2. The nonlinear model for emergence of stable conditions in gas mixture in force field

    NASA Astrophysics Data System (ADS)

    Kalutskov, Oleg; Uvarova, Liudmila

    2016-06-01

    The case of M-component liquid evaporation from the straight cylindrical capillary into N - component gas mixture in presence of external forces was reviewed. It is assumed that the gas mixture is not ideal. The stable states in gas phase can be formed during the evaporation process for the certain model parameter valuesbecause of the mass transfer initial equationsnonlinearity. The critical concentrations of the resulting gas mixture components (the critical component concentrations at which the stable states occur in mixture) were determined mathematically for the case of single-component fluid evaporation into two-component atmosphere. It was concluded that this equilibrium concentration ratio of the mixture components can be achieved by external force influence on the mass transfer processes. It is one of the ways to create sustainable gas clusters that can be used effectively in modern nanotechnology.

  3. In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Pepin, R. O.; Trainer, M. G.; Schwenzer, S. P.; Atreya, S. K.; Freissinet, C.; Jones, J. H.; Manning, H.; Owen, T.; Pavlov, A. A.; Wiens, R. C.; Wong, M. H.; Mahaffy, P. R.

    2016-11-01

    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.

  4. Pathway to Cryogen Free Production of Hyperpolarized Krypton-83 and Xenon-129

    PubMed Central

    Six, Joseph S.; Hughes-Riley, Theodore; Stupic, Karl F.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2012-01-01

    Hyperpolarized (hp) 129Xe and hp 83Kr for magnetic resonance imaging (MRI) are typically obtained through spin-exchange optical pumping (SEOP) in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp 129Xe MRI cumbersome. For hp 83Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For 129Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized 129Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm3/min. For hp 83Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm3/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D1 transition was observed and taken into account for the qualitative description of the SEOP process. PMID:23209620

  5. Pathway to cryogen free production of hyperpolarized Krypton-83 and Xenon-129.

    PubMed

    Six, Joseph S; Hughes-Riley, Theodore; Stupic, Karl F; Pavlovskaya, Galina E; Meersmann, Thomas

    2012-01-01

    Hyperpolarized (hp) (129)Xe and hp (83)Kr for magnetic resonance imaging (MRI) are typically obtained through spin-exchange optical pumping (SEOP) in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp (129)Xe MRI cumbersome. For hp (83)Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For (129)Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized (129)Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm(3)/min. For hp (83)Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm(3)/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D(1) transition was observed and taken into account for the qualitative description of the SEOP process.

  6. Xenon Blocks Neuronal Injury Associated with Decompression.

    PubMed

    Blatteau, Jean-Eric; David, Hélène N; Vallée, Nicolas; Meckler, Cedric; Demaistre, Sebastien; Lambrechts, Kate; Risso, Jean-Jacques; Abraini, Jacques H

    2015-10-15

    Despite state-of-the-art hyperbaric oxygen (HBO) treatment, about 30% of patients suffering neurologic decompression sickness (DCS) exhibit incomplete recovery. Since the mechanisms of neurologic DCS involve ischemic processes which result in excitotoxicity, it is likely that HBO in combination with an anti-excitotoxic treatment would improve the outcome in patients being treated for DCS. Therefore, in the present study, we investigated the effect of the noble gas xenon in an ex vivo model of neurologic DCS. Xenon has been shown to provide neuroprotection in multiple models of acute ischemic insults. Fast decompression compared to slow decompression induced an increase in lactate dehydrogenase (LDH), a well-known marker of sub-lethal cell injury. Post-decompression administration of xenon blocked the increase in LDH release induced by fast decompression. These data suggest that xenon could be an efficient additional treatment to HBO for the treatment of neurologic DCS.

  7. The impact of air-fuel mixture composition on SI engine performance during natural gas and producer gas combustion

    NASA Astrophysics Data System (ADS)

    Przybyła, G.; Postrzednik, S.; Żmudka, Z.

    2016-09-01

    The paper summarizers results of experimental tests of SI engine fuelled with gaseous fuels such as, natural gas and three mixtures of producer gas substitute that simulated real producer gas composition. The engine was operated under full open throttle and charged with different air-fuel mixture composition (changed value of air excess ratio). The spark timing was adjusted to obtain maximum brake torque (MBT) for each fuel and air-fuel mixture. This paper reports engine indicated performance based on in-cylinder, cycle resolved pressure measurements. The engine performance utilizing producer gas in terms of indicated efficiency is increased by about 2 percentage points when compared to fuelling with natural gas. The engine power de-rating when producer gas is utilized instead the natural gas, varies from 24% to 28,6% under stoichiometric combustion conditions. For lean burn (λ=1.5) the difference are lower and varies from 22% to 24.5%.

  8. Pure SF6 and SF6-N2 mixture gas hydrates equilibrium and kinetic characteristics.

    PubMed

    Lee, Eun Kyung; Lee, Ju Dong; Lee, Hyun Ju; Lee, Bo Ram; Lee, Yoon Seok; Kim, Soo Min; Park, Hye Ok; Kim, Young Seok; Park, Yeong-Do; Kim, Yang Do

    2009-10-15

    Sulfur hexafluoride (SF6), whether pure or mixed with inexpensive inert gas, has been widely used in a variety of industrial processes, but it is one of the most potent greenhouse gases. For this reason, it is necessary to separate and/or collect it from waste gas streams. In this study, we investigated the pure SF6 and SF6-N2 mixture gas hydrates formation equilibrium aswell asthe gas separation efficiency in the hydrate process. The equilibrium pressure of SF6-N2 mixture gas was higher than that of pure SF6 gas. Phase equilibrium data of SF6-N2 mixture gas was similar to SF6 rather than N2. The kinetics of SF6-N2 mixture gas was controlled by the amount of SF6 at the initial gas composition as well as N2 gas incorporation into the S-cage of structure-II hydrate preformed by the SF6 gas. Raman analysis confirmed the N2 gas incorporation into the S-cage of structure-II hydrate. The compositions in the hydrate phase were found to be 71, 79, 80, and 81% of SF6 when the feed gas compositions were 40, 65, 70, and 73% of SF6, respectively. The present study provides basic information for the separation and purification of SF6 from mixed SF6 gas containing inert gases.

  9. Recovering Residual Xenon Propellant for an Ion Propulsion System

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani; Skakkottai, P.; wu, Jiunn Jeng

    2006-01-01

    Future nuclear-powered Ion-Propulsion- System-propelled spacecraft such as Jupiter Icy Moon Orbiter (JIMO) will carry more than 10,000 kg of xenon propellant. Typically, a small percentage of this propellant cannot be used towards the end of the mission because of the pressure drop requirements for maintaining flow. For large missions such as JIMO, this could easily translate to over 250 kg of unusable xenon. A proposed system, the Xenon Recovery System (XRS), for recovering almost all of the xenon remaining in the tank, would include a cryopump in the form of a condenser/evaporator that would be alternatively cooled by a radiator, then heated electrically. When the pressure of the xenon in the tank falls below 0.7 MPa (100 psia), the previously isolated XRS will be brought online and the gas from the tank would enter the cryopump that is initially cooled to a temperature below saturation temperature of xenon. This causes xenon liquefaction and further cryopumping from the tank till the cryopump is full of liquid xenon. At this point, the cryopump is heated electrically by small heaters (70 to 80 W) to evaporate the liquid that is collected as high-pressure gas (<7 MPa; 1,000 psia) in an intermediate accumulator. Check valves between the tank and the XRS prevent the reverse flow of xenon during the heating cycle. The accumulator serves as the high-pressure source of xenon gas to the Xenon Feed System (XFS) downstream of the XRS. This cycle is repeated till almost all the xenon is recovered. Currently, this system is being baselined for JIMO.

  10. Data set from chemical sensor array exposed to turbulent gas mixtures

    PubMed Central

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Huerta, Ramón

    2015-01-01

    A chemical detection platform composed of 8 chemo-resistive gas sensors was exposed to turbulent gas mixtures generated naturally in a wind tunnel. The acquired time series of the sensors are provided. The experimental setup was designed to test gas sensors in realistic environments. Traditionally, chemical detection systems based on chemo-resistive sensors include a gas chamber to control the sample air flow and minimize turbulence. Instead, we utilized a wind tunnel with two independent gas sources that generate two gas plumes. The plumes get naturally mixed along a turbulent flow and reproduce the gas concentration fluctuations observed in natural environments. Hence, the gas sensors can capture the spatio-temporal information contained in the gas plumes. The sensor array was exposed to binary mixtures of ethylene with either methane or carbon monoxide. Volatiles were released at four different rates to induce different concentration levels in the vicinity of the sensor array. Each configuration was repeated 6 times, for a total of 180 measurements. The data is related to “Chemical Discrimination in Turbulent Gas Mixtures with MOX Sensors Validated by Gas Chromatography-Mass Spectrometry”, by Fonollosa et al. [1]. The dataset can be accessed publicly at the UCI repository upon citation of [1]: http://archive.ics.uci.edu/ml/datasets/Gas+senso+rarray+exposed+to+turbulent+gas+mixtures. PMID:26217747

  11. Gas puff Z-pinches with deuterium-krypton gas mixtures

    NASA Astrophysics Data System (ADS)

    Darling, Timothy; McKee, Erik; Covington, Aaron; Ivanov, Vladimir; Wessel, Frank; Rahman, Hafiz

    2015-11-01

    We discuss experiments with single-shell, pure and mixed-gas loads on the zebra pulsed-power generator at the Nevada Terawatt Facility (NTF). These experiments are modeled using the MACH2 code and provide input and benchmarking for further models and experiments on upcoming staged Z-pinch (SZP) studies under an ARPA-E program. The 1MA-70ns rise time discharge of Zebra produces bursts of both high and low energy X-rays and neutrons if deuterium gas is present. The gas is injected from the (grounded) anode to cathode as an expanding cylindrical shell of approximately 4cm diameter. A pulsed valve and a flow-forming nozzle determine the details of the gas target geometry which is imaged as a density map using a UV excited fluorescent tracer (LIF). The gases imaged are pure Kr and D2 and binary mixtures thereof. A pure D2 pinch produces a (yet to be optimized) neutron yield in the 1e10 regime. Additional diagnostics include a 2-frame Schlieren 1064nm IR imaging diagnostic, which provides information on the implosion dynamics of the pinch. Support for this work comes from DOE/NNSA (grant # DE-NA0002075) and the ARPA-E ALPHA program.

  12. Process for the separation of components from gas mixtures

    DOEpatents

    Merriman, J.R.; Pashley, J.H.; Stephenson, M.J.; Dunthorn, D.I.

    1973-10-01

    A process for the removal, from gaseous mixtures of a desired component selected from oxygen, iodine, methyl iodide, and lower oxides of carbon, nitrogen, and sulfur is described. The gaseous mixture is contacted with a liquid fluorocarbon in an absorption zone maintained at superatmospheric pressure to preferentially absorb the desired component in the fluorocarbon. Unabsorbed constituents of the gaseous mixture are withdrawn from the absorption zone. Liquid fluorocarbon enriched in the desired component is withdrawn separately from the zone, following which the desired component is recovered from the fluorocarbon absorbent. (Official Gazette)

  13. Viscosity and thermal conductivity of moderately dense gas mixtures.

    NASA Technical Reports Server (NTRS)

    Wakeham, W. A.; Kestin, J.; Mason, E. A.; Sandler, S. I.

    1972-01-01

    Derivation of a simple, semitheoretical expression for the initial density dependence of the viscosity and thermal conductivity of gaseous mixtures in terms of the appropriate properties of the pure components and of their interaction quantities. The derivation is based on Enskog's theory of dense gases and yields an equation in which the composition dependence of the linear factor in the density expansion is explicit. The interaction quantities are directly related to those of the mixture extrapolated to zero density and to a universal function valid for all gases. The reliability of the formulation is assessed with respect to the viscosity of several binary mixtures. It is found that the calculated viscosities of binary mixtures agree with the experimental data with a precision which is comparable to that of the most precise measurements.

  14. GAS CHROMATOGRAPHIC RETENTION PARAMETERS DATABASE FOR REFRIGERANT MIXTURE COMPOSITION MANAGEMENT

    EPA Science Inventory

    Composition management of mixed refrigerant systems is a challenging problem in the laboratory, manufacturing facilities, and large refrigeration machinery. Ths issue of composition management is especially critical for the maintenance of machinery that utilizes zeotropic mixture...

  15. 49 CFR 173.305 - Charging of cylinders with a mixture of compressed gas and other material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Charging of cylinders with a mixture of compressed... Packaging § 173.305 Charging of cylinders with a mixture of compressed gas and other material. (a) Detailed requirements. A mixture of a compressed gas and any other material must be shipped as a compressed gas if...

  16. 49 CFR 173.305 - Charging of cylinders with a mixture of compressed gas and other material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Charging of cylinders with a mixture of compressed... Packaging § 173.305 Charging of cylinders with a mixture of compressed gas and other material. (a) Detailed requirements. A mixture of a compressed gas and any other material must be shipped as a compressed gas if...

  17. 49 CFR 173.305 - Charging of cylinders with a mixture of compressed gas and other material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Charging of cylinders with a mixture of compressed... Packaging § 173.305 Charging of cylinders with a mixture of compressed gas and other material. (a) Detailed requirements. A mixture of a compressed gas and any other material must be shipped as a compressed gas if...

  18. 49 CFR 173.305 - Charging of cylinders with a mixture of compressed gas and other material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Charging of cylinders with a mixture of compressed... Packaging § 173.305 Charging of cylinders with a mixture of compressed gas and other material. (a) Detailed requirements. A mixture of a compressed gas and any other material must be shipped as a compressed gas if...

  19. 49 CFR 173.305 - Charging of cylinders with a mixture of compressed gas and other material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Charging of cylinders with a mixture of compressed... Packaging § 173.305 Charging of cylinders with a mixture of compressed gas and other material. (a) Detailed requirements. A mixture of a compressed gas and any other material must be shipped as a compressed gas if...

  20. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOEpatents

    Ruka, R.J.; Basel, R.A.

    1996-03-12

    A gas sensor measures O{sub 2} content of a reformable monitored gas containing hydrocarbons, H{sub 2}O and/or CO{sub 2}, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system. 4 figs.

  1. Oxygen sensor for monitoring gas mixtures containing hydrocarbons

    DOEpatents

    Ruka, Roswell J.; Basel, Richard A.

    1996-01-01

    A gas sensor measures O.sub.2 content of a reformable monitored gas containing hydrocarbons H.sub.2 O and/or CO.sub.2, preferably in association with an electrochemical power generation system. The gas sensor has a housing communicating with the monitored gas environment and carries the monitored gas through an integral catalytic hydrocarbon reforming chamber containing a reforming catalyst, and over a solid electrolyte electrochemical cell used for sensing purposes. The electrochemical cell includes a solid electrolyte between a sensor electrode that is exposed to the monitored gas, and a reference electrode that is isolated in the housing from the monitored gas and is exposed to a reference gas environment. A heating element is also provided in heat transfer communication with the gas sensor. A circuit that can include controls operable to adjust operations via valves or the like is connected between the sensor electrode and the reference electrode to process the electrical signal developed by the electrochemical cell. The electrical signal varies as a measure of the equilibrium oxygen partial pressure of the monitored gas. Signal noise is effectively reduced by maintaining a constant temperature in the area of the electrochemical cell and providing a monitored gas at chemical equilibria when contacting the electrochemical cell. The output gas from the electrochemical cell of the sensor is fed back into the conduits of the power generating system.

  2. Hyperpolarized xenon-based molecular sensors for label-free detection of analytes.

    PubMed

    Garimella, Praveena D; Meldrum, Tyler; Witus, Leah S; Smith, Monica; Bajaj, Vikram S; Wemmer, David E; Francis, Matthew B; Pines, Alexander

    2014-01-08

    Nuclear magnetic resonance (NMR) can reveal the chemical constituents of a complex mixture without resorting to chemical modification, separation, or other perturbation. Recently, we and others have developed magnetic resonance agents that report on the presence of dilute analytes by proportionately altering the response of a more abundant or easily detected species, a form of amplification. One example of such a sensing medium is xenon gas, which is chemically inert and can be optically hyperpolarized, a process that enhances its NMR signal by up to 5 orders of magnitude. Here, we use a combinatorial synthetic approach to produce xenon magnetic resonance sensors that respond to small molecule analytes. The sensor responds to the ligand by producing a small chemical shift change in the Xe NMR spectrum. We demonstrate this technique for the dye, Rhodamine 6G, for which we have an independent optical assay to verify binding. We thus demonstrate that specific binding of a small molecule can produce a xenon chemical shift change, suggesting a general approach to the production of xenon sensors targeted to small molecule analytes for in vitro assays or molecular imaging in vivo.

  3. Emission spectroscopic study on gas-gas interactions in glow discharge plasmas using several binary gas mixtures.

    PubMed

    Wagatsuma, Kazuaki

    2010-01-01

    Emission spectra of constituent gas species from glow discharge plasmas using argon-helium, krypton-helium, argon-krypton, and krypton-argon gas mixtures were analyzed to elucidate collisional energy transfer between these gas species occurring in the plasma. In the argon-helium mixed gas plasma, the enhancement or quenching of particular Ar II lines was observed when helium was added to an argon-matrix glow discharge plasma, meaning that a redistribution in the population among the excited levels could be induced through argon-helium collisions. On the other hand, the krypton-helium plasma showed little change in the emission intensities of Kr II lines when helium was added to a krypton-matrix glow discharge plasma, meaning that energy exchanges between krypton and helium excited species occur inactively. These phenomena are principally because the excitation energy as well as the spin multiplicity between collision partners follow both the energy resonance conditions and the spin conservation rule in collisions of the second kind in the argon-helium system, but not in the krypton-helium system. In the argon-krypton and krypton-argon mixed gas plasmas, significant intensity changes of particular Ar II or Kr II lines could not be found; therefore, there were no dominant channels for energy exchanges between argon and krypton species in the mixed gas plasmas.

  4. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or natural gas, where: (1) Solar energy will account for at least 20 percent of the total annual Btu heat input... 10 Energy 4 2012-01-01 2012-01-01 false Permanent exemption for certain fuel mixtures...

  5. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or natural gas, where: (1) Solar energy will account for at least 20 percent of the total annual Btu heat input... 10 Energy 4 2010-01-01 2010-01-01 false Permanent exemption for certain fuel mixtures...

  6. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or natural gas, where: (1) Solar energy will account for at least 20 percent of the total annual Btu heat input... 10 Energy 4 2014-01-01 2014-01-01 false Permanent exemption for certain fuel mixtures...

  7. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or natural gas, where: (1) Solar energy will account for at least 20 percent of the total annual Btu heat input... 10 Energy 4 2011-01-01 2011-01-01 false Permanent exemption for certain fuel mixtures...

  8. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or natural gas, where: (1) Solar energy will account for at least 20 percent of the total annual Btu heat input... 10 Energy 4 2013-01-01 2013-01-01 false Permanent exemption for certain fuel mixtures...

  9. [Xenon CT CBF mapping derived from two minutes inhalation].

    PubMed

    Toshima, R; Toyohara, K; Ebisawa, T; Ishikawa, K; Karashima, H; Shimojo, S; Miyahara, T

    1988-04-01

    Although xenon enhanced CT method for local cerebral blood flow measurement has been brought into a clinical practice, the technique has inherent limitations including anesthetic effects and expensive cost of xenon by a large consumption. To overcome these problems a modified method with a short-duration inhalation was developed and its validity was attested. Siemens Somatom SF with a resolution of 256 X 256 pixels and a scan time of 10 seconds was used. The subjects inhaled 50% Xe/O2 gas mixture from an apparatus consisted of Douglas bag and an open circuit. Xenon concentration in the expired gas was continuously monitored and estimated for arterial blood concentration by using a hematocrit correction. PaCO2 was monitored throughout the study. At the starting point and the endpoint of the inhalation two scans were performed respectively. Thus obtained four images were processed for CT noise cancellation, summation and subtraction to produce an in vivo autoradiography image. Local CBF was calculated from equations derived from the autoradiographic technique with a fixed partition coefficient of lambda = 1. Computer simulation studies were performed to find the optimal scan point to obtain an autoradiographic image and to estimate the calculation errors of this method. One minute and forty-five seconds was found to be the optimal scan point to gain an autoradiographic image in view of a balance between linearity of CBF/enhancement curve and total amount of tissue enhancement. The theoretical errors due to the assumption for a fixed partition coefficient were calculated to be 8% underestimation for gray matter and 5% overestimation for white matter.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Shock waves in noble gases and their mixtures

    NASA Astrophysics Data System (ADS)

    Bratos, M.; Herczynski, R.

    The shock wave structures in pure monatomic gases and in binary gas mixtures are investigated in this paper using a variational approach. The idea of Mott-Smith's distribution function (generalized in the case of a gas mixture) was combined with Tamm's method of solving the Boltzmann equation. The intermolecular potential used is of the Lennard-Jones type. The relation between the dimensionless shock wave thickness and Mach number in front of the shock wave is analyzed. Special attention was paid to the determination of shock wave structures in mixtures of gases with disparate molecular masses. The calculation performed for the shock wave in the binary gas mixture, xenon-helium, confirm the existence of a 'hump' of the density profile of the lighter component. The heavy gas component temperature overshoots its downstream equilibrium value in the case of a mixture of gases with disparate molecular masses and for a small mole fraction of the heavy gas component.

  11. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  12. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures

    SciTech Connect

    Huang, Zuohua; Zhang, Yong; Zeng, Ke; Liu, Bing; Wang, Qian; Jiang, Deming

    2006-07-15

    Laminar flame characteristics of natural gas-hydrogen-air flames were studied in a constant-volume bomb at normal temperature and pressure. Laminar burning velocities and Markstein lengths were obtained at various ratios of hydrogen to natural gas (volume fraction from 0 to 100%) and equivalence ratios (f from 0.6 to 1.4). The influence of stretch rate on flame was also analyzed. The results show that, for lean mixture combustion, the flame radius increases with time but the increasing rate decreases with flame expansion for natural gas and for mixtures with low hydrogen fractions, while at high hydrogen fractions, there exists a linear correlation between flame radius and time. For rich mixture combustion, the flame radius shows a slowly increasing rate at early stages of flame propagation and a quickly increasing rate at late stages of flame propagation for natural gas and for mixtures with low hydrogen fractions, and there also exists a linear correlation between flame radius and time for mixtures with high hydrogen fractions. Combustion at stoichiometric mixture demonstrates the linear relationship between flame radius and time for natural gas-air, hydrogen-air, and natural gas-hydrogen-air flames. Laminar burning velocities increase exponentially with the increase of hydrogen fraction in mixtures, while the Markstein length decreases and flame instability increases with the increase of hydrogen fractions in mixture. For a fixed hydrogen fraction, the Markstein number shows an increase and flame stability increases with the increase of equivalence ratios. Based on the experimental data, a formula for calculating the laminar burning velocities of natural gas-hydrogen-air flames is proposed. (author)

  13. Xenon International Automated Control

    SciTech Connect

    2016-08-05

    The Xenon International Automated Control software monitors, displays status, and allows for manual operator control as well as fully automatic control of multiple commercial and PNNL designed hardware components to generate and transmit atmospheric radioxenon concentration measurements every six hours.

  14. Kinetics in Gas Mixtures for Problem of Plasma Assisted Combustion

    DTIC Science & Technology

    2010-05-01

    exothermal chemical hydrocarbon oxidation process, and (iii) subsequent thermal ignition. The role of gas temperature increase in the experiments on...the nonequilibrium plasma, (ii) chemical reactions of hydrocarbon oxidation with participa- tion of O atoms and gas heating due to net exothermal ...autoignition) the ignition delay de- pends upon the rate of the dissociation reaction which is endothermic . Generally the induction delay time is greatly

  15. The Xenon record of Earth's early differentiaiton

    NASA Astrophysics Data System (ADS)

    Peto, M. K.; Mukhopadhyay, S.; Kelley, K. A.

    2011-12-01

    Xenon isotopes in mantle derived rocks provide information on the early differentiation of the silicate mantle of our planet. {131,132 134,136}Xe isotopes are produced by the spontaneous fission of two different elements: the now extinct radionuclide 244Pu, and the long-lived 238U. These two parent nuclides, however, yield rather different proportion of fissiogenic Xenon isotopes. Hence, the proportion of Pu- to U-derived fission xenon is indicative of the degree and rate of outgassing of a mantle reservoir. Recent data obtained from Iceland in our lab confirm that the Xenon isotopic composition of the plume source(s) is characterized by lower 136Xe/130Xe ratios than the MORB source and the Iceland plume is more enriched in the Pu-derived Xenon component. These features are interpreted as reflecting different degrees of outgassing and appear not to be the result of preferential recycling of Xenon to the deep mantle. To further investigate how representative the Icelandic measurements might be of other mantle plumes, we measured noble gases (He, Ne, Ar, Xe) in gas-rich basalt glasses from the Rochambeau Ridge (RR) in the Northern Lau Basin. Recent work suggests the presence of a "Samoan-like" OIB source in the northern Lau Basin and our measurements were performed on samples with plume-like 3He/4He ratios (15-28 RA) [1]. The Xenon isotopic measurements indicate that the maximum measured 136Xe/130Xe ratios in the Rochambeau samples are similar to Iceland. In particular, for one of the gas rich samples we were able to obtain 77 different isotopic measurements through step-crushing. Preliminary investigation of this sample suggests higher Pu- to U-derived fission Xenon than in MORBs. To quantitatively evaluate the degree and rate of outgassing of the plume and MORB reservoirs, particularly during the first few hundred million years of Earth's history, we have modified a geochemical reservoir model that was previously developed to investigate mantle overturn and mixing

  16. HXeOBr in a xenon matrix

    SciTech Connect

    Khriachtchev, Leonid; Tapio, Salla; Domanskaya, Alexandra V.; Raesaenen, Markku; Isokoski, Karoliina; Lundell, Jan

    2011-03-28

    We report on a new noble-gas molecule HXeOBr prepared in a low-temperature xenon matrix from the HBr and N{sub 2}O precursors by UV photolysis and thermal annealing. This molecule is assigned with the help of deuteration experiments and ab initio calculations including anharmonic methods. The H-Xe stretching frequency of HXeOBr is observed at 1634 cm{sup -1}, which is larger by 56 cm{sup -1} than the frequency of HXeOH identified previously. The experiments show a higher thermal stability of HXeOBr molecules in a xenon matrix compared to HXeOH.

  17. Thermal neutrons registration by xenon gamma-ray detector

    NASA Astrophysics Data System (ADS)

    Shustov, A. E.; Chernysheva, I. V.; Dmitrenko, V. V.; Dukhvalov, A. G.; Krivova, K. V.; Novikov, A. S.; Petrenko, D. V.; Vlasik, K. F.; Ulin, S. E.; Uteshev, Z. M.

    2016-02-01

    Experimental results of thermal neutrons detection by high pressure xenon gamma- ray spectrometers are presented. The study was performed with two devices with sensitive volumes of 0.2 and 2 litters filled with compressed mixture of xenon and hydrogen without neutron-capture additives. Spectra from Pu-Be neutron source were acquired using both detectors. Count rates of the most intensive prompt neutron-capture gamma-ray lines of xenon isotopes were calculated in order to estimate thermal neutrons efficiency registration for each spectrometer.

  18. Prediction of acute toxicity of chemicals in mixtures: worms Tubifex tubifex and gas/liquid distribution.

    PubMed

    Tichý, M; Borek-Dohalský, V; Matousová, D; Rucki, M; Feltl, L; Roth, Z

    2002-03-01

    The aim of this contribution is to support our proposal of the procedure for predicting acute toxicity of binary mixtures by QSAR analysis techniques. The changes of a mixture composition are described by molar ratio R and visualized in the R-plot (QCAR--quantitative composition-activity relationships). The approach was inspired by Rault and Dalton's laws, their positive and negative deviations in the behavior of a mixture of real gases, by Loewe and Muischnek isoboles and by the Finney test of additivity. Acute toxicity was determined by the laboratory test with woms Tubifex tubifex. The additivity of the acute toxicity in the binary mixture benzene + nitrobenzene was confirmed and a new interaction is described: "mixed interaction" with the binary mixture aniline + ethanol. The "mixed interaction" means that depending on mixture composition, both potentiation and inhibition can occur. As the first physicochemical descriptor of the changes caused by the changing composition of binary mixtures, the gas/liquid equilibrium was studied and a composition of the gaseous phase was determined by a gas chromatographic method. The method for determination of concentrations in the gaseous phase was described. The gaseous phase composition of benzene + nitrobenzene. benzene + ethanol, benzene + aniline and ethanol + aniline mixtures was analyzed. It was found that if the concentrations of the mixture's components in the gaseous phase behave nonideally (they are not additive), the acute toxicity of the same mixture is not additive as well. Another descriptor to distinguish between potentiation and inhibition will be, however, necessary. The properties, both gaseous phase composition and the acute toxicity, of the benzene + nitrobenzene mixture are additive. In mixtures with the mixed interaction, the R-plot of the composition of the gaseous phase is complex with a large variation of results.

  19. Gravimetric dilution of calibration gas mixtures (CO2, CO, and CH4 in He balance): Toward their uncertainty estimation

    NASA Astrophysics Data System (ADS)

    Budiman, Harry; Mulyana, Muhammad Rizky; Zuas, Oman

    2017-01-01

    Uncertainty estimation for the gravimetric dilution of four calibration gas mixtures [carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4) in helium (He) Balance] have been carried out according to the International Organization for Standardization (ISO) of "Guide to the Expression of Uncertainty in Measurement". The uncertainty of the composition of gas mixtures was evaluated to measure the quality, reliability, and comparability of the prepared calibration gas mixtures. The analytical process for the uncertainty estimation is comprised of four main stages such as specification of measurand, identification, quantification of the relevant uncertainty sources, and combination of the individual uncertainty sources. In this study, important uncertainty sources including weighing, gas cylinder, component gas, certified calibration gas mixture (CCGM) added, and purity of the He balance were examined to estimate the final uncertainty of composition of diluted calibration gas mixtures. The results shows that the uncertainties of gravimetric dilution of the four calibration gas mixtures (CO2, CO, and CH4 in He Balance) were found in the range of 5.974% - 7.256% that were expressed as %relative of expanded uncertainty at 95% of confidence level (k=2). The major contribution of sources uncertainty to the final uncertainty arose from the uncertainty related to the certified calibration gas mixture (CCGM) which was the uncertainty value stated in the CCGM certificate. The verification of calibration gas mixtures composition shows that the gravimetric values of calibration gas mixtures were consistent with the results of measurement using gas chromatography flame ionization detector equipped by methanizer.

  20. Proton irradiation of simple gas mixtures: Influence of irradiation parameters

    NASA Technical Reports Server (NTRS)

    Sack, Norbert J.; Schuster, R.; Hofmann, A.

    1990-01-01

    In order to get information about the influence of irradiation parameters on radiolysis processes of astrophysical interest, methane gas targets were irradiated with 6.5 MeV protons at a pressure of 1 bar and room temperature. Yields of higher hydrocarbons like ethane or propane were found by analysis of irradiated gas samples using gas chromatography. The handling of the proton beam was of great experimental importance for determining the irradiation parameters. In a series of experiments current density of the proton beam and total absorbed energy were shown to have a large influence on the yields of produced hydrocarbons. Mechanistic interpretations of the results are given and conclusions are drawn with regard to the chemistry and the simulation of various astrophysical systems.

  1. Some possibilities of using gas mixtures other than air in aerodynamic research

    NASA Technical Reports Server (NTRS)

    Chapman, Dean R

    1956-01-01

    A study is made of the advantages that can be realized in compressible-flow research by employing a substitute heavy gas in place of air. The present report is based on the idea that by properly mixing a heavy monatomic gas with a suitable heavy polyatomic gas, it is possible to obtain a heavy gas mixture which has the correct ratio of specific heats and which is nontoxic, nonflammable, thermally stable, chemically inert, and comprised of commercially available components. Calculations were made of wind-tunnel characteristics for 63 gas pairs comprising 21 different polyatomic gases properly mixed with each of three monatomic gases (argon, krypton, and zenon).

  2. Environmental Applications of Stable Xenon and Radioxenon Monitoring

    SciTech Connect

    Dresel, P. Evan; Olsen, Khris B.; Hayes, James C.; McIntyre, Justin I.; Waichler, Scott R.; Kennedy, B. M.

    2008-06-01

    Improved detection capabilities are needed at several Department of Energy sites to make remedial decisions about facilities and landfill cleanup. For facility monitoring air samples can be collected from within a facility and analyzed for short lived radioxenons to estimate inventories of residual plutonium holdup within the facility. For landfill cleanup activities soil gas sampling for xenon isotopes can be used to define the locations of spent fuel and transuranic wastes. Short-lived radioxenon isotopes are continuously produced by spontaneous fission of plutonium-240 in transuranic wastes. Large volume soil-gas samples provide extremely sensitive measurement of radioxenon in the subsurface; a characteristic of transuranic waste. The analysis employs a modified Automated Radioxenon Sampling and Analysis (ARSA) system. Proof of principle measurements at a Hanford Site liquid waste disposal site showed xenon-133 at levels in soil gas are approximately 16,000 times the detection limit and lower levels of xenon-135 from the spontaneous fission of plutonium-240 were also measured. Stable xenon isotopes are also produced by spontaneous fission but are subject to background concentrations in ambient air samples (facilities) but less so in soil gas where free exchange with ambient air is restricted. Rare gas mass spectrometry is used for highly precise stable xenon isotopic measurements. Stable xenon isotopic ratios from fission are distinct from natural xenon background ratios. Neutron capture on xenon-135 produces an excess of xenon-136 above fission ratios and thus provides a means of distinguishing reactor sources (e.g. spent fuel) from separated transuranic materials (plutonium).

  3. Derivation of Hydrodynamic Equations for Binary Gas Mixture

    SciTech Connect

    Kuwabara, Sinzi; Yoshimura, Kazuyoshi

    2011-05-20

    Velocities, densities, pressures, stresses, temperatures, heat fluxes and internal energies of each gas are individually defined. Moment equations for mass, momentum and energy of both gases are separately derived on basis of Boltzmann equations. Momentum equations have velocity relaxation terms between different gases and energy equations have velocity and temperature relaxation terms between those.

  4. Symmetry energy in the liquid-gas mixture

    NASA Astrophysics Data System (ADS)

    López, J. A.; Terrazas Porras, S.

    2017-01-01

    Results from classical molecular dynamics simulations of infinite nuclear systems with varying density, temperature and isospin content are used to calculate the symmetry energy at low densities. The results show an excellent agreement with the experimental data and corroborate the claim that the formation of clusters has a strong influence on the symmetry energy in the liquid-gas coexistence region.

  5. Initial experimental demonstration of the principles of a xenon gas shield designed to protect optical components from soft x-ray induced opacity (blanking) in high energy density experiments

    NASA Astrophysics Data System (ADS)

    Swadling, G. F.; Ross, J. S.; Manha, D.; Galbraith, J.; Datte, P.; Sorce, C.; Katz, J.; Froula, D. H.; Widmann, K.; Jones, O. S.; Divol, L.; Landen, O. L.; Kilkenny, J. D.; Moody, J. D.

    2017-03-01

    The design principles of a xenon gas shield device that is intended to protect optical components from x-ray induced opacity ("x-ray blanking") have been experimentally demonstrated at the OMEGA-60 Laser Facility at the Laboratory for Laser Energetics, University of Rochester. A volume of xenon gas placed in front of an optical component absorbs the incoming soft x-ray radiation but transmits optical and ultra-violet radiation. The time-resolved optical (532 nm) transmission of samples was recorded as they were exposed to soft x-rays produced by a gold sphere source (1.5 kJ sr-1, 250-300 eV). Blanking of fused silica (SiO2) was measured to occur over a range of time-integrated soft x-ray (<3 keV) fluence from ˜0.2-2.5 J cm-2. A shield test device consisting of a 30 nm silicon nitride (Si3N4) and a 10 cm long volume of 0.04 bar xenon gas succeeded in delaying loss of transmission through a magnesium fluoride sample; optical transmission was observed over a longer period than for the unprotected sample. It is hoped that the design of this x-ray shield can be scaled in order to produce a shield device for the National Ignition Facility optical Thomson scattering collection telescope, in order to allow measurements of hohlraum plasma conditions produced in inertial confinement fusion experiments. If successful, it will also have applications in many other high energy density experiments where optical and ultra-violet measurements are desirable.

  6. Measurement of nitrogen content in a gas mixture by transforming the nitrogen into a substance detectable with nondispersive infrared detection

    DOEpatents

    Owen, Thomas E.; Miller, Michael A.

    2007-03-13

    A method of determining the amount of nitrogen in a gas mixture. The constituent gases of the mixture are dissociated and transformed to create a substance that may measured using nondispersive infrared adsorption techniques.

  7. Measurement of nitrogen content in a gas mixture by transforming the nitrogen into a substance detectable with nondispersive infrared detection

    DOEpatents

    Owen, Thomas E.; Miller, Michael A.

    2010-08-24

    A method of determining the amount of nitrogen in a gas mixture. The constituent gases of the mixture are dissociated and transformed to create a substance that may measured using nondispersive infrared adsorption techniques.

  8. Performance Analysis of Joule-Thomson Cooler Supplied with Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Piotrowska, A.; Chorowski, M.; Dorosz, P.

    2017-02-01

    Joule-Thomson (J-T) cryo-coolers working in closed cycles and supplied with gas mixtures are the subject of intensive research in different laboratories. The replacement of pure nitrogen by nitrogen-hydrocarbon mixtures allows to improve both thermodynamic parameters and economy of the refrigerators. It is possible to avoid high pressures in the heat exchanger and to use standard refrigeration compressor instead of gas bottles or high-pressure oil free compressor. Closed cycle and mixture filled Joule-Thomson cryogenic refrigerator providing 10-20 W of cooling power at temperature range 90-100 K has been designed and manufactured. Thermodynamic analysis including the optimization of the cryo-cooler mixture has been performed with ASPEN HYSYS software. The paper describes the design of the cryo-cooler and provides thermodynamic analysis of the system. The test results are presented and discussed.

  9. Inflammable gas mixture detection with a single catalytic sensor based on the electric field effect.

    PubMed

    Tong, Ziyuan; Tong, Min-Ming; Meng, Wen; Li, Meng

    2014-04-08

    This paper introduces a new way to analyze mixtures of inflammable gases with a single catalytic sensor. The analysis technology was based on a new finding that an electric field on the catalytic sensor can change the output sensitivity of the sensor. The analysis of mixed inflammable gases results from processing the output signals obtained by adjusting the electric field parameter of the catalytic sensor. For the signal process, we designed a group of equations based on the heat balance of catalytic sensor expressing the relationship between the output signals and the concentration of gases. With these equations and the outputs of different electric fields, the gas concentration in a mixture could be calculated. In experiments, a mixture of methane, butane and ethane was analyzed by this new method, and the results showed that the concentration of each gas in the mixture could be detected with a single catalytic sensor, and the maximum relative error was less than 5%.

  10. Angular momentum relaxation in atom-diatom dilute gas mixtures

    NASA Astrophysics Data System (ADS)

    Evans, Glenn T.

    1987-04-01

    The angular momentum relaxation cross sections for a diatomic molecule in a dilute atomic gas are estimated subject to the assumption that the intermolecular torque is dominated by the hard, impulsive contribution (evaluated using Boltzmann kinetic theory for nonspherical molecules). For carbon monoxide in a variety of gases, the kinetic theory derived contribution to the angular momentum cross section is in qualitative agreement with the experimental results of Jameson, Jameson, and Buchi.

  11. Sub-shock formation in Grad 10-moment equations for a binary gas mixture

    NASA Astrophysics Data System (ADS)

    Bisi, Marzia; Conforto, Fiammetta; Martalò, Giorgio

    2016-09-01

    The shock structure problem for Grad 10-moment equations for an inert binary mixture is investigated: necessary conditions for the formation of sub-shocks in fields of only one gas or of both components are rigorously obtained, and a detailed comparison with the shock-wave structure of its principal sub-system (deduced assuming vanishing viscous stress tensors) and of the equilibrium Euler sub-system is performed. Some numerical simulations for a mixture of argon and helium are presented.

  12. Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures

    NASA Technical Reports Server (NTRS)

    Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.

    2007-01-01

    Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 < r* < 0.83. These smooth tube data may serve as a reference to the heat transfer and pressure drop performance in annuli, tubes, and channels having helixes or spacer ribs, or other surfaces.

  13. Two-phase turbine engines. [using gas-liquid mixture accelerated in nozzles

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.; Hays, L. G.

    1976-01-01

    A description is given of a two-phase turbine which utilizes a uniform mixture of gas and liquid accelerated in nozzles of the types reported by Elliott and Weinberg (1968). The mixture acts directly on an axial flow or tangential impulse turbine or is separated into gas and liquid streams which operate separately on a gas turbine and a hydraulic turbine. The basic two-phase cycles are examined, taking into account working fluids, aspects of nozzle expansion, details of turbine cycle operation, and the effect of mixture ratio variation. Attention is also given to two-phase nozzle efficiency, two-phase turbine operating characteristics and efficiencies, separator turbines, and impulse turbine experiments.

