Sample records for xenon imaging telescope

  1. A liquid xenon imaging telescope for 1-30 MeV gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Aprile, Elena; Mukherjee, Reshmi; Suzuki, Masayo

    1989-01-01

    A study of the primary scintillation light in liquid xenon excited by 241 Am alpha particles and 207 Bi internal conversion electrons are discussed. The time dependence and the intensity of the light at different field strengths have been measured with a specifically designed chamber, equipped with a CaF sub 2 light transmitting window coupled to a UV sensitive PMT. The time correlation between the fast light signal and the charge signal shows that the scintillation signals produced in liquid xenon by ionizing particles provides an ideal trigger in a Time Projection type LXe detector aiming at full imaging of complex gamma-ray events. Researchers also started Monte Carlo calculations to establish the performance of a LXe imaging telescope for high energy gamma-rays.

  2. Laboratory and balloon flight performance of the liquid xenon gamma ray imaging telescope

    NASA Astrophysics Data System (ADS)

    Curioni, Alessandro

    2004-10-01

    This thesis presents the laboratory calibration and in- flight performance of the liquid xenon γ-ray imaging telescope (LXeGRIT). LXeGRIT is the prototype of a novel concept of Compton telescope, based on a liquid xenon time projection chamber (LXeTPC), developed through several years by Prof. Aprile and collaborators at Columbia. When I joined the collaboration in Spring 1999, LXeGRIT was getting ready for a balloon borne experiment with the goal of performing the key measurement of the background at balloon altitude. After the 1999 balloon flight, a good deal of work was devoted to a thorough calibration of LXeGRIT, both through several tests in the laboratory and through improving the analysis software and developing Monte Carlo simulations. After substantial advancements in our understanding of the detector performance, LXeGRIT was improved and calibrated before a long duration balloon campaign in the Fall of 2000. Data gathered in this flight have allowed a detailed study of the background at balloon altitude and of the sensitivity to celestial γ-ray sources, the focus of the second part of my thesis. As this dissertation is intended to show, “the LXeGRIT phase”—defined as the prototype work, the experimental demonstration of the LXeTPC concept as a Compton telescope, the measurement of the background and of the detection sensitivity—has been now successfully completed. We are now ready for future implementations of the LXeTPC technology for astrophysics observations. The detailed calibration of LXeGRIT, both as an imaging calorimeter and as a Compton telescope is described in Chapters 2, 3 and 4. In Chapter 5 more details are given of LXeGRIT as a balloon borne instrument and its flight performance in year 2000. The measurement of the background at balloon altitude, based on the data collected in year 2000, is presented in Chapter 6 and the sensitivity of the instrument is derived in Chapter 7. An overview of future developments for the LXe

  3. Magnetic resonance imaging of convection in laser-polarized xenon

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Tseng, C. H.; Wong, G. P.; Cory, D. G.; Walsworth, R. L.

    2000-01-01

    We demonstrate nuclear magnetic resonance (NMR) imaging of the flow and diffusion of laser-polarized xenon (129Xe) gas undergoing convection above evaporating laser-polarized liquid xenon. The large xenon NMR signal provided by the laser-polarization technique allows more rapid imaging than one can achieve with thermally polarized gas-liquid systems, permitting shorter time-scale events such as rapid gas flow and gas-liquid dynamics to be observed. Two-dimensional velocity-encoded imaging shows convective gas flow above the evaporating liquid xenon, and also permits the measurement of enhanced gas diffusion near regions of large velocity variation.

  4. A high resolution liquid xenon imaging telescope for 0.3-10 MeV gamma-ray astrophysics: Construction and initial balloon flights

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1994-01-01

    An instrument is described which will provide a direct image of gamma-ray line or continuum sources in the energy range 300 keV to 10 MeV. The use of this instrument to study the celestial distribution of the (exp 26)Al isotope by observing the 1.809 MeV deexcitation gamma-ray line is illustrated. The source location accuracy is 2' or better. The imaging telescope is a liquid xenon time projection chamber coupled with a coded aperture mask (LXe-CAT). This instrument will confirm and extend the COMPTEL observations from the Compton Gamma-Ray Observatory (CGRO) with an improved capability for identifying the actual Galactic source or sources of (exp 26)Al, which are currently not known with certainty. sources currently under consideration include red giants on the asymptotic giant branch (AGB), novae, Type 1b or Type 2 supernovae, Wolf-Rayet stars and cosmic-rays interacting in molecular clouds. The instrument could also identify a local source of the celestial 1.809 MeV gamma-ray line, such as a recent nearby supernova.

  5. A High Resolution Liquid Xenon Imaging Telescope for 0.3-10 MeV Gamma Ray Astrophysics: Construction and Initial Balloon Flights

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1993-01-01

    The results achieved with a 3.5 liter liquid xenon time projection chamber (LXe-TPC) prototype during the first year include: the efficiency of detecting the primary scintillation light for event triggering has been measured to be higher than 85%; the charge response has been measured to be stable to within 0.1% for a period of time of about 30 hours; the electron lifetime has been measured to be in excess of 1.3 ms; the energy resolution has been measured to be consistent with previous results obtained with small volume chambers; X-Y gamma ray imaging has been demonstrated with a nondestructive orthogonal wires readout; Monte Carlo simulation results on detection efficiency, expected background count rate at balloon altitude, background reduction algorithms, telescope response to point-like and diffuse sources, and polarization sensitivity calculations; and work on a 10 liter LXe-TPC prototype and gas purification/recovery system.

  6. Development of a High Resolution Liquid Xenon Imaging Telescope for Medium Energy Gamma Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1992-01-01

    In the third year of the research project, we have (1) tested a 3.5 liter prototype of the Liquid Xenon Time Projection Chamber, (2) used a prototype having a 4.4 cm drift gap to study the charge and energy resolution response of the 3.5 liter chamber, (3) obtained an energy resolution as good as that previously measured by us using chambers with drift gaps of the order of millimeters, (4) observed the induction signals produced by MeV gamma rays, (4) used the 20 hybrid charge sensitive preamplifiers for a nondestructive readout of the electron image on the induction wires, (5) performed extensive Monte Carlo simulations to obtain results on efficiency, background rejection capability, and source flux sensitivity, and (6) developed a reconstruction algorithm for events with multiple interaction points.

  7. In vivo detection of cucurbit[6]uril, a hyperpolarized xenon contrast agent for a xenon magnetic resonance imaging biosensor

    PubMed Central

    Hane, Francis T.; Li, Tao; Smylie, Peter; Pellizzari, Raiili M.; Plata, Jennifer A.; DeBoef, Brenton; Albert, Mitchell S.

    2017-01-01

    The Hyperpolarized gas Chemical Exchange Saturation Transfer (HyperCEST) Magnetic Resonance (MR) technique has the potential to increase the sensitivity of a hyperpolarized xenon-129 MRI contrast agent. Signal enhancement is accomplished by selectively depolarizing the xenon within a cage molecule which, upon exchange, reduces the signal in the dissolved phase pool. Herein we demonstrate the in vivo detection of the cucurbit[6]uril (CB6) contrast agent within the vasculature of a living rat. Our work may be used as a stepping stone towards using the HyperCEST technique as a molecular imaging modality. PMID:28106110

  8. Imaging phased telescope array study

    NASA Technical Reports Server (NTRS)

    Harvey, James E.

    1989-01-01

    The problems encountered in obtaining a wide field-of-view with large, space-based direct imaging phased telescope arrays were considered. After defining some of the critical systems issues, previous relevant work in the literature was reviewed and summarized. An extensive list was made of potential error sources and the error sources were categorized in the form of an error budget tree including optical design errors, optical fabrication errors, assembly and alignment errors, and environmental errors. After choosing a top level image quality requirment as a goal, a preliminary tops-down error budget allocation was performed; then, based upon engineering experience, detailed analysis, or data from the literature, a bottoms-up error budget reallocation was performed in an attempt to achieve an equitable distribution of difficulty in satisfying the various allocations. This exercise provided a realistic allocation for residual off-axis optical design errors in the presence of state-of-the-art optical fabrication and alignment errors. Three different computational techniques were developed for computing the image degradation of phased telescope arrays due to aberrations of the individual telescopes. Parametric studies and sensitivity analyses were then performed for a variety of subaperture configurations and telescope design parameters in an attempt to determine how the off-axis performance of a phased telescope array varies as the telescopes are scaled up in size. The Air Force Weapons Laboratory (AFWL) multipurpose telescope testbed (MMTT) configuration was analyzed in detail with regard to image degradation due to field curvature and distortion of the individual telescopes as they are scaled up in size.

  9. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    NASA Associate Administrator of the Science Mission Directorate Dr. Edward J. Weiler discusses newly released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  10. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    Heidi Hammel, senior research scientist at the Space Science Institute in Boulder, Colorado discusses newly released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  11. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    David Leckrone, senior project scientist for Hubble at NASA's Goddard Space Flight Center in Greenbelt, Md. discusses newly released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  12. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    NASA Associate Administrator of the Science Mission Directorate Dr. Edward J. Weiler listens to a reporters question during a press conference where NASA released images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  13. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    NASA Associate Administrator of the Science Mission Directorate Dr. Edward J. Weiler speaks at the podium as Sen. Barbara A. Mikulski, D-Md., left, listens during a press conference where NASA unveiled new images from NASA's Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  14. Astro-1 Image Taken by the Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This is a presentation of two comparison images of the Spiral Galaxy M81 in the constellation URA Major. The galaxy is about 12-million light years from Earth. The left image is the Spiral Galaxy M81 as photographed by the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Mission (STS-35) on December 9, 1990. This UIT photograph, made with ultraviolet light, reveals regions where new stars are forming at a rapid rate. The right image is a photograph of the same galaxy in red light made with a 36-inch (0.9-meter) telescope at the Kitt Peak National Observatory near Tucson, Arizona. The Astro Observatory was designed to explore the universe by observing and measuring ultraviolet radiation from celestial objects. Three instruments made up the Astro Observatory: The Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE). The Marshall Space Flight Center had management responsibilities for the Astro-1 mission. The Astro-1 Observatory was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  15. Upgraded Hubble Space Telescope Images

    NASA Image and Video Library

    2009-09-08

    U.S. Senator Barbara A. Mikulski, D-Md., left foreground, NASA Administrator Charles F. Bolden, center, and NASA Deputy Administrator Lori Garver, right, along with members of the STS-125 and STS-31 space shuttle crews listen during a press conference where NASA unveiled new images from the Hubble Space Telescope Wednesday, Sept. 9, 2009 at NASA Headquarters in Washington. The unveiled images were from four of the telescopes' six operating science instruments. Photo Credit: (NASA/Bill Ingalls)

  16. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Shapiro, Mikhail G.; Ramirez, R. Matthew; Sperling, Lindsay J.; Sun, George; Sun, Jinny; Pines, Alexander; Schaffer, David V.; Bajaj, Vikram S.

    2014-07-01

    Magnetic resonance imaging (MRI) enables high-resolution non-invasive observation of the anatomy and function of intact organisms. However, previous MRI reporters of key biological processes tied to gene expression have been limited by the inherently low molecular sensitivity of conventional 1H MRI. This limitation could be overcome through the use of hyperpolarized nuclei, such as in the noble gas xenon, but previous reporters acting on such nuclei have been synthetic. Here, we introduce the first genetically encoded reporters for hyperpolarized 129Xe MRI. These expressible reporters are based on gas vesicles (GVs), gas-binding protein nanostructures expressed by certain buoyant microorganisms. We show that GVs are capable of chemical exchange saturation transfer interactions with xenon, which enables chemically amplified GV detection at picomolar concentrations (a 100- to 10,000-fold improvement over comparable constructs for 1H MRI). We demonstrate the use of GVs as heterologously expressed indicators of gene expression and chemically targeted exogenous labels in MRI experiments performed on living cells.

  17. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon

    PubMed Central

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Abstract Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results. Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon–oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images. Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects. Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images

  18. Hyperpolarized xenon-129 production and applications

    NASA Astrophysics Data System (ADS)

    Ruset, Iulian C.

    Hyperpolarized 3He and 129Xe were initially developed and used in the nuclear physics community. Lately they are primarily used in Medical Resonance Imaging (MRI). Although first MRI polarized gas images were acquired using 129Xe, the research community has focused mostly on 3He, due to the well-known polarizing methods and higher polarization numbers achieved. The main purpose of this thesis is to present a novel design of a large-scale SEOP polarizer for producing large quantities of highly polarized 129Xe. High Rb-Xe spin-exchange rates through long-lived van de Waals molecules at low total pressure, implemented in a novel counterflow polarizer design, resulted in xenon polarization as high as 50% for 1.2 liters/hour, with a maximum of 64% for 0.3 l/h. We characterized and improved the polarization process by finding the optimum operating parameters of the polarizer. Two new methods to efficiently use high-power diode lasers are described: a new optical arrangement for a better beam shaping of fiber coupled lasers and the first external-cavity spectrum narrowing of a stack of laser diode arrays. A new accumulation technique for the hyperpolarized xenon was developed and full recovery of polarization after a freeze-thaw cycle was demonstrated for the first time. Two approaches for xenon delivery, frozen and gas states, were developed. Hyperpolarized xenon transportation to Brigham and Women's Hospital was successfully accomplished for collaborative research. First MRI images using hyperpolarized xenon acquired at BWH are presented. Final chapter is focused on describing a low field human MRI scanner using hyperpolarized 3He. We built a human scale imager with open access for orientational studies of the lung functionality. Horizontal and vertical human lung images were acquired as a first stage of this project.

  19. Novel optical scanning cryptography using Fresnel telescope imaging.

    PubMed

    Yan, Aimin; Sun, Jianfeng; Hu, Zhijuan; Zhang, Jingtao; Liu, Liren

    2015-07-13

    We propose a new method called modified optical scanning cryptography using Fresnel telescope imaging technique for encryption and decryption of remote objects. An image or object can be optically encrypted on the fly by Fresnel telescope scanning system together with an encryption key. For image decryption, the encrypted signals are received and processed with an optical coherent heterodyne detection system. The proposed method has strong performance through use of secure Fresnel telescope scanning with orthogonal polarized beams and efficient all-optical information processing. The validity of the proposed method is demonstrated by numerical simulations and experimental results.

  20. Hyperpolarized xenon magnetic resonance of the lung and the brain

    NASA Astrophysics Data System (ADS)

    Venkatesh, Arvind Krishnamachari

    2001-04-01

    Hyperpolarized noble gas Magnetic Resonance Imaging (MRI) is a new diagnostic modality that has been used successfully for lung imaging. Xenon is soluble in blood and inhaled xenon is transported to the brain via circulating blood. Xenon also accumulates in the lipid rich white matter of the brain. Hyperpolarized xenon can hence be used as a tissue- sensitive probe of brain function. The goals of this study were to identify the NMR resonances of xenon in the rat brain and evaluate the role of hyperpolarized xenon for brain MRI. We have developed systems to produce sufficient volumes of hyperpolarized xenon for in vivo brain experiments. The specialized instrumentation developed include an apparatus for optical pump-cell manufacture and high purity gas manifolds for filling cells. A hyperpolarized gas delivery system was designed to ventilate small animals with hyperpolarized xenon for transport to the brain. The T1 of xenon dissolved in blood indicates that the lifetime of xenon in the blood is sufficient for significant magnetization to be transferred to distal tissues. A variety of carrier agents for intravenous delivery of hyperpolarized xenon were tested for transport to distal tissues. Using our new gas delivery system, high SNR 129Xe images of rat lungs were obtained. Spectroscopy with hyperpolarized xenon indicated that xenon was transported from the lungs to the blood and tissues with intact magnetization. After preliminary studies that indicated the feasibility for in vivo rat brain studies, experiments were performed with adult rats and young rats with different stages of white matter development. Both in vivo and in vitro experiments showed the prominence of one peak from xenon in the rat brain, which was assigned to brain lipids. Cerebral brain perfusion was calculated from the wash-out of the hyperpolarized xenon signal in the brain. An increase in brain perfusion during maturation was observed. These experiments showed that hyperpolarized xenon MRI

  1. Astro-1 Image Taken by Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This image shows a part of the Cygnus loop supernova remnant, taken by the Ultraviolet Imaging Telescope (UIT) on the Astro Observatory during the Astro-1 mission (STS-35) on December 5, 1990. Pictured is a portion of the huge Cygnus loop, an array of interstellar gas clouds that have been blasted by a 900,000 mile per hour shock wave from a prehistoric stellar explosion, which occurred about 20,000 years ago, known as supernova. With ultraviolet and x-rays, astronomers can see emissions from extremely hot gases, intense magnetic fields, and other high-energy phenomena that more faintly appear in visible and infrared light or in radio waves that are crucial to deepening the understanding of the universe. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Three instruments make up the Astro Observatory: The Hopkins Ultraviolet Telescope (HUT), the Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE). The Marshall Space Flight Center had managment responsibilities for the Astro-1 mission. The Astro-1 Observatory was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  2. Habitable exoplanet imager optical telescope concept design

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2017-09-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sunlike stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirroranastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  3. Habitable Exoplanet Imager Optical Telescope Concept Design

    NASA Technical Reports Server (NTRS)

    Stahl, H Philip

    2017-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of four missions under study for the 2020 Astrophysics Decadal Survey. Its goal is to directly image and spectroscopically characterize planetary systems in the habitable zone of Sun-like stars. Additionally, HabEx will perform a broad range of general astrophysics science enabled by 100 to 2500 nm spectral range and 3 x 3 arc-minute FOV. Critical to achieving the HabEx science goals is a large, ultra-stable UV/Optical/Near-IR (UVOIR) telescope. The baseline HabEx telescope is a 4-meter off-axis unobscured three-mirror-anastigmatic, diffraction limited at 400 nm with wavefront stability on the order of a few 10s of picometers. This paper summarizes the opto-mechanical design of the HabEx baseline optical telescope assembly, including a discussion of how science requirements drive the telescope's specifications, and presents analysis that the baseline telescope structure meets its specified tolerances.

  4. Hyperpolarized Xenon-129 Gas-Exchange Imaging of Lung Microstructure: First Case Studies in Subjects with Obstructive Lung Disease

    PubMed Central

    Dregely, Isabel; Mugler, John P.; Ruset, Iulian C.; Altes, Talissa A.; Mata, Jaime F.; Miller, G. Wilson; Ketel, Jeffrey; Ketel, Steve; Distelbrink, Jan; Hersman, F.W.; Ruppert, Kai

    2011-01-01

    Purpose To develop and test a method to non-invasively assess the functional lung microstructure. Materials and Methods The Multiple exchange time Xenon polarization Transfer Contrast technique (MXTC) encodes xenon gas-exchange contrast at multiple delay times permitting two lung-function parameters to be derived: 1) MXTC-F, the long exchange-time depolarization value, which is proportional to the tissue to alveolar-volume ratio and 2) MXTC-S, the square root of the xenon exchange-time constant, which characterizes thickness and composition of alveolar septa. Three healthy volunteers, one asthmatic and two COPD (GOLD stage I and II) subjects were imaged with MXTC MRI. In a subset of subjects, hyperpolarized xenon-129 ADC MRI and CT imaging were also performed. Results The MXTC-S parameter was found to be elevated in subjects with lung disease (p-value = 0.018). In the MXTC-F parameter map it was feasible to identify regional loss of functional tissue in a COPD patient. Further, the MXTC-F map showed excellent regional correlation with CT and ADC (ρ ≥ 0.90) in one COPD subject. Conclusion The functional tissue-density parameter MXTC-F showed regional agreement with other imaging techniques. The newly developed parameter MXTC-S, which characterizes the functional thickness of alveolar septa, has potential as a novel biomarker for regional parenchymal inflammation or thickening. PMID:21509861

  5. Supernova Neutrino Physics with Xenon Dark Matter Detectors

    NASA Astrophysics Data System (ADS)

    Reichard, Shayne; Lang, Rafael F.; McCabe, Christopher; Selvi, Marco; Tamborra, Irene

    2017-09-01

    The dark matter experiment XENON1T is operational and sensitive to all flavors of neutrinos emitted from a supernova. We show that the proportional scintillation signal (S2) allows for a clear observation of the neutrino signal and guarantees a particularly low energy threshold, while the backgrounds are rendered negligible during the SN burst. XENON1T (XENONnT and LZ; DARWIN) will be sensitive to a SN burst up to 25 (40; 70) kpc from Earth at a significance of more than 5σ, observing approximately 35 (123; 704) events from a 27 M ⊙ SN progenitor at 10 kpc. Moreover, it will be possible to measure the average neutrino energy of all flavors, to constrain the total explosion energy, and to reconstruct the SN neutrino light curve. Our results suggest that a large xenon detector such as DARWIN will be competitive with dedicated neutrino telescopes, while providing complementary information that is not otherwise accessible.

  6. Gravity assisted recovery of liquid xenon at large mass flow rates

    NASA Astrophysics Data System (ADS)

    Virone, L.; Acounis, S.; Beaupère, N.; Beney, J.-L.; Bert, J.; Bouvier, S.; Briend, P.; Butterworth, J.; Carlier, T.; Chérel, M.; Crespi, P.; Cussonneau, J.-P.; Diglio, S.; Manzano, L. Gallego; Giovagnoli, D.; Gossiaux, P.-B.; Kraeber-Bodéré, F.; Ray, P. Le; Lefèvre, F.; Marty, P.; Masbou, J.; Morteau, E.; Picard, G.; Roy, D.; Staempflin, M.; Stutzmann, J.-S.; Visvikis, D.; Xing, Y.; Zhu, Y.; Thers, D.

    2018-06-01

    We report on a liquid xenon gravity assisted recovery method for nuclear medical imaging applications. The experimental setup consists of an elevated detector enclosed in a cryostat connected to a storage tank called ReStoX. Both elements are part of XEMIS2 (XEnon Medical Imaging System): an innovative medical imaging facility for pre-clinical research that uses pure liquid xenon as detection medium. Tests based on liquid xenon transfer from the detector to ReStoX have been successfully performed showing that an unprecedented mass flow rate close to 1 ton per hour can be reached. This promising achievement as well as future areas of improvement will be discussed in this paper.

  7. Hyperpolarized xenon NMR and MRI signal amplification by gas extraction

    PubMed Central

    Zhou, Xin; Graziani, Dominic; Pines, Alexander

    2009-01-01

    A method is reported for enhancing the sensitivity of NMR of dissolved xenon by detecting the signal after extraction to the gas phase. We demonstrate hyperpolarized xenon signal amplification by gas extraction (Hyper-SAGE) in both NMR spectra and magnetic resonance images with time-of-flight information. Hyper-SAGE takes advantage of a change in physical phase to increase the density of polarized gas in the detection coil. At equilibrium, the concentration of gas-phase xenon is ≈10 times higher than that of the dissolved-phase gas. After extraction the xenon density can be further increased by several orders of magnitude by compression and/or liquefaction. Additionally, being a remote detection technique, the Hyper-SAGE effect is further enhanced in situations where the sample of interest would occupy only a small proportion of the traditional NMR receiver. Coupled with targeted xenon biosensors, Hyper-SAGE offers another path to highly sensitive molecular imaging of specific cell markers by detection of exhaled xenon gas. PMID:19805177

  8. Covariance of lucky images for increasing objects contrast: diffraction-limited images in ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Cagigal, Manuel P.; Valle, Pedro J.; Colodro-Conde, Carlos; Villó-Pérez, Isidro; Pérez-Garrido, Antonio

    2016-01-01

    Images of stars adopt shapes far from the ideal Airy pattern due to atmospheric density fluctuations. Hence, diffraction-limited images can only be achieved by telescopes without atmospheric influence, e.g. spatial telescopes, or by using techniques like adaptive optics or lucky imaging. In this paper, we propose a new computational technique based on the evaluation of the COvariancE of Lucky Images (COELI). This technique allows us to discover companions to main stars by taking advantage of the atmospheric fluctuations. We describe the algorithm and we carry out a theoretical analysis of the improvement in contrast. We have used images taken with 2.2-m Calar Alto telescope as a test bed for the technique resulting that, under certain conditions, telescope diffraction limit is clearly reached.

  9. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon: Results of a preliminary study.

    PubMed

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results.Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon-oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images.Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects.Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images reflected

  10. Xenon-Enhanced Dual-Energy CT Imaging in Combined Pulmonary Fibrosis and Emphysema

    PubMed Central

    Kobayashi, Masahiro; Nakamura, Yasuhiko; Gocho, Kyoko; Ishida, Fumiaki; Isobe, Kazutoshi; Shiraga, Nobuyuki; Homma, Sakae

    2017-01-01

    Background Little has been reported on the feasibility of xenon-enhanced dual-energy computed tomography (Xe-DECT) in the visual and quantitative analysis of combined pulmonary fibrosis and emphysema (CPFE). Objectives We compared CPFE with idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), as well as correlation with parameters of pulmonary function tests (PFTs). Methods Studied in 3 groups were 25 patients with CPFE, 25 with IPF without emphysema (IPF alone), 30 with COPD. Xe-DECT of the patients’ entire thorax was taken from apex to base after a patient’s single deep inspiration of 35% stable nonradioactive xenon. The differences in several parameters of PFTs and percentage of areas enhanced by xenon between 3 groups were compared and analyzed retrospectively. Results The percentage of areas enhanced by xenon in both lungs were calculated as CPFE/IPF alone/COPD = 72.2 ± 15.1% / 82.2 ± 14.7% /45.2 ± 23.2%, respectively. In the entire patients, the percentage of areas enhanced by xenon showed significantly a positive correlation with FEV1/FVC (R = 0.558, P < 0.0001) and %FEV1, (R = 0.528, P < 0.0001) and a negative correlation with %RV (R = -0.594, P < 0.0001) and RV/TLC (R = -0.579, P < 0.0001). The percentage of areas enhanced by xenon in patients with CPFE showed significantly a negative correlation with RV/TLC (R = -0.529, P = 0.007). Xenon enhancement of CPFE indicated 3 different patterns such as upper predominant, diffuse, and multifocal defect. The percentage of areas enhanced by xenon in upper predominant defect pattern was significantly higher than that in diffuse defect and multifocal defect pattern among these 3 different patterns in CPFE. Conclusion The percentage of areas enhanced by xenon demonstrated strong correlations with obstructive ventilation impairment. Therefore, we conclude that Xe-DECT may be useful for distinguishing emphysema lesion from fibrotic lesion in CPFE. PMID:28107411

  11. Xenon-Enhanced Dual-Energy CT Imaging in Combined Pulmonary Fibrosis and Emphysema.

    PubMed

    Sugino, Keishi; Kobayashi, Masahiro; Nakamura, Yasuhiko; Gocho, Kyoko; Ishida, Fumiaki; Isobe, Kazutoshi; Shiraga, Nobuyuki; Homma, Sakae

    2017-01-01

    Little has been reported on the feasibility of xenon-enhanced dual-energy computed tomography (Xe-DECT) in the visual and quantitative analysis of combined pulmonary fibrosis and emphysema (CPFE). We compared CPFE with idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), as well as correlation with parameters of pulmonary function tests (PFTs). Studied in 3 groups were 25 patients with CPFE, 25 with IPF without emphysema (IPF alone), 30 with COPD. Xe-DECT of the patients' entire thorax was taken from apex to base after a patient's single deep inspiration of 35% stable nonradioactive xenon. The differences in several parameters of PFTs and percentage of areas enhanced by xenon between 3 groups were compared and analyzed retrospectively. The percentage of areas enhanced by xenon in both lungs were calculated as CPFE/IPF alone/COPD = 72.2 ± 15.1% / 82.2 ± 14.7% /45.2 ± 23.2%, respectively. In the entire patients, the percentage of areas enhanced by xenon showed significantly a positive correlation with FEV1/FVC (R = 0.558, P < 0.0001) and %FEV1, (R = 0.528, P < 0.0001) and a negative correlation with %RV (R = -0.594, P < 0.0001) and RV/TLC (R = -0.579, P < 0.0001). The percentage of areas enhanced by xenon in patients with CPFE showed significantly a negative correlation with RV/TLC (R = -0.529, P = 0.007). Xenon enhancement of CPFE indicated 3 different patterns such as upper predominant, diffuse, and multifocal defect. The percentage of areas enhanced by xenon in upper predominant defect pattern was significantly higher than that in diffuse defect and multifocal defect pattern among these 3 different patterns in CPFE. The percentage of areas enhanced by xenon demonstrated strong correlations with obstructive ventilation impairment. Therefore, we conclude that Xe-DECT may be useful for distinguishing emphysema lesion from fibrotic lesion in CPFE.

  12. New insight into the assessment of asthma using xenon ventilation computed tomography.

    PubMed

    Jung, Jae-Woo; Kwon, Jae-Woo; Kim, Tae-Wan; Lee, So-Hee; Kim, Kyung-Mook; Kang, Hye-Ryun; Park, Heung-Woo; Lee, Chang-Hyun; Goo, Jin-Mo; Min, Kyung-Up; Cho, Sang-Heon

    2013-08-01

    Image analyses include computed tomography (CT), magnetic resonance imaging, and xenon ventilation CT, which is new modality to evaluate pulmonary functional imaging. To examine the usefulness of dual-energy xenon ventilation CT in asthmatic patients. A total of 43 patients 18 years or older who were nonsmokers were included in the study. Xenon CT images in wash-in and wash-out phases were obtained at baseline and after inhalation of methacholine and salbutamol. The degrees of ventilation defects and xenon trappings were evaluated through visual analysis. Ventilation defects and xenon trapping were significantly increased and decreased after methacholine challenge and salbutamol inhalation, respectively (P < .005). The ventilation abnormalities were not significantly related to the percentage of forced expiratory volume in 1 second (FEV1) or the ratio of FEV1 to forced vital capacity. Xenon trappings after salbutamol inhalation were negatively related to the scores of the asthma control test, wheezing, or night symptoms, with statistical significance (P < .05), whereas, FEV1 showed no significant correlation with symptom scores. Baseline FEV1 was significantly lower and dyspnea and wheezing were more severe in the non-full reversal group than in the full reversal group after salbutamol inhalation in xenon CT (P < .05). The degree of ventilation defects were positively correlated with FEV1 improvement after 3 months of treatment (P = .02). The results of this study suggest that xenon ventilation CT can be used as a new method to assess ventilation abnormalities in asthma, and these ventilation abnormalities can be used as novel parameters that reflect the status of asthma control and symptom severity. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Radiometric calibration and SNR calculation of a SWIR imaging telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, Ozgur; Turk, Fethi; Selimoglu, Ozgur

    2012-09-06

    Radiometric calibration of an imaging telescope is usually made using a uniform illumination sphere in a laboratory. In this study, we used the open-sky images taken during bright day conditions to calibrate our telescope. We found a dark signal offset value and a linear response coefficient value for each pixel by using three different algorithms. Then we applied these coefficients to the taken images, and considerably lowered the image non-uniformity. Calibration can be repeated during the operation of telescope with an object that has better uniformity than open-sky. Also SNR (Signal to Noise Ratio) of each pixel was calculated frommore » the open-sky images using the temporal mean and standard deviations. It is found that SNR is greater than 80 for all pixels even at low light levels.« less

  14. A large-area gamma-ray imaging telescope system

    NASA Technical Reports Server (NTRS)

    Koch, D. G.

    1983-01-01

    The concept definition of using the External Tank (ET) of the Space Shuttle as the basis for constructing a large area gamma ray imaging telescope in space is detailed. The telescope will be used to locate and study cosmic sources of gamma rays of energy greater than 100 MeV. Both the telescope properties and the means whereby an ET is used for this purpose are described. A parallel is drawn between those systems that would be common to both a Space Station and this ET application. In addition, those systems necessary for support of the telescope can form the basis for using the ET as part of the Space Station. The major conclusions of this concept definition are that the ET is ideal for making into a gamma ray telescope, and that this telescope will provide a substantial increase in collecting area.

  15. Wavelet imaging cleaning method for atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Lessard, R. W.; Cayón, L.; Sembroski, G. H.; Gaidos, J. A.

    2002-07-01

    We present a new method of image cleaning for imaging atmospheric Cherenkov telescopes. The method is based on the utilization of wavelets to identify noise pixels in images of gamma-ray and hadronic induced air showers. This method selects more signal pixels with Cherenkov photons than traditional image processing techniques. In addition, the method is equally efficient at rejecting pixels with noise alone. The inclusion of more signal pixels in an image of an air shower allows for a more accurate reconstruction, especially at lower gamma-ray energies that produce low levels of light. We present the results of Monte Carlo simulations of gamma-ray and hadronic air showers which show improved angular resolution using this cleaning procedure. Data from the Whipple Observatory's 10-m telescope are utilized to show the efficacy of the method for extracting a gamma-ray signal from the background of hadronic generated images.

  16. Imaging System for Vaginal Surgery.

    PubMed

    Taylor, G Bernard; Myers, Erinn M

    2015-12-01

    The vaginal surgeon is challenged with performing complex procedures within a surgical field of limited light and exposure. The video telescopic operating microscope is an illumination and imaging system that provides visualization during open surgical procedures with a limited field of view. The imaging system is positioned within the surgical field and then secured to the operating room table with a maneuverable holding arm. A high-definition camera and Xenon light source allow transmission of the magnified image to a high-definition monitor in the operating room. The monitor screen is positioned above the patient for the surgeon and assistants to view real time throughout the operation. The video telescopic operating microscope system was used to provide surgical illumination and magnification during total vaginal hysterectomy and salpingectomy, midurethral sling, and release of vaginal scar procedures. All procedures were completed without complications. The video telescopic operating microscope provided illumination of the vaginal operative field and display of the magnified image onto high-definition monitors in the operating room for the surgeon and staff to simultaneously view the procedures. The video telescopic operating microscope provides high-definition display, magnification, and illumination during vaginal surgery.

  17. Cell tracking with caged xenon: using cryptophanes as MRI reporters upon cellular internalization.

    PubMed

    Klippel, Stefan; Döpfert, Jörg; Jayapaul, Jabadurai; Kunth, Martin; Rossella, Federica; Schnurr, Matthias; Witte, Christopher; Freund, Christian; Schröder, Leif

    2014-01-07

    Caged xenon has great potential in overcoming sensitivity limitations for solution-state NMR detection of dilute molecules. However, no application of such a system as a magnetic resonance imaging (MRI) contrast agent has yet been performed with live cells. We demonstrate MRI localization of cells labeled with caged xenon in a packed-bed bioreactor working under perfusion with hyperpolarized-xenon-saturated medium. Xenon hosts enable NMR/MRI experiments with switchable contrast and selectivity for cell-associated versus unbound cages. We present MR images with 10(3) -fold sensitivity enhancement for cell-internalized, dual-mode (fluorescence/MRI) xenon hosts at low micromolar concentrations. Our results illustrate the capability of functionalized xenon to act as a highly sensitive cell tracer for MRI detection even without signal averaging. The method will bridge the challenging gap for translation to in vivo studies for the optimization of targeted biosensors and their multiplexing applications. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Improved telescope focus using only two focus images

    NASA Astrophysics Data System (ADS)

    Barrick, Gregory; Vermeulen, Tom; Thomas, James

    2008-07-01

    In an effort to reduce the amount of time spent focusing the telescope and to improve the quality of the focus, a new procedure has been investigated and implemented at the Canada-France-Hawaii Telescope (CFHT). The new procedure is based on a paper by Tokovinin and Heathcote and requires only two out-of-focus images to determine the best focus for the telescope. Using only two images provides a great time savings over the five or more images required for a standard through-focus sequence. In addition, it has been found that this method is significantly less sensitive to seeing variations than the traditional through-focus procedure, so the quality of the resulting focus is better. Finally, the new procedure relies on a second moment calculation and so is computationally easier and more robust than methods using a FWHM calculation. The new method has been implemented for WIRCam for the past 18 months, for MegaPrime for the past year, and has recently been implemented for ESPaDOnS.

  19. Astronomers Make First Images With Space Radio Telescope

    NASA Astrophysics Data System (ADS)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  20. Methods for multiple-telescope beam imaging and guiding in the near-infrared

    NASA Astrophysics Data System (ADS)

    Anugu, N.; Amorim, A.; Gordo, P.; Eisenhauer, F.; Pfuhl, O.; Haug, M.; Wieprecht, E.; Wiezorrek, E.; Lima, J.; Perrin, G.; Brandner, W.; Straubmeier, C.; Le Bouquin, J.-B.; Garcia, P. J. V.

    2018-05-01

    Atmospheric turbulence and precise measurement of the astrometric baseline vector between any two telescopes are two major challenges in implementing phase-referenced interferometric astrometry and imaging. They limit the performance of a fibre-fed interferometer by degrading the instrument sensitivity and the precision of astrometric measurements and by introducing image reconstruction errors due to inaccurate phases. A multiple-beam acquisition and guiding camera was built to meet these challenges for a recently commissioned four-beam combiner instrument, GRAVITY, at the European Southern Observatory Very Large Telescope Interferometer. For each telescope beam, it measures (a) field tip-tilts by imaging stars in the sky, (b) telescope pupil shifts by imaging pupil reference laser beacons installed on each telescope using a 2 × 2 lenslet and (c) higher-order aberrations using a 9 × 9 Shack-Hartmann. The telescope pupils are imaged to provide visual monitoring while observing. These measurements enable active field and pupil guiding by actuating a train of tip-tilt mirrors placed in the pupil and field planes, respectively. The Shack-Hartmann measured quasi-static aberrations are used to focus the auxiliary telescopes and allow the possibility of correcting the non-common path errors between the adaptive optics systems of the unit telescopes and GRAVITY. The guiding stabilizes the light injection into single-mode fibres, increasing sensitivity and reducing the astrometric and image reconstruction errors. The beam guiding enables us to achieve an astrometric error of less than 50 μas. Here, we report on the data reduction methods and laboratory tests of the multiple-beam acquisition and guiding camera and its performance on-sky.

  1. An image-based array trigger for imaging atmospheric Cherenkov telescope arrays

    NASA Astrophysics Data System (ADS)

    Dickinson, Hugh; Krennrich, Frank; Weinstein, Amanda; Eisch, Jonathan; Byrum, Karen; Anderson, John; Drake, Gary

    2018-05-01

    It is anticipated that forthcoming, next generation, atmospheric Cherenkov telescope arrays will include a number of medium-sized telescopes that are constructed using a dual-mirror Schwarzschild-Couder configuration. These telescopes will sample a wide (8 °) field of view using a densely pixelated camera comprising over 104 individual readout channels. A readout frequency congruent with the expected single-telescope trigger rates would result in substantial data rates. To ameliorate these data rates, a novel, hardware-level Distributed Intelligent Array Trigger (DIAT) is envisioned. A copy of the DIAT operates autonomously at each telescope and uses reduced resolution imaging data from a limited subset of nearby telescopes to veto events prior to camera readout and any subsequent network transmission of camera data that is required for centralized storage or aggregation. We present the results of Monte-Carlo simulations that evaluate the efficacy of a "Parallax width" discriminator that can be used by the DIAT to efficiently distinguish between genuine gamma-ray initiated events and unwanted background events that are initiated by hadronic cosmic rays.

  2. The Adaptive Optics Lucky Imager: Diffraction limited imaging at visible wavelengths with large ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Crass, Jonathan; Mackay, Craig; King, David; Rebolo-López, Rafael; Labadie, Lucas; Puga, Marta; Oscoz, Alejandro; González Escalera, Victor; Pérez Garrido, Antonio; López, Roberto; Pérez-Prieto, Jorge; Rodríguez-Ramos, Luis; Velasco, Sergio; Villó, Isidro

    2015-01-01

    One of the continuing challenges facing astronomers today is the need to obtain ever higher resolution images of the sky. Whether studying nearby crowded fields or distant objects, with increased resolution comes the ability to probe systems in more detail and advance our understanding of the Universe. Obtaining these high-resolution images at visible wavelengths however has previously been limited to the Hubble Space Telescope (HST) due to atmospheric effects limiting the spatial resolution of ground-based telescopes to a fraction of their potential. With HST now having a finite lifespan, it is prudent to investigate other techniques capable of providing these kind of observations from the ground. Maintaining this capability is one of the goals of the Adaptive Optics Lucky Imager (AOLI).Achieving the highest resolutions requires the largest telescope apertures, however, this comes at the cost of increased atmospheric distortion. To overcome these atmospheric effects, there are two main techniques employed today: adaptive optics (AO) and lucky imaging. These techniques individually are unable to provide diffraction limited imaging in the visible on large ground-based telescopes; AO currently only works at infrared wavelengths while lucky imaging reduces in effectiveness on telescopes greater than 2.5 metres in diameter. The limitations of both techniques can be overcome by combing them together to provide diffraction limited imaging at visible wavelengths on the ground.The Adaptive Optics Lucky Imager is being developed as a European collaboration and combines AO and lucky imaging in a dedicated instrument for the first time. Initially for use on the 4.2 metre William Herschel Telescope, AOLI uses a low-order adaptive optics system to reduce the effects of atmospheric turbulence before imaging with a lucky imaging based science detector. The AO system employs a novel type of wavefront sensor, the non-linear Curvature Wavefront Sensor (nlCWFS) which provides

  3. A cCPE-based xenon biosensor for magnetic resonance imaging of claudin-expressing cells.

    PubMed

    Piontek, Anna; Witte, Christopher; May Rose, Honor; Eichner, Miriam; Protze, Jonas; Krause, Gerd; Piontek, Jörg; Schröder, Leif

    2017-06-01

    The majority of malignant tumors originate from epithelial cells, and many of them are characterized by an overexpression of claudins (Cldns) and their mislocalization out of tight junctions. We utilized the C-terminal claudin-binding domain of Clostridium perfringens enterotoxin (cCPE), with its high affinity to specific members of the claudin family, as the targeting unit for a claudin-sensitive cancer biosensor. To overcome the poor sensitivity of conventional relaxivity-based magnetic resonance imaging (MRI) contrast agents, we utilized the superior sensitivity of xenon Hyper-CEST biosensors. We labeled cCPE for both xenon MRI and fluorescence detection. As one readout module, we employed a cryptophane (CrA) monoacid and, as the second, a fluorescein molecule. Both were conjugated separately to a biotin molecule via a polyethyleneglycol chemical spacer and later via avidin linked to GST-cCPE. Nontransfected HEK293 cells and HEK293 cells stably expressing Cldn4-FLAG were incubated with the cCPE-based biosensor. Fluorescence-based flow cytometry and xenon MRI demonstrated binding of the biosensor specifically to Cldn4-expressing cells. This study provides proof of concept for the use of cCPE as a carrier for diagnostic contrast agents, a novel approach for potential detection of Cldn3/-4-overexpressing tumors for noninvasive early cancer detection. © 2017 New York Academy of Sciences.

  4. A 32-Channel Phased-Array Receive with Asymmetric Birdcage Transmit RF Coil for Hyperpolarized Xenon-129 Lung Imaging

    PubMed Central

    Dregely, Isabel; Ruset, Iulian C.; Wiggins, Graham; Mareyam, Azma; Mugler, John P.; Altes, Talissa A.; Meyer, Craig; Ruppert, Kai; Wald, Lawrence L.; Hersman, F. William

    2012-01-01

    Hyperpolarized xenon-129 (HP Xe) has the potential to become a non-invasive contrast agent for lung MRI. In addition to its utility for imaging of ventilated airspaces, the property of xenon to dissolve in lung tissue and blood upon inhalation provides the opportunity to study gas exchange. Implementations of imaging protocols for obtaining regional parameters that exploit the dissolved phase are limited by the available signal-to-noise ratio (SNR), excitation homogeneity, and length of acquisition times. To address these challenges, a 32-channel receive-array coil complemented by an asymmetric birdcage transmit coil tuned to the HP Xe resonance at 3T was developed. First results of spin-density imaging in healthy subjects and subjects with obstructive lung disease demonstrated the improvements in image quality by high resolution ventilation images with high SNR. Parallel imaging performance of the phased-array coil was demonstrated by acceleration factors up to three in 2D acquisitions and up to six in 3D acquisitions. Transmit-field maps showed a regional variation of only 8% across the whole lung. The newly developed phased-array receive coil with the birdcage transmit coil will lead to an improvement in existing imaging protocols, but moreover enable the development of new, functional lung imaging protocols based on the improvements in excitation homogeneity, SNR, and acquisition speed. PMID:23132336

  5. Supernova neutrino physics with xenon dark matter detectors: A timely perspective

    NASA Astrophysics Data System (ADS)

    Lang, Rafael F.; McCabe, Christopher; Reichard, Shayne; Selvi, Marco; Tamborra, Irene

    2016-11-01

    Dark matter detectors that utilize liquid xenon have now achieved tonne-scale targets, giving them sensitivity to all flavors of supernova neutrinos via coherent elastic neutrino-nucleus scattering. Considering for the first time a realistic detector model, we simulate the expected supernova neutrino signal for different progenitor masses and nuclear equations of state in existing and upcoming dual-phase liquid xenon experiments. We show that the proportional scintillation signal (S2) of a dual-phase detector allows for a clear observation of the neutrino signal and guarantees a particularly low energy threshold, while the backgrounds are rendered negligible during the supernova burst. XENON1T (XENONnT and LZ; DARWIN) experiments will be sensitive to a supernova burst up to 25 (35; 65) kpc from Earth at a significance of more than 5 σ , observing approximately 35 (123; 704) events from a 27 M⊙ supernova progenitor at 10 kpc. Moreover, it will be possible to measure the average neutrino energy of all flavors, to constrain the total explosion energy, and to reconstruct the supernova neutrino light curve. Our results suggest that a large xenon detector such as DARWIN will be competitive with dedicated neutrino telescopes, while providing complementary information that is not otherwise accessible.

  6. First Observations from the Multi-Application Solar Telescope (MAST) Narrow-Band Imager

    NASA Astrophysics Data System (ADS)

    Mathew, Shibu K.; Bayanna, Ankala Raja; Tiwary, Alok Ranjan; Bireddy, Ramya; Venkatakrishnan, Parameswaran

    2017-08-01

    The Multi-Application Solar Telescope is a 50 cm off-axis Gregorian telescope recently installed at the Udaipur Solar Observatory, India. In order to obtain near-simultaneous observations at photospheric and chromospheric heights, an imager optimized for two or more wavelengths is being integrated with the telescope. Two voltage-tuneable lithium-niobate Fabry-Perot etalons along with a set of interference blocking filters have been used for developing the imager. Both of the etalons are used in tandem for photospheric observations in Fe i 6173 Å and chromospheric observation in Hα 6563 Å spectral lines, whereas only one of the etalons is used for the chromospheric Ca II line at 8542 Å. The imager is also being used for spectropolarimetric observations. We discuss the characterization of the etalons at the above wavelengths, detail the integration of the imager with the telescope, and present a few sets of observations taken with the imager set-up.

  7. Is xenon eldest?

    NASA Technical Reports Server (NTRS)

    Zahnle, K.

    1994-01-01

    It is well known that the solubility of noble gases in magmas decreases with increasing atomic weight. Xenon, the weightiest of the stable noble gases, is the least soluble atmospheric gas in magma. It is not unreasonable to suppose that the noble gases should have degassed from (or equilibrated with) a bubbling mantle in order of increasing solubility, such that xenon was the most rapidly degassed and helium the least. The apparent relative ages of the famous radiogenic noble gas isotopes agrees, at least qualitatively, with this premise. When atmospheric loss processes are assigned their proper place, several long-standing xenonological puzzles become added evidence for xenon's relative antiquity. Xenon being the afore-mentioned sense the oldest atmospheric gas, will have been most greatly subject to escape, be it impact-driven or EUV-driven. Nonradiogenic xenon's pronounced isotopic fractionation has already been attributed to escape; why it should be more fractionated than krypton would be assigned to xenon's greater atmospheric age. The small atmospheric inventory of xenon relative to the other nonradiogenic noblegases, known as the 'missing xenon' problem, could easily be explained by differential escape. The relatively tiny atmospheric inventories of the radiogenic daughter products of 129 Iodine and 244 Plutonium, both much smaller than would be expected from the inferred abundances of the parents in meteorites, offer a third and fourth data to support the hypothesis that Earth has lost most of its xenon.

  8. In-orbit Calibrations of the Ultraviolet Imaging Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandon, S. N.; Subramaniam, Annapurni; Sankarasubramanian, K.

    The Ultra-Violet Imaging Telescope (UVIT) is one of the payloads in ASTROSAT, the first Indian Space Observatory. The UVIT instrument has two 375 mm telescopes: one for the far-ultraviolet (FUV) channel (1300–1800 Å), and the other for the near-ultraviolet (NUV) channel (2000–3000 Å) and the visible (VIS) channel (3200–5500 Å). UVIT is primarily designed for simultaneous imaging in the two ultraviolet channels with spatial resolution better than 1.″8, along with provisions for slit-less spectroscopy in the NUV and FUV channels. The results of in-orbit calibrations of UVIT are presented in this paper.

  9. The role of hyperpolarized 129xenon in MR imaging of pulmonary function

    PubMed Central

    Ebner, Lukas; Kammerman, Jeff; Driehuys, Bastiaan; Schiebler, Mark L.; Cadman, Robert V.; Fain, Sean B.

    2016-01-01

    In the last two decades, functional imaging of the lungs using hyperpolarized noble gases has entered the clinical stage. Both helium (3 He) and xenon (129Xe) gas have been thoroughly investigated for their ability to assess both the global and regional patterns of lung ventilation. With advances in polarizer technology and the current transition towards the widely available 129Xe gas, this method is ready for translation to the clinic. Currently, hyperpolarized (HP) noble gas lung MRI is limited to selected academic institutions; yet, the promising results from initial clinical trials have drawn the attention of the pulmonary medicine community. HP 129Xe MRI provides not only 3-dimensional ventilation imaging, but also unique capabilities for probing regional lung physiology. In this review article, we aim to (1) provide a brief overview of current ventilation MR imaging techniques, (2) emphasize the role of HP 129Xe MRI within the array of different imaging strategies, (3) discuss the unique imaging possibilities with HP 129Xe MRI, and (4) propose clinical applications. PMID:27707585

  10. Hundred metre virtual telescope captures unique detailed colour image

    NASA Astrophysics Data System (ADS)

    2009-02-01

    A team of French astronomers has captured one of the sharpest colour images ever made. They observed the star T Leporis, which appears, on the sky, as small as a two-storey house on the Moon [1]. The image was taken with ESO's Very Large Telescope Interferometer (VLTI), emulating a virtual telescope about 100 metres across and reveals a spherical molecular shell around an aged star. ESO PR Photo 06a/09 The star T Leporis as seen with VLTI ESO PR Photo 06b/09 The star T Leporis to scale ESO PR Photo 06c/09 A virtual 100-metre telescope ESO PR Photo 06d/09 The orbit of Theta1 Orionis C ESO PR Video 06a/09 Zoom-in onto T Leporis "This is one of the first images made using near-infrared interferometry," says lead author Jean-Baptiste Le Bouquin. Interferometry is a technique that combines the light from several telescopes, resulting in a vision as sharp as that of a giant telescope with a diameter equal to the largest separation between the telescopes used. Achieving this requires the VLTI system components to be positioned to an accuracy of a fraction of a micrometre over about 100 metres and maintained so throughout the observations -- a formidable technical challenge. When doing interferometry, astronomers must often content themselves with fringes, the characteristic pattern of dark and bright lines produced when two beams of light combine, from which they can model the physical properties of the object studied. But, if an object is observed on several runs with different combinations and configurations of telescopes, it is possible to put these results together to reconstruct an image of the object. This is what has now been done with ESO's VLTI, using the 1.8-metre Auxiliary Telescopes. "We were able to construct an amazing image, and reveal the onion-like structure of the atmosphere of a giant star at a late stage of its life for the first time," says Antoine Mérand, member of the team. "Numerical models and indirect data have allowed us to imagine the

  11. Pupil geometry and pupil re-imaging in telescope arrays

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.

    1990-01-01

    This paper considers the issues of lateral and longitudinal pupil geometry in ground-based telescope arrays, such as IOTA. In particular, it is considered whether or not pupil re-imaging is required before beam combination. By considering the paths of rays through the system, an expression is derived for the optical path errors in the combined wavefront as a function of array dimensions, telescope magnification factor, viewing angle, and field-of-view. By examining this expression for the two cases of pupil-plane and image-plane combination, operational limits can be found for any array. As a particular example, it is shown that for IOTA no pupil re-imaging optics will be needed.

  12. Detection of tau neutrinos by imaging air Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Góra, D.; Bernardini, E.

    2016-09-01

    This paper investigates the potential to detect tau neutrinos in the energy range of 1-1000 PeV searching for very inclined showers with imaging Cherenkov telescopes. A neutrino induced tau lepton escaping from the Earth may decay and initiate an air shower which can be detected by a fluorescence or Cherenkov telescope. We present here a study of the detection potential of Earth-skimming neutrinos taking into account neutrino interactions in the Earth crust, local matter distributions at various detector sites, the development of tau-induced showers in air and the detection of Cherenkov photons with IACTs. We analyzed simulated shower images on the camera focal plane and implemented generic reconstruction chains based on Hillas parameters. We find that present IACTs can distinguish air showers induced by tau neutrinos from the background of hadronic showers in the PeV-EeV energy range. We present the neutrino trigger efficiency obtained for a few configurations being considered for the next-generation Cherenkov telescopes, i.e. the Cherenkov Telescope Array. Finally, for a few representative neutrino spectra expected from astrophysical sources, we compare the expected event rates at running IACTs to what is expected for the dedicated IceCube neutrino telescope.

  13. Simulation of the Simbol-X telescope: imaging performance of a deformable x-ray telescope

    NASA Astrophysics Data System (ADS)

    Chauvin, Maxime; Roques, Jean-Pierre

    2009-08-01

    We have developed a simulation tool for a Wolter I telescope subject to deformations. The aim is to understand and predict the behavior of Simbol-X and other future missions (NuSTAR, Astro-H, IXO, ...). Our code, based on Monte-Carlo ray-tracing, computes the full photon trajectories up to the detector plane, along with the deformations. The degradation of the imaging system is corrected using metrology. This tool allows to perform many analyzes in order to optimize the configuration of any of these telescopes.

  14. Antiapoptotic activity of argon and xenon

    PubMed Central

    Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido

    2013-01-01

    Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects. PMID:23907115

  15. Development of a high-resolution liquid xenon detector for gamma-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Mukherjee, Reshmi

    It has been shown here that liquid xenon is one of the most promising detector media for future gamma-ray detectors, owing to an excellent combination of physical properties. The feasibility of the construction of a high resolution liquid xenon detector as a gamma-ray detector for astrophysics has been demonstrated. Up to 3.5 liters of liquid xenon has been successfully purified and using both small and large volume prototypes, the charge and the energy resolution response of such detectors to gamma-rays, internal conversion electrons and alpha particles have been measured. The best energy resolution measured was 4.5 percent FWHM at 1 MeV. Cosmic ray tracks have been imaged using a 2-dimensional liquid xenon multiwire imaging chamber. The spatial resolution along the direction of the drifting electrons was 180 microns rms. Experiments have been performed to study the scintillation light in liquid xenon, as the prompt scintillation signal in the liquid is an electron-ion pair in liquid krypton was measured for the first time with a pulsed ionization chamber to be 18.4 plus or minus 0.3 eV.

  16. Ultraviolet Imaging Telescope (UIT) observations of galaxies

    NASA Technical Reports Server (NTRS)

    Neff, S. G.

    1993-01-01

    Ultraviolet images of several galaxies were obtained during the ASTRO-1 shuttle mission in December, 1990. The images have a FWHM angular resolution of approximately 3 arcsecond and are of circular fields approximately 40 arcminutes in diameter. Most galaxies were observed in at least two and sometimes as many as four broad bands. A very few fields were observed with narrower band filters. The most basic result of these observations is that most systems look dramatically different in the UV from their well-known optical appearances. Preliminary results of these studies will be presented. Information will be available on fields observed by the UTI during the ASTRO 1 mission; when that data becomes public it can be obtained from the NSSDC. The ASTRO observatory is expected to fly again in 1994 with approximately half of the observing time from that mission devoted to guest observers. The Ultraviolet Imaging telescope is extremely well suited for galaxy studies, and the UIT term is interested in encouraging a wide range of scientific studies by guest observers. Ultraviolet Imaging telescope is extremely well suited for galaxy studies, and the UIT team is interested in encouraging a wide range of scientific studies by guest observers.

  17. Worsening respiratory function in mechanically ventilated intensive care patients: feasibility and value of xenon-enhanced dual energy CT.

    PubMed

    Hoegl, Sandra; Meinel, Felix G; Thieme, Sven F; Johnson, Thorsten R C; Eickelberg, Oliver; Zwissler, Bernhard; Nikolaou, Konstantin

    2013-03-01

    To evaluate the feasibility and incremental diagnostic value of xenon-enhanced dual-energy CT in mechanically ventilated intensive care patients with worsening respiratory function. The study was performed in 13 mechanically ventilated patients with severe pulmonary conditions (acute respiratory distress syndrome (ARDS), n=5; status post lung transplantation, n=5; other, n=3) and declining respiratory function. CT scans were performed using a dual-source CT scanner at an expiratory xenon concentration of 30%. Both ventilation images (Xe-DECT) and standard CT images were reconstructed from a single CT scan. Findings were recorded for Xe-DECT and standard CT images separately. Ventilation defects on xenon images were matched to morphological findings on standard CT images and incremental diagnostic information of xenon ventilation images was recorded if present. Mean xenon consumption was 2.95 l per patient. No adverse events occurred under xenon inhalation. In the visual CT analysis, the Xe-DECT ventilation defects matched with pathologic changes in lung parenchyma seen in the standard CT images in all patients. Xe-DECT provided additional diagnostic findings in 4/13 patients. These included preserved ventilation despite early pneumonia (n=1), more confident discrimination between a large bulla and pneumothorax (n=1), detection of an airway-to-pneumothorax fistula (n=1) and exclusion of a suspected airway-to-mediastinum fistula (n=1). In all 4 patients, the additional findings had a substantial impact on patients' management. Xenon-enhanced DECT is safely feasible and can add relevant diagnostic information in mechanically ventilated intensive care patients with worsening respiratory function. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Diffraction-limited lucky imaging with a 12" commercial telescope

    NASA Astrophysics Data System (ADS)

    Baptista, Brian J.

    2014-08-01

    Here we demonstrate a novel lucky imaging camera which is designed to produce diffraction-limited imaging using small telescopes similar to ones used by many academic institutions for outreach and/or student training. We present a design that uses a Meade 12" SCT paired with an Andor iXon fast readout EMCCD. The PSF of the telescope is matched to the pixel size of the EMCCD by adding a simple, custom-fabricated, intervening optical system. We demonstrate performance of the system by observing both astronomical and terrestrial targets. The astronomical application requires simpler data reconstruction techniques as compared to the terrestrial case. We compare different lucky imaging registration and reconstruction algorithms for use with this imager for both astronomical and terrestrial targets. We also demonstrate how this type of instrument would be useful for both undergraduate and graduate student training. As an instructional aide, the instrument can provide a hands-on approach for teaching instrument design, standard data reduction techniques, lucky imaging data processing, and high resolution imaging concepts.

  19. Xenon Feed System Progress

    DTIC Science & Technology

    2006-01-01

    From - To) 13-06-2006 Technical Paper 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER F04611-00-C-0055 Xenon Feed System Progress (Preprint) 5b. GRANT...propulsion xenon feed system for a flight technology demonstration program. Major accomplishments include: 1) Utilization of the Moog...successfully fed xenon to a 200 watt Hall Effect Thruster in a Technology Demonstration Program. The feed system has demonstrated throttling of xenon

  20. Coadding Techniques for Image-based Wavefront Sensing for Segmented-mirror Telescopes

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Aronstein, David; Dean, Bruce; Acton, Scott

    2007-01-01

    Image-based wavefront sensing algorithms are being used to characterize optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be coadded in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on every set of PSFs individually and average the resulting wavefronts. The choice of coadd methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using data collected on and simulations of the James Webb Space Telescope Testbed Telescope (TBT) commissioned at Ball Aerospace, we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the coadd method. Of particular interest, segment piston is more accurately recovered in "image-plane space" coadding, while segment tip/tilt is recovered in "pupil-plane space" coadding.

  1. Live-cell MRI with xenon hyper-CEST biosensors targeted to metabolically labeled cell-surface glycans.

    PubMed

    Witte, Christopher; Martos, Vera; Rose, Honor May; Reinke, Stefan; Klippel, Stefan; Schröder, Leif; Hackenberger, Christian P R

    2015-02-23

    The targeting of metabolically labeled glycans with conventional MRI contrast agents has proved elusive. In this work, which further expands the utility of xenon Hyper-CEST biosensors in cell experiments, we present the first successful molecular imaging of such glycans using MRI. Xenon Hyper-CEST biosensors are a novel class of MRI contrast agents with very high sensitivity. We designed a multimodal biosensor for both fluorescent and xenon MRI detection that is targeted to metabolically labeled sialic acid through bioorthogonal chemistry. Through the use of a state of the art live-cell bioreactor, it was demonstrated that xenon MRI biosensors can be used to image cell-surface glycans at nanomolar concentrations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A novel liquid-Xenon detector concept for combined fast-neutrons and gamma imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Breskin, A.; Israelashvili, I.; Cortesi, M.; Arazi, L.; Shchemelinin, S.; Chechik, R.; Dangendorf, V.; Bromberger, B.; Vartsky, D.

    2012-06-01

    A new detector concept is presented for combined imaging and spectroscopy of fast-neutrons and gamma rays. It comprises a liquid-Xenon (LXe) converter and scintillator coupled to a UV-sensitive gaseous imaging photomultiplier (GPM). Radiation imaging is obtained by localization of the scintillation-light from LXe with the position-sensitive GPM. The latter comprises a cascade of Thick Gas Electron Multipliers (THGEM), where the first element is coated with a CsI UV-photocathode. We present the concept and provide first model-simulation results of the processes involved and the expected performances of a detector having a LXe-filled capillaries converter. The new detector concept has potential applications in combined fast-neutron and gamma-ray screening of hidden explosives and fissile materials with pulsed sources.

  3. ARTIP: Automated Radio Telescope Image Processing Pipeline

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi; Gyanchandani, Dolly; Kulkarni, Sarang; Gupta, Neeraj; Pathak, Vineet; Pande, Arti; Joshi, Unmesh

    2018-02-01

    The Automated Radio Telescope Image Processing Pipeline (ARTIP) automates the entire process of flagging, calibrating, and imaging for radio-interferometric data. ARTIP starts with raw data, i.e. a measurement set and goes through multiple stages, such as flux calibration, bandpass calibration, phase calibration, and imaging to generate continuum and spectral line images. Each stage can also be run independently. The pipeline provides continuous feedback to the user through various messages, charts and logs. It is written using standard python libraries and the CASA package. The pipeline can deal with datasets with multiple spectral windows and also multiple target sources which may have arbitrary combinations of flux/bandpass/phase calibrators.

  4. A large-format imager for the SkyMapper Survey Telescope

    NASA Astrophysics Data System (ADS)

    Granlund, A.; Conroy, P. G.; Keller, S. C.; Oates, A. P.; Schmidt, B.; Waterson, M. F.; Kowald, E.; Dawson, M. I.

    2006-06-01

    The Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) at Mt Stromlo Observatory is developing a wide-field Cassegrain Imager for the new 1.3m SkyMapper Survey Telescope under construction for Siding Spring Observatory, NSW, Australia. The Imager features a fast-readout, low-noise 268 Million pixel CCD mosaic that provides a 5.7 square degree field of view. Given the close relative sizes of the telescope and Imager, the work is proceeding in close collaboration with the telescope's manufacturer, Electro Optics Systems Pty Ltd (Canberra, Australia). The design of the SkyMapper Imager focal plane is based on E2V (Chelmsford, UK) deep depletion CCDs. These devices have 2048 x 4096 15 micron pixels, and provide a 91% filling factor in our mosaic configuration of 4 x 8 chips. In addition, the devices have excellent quantum efficiency from 300nm-950nm, near perfect cosmetics, and low-read noise, making them well suited to the all-sky ultraviolet through near-IR Southern Sky Survey to be conducted by the telescope. The array will be controlled using modified versions of the new IOTA controllers being developed for Pan-STARRS by Onaka and Tonry et al. These controllers provide a cost effective, low-volume, high speed solution for our detector read-out requirements. The system will have an integrated 6-filter exchanger, and Shack-Hartmann optics, and will be cooled by closed-cycle helium coolers. This paper will present the specifications, and opto-mechanical and detector control design of the SkyMapper Imager, including the test results of the detector characterisation and manufacturing progress.

  5. Space Telescope Sensitivity and Controls for Exoplanet Imaging

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark

    2012-01-01

    Herein we address design considerations and outline requirements for space telescopes with capabilities for high contrast imaging of exoplanets. The approach taken is to identify the span of potentially detectable Earth-sized terrestrial planets in the habitable zone of the nearest stars within 30 parsecs and estimate their inner working angles, flux ratios, SNR, sensitivities, wavefront error requirements and sensing and control times parametrically versus aperture size. We consider 1, 2, 4, 8 and 16-meter diameter telescope apertures. The achievable science, range of telescope architectures, and the coronagraphic approach are all active areas of research and are all subject to change in a rapidly evolving field. Thus, presented is a snapshot of our current understanding with the goal of limiting the choices to those that appear currently technically feasible. We describe the top-level metrics of inner working angle, contrast and photometric throughput and explore how they are related to the range of target stars. A critical point is that for each telescope architecture and coronagraphic choice the telescope stability requirements have differing impacts on the design for open versus closed-loop sensing and control.

  6. Resolving the Southern African Large Telescope's image quality problems

    NASA Astrophysics Data System (ADS)

    O'Donoghue, Darragh E.; Crause, Lisa A.; O'Connor, James; Strümpfer, Francois; Strydom, Ockert J.; Sass, Craig; Brink, Janus D.; Plessis, Charl du; Wiid, Eben; Love, Jonathan

    2013-08-01

    Images obtained with the Southern African Large Telescope (SALT) during its commissioning phase in 2006 showed degradation due to a large focus gradient, astigmatism, and higher order optical aberrations. An extensive forensic investigation exonerated the primary mirror and the science instruments before pointing to the mechanical interface between the telescope and the spherical aberration corrector, the complex optical subassembly which corrects the spherical aberration introduced by the 11-m primary mirror. Having diagnosed the problem, a detailed repair plan was formulated and implemented when the corrector was removed from the telescope in April 2009. The problematic interface was replaced, and the four aspheric mirrors were optically tested and re-aligned. Individual mirror surface figures were confirmed to meet specification, and a full system test after the re-alignment yielded a root mean square wavefront error of 0.15 waves. The corrector was reinstalled in August 2010 and aligned with respect to the payload and primary mirror. Subsequent on-sky tests revealed spurious signals being sent to the tracker by the auto-collimator, the instrument that maintains the alignment of the corrector with respect to the primary mirror. After rectifying this minor issue, the telescope yielded uniform 1.1 arcsec star images over the full 10-arcmin field of view.

  7. Novel optical designs for consumer astronomical telescopes and their application to professional imaging

    NASA Astrophysics Data System (ADS)

    Wise, Peter; Hodgson, Alan

    2006-06-01

    Since the launch of the Hubble Space Telescope there has been widespread popular interest in astronomy. A further series of events, most notably the recent Deep Impact mission and Mars oppositions have served to fuel further interest. As a result more and more amateurs are coming into astronomy as a practical hobby. At the same time more sophisticated optical equipment is becoming available as the price to performance ratio become more favourable. As a result larger and better optical telescopes are now in use by amateurs. We also have the explosive growth in digital imaging technologies. In addition to displacing photographic film as the preferred image capture modality it has made the capture of high quality astronomical imagery more accessible to a wider segment of the astronomy community. However, this customer requirement has also had an impact on telescope design. There has become a greater imperative for wide flat image fields in these telescopes to take advantage of the ongoing advances in CCD imaging technology. As a result of these market drivers designers of consumer astronomical telescopes are now producing state of the art designs that result in wide, flat fields with optimal spatial and chromatic aberrations. Whilst some of these designs are not scalable to the larger apertures required for professional ground and airborne telescope use there are some that are eminently suited to make this transition.

  8. Development of a high resolution liquid xenon imaging chamber for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1991-01-01

    The objective was to develop the technology of liquid xenon (LXe) detectors for spectroscopy and imaging of gamma rays from astrophysical sources emitting in the low to medium energy regime. In particular, the technical challenges and the physical processes relevant to the realization of the LXe detector operated as a Time Projection Chamber (TPC) were addressed and studied. Experimental results were obtained on the following topics: (1) long distance drift of free electrons in LXe (purity); (2) scintillation light yield for electrons and alphas in LXe (triggering); and (3) ionization yield for electrons and gamma rays in LXe (energy resolution). The major results from the investigations are summarized.

  9. The Genesis solar xenon composition and its relationship to planetary xenon signatures

    NASA Astrophysics Data System (ADS)

    Crowther, S. A.; Gilmour, J. D.

    2013-12-01

    The fluence and isotopic composition of solar wind xenon have been determined from silicon collector targets flown on the NASA Genesis mission. A protocol was developed to extract gas quantitatively from samples of ∼9-25 mm2, and xenon measured using the RELAX mass spectrometer. The fluence of implanted solar wind xenon is 1.202(87) × 106 atoms 132Xe cm-2, which equates to a flux of 5.14(21) × 106 atoms 132Xe cm-2 year-1 at the L1 point. This value is in good agreement with those reported in other studies. The isotopic composition of the solar wind is consistent with that extracted from the young lunar regolith and other Genesis collector targets. The more precise xenon isotopic data derived from the Genesis mission confirm models of relationships among planetary xenon signatures. The underlying composition of Xe-Q is mass fractionated solar wind; small, varying contributions of Xe-HL and 129Xe from 129I decay are present in reported meteorite analyses. In contrast, an s-process deficit is apparent in Xe-P3, which appears to have been mass fractionated to the same extent as Xe-Q from a precursor composition, suggesting similar trapping mechanisms. Solar wind xenon later evolved by the addition of ∼1% (at 132Xe) of s-process xenon to this precursor. As an alternative model to a single source reservoir for Xe-P3, we propose that trapping of xenon onto carbonaceous carriers has been an ongoing process across galactic history, and that preparation of the residues in which Xe-P3 has been identified preferentially preserves longer lived host phases; a higher proportion of these sample xenon isotopic compositions from earlier in galactic chemical evolution, allowing the s-process deficit to become apparent. The relationships among SW-Xe, Xe-Q and Xe-P3 predict that the 124Xe/132Xe ratio for the solar wind is 0.00481(6).

  10. Co-adding techniques for image-based wavefront sensing for segmented-mirror telescopes

    NASA Astrophysics Data System (ADS)

    Smith, J. S.; Aronstein, David L.; Dean, Bruce H.; Acton, D. S.

    2007-09-01

    Image-based wavefront sensing algorithms are being used to characterize the optical performance for a variety of current and planned astronomical telescopes. Phase retrieval recovers the optical wavefront that correlates to a series of diversity-defocused point-spread functions (PSFs), where multiple frames can be acquired at each defocus setting. Multiple frames of data can be co-added in different ways; two extremes are in "image-plane space," to average the frames for each defocused PSF and use phase retrieval once on the averaged images, or in "pupil-plane space," to use phase retrieval on each PSF frame individually and average the resulting wavefronts. The choice of co-add methodology is particularly noteworthy for segmented-mirror telescopes that are subject to noise that causes uncorrelated motions between groups of segments. Using models and data from the James Webb Space Telescope (JWST) Testbed Telescope (TBT), we show how different sources of noise (uncorrelated segment jitter, turbulence, and common-mode noise) and different parts of the optical wavefront, segment and global aberrations, contribute to choosing the co-add method. Of particular interest, segment piston is more accurately recovered in "image-plane space" co-adding, while segment tip/tilt is recovered in "pupil-plane space" co-adding.

  11. Detection and Imaging of the Crab Nebula with the Nuclear Compton Telescope

    NASA Astrophysics Data System (ADS)

    Bandstra, M. S.; Bellm, E. C.; Boggs, S. E.; Perez-Becker, D.; Zoglauer, A.; Chang, H.-K.; Chiu, J.-L.; Liang, J.-S.; Chang, Y.-H.; Liu, Z.-K.; Hung, W.-C.; Huang, M.-H. A.; Chiang, S. J.; Run, R.-S.; Lin, C.-H.; Amman, M.; Luke, P. N.; Jean, P.; von Ballmoos, P.; Wunderer, C. B.

    2011-09-01

    The Nuclear Compton Telescope (NCT) is a balloon-borne Compton telescope designed for the study of astrophysical sources in the soft gamma-ray regime (200 keV-20 MeV). NCT's 10 high-purity germanium crossed-strip detectors measure the deposited energies and three-dimensional positions of gamma-ray interactions in the sensitive volume, and this information is used to restrict the initial photon to a circle on the sky using the Compton scatter technique. Thus NCT is able to perform spectroscopy, imaging, and polarization analysis on soft gamma-ray sources. NCT is one of the next generation of Compton telescopes—the so-called compact Compton telescopes (CCTs)—which can achieve effective areas comparable to the Imaging Compton Telescope's with an instrument that is a fraction of the size. The Crab Nebula was the primary target for the second flight of the NCT instrument, which occurred on 2009 May 17 and 18 in Fort Sumner, New Mexico. Analysis of 29.3 ks of data from the flight reveals an image of the Crab at a significance of 4σ. This is the first reported detection of an astrophysical source by a CCT.

  12. Development of a liquid xenon time projection chamber for the XENON dark matter search

    NASA Astrophysics Data System (ADS)

    Ni, Kaixuan

    This thesis describes the research conducted for the XENON dark matter direct detection experiment. The tiny energy and small cross-section, from the interaction of dark matter particle on the target, requires a low threshold and sufficient background rejection capability of the detector. The XENON experiment uses dual phase technology to detect scintillation and ionization simultaneously from an event in liquid xenon (LXe). The distinct ratio, between scintillation and ionization, for nuclear recoil and electron recoil events provides excellent background rejection potential. The XENON detector is designed to have 3D position sensitivity down to mm scale, which provides additional event information for background rejection. Started in 2002, the XENON project made steady progress in the R&D phase during the past few years. Those include developing sensitive photon detectors in LXe, improving the energy resolution and LXe purity for detecting very low energy events. Two major quantities related to the dark matter detection, the scintillation efficiency and ionization yield of nuclear recoils in LXe, have been established. A prototype dual phase detector (XENON3) has been built and tested extensively in above ground laboratory. The 3D position sensitivity, as well as the background discrimination potential demonstrated from the XENON3 prototype, allows the construction of a 10 kg scale detector (XENON10), to be deployed underground in early 2006. With 99.5% electron recoil rejection efficiency and 16 keVr nuclear recoil energy threshold, XENON10 will be able to probe the WIMP-nucleon cross-section down to 2 x 10-44 cm2 in the supersymmetry parameter space, after one month operation in the Gran Sasso underground laboratory.

  13. Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the WIYN Telescope

    NASA Technical Reports Server (NTRS)

    Scott, Nic J.; Howell, Steve; Horch, Elliott

    2016-01-01

    Speckle imaging allows telescopes to achieve diffraction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, effectively 'freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the diffraction limit of the telescope. These new instruments are based on the successful performance and design of the Differential Speckle Survey Instrument (DSSI).The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA, K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide-field mode and standard SDSS filters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations will remain around 13-14th at WIYN and 16-17th at Gemini, while wide-field, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

  14. Next-generation Event Horizon Telescope developments: new stations for enhanced imaging

    NASA Astrophysics Data System (ADS)

    Palumbo, Daniel; Johnson, Michael; Doeleman, Sheperd; Chael, Andrew; Bouman, Katherine

    2018-01-01

    The Event Horizon Telescope (EHT) is a multinational Very Long Baseline Interferometry (VLBI) network of dishes joined to resolve general relativistic behavior near a supermassive black hole. The imaging quality of the EHT is largely dependent upon the sensitivity and spatial frequency coverage of the many baselines between its constituent telescopes. The EHT already contains many highly sensitive dishes, including the crucial Atacama Large Millimeter/Submillimeter Array (ALMA), making it viable to add smaller, cheaper telescopes to the array, greatly improving future capabilities of the EHT. We develop tools for optimizing the positions of new dishes in planned arrays. We also explore the feasibility of adding small orbiting dishes to the EHT, and develop orbital optimization tools for space-based VLBI imaging. Unlike the Millimetron mission planned to be at L2, we specifically treat near-earth orbiters, and find rapid filling of spatial frequency coverage across a large range of baseline lengths. Finally, we demonstrate significant improvement in image quality when adding small dishes to planned arrays in simulated observations.