  14. CO2 + N2O mixture gas hydrate formation kinetics and effect of soil minerals on mixture-gas hydrate formation process

    NASA Astrophysics Data System (ADS)

    Enkh-Amgalan, T.; Kyung, D.; Lee, W.

    2012-12-01

    CO2 mitigation is one of the most pressing global scientific topics in last 30 years. Nitrous oxide (N2O) is one of the main greenhouse gases (GHGs) defined by the Kyoto Protocol and its global warming potential (GWP) of one metric ton is equivalent to 310 metric tons of CO2. They have similar physical and chemical properties and therefore, mixture-gas (50% CO2 + 50% N2O) hydrate formation process was studied experimentally and computationally. There were no significant research to reduce N20 gas and we tried to make hydrate to mitigate N20 and CO2 in same time. Mixture gas hydrate formation periods were approximately two times faster than pure N2O hydrate formation kinetic in general. The fastest induction time of mixture-gas hydrate formation observed in Illite and Quartz among various soil mineral suspensions. It was also observed that hydrate formation kinetic was faster with clay mineral suspensions such as Nontronite, Sphalerite and Montmorillonite. Temperature and pressure change were not significant on hydrate formation kinetic; however, induction time can be significantly affected by various chemical species forming under the different suspension pHs. The distribution of chemical species in each mineral suspension was estimated by a chemical equilibrium model, PHREEQC, and used for the identification of hydrate formation characteristics in the suspensions. With the experimental limitations, a study on the molecular scale modeling has a great importance for the prediction of phase behavior of the gas hydrates. We have also performed molecular dynamics computer simulations on N2O and CO2 hydrate structures to estimate the residual free energy of two-phase (hydrate cage and guest molecule) at three different temperature ranges of 260K, 273K, and 280K. The calculation result implies that N2O hydrates are thermodynamically stable at real-world gas hydrate existing condition within given temperature and pressure. This phenomenon proves that mixture-gas could be

  15. Chlorine gas toxicity from mixture of bleach with other cleaning products--California.

    PubMed

    1991-09-13

    From October 1987 through November 1989, five episodes of chlorine gas exposure with toxicity to at least 14 persons occurred at two state hospitals in California. Each hospital provides inpatient treatment to approximately 1000 forensic psychiatric patients. As part of their rehabilitation programs, selected patients perform cleaning duties under the supervision of janitors or nursing staff. Each incident occurred during the performance of these duties and involved the mixture of bleach (sodium hypochlorite) and a phosphoric acid cleaner by inpatients. This mixture produced chlorine gas and other chemical byproducts (Figure 1a and 1b) and resulted in temporary illness in exposed persons.

  16. PPM mixtures of formaldehyde in gas cylinders: Stability and analysis

    SciTech Connect

    Wong, K.C.; Miller, S.B.; Patterson, L.M.

    1999-07-01

    Scott Specialty Gases has been successful in producing stable calibration gases of formaldehyde at low concentration. Critical to this success has been the development of a treatment process for high pressure aluminum cylinders. Formaldehyde cylinders having concentrations of 20ppm and 4ppm were found to show only small decline in concentrations over a period of approximately 12 months. Since no NIST traceable formaldehyde standards (or Standard Reference Material) are available, all Scott's formaldehyde cylinders were originally certified by traditional impinger method. This method involves an extremely tedious purification procedure for 2,4-dinitrophenylhydrazine (2,4-DNPH). A modified version of the impinger method has been developed and does not require extensive reagent purification for formaldehyde analysis. Extremely low formaldehyde blanks have been obtained with the modified method. The HPLC conditions in the original method were used for chromatographic separations. The modified method results in a lower analytical uncertainty for the formaldehyde standard mixtures. Consequently, it is possible to discern small differences between analytical results that are important for stability study.

  17. Background Discrimination Capability of a Dual Phase Xenon Detector for the XENON Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Ni, Kaixuan

    2005-04-01

    The XENON experiment aims at searching for dark matter WIMPs via their elastic scattering off Xe nuclei. The detector is a dual phase (liquid/gas) xenon time projection chamber, which allows event-by-event discrimination through the different ratio of ionization (charge) and scintillation (light) signals produced in liquid xenon by nuclear recoils (WIMPs and neutrons) and by electron recoils (electrons and gammas). In the dual phase detector, the ionization signal is detected via proportional scintillation light produced by accelerated electrons extracted from the liquid to the gas. I will demonstrate the performance of event type discrimination of a dual phase xenon prototype with seven photomultiplier-tubes (PMTs) for detecting direct scintillation (S1) and proportional scintillation (S2) signals simultaneously. The values of S2/S1 were measured for electron (Co-57) and alpha (Po-210) recoils, with a difference about a factor of 30. A preliminary result of S2/S1 from nuclear recoils (Am-Be) will also be presented. Based on the distribution of S2 signals over the seven PMTs, an algorithm was developed to reconstruct the event positions, which shows promising capability to further reject background events from the detector surface. The background discrimination capability of a larger scale (10 kg) detector (XENON10) will be shown from detailed Monte Carlo simulations.

  18. Scalability study of solid xenon

    SciTech Connect

    Yoo, J.; Cease, H.; Jaskierny, W. F.; Markley, D.; Pahlka, R. B.; Balakishiyeva, D.; Saab, T.; Filipenko, M.

    2015-04-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.

  19. Variable-temperature cryogenic trap for the separation of gas mixtures

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.

    1978-01-01

    The paper describes a continuous variable-temperature U-shaped cold trap which can both purify vacuum-line combustion products for subsequent stable isotopic analysis and isolate the methane and ethane constituents of natural gases. The canister containing the trap is submerged in liquid nitrogen, and, as the gas cools, the gas mixture components condense sequentially according to their relative vapor pressures. After the about 12 min required for the bottom of the trap to reach the liquid-nitrogen temperature, passage of electric current through the resistance wire wrapped around the tubing covering the U-trap permits distillation of successive gas components at optimal temperatures. Data on the separation achieved for two mixtures, the first being typical vacuum-line combustion products of geochemical samples such as rocks and the second being natural gas, are presented, and the thermal behavior and power consumption are reported.

  20. Effective diffusion coefficients of gas mixture in heavy oil under constant-pressure conditions

    NASA Astrophysics Data System (ADS)

    Li, Huazhou Andy; Sun, Huijuan; Yang, Daoyong

    2016-09-01

    We develop a method to determine the effective diffusion coefficient for each individual component of a gas mixture in a non-volatile liquid (e.g., heavy oil) at high pressures with compositional analysis. Theoretically, a multi-component one-way diffusion model is coupled with the volume-translated Peng-Robinson equation of state to quantify the mass transfer between gas and liquid (e.g., heavy oil). Experimentally, the diffusion tests have been conducted with a PVT setup for one pure CO2-heavy oil system and one C3H8-CO2-heavy oil system under constant temperature and pressure, respectively. Both the gas-phase volume and liquid-phase swelling effect are simultaneously recorded during the measurement. As for the C3H8-CO2-heavy oil system, the gas chromatography method is employed to measure compositions of the gas phase at the beginning and end of the diffusion measurement, respectively. The effective diffusion coefficients are then determined by minimizing the discrepancy between the measured and calculated gas-phase composition at the end of diffusion measurement. The newly developed technique can quantify the contributions of each component of mixture to the bulk mass transfer from gas into liquid. The effective diffusion coefficient of C3H8 in the C3H8-CO2 mixture at 3945 ± 20 kPa and 293.85 K, i.e., 18.19 × 10^{ - 10} m^{ 2} / s, is found to be much higher than CO2 at 3950 ± 18 kPa and 293.85 K, i.e., 8.68 × 10^{ - 10} m^{ 2} / s. In comparison with pure CO2, the presence of C3H8 in the C3H8-CO2 mixture contributes to a faster diffusion of CO2 from the gas phase into heavy oil and consequently a larger swelling factor of heavy oil.

  1. Investigation of Dalton and Amagat's laws for gas mixtures with shock propagation

    NASA Astrophysics Data System (ADS)

    Wayne, Patrick; Trueba Monje, Ignacio; Yoo, Jason H.; Truman, C. Randall; Vorobieff, Peter

    2016-11-01

    Two common models describing gas mixtures are Dalton's Law and Amagat's Law (also known as the laws of partial pressures and partial volumes, respectively). Our work is focused on determining the suitability of these models to prediction of effects of shock propagation through gas mixtures. Experiments are conducted at the Shock Tube Facility at the University of New Mexico (UNM). To validate experimental data, possible sources of uncertainty associated with experimental setup are identified and analyzed. The gaseous mixture of interest consists of a prescribed combination of disparate gases - helium and sulfur hexafluoride (SF6). The equations of state (EOS) considered are the ideal gas EOS for helium, and a virial EOS for SF6. The values for the properties provided by these EOS are then used used to model shock propagation through the mixture in accordance with Dalton's and Amagat's laws. Results of the modeling are compared with experiment to determine which law produces better agreement for the mixture. This work is funded by NNSA Grant DE-NA0002913.

  2. Enhanced IR hollow cathode laser in a 3He Ne gas mixture

    NASA Astrophysics Data System (ADS)

    Stefanova, M. S.; Pramatarov, P. M.; Karelin, A. V.

    2005-09-01

    An experimental and theoretical study on 3He-Ne and 4He-Ne helical hollow cathode lasers is presented. Enhanced laser operation on the near IR NeI lines is observed when the natural isotope 4He is substituted by the lighter isotope 3He. A four-fold increase in the laser output power and a three-fold increase in the laser gain for the strongest NeI 1.1523 µm line is measured in the 3He-Ne gas mixture compared to the 4He-Ne gas mixture. On the basis of the theoretical analysis done by means of a non-stationary kinetic model for the negative glow plasma of 3He-Ne and 4He-Ne hollow cathode lasers, a study on the changes in the particle kinetics is carried out and an explanation of the experimental results is proposed. In the 3He-Ne mixture the electron temperature is lower than in the 4He-Ne mixture, while the gas temperature is higher. As a result the helium triplet metastable density and the rate constant for excitation transfer to neon atoms are higher in the 3He-Ne mixture. The lower laser level de-excitation due to intra-multiplet mixing of 2p1-10levels by 3He atoms is more efficient.

  3. Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids

    SciTech Connect

    Finotello Alexia; Bara Jason E.; Narayan Suguna; Campder Dean; Noble Richard D.

    2008-07-01

    This study focuses on the solubility behaviors of CO{sub 2}, CH{sub 4}, and N{sub 2} gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using l-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide ((C{sub 2}mim)(Tf{sub 2}N)) and l-ethyl-3-methylimidazolium tetrafluoroborate ((C{sub 2}mim)(BF{sub 4})) at 40{sup o}C and low pressures (about 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % (C{sub 2}mim)(BF{sub 4}) in (C{sub 2}-mim)(Tf2{sub N}). Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO{sub 2} with N{sub 2} or CH{sub 4} in pure (C{sub 2}mim)(BF4) can be enhanced by adding 5 mol% (C{sub 2}-mim)(Tf{sub 2}N).

  4. New SI-traceable reference gas mixtures for fluorinated gases at atmospheric concentration

    NASA Astrophysics Data System (ADS)

    Guillevic, Myriam; Wyss, Simon A.; Pascale, Céline; Vollmer, Martin K.; Niederhauser, Bernhard; Reimann, Stefan

    2016-04-01

    In order to better support the monitoring of greenhouse gases in the atmosphere, we develop a method to produce reference gas mixtures for fluorinated gases (F-gases, i.e. gases containing fluorine atoms) in a SI-traceable way, meaning that the amount of substance fraction in mole per mole is traceable to SI-units. These research activities are conducted in the framework of the HIGHGAS and AtmoChem-ECV projects. First, single-component mixtures in synthetic air at ~85 nmol/mol (ppb) are generated for HFC-125 (pentafluoroethane, a widely used HFC) and HFC-1234yf (2,3,3,3-tetrafluoropropene, a car air conditioner fluid of growing importance). These mixtures are first dynamically produced by permeation: a permeator containing the pure substance loses mass linearly over time under a constant gas flow, in the permeation chamber of a magnetic suspension balance, which is regularly calibrated. This primary mixture is then pressurised into Silconert2000-coated stainless steel cylinders by cryo-filling. In a second step these mixtures are dynamically diluted using 2 subsequent dilution steps piloted by mass flow controllers (MFC) and pressure controllers. The assigned mixture concentration is calculated mostly based on the permeator mass loss, on the carrier gas purity and on the MFCs flows. An uncertainty budget is presented, resulting in an expanded uncertainty of 2% for the HFC-125 reference mixture and of 2.5% for the HFC-1234yf mixture (95% confidence interval). The final gas, with near-atmospheric concentration (17.11 pmol/mol for HFC-125, 2.14 pmol/mol for HFC-1234yf) is then measured with Medusa-GC/MS technology against standards calibrated on existing reference scales. The assigned values of the dynamic standards are in excellent agreement with measurements vs the existing reference scales, SIO-14 from the Scripps Institution of Oceanography for HFC-125 and Empa-2013 for HFC-1234yf. Moreover, the Medusa-GC/MS measurements show the excellent purity of the SI

  5. Ionization efficiency studies for xenon ions with thesuperconducting ECR ion source VENUS

    SciTech Connect

    Leitner, Daniela; Lyneis, Claude M.; Todd, DamonS.; Tarvainen,Olli

    2007-06-05

    Ionization efficiency studies for high charge state xenon ions using a calibrated gas leak are presented. A 75% enriched {sup 129}Xe gas leak with a gas flow equivalent to 5.11p{mu}A was used in all the measurements. The experiments were performed at the VENUS (Versatile ECR ion source for Nuclear Science) ion source for 18 GHz, 28 GHz and double frequency operation. Overall, total ionization efficiencies close to 100% and ionization efficiencies into a single charge state up to 22% were measured. The influence of the biased disk on the ionization efficiency was studied and the results were somewhat surprising. When the biased disk was removed from the plasma chamber, the ionization efficiency was dramatically reduced for single frequency operation. However, using double frequency heating the ionization efficiencies achieved without the biased disk almost matched the ionization efficiencies achieved with the biased probe. In addition, we have studied the influence of the support gas on the charge state distribution of the xenon ions. Either pure oxygen or a mixture of oxygen and helium were used as support gases. The addition of a small amount of helium can increase the ionization efficiency into a single charge state by narrowing the charge state distribution. Furthermore by varying the helium flow the most efficient charge state can be shifted over a wide range without compromising the ionization efficiency. This is not possible using only oxygen as support gas. Results from these studies are presented and discussed.

  6. Ignition of a combustible gas mixture by a laser spark excited in the reactor volume

    SciTech Connect

    Kazantsev, S. Yu.; Kononov, I. G.; Kossyi, I. A.; Tarasova, N. M.; Firsov, K. N.

    2009-03-15

    Ignition of a stoichiometric CH{sub 4}: O{sub 2} mixture by a laser spark excited in the reactor volume is studied experimentally. It is found that the spark initiates a feebly radiating incomplete-combustion wave, which is much faster than the combustion wave, but is substantially slower than the detonation wave. With a time delay of 500-700 {mu}s, a bright optical flash occupying the entire chamber volume is observed, which indicates fast (involving branching chain reactions) ignition of the gas mixture. A conclusion is drawn regarding the common nature of the process of ignition of a combustible gas mixture by a laser spark excited in the reactor volume and the previously investigated initiation of combustion by laser sparks excited at solid targets, high-power microwave discharges, and high-current gliding discharges.

  7. Method of cleaning dust-containing gas mixtures from a urea plant

    SciTech Connect

    Storen, H.

    1985-03-26

    Gas mixtures from a urea plant, particularly such mixtures containing dust and especially off-gases from prilling towers or granulation units are cleaned. In order to prevent precipitation and accretion in the cleaning unit, there is applied an aqueous washing solution to which formaldehyde is added before it is brought in contact with the gas mixture. Formaldehyde is preferably added in the form of formaline, and the addition of formaline is regulated by pH-measurements in the washing solution such that pH is maintained at pH=6-8.5. The pH of the washing solution is preferably kept at pH=about 7, especially in order to obtain optimal removal of ammonia. The method is carried out during application of standard scrubbers in which aqueous washing solutions can be used.

  8. Program on the combustion chemistry of low- and intermediate-Btu gas mixtures

    SciTech Connect

    Not Available

    1981-11-30

    Low and intermediate Btu (LBTU and IBTU) gas mixtures are essentially mixtures of CO, H/sub 2/ and CH/sub 4/ diluted with nitrogen and CO/sub 2/. Although the combustion properties of these three fuels have been extensively investigated and their individual combustion kinetics are reasonably well established, prediction techniques for applying these gas mixtures remain for the most part empirical. This program has aimed to bring together and apply some of the fundamental combustion parameters to the CO-H/sub 2/-CH/sub 4/ flame system with the hope of reducing some of this empiricism. Four topical reports have resulted from this program. This final report summarizes these reports and other activities undertaken in this program. This program was initiated June 22, 1976 under ERDA Contract No. E(49-18)-2406 and was later continued under DOE/PETC and DOE Contract No. DE-AC22-76ET10653.

  9. A FORTRAN program for the determination of nozzle contours for rotational, non-homentropic gas mixtures

    NASA Technical Reports Server (NTRS)

    Kalben, P.

    1977-01-01

    A program was written which generates a nozzle contour and the complete flow field for two dimensional or axisymetric flows designed to exit parallel to the axis at uniform pressure. The flow is that of a rotational, non-homentropic gas mixture where viscous effects were neglected and the chemistry is assumed frozen. A description of the numerical program developed, is also described.

  10. Program computes equilibrium normal shock and stagnation point solutions for arbitrary gas mixtures

    NASA Technical Reports Server (NTRS)

    Callis, L. B.; Kemper, J. T.

    1967-01-01

    Program computes solutions for flow parameters in arbitrary gas mixtures behind a normal and a reflected normal shock, for in-flight and shock-tube stagnation conditions. Equilibrium flow calculations are made by a free-energy minimization technique coupled with the steady-flow conservation equations and a modified Newton-Raphson iterative scheme.

  11. Anisotropic collision-induced Raman scattering by the Kr:Xe gas mixture.

    PubMed

    Dixneuf, S; Chrysos, M; Rachet, F

    2009-08-21

    We report anisotropic collision-induced Raman scattering intensities by the Kr-Xe atomic pair recorded in a gas mixture of Kr and Xe at room temperature. We compare them to quantum-mechanical calculations on the basis of modern incremental polarizability models of either ab initio post-Hartree-Fock or density functional theory methods.

  12. Purging means and method for Xenon arc lamps

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1973-01-01

    High pressure Xenon short-arc lamp with two reservoirs which are selectively connectable to the lamp's envelope is described. One reservoir contains an absorbent which will absorb both Xenon and contaminant gases such as CO2 and O2. The absorbent temperature is controlled to evacuate the envelope of both the Xenon and the contaminant gases. The temperature of the absorbent is then raised to desorb only clean Xenon while retaining the contaminant gases, thereby clearing the envelope of the contaminant gases. The second reservoir contains a gas whose specific purpose is, to remove the objectional metal film which deposits gradually on the interior surface of the lamp envelope during normal arc operation. The origin of the film is metal transferred from the cathode of the arc lamp by sputtering or other gas transfer processes.

  13. Ignition of a combustible gas mixture by a high-current electric discharge in a closed volume

    SciTech Connect

    Berezhetskaya, N. K.; Gritsinin, S. I.; Kop'ev, V. A.; Kossyi, I. A.; Kuleshov, P. S.; Popov, N. A.; Starik, A. M.; Tarasova, N. M.

    2009-06-15

    Results are presented from experimental studies and numerical calculations of the ignition of a stoichiometric CH{sub 4}: O{sub 2} gas mixture by a high-current gliding discharge. It is shown that this type of discharge generates an axially propagating thermal wave (precursor) that penetrates into the gas medium and leads to fast gas heating. This process is followed by an almost simultaneous ignition of the gas mixture over the entire reactor volume.

  14. Ignition of a combustible gas mixture by a high-current electric discharge in a closed volume

    NASA Astrophysics Data System (ADS)

    Berezhetskaya, N. K.; Gritsinin, S. I.; Kop'ev, V. A.; Kossyi, I. A.; Kuleshov, P. S.; Popov, N. A.; Starik, A. M.; Tarasova, N. M.

    2009-06-01

    Results are presented from experimental studies and numerical calculations of the ignition of a stoichiometric CH4: O2 gas mixture by a high-current gliding discharge. It is shown that this type of discharge generates an axially propagating thermal wave (precursor) that penetrates into the gas medium and leads to fast gas heating. This process is followed by an almost simultaneous ignition of the gas mixture over the entire reactor volume.

  15. Requirements for Xenon International

    SciTech Connect

    Hayes, James C.; Ely, James H.

    2013-09-26

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  16. Requirements for Xenon International

    SciTech Connect

    Hayes, James C.; Ely, James H.; Haas, Derek A.; Harper, Warren W.; Heimbigner, Tom R.; Hubbard, Charles W.; Humble, Paul H.; Madison, Jill C.; Morris, Scott J.; Panisko, Mark E.; Ripplinger, Mike D.; Stewart, Timothy L.

    2015-12-30

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  17. Permeation of gas mixtures in cellulose acetate membranes - practical approach to predict the permeation rate CO/sub 2//CH/sub 4/ mixture

    SciTech Connect

    Fouda, A.E.; Matsuura, T.; Lui, A.

    1988-10-01

    Dry cellulose acetate reverse osmosis membranes of different porosities are prepared by using the solvent exchange method and then shrunk at various temperatures. Permeation of single gases and gas mixtures of CO/sub 2/ and CH/sub 4/ through these membranes were investigated at various upstream pressures up to 2.4 MPa. The permeation data of a reference gas usually helium was used to characterize the membrane and determine the flow parameters which can be used to predict the performance of that membrane in separating gas mixtures. The Surface Force - Pore Flow model developed in previous investigations can be used to predict the membrane performance using the above method. The prediction using the characterization parameters of the reference gas proved to be unsatisfactory in most cases, since the surface force is highly dependent on the interaction between the specific gas component in the mixture and the membrane.

  18. Slip and barodiffusion phenomena in slow flows of a gas mixture

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.

    2017-03-01

    The slip and barodiffusion problems for the slow flows of a gas mixture are investigated on the basis of the linearized moment equations following from the Boltzmann equation. We restrict ourselves to the set of the third-order moment equations and state two general relations (resembling conservation equations) for the moments of the distribution function similar to the conditions used by Loyalka [S. K. Loyalka, Phys. Fluids 14, 2291 (1971), 10.1063/1.1693331] in his approximation method (the modified Maxwell method). The expressions for the macroscopic velocities of the gas mixture species, the partial viscous stress tensors, and the reduced heat fluxes for the stationary slow flow of a gas mixture in the semi-infinite space over a plane wall are obtained as a result of the exact solution of the linearized moment equations in the 10- and 13-moment approximations. The general expression for the slip velocity and the simple and accurate expressions for the viscous, thermal, diffusion slip, and baroslip coefficients, which are given in terms of the basic transport coefficients, are derived by using the modified Maxwell method. The solutions of moment equations are also used for investigation of the flow and diffusion of a gas mixture in a channel formed by two infinite parallel plates. A fundamental result is that the barodiffusion factor in the cross-section-averaged expression for the diffusion flux contains contributions associated with the viscous transfer of momentum in the gas mixture and the effect of the Knudsen layer. Our study revealed that the barodiffusion factor is equal to the diffusion slip coefficient (correct to the opposite sign). This result is consistent with the Onsager's reciprocity relations for kinetic coefficients following from nonequilibrium thermodynamics of the discontinuous systems.

  19. Electrochemical separation and concentration of sulfur containing gases from gas mixtures

    DOEpatents

    Winnick, Jack

    1981-01-01

    A method of removing sulfur oxides of H.sub.2 S from high temperature gas mixtures (150.degree.-1000.degree. C.) is the subject of the present invention. An electrochemical cell is employed. The cell is provided with inert electrodes and an electrolyte which will provide anions compatible with the sulfur containing anions formed at the anode. The electrolyte is also selected to provide inert stable cations at the temperatures encountered. The gas mixture is passed by the cathode where the sulfur gases are converted to SO.sub.4.sup.= or, in the case of H.sub.2 S, to S.sup.=. The anions migrate to the anode where they are converted to a stable gaseous form at much greater concentration levels (>10X). Current flow may be effected by utilizing an external source of electrical energy or by passing a reducing gas such as hydrogen past the anode.

  20. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1988-06-28

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  1. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, Loucas G.; Hunter, Scott R.

    1990-01-01

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc.

  2. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1990-06-26

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  3. XENON100 Dark Matter Search: Scintillation Response of Liquid Xenon to Electronic Recoils

    NASA Astrophysics Data System (ADS)

    Lim, Kyungeun Elizabeth

    Dark matter is one of the missing pieces necessary to complete the puzzle of the universe. Numerous astrophysical observations at all scales suggest that 23 % of the universe is made of nonluminous, cold, collisionless, nonbaryonic, yet undiscovered dark matter. Weakly Interacting Massive Particles (WIMPs) are the most well-motivated dark matter candidates and significant efforts have been made to search for WIMPs. The XENON100 dark matter experiment is currently the most sensitive experiment in the global race for the first direct detection of WIMP dark matter. XENON100 is a dual-phase (liquid-gas) time projection chamber containing a total of 161 kg of liquid xenon (LXe) with a 62kg WIMP target mass. It has been built with radiopure materials to achieve an ultra-low electromagnetic background and operated at the Laboratori Nazionali del Gran Sasso in Italy. WIMPs are expected to scatter off xenon nuclei in the target volume. Simultaneous measurement of ionization and scintillation produced by nuclear recoils allows for the detection of WIMPs in XENON100. Data from the XENON100 experiment have resulted in the most stringent limits on the spin-independent elastic WIMP-nucleon scattering cross sections for most of the significant WIMP masses. As the experimental precision increases, a better understanding of the scintillation and ionization response of LXe to low energy (< 10 keV) particles is crucial for the interpretation of data from LXe based WIMP searches. A setup has been built and operated at Columbia University to measure the scintillation response of LXe to both electronic and nuclear recoils down to energies of a few keV, in particular for the XENON100 experiment. In this thesis, I present the research carried out in the context of the XENON100 dark matter search experiment. For the theoretical foundation of the XENON100 experiment, the first two chapters are dedicated to the motivation for and detection medium choice of the XENON100 experiment

  4. The structure of variable property, compressible mixing layers in binary gas mixtures

    NASA Technical Reports Server (NTRS)

    Kozusko, F.; Grosch, C. E.; Jackson, T. L.; Kennedy, Christipher A.; Gatski, Thomas B.

    1996-01-01

    We present the results of a study of the structure of a parallel compressible mixing layer in a binary mixture of gases. The gases included in this study are hydrogen (H2), helium (He), nitrogen (N2), oxygen (02), neon (Ne) and argon (Ar). Profiles of the variation of the Lewis and Prandtl numbers across the mixing layer for all thirty combinations of gases are given. It is shown that the Lewis number can vary by as much as a factor of eight and the Prandtl number by a factor of two across the mixing layer. Thus assuming constant values for the Lewis and Prandtl numbers of a binary gas mixture in the shear layer, as is done in many theoretical studies, is a poor approximation. We also present profiles of the velocity, mass fraction, temperature and density for representative binary gas mixtures at zero and supersonic Mach numbers. We show that the shape of these profiles is strongly dependent on which gases are in the mixture as well as on whether the denser gas is in the fast stream or the slow stream.

  5. Reactive sputtering of titanium in Ar/CH4 gas mixture: Target poisoning and film characteristics

    SciTech Connect

    Fouad, O.A.; Rumaiz, A.; Shah, S.

    2009-03-01

    Reactive sputtering of titanium target in the presence of Ar/CH{sub 4} gas mixture has been investigated. With the addition of methane gas to above 1.5% of the process gas a transition from the metallic sputtering mode to the poison mode was observed as indicated by the change in cathode current. As the methane gas flow concentration increased up to 10%, the target was gradually poisoned. The hysteresis in the cathode current could be plotted by first increasing and then subsequently decreasing the methane concentration. X-ray diffraction and X-ray photoelectron spectroscopy analyses of the deposited films confirmed the formation of carbide phases and the transition of the process from the metallic to compound sputtering mode as the methane concentration in the sputtering gas is increased. The paper discusses a sputtering model that gives a rational explanation of the target poisoning phenomenon and shows an agreement between the experimental observations and calculated results.

  6. Thermophysical properties of CF4/O2 and SF6/O2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Damyanova, M.; Hohm, U.; Balabanova, E.; Barton, D.

    2016-03-01

    Fitting formulae are presented for the calculation of the second interaction virial coefficients, mixture viscosities and binary diffusion coefficients for CF4/O2 and SF6/O2 gas mixtures in the temperature range between 200 K and 1000 K. The data recommended are obtained from the isotropic (n-6) Lennard-Jones intermolecular interaction potentials of the pure substances by using the Hohm-Zarkova-Damyanova mixing rules. In general, a good agreement is observed between our results and the experimental and theoretical data found in the literature.

  7. Stability assessment of gas mixtures containing terpenes at nominal 5 nmol/mol contained in treated aluminum gas cylinders.

    PubMed

    Rhoderick, George C

    2010-10-01

    Studies of climate change increasingly recognize the diverse influences exerted by terpenes in the atmosphere, including roles in particulates, ozone formation, and their oxidizing potential. Measurements of key terpenes suggest atmospheric concentrations ranging from low pmol/mol (parts per trillion) to nmol/mol (parts per billion), depending on location and compound. To accurately establish concentration trends, assess the role of terpenes in atmospheric chemistry, and relate measurement records from many laboratories and researchers, it is essential to have good calibration standards. The feasibility of preparing well-characterized, stable gas cylinder standards for terpenes at the nmol/mol level is not yet well established. Several of the world's National Metrology Institutes (NMIs) are researching the feasibility of developing primary and secondary reference gas standards at the nmol/mol level for terpenes. The US NMI, the National Institute of Standards and Technology, has prepared several nmol/mol mixtures, in treated aluminum gas cylinders, containing terpenes in dry nitrogen at nominal 5 nmol/mol for stability studies. Overall, 11 terpenes were studied for stability. An initial gas mixture containing nine terpenes, one oxygenate, and six aromatic compounds, including benzene as an internal standard, was prepared. Results for four of the nine terpenes in this initial mixture indicate stability in these treated aluminum gas cylinders for over 6 months and project long term (years) stability. Interesting results were seen for beta-pinene, which when using a linear equation rate decline predicts that it will reach a zero concentration level at day 416. At the same time, increases in alpha-pinene, D: -limonene (R-(+)-limonene), and p-cymene were observed, including camphene, a terpene not prepared in the gas mixture, indicating a chemical transformation of beta-pinene to these species. Additional mixtures containing combination of either alpha-pinene, camphor

  8. Xenon and iodine reveal multiple distinct exotic xenon components in Efremovka "nanodiamonds"

    NASA Astrophysics Data System (ADS)

    Gilmour, J. D.; Holland, G.; Verchovsky, A. B.; Fisenko, A. V.; Crowther, S. A.; Turner, G.

    2016-03-01

    We identify new xenon components in a nanodiamond-rich residue from the reduced CV3 chondrite Efremovka. We demonstrate for the first time that these, and the previously identified xenon components Xe-P3 and Xe-P6, are associated with elevated I/Xe ratios. The 129I/127I ratio associated with xenon loss from these presolar compositions during processing on planetesimals in the early solar system was (0.369 ± 0.019) × 10-4, a factor of 3-4 lower than the canonical value. This suggests either incorporation of iodine into carbonaceous grains before the last input of freshly synthesized 129I to the solar system's precursor material, or loss of noble gases during processing of planetesimals around 30 Myr after solar system formation. The xenon/iodine ratios and model closure ages were revealed by laser step pyrolysis analysis of a neutron-irradiated, coarse-grained nanodiamond separate. Three distinct low temperature compositions are identified by characteristic I/Xe ratios and 136Xe/132Xe ratios. There is some evidence of multiple compositions with distinct I/Xe ratios in the higher temperature releases associated with Xe-P6. The presence of iodine alongside Q-Xe and these components in nanodiamonds constrains the pathway by which extreme volatiles entered the solid phase and may facilitate the identification of their carriers. There is no detectable iodine contribution to the presolar Xe-HL component, which is released at intermediate temperatures; this suggests a distinct trapping process. Releases associated with the other components all include significant contributions of 128Xe produced from iodine by neutron capture during reactor irradiation. We propose a revised model relating the origin of Xe-P3 (which exhibits an s-process deficit) through a ;Q-process; to the Q component (which makes the dominant contribution to the heavy noble gas budget of primitive material). The Q-process incorporates noble gases and iodine into specific carbonaceous phases with mass

  9. Fundamental equations of a mixture of gas and small spherical solid particles from simple kinetic theory.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.

    1973-01-01

    The fundamental equations of a mixture of a gas and pseudofluid of small spherical solid particles are derived from the Boltzmann equation of two-fluid theory. The distribution function of the gas molecules is defined in the same manner as in the ordinary kinetic theory of gases, but the distribution function for the solid particles is different from that of the gas molecules, because it is necessary to take into account the different size and physical properties of solid particles. In the proposed simple kinetic theory, two additional parameters are introduced: one is the radius of the spheres and the other is the instantaneous temperature of the solid particles in the distribution of the solid particles. The Boltzmann equation for each species of the mixture is formally written, and the transfer equations of these Boltzmann equations are derived and compared to the well-known fundamental equations of the mixture of a gas and small solid particles from continuum theory. The equations obtained reveal some insight into various terms in the fundamental equations. For instance, the partial pressure of the pseudofluid of solid particles is not negligible if the volume fraction of solid particles is not negligible as in the case of lunar ash flow.

  10. Implementation of Ultrasonic Sensing for High Resolution Measurement of Binary Gas Mixture Fractions

    PubMed Central

    Bates, Richard; Battistin, Michele; Berry, Stephane; Bitadze, Alexander; Bonneau, Pierre; Bousson, Nicolas; Boyd, George; Bozza, Gennaro; Crespo-Lopez, Olivier; Riva, Enrico Da; Degeorge, Cyril; Deterre, Cecile; DiGirolamo, Beniamino; Doubek, Martin; Favre, Gilles; Godlewski, Jan; Hallewell, Gregory; Hasib, Ahmed; Katunin, Sergey; Langevin, Nicolas; Lombard, Didier; Mathieu, Michel; McMahon, Stephen; Nagai, Koichi; Pearson, Benjamin; Robinson, David; Rossi, Cecilia; Rozanov, Alexandre; Strauss, Michael; Vitek, Michal; Vacek, Vaclav; Zwalinski, Lukasz

    2014-01-01

    We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10−5 is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions. PMID:24961217

  11. Implementation of an ultrasonic instrument for simultaneous mixture and flow analysis of binary gas systems

    SciTech Connect

    Alhroob, M.; Boyd, G.; Hasib, A.; Pearson, B.; Srauss, M.; Young, J.; Bates, R.; Bitadze, A.; Battistin, M.; Berry, S.; Bonneau, P.; Botelho-Direito, J.; Bozza, G.; Crespo-Lopez, O.; DiGirolamo, B.; Favre, G.; Godlewski, J.; Lombard, D.; Zwalinski, L.; Bousson, N.; Hallewell, G.; Mathieu, M.; Rozanov, A.; Deterre, C.; O'Rourke, A.; Doubek, M.; Vacek, V.; Degeorge, C.; Katunin, S.; Langevin, N.; McMahon, S.; Nagai, K.; Robinson, D.; Rossi, C.

    2015-07-01

    Precision ultrasonic measurements in binary gas systems provide continuous real-time monitoring of mixture composition and flow. Using custom micro-controller-based electronics, we have developed an ultrasonic instrument, with numerous potential applications, capable of making continuous high-precision sound velocity measurements. The instrument measures sound transit times along two opposite directions aligned parallel to - or obliquely crossing - the gas flow. The difference between the two measured times yields the gas flow rate while their average gives the sound velocity, which can be compared with a sound velocity vs. molar composition look-up table for the binary mixture at a given temperature and pressure. The look-up table may be generated from prior measurements in known mixtures of the two components, from theoretical calculations, or from a combination of the two. We describe the instrument and its performance within numerous applications in the ATLAS experiment at the CERN Large Hadron Collider (LHC). The instrument can be of interest in other areas where continuous in-situ binary gas analysis and flowmetry are required. (authors)

  12. Vapor-alcohol control tests with compressed ethanol-gas mixtures: scientific basis and actual performance.

    PubMed

    Dubowski, K M; Essary, N A

    1996-10-01

    Commercial compressed vapor-alcohol mixtures ("dry gas") were evaluated to ascertain their suitability for control tests in breath-alcohol analysis. Dry gas control tests were conducted at nominal vapor-alcohol concentrations (VACs) of 0.045, 0.085, and 0.105 g/210 L (n = 50 at each VAC) with Alcotest 7110 MK III and Intoxilyzer 1400 evidential breath-alcohol testers. The measurement results were analyzed by standard statistical methods, and their correlation with certified dry gas VAC target values was examined. Also measured and examined statistically were the VACs of National Institute of Standards and Technology-traceable Research Gas mixtures (dry gas) ethanol standards at 97.8 and 198 ppm (n = 30-50 at each VAC). With the Alcotest 7110 MK III programmed to report VACs normalized to standard atmospheric pressure at 760 torr and the intoxilyzer 1400 programmed to report VACs at ambient atmospheric pressure, the predicted effects of ambient atmospheric pressure were confirmed experimentally. We developed and validated the following conversion factor for VAC units at 34 degrees C and 760 torr: ppm/2605 = g/210 L and g/210 L x 2605 = ppm. We found that the dry gas vapor-alcohol control samples conformed to established formal specifications and concluded that they compared favorably with simulator effluents for control tests of breath-alcohol analyzers, which are capable of adjusting VAC results for ambient atmospheric pressure.

  13. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  14. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOEpatents

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  15. One-dimensional fluid simulations of a helium - xenon filled ac colour plasma flat panel display pixel

    NASA Astrophysics Data System (ADS)

    Veerasingam, Ramana; Campbell, Robert B.; McGrath, Robert T.

    1997-05-01

    One-dimensional (1D) fluid simulations are used to model a helium-xenon filled ac plasma display pixel. The model includes four levels for helium atomic states, seven levels for xenon atomic states and a xenon dimer state. The model also includes VUV emission including photon trapping due to collisional broadening from the resonant atomic xenon at wavelengths of 129 nm and 147 nm and from non-resonant emission by the xenon dimer molecule peaked at 173 nm. Simulations are performed for a gap width (d) of 100 microns at a pressure (P) of 400 Torr using varying xenon concentrations. At low xenon concentrations, emission is primarily in the 147 nm wavelength but shifts toward the xenon dimer above about 20% xenon in the mixture. At 2% xenon, the calculated VUV emission is about 85% from the resonant atomic xenon state at 147 nm, about 13% from the dimer and about 2% from the resonant 129 nm line. Emission from the 129 nm line is insignificant due to collisional quenching of the xenon 0963-0252/6/2/009/img5 states. The discharge efficiency, defined as the VUV photons/watt dissipated, increases with xenon content with an optimum at about 30% xenon. For opposed electrode geometry, as the xenon concentration is increased from 2% to X% xenon, the simulations show that the applied voltages scale approximately as 0963-0252/6/2/009/img6. At a fixed Pd, a higher pressure yields more VUV emission than using a larger gap width.

  16. Eco-friendly gas mixtures for Resistive Plate Chambers based on tetrafluoropropene and Helium

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Benussi, L.; Piccolo, D.; Bianco, S.; Ferrini, M.; Muhammad, S.; Passamonti, L.; Pierluigi, D.; Piccolo, D.; Primavera, F.; Russo, A.; Saviano, G.

    2016-08-01

    Due to the recent restrictions deriving from the application of the Kyoto protocol, the main components of the gas mixtures presently used in the Resistive Plate Chambers systems of the LHC experiments will be most probably phased out of production in the coming years. Identifying possible replacements with the adequate characteristics requires an intense R&D activity, which was recently started, in collaborations with various experiments. Possible new gases have been proposed and are thoroughly investigated. Some tests on one of the most promising candidate—HFO-1234ze, an allotropic form of tetrafluoropropane—have already been reported. Here an innovative approach, based on the use of Helium, to solve the problem related to the high operating voltage needed to operate the chambers with HFO-1234ze based gas mixtures, is discussed and the first results are shown.

  17. [Effect of krypton-containing gas mixture on Japanese quail embryo development].

    PubMed

    Kussmaul', A R; Gur'eva, T S; Dadasheva, O A; Pavlov, N B; Pavlov, B N

    2008-01-01

    Investigated were effects of gas mixture with up to 3.0 kgs/cm2 of krypton on the embryonic development of domesticated Japanese quail (Coturnix coturnix japonica dom.). Results demonstrated absence of a serious krypton effect on Japanese quail embryos. Development of embryos proceeded in due course; morphometrically the experimental embryos were essentially similar to controls. It should be noted that despite exposure to acute hypoxic hypoxia during the initial 12 hours of development in the krypton-containing gas mixture, viability of quail embryos was high enough which can be ascribed to the krypton protective action. Besides, an additional experiment showed that krypton partial pressure of 5-5.5 kgs/cm2 produces the narcotic effect on adult Japanese quails.