  15. WE-AB-202-08: Feasibility of Single-Inhalation/Single-Energy Xenon CT for High-Resolution Imaging of Regional Lung Ventilation in Humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinkham, D; Schueler, E; Diehn, M

    Purpose: To demonstrate the efficacy of a novel functional lung imaging method that utilizes single-inhalation, single-energy xenon CT (Xe-CT) lung ventilation scans, and to compare it against the current clinical standard, ventilation single-photon emission CT (V-SPECT). Methods: In an IRB-approved clinical study, 14 patients undergoing thoracic radiotherapy received two successive single inhalation, single energy (80keV) CT images of the entire lung using 100% oxygen and a 70%/30% xenon-oxygen mixture. A subset of ten patients also received concurrent SPECT ventilation scans. Anatomic reproducibility between the two scans was achieved using a custom video biofeedback apparatus. The CT images were registered tomore » each other by deformable registration, and a calculated difference image served as surrogate xenon ventilation map. Both lungs were partitioned into twelve sectors, and a sector-wise correlation was performed between the xenon and V-SPECT scans. A linear regression model was developed with forced expiratory volume (FEV) as a predictor and the coefficient of variation (CoV) as the outcome. Results: The ventilation comparison for five of the patients had either moderate to strong Pearson correlation coefficients (0.47 to 0.69, p<0.05). Of these, four also had moderate to strong Spearman correlation coefficients (0.46 to 0.80, p<0.03). The patients with the strongest correlation had clear regional ventilation deficits. The patient comparisons with the weakest correlations had more homogeneous ventilation distributions, and those patients also had diminished lung function as assessed by spirometry. Analysis of the relationship between CoV and FEV yielded a non-significant trend toward negative correlation (Pearson coefficient −0.60, p<0.15). Conclusion: Significant correlations were found between the Xe-CT and V-SPECT ventilation imagery. The results from this small cohort of patients indicate that single inhalation, single energy Xe-CT has the

  16. Xenon elimination kinetics following brief exposure.

    PubMed

    Schaefer, Maximilian S; Piper, Thomas; Geyer, Hans; Schneemann, Julia; Neukirchen, Martin; Thevis, Mario; Kienbaum, Peter

    2017-05-01

    Xenon is a modern inhalative anaesthetic with a very low solubility in tissues providing rapid elimination and weaning from anaesthesia. Besides its anaesthetic properties, Xenon promotes the endogenous erythropoietin biosynthesis and thus has been enlisted as prohibited substance by the World Anti-Doping Agency (WADA). For effective doping controls, knowledge about the elimination kinetics of Xenon and the duration of traceability are of particular importance. Seventy-seven full blood samples were obtained from 7 normal weight patients undergoing routine Xenon-based general anaesthesia with a targeted inspiratory concentration of 60% Xenon in oxygen. Samples were taken before and during Xenon inhalation as well as one, two, 4, 8, 16, 24, 32, 40, and 48 h after exposure. Xenon concentrations were assessed in full blood by gas chromatography and triple quadrupole tandem mass spectrometry with a detection limit of 0.25 µmol/L. The elimination of Xenon was characterized by linear regression of log-transformed Xenon blood concentrations, as well as non-linear regression. Xenon exposure yielded maximum concentrations in arterial blood of 1.3 [1.1; 1.6] mmol/L. Xenon was traceable for 24 to 48 h. The elimination profile was characterized by a biphasic pattern with a rapid alpha phase, followed by a slower beta phase showing a first order kinetics (c[Xe] = 69.1e -0.26x , R 2  = 0.83, t 1/2  = 2.7 h). Time in hours after exposure could be estimated by 50*ln(1.39/c[Xe] 0.077 ). Xenon's elimination kinetics is biphasic with a delayed beta phase following a first order kinetics. Xenon can reliably be detected for at least 24 h after brief exposure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Optical pumping and xenon NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raftery, M. Daniel

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to highmore » magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.« less

  18. Optical pumping and xenon NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas tomore » high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.« less

  19. Muon imaging of volcanoes with Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; La Parola, Valentina; La Rosa, Giovanni; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Sottile, Giuseppe; Zuccarello, Luciano

    2017-04-01

    The quantitative understanding of the inner structure of a volcano is a key feature to model the processes leading to paroxysmal activity and, hence, to mitigate volcanic hazards. To pursue this aim, different geophysical techniques are utilized, that are sensitive to different properties of the rocks (elastic, electrical, density). In most cases, these techniques do not allow to achieve the spatial resolution needed to characterize the shallowest part of the plumbing system and may require dense measurements in active zones, implying a high level of risk. Volcano imaging through cosmic-ray muons is a promising technique that allows to overcome the above shortcomings. Muons constantly bombard the Earth's surface and can travel through large thicknesses of rock, with an energy loss depending on the amount of crossed matter. By measuring the absorption of muons through a solid body, one can deduce the density distribution inside the target. To date, muon imaging of volcanic structures has been mainly achieved with scintillation detectors. They are sensitive to noise sourced from (i) the accidental coincidence of vertical EM shower particles, (ii) the fake tracks initiated from horizontal high-energy electrons and low-energy muons (not crossing the target) and (iii) the flux of upward going muons. A possible alternative to scintillation detectors is given by Cherenkov telescopes. They exploit the Cherenkov light emitted when charged particles (like muons) travel through a dielectric medium, with velocity higher than the speed of light. Cherenkov detectors are not significantly affected by the above noise sources. Furthermore, contrarily to scintillator-based detectors, Cherenkov telescopes permit a measurement of the energy spectrum of the incident muon flux at the installation site, an issue that is indeed relevant for deducing the density distribution inside the target. In 2014, a prototype Cherenkov telescope was installed at the Astrophysical Observatory of Serra

  20. Single-Grid-Pair Fourier Telescope for Imaging in Hard-X Rays and gamma Rays

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan

    2008-01-01

    This instrument, a proposed Fourier telescope for imaging in hard-x rays and gamma rays, would contain only one pair of grids made of an appropriate radiation-absorpting/ scattering material, in contradistinction to multiple pairs of such as grids in prior Fourier x- and gamma-ray telescopes. This instrument would also include a relatively coarse gridlike image detector appropriate to the radiant flux to be imaged. Notwithstanding the smaller number of grids and the relative coarseness of the imaging detector, the images produced by the proposed instrument would be of higher quality.

  1. MuSICa image slicer prototype at 1.5-m GREGOR solar telescope

    NASA Astrophysics Data System (ADS)

    Calcines, A.; López, R. L.; Collados, M.; Vega Reyes, N.

    2014-07-01

    Integral Field Spectroscopy is an innovative technique that is being implemented in the state-of-the-art instruments of the largest night-time telescopes, however, it is still a novelty for solar instrumentation. A new concept of image slicer, called MuSICa (Multi-Slit Image slicer based on collimator-Camera), has been designed for the integral field spectrograph of the 4-m European Solar Telescope. This communication presents an image slicer prototype of MuSICa for GRIS, the spectrograph of the 1.5-m GREGOR solar telescope located at the Observatory of El Teide. MuSICa at GRIS reorganizes a 2-D field of view of 24.5 arcsec into a slit of 0.367 arcsec width by 66.76 arcsec length distributed horizontally. It will operate together with the TIP-II polarimeter to offer high resolution integral field spectropolarimetry. It will also have a bidimensional field of view scanning system to cover a field of view up to 1 by 1 arcmin.

  2. Space Telescope Design to Directly Image the Habitable Zone of Alpha Centauri

    NASA Technical Reports Server (NTRS)

    Bendek, Eduardo A.; Belikov, Ruslan; Lozi, Julien; Thomas, Sandrine; Males, Jared; Weston, Sasha; McElwain, Michael

    2015-01-01

    The scientific interest in directly imaging and identifying Earth-like planets within the Habitable Zone (HZ) around nearby stars is driving the design of specialized direct imaging missions such as ACESAT, EXO-C, EXO-S and AFTA-C. The inner edge of Alpha Cen A&B Habitable Zone is found at exceptionally large angular separations of 0.7" and 0.4" respectively. This enables direct imaging of the system with a 0.3m class telescope. Contrast ratios on the order of 10(exp 10) are needed to image Earth-brightness planets. Low-resolution (5-band) spectra of all planets may allow establishing the presence and amount of an atmosphere. This star system configuration is optimal for a specialized small, and stable space telescope that can achieve high-contrast but has limited resolution. This paper describes an innovative instrument design and a mission concept based on a full Silicon Carbide off-axis telescope, which has a Phase Induced Amplitude Apodization coronagraph embedded in the telescope. This architecture maximizes stability and throughput. A Multi-Star Wave Front algorithm is implemented to drive a deformable mirror controlling simultaneously diffracted light from the on-axis and binary companion star. The instrument has a Focal Plane Occulter to reject starlight into a high precision pointing control camera. Finally we utilize a Orbital Differential Imaging (ODI) post-processing method that takes advantage of a highly stable environment (Earth-trailing orbit) and a continuous sequence of images spanning 2 years, to reduce the final noise floor in post processing to approximately 2e-11 levels, enabling high confidence and at least 90% completeness detections of Earth-like planets.

  3. XENON100 Dark Matter Search: Scintillation Response of Liquid Xenon to Electronic Recoils

    NASA Astrophysics Data System (ADS)

    Lim, Kyungeun Elizabeth

    Dark matter is one of the missing pieces necessary to complete the puzzle of the universe. Numerous astrophysical observations at all scales suggest that 23 % of the universe is made of nonluminous, cold, collisionless, nonbaryonic, yet undiscovered dark matter. Weakly Interacting Massive Particles (WIMPs) are the most well-motivated dark matter candidates and significant efforts have been made to search for WIMPs. The XENON100 dark matter experiment is currently the most sensitive experiment in the global race for the first direct detection of WIMP dark matter. XENON100 is a dual-phase (liquid-gas) time projection chamber containing a total of 161 kg of liquid xenon (LXe) with a 62kg WIMP target mass. It has been built with radiopure materials to achieve an ultra-low electromagnetic background and operated at the Laboratori Nazionali del Gran Sasso in Italy. WIMPs are expected to scatter off xenon nuclei in the target volume. Simultaneous measurement of ionization and scintillation produced by nuclear recoils allows for the detection of WIMPs in XENON100. Data from the XENON100 experiment have resulted in the most stringent limits on the spin-independent elastic WIMP-nucleon scattering cross sections for most of the significant WIMP masses. As the experimental precision increases, a better understanding of the scintillation and ionization response of LXe to low energy (< 10 keV) particles is crucial for the interpretation of data from LXe based WIMP searches. A setup has been built and operated at Columbia University to measure the scintillation response of LXe to both electronic and nuclear recoils down to energies of a few keV, in particular for the XENON100 experiment. In this thesis, I present the research carried out in the context of the XENON100 dark matter search experiment. For the theoretical foundation of the XENON100 experiment, the first two chapters are dedicated to the motivation for and detection medium choice of the XENON100 experiment

  4. Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients.

    PubMed

    Lee, Sang Min; Seo, Joon Beom; Hwang, Hye Jeon; Kim, Namkug; Oh, Sang Young; Lee, Jae Seung; Lee, Sei Won; Oh, Yeon-Mok; Kim, Tae Hoon

    2017-07-01

    To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p < 0.01). All CT parameters showed significant correlation with PFTs except forced vital capacity (FVC). There was a significant difference in GTI, ATI and Xe-Dyna in each lung area (p < 0.01). The parenchymal attenuation change between inspiration/expiration CTs and xenon dynamic change between xenon WI- and WO-CTs correlate significantly. There are alterations in the dynamics of xenon ventilation between areas of emphysema. • The xenon ventilation change correlates with the parenchymal attenuation change. • The xenon ventilation change shows the difference between three lung areas. • The combination of attenuation and xenon can predict more accurate PFTs.

  5. Air, telescope, and instrument temperature effects on the Gemini Planet Imager’s image quality

    NASA Astrophysics Data System (ADS)

    Tallis, Melisa; Bailey, Vanessa P.; Macintosh, Bruce; Hayward, Thomas L.; Chilcote, Jeffrey K.; Ruffio, Jean-Baptiste; Poyneer, Lisa A.; Savransky, Dmitry; Wang, Jason J.; GPIES Team

    2018-01-01

    We present results from an analysis of air, telescope, and instrument temperature effects on the Gemini Planet Imager’s (GPI) image quality. GPI is a near-infrared, adaptive optics-fed, high-contrast imaging instrument at the Gemini South telescope, designed to directly image and characterize exoplanets and circumstellar disks. One key metric for instrument performance is “contrast,” which quantifies the sensitivity of an image in terms of the flux ratio of the noise floor vs. the primary star. Very high contrast signifies that GPI could succeed at imaging a dim, close companion around the primary star. We examine relationships between multiple temperature sensors placed on the instrument and telescope vs. image contrast. These results show that there is a strong correlation between image contrast and the presence of temperature differentials between the instrument and the temperature outside the dome. We discuss potential causes such as strong induced dome seeing or optical misalignment due to thermal gradients. We then assess the impact of the current temperature control and ventilation strategy and discuss potential modifications.

  6. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of liquid xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Resembling a tiny bit of window screen, the oscillator at the heart of CVX-2 will vibrate between two pairs of paddle-like electrodes. The slight bend in the shape of the mesh has no effect on the data. What counts are the mesh's displacement in the xenon fluid and the rate at which the displacement dampens. The unit shown here is encased in a small test cell and capped with a sapphire windown to contain the xenon at high pressure.

  7. Discrimination Between Patients With Alzheimer Disease and Healthy Subjects Using Layer Analysis of Cerebral Blood Flow and Xenon Solubility Coefficient in Xenon-Enhanced Computed Tomography.

    PubMed

    Sase, Shigeru; Yamamoto, Homaro; Kawashima, Ena; Tan, Xin; Sawa, Yutaka

    The aim of this study was to develop a method for discriminating between patients with Alzheimer disease (AD) and healthy subjects using layer analysis of cerebral blood flow (CBF) and xenon solubility coefficient (λ) in xenon-enhanced computed tomography (CT). Xenon-enhanced CT was performed on 27 patients with AD (81.7 [3.3] years old) and 15 healthy volunteers (78.6 [4.0] years old) using a wide volume CT. For each subject, we created the first- (surface) to sixth-layer images of CBF and λ for the 6 viewing directions (layer thickness, 5 mm). For the discriminant views, receiver operating characteristic curves for the ratio of CBF to λ were created to identify patients with AD. For the third- and fourth-layer left lateral views, which were designated as the discriminant views, areas under the receiver operating characteristic curve were 96.8% and 97.4%, respectively. With the use of the discriminant views obtained by xenon-enhanced CT, we could effectively discriminate between patients with AD and healthy subjects using both CBF and λ.

  8. Scalability study of solid xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, J.; Cease, H.; Jaskierny, W. F.

    2015-04-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.

  9. Analysis of photographic X-ray images. [S-054 telescope on Skylab

    NASA Technical Reports Server (NTRS)

    Krieger, A. S.

    1977-01-01

    Some techniques used to extract quantitative data from the information contained in photographic images produced by grazing incidence soft X-ray optical systems are described. The discussion is focussed on the analysis of the data returned by the S-054 X-Ray Spectrographic Telescope Experiment on Skylab. The parameters of the instrument and the procedures used for its calibration are described. The technique used to convert photographic density to focal plane X-ray irradiance is outlined. The deconvolution of the telescope point response function from the image data is discussed. Methods of estimating the temperature, pressure, and number density of coronal plasmas are outlined.

  10. Xenon Fractionation and Archean Hydrogen Escape

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  11. Solid xenon radiation detectors

    NASA Astrophysics Data System (ADS)

    Dolinski, Michelle J.

    2014-03-01

    Cryogenic liquid xenon detectors have become a popular technology in the search for rare events, such as dark matter interactions and neutrinoless double beta decay. The power of the liquid xenon detector technology is in the combination of the ionization and scintillation signals, resulting in particle discrimination and improved energy resolution over the ionization-only signal. The improved energy resolution results from a unique anti-correlation phenomenon that has not been described from first principles. Solid xenon bolometers, under development at Drexel University, are expected to have excellent counting statistics in the phonon channel, with energy resolution of 0.1% or better. This additional energy channel may offer the final piece of the puzzle in understanding liquid xenon detector energy response. Supported by a grant from the Charles E. Kaufman Foundation.

  12. Separation and purification of xenon

    DOEpatents

    Schlea, deceased, Carl Solomon

    1978-03-14

    Xenon is separated from a mixture of xenon and krypton by extractive distillation using carbon tetrafluoride as the partitioning agent. Krypton is flushed out of the distillation column with CF.sub.4 in the gaseous overhead stream while purified xenon is recovered from the liquid bottoms. The distillation is conducted at about atmospheric pressure or at subatmospheric pressure.

  13. Toward molecular mechanism of xenon anesthesia: a link to studies of xenon complexes with small aromatic molecules.

    PubMed

    Andrijchenko, Natalya N; Ermilov, Alexander Yu; Khriachtchev, Leonid; Räsänen, Markku; Nemukhin, Alexander V

    2015-03-19

    The present study illustrates the steps toward understanding molecular mechanism of xenon anesthesia by focusing on a link to the structures and spectra of intermolecular complexes of xenon with small aromatic molecules. A primary cause of xenon anesthesia is attributed to inhibition of N-methyl-D-aspartate (NMDA) receptors by an unknown mechanism. Following the results of quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) calculations we report plausible xenon action sites in the ligand binding domain of the NMDA receptor, which are due to interaction of xenon atoms with aromatic amino-acid residues. We rely in these calculations on computational protocols adjusted in combined experimental and theoretical studies of intermolecular complexes of xenon with phenol. Successful reproduction of vibrational shifts in molecular species upon complexation with xenon measured in low-temperature matrices allowed us to select a proper functional form in density functional theory (DFT) approach for use in QM subsystems, as well as to calibrate force field parameters for MD simulations. The results of molecular modeling show that xenon atoms can compete with agonists for a place in the corresponding protein cavity, thus indicating their active role in anesthetic action.

  14. Phase retrieval on broadband and under-sampled images for the JWST testbed telescope

    NASA Astrophysics Data System (ADS)

    Smith, J. Scott; Aronstein, David L.; Dean, Bruce H.; Acton, D. Scott

    2009-08-01

    The James Webb Space Telescope (JWST) consists of an optical telescope element (OTE) that sends light to five science instruments. The initial steps for commissioning the telescope are performed with the Near-Infrared Camera (NIRCam) instrument, but low-order optical aberrations in the remaining science instruments must be determined (using phase retrieval) in order to ensure good performance across the entire field of view. These remaining instruments were designed to collect science data, and not to serve as wavefront sensors. Thus, the science cameras are not ideal phase-retrieval imagers for several reasons: they record under-sampled data and have a limited range of diversity defocus, and only one instrument has an internal, narrowband filter. To address these issues, we developed the capability of sensing these aberrations using an extension of image-based iterative-transform phase retrieval called Variable Sampling Mapping (VSM). The results show that VSM-based phase retrieval is capable of sensing low-order aberrations to a few nm RMS from images that are consistent with the non-ideal conditions expected during JWST multi-field commissioning. The algorithm is validated using data collected from the JWST Testbed Telescope (TBT).

  15. Volcanoes muon imaging using Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  16. Imaging Analysis of the Hard X-Ray Telescope ProtoEXIST2 and New Techniques for High-Resolution Coded-Aperture Telescopes

    NASA Technical Reports Server (NTRS)

    Hong, Jaesub; Allen, Branden; Grindlay, Jonathan; Barthelmy, Scott D.

    2016-01-01

    Wide-field (greater than or approximately equal to 100 degrees squared) hard X-ray coded-aperture telescopes with high angular resolution (greater than or approximately equal to 2 minutes) will enable a wide range of time domain astrophysics. For instance, transient sources such as gamma-ray bursts can be precisely localized without the assistance of secondary focusing X-ray telescopes to enable rapid followup studies. On the other hand, high angular resolution in coded-aperture imaging introduces a new challenge in handling the systematic uncertainty: the average photon count per pixel is often too small to establish a proper background pattern or model the systematic uncertainty in a timescale where the model remains invariant. We introduce two new techniques to improve detection sensitivity, which are designed for, but not limited to, a high-resolution coded-aperture system: a self-background modeling scheme which utilizes continuous scan or dithering operations, and a Poisson-statistics based probabilistic approach to evaluate the significance of source detection without subtraction in handling the background. We illustrate these new imaging analysis techniques in high resolution coded-aperture telescope using the data acquired by the wide-field hard X-ray telescope ProtoEXIST2 during a high-altitude balloon flight in fall 2012. We review the imaging sensitivity of ProtoEXIST2 during the flight, and demonstrate the performance of the new techniques using our balloon flight data in comparison with a simulated ideal Poisson background.

  17. Evaluation of the image quality of telescopes using the star test

    NASA Astrophysics Data System (ADS)

    Vazquez y Monteil, Sergio; Salazar Romero, Marcos A.; Gale, David M.

    2004-10-01

    The Point Spread Function (PSF) or star test is one of the main criteria to be considered in the quality of the image formed by a telescope. In a real system the distribution of irradiance in the image of a point source is given by the PSF, a function which is highly sensitive to aberrations. The PSF of a telescope may be determined by measuring the intensity distribution in the image of a star. Alternatively, if we already know the aberrations present in the optical system, then we may use diffraction theory to calculate the function. In this paper we propose a method for determining the wavefront aberrations from the PSF, using Genetic Algorithms to perform an optimization process starting from the PSF instead of the more traditional method of adjusting an aberration polynomial. We show that this method of phase recuperation is immune to noise-induced errors arising during image aquisition and registration. Some practical results are shown.

  18. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Because xenon near the critical point will collapse under its own weight, experiments on Earth (green line) are limited as they get closer (toward the left) to the critical point. CVX in the microgravity of space (red line) moved into unmeasured territory that scientists had not been able to reach.

  19. Development of Solid Xenon Bolometers

    NASA Astrophysics Data System (ADS)

    Dolinski, Michelle; Hansen, Erin

    2016-09-01

    Cryogenic liquid xenon detectors have become a popular technology in the search for rare events, such as dark matter interactions and neutrinoless double beta decay. The power of liquid xenon detector technology is in the combination of ionization and scintillation signals, resulting in particle discrimination and improved energy resolution over the ionization-only signal. The improved energy resolution results from a microscopic anti-correlation phenomenon that has not been described from first principles. Solid xenon bolometers operated at 10 mK are expected to have excellent counting statistics in the phonon channel, with energy resolution of 0.1% or better. This additional energy channel may offer the final piece of the puzzle in understanding liquid xenon detector energy response. We present work toward the development and characterization of solid xenon bolometers at Drexel University. Funding for this project was provided by the Charles E. Kaufman Foundation of The Pittsburgh Foundation.

  20. Image contrast of diffraction-limited telescopes for circular incoherent sources of uniform radiance

    NASA Technical Reports Server (NTRS)

    Shackleford, W. L.

    1980-01-01

    A simple approximate formula is derived for the background intensity beyond the edge of the image of uniform incoherent circular light source relative to the irradiance near the center of the image. The analysis applies to diffraction-limited telescopes with or without central beam obscuration due to a secondary mirror. Scattering off optical surfaces is neglected. The analysis is expected to be most applicable to spaceborne IR telescopes, for which diffraction can be the major source of off-axis response.

  1. The Lyman-alpha Imager onboard Solar Polar Orbit Telescope

    NASA Astrophysics Data System (ADS)

    Li, Baoquan; Li, Haitao; Zhou, Sizhong; Jiang, Bo

    2013-12-01

    Solar Polar ORbit Telescope (SPORT) was originally proposed in 2004 by the National Space Science Center, Chinese Academy of Sciences, which is currently being under background engineering study phase in China. SPORT will carry a suite of remote-sensing and in-situ instruments to observe coronal mass ejections (CMEs), solar high-latitude magnetism, and the fast solar wind from a polar orbit around the Sun. The Lyman-alpha Imager (LMI) is one of the key remotesensing instruments onboard SPORT with 45arcmin FOV, 2000mm effective focal length and 1.4arcsec/pixel spatial resolution . The size of LMI is φ150×1000mm, and the weight is less than10kg, including the 7kg telescope tube and 3kg electronic box. There are three 121.6nm filters used in the LMI optical path, so the 98% spectral purity image of 121.6nm can be achieved. The 121.6nm solar Lyman-alpha line is produced in the chromosphere and very sensitive to plasma temperature, plasma velocity and magnetism variation in the chromosphere. Solar Lyman-alpha disk image is an ideal tracker for corona magnetism variation.

  2. Reaching the Diffraction Limit - Differential Speckle and Wide-Field Imaging for the Gemini-N Telescope

    NASA Technical Reports Server (NTRS)

    Scott, Nic J.; Howell, Steve; Horch, Elliott

    2016-01-01

    Speckle imaging allows telescopes to achieve di raction limited imaging performance. The technique requires cameras capable of reading out frames at a very fast rate, e ectively `freezing out' atmospheric seeing. The resulting speckles can be correlated and images reconstructed that are at the di raction limit of the telescope. These new instruments are based on the successful performance and design of the Di erential Speckle Survey Instrument (DSSI) [2, 1]. The instruments are being built for the Gemini-N and WIYN telescopes and will be made available to the community via the peer review proposal process. We envision their primary use to be validation and characterization of exoplanet targets from the NASA K2 and TESS missions and RV discovered exoplanets. Such targets will provide excellent follow-up candidates for both the WIYN and Gemini telescopes [3]. Examples of DSSI data are shown in the gures below. We expect similar data quality in speckle imaging mode with the new instruments. Additionally, both cameras will have a wide- eld mode and standard SDSS lters. They will be highly versatile instruments and it is that likely many other science programs will request time on the cameras. The limiting magnitude for speckle observations, will remain around 13-14th at WIYN and 16-17th at Gemini, while wide- eld, normal CCD imaging operation should be able to go to much fainter, providing usual CCD imaging and photometric capabilities. The instruments will also have high utility as scoring cameras for telescope engineering purposes, or other applications where high time resolution is needed. Instrument support will be provided, including a software pipeline that takes raw speckle data to fully reconstructed images.

  3. Near-infrared scintillation of xenon by 63Ni beta decay

    NASA Astrophysics Data System (ADS)

    Yoshimizu, Norimasa; Lal, Amit; Pollock, Clifford R.

    2006-07-01

    The near-infrared scintillation of xenon gas by the β decay of 37MBq of Ni63 was studied, in the interest of its use in integrated devices for applications such as optical beacons and wavelength calibration. The emission was imaged and analyzed using Spencer's theory of electron penetration using xenon scattering cross sections derived from Thomas-Fermi theory. The total emission was approximately 2×105photons/s at 20kPa and 1×105photons/s at 100kPa. Spectral data show three dominant peaks at 823, 828, and 882nm as well as the formation of metastable states.

  4. Evaluation and testing of image quality of the Space Solar Extreme Ultraviolet Telescope

    NASA Astrophysics Data System (ADS)

    Peng, Jilong; Yi, Zhong; Zhou, Shuhong; Yu, Qian; Hou, Yinlong; Wang, Shanshan

    2018-01-01

    For the space solar extreme ultraviolet telescope, the star point test can not be performed in the x-ray band (19.5nm band) as there is not light source of bright enough. In this paper, the point spread function of the optical system is calculated to evaluate the imaging performance of the telescope system. Combined with the actual processing surface error, such as small grinding head processing and magnetorheological processing, the optical design software Zemax and data analysis software Matlab are used to directly calculate the system point spread function of the space solar extreme ultraviolet telescope. Matlab codes are programmed to generate the required surface error grid data. These surface error data is loaded to the specified surface of the telescope system by using the communication technique of DDE (Dynamic Data Exchange), which is used to connect Zemax and Matlab. As the different processing methods will lead to surface error with different size, distribution and spatial frequency, the impact of imaging is also different. Therefore, the characteristics of the surface error of different machining methods are studied. Combining with its position in the optical system and simulation its influence on the image quality, it is of great significance to reasonably choose the processing technology. Additionally, we have also analyzed the relationship between the surface error and the image quality evaluation. In order to ensure the final processing of the mirror to meet the requirements of the image quality, we should choose one or several methods to evaluate the surface error according to the different spatial frequency characteristics of the surface error.

  5. Astrophysical Research Consortium Telescope Imaging Camera (ARCTIC) facility optical imager for the Apache Point Observatory 3.5m telescope

    NASA Astrophysics Data System (ADS)

    Huehnerhoff, Joseph; Ketzeback, William; Bradley, Alaina; Dembicky, Jack; Doughty, Caitlin; Hawley, Suzanne; Johnson, Courtney; Klaene, Mark; Leon, Ed; McMillan, Russet; Owen, Russell; Sayres, Conor; Sheen, Tyler; Shugart, Alysha

    2016-08-01

    The Astrophysical Research Consortium Telescope Imaging Camera, ARCTIC, is a new optical imaging camera now in use at the Astrophysical Research Consortium (ARC) 3.5m telescope at Apache Point Observatory (APO). As a facility instrument, the design criteria broadly encompassed many current and future science opportunities, and the components were built for quick repair or replacement, to minimize down-time. Examples include a quick change shutter, filter drive components accessible from the exterior and redundant amplifiers on the detector. The detector is a Semiconductor Technology Associates (STA) device with several key properties (e.g. high quantum efficiency, low read-noise, quick readout, minimal fringing, operational bandpass 350-950nm). Focal reducing optics (f/10.3 to f/8.0) were built to control aberrations over a 7.8'x7.8' field, with a plate scale of 0.11" per 0.15 micron pixel. The instrument body and dewar were designed to be simple and robust with only two components to the structure forward of the dewar, which in turn has minimal feedthroughs and permeation areas and holds a vacuum <10-8 Torr. A custom shutter was also designed, using pneumatics as the driving force. This device provides exceptional performance and reduces heat near the optical path. Measured performance is repeatable at the 2ms level and offers field uniformity to the same level of precision. The ARCTIC facility imager will provide excellent science capability with robust operation and minimal maintenance for the next decade or more at APO.

  6. Complementary compressive imaging for the telescopic system

    PubMed Central

    Yu, Wen-Kai; Liu, Xue-Feng; Yao, Xu-Ri; Wang, Chao; Zhai, Yun; Zhai, Guang-Jie

    2014-01-01

    Conventional single-pixel cameras recover images only from the data recorded in one arm of the digital micromirror device, with the light reflected to the other direction not to be collected. Actually, the sampling in these two reflection orientations is correlated with each other, in view of which we propose a sampling concept of complementary compressive imaging, for the first time to our knowledge. We use this method in a telescopic system and acquire images of a target at about 2.0 km range with 20 cm resolution, with the variance of the noise decreasing by half. The influence of the sampling rate and the integration time of photomultiplier tubes on the image quality is also investigated experimentally. It is evident that this technique has advantages of large field of view over a long distance, high-resolution, high imaging speed, high-quality imaging capabilities, and needs fewer measurements in total than any single-arm sampling, thus can be used to improve the performance of all compressive imaging schemes and opens up possibilities for new applications in the remote-sensing area. PMID:25060569

  7. Application of Two Phase (Liquid/Gas) Xenon Gamma-Camera for the Detection of Special Nuclear Material and PET Medical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinsey, Daniel Nicholas

    The McKinsey group at Yale has been awarded a grant from DTRA for the building of a Liquid Xenon Gamma Ray Color Camera (LXe-GRCC), which combines state-of-the-art detection of LXe scintillation light and time projection chamber (TPC) charge readout. The DTRA application requires a movable detector and hence only a single phase (liquid) xenon detector can be considered in this case. We propose to extend the DTRA project to applications that allow a two phase (liquid/gas) xenon TPC. This entails additional (yet minimal) hardware and extension of the research effort funded by DTRA. The two phase detector will have bettermore » energy and angular resolution. Such detectors will be useful for PET medical imaging and detection of special nuclear material in stationary applications (e.g. port of entry). The expertise of the UConn group in gas phase TPCs will enhance the capabilities of the Yale group and the synergy between the two groups will be very beneficial for this research project as well as the education and research projects of the two universities. The LXe technology to be used in this project has matured rapidly over the past few years, developed for use in detectors for nuclear physics and astrophysics. This technology may now be applied in a straightforward way to the imaging of gamma rays. According to detailed Monte Carlo simulations recently performed at Yale University, energy resolution of 1% and angular resolution of 3 degrees may be obtained for 1.0 MeV gamma rays, using existing technology. With further research and development, energy resolution of 0.5% and angular resolution of 1.3 degrees will be possible at 1.0 MeV. Because liquid xenon is a high density, high Z material, it is highly efficient for scattering and capturing gamma rays. In addition, this technology scales elegantly to large detector areas, with several square meter apertures possible. The Yale research group is highly experienced in the development and use of noble liquid

  8. Using All-Sky Imaging to Improve Telescope Scheduling (Abstract)

    NASA Astrophysics Data System (ADS)

    Cole, G. M.

    2017-12-01

    (Abstract only) Automated scheduling makes it possible for a small telescope to observe a large number of targets in a single night. But when used in areas which have less-than-perfect sky conditions such automation can lead to large numbers of observations of clouds and haze. This paper describes the development of a "sky-aware" telescope automation system that integrates the data flow from an SBIG AllSky340c camera with an enhanced dispatch scheduler to make optimum use of the available observing conditions for two highly instrumented backyard telescopes. Using the minute-by-minute time series image stream and a self-maintained reference database, the software maintains a file of sky brightness, transparency, stability, and forecasted visibility at several hundred grid positions. The scheduling software uses this information in real time to exclude targets obscured by clouds and select the best observing task, taking into account the requirements and limits of each instrument.

  9. Search for WIMP inelastic scattering off xenon nuclei with XENON100

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Mora, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Xenon Collaboration

    2017-07-01

    We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64 ×103 kg .days . XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe 129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe 129 interactions. A profile likelihood analysis allows us to set a 90% C.L. upper limit on the inelastic, spin-dependent WIMP-nucleon cross section of 3.3 ×10-38 cm2 at 100 GeV /c2 . This is the most constraining result to date, and sets the pathway for an analysis of this interaction channel in upcoming, larger dual-phase xenon detectors.

  10. Spectral calibration of the fluorescence telescopes of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Biermann, P. L.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Catalani, F.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cobos, A.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farmer, J.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gorgi, A.; Gorham, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Halliday, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Johnsen, J. A.; Josebachuili, M.; Jurysek, J.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Keilhauer, B.; Kemmerich, N.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; Lago, B. L.; LaHurd, D.; Lang, R. G.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti, D.; Lopes, L.; López, R.; López Casado, A.; Lorek, R.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K.-D.; Michal, S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlin, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schröder, S.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Stolpovskiy, M.; Strafella, F.; Streich, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, R. A.; Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Pierre Auger Collaboration

    2017-10-01

    We present a novel method to measure precisely the relative spectral response of the fluorescence telescopes of the Pierre Auger Observatory. We used a portable light source based on a xenon flasher and a monochromator to measure the relative spectral efficiencies of eight telescopes in steps of 5 nm from 280 nm to 440 nm. Each point in a scan had approximately 2 nm FWHM out of the monochromator. Different sets of telescopes in the observatory have different optical components, and the eight telescopes measured represent two each of the four combinations of components represented in the observatory. We made an end-to-end measurement of the response from different combinations of optical components, and the monochromator setup allowed for more precise and complete measurements than our previous multi-wavelength calibrations. We find an overall uncertainty in the calibration of the spectral response of most of the telescopes of 1.5% for all wavelengths; the six oldest telescopes have larger overall uncertainties of about 2.2%. We also report changes in physics measurables due to the change in calibration, which are generally small.

  11. Low-cost, high-resolution, single-structure array telescopes for imaging of low-earth-orbit satellites

    NASA Technical Reports Server (NTRS)

    Massie, N. A.; Oster, Yale; Poe, Greg; Seppala, Lynn; Shao, Mike

    1992-01-01

    Telescopes that are designed for the unconventional imaging of near-earth satellites must follow unique design rules. The costs must be reduced substantially over those of the conventional telescope designs, and the design must accommodate a technique to circumvent atmospheric distortion of the image. Apertures of 12 m and more along with altitude-altitude mounts that provide high tracking rates are required. A novel design for such a telescope, optimized for speckle imaging, has been generated. Its mount closely resembles a radar mount, and it does not use the conventional dome. Costs for this design are projected to be considerably lower than those for the conventional designs. Results of a design study are presented with details of the electro-optical and optical designs.

  12. High-contrast imager for Complex Aperture Telescopes (HiCAT). 4. Status and wavefront control development

    NASA Astrophysics Data System (ADS)

    Leboulleux, Lucie; N'Diaye, Mamadou; Riggs, A. J. E.; Egron, Sylvain; Mazoyer, Johan; Pueyo, Laurent; Choquet, Elodie; Perrin, Marshall D.; Kasdin, Jeremy; Sauvage, Jean-François; Fusco, Thierry; Soummer, Rémi

    2016-07-01

    Segmented telescopes are a possible approach to enable large-aperture space telescopes for the direct imaging and spectroscopy of habitable worlds. However, the increased complexity of their aperture geometry, due to their central obstruction, support structures and segment gaps, makes high-contrast imaging very challenging. The High-contrast imager for Complex Aperture Telescopes (HiCAT) was designed to study and develop solutions for such telescope pupils using wavefront control and starlight suppression. The testbed design has the flexibility to enable studies with increasing complexity for telescope aperture geometries starting with off-axis telescopes, then on-axis telescopes with central obstruction and support structures (e.g. the Wide Field Infrared Survey Telescope [WFIRST]), up to on-axis segmented telescopes e.g. including various concepts for a Large UV, Optical, IR telescope (LUVOIR), such as the High Definition Space Telescope (HDST). We completed optical alignment in the summer of 2014 and a first deformable mirror was successfully integrated in the testbed, with a total wavefront error of 13nm RMS over a 18mm diameter circular pupil in open loop. HiCAT will also be provided with a segmented mirror conjugated with a shaped pupil representing the HDST configuration, to directly study wavefront control in the presence of segment gaps, central obstruction and spider. We recently applied a focal plane wavefront control method combined with a classical Lyot coronagraph on HiCAT, and we found limitations on contrast performance due to vibration effect. In this communication, we analyze this instability and study its impact on the performance of wavefront control algorithms. We present our Speckle Nulling code to control and correct for wavefront errors both in simulation mode and on testbed mode. This routine is first tested in simulation mode without instability to validate our code. We then add simulated vibrations to study the degradation of contrast

  13. Wide-Angle, Flat-Field Telescope

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Howell, B. J.; Wilson, M. E.