  18. Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration

    DOEpatents

    Golden, Timothy Christopher; Weist, Jr., Edward Landis; Hufton, Jeffrey Raymond; Novosat, Paul Anthony

    2010-04-13

    A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.

  19. Process and catalyst for converting synthesis gas to liquid hydrocarbon mixture

    DOEpatents

    Rao, V. Udaya S.; Gormley, Robert J.

    1987-01-01

    Synthesis gas containing CO and H.sub.2 is converted to a high-octane hydrocarbon liquid in the gasoline boiling point range by bringing the gas into contact with a heterogeneous catalyst including, in physical mixture, a zeolite molecular sieve, cobalt at 6-20% by weight, and thoria at 0.5-3.9% by weight. The contacting occurs at a temperature of 250.degree.-300.degree. C., and a pressure of 10-30 atmospheres. The conditions can be selected to form a major portion of the hydrocarbon product in the gasoline boiling range with a research octane of more than 80 and less than 10% by weight aromatics.

  20. Acoustic wave propagation in bubbly flow with gas, vapor or their mixtures.

    PubMed

    Zhang, Yuning; Guo, Zhongyu; Gao, Yuhang; Du, Xiaoze

    2017-03-29

    Presence of bubbles in liquids could significantly alter the acoustic waves in terms of wave speed and attenuation. In the present paper, acoustic wave propagation in bubbly flows with gas, vapor and gas/vapor mixtures is theoretically investigated in a wide range of parameters (including frequency, bubble radius, void fraction, and vapor mass fraction). Our finding reveals two types of wave propagation behavior depending on the vapor mass fraction. Furthermore, the minimum wave speed (required for the closure of cavitation modelling in the sonochemical reactor design) is analyzed and the influences of paramount parameters on it are quantitatively discussed.

  1. Electron attachment to oxygen, water, and methanol, in various drift chamber gas mixtures

    NASA Astrophysics Data System (ADS)

    Huk, M.; Igo-Kemenes, P.; Wagner, A.

    1988-04-01

    Attachment of electrons to oxygen, water, and methanol molecules has been studied in various gas mixtures based on argon, methane and isobutane, a class of gases often used to operate large drift chambers. The measurements were performed using a drift chamber in which the conditions prevailing in large experiments could be closely reproduced. Attachment coefficients were extracted as a function of the gas composition and pressure, the drift field, and the concentration of the molecules under investigation. The observed effects are compared to other measurements, and are discussed within the frame of physical models.

  2. Physical properties of double-sound modes in disparate-mass gas mixtures

    NASA Astrophysics Data System (ADS)

    Huck, R. J.; Johnson, E. A.

    For gas mixtures of very heavy with very light molecules, solution of the dispersion relation shows that at moderately high frequencies there are two distinct modes that must be taken into account in describing forced sound propagation, a fast wave and a slow one. Detailed properties of these modes (incorporating small corrections to published results) are presented for Xe-He, and the physical nature of the modes is discussed. The slow wave is found to be essentially a sound wave in the heavy species alone, whereas, at sufficiently high frequencies, the fast wave becomes a dusty-gas-type disturbance in the light species.

  3. Sterilization of Bacillus subtilis Spores Using an Atmospheric Plasma Jet with Argon and Oxygen Mixture Gas

    NASA Astrophysics Data System (ADS)

    Shen, Jie; Cheng, Cheng; Fang, Shidong; Xie, Hongbing; Lan, Yan; Ni, Guohua; Meng, Yuedong; Luo, Jiarong; Wang, Xiangke

    2012-03-01

    To determine an efficient sterilization mechanism, Bacillus subtilis spore samples were exposed to an atmospheric plasma jet. By using argon/oxygen mixture gas, the decimal reduction value was reduced from 60 s (using argon gas) to 10 s. More dramatically, after 5 min treatment, the colony-forming unit (CFU) was reduced by six orders. To understand the underlying mechanism of the efficient sterilization by plasma, the contributions from heat, UV radiation, charged particles, ozone, and reactive oxygen radicals were distinguished in this work, showing that charged particles and ozone were the main killing factors. The shape changes of the spores were also discussed.

  4. [Modification of the intestinal syndrome using a hypoxic gas mixture under different conditions of animal irradiation].

    PubMed

    Strelkov, R B; Kucherenko, N G; Kozlov, V M

    1983-01-01

    In experiments on 1152 CBA mice and SHK colony and on 1180 Wistar rats it was demonstrated that a gas hypoxic mixture containing oxygen (10%) and nitrogen (90%) (GHM-10) reduced the intestinal syndrome of the acute radiation sickness in animals exposed to ionizing radiation at rest, during physical exercises, after radiation sickness endured earlier, after exposure to SHF, after fractionated irradiation, and after radiation-and-thermal damage.

  5. Viscous shock layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous shock layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially symmetric flow fields. Solutions are obtained using an implicit finite difference scheme and results are presented for hypersonic flow over spherically blunted cone configurations at free stream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  6. Viscous-shock-layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous-shock-layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially-symmetric flow fields. Solutions were obtained using an implicit finite-difference scheme and results are presented for hypersonic flow over spherically-blunted cone configurations at freestream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.

  7. Theoretical and experimental analysis of a multiphase screw pump, handling gas-liquid mixtures with very high gas volume fractions

    SciTech Connect

    Raebiger, K.; Maksoud, T.M.A.; Ward, J.; Hausmann, G.

    2008-09-15

    In the investigation of the pumping behaviour of multiphase screw pumps, handling gas-liquid mixtures with very high gas volume fractions, theoretical and experimental analyses were performed. A new theoretical screw pump model was developed, which calculates the time-dependent conditions inside the several chambers of a screw pump as well as the exchange of mass and energy between these chambers. By means of the performed experimental analysis, the screw pump model was verified, especially at very high gas volume fractions from 90% to 99%. The experiments, which were conducted with the reference fluids water and air, can be divided mainly into the determination of the steady state pumping behaviour on the one hand and into the analysis of selected transient operating conditions on the other hand, whereas the visualisation of the leakage flows through the circumferential gaps was rounded off the experimental analysis. (author)

  8. Transport coefficients for relativistic gas mixtures of hard-sphere particles

    NASA Astrophysics Data System (ADS)

    Kremer, Gilberto M.; Moratto, Valdemar

    2017-04-01

    In the present work, we calculate the transport coefficients for a relativistic binary mixture of diluted gases of hard-sphere particles. The gas mixture under consideration is studied within the relativistic Boltzmann equation in the presence of a gravitational field described by the isotropic Schwarzschild metric. We obtain the linear constitutive equations for the thermodynamic fluxes. The driving forces for the fluxes of particles and heat will appear with terms proportional to the gradient of gravitational potential. We discuss the consequences of the gravitational dependence on the driving forces. We obtain general integral expressions for the transport coefficients and evaluate them by assuming a hard-sphere interaction amongst the particles when they collide and not very disparate masses and diameters of the particles of each species. The obtained results are expressed in terms of their temperature dependence through the relativistic parameter which gives the ratio of the rest energy of the particles and the thermal energy of the gas mixture. Plots are given to analyze the behavior of the transport coefficients with respect to the temperature when small variations in masses and diameters of the particles of the species are present. We also analyze for each coefficient the corresponding limits to a single gas so the non-relativistic and ultra-relativistic limiting cases are recovered as well. Furthermore, we show that the transport coefficients have a dependence on the gravitational field.

  9. Carbothermal Reduction of Quartz in Methane-Hydrogen-Argon Gas Mixture

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhang, Guangqing; Tang, Kai; Ostrovski, Oleg; Tronstad, Ragnar

    2015-10-01

    Synthesis of silicon carbide (SiC) by carbothermal reduction of quartz in a CH4-H2-Ar gas mixture was investigated in a laboratory fixed-bed reactor in the temperature range of 1573 K to 1823 K (1300 °C to 1550 °C). The reduction process was monitored by an infrared gas analyser, and the reduction products were characterized by LECO, XRD, and SEM. A mixture of quartz-graphite powders with C/SiO2 molar ratio of 2 was pressed into pellets and used for reduction experiments. The reduction was completed within 2 hours under the conditions of temperature at or above 1773 K (1500 °C), methane content of 0.5 to 2 vol pct, and hydrogen content ≥70 vol pct. Methane partially substituted carbon as a reductant in the SiC synthesis and enhanced the reduction kinetics significantly. An increase in the methane content above 2 vol pct caused excessive carbon deposition which had a detrimental effect on the reaction rate. Hydrogen content in the gas mixture above 70 vol pct effectively suppressed the cracking of methane.

  10. An experimental approach aiming the production of a gas mixture composed of hydrogen and methane from biomass as natural gas substitute in industrial applications.

    PubMed

    Kraussler, Michael; Schindler, Philipp; Hofbauer, Hermann

    2017-03-11

    This work presents an experimental approach aiming the production of a gas mixture composed of H2 and CH4, which should serve as natural gas substitute in industrial applications. Therefore, a lab-scale process chain employing a water gas shift unit, scrubbing units, and a pressure swing adsorption unit was operated with tar-rich product gas extracted from a commercial dual fluidized bed biomass steam gasification plant. A gas mixture with a volumetric fraction of about 80% H2 and 19% CH4 and with minor fractions of CO and CO2 was produced by employing carbon molecular sieve as adsorbent. Moreover, the produced gas mixture had a lower heating value of about 15.5MJ·m(-3) and a lower Wobbe index of about 43.4MJ·m(-3), which is similar to the typical Wobbe index of natural gas.

  11. Thermodynamic stability, spectroscopic identification, and gas storage capacity of CO2-CH4-N2 mixture gas hydrates: implications for landfill gas hydrates.

    PubMed

    Lee, Hyeong-Hoon; Ahn, Sook-Hyun; Nam, Byong-Uk; Kim, Byeong-Soo; Lee, Gang-Woo; Moon, Donghyun; Shin, Hyung Joon; Han, Kyu Won; Yoon, Ji-Ho

    2012-04-03

    Landfill gas (LFG), which is primarily composed of CH(4), CO(2), and N(2), is produced from the anaerobic digestion of organic materials. To investigate the feasibility of the storage and transportation of LFG via the formation of hydrate, we observed the phase equilibrium behavior of CO(2)-CH(4)-N(2) mixture hydrates. When the specific molar ratio of CO(2)/CH(4) was 40/55, the equilibrium dissociation pressures were gradually shifted to higher pressures and lower temperatures as the mole fraction of N(2) increased. X-ray diffraction revealed that the CO(2)-CH(4)-N(2) mixture hydrate prepared from the CO(2)/CH(4)/N(2) (40/55/5) gas mixture formed a structure I clathrate hydrate. A combination of Raman and solid-state (13)C NMR measurements provided detailed information regarding the cage occupancy of gas molecules trapped in the hydrate frameworks. The gas storage capacity of LFG hydrates was estimated from the experimental results for the hydrate formations under two-phase equilibrium conditions. We also confirmed that trace amounts of nonmethane organic compounds do not affect the cage occupancy of gas molecules or the thermodynamic stability of LFG hydrates.

  12. Assessing the depth of hypnosis of xenon anaesthesia with the EEG.

    PubMed

    Stuttmann, Ralph; Schultz, Arthur; Kneif, Thomas; Krauss, Terence; Schultz, Barbara

    2010-04-01

    Xenon was approved as an inhaled anaesthetic in Germany in 2005 and in other countries of the European Union in 2007. Owing to its low blood/gas partition coefficient, xenons effects on the central nervous system show a fast onset and offset and, even after long xenon anaesthetics, the wake-up times are very short. The aim of this study was to examine which electroencephalogram (EEG) stages are reached during xenon application and whether these stages can be identified by an automatic EEG classification. Therefore, EEG recordings were performed during xenon anaesthetics (EEG monitor: Narcotrend®). A total of 300 EEG epochs were assessed visually with regard to the EEG stages. These epochs were also classified automatically by the EEG monitor Narcotrend® using multivariate algorithms. There was a high correlation between visual and automatic classification (Spearman's rank correlation coefficient r=0.957, prediction probability Pk=0.949). Furthermore, it was observed that very deep stages of hypnosis were reached which are characterised by EEG activity in the low frequency range (delta waves). The burst suppression pattern was not seen. In deep hypnosis, in contrast to the xenon EEG, the propofol EEG was characterised by a marked superimposed higher frequency activity. To ensure an optimised dosage for the single patient, anaesthetic machines for xenon should be combined with EEG monitoring. To date, only a few anaesthetic machines for xenon are available. Because of the high price of xenon, new and further developments of machines focus on optimizing xenon consumption.

  13. Atmospheric pressure glow discharge generated in nitrogen-methane gas mixture: PTR-MS analyzes of the exhaust gas

    NASA Astrophysics Data System (ADS)

    Torokova, Lucie; Mazankova, Vera; Krcma, Frantisek; Mason, Nigel J.; Matejcik, Stefan

    2015-07-01

    This paper reports the results of an extensive study of with the in situ mass spectrometry analysis of gaseous phase species produced by an atmospheric plasma glow discharge in N2-CH4 gas mixtures (with methane concentrations ranging from 1% to 4%). The products are studied using proton-transfer-reaction mass spectrometry (PTR-MS). HCN and CH3CN are identified as the main gaseous products. Hydrazine, methanimine, methyldiazene, ethylamine, cyclohexadiene, pyrazineacetylene, ethylene, propyne and propene are identified as minor compounds. All the detected compounds and their relative abundances are determined with respect to the experimental conditions (gas composition and applied power). The same molecules were observed by the Cassini-Huygens probe in Titan's atmosphere (which has same N2-CH4 gas mixtures). Such, experiments show that the formation of such complex organics in atmospheres containing C, N and H, like that of Titan, could be a source of prebiotic molecules. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  14. Relative scintillation efficiency of liquid xenon in the XENON10 direct dark matter search

    NASA Astrophysics Data System (ADS)

    Manzur, Angel

    There is almost universal agreement that most of the mass in the Universe consists of dark matter. Many lines of reasoning suggest that the dark matter consists of a weakly interactive massive particle (WIMP) with mass ranging from 10 GeV/c 2 to a few TeV/c 2 . Today, numerous experiments aim for direct or indirect dark matter detection. XENON10 is a direct detection experiment using a xenon dual phase time projection chamber. Particles interacting with xenon will create a scintillation signal ( S 1) and ionization. The charge produced is extracted into the gas phase and converted into a proportional scintillation light ( S 2), with an external electric field. The dominant background, b particles and g rays, will undergo an electron recoil (ER) interaction, while WIMPs and neutrons will undergo a nuclear recoil (NR) interaction. Event-by-event discrimination of background signals is based on log 10 ( S 2/ S 1) NR < log 10 ( S 2/ S 1) ER and the 3-D position reconstruction. In 2006 the XENON10 detector started underground operations at laboratorio Nazionali del Gran Sasso in Italy. After 6 months of operations, totaling 58.6 live days and 5.4 kg of fiducial mass, XENON10 set the best upper limits at the time. Finding a spin- independent WIMP-nucleon cross-section s h = 8.8 × 10^-44 cm 2 and a spin- dependent WIMP-neutron cross-section s h = 1.0 × 10^-38 cm 2 for a WIMP mass of 100 GeV/c 2 (90% C.L.). In this work I give an overview of the dark matter evidence and review the requirements for a dark matter search. In particular I discuss the XENON10 detector, deployment, operation, calibrations, analysis and WIMP-nucleon cross- section limits. Finally, I present our latest results for the relative scintillation efficiency ([Special characters omitted.] ) for nuclear recoils in liquid xenon, which was the biggest source of uncertainty in the XENON10 limit. This quantity is essential to determine the nuclear energy scale and to determine the WIMP-nucleon cross

  15. Research and Design of Thermophysical Gas-Liquid Mixture Parameters in Product Pipelines

    NASA Astrophysics Data System (ADS)

    Dudin, S. M.; Zemenkov, Yu D.; Maier, A. V.; Shabarov, A. B.

    2016-10-01

    Operational problems are hard to overcome because of the temperature and pressure conditions of the hydrocarbon flow in the pipe, as well as the composition of the hydrocarbon system and the geometry of the pipeline. It is known that energy costs to pump a unit mass of RH in the form of gas 2-3 times exceed energy costs to pump a unit mass of RH in the form of liquid. As far as energy conservation during RH transportation is concerned, an important task is development and application of a method to calculate the gas-liquid hydrocarbons flow, and heat and mass transfer in process and trunk pipelines during their design and operation. The authors have developed a calculation method which is used to analyze the hydrodynamic state and composition of the hydrocarbon mixture in each ith section of the pipeline when temperature-pressure and hydraulic conditions change. The developed technique was tested on the hydrocarbon mixture of de-ethanized condensate and oil transported from northern oil and gas condensate fields via the main gas condensate line to the refinery.

  16. Xenon-Ion Drilling of Tungsten Films

    NASA Technical Reports Server (NTRS)

    Garner, C. E.

    1986-01-01

    High-velocity xenon ions used to drill holes of controlled size and distribution through tungsten layer that sheaths surface of controlled-porosity dispenser cathode of traveling wave-tube electron emitter. Controlled-porosity dispenser cathode employs barium/calcium/ aluminum oxide mixture that migrates through pores in cathode surface, thus coating it and reducing its work function. Rapid, precise drilling technique applied to films of other metals and used in other applications where micron-scale holes required. Method requires only few hours, as opposed to tens of hours by prior methods.

  17. Adiabatic temperature changes of magma-gas mixtures during ascent and eruption

    USGS Publications Warehouse

    Mastin, L.G.; Ghiorso, M.S.

    2001-01-01

    Most quantitative studies of flow dynamics in eruptive conduits during volcanic eruptions use a simplified energy equation that ignores either temperature changes, or the thermal effects of gas exsolution. In this paper we assess the effects of those simplifications by analyzing the influence of equilibrium gas exsolution and expansion on final temperatures, velocities, and liquid viscosities of magma-gas mixtures during adiabatic decompression. For a given initial pressure (p1), temperature (T1) and melt composition, the final temperature (Tf) and velocity (Umax) will vary depending on the degree to which friction and other irreversible processes reduce mechanical energy within the conduit. The final conditions range between two thermodynamic end members: (1) Constant enthalpy (dh=0), in which Tf is maximal and no energy goes into lifting or acceleration; and (2) constant entropy (ds=0), in which Tf is minimal and maximum energy goes into lifting and acceleration. For ds=0, T1=900 ??C and p1=200 MPa, a water-saturated albitic melt cools by ???200 ??C during decompression, but only about 250 ??C of this temperature decrease can be attributed to the energy of gas exsolution per se: The remainder results from expansion of gas that has already exsolved. For the same T1 and p1, and dh=0, Tf is 10-15 ??C hotter than T1 but is about 10-25 ??C cooler than Tf in similar calculations that ignore the energy of gas exsolution. For ds=0, p1=200 MPa and T1= 9,000 ??C, assuming that all the enthalpy change of decompression goes into kinetic energy, a water-saturated albitic mixture can theoretically accelerate to ???800 m/s. Similar calculations that ignore gas exsolution (but take into account gas expansion) give velocities about 10-15% higher. For the same T1, p1 = 200 MPa, and ds = 0, the cooling associated with gas expansion and exsolution increases final melt viscosity more than 2.5 orders of magnitude. For dh = 0, isenthalpic heating decreases final melt viscosity by about

  18. Evaluation of the age of landfill gas methane in landfill gas-natural gas mixtures using co-occurring constituents.

    PubMed

    Kerfoot, Henry B; Hagedorn, Benjamin; Verwiel, Mark

    2013-06-01

    At a municipal solid waste landfill in southern California (USA) overlying a natural gas reservoir, methane was detected at concentrations of up to 40% (by volume) in perimeter soil gas probes. Stable isotope and (14)C values of methane together with gas composition (major components and volatile organic compounds) data were evaluated to assess the relative contributions of landfill gas and natural gas to the measured methane concentrations. The data was further used to estimate the residence time of the landfill gas in the probes. Results showed that up to 37% of the measured methane was derived from landfill gas. In addition, the landfill gas in the probe samples has undergone extensive alteration due to dissolution of carbon dioxide in pore water. Data further indicates that the measured methane was released from the waste approximately 1.2 to 9.4 years ago, rather than representing evidence of an ongoing release.

  19. Analysis of naphthenic acid mixtures as pentafluorobenzyl derivatives by gas chromatography-electron impact mass spectrometry.

    PubMed

    Gutierrez-Villagomez, Juan Manuel; Vázquez-Martínez, Juan; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Trudeau, Vance L

    2017-01-01

    In this study, we report for the first time the efficiency of pentafluorobenzyl bromide (PFBBr) for naphthenic acid (NA) mixtures derivatization, and the comparison in the optimal conditions to the most common NAs derivatization reagents, BF3/MeOH and N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA). Naphthenic acids are carboxylic acid mixtures of petrochemical origin. These compounds are important for the oil industry because of their corrosive properties, which can damage oil distillation infrastructure. Moreover, NAs are commercially used in a wide range of products such as paint and ink driers, wood and fabric preservatives, fuel additives, emulsifiers, and surfactants. Naphthenic acids have also been found in sediments after major oils spills in the United States and South Korea. Furthermore, the toxicity of the oil sands process-affected water (OSPW), product of the oil sands extraction activities in Canada's oil sands, has largely been attributed to NAs. One of the main challenges for the chromatographic analysis of these mixtures is the resolution of the components. The derivatization optimization was achieved using surface response analysis with molar ratio and time as factors for derivatization signal yield. After gas chromatography-electron impact mass spectrometry (GC/EIMS) analysis of a mixture of NA standards, it was found that the signal produced by PFB-derivatives was 2.3 and 1.4 times higher than the signal produced by methylated and MTBS-derivatives, respectively. The pentafluorobenzyl derivatives have a characteristic fragment ion at 181m/z that is diagnostic for the differentiation of carboxylic and non-carboxylic acid components within mixtures. In the analysis of a Sigma and a Merichem derivatized oil extract NA mixtures, it was found that some peaks lack the characteristic fragment ion; therefore they are not carboxylic acids. Open column chromatography was used to obtain a hexane and a methanol fraction of the Sigma and

  20. Interspecies transfer of momentum and energy in disparate-mass gas mixtures

    NASA Astrophysics Data System (ADS)

    Riesco-Chueca, P.; Fernandez-Feria, R.; Fernandez de La Mora, J.

    1987-01-01

    A determination is made of collision integrals for the rate of exchange of momentum and tensorial energy between components of a neutral gas binary mixture, for the case where said components have very different atomic masses. Collision integral values are obtained for arbitrary temperatures and velocities of the two components, allowing for large departures of the heavy gas from equilibrium conditions. The range of present interest is that in which the system is perturbed within times of the order of magnitude of the slow relaxation time that characterizes energy transfer between unlike molecules; the light gas distribution function is then Maxwellian to lowest order. The computation is conducted in detail for the case of atomic interactions describable in terms of a Lennard-Jones potential; by combining numerical computations with optimal matching of analytical expressions valid for large and small slip velocities, a set of compact formulas is obtained that holds for high and low temperatures.

  1. Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures.

    PubMed

    Si, Pengchao; Mortensen, John; Komolov, Alexei; Denborg, Jens; Møller, Preben Juul

    2007-08-06

    By coating different conducting polymers of thiophene and its derivatives on quartz crystal microbalance (QCM) sensor surfaces, new novel QCM gas sensors have been produced in two simple ways, which could classify testing gas samples of volatile organic compounds (VOCs) gases. Principle components analysis (PCA) has been performed based on the QCM measurement results, which shows that our QCM sensors array has very good utilizing potential on sensing both polar and low-polar/nonpolar VOC gases. The sensitivity, selectivity, reproducibility and detection limit of QCM sensors have also been discussed. Quantitative variation of sensitivity response with the increasing concentration has been studied. (PLS) analysis and prediction of concentrations of single gas in mixtures have been carried out.

  2. [Fire disaster due to deflagration of a propane gas-air mixture].

    PubMed

    Nadjem, Hadi; Vogt, Susanne; Simon, Karl-Heinz; Pollak, Stefan; Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Perdekampl, Markus Große; Thierauf-Emberger, Annette

    2015-01-01

    On 26 Nov 2012, a serious fire occurred at Neustadt/Black Forest in which 14 persons in a sheltered workshop died and 10 other individuals were injured. The fire was caused by the unbridled escape of propane gas due to accidental disconnection of the screw fixing between a gas bottle and a catalytic heater. Deflagration of the propane gas-air mixture set the workshop facilities on fire. In spite of partly extensive burns the fatally injured victims could be rapidly identified. The results of the fire investigations at the scene and the autopsy findings are presented. Carboxyhemoglobin concentrations ranged between 8 and 56 % and signs of fire fume inhalation were present in all cases. Three victims had eardrum ruptures due to the sudden increase in air pressure during the deflagration.

  3. Additional development of large diameter carbon monofilament. [from boron, hydrogen, and methane gas mixture

    NASA Technical Reports Server (NTRS)

    Jacob, B. A.; Veltri, R. D.

    1974-01-01

    The chemical vapor process for preparing a large diameter carbon-base monofilament from a BCl3, Ch4 and H2 gas mixture with a carbon substrate fiber was studied. The effect of reactor geometry, total gas flows and deposition temperature on the tensile strength of the monofilament were investigated. It was noted that consistent results could only be obtained when the carbon substrate fiber was cleaned. The strength of the monofilament was found to depend on the highest temperature and the temperature profile of the monofilament in the reactor. The strength of monofilament produced in the dc and RF reactors were found to be similar and similar alloy compositions in the monofilament were attained when the same gas ratios were used. The tensile strength of the monofilament at 500 C was found to be 60 to 70% of the room temperature tensile strength. No degradation was noted after exposure to molten aluminum.

  4. Xenon Feed System Progress (Postprint)

    DTIC Science & Technology

    2006-06-13

    development, assembly and test of an electric propulsion xenon feed system for a flight technology demonstration program. Major accomplishments...pressure transducer feedback, the PFCV has successfully fed xenon to a 200 watt Hall Effect Thruster in a Technology Demonstration Program. The feed

  5. Shear Thinning in Xenon

    NASA Technical Reports Server (NTRS)

    Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.

    2009-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.

  6. Anomalous waves in gas-liquid mixtures near gas critical point in Gardner equation approximation

    NASA Astrophysics Data System (ADS)

    Gasenko, V. G.

    2016-10-01

    The waves in a bubbled incompressible liquid with Van der Waals gas in a bubbles being near critical points is considered in a frame of Gardner equation. It is shown that both coefficients on quadratic and cubic nonlinear terms in Gardner equation change the sign near gas critical point and it results the anomalous waves: negative and limited solitons, kinks, antikinks and breathers. The dynamics and interactions of these waves was studied numerically by high accuracy Fourier methods with periodically boundary conditions. In particular it is revealed that limited solitons always arise from initial distribution with a few identical soliton's pair and stand stable in their form after numerous interactions.

  7. Kinetic model for the vibrational energy exchange in flowing molecular gas mixtures. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Offenhaeuser, F.

    1987-01-01

    The present study is concerned with the development of a computational model for the description of the vibrational energy exchange in flowing gas mixtures, taking into account a given number of energy levels for each vibrational degree of freedom. It is possible to select an arbitrary number of energy levels. The presented model uses values in the range from 10 to approximately 40. The distribution of energy with respect to these levels can differ from the equilibrium distribution. The kinetic model developed can be employed for arbitrary gaseous mixtures with an arbitrary number of vibrational degrees of freedom for each type of gas. The application of the model to CO2-H2ON2-O2-He mixtures is discussed. The obtained relations can be utilized in a study of the suitability of radiation-related transitional processes, involving the CO2 molecule, for laser applications. It is found that the computational results provided by the model agree very well with experimental data obtained for a CO2 laser. Possibilities for the activation of a 16-micron and 14-micron laser are considered.

  8. Gas-phase concentration, purification, and identification of whole proteins from complex mixtures.

    PubMed

    Reid, Gavin E; Shang, Hao; Hogan, Jason M; Lee, Gil U; McLuckey, Scott A

    2002-06-26

    Five proteins present in a relatively complex mixture derived from a whole cell lysate fraction of E. coli have been concentrated, purified, and dissociated in the gas phase, using a quadrupole ion trap mass spectrometer. Concentration of intact protein ions was effected using gas-phase ion/ion proton-transfer reactions in conjunction with mass-to-charge dependent ion "parking" to accumulate protein ions initially dispersed over a range of charge states into a single lower charge state. Sequential ion isolation events interspersed with additional ion parking ion/ion reaction periods were used to "charge-state purify" the protein ion of interest. Five of the most abundant protein components present in the mixture were subjected to this concentration/purification procedure and then dissociated by collisional activation of their intact multiply charged precursor ions. Four of the five proteins were subsequently identified by matching the uninterpreted product ion spectra against a partially annotated protein sequence database, coupled with a novel scoring scheme weighted for the relative abundances of the experimentally observed product ions and the frequency of fragmentations occurring at preferential cleavage sites. The identification of these proteins illustrates the potential of this "top-down" protein identification approach to reduce the reliance on condensed-phase chemistries and extensive separations for complex protein mixture analysis.

  9. Selective Sensing of Gas Mixture via a Temperature Modulation Approach: New Strategy for Potentiometric Gas Sensor Obtaining Satisfactory Discriminating Features

    PubMed Central

    Li, Fu-an; Jin, Han; Wang, Jinxia; Zou, Jie; Jian, Jiawen

    2017-01-01

    A new strategy to discriminate four types of hazardous gases is proposed in this research. Through modulating the operating temperature and the processing response signal with a pattern recognition algorithm, a gas sensor consisting of a single sensing electrode, i.e., ZnO/In2O3 composite, is designed to differentiate NO2, NH3, C3H6, CO within the level of 50–400 ppm. Results indicate that with adding 15 wt.% ZnO to In2O3, the sensor fabricated at 900 °C shows optimal sensing characteristics in detecting all the studied gases. Moreover, with the aid of the principle component analysis (PCA) algorithm, the sensor operating in the temperature modulation mode demonstrates acceptable discrimination features. The satisfactory discrimination features disclose the future that it is possible to differentiate gas mixture efficiently through operating a single electrode sensor at temperature modulation mode. PMID:28287492

  10. 78 FR 41768 - Chemical Substances and Mixtures Used in Oil and Gas Exploration or Production; TSCA Section 21...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... processors of E&P chemical substances and mixtures to develop test data sufficient to evaluate the toxicity... and processors of E&P [chemical substances and mixtures] to develop test data to evaluate the toxicity...(a) to require manufacturers and processors of oil and gas exploration and production (E&P)...

  11. Discrete velocity computations with stochastic variance reduction of the Boltzmann equation for gas mixtures

    SciTech Connect

    Clarke, Peter; Varghese, Philip; Goldstein, David

    2014-12-09

    We extend a variance reduced discrete velocity method developed at UT Austin [1, 2] to gas mixtures with large mass ratios and flows with trace species. The mixture is stored as a collection of independent velocity distribution functions, each with a unique grid in velocity space. Different collision types (A-A, A-B, B-B, etc.) are treated independently, and the variance reduction scheme is formulated with different equilibrium functions for each separate collision type. The individual treatment of species enables increased focus on species important to the physics of the flow, even if the important species are present in trace amounts. The method is verified through comparisons to Direct Simulation Monte Carlo computations and the computational workload per time step is investigated for the variance reduced method.

  12. Measurements of ion mobility in argon and neon based gas mixtures

    NASA Astrophysics Data System (ADS)

    Deisting, Alexander; Garabatos, Chilo; Szabo, Alexander; Vranic, Danilo

    2017-02-01

    As gaseous detectors are operated at high rates of primary ionisation, ions created in the detector have a considerable impact on the performance of the detector. The upgraded ALICE Time Projection Chamber (TPC) will operate during LHC Run 3 with a substantial space charge density of positive ions in the drift volume. In order to properly simulate such space charges, knowledge of the ion mobility K is necessary. To this end, a small gaseous detector was constructed and the ion mobility of various gas mixtures was measured. To validate the corresponding signal analysis, simulations were performed. Results are shown for several argon and neon based mixtures with different CO2 fractions. A decrease of K was measured for increasing water content.

  13. Removal of Boron in Silicon by H2-H2O Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Andersson, Stefan; Nordstrand, Erlend; Tangstad, Merete

    2012-08-01

    The removal of boron in pure silicon by gas mixtures has been examined in the laboratory. Water-vapor-saturated hydrogen was used to remove boron doped in electronic-grade silicon in a vacuum frequency furnace. Boron concentrations in silicon were reduced from 52 ppm initially to 0.7 ppm and 3.4 ppm at 1450°C and 1500°C, respectively, after blowing a H2-3.2%H2O gas mixture for 180 min. The experimental results indicate that the boron removal as a function of gas-blowing time follows the law of exponential decay. After 99% of the boron is removed, approximately 90% of the silicon can be recovered. In order to better understand the gaseous refining mechanism, the quantum chemical coupled cluster with single and double excitations and a perturbative treatment of triple excitations method was used to accurately predict the enthalpy and entropy of formation of the HBO molecule. A simple refining model was then used to describe the boron refining process. This model can be used to optimize the refining efficiency.

  14. CO2 capture from simulated fuel gas mixtures using semiclathrate hydrates formed by quaternary ammonium salts.

    PubMed

    Park, Sungwon; Lee, Seungmin; Lee, Youngjun; Seo, Yongwon

    2013-07-02

    In order to investigate the feasibility of semiclathrate hydrate-based precombustion CO2 capture, thermodynamic, kinetic, and spectroscopic studies were undertaken on the semiclathrate hydrates formed from a fuel gas mixture of H2 (60%) + CO2 (40%) in the presence of quaternary ammonium salts (QASs) such as tetra-n-butylammonium bromide (TBAB) and fluoride (TBAF). The inclusion of QASs demonstrated significantly stabilized hydrate dissociation conditions. This effect was greater for TBAF than TBAB. However, due to the presence of dodecahedral cages that are partially filled with water molecules, TBAF showed a relatively lower gas uptake than TBAB. From the stability condition measurements and compositional analyses, it was found that with only one step of semiclathrate hydrate formation with the fuel gas mixture from the IGCC plants, 95% CO2 can be enriched in the semiclathrate hydrate phase at room temperature. The enclathration of both CO2 and H2 in the cages of the QAS semiclathrate hydrates and the structural transition that results from the inclusion of QASs were confirmed through Raman and (1)H NMR measurements. The experimental results obtained in this study provide the physicochemical background required for understanding selective partitioning and distributions of guest gases in the QAS semiclathrate hydrates and for investigating the feasibility of a semiclathrate hydrate-based precombustion CO2 capture process.

  15. Method of testing gas insulated systems for the presence of conducting particles utilizing a gas mixture of nitrogen and sulfur hexafluoride

    DOEpatents

    Wootton, Roy E.

    1979-01-01

    A method of testing a gas insulated system for the presence of conducting particles. The method includes inserting a gaseous mixture comprising about 98 volume percent nitrogen and about 2 volume percent sulfur hexafluoride into the gas insulated system at a pressure greater than 60 lb./sq. in. gauge, and then applying a test voltage to the system. If particles are present within the system, the gaseous mixture will break down, providing an indicator of the presence of the particles.

  16. Gas energy meter for inferential determination of thermophysical properties of a gas mixture at multiple states of the gas

    DOEpatents

    Morrow, Thomas B.; Kelner, Eric; Owen, Thomas E.

    2008-07-08

    A gas energy meter that acquires the data and performs the processing for an inferential determination of one or more gas properties, such as heating value, molecular weight, or density. The meter has a sensor module that acquires temperature, pressure, CO2, and speed of sound data. Data is acquired at two different states of the gas, which eliminates the need to determine the concentration of nitrogen in the gas. A processing module receives this data and uses it to perform a "two-state" inferential algorithm.

  17. Stability assessment of gas mixtures containing monoterpenes in varying cylinder materials and treatments.

    PubMed

    Rhoderick, George C; Lin, Janice

    2013-05-07

    Studies of climate change increasingly recognize the diverse influences exerted by monoterpenes in the atmosphere, including roles in particulates, ozone formation, and oxidizing potential. Measurements of key monoterpenes suggest atmospheric mole fractions ranging from low pmol/mol (parts-per-trillion; ppt) to nmol/mol (parts-per-billion; ppb), depending on location and compound. To accurately establish the mole fraction trends, assess the role of monoterpenes in atmospheric chemistry, and relate measurement records from many laboratories and researchers, it is essential to have good calibration standards. The feasibility of preparing well-characterized, stable gas cylinder standards for monoterpenes at the nmol/mol level was previously tested using treated (Aculife IV) aluminum gas cylinders at NIST. Results for 4 of the 11 monoterpenes, monitored versus an internal standard of benzene, indicated stability in these treated aluminum gas cylinders for over 6 months and projected long-term (years) stability. However, the mole fraction of the key monoterpene β-pinene decreased, while the mole fractions of α-pinene, d-limonene (R-(+)-limonene), p-cymene, and camphene (a terpene not present in the initial gas mixture) increased, indicating a chemical transformation of β-pinene to these species. A similar pattern of decreasing mole fraction was observed in α-pinene where growth of d-limonene, p-cymene, and camphene has been observed in treated gas cylinders prepared with a mixture of just α-pinene and benzene as the internal standard. The current research discusses the testing of other cylinders and treatments for the potential of long-term stability of monoterpenes in a gas mixture. In this current study, a similar pattern of decreasing mole fraction, although somewhat improved short-term stability, was observed for β-pinene and α-pinene, with growth of d-limonene, p-cymene, and camphene, in nickel-plated carbon steel cylinders. β-Pinene and α-pinene showed

  18. Xenon-enhanced CT imaging of local pulmonary ventilation

    NASA Astrophysics Data System (ADS)

    Tajik, Jehangir K.; Tran, Binh Q.; Hoffman, Eric A.

    1996-04-01

    We are using the unique features of electron beam CT (EBCT) in conjunction with respiratory and cardiac gating to explore the use of non-radioactive xenon gas as a pulmonary ventilation contrast agent. The goal is to construct accurate and quantitative high-resolution maps of local pulmonary ventilation in humans. We are evaluating xenon-enhanced computed tomography in the pig model with dynamic tracer washout/dilution and single breath inhalation imaging protocols. Scanning is done via an EBCT scanner which offers 50 msec scan aperture speeds. CT attenuation coefficients (image gray scale value) show a linear increase with xenon concentration (r equals 0.99). We measure a 1.55 Hounsfield Unit (HU) enhancement (kV equals 130, mA equals 623) per percentage increase in xenon gas concentration giving an approximately 155 HU enhancement with 100% xenon gas concentration as measured in a plexiglass super-syringe. Early results indicate that a single breath (from functional residual capacity to total lung capacity) of 100% xenon gas provides an average 32 +/- 1.85 (SE) HU enhancement in the lung parenchyma (maximum 50 HU) and should not encounter unwanted xenon side effects. However, changes in lung density occurring during even short breath holds (as short as 10 seconds) may limit using a single breath technique to synchronous volumetric scanning, currently possible only with EBCT. Preliminary results indicate close agreement between measured regional xenon concentration-time curves and theoretical predictions for the same sample. More than 10 breaths with inspirations to as high as 25 cmH2O airway pressure were needed to clear tracer from all lung regions and some regions had nearly linear rather than mono-exponential clearance curves. When regional parenchymal xenon concentration-time curves were analyzed, vertical gradients in ventilation and redistribution of ventilation at higher inspiratory flow rates were consistent with known pulmonary physiology. We present

  19. An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube

    SciTech Connect

    Kuhn, S.Z.; Schrock, V.E.; Peterson, P.F.

    1995-09-01

    Previous experiments have been carried out by Vierow, Ogg, Kageyama and Siddique for condensation from steam/gas mixtures in vertical tubes. In each case the data scatter relative to the correlation was large and there was not close agreement among the three investigations. A new apparatus has been designed and built using the lessons learned from the earlier studies. Using the new apparatus, an extensive new data base has been obtained for pure steam, steam-air mixtures and steam-helium mixtures. Three different correlations, one implementing the degradation method initially proposed by Vierow and Schrock, a second diffusion layer theory initially proposed by Peterson, and third mass transfer conductance model are presented in this paper. The correlation using the simple degradation factor method has been shown, with some modification, to give satisfactory engineering accuracy when applied to the new data. However, this method is based on very simplified arguments that do not fully represent the complex physical phenomena involved. Better representation of the data has been found possible using modifications of the more complex and phenomenologically based method which treats the heat transfer conductance of the liquid film in series with the conductance on the vapor-gas side with the latter comprised of mass transfer and sensible heat transfer conductance acting in parallel. The mechanistic models, based on the modified diffusion layer theory or classical mass transfer theory for mass transfer conductance with transpiration successfully correlate the data for the heat transfer of vapor-gas side. Combined with the heat transfer of liquid film model proposed by Blangetti, the overall heat transfer coefficients predicted by the correlations from mechanistic models are in close agreement with experimental values.

  20. Analytical performances of two liquid crystals and their mixture as stationary phases in capillary gas chromatography.