    1987-01-01

    All-reflective system unvignetted. Wide-angle telescope uses unobstructed reflecting elements to produce flat image. No refracting elements, no chromatic aberration, and telescope operates over spectral range from infrared to far ultraviolet. Telescope used with such image detectors as photographic firm, vidicons, and solid-state image arrays.

  14. [How xenon works: neuro and cardioprotection mechanisms].

    PubMed

    Morais, Ricardo; Andrade, Luísa; Lourenço, André; Tavares, Jorge

    2014-01-01

    The Xenon, a noble gas, has anesthetics properties, associated with remarkable hemodynamic stability as well as cardioprotective, neuroprotective proprieties. Its physicochemical characteristics give him a quick induction and emergence of anesthesia, being free of deleterious effects in all organs and showing no teratogenicity. Such properties have led to a growing interest in improving the knowledge about this noble gas, in order to assess the mechanisms of neuro and cardioprotection induced and to assess the clinical indications for its use. Qualitative review of clinical trials on anesthesia with xenon. Studies were identified from MEDLINE and by hand-searching, using the following keywords: xenon, xenon anestesia, xenon neuroprotection, xenon cradioprotection. After several studies, including two randomized multicenter controlled trials, the use of xenon as an anesthetic in patients ASA I-II was approved in March 2007. However his use in clinical practice has been strongly limited by it's high price. It seems unlikely that the advantages it offers in relation to other anesthetics justify it's use in patients ASA I-II. Although, xenon may be a valuable asset in the reduction of co-morbilities and mortality in anesthesia of patients ASA III-IV, unfortunately, there are no large randomized control studies to prove it. Unfortunately, there are still no randomized or multicentric studies showing a favourable cost-benefit profile of xenon in ASA III-IV patients vs. other anaesthetics. The usefulness of xenon in Anesthesiology requires more studies to be defined.

  15. Ultraviolet Imaging Telescope observations of the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Hennessy, Gregory S.; O'Connell, Robert W.; Cheng, Kwang P.; Bohlin, Ralph C.; Collins, Nicholas R.; Gull, Theodore P.; Hintzen, Paul; Isensee, Joan E.; Landsman, Wayne B.; Roberts, Morton S.

    1992-01-01

    We obtained ultraviolet images of the Crab Nebula with the Ultraviolet Imaging Telescope during the Astro-1 Space Shuttle mission in 1990 December. The UV continuum morphology of the Crab is generally similar to that in the optical region, but the wispy structures are less conspicuous in the UV and X-ray. UV line emission from the thermal filaments is not strong. UV spectral index maps with a resolution of 10 arcsecs show a significant gradient across the nebula, with the outer parts being redder, as expected from synchrotron losses. The location of the bluest synchrotron continuum does not coincide with the pulsar.

  16. Scanning Kirkpatrick-Baez X-ray telescope to maximize effective area and eliminate spurious images - Design

    NASA Technical Reports Server (NTRS)

    Kast, J. W.

    1975-01-01

    We consider the design of a Kirkpatrick-Baez grazing-incidence X-ray telescope to be used in a scan of the sky and analyze the distribution of both properly reflected rays and spurious images over the field of view. To obtain maximum effective area over the field of view, it is necessary to increase the spacing between plates for a scanning telescope as compared to a pointing telescope. Spurious images are necessarily present in this type of lens, but they can be eliminated from the field of view by adding properly located baffles or collimators. Results of a computer design are presented.

  17. Diffusion NMR methods applied to xenon gas for materials study

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

  18. High-Rydberg Xenon Submillimeter-Wave Detector

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara

    1987-01-01

    Proposed detector for infrared and submillimeter-wavelength radiation uses excited xenon atoms as Rydberg sensors instead of customary beams of sodium, potassium, or cesium. Chemically inert xenon easily stored in pressurized containers, whereas beams of dangerously reactive alkali metals must be generated in cumbersome, unreliable ovens. Xenon-based detector potential for infrared astronomy and for Earth-orbiter detection of terrestrial radiation sources. Xenon atoms excited to high energy states in two stages. Doubly excited atoms sensitive to photons in submillimeter wavelength range, further excited by these photons, then ionized and counted.

  19. A parametric study of various synthetic aperture telescope configurations for coherent imaging applications

    NASA Technical Reports Server (NTRS)

    Harvey, James E.; Wissinger, Alan B.; Bunner, Alan N.

    1986-01-01

    The comparative advantages of synthetic aperture telescopes (SATs) of segmented primary mirror and common secondary mirror type, on the one hand, and on the other those employing an array of independent telescopes, are discussed. The diffraction-limited optical performance of both redundant and nonredundant subaperture configurations are compared in terms of point spread function characteristics and encircled energy plots. Coherent imaging with afocal telescope SATs involves a pupil-mapping operation followed by a Fourier transform one. A quantitative analysis of the off-axis optical performance degradation due to pupil-mapping errors is presented, together with the field-dependent effects of residual design aberrations of independent telescopes.

  20. Current Status of the High Contrast Imager for Complex Aperture Telescopes (HiCAT) Testbed

    NASA Astrophysics Data System (ADS)

    Brooks, Keira; Brady, Gregory; Brito, Arturo; Comeau, Tom; Dillon, Thomas; Choquet, Elodie; Egron, Sylvain; Rob, Gontrum; John, Hagopian; Leboulleux, Lucie; Perrin, Marshall; Petrone, Peter; Pueyo, Laurent; Mazoyer, Johan; Moriarty, Christopher; N’Diaye, Mamadou; Eldorado Riggs, A. J.; Shiri, Ron; Sivaramakrishnan, Anand; St. Laurent, Kathryn; Valenzuela, Ana Maria; Zimmerman, Neil; Soummer, Remi; JHU Mechanical Engineering Senior Design Team

    2018-01-01

    The coming decades will bring the next space telescopes to take on the ambitious goal of exoplanet discovery via direct imaging, driving the development of innovative coronagraphic solutions. High contrast imager for Complex Aperture Telescopes (HiCAT) is an optical testbed meant to test such solutions for complex aperture telescopes, such as the Large UV/Optical/InfraRed surveyor (LUVOIR), or any other segmented space observatory. High contrast imaging becomes more demanding with the addition of segments, a secondary mirror obscuration, and support structure. LUVOIR, a candidate for the next-next generation major space telescope funded in part by NASA, will have all three. In the past year, HiCAT has made significant hardware and software updates in order to meet the needs of LUVOIR. In addition to completely overhauling the software that runs the testbed, we have received the first two custom-made apodizers for the Apodized Pupil Lyot Coronagraph (APLC) that we are testing for LUVOIR, and are continuing the development of the wavefront sensing and control. This poster will serve to give an update on these, and other, changes, as well as the most recent results.

  1. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The sample cell at the heart of CVX-2 will sit inside a thermostat providing three layers of insulation. The cell itself comprises a copper body that conducts heat efficiently and smoothes out thermal variations that that would destroy the xenon's uniformity. Inside the cell, the oscillating screen viscometer element is supported between two pairs of electrodes that deflect the screen and then measure screen motion.

  2. The SWAP EUV Imaging Telescope Part I: Instrument Overview and Pre-Flight Testing

    NASA Astrophysics Data System (ADS)

    Seaton, D. B.; Berghmans, D.; Nicula, B.; Halain, J.-P.; De Groof, A.; Thibert, T.; Bloomfield, D. S.; Raftery, C. L.; Gallagher, P. T.; Auchère, F.; Defise, J.-M.; D'Huys, E.; Lecat, J.-H.; Mazy, E.; Rochus, P.; Rossi, L.; Schühle, U.; Slemzin, V.; Yalim, M. S.; Zender, J.

    2013-08-01

    The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV solar telescope onboard ESA's Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm and provides images of the low solar corona over a 54×54 arcmin field-of-view with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is designed to monitor all space-weather-relevant events and features in the low solar corona. Given the limited resources of the PROBA2 microsatellite, the SWAP telescope is designed with various innovative technologies, including an off-axis optical design and a CMOS-APS detector. This article provides reference documentation for users of the SWAP image data.

  3. Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Vidal, J. Muñoz

    2013-03-01

    The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Σm{sub ν} = (0.32±0.11) eV. This result, if confirmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m{sub ββ} involved in neutrinoless double beta decay (ββ0ν) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based ββ0ν experiments, on themore » double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg·year, could already have a sizeable opportunity to observe ββ0ν events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton·year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely.« less

  4. Wide-Field Imaging Telescope-0 (WIT0) with automatic observing system

    NASA Astrophysics Data System (ADS)

    Ji, Tae-Geun; Byeon, Seoyeon; Lee, Hye-In; Park, Woojin; Lee, Sang-Yun; Hwang, Sungyong; Choi, Changsu; Gibson, Coyne Andrew; Kuehne, John W.; Prochaska, Travis; Marshall, Jennifer L.; Im, Myungshin; Pak, Soojong

    2018-01-01

    We introduce Wide-Field Imaging Telescope-0 (WIT0), with an automatic observing system. It is developed for monitoring the variabilities of many sources at a time, e.g. young stellar objects and active galactic nuclei. It can also find the locations of transient sources such as a supernova or gamma-ray bursts. In 2017 February, we installed the wide-field 10-inch telescope (Takahashi CCA-250) as a piggyback system on the 30-inch telescope at the McDonald Observatory in Texas, US. The 10-inch telescope has a 2.35 × 2.35 deg field-of-view with a 4k × 4k CCD Camera (FLI ML16803). To improve the observational efficiency of the system, we developed a new automatic observing software, KAOS30 (KHU Automatic Observing Software for McDonald 30-inch telescope), which was developed by Visual C++ on the basis of a windows operating system. The software consists of four control packages: the Telescope Control Package (TCP), the Data Acquisition Package (DAP), the Auto Focus Package (AFP), and the Script Mode Package (SMP). Since it also supports the instruments that are using the ASCOM driver, the additional hardware installations become quite simplified. We commissioned KAOS30 in 2017 August and are in the process of testing. Based on the WIT0 experiences, we will extend KAOS30 to control multiple telescopes in future projects.

  5. Fast Imaging Solar Spectrograph System in New Solar Telescope

    NASA Astrophysics Data System (ADS)

    Park, Y.-D.; Kim, Y. H.; Chae, J.; Goode, P. R.; Cho, K. S.; Park, H. M.; Nah, J. K.; Jang, B. H.

    2010-12-01

    In 2004, Big Bear Solar Observatory in California, USA launched a project for construction of the world's largest aperture solar telescope (D = 1.6m) called New Solar Telescope(NST). University of Hawaii (UH) and Korea Astronomy and Space Science Institute(KASI) partly collaborate on the project. NST is a designed off-axis parabolic Gregorian reflector with very high spatial resolution(0.07 arcsec at 5000A) and is equipped with several scientific instruments such as Visible Imaging Magnetograph (VIM), InfraRed Imaging Magnetograph IRIM), and so on. Since these scientific instruments are focused on studies of the solar photosphere, we need a post-focus instrument for the NST to study the fine structures and dynamic patterns of the solar chromosphere and low Transition Region (TR) layer, including filaments/prominences, spicules, jets, micro flares, etc. For this reason, we developed and installed a fast imaging solar spectrograph(FISS) system on the NST withadvantages of achieving compact design with high spectral resolution and small aberration as well as recording many solar spectral lines in a single and/or dual band mode. FISS was installed in May, 2010 and now we carry out a test observation. In this talk, we introduce the FISS system and the results of the test observation after FISS installation.

  6. On the behavior of solutions of xenon in liquid n-alkanes: solubility of xenon in n-pentane and n-hexane.

    PubMed

    Bonifácio, Rui P M F; Martins, Luís F G; McCabe, Clare; Filipe, Eduardo J M

    2010-12-09

    The solubility of xenon in liquid n-pentane and n-hexane has been studied experimentally, theoretically, and by computer simulation. Measurements of the solubility are reported for xenon + n-pentane as a function of temperature from 254 to 305 K. The uncertainty in the experimental data is less than 0.15%. The thermodynamic functions of solvation such as the standard Gibbs energy, enthalpy, and entropy of solvation have been calculated from Henry's law coefficients for xenon + n-pentane solutions and also for xenon + n-hexane, which were reported in previous work. The results provide a further example of the similarity between the xenon + n-alkane interaction and the n-alkane + n-alkane interactions. Using the SAFT-VR approach we were able to quantitatively predict the experimental solubility for xenon in n-pentane and semiquantitatively that of xenon in n-hexane using simple Lorentz-Berthelot combining rules to describe the unlikely interaction. Henry's constants at infinite dilution for xenon + n-pentane and xenon + n-hexane were also calculated by Monte Carlo simulation using a united atom force field to describe the n-alkane and the Widom test particle insertion method.

  7. UVSTAR: An imaging spectrograph with telescope for the Shuttle Hitchhiker-M platform

    NASA Technical Reports Server (NTRS)

    Stalio, Roberto; Sandel, Bill R.; Broadfoot, A. Lyle

    1993-01-01

    UVSTAR is an EUV spectral imager intended as a facility instrument devoted to solar system and astronomy studies. It covers the wavelength range of 500 to 1250 A, with sufficient spectral resolution to separate emission lines and to form spectrally resolved images of extended plasma sources. Targets include the Io plasma torus at Jupiter, hot stars, planetary nebulae and bright galaxies. UVSTAR consists of a pair of telescopes and concave grating spectrographs that cover the overlapping spectral ranges of 500-900 and 850-1250 A. The telescopes use two 30 cm diameter off-axis paraboloids having focal length of 1.5 m. An image of the target is formed at the entrance slits of the two concave grating spectrographs. The gratings provide dispersion and re-image the slits at the detectors, intensified CCD's. The readout format of the detectors can be chosen by computer, and three slit widths are selectable to adapt the instrument to specific tasks. UVSTAR has internal gimbals which allow rotation of plus or minus 3 deg about each of two axes. Dedicated finding and tracking telescopes will acquire and track the target after rough pointing is achieved by orienting the Orbiter. Responsibilities for implementation and utilization of UVSTAR are shared by groups in Italy and the U.S. UVSTAR is scheduled for flight in early 1995, timed for an opportunity to observe the Jovian system.

  8. Digital optical correlator x-ray telescope alignment monitoring system

    NASA Astrophysics Data System (ADS)

    Lis, Tomasz; Gaskin, Jessica; Jasper, John; Gregory, Don A.

    2018-01-01

    The High-Energy Replicated Optics to Explore the Sun (HEROES) program is a balloon-borne x-ray telescope mission to observe hard x-rays (˜20 to 70 keV) from the sun and multiple astrophysical targets. The payload consists of eight mirror modules with a total of 114 optics that are mounted on a 6-m-long optical bench. Each mirror module is complemented by a high-pressure xenon gas scintillation proportional counter. Attached to the payload is a camera that acquires star fields and then matches the acquired field to star maps to determine the pointing of the optical bench. Slight misalignments between the star camera, the optical bench, and the telescope elements attached to the optical bench may occur during flight due to mechanical shifts, thermal gradients, and gravitational effects. These misalignments can result in diminished imaging and reduced photon collection efficiency. To monitor these misalignments during flight, a supplementary Bench Alignment Monitoring System (BAMS) was added to the payload. BAMS hardware comprises two cameras mounted directly to the optical bench and rings of light-emitting diodes (LEDs) mounted onto the telescope components. The LEDs in these rings are mounted in a predefined, asymmetric pattern, and their positions are tracked using an optical/digital correlator. The BAMS analysis software is a digital adaption of an optical joint transform correlator. The aim is to enhance the observational proficiency of HEROES while providing insight into the magnitude of mechanically and thermally induced misalignments during flight. Results from a preflight test of the system are reported.

  9. Anticonvulsant effect of xenon on neonatal asphyxial seizures.

    PubMed

    Azzopardi, Denis; Robertson, Nicola J; Kapetanakis, Andrew; Griffiths, James; Rennie, Janet M; Mathieson, Sean R; Edwards, A David

    2013-09-01

    Xenon, a monoatomic gas with very high tissue solubility, is a non-competitive inhibitor of N-methyl-D-aspartate (NMDA) glutamate receptor, has antiapoptotic effects and is neuroprotective following hypoxic ischaemic injury in animals. Xenon may be expected to have anticonvulsant effects through glutamate receptor blockade, but this has not previously been demonstrated clinically. We examined seizure activity on the real time and amplitude integrated EEG records of 14 full-term infants with perinatal asphyxial encephalopathy treated within 12 h of birth with 30% inhaled xenon for 24 h combined with 72 h of moderate systemic hypothermia. Seizures were identified on 5 of 14 infants. Seizures stopped during xenon therapy but recurred within a few minutes of withdrawing xenon and stopped again after xenon was restarted. Our data show that subanaesthetic levels of xenon may have an anticonvulsant effect. Inhaled xenon may be a valuable new therapy in this hard-to-treat population.

  10. High resolution telescope

    DOEpatents

    Massie, Norbert A.; Oster, Yale

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employs speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by an electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activites. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  11. New drift chamber technology for high energy gamma-ray telescopes

    NASA Astrophysics Data System (ADS)

    Hunter, Stanley D.; Cuddapah, Rajani

    1990-08-01

    Work to develop a low-power amplifier and discriminator for use on space qualifiable drift chambers is discussed. Consideration is given to the goals of the next generation of high-energy gamma-ray telescope design and to how the goals can be achieved using xenon gas drift chambers. The design and construction of a low power drift chamber amplifier and discriminator are described, and the design of a quad-time-to-amplitude converter is outlined.

  12. JUDE: An Ultraviolet Imaging Telescope pipeline

    NASA Astrophysics Data System (ADS)

    Murthy, J.; Rahna, P. T.; Sutaria, F.; Safonova, M.; Gudennavar, S. B.; Bubbly, S. G.

    2017-07-01

    The Ultraviolet Imaging Telescope (UVIT) was launched as part of the multi-wavelength Indian AstroSat mission on 28 September, 2015 into a low Earth orbit. A 6-month performance verification (PV) phase ended in March 2016, and the instrument is now in the general observing phase. UVIT operates in three channels: visible, near-ultraviolet (NUV) and far-ultraviolet (FUV), each with a choice of broad and narrow band filters, and has NUV and FUV gratings for low-resolution spectroscopy. We have written a software package (JUDE) to convert the Level 1 data from UVIT into scientifically useful photon lists and images. The routines are written in the GNU Data Language (GDL) and are compatible with the IDL software package. We use these programs in our own scientific work, and will continue to update the programs as we gain better understanding of the UVIT instrument and its performance. We have released JUDE under an Apache License.

  13. [Xenon: From rare gaz to doping product].

    PubMed

    Tassel, Camille; Le Daré, Brendan; Morel, Isabelle; Gicquel, Thomas

    2016-04-01

    Doping is defined as the use of processes or substances to artificially increase physical or mental performance. Xenon is a noble gas used as an anesthetic and recently as a doping agent. Xenon is neuroprotective as an antagonist of NMDA glutamate receptors. Xenon stimulates the synthesis of erythropoietin (EPO) by increase of hypoxia inducible factor (HIF). Xenon would be a new doping product, maintaining doping methods ahead of detection. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Seismic Imager Space Telescope

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; hide

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  15. Vortex coronagraphs for the Habitable Exoplanet Imaging Mission concept: theoretical performance and telescope requirements

    NASA Astrophysics Data System (ADS)

    Ruane, Garreth; Mawet, Dimitri; Mennesson, Bertrand; Jewell, Jeffrey; Shaklan, Stuart

    2018-01-01

    The Habitable Exoplanet Imaging Mission concept requires an optical coronagraph that provides deep starlight suppression over a broad spectral bandwidth, high throughput for point sources at small angular separation, and insensitivity to temporally varying, low-order aberrations. Vortex coronagraphs are a promising solution that performs optimally on off-axis, monolithic telescopes and may also be designed for segmented telescopes with minor losses in performance. We describe the key advantages of vortex coronagraphs on off-axis telescopes such as (1) unwanted diffraction due to aberrations is passively rejected in several low-order Zernike modes relaxing the wavefront stability requirements for imaging Earth-like planets from <10 to >100 pm rms, (2) stars with angular diameters >0.1 λ / D may be sufficiently suppressed, (3) the absolute planet throughput is >10 % , even for unfavorable telescope architectures, and (4) broadband solutions (Δλ / λ > 0.1) are readily available for both monolithic and segmented apertures. The latter make use of grayscale apodizers in an upstream pupil plane to provide suppression of diffracted light from amplitude discontinuities in the telescope pupil without inducing additional stroke on the deformable mirrors. We set wavefront stability requirements on the telescope, based on a stellar irradiance threshold set at an angular separation of 3 ± 0.5λ / D from the star, and discuss how some requirements may be relaxed by trading robustness to aberrations for planet throughput.

  16. Spectral calibration of the fluorescence telescopes of the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, A.; Abreu, P.; Aglietta, M.

    We present a novel method to measure precisely the relative spectral response of the fluorescence telescopes of the Pierre Auger Observatory. Here, we used a portable light source based on a xenon flasher and a monochromator to measure the relative spectral efficiencies of eight telescopes in steps of 5 nm from 280 nm to 440 nm. Each point in a scan had approximately 2 nm FWHM out of the monochromator. Different sets of telescopes in the observatory have different optical components, and the eight telescopes measured represent two each of the four combinations of components represented in the observatory. Wemore » made an end-to-end measurement of the response from different combinations of optical components, and the monochromator setup allowed for more precise and complete measurements than our previous multi-wavelength calibrations. We find an overall uncertainty in the calibration of the spectral response of most of the telescopes of 1.5% for all wavelengths; the six oldest telescopes have larger overall uncertainties of about 2.2%. We also report changes in physics measureables due to the change in calibration, which are generally small.« less

  17. Spectral calibration of the fluorescence telescopes of the Pierre Auger Observatory

    DOE PAGES

    Aab, A.; Abreu, P.; Aglietta, M.; ...

    2017-09-08

    We present a novel method to measure precisely the relative spectral response of the fluorescence telescopes of the Pierre Auger Observatory. Here, we used a portable light source based on a xenon flasher and a monochromator to measure the relative spectral efficiencies of eight telescopes in steps of 5 nm from 280 nm to 440 nm. Each point in a scan had approximately 2 nm FWHM out of the monochromator. Different sets of telescopes in the observatory have different optical components, and the eight telescopes measured represent two each of the four combinations of components represented in the observatory. Wemore » made an end-to-end measurement of the response from different combinations of optical components, and the monochromator setup allowed for more precise and complete measurements than our previous multi-wavelength calibrations. We find an overall uncertainty in the calibration of the spectral response of most of the telescopes of 1.5% for all wavelengths; the six oldest telescopes have larger overall uncertainties of about 2.2%. We also report changes in physics measureables due to the change in calibration, which are generally small.« less

  18. Parkes Telescope

    NASA Image and Video Library

    2013-07-08

    This image shows the Parkes telescope in Australia, part of the Commonwealth Scientific and Industrial Research Organization. Researchers used the telescope to detect the first population of radio bursts known to originate from beyond our galaxy.

  19. Xenon lighting adjusted to plant requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koefferlein, M.; Doehring, T.; Payer, H.D.

    1994-12-31

    The high luminous flux and spectral properties of xenon lamps would provide an ideal luminary for plant lighting if not excess IR radiation poses several problems for an application: the required filter systems reduce the irradiance at spectral regions of particular importance for plant development. Most of the economical drawbacks of xenon lamps are related to the difficult handling of that excess IR energy. Furthermore, the temporal variation of the xenon output depending on the oscillations of the applied AC voltage has to be considered for the plant development. However, xenon lamps outperform other lighting systems with respect to spectralmore » stability, immediate response, and maximum luminance. Therefore, despite considerable competition by other lighting techniques, xenon lamps provide a very useful tool for special purposes. In plant lighting however, they seem to play a less important role as other lamp and lighting developments can meet these particular requirements at lower costs.« less

  20. Diffraction-limited imaging with very large telescopes; Proceedings of the NATO Advanced Study Institute, Cargese, France, Sept. 13-23, 1988

    NASA Astrophysics Data System (ADS)

    Alloin, D. M.; Mariotti, J.-M.

    Recent advances in optics and observation techniques for very large astronomical telescopes are discussed in reviews and reports. Topics addressed include Fourier optics and coherence, optical propagation and image formation through a turbulent atmosphere, radio telescopes, continuously deformable telescopes for optical interferometry (I), amplitude estimation from speckle I, noise calibration of speckle imagery, and amplitude estimation from diluted-array I. Consideration is given to first-order imaging methods, speckle imaging with the PAPA detector and the Knox-Thompson algorithm, phase-closure imaging, real-time wavefront sensing and adaptive optics, differential I, astrophysical programs for high-angular-resolution optical I, cophasing telescope arrays, aperture synthesis for space observatories, and lunar occultations for marcsec resolution.

  1. Xenon Feed System Progress (Postprint)

    DTIC Science & Technology

    2006-06-13

    development, assembly and test of an electric propulsion xenon feed system for a flight technology demonstration program. Major accomplishments...pressure transducer feedback, the PFCV has successfully fed xenon to a 200 watt Hall Effect Thruster in a Technology Demonstration Program. The feed

  2. Update on the Status of the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Hernandez, Svea; Aloisi, A.; Bostroem, K. A.; Cox, C.; Debes, J. H.; DiFelice, A.; Roman-Duval, J.; Hodge, P.; Holland, S.; Lindsay, K.; Lockwood, S. A.; Mason, E.; Oliveira, C. M.; Penton, S. V.; Proffitt, C. R.; Sonnentrucker, P.; Taylor, J. M.; Wheeler, T.

    2013-06-01

    The Space Telescope Imaging Spectrograph (STIS) has been on orbit for approximately 16 years as one of the 2nd generation instruments on the Hubble Space Telescope (HST). Its operations were interrupted by an electronics failure in 2004, but STIS was successfully repaired in May 2009 during Service Mission 4 (SM4) allowing it to resume science observations. The Instrument team continues to monitor its performance and work towards improving the quality of its products. Here we present updated information on the status of the FUV and NUV MAMA and the CCD detectors onboard STIS and describe recent changes to the STIS calibration pipeline. We also discuss the status of efforts to apply a pixel-based correction for charge transfer inefficiency (CTI) effects to STIS CCD data. These techniques show promise for ameliorating the effects of ongoing radiation damage on the quality of STIS CCD data.

  3. The Advanced Gamma-ray Imaging System (AGIS): Telescope Mechanical Designs

    NASA Astrophysics Data System (ADS)

    Guarino, V.; Buckley, J.; Byrum, K.; Falcone, A.; Fegan, S.; Finley, J.; Hanna, D.; Horan, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Wagner, R.; Woods, M.; Vassiliev, V.

    2008-04-01

    The concept of a future ground-based gamma-ray observatory, AGIS, in the energy range 40 GeV-100 TeV is based on an array of sim 100 imaging atmospheric Cherenkov telescopes (IACTs). The anticipated improvements of AGIS sensitivity, angular resolution and reliability of operation impose demanding technological and cost requirements on the design of IACTs. The relatively inexpensive Davies-Cotton telescope design has been used in ground-based gamma-ray astronomy for almost fifty years and is an excellent option. We are also exploring alternative designs and in this submission we focus on the recent mechanical design of a two-mirror telescope with a Schwarzschild-Couder (SC) optical system. The mechanical structure provides support points for mirrors and camera. The design was driven by the requirement of minimizing the deflections of the mirror support structures. The structure is also designed to be able to slew in elevation and azimuth at 10 degrees/sec.

  4. EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Delaboudiniere, J. P.; Gabriel, A. H.; Artzner, G. E.; Michels, D. J.; Dere, K. P.; Howard, R. A.; Catura, R.; Stern, R.; Lemen, J.; Neupert, W.

    1988-01-01

    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments.

  5. ExSPO: A Discovery Class Apodized Square Aperture (ASA) Expo-Planet Imaging Space Telescope Concept

    NASA Technical Reports Server (NTRS)

    Gezari, D.; Harwit, M.; Lyon, R.; Melnick, G.; Papaliolos, G.; Ridgeway, S.; Woodruff, R.; Nisenson, P.; Oegerle, William (Technical Monitor)

    2002-01-01

    ExSPO is a Discovery Class (approx. 4 meter) apodized square aperture (ASA) space telescope mission designed for direct imaging of extrasolar Earth-like planets, as a precursor to TPF. The ASA telescope concept, instrument design, capabilities, mission plan and science goals are described.

  6. Telescopic Imaging of Heater-Induced Airglow at HAARP

    DTIC Science & Technology

    2007-01-01

    03-01-2007 Final1 10-09-2003 - 10-09-2006 4. TITLE AND SUBTITLE Ba. CONTRACT NUMBER Telescopic Imaging of Heater-Induced Airglow at HAARP N00014-03-1... HAARP to optically measure fine structure in the ionosphere and to study airglow sources. In the presence of aurora and a strong blanketing E layer... HAARP was modulated at intervals of several seconds. For several cycles, small bright airglow spots were observed whenever HAARP was on. These spots

  7. High-resolution imaging of the Pluto-Charon system with the Faint Object Camera of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Albrecht, R.; Barbieri, C.; Adorf, H.-M.; Corrain, G.; Gemmo, A.; Greenfield, P.; Hainaut, O.; Hook, R. N.; Tholen, D. J.; Blades, J. C.

    1994-01-01

    Images of the Pluto-Charon system were obtained with the Faint Object Camera (FOC) of the Hubble Space Telescope (HST) after the refurbishment of the telescope. The images are of superb quality, allowing the determination of radii, fluxes, and albedos. Attempts were made to improve the resolution of the already diffraction limited images by image restoration. These yielded indications of surface albedo distributions qualitatively consistent with models derived from observations of Pluto-Charon mutual eclipses.

  8. The feasibility of using a portable xenon delivery device to permit earlier xenon ventilation with therapeutic cooling of neonates during ambulance retrieval.

    PubMed

    Dingley, John; Liu, Xun; Gill, Hannah; Smit, Elisa; Sabir, Hemmen; Tooley, James; Chakkarapani, Ela; Windsor, David; Thoresen, Marianne

    2015-06-01

    Therapeutic hypothermia is the standard of care after perinatal asphyxia. Preclinical studies show 50% xenon improves outcome, if started early. During a 32-patient study randomized between hypothermia only and hypothermia with xenon, 5 neonates were given xenon during retrieval using a closed-circuit incubator-mounted system. Without xenon availability during retrieval, 50% of eligible infants exceeded the 5-hour treatment window. With the transportable system, 100% were recruited. Xenon delivery lasted 55 to 120 minutes, using 174 mL/h (117.5-193.2) (median [interquartile range]), after circuit priming (1300 mL). Xenon delivery during ambulance retrieval was feasible, reduced starting delays, and used very little gas.

  9. Adsorption of xenon on vicinal copper and platinum surfaces

    NASA Astrophysics Data System (ADS)

    Baker, Layton

    The adsorption of xenon was studied on Cu(111), Cu(221), Cu(643) and on Pt(111), Pt(221), and Pt(531) using low energy electron diffraction (LEED), temperature programmed desorption (TPD) of xenon, and ultraviolet photoemission of adsorbed xenon (PAX). These experiments were performed to study the atomic and electronic structure of stepped and step-kinked, chiral metal surfaces. Xenon TPD and PAX were performed on each surface in an attempt to titrate terrace, step edge, and kink adsorption sites by adsorption energetics (TPD) and local work function differences (PAX). Due to the complex behavior of xenon on the vicinal copper and platinum metal surfaces, adsorption sites on these surfaces could not be adequately titrated by xenon TPD. On Cu(221) and Cu(643), xenon desorption from step adsorption sites was not apparent leading to the conclusion that the energy difference between terrace and step adsorption is minuscule. On Pt(221) and Pt(531), xenon TPD indicated that xenon prefers to bond at step edges and that the xenon-xenon interaction at step edges in repulsive but no further indication of step-kink adsorption was observed. The Pt(221) and Pt(531) TPD spectra indicated that the xenon overlayer undergoes strong compression near monolayer coverage on these surfaces due to repulsion between step-edge adsorbed xenon and other encroaching xenon atoms. The PAX experiments on the copper and platinum surfaces demonstrated that the step adsorption sites have lower local work functions than terrace adsorption sites and that higher step density leads to a larger separation in the local work function of terrace and step adsorption sites. The PAX spectra also indicated that, for all surfaces studied at 50--70 K, step adsorption is favored at low coverage but the step sites are not saturated until monolayer coverage is reached; this observation is due to the large entropy difference between terrace and step adsorption states and to repulsive interactions between xenon atoms

  10. Critical Viscosity of Xenon investigators

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Dr. Dr. Robert F. Berg (right), principal investigator and Dr. Micheal R. Moldover (left), co-investigator, for the Critical Viscosity of Xenon (CVX/CVX-2) experiment. They are with the National Institutes of Standards and Technology, Gaithersburg, MD. The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of chemicals.

  11. Functionalized xenon as a biosensor

    PubMed Central

    Spence, Megan M.; Rubin, Seth M.; Dimitrov, Ivan E.; Ruiz, E. Janette; Wemmer, David E.; Pines, Alexander; Yao, Shao Qin; Tian, Feng; Schultz, Peter G.

    2001-01-01

    The detection of biological molecules and their interactions is a significant component of modern biomedical research. In current biosensor technologies, simultaneous detection is limited to a small number of analytes by the spectral overlap of their signals. We have developed an NMR-based xenon biosensor that capitalizes on the enhanced signal-to-noise, spectral simplicity, and chemical-shift sensitivity of laser-polarized xenon to detect specific biomolecules at the level of tens of nanomoles. We present results using xenon “functionalized” by a biotin-modified supramolecular cage to detect biotin–avidin binding. This biosensor methodology can be extended to a multiplexing assay for multiple analytes. PMID:11535830

  12. Space Telescope Imaging Spectrograph Co-Investigator Support

    NASA Technical Reports Server (NTRS)

    Weistrop, Donna

    2003-01-01

    The purpose of this contract has been to support investigation of astronomical problems primarily using data from the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST). As a Co-investigator on STIS, I participated in several projects, which will be described below. The research resulted in 19 papers in refereed journals, 8 papers published in conference proceedings, and 27 papers presented at meetings. There are still at least four papers submitted or in press, as well as some additional research yet to be written up for publication. The research has also produced one master's thesis and two PhD dissertations currently underway, with one to be completed Spring 2003. Undergraduates have participated in the analysis of supporting observations. One student has published some of his results in a web- based refereed publication for undergraduate research (www.jyi.org). I have given several talks to the general public describing results from the HST as well as the results of my research. I have been named the UNLV Regents' Outstanding Faculty Member for 1995 and received the 2002 College of Science Distinguished Researcher's Award as a result of these activities.

  13. Nonlinear research of an image motion stabilization system embedded in a space land-survey telescope

    NASA Astrophysics Data System (ADS)

    Somov, Yevgeny; Butyrin, Sergey; Siguerdidjane, Houria

    2017-01-01

    We consider an image motion stabilization system embedded into a space telescope for a scanning optoelectronic observation of terrestrial targets. Developed model of this system is presented taking into account physical hysteresis of piezo-ceramic driver and a time delay at a forming of digital control. We have presented elaborated algorithms for discrete filtering and digital control, obtained results on analysis of the image motion velocity oscillations in the telescope focal plane, and also methods for terrestrial and in-flight verification of the system.

  14. Recovering Residual Xenon Propellant for an Ion Propulsion System

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani; Skakkottai, P.; wu, Jiunn Jeng

    2006-01-01

    Future nuclear-powered Ion-Propulsion- System-propelled spacecraft such as Jupiter Icy Moon Orbiter (JIMO) will carry more than 10,000 kg of xenon propellant. Typically, a small percentage of this propellant cannot be used towards the end of the mission because of the pressure drop requirements for maintaining flow. For large missions such as JIMO, this could easily translate to over 250 kg of unusable xenon. A proposed system, the Xenon Recovery System (XRS), for recovering almost all of the xenon remaining in the tank, would include a cryopump in the form of a condenser/evaporator that would be alternatively cooled by a radiator, then heated electrically. When the pressure of the xenon in the tank falls below 0.7 MPa (100 psia), the previously isolated XRS will be brought online and the gas from the tank would enter the cryopump that is initially cooled to a temperature below saturation temperature of xenon. This causes xenon liquefaction and further cryopumping from the tank till the cryopump is full of liquid xenon. At this point, the cryopump is heated electrically by small heaters (70 to 80 W) to evaporate the liquid that is collected as high-pressure gas (<7 MPa; 1,000 psia) in an intermediate accumulator. Check valves between the tank and the XRS prevent the reverse flow of xenon during the heating cycle. The accumulator serves as the high-pressure source of xenon gas to the Xenon Feed System (XFS) downstream of the XRS. This cycle is repeated till almost all the xenon is recovered. Currently, this system is being baselined for JIMO.

  15. Measuring and Modeling Xenon Uptake in Plastic Beta-Cells

    NASA Astrophysics Data System (ADS)

    Suarez, R.; Hayes, J. C.; Harper, W. W.; Humble, P.; Ripplinger, M. D.; Stephenson, D. E.; Williams, R. M.

    2013-12-01

    The precision of the stable xenon volume measurement in atmospheric monitoring radio-xenon systems is a critical parameter used to determine the activity concentration of a radio-xenon sample. Typically these types of systems use a plastic scintillating beta-cell as part of a beta-gamma detection scheme to measure the radioactivity present in the gas sample. Challenges arise when performing the stable xenon calculation during or after radioactive counting of the sample due to xenon uptake into the plastic beta-cells. Plastic beta cells can adsorb as much as 5% of the sample during counting. If quantification is performed after counting, the uptake of xenon into the plastic results in an underestimation of the xenon volume measurement. This behavior also causes what is typically known as 'memory effect' in the cell. Experiments were conducted using a small volume low pressure range thermal conductivity sensor to quantify the amount of xenon uptake into the cell over a given period of time. Understanding the xenon uptake in the cell provides a better estimate of the stable volume which improves the overall measurement capability of the system. The results from these experiments along with modeling will be presented.