    PubMed

    Bélaïdi, D; Sebih, S; Boudah, S; Guermouche, M H; Bayle, J P

    2005-09-16

    Comparative gas chromatographic applications of two new liquid crystals called LCa and LCb and their equimolar mixture LC(a+b) were investigated. The thermal properties of LCa, LCb and LC(a+b) were established with differential scanning calorimetry (DSC) and polarizing microscopy. Differential scanning calorimetry of LC(a+b) showed that the melting or clearing temperature was intermediate between the corresponding temperatures of the pure compounds. Polarizing microscopy showed that the liquid crystal phase of A + B was nematic. The chromatographic separation abilities LCa, LCb and LC(a+b) were studied using fused silica capillary columns. Interesting analytical performances were obtained: isomeric separation of aromatics, polyaromatics, phenols.

  1. Quenching of Particle-Gas Combustible Mixtures Using Electric Particulate Suspension (EPS) and Dispersion Methods

    NASA Technical Reports Server (NTRS)

    Colver, Gerald M.; Goroshin, Samuel; Lee, John H. S.

    2001-01-01

    A cooperative study is being carried out between Iowa State University and McGill University. The new study concerns wall and particle quenching effects in particle-gas mixtures. The primary objective is to measure and interpret flame quenching distances, flammability limits, and burning velocities in particulate suspensions. A secondary objective is to measure particle slip velocities and particle velocity distribution as these influence flame propagation. Two suspension techniques will be utilized and compared: (1) electric particle suspension/EPS; and (2) flow dispersion. Microgravity tests will permit testing of larger particles and higher and more uniform dust concentrations than is possible in normal gravity.

  2. [Radioprotective effectiveness of gas hypoxic mixture GHM-10 in experiments on dogs].

    PubMed

    Strelkov, R B; Chizhov, A Ia; Kucherenko, N G; Zhavoronkov, L P; Sklobovskaia, I E

    1984-01-01

    In experiments on 128 dogs (males and females) weighing 7-24 kg it was demonstrated that inhalation of gas hypoxic mixture containing O2 (10%) and N2 (90%) decreased significantly the level of PO2 in radiosensitive tissues and exerted a radioprotective effect on the exposed animals (60Co, doses of 2.8, 3.5-3.8 and 4.2 Gy, DMF = 1.3). At a dose of 8 Gy the average life of animals increased from 6.2 +/- 0.8 days (control) up to 9.3 +/- 1.1 days after the application of GHM -10.

  3. [Gas chromatographic analysis of methyl methacrylate and methanol in its esterification mixture].

    PubMed

    Wu, C; Zeng, C

    1997-09-01

    A fast, simple and accurate gas chromatographic method is established for determining the content of methyl methacrylate (MMA) and methanol in the esterification mixture of methacrylic acid with methanol in the presence of sulfuric acid. In the measurement, polyethylene glycol-20M/sodium hydroxide was adopted as liquid phase, coated on the acid-washed 201 pink support. n-Heptane was used as the internal standard and the correction factors of MMA and methanol obtained were 1.65 and 4.10, respectively. It is significant for this method to be used to control MMA production by acetone cyanohydrin method and to improve the production technology.

  4. A computer program for calculation of spectral radiative properties of gas mixtures

    NASA Technical Reports Server (NTRS)

    Nealy, J. E.

    1975-01-01

    A computer code is described whereby calculations of radiative properties of gas mixtures may be made. The program is arranged so that distinct radiative processes for each species are computed in individual subroutines. Provision is made for calculating radiative properties in nonequilibrium situations - separate rotational, vibrational, and electronic temperatures may be used. These features should provide a flexibility not currently available in such programs. The basic equations and the program listing in FORTRAN 4 language are presented. Sample calculations are given for high temperature air and carbon dioxide and are compared to calculations made with previously developed programs.

  5. Lasing characteristics of gas mixtures involving UFG: Application to nuclear pumping of lasers

    NASA Technical Reports Server (NTRS)

    Verdeyen, J. T.; Eden, J. G.

    1980-01-01

    Intense blue-green fluorescence from a structured band centered at lambda approximately 484 nm was observed from Ar, CF3I and NF3 gas mixtures excited by an electron beam. This emission was tentatively assigned to the E yields A transition of the iodine monofluoride (IF) molecule. The fluorescence efficiency of the IF(E yields A) band and the IF (E) state radiative lifetime were estimated to be approximately 6% and 15 ns, respectively. The emission band structure, the short IF(E) radiative lifetime and the Franck-Condon shift between the E and A states suggest that IF is an attractive candidate for a blue-green laser.

  6. XENON in medical area: emphasis on neuroprotection in hypoxia and anesthesia

    PubMed Central

    2013-01-01

    Xenon is a medical gas capable of establishing neuroprotection, inducing anesthesia as well as serving in modern laser technology and nuclear medicine as a contrast agent. In spite of its high cost, its lack of side effects, safe cardiovascular and organoprotective profile and effective neuroprotective role after hypoxic-ischemic injury (HI) favor its applications in clinics. Xenon performs its anesthetic and neuroprotective functions through binding to glycine site of glutamatergic N-methyl-D-aspartate (NMDA) receptor competitively and blocking it. This blockage inhibits the overstimulation of NMDA receptors, thus preventing their following downstream calcium accumulating cascades. Xenon is also used in combination therapies together with hypothermia or sevoflurane. The neuroprotective effects of xenon and hypothermia cooperate synergistically whether they are applied synchronously or asynchronously. Distinguishing properties of Xenon promise for innovations in medical gas field once further studies are fulfilled and Xenon’s high cost is overcome. PMID:23369273

  7. Richtmyer-Meshkov instability in dilute gas-particle mixtures with re-shock

    NASA Astrophysics Data System (ADS)

    Schulz, J. C.; Gottiparthi, K. C.; Menon, S.

    2013-11-01

    The Richtmyer-Meshkov instability (RMI) is investigated in a dilute gas-particle mixture using three-dimensional numerical simulations. This work extends an earlier two-dimensional study [S. Ukai, K. Balakrishnan, and S. Menon, "On Richtmyer-Meshkov instability in dilute gas-particle mixtures," Phys. Fluids 22, 104103 (2010)] to a larger parameter space consisting of variations in the mass loading and the particle size as well as considering both single-mode and multi-mode interface initializations. In addition, the effect of the presence of particles on re-shock RMI is also investigated. Single-phase numerical predictions of the mixing layer growth-rate are shown to compare well to both experimental and theoretical results. In a dilute gas-particle mixture, the initial growth-rate of RMI shows similar trends compared to previous work; however, the current numerical predictions show that there is an observable increase, not previously predicted, in the growth of the mixing layer at higher mass loadings. For the range of cases considered, an increase as much as 56% is observed. This increase is attributed to additional vorticity production in the mixing layer resulting from inter-phase momentum coupling. Moreover, the presence of particles introduces a continuous drag on the gas-phase resulting in a delay in the time at which re-shock occurs. This delay, which is observed to be as much as 6%, is largest for higher initial mass loadings and smaller particle radii and has a corresponding effect on both the growth-rate of the mixing-layer after re-shock and the final width of the mixing layer. A new semi-analytical correlation is developed and verified against the numerical data to predict the re-shocked RMI growth-rate in dilute gas-particle flows. The correlation shows that the re-shock RMI growth-rate is linearly proportional to the velocity jump at re-shock, the molecular mixing fraction, and the multi-phase Atwood number. Depending on the initial mass loading and

  8. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... petroleum or natural gas and coal or another alternate fuel as a primary energy source, for purposes of this... 10 Energy 4 2010-01-01 2010-01-01 false Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants. 504.8 Section 504.8 Energy DEPARTMENT OF ENERGY...

  9. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Prohibition against excessive use of petroleum or natural...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an...

  10. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Prohibition against excessive use of petroleum or natural...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an...

  11. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Prohibition against excessive use of petroleum or natural...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an...

  12. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Prohibition against excessive use of petroleum or natural...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an...

  13. Transport Properties of He-N{sub 2} Binary Gas Mixtures for CBC Space Applications

    SciTech Connect

    Tournier, Jean-Michel P.; El-Genk, Mohamed S.

    2008-01-21

    In order to reduce the size and mass of the single-shaft turbo-machines, with little impact on the size of the heat transfer components in the CBC loop, He-Xe binary mixture with a molecular weight of 40 g/mole has been the working fluid of choice in space nuclear reactor power systems with Close Brayton Cycle (CBC) for energy conversion. This working fluid is also a suitable coolant for the fission reactors heat source designed with fast neutron energy spectra. For space nuclear reactors with thermal neutron energy spectra, however, the high capture neutron cross-section of Xe will reduce the beginning-of-life excess reactivity of the reactor, decreasing its effective operation lifetime. In addition, the neutron activation of Xe in the reactor will introduce a radioactivity source term in the CBC loop. Alternative working fluids with no activation concerns and comparable performance are N{sub 2} and the binary mixtures of He-N{sub 2}. This paper calculates the transport properties of these working fluids and compares their values to those of noble gas binary mixtures at the temperatures and pressures expected in CBC space reactor power system applications. Also investigated is the impact of using these working fluids on the pressure losses, heat transfer coefficient, and the aerodynamic loading of the blades in the CBC turbo-machines.

  14. Chondritic xenon in the Earth's mantle.

    PubMed

    Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G; Füri, Evelyn; Marty, Bernard

    2016-05-05

    Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth's mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth's mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth's accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.

  15. The Fate and Environmental Consequences of Reduced gas Mixtures Resulting from Magmatic Intrusion into Carbonaceous Rocks

    NASA Astrophysics Data System (ADS)

    Iacono-Marziano, Giada; Marecal, Virginie; Pirre, Michel; Arndt, Nicolas; Ganino, Clément; Gaillard, Fabrice

    2010-05-01

    Recent developments on the impacts of Large Igneous Provinces on climate changes and extinction rates emphasize the fundamental role of country rocks in gas emissions. Contact metamorphism of country rocks intruded by sills and dikes of mafic melts can be particularly important due to their long exposure to high temperatures. When the host rocks are composed of carbonates, sulphates, salts, or organic-compounds such as bituminous shales or coals, their heating can inject into the atmosphere a quantity of volatiles that greatly exceeds the amount delivered by purely magmatic degassing. We focus here on the interaction between magma and carbonaceous rocks. Recent studies have estimated the gas released by contact metamorphism of bituminous shales in the Karoo Province; we calculate the composition of the volcanic gases which results on this interaction, taking into account the magmatic contribution too. We then present an evaluation of the fate of such gases during their diffusion in the atmosphere. The modelling of the composition of the modified volcanic gases is based on gas-melt thermodynamic calculations that take into account S-H-O-C gaseous species at temperatures and pressures in equilibrium with basaltic liquids. We simulate the incorporation into the gas-melt system of organic compounds as CH or CH2, depending on the maturity of the carbonaceous rocks (coal or oil). Addition of C and H has a dramatic effect on the amount and the redox state of the gas in equilibrium with the basalt. With the incorporation of only 0.2 wt% CH, the gas composition changes from CO2-H2O dominated (typical of basaltic gases on Earth), to CO-H2 dominated (a strongly reduced mixture, which resembles Martian volcanic gases). Addition of more than 0.2 wt% CH can trigger graphite saturation, such as reported in few locations where carbonaceous rocks have been ingested by basalts. In the famous Disko Island location, for example, we calculate that an incorporation of 1 wt% CH led to

  16. Study of DC Circuit Breaker of H2-N2 Mixture Gas for High Voltage

    NASA Astrophysics Data System (ADS)

    Shiba, Yuji; Morishita, Yukinaga; Kaneko, Shuhei; Okabe, Shigemitsu; Mizoguchi, Hitoshi; Yanabu, Satoru

    Global warming caused by CO2 etc. is a field where the concern is very high. Especially, automobile emissions are problem for it. Therefore, the hybrid car is widely development and used recently. Hybrid car used electric power and gasoline. So, the car reduces CO2. Hybrid car has engine and motor. To rotate the motor, hybrid car has battery. This battery is large capacity. Therefore, the relay should interrupt high DC current for the switch of the motor and the engine. So, hybrid car used hydrogen gas filling relay We studied interruption test for the research of a basic characteristic of hydrogen gas. DC current has not current zero point. So, it is necessary to make the current zero by high arc voltage and forcible current zero point. The loss coefficient and arc voltage of hydrogen is high. Therefore, we studied interruption test for used high arc voltage. We studied interruption test and dielectric breakdown test of air, pure Hydrogen, and Hydrogen- nitrogen mixture gas. As a result, we realized H2-N2(80%-20%) is the best gas.

  17. Cs vapor microcells with Ne-He buffer gas mixture for high operation-temperature miniature atomic clocks.

    PubMed

    Kroemer, E; Abdel Hafiz, M; Maurice, V; Fouilland, B; Gorecki, C; Boudot, R

    2015-07-13

    We report on the characterization of Cs vapor microfabricated cells filled with a Ne-He buffer gas mixture using coherent population trapping (CPT) spectroscopy. The temperature dependence of the Cs clock frequency is found to be canceled at the first order around a so-called inversion temperature higher than 80°C whose value depends on the buffer gas partial pressure ratio. This buffer gas mixture could be well-adapted for the development of miniature atomic clocks devoted to be used in specific applications such as defense and avionic systems with high operating temperature environment (typically higher than 85°C). This solution suggests an alternative to buffer gas mixtures generally used in optically-pumped vapor cell atomic clocks.

  18. Environmental application of stable xenon and radioxenonmonitoring

    SciTech Connect

    Dresel, P. Evan; Olsen, Khris B.; Hayes, James C.; McIntyre,Justin I.; Waichler, Scott R.; Milbrath, Brian D.; Cooper, Matt; Kennedy,B. Mack

    2006-09-05

    Characterization of transuranic waste is needed to makedecisions about waste site remediation. Soil-gas sampling for xenonisotopes can be used to define the locations of spent fuel andtransuranic wastes. Radioxenon in the subsurface is characteristic oftransuranic waste and can be measured with extreme sensitivity usinglarge-volume soilgas samples. Measurements at the Hanford Site showed133Xe and 135Xe levels indicative of 240Pu spontaneous fission. Stablexenon isotopic ratios from fission are distinct from atmospheric xenonbackground. Neutron capture by 135Xe produces an excess of 136Xe inreactor-produced xenon providing a means of distinguishing spent fuelfrom separated transuranic materials.

  19. Solubilities of krypton and xenon in dichlorodifluoromethane

    SciTech Connect

    Shaffer, J.H.; Shockley, W.E.; Greene, C.W.

    1984-07-01

    The solubility behavior of krypton and xenon in dichlorodifluoromethane was investigated for the Consolidated Fuel Reprocessing Program (CFRP) in support of the fluorocarbon absorption process. The solubility data derived from solute radioisotopes had uncertainties of approx. 0.1%. Values for Henry's law constants were initially determined under equilibrium conditions at infinite solute dilution. Based on these results, the study was extended to finite solute concentrations. Nonidealities in the two binary systems were expressed as gas phase fugacity coefficients for each solute at 10/sup 0/ intervals over the range -30 to +50/sup 0/C. 22 references, 4 figures, 2 tables.

  20. Determination of D-lactide content in lactide stereoisomeric mixture using gas chromatography-polarimetry.

    PubMed

    Feng, Lidong; Bian, Xinchao; Chen, Zhiming; Xiang, Sheng; Liu, Yanlong; Sun, Bin; Li, Gao; Chen, Xuesi

    2017-03-01

    An analytical method has been proposed to quantify the D-lactide content in a lactide stereoisomeric mixture using combined gas chromatography and polarimetry (GC- polarimetry). As for a lactide stereoisomeric mixture, meso-lactide can be determined quantitatively using GC, but D- and L-lactides cannot be separated by the given GC system. The composition of a lactide stereoisomeric mixture is directly relative to its specific optical rotation. The specific optical rotations of neat L-lactide were obtained in different solutions, which were -266.3° and -298.8° in dichloromethane (DCM) and toluene solutions at 20°C, respectively. Therefore, for a lactide sample, the D-lactide content could be calculated based on the meso-lactide content obtained from GC and the specific optical rotations of the sample and neat L-lactide obtained from polarimetry. The effects of impurities and temperature on the test results were investigated, respectively. When the total content of impurities was not more than 1.0%, the absolute error for determining D-lactide content was less than 0.10% in DCM and toluene solutions. When the D-lactide content was calculated according to the specific optical rotation of neat L-lactide at 20°C, the absolute error caused by the variation in temperature of 20±15°C was not more than 0.2 and 0.7% in DCM and toluene solutions, respectively, and thus usually could be ignored in a DCM solution. When toluene was used as a solvent for the determination of D-lactide content, a temperature correction for specific optical rotations could be introduced and would ensure the accuracy of results. This method is applicable to the determination of D-lactide content in lactide stereoisomeric mixtures. The standard deviation (STDEV) of the measurements is less than 0.5%, indicating that the precision is suitable for this method.

  1. 2D fluid simulations of discharges at atmospheric pressure in reactive gas mixtures

    NASA Astrophysics Data System (ADS)

    Bourdon, Anne

    2015-09-01

    Since a few years, low-temperature atmospheric pressure discharges have received a considerable interest as they efficiently produce many reactive chemical species at a low energy cost. This potential is of great interest for a wide range of applications as plasma assisted combustion or biomedical applications. Then, in current simulations of atmospheric pressure discharges, there is the need to take into account detailed kinetic schemes. It is interesting to note that in some conditions, the kinetics of the discharge may play a role on the discharge dynamics itself. To illustrate this, we consider the case of the propagation of He-N2 discharges in long capillary tubes, studied for the development of medical devices for endoscopic applications. Simulation results put forward that the discharge dynamics and structure depend on the amount of N2 in the He-N2 mixture. In particular, as the amount of N2 admixture increases, the discharge propagation velocity in the tube increases, reaches a maximum for about 0 . 1 % of N2 and then decreases, in agreement with experiments. For applications as plasma assisted combustion with nanosecond repetitively pulsed discharges, there is the need to handle the very different timescales of the nanosecond discharge with the much longer (micro to millisecond) timescales of combustion processes. This is challenging from a computational point of view. It is also important to better understand the coupling of the plasma induced chemistry and the gas heating. To illustrate this, we present the simulation of the flame ignition in lean mixtures by a nanosecond pulsed discharge between two point electrodes. In particular, among the different discharge regimes of nanosecond repetitively pulsed discharges, a ``spark'' regime has been put forward in the experiments, with an ultra-fast local heating of the gas. For other discharge regimes, the gas heating is much weaker. We have simulated the nanosecond spark regime and have observed shock waves

  2. Theoretical study of thermal conductivities of various gas mixtures through the generalized Lennard-Jones interaction potential for application in gas-discharge lasers

    NASA Astrophysics Data System (ADS)

    Temelkov, K. A.; Slaveeva, S. I.; Fedchenko, Yu I.

    2016-03-01

    Thermal conductivities of helium, neon, bromine, and hydrogen are calculated on the basis of the (12-6) Lennard-Jones interaction approximation. Where necessary for a more precise approximation, a generalized (n-m) Lennard-Jones interaction potential is used. Thermal conductivities of binary gas systems are calculated and compared through two different empirical methods for the case of gas discharges in He, Ne, and Ne-He mixtures with small admixtures of bromine and hydrogen. A new simple method is proposed for the thermal conductivity determination for the 3- and 4-component gas mixtures of our interest.

  3. Solubilized xenon 133 lung scintigraphy

    SciTech Connect

    Oates, E.; Sarno, R.C.

    1988-11-01

    Lung scanning using solubilized xenon 133 can provide important information concerning both pulmonary perfusion and ventilation. This technique proved valuable in establishing the diagnosis of congenital lobar emphysema in a 7-month-old baby.

  4. Unprecedentedly high selective adsorption of gas mixtures in rho zeolite-like metal-organic framework: a molecular simulation study.

    PubMed

    Babarao, Ravichandar; Jiang, Jianwen

    2009-08-19

    We report a molecular simulation study for the separation of industrially important gas mixtures (CO(2)/H(2), CO(2)/CH(4), and CO(2)/N(2)) in rho zeolite-like metal-organic framework (rho-ZMOF). Rho-ZMOF contains a wide-open anionic framework and charge-balancing extraframework Na(+) ions. Two types of binding sites for Na(+) ions are identified in the framework. Site I is in the single eight-membered ring, whereas site II is in the alpha-cage. Na(+) ions at site I have a stronger affinity for the framework and thus a smaller mobility. The binding sites in rho-ZMOF resemble those in its inorganic counterpart rho-zeolite. CO(2) is adsorbed predominantly over other gases because of its strong electrostatic interactions with the charged framework and the presence of Na(+) ions acting as additional adsorption sites. At ambient temperature and pressure, the CO(2) selectivities are 1800 for the CO(2)/H(2) mixture, 80 for the CO(2)/CH(4) mixture, and 500 for the CO(2)/N(2) mixture. Compared with other MOFs and nanoporous materials reported to date, rho-ZMOF exhibits unprecedentedly high selective adsorption for these gas mixtures. This work represents the first simulation study to characterize extraframework ions and examine gas separation in a charged ZMOF. The simulation results reveal that rho-ZMOF is a promising candidate for the separation of syngas, natural gas, and flue gas.

  5. Analysis of an activated-carbon sorption compressor operating with gas mixtures

    NASA Astrophysics Data System (ADS)

    Tzabar, N.; Grossman, G.

    2012-10-01

    Sorption compressors elevate the pressure of gases and can provide a more or less continuous mass flow. Unlike mechanical compressors, sorption compressors have no moving parts, and therefore do not emit vibrations and are highly reliable. There exist different sorption compressors for different operating conditions and various gases. However, there are no published reports of sorption compressors for mixed gases. Such compressors, among other applications, may drive mixed-refrigerant Joule-Thomson cryocoolers. The adsorption of mixed gases is usually investigated under steady conditions, mainly for storage and separation processes. However, the sorption process in a compressor goes through varying states and mass changes; therefore, it differs from the common mixed gases adsorption applications. In this research a numerical analysis for mixed gas sorption compressors is developed, based on pure gas adsorption characteristics and the ideal adsorbed solution theory. Two pure gas adsorption models are used for calculating the conditions of the adsorbed phase: Langmuir and Sips; and the Peng-Robinson equation of state is used to calculate the conditions of the vapor phase. Two mixtures are investigated; nitrogen-methane and nitrogen-ethane. Finally, the analysis is verified against experimental results. This research provides initiatory observation for mixed gases sorption compressor in which each component is differently adsorbed.

  6. Hugoniot measurements of double-shocked precompressed dense xenon plasmas.

    PubMed

    Zheng, J; Chen, Q F; Gu, Y J; Chen, Z Y

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ∼6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  7. Xenon-related analgesia: a new target for pain treatment.

    PubMed

    Giacalone, Marilù; Abramo, Antonio; Giunta, Francesco; Forfori, Francesco

    2013-07-01

    The noble gas xenon has been known for >50 years in the field of anesthesia with an emerging series of favorable features; several clinical and preclinical studies performed over the last years reveal a renewed interest because they substantially agree on attributing relevant analgesic properties to xenon. The main mechanism of action is the inhibition of N-methyl-D-aspartate receptors of glutamate; it involves the blocking of painful stimuli transmissions from peripheral tissues to the brain and it also avoids the development of pain hypersensitivity. Therefore, this mechanism is responsible for the inhibition of pain transmission at spinal and supraspinal levels, as well as the cortical level. In all these levels of pain pathways, as the development of hyperalgesia is possible, xenon efficacy can also be based on the blocking of these processes. Several forms of pain share such mechanisms in their maintenance, and xenon can be successfully used at low dosages, which have no effects on vital parameters. The literature shows that analgesic features could also emerge outside the field of anesthesia; thus, this could permit xenon to have a larger usage according to local availability.

  8. Single Ion Trapping for the Enriched Xenon Observatory

    SciTech Connect

    Waldman, Samuel J.; /Stanford U., Phys. Dept. /SLAC

    2006-03-28

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  9. In vivo detection of cucurbit[6]uril, a hyperpolarized xenon contrast agent for a xenon magnetic resonance imaging biosensor

    NASA Astrophysics Data System (ADS)

    Hane, Francis T.; Li, Tao; Smylie, Peter; Pellizzari, Raiili M.; Plata, Jennifer A.; Deboef, Brenton; Albert, Mitchell S.

    2017-01-01

    The Hyperpolarized gas Chemical Exchange Saturation Transfer (HyperCEST) Magnetic Resonance (MR) technique has the potential to increase the sensitivity of a hyperpolarized xenon-129 MRI contrast agent. Signal enhancement is accomplished by selectively depolarizing the xenon within a cage molecule which, upon exchange, reduces the signal in the dissolved phase pool. Herein we demonstrate the in vivo detection of the cucurbit[6]uril (CB6) contrast agent within the vasculature of a living rat. Our work may be used as a stepping stone towards using the HyperCEST technique as a molecular imaging modality.

  10. In vivo detection of cucurbit[6]uril, a hyperpolarized xenon contrast agent for a xenon magnetic resonance imaging biosensor

    PubMed Central

    Hane, Francis T.; Li, Tao; Smylie, Peter; Pellizzari, Raiili M.; Plata, Jennifer A.; DeBoef, Brenton; Albert, Mitchell S.

    2017-01-01

    The Hyperpolarized gas Chemical Exchange Saturation Transfer (HyperCEST) Magnetic Resonance (MR) technique has the potential to increase the sensitivity of a hyperpolarized xenon-129 MRI contrast agent. Signal enhancement is accomplished by selectively depolarizing the xenon within a cage molecule which, upon exchange, reduces the signal in the dissolved phase pool. Herein we demonstrate the in vivo detection of the cucurbit[6]uril (CB6) contrast agent within the vasculature of a living rat. Our work may be used as a stepping stone towards using the HyperCEST technique as a molecular imaging modality. PMID:28106110

  11. On parameterization of spectral line profiles including the speed-dependence in the case of gas mixtures

    NASA Astrophysics Data System (ADS)

    Kochanov, V. P.

    2017-03-01

    The physically grounded parameterization of a line profile including the speed-dependence was performed. It was shown that two actual parameters of the quadratic speed-dependence appear in gas mixtures instead of a single parameter in a pure gas. One of the parameters is associated with hard elastic velocity-changing collisions; the second is connected with the other sorts of collisions. For comparable concentrations of gas species, they may differ by 50% and depend nonlinearly on partial gas pressures. The dimensionless line narrowing parameter also reveals nonlinear pressure-dependence. The computational expressions for the line profile including all main physical mechanisms of its forming in conditions of gas mixtures are derived.

  12. Laser induced avalanche ionization in gases or gas mixtures with resonantly enhanced multiphoton ionization or femtosecond laser pulse pre-ionization

    SciTech Connect

    Shneider, Mikhail N.; Miles, Richard B.

    2012-08-15

    The paper discusses the requirements for avalanche ionization in gas or gas mixtures initiated by REMPI or femtosecond-laser pre-ionization. Numerical examples of dependencies on partial composition for Ar:Xe gas mixture with REMPI of argon and subsequent classic avalanche ionization of Xe are presented.

  13. The XENON1T Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    de Perio, Patrick; Xenon Collaboration

    2017-01-01

    Recent results and status of the XENON1T direct dark matter detector will be presented. XENON1T is a two-phase xenon TPC using 248 low radioactivity PMTs to detect scintillation signals in a 2-ton active liquid xenon target. The detector has been fully operational at the Laboratori Nazionale del Gran Sasso since May 2016, with continuously improving xenon purity and reduction of the internal Kr-85 background source. This talk will summarize the detector performance, calibration, and background studies, discussed in more detail in the following XENON1T talks, which are paving the way towards the world's most sensitive dark matter search.

  14. Corona inception voltage in statorettes with various gas-solid dielectric systems

    NASA Technical Reports Server (NTRS)

    Bollenbacher, G.; Kempke, E. E., Jr.

    1972-01-01

    Corona inception voltage was calculated and measured for three statorettes in several gases and gas mixtures at pressures from 50.8 to 1270 torr. In helium the corona inception voltage was lowest, and in air it was highest. In argon and mixtures of helium and xenon the corona inception voltage was between that of air and helium. Correlation between experimental and calculated data was good.

  15. Effect Of Gas Mixture Composition On Tar Removal Process In A Pulsed Corona Discharge Reactor

    NASA Astrophysics Data System (ADS)

    Filimonova E.; Naidis, G.

    2010-07-01

    The simulation of naphthalene (C10H8) removal from several gas mixtures (pure nitrogen, mixtures containing N2 with CO2, CO, H2, H2O, and biogas - the product of biomass gasification), has been investigated. The modeling is based on the experimental data obtained in the reactor with a pulsed positive corona discharge. The problem of simulation of the cleaning process includes description of two stages. The first, fast stage is generation of primary active species during streamer propagation. The second, slow stage is the chain of chemical transformations triggered by these species. The input parameters for the modeling of the second stage are G-values for generation of primary active species, obtained under consideration of streamer dynamics. Simulation of the second stage of the removal process takes into account the processes of chemical kinetics and diffusion outside and inside of streamer traces during multi-pulsed treatment. Besides neutral active species, streamer discharges produce electrons and ions. Primary positive ions (N2+, CO+, CO2+, H2+, H2O+) in a chain of fast ion-molecule reactions transform into more stable positive ions. The ions recombine with electrons. Both ion-molecule reactions and electron-ion recombination process are additional (to dissociation of gas molecules by electron impact in the streamer head) sources of neutral active species. The relative contribution of these sources to the G-values for H, OH and O is rather large. In our modeling two approaches have been used. At the first approach the contribution of ion-molecule reactions is estimated approximately assuming that the dominating stable ion is N4+ (in pure N2 and its mixtures with H2) or CO2+ (in mixtures including CO2). Other way is the calculations with kinetic scheme including the molecular ions, aquated ions such as H3O(H2O)m+, NO2(H2O)-, NO2(H2O)+ and other. The comparison of results of two approaches is presented. Only full kinetic scheme allowed describing the

  16. Supersonic Flow of Chemically Reacting Gas-Particle Mixtures. Volume 2: RAMP - A Computer Code for Analysis of Chemically Reacting Gas-Particle Flows

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.

    1976-01-01

    A computer program written in conjunction with the numerical solution of the flow of chemically reacting gas-particle mixtures was documented. The solution to the set of governing equations was obtained by utilizing the method of characteristics. The equations cast in characteristic form were shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The characteristic directions for the gas-particle system are found to be the conventional gas Mach lines, the gas streamlines and the particle streamlines. The basic mesh construction for the flow solution is along streamlines and normals to the streamlines for axisymmetric or two-dimensional flow. The analysis gives detailed information of the supersonic flow and provides for a continuous solution of the nozzle and exhaust plume flow fields. Boundary conditions for the flow solution are either the nozzle wall or the exhaust plume boundary.

  17. The effect of pore dimension of zeolites on the separation of gas mixtures

    NASA Astrophysics Data System (ADS)

    Jee, Sang Eun

    We examined the effect of the pore dimension of zeolites on the separation of gas mixtures using atomistic simulation methods. We studied two categories of the zeolites with small pores: pore modified silicalite for H2/CH4 separation and small pore silica zeolites for CO2/CH4 separation. The effect of pore modification of silicalite on the H2/CH4 separation was examined. Under some degrees of surface modification, the CH4 flux was reduced much more than the H2 flux, resulting in high ideal selectivities. The use of small pore zeolites for CO2/CH4 separations was studied. In DDR, we showed that CO2 diffusion rates are only weakly affected by the presence of CH4, even though the latter molecules diffuse very slowly. Consequently, therefore, the permeance of CO 2 in the equimolar mixtures is similar to the permeance for pure CO 2, while the CH4 permeance in the mixture is greatly reduced relatively to the pure component permeance. The calculated CO2/CH 4 separation selectivities are higher than 100 for a wide range of feed pressure, indicating excellent separation capabilities of DDR based membranes. Inspired by the observation in DDR we also examined the separation capabilities of 10 additional pure silica small pore zeolites for CO2/CH 4 separations. From these considerations, we predict that SAS, MTF and RWR will exhibit high separation selectivities because of their very high adsorption selectivities for CO2 over CH4. CHA and IHW, which have similar pore structures to DDR, showed comparable separation selectivities to DDR because of large differences in the diffusion rates of CO2 and CH4.

  18. The equivalent electrical permittivity of gas-solid mixtures at intermediate solid volume fractions.

    SciTech Connect

    Torczynski, John Robert; Ceccio, Steven Louis; Tortora, Paul Richard

    2005-07-01

    Several mixture models are evaluated for their suitability in predicting the equivalent permittivity of dielectric particles in a dielectric medium for intermediate solid volume fractions (0.4 to 0.6). Predictions of the Maxwell, Rayleigh, Bottcher and Bruggeman models are compared to computational simulations of several arrangements of solid particles in a gas and to the experimentally determined permittivity of a static particle bed. The experiment uses spherical glass beads in air, so air and glass permittivity values (1 and 7, respectively) are used with all of the models and simulations. The experimental system used to measure the permittivity of the static particle bed and its calibration are described. The Rayleigh model is found to be suitable for predicting permittivity over the entire range of solid volume fractions (0-0.6).

  19. Asymptotic modelling of the flow of a thermal binary gas mixture in a microchannel

    NASA Astrophysics Data System (ADS)

    Gatignol, R.; Croizet, C.

    2014-12-01

    The paper purpose is to investigate asymptotic models to describe the basic physical phenomena of flows of a thermal binary gas mixture in coplanar microchannels. The steady flows of gases are described by the Navier-Stokes-Fourier equations, with first order slip boundary conditions for the velocities and jump boundary conditions for the temperatures on the microchannel walls. Taking into account the small parameter equal to the ratio of the two longitudinal and transversal lengths, an asymptotic model is proposed, corresponding to low Mach numbers and to low or moderate Knudsen numbers. Several aspects of the solutions are discussed. We pay attention to the influence of the temperature gradient which is present along the walls. In particular, it is shown that a change in the temperature gradient can induce a change in the longitudinal flow direction. Finally, a result of DSMC similation and the corresponding asymptotic solution are compared.

  20. Characterisation of a dielectric barrier surface twin discharge using defined gas mixtures

    NASA Astrophysics Data System (ADS)

    Offerhaus, Björn; Kogelheide, Friederike; Lackmann, Jan-Wilm; Bibinov, Nikita; Smith, Ryan; Bracht, Vera; Stapelmann, Katharina; Awakowicz, Peter; Aept Team; Bimap Team

    2016-09-01

    In the last decades extensive study has been performed on dielectric barrier discharges (DBDs) in several fields of applications of non-thermal atmospheric pressure plasmas. Their applicability ranges from health-promoting effects to the human skin to air decontamination combined with a rather good scalability. Further insight into their physical and chemical properties is mandatory for a proper configuration of plasma sources for a given application. In our case a dielectric barrier surface twin discharge is ignited in different gas mixtures. The surface discharge electrode is made of an Al2O3 plate working as a dielectric barrier and grid-structured copper traces on each side of the plate. The electrode is connected to a HV-HF plasma generator with external transformer. The plasma parameters are determined via OES using an absolutely calibrated Echelle-spectrometer.

  1. Averaged electron collision cross sections for thermal mixtures of \\alpha -alanine conformers in the gas phase

    NASA Astrophysics Data System (ADS)

    Fujimoto, Milton M.; de Lima, Erik V. R.; Tennyson, Jonathan

    2016-11-01

    A theoretical study of elastic electron collisions with 9 conformers of the gas-phase amino acid α-alanine (CH3CH(NH2)COOH) is performed. The eigenphase sums, resonance features, differential and integral cross sections are computed for each individual conformer. Resonance positions for the low-energy {π }* shape resonance are found to vary from 2.6 to 3.1 eV and the resonance widths from 0.3 to 0.5 eV. Averaged cross sections for thermal mixtures of the 9 conformers are presented. Both theoretical and experimental population ratios are considered. Thermally averaged cross sections obtained using the best theoretical estimates give reasonable agreement with the observed thermal cross sections. Excited conformers IIA and IIB make a large contribution to this average due to their large permanent dipole moments.

  2. In-medium viscous coefficients of a hot hadronic gas mixture

    NASA Astrophysics Data System (ADS)

    Gangopadhyaya, Utsab; Ghosh, Snigdha; Sarkar, Sourav; Mitra, Sukanya

    2016-10-01

    We estimate the shear and the bulk viscous coefficients for a hot hadronic gas mixture made of pions and nucleons. The viscosities are evaluated in the relativistic kinetic theory approach by solving the transport equation in the relaxation time approximation for binary collisions (π π ,π N , and N N ). Instead of the vacuum cross sections usually used in the literature we employ in-medium scattering amplitudes in the estimation of the relaxation times. The modified cross sections for π π and π N scattering are obtained using one-loop modified thermal propagators for ρ ,σ , and Δ in the scattering amplitudes which are calculated using effective interactions. The resulting suppression of the cross sections at finite temperature and baryon density is observed to significantly affect the T and μN dependence of the viscosities of the system.

  3. Methodology for Predicting Flammable Gas Mixtures in Double Contained Receiver Tanks [SEC 1 THRU SEC 3

    SciTech Connect

    HEDENGREN, D.C.

    2000-01-31

    This methodology document provides an estimate of the maximum concentrations of flammable gases (ammonia, hydrogen, and methane) which could exist in the vapor space of a double-contained receiver tank (DCRT) from the simultaneous saltwell pumping of one or more single-shell tanks (SSTs). This document expands Calculation Note 118 (Hedengren et a1 1997) and removes some of the conservatism from it, especially in vapor phase ammonia predictions. The methodologies of Calculation Note 118 (Hedengren et a1 1997) are essentially identical for predicting flammable gas mixtures in DCRTs from saltwell pumping for low DCRT ventilation rates, 1e, < 1 cfm. The hydrogen generation model has also been updated in the methodology of this document.

  4. SUPPLEMENTARY COMPARISON: SIM.QM-S1: Bilateral comparison of NIST and CENAM binary gas mixtures

    NASA Astrophysics Data System (ADS)

    Guenther, Frank; Perez-Castorena, Alejandro

    2009-01-01

    Ten compressed gas cylinders from NIST containing binary mixtures with propane, carbon monoxide, carbon dioxide or nitric oxide, all of them with nitrogen balance, were shipped to CENAM for the purpose of bilateral comparison between CENAM and NIST. CENAM utilized its own gravimetrically prepared Primary Reference Materials (PRM) to measure the respective concentrations and reported to NIST. The cylinders were shipped back to NIST for verification of their value. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by SIM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  5. An Improved Analytical Approach to Determine the Explosive Effects of Flammable Gas-Air Mixtures

    SciTech Connect

    Yang, J M

    2005-11-10

    The U.S. Department of Energy (DOE) Complex includes many sites and laboratories that store quantities of low-level, solid nuclear waste in drums and other types of shipping containers. The drums may be stored for long periods of time prior to being transported and final dispositioning. Based on the radioactivity (e.g., Pu{sup 239} equivalent), chemical nature (e.g. volatile organic compounds) and other characteristics of the stored waste, flammable gases may evolve. Documented safety analyses (DSAs) for storage of these drums must address storage and safety management issues to protect workers, the general public, and the environment. This paper discusses an improved analytical method for determining the explosion effects flammable gas-air mixtures as well as the subsequent accident phenomenology.

  6. Fast gas heating in N2/O2 mixtures under nanosecond surface dielectric barrier discharge: the effects of gas pressure and composition

    PubMed Central

    Nudnova, M. M; Kindysheva, S. V; Aleksandrov, N. L; Starikovskii, A. Yu

    2015-01-01

    The fractional electron power quickly transferred to heat in non-equilibrium plasmas was studied experimentally and theoretically in N2/O2 mixtures subjected to high electric fields. Measurements were performed in and after a nanosecond surface dielectric barrier discharge at various (300–750 Torr) gas pressures and (50–100%) N2 percentages. Observations showed that the efficiency of fast gas heating is almost independent of pressure and becomes more profound when the fraction of O2 in N2/O2 mixtures increases. The processes that contribute towards the fast transfer of electron energy to thermal energy were numerically simulated under the conditions considered. Calculations were compared with measurements and the main channels of fast gas heating were analysed at the gas pressures, compositions and electric fields under study. It was shown that efficient fast gas heating in the mixtures with high fraction of O2 is due to a notable contribution of heat release during quenching of electronically excited N2 states in collisions with O2 molecules and to ion–ion recombination. The effect of hydrocarbon addition to air on fast gas heating was numerically estimated. It was concluded that the fractional electron power transferred to heat in air, as a first approximation, could be used to estimate this effect in lean and stoichiometric hydrocarbon–air mixtures. PMID:26170431

  7. Ultra-cold dilute gas Bose-Fermi mixture with ^87Rb and ^40K

    NASA Astrophysics Data System (ADS)

    Goldwin, J.; Olsen, M. L.; Inouye, S.; Jin, D. S.