  16. Numerical Generation of Double Star Images for Different Types of Telescopes

    NASA Astrophysics Data System (ADS)

    Xavier, Ademir

    2015-11-01

    This paper reviews the modeling of stellar images using diffraction theory applied to different types of telescope masks. The masks are projected by secondary mirror holder vanes (such as the spider type) or holes on the primary mirror which result in different configurations of single stellar images. Using Fast Fourier Transform, the image of binary stars with different magnitudes is calculated. Given the numerical results obtained, a discussion is presented on the best secondary vane configurations and on the effect of obstruction types for the separation of binary pairs with different magnitudes.

  17. First-light instrument for the 3.6-m Devasthal Optical Telescope: 4Kx4K CCD Imager

    NASA Astrophysics Data System (ADS)

    Pandey, Shashi Bhushan; Yadav, Rama Kant Singh; Nanjappa, Nandish; Yadav, Shobhit; Reddy, Bheemireddy Krishna; Sahu, Sanjit; Srinivasan, Ramaiyengar

    2018-04-01

    As a part of in-house instrument developmental activity at ARIES, the 4Kx4K CCD Imager is designed and developed as a first-light instrument for the axial port of the 3.6-m Devasthal Optical Telescope (DOT). The f/9 beam of the telescope having a plate-scale of 6.4"/mm is utilized to conduct deeper photom-etry within the central 10' field of view. The pixel size of the blue-enhanced liquid nitrogen cooled STA4150 4Kx4K CCD chip is 15 μm, with options to select gain and speed values to utilize the dynamic range. Using the Imager, it is planned to image the central 6.5'x6.5' field of view of the telescope for various science goals by getting deeper images in several broad-band filters for point sources and objects with low surface brightness. The fully assembled Imager along with automated filter wheels having Bessel UBV RI and SDSS ugriz filters was tested in late 2015 at the axial port of the 3.6-m DOT. This instrument was finally mounted at the axial port of the 3.6-m DOT on 30 March 2016 when the telescope was technically activated jointly by the Prime Ministers of India and Belgium. It is expected to serve as a general purpose multi-band deep imaging instrument for a variety of science goals including studies of cosmic transients, active galaxies, star clusters and optical monitoring of X-ray sources discovered by the newly launched Indian space-mission called ASTROSAT, and follow-up of radio bright objects discovered by the Giant Meterwave Radio Telescope.

  18. High-resolution image reconstruction technique applied to the optical testing of ground-based astronomical telescopes

    NASA Astrophysics Data System (ADS)

    Jin, Zhenyu; Lin, Jing; Liu, Zhong

    2008-07-01

    By study of the classical testing techniques (such as Shack-Hartmann Wave-front Sensor) adopted in testing the aberration of ground-based astronomical optical telescopes, we bring forward two testing methods on the foundation of high-resolution image reconstruction technology. One is based on the averaged short-exposure OTF and the other is based on the Speckle Interferometric OTF by Antoine Labeyrie. Researches made by J.Ohtsubo, F. Roddier, Richard Barakat and J.-Y. ZHANG indicated that the SITF statistical results would be affected by the telescope optical aberrations, which means the SITF statistical results is a function of optical system aberration and the atmospheric Fried parameter (seeing). Telescope diffraction-limited information can be got through two statistics methods of abundant speckle images: by the first method, we can extract the low frequency information such as the full width at half maximum (FWHM) of the telescope PSF to estimate the optical quality; by the second method, we can get a more precise description of the telescope PSF with high frequency information. We will apply the two testing methods to the 2.4m optical telescope of the GMG Observatory, in china to validate their repeatability and correctness and compare the testing results with that of the Shack-Hartmann Wave-Front Sensor got. This part will be described in detail in our paper.

  19. The Advanced Gamma-ray Imaging System (AGIS): Telescope Optical System Designs

    NASA Astrophysics Data System (ADS)

    Hanna, David S.; Buckley, J. H.; Falcone, A.; Fegan, S.; Finley, J.; Guarino, V.; Kaaret, P.; Krawczynski, H.; Krennrich, F.; Konopelko, A.; Romani, R.; Vassilliev, V.; Optical System Working Group; AGIS Collaboration

    2008-03-01

    The concept of a future ground-based gamma-ray observatory, AGIS, in the energy range 20 GeV-200 TeV is based on an array of 50-200 imaging atmospheric Cherenkov telescopes (IACTs). The anticipated improvement of AGIS sensitivity, angular resolution, and reliability of operation imposes demanding technological and cost requirements on the design of IACTs. In this submission we will focus on the optical system (OS) of AGIS telescopes and consider options which include traditional Davies-Cotton and the other prime-focus telescope designs, as well as the novel two-mirror aplanatic OS originally proposed by Schwarzschild. The emerging new mirror production technologies based on replication processes, such as cold and hot glass slumping, cured CFRP, and electroforming, provide new opportunities for cost effective solutions for the design of the OS. We initially evaluate capabilities of these mirror fabrication methods for the AGIS project.

  20. Photoelectron imaging of autoionizing states of xenon: Effect of external electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shubert, V. Alvin; Pratt, Stephen T.

    Velocity map photoelectron imaging was used to study the photoelectron angular distributions of autoionizing Stark states of atomic xenon excited just below the Xe{sup +} {sup 2} P{sub 1/2}{sup o} threshold at fields ranging from 50 to 700 V/cm. Two-color, two-photon resonant, three-photon excitation via the 6p{sup '}[1/2]{sub 0} level was used to probe the region of interest. The wavelength scans show a similar evolution of structure to that observed in single-photon excitation [Ernst et al., Phys. Rev. A 37, 4172 (1988)]. The photoelectron angular distributions following autoionization of the Stark states provide information on the decay of excited statesmore » in electron fields. In the present experiments, the large autoionization width of the ({sup 2} P{sub 1/2}{sup o})nd[3/2]{sub 1}{sup o} series dominates the decay processes, and thus controls the angular distributions. However, the angular distributions of the Stark states also indicate the presence of other decay channels contributing to the decay of these states.« less

  1. The Gamma-ray Cherenkov Telescope, an end-to end Schwarzschild-Couder telescope prototype proposed for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dournaux, J. L.; Abchiche, A.; Allan, D.; Amans, J. P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Dangeon, L.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dumas, D.; Ernenwein, J. P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hameau, B.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J. M.; Jégouzo, I.; Jogler, T.; Kawashima, T.; Kraush, M.; Lapington, J. S.; Laporte, P.; Lefaucheur, J.; Markoff, S.; Melse, T.; Mohrmann, L.; Molyneux, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayède, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.

    2016-08-01

    The GCT (Gamma-ray Cherenkov Telescope) is a dual-mirror prototype of Small-Sized-Telescopes proposed for the Cherenkov Telescope Array (CTA) and made by an Australian-Dutch-French-German-Indian-Japanese-UK-US consortium. The integration of this end-to-end telescope was achieved in 2015. On-site tests and measurements of the first Cherenkov images on the night sky began on November 2015. This contribution describes the telescope and plans for the pre-production and a large scale production within CTA.

  2. Chronic obstructive pulmonary disease: quantitative and visual ventilation pattern analysis at xenon ventilation CT performed by using a dual-energy technique.

    PubMed

    Park, Eun-Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Hyun Ju; Lee, Chang Hyun; Park, Chang Min; Yoo, Chul-Gyu; Kim, Jong Hyo

    2010-09-01

    To evaluate the potential of xenon ventilation computed tomography (CT) in the quantitative and visual analysis of chronic obstructive pulmonary disease (COPD). This study was approved by the institutional review board. After informed consent was obtained, 32 patients with COPD underwent CT performed before the administration of xenon, two-phase xenon ventilation CT with wash-in (WI) and wash-out (WO) periods, and pulmonary function testing (PFT). For quantitative analysis, results of PFT were compared with attenuation parameters from prexenon images and xenon parameters from xenon-enhanced images in the following three areas at each phase: whole lung, lung with normal attenuation, and low-attenuating lung (LAL). For visual analysis, ventilation patterns were categorized according to the pattern of xenon attenuation in the area of structural abnormalities compared with that in the normal-looking background on a per-lobe basis: pattern A consisted of isoattenuation or high attenuation in the WI period and isoattenuation in the WO period; pattern B, isoattenuation or high attenuation in the WI period and high attenuation in the WO period; pattern C, low attenuation in both the WI and WO periods; and pattern D, low attenuation in the WI period and isoattenuation or high attenuation in the WO period. Among various attenuation and xenon parameters, xenon parameters of the LAL in the WO period showed the best inverse correlation with results of PFT (P < .0001). At visual analysis, while emphysema (which affected 99 lobes) commonly showed pattern A or B, airway diseases such as obstructive bronchiolitis (n = 5) and bronchiectasis (n = 2) and areas with a mucus plug (n = 1) or centrilobular nodules (n = 5) showed pattern D or C. WI and WO xenon ventilation CT is feasible for the simultaneous regional evaluation of structural and ventilation abnormalities both quantitatively and qualitatively in patients with COPD. (c) RSNA, 2010.

  3. Anticipatory control of xenon in a pressurized water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Impink, A.J. Jr.

    1987-02-10

    A method is described for automatically dampening xenon-135 spatial transients in the core of a pressurized water reactor having control rods which regulate reactor power level, comprising the steps of: measuring the neutron flu in the reactor core at a plurality of axially spaced locations on a real-time, on-line basis; repetitively generating from the neutron flux measurements, on a point-by-point basis, signals representative of the current axial distribution of xenon-135, and signals representative of the current rate of change of the axial distribution of xenon-135; generating from the xenon-135 distribution signals and the rate of change of xenon distribution signals,more » control signals for reducing the xenon transients; and positioning the control rods as a function of the control signals to dampen the xenon-135 spatial transients.« less

  4. DM/LCWFC based adaptive optics system for large aperture telescopes imaging from visible to infrared waveband.

    PubMed

    Sun, Fei; Cao, Zhaoliang; Wang, Yukun; Zhang, Caihua; Zhang, Xingyun; Liu, Yong; Mu, Quanquan; Xuan, Li

    2016-11-28

    Almost all the deformable mirror (DM) based adaptive optics systems (AOSs) used on large aperture telescopes work at the infrared waveband due to the limitation of the number of actuators. To extend the imaging waveband to the visible, we propose a DM and Liquid crystal wavefront corrector (DM/LCWFC) combination AOS. The LCWFC is used to correct the high frequency aberration corresponding to the visible waveband and the aberrations of the infrared are corrected by the DM. The calculated results show that, to a 10 m telescope, DM/LCWFC AOS which contains a 1538 actuators DM and a 404 × 404 pixels LCWFC is equivalent to a DM based AOS with 4057 actuators. It indicates that the DM/LCWFC AOS is possible to work from visible to infrared for larger aperture telescopes. The simulations and laboratory experiment are performed for a 2 m telescope. The experimental results show that, after correction, near diffraction limited resolution USAF target images are obtained at the wavebands of 0.7-0.9 μm, 0.9-1.5 μm and 1.5-1.7 μm respectively. Therefore, the DM/LCWFC AOS may be used to extend imaging waveband of larger aperture telescope to the visible. It is very appropriate for the observation of spatial objects and the scientific research in astronomy.

  5. Influence of speckle image reconstruction on photometric precision for large solar telescopes

    NASA Astrophysics Data System (ADS)

    Peck, C. L.; Wöger, F.; Marino, J.

    2017-11-01

    Context. High-resolution observations from large solar telescopes require adaptive optics (AO) systems to overcome image degradation caused by Earth's turbulent atmosphere. AO corrections are, however, only partial. Achieving near-diffraction limited resolution over a large field of view typically requires post-facto image reconstruction techniques to reconstruct the source image. Aims: This study aims to examine the expected photometric precision of amplitude reconstructed solar images calibrated using models for the on-axis speckle transfer functions and input parameters derived from AO control data. We perform a sensitivity analysis of the photometric precision under variations in the model input parameters for high-resolution solar images consistent with four-meter class solar telescopes. Methods: Using simulations of both atmospheric turbulence and partial compensation by an AO system, we computed the speckle transfer function under variations in the input parameters. We then convolved high-resolution numerical simulations of the solar photosphere with the simulated atmospheric transfer function, and subsequently deconvolved them with the model speckle transfer function to obtain a reconstructed image. To compute the resulting photometric precision, we compared the intensity of the original image with the reconstructed image. Results: The analysis demonstrates that high photometric precision can be obtained for speckle amplitude reconstruction using speckle transfer function models combined with AO-derived input parameters. Additionally, it shows that the reconstruction is most sensitive to the input parameter that characterizes the atmospheric distortion, and sub-2% photometric precision is readily obtained when it is well estimated.

  6. Sensitivity analysis for future space missions with segmented telescopes for high-contrast imaging

    NASA Astrophysics Data System (ADS)

    Leboulleux, Lucie; Pueyo, Laurent; Sauvage, Jean-François; Mazoyer, Johan; Soummer, Remi; Fusco, Thierry; Sivaramakrishnan, Anand

    2018-01-01

    The detection and analysis of biomarkers on earth-like planets using direct-imaging will require both high-contrast imaging and spectroscopy at very close angular separation (10^10 star to planet flux ratio at a few 0.1”). This goal can only be achieved with large telescopes in space to overcome atmospheric turbulence, often combined with a coronagraphic instrument with wavefront control. Large segmented space telescopes such as studied for the LUVOIR mission will generate segment-level instabilities and cophasing errors in addition to local mirror surface errors and other aberrations of the overall optical system. These effects contribute directly to the degradation of the final image quality and contrast. We present an analytical model that produces coronagraphic images of a segmented pupil telescope in the presence of segment phasing aberrations expressed as Zernike polynomials. This model relies on a pair-based projection of the segmented pupil and provides results that match an end-to-end simulation with an rms error on the final contrast of ~3%. This analytical model can be applied both to static and dynamic modes, and either in monochromatic or broadband light. It retires the need for end-to-end Monte-Carlo simulations that are otherwise needed to build a rigorous error budget, by enabling quasi-instantaneous analytical evaluations. The ability to invert directly the analytical model provides direct constraints and tolerances on all segments-level phasing and aberrations.

  7. The XENON1T dark matter experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Antunes, B.; Arneodo, F.; Balata, M.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breskin, A.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Chiarini, A.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Corrieri, R.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Gangi, P. Di; Giovanni, A. Di; Diglio, S.; Disdier, J.-M.; Doets, M.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Front, D.; Fulgione, W.; Rosso, A. Gallo; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Giboni, K.-L.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Huhmann, C.; Itay, R.; James, A.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Maier, R.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morå, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orlandi, D.; Othegraven, R.; Pakarha, P.; Parlati, S.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; García, D. Ramírez; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Santos, J. M. F. dos; Saldanha, R.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stern, M.; Stein, A.; Tatananni, D.; Tatananni, L.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Vargas, M.; Wack, O.; Walet, R.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.

    2017-12-01

    The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented.

  8. The Advanced Gamma-ray Imaging System (AGIS): Schwarzschild-Couder (SC) Telescope Mechanical and Optical System Design

    NASA Astrophysics Data System (ADS)

    Byrum, Karen L.; Vassiliev, V.; AGIS Collaboration

    2010-03-01

    AGIS is a concept for the next-generation ground-based gamma-ray observatory. It will be an array of 36 imaging atmospheric Cherenkov telescopes (IACTs) sensitive in the energy range from 50 GeV to 200 TeV. The required improvements in sensitivity, angular resolution, and reliability of operation relative to the present generation instruments imposes demanding technological and cost requirements on the design of AGIS telescopes. In this submission, we outline the status of the development of the optical and mechanical systems for a novel Schwarzschild-Couder two-mirror aplanatic telescope. This design can provide a field of view and angular resolution significantly better to those offered by the traditional Davies-Cotton optics utilized in present-day IACTs. Other benefits of the novel design include isochronous focusing and compatibility with cost-effective, high quantum efficiency image sensors such as multi-anode PMTs, silicon PMTs (SiPMs), or image intensifiers.

  9. Direct imaging of extra-solar planets with stationary occultations viewed by a space telescope

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.

    1978-01-01

    The use of a telescope in space to detect planets outside the solar system by means of imaging at optical wavelengths is discussed. If the 'black' limb of the moon is utilized as an occulting edge, a hypothetical Jupiter-Sun system could be detected at a distance as great as 10 pc, and a signal-to-noise ratio of 9 could be achieved in less than 20 min with a 2.4 m telescope in space. An orbit for the telescope is proposed; this orbit could achieve a stationary lunar occultation of any star for a period of nearly two hours.

  10. Discrimination between patients with mild Alzheimer's disease and healthy subjects based on cerebral blood flow images of the lateral views in xenon-enhanced computed tomography.

    PubMed

    Sase, Shigeru; Yamamoto, Homaro; Kawashima, Ena; Tan, Xin; Sawa, Yutaka

    2018-01-01

    Quantitative cerebral blood flow (CBF) measurement is expected to help early detection of functional abnormalities caused by Alzheimer's disease (AD) and enable AD treatment to begin in its early stages. Recently, a technique of layer analysis was reported that allowed CBF to be analyzed from the outer to inner layers of the brain. The aim of this work was to develop methods for discriminating between patients with mild AD and healthy subjects based on CBF images of the lateral views created with the layer analysis technique in xenon-enhanced computed tomography. Xenon-enhanced computed tomography using a wide-volume CT was performed on 17 patients with mild AD aged 75 or older and on 15 healthy age-matched volunteers. For each subject, we created CBF images of the right and left lateral views with a depth of 10-15 mm from the surface of the brain. Ten circular regions of interest (ROI) were placed on each image, and CBF was calculated for each ROI. We determined discriminant ROI that had CBF that could be used to differentiate between the AD and volunteer groups. AD patients' CBF range (mean - SD to mean + SD) and healthy volunteers' CBF range (mean - SD to mean + SD) were obtained for each ROI. Receiver-operator curves were created to identify patients with AD for each of the discriminant ROI and for the AD patients' and healthy volunteers' CBF ranges. We selected an ROI on both the right and left temporal lobes as the discriminant ROI. Areas under the receiver-operator curve were 93.3% using the ROI on the right temporal lobe, 95.3% using the ROI on the left temporal lobe, and 92.4% using the AD patients' and healthy volunteers' CBF ranges. We could effectively discriminate between patients with mild AD and healthy subjects using ROI placed on CBF images of the lateral views in xenon-enhanced computed tomography. © 2017 Japanese Psychogeriatric Society.

  11. The Topo-trigger: a new concept of stereo trigger system for imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    López-Coto, R.; Mazin, D.; Paoletti, R.; Blanch Bigas, O.; Cortina, J.

    2016-04-01

    Imaging atmospheric Cherenkov telescopes (IACTs) such as the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes endeavor to reach the lowest possible energy threshold. In doing so the trigger system is a key element. Reducing the trigger threshold is hampered by the rapid increase of accidental triggers generated by ambient light (the so-called Night Sky Background NSB). In this paper we present a topological trigger, dubbed Topo-trigger, which rejects events on the basis of their relative orientation in the telescope cameras. We have simulated and tested the trigger selection algorithm in the MAGIC telescopes. The algorithm was tested using MonteCarlo simulations and shows a rejection of 85% of the accidental stereo triggers while preserving 99% of the gamma rays. A full implementation of this trigger system would achieve an increase in collection area between 10 and 20% at the energy threshold. The analysis energy threshold of the instrument is expected to decrease by ~ 8%. The selection algorithm was tested on real MAGIC data taken with the current trigger configuration and no γ-like events were found to be lost.

  12. Chromatographic separation of radioactive noble gases from xenon

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.

    2018-01-01

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85Kr and 39Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.

  13. Chromatographic separation of radioactive noble gases from xenon

    DOE PAGES

    Akerib, DS; Araújo, HM; Bai, X; ...

    2017-10-31

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopesmore » $$^{85}$$Kr and $$^{39}$$Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search exmperiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.« less

  14. Method for the simultaneous preparation of Radon-211, Xenon-125, Xenon-123, Astatine-211, Iodine-125 and Iodine-123

    DOEpatents

    Mirzadeh, Saed; Lambrecht, Richard M.

    1987-01-01

    A method for simultaneously preparing Radon-211, Astatine-211, Xenon-125, Xenon-123, Iodine-125 and Iodine-123 in a process that includes irradiating a fertile metal material then using a one-step chemical procedure to collect a first mixture of about equal amounts of Radon-211 and Xenon-125, and a separate second mixture of about equal amounts of Iodine-123 and Astatine-211.

  15. The search for dark matter in xenon: Innovative calibration strategies and novel search channels

    NASA Astrophysics Data System (ADS)

    Reichard, Shayne Edward

    V. I calculate the inelastic recoil spectra in the standard halo model, compare these to the elastic case, and discuss the expected signatures in a xenon detector, along with implications for existing and future experiments. The combined information from elastic and inelastic scattering will allow for the determination of the dominant interaction channel within one experiment. In addition, the two channels probe different regions of the dark matter velocity distribution and can provide insight into the dark halo structure. The allowed recoil energy domain and the recoil energy at which the integrated inelastic rates start to dominate the elastic channel depend on the mass of the dark matter particle, thus providing a potential handle to constrain its mass. Similarly, now that liquid xenon detectors have reached the tonne scale, they have sensitivity to all flavors of supernova neutrinos via coherent elastic neutrino-nucleus scattering. I consider for the first time a realistic detector model to simulate the expected supernova neutrino signal for different progenitor masses and nuclear equations of state in existing and upcoming dual-phase liquid xenon experiments. I show that the proportional scintillation signal (S2) of a dual-phase detector allows for a clear observation of the neutrino signal and guarantees a particularly low energy threshold, while the backgrounds are rendered negligible during the supernova burst. XENON1T (XENONnT and LZ; DARWIN) experiments will be sensitive to a supernova burst up to 25 (35; 65) kpc from Earth at a significance of more than 5 sigma, observing approximately 35 (123; 704) events from a 27 Solar mass supernova progenitor at 10 kpc. Moreover, it will be possible to measure the average neutrino energy of all flavors, to constrain the total explosion energy, and to reconstruct the supernova neutrino light curve. My results suggest that a large xenon detector such as DARWIN will be competitive with dedicated neutrino telescopes, while

  16. ALPACA: An Inexpensive but Uniquely Powerful Imaging Survey Telescope

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin P.; ALPACA Consortium

    2006-12-01

    ALPACA (Advanced Liquid-mirror Probe of Astrophysics, Cosmology and Asteroids) is an 8-meter optical telescope destined for Cerro Tololo and designed to scan a strip of sky passing overhead and extending over 1000 square degrees. The imaging survey will be conducted in five photometric bands covering the optical waveband and allow for photometric descrimination of many source types, including supernova types and asteroid categories, and allow photometric redshift determination for both galaxies and supernovae. The ALPACA is intended to extend over at least a three years and reach a cumulative point-source detection of about 28th magnitude AB at 10-sigma. ALPACA will deliver nightly photometry for many classes of variable and moving objects. Most crucial, perhaps, will be the exquisitely deep, numerous and well-sampled multiband lightcurve sample for supernova, particularly SNe Ia to redshifts z 0.8. This is an excellent redshift range for dark energy model descrimination, but also can be used for unprecedentedly sensitive tests and improvements of the SN Ia standard candle relation. There are many other superlative projects that will be conducted with ALPACA data, including studies of high redshift galaxies, quasars and AGN, large scale structure, novae, variable stars, Galactic Bulge microlensing, Galactic structure, stellar populations, extrasolar planets, Kuiper Belt objects, Near-Earth objects and many other classes of targets. ALPACA is based on the 6-meter LZT (Large Zenith Telescope), which is currently operating in British Columbia and producing largely seeing-limited imaging. ALPACA has undergone conceptual design review and is now under design. Seeing tests are underway at sites on Cerro Tololo. We hope to achieve first light on ALPACA by late 2009. Proto-ALPACA is a stage of the project with the full-sized telescope with a smaller field of view, and will be first operational. ALPACA might eventually add instrumentation; a multiobject spectrograph is

  17. Multi-use lunar telescopes

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Hine, Butler; Genet, Russell; Genet, David; Talent, David; Boyd, Louis; Trueblood, Mark; Filippenko, Alexei V. (Editor)

    1991-01-01

    The objective of multi-use telescopes is to reduce the initial and operational costs of space telescopes to the point where a fair number of telescopes, a dozen or so, would be affordable. The basic approach is to develop a common telescope, control system, and power and communications subsystem that can be used with a wide variety of instrument payloads, i.e., imaging CCD cameras, photometers, spectrographs, etc. By having such a multi-use and multi-user telescope, a common practice for earth-based telescopes, development cost can be shared across many telescopes, and the telescopes can be produced in economical batches.

  18. The atmosphere of Mars: detection of krypton and xenon.

    PubMed

    Owen, T; Biemann, K; Rushneck, D R; Biller, J E; Howarth, D W; Lafleur, A L

    1976-12-11

    Krypton and xenon have been discovered in the martian atmosphere with the mass spectrometer on the second Viking lander. Krypton is more abundant than xenon. The relative abundances of the krypton isotopes appear normal, but the ratio of xenon-129 to xenon-132 is enhanced on Mars relative to the terrestrial value for this ratio. Some possible implications of these findings are discussed.

  19. Solid Xenon Project

    NASA Astrophysics Data System (ADS)

    Balakishiyeva, Durdana N.; Mahapatra, Rupak; Saab, Tarek; Yoo, Jonghee

    2010-08-01

    Crystals like Germanium and Silicon need to be grown in specialized facilities which is time and money costly. It takes many runs to test the detector once it's manufactured and mishaps are very probable. It is of a great challenge to grow big germanium crystals and that's why stacking them up in a tower is the only way at the moment to increase testing mass. Liquid Noble gas experiments experiencing contamination problems, their predicted energy resolution at 10 keV and lower energy range is not as good as predicted. Every experiment is targeting one specific purpose, looking for one thing. Why not to design an experiment that is diverse and build a detector that can search for Dark Matter, Solar Axions, Neutrinoless Double Beta decay, etc. Solid Xenon detector is such detector. We designed a simple Xenon crystal growing chamber that was put together at Fermi National Accelerator Laboratory. The first phase of this experiment was to demonstrate that a good, crack free Xenon crystal can be grown (regardless of many failed attempts by various groups) and our first goal, 1 kg crystal, was successful.

  20. Scientific Performance Analysis of the SYZ Telescope Design versus the RC Telescope Design

    NASA Astrophysics Data System (ADS)

    Ma, Donglin; Cai, Zheng

    2018-02-01

    Recently, Su et al. propose an innovative design, referred as the “SYZ” design, for China’s new project of a 12 m optical-infrared telescope. The SYZ telescope design consists of three aspheric mirrors with non-zero power, including a relay mirror below the primary mirror. SYZ design yields a good imaging quality and has a relatively flat field curvature at Nasmyth focus. To evaluate the science-compatibility of this three-mirror telescope, in this paper, we thoroughly compare the performance of SYZ design with that of Ritchey–Chrétien (RC) design, a conventional two-mirror telescope design. Further, we propose the Observing Information Throughput (OIT) as a metric for quantitatively evaluating the telescopes’ science performance. We find that although a SYZ telescope yields a superb imaging quality over a large field of view, a two-mirror (RC) telescope design holds a higher overall throughput, a better diffraction-limited imaging quality in the central field of view (FOV < 5‧) which is better for the performance of extreme Adaptive Optics (AO), and a generally better scientific performance with a higher OIT value. D. Ma & Z. Cai contributed equally to this paper.

  1. Image defects from surface and alignment errors in grazing incidence telescopes

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.

    1989-01-01

    The rigid body motions and low frequency surface errors of grazing incidence Wolter telescopes are studied. The analysis is based on surface error descriptors proposed by Paul Glenn. In his analysis, the alignment and surface errors are expressed in terms of Legendre-Fourier polynomials. Individual terms in the expression correspond to rigid body motions (decenter and tilt) and low spatial frequency surface errors of mirrors. With the help of the Legendre-Fourier polynomials and the geometry of grazing incidence telescopes, exact and approximated first order equations are derived in this paper for the components of the ray intercepts at the image plane. These equations are then used to calculate the sensitivities of Wolter type I and II telescopes for the rigid body motions and surface deformations. The rms spot diameters calculated from this theory and OSAC ray tracing code agree very well. This theory also provides a tool to predict how rigid body motions and surface errors of the mirrors compensate each other.

  2. The Advanced Gamma-ray Imaging System (AGIS): Telescope Optical System Designs

    NASA Astrophysics Data System (ADS)

    Vassiliev, Vladimir; Buckley, Jim; Falcone, Abe; Fegan, Steven; Finley, John; Gaurino, Victor; Hanna, David; Kaaret, Philip; Konopelko, Alex; Krawczynski, Henric; Romani, Roger; Weekes, Trevor

    2008-04-01

    AGIS is a conceptual design for a future ground-based gamma-ray observatory based on an array of ˜100 imaging atmospheric Cherenkov telescopes (IACTs) with a sensitivity to gamma-rays in the energy range 40 GeV-100 TeV. The anticipated improvement of AGIS sensitivity, angular resolution, and reliability of operation imposes demanding technological and cost requirements on the design of the IACTs. In this submission we focus on the optical system (OS) of the AGIS telescopes and consider options which include traditional Davies-Cotton and the other prime- focus telescope designs, as well as a novel two-mirror aplanatic OS originally proposed by Schwarzschild. Emerging new mirror production technologies based on replication processes such as cold and hot glass slumping, cured CFRP, and electroforming provide new opportunities for cost effective solutions for the design of the OS. We evaluate the capabilities of these mirror fabrication methods for the AGIS project.

  3. Calibration Efforts and Unique Capabilities of the HST Space Telescope Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Monroe, TalaWanda R.; Proffitt, Charles R.; Welty, Daniel; Branton, Doug; Carlberg, Joleen K.; debes, John Henry; Lockwood, Sean; Riley, Allyssa; Sohn, Sangmo Tony; Sonnentrucker, Paule G.; Walborn, Nolan R.; Jedrzejewski, Robert I.

    2018-01-01

    The Space Telescope Imaging Spectrograph (STIS) continues to offer the astronomy community the ability to carry out innovative UV and optical spectroscopic and imaging studies, two decades after its deployment on the Hubble Space Telescope (HST). Most notably, STIS provides spectroscopy in the FUV and NUV, including high spectral resolution echelle modes, imaging in the FUV, optical spectroscopy, and coronagraphic capabilities. Additionally, spatial scanning on the CCD with the long-slits is now possible to enable very high S/N spectroscopic observations without saturation while mitigating telluric and fringing concerns in the far red and near-IR. This new mode may especially benefit the diffuse interstellar bands and exoplanet transiting communities. We present recent calibration efforts for the instrument, including work to optimize the calibration of the echelle spectroscopic modes by improving the flux agreement of overlapping spectral orders affected by changes in the grating blaze function since HST Servicing Mission 4. We also discuss considerations to maintain the wavelength precision of the spectroscopic modes, and the current capabilities of CCD spectroscopic spatial trails.

  4. Optimization of Dual-Energy Xenon-CT for Quantitative Assessment of Regional Pulmonary Ventilation

    PubMed Central

    Fuld, Matthew K.; Halaweish, Ahmed; Newell, John D.; Krauss, Bernhard; Hoffman, Eric A.

    2013-01-01

    Objective Dual-energy X-ray computed tomography (DECT) offers visualization of the airways and quantitation of regional pulmonary ventilation using a single breath of inhaled xenon gas. In this study we seek to optimize scanning protocols for DECT xenon gas ventilation imaging of the airways and lung parenchyma and to characterize the quantitative nature of the developed protocols through a series of test-object and animal studies. Materials and Methods The Institutional Animal Care and Use Committee approved all animal studies reported here. A range of xenon-oxygen gas mixtures (0, 20, 25, 33, 50, 66, 100%; balance oxygen) were scanned in syringes and balloon test-objects to optimize the delivered gas mixture for assessment of regional ventilation while allowing for the development of improved three-material decomposition calibration parameters. Additionally, to alleviate gravitational effects on xenon gas distribution, we replaced a portion of the oxygen in the xenon/oxygen gas mixture with helium and compared gas distributions in a rapid-prototyped human central-airway test-object. Additional syringe tests were performed to determine if the introduction of helium had any effect on xenon quantitation. Xenon gas mixtures were delivered to anesthetized swine in order to assess airway and lung parenchymal opacification while evaluating various DECT scan acquisition settings. Results Attenuation curves for xenon were obtained from the syringe test objects and were used to develop improved three-material decomposition parameters (HU enhancement per percent xenon: Within the chest phantom: 2.25 at 80kVp, 1.7 at 100 kVp, and 0.76 at 140 kVp with tin filtration; In open air: 2.5 at 80kVp, 1.95 at 100 kVp, and 0.81 at 140 kVp with tin filtration). The addition of helium improved the distribution of xenon gas to the gravitationally non-dependent portion of the airway tree test-object, while not affecting quantitation of xenon in the three-material decomposition DECT. 40%Xe

  5. Radon depletion in xenon boil-off gas

    NASA Astrophysics Data System (ADS)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T. Marrodán; Simgen, H.

    2017-03-01

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of ^{222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of ≳ 4 for the ^{222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α -detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10^{-15} mol/mol level.

  6. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Shear thirning will cause a normally viscous fluid -- such as pie filling or whipped cream -- to deform and flow more readily under high shear conditions. In shear thinning, a pocket of fluid will deform and move one edge forward, as depicted here.

  7. Good imaging with very fast paraboloidal primaries - An optical solution and some applications. [performance improvement of astronomical telescopes

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Woolf, N. J.; Epps, N. W.

    1982-01-01

    Attention is given to the imaging performance improvement obtainable in telescopes with fast parabolic primaries by means of two-mirror correctors of the Paul-Baker type. Images with 80 percent of the energy concentrated within 0.2 arcsec are projected for an f/1 primary relaying to an f/2 final focus, over a 1 deg-diameter field. It is noted that the mechanical structure and enclosure of a large telescope built with these fast optics should be significantly smaller and less expensive than those for conventional optics. The application of the Paul-Baker corrector system is explored for such diverse telescope types as those employing six off-axis primary mirrors, UV astronomy telescopes with no chromatic aberration, a low emissivity IR astronomy instrument with an off-axis f/1 parent primary mirror part, and thin rectangular aperture telescopes which are useful for spectroscopy and photometry.

  8. Urine analysis concerning xenon for doping control purposes.

    PubMed

    Thevis, Mario; Piper, Thomas; Geyer, Hans; Schaefer, Maximilian S; Schneemann, Julia; Kienbaum, Peter; Schänzer, Wilhelm

    2015-01-15

    On September 1(st) 2014, a modified Prohibited List as established by the World Anti-Doping Agency (WADA) became effective featuring xenon as a banned substance categorized as hypoxia-inducible factor (HIF) activator. Consequently, the analysis of xenon from commonly provided doping control specimens such as blood and urine is desirable, and first data on the determination of xenon from urine in the context of human sports drug testing, are presented. In accordance to earlier studies utilizing plasma as doping control matrix, urine was enriched to saturation with xenon, sequentially diluted, and the target analyte was detected as supported by the internal standard d6 -cyclohexanone by means of gas chromatography/triple quadrupole mass spectrometry (GC/MS/MS) using headspace injection. Three major xenon isotopes at m/z 128.9, 130.9 and 131.9 were targeted in (pseudo) selected reaction monitoring mode enabling the unambiguous identification of the prohibited substance. Assay characteristics including limit of detection (LOD), intraday/interday precision, and specificity as well as analyte recovery under different storage conditions were determined. Proof-of-concept data were generated by applying the established method to urine samples collected from five patients before, during and after (up to 48 h) xenon-based general anesthesia. Xenon was traceable in enriched human urine samples down to the detection limit of approximately 0.5 nmol/mL. The intraday and interday imprecision values of the method were found below 25%, and specificity was demonstrated by analyzing 20 different blank urine samples that corroborated the fitness-for-purpose of the analytical approach to unequivocally detect xenon at non-physiological concentrations in human urine. The patients' urine specimens returned 'xenon-positive' test results up to 40 h post-anesthesia, indicating the limits of the expected doping control detection window. Since xenon has been considered a prohibited substance

  9. Transdermal diffusion of xenon in vitro using diffusion cells

    NASA Astrophysics Data System (ADS)

    Verkhovsky, A.; Petrov, E.

    2015-11-01

    The aim of this research was to study the diffusion rate of xenon through guinea pig skin and how viscosity of cosmetic component capryl/capric triglyceride (CCT) facilitates to deliver xenon to surface of skin patches. They were placed in Franz cell for 24 hours and diffusion rate and permeability of xenon were calculated. Thus diffusion rate was 0.031 mg/hour*cm2 and permeability was 0.003 cm/hour. Using Brookfield viscometer it was shown that viscosity of CCT decreased upon increasing xenon concentration. Obtained results can be utilized in developing of new xenon containing drugs for topical administration.

  10. Xenon migration behaviour in titanium nitride

    NASA Astrophysics Data System (ADS)

    Gavarini, S.; Toulhoat, N.; Peaucelle, C.; Martin, P.; Mende, J.; Pipon, Y.; Jaffrezic, H.

    2007-05-01

    Titanium nitride is one of the inert matrixes proposed to surround the fuel in gas cooled fast reactor (GFR) systems. These reactors operate at high temperature and necessitate refractory materials presenting a high chemical stability and good mechanical properties. A total retention of the most volatile fission products, such as Xe, I or Cs, by the inert matrix is needed during the in pile process. The thermal migration of xenon in TiN was studied by implanting 800 keV Xe++ ions in sintered samples at an ion fluence of 5 × 1015 cm-2. Annealing was performed at temperatures ranging from 1673 to 1923 K for 1 and 3 h. Xenon concentration profiles were studied by Rutherford backscattering spectrometry (RBS) using 2.5 MeV α-particles. The migration behaviour of xenon corresponds to a gas migration model. It is dominated by a surface directed transport with a slight diffusion component. The mean activation energy corresponding to the diffusion component was found to be 2.2 ± 0.3 eV and corresponds to the Brownian motion of xenon bubbles. The directed Xe migration can be interpreted in term of bubble transport using Evans model. This last process is mostly responsible for xenon release from TiN.

  11. Electron drift in a large scale solid xenon

    DOE PAGES

    Yoo, J.; Jaskierny, W. F.