    2003-05-01

    Sympathetic cooling experiments with Bose-Fermi mixtures offer a way to cool Fermi gases to quantum degeneracy with relatively little loss in atom number, as well as offering interesting new systems for study with the control and precision typical of atomic physics experiments. Here we report on the sympathetic cooling of fermionic ^40K with bosonic ^87Rb. We first trap and cool ^87Rb atoms in a two-species MOT together with ^40K. After loading into a purely magnetic quadrupole configuration trap, the gas is transferred mechanically nearly a meter to a Ioffe-Pritchard type magnetic trap in an ultra-high vacuum cell. radio-frequency induced evaporation of the ^87Rb atoms results in pure Bose-Einstein condensates of ˜ 2× 10^5 atoms. In the process ^40K atoms are cooled by virtue of thermal contact with the ^87Rb reservoir resulting in cooling of ^40K, with ˜ 1 × 10^4 atoms at temperatures below 100 nK. We present results from the experiment demonstrating the efficiency of the cooling, and describe ongoing investigations into the limits of the cooling and the strong inter-species interactions in the mixture. Finally, future directions for the experiment are discussed.

  8. Concentration measurements in molecular gas mixtures with a two-pump pulse femtosecond polarization spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Hertz, E.; Chaux, R.; Faucher, O.; Lavorel, B.

    2001-08-01

    Recently, we have demonstrated the ability of the Raman-induced polarization spectroscopy (RIPS) technique to accurately determine concentration or polarizability anisotropy ratio in low-pressure binary molecular mixtures [E. Hertz, B. Lavorel, O. Faucher, and R. Chaux, J. Chem. Phys. 113, 6629 (2000)]. It has been also pointed out that macroscopic interference, occurring when two revivals associated to different molecules time overlap, can be used to achieve measurements with picosecond time resolution. The applicability of the technique is intrinsically limited to a concentration range where the signals of both molecules are of the same magnitude. In this paper, a two-pump pulse sequence with different intensities is used to overcome this limitation. The relative molecular responses are weighted by the relative laser pump intensities to give comparable signals. Furthermore, by tuning the time delay between the two-pump pulses, macroscopic interference can be produced regardless of the accidental coincidences between the two molecular temporal responses. The study is performed in a CO2-N2O gas mixture and the concentration is measured with and without macroscopic interference. Applications of the method in the field of noninvasive diagnostics of combustion media are envisaged.

  9. Multiproperty empirical isotropic interatomic potentials for CH4-inert gas mixtures.

    PubMed

    El-Kader, M S A

    2013-11-01

    An approximate empirical isotropic interatomic potentials for CH4-inert gas mixtures are developed by simultaneously fitting the Exponential-Spline-Morse-Spline-van der Waals (ESMSV) potential form to viscosity, thermal conductivity, thermal diffusion factors, diffusion coefficient, interaction second pressure virial coefficient and scattering cross-section data. Quantum mechanical lineshapes of collision-induced absorption (CIA) at different temperatures for CH4-He and at T = 87 K for CH4-Ar are computed using theoretical values for overlap, octopole and hexadecapole mechanisms and interaction potential as input. Also, the quantum mechanical lineshapes of collision-induced light scattering (CILS) for the mixtures CH4-Ar and CH4-Xe at room temperature are calculated. The spectra of scattering consist essentially of an intense, purely translational component which includes scattering due to free pairs and bound dimers, and the other is due to the induced rotational scattering. These spectra have been interpreted by means of pair-polarizability terms, which arise from a long-range dipole-induced-dipole (DID) with small dispersion corrections and a short-range interaction mechanism involving higher-order dipole-quadrupole A and dipole-octopole E multipole polarizabilities. Good agreement between computed and experimental lineshapes of both absorption and scattering is obtained when the models of potential, interaction-induced dipole and polarizability components are used.

  10. Synthesis of formamide and isocyanic acid after ion irradiation of frozen gas mixtures

    NASA Astrophysics Data System (ADS)

    Kaňuchová, Z.; Urso, R. G.; Baratta, G. A.; Brucato, J. R.; Palumbo, M. E.; Strazzulla, G.

    2016-01-01

    Context. Formamide (NH2HCO) and isocyanic acid (HNCO) have been observed as gaseous species in several astronomical environments such as cometary comae and pre- and proto-stellar objects. A debate is open on the formation route of those molecules, in particular if they are formed by chemical reactions in the gas phase and/or on grains. In this latter case it is relevant to understand if the formation occurs through surface reactions or is induced by energetic processing. Aims: We present arguments that support the formation of formamide in the solid phase by cosmic-ion-induced energetic processing of ices present as mantles of interstellar grains and on comets. Formamides, along with other molecules, are expelled in the gas phase when the physical parameters are appropriate to induce the desorption of ices. Methods: We have performed several laboratory experiments in which ice mixtures (H2O:CH4:N2, H2O:CH4:NH3, and CH3OH:N2) were bombarded with energetic (30-200 keV) ions (H+ or He+). FTIR spectroscopy was performed before, during, and after ion bombardment. In particular, the formation of HNCO and NH2HCO was measured quantiatively. Results: Energetic processing of ice can quantitatively reproduce the amount of NH2HCO observed in cometary comae and in many circumstellar regions. HNCO is also formed, but additional formation mechanisms are requested to quantitatively account for the astronomical observations. Conclusions: We suggest that energetic processing of ices in the pre- and proto-stellar regions and in comets is the main mechanism to produce formamide, which, once it is released in the gas phase because of desorption of ices, is observed in the gas phase in these astrophysical environments.

  11. Adsorption of binary gas mixtures in heterogeneous carbon predicted by density functional theory: on the formation of adsorption azeotropes.

    PubMed

    Ritter, James A; Pan, Huanhua; Balbuena, Perla B

    2010-09-07

    Classical density functional theory (DFT) was used to predict the adsorption of nine different binary gas mixtures in a heterogeneous BPL activated carbon with a known pore size distribution (PSD) and in single, homogeneous, slit-shaped carbon pores of different sizes. By comparing the heterogeneous results with those obtained from the ideal adsorbed solution theory and with those obtained in the homogeneous carbon, it was determined that adsorption nonideality and adsorption azeotropes are caused by the coupled effects of differences in the molecular size of the components in a gas mixture and only slight differences in the pore sizes of a heterogeneous adsorbent. For many binary gas mixtures, selectivity was found to be a strong function of pore size. As the width of a homogeneous pore increases slightly, the selectivity for two different sized adsorbates may change from being greater than unity to less than unity. This change in selectivity can be accompanied by the formation of an adsorption azeotrope when this same binary mixture is adsorbed in a heterogeneous adsorbent with a PSD, like in BPL activated carbon. These results also showed that the selectivity exhibited by a heterogeneous adsorbent can be dominated by a small number of pores that are very selective toward one of the components in the gas mixture, leading to adsorption azeotrope formation in extreme cases.

  12. Specific features of SRS-CARS monitoring of low impurity concentrations of hydrogen in dense gas mixtures

    NASA Astrophysics Data System (ADS)

    Mikheev, Gennady M.; Mogileva, Tatyana N.; Popov, Aleksey Yu.

    2006-09-01

    The possibility of measuring the hydrogen impurity concentration in dense gas mixtures by coherent anti-Stokes Raman scattering (CARS) is studied. In this technique, biharmonic laser pumping based on stimulated Raman scattering (SRS) in compressed hydrogen is used. Because of the interference between the coherent scattering components from buffer gas molecules and molecules of the impurity to be detected, the signal recorded may depend on the hydrogen concentration by a parabolic law, which has a minimum and makes the results uncertain. It is shown that this uncertainty can be removed if the frequency of the biharmonic laser pump, which is produced by the SRS oscillator, somewhat differs from the frequency of molecular oscillations of hydrogen in the test mixture. A sensitivity of 5 ppm is obtained as applied to the hydrogen-air mixture under normal pressure. The description of a set-up for the determination of the coefficient of the hydrogen diffusion in gas mixtures is given. The main assembly units are a diffusion chamber and an automated laser system for the selective hydrogen diagnostics in gas mixtures by the SRS-CARS method. The determination of the diffusion coefficient is based on the approximation of the experimental data describing the hydrogen concentration varying with time at a specified point in the diffusion chamber and the accurate solution of the diffusion equation for the selected one-dimensional geometry of the experiment.

  13. Development of a functionalized Xenon biosensor

    SciTech Connect

    Spence, Megan M.; Ruiz, E. Janette; Rubin, Seth M.; Lowery, Thomas J.; Winssinger, Nicolas; Schultz, Peter G.; Wemmer, David E.; Pines, Alexander

    2004-03-25

    NMR-based biosensors that utilize laser-polarized xenon offer potential advantages beyond current sensing technologies. These advantages include the capacity to simultaneously detect multiple analytes, the applicability to in vivo spectroscopy and imaging, and the possibility of remote amplified detection. Here we present a detailed NMR characterization of the binding of a biotin-derivatized caged-xenon sensor to avidin. Binding of functionalized xenon to avidin leads to a change in the chemical shift of the encapsulated xenon in addition to a broadening of the resonance, both of which serve as NMR markers of ligand-target interaction. A control experiment in which the biotin-binding site of avidin was blocked with native biotin showed no such spectral changes, confirming that only specific binding, rather than nonspecific contact, between avidin and functionalized xenon leads to the effects on the xenon NMR spectrum. The exchange rate of xenon (between solution and cage) and the xenon spin-lattice relaxation rate were not changed significantly upon binding. We describe two methods for enhancing the signal from functionalized xenon by exploiting the laser-polarized xenon magnetization reservoir. We also show that the xenon chemical shifts are distinct for xenon encapsulated in different diastereomeric cage molecules. This demonstrates the potential for tuning the encapsulated xenon chemical shift, which is a key requirement for being able to multiplex the biosensor.

  14. Early treatment with xenon protects against the cold ischemia associated with chronic allograft nephropathy in rats.

    PubMed

    Zhao, Hailin; Luo, Xianghong; Zhou, Zhaowei; Liu, Juying; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2014-01-01

    Chronic allograft nephropathy (CAN) is a common finding in kidney grafts with functional impairment. Prolonged hypothermic storage-induced ischemia-reperfusion injury is associated with the early onset of CAN. As the noble gas xenon is clinically used as an anesthetic and has renoprotective properties in a rodent model of ischemia-reperfusion injury, we studied whether early treatment with xenon could attenuate CAN associated with prolonged hypothermic storage. Exposure to xenon enhanced the expression of insulin growth factor-1 (IGF-1) and its receptor in human proximal tubular (HK-2) cells, which, in turn, increased cell proliferation. Xenon treatment before or after hypothermia-hypoxia decreased cell apoptosis and cell inflammation after reoxygenation. The xenon-induced HK-2 cell proliferation was abolished by blocking the IGF-1 receptor, mTOR, and HIF-1α individually. In the Fischer-to-Lewis rat allogeneic renal transplantation model, xenon exposure of donors before graft retrieval or recipients after engraftment enhanced tubular cell proliferation and decreased tubular cell death and cell inflammation associated with ischemia-reperfusion injury. Compared with control allografts, xenon treatment significantly suppressed T-cell infiltration and fibrosis, prevented the development of CAN, and improved renal function. Thus, xenon treatment promoted recovery from ischemia-reperfusion injury and reduced susceptibility to the subsequent development of CAN in allografts.

  15. Mathematical modeling of gas-condensate mixture filtration in porous media taking into account non-equilibrium of phase transitions

    NASA Astrophysics Data System (ADS)

    Kachalov, V. V.; Molchanov, D. A.; Sokotushchenko, V. N.; Zaichenko, V. M.

    2016-11-01

    At the present time, a considerable part of the largest dry gas reservoirs in Russia are found in the stage of declining production, therefore active exploitation of gas-condensate fields will begin in the coming decades. There is a significant discrepancy between the project and the actual value of condensate recovery factor while producing reservoir of this type, which is caused by insufficient knowledge about non-equilibrium filtration mechanisms of gas-condensate mixtures in reservoir conditions. A system of differential equations to describe filtration process of two-phase multicomponent mixture for one-, two- and three-dimensional cases is presented in this work. The solution of the described system was made by finite-element method in the software package FlexPDE. Comparative distributions of velocities, pressures, saturations and phase compositions of three-component mixture along the reservoir model and in time in both cases of equilibrium and non-equilibrium filtration processes were obtained. Calculation results have shown that system deviation from the thermodynamic equilibrium increases gas phase flow rate and reduces liquid phase flow rate during filtration process of gas-condensate mixture.

  16. Development of a Binary Mixture Gas Composition Instrument for Use in a Confined High Temperature Environment

    NASA Astrophysics Data System (ADS)

    Cadell, Seth R.

    , or used to measure the purity of the coolant itself. This work details the efforts conducted to develop such an instrument. While the concept of designing a capacitance sensor to measure a gas mixture is not unique, the application of using a capacitance sensor within a nuclear reactor is a new application. This application requires the development of an instrument that will survive a high temperature nuclear reactor environment and operate at a sensitivity not found in current applications. To prove this technique, instrument prototypes were built and tested in confined environments and at high temperatures. This work discusses the proof of concept testing and outlines an application in the High Temperature Test Facility to increase the operational understanding of the instrument. This work is the first step toward the ultimate outcome of this work, which is to provide a new tool to the gas reactor community allowing real-time measurements of coolant properties within the core.

  17. Hydrogen generation in a microhollow cathode discharge in high-pressure ammonia-argon gas mixtures

    NASA Astrophysics Data System (ADS)

    Qiu, H.; Martus, K.; Lee, W. Y.; Becker, K.

    2004-04-01

    We explored the feasibility of using a single flow-through microhollow cathode discharge (MHCD) as a non-thermal plasma source for hydrogen (H2) production for portable fuel cell applications. The MHCD device consisted of two thin metal electrodes separated by a mica spacer with a single-hole, roughly 100 [mu]m in diameter, through all three layers. The efficiency of the MHCD reactor for H2 generation from NH3 was analyzed by monitoring the products formed in the discharge in a mass spectrometer. Using a gas mixture of up to 10% NH3 in Ar at pressures up to one atmosphere, the MHCD reactor achieved a maximum ammonia conversion of slightly more than 20%. The overall power efficiency of the MHCD reactor reached a peak value of about 11%. The dependence of NH3 conversion and power efficiency on the residence time of the gas in the MHCD plasma was studied. Experiments using pulsed excitation of the MHCD plasma indicated that pulsing can increase the power efficiency. Design and operating criteria are proposed for a microplasma-based H2 generator that can achieve a power efficiency above the break-even point, i.e., a microplasma reactor that requires less electrical power to generate and maintain the plasma than the power that can be obtained from the conversion of the H2 generated in the microplasma reactor.

  18. Viewing inside Pyroclastic Flows - Large-scale Experiments on hot pyroclast-gas mixture flows

    NASA Astrophysics Data System (ADS)

    Breard, E. C.; Lube, G.; Cronin, S. J.; Jones, J.

    2014-12-01

    Pyroclastic density currents are the largest threat from volcanoes. Direct observations of natural flows are persistently prevented because of their violence and remain limited to broad estimates of bulk flow behaviour. The Pyroclastic Flow Generator - a large-scale experimental facility to synthesize hot gas-particle mixture flows scaled to pyroclastic flows and surges - allows investigating the physical processes behind PDC behaviour in safety. The ability to simulate natural eruption conditions and to view and measure inside the hot flows allows deriving validation and calibration data sets for existing numerical models, and to improve the constitutive relationships necessary for their effective use as powerful tools in hazard assessment. We here report on a systematic series of large-scale experiments on up to 30 ms-1 fast, 2-4.5 m thick, 20-35 m long flows of natural pyroclastic material and gas. We will show high-speed movies and non-invasive sensor data that detail the internal structure of the analogue pyroclastic flows. The experimental PDCs are synthesized by the controlled 'eruption column collapse' of variably diluted suspensions into an instrumented channel. Experiments show four flow phases: mixture acceleration and dilution during free fall; impact and lateral blasting; PDC runout; and co-ignimbrite cloud formation. The fully turbulent flows reach Reynolds number up to 107 and depositional facies similar to natural deposits. In the PDC runout phase, the shear flows develop a four-partite structure from top to base: a fully turbulent, strongly density-stratified ash cloud with average particle concentrations <<1vol%; a transient, turbulent dense suspension region with particle concentrations between 1 and 10 vol%; a non-turbulent, aerated and highly mobile dense underflows with particle concentrations between 40 and 50 vol%; and a vertically aggrading bed of static material. We characterise these regions and the exchanges of energy and momentum

  19. Gas-particle partitioning of semivolatile organic compounds (SOCs) on mixtures of aerosols in a smog chamber.

    PubMed

    Chandramouli, Bharadwaj; Jang, Myoseon; Kamens, Richard M

    2003-09-15

    The partitioning behavior of a set of diverse SOCs on two and three component mixtures of aerosols from different sources was studied using smog chamber experimental data. A set of SOCs of different compound types was introduced into a system containing a mixture of aerosols from two or more sources. Gas and particle samples were taken using a filter-filter-denuder sampling system, and a partitioning coefficient Kp was estimated using Kp = Cp/(CgTSP). Particle size distributions were measured using a differential mobility analyzer and a light scattering detector. Gas and particle samples were analyzed using GCMS. The aerosol composition in the chamber was tracked chemically using a combination of signature compounds and the organic matter mass fraction (f(om)) of the individual aerosol sources. The physical nature of the aerosol mixture in the chamber was determined using particle size distributions, and an aggregate Kp was estimated from theoretically calculated Kp on the individual sources. Model fits for Kp showed that when the mixture involved primary sources of aerosol, the aggregate Kp of the mixture could be successfully modeled as an external mixture of the Kp on the individual aerosols. There were significant differences observed for some SOCs between modeling the system as an external and as an internal mixture. However, when one of the aerosol sources was secondary, the aggregate model Kp required incorporation of the secondary aerosol products on the preexisting aerosol for adequate model fits. Modeling such a system as an external mixture grossly overpredicted the Kp of alkanes in the mixture. Indirect evidence of heterogeneous, acid-catalyzed reactions in the particle phase was also seen, leading to a significant increase in the polarity of the resulting aerosol mix and a resulting decrease in the observed Kp of alkanes in the chamber. The model was partly consistent with this decrease but could not completely explain the reduction in Kp because of

  20. High-power gas-discharge excimer ArF, KrCl, KrF and XeCl lasers utilising two-component gas mixtures without a buffer gas

    SciTech Connect

    Razhev, A M; Kargapol'tsev, E S; Churkin, D S

    2016-03-31

    Results of an experimental study of the influence of a gas mixture (laser active medium) composition on an output energy and total efficiency of gas-discharge excimer lasers on ArF* (193 nm), KrCl* (222 nm), KrF* (248 nm) and XeCl* (308 nm) molecules operating without a buffer gas are presented. The optimal ratios of gas components (from the viewpoint of a maximum output energy) of an active medium are found, which provide an efficient operation of laser sources. It is experimentally confirmed that for gas-discharge excimer lasers on halogenides of inert gases the presence of a buffer gas in an active medium is not a necessary condition for efficient operation. For the first time, in two-component gas mixtures of repetitively pulsed gas-discharge excimer lasers on electron transitions of excimer molecules ArF*, KrCl*, KrF* and XeCl*, the pulsed energy of laser radiation obtained under pumping by a transverse volume electric discharge in a low-pressure gas mixture without a buffer gas reached up to 170 mJ and a high pulsed output power (of up to 24 MW) was obtained at a FWHM duration of the KrF-laser pulse of 7 ns. The maximal total efficiency obtained in the experiment with two-component gas mixtures of KrF and XeCl lasers was 0.8%. (lasers)

  1. High-power gas-discharge excimer ArF, KrCl, KrF and XeCl lasers utilising two-component gas mixtures without a buffer gas

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Kargapol'tsev, E. S.; Churkin, D. S.

    2016-03-01

    Results of an experimental study of the influence of a gas mixture (laser active medium) composition on an output energy and total efficiency of gas-discharge excimer lasers on ArF* (193 nm), KrCl* (222 nm), KrF* (248 nm) and XeCl* (308 nm) molecules operating without a buffer gas are presented. The optimal ratios of gas components (from the viewpoint of a maximum output energy) of an active medium are found, which provide an efficient operation of laser sources. It is experimentally confirmed that for gas-discharge excimer lasers on halogenides of inert gases the presence of a buffer gas in an active medium is not a necessary condition for efficient operation. For the first time, in two-component gas mixtures of repetitively pulsed gas-discharge excimer lasers on electron transitions of excimer molecules ArF*, KrCl*, KrF* and XeCl*, the pulsed energy of laser radiation obtained under pumping by a transverse volume electric discharge in a low-pressure gas mixture without a buffer gas reached up to 170 mJ and a high pulsed output power (of up to 24 MW) was obtained at a FWHM duration of the KrF-laser pulse of 7 ns. The maximal total efficiency obtained in the experiment with two-component gas mixtures of KrF and XeCl lasers was 0.8%.

  2. The effects of gas mixtures on ion engine erosion and performance

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Brophy, John R.; Aston, Graeme

    1987-01-01

    Erosion measurements were performed on a modified J-series 30 cm ion engine operating on xenon propellant. Erosion data was obtained by measuring the trench depth etched into masked polished metal samples for test durations of up to 24 hours. The data indicates that erosion is greatest at the cathode side of the baffle, with tantalum being the material with the least erosion of all materials tested. There is a clear indication of a significant reduction in erosion of all materials tested when nitrogen is added to the propellant. The technique used in these experiments requires test samples which are extremely smooth and flat.

  3. Start-up, performance and optimization of a compost biofilter treating gas-phase mixture of benzene and toluene.

    PubMed

    Rene, Eldon R; Kar, Saurajyoti; Krishnan, Jagannathan; Pakshirajan, K; López, M Estefanía; Murthy, D V S; Swaminathan, T

    2015-08-01

    The performance of a compost biofilter inoculated with mixed microbial consortium was optimized for treating a gas-phase mixture of benzene and toluene. The biofilter was acclimated to these VOCs for a period of ∼18d. The effects of concentration and flow rate on the removal efficiency (RE) and elimination capacity (EC) were investigated by varying the inlet concentration of benzene (0.12-0.95g/m(3)), toluene (0.14-1.48g/m(3)) and gas-flow rate (0.024-0.072m(3)/h). At comparable loading rates, benzene removal in the mixture was reduced in the range of 6.6-41% in comparison with the individual benzene degradation. Toluene removal in mixture was even more affected as observed from the reductions in REs, ranging from 18.4% to 76%. The results were statistically interpreted by performing an analysis of variance (ANOVA) to elucidate the main and interaction effects.

  4. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... fuel as its primary energy source, OFP may prohibit, by order, the use in that unit of petroleum or... 10 Energy 4 2010-01-01 2010-01-01 false Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants. 504.7 Section 504.7 Energy DEPARTMENT OF ENERGY...

  5. Simulation of the transition radiation detection conditions in the ATLAS TRT detector filled with argon and krypton gas mixtures

    SciTech Connect

    Boldyrev, A. S.; Maevskiy, A. S.

    2015-12-15

    Performance of the Transition Radiation Tracker (TRT) at the ATLAS experiment with argon and krypton gas mixtures was simulated. The efficiency of transition radiation registration, which is necessary for electron identification, was estimated along with the electron identification capabilities under such conditions.

  6. Introducing Students to Gas Chromatography-Mass Spectrometry Analysis and Determination of Kerosene Components in a Complex Mixture

    ERIC Educational Resources Information Center

    Pacot, Giselle Mae M.; Lee, Lyn May; Chin, Sung-Tong; Marriott, Philip J.

    2016-01-01

    Gas chromatography-mass spectrometry (GC-MS) and GC-tandem MS (GC-MS/MS) are useful in many separation and characterization procedures. GC-MS is now a common tool in industry and research, and increasingly, GC-MS/MS is applied to the measurement of trace components in complex mixtures. This report describes an upper-level undergraduate experiment…

  7. Supersonic flow of chemically reacting gas-particle mixtures. Volume 1: A theoretical analysis and development of the numerical solution

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Anderson, P. G.; Sulyma, P. R.; Pearson, M. L.

    1976-01-01

    A numerical solution for chemically reacting supersonic gas-particle flows in rocket nozzles and exhaust plumes was described. The gas-particle flow solution is fully coupled in that the effects of particle drag and heat transfer between the gas and particle phases are treated. Gas and particles exchange momentum via the drag exerted on the gas by the particles. Energy is exchanged between the phases via heat transfer (convection and/or radiation). Thermochemistry calculations (chemical equilibrium, frozen or chemical kinetics) were shown to be uncoupled from the flow solution and, as such, can be solved separately. The solution to the set of governing equations is obtained by utilizing the method of characteristics. The equations cast in characteristic form are shown to be formally the same for ideal, frozen, chemical equilibrium and chemical non-equilibrium reacting gas mixtures. The particle distribution is represented in the numerical solution by a finite distribution of particle sizes.

  8. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-01

    relaxation model, which can only be applied to molecules, the new model is applicable to atoms, molecules, ions, and their mixtures. Numerical examples and model validations are carried out with two gas mixtures using the maximum entropy linear model: one mixture consists of nitrogen molecules undergoing internal excitation and dissociation and the other consists of nitrogen atoms undergoing internal excitation and ionization. Results show that the original hundreds to thousands of microscopic equations can be reduced to two macroscopic equations with almost perfect agreement for the total number density and total internal energy using only one or two groups. We also obtain good prediction of the microscopic state populations using 5-10 groups in the macroscopic equations.

  9. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.

    PubMed

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-07

    relaxation model, which can only be applied to molecules, the new model is applicable to atoms, molecules, ions, and their mixtures. Numerical examples and model validations are carried out with two gas mixtures using the maximum entropy linear model: one mixture consists of nitrogen molecules undergoing internal excitation and dissociation and the other consists of nitrogen atoms undergoing internal excitation and ionization. Results show that the original hundreds to thousands of microscopic equations can be reduced to two macroscopic equations with almost perfect agreement for the total number density and total internal energy using only one or two groups. We also obtain good prediction of the microscopic state populations using 5-10 groups in the macroscopic equations.

  10. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    SciTech Connect

    Liu, Yen Vinokur, Marcel; Panesi, Marco; Sahai, Amal

    2015-04-07

    relaxation model, which can only be applied to molecules, the new model is applicable to atoms, molecules, ions, and their mixtures. Numerical examples and model validations are carried out with two gas mixtures using the maximum entropy linear model: one mixture consists of nitrogen molecules undergoing internal excitation and dissociation and the other consists of nitrogen atoms undergoing internal excitation and ionization. Results show that the original hundreds to thousands of microscopic equations can be reduced to two macroscopic equations with almost perfect agreement for the total number density and total internal energy using only one or two groups. We also obtain good prediction of the microscopic state populations using 5-10 groups in the macroscopic equations.

  11. Perovskites with the Framework-Forming Xenon.

    PubMed

    Britvin, Sergey N; Kashtanov, Sergei A; Krzhizhanovskaya, Maria G; Gurinov, Andrey A; Glumov, Oleg V; Strekopytov, Stanislav; Kretser, Yury L; Zaitsev, Anatoly N; Chukanov, Nikita V; Krivovichev, Sergey V

    2015-11-23

    The Group 18 elements (noble gases) were the last ones in the periodic system to have not been encountered in perovskite structures. We herein report the synthesis of a new group of double perovskites KM(XeNaO6) (M = Ca, Sr, Ba) containing framework-forming xenon. The structures of the new compounds, like other double perovskites, are built up of the alternating sequence of corner-sharing (XeO6) and (NaO6) octahedra arranged in a three-dimensional rocksalt order. The fact that xenon can be incorporated into the perovskite structure provides new insights into the problem of Xe depletion in the atmosphere. Since octahedrally coordinated Xe(VIII) and Si(IV) exhibit close values of ionic radii (0.48 and 0.40 Å, respectively), one could assume that Xe(VIII) can be incorporated into hyperbaric frameworks such as MgSiO3 perovskite. The ability of Xe to form stable inorganic frameworks can further extend the rich and still enigmatic chemistry of this noble gas.

  12. [Xenon anaesthesia--clinical characteristics, benefits and disadvantages and fields of application].

    PubMed

    Höcker, Jan; Grünewald, Matthias; Bein, Berthold

    2012-06-01

    The noble gas xenon provides many characteristics of the 'ideal anaesthetic agent'. Xenon offers outstanding haemodynamic stability and rapid emergence from anaesthesia without relevant side effects or toxity. The major limitation for its application in clinical routine is the high price. Recent studies demonstrated additional protective effects against ischaemic injury in particular for the heart and the brain. Therefore, xenon may be beneficial in a subset of high risk patients or operations and may become a meaningful alternative to other anaesthetics in this population.

  13. Density functional theory of gas-liquid phase separation in dilute binary mixtures

    NASA Astrophysics Data System (ADS)

    Okamoto, Ryuichi; Onuki, Akira

    2016-06-01

    We examine statics and dynamics of phase-separated states of dilute binary mixtures using density functional theory. In our systems, the difference of the solvation chemical potential between liquid and gas Δ {μ\\text{s}} (the Gibbs energy of transfer) is considerably larger than the thermal energy {{k}\\text{B}}T for each solute particle and the attractive interaction among the solute particles is weaker than that among the solvent particles. In these conditions, the saturated vapor pressure increases by {{k}\\text{B}}Tn2\\ell\\exp ≤ft(Δ {μ\\text{s}}/{{k}\\text{B}}T\\right) , where n2\\ell is the solute density added in liquid. For \\exp ≤ft(Δ {μ\\text{s}}/{{k}\\text{B}}T\\right)\\gg 1 , phase separation is induced at low solute densities in liquid and the new phase remains in gaseous states, even when the liquid pressure is outside the coexistence curve of the solvent. This explains the widely observed formation of stable nanobubbles in ambient water with a dissolved gas. We calculate the density and stress profiles across planar and spherical interfaces, where the surface tension decreases with increasing interfacial solute adsorption. We realize stable solute-rich bubbles with radius about 30 nm, which minimize the free energy functional. We then study dynamics around such a bubble after a decompression of the surrounding liquid, where the bubble undergoes a damped oscillation. In addition, we present some exact and approximate expressions for the surface tension and the interfacial stress tensor.

  14. Detection of brown adipose tissue and thermogenic activity in mice by hyperpolarized xenon MRI

    PubMed Central

    Branca, Rosa Tamara; He, Ting; Zhang, Le; Floyd, Carlos S.; Freeman, Matthew; White, Christian; Burant, Alex

    2014-01-01

    The study of brown adipose tissue (BAT) in human weight regulation has been constrained by the lack of a noninvasive tool for measuring this tissue and its function in vivo. Existing imaging modalities are nonspecific and intrinsically insensitive to the less active, lipid-rich BAT of obese subjects, the target population for BAT studies. We demonstrate noninvasive imaging of BAT in mice by hyperpolarized xenon gas MRI. We detect a greater than 15-fold increase in xenon uptake by BAT during stimulation of BAT thermogenesis, which enables us to acquire background-free maps of the tissue in both lean and obese mouse phenotypes. We also demonstrate in vivo MR thermometry of BAT by hyperpolarized xenon gas. Finally, we use the linear temperature dependence of the chemical shift of xenon dissolved in adipose tissue to directly measure BAT temperature and to track thermogenic activity in vivo. PMID:25453088

  15. Preliminary results of Resistive Plate Chambers operated with eco-friendly gas mixtures for application in the CMS experiment

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Van Auwegem, P.; Benussi, L.; Bianco, S.; Cauwenbergh, S.; Ferrini, M.; Muhammad, S.; Passamonti, L.; Pierluigi, D.; Piccolo, D.; Primavera, F.; Russo, A.; Saviano, G.; Tytgat, M.

    2016-09-01

    The operations of Resistive Plate Chambers in LHC experiments require Fluorine based (F-based) gases for optimal performance. Recent European regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. In view of the CMS experiment upgrade, several tests are ongoing to measure the performance of the detector with these new ecological gas mixtures, in terms of efficiency, streamer probability, induced charge and time resolution. Prototype chambers with readout pads and with the standard CMS electronic setup are under test. In this paper preliminary results on performance of RPCs operated with a potential eco-friendly gas candidate 1,3,3,3-Tetrafluoropropene, commercially known as HFO-1234ze, with CO2 and CF3I based gas mixtures are presented and discussed for the possible application in the CMS experiment.

  16. Flow rate measurements of binary gas mixtures through long trapezoidal microchannels

    NASA Astrophysics Data System (ADS)

    Szalmas, Lajos; Colin, Stéphane; Valougeorgis, Dimitris

    2012-05-01

    The flow rate of two noble gas mixtures, namely He/Ar and He/Kr, is measured through a microsystem containing 400 long trapezoidal microchannels placed in parallel configuration. Each microchannel has a trapezoidal cross section with long base 5.38 micrometers and height 1.90 micrometers, while its length is 5000 micrometers. The experiment is based on the constant volume method. The flow is driven by pressure gradient. The flow rate measurements refer to downstream pressures of 15.1 kPa and 8.05 kPa. The pressure ratio is in the range of 3-7 and 4-7 for the larger and smaller downstream pressures, respectively. The investigated rarefaction range is in the slip and early transition regions. The concentration of He varies from zero to one. The measured flow rates are compared to the corresponding computational ones obtained by the numerical solution of the McCormack kinetic model. Very good agreement between the experimental and computational results is reached. The difference between the corresponding results is less than the experimental uncertainty. Typical pressure and concentration profiles along the axis and the velocity profiles in the center of the channel obtained from the numerical solution are also presented.

  17. Effect of focal size on the laser ignition of compressed natural gas-air mixture

    NASA Astrophysics Data System (ADS)

    Srivastava, Dhananjay Kumar; Wintner, Ernst; Agarwal, Avinash Kumar

    2014-07-01

    Laser ignition of compressed natural gas-air mixtures was investigated in a constant volume combustion chamber (CVCC) as well as in a single cylinder engine. Laser ignition has several potential advantages over conventional spark ignition system. Laser ignition relies on the fact that optical breakdown (plasma generation) in gases occurs at high intensities of ≈1011 W/cm2. Such high intensities can be achieved by focusing a pulsed laser beam to small focal sizes. The focal spot size depends on several parameters such as laser wavelength, beam diameter at the converging lens, beam quality and focal length. In this investigation, the focal length of the converging lens and the beam quality were varied and the corresponding effects on minimum ignition energy as well as pressure rise were recorded. The flame kernel was visualized and correlated with the rate of pressure rise inside the combustion chamber. This investigation will be helpful in the optimization of laser and optics parameters in laser ignition. It was found that beam quality factor and focal length of focusing lens have a strong impact on the minimum ignition energy required for combustion. Combustion duration depends on the energy density at the focal spot and size of the flame kernel.

  18. Analysis of siloxanes in hydrocarbon mixtures using comprehensive two-dimensional gas chromatography.

    PubMed

    Ghosh, Abhijit; Seeley, Stacy K; Nartker, Steven R; Seeley, John V

    2014-09-19

    A comprehensive two-dimensional gas chromatography (GC×GC) method for separating siloxanes from hydrocarbons has been developed using a systematic process. First, the retention indices of a set of siloxanes and a set of hydrocarbons were determined on 6 different stationary phases. The retention indices were then used to model GC×GC separation on 15 different stationary phase pairs. The SPB-Octyl×DB-1 pair was predicted to provide the best separation of the siloxanes from the hydrocarbons. The efficacy of this stationary phase pair was experimentally tested by performing a GC×GC analysis of gasoline spiked with siloxanes and by analyzing biogas obtained from a local wastewater treatment facility. The model predictions agreed well with the experimental results. The SPB-Octyl×DB-1 stationary phase pair constrained the hydrocarbons to a narrow range of secondary retention times and fully isolated the siloxanes from the hydrocarbon band. The resulting GC×GC method allows siloxanes to be resolved from complex mixtures of hydrocarbons without requiring the use of a selective detector.

  19. Direct Prediction of Cricondentherm and Cricondenbar Coordinates of Natural Gas Mixtures using Cubic Equation of State

    NASA Astrophysics Data System (ADS)

    Taraf, R.; Behbahani, R.; Moshfeghian, Mahmood

    2008-12-01

    A numerical algorithm is presented for direct calculation of the cricondenbar and cricondentherm coordinates of natural gas mixtures of known composition based on the Michelsen method. In the course of determination of these coordinates, the equilibrium mole fractions at these points are also calculated. In this algorithm, the property of the distance from the free energy surfaces to a tangent plane in equilibrium condition is added to saturation calculation as an additional criterion. An equation of state (EoS) was needed to calculate all required properties. Therefore, the algorithm was tested with Soave-Redlich-Kwong (SRK), Peng-Robinson (PR), and modified Nasrifar-Moshfeghian (MNM) equations of state. For different EoSs, the impact of the binary interaction coefficient ( k ij) was studied. The impact of initial guesses for temperature and pressure was also studied. The convergence speed and the accuracy of the results of this new algorithm were compared with experimental data and the results obtained from other methods and simulation softwares such as Hysys, Aspen Plus, and EzThermo.

  20. Stochastic diffusion interactions and coarsening in a system of droplets growing from a supersaturated gas mixture.

    PubMed

    Pines, V; Zlatkowski, M; Chait, A

    2005-01-15

    In this work we study diffusion interactions among liquid droplets growing in stochastic population by condensation from supersaturated binary gas mixture. During the postnucleation transient regime collective growth of liquid droplets competing for the available water vapor decreases local supersaturation leading to the increase of critical radius and the onset of coarsening process. In coarsening regime the growth of larger droplets is prevailing noticeably broadening the droplet size-distribution function when the condensation process becomes more intensive than the supersaturation yield. Modifications in the kinetic equation are discussed and formulated for a stochastic population of liquid droplets when diffusional interactions among droplets become noteworthy. The kinetic equation for the droplet size-distribution function is solved together with field equations for the mass fraction of disperse liquid phase, mass fraction of water vapor component of moist air, and temperature during diffusion-dominated regime of droplet coarsening. The droplet size and mass distributions are found as functions of the liquid volume fraction, showing considerable broadening of droplet spectra. It is demonstrated that the effect of latent heat of condensation considerably changes coarsening process. The coarsening rate constant, the droplet density (number of droplets per unit volume), the screening length, the mean droplet size, and mass are determined as functions of the temperature, pressure, and liquid volume fraction.

  1. Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas.

    PubMed

    Patel, Sanjay K S; Mardina, Primata; Kim, Dongwook; Kim, Sang-Yong; Kalia, Vipin C; Kim, In-Won; Lee, Jung-Kul

    2016-10-01

    Raw biogas can be an alternative feedstock to pure methane (CH4) for methanol production. In this investigation, we evaluated the methanol production potential of Methylosinus sporium from raw biogas originated from an anaerobic digester. Furthermore, the roles of different gases in methanol production were investigated using synthetic gas mixtures of CH4, carbon dioxide (CO2), and hydrogen (H2). Maximum methanol production was 5.13, 4.35, 6.28, 7.16, 0.38, and 0.36mM from raw biogas, CH4:CO2, CH4:H2, CH4:CO2:H2, CO2, and CO2:H2, respectively. Supplementation of H2 into raw biogas increased methanol production up to 3.5-fold. Additionally, covalent immobilization of M. sporium on chitosan resulted in higher methanol production from raw biogas. This study provides a suitable approach to improve methanol production using low cost raw biogas as a feed containing high concentrations of H2S (0.13%). To our knowledge, this is the first report on methanol production from raw biogas, using immobilized cells of methanotrophs.

  2. Recovery of methane from gas hydrates intercalated within natural sediments using CO(2) and a CO(2)/N(2) gas mixture.

    PubMed

    Koh, Dong-Yeun; Kang, Hyery; Kim, Dae-Ok; Park, Juwoon; Cha, Minjun; Lee, Huen

    2012-08-01

    The direct recovery of methane from massive methane hydrates (MHs), artificial MH-bearing clays, and natural MH-bearing sediments is demonstrated, using either CO(2) or a CO(2)/N(2) gas mixture (20 mol % of CO(2) and 80 mol % of N(2), reproducing flue gas from a power plant) for methane replacement in complex marine systems. Natural gas hydrates (NGHs) can be converted into CO(2) hydrate by a swapping mechanism. The overall process serves a dual purpose: it is a means of sustainable energy-source exploitation and greenhouse-gas sequestration. In particular, scant attention has been paid to the natural sediment clay portion in deep-sea gas hydrates, which is capable of storing a tremendous amount of NGH. The clay interlayer provides a unique chemical-physical environment for gas hydrates. Herein, for the first time, we pull out methane from intercalated methane hydrates in a clay interlayer using CO(2) and a CO(2)/N(2) gas mixture. The results of this study are expected to provide an essential physicochemical background required for large-scale NGH production under the seabed.

  3. Characteristics of a cylindrical collector mirror for laser-produced xenon plasma soft X-rays and improvement of mirror lifetime by buffer gas

    SciTech Connect

    Inoue, Tomoaki; Mochizuki, Takayasu; Miyamoto, Shuji; Masuda, Kazuya; Amano, Sho; Kanda, Kazuhiro

    2012-12-15

    The focusing characteristics of a ruthenium-coated cylindrical mirror were investigated on the basis of its ability to collect and focus broadband 5-17-nm soft X-rays emitted from a laser-produced plasma. Based on the plasmas spectral intensity distribution and the reflectivity function of the mirror, we defined the optimum position of the integrated cylindrical mirror at which the X-ray energy flux transported and focused through the mirror was maximum. A minimum spot diameter of 22 mm at a distance of approximately 200 mm from a soft X-ray source was confirmed. The maximum intensity of the collected soft X-rays was 1.3 mJ/cm{sup 2} at the center of the irradiation zone. Thus, the irradiation intensity was improved by approximately 27 times when compared to that of 47 {mu}J/cm{sup 2} without the mirror. The debris sputtering rate on the reflection surface of the mirror can be reduced to 1/110 by argon gas at 11 Pa, while the attenuation rate of the soft X-rays due to absorption by the buffer gas can be suppressed to less than 10% at the focal point. The focusing property of the mirror is expected to be maintained for 3000 h or longer without significant degradation for a 100 W/320 pps laser shot if the ruthenium layer is thicker than 10 {mu}m. These results suggest that a stand-alone broadband soft X-ray processing system can be realized by using laser-produced plasma soft X-rays.