    2015-08-21

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor twomore » faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.« less

  12. Physiological response of rats to delivery of helium and xenon: implications for hyperpolarized noble gas imaging

    NASA Technical Reports Server (NTRS)

    Ramirez, M. P.; Sigaloff, K. C.; Kubatina, L. V.; Donahue, M. A.; Venkatesh, A. K.; Albert, M. S.; ALbert, M. S. (Principal Investigator)

    2000-01-01

    The physiological effects of various hyperpolarized helium and xenon MRI-compatible breathing protocols were investigated in 17 Sprague-Dawley rats, by continuous monitoring of blood oxygen saturation, heart rate, EKG, temperature and endotracheal pressure. The protocols included alternating breaths of pure noble gas and oxygen, continuous breaths of pure noble gas, breath-holds of pure noble gas for varying durations, and helium breath-holds preceded by two helium rinses. Alternate-breath protocols up to 128 breaths caused a decrease in oxygen saturation level of less than 5% for either helium or xenon, whereas 16 continuous-breaths caused a 31.5% +/- 2.3% decrease in oxygen saturation for helium and a 30.7% +/- 1. 3% decrease for xenon. Breath-hold protocols up to 25 s did not cause the oxygen saturation to fall below 90% for either of the noble gases. Oxygen saturation values below 90% are considered pathological. At 30 s of breath-hold, the blood oxygen saturation dropped precipitously to 82% +/- 0.6% for helium, and to 76.5% +/- 7. 4% for xenon. Breath-holds longer than 10 s preceded by pre-rinses caused oxygen saturation to drop below 90%. These findings demonstrate the need for standardized noble gas inhalation procedures that have been carefully tested, and for continuous physiological monitoring to ensure the safety of the subject. We find short breath-hold and alternate-breath protocols to be safe procedures for use in hyperpolarized noble gas MRI experiments. Copyright 2000 John Wiley & Sons, Ltd.

  13. High resolution imaging and precision photometric measurements from a small soft-landed lunar telescope --Abstract only

    NASA Technical Reports Server (NTRS)

    Genet, R. M.; Hine, B.; Drummond, M.; Patterson-Hine, A.; Borucki, W.; Burns, J.; Genet, D.

    1994-01-01

    The ultimate imaging resolution in the UV and photometric precision achievable with a small (less than 1-meter) telescope located on the Moon is considered. The imaging resolution and photometric precision that might be practically achieved when the effects of the Lunar environment and equipment limitations are accounted for is then suggested. Finally, the practicality of soft landing such a telescope on the moon is considered, along with suggestions of how it might be directly controlled by using astronomers without any significant permanent staff.

  14. The possibilities of Cherenkov telescopes to perform cosmic-ray muon imaging of volcanoes

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Catalano, Osvaldo; Cusumano, Giancarlo; Del Santo, Melania; Maccarone, Maria Concetta; Mineo, Teresa; Pareschi, Giovanni; Vercellone, Stefano; Zuccarello, Luciano

    2016-04-01

    Volcanic activity is regulated by the interaction of gas-liquid flow with conduit geometry. Hence, the quantitative understanding of the inner shallow structure of a volcano is mandatory to forecast the occurrence of dangerous stages of activity and mitigate volcanic hazards. Among the techniques used to investigate the underground structure of a volcano, muon imaging offers some advantages, as it provides a fine spatial resolution, and does not require neither spatially dense measurements in active zones, nor the implementation of cost demanding energizing systems, as when electric or active seismic sources are utilized. The principle of muon radiography is essentially the same as X-ray radiography: muons are more attenuated by higher density parts inside the target and thus information about its inner structure are obtained from the differential muon absorption. Up-to-date, muon imaging of volcanic structures has been mainly accomplished with detectors that employ planes of scintillator strips. These telescopes are exposed to different types of background noise (accidental coincidence of vertical shower particles, horizontal high-energy electrons, flux of upward going particles), whose amplitude is high relative to the tiny flux of interest. An alternative technique is based on the detection of the Cherenkov light produced by muons. The latter can be imaged as an annular pattern that contains the information needed to reconstruct both direction and energy of the particle. Cherenkov telescopes have never been utilized to perform muon imaging of volcanoes. Nonetheless, thanks to intrinsic features, they offer the possibility to detect the through-target muon flux with negligible levels of background noise. Under some circumstances, they would also provide a better spatial resolution and acceptance than scintillator-based telescopes. Furthermore, contrarily to the latter systems, Cherenkov detectors allow in-situ measurements of the open-sky energy spectrum of

  15. Xenon lighting adjusted to plant requirements

    NASA Technical Reports Server (NTRS)

    Koefferlein, M.; Doehring, T.; Payer, Hans D.; Seidlitz, H. K.

    1994-01-01

    Xenon lamps are available as low and high power lamps with relatively high efficiency and a relatively long lifetime up to several thousand hours. Different construction types of short-arc and long-arc lamps permit a good adaptation to various applications in projection and illumination techniques without substantial changes of the spectral quality. Hence, the xenon lamp was the best choice for professional technical purposes where high power at simultaneously good spectral quality of the light was required. However, technical development does not stand still. Between the luminous efficacy of xenon lamps of 25-50 lm/W and the theoretical limit for 'white light' of 250 lm/W is still much room for improvement. The present development mainly favors other lamp types, like metal halide lamps and fluorescent lamps for commercial lighting purposes. The enclosed sections deal with some of the properties of xenon lamps relevant to plant illumination; particularly the spectral aspects, the temporal characteristics of the emission, and finally the economy of xenon lamps will be addressed. Due to radiation exceeding the natural global radiation in both the ultraviolet (UV) and the infrared (IR) regions, filter techniques have to be included into the discussion referring to the requirements of plant illumination. Most of the presented results were obtained by investigations in the GSF phytotron or in the closed Phytocell chambers of the University of Erlangen. As our experiences are restricted to area plant illumination rather than spot lights our discussion will concentrate on low pressure long-arc xenon lamps which are commonly used for such plant illuminations. As the spectral properties of short-arc lamps do not differ much from those of long-arc lamps most of our conclusions will be valid for high pressure xenon lamps too. These lamps often serve as light sources for small sun simulators and for monochromators which are used for action spectroscopy of plant responses.

  16. Differential speckle and wide-field imaging for the Gemini-North and WIYN telescopes

    NASA Astrophysics Data System (ADS)

    Scott, Nicholas J.; Howell, Steve B.; Horch, Elliott P.

    2016-07-01

    Two new instruments are currently being built for the Gemini-North and WIYN telescopes. They are based on the existing DSSI (Differential Speckle Survey Instrument), but the new dual-channel instruments will have both speckle and "wide-field" imaging capabilities. Nearly identical copies of the instrument will be installed as a public access permanent loan at the Gemini-N and WIYN telescopes. Many exoplanet targets will come from the NASA K2 and TESS missions. The faint limiting magnitude, for speckle observations, will remain around 16 to 17th magnitude depending on observing conditions, while wide-field, high speed imaging should be able to go to 21+. For Gemini, the instrument will be remotely operable from either the mid-level facility at Hale Pohaku or the remote operations base in Hilo.

  17. The gamma-ray Cherenkov telescope for the Cherenkov telescope array

    NASA Astrophysics Data System (ADS)

    Tibaldo, L.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dournaux, J.-L.; Dumas, D.; Ernenwein, J.-P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jankowsky, D.; Jegouzo, I.; Jogler, T.; Kraus, M.; Lapington, J. S.; Laporte, P.; Lefaucheur, J.; Markoff, S.; Melse, T.; Mohrmann, L.; Molyneux, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayède, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Trichard, C.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.; CTA Consortium

    2017-01-01

    The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine telescopes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view ≳ 8° and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cherenkov images from atmospheric showers with the GCT multi-anode photomultiplier camera prototype. We also discuss the development of a second GCT camera prototype with silicon photomultipliers as photosensors, and plans toward a contribution to the realisation of CTA.

  18. The ultraviolet imaging telescope: Instrument and data characteristics

    NASA Astrophysics Data System (ADS)

    Stecher, Theodore P.; Ultraviolet Imaging Telescope Team

    1997-05-01

    The Ultraviolet Imaging Telescope (UIT) was flown as part of the Astro Observatory on the Space Shuttle Columbia in December 1990 (see Figure 1) and again on the Space Shuttle Endeavour in March 1995. Ultraviolet (1200-3300 Å) images of a wide variety of astronomical objects were detected with UV image intensifiers and recorded on photographic film. Typical angular resolutions were 2-3 arcsec over a 40 arcmin field of view. The reduced and calibrated images from the first flight are available to the astronomical community through the National Space Science Data Center (NSSDC); the data recorded during the second flight will soon be available as well. UIT's design, operation, data reduction, and calibration are described in detail in Stecher et al. (1997), including a comprehensive description of the data characteristics. This publication provides UIT data users with information for understanding and using the data, as well as guidelines for analyzing other astronomical imagery made with image intensifiers and photographic film. Further information on the Astro missions and the UIT science program is available at the following website http://fondue.gsfc.nasa.gov/UIT/UIT_HomePage.html and in an educational slideset that is available from the Astronomical Society of the Pacific (Waller & Offenberg 1994).

  19. SIMULATION OF ASTRONOMICAL IMAGES FROM OPTICAL SURVEY TELESCOPES USING A COMPREHENSIVE PHOTON MONTE CARLO APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, J. R.; Peng, E.; Ahmad, Z.

    2015-05-15

    We present a comprehensive methodology for the simulation of astronomical images from optical survey telescopes. We use a photon Monte Carlo approach to construct images by sampling photons from models of astronomical source populations, and then simulating those photons through the system as they interact with the atmosphere, telescope, and camera. We demonstrate that all physical effects for optical light that determine the shapes, locations, and brightnesses of individual stars and galaxies can be accurately represented in this formalism. By using large scale grid computing, modern processors, and an efficient implementation that can produce 400,000 photons s{sup −1}, we demonstratemore » that even very large optical surveys can be now be simulated. We demonstrate that we are able to (1) construct kilometer scale phase screens necessary for wide-field telescopes, (2) reproduce atmospheric point-spread function moments using a fast novel hybrid geometric/Fourier technique for non-diffraction limited telescopes, (3) accurately reproduce the expected spot diagrams for complex aspheric optical designs, and (4) recover system effective area predicted from analytic photometry integrals. This new code, the Photon Simulator (PhoSim), is publicly available. We have implemented the Large Synoptic Survey Telescope design, and it can be extended to other telescopes. We expect that because of the comprehensive physics implemented in PhoSim, it will be used by the community to plan future observations, interpret detailed existing observations, and quantify systematics related to various astronomical measurements. Future development and validation by comparisons with real data will continue to improve the fidelity and usability of the code.« less

  20. The Xenon1T Dark Matter Search Experiment

    NASA Astrophysics Data System (ADS)

    Aprile, Elena

    The worldwide race towards direct dark matter detection in the form of Weakly Interacting Massive Particles (WIMPs) has been dramatically accelerated by the remarkable progress and evolution of liquid xenon time projection chambers (LXeTPCs). With a realistic discovery potential, Xenon100 has already reached a sensitivity of 7 × 10-45 cm2, and continues to accrue data at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy towards its ultimate sensitivity reach at the σ SI ˜ 2 × 10-45 cm2 level for the spin-independent WIMP-nucleon cross-section. To fully explore the favoured parameter space for WIMP dark matter in search of a first robust and statistically significant discovery, or to confirm any hint of a signal from Xenon100, the next phase of the Xenon program will be a detector at the ton scale - Xenon1T. The Xenon1T detector, based on 2.2 ton of LXe viewed by low radioactivity photomultiplier tubes and housed in a water Cherenkov muon veto at LNGS, is presented. With an experimental aim of probing WIMP interaction cross-sections above of order σ SI ˜ 2 × 10-47 cm2 within 2 years of operation, Xenon1T will provide the sensitivity to probe a particularly favourable region of electroweak physics on a timescale compatible with complementary ground and satellite based indirect searches and with accelerator dark matter searches at the LHC. Indeed, for a σ SI ˜ 10-45 cm2 and 100 GeV/c2 WIMP mass, Xenon1T could detect of order 100 events in this exposure, providing statistics for placing significant constraints on the WIMP mass.

  1. Optimization of dual-energy xenon-computed tomography for quantitative assessment of regional pulmonary ventilation.

    PubMed

    Fuld, Matthew K; Halaweish, Ahmed F; Newell, John D; Krauss, Bernhard; Hoffman, Eric A

    2013-09-01

    Dual-energy x-ray computed tomography (DECT) offers visualization of the airways and quantitation of regional pulmonary ventilation using a single breath of inhaled xenon gas. In this study, we sought to optimize scanning protocols for DECT xenon gas ventilation imaging of the airways and lung parenchyma and to characterize the quantitative nature of the developed protocols through a series of test-object and animal studies. The Institutional Animal Care and Use Committee approved all animal studies reported here. A range of xenon/oxygen gas mixtures (0%, 20%, 25%, 33%, 50%, 66%, 100%; balance oxygen) were scanned in syringes and balloon test-objects to optimize the delivered gas mixture for assessment of regional ventilation while allowing for the development of improved 3-material decomposition calibration parameters. In addition, to alleviate gravitational effects on xenon gas distribution, we replaced a portion of the oxygen in the xenon/oxygen gas mixture with helium and compared gas distributions in a rapid-prototyped human central-airway test-object. Additional syringe tests were performed to determine if the introduction of helium had any effect on xenon quantitation. Xenon gas mixtures were delivered to anesthetized swine to assess airway and lung parenchymal opacification while evaluating various DECT scan acquisition settings. Attenuation curves for xenon were obtained from the syringe test-objects and were used to develop improved 3-material decomposition parameters (Hounsfield unit enhancement per percentage xenon: within the chest phantom, 2.25 at 80 kVp, 1.7 at 100 kVp, and 0.76 at 140 kVp with tin filtration; in open air, 2.5 at 80 kVp, 1.95 at 100 kVp, and 0.81 at 140 kVp with tin filtration). The addition of helium improved the distribution of xenon gas to the gravitationally nondependent portion of the airway tree test-object, while not affecting the quantitation of xenon in the 3-material decomposition DECT. The mixture 40% Xe/40% He/20% O2

  2. High-contrast Imager for Complex Aperture Telescopes (HICAT): II. Design overview and first light results

    NASA Astrophysics Data System (ADS)

    N'Diaye, Mamadou; Choquet, Elodie; Egron, Sylvain; Pueyo, Laurent; Leboulleux, Lucie; Levecq, Olivier; Perrin, Marshall D.; Elliot, Erin; Wallace, J. Kent; Hugot, Emmanuel; Marcos, Michel; Ferrari, Marc; Long, Chris A.; Anderson, Rachel; DiFelice, Audrey; Soummer, Rémi

    2014-08-01

    We present a new high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. The testbed was designed to enable a wide range of studies of the effects of such telescope geometries, with primary mirror segmentation, central obstruction, and spiders. The associated diffraction features in the point spread function make high-contrast imaging more challenging. In particular the testbed will be compatible with both AFTA-like and ATLAST-like aperture shapes, respectively on-axis monolithic, and on-axis segmented telescopes. The testbed optical design was developed using a novel approach to define the layout and surface error requirements to minimize amplitude­ induced errors at the target contrast level performance. In this communication we compare the as-built surface errors for each optic to their specifications based on end-to-end Fresnel modelling of the testbed. We also report on the testbed optical and optomechanical alignment performance, coronagraph design and manufacturing, and preliminary first light results.

  3. The Advanced Gamma-ray Imaging System (AGIS) Telescope Optical System Designs

    NASA Astrophysics Data System (ADS)

    Bugaev, V.; Buckley, J.; Diegel, S.; Falcone, A.; Fegan, S.; Finley, J.; Guarino, V.; Hanna, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Ramsey, B.; Romani, R.; Vassiliev, V.; Weekes, T.

    2008-12-01

    AGIS is a conceptual design for a future ground-based gamma-ray observatory operating in the energy range 25 GeV-100 TeV, which is based on an array of ~20-100 imaging atmospheric Cherenkov telescopes (IACTs). The desired improvement in sensitivity, angular resolution, and reliability of operation of AGIS imposes demanding technological and cost requirements on the design of the IACTs. We are considering several options for the optical system (OS) of the AGIS telescopes, which include the traditional Davies-Cotton design as well as novel two-mirror design. Emerging mirror production technologies based on replication processes such as cold and hot glass slumping, cured carbon fiber reinforced plastic (CFRP), and electroforming provide new opportunities for cost-effective solutions for the design of the OS.

  4. The Xenon record of Earth's early differentiaiton

    NASA Astrophysics Data System (ADS)

    Peto, M. K.; Mukhopadhyay, S.; Kelley, K. A.

    2011-12-01

    Xenon isotopes in mantle derived rocks provide information on the early differentiation of the silicate mantle of our planet. {131,132 134,136}Xe isotopes are produced by the spontaneous fission of two different elements: the now extinct radionuclide 244Pu, and the long-lived 238U. These two parent nuclides, however, yield rather different proportion of fissiogenic Xenon isotopes. Hence, the proportion of Pu- to U-derived fission xenon is indicative of the degree and rate of outgassing of a mantle reservoir. Recent data obtained from Iceland in our lab confirm that the Xenon isotopic composition of the plume source(s) is characterized by lower 136Xe/130Xe ratios than the MORB source and the Iceland plume is more enriched in the Pu-derived Xenon component. These features are interpreted as reflecting different degrees of outgassing and appear not to be the result of preferential recycling of Xenon to the deep mantle. To further investigate how representative the Icelandic measurements might be of other mantle plumes, we measured noble gases (He, Ne, Ar, Xe) in gas-rich basalt glasses from the Rochambeau Ridge (RR) in the Northern Lau Basin. Recent work suggests the presence of a "Samoan-like" OIB source in the northern Lau Basin and our measurements were performed on samples with plume-like 3He/4He ratios (15-28 RA) [1]. The Xenon isotopic measurements indicate that the maximum measured 136Xe/130Xe ratios in the Rochambeau samples are similar to Iceland. In particular, for one of the gas rich samples we were able to obtain 77 different isotopic measurements through step-crushing. Preliminary investigation of this sample suggests higher Pu- to U-derived fission Xenon than in MORBs. To quantitatively evaluate the degree and rate of outgassing of the plume and MORB reservoirs, particularly during the first few hundred million years of Earth's history, we have modified a geochemical reservoir model that was previously developed to investigate mantle overturn and mixing

  5. Evaluation of image quality in a Cassegrain-type telescope with an oscillating secondary mirror

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Matthews, S.

    1975-01-01

    A ray-trace analysis is described of aberrations and extreme rays of a Cassegrain-type telescope with a tilted secondary mirror. The work was motivated by the need to understand the factors limiting image quality and to assist in the design of secondary mirrors for three telescopes with oscillating secondary mirrors (OSM) used at Ames Research Center for high altitude infrared astronomy. The telescopes are a 31-cm-diameter Dall-Kirkham (elliptical primary, spherical secondary) flown aboard a Lear jet, a 71-cm balloon-borne Dall-Kirkham flown on the AIROscope gondola, and a 91-cm true Cassegrain (parabolic primary, hyperbolic secondary) flown aboard a C-141 jet transport. The optics for these telescopes were not designed specifically for OSM operation, but all have OSM's and all must be used with various detector configurations; therefore, a facility that evaluates the performance of a telescope for a given configuration is useful. The analytical expressions are summarized and results for the above systems are discussed. Details of the calculation and a discussion of the computer program are given in the appendices.

  6. Xenon. Now More than Ever.

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2017-12-01

    Xenon is one of the major goals of proposed missions to Venus. This talk explains why xenon is important to understanding the evolution of Venus's atmosphere. Implications for the historic climate of Venus add a new wrinkle in the story. Xenon's 9 stable isotopes can tell us much about the contrasting histories of Earth, Mars, and Venus. Earth's atmospheric Xe is highly mass fractionated compared to any known solar system source. Moreover, Earth's Xe/Kr ratio is low. It would seem that our heaviest gas has been escaping. What is even more remarkable, Xe escape took place for billions of years until the advent of an O2 atmosphere (Srinivasan EPSL 31:129 (1976); Pujol et al. EPSL 308:298 (2011); Avice et al. Nature Comm 8 (2017)). (ii) Earth's original xenon - what Pepin named U-Xe and claimed was the true solar Xe - had not been seen anywhere else until this year, when the secret parent of U-Xe was found hiding in Comet 67P/Churyumov-Gerasimenko by Rosetta (Marty et al. Science 356:1069 (2017)). Apparently 20% of Earth's xenon came from this kind of comet. This has obvious consequences for volatiles in general. Mars's Xe is also strongly mass fractionated, but its original Xe is indistinguishable from solar Xe, which means that Xe escape is a planetary process that operated in parallel on the two planets. (iii) 7% of Earth's 129Xe are radiogenic daughters of extinct 129I, half-life 15.7 Myrs. This is only 1% of the radiogenic 129Xe that Earth would have had had Earth retained its full cosmic birthright. The missing 129Xe can be interpreted as dating the Moon-forming impact to 100 Myrs after the solar system formed. Venus will be different. Xenon loss probably requires escape as an ion, and therefore it likely depends on hydrogen escape and an organized planetary magnetic field. Xenon escape during Earth's Archean implies that hydrogen was abundant and that the planetary magnetic field was strong. Venus will have seen a different history of escape, so that the mass

  7. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2001 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure that is placed inside a pressure canister. A similar canister holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (not shown) of the National Institutes of Standards and Technology, Gaithersburg, MD. This is a detail view of MSFC 0100143.

  8. Imaging the sun in hard x rays using Fourier telescopes

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.

    1993-01-01

    For several years, solar flares have been observed with a variety of instruments confirming that tremendous amounts of energy are locally stored in the solar magnetic field and then rapidly released during the life of the flare. In concert with observations, theorists have attempted to describe the means by which these energetic events occur and evolve. Two competing theories have emerged and have stood the test of time. One theory describes the flare in terms of nonthermal, electron beam injection into a thick target while the other uses a thermal approach. Both theories provide results which are reasonably consistent with current observations; but to date, none have been able to provide conclusive evidence as to the validity of either model. Imaging on short time scales (1 s) and/or small size scales (1 arc s) should give definitive answers to these questions. In order to test whether a realistic telescope can indeed discriminate between models, we construct model sources based upon the thermal and the nonthermal models and calculate the emission as a function of time and energy in the range from 10 to 100 keV. In addition, we construct model telescopes representing both the spatial modulation collimator (SMC) and the rotating modulation collimator (RMC) techniques of observation using random photon counting statistics. With these two types of telescopes we numerically simulate the instrument response to the above two model flares to see if there are distinct x-ray signatures which may be discernable. We find that theoretical descriptions of the primary models of solar flares do indeed predict different hard x-ray signatures for 1 sec time scales and at 1-5 arc sec spatial resolution. However, these distinguishing signatures can best be observed early in the impulsive phase and from a position perpendicular to the plane of the loop. Furthermore, we find that Fourier telescopes with reasonable and currently attainable design characteristics can image these

  9. Collateral Ventilation to Congenital Hyperlucent Lung Lesions Assessed on Xenon-Enhanced Dynamic Dual-Energy CT: an Initial Experience

    PubMed Central

    Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    Objective We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Materials and Methods Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a time-xenon value curve analysis and assessing the amplitude of xenon enhancement (A) value, the rate of xenon enhancement (K) value and the time of arrival value. Based on the A value, the lung lesions were categorized into high or low (A value > 10 Hounsfield unit [HU]) resistance to collateral ventilation. In addition, the morphologic CT findings of the lung lesions, including cyst, mucocele and an accessory or incomplete fissure, were assessed on the weighted-average CT images. The xenon-enhanced CT radiation dose was estimated. Results Five of the eight lung lesions were categorized into the high resistance group and three lesions were categorized into the low resistance group. The A and K values in the normal lung were higher than those in the low resistance group. The time of arrival values were delayed in the low resistance group. Cysts were identified in five lesions, mucocele in four, accessory fissure in three and incomplete fissure in two. Either cyst or an accessory fissure was seen in four of the five lesions showing high resistance to collateral ventilation. The xenon-enhanced CT radiation dose was 2.3 ± 0.6 mSv. Conclusion Xenon-enhanced dynamic dual-energy CT can help visualize and quantitate various degrees of collateral ventilation to congenital hyperlucent lung lesions in addition to assessing the anatomic details of the lung. PMID:21228937

  10. Collateral ventilation to congenital hyperlucent lung lesions assessed on xenon-enhanced dynamic dual-energy CT: an initial experience.

    PubMed

    Goo, Hyun Woo; Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a time-xenon value curve analysis and assessing the amplitude of xenon enhancement (A) value, the rate of xenon enhancement (K) value and the time of arrival value. Based on the A value, the lung lesions were categorized into high or low (A value > 10 Hounsfield unit [HU]) resistance to collateral ventilation. In addition, the morphologic CT findings of the lung lesions, including cyst, mucocele and an accessory or incomplete fissure, were assessed on the weighted-average CT images. The xenon-enhanced CT radiation dose was estimated. Five of the eight lung lesions were categorized into the high resistance group and three lesions were categorized into the low resistance group. The A and K values in the normal lung were higher than those in the low resistance group. The time of arrival values were delayed in the low resistance group. Cysts were identified in five lesions, mucocele in four, accessory fissure in three and incomplete fissure in two. Either cyst or an accessory fissure was seen in four of the five lesions showing high resistance to collateral ventilation. The xenon-enhanced CT radiation dose was 2.3 ± 0.6 mSv. Xenon-enhanced dynamic dual-energy CT can help visualize and quantitate various degrees of collateral ventilation to congenital hyperlucent lung lesions in addition to assessing the anatomic details of the lung.

  11. Xenon Blocks Neuronal Injury Associated with Decompression

    PubMed Central

    Blatteau, Jean-Eric; David, Hélène N.; Vallée, Nicolas; Meckler, Cedric; Demaistre, Sebastien; Lambrechts, Kate; Risso, Jean-Jacques; Abraini, Jacques H.

    2015-01-01

    Despite state-of-the-art hyperbaric oxygen (HBO) treatment, about 30% of patients suffering neurologic decompression sickness (DCS) exhibit incomplete recovery. Since the mechanisms of neurologic DCS involve ischemic processes which result in excitotoxicity, it is likely that HBO in combination with an anti-excitotoxic treatment would improve the outcome in patients being treated for DCS. Therefore, in the present study, we investigated the effect of the noble gas xenon in an ex vivo model of neurologic DCS. Xenon has been shown to provide neuroprotection in multiple models of acute ischemic insults. Fast decompression compared to slow decompression induced an increase in lactate dehydrogenase (LDH), a well-known marker of sub-lethal cell injury. Post-decompression administration of xenon blocked the increase in LDH release induced by fast decompression. These data suggest that xenon could be an efficient additional treatment to HBO for the treatment of neurologic DCS. PMID:26469983

  12. Xenon Blocks Neuronal Injury Associated with Decompression.

    PubMed

    Blatteau, Jean-Eric; David, Hélène N; Vallée, Nicolas; Meckler, Cedric; Demaistre, Sebastien; Lambrechts, Kate; Risso, Jean-Jacques; Abraini, Jacques H

    2015-10-15

    Despite state-of-the-art hyperbaric oxygen (HBO) treatment, about 30% of patients suffering neurologic decompression sickness (DCS) exhibit incomplete recovery. Since the mechanisms of neurologic DCS involve ischemic processes which result in excitotoxicity, it is likely that HBO in combination with an anti-excitotoxic treatment would improve the outcome in patients being treated for DCS. Therefore, in the present study, we investigated the effect of the noble gas xenon in an ex vivo model of neurologic DCS. Xenon has been shown to provide neuroprotection in multiple models of acute ischemic insults. Fast decompression compared to slow decompression induced an increase in lactate dehydrogenase (LDH), a well-known marker of sub-lethal cell injury. Post-decompression administration of xenon blocked the increase in LDH release induced by fast decompression. These data suggest that xenon could be an efficient additional treatment to HBO for the treatment of neurologic DCS.

  13. Commissioning and first tests of the MAGIC telescope

    NASA Astrophysics Data System (ADS)

    Baixeras, C.; Bastieri, D.; Bigongiari, C.; Blanch, O.; Blanchot, G.; Bock, R.; Bretz, T.; Chilingarian, A.; Coarasa, J. A.; Colombo, E.; Contreras, J. C.; Corti, D.; Cortina, J.; Domingo, C.; Domingo, E.; Ferenc, D.; Fernández, E.; Flix, J.; Fonseca, V.; Font, L.; Galante, N.; Gaug, M.; Garczarczyk, M.; Gebauer, J.; Giller, M.; Goebel, F.; Hengstebeck, T.; Jacone, P.; de Jager, O. C.; Kalekin, O.; Kestel, M.; Kneiske, T.; Laille, A.; López, M.; López, J.; Lorenz, E.; Mannheim, K.; Mariotti, M.; Martínez, M.; Mase, K.; Merck, M.; Meucci, M.; Miralles, L.; Mirzoyan, R.; Moralejo, A.; Wilhelmi, E. Oña; Orduña, R.; Paneque, D.; Paoletti, R.; Pascoli, D.; Pavel, N.; Pegna, R.; Peruzzo, L.; Piccioli, A.; Roberts, A.; Reyes, R.; Saggion, A.; Sánchez, A.; Sartori, P.; Scalzotto, V.; Schweizer, T.; Sillanpaa, A.; Sobczynska, D.; Stamerra, A.; Stepanian, A.; Stiehler, R.; Takalo, L.; Teshima, M.; Tonello, N.; Torres, A.; Turini, N.; Vitale, V.; Volkov, S.; Wagner, R. M.; Wibig, T.; Wittek, W.

    2004-02-01

    Major Atmospheric Gamma Imaging Cherenkov telescope is starting its operations with a set of engineering runs to tune the telescope subsystem elements to be ready for the first physics campaign. Many technical improvements have been developed and implemented in several elements of the telescope to reach the lowest energy threshold ever obtained by an Imaging Atmospheric Cherenkov Telescope. A general description of the telescope is presented. The commissioning of the telescope's elements is described and the expected performances are reviewed with the final detector set-up.

  14. Looking inside volcanoes with the Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Del Santo, M.; Catalano, O.; Cusumano, G.; La Parola, V.; La Rosa, G.; Maccarone, M. C.; Mineo, T.; Sottile, G.; Carbone, D.; Zuccarello, L.; Pareschi, G.; Vercellone, S.

    2017-12-01

    Cherenkov light is emitted when charged particles travel through a dielectric medium with velocity higher than the speed of light in the medium. The ground-based Imaging Atmospheric Cherenkov Telescopes (IACT), dedicated to the very-high energy γ-ray Astrophysics, are based on the detection of the Cherenkov light produced by relativistic charged particles in a shower induced by TeV photons interacting with the Earth atmosphere. Usually, an IACT consists of a large segmented mirror which reflects the Cherenkov light onto an array of sensors, placed at the focal plane, equipped by fast electronics. Cherenkov light from muons is imaged by an IACT as a ring, when muon hits the mirror, or as an arc when the impact point is outside the mirror. The Cherenkov ring pattern contains information necessary to assess both direction and energy of the incident muon. Taking advantage of the muon detection capability of IACTs, we present a new application of the Cherenkov technique that can be used to perform the muon radiography of volcanoes. The quantitative understanding of the inner structure of a volcano is a key-point to monitor the stages of the volcano activity, to forecast the next eruptive style and, eventually, to mitigate volcanic hazards. Muon radiography shares the same principle as X-ray radiography: muons are attenuated by higher density regions inside the target so that, by measuring the differential attenuation of the muon flux along different directions, it is possible to determine the density distribution of the interior of a volcano. To date, muon imaging of volcanic structures has been mainly achieved with detectors made up of scintillator planes. The advantage of using Cherenkov telescopes is that they are negligibly affected by background noise and allow a consistently improved spatial resolution when compared to the majority of the current detectors.

  15. Imaging Stellar Surfaces with an Agile 12-Telescopes Visible Interferometer for the VLTI

    NASA Astrophysics Data System (ADS)

    Woillez, Julien

    2018-04-01

    Imaging stellar surfaces with an optical interferometer requires a large number of telescopes and the extensive use of the bootstrapping technique to reach the high spatial frequencies where the surface details are revealed. An idea would use all 6 dual-star delay lines of VLTI to deploy an agile 12-telescopes single-mode visible interferometer on the Paranal mountain. The concept relies on single-mode fiber technologies that have been demonstrated by the `OHANA and `OHANA IKI projects. We present the expected performance of this concept and explore its potential for the study of stellar surfaces.

  16. Static telescope aberration measurement using lucky imaging techniques

    NASA Astrophysics Data System (ADS)

    López-Marrero, Marcos; Rodríguez-Ramos, Luis Fernando; Marichal-Hernández, José Gil; Rodríguez-Ramos, José Manuel

    2012-07-01

    A procedure has been developed to compute static aberrations once the telescope PSF has been measured with the lucky imaging technique, using a nearby star close to the object of interest as the point source to probe the optical system. This PSF is iteratively turned into a phase map at the pupil using the Gerchberg-Saxton algorithm and then converted to the appropriate actuation information for a deformable mirror having low actuator number but large stroke capability. The main advantage of this procedure is related with the capability of correcting static aberration at the specific pointing direction and without the need of a wavefront sensor.

  17. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    The benefits of high-power solar electric propulsion (SEP) for both NASA's human and science exploration missions combined with the technology investment from the Space Technology Mission Directorate have enabled the development of a 50kW-class SEP mission. NASA mission concepts developed, including the Asteroid Redirect Robotic Mission, and those proposed by contracted efforts for the 30kW-class demonstration have a range of xenon propellant loads from 100's of kg up to 10,000 kg. A xenon propellant load of 10 metric tons represents greater than 10% of the global annual production rate of xenon. A single procurement of this size with short-term delivery can disrupt the xenon market, driving up pricing, making the propellant costs for the mission prohibitive. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper discusses approaches for acquiring on the order of 10 MT of xenon propellant considering realistic programmatic constraints to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for mission campaigns utilizing multiple high-power solar electric propulsion vehicles requiring 100's of metric tons of xenon over an extended period of time where a longer term acquisition approach could be implemented.

  18. Telescope networking and user support via Remote Telescope Markup Language

    NASA Astrophysics Data System (ADS)

    Hessman, Frederic V.; Pennypacker, Carlton R.; Romero-Colmenero, Encarni; Tuparev, Georg

    2004-09-01

    Remote Telescope Markup Language (RTML) is an XML-based interface/document format designed to facilitate the exchange of astronomical observing requests and results between investigators and observatories as well as within networks of observatories. While originally created to support simple imaging telescope requests (Versions 1.0-2.1), RTML Version 3.0 now supports a wide range of applications, from request preparation, exposure calculation, spectroscopy, and observation reports to remote telescope scheduling, target-of-opportunity observations and telescope network administration. The elegance of RTML is that all of this is made possible using a public XML Schema which provides a general-purpose, easily parsed, and syntax-checked medium for the exchange of astronomical and user information while not restricting or otherwise constraining the use of the information at either end. Thus, RTML can be used to connect heterogeneous systems and their users without requiring major changes in existing local resources and procedures. Projects as very different as a number of advanced amateur observatories, the global Hands-On Universe project, the MONET network (robotic imaging), the STELLA consortium (robotic spectroscopy), and the 11-m Southern African Large Telescope are now using or intending to use RTML in various forms and for various purposes.

  19. Wide-field direct CCD observations supporting the Astro-1 Space Shuttle mission's Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Hintzen, Paul; Angione, Ron; Talbert, Freddie; Cheng, K.-P.; Smith, Eric; Stecher, Theodore P.

    1993-01-01

    Wide field direct CCD observations are being obtained to support and complement the vacuum-ultraviolet (VUV) images provided by Astro's Ultraviolet Imaging Telescope (UIT) during a Space Shuttle flight in December 1990. Because of the wide variety of projects addressed by UIT, the fields observed include (1) galactic supernova remnants such as the Cygnus Loop and globular clusters such as Omega Cen and M79; (2) the Magellanic Clouds, M33, M81, and other galaxies in the Local Group; and (3) rich clusters of galaxies, principally the Perseus cluster and Abell 1367. Ground-based observations have been obtained for virtually all of the Astro-1 UIT fields. The optical images allow identification of individual UV sources in each field and provide the long baseline in wavelength necessary for accurate analysis of UV-bright sources. To facilitate use of our optical images for analysis of UIT data and other projects, we plan to archive them, with the UIT images, at the National Space Science Data Center (NSSDC), where they will be universally accessible via anonymous FTP. The UIT, one of three telescopes comprising the Astro spacecraft, is a 38-cm f/9 Ritchey-Chretien telescope on which high quantum efficiency, solar-blind image tubes are used to record VUV images on photographic film. Five filters with passbands centered between 1250A and 2500A provide both VUV colors and a measurement of extinction via the 2200A dust feature. The resulting calibrated VUV pictures are 40 arcminutes in diameter at 2.5 arcseconds resolution. The capabilities of UIT, therefore, complement HST's WFPC: the latter has 40 times greater collecting area, while UIT's usable field has 170 times WFPC's field area.

  20. Relaxation channels of multi-photon excited xenon clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serdobintsev, P. Yu.; Melnikov, A. S.; Department of Physics, St. Petersburg State University, Saint Petersburg 198904

    2015-09-21

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  1. Status of the Whipple Observatory Cerenkov air shower imaging telescope array

    NASA Technical Reports Server (NTRS)

    Akerlof, C. W.; Cawley, M. F.; Fegan, D. J.; Fennell, S.; Freeman, S.; Frishman, D.; Harris, K.; Hillas, A. M.; Jennings, D.; Lamb, R. C.

    1992-01-01

    Recently the power of the Cerenkov imaging technique in Very High Energy gamma-ray astronomy was demonstrated by the detection of the Crab nebula at high statistical significance. In order to further develop this technique to allow the detection of weaker or more distant sources a second 10 m class reflector was constructed about 120 m from the original instrument. The addition of the second reflector will allow both a reduction in the energy threshold and an improvement in the rejection of the hadronic background. The design and construction of the second reflector, Gamma Ray Astrophysics New Imaging TElescope (GRANITE) is described.