  4. Characteristics of a cylindrical collector mirror for laser-produced xenon plasma soft X-rays and improvement of mirror lifetime by buffer gas.

    PubMed

    Inoue, Tomoaki; Mochizuki, Takayasu; Miyamoto, Shuji; Masuda, Kazuya; Amano, Sho; Kanda, Kazuhiro

    2012-12-01

    The focusing characteristics of a ruthenium-coated cylindrical mirror were investigated on the basis of its ability to collect and focus broadband 5-17-nm soft X-rays emitted from a laser-produced plasma. Based on the plasmas spectral intensity distribution and the reflectivity function of the mirror, we defined the optimum position of the integrated cylindrical mirror at which the X-ray energy flux transported and focused through the mirror was maximum. A minimum spot diameter of 22 mm at a distance of approximately 200 mm from a soft X-ray source was confirmed. The maximum intensity of the collected soft X-rays was 1.3 mJ/cm(2) at the center of the irradiation zone. Thus, the irradiation intensity was improved by approximately 27 times when compared to that of 47 μJ/cm(2) without the mirror. The debris sputtering rate on the reflection surface of the mirror can be reduced to 1/110 by argon gas at 11 Pa, while the attenuation rate of the soft X-rays due to absorption by the buffer gas can be suppressed to less than 10% at the focal point. The focusing property of the mirror is expected to be maintained for 3000 h or longer without significant degradation for a 100 W/320 pps laser shot if the ruthenium layer is thicker than 10 μm. These results suggest that a stand-alone broadband soft X-ray processing system can be realized by using laser-produced plasma soft X-rays.

  5. Xenon hydrate dissociation measurements with model protein systems.

    PubMed

    Booker, Ryan D; Koh, Carolyn A; Sloan, E Dendy; Sum, Amadeu K; Shalaev, Evgenyi; Singh, Satish K

    2011-09-01

    Effective long-term storage remains a significant challenge to the use and development of protein pharmaceuticals. We have investigated the interactions between clathrate hydrates and model protein solutions to determine the effects on hydrate formation. Here, the dissociation curve and equilibrium conditions for xenon clathrate hydrate with model lysozyme and lactate dehydrogenase (LDH) protein solutions have been studied using calorimetry measurements at pressures ranging from 3 to 20 bar. Sucrose in solution was shown to exhibit small inhibition effects on xenon hydrate formation, shifting the dissociation curve and decreasing the conversion of water to hydrate by 15-26%. The addition of l-histidine buffer and lysozyme at low concentrations did not substantially inhibit hydrate formation. However, small shifts in the dissociation curve were demonstrated for solutions containing LDH. The presence of lysozyme and LDH in solution did not significantly alter the conversion of water to hydrate, indicating that these and similar proteins do not substantially affect the extent of xenon gas hydrate formation. Preliminary experiments were performed for LDH solutions to assess the impact of xenon hydrate formation and dissociation on enzymatic activity, with samples stored in hydrate systems showing small decreases in activity.

  6. Reduced xenon diffusion for quantitative lung study--the role of SF(6)

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Hoffmann, D.; Sheth, S. A.; Wong, G. P.; Butler, J. P.; Patz, S.; Topulos, G. P.; Walsworth, R. L.

    2000-01-01

    The large diffusion coefficients of gases result in significant spin motion during the application of gradient pulses that typically last a few milliseconds in most NMR experiments. In restricted environments, such as the lung, this rapid gas diffusion can lead to violations of the narrow pulse approximation, a basic assumption of the standard Stejskal-Tanner NMR method of diffusion measurement. We therefore investigated the effect of a common, biologically inert buffer gas, sulfur hexafluoride (SF(6)), on (129)Xe NMR and diffusion. We found that the contribution of SF(6) to (129)Xe T(1) relaxation in a 1:1 xenon/oxygen mixture is negligible up to 2 bar of SF(6) at standard temperature. We also measured the contribution of SF(6) gas to (129)Xe T(2) relaxation, and found it to scale inversely with pressure, with this contribution approximately equal to 1 s for 1 bar SF(6) pressure and standard temperature. Finally, we found the coefficient of (129)Xe diffusion through SF(6) to be approximately 4.6 x 10(-6) m(2)s(-1) for 1 bar pressure of SF(6) and standard temperature, which is only 1.2 times smaller than the (129)Xe self diffusion coefficient for 1 bar (129)Xe pressure and standard temperature. From these measurements we conclude that SF(6) will not sufficiently reduce (129)Xe diffusion to allow accurate surface-area/volume ratio measurements in human alveoli using time-dependent gas diffusion NMR.

  7. Modeling high-pressure adsorption of gas mixtures on activated carbon and coal using a simplified local-density model.

    PubMed

    Fitzgerald, James E; Robinson, Robert L; Gasem, Khaled A M

    2006-11-07

    The simplified local-density (SLD) theory was investigated regarding its ability to provide accurate representations and predictions of high-pressure supercritical adsorption isotherms encountered in coalbed methane (CBM) recovery and CO2 sequestration. Attention was focused on the ability of the SLD theory to predict mixed-gas adsorption solely on the basis of information from pure gas isotherms using a modified Peng-Robinson (PR) equation of state (EOS). An extensive set of high-pressure adsorption measurements was used in this evaluation. These measurements included pure and binary mixture adsorption measurements for several gas compositions up to 14 MPa for Calgon F-400 activated carbon and three water-moistened coals. Also included were ternary measurements for the activated carbon and one coal. For the adsorption of methane, nitrogen, and CO2 on dry activated carbon, the SLD-PR can predict the component mixture adsorption within about 2.2 times the experimental uncertainty on average solely on the basis of pure-component adsorption isotherms. For the adsorption of methane, nitrogen, and CO2 on two of the three wet coals, the SLD-PR model can predict the component adsorption within the experimental uncertainties on average for all feed fractions (nominally molar compositions of 20/80, 40/60, 60/40, and 80/20) of the three binary gas mixture combinations, although predictions for some specific feed fractions are outside of their experimental uncertainties.

  8. Working process study of a novel scroll type multiphase pump for the transportation of gas-liquid mixtures

    NASA Astrophysics Data System (ADS)

    Wang, J.; Zha, H. B.; Zhang, X. H.; Zhang, D. H.

    2012-11-01

    A novel scroll type multiphase pump was proposed to transport gas-liquid two-phase mixture. There is a pressure unloading gap from compression chambers to the discharge port by constructing scroll wrap profile with variational meshing clearance in this scroll multiphase pump. In the working process when the volume of working chamber decreases, the pressure of gas-liquid mixtures increases gradually, at the same time small amounts of gas-liquid mixture are pushed to the discharge port from compression chambers through the pressure unloading gap. Therefore, this multiphase pump has an advantage of unloading pressure method automatically, and the frequently problem of liquid impacting in volume multiphase pump is solved. The safety and reliability of volumetric multiphase pump are improved, and the scope of multiphase pump of the gas-liquid ratio is expanded. The working process and the performance characteristics of scroll multiphase pump were analyzed too, and the generation method of scroll wrap profile with variational meshing clearance was investigated. The equations of the profile were obtained, and the changing principle of the working volume and the meshing clearance were analyzed. The geometric theory of scroll multiphase pump was formed. All of that lay the theoretical foundation for engineering design of this novel scroll.

  9. Terrestrial and Martian weathering signatures of xenon components in shergottite mineral separates

    NASA Astrophysics Data System (ADS)

    Cartwright, J. A.; Ocker, K. D.; Crowther, S. A.; Burgess, R.; Gilmour, J. D.

    2010-08-01

    Xenon-isotopic ratios, step-heating release patterns, and gas concentrations of mineral separates from Martian shergottites Roberts Massif (RBT) 04262, Dar al Gani (DaG) 489, Shergotty, and Elephant Moraine (EET) 79001 lithology B are reported. Concentrations of Martian atmospheric xenon are similar in mineral separates from all meteorites, but more weathered samples contain more terrestrial atmospheric xenon. The distributions of xenon from the Martian and terrestrial atmospheres among minerals in any one sample are similar, suggesting similarities in the processes by which they were acquired. However, in opaque and maskelynite fractions, Martian atmospheric xenon is released at higher temperatures than terrestrial atmospheric xenon. It is suggested that both Martian and terrestrial atmospheric xenon were initially introduced by weathering (low temperature alteration processes). However, the Martian component was redistributed by shock, accounting for its current residence in more retentive sites. The presence or absence of detectable 129Xe from the Martian atmosphere in mafic minerals may correspond to the extent of crustal contamination of the rock's parent melt. Variable contents of excess 129Xe contrast with previously reported consistent concentrations of excess 40Ar, suggesting distinct sources contributed these gases to the parent magma.

  10. Magnetic Field Strength Dependence of Transverse Relaxation and Signal-to-Noise Ratio for Hyperpolarized Xenon-129 and Helium-3 Gas Magnetic Resonance Imaging of Lungs

    NASA Astrophysics Data System (ADS)

    Dominguez-Viqueira, William

    Magnetic resonance (MR) imaging with hyperpolarized noble gases (HNG), 3He or 129Xe, has become a promising approach for studying lung anatomy and function. Unlike conventional MR imaging, the magnetization in HNG MR is independent of the magnetic field strength. This means that no improvement in signal-to-noise ratio (SNR) is expected with increasing clinical field strength above ˜0.25T. Furthermore, it has been predicted that the SNR may decline at clinical field strength due to decreases in the apparent transverse relaxation time (T2*), caused by the increased magnetic susceptibility induced field gradients at the air-tissue interface. In this thesis the magnetic field strength dependence of T2* and SNR in HNG MR is investigated experimentally in rodent and human lungs. For rodent imaging, a novel broad-band (0.1-100MHz) variable field strength MR imaging system for rodents was built. This system permitted imaging of 129Xe, 3He and 1H at low magnetic field strengths (3-73.5mT) to experimentally investigate the field dependence of HNG imaging SNR in rodent lungs. In vivo 129Xe and 3He signals were acquired at 73.5mT and T 2* was estimated to be approximately 180+/-8 ms, in good agreement with previously reported values. At 73.5mT, image noise is dominated by losses originated from the radiofrequency (RF) coils. To address this issue, RF coils were built using different types of copper wire and compared in phantoms and in vivo in rat lungs using hyperpolarized 3He and 129Xe gas. An SNR improvement of up to 200% was obtained with Litz wire compared to conventional copper wire. This improvement demonstrated the feasibility of HNG lung imaging in rodents at 73.5mT with SNR comparable to that obtained at clinical field strengths. To verify the SNR field dependence in humans, hyperpolarized 3He lung imaging at two commonly used clinical field strengths (1.5T and 3T) was performed in the same volunteers and compared. No significant differences in SNR were obtained

  11. Xenon as a Neuroprotectant in Traumatic Brain Injury

    DTIC Science & Technology

    2012-03-01

    Device and Dragonfly (model HPD-1700) Variable Pressure Waveform Generator with transducer, charge amplifier, and remote triggering device were...manufactured by Dragonfly and were delivered to Dr. Kristal’s laboratory. 1c. Methods development. Xenon/air delivery. Methods for gas delivery...ridge and fitted with a Leur-loc fitting and the animal is attached to the Dragonfly (model HPD-1700) Variable Pressure Waveform Generator and subjected

  12. Quench gases for xenon- (and krypton-) filled proportional counters

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Agrawal, P. C.

    1988-01-01

    Xenon-filled proportional counters are used extensively in astronomy, particularly in the hard X-ray region. The choice of quench gas can have a significant effect on the operating characteristics of the instrument although the data necessary to make the choice are not easily obtainable. Results which detail the performance obtained from both cylindrical and parallel field geometries for a wide variety of readily available, ultrahigh or research grade purity, quench gases are presented.

  13. COOMET.QM-S5 (COOMET project No 576/RU/12) 'Supplementary comparison of national standards in the field of analysis of gas mixtures containing CO2, CO, C3H8 in nitrogen ("automotive" gas mixtures)'

    NASA Astrophysics Data System (ADS)

    Konopelko, L. A.; Kolobova, A. V.; Rozhnov, M. S.; Melnyk, D. M.; Petryshyn, P. V.; Shpilnyi, S. A.; Iakubov, S. E.; Bakovec, N. V.; Kluchits, A. S.; Kipphardt, H.; Aleksandrov, V. V.

    2016-01-01

    The relevance of the COOMET.QM-S5 comparison is founded on tightening of requirements to a control of automobile emissions (realization of environmental standards of EURO 4, EURO-5). Participating laboratories: VNIIM, BAM, BelGIM, Ukrmetrteststandart, KazInMetr. This comparison was carried out in 2013-2014. This supplementary comparison supports CMC claims for: CO2 in the range (4-16) . 10-2 mol/mol; CO in the range (0.5-5) . 10-2 mol/mol; C3H8 in the range (0.01-0.3) . 10-2 mol/mol. Results: Component CO: All laboratories identified the values of carbon monoxide mole fraction in the gas mixture within +/-0.9134%. Component CO2: All laboratories identified the values of carbon dioxide mole fraction in the gas mixture within +/-0.3042%. Component C3H8: All laboratories identified the values of propane mole fraction in the gas mixture within +/-0.443%. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  14. P-wave superfluid in a quasi-two-dimensional dipolar Bose-Fermi quantum gas mixture

    NASA Astrophysics Data System (ADS)

    Kain, Ben; Ling, Hong

    2013-03-01

    The p-wave (px + ipy) superfluid has attracted significant attention in recent years mainly because its vortex core supports a Majorana fermion which, due to its non-Abelian statistics, can be explored for implementing topological quantum computation (TQC). Mixing in bosons may lead to p-wave pairing in a Fermi gas. In a dipolar condensate, the dipole-dipole interaction represents a control knob inaccessible to nondipolar Bosons. Thus, mixing dipolar bosons with fermions opens up new possibilities. We consider a mixture of a spin-polarized Fermi gas and a dipolar Bose-Einstein condensate in a quasi-two-dimensional trap setting. We take the Hartree-Fock-Bogoliubov mean-field approach and develop a theory for studying the stability of the mixture and estimating the critical temperature of the p-wave superfluid. We use this theory to identify the experimentally accessible parameter space in which the mixture is stable against phase separation and the p-wave superfluid pairing can be resonantly enhanced. An enhanced p-wave superfluid order parameter can make the fault tolerant TQC less susceptible to thermal fluctuations. This work aims to stimulate experimental activity in creating dipolar Bose-Fermi mixtures. This work is supported by the US National Science Foundation and the US Army Research Office

  15. Flame kernel characterization of laser ignition of natural gas-air mixture in a constant volume combustion chamber

    NASA Astrophysics Data System (ADS)

    Srivastava, Dhananjay Kumar; Dharamshi, Kewal; Agarwal, Avinash Kumar

    2011-09-01

    In this paper, laser-induced ignition was investigated for compressed natural gas-air mixtures. Experiments were performed in a constant volume combustion chamber, which simulate end of the compression stroke conditions of a SI engine. This chamber simulates the engine combustion chamber conditions except turbulence of air-fuel mixture. It has four optical windows at diametrically opposite locations, which are used for laser ignition and optical diagnostics simultaneously. All experiments were conducted at 10 bar chamber pressure and 373 K chamber temperature. Initial stage of combustion phenomena was visualized by employing Shadowgraphy technique using a high speed CMOS camera. Flame kernel development of the combustible fuel-air mixture was investigated under different relative air-fuel ratios ( λ=1.2-1.7) and the images were interrogated for temporal propagation of flame front. Pressure-time history inside the combustion chamber was recorded and analyzed. This data is useful in characterizing the laser ignition of natural gas-air mixture and can be used in developing an appropriate laser ignition system for commercial use in SI engines.

  16. Exploring the plasma chemistry in microwave chemical vapor deposition of diamond from C/H/O gas mixtures.

    PubMed

    Kelly, Mark W; Richley, James C; Western, Colin M; Ashfold, Michael N R; Mankelevich, Yuri A

    2012-09-27

    Microwave (MW)-activated CH(4)/CO(2)/H(2) gas mixtures operating under conditions relevant to diamond chemical vapor deposition (i.e., X(C/Σ) = X(elem)(C)/(X(elem)(C) + X(elem)(O)) ≈ 0.5, H(2) mole fraction = 0.3, pressure, p = 150 Torr, and input power, P = 1 kW) have been explored in detail by a combination of spatially resolved absorption measurements (of CH, C(2)(a), and OH radicals and H(n = 2) atoms) within the hot plasma region and companion 2-dimensional modeling of the plasma. CO and H(2) are identified as the dominant species in the plasma core. The lower thermal conductivity of such a mixture (cf. the H(2)-rich plasmas used in most diamond chemical vapor deposition) accounts for the finding that CH(4)/CO(2)/H(2) plasmas can yield similar maximal gas temperatures and diamond growth rates at lower input powers than traditional CH(4)/H(2) plasmas. The plasma chemistry and composition is seen to switch upon changing from oxygen-rich (X(C/Σ) < 0.5) to carbon-rich (X(C/Σ) > 0.5) source gas mixtures and, by comparing CH(4)/CO(2)/H(2) (X(C/Σ) = 0.5) and CO/H(2) plasmas, to be sensitive to the choice of source gas (by virtue of the different prevailing gas activation mechanisms), in contrast to C/H process gas mixtures. CH(3) radicals are identified as the most abundant C(1)H(x) [x = 0-3] species near the growing diamond surface within the process window for successful diamond growth (X(C/Σ) ≈ 0.5-0.54) identified by Bachmann et al. (Diamond Relat. Mater.1991, 1, 1). This, and the findings of similar maximal gas temperatures (T(gas) ~2800-3000 K) and H atom mole fractions (X(H)~5-10%) to those found in MW-activated C/H plasmas, points to the prevalence of similar CH(3) radical based diamond growth mechanisms in both C/H and C/H/O plasmas.

  17. Dry etching of CdTe/GaAs epilayers using CH{sub 4}H{sub 2} gas mixtures

    SciTech Connect

    Neswal, M.; Gresslehner, K.H.; Lischka, K.

    1993-05-01

    A CH{sub 4}/H{sub 2} gas mixture has been used for the dry etching of (100) and (111) oriented CdTe epilayers in a barrel reactor. The effects of various process parameters on etch rate and surface morphology were studied with special attention paid to the gas composition and the total chamber pressure as well as the crystallographic orientation of the sample. Clear evidence is found for both isotropic and preferential etching along crystalolographic planes depending on the set of etch parameters used. 14 refs., 7 figs.

  18. Response of electrochemical oxygen sensors to inert gas-air and carbon dioxide-air mixtures: measurements and mathematical modelling.

    PubMed

    Walsh, P T; Gant, S E; Dowker, K P; Batt, R

    2011-02-15

    Electrochemical oxygen gas sensors are widely used for monitoring the state of inertisation of flammable atmospheres and to warn of asphyxiation risks. It is well established but not widely known by users of such oxygen sensors that the response of the sensor is affected by the nature of the diluent gas responsible for the decrease in ambient oxygen concentration. The present work investigates the response of electrochemical sensors, with either acid or alkaline electrolytes, to gas mixtures comprising air with enhanced levels of nitrogen, carbon dioxide, argon or helium. The measurements indicate that both types of sensors over-read the oxygen concentrations when atmospheres contain high levels of helium. Sensors with alkaline electrolytes are also shown to underestimate the severity of the hazard in atmospheres containing high levels of carbon dioxide. This deviation is greater for alkaline electrolyte sensors compared to acid electrolyte sensors. A Computational Fluid Dynamics (CFD) model is developed to predict the response of an alkaline electrolyte, electrochemical gas sensor. Differences between predicted and measured sensor responses are less than 10% in relative terms for nearly all of the gas mixtures tested, and in many cases less than 5%. Extending the model to simulate responses of sensors with acid electrolytes would be straightforward.

  19. Method of and apparatus for measuring the mean concentration of thoron and/or radon in a gas mixture

    DOEpatents

    Lucas, Henry

    1990-01-01

    A method of and an apparatus for detecting and accurately measuring the mean concentrations of .sup.222 Rn and .sup.220 Tn in a gas mixture, such as the ambient atmosphere in a mine, is provided. The apparatus includes an alpha target member which defines at least one operative target surface and which is preferably fabricated from a single piece of an alpha particle sensitive material. At least one portion of the operative target surface is covered with an alpha particle filter. The uncovered and filter covered operative surface is exposed to the gas mixture containing the .sup.222 Rn and .sup.220 Tn. In the radioactive decay series of these isotopes the maximum kinetic energy emitted by the alpha decay of .sup.222 Rn is about 1.1 MeV less than the maximum kinetic energy emitted by the alpha decay of a .sup.220 Tn. The alpha particle filter has a predetermined mass per unit area of the covered portion of the operative target surface that prevents penetration of alpha particles which originate from .sup.222 Rn decay, but which allows passage therethrough of the maximum kinetic energy alpha particles from .sup.220 Tn decay. Thus, a count of the alpha particle tracks in the uncovered portion of the target member is proportional to the mean concentration of sum of .sup.222 Rn and .sup.220 Tn in the gas mixture, while the count of alpha tracks in the target member under the filter is proportional to the concentration of only the .sup.220 Tn in the gas mixture.

  20. [Radioprotective action of a gas hypoxic mixture GHM-10 in multiple irradiations of rat and human skin].

    PubMed

    Strelkov, R B; Chizhov, A Ia; Tokarev, O Iu; Tolstykh, V N; Kucherenko, N G

    1983-01-01

    Gas hypoxic mixture (GHM-10) decreased significantly the occurrence and duration of radioepidermitis after local therapeutic fractionated irradiation of Wistar rat skin with a cumulative dose of 66 Gy. In patients subjected to radiation therapy and protected with GHM-10 erythema and epidermitis developed at a much higher cumulative dose than in the controls. With erythema dose modifying coefficient was 1.38 +/- 0.06.

  1. Numerical Prediction of Radiation Measurements Taken in the X2 Facility for Mars and Titan Gas Mixtures

    NASA Technical Reports Server (NTRS)

    Palmer, Grant; Prabhu, Dinesh; Brandis, Aaron; McIntyre, Timothy J.

    2011-01-01

    Thermochemical relaxation behind a normal shock in Mars and Titan gas mixtures is simulated using a CFD solver, DPLR, for a hemisphere of 1 m radius; the thermochemical relaxation along the stagnation streamline is considered equivalent to the flow behind a normal shock. Flow simulations are performed for a Titan gas mixture (98% N2, 2% CH4 by volume) for shock speeds of 5.7 and 7.6 km/s and pressures ranging from 20 to 1000 Pa, and a Mars gas mixture (96% CO2, and 4% N2 by volume) for a shock speed of 8.6 km/s and freestream pressure of 13 Pa. For each case, the temperatures and number densities of chemical species obtained from the CFD flow predictions are used as an input to a line-by-line radiation code, NEQAIR. The NEQAIR code is then used to compute the spatial distribution of volumetric radiance starting from the shock front to the point where thermochemical equilibrium is nominally established. Computations of volumetric spectral radiance assume Boltzmann distributions over radiatively linked electronic states of atoms and molecules. The results of these simulations are compared against experimental data acquired in the X2 facility at the University of Queensland, Australia. The experimental measurements were taken over a spectral range of 310-450 nm where the dominant contributor to radiation is the CN violet band system. In almost all cases, the present approach of computing the spatial variation of post-shock volumetric radiance by applying NEQAIR along a stagnation line computed using a high-fidelity flow solver with good spatial resolution of the relaxation zone is shown to replicate trends in measured relaxation of radiance for both Mars and Titan gas mixtures.

  2. Toxicity of Carbon Monoxide-Hydrogen Cyanide Gas Mixtures: Expose Concentration, Time-to-Incapacitation, Carboxyhemoglobin, and Blood Cyanide Parameters

    DTIC Science & Technology

    1994-04-01

    demonstrated that these gases have additive effects (producing shorter times to incapacitation), but the resulting concentrations of carboxyhemoglobin ( COHb ...Incapacitation (Q1 , Carboxyhemoglobin ( COHb ), and Blood Cyanide (CN*) Values for Rats Exposed to Two Carbon Monoxide (CO)-Hydrogen Cyanide (HCN) Gas Mixtures...Inc., Evanston, IL. 9 APPENDIX TIME-TO-INCAPACITATION (ti) VALUES AND CARBOXYHEMOGLOBIN ( COHb ) AND BLOOD (CN) LEVELS AT INCAPACITATION FOR RATS

  3. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature

    PubMed Central

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-01-01

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255

  4. Electron ranaway and ion-ion plasma formation in afterglow low-pressure plasma of oxygen-containing gas mixtures

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Kosykh, Nikolay; Gutsev, Sergey

    2012-10-01

    Experimental investigation of temporal evolution of charged plasma species in afterglow plasma of oxygen-containing mixtures have been investigated. The probe VAC and the time dependence of the saturation positive and negative particles currents to a probe in a fixed bias voltage were performed. The decay of afterglow low-pressure electronegative gas plasmas take place in two distinct stages (the electron-ion stage, and the ion-ion stage) as it was shown in [1] for pure oxygen. In the first stage, the negative ions are locked within a discharge volume and plasma is depleted of electrons and positive ions. The electron density decay is faster, than exponential, and practically all electrons leave plasma volume during finite time followed by the ion--ion (electron-free) plasma formation. The decay of the ion-ion plasma depends on the presence of detachment. With a large content of electronegative gas (oxygen) in a mixture, when there is a ``detachment particles,'' a small fraction of the electrons appearing as a result of the detachment continue to hold all negative ions in the discharge volume. In this case, the densities of all charged plasma components decay according to the same exponential law with a characteristic detachment time. At a low oxygen content in the gas mixture there is no detachment and plasma decays by an ion--ion ambipolar diffusion mechanism.[4pt][1]. S.A.Gutsev, A.A.Kudryavtsev, V.A.Romanenko. Tech.Phys. 40, 1131, (1995).

  5. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature.

    PubMed

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-02-19

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons.

  6. Micro-pattern gas detectors for digital radiography

    NASA Astrophysics Data System (ADS)

    Altunbas, Mustafa Cem

    The gas proportional counter technology has seen vast changes in the last decade and has lead to the introduction of micro-pattern gas detectors that offer much more improved x-ray counting rate capability and better position resolution than traditional wire chambers. In this study, we investigated the Gas Electron Multiplier, a member of micro-pattern gas detector generation, as an energy sensitive, single photon-counting x-ray detector for digital radiography. We built a high pressure detector with two cascaded Gas Electron Multipliers to evaluate its performance characteristics in Neon, Argon, Krypton and Xenon mixtures. The determination of detector gain as a function of pressure and the filling gas formed the major part of this evaluation. In the second part of the study, we employed position sensitive electronics to demonstrate the imaging capability of the detector. For the first time, we acquired 2D images and examined the spatial resolution of the detector for Krypton and Xenon mixtures as a function of gas pressure using double and quadruple GEM configurations up to 7 atmospheres gas pressure. Besides the experimental studies, we constructed a theoretical model based on the Cascaded Linear Systems approach to study the imaging performance of single photon counting gas detectors. In the model, we gave the emphasis to the intrinsic properties of the gas absorber; therefore we considered the contribution of quantum efficiency, primary electron range and reabsorption of K fluorescence photons on detector MTF and DQE.

  7. Influence of gas temperature on self-sustained volume discharge characteristics in working mixtures of a repetitively pulsed COIL

    SciTech Connect

    Aksinin, V I; Kazantsev, S Yu; Kononov, I G; Podlesnykh, S V; Firsov, K N; Antsiferov, S A; Velikanov, S D; Kalinovskii, V V; Konovalov, V V; Mikhalkin, V N; Sevryugin, I V

    2014-02-28

    The influence of gas temperature on the characteristics of a self-sustained volume discharge was studied in the working mixtures of a chemical oxygen – iodine laser with pulsed electricdischarge production of iodine atoms. In experiments, laser working mixtures were modelled by the mixture of air and iodide C{sub 2}H{sub 5}I. It was established that mixture heating is accompanied by an increase in the voltage across the discharge plasma and by a decrease in the discharge current. By varying the temperature of the mixture with the iodine content of ∼2.7% and initial pressure p=12 Torr from 22 °C to 96 °C, the current amplitude falls by ∼12%, and at the instant corresponding to a maximal current the voltage raises by ∼22%. Such a change in the discharge characteristics is explained by a higher rate of electron attachment to vibrationally excited iodide molecules at elevated temperatures. (active media)

  8. High Precision Xenon Measurements Reveal the Presence of Solar Xenon in the Mantle Source of Mid Ocean Ridge Basalts

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Langmuir, C. H.

    2006-12-01

    Xenon isotopes provide unique insights into the sources of volatile material for planet Earth, the degassing of the mantle, and the chemical evolution of the mantle. Whether the Earth's mantle has solar or planetary heavy noble gases has remained a fundamental and outstanding question. Resolving this issue is crucial for planet accretion models and understanding how volatiles were incorporated into the solid Earth. Here we report the detection of solar, or possibly chondritic (Q), xenon in a gas-rich basalt glass. The sample was collected from the Hotu Matua seamount chain, located south of the Sojourn Ridge, during the 2001 Cook16MV expedition. Xenon was extracted by step crushing fresh basalt glass in vacuum, and xenon isotopes were measured using the Nu multicollector noble gas mass spectrometer at Harvard. Based on reproducibility of standards run over a period of 3 days, which were similar in size (3.5 x 10^{-14}cc of ^{130}Xe) to the sample, external precision for ^{124,126}Xe/^{130}Xe ratios are better than 2%, for ^{128}Xe/^{130}Xe is 7‰, and for ^{129}Xe/^{130}Xe and ^{136}Xe/^{130}Xe ratios are 4‰. These uncertainties are only marginally larger than predicted from counting statistics. A clear excess in ^{124,126,128}Xe was observed. The anomalies in non-radiogenic isotopes of xenon cannot result from instrumental mass fractionation or other experimental artifacts since excesses in ^{128}Xe are correlated with excesses in ^{129}Xe. In addition, the ^{129}Xe/^{130}Xe and ^{136}Xe/^{130}Xe ratios fall on the MORB line. Thus, we conclude that the anomalies in the non-radiogenic isotopes of xenon are a real feature of the mantle source of MORBs. Excesses in ^{124,126,128}Xe/^{130}Xe ratios plot on the air solar mixing line and indicate the presence of a solar xenon component in the MORB source. Since the non-radiogenic isotopic composition of solar and Q xenon are similar, a chondritic xenon component cannot be ruled out. Krypton isotopes can potentially

  9. Monitoring xenon purity in the LUX detector with a mass spectrometry system

    NASA Astrophysics Data System (ADS)

    Balajthy, Jon; LUX Experiment Collaboration

    2015-04-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. To monitor for radioactive impurities such as krypton and impurities which limit charge yield such as oxygen, LUX uses a xenon sampling system consisting of a mass spectrometer and a liquid nitrogen cold trap. The cold trap separates the gaseous impurities from a small sample of xenon and allows them to pass to the mass spectrometer for analysis. We report here on results from the LUX xenon sampling program. We also report on methods to enhance the sensitivity of the cold trap technique in preparation for the next-generation LUX-ZEPLIN experiment which will have even more stringent purity requirements.

  10. Adsorption behavior of ternary mixtures of noble gases inside single-walled carbon nanotube bundles

    NASA Astrophysics Data System (ADS)

    Foroutan, Masumeh; Nasrabadi, Amir Taghavi

    2010-09-01

    In order to study the gas-storage and gas-filtering capability of carbon nanotube (CNT) bundles simultaneously, we considered the adsorption behavior of a ternary mixture of noble gases, including Argon (Ar), Krypton (Kr), and Xenon (Xe), i.e., Ar-Kr-Xe mixture, on (10, 10) single-walled carbon nanotube (SWCNT) bundles. Molecular dynamics (MD) simulations at different temperatures of (75, 100, 150, 200, 250, and 300) K were performed, and adsorption energies, self-diffusion coefficients, activation energies, and radial distribution functions (RDFs) were computed to analyze the thermodynamics, transport and structural properties of the adsorption systems. It is observed that the SWCNT bundles have larger contents of heavier noble gases compared to the lighter ones. This interesting behavior of SWCNT bundles makes them proper candidates for gas-storage and gas molecular-sieving processes.

  11. Molecular dynamics investigation of separation of hydrogen sulfide from acidic gas mixtures inside metal-doped graphite micropores.

    PubMed

    Huang, Pei-Hsing

    2015-09-21

    The separation of poisonous compounds from various process fluids has long been highly intractable, motivating the present study on the dynamic separation of H2S in acidic-gas-mixture-filled micropores. The molecular dynamics approach, coupled with the isothermal-isochoric ensemble, was used to model the molecular interactions and adsorption of H2S/CO2/CO/H2O mixtures inside metal-doped graphite slits. Due to the difference in the adsorption characteristics between the two distinct adsorbent materials, the metal dopant in the graphitic micropores leads to competitive adsorption, i.e. the Au and graphite walls compete to capture free adsorbates. The effects of competitive adsorption, coupled with changes in the gas temperature, concentration, constituent ratio and slit width on the constituent separation of mixtures were systematically studied. The molecule-wall binding energies calculated in this work (those of H2S, H2O and CO on Au walls and those of H2O, CO and CO2 on graphite walls) show good agreement with those obtained using density functional theory (DFT) and experimental results. The z-directional self-diffusivities (Dz) for adsorbates inside the slit ranged from 10(-9) to 10(-7) m(2) s(-1) as the temperature was increased from 10 to 500 K. The values are comparable with those for a typical microporous fluid (10(-8)-10(-9) m(2) s(-1) in a condensed phase and 10(-6)-10(-7) m(2) s(-1) in the gaseous state). The formation of H-bonding networks and hydrates of H2S is disadvantageous for the separation of mixtures. The results indicate that H2S can be efficiently separated from acidic gas mixtures onto the Au(111) surface by (i) reducing the mole fraction of H2S and H2O in the mixtures, (ii) raising the gas temperature to the high temperature limit (≥400 K), and (iii) lowering the slit width to below the threshold dimension (≤23.26 Å).

  12. Gas emissions and engine behavior when gasoline-alcohol mixtures are used.

    PubMed

    Arapatsakos, C I; Karkanis, A N; Sparis, P D

    2003-09-01

    This paper deals with the use of gasoline-methanol and gasoline-ethanol mixtures in a small four-stroke engine of internal combustion that is used for the movement of a small alternative generator. It was observed that CO and HC emissions decrease compared to gasoline when the percentage of methanol, ethanol in the fuel was increased, under different load conditions (without load conditions and under full electrical load conditions). The use of gasoline-methanol mixtures showed a higher decrease of emissions. When the mixtures of gasoline-70%methanol and gasoline-90%ethanol and 100%ethanol for which the engine malfunctioned, the rpm of the engine were not constant and the emissions were increased. It is also important that (with the existing regulation of the fuel/air ratio that refers to gasoline) the engine functioned for the case of gasoline-methanol mixtures up to a concentration of -70%methanol mixture, while for the case of gasoline-ethanol mixtures until the use of 100%ethanol. Furthermore, during the use of the mixtures of gasoline-methanol and gasoline-ethanol there was a small increase of fuel consumption when the percentage of the methanol or ethanol in the fuel was increased.

  13. Numerical study of an ArH2 gas mixture flowing inside and outside a dc plasma torch

    NASA Astrophysics Data System (ADS)

    Eichert, P.; Imbert, M.; Coddet, C.

    1998-12-01

    The flow of gas mixtures in a dc plasma torch is studied using the CFD PHOENICS (CFD PHOENICS, Berkeley, CA) code. In the model, the cold gas mixture (300 K), initially constituted of 85 vol% Ar and 15 vol% H, is introduced into a power input zone where it takes energy and is ejected in the surrounding atmosphere at constant pressure (105 Pa). The flow is assumed to be in chemical equilibrium. Equations of mass, momentum, and energy are discretized using a control-volume method. The turbulent flow is modeled by a k-ɛ two-equations model for the turbulent kinetic energy and its dissipation rate. Finally, the algebraic coupling equations set is solved by means of the SIMPLEST algorithm, implemented into the CFD code, using a hybrid interpolation scheme. Results concern the effect of the torch power on the ArH2 flow. The phenomenon is analyzed through the evolution of velocity and temperature inside and outside the torch. From these calculations, the effect of ambient gas entrainment by the jet is emphasized and a comparison of the level of entrained gas is made with experimental data.

  14. Final report on EURAMET.QM-S10/1274: supplementary comparison of preparative capabilities for automotive gas mixtures

    NASA Astrophysics Data System (ADS)

    Val'ková, M.; Ďurišová, Z.; Szilágyi, Z. N.; Büki, T.; Fükű, J.

    2016-01-01

    This bilateral supplementary preparative comparison involves standard gas mixtures of automotive gas containing carbon monoxide, carbon dioxide and propane in nitrogen. Two laboratories (SMU, Slovakia and MKEH, Hungary) participated in this supplementary comparison. SMU was the coordinating laboratory, responsible for collecting and reporting measurement results. The participants have established facilities for automotive gas gravimetric preparation and analysis. The agreement of the results in this supplementary comparison is good. All the results with their reported uncertainties are in agreement with the reference values for the participants. SMU participated and obtained good results in the previous preparative comparison organised within EURAMET in this field. Both laboratories have existing claims for their Calibration and Measurement Capabilities (CMCs) for automotive gas mixtures. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  15. Analytical Modeling of Weld Bead Shape in Dry Hyperbaric GMAW Using Ar-He Chamber Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Azar, Amin S.; Ås, Sigmund K.; Akselsen, Odd M.

    2013-03-01

    Hyperbaric arc welding is a special application of joining the pipeline steels under seawater. In order to analyze the behavior of the arc under ambient pressure, a model is required to estimate the arc efficiency. A distributed point heat source model was employed. The simulated isotherms were calibrated iteratively to fit the actual bead cross section. Basic gas mixture rules and models were used to calculate the thermal properties of the low-temperature shielding gas under the ambient pressure of 10 bar. Nine bead-on-plate welds were deposited each of which under different Ar-He chamber gas compositions. The well-known correlation between arc efficiency (delivered heat) and the thermal conductivity was established for different gas mixtures. The arc efficiency was considered separately for the transverse and perpendicular heat sources. It was found that assigning single heat efficiency factor for the entire arc, which is usually below unity, causes a noticeable underestimation for the heat transfer in the perpendicular direction and a little overestimation in the transverse direction.

  16. Electron-beam sustained discharge in oxygen gas mixtures: singlet delta oxygen production for oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Frolov, Mikhail P.; Hager, Gordon D.; Ionin, Andrei A.; Klimachev, Yurii M.; Kochetov, Igor V.; Kotkov, Andrei A.; McIver, John K.; Napartovich, Anatolii P.; Podmar'kov, Yurii P.; Seleznev, Leonid V.; Sinitsyn, Dmitrii V.; Vagin, Nikolai P.; Yuryshev, Nikolay N.

    2004-09-01

    Electric properties and spectroscopy of an e-beam sustained discharge (EBSD) in oxygen and oxygen gas mixtures at gas pressure up to 100 Torr were experimentally studied. The pulsed discharge in pure oxygen and its mixtures with noble gases was shown to be very unstable and characterized by low input energy. When adding small amount of carbon monoxide or hydrogen, the electric stability of the discharge increases, specific input energy (SIE) per molecular component being more than order of magnitude higher and coming up to 6.5 kJ/(l atm) for gas mixture O2:Ar:CO = 1:1:0.1. The results of experiments on spectroscopy of the singlet delta oxygen O2(a1Δg)(SDO) and O2(b1Σg+) states in the EBSD are presented. The calibration of the optical scheme for measuring the SDO absolute concentration and yield using the detection of luminescence of the SDO going from a chemical SDO generator was done. The preliminary measurement of the SDO yield demonstrated that it was ~3% for the SIE of ~1 kJ/(l atm), which is close to the results of theoretical calculations for such a SIE. Theoretical calculations demonstrated that for the SIE of 6.5 kJ/(l atm) the SDO yield may reach ~20% exceeding its threshold value needed for oxygen-iodine laser operation at room temperature, although a part of the energy loaded into the EBSD goes into the vibrational energy of the molecular admixture, (which was experimentally demonstrated by launching a CO laser operating on an oxygen-rich mixture O2:Ar:CO = 1:1:0.1 and measuring its small-signal gain).

  17. Analysis of Trace Gas Mixtures Using an External Cavity Quantum Cascade Laser Sensor

    SciTech Connect

    Phillips, Mark C.; Taubman, Matthew S.; Brumfield, Brian E.; Kriesel, Jason M.