  2. Extra Solar Planetary Imaging Coronagraph and Science Requirements for the James Webb Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2004-01-01

    1) Extra solar planetary imaging coronagraph. Direct detection and characterization of Jovian planets, and other gas giants, in orbit around nearby stars is a necessary precursor to Terrestrial Planet Finder 0 in order to estimate the probability of Terrestrial planets in our stellar neighborhood. Ground based indirect methods are biased towards large close in Jovian planets in solar systems unlikely io harbor Earthlike planets. Thus to estimate the relative abundances of terrestrial planets and to determine optimal observing strategies for TPF a pathfinder mission would be desired. The Extra-Solar Planetary Imaging Coronagraph (EPIC) is such a pathfinder mission. Upto 83 stellar systems are accessible with a 1.5 meter unobscured telescope and coronagraph combination located at the Earth-Sun L2 point. Incorporating radiometric and angular resolution considerations show that Jovians could be directly detected (5 sigma) in the 0.5 - 1.0 micron band outside of an inner working distance of 5/D with integration times of -10 - 100 hours per observation. The primary considerations for a planet imager are optical wavefront quality due to manufacturing, alignment, structural and thermal considerations. pointing stability and control, and manufacturability of coronagraphic masks and stops to increase the planetary-to- stellar contrast and mitigate against straylight. Previously proposed coronagraphic concepts are driven to extreme tolerances. however. we have developed and studied a mission, telescope and coronagraphic detection concept, which is achievable in the time frame of a Discovery class NASA mission. 2) Science requirements for the James Webb Space Telescope observatory. The James Webb Space Observatory (JWST) is an infrared observatory, which will be launched in 201 1 to an orbit at L2. JWST is a segmented, 18 mirror segment telescope with a diameter of 6.5 meters, and a clear aperture of 25 mA2. The telescope is designed to conduct imaging and spectroscopic

  3. DFT-MD simulations of shocked Xenon

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph J.; Mattsson, Thomas R.

    2009-03-01

    Xenon is not only a technologically important element used in laser technologies, jet propulsion and dental anesthesia, but it is also arguably the simplest material in which to study the metal-insulator transition at high pressure. Because of its closed shell electronic configuration, Xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as Xenon is known to form compounds at normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. In this talk, we present DFT-MD simulations of shocked liquid Xenon with the goal of developing an improved equation of state. The relative importance of the van der Waals interaction compared to other Coulomb interactions is considered, and estimates of the relative accuracy of various density functionals are quantified. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Correlation of the Hubble Space Telescope (HST) Space Telescope Imaging Spectrometer (STIS) On-Orbit Data with Pre-launch Predictions and Ground Contamination Controls

    NASA Technical Reports Server (NTRS)

    Hansen, Patricia A.

    2003-01-01

    The Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) was deployed on-orbit in February 1997. The contamination program for STIS was stringently controlled as the five-year end-of-life deposition was set at 158, per optical element. Contamination was controlled through materials selection, extensive vacuum outgassing certifications, cleaning techniques, and environmental controls. In addition to ground contamination controls, on-orbit contamination controls were implemented for both the HST servicing mission activities and early post-servicing mission checkout. The extensive contamination control program will be discussed and the STIS on-orbit data will be correlated with the prelaunch analytical predictions.

  5. Evidence of charge exchange pumping in calcium-xenon system

    NASA Technical Reports Server (NTRS)

    Chubb, D. L.

    1973-01-01

    Charge exchange between xenon ions and calcium atoms may produce an inversion between the 5s or 4d and 4p energy levels of the calcium ions. A low power flowing xenon plasma seeded with calcium was utilized to determine if charge exchange or electron collisions populate the 5s and 4d levels Ca(+). Line intensity ratios proportional to the density ratios n5s/n4p and n4d/n4p were measured. From the dependence of these intensity ratios on power input to the xenon plasma it was concluded that charge exchange pumping of the 5s and 4d levels predominates over electron collisional pumping of these levels. Also, by comparing intensity ratios obtained using argon and krypton in place of xenon with those obtained in xenon the same conclusion was made.

  6. Alignment telescope for Antares

    NASA Astrophysics Data System (ADS)

    Appert, Q. D.; Swann, T. A.; Ward, J. H.; Hardesty, C.; Wright, L.

    The Antares Automatic Alignment System employs a specially designed telescope for alignment of its laser beamlines. There are two telescopes in the system, and since each telescope is a primary alignment reference, stringent boresight accuracy and stability over the focus range were required. Optical and mechanical designs, which meet this requirements as well as that of image quality over a wide wavelength band, are described. Special test techniques for initial assembly and alignment of the telescope are also presented. The telescope, which has a 180-mm aperture FK51-KZF2 type glass doublet objective, requires a boresight accuracy of 2.8 (SIGMA)rad at two focal lengths, and object distances between 11 meters and infinity. Travel of a smaller secondary doublet provides focus from 11 m to infinity with approximately 7.8 m effective focal length. By flipping in a third doublet, the effective focal length is reduced to 2.5 m. Telescope alignment was accomplished by using a rotary air bearing to establish an axis in front of the system and placing the focus of a Laser Unequal Path Interferometer (LUPI) at the image plane.

  7. Alignment Telescope For Antares

    NASA Astrophysics Data System (ADS)

    Appert, Q. D.; Swann, T. A.; Ward, J. H.; Hardesty, C.; Wrignt, L.

    1983-11-01

    The Antares Automatic Alignment System employs a specially designed telescope for alignment of its laser beamlines. There are two telescopes in the system, and since eacn telescope is a primary alignment reference, stringent boresight accuracy and stability over the focus range were required. Optical and mechanical designs, which meet this requirement as well as that of image quality over a wide wavelength band, are described. Special test techniques for initial assembly and alignment of the telescope are also presented. The telescope, which has a 180-mm aperture FK51-KZF2 type glass doublet objective, requires a boresight accuracy of 2.8 prad at two focal lengths, and object distances between 11 meters and infinity. Travel of a smaller secondary doublet provides focus from 11 m to infinity with approximately 7.8 m effective focal length. By flipping in a third doublet, the effective focal length is reduced to 2.5 m. Telescope alignment was accomplished by using a rotary air bearing to establish an axis in front of the system and placing the focus of a Laser Unequal Path Interferometer (LUPI) at the image plane.

  8. Hubble Space Telescope Image of Omega Nebula

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  9. HUBBLE SPACE TELESCOPE CAPTURES FIRST DIRECT IMAGE OF A STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is the first direct image of a star other than the Sun, made with NASA's Hubble Space Telescope. Called Alpha Orionis, or Betelgeuse, it is a red supergiant star marking the shoulder of the winter constellation Orion the Hunter (diagram at right). The Hubble image reveals a huge ultraviolet atmosphere with a mysterious hot spot on the stellar behemoth's surface. The enormous bright spot, more than ten times the diameter of Earth, is at least 2,000 Kelvin degrees hotter than the surface of the star. The image suggests that a totally new physical phenomenon may be affecting the atmospheres of some stars. Follow-up observations will be needed to help astronomers understand whether the spot is linked to oscillations previously detected in the giant star, or whether it moves systematically across the star's surface under the grip of powerful magnetic fields. The observations were made by Andrea Dupree of the Harvard- Smithsonian Center for Astrophysics in Cambridge, MA, and Ronald Gilliland of the Space Telescope Science Institute in Baltimore, MD, who announced their discovery today at the 187th meeting of the American Astronomical Society in San Antonio, Texas. The image was taken in ultraviolet light with the Faint Object Camera on March 3, 1995. Hubble can resolve the star even though the apparent size is 20,000 times smaller than the width of the full Moon -- roughly equivalent to being able to resolve a car's headlights at a distance of 6,000 miles. Betelgeuse is so huge that, if it replaced the Sun at the center of our Solar System, its outer atmosphere would extend past the orbit of Jupiter (scale at lower left). Credit: Andrea Dupree (Harvard-Smithsonian CfA), Ronald Gilliland (STScI), NASA and ESA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  10. Xenon ventilation during therapeutic hypothermia in neonatal encephalopathy: a feasibility study.

    PubMed

    Dingley, John; Tooley, James; Liu, Xun; Scull-Brown, Emma; Elstad, Maja; Chakkarapani, Ela; Sabir, Hemmen; Thoresen, Marianne

    2014-05-01

    Therapeutic hypothermia has become standard of care in newborns with moderate and severe neonatal encephalopathy; however, additional interventions are needed. In experimental models, breathing xenon gas during cooling offers long-term additive neuroprotection. This is the first xenon feasibility study in cooled infants. Xenon is expensive, requiring a closed-circuit delivery system. Cooled newborns with neonatal encephalopathy were eligible for this single-arm, dose-escalation study if clinically stable, under 18 hours of age and requiring less than 35% oxygen. Xenon duration increased stepwise from 3 to 18 hours in 14 subjects; 1 received 25% xenon and 13 received 50%. Respiratory, cardiovascular, neurologic (ie, amplitude-integrated EEG, seizures), and inflammatory (C-reactive protein) effects were examined. The effects of starting or stopping xenon rapidly or slowly were studied. Three matched control subjects per xenon treated subject were selected from our cooling database. Follow-up was at 18 months using mental developmental and physical developmental indexes of the Bayley Scales of Infant Development II. No adverse respiratory or cardiovascular effects, including post-extubation stridor, were seen. Xenon increased sedation and suppressed seizures and background electroencephalographic activity. Seizures sometimes occurred during rapid weaning of xenon but not during slow weaning. C-reactive protein levels were similar between groups. Hourly xenon consumption was 0.52 L. Three died, and 7 of 11 survivors had mental and physical developmental index scores ≥70 at follow-up. Breathing 50% xenon for up to 18 hours with 72 hours of cooling was feasible, with no adverse effects seen with 18 months' follow-up. Copyright © 2014 by the American Academy of Pediatrics.

  11. Purging means and method for Xenon arc lamps

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1973-01-01

    High pressure Xenon short-arc lamp with two reservoirs which are selectively connectable to the lamp's envelope is described. One reservoir contains an absorbent which will absorb both Xenon and contaminant gases such as CO2 and O2. The absorbent temperature is controlled to evacuate the envelope of both the Xenon and the contaminant gases. The temperature of the absorbent is then raised to desorb only clean Xenon while retaining the contaminant gases, thereby clearing the envelope of the contaminant gases. The second reservoir contains a gas whose specific purpose is, to remove the objectional metal film which deposits gradually on the interior surface of the lamp envelope during normal arc operation. The origin of the film is metal transferred from the cathode of the arc lamp by sputtering or other gas transfer processes.

  12. Plutonium-fission xenon found in Earth's mantle

    PubMed

    Kunz; Staudacher; Allegre

    1998-05-08

    Data from mid-ocean ridge basalt glasses indicate that the short-lived radionuclide plutonium-244 that was present during an early stage of the development of the solar system is responsible for roughly 30 percent of the fissiogenic xenon excesses in the interior of Earth today. The rest of the fissiogenic xenon can be ascribed to the spontaneous fission of still live uranium-238. This result, in combination with the refined determination of xenon-129 excesses from extinct iodine-129, implies that the accretion of Earth was finished roughly 50 million to 70 million years after solar system formation and that the atmosphere was formed by mantle degassing.

  13. Optical aperture synthesis with electronically connected telescopes

    PubMed Central

    Dravins, Dainis; Lagadec, Tiphaine; Nuñez, Paul D.

    2015-01-01

    Highest resolution imaging in astronomy is achieved by interferometry, connecting telescopes over increasingly longer distances and at successively shorter wavelengths. Here, we present the first diffraction-limited images in visual light, produced by an array of independent optical telescopes, connected electronically only, with no optical links between them. With an array of small telescopes, second-order optical coherence of the sources is measured through intensity interferometry over 180 baselines between pairs of telescopes, and two-dimensional images reconstructed. The technique aims at diffraction-limited optical aperture synthesis over kilometre-long baselines to reach resolutions showing details on stellar surfaces and perhaps even the silhouettes of transiting exoplanets. Intensity interferometry circumvents problems of atmospheric turbulence that constrain ordinary interferometry. Since the electronic signal can be copied, many baselines can be built up between dispersed telescopes, and over long distances. Using arrays of air Cherenkov telescopes, this should enable the optical equivalent of interferometric arrays currently operating at radio wavelengths. PMID:25880705

  14. Near-ultraviolet imaging of Jupiter's satellite Io with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Paresce, F.; Sartoretti, P.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Boksenberg, A.; Crane, P.; Deharveng, J. M.; Disney, M. J.; Jakobsen, P.

    1992-01-01

    The surface of Jupiter's Galilean satellite Io has been resolved for the first time in the near ultraviolet at 2850 A by the Faint Object Camera (FOC) on the Hubble Space Telescope (HST). The restored images reveal significant surface structure down to the resolution limit of the optical system corresponding to approximately 250 km at the sub-earth point.

  15. MiX: a position sensitive dual-phase liquid xenon detector

    NASA Astrophysics Data System (ADS)

    Stephenson, S.; Haefner, J.; Lin, Q.; Ni, K.; Pushkin, K.; Raymond, R.; Schubnell, M.; Shutty, N.; Tarlé, G.; Weaverdyck, C.; Lorenzon, W.

    2015-10-01

    The need for precise characterization of dual-phase xenon detectors has grown as the technology has matured into a state of high efficacy for rare event searches. The Michigan Xenon detector was constructed to study the microphysics of particle interactions in liquid xenon across a large energy range in an effort to probe aspects of radiation detection in liquid xenon. We report the design and performance of a small 3D position sensitive dual-phase liquid xenon time projection chamber with high light yield (Ly122=15.2 pe/keV at zero field), long electron lifetime (τ > 200 μs), and excellent energy resolution (σ/E = 1% for 1,333 keV gamma rays in a drift field of 200 V/cm). Liquid xenon time projection chambers with such high energy resolution may find applications not only in dark matter direct detection searches, but also in neutrinoless double beta decay experiments and other applications.

  16. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. IV. Measurement for Sculptor

    NASA Astrophysics Data System (ADS)

    Piatek, Slawomir; Pryor, Carlton; Bristow, Paul; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2006-03-01

    This article presents a measurement of the proper motion of the Sculptor dwarf spheroidal galaxy determined from images taken with the Hubble Space Telescope using the Space Telescope Imaging Spectrograph in the imaging mode. Each of two distinct fields contains a quasi-stellar object that serves as the ``reference point.'' The measured proper motion of Sculptor, expressed in the equatorial coordinate system, is (μα, μδ)=(9+/-13, 2+/-13) mas century-1. Removing the contributions from the motion of the Sun and the motion of the local standard of rest produces the proper motion in the Galactic rest frame: (μGrfα, μGrfδ)=(-23+/-13, 45+/-13) mas century-1. The implied space velocity with respect to the Galactic center has a radial component of Vr=79+/-6 km s-1 and a tangential component of Vt=198+/-50 km s-1. Integrating the motion of Sculptor in a realistic potential for the Milky Way produces orbital elements. The perigalacticon and apogalacticon are 68 (31, 83) and 122 (97, 313) kpc, respectively, where the values in the parentheses represent the 95% confidence interval derived from Monte Carlo experiments. The eccentricity of the orbit is 0.29 (0.26, 0.60), and the orbital period is 2.2 (1.5, 4.9) Gyr. Sculptor is on a polar orbit around the Milky Way: the angle of inclination is 86° (83°, 90°). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  17. The 64 Mpixel wide field imager for the Wendelstein 2m telescope: design and calibration

    NASA Astrophysics Data System (ADS)

    Kosyra, Ralf; Gössl, Claus; Hopp, Ulrich; Lang-Bardl, Florian; Riffeser, Arno; Bender, Ralf; Seitz, Stella

    2014-11-01

    The Wendelstein Observatory of Ludwig Maximilians University of Munich has recently been upgraded with a modern 2m robotic telescope. One Nasmyth port of the telescope has been equipped with a wide-field corrector which preserves the excellent image quality (<0.8 " median seeing) of the site (Hopp et al. 2008) over a field of view of 0.7 degrees diameter. The available field is imaged by an optical imager (WWFI, the Wendelstein Wide Field Imager) built around a customized 2×2 mosaic of 4 k×4 k 15 μm e2v CCDs from Spectral Instruments. This paper provides an overview of the design and the WWFI's performance. We summarize the system mechanics (including a structural analysis), the electronics (and its electromagnetic interference (EMI) protection) and the control software. We discuss in detail detector system parameters, i.e. gain and readout noise, quantum efficiency as well as charge transfer efficiency (CTE) and persistent charges. First on sky tests yield overall good predictability of system throughput based on lab measurements.

  18. Conceptual Design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) for the Subaru Telescope

    NASA Technical Reports Server (NTRS)

    Peters, Mary Anne; Groff, Tyler; Kasdin, N. Jeremy; McElwain, Michael W.; Galvin, Michael; Carr, Michael A.; Lupton, Robert; Gunn, James E.; Knapp, Gillian; Gong, Qian; hide

    2012-01-01

    Recent developments in high-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the conceptual design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 140 x 140 spatial elements over a 1.75 arcsecs x 1.75 arcsecs field of view (FOV). CHARIS will operate in the near infrared (lambda = 0.9 - 2.5 micron) and provide a spectral resolution of R = 14, 33, and 65 in three separate observing modes. Taking advantage of the adaptive optics systems and advanced coronagraphs (AO188 and SCExAO) on the Subaru telescope, CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS is in the early design phases and is projected to have first light by the end of 2015. We report here on the current conceptual design of CHARIS and the design challenges.

  19. Assessing the depth of hypnosis of xenon anaesthesia with the EEG.

    PubMed

    Stuttmann, Ralph; Schultz, Arthur; Kneif, Thomas; Krauss, Terence; Schultz, Barbara

    2010-04-01

    Xenon was approved as an inhaled anaesthetic in Germany in 2005 and in other countries of the European Union in 2007. Owing to its low blood/gas partition coefficient, xenons effects on the central nervous system show a fast onset and offset and, even after long xenon anaesthetics, the wake-up times are very short. The aim of this study was to examine which electroencephalogram (EEG) stages are reached during xenon application and whether these stages can be identified by an automatic EEG classification. Therefore, EEG recordings were performed during xenon anaesthetics (EEG monitor: Narcotrend®). A total of 300 EEG epochs were assessed visually with regard to the EEG stages. These epochs were also classified automatically by the EEG monitor Narcotrend® using multivariate algorithms. There was a high correlation between visual and automatic classification (Spearman's rank correlation coefficient r=0.957, prediction probability Pk=0.949). Furthermore, it was observed that very deep stages of hypnosis were reached which are characterised by EEG activity in the low frequency range (delta waves). The burst suppression pattern was not seen. In deep hypnosis, in contrast to the xenon EEG, the propofol EEG was characterised by a marked superimposed higher frequency activity. To ensure an optimised dosage for the single patient, anaesthetic machines for xenon should be combined with EEG monitoring. To date, only a few anaesthetic machines for xenon are available. Because of the high price of xenon, new and further developments of machines focus on optimizing xenon consumption.

  20. New Hubble Space Telescope Multi-Wavelength Imaging of the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Levay, Zoltan G.; Christian, Carol A.; Mack, Jennifer; Frattare, Lisa M.; Livio, Mario; Meyett, Michele L.; Mutchler, Maximilian J.; Noll, Keith S.; Hubble Heritage

    2015-01-01

    One of the most iconic images from the Hubble Space Telescope has been the 1995 WFPC2 image of the Eagle Nebula (M16, sometimes known as the "Pillars of Creation"). Nineteen years after those original observations, new images have been obtained with HST's current instrumentation: a small mosaic in visible-light, narrow-band filters with WFC3/UVIS, infrared, broad-band filters with WFC3/IR, and parallel Hα imaging with ACS/WFC. The wider field of view, higher resolution, and broader wavelength coverage of the new images highlight the improved capabilities of HST over its long-lasting operation, made possible by the upgraded instrumentation installed during Space Shuttle servicing missions. Csite images from these datasets are presented to commemorate the 25th anniversary of HST's launch. Carefully combined, aligned and calibrated datasets from the primary WFC3 fields are available as High-Level Science Products in MAST (http://archive.stsci.edu/prepds/heritage/). Color composite images from these datasets are presented to commemorate the 25th anniversary of HST's launch.

  1. Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, M. D.; Jogler, T.; Dumm, J.

    In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parametersmore » including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.« less

  2. Monte Carlo studies of medium-size telescope designs for the Cherenkov Telescope Array

    DOE PAGES

    Wood, M. D.; Jogler, T.; Dumm, J.; ...

    2015-06-07

    In this paper, we present studies for optimizing the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Results focus on mid-sized telescopes (MSTs) for CTA, detecting very high energy gamma rays in the energy range from a few hundred GeV to a few tens of TeV. We describe a novel, flexible detector Monte Carlo package, FAST (FAst Simulation for imaging air cherenkov Telescopes), that we use to simulate different array and telescope designs. The simulation is somewhat simplified to allow for efficient exploration over a large telescope design parameter space. We investigate a wide range of telescope performance parametersmore » including optical resolution, camera pixel size, and light collection area. In order to ensure a comparison of the arrays at their maximum sensitivity, we analyze the simulations with the most sensitive techniques used in the field, such as maximum likelihood template reconstruction and boosted decision trees for background rejection. Choosing telescope design parameters representative of the proposed Davies–Cotton (DC) and Schwarzchild–Couder (SC) MST designs, we compare the performance of the arrays by examining the gamma-ray angular resolution and differential point-source sensitivity. We further investigate the array performance under a wide range of conditions, determining the impact of the number of telescopes, telescope separation, night sky background, and geomagnetic field. We find a 30–40% improvement in the gamma-ray angular resolution at all energies when comparing arrays with an equal number of SC and DC telescopes, significantly enhancing point-source sensitivity in the MST energy range. Finally, we attribute the increase in point-source sensitivity to the improved optical point-spread function and smaller pixel size of the SC telescope design.« less

  3. HIGH-RESOLUTION LINEAR POLARIMETRIC IMAGING FOR THE EVENT HORIZON TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chael, Andrew A.; Johnson, Michael D.; Narayan, Ramesh

    Images of the linear polarizations of synchrotron radiation around active galactic nuclei (AGNs) highlight their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest-resolution polarimetric images of AGNs are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore some extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previousmore » work, our polarimetric MEM algorithm combines a Stokes I imager that only uses bispectrum measurements that are immune to atmospheric phase corruption, with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7 and 3 mm wavelength quasar observations from the VLBA and simulated 1.3 mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm, when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.« less

  4. High-resolution Linear Polarimetric Imaging for the Event Horizon Telescope

    NASA Astrophysics Data System (ADS)

    Chael, Andrew A.; Johnson, Michael D.; Narayan, Ramesh; Doeleman, Sheperd S.; Wardle, John F. C.; Bouman, Katherine L.

    2016-09-01

    Images of the linear polarizations of synchrotron radiation around active galactic nuclei (AGNs) highlight their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest-resolution polarimetric images of AGNs are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore some extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previous work, our polarimetric MEM algorithm combines a Stokes I imager that only uses bispectrum measurements that are immune to atmospheric phase corruption, with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7 and 3 mm wavelength quasar observations from the VLBA and simulated 1.3 mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm, when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.

  5. Hugoniot measurements of double-shocked precompressed dense xenon plasmas

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Chen, Z. Y.

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ˜6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  6. Image inversion analysis of the HST OTA (Hubble Space Telescope Optical Telescope Assembly), phase A

    NASA Technical Reports Server (NTRS)

    Litvak, M. M.

    1991-01-01

    Technical work during September-December 1990 consisted of: (1) analyzing HST point source images obtained from JPL; (2) retrieving phase information from the images by a direct (noniterative) technique; and (3) characterizing the wavefront aberration due to the errors in the Hubble Space Telescope (HST) mirrors, in a preliminary manner. This work was in support of JPL design of compensating optics for the next generation wide-field planetary camera on HST. This digital technique for phase retrieval from pairs of defocused images, is based on the energy transport equation between these image planes. In addition, an end-to-end wave optics routine, based on the JPL Code 5 prescription of the unaberrated HST and WFPC, was derived for output of the reference phase front when mirror error is absent. Also, the Roddier routine unwrapped the retrieved phase by inserting the required jumps of +/- 2(pi) radians for the sake of smoothness. A least-squares fitting routine, insensitive to phase unwrapping, but nonlinear, was used to obtain estimates of the Zernike polynomial coefficients that describe the aberration. The phase results were close to, but higher than, the expected error in conic constant of the primary mirror suggested by the fossil evidence. The analysis of aberration contributed by the camera itself could be responsible for the small discrepancy, but was not verified by analysis.

  7. Mechanistic Insights into Xenon Inhibition of NMDA Receptors from MD Simulations

    PubMed Central

    Liu, Lu Tian; Xu, Yan; Tang, Pei

    2010-01-01

    Inhibition of N-methyl-D-aspartate (NMDA) receptors has been viewed as a primary cause of xenon anesthesia, yet the mechanism is unclear. Here, we investigated interactions between xenon and the ligand-binding domain (LBD) of a NMDA receptor and examined xenon-induced structural and dynamical changes that are relevant to functional changes of the NMDA receptor. Several comparative molecular dynamics simulations were performed on two X-ray structures representing the open- and closed-cleft LBD of the NMDA receptor. We identified plausible xenon action sites in the LBD, including those nearby agonist sites, in the hinge region, and at the interface between two subunits. The xenon binding energy varies from −5.3 to −0.7 kcal/mol. Xenon's effect on the NMDA receptor is conformation-dependent and is produced through both competitive and non-competitive mechanisms. Xenon can promote cleft opening in the absence of agonists and consequently stabilizes the closed channel. Xenon can also bind at the interface of two subunits, alter the inter-subunit interaction, and lead to a reduction of the distance between GT-links. This reduction corresponds to a rearrangement of the channel toward a direction of pore size decreasing, implying a closed or desensitized channel. In addition to these non-competitive actions, xenon was found to weaken the glutamate binding, which could lead to low agonist efficacy and appear as competitive inhibition. PMID:20560662

  8. Synthesis of the missing oxide of xenon, XeO2, and its implications for Earth's missing xenon.

    PubMed

    Brock, David S; Schrobilgen, Gary J

    2011-04-27

    The missing Xe(IV) oxide, XeO(2), has been synthesized at 0 °C by hydrolysis of XeF(4) in water and 2.00 M H(2)SO(4(aq)). Raman spectroscopy and (16/18)O isotopic enrichment studies indicate that XeO(2) possesses an extended structure in which Xe(IV) is oxygen bridged to four neighboring oxygen atoms to give a local square-planar XeO(4) geometry based on an AX(4)E(2) valence shell electron pair repulsion (VSEPR) arrangement. The vibrational spectra of Xe(16)O(2) and Xe(18)O(2) amend prior vibrational assignments of xenon doped SiO(2) and are in accordance with prior speculation that xenon depletion from the Earth's atmosphere may occur by xenon insertion at high temperatures and high pressures into SiO(2) in the Earth's crust.

  9. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  10. A new concept of imaging system: telescope windows

    NASA Astrophysics Data System (ADS)

    Bourgenot, Cyril; Cowie, Euan; Young, Laura; Love, Gordon; Girkin, John; Courtial, Johannes

    2018-02-01

    A Telescope window is a novel concept of transformation-optics consisting of an array of micro-telescopes, in our configuration, of a Galilean type. When the array is considered as one multifaceted device, it acts as a traditional Galilean telescope with distinctive and attractive properties such as compactness and modularity. Each lenslet, can in principle, be independently designed for a specific optical function. In this paper, we report on the design, manufacture and prototyping, by diamond precision machining, of 2 concepts of telescope windows, and discuss both their performances and limitations with a view to use them as potential low vision aid devices to support patients with macular degeneration.

  11. Removing krypton from xenon by cryogenic distillation to the ppq level

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Di Gangi, P.; Di Giovanni, A.; Diglio, S.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Huhmann, C.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Calloch, M. Le; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; Santos, J. M. F. dos; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Cristescu, I.

    2017-05-01

    The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β -emitter ^{85}Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon ^{nat}Kr/Xe < 200 ppq (parts per quadrillion, 1 ppq =10^{-15} mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4\\cdot 10^5 with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of ^{nat}Kr/Xe<26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN.

  12. Analgesic Effect of Xenon in Rat Model of Inflammatory Pain.

    PubMed

    Kukushkin, M L; Igon'kina, S I; Potapov, S V; Potapov, A V

    2017-02-01

    The analgesic effects of inert gas xenon were examined on rats. The formalin model of inflammatory pain, tail-flick test, and hot-plate test revealed the antinociceptive effects of subanesthetizing doses of inhalation anesthetic xenon. Inhalation of 50/50 xenon/oxygen mixture moderated the nociceptive responses during acute and tonic phases of inflammatory pain.

  13. Coded mask telescopes for X-ray astronomy

    NASA Astrophysics Data System (ADS)

    Skinner, G. K.; Ponman, T. J.

    1987-04-01

    The principle of the coded mask techniques are discussed together with the methods of image reconstruction. The coded mask telescopes built at the University of Birmingham, including the SL 1501 coded mask X-ray telescope flown on the Skylark rocket and the Coded Mask Imaging Spectrometer (COMIS) projected for the Soviet space station Mir, are described. A diagram of a coded mask telescope and some designs for coded masks are included.

  14. Near- infrared imager and slitless spectrograph (NIRISS): a new instrument on James Webb Space Telescope (JWST)

    NASA Astrophysics Data System (ADS)

    Maszkiewicz, Michael

    2017-11-01

    The James Webb Space Telescope (JWST) is a 6.5 m diameter deployable telescope that will orbit the L2 Earth-Sun point beginning in 2018. NASA is leading the development of the JWST mission with their partners, the European Space Agency and the Canadian Space Agency. The Canadian contribution to the mission is the Fine Guidance Sensor (FGS). Originally, the FGS incorporated a flexible narrow spectral band science imaging capability in the form of the Tunable Filter Imaging Module -TFI, based on a scanning Fabry-Perot etalon. In the course of building and testing of the TFI flight model, numerous technical issues arose with unforeseeable length of required mitigation effort. In addition to that, emerging new science priorities caused that in summer of 2011 a decision was taken to replace TFI with a new instrument called Near Infrared Imager and Slitless Spectrograph (NIRISS). NIRISS preserves most of the TFI opto-mechanical design: focusing mirror, collimator and camera TMA telescopes, dual filter and pupil wheel and detectors but, instead of a tunable etalon, uses set of filters and grisms for wavelength selection and dispersion. The FGS-Guider and NIRISS have completed their instrument-level cryogenic testing and were delivered to NASA Goddard in late July 2012 for incorporation into the Integrated Science Instrument Module (ISIM).

  15. Evaluation of a ''CMOS'' Imager for Shadow Mask Hard X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Desai, Upendra D.; Orwig, Larry E.; Oergerle, William R. (Technical Monitor)

    2002-01-01

    We have developed a hard x-ray coder that provides high angular resolution imaging capability using a coarse position sensitive image plane detector. The coder consists of two Fresnel zone plates. (FZP) Two such 'FZP's generate Moire fringe patterns whose frequency and orientation define the arrival direction of a beam with respect to telescope axis. The image plane detector needs to resolve the Moire fringe pattern. Pixilated detectors can be used as an image plane detector. The recently available 'CMOS' imager could provide a very low power large area image plane detector for hard x-rays. We have looked into a unit made by Rad-Icon Imaging Corp. The Shadow-Box 1024 x-ray camera is a high resolution 1024xl024 pixel detector of 50x50 mm area. It is a very low power, stand alone camera. We present some preliminary results of our investigation of evaluation of such camera.

  16. Critical Viscosity of Xenon team

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure (at left) that is placed inside a pressure canister. A similar canister (right) holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (left) of the National Institutes of Standards and Technology, Gaithersburg, MD.

  17. Critical Viscosity of Xenon team

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure (at left) that is placed inside a pressure canister. A similar canister (right) holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (not shown) of the National Institutes of Standards and Technology, Gaithersburg, MD.

  18. Sensitivity analysis for high-contrast missions with segmented telescopes

    NASA Astrophysics Data System (ADS)

    Leboulleux, Lucie; Sauvage, Jean-François; Pueyo, Laurent; Fusco, Thierry; Soummer, Rémi; N'Diaye, Mamadou; St. Laurent, Kathryn

    2017-09-01

    Segmented telescopes enable large-aperture space telescopes for the direct imaging and spectroscopy of habitable worlds. However, the increased complexity of their aperture geometry, due to their central obstruction, support structures, and segment gaps, makes high-contrast imaging very challenging. In this context, we present an analytical model that will enable to establish a comprehensive error budget to evaluate the constraints on the segments and the influence of the error terms on the final image and contrast. Indeed, the target contrast of 1010 to image Earth-like planets requires drastic conditions, both in term of segment alignment and telescope stability. Despite space telescopes evolving in a more friendly environment than ground-based telescopes, remaining vibrations and resonant modes on the segments can still deteriorate the contrast. In this communication, we develop and validate the analytical model, and compare its outputs to images issued from end-to-end simulations.

  19. Achromatic shearing phase sensor for generating images indicative of measure(s) of alignment between segments of a segmented telescope's mirrors

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip (Inventor); Walker, Chanda Bartlett (Inventor)

    2006-01-01

    An achromatic shearing phase sensor generates an image indicative of at least one measure of alignment between two segments of a segmented telescope's mirrors. An optical grating receives at least a portion of irradiance originating at the segmented telescope in the form of a collimated beam and the collimated beam into a plurality of diffraction orders. Focusing optics separate and focus the diffraction orders. Filtering optics then filter the diffraction orders to generate a resultant set of diffraction orders that are modified. Imaging optics combine portions of the resultant set of diffraction orders to generate an interference pattern that is ultimately imaged by an imager.

  20. Hubble Space Telescope Image: Planetary Nebula IC 4406

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This Hubble Space Telescope image reveals a rainbow of colors in this dying star, called IC 446. Like many other so-called planetary nebulae, IC 4406 exhibits a high degree of symmetry. The nebula's left and right halves are nearly mirror images of the other. If we could fly around IC 446 in a spaceship, we would see that the gas and dust form a vast donut of material streaming outward from the dying star. We do not see the donut shape in this photograph because we are viewing IC 4406 from the Earth-orbiting HST. From this vantage point, we are seeing the side of the donut. This side view allows us to see the intricate tendrils of material that have been compared to the eye's retina. In fact, IC 4406 is dubbed the 'Retina Nebula.' The donut of material confines the intense radiation coming from the remnant of the dying star. Gas on the inside of the donut is ionized by light from the central star and glows. Light from oxygen atoms is rendered blue in this image; hydrogen is shown as green, and nitrogen as red. The range of color in the final image shows the differences in concentration of these three gases in the nebula. This image is a composite of data taken by HST's Wide Field Planetary Camera 2 in June 2001 and in January 2002 by Bob O'Dell (Vanderbilt University) and collaborators, and in January by the Hubble Heritage Team (STScI). Filters used to create this color image show oxygen, hydrogen, and nitrogen gas glowing in this object.

  1. A study of the sensitivity of an imaging telescope (GRITS) for high energy gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Yearian, Mason R.

    1990-01-01

    When a gamma-ray telescope is placed in Earth orbit, it is bombarded by a flux of cosmic protons much greater than the flux of interesting gammas. These protons can interact in the telescope's thermal shielding to produce detectable gamma rays, most of which are vetoed. Since the proton flux is so high, the unvetoed gamma rays constitute a significant background relative to some weak sources. This background increases the observing time required to pinpoint some sources and entirely obscures other sources. Although recent telescopes have been designed to minimize this background, its strength and spectral characteristics were not previously calculated in detail. Monte Carlo calculations are presented which characterize the strength, spectrum and other features of the cosmic proton background using FLUKA, a hadronic cascade program. Several gamma-ray telescopes, including SAS-2, EGRET and the Gamma Ray Imaging Telescope System (GRITS), are analyzed, and their proton-induced backgrounds are characterized. In all cases, the backgrounds are either shown to be low relative to interesting signals or suggestions are made which would reduce the background sufficiently to leave the telescope unimpaired. In addition, several limiting cases are examined for comparison to previous estimates and calibration measurements.

  2. GRMHD Simulations of Visibility Amplitude Variability for Event Horizon Telescope Images of Sgr A*

    NASA Astrophysics Data System (ADS)

    Medeiros, Lia; Chan, Chi-kwan; Özel, Feryal; Psaltis, Dimitrios; Kim, Junhan; Marrone, Daniel P.; Sa¸dowski, Aleksander

    2018-04-01

    The Event Horizon Telescope will generate horizon scale images of the black hole in the center of the Milky Way, Sgr A*. Image reconstruction using interferometric visibilities rests on the assumption of a stationary image. We explore the limitations of this assumption using high-cadence disk- and jet-dominated GRMHD simulations of Sgr A*. We also employ analytic models that capture the basic characteristics of the images to understand the origin of the variability in the simulated visibility amplitudes. We find that, in all simulations, the visibility amplitudes for baselines oriented parallel and perpendicular to the spin axis of the black hole follow general trends that do not depend strongly on accretion-flow properties. This suggests that fitting Event Horizon Telescope observations with simple geometric models may lead to a reasonably accurate determination of the orientation of the black hole on the plane of the sky. However, in the disk-dominated models, the locations and depths of the minima in the visibility amplitudes are highly variable and are not related simply to the size of the black hole shadow. This suggests that using time-independent models to infer additional black hole parameters, such as the shadow size or the spin magnitude, will be severely affected by the variability of the accretion flow.

  3. Development of the MAMA Detectors for the Hubble Space Telescope Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn

    1997-01-01

    The development of the Multi-Anode Microchannel Array (MAMA) detector systems started in the early 1970's in order to produce multi-element detector arrays for use in spectrographs for solar studies from the Skylab-B mission. Development of the MAMA detectors for spectrographs on the Hubble Space Telescope (HST) began in the late 1970's, and reached its culmination with the successful installation of the Space Telescope Imaging Spectrograph (STIS) on the second HST servicing mission (STS-82 launched 11 February 1997). Under NASA Contract NAS5-29389 from December 1986 through June 1994 we supported the development of the MAMA detectors for STIS, including complementary sounding rocket and ground-based research programs. This final report describes the results of the MAMA detector development program for STIS.

  4. Observation of a barium xenon exciplex within a large argon cluster.

    PubMed

    Briant, M; Gaveau, M-A; Mestdagh, J-M

    2010-07-21

    Spectroscopic measurements provide fluorescence and excitation spectra of a single barium atom codeposited with xenon atoms on argon clusters of average size approximately 2000. The spectra are studied as a function of the number of xenon atoms per cluster. The excitation spectrum with approximately 10 xenon atoms per cluster is qualitatively similar to that observed when no xenon atom is present on the cluster. It consists of two bands located on each side of the 6s6p (1)P-6s(2) (1)S resonance line of the free barium. In contrast, the fluorescence spectrum differs qualitatively since a barium-xenon exciplex is observed, which has no counterpart in xenon free clusters. In particular an emission is observed, which is redshifted by 729 cm(-1) with respect to the Ba(6s6p (1)P-6s(2) (1)S) resonance line.