    2015-07-01

    We measure and analyze mixtures of trace gases at ppb-ppm levels using an external cavity quantum cascade laser sensor with a 1-second response time. Accurate spectral fits are obtained in the presence of overlapping spectra.

  18. Xenon NMR measurements of permeability and tortuosity in reservoir rocks.

    PubMed

    Wang, Ruopeng; Pavlin, Tina; Rosen, Matthew Scott; Mair, Ross William; Cory, David G; Walsworth, Ronald Lee

    2005-02-01

    In this work we present measurements of permeability, effective porosity and tortuosity on a variety of rock samples using NMR/MRI of thermal and laser-polarized gas. Permeability and effective porosity are measured simultaneously using MRI to monitor the inflow of laser-polarized xenon into the rock core. Tortuosity is determined from measurements of the time-dependent diffusion coefficient using thermal xenon in sealed samples. The initial results from a limited number of rocks indicate inverse correlations between tortuosity and both effective porosity and permeability. Further studies to widen the number of types of rocks studied may eventually aid in explaining the poorly understood connection between permeability and tortuosity of rock cores.

  19. Apparatus complex based on liquid xenon detector for gamma spectrometry in the intervals between pulses of intense radiation

    NASA Astrophysics Data System (ADS)

    Kirsanov, M. A.

    2017-01-01

    To investigate the effects of intense radiation on the operation of the liquid xenon spectrometer we have created apparatus complex on the basis of the liquid xenon detector. The experimental setup consists of a multifunctional chamber, gas system, cooling system, temperature control system, X-ray generator, a special preamp, passive protection, scintillation monitor of the accelerator beam, thermoluminescent dosimeters, copper monitor bremsstrahlung, Ge(Li) detector. Multifunctional chamber includes a detecting unit (flat or cylindrical ionization chamber), the cleaning unit of the xenon, control unit of the purity of liquid xenon. The liquid xenon detector was irradiated by bremsstrahlung pulses of the microtron. The frequency of irradiation pulses was 400 Hz. The absorbed dose was varied from 10-7 to 0.1 Gy per pulse. The electronic and ionic processes in liquid xenon at different radiation doses were investigated. The recovery time of the spectrometric mode of operation of the liquid xenon detector after intense pulse irradiation has been studied. Stable operation of the liquid xenon spectrometer in the intervals between the pulses of the accelerator shown for a long time.

  20. On a modified Monte-Carlo method and variable soft sphere model for rarefied binary gas mixture flow simulation

    NASA Astrophysics Data System (ADS)

    Nourazar, S. S.; Jahangiri, P.; Aboutalebi, A.; Ganjaei, A. A.; Nourazar, M.; Khadem, J.

    2011-06-01

    The effect of new terms in the improved algorithm, the modified direct simulation Monte-Carlo (MDSMC) method, is investigated by simulating a rarefied binary gas mixture flow inside a rotating cylinder. Dalton law for the partial pressures contributed by each species of the binary gas mixture is incorporated into our simulation using the MDSMC method and the direct simulation Monte-Carlo (DSMC) method. Moreover, the effect of the exponent of the cosine of deflection angle (α) in the inter-molecular collision models, the variable soft sphere (VSS) and the variable hard sphere (VHS), is investigated in our simulation. The improvement of the results of simulation is pronounced using the MDSMC method when compared with the results of the DSMC method. The results of simulation using the VSS model show some improvements on the result of simulation for the mixture temperature at radial distances close to the cylinder wall where the temperature reaches the maximum value when compared with the results using the VHS model.

  1. Effect of hydrogen ratio on plasma parameters of N{sub 2}-H{sub 2} gas mixture glow discharge

    SciTech Connect

    El-Brulsy, R. A.; Abd Al-Halim, M. A.; Abu-Hashem, A.; Rashed, U. M.; Hassouba, M. A.

    2012-05-15

    A dc plane glow discharge in a nitrogen-hydrogen (N{sub 2}-H{sub 2}) gas mixture has been operated at discharge currents of 10 and 20 mA. The electron energy distribution function (EEDF) at different hydrogen concentrations is measured. A Maxwellian EEDF is found in the positive column region, while in both cathode fall and negative glow regions, a non-Maxwellian one is observed. Langmuir electric probes are used at different axial positions, gas pressures, and hydrogen concentrations to measure the electron temperature and plasma density. The electron temperature is found to increase with increasing H{sub 2} concentration and decrease with increasing both the axial distance from the cathode and the mixture pressure. At first, with increasing distance from the cathode, the ion density decreases, while the electron density increases; then, as the anode is further approached, they remain nearly constant. At different H{sub 2} concentrations, the electron and ion densities decrease with increasing the mixture pressure. Both the electron and ion densities slightly decrease with increasing H{sub 2} concentration.

  2. Development of traceable precision dynamic dilution method to generate dimethyl sulphide gas mixtures at sub-nanomole per mole levels for ambient measurement.

    PubMed

    Kim, Mi Eon; Kim, Yong Doo; Kang, Ji Hwan; Heo, Gwi Suk; Lee, Dong Soo; Lee, Sangil

    2016-04-01

    Dimethyl sulphide (DMS) is an important compound in global atmospheric chemistry and climate change. Traceable international standards are essential for measuring accurately the long-term global trend in ambient DMS. However, developing accurate gas standards for sub-nanomole per mole (nmol/mol) mole fractions of DMS in a cylinder is challenging, because DMS is reactive and unstable. In this study, a dynamic dilution method that is traceable and precise was developed to generate sub-nmol/mol DMS gas mixtures with a dynamic dilution system based on sonic nozzles and a long-term (>5 years) stable 10 μmol/mol parent DMS primary standard gas mixtures (PSMs). The dynamic dilution system was calibrated with traceable methane PSMs, and its estimated dilution factors were used to calculate the mole fractions of the dynamically generated DMS gas mixtures. A dynamically generated DMS gas mixture and a 6 nmol/mol DMS PSM were analysed against each other by gas chromatography with flame-ionisation detection (GC/FID) to evaluate the dilution system. The mole fractions of the dynamically generated DMS gas mixture determined against a DMS PSM and calculated with the dilution factor agreed within 1% at 6 nmol/mol. In addition, the dynamically generated DMS gas mixtures at various mole fractions between 0.4 and 11.7 nmol/mol were analysed by GC/FID and evaluated for their linearity. The analytically determined mole fractions showed good linearity with the mole fractions calculated with the dilution factors. Results showed that the dynamic dilution method generates DMS gas mixtures ranging between 0.4 nmol/mol and 12 nmol/mol with relative expanded uncertainties of less than 2%. Therefore, the newly developed dynamic dilution method is a promising reference method for generating sub-nmol/mol DMS gas standards for accurate ambient measurements.

  3. Evaluation of carrier agents for hyperpolarized xenon MRI

    NASA Technical Reports Server (NTRS)

    Venkatesh, A. K.; Zhao, L.; Balamore, D.; Jolesz, F. A.; Albert, M. S.

    2000-01-01

    Several biocompatible carrier agents, in which xenon is highly soluble and has a long T(1), were tested, and injected in living rats. These included saline, Intralipid suspension, perfluorocarbon emulsion and (129)Xe gas-filled liposomes. The T(1) of (129)Xe in these compounds ranged from 47 to 116 s. Vascular injection of these carrier agents was tolerated well, encouraging their use for further experiments in live animals. In vivo spectra, obtained from gas-filled liposomes and perfluorocarbon solutions, suggest that these carrier agents have potential for use in angiography and perfusion imaging. Copyright 2000 John Wiley & Sons, Ltd.

  4. Gas-liquid-liquid equilibria in mixtures of water, light gases, and hydrocarbons

    SciTech Connect

    Chao, K.C.

    1990-01-01

    Phase equilibrium in mixtures of water + light gases and water + heavy hydrocarbons has been investigated with the development of new local composition theory, new equations of state, and new experimental data. The preferential segregation and orientation of molecules due to different energies of molecular interaction has been simulated with square well molecules. Extensive simulation has been made for pure square well fluids and mixtures to find the local composition at wide ranges of states. A theory of local composition has been developed and an equation of state has been obtained for square well fluids. The new local composition theory has been embedded in several equations of state. The pressure of water is decoupled into a polar pressure and non-polar pressure according to the molecular model of water of Jorgensen et al. The polar pressure of water is combined with the BACK equation for the general description of polar fluids and their mixtures. Being derived from the steam table, the Augmented BACK equation is particularly suited for mixtures of water + non-polar substances such as the hydrocarbons. The hydrophobic character of the hydrocarbons had made their mixtures with water a special challenge. A new group contribution equation of state is developed to describe phase equilibrium and volumetric behavior of fluids while requiring only to know the molecular structure of the components. 15 refs., 1 fig.

  5. Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials.

    PubMed

    Edison, J R; Monson, P A

    2013-11-12

    We present the extension of dynamic mean field theory (DMFT) for fluids in porous materials (Monson, P. A. J. Chem. Phys. 2008, 128, 084701) to the case of mixtures. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable equilibrium states for fluids in pores after a change in the bulk pressure or composition. It is especially useful for studying systems where there are capillary condensation or evaporation transitions. Nucleation processes associated with these transitions are emergent features of the theory and can be visualized via the time dependence of the density distribution and composition distribution in the system. For mixtures an important component of the dynamics is relaxation of the composition distribution in the system, especially in the neighborhood of vapor-liquid interfaces. We consider two different types of mixtures, modeling hydrocarbon adsorption in carbon-like slit pores. We first present results on bulk phase equilibria of the mixtures and then the equilibrium (stable/metastable) behavior of these mixtures in a finite slit pore and an inkbottle pore. We then use DMFT to describe the evolution of the density and composition in the pore in the approach to equilibrium after changing the state of the bulk fluid via composition or pressure changes.

  6. Combustion of hydrogen-based mixtures in gas-fueled reciprocating engines

    NASA Astrophysics Data System (ADS)

    Smygalina, A. E.; Zaitchenko, V. M.; Ivanov, M. F.; Kiverin, A. D.

    2015-12-01

    The research is devoted to the possibility for application of hydrogen accumulated from renewable energy sources as a fuel for a reciprocating engine, which serves as an electrical generator drive. Hydrogen combustion in the chamber of a reciprocating engine, as a rule, occurs in a detonation mode. In order to obtain less hard modes, the present research proposes the usage of steam additions to hydrogen-air mixture or lean hydrogen-air mixtures. Mathematical simulation is used for investigation of combustion of mentioned mixtures in the combustion chamber of a reciprocating engine with a spark-plug ignition. The comparison of the usage of hydrogen-steam-air mixtures and lean hydrogen-air mixtures as fuels is given. The dependence of arising combustion modes and its quantitative characteristics on hydrogen content in combustible composition is investigated. The analysis of optimal combustion is presented, which is based on the consideration of two parameters: peak pressure in one cycle and the crankshaft angle corresponding to the achievement of the peak pressure.

  7. Laser flash-photolysis and gas discharge in N2O-containing mixture: kinetic mechanism

    NASA Astrophysics Data System (ADS)

    Kosarev, Ilya; Popov, Nikolay; Starikovskaia, Svetlana; Starikovskiy, Andrey; mipt Team

    2011-10-01

    The paper is devoted to further experimental and theoretical analysis of ignition by ArF laser flash-photolysis and nanosecond discharge in N2O-containing mixture has been done. Additional experiments have been made to assure that laser emission is distributed uniformly throughout the cross-section. The series of experiments was proposed and carried out to check validity of O(1D) determination in experiments on plasma assisted ignition initiated by flash-photolysis. In these experiments, ozone density in the given mixture (mixture composition and kinetics has been preliminary analyzed) was measured using UV light absorption in Hartley band. Good coincidence between experimental data and results of calculations have been obtained Temporal behavior of energy input, electric field and electric current has been measured and analyzed. These data are considered as initial conditions for numerical modeling of the discharge in O2:N2O:H2:Ar = 0.3:1:3:5 mixture. Ion-molecular reactions and reactions of active species production in Ar:H2:O2:N2O mixture were analyzed. The set of reactions to describe chemical transformation in the system due to the discharge action has been selected.

  8. Xenon fluoride solutions effective as fluorinating agents

    NASA Technical Reports Server (NTRS)

    Hyman, H. H.; Quarterman, L. A.; Sheft, I.

    1967-01-01

    Solutions of xenon fluorides in anhydrous hydrogen fluoride have few disruptive effects and leave a residue consisting of gaseous xenon, which can be recovered and refluorinated. This mild agent can be used with materials which normally must be fluorinated with fluorine alone at high temperatures.

  9. Stability of xenon oxides at high pressures.

    PubMed

    Zhu, Qiang; Jung, Daniel Y; Oganov, Artem R; Glass, Colin W; Gatti, Carlo; Lyakhov, Andriy O

    2013-01-01

    Xenon, which is quite inert under ambient conditions, may become reactive under pressure. The possibility of the formation of stable xenon oxides and silicates in the interior of the Earth could explain the atmospheric missing xenon paradox. Using an ab initio evolutionary algorithm, we predict the existence of thermodynamically stable Xe-O compounds at high pressures (XeO, XeO(2) and XeO(3) become stable at pressures above 83, 102 and 114 GPa, respectively). Our calculations indicate large charge transfer in these oxides, suggesting that large electronegativity difference and high pressure are the key factors favouring the formation of xenon compounds. However, xenon compounds cannot exist in the Earth's mantle: xenon oxides are unstable in equilibrium with the metallic iron occurring in the lower mantle, and xenon silicates are predicted to decompose spontaneously at all mantle pressures (<136 GPa). However, it is possible that xenon atoms may be retained at defects in mantle silicates and oxides.

  10. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon

    SciTech Connect

    Malinina, A. A. Malinin, A. N.

    2013-12-15

    Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10{sup −14} m{sup 3}/s for a reduced electric field of E/N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λ{sub max} = 502 nm) was observed in this experiment.

  11. Dynamic behavior of gas-blasted arcs in SF/sub 6/-N/sub 2/ mixtures

    SciTech Connect

    Sasao, H.; Hamano, S.; Murai, Y.; Veda, Y.; Yamaji, S.

    1982-10-01

    The arc quenching phenomenon in an SF/sub 6/-N/sub 2/ mixture was analyzed by using the simulation program developed by the authors. The gas flow from the cylinder to the arc was investigated as a function of SF/sub 6/-N/sub 2/ mixing ratio in relation to the configuration of the arc chamber. The pressure rise in the cylinder was measured to confirm the result of the simulation by varying the SF/sub 6/-N/sub 2/ mixing ratio. The result of the simulation suggests that the desirable configuration of arc chamber should be changed depending upon the mixing ratio of SF/sub 6/-N/sub 2/ mixture.

  12. Optical Characteristics of a Gas Discharge Plasma Based on a Mixture of Mercury Diiodide Vapor, Nitrogen, and Helium

    NASA Astrophysics Data System (ADS)

    Malinina, A. A.; Malinin, A. N.

    2016-09-01

    The results of studies of spectral, temporal, and energy characteristics of radiation in a gas discharge plasma based on a mixture of mercury diiodide vapor with helium and nitrogen in the spectral range of 350-800 nm are presented. Plasma was produced by a barrier discharge in a device with a cylindrical aperture. The electrodes 0.2 m in length were placed at a distance of 0.015 m. The amplitude of the pump pulses, their duration, and frequency were equal to 20-30 kV, 150 ns, and 1-20 kHz, respectively. Radiation of mercury monoiodide exciplex molecules was revealed in the visible spectra region. Dependences of the plasma optical characteristics on the partial pressures of the mixture components were established.

  13. Inert gas influence on the laminar burning velocity of methane-air mixtures.

    PubMed

    Mitu, Maria; Giurcan, Venera; Razus, Domnina; Oancea, Dumitru

    2017-01-05

    Flame propagation was studied in methane-air-inert (He, Ar, N2 or CO2) mixtures with various initial pressures and compositions using pressure-time records obtained in a spherical vessel with central ignition. The laminar burning velocities of CH4-air and CH4-air-inert mixtures obtained from experimental p(t) records of the early stage of combustion were compared with literature data and with those obtained from numerical modeling of 1D flames. The overall reaction orders of methane oxidation were determined from the baric coefficients of the laminar burning velocities determined from power-law equations. For all mixtures, the adiabatic flames temperatures were computed, assuming that the chemical equilibrium is reached in the flame front. The overall activation energy for the propagation stage of the combustion process was determined from the temperature dependence of the laminar burning velocity.

  14. Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures

    NASA Astrophysics Data System (ADS)

    Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.

    2015-03-01

    Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.

  15. Determination of atmospheric concentrations of xenon radioisotopes. Progress report

    SciTech Connect

    Abel, K.H.; Panisko, M.E.; Hensley, W.K.; Bowyer, T.W.; Perkins, R.W.

    1995-07-01

    Determination of radioactive xenon concentrations in the atmosphere over a two year period has been performed as part of a research program to develop real-time measurement capabilities. The initial measurements were made to develop, prove, and validate the authors technical approach, while the longer-term measurements are being undertaken to establish natural background concentrations and variability with time. The results reported were made using noble gas fraction (typically 90% Kr and 10% Xe by weight) gas samples obtained from a commercial air-reduction plant in the northeastern US over a two-year interval beginning in the fall of 1993. The concentrated gas samples were typically obtained during a 6--8 hour interval at the commercial reduction plant and were shipped overnight to their laboratory. Analysis was typically completed approximately 24 hours after sampling. The analytical separation process typically took approximately 6 hours and gamma-ray spectrometric measurements were conducted for intervals ranging from 3 to 16 hours. The technical approach involved removal of potentially interfering radon daughter radionuclides using a molecular sieve at room temperature, followed by cryogenic concentration of noble gases using a chilled ({minus}76 C) activated carbon molecular sieve. During initial measurements both molecular sieve materials were contained in 30 foot x 1/4 inch gas chromatography columns for analytical separations. Krypton was separated from Xenon during the analytical procedure by warming the activated carbon molecular sieve to room temperature after initial noble gas concentration and actively pumping it away. Xenon-133 adsorbed to the activated charcoal molecular sieve was then quantified via its 81 keV gamma-ray using initially a p-type intrinsic germanium detector and later a higher efficiency (64% relative to a 3 inch x 3 inch sodium iodide) n-type intrinsic germanium detector.

  16. Endocrine-Disrupting Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and Recommendations to Assess Complex Environmental Mixtures

    PubMed Central

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2015-01-01

    Background Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. Objectives We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. Methods We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. Discussion In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. Conclusions We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs. Citation Kassotis CD, Tillitt DE, Lin CH, McElroy JA, Nagel SC. 2016. Endocrine-disrupting chemicals and oil and natural gas operations: potential environmental contamination and recommendations to assess complex environmental mixtures. Environ Health Perspect 124:256–264; http://dx.doi.org/10.1289/ehp.1409535 PMID:26311476

  17. Evaluation of Breathing Mixtures to be Used during Decompression for Mixed Gas Surface Supplied Dives,

    DTIC Science & Technology

    1982-01-31

    to provide for more than the most limited areas of application in terms of depth and exposure time. Further, experimental tests using modern methods...absolute.. The low oxygen percentage was necessary to provide a mixture which, with hydrogen was non-explosive and non- flamable . Since this mixture would...total of 47.2 + 4.6 = 51.8, well below the required limit . This produces a savings of 40% or 35 minutes which would appear to be a substantial benefit

  18. Selective Adsorption of CO2 from Light Gas Mixtures Using a Structurally Dynamic Porous Coordination Polymer**

    SciTech Connect

    Kristi L. Kauffman, Jeffrey T. Culp, Andrew J. Allen, Laura Espinal, Winnie Wong-Ng, Thomas D. Brown, Angela Goodman, Mark P. Bernardo, Russel J. Pancoast, Danielle Chirdon, Christopher Matranga*

    2010-01-01

    The selective adsorption of CO{sub 2} from mixtures with N{sub 2}, CH{sub 4}, and N{sub 2}O in a dynamic porous coordination polymer (see monomer structure) was evaluated by ATR-FTIR spectroscopy, GC, and SANS. All three techniques indicate highly selective adsorption of CO{sub 2} from CO{sub 2}/CH{sub 4} and CO{sub 2}/N{sub 2} mixtures at 30 C, with no selectivity observed for the CO{sub 2}/N{sub 2}O system.

  19. Stable xenon nitride at high pressures

    NASA Astrophysics Data System (ADS)

    Peng, Feng; Wang, Yanchao; Wang, Hui; Zhang, Yunwei; Ma, Yanming

    2015-09-01

    Nitrides in many ways are fascinating since they often appear as superconductors, high-energy density, and hard materials. Though there exist a large variety of nitrides, noble gas nitrides are missing in nature. Pursuit of noble gas nitrides has therefore become the subject of topical interests, but remains as a great challenge since molecular nitrogen (N2, a major form of nitrogen) and noble gases are both inert systems and do not interact at normal conditions. We show through a first-principles swarm-structure search that high pressure enables a direct interaction of N2 and xenon (Xe) above 146 GPa. The resultant Xe nitride has a peculiar stoichiometry of XeN6, possessing a high-energy density of approximately 2.4 kJg -1, rivaling that of the modern explosives. Structurally, XeN6 is intriguing with the appearance of chaired N6 hexagons and unusually high 12-coordination of Xe bonded with N. Our work opens up the possibility of achieving Xe nitride with superior high-energy density whose formation is long sought as impossible.

  20. Inference and analysis of xenon outflow curves under multi-pulse injection in two-dimensional chromatography.

    PubMed

    Shu-Jiang, Liu; Zhan-Ying, Chen; Yin-Zhong, Chang; Shi-Lian, Wang; Qi, Li; Yuan-Qing, Fan

    2013-10-11

    Multidimensional gas chromatography is widely applied to atmospheric xenon monitoring for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). To improve the capability for xenon sampling from the atmosphere, sampling techniques have been investigated in detail. The sampling techniques are designed by xenon outflow curves which are influenced by many factors, and the injecting condition is one of the key factors that could influence the xenon outflow curves. In this paper, the xenon outflow curves of single-pulse injection in two-dimensional gas chromatography has been tested and fitted as a function of exponential modified Gaussian distribution. An inference formula of the xenon outflow curve for six-pulse injection is derived, and the inference formula is also tested to compare with its fitting formula of the xenon outflow curve. As a result, the curves of both the one-pulse and six-pulse injections obey the exponential modified Gaussian distribution when the temperature of the activated carbon column's temperature is 26°C and the flow rate of the carrier gas is 35.6mLmin(-1). The retention time of the xenon peak for one-pulse injection is 215min, and the peak width is 138min. For the six-pulse injection, however, the retention time is delayed to 255min, and the peak width broadens to 222min. According to the inferred formula of the xenon outflow curve for the six-pulse injection, the inferred retention time is 243min, the relative deviation of the retention time is 4.7%, and the inferred peak width is 225min, with a relative deviation of 1.3%.

  1. A preliminary investigation into a simple method for the determination of the mean ionisation energy of gas mixtures used in the NPL primary gas counting system.

    PubMed

    Phillips, H C; Sephton, J P; Johansson, L C; Dean, J C J

    2012-09-01

    The activity concentration of gaseous beta-emitting radionuclides such as (3)H, (85)Kr and, more recently, (11)C, is measured at NPL using a set of length-compensated proportional counters. The active gas is mixed with argon-methane (P-10) and passed to the counters. Adding gases to P-10 changes the mean ionisation energy, W, of the gas mixture. Estimation of the counting losses using the Monte Carlo model requires a knowledge of W. Unfortunately, only a limited amount of published data is available. This paper describes the initial experimental studies performed to enable the extension of the MC model based loss correction method to gases other than carbon dioxide in P-10. Preliminary measurements have been made to determine the W value for a gas mixture containing (85)Kr in nitrogen and P-10. The DC current through the counters is measured; the counters are also operated in the normal way with pulse amplifiers, discriminators and scalers. The value of W is derived from a knowledge of activity, counter current and mean beta energy.

  2. Variability and repeatability of olfactometric results of n-butanol, pig odour and a synthetic gas mixture.

    PubMed

    Defoer, N; Van Langenhove, H

    2004-01-01

    For the purposes of a research project for the Flemish authorities, olfactometric measurements were carried out at six closed pig farms and six fattener farms. The results of these olfactometric measurements were compared with the olfactometric results of n-butanol samples and samples of a synthetic gas mixture of ethanethiol, methylacetate and 2-propanol in nitrogen, both analysed on the same days as the air samples from the pig farms. The results of the n-butanol tests for all panellists showed that nobody was qualified according to the CEN criteria, and that, consequently, these criteria are rather stringent. Comparing the variability of the results for the three different odours showed that the mean and standard deviation of the mean variance were not significantly different for the three odour types, which means that the repeatability of the panellist results was equal for the examined odour types. The principle of traceability was checked by comparing the variance of the n-butanol, pig odour and synthetic mixture ratio. For the complete dataset, the principle of traceability could not been proven for n-butanol. For the restricted dataset, the principle of traceability was more valid for n-butanol than for the mixture, but differences were small. Finally, normalization was looked for with regard to olfactometric measurements of air samples from pig arms based either on n-butanol or on the synthetic mixture. Both models had low determination coefficients, but the model based on the synthetic mixture gave better results than the one based on n-butanol.

  3. On the Equipartition of Kinetic Energy in an Ideal Gas Mixture

    ERIC Educational Resources Information Center

    Peliti, L.

    2007-01-01

    A refinement of an argument due to Maxwell for the equipartition of translational kinetic energy in a mixture of ideal gases with different masses is proposed. The argument is elementary, yet it may work as an illustration of the role of symmetry and independence postulates in kinetic theory. (Contains 1 figure.)

  4. Sputtering Yields for Mixtures of Organic Materials Using Argon Gas Cluster Ions.

    PubMed

    Seah, M P; Havelund, R; Shard, A G; Gilmore, I S

    2015-10-22

    The sputtering yield volumes of binary mixtures of Irganox 1010 with either Irganox 1098 or Fmoc-pentafluoro-L-phenylalanine (FMOC) have been measured for 5 keV Ar2000(+) ions incident at 45° to the surface normal. The sputtering yields are determined from the doses to sputter through various compositions of 100 nm thick, intimately mixed, layers. Because of matrix effects, the profiles for secondary ions are distorted, and profile shifts in depth of 15 nm are observed leading to errors above 20% in the deduced sputtering yield. Secondary ions are selected to avoid this. The sputtering yield volumes for the mixtures are shown to be lower than those deduced from a linear interpolation from the pure materials. This is shown to be consistent with a simple model involving the changing energy absorbed for the sputtering of intimate mixtures. Evidence to support this comes from the secondary ion data for pairs of the different molecules. Both binary mixtures behave similarly, but matrix effects are stronger for the Irganox 1010/FMOC system.

  5. Xenon Gamma Detector Project Support

    SciTech Connect

    Vanier,P.E.; Forman, L.

    2008-04-01

    This project provided funding of $48,500 for part of one year to support the development of compressed xenon spectrometers at BNL. This report describes upgrades that were made to the existing detector system electronics during that period, as well as subsequent testing with check sources and Special Nuclear Materials. Previous testing of the equipment extended only up to the energy of 1.3 MeV, and did not include a spectrum of Pu-239. The new electronics allowed one-button activation of the high voltage ramp that was previously controlled by manual adjustments. Mechanical relays of the charging circuit were replaced by a tera-ohm resistor chain and an optical switch. The preamplifier and shaping amplifier were replaced by more modern custom designs. We found that the xenon purity had not been degraded since the chamber was filled 10 years earlier. The resulting spectra showed significantly better resolution than sodium iodide spectra, and could be analyzed quite effectively by methods using peak area templates.

  6. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  7. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  8. Quantitative analysis of CO-humidity gas mixtures with self-heated nanowires operated in pulsed mode

    NASA Astrophysics Data System (ADS)

    Prades, J. D.; Hernández-Ramírez, F.; Fischer, T.; Hoffmann, M.; Müller, R.; López, N.; Mathur, S.; Morante, J. R.

    2010-12-01

    Self-heating effect in individual metal oxide nanowires can be used to activate their response to gases with power consumptions below tenths of microwatts. The thermal response time of these devices is extremely fast (a few milliseconds) and it makes it possible to observe the kinetics of the interactions between the gas molecules and the metal oxide. In this work we demonstrate that such effects enable an experimental methodology to improve the selectivity of metal oxide-based sensors based on the analysis of their fast response dynamics. Specifically, this work jointly analyzes the magnitude and response time of SnO2 nanowire-based sensors to carbon monoxide (CO) and humidity (H2O) mixtures, proving that a quantitative analysis of CO-H2O gas blends can be achieved by modulating their work temperature through the self-heating effect.

  9. The atmosphere of Mars - Detection of krypton and xenon

    NASA Technical Reports Server (NTRS)

    Owen, T.; Biemann, K.; Biller, J. E.; Lafleur, A. L.; Rushneck, D. R.; Howarth, D. W.

    1976-01-01

    Krypton and xenon have been discovered in the Martian atmosphere with the mass spectrometer on the second Viking lander. Krypton is more abundant than xenon. The relative abundances of the krypton isotopes appear normal, but the ratio of xenon-129 to xenon-132 is enhanced on Mars relative to the terrestrial value for this ratio. Some possible implications of these findings are discussed.

  10. Standardized test mixture for the characterization of comprehensive two-dimensional gas chromatography columns: the Phillips mix.

    PubMed

    Dimandja, Jean-Marie D; Clouden, Garrick C; Colón, Ivelisse; Focant, Jean-François; Cabey, Whitney V; Parry, Ritchard C

    2003-11-26

    A novel column characterization test mixture is developed for use in comprehensive two-dimensional gas chromatography (GC x GC). This mixture has been named the "Phillips mix" in honor of the late professor John B. Phillips, the father of GC x GC. The mixture comprises a series of homologous compounds from structural groups that cover a volatility and polarity range that is similar to the Grob mix, and includes saturated hydrocarbons (alkanes), unsaturated hydrocarbons (alkenes and alkynes), carbonyls (ketones and aldehydes), primary alcohols, fatty acid methyl esters, alkyl ethers, carboxylic acids, aromatics, as well as other unique functional groups (such as amines, etc.). Similarly to the Grob mix in conventional one-dimensional GC, the Phillips mix can be used as a standardized test for performance characterization of GC x GC column sets. Unlike the Grob mix, however, the Phillips mix's most important use is as a practical guideline for column users. This paper addresses some qualitative aspects of the use of the Phillips mix through an investigation of the chromatographic fingerprints of two different GC x GC column combinations.

  11. Improved Resolution of Hydrocarbon Structures and Constitutional Isomers in Complex Mixtures Using Gas Chromatography-Vacuum Ultraviolet-Mass Spectrometry

    SciTech Connect

    Isaacman, Gabriel; Wilson, Kevin R.; Chan, Arthur W. H.; Worton, David R.; Kimmel, Joel R.; Nah, Theodora; Hohaus, Thorsten; Gonin, Marc; Kroll, Jesse H.; Worsnop, Douglas R.; Goldstein, Allen H.

    2012-01-30

    Understanding the composition of complex hydrocarbon mixtures is important for environmental studies in a variety of fields, but many prevalent compounds cannot be confidently identified using traditional gas chromatography/mass spectrometry (GC/MS) techniques. In this study, we use vacuum-ultraviolet (VUV) ionization to elucidate the structures of a traditionally “unresolved complex mixture” by separating components by GC retention time, tR, and mass-to-charge ratio, m/z, which are used to determine carbon number, NC, and the number of rings and double bonds, NDBE. Constitutional isomers are resolved on the basis of tR, enabling the most complete quantitative analysis to date of structural isomers in an environmentally relevant hydrocarbon mixture. Unknown compounds are classified in this work by carbon number, degree of saturation, presence of rings, and degree of branching, providing structural constraints. The capabilities of this analysis are explored using diesel fuel, in which constitutional isomer distribution patterns are shown to be reproducible between carbon numbers and follow predictable rules. Nearly half of the aliphatic hydrocarbon mass is shown to be branched, suggesting branching is more important in diesel fuel than previously shown. Lastly, the classification of unknown hydrocarbons and the resolution of constitutional isomers significantly improves resolution capabilities for any complex hydrocarbon mixture.

  12. Reacting gas mixtures in the state-to-state approach: The chemical reaction rates

    SciTech Connect

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-12-09

    In this work chemically reacting mixtures of viscous flows are analyzed within the framework of Boltzmann equation. By applying a modified Chapman-Enskog method to the system of Boltzmann equations general expressions for the rates of chemical reactions and vibrational energy transitions are determined as functions of two thermodynamic forces: the velocity divergence and the affinity. As an application chemically reacting mixtures of N{sub 2} across a shock wave are studied, where the first lowest vibrational states are taken into account. Here we consider only the contributions from the first four single quantum vibrational-translational energy transitions. It is shown that the contribution to the chemical reaction rate related to the affinity is much larger than that of the velocity divergence.

  13. Structures of xenon oxides at high pressures

    NASA Astrophysics Data System (ADS)

    Worth, Nicholas; Pickard, Chris; Needs, Richard; Dewaele, Agnes; Loubeyre, Paul; Mezouar, Mohamed

    2014-03-01

    For many years, it was believed that noble gases such as xenon were entirely inert. It was only in 1962 that Bartlett first synthesized a compound of xenon. Since then, a number of other xenon compounds, including oxides, have been synthesized. Xenon oxides are unstable under ambient conditions but have been predicted to stabilize under high pressure. Here we present the results of a combined theoretical and experimental study of xenon oxides at pressures of 80-100 GPa. We have synthesized new xenon oxides at these pressures and they have been characterized with X-ray diffraction and Raman spectroscopy. Calculations were performed with a density-functional theory framework. We have used the ab-initio random structure searching (AIRSS) method together with a data-mining technique to determine the stable compounds in the xenon-oxygen system in this pressure range. We have calculated structural and optical properties of these phases, and a good match between theoretical and experimental results has been obtained. Funding for computational research provided by the engineering and physical sciences research council (EPSRC; UK). Computing resources provided by Cambridge HPC and HECToR. X-ray diffraction experiments performed at ESRF.

  14. Experimental and simulation studies of iron oxides for geochemical fixation of CO2-SO2 gas mixtures

    USGS Publications Warehouse

    Garcia, Susana; Rosenbauer, Robert J.; Palandri, James; Maroto-Valer, M. Mercedes

    2011-01-01

    Iron-bearing minerals are reactive phases of the subsurface environment and could potentially trap CO2–SO2gas mixtures derived from fossil fuel combustion processes by their conversion to siderite (FeCO3) and dissolved sulfate. Changes in fluid and mineral compositions resulting from reactions, involving the co-injection of SO2 with CO2 were observed both theoretically and experimentally. Experiments were conducted with a natural hematite (α-Fe2O3) sample. A high pressure-high temperature apparatus was used to simulate conditions in geologic formations deeper than 800 m, where CO2 is in the supercritical state. Solid samples were allowed to react with a NaCl–NaOH brine and SO2-bearing CO2-dominated gas mixtures. The predicted equilibrium mineral assemblage at 100 °C and 250 bar became hematite, dawsonite (NaAl(OH)2CO3), siderite (FeCO3) and quartz (SiO2). Experimentally, siderite and dawsonite, derived from the presence of kaolinite (Al2Si2O5(OH)4) in the parent material, were present in residual solids at longer reaction time intervals, which agreed well with results from the modelling work.

  15. The application of a cavity ring-down spectrometer to measurements of ambient ammonia using traceable primary standard gas mixtures

    NASA Astrophysics Data System (ADS)

    Martin, Nicholas A.; Ferracci, Valerio; Cassidy, Nathan; Hoffnagle, John A.

    2016-08-01

    A correction for the undesirable effects of direct and indirect cross-interference from water vapour on ammonia (NH3) measurements was developed using an optical laser sensor based on cavity ring-down spectroscopy. This correction relied on new measurements of the collisional broadening due to water vapour of two NH3 spectral lines in the near infra-red (6548.6 and 6548.8 cm-1), and on the development of novel stable primary standard gas mixtures (PSMs) of ammonia prepared by gravimetry in passivated gas cylinders at 100 μmol mol-1. The PSMs were diluted dynamically to provide calibration mixtures of dry and humidified ammonia atmospheres of known composition in the nmol mol-1 range and were employed as part of establishing a metrological traceability chain to improve the reliability and accuracy of ambient ammonia measurements. The successful implementation of this correction will allow the extension of this rapid on-line spectroscopic technique to exposure chamber validation tests under controlled conditions and ambient monitoring in the field.

  16. Characterization of a GEM-based scintillation detector with He-CF4 gas mixture in clinical proton beams

    NASA Astrophysics Data System (ADS)

    Nichiporov, D.; Coutinho, L.; Klyachko, A. V.

    2016-04-01

    Accurate, high-spatial resolution dosimetry in proton therapy is a time consuming task, and may be challenging in the case of small fields, due to the lack of adequate instrumentation. The purpose of this work is to develop a novel dose imaging detector with high spatial resolution and tissue equivalent response to dose in the Bragg peak, suitable for beam commissioning and quality assurance measurements. A scintillation gas electron multiplier (GEM) detector based on a double GEM amplification structure with optical readout was filled with a He/CF4 gas mixture and evaluated in pristine and modulated proton beams of several penetration ranges. The detector’s performance was characterized in terms of linearity in dose rate, spatial resolution, short- and long-term stability and tissue-equivalence of response at different energies. Depth-dose profiles measured with the GEM detector in the 115-205 MeV energy range were compared with the profiles measured under similar conditions using the PinPoint 3D small-volume ion chamber. The GEM detector filled with a He-based mixture has a nearly tissue equivalent response in the proton beam and may become an attractive and efficient tool for high-resolution 2D and 3D dose imaging in proton dosimetry, and especially in small-field applications.

  17. Endocrine-disrupting chemicals and oil and natural gas operations: Potential environmental contamination and recommendations to assess complex environmental mixtures

    USGS Publications Warehouse

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2016-01-01

    Background: Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. While these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals used throughout the process, including many known or suspected endocrine-disrupting chemicals.Objectives: We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and anti-hormonal activities for chemicals used.Methods: We discuss the literature on 1) surface and ground water contamination by oil and gas extraction operations, and 2) potential human exposure, particularly in context of the total hormonal and anti-hormonal activities present in surface and ground water from natural and anthropogenic sources, with initial analytical results and critical knowledge gaps discussed.Discussion: In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures.Conclusions: We describe a need for an endocrine-centric component for overall health assessments and provide supporting information that using this may help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  18. Influence of balance gas mixture on decomposition of dimethyl sulfide in a wire-cylinder pulse corona reactor.

    PubMed

    Chen, Jie; Su, Qingfa; Pan, Hua; Wei, Jianwen; Zhang, Xuming; Shi, Yao

    2009-04-01

    The influence of balance gas mixture on decomposition of dimethyl sulfide was investigated experimentally by a wire-cylinder pulse corona reactor at room temperature. A new type of high voltage pulse generator with a thyratron switch and a Blumlein pulse-forming network was used in the experiments. The experiments were conducted at a fixed pulse frequency of 100pps. The DMS decomposition efficiency as well as energy yield was investigated using varying oxygen concentration (0.6-21.0%), humidity (0-1.0%) and different balance gas (air, N(2), Ar). Breakdown voltage of DMS in Ar is lower than that of DMS in N(2), both of which are proportional to the gas pressures. The conversion of DMS in Ar is more efficient than that in N(2) and air at a fixed peak voltage. In addition, it is found that 5% oxygen is the optimum concentration in decomposition of DMS, due to higher conversion of DMS and relatively fewer yields of by products, such as O(3), NO(x) and SO(2). The highest DMS removal efficiency where the energy yield was 1.24mgkJ(-1) was achieved with the gas stream containing 0.3% H(2)O in air.

  19. Gas engine bottoming cycles with ammonia-water mixtures as working fluid

    SciTech Connect

    Jonsson, M.; Thorin, E.; Svedberg, G.

    1999-07-01

    Gas engines and diesel engines can be used for power generation in small-scale industrial and utility power plants. A bottoming cycle recovering heat from the exhaust gas, charge air, jacket water and lubrication oil can increase the power output of a gas or diesel engine power plant. The current study investigates ammonia-water power cycles as bottoming cycles to natural gas fired gas engines. The engines used in the calculations are 16V25SG and 18V34SG from Wartsila NSD. The configurations of the bottoming processes have been changed in order to achieve better temperature matching in the heat exchangers. The ammonia-water cycles have been compared to a simple Rankine steam cycle. All cycles have been optimized to give maximum power output. The ammonia-water bottoming cycles generate 18--54% more power than a simple Rankine steam cycle. An economic estimation of the bottoming cycles shows that the extra equipment needed for an ammonia-water cycle may be justified by the extra amount of power generated.

  20. Device for two-dimensional gas-phase separation and characterization of ion mixtures

    DOEpatents

    Tang, Keqi; Shvartsburg, Alexandre A.; Smith, Richard D.

    2006-12-12

    The present invention relates to a device for separation and characterization of gas-phase ions. The device incorporates an ion source, a field asymmetric waveform ion mobility spectrometry (FAIMS) analyzer, an ion mobility spectrometry (IMS) drift tube, and an ion detector. In one aspect of the invention, FAIMS operating voltages are electrically floated on top of the IMS drift voltage. In the other aspect, the FAIMS/IMS interface is implemented employing an electrodynamic ion funnel, including in particular an hourglass ion funnel. The present invention improves the efficiency (peak capacity) and sensitivity of gas-phase separations; the online FAIMS/IMS coupling creates a fundamentally novel two-dimensional gas-phase separation technology with high peak capacity, specificity, and exceptional throughput.

  1. Binary rototranslational hyper-Rayleigh spectra of H(2)-He gas mixture.

    PubMed

    Godet, J-L; Bancewicz, T; Głaz, W; Maroulis, G; Haskopoulos, A

    2009-11-28

    The collision-induced rototranslational hyper-Rayleigh spectra of gaseous H(2)-He mixture are computed and discussed in the binary regime. As the input data we use our ab initio computed H(2)-He collision-induced first dipole hyperpolarizability tensor Deltabeta(R). Both the vector and the septor part of the H(2)-He hyper-Rayleigh spectra are evaluated at room temperature (T=295 K). The spectra are calculated assuming the full quantum computations based on the Schrödinger equation of the relative translational motion in the isotropic H(2)-He potential as well as using semiclassical methods.

  2. On the prediction of thermal conductivity of gas mixtures at low temperatures

    NASA Astrophysics Data System (ADS)

    Sheng, W.; Lu, B. C.-Y.

    Thermal conductivity of pure gases were correlated by means of an extended form of the modified Enskog theory together with a modified volume-translated Peng-Robinson equation of state at low temperatures and at pressures up to 370 bar. Two different approaches were used in the correlation. A substance and temperature dependent parameter was introduced in both correlations. The pure-component parameters thus obtained were used to predict the thermal conductivity of five binary mixtures (Ar-He, Ar-N2, Ar-Ne, He-N2 and N2-Ne) without using any binary adjustable parameters with various degrees of success.

  3. Radiant flash pyrolysis of biomass using a xenon flashtube

    SciTech Connect

    Hopkins, M.W.; Antal, M.J. Jr.

    1984-06-01

    Biomass materials, including lignin, redwood, corn cob, Calotropis Procera, Leucaena wood, Kraft paper, newsprint, cow manure, D-glucose, and D-cellobiose, were pyrolyzed in vacuum by the visible radiant flux emitted from a Xenon flashtube. The flux density exceeded 8 kW/cm/sup 2/ during the 1 ms flash. Sirup yields were low (avg 25%), while the gas yield was high (avg 32%). The gaseous products were composed primarily of CO and CO/sub 2/. The high relative yields of CO establish the existence of a high temperature fragmentation pathway active during the flash pyrolysis of all biomass materials. 39 references, 2 figures, 5 tables.

  4. Xenon Spectral Gamma Penetrometer Probe Characterization and Calibration

    DTIC Science & Technology

    2004-09-01

    Figure 15. The xenon gas gamma detector demonstrated the capability to fully resolve the two spectral energy lines of actinium -228, a thorium-232 progeny...daughter product), at 911 keV and 969 keV (Figure 15). Since the two actinium -228 spectral energy lines at 911 keV and 969 keV were fully resolved in...demonstrated the capability to detect the two spectral energy lines of actinium -228 but produced a smeared camel-humped peak (i.e., it was unable to

  5. Development of Liquid Xenon Imaging Gamma-Ray Spectrophotometers

    DTIC Science & Technology

    1990-07-01

    ground potential. The cathode plane is made from 63/rm diameter silver-plated beryllium copper wire set at 0.55mm pitch on a 15cm span. These wires are...100000 ( ! IUD i 10 10000 .. SCUID GAS Pressure Density (torr) 10 ,..........I (gm/cc) 10 1 1 100 120 140 160 180 200 220 240 260 280 300 Temperature (K...The freon is kept in a 30cm diameter by 10cm deep SS cryostat large enough to accomodate a 15cm diameter by 5cm deep liquid xenon cell and copper

  6. Hydrogen isotope separation installation for the regeneration of tritium from gas mixtures in tritium facilities

    SciTech Connect

    Andrew, B.M.; Perevezentsev, A.N.; Selivanenko, I.L.

    1994-12-31

    The advantages and disadvantages of different methods for hydrogen isotope separation are considered in terms of their applicability for tritium regeneration in a tritium facility. Due to low inventory, simplicity of operation, flexibility, and safety the methods of separation using solid phases are preferable for tritium facility. The detail consideration of the separation processes with a solid phase reveals that highest efficiency of separation should be achieved in a counter-current separation column, which allow multiplying the thermodynamic isotopic effect. Because of difficulties of the organization of a solid phase motion in a separation column this method did not found practical application for separation of hydrogen isotopic mixtures. The main efforts of a few researches groups were devoted to improve the chromatographic separation process and equipment. The detail comparison of the separation in sectioned column with that in chromatographic as well as in cryodistillation columns show that counter-current separation in a sectioned column is more effective and has other advantages when middle throughput is required. Complete regeneration of an isotopic mixture with separation into three practically pure isotopes independently from isotopic composition of feed can be provided using two sectioned separation columns. Separation installation can operate continuously as well as periodically.

  7. Xenon clusters in intense VUV laser fields.

    PubMed

    Santra, Robin; Greene, Chris H

    2003-12-05

    A simple model is developed that quantitatively describes intense interactions of a vacuum ultraviolet (VUV) laser pulse with a xenon cluster. We find good agreement with a recent experiment [Nature (London) 420, 482 (2002)

  8. Surface diffusion of xenon on Pt(111)

    NASA Astrophysics Data System (ADS)

    Meixner, D. Laurence; George, Steven M.

    1993-06-01

    The surface diffusion of xenon on the Pt(111) surface was investigated using laser induced thermal desorption (LITD) and temperature programmed desorption (TPD) techniques. The surface diffusion coefficient at 80 K decreased dramatically from D=8×10-7 cm2/s at θ=0.05θs to approximately D=2×10-8 cm2/s at θ=θs, where θs denotes the saturation coverage at 85 K, corresponding to a commensurate monolayer coverage of 5.0×1014 xenon atoms/cm2. This coverage dependence was consistent with attractive interactions between the adsorbed xenon atoms and the existence of two-dimensional condensed phases of xenon on Pt(111). The kinetic parameters for surface diffusion at θ=θs were Edif=1.3±0.1 kcal/mol and D0=1.1×10-4±0.2 cm2/s. The magnitude of Edif at θ=θs represented the combined effect of the intrinsic corrugation of the adsorbate-surface potential and attractive interactions between the adsorbed xenon atoms. LITD experiments at θ=0.25 θs revealed diffusion kinetic parameters of Edif=1.2±0.2 kcal/mol and D0=3.4×10-4±0.5 cm2/s. The constant Edif at low and high coverage was attributed to the ``breakaway'' of xenon atoms from the edges of condensed phase xenon islands. The coverage dependence of the surface diffusion coefficient for Xe/Pt(111) was explained by a multiple site diffusion mechanism, where collisions with xenon islands limit diffusional motion. Thermal desorption kinetics for xenon on Pt(111) were determined using TPD experiments. Using the variation of heating rates method, the desorption parameters were Edes=6.6±0.2 kcal/mol and νdes=1.3×1013±0.4 s-1, in good agreement with previous studies. The xenon TPD peak shifted to higher temperature versus initial coverage at a fixed heating rate, providing further evidence for attractive interactions between the adsorbed xenon atoms.

  9. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy.

    PubMed

    Cha, Minjun; Shin, Kyuchul; Lee, Huen; Moudrakovski, Igor L; Ripmeester, John A; Seo, Yutaek

    2015-02-03

    In this study, the kinetics of methane replacement with carbon dioxide and nitrogen gas in methane gas hydrate prepared in porous silica gel matrices has been studied by in situ (1)H and (13)C NMR spectroscopy. The replacement process was monitored by in situ (1)H NMR spectra, where about 42 mol % of the methane in the hydrate cages was replaced in 65 h. Large amounts of free water were not observed during the replacement process, indicating a spontaneous replacement reaction upon exposing methane hydrate to carbon dioxide and nitrogen gas mixture. From in situ (13)C NMR spectra, we confirmed that the replacement ratio was slightly higher in small cages, but due to the composition of structure I hydrate, the amount of methane evolved from the large cages was larger than that of the small cages. Compositional analysis of vapor and hydrate phases was also carried out after the replacement reaction ceased. Notably, the composition changes in hydrate phases after the replacement reaction would be affected by the difference in the chemical potential between the vapor phase and hydrate surface rather than a pore size effect. These results suggest that the replacement technique provides methane recovery as well as stabilization of the resulting carbon dioxide hydrate phase without melting.

  10. Comparison of primary standard gas mixtures: gravimetric production of carbon monoxide in nitrogen (3 μmol/mol)

    NASA Astrophysics Data System (ADS)

    Konopelko, L. A.; Kustikov, Y. A.; Kolobova, A. V.; Pankratov, V. V.; Pankov, A. A.; Efremova, O. V.; Augusto, Cristiane R.; Fioravante, Andreia L.; Ribeiro, Claudia C.; Teixeira, Denise C. G. S.; Elias, Elizandra C. S.; Oudwater, Rutger J.; Fagundes, Fátima A.; Silva, Marceli C.

    2016-01-01

    COOMET.QM-S3 is a supplementary comparison of primary standard gas mixtures—'Carbon monoxide in Nitrogen (3 μmol/mol)'. This is a bilateral comparison between VNIIM and INMETRO and it was conducted in 2013. Carbon monoxide is a toxic gas and in concentrations higher than 3-5 μmol/mol it is hazardous to human health. Therefore, it is important for NMIs to have the capability of an accurate carbon monoxide measurements. This comparison has shown that primary standard gas mixtures of carbon monoxide in nitrogen on the level of 3 μmol/mol, prepared in VNIIM and Inmetro, do not agree—the pair-wise degree of equivalence D (0.77%) is higher than the appropriate expanded uncertainty U(D) (0.29%). Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  11. A program for calculating expansion-tube flow quantities for real-gas mixtures and comparison with experimental results

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1972-01-01

    A computer program written in FORTRAN 4 language is presented which determines expansion-tube flow quantities for real test gases CO2 N2, O2, Ar, He, and H2, or mixtures of these gases, in thermochemical equilibrium. The effects of dissociation and first and second ionization are included. Flow quantities behind the incident shock into the quiescent test gas are determined from the pressure and temperature of the quiescent test gas in conjunction with: (1) incident-shock velocity, (2) static pressure immediately behind the incident shock, or (3) pressure and temperature of the driver gas (imperfect hydrogen or helium). The effect of the possible existence of a shock reflection at the secondary diaphragm of the expansion tube is included. Expansion-tube test-section flow conditions are obtained by performing an isentropic unsteady expansion from the conditions behind the incident shock or reflected shock to either the test-region velocity or the static pressure. Both a thermochemical-equilibrium expansion and a frozen expansion are included. Flow conditions immediately behind the bow shock of a model positioned at the test section are also determined. Results from the program are compared with preliminary experimental data obtained in the Langley 6-inch expansion tube.

  12. Transportable Xenon Laboratory (TXL-1) Operations Manual

    SciTech Connect

    Thompson, Robert C.; Stewart, Timothy L.; Willett, Jesse A.; Woods, Vincent T.

    2011-03-07

    The Transportable Xenon Laboratory Operations Manual is a guide to set up and shut down TXL, a fully contained laboratory made up of instruments to identify and measure concentrations of the radioactive isotopes of xenon by taking air samples and analyzing them. The TXL is housed in a standard-sized shipping container. TXL can be shipped to and function in any country in the world.

  13. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Shapiro, Mikhail G.; Ramirez, R. Matthew; Sperling, Lindsay J.; Sun, George; Sun, Jinny; Pines, Alexander; Schaffer, David V.; Bajaj, Vikram S.

    2014-07-01

    Magnetic resonance imaging (MRI) enables high-resolution non-invasive observation of the anatomy and function of intact organisms. However, previous MRI reporters of key biological processes tied to gene expression have been limited by the inherently low molecular sensitivity of conventional 1H MRI. This limitation could be overcome through the use of hyperpolarized nuclei, such as in the noble gas xenon, but previous reporters acting on such nuclei have been synthetic. Here, we introduce the first genetically encoded reporters for hyperpolarized 129Xe MRI. These expressible reporters are based on gas vesicles (GVs), gas-binding protein nanostructures expressed by certain buoyant microorganisms. We show that GVs are capable of chemical exchange saturation transfer interactions with xenon, which enables chemically amplified GV detection at picomolar concentrations (a 100- to 10,000-fold improvement over comparable constructs for 1H MRI). We demonstrate the use of GVs as heterologously expressed indicators of gene expression and chemically targeted exogenous labels in MRI experiments performed on living cells.

  14. Inviscid behaviour of fines-rich pyroclastic flows inferred from experiments on gas-particle mixtures [rapid communication

    NASA Astrophysics Data System (ADS)

    Roche, O.; Gilbertson, M. A.; Phillips, J. C.; Sparks, R. S. J.

    2005-12-01

    Experiments were carried out on granular flows generated by instantaneous release of gas-fluidised, bidisperse mixtures and propagating into a horizontal channel. The mixture consists of fine (< 100 μm) and coarse (> 100 μm) particles of same density, with corresponding grain size ratios of ˜ 2 to 9. Initial fluidisation of the mixture destroys the interparticle frictional contacts, and the flow behaviour then depends on the initial bed packing and on the timescale required to re-establish strong frictional contacts. At a fines mass fraction ( α) below that of optimal packing (˜ 40%), the initial mixtures consist of a continuous network of coarse particles with fines in interstitial voids. Strong frictional contacts between the coarse particles are probably rapidly re-established and the flows steadily decelerate. Some internal friction reduction appears to occur as α and the grain size ratio increases, possibly due to particle rolling and the lower roughness of internal shear surfaces. Segregation only occurs at large grain size ratio due to dynamical sieving with fines concentrated at the flow base. In contrast, at α above that for optimal packing, the initial mixtures consist of coarse particles embedded in a matrix of fines. Flow velocities and run-outs are similar to that of the monodisperse fine end-member, thus showing that the coarse particles are transported passively within the matrix whatever their amount and grain size are. These flows propagate at constant height and velocity as inviscid fluid gravity currents, thus suggesting negligible interparticle friction. We have determined a Froude number of 2.61 ± 0.08 consistent with the dam-break model for fluid flows, and with no significant variation as a function of α, the grain size ratio, and the initial bed expansion. Very little segregation occurs, which suggests low intensity particle interactions during flow propagation and that active fluidisation is not taking place. Strong frictional

  15. [Hypoxic gas mixture delivery due to a defective vaporiser manifold: case report, review of the literature and suggested emergency management algorithm].

    PubMed

    Berlet, T

    2014-04-01

    A case of delivery of a hypoxic gas mixture to a patient during total intravenous anesthesia is described. A progressive fall in inspiratory oxygen concentration followed by a drop in oxygen saturation below 90 % occurred during the advanced stages of a hitherto uneventful general anesthesia of a female patient undergoing anterior cervical fusion surgery. A malfunctioning defective rubber seal of a vaporizer manifold was identified as the cause of the gas leak. The leak had not been detected during the preanesthesia leak test. The problem of hypoxic gas mixtures and uncommon leaks in modern anesthesia equipment is discussed. The importance of locating a leak in the high or low pressure circuits is explained. An algorithm for the management of an unexpected decrease of inspiratory oxygen concentration or any other manifestation of a gas leak along with a systematic approach to locating the source of a gas leak is presented.

  16. Discharge stabilization studies of CO laser gas mixtures in quasi-steady supersonic flow

    NASA Technical Reports Server (NTRS)

    Srinivasan, G.; Smith, J. A.

    1976-01-01

    Experiments were conducted to study the applicability of a double discharge stabilization scheme in conditions appropriate for high energy CO lasers in supersonic flows. A Ludwieg tube impulse flow facility and a ballasted capacitor bank provided essentially steady flow and discharge conditions (d.c.) for times longer than ten electrode length-flow transit times. Steady, arc-free, volume discharges were produced in a Mach 3 test cavity using an auxiliary discharge to stabilize the main discharge in N2 and He/CO mixture. A signigicant result is the lack of observed plasma E/N changes in response to auxiliary discharge current changes. Also, where glow discharges were obtained, the energy loading achieved was very much less than the threshold level required for laser operation.

  17. A conservative multi-group approach to the Boltzmann equations for reactive gas mixtures

    NASA Astrophysics Data System (ADS)

    Bisi, M.; Rossani, A.; Spiga, G.

    2015-11-01

    Starting from a simple kinetic model for a quaternary mixture of gases undergoing a bimolecular chemical reaction, multi-group integro-differential equations are derived for the particle distribution functions of all species. The procedure takes advantage of a suitable probabilistic formulation, based on the underlying collision frequencies and transition probabilities, of the relevant reactive kinetic equations of Boltzmann type. Owing to an appropriate choice of a sufficiently large number of weight functions, it is shown that the proposed multi-group equations are able to fulfil exactly, at any order of approximation, the correct conservation laws that must be inherited from the original kinetic equations, where speed was a continuous variable. Future developments are also discussed.

  18. Collision-induced hyper-Rayleigh spectrum of H(2)-Ar gas mixture.

    PubMed

    Bancewicz, Tadeusz; Głaz, Waldemar; Godet, Jean-Luc; Maroulis, George

    2008-09-28

    The collision-induced hyper-Rayleigh (CIHR) spectra of the gaseous H(2)-Ar mixture are discussed in the binary regime on the basis of our ab initio computed H(2)-Ar collision-induced (CI) first dipole hyperpolarizability tensor Deltabeta(R). A method for the computation of the spherical, rotationally adapted components Deltabeta(lambdaL) ((s,K))(R) of Deltabeta(R) needed for spectroscopic line shape analysis is proposed. Both the vector and the septor parts of the H(2)-Ar CIHR spectrum are evaluated at room (T=295 K) temperature. The spectra are calculated assuming the full quantum computations based on the Schrodinger equation of the relative translational motion of H(2)-Ar as well as semiclassical methods (classical trajectory approach and Birnbaum-Cohen model translational profiles). The H(2)-Ar pair CIHR septor spectrum has been found stronger than the vector one.

  19. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. II. Rare-gas plasmas and Ar-molecular gas mixtures

    SciTech Connect

    Boffard, John B. Lin, Chun C.; Wang, Shicong; Wendt, Amy E.; Culver, Cody; Radovanov, Svetlana; Persing, Harold

    2015-03-15

    Vacuum ultraviolet (VUV) emissions from excited plasma species can play a variety of roles in processing plasmas, including damaging the surface properties of materials used in semiconductor processing. Depending on their wavelength, VUV photons can easily transmit thin upper dielectric layers and affect the electrical characteristics of the devices. Despite their importance, measuring VUV fluxes is complicated by the fact that few materials transmit at VUV wavelengths, and both detectors and windows are easily damaged by plasma exposure. The authors have previously reported on measuring VUV fluxes in pure argon plasmas by monitoring the concentrations of Ar(3p{sup 5}4s) resonance atoms that produce the VUV emissions using noninvasive optical emission spectroscopy in the visible/near-infrared wavelength range [Boffard et al., J. Vac. Sci. Technol., A 32, 021304 (2014)]. Here, the authors extend this technique to other rare-gases (Ne, Kr, and Xe) and argon-molecular gas plasmas (Ar/H{sub 2}, Ar/O{sub 2}, and Ar/N{sub 2}). Results of a model for VUV emissions that couples radiation trapping and the measured rare-gas resonance level densities are compared to measurements made with both a calibrated VUV photodiode and a sodium salicylate fluorescence detection scheme. In these more complicated gas mixtures, VUV emissions from a variety of sources beyond the principal resonance levels of the rare gases are found to contribute to the total VUV flux.

  20. Thick c-BN films deposited by radio frequency magnetron sputtering in argon/nitrogen gas mixture with additional hydrogen gas

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Gao, Wei; Xu, Bo; Li, Ying-Ai; Li, Hong-Dong; Gu, Guang-Rui; Yin, Hong

    2016-10-01

    The excellent physical and chemical properties of cubic boron nitride (c-BN) film make it a promising candidate for various industry applications. However, the c-BN film thickness restricts its practical applications in many cases. Thus, it is indispensable to develop an economic, simple and environment-friend way to synthesize high-quality thick, stable c-BN films. High-cubic-content BN films are prepared on silicon (100) substrates by radio frequency (RF) magnetron sputtering from an h-BN target at low substrate temperature. Adhesions of the c-BN films are greatly improved by adding hydrogen to the argon/nitrogen gas mixture, allowing the deposition of a film up to 5-μm thick. The compositions and the microstructure morphologies of the c-BN films grown at different substrate temperatures are systematically investigated with respect to the ratio of H2 gas content to total working gas. In addition, a primary mechanism for the deposition of thick c-BN film is proposed. Project supported by the National Natural Science Foundation of China (Grant Nos. 51572105, 61504046, and 51272224), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China, the Development and Reform Commission of Jilin Province, China (Grant No. 2015Y050), and the Scientific Research Foundation for the Returned Overseas of Jilin Province, China.

  1. Measurements of Speed of Sound in Lean and Rich Natural Gas Mixtures at Pressures up to 37 MPa Using a Specialized Rupture Tube

    NASA Astrophysics Data System (ADS)

    Botros, K. K.

    2010-12-01

    Measurements of the speed of sound in 42 different compositions of lean, medium, and rich natural-gas mixtures using a specialized high-pressure rupture tube have been conducted. The rupture tube is made of stainless steel (internal diameter = 38.1 mm and length = 42 m), and is instrumented with 13 high-frequency-response dynamic pressure transducers (Endevco) mounted very close to the rupture end and along the length of the tube to capture the pressure-time traces of the decompression wave. Tests were conducted for initial pressures ranging from 10 MPa to 37 MPa and a temperature range from -25°C to+68°C. Gas mixture compositions were controlled by mixing conventional natural-gas mixtures from an adjacent gas pipeline with richer components of alkanes. Temperature control is achieved by a heat tracer along the tube with a set point at the desired gas temperature of the particular test. Uncertainty analysis indicated that the uncertainty in the experimentally determined speed of sound in the undisturbed gas mixture at the initial pressure and temperature is on the order of 0.306 %. The measured speeds of sound were compared to predictions by five equations of state, namely; the Benedict-Webb-Rubin-Starling (BWRS), AGA-8, Peng-Robinson (PR), Redlich-Kwong-Soave (RK-Soave), and Groupe Européen de Recherches Gaziéres (GERG-2004) equations.

  2. High pressure laser plasma studies. [energy pathways in He-Ar gas mixtures at low pressure

    NASA Technical Reports Server (NTRS)

    Wells, W. E.

    1980-01-01

    The operation of a nuclear pumped laser, operating at a wavelength of 1.79 micron m on the 3d(1/2-4p(3/2) transition in argon with helium-3 as the majority gas is discussed. The energy pathways in He-Ar gas were investigated by observing the effects of varying partial pressures on the emissions of levels lying above the 4p level in argon during a pulsed afterglow. An attempt is made to determine the population mechanisms of the 3d level in pure argon by observing emission from the same transition in a high pressure plasma excited by a high energy electron beam. Both collisional radiative and dissociative recombination are discussed.

  3. Modeling and experimental measurements of thermodynamic properties of natural gas mixtures and their components

    NASA Astrophysics Data System (ADS)

    Gomez Osorio, Martin Alonso

    Chemical process design requires mathematical models for predicting thermophysical properties. Those models, called equations of state (EoS), need experimental data for parameter estimation and validation. This work presents a detailed description of a vibrating tube densimeter, which is an alternative technique for measurement of p-rho-T data in gases at critical conditions. This apparatus can measure fluids in a temperature range of 300 K to 470 K and pressures up to 140 MPa. This work calibrates the vibrating tube using a physical-based methodology with nitrogen, methane and argon measurements. Carbon dioxide and ethane p-rho-T data validate calibration procedures covering a wide range in density and pressure. The vibrating tube densimeter performs density measurements for nitrogen + methane mixtures for pressures up to 140 MPa. This work also presents a new equation of state (EoS) having a rational form that can describe properties with accuracy comparable to the best multi-parametric equations with less mathematical complexity. This EoS presents the Helmholtz residual energy as a ratio of two polynomial functions in density (no exponential terms in density are included), which can describe the behavior of pure components. The EoS can be transformed to describe other thermophysical properties as pressure, compressibility factor, heat capacity and speed of sound. Also this equation can calculate saturated liquid-vapor properties with 20 times less computational time. This work presents rational EoS for nitrogen, argon and methane applicable in wide ranges of pressure and temperature. Finally, this work proposes a new mixing rule for binary mixtures of gases based upon a quadratic combination of residual Helmholtz energy. This approach divides the energy contribution between interactions of same species and interaction of different species molecules. A rational form is proposed for description of energy interaction between molecules of different species. The

  4. Controlling the Neutron Yield from a Small Dense Plasma Focus using Deuterium-Inert Gas Mixtures

    SciTech Connect

    Bures, B. L.; Krishnan, M.; Eshaq, Y.

    2009-01-21

    The dense plasma focus (DPF) is a well known source of neutrons when operating with deuterium. The DPF is demonstrated to scale from 10{sup 4} n/pulse at 40 kA to >10{sup 12} n/pulse at 2 MA by non-linear current scaling as described in [1], which is itself based on the simple yet elegant model developed by Lee [2]. In addition to the peak current, the gas pressure controls the neutron yield. Recent published results suggest that mixing 1-5% mass fractions of Krypton increase the neutron yield per pulse by more than 10x. In this paper we present results obtained by mixing deuterium with Helium, Neon and Argon in a 500 J dense plasma focus operating at 140 kA with a 600 ns rise time. The mass density was held constant in these experiments at the optimum (pure) deuterium mass density for producing neutrons. A typical neutron yield for a pure deuterium gas charge is 2x10{sup 6}{+-}15% n/pulse. Neutron yields in excess of 10{sup 7}{+-}10% n/pulse were observed with low mass fractions of inert gas. Time integrated optical images of the pinch, soft x-ray measurements and optical emission spectroscopy where used to examine the pinch in addition to the neutron yield monitor and the fast scintillation detector. Work supported by Domestic Nuclear Detection Office under contract HSHQDC-08-C-00020.

  5. Numerical modeling of condensation from vapor-gas mixtures for forced down flow inside a tube

    SciTech Connect

    Yuann, R Y; Schrock, V E; Chen, Xiang

    1995-09-01

    Laminar film condensation is the dominant heat transfer mode inside tubes. In the present paper direct numerical simulation of the detailed transport process within the steam-gas core flow and in the condensate film is carried out. The problem was posed as an axisymmetric two dimensional (r, z) gas phase inside an annular condensate film flow with an assumed smooth interface. The fundamental conservation equations were written for mass, momentum, species concentration and energy in the gaseous phase with effective diffusion parameters characterizing the turbulent region. The low Reynolds number two equation {kappa}-{epsilon} model was employed to determine the eddy diffusion coefficients. The liquid film was described by similar formulation without the gas species equation. An empirical correlation was employed to correct for the effect of film waviness on the interfacial shear. A computer code named COAPIT (Condensation Analysis Program Inside Tube) was developed to implement numerical solution of the fundamental equations. The equations were solved by a marching technique working downstream from the entrance of the condensing section. COAPIT was benchmarked against experimental data and overall reasonable agreement was found for the key parameters such as heat transfer coefficient and tube inner wall temperature. The predicted axial development of radial profiles of velocity, composition and temperature and occurrence of metastable vapor add insight to the physical phenomena.

  6. Measurement of Xenon Viscosity as a Function of Low Temperature and Pressure

    NASA Technical Reports Server (NTRS)

    Grisnik, Stanley P.

    1998-01-01

    The measurement of xenon gas viscosity at low temperatures (175-298 K) and low pressures (350 torr-760 torr) has been performed in support of Hall Thruster testing at NASA Lewis Research Center. The measurements were taken using the capillary flow technique. Viscosity measurements were repeatable to within 3%. The results in this paper are in agreement with data from Hanley and Childs and suggest that the data from Clarke and Smith is approximately 2% low. There are no noticeable pressure effects on xenon absolute viscosity for the pressure range from 350 torr to 760 torr.

  7. Evaluation of environmental polychlorobiphenyls and DDE in terms of mixtures of commercial preparations from peak heights of packed-column gas chromatograms using a programmable calculator.

    PubMed

    Eder, G

    1976-06-23

    A method is proposed for evaluating gas chromatograms of multi-component PCB mixtures and superposed single components simultaneously. Apparent concentrations relative to a calibration mixture are assigned to a number of suitable peaks, and the apparent concentrations are related to the true concentrations by a set of linear equations, which are solved by least-squares approximation. The results are provided with an estimate of their confidence intervals.

  8. Multiwalled carbon nanotubes mass-produced by dc arc discharge in He-H2 gas mixture

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Guo, Y.; Inoue, S.; Zhao, X.; Ohkohchi, M.; Ando, Y.

    2006-04-01

    Uniform cathode deposits (longer than 15 mm), containing multiwalled carbon nanotubes (MWNTs) inside, were produced by dc arc discharge evaporation with a computer-controlled feeder of a pure-carbon electrode without a metal catalyst in a He-H2 gas mixture. The purification of MWNTs was carried out to remove amorphous carbon and carbon nanoparticles. High-resolution transmission electron microscopy observations and Raman scattering studies show that the MWNTs possess a high crystallinity and a mean outermost diameter of ˜ ˜10 nm. It has been confirmed that the current density in the electron field emission from a purified MWNT mat can reach 77.92 mA/cm2, indicating that the purified MWNTs are a promising candidate electron source in a super high-luminance light-source tube or a miniature X-ray source.

  9. Mathematical Simulation of Unsteady-State Gas-Liquid Mixture Flow in a Bed-Well System

    NASA Astrophysics Data System (ADS)

    Abbasov, É. M.; Imamaliev, S. A.

    2016-09-01

    Based on theoretical investigations, the influence of various forms of pressure variation at the wellhead with a nonstationary flow of a two-phase fluid in a bed-well system on the character of change in the bottom-hole pressure has been investigated, which makes it possible to determine this pressure from the wellhead operation parameters. The trapezoidal form of the change in pressure is considered as an example. The coupled equations of filtration and the equations describing nonstationary motion of a gas-liquid mixture in a pipeline have been solved jointly. Analytical formulas have been obtained allowing one to determine the bottom-hole pressure from the technological parameters at the wellhead with account for the dynamic connection of the bed-well system at different forms of change in the wellhead pressure. The influence of the wellhead pressure pulsation frequencies on the bottom-hole pressure dynamics has been established.

  10. Asymptotic modeling of the axisymmetric flow of a thermal binary gas mixture in a circular micro-channel

    NASA Astrophysics Data System (ADS)

    Cédric, Croizet; Gatignol, Renée

    2016-11-01

    Sub-millimeter-sized channels are present in many medical and industrial tools such as micro-filters. In order to describe the gas flows in these micro-channels, the DSMC methods are frequently used but a large computation time is usually required to obtain the solutions [1, 2]. Consequently, it is of main interest to develop alternative methods to describe these flows. In this contribution, we are interested in flows at low Mach numbers and with low to moderate Knudsen numbers so that the flow is in the slip regime. We propose an asymptotic model for the axisymmetric flow of a mixture of two compressible gases in circular microchannels with a temperature gradient at the wall. The model is obtained from the Navier-Stokes-Fourier equations. The results of the model are compared to DSMC simulations and the influence of the temperature gradient which is present along the walls is investigated.

  11. Oxygen/ozone as a medical gas mixture. A critical evaluation of the various methods clarifies positive and negative aspects

    PubMed Central

    2011-01-01

    Besides oxygen, several other gases such as NO, CO, H2, H2S, Xe and O3 have come to age over the past few years. With regards to O3, its mechanisms of action in medicine have been clarified during the last two decades so that now a comprehensive framework for understanding and recommending ozone therapy in various pathologies is available. O3 used within the determined therapeutic window is absolutely safe and more effective than golden standard medications in numerous pathologies, like vascular diseases. However, ozone therapy is mostly in practitioners' hands and some recent developments for increasing cost effectiveness and speed of treatment are neither standardized, nor evaluated toxicologically. Hence, the aim of this article is to emphasize the need to objectively assess the pros and cons of oxygen/ozone as a medical gas mixture in the hope that ozone therapy will be accepted by orthodox medicine in the near future. PMID:22146387

  12. Observations of columnal recombination in the ionization tracks of energetic heavy nuclei in an argon-methane gas mixture

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, Mark E.

    1990-01-01

    Measurements of ionization signals resulting from the passage of energetic heavy nuclei through a gas mixture consisting of 95 mol percent Ar plus 5 mol percent CH4, at an absolute pressure of 3 atm are presented. The measurements take place under a uniform electric field perpendicular to the ionization track. The signals were compared to the calculated energy losses, with an assumption of proportionality between energy loss rate and ionization rate. Significant deviations from proportionality are found for energy loss rate grater than about 3000 MeV sq cm/g, while fractional deviations are found to be proportional to the energy loss rate (dE/dx) exp m, where m is equal to about two. These results are attributed to the columnal recombination.

  13. Time-resolved spatial profile of TEA CO2 laser pulses: influence of the gas mixture and intracavity apertures.

    PubMed

    Encinas-Sanz, F; Serna, J; Martínez-Herrero, R; Mejías, P M

    2001-07-01

    The evolution of the intensity profile of transversely excited atmospheric CO2 laser pulses is investigated within the intensity moment formalism. The beam quality factor M2 is used to study the mode evolution. Attention is focused on the influence of both the gas mixture (N2 :CO2 :He) and the diameter of an intracavity diaphragm placed to attenuate higher-order modes. The degree of accuracy that can be attained by approximating the laser field amplitude by means of the lower-order terms of a Hermite-Gauss expansion is also analyzed. In particular, a bound for the truncation error is given in terms of two time-resolved spatial parameters, namely the beam width and the M2 parameter.

  14. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    SciTech Connect

    Malinina, A. A. Malinin, A. N.

    2015-03-15

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λ{sub max} = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10{sup −15} m{sup 3}/s.

  15. Dilution and permeation standards for the generation of NO, NO2 and SO2 calibration gas mixtures

    NASA Astrophysics Data System (ADS)

    Haerri, H.-P.; Macé, T.; Waldén, J.; Pascale, C.; Niederhauser, B.; Wirtz, K.; Stovcik, V.; Sutour, C.; Couette, J.; Waldén, T.

    2017-03-01

    The evaluation results of the metrological performance of a dilution and a permeation standard for generating SI-traceable calibration gas mixtures of NO, SO2 and NO2 for ambient air measurements are presented. The composition of the in situ produced reference gas mixtures is calculated from the instantaneous values of the input quantities of the generating standards. In a measurement comparison, the calibration and measurement capabilities of five laboratories were evaluated for the three analytes at limiting amount of substance fractions in ambient air between 20 and 150 nmol mol-1. For the upper generated reference values the target relative uncertainties of  ⩽2% (for NO and SO2) and  ⩽3% (for NO2) for evaluating the laboratory results were fulfilled in 12 out of 13 cases. For the analytical results seven out of nine laboratories met the criteria for the upper values for NO and NO2, for SO2 it was one out of four. From the negative degrees of equivalence of all NO2 comparison results it was supposed that the permeation rate of NO2 through the FEP polymer membrane of the permeator was different in air and N2. Subsequent precision permeation measurements with various carrier gases revealed that the permeation rate of NO2 was  ≈0.8% lower in synthetic air compared to N2. With the corrected NO2 reference values for air the degrees of equivalence of the laboratory results were improved and closer to be symmetrically distributed.

  16. Development of techniques for complex mixture analysis by means of gas chromatography/triple quadrupole mass spectrometry

    SciTech Connect

    Schubert, A.J.

    1988-01-01

    Current technology in several phases of organic mixture analysis have been integrated to demonstrate the analytical power of the combined technique of gas chromatography/triple quadrupole mass spectrometry (GC/TQMS). This research has included capillary gas chromatography, chemical ionization, triple quadrupole mass spectrometry, and the high speed instrument control and data systems which are required to make such a powerful instrument feasible. The feasibility of GC/TQMS was enhanced by an increase in overall system speed and the development of programs to allow trace-level targeted component analyses on time variant samples introduced via the gas chromatograph. The performance of the instrument control system was achieved by dividing instrument control tasks among multiple processors rather than by increasing the power of the processor being used. Methanol chemical ionization was investigated as a tool for the mass spectrometric determination of trace level polar components in petroleum products. Results from this study indicate that methanol enhances both the selectivity and sensitivity of the ionization when compared to the more conventional technique of methane chemical ionization. Studies on the effect of varying the pressure of the methanol reagent demonstrated a simple approach through which the analyst can adjust both the sensitivity and selectivity of the ionization. Detection limits were determined for the determination of several thiophenes in a commercial jet aviation fuel by means of GC/TQMS. The combined use of capillary gas chromatography, methanol chemical ionization, and TQMS with specialized data acquisition programs, enabled the detection of these targeted components down to the low parts per million.

  17. Survey of the response of standard limited streamer tubes over the complete range of three-component gas mixtures of isobutane, CO/sub 2/, argon

    SciTech Connect

    Calcaterra, A.; De Sangro, R.; De Simone, P.; Burrows, P.; Cartwright, S.L.; Gonzalez, S.; Lath, A.; Schneekloth, U.; Williams, D.C.; Yamartino, J.M.

    1989-07-01

    We present the results of a systematic study of three-component gas mixtures containing argon, isobutane, and carbon dioxide. The study used production-type chambers from the SLD Warm Iron Calorimeter (WIC), instrumented with standard pleastic streamert tubes, and triggered by cosmic-ray muons. Pulse height spectra are presented as a function of high voltage, over a wide range of mixtures of these three gases. Various features and similarities observed throughout this three-dimensional mixture space are important clues to understanding the underlying physics of discharge mechanisms in wire detectors. 15 refs., 17 figs.

  18. Design and First Results of the CoDeX Liquid-Xenon Compton-Imaging Detector

    NASA Astrophysics Data System (ADS)

    Tennyson, Brian; Cahn, Sidney; Bernard, Ethan; Boulton, Elizabeth; Destefano, Nicholas; Edwards, Blair; Hackenburg, Ariana; Horn, Markus; Larsen, Nicole; Nikkel, James; Wahl, Christopher; Gai, Moshe; McKinsey, Daniel

    2016-03-01

    CoDeX (Compton-imaging Detector in Xenon) is an R&D Compton gamma-ray imaging detector that uses 30 kg of xenon in a two-phase time projection chamber. Time projection relative to the initial scintillation signal provides the vertical interaction positions, and either PMT-sensed gas electroluminescence or a charge-sensitive amplifier quantifies the drifted ionization signal. Detector features to enable Compton imaging are a pair of instrumented wire grids added to sense the horizontal position of clouds of drifted electrons that traverse the detector. Each wire is individually amplified in the cold xenon environment. Design choices addressing the thermodynamic and xenon purity constraints of this system will be discussed. We will also discuss the mechanical designs, engineering challenges, and performance of this Compton-imaging detector.

  19. Luminescence characteristics of Xe{sub 2}Cl excimer molecules under pumping the dense Xe-CCl{sub 4} gas mixtures with a pulsed electron beam

    SciTech Connect

    Mis'kevich, A I; Jinbo, Guo

    2013-05-31

    Temporal and spectral characteristics of the luminescence of dense Xe-CCl{sub 4} gas mixtures of different composition, excited by a 5-ns pulsed electron beam, were measured. The energy of the electrons amounted to 150 keV and the electron beam current pulse amplitude was 5 A. The gas mixtures were used containing Xe (38-700 Torr) and CCl{sub 4} (0.03-0.3 Torr). The studies were performed within the wavelength range 200-1200 nm using a MAYA-2000Pro diffraction grating spectrometer and a RIGOL DS 5022 ME fast digital oscilloscope. The luminescence lifetimes of the excimer molecules XeCl* (band with {lambda}{sub max} = 308 nm) and Xe{sub 2}Cl* (band with {lambda}{sub max} = 486 nm) were measured, as well as the constants of quenching by the components of the gas mixture for Xe{sub 2}Cl* molecules. A model of plasma-chemical processes for dense Xe-CCl{sub 4} gas mixtures with a very low content of the CCl{sub 4} donor is proposed. It is shown that in such 'poor' mixtures Xe{sub 2}Cl* molecules are mainly produced as a result of recombination of the Xe{sub 2}{sup +} and Cl{sup -} ions. (active media)

  20. Dynamics of the sputtering of water from ice films by collisions with energetic xenon atoms.

    PubMed

    Killelea, Daniel R; Gibson, K D; Yuan, Hanqiu; Becker, James S; Sibener, S J

    2012-04-14

    The flow of energy from the impact site of a heavy, translationally energetic xenon atom on an ice surface leads to several non-equilibrium events. The central focus of this paper is on the collision-induced desorption (sputtering) of water molecules into the gas-phase from the ice surface. Sputtering is strongly activated with respect to xenon translational energy, and a threshold for desorption was observed. To best understand these results, we discuss our findings in the context of other sputtering studies of molecular solids. The sputtering yield is quite small; differential measurements of the energy of xenon scattered from ice surfaces show that the ice efficiently accommodates the collisional energy. These results are important as they quantitatively elucidate the dynamics of such sputtering events, with implications for energetic non-equilibrium processes at interfaces.