  5. Adaptation of Dunn Solar Telescope for Jovian Doppler spectro imaging

    NASA Astrophysics Data System (ADS)

    Underwood, Thomas A.; Voelz, David; Schmider, François-Xavier; Jackiewicz, Jason; Dejonghe, Julien; Bresson, Yves; Hull, Robert; Goncalves, Ivan; Gualme, Patrick; Morand, Frédéric; Preis, Olivier

    2017-09-01

    This paper describes instrumentation used to adapt the Dunn Solar Telescope (DST) located on Sacramento Peak in Sunspot, NM for observations using the Doppler Spectro Imager (DSI). The DSI is based on a Mach-Zehnder interferometer and measures the Doppler shift of solar lines allowing for the study of atmospheric dynamics of giant planets and the detection of their acoustic oscillations. The instrumentation is being designed and built through a collaborative effort between a French team from the Observatoire de la Cote d'Azur (OCA) that designed the DSI and a US team at New Mexico State University (NMSU). There are four major components that couple the DSI to the DST: a guider/tracker, fast steering mirror (FSM), pupil stabilizer and transfer optics. The guider/tracker processes digital video to centroid-track the planet and outputs voltages to the DST's heliostat controls. The FSM removes wavefront tip/tilt components primarily due to turbulence and the pupil stabilizer removes any slow pupil "wander" introduced by the telescope's heliostat/turret arrangement. The light received at a science port of the DST is sent through the correction and stabilization components and into the DSI. The FSM and transfer optics designs are being provided by the OCA team and serve much the same functions as they do for other telescopes at which DSI observations have been conducted. The pupil stabilization and guider are new and are required to address characteristics of the DST.

  6. Equal-Curvature X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Zhang, William

    2002-01-01

    We introduce a new type of x-ray telescope design; an Equal-Curvature telescope. We simply add a second order axial sag to the base grazing incidence cone-cone telescope. The radius of curvature of the sag terms is the same on the primary surface and on the secondary surface. The design is optimized so that the on-axis image spot at the focal plane is minimized. The on-axis RMS (root mean square) spot diameter of two studied telescopes is less than 0.2 arc-seconds. The off-axis performance is comparable to equivalent Wolter type 1 telescopes.

  7. Hubble Space Telescope Imaging of Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Laine, Seppo; van der Marel, Roeland P.; Lauer, Tod R.; Postman, Marc; O'Dea, Christopher P.; Owen, Frazer N.

    2003-02-01

    We used the Hubble Space Telescope Wide Field Planetary Camera 2 to obtain I-band images of the centers of 81 brightest cluster galaxies (BCGs), drawn from a volume-limited sample of nearby BCGs. The images show a rich variety of morphological features, including multiple or double nuclei, dust, stellar disks, point-source nuclei, and central surface brightness depressions. High-resolution surface brightness profiles could be inferred for 60 galaxies. Of those, 88% have well-resolved cores. The relationship between core size and galaxy luminosity for BCGs is indistinguishable from that of Faber et al. (published in 1997, hereafter F97) for galaxies within the same luminosity range. However, the core sizes of the most luminous BCGs fall below the extrapolation of the F97 relationship rb~L1.15V. A shallower relationship, rb~L0.72V, fits both the BCGs and the core galaxies presented in F97. Twelve percent of the BCG sample lacks a well-resolved core; all but one of these BCGs have ``power law'' profiles. Some of these galaxies have higher luminosities than any power-law galaxy identified by F97 and have physical upper limits on rb well below the values observed for core galaxies of the same luminosity. These results support the idea that the central structure of early-type galaxies is bimodal in its physical properties but also suggest that there exist high-luminosity galaxies with power-law profiles (or unusually small cores). The BCGs in the latter category tend to fall at the low end of the BCG luminosity function and tend to have low values of the quantity α (the logarithmic slope of the metric luminosity as a function of radius, at 10 kpc). Since theoretical calculations have shown that the luminosities and α-values of BCGs grow with time as a result of accretion, this suggests a scenario in which elliptical galaxies evolve from power-law profiles to core profiles through accretion and merging. This is consistent with theoretical scenarios that invoke the

  8. New 50-M-Class Single Dish Telescope: Large Submillimeter Telescope (LST)

    NASA Astrophysics Data System (ADS)

    Kawabe, Ryohei

    2018-01-01

    We report on the plan to construct a 50 m class millimeter (mm) and sub-mm single dish telescope, the Large Submillimeter Telescope (LST). The telescope is optimized for wide-area imaging and spectroscopic surveys in the 70 to 420 GHz main frequency range, which just covers main atmospheric windows at millimeter and submillimeter wavelengths for good observing sites such as the ALMA site in Chile. We also target observations at higher frequencies of up to 1 THz, using an inner part high-precision surface. Active surface control is required in order to correct gravitational and thermal deformations of the surface. The LST will facilitate new discovery spaces such as wide-field imaging with both continuum and spectral lines, along with new developments for time domain science. With exploiting synergy with ALMA and other telescopes, LST can contribute to a wide range of topics in astronomy and astrophysics, e.g., astrochemistry, star formation in the Galaxy and galaxies, evolution of galaxy clusters via SZ effect. We also report the recent progress on the technical study, e.g., the tentative study of the surface error budget and challenges to correction for the wind-load effect.

  9. Numerical study on xenon positive column discharges of mercury-free lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Jiting; He, Feng; Miao, Jinsong

    2007-02-15

    In this paper, the numerical study has been performed on the xenon positive column discharges of mercury-free fluorescent lamp. The plasma discharge characteristics are analyzed by numerical simulation based on two-dimensional fluid model. The effects of cell geometry, such as the dielectric layer, the electrode width, the electrode gap, and the cell height, and the filling gas including the pressure and the xenon percentage are investigated in terms of discharge current and discharge efficiency. The results show that a long transient positive column will form in the xenon lamp when applying ac sinusoidal power and the lamp can operate inmore » a large range of voltage and frequency. The front dielectric layer of the cell plays an important role in the xenon lamp while the back layer has little effect. The ratio of electrode gap to cell height should be large to achieve a long positive column xenon lamp and higher efficiency. Increase of pressure or xenon concentration results in an increase of discharge efficiency and voltage. The discussions will be helpful for the design of commercial xenon lamp cells.« less

  10. Image processing improvement for optical observations of space debris with the TAROT telescopes

    NASA Astrophysics Data System (ADS)

    Thiebaut, C.; Theron, S.; Richard, P.; Blanchet, G.; Klotz, A.; Boër, M.

    2016-07-01

    CNES is involved in the Inter-Agency Space Debris Coordination Committee (IADC) and is observing space debris with two robotic ground based fully automated telescopes called TAROT and operated by the CNRS. An image processing algorithm devoted to debris detection in geostationary orbit is implemented in the standard pipeline. Nevertheless, this algorithm is unable to deal with debris tracking mode images, this mode being the preferred one for debris detectability. We present an algorithm improvement for this mode and give results in terms of false detection rate.

  11. Laser-polarized xenon-129 magnetic resonance spectroscopy and imaging. The development of a method for in vivo perfusion measurement

    NASA Astrophysics Data System (ADS)

    Rosen, Matthew Scot

    2001-07-01

    This thesis presents in vivo nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) studies with laser-polarized 129Xe delivered to living rats by inhalation and transported to tissue via blood flow. The results presented herein include the observation, assignment, and dynamic measurement of 129Xe resonances in the brain and body, the first one- and two-dimensional chemical-shift-resolved images of 129Xe in blood, tissue, and gas in the thorax, and the first images of 129Xe in brain tissue. These results establish that laser-polarized 129Xe can be used as a magnetic resonance tracer in vivo. NMR resonances at 0, 191, 198, and 209 ppm relative to the 129 Xe gas resonance are observed in the rat thorax and assigned to 129Xe in gas, fat, tissue, and blood respectively. Resonances at 189, 192, 195, 198, and 209 ppm are observed in the brain, and the 195 and 209 ppm resonances are assigned to 129Xe in grey matter, and blood, respectively. The design and construction of a laser-polarized 129Xe production and delivery system is described. This system produces liter-volumes of laser- polarized 129Xe by spin-exchange optical- pumping. It represented an order of magnitude increase over previously reported production volumes of polarized 129Xe. At approximately 3-7% polarization, 157 cc-atm of xenon is produced and stored as ice every 5 minutes. This reliable, effective, and simple production method for large volumes of 129Xe can be applied to other areas of research involving the use of laser-polarized noble gases. A model of the in vivo transport of laser polarized 129Xe to tissue under realistic experimental NMR conditions is described. Appropriate control of the NMR parameters is shown to allow tissue perfasion and 129Xe tissue T1 to be extracted from measurement of the steady-state 129Xe tissue signal. In vivo rodent 129Xe NMR results are used to estimate the signal-to-noise ratio of this technique, and an inhaled 30% xenon/70% O2 mixture polarized to 5

  12. The noble gas xenon provides protection and trophic stimulation to midbrain dopamine neurons.

    PubMed

    Lavaur, Jérémie; Le Nogue, Déborah; Lemaire, Marc; Pype, Jan; Farjot, Géraldine; Hirsch, Etienne C; Michel, Patrick P

    2017-07-01

    Despite its low chemical reactivity, the noble gas xenon possesses a remarkable spectrum of biological effects. In particular, xenon is a strong neuroprotectant in preclinical models of hypoxic-ischemic brain injury. In this study, we wished to determine whether xenon retained its neuroprotective potential in experimental settings that model the progressive loss of midbrain dopamine (DA) neurons in Parkinson's disease. Using rat midbrain cultures, we established that xenon was partially protective for DA neurons through either direct or indirect effects on these neurons. So, when DA neurons were exposed to l-trans-pyrrolidine-2,4-dicarboxylic acid so as to increase ambient glutamate levels and generate slow and sustained excitotoxicity, the effect of xenon on DA neurons was direct. The vitamin E analog Trolox also partially rescued DA neurons in this setting and enhanced neuroprotection by xenon. However, in the situation where DA cell death was spontaneous, the protection of DA neurons by xenon appeared indirect as it occurred through the repression of a mechanism mediated by proliferating glial cells, presumably astrocytes and their precursor cells. Xenon also exerted trophic effects for DA neurons in this paradigm. The effects of xenon were mimicked and improved by the N-methyl-d-aspartate glutamate receptor antagonist memantine and xenon itself appeared to work by antagonizing N-methyl-d-aspartate receptors. Note that another noble gas argon could not reproduce xenon effects. Overall, present data indicate that xenon can provide protection and trophic support to DA neurons that are vulnerable in Parkinson's disease. This suggests that xenon might have some therapeutic value for this disorder. © 2017 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  13. Evaluation of carrier agents for hyperpolarized xenon MRI

    NASA Technical Reports Server (NTRS)

    Venkatesh, A. K.; Zhao, L.; Balamore, D.; Jolesz, F. A.; Albert, M. S.

    2000-01-01

    Several biocompatible carrier agents, in which xenon is highly soluble and has a long T(1), were tested, and injected in living rats. These included saline, Intralipid suspension, perfluorocarbon emulsion and (129)Xe gas-filled liposomes. The T(1) of (129)Xe in these compounds ranged from 47 to 116 s. Vascular injection of these carrier agents was tolerated well, encouraging their use for further experiments in live animals. In vivo spectra, obtained from gas-filled liposomes and perfluorocarbon solutions, suggest that these carrier agents have potential for use in angiography and perfusion imaging. Copyright 2000 John Wiley & Sons, Ltd.

  14. Isolation and Purification of the Xenon Fraction of 252Cf Spontaneous Fission Products for the Production of Radio Xenon Calibration Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrath, Christopher A.

    2015-04-01

    The presence of radioactive xenon isotopes indicates that fission events have occurred, and is used to help enforce the Comprehensive Test Ban Treaty. Idaho National Laboratory (INL) produces 135Xe, 133mXe, 133Xe, and 131mXe standards used for the calibration and testing of collection equipment and analytical techniques used to monitor radio xenon emissions. At INL, xenon is produced and collected as one of several spontaneous fission products from a 252Cf source. Further chromatographic purification of the fission gases ensures the separations of the xenon fraction for selective collection. An explanation of the fission gas collection, separation and purification is presented. Additionally,more » the range of 135Xe to 133Xe ratio that can be isolated is explained. This is an operational update on the work introduced previously, now that it is in operation and has been recharged with a second 252Cf source.« less

  15. Hubble Space Telescope,Spitzer Space Telescope

    NASA Image and Video Library

    2018-01-11

    This image showcases both the visible and infrared visualizations of the Orion Nebula. This view from a movie sequence looks down the 'valley' leading to the star cluster at the far end. The left side of the image shows the visible-light visualization, which fades to the infrared-light visualization on the right. These two contrasting models derive from observations by the Hubble and Spitzer space telescopes. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22089

  16. The Preflight Photometric Calibration of the Extreme-Ultraviolet Imaging Telescope EIT

    NASA Technical Reports Server (NTRS)

    Dere, K. P.; Moses, J. D.; Delaboudiniere, J. -P.; Brunaud, J.; Carabetian, C.; Hochedez, J. -F.; Song, X. Y.; Catura, R. C.; Clette, F.; Defise, J. -M.

    2000-01-01

    This paper presents the preflight photometric calibration of the Extreme-ultraviolet Imaging Telescope (EIT) aboard the Solar and Heliospheric Observatory (SOHO). The EIT consists of a Ritchey-Chretien telescope with multilayer coatings applied to four quadrants of the primary and secondary mirrors, several filters and a backside-thinned CCD detector. The quadrants of the EIT optics were used to observe the Sun in 4 wavelength bands that peak near 171, 195, 284, and 304 . Before the launch of SOHO, the EIT mirror reflectivities, the filter transmissivities and the CCD quantum efficiency were measured and these values are described here. The instrumental throughput in terms of an effective area is presented for each of the various mirror quadrant and filter wheel combinations. The response to a coronal plasma as a function of temperature is also determined and the expected count rates are compared to the count rates observed in a coronal hole, the quiet Sun and an active region.

  17. [Intracranial and cerebral perfusion pressure in neurosurgical patients during anaesthesia with xenon].

    PubMed

    Rylova, A V; Gavrilov, A G; Lubnin, A Iu; Potapov, A A

    2014-01-01

    Despite difficulties in providing xenon anaesthesia, xenon still seems to be attractive for neurosurgical procedures. But data upon its effect on intracranial (ICP) and cerebral perfusion pressure (CPP) remains controversial. We monitored ICP and CPP in patients with or without intracranial hypertension during xenon inhalation in different concentrations. Our results suggest that caution should be used while inhaling xenon in high anaesthetic concentration in patients wiith known intracranial hypertension. We also address new possibilities of xenon use, e.g., for sedation in neurosurgery. The study was supported by Russian Fund for Fundamental Research, grant number 13-04-01640.

  18. Morphology classification of galaxies in CL 0939+4713 using a ground-based telescope image

    NASA Technical Reports Server (NTRS)

    Fukugita, M.; Doi, M.; Dressler, A.; Gunn, J. E.

    1995-01-01

    Morphological classification is studied for galaxies in cluster CL 0939+4712 at z = 0.407 using simple photometric parameters obtained from a ground-based telescope image with seeing of 1-2 arcseconds full width at half maximim (FWHM). By ploting the galaxies in a plane of the concentration parameter versus mean surface brightness, we find a good correlation between the location on the plane and galaxy colors, which are known to correlate with morphological types from a recent Hubble Space Telescope (HST) study. Using the present method, we expect a success rate of classification into early and late types of about 70% or possibly more.

  19. Operating performance of the gamma-ray Cherenkov telescope: An end-to-end Schwarzschild-Couder telescope prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dournaux, J. L.; De Franco, A.; Laporte, P.; White, R.; Greenshaw, T.; Sol, H.; Abchiche, A.; Allan, D.; Amans, J. P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J. J.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M.; De Frondat, F.; Dumas, D.; Ernenwein, J. P.; Fasola, G.; Funk, S.; Gaudemard, J.; Graham, J. A.; Gironnet, J.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J. M.; Jégouzo, I.; Jogler, T.; Kawashima, T.; Kraus, M.; Lapington, J. S.; Lefaucheur, J.; Markoff, S.; Melse, T.; Morhrmann, L.; Molnyeux, P.; Nolan, S. J.; Okumura, A.; Parsons, R. D.; Ross, D.; Rowell, G.; Sato, Y.; Sayède, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Vink, J.; Watson, J.; Yamane, N.; Zech, A.; Zink, A.; CTA Consortium

    2017-02-01

    The Cherenkov Telescope Array (CTA) consortium aims to build the next-generation ground-based very-high-energy gamma-ray observatory. The array will feature different sizes of telescopes allowing it to cover a wide gamma-ray energy band from about 20 GeV to above 100 TeV. The highest energies, above 5 TeV, will be covered by a large number of Small-Sized Telescopes (SSTs) with a field-of-view of around 9°. The Gamma-ray Cherenkov Telescope (GCT), based on Schwarzschild-Couder dual-mirror optics, is one of the three proposed SST designs. The GCT is described in this contribution and the first images of Cherenkov showers obtained using the telescope and its camera are presented. These were obtained in November 2015 in Meudon,

  20. A New Test Method of Circuit Breaker Spring Telescopic Characteristics Based Image Processing

    NASA Astrophysics Data System (ADS)

    Huang, Huimin; Wang, Feifeng; Lu, Yufeng; Xia, Xiaofei; Su, Yi

    2018-06-01

    This paper applied computer vision technology to the fatigue condition monitoring of springs, and a new telescopic characteristics test method is proposed for circuit breaker operating mechanism spring based on image processing technology. High-speed camera is utilized to capture spring movement image sequences when high voltage circuit breaker operated. Then the image-matching method is used to obtain the deformation-time curve and speed-time curve, and the spring expansion and deformation parameters are extracted from it, which will lay a foundation for subsequent spring force analysis and matching state evaluation. After performing simulation tests at the experimental site, this image analyzing method could solve the complex problems of traditional mechanical sensor installation and monitoring online, status assessment of the circuit breaker spring.

  1. Signal yields, energy resolution, and recombination fluctuations in liquid xenon

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2017-01-01

    This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon recombination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2 and 16 keV with 3H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data.

  2. Stray light characteristics of the diffractive telescope system

    NASA Astrophysics Data System (ADS)

    Liu, Dun; Wang, Lihua; Yang, Wei; Wu, Shibin; Fan, Bin; Wu, Fan

    2018-02-01

    Diffractive telescope technology is an innovation solution in construction of large light-weight space telescope. However, the nondesign orders of diffractive optical elements (DOEs) may affect the imaging performance as stray light. To study the stray light characteristics of a diffractive telescope, a prototype was developed and its stray light analysis model was established. The stray light characteristics including ghost, point source transmittance, and veiling glare index (VGI) were analyzed. During the star imaging test of the prototype, the ghost images appeared around the star image as the exposure time of the charge-coupled device improving, consistent with the simulation results. The test result of VGI was 67.11%, slightly higher than the calculated value 57.88%. The study shows that the same order diffraction of the diffractive primary lens and correcting DOE is the main factor that causes ghost images. The stray light sources outside the field of view can illuminate the image plane through nondesign orders diffraction of the primary lens and contributes to more than 90% of the stray light flux on the image plane. In summary, it is expected that these works will provide some guidance for optimizing the imaging performance of diffractive telescopes.

  3. Computer-Aided Classification of Visual Ventilation Patterns in Patients with Chronic Obstructive Pulmonary Disease at Two-Phase Xenon-Enhanced CT

    PubMed Central

    Yoon, Soon Ho; Jung, Julip; Hong, Helen; Park, Eun Ah; Lee, Chang Hyun; Lee, Youkyung; Jin, Kwang Nam; Choo, Ji Yung; Lee, Nyoung Keun

    2014-01-01

    Objective To evaluate the technical feasibility, performance, and interobserver agreement of a computer-aided classification (CAC) system for regional ventilation at two-phase xenon-enhanced CT in patients with chronic obstructive pulmonary disease (COPD). Materials and Methods Thirty-eight patients with COPD underwent two-phase xenon ventilation CT with resulting wash-in (WI) and wash-out (WO) xenon images. The regional ventilation in structural abnormalities was visually categorized into four patterns by consensus of two experienced radiologists who compared the xenon attenuation of structural abnormalities with that of adjacent normal parenchyma in the WI and WO images, and it served as the reference. Two series of image datasets of structural abnormalities were randomly extracted for optimization and validation. The proportion of agreement on a per-lesion basis and receiver operating characteristics on a per-pixel basis between CAC and reference were analyzed for optimization. Thereafter, six readers independently categorized the regional ventilation in structural abnormalities in the validation set without and with a CAC map. Interobserver agreement was also compared between assessments without and with CAC maps using multirater κ statistics. Results Computer-aided classification maps were successfully generated in 31 patients (81.5%). The proportion of agreement and the average area under the curve of optimized CAC maps were 94% (75/80) and 0.994, respectively. Multirater κ value was improved from moderate (κ = 0.59; 95% confidence interval [CI], 0.56-0.62) at the initial assessment to excellent (κ = 0.82; 95% CI, 0.79-0.85) with the CAC map. Conclusion Our proposed CAC system demonstrated the potential for regional ventilation pattern analysis and enhanced interobserver agreement on visual classification of regional ventilation. PMID:24843245

  4. Computer-aided classification of visual ventilation patterns in patients with chronic obstructive pulmonary disease at two-phase xenon-enhanced CT.

    PubMed

    Yoon, Soon Ho; Goo, Jin Mo; Jung, Julip; Hong, Helen; Park, Eun Ah; Lee, Chang Hyun; Lee, Youkyung; Jin, Kwang Nam; Choo, Ji Yung; Lee, Nyoung Keun

    2014-01-01

    To evaluate the technical feasibility, performance, and interobserver agreement of a computer-aided classification (CAC) system for regional ventilation at two-phase xenon-enhanced CT in patients with chronic obstructive pulmonary disease (COPD). Thirty-eight patients with COPD underwent two-phase xenon ventilation CT with resulting wash-in (WI) and wash-out (WO) xenon images. The regional ventilation in structural abnormalities was visually categorized into four patterns by consensus of two experienced radiologists who compared the xenon attenuation of structural abnormalities with that of adjacent normal parenchyma in the WI and WO images, and it served as the reference. Two series of image datasets of structural abnormalities were randomly extracted for optimization and validation. The proportion of agreement on a per-lesion basis and receiver operating characteristics on a per-pixel basis between CAC and reference were analyzed for optimization. Thereafter, six readers independently categorized the regional ventilation in structural abnormalities in the validation set without and with a CAC map. Interobserver agreement was also compared between assessments without and with CAC maps using multirater κ statistics. Computer-aided classification maps were successfully generated in 31 patients (81.5%). The proportion of agreement and the average area under the curve of optimized CAC maps were 94% (75/80) and 0.994, respectively. Multirater κ value was improved from moderate (κ = 0.59; 95% confidence interval [CI], 0.56-0.62) at the initial assessment to excellent (κ = 0.82; 95% CI, 0.79-0.85) with the CAC map. Our proposed CAC system demonstrated the potential for regional ventilation pattern analysis and enhanced interobserver agreement on visual classification of regional ventilation.

  5. Abatement of Xenon and Iodine Emissions from Medical Isotope Production Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Charles G.; Sorensen, Christina M.; Bowyer, Ted W.

    2014-04-01

    The capability of the International Monitoring System (IMS) to detect xenon from underground nuclear explosions is dependent on the radioactive xenon background. Adding to the background, medical isotope production (MIP) by fission releases several important xenon isotopes including xenon-133 and iodine-133 that decays to xenon-133. The amount of xenon released from these facilities may be equivalent to or exceed that released from an underground nuclear explosion. Thus the release of gaseous fission products within days of irradiation makes it difficult to distinguish MIP emissions from a nuclear explosion. In addition, recent shortages in molybdenum-99 have created interest and investment opportunitiesmore » to design and build new MIP facilities in the United States and throughout the world. Due to the potential increase in the number of MIP facilities, a discussion of abatement technologies provides insight into how the problem of emission control from MIP facilities can be tackled. A review of practices is provided to delineate methods useful for abatement of medical isotopes.« less

  6. The Hubble Space Telescope: Problems and Solutions.

    ERIC Educational Resources Information Center

    Villard, Ray

    1990-01-01

    Presented is the best understanding of the flaw discovered in the optics of the Hubble Space Telescope and the possible solutions to the problems. The spherical aberration in the telescope's mirror and its effect on the quality of the telescope's imaging ability is discussed. (CW)

  7. GNAT: A Global Network of Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Crawford, David L.

    1995-12-01

    Astronomical resources are increasingly directed toward development of very large telescopes, and many facilities are compelled to cease operations of smaller telescopes. A real concern is emerging with respect to issues of access to astronomical imaging systems for the majority of astronomers who will have little or no opportunity to work with the larger telescopes. Further concern is developing with regard to the means for conducting observationally intensive fundamental astronomical imaging programs, such as surveys, monitoring, and standards calibration. One attractive potential solution is a global network of (automated) astronomical telescopes (GNAT). Initial steps have been taken to turn this network into a reality. GNAT has been incorporated as a nonprofit corporation, membership drives have begun and several institutions have joined. The first two open GNAT meetings have now been held to define hardware and software systems, and an order has been placed for the first of the GNAT automated telescopes. In this presentation we discuss the goals and status of GNAT and its implications for astronomical imaging.

  8. First Images from HERO: A Hard-X-Ray Focusing Telescope

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Benson, Carl M.; Dietz, Kurtis L.; Elsner, Ronald F.; Engelhaupt, Darell E.; Ghosh, Kajal K.; Kolodziejczak, Jeffery J.; ODell, Stephen L.; hide

    2001-01-01

    We are developing a balloon-borne hard-x-ray telescope that utilizes grazing incidence optics. Termed HERO, for High-Energy Replicated Optics, the instrument will provide unprecented sensitivity in the hard-x-ray region and will achieve milliCrab-level sensitivity in a typical 3-hour balloon-flight observation and 50 microCrab sensitivity on ultra-long-duration flights. A recent proof-of-concept flight, featuring a small number of mirror shells captured the first focused hard-x-ray images of galactic x-ray sources. Full details of the payload, its expected future performance and its recent measurements are provided.

  9. Super-resolution optical telescopes with local light diffraction shrinkage

    PubMed Central

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  10. Xenon International Automated Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-08-05

    The Xenon International Automated Control software monitors, displays status, and allows for manual operator control as well as fully automatic control of multiple commercial and PNNL designed hardware components to generate and transmit atmospheric radioxenon concentration measurements every six hours.

  11. Terrestrial and Martian weathering signatures of xenon components in shergottite mineral separates

    NASA Astrophysics Data System (ADS)

    Cartwright, J. A.; Ocker, K. D.; Crowther, S. A.; Burgess, R.; Gilmour, J. D.

    2010-08-01

    Xenon-isotopic ratios, step-heating release patterns, and gas concentrations of mineral separates from Martian shergottites Roberts Massif (RBT) 04262, Dar al Gani (DaG) 489, Shergotty, and Elephant Moraine (EET) 79001 lithology B are reported. Concentrations of Martian atmospheric xenon are similar in mineral separates from all meteorites, but more weathered samples contain more terrestrial atmospheric xenon. The distributions of xenon from the Martian and terrestrial atmospheres among minerals in any one sample are similar, suggesting similarities in the processes by which they were acquired. However, in opaque and maskelynite fractions, Martian atmospheric xenon is released at higher temperatures than terrestrial atmospheric xenon. It is suggested that both Martian and terrestrial atmospheric xenon were initially introduced by weathering (low temperature alteration processes). However, the Martian component was redistributed by shock, accounting for its current residence in more retentive sites. The presence or absence of detectable 129Xe from the Martian atmosphere in mafic minerals may correspond to the extent of crustal contamination of the rock's parent melt. Variable contents of excess 129Xe contrast with previously reported consistent concentrations of excess 40Ar, suggesting distinct sources contributed these gases to the parent magma.

  12. Signal yields, energy resolution, and recombination fluctuations in liquid xenon

    DOE PAGES

    Akerib, D. ?S.; Alsum, S.; Ara?jo, H. ?M.; ...

    2017-01-19

    This study presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon recombination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronicmore » recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2 and 16 keV with 3H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data.« less

  13. How to Directly Image a Habitable Planet Around Alpha Centauri with a 30-45 cm Space Telescope

    NASA Technical Reports Server (NTRS)

    Belikov, Ruslan; Bendek, Eduardo; Thomas, Sandrine; Males, Jared

    2015-01-01

    Several mission concepts are being studied to directly image planets around nearby stars. It is commonly thought that directly imaging a potentially habitable exoplanet around a Sun-like star requires space telescopes with apertures of at least 1m. A notable exception to this is Alpha Centauri (A and B), which is an extreme outlier among FGKM stars in terms of apparent habitable zone size: the habitable zones are approximately 3x wider in apparent size than around any other FGKM star. This enables a approximately 30-45cm visible light space telescope equipped with a modern high performance coronagraph or star shade to resolve the habitable zone at high contrast and directly image any potentially habitable planet that may exist in the system. The raw contrast requirements for such an instrument can be relaxed to 1e-8 if the mission spends 2 years collecting tens of thousands of images on the same target, enabling a factor of 500-1000 speckle suppression in post processing using a new technique called Orbital Difference Imaging (ODI). The raw light leak from both stars is controllable with a special wave front control algorithm known as Multi-Star Wave front Control (MSWC), which independently suppresses diffraction and aberrations from both stars using independent modes on the deformable mirror. This paper will present an analysis of the challenges involved with direct imaging of Alpha Centauri with a small telescope and how the above technologies are used together to solve them. We also show an example of a small coronagraphic mission concepts to take advantage of this opportunity called "ACESat: Alpha Centauri Exoplanet Satellite" submitted to NASA's small Explorer (SMEX) program in December of 2014.

  14. Xenon in the treatment of panic disorder: an open label study.

    PubMed

    Dobrovolsky, Alexander; Ichim, Thomas E; Ma, Daqing; Kesari, Santosh; Bogin, Vladimir

    2017-06-13

    Current treatments of panic disorder (PD) are limited by adverse effects, poor efficacy, and need for chronic administration. The established safety profile of subanesthetic concentrations of xenon gas, which is known to act as a glutamate subtype NMDA receptor antagonist, coupled with preclinical studies demonstrating its effects in other anxiety related conditions, prompted us to evaluate its feasibility and efficacy in treatment of patients with PD. An open-label clinical trial of xenon-oxygen mixture was conducted in 81 patients with PD; group 1 consisting of patients only with PD (N = 42); and group 2 patients with PD and other comorbidities (N = 39). Based on the analysis of the results of a number of psychometric scales used in this study (SAS, HADS, CGI), several conclusions can be made: (1) xenon is a potentially effective modality in acute treatment of PD; (2) an anti-panic effect of xenon administration persists for at least 6 months after the completion of the active phase of treatment; (3) xenon inhalation is well tolerated, with the drop-out rates being much lower than that of conventional pharmacotherapy (5.8% vs. 15%); (4) the severity of depressive disorders that frequently accompany PD can be significantly reduced with the use of xenon; (5) xenon may be considered as an alternative to benzodiazepines in conjunction with cognitive-behavioral therapy as a safe modality in treatment of anxiety disorder. These data support the need for randomized double-blind clinical trials to further study xenon-based interventions. Trial registration This clinical trial was retrospectively registered on April 14th, 2017 as ISRCTN15184285 in the ISRCTN database.

  15. TU-A-12A-02: Novel Lung Ventilation Imaging with Single Energy CT After Single Inhalation of Xenon: Comparison with SPECT Ventilation Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negahdar, M; Yamamoto, T; Shultz, D

    Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patientsmore » treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding.« less

  16. Density Functional Theory (DFT) Simulations of Shocked Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Magyar, Rudolph J.

    2009-06-01

    Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, Xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as Xenon is known to form compounds at normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. In this talk, we present DFT-MD simulations of shocked liquid Xenon with the goal of developing an improved equation of state. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. NWA 8114: Analysis of Xenon in this Unique Martian Meteorite

    NASA Astrophysics Data System (ADS)

    Crowther, S. A.; Jastrzebski, N. D.; Nottingham, M.; Theis, K. J.; Gilmour, J. D.

    2014-09-01

    The Xe composition of NWA 8114 is dominated by martian atmospheric xenon, with contributions from terrestrial atmospheric contamination at low temperature and fissiogenic xenon at high temperature. The overall systematics are similar to Nakhla.

  18. PROMPT: Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes

    NASA Astrophysics Data System (ADS)

    Reichart, D.; Nysewander, M.; Moran, J.; Bartelme, J.; Bayliss, M.; Foster, A.; Clemens, J. C.; Price, P.; Evans, C.; Salmonson, J.; Trammell, S.; Carney, B.; Keohane, J.; Gotwals, R.

    2005-07-01

    Funded by .2M in grants and donations, we are now building PROMPT at CTIO. When completed in late 2005, PROMPT will consist of six 0.41-meter diameter Ritchey-Chrétien telescopes on rapidly slewing mounts that respond to GRB alerts within seconds, when the afterglow is potentially extremely bright. Each mirror and camera coating is being optimized for a different wavelength range and function, including a NIR imager, two red-optimized imagers, a blue-optimized imager, an UV-optimized imager, and an optical polarimeter. PROMPT will be able to identify high-redshift events by dropout and distinguish these events from the similar signatures of extinction. In this way, PROMPT will act as a distance-finder scope for spectroscopic follow up on the larger 4.1-meter diameter SOAR telescope, which is also located at CTIO. When not chasing GRBs, PROMPT serves broader educational objectives across the state of North Carolina. Enclosure construction and the first two telescopes are now complete and functioning: PROMPT observed Swift's first GRB in December 2004. We upgrade from two to four telescope in February 2005 and from four to six telescopes in mid-2005.

  19. Fast-neutron and gamma-ray imaging with a capillary liquid xenon converter coupled to a gaseous photomultiplier

    NASA Astrophysics Data System (ADS)

    Israelashvili, I.; Coimbra, A. E. C.; Vartsky, D.; Arazi, L.; Shchemelinin, S.; Caspi, E. N.; Breskin, A.

    2017-09-01

    Gamma-ray and fast-neutron imaging was performed with a novel liquid xenon (LXe) scintillation detector read out by a Gaseous Photomultiplier (GPM). The 100 mm diameter detector prototype comprised a capillary-filled LXe converter/scintillator, coupled to a triple-THGEM imaging-GPM, with its first electrode coated by a CsI UV-photocathode, operated in Ne/5%CH4 at cryogenic temperatures. Radiation localization in 2D was derived from scintillation-induced photoelectron avalanches, measured on the GPM's segmented anode. The localization properties of 60Co gamma-rays and a mixed fast-neutron/gamma-ray field from an AmBe neutron source were derived from irradiation of a Pb edge absorber. Spatial resolutions of 12± 2 mm and 10± 2 mm (FWHM) were reached with 60Co and AmBe sources, respectively. The experimental results are in good agreement with GEANT4 simulations. The calculated ultimate expected resolutions for our application-relevant 4.4 and 15.1 MeV gamma-rays and 1-15 MeV neutrons are 2-4 mm and ~ 2 mm (FWHM), respectively. These results indicate the potential applicability of the new detector concept to Fast-Neutron Resonance Radiography (FNRR) and Dual-Discrete-Energy Gamma Radiography (DDEGR) of large objects.

  20. A Decade of Xenon Chemistry

    ERIC Educational Resources Information Center

    Moody, G. J.

    1974-01-01

    Presents reactions for the formation of xenon compounds and compounds of the other inert gases. Provides bonding and structure theories for noble gas compounds and speculates on possible applications. (GS)

  1. Low Frequency Flats for Imaging Cameras on the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Kossakowski, Diana; Avila, Roberto J.; Borncamp, David; Grogin, Norman A.

    2017-01-01

    We created a revamped Low Frequency Flat (L-Flat) algorithm for the Hubble Space Telescope (HST) and all of its imaging cameras. The current program that makes these calibration files does not compile on modern computer systems and it requires translation to Python. We took the opportunity to explore various methods that reduce the scatter of photometric observations using chi-squared optimizers along with Markov Chain Monte Carlo (MCMC). We created simulations to validate the algorithms and then worked with the UV photometry of the globular cluster NGC6681 to update the calibration files for the Advanced Camera for Surveys (ACS) and Solar Blind Channel (SBC). The new software was made for general usage and therefore can be applied to any of the current imaging cameras on HST.

  2. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction a nd ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror. Keywords: precision deployment, hinge joint, latch joint, deployable structures, fabrication, space telescopes, optical instruments, microdynamics.

  3. GraXe, graphene and xenon for neutrinoless double beta decay searches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Monrabal, F.

    2012-02-01

    We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in {sup 136}XE. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, graphene. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the {sup 136}XE isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to themore » xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope {sup 136}XE is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.« less

  4. SOAR Telescope Progress Report

    NASA Astrophysics Data System (ADS)

    Sebring, T.; Cecil, G.; Krabbendam, V.

    1999-12-01

    The 4.3m SOAR telescope is fully funded and under construction. A partnership between the country of Brazil, NOAO, Michigan State University, and the University of North Carolina at Chapel Hill, SOAR is being designed for high-quality imaging and imaging spectroscopy in the optical and near-IR over a field of view up to 12' diameter. US astronomers outside MSU and UNC will access 30% of the observing time through the standard NOAO TAC process. The telescope is being designed to support remote and synoptic observations. First light is scheduled for July 2002 at Cerro Pachon in Chile, a site with median seeing of 2/3" at 500 nm. The telescope will be operated by CTIO. Corning Inc. has fused the mirror blanks from boules of ULE glass. RSI in Richardson, Texas and Raytheon Optical Systems Inc. in Danbury, Conn. are designing and will fabricate the mount and active optics systems, respectively. The mount supports an instrument payload in excess of 5000 kg, at 2 Nasmyth locations and 3 bent Cass. ports. The mount and facility building have space for a laser to generate an artificial AO guide star. LabVIEW running under the Linux OS on compactPCI hardware has been adopted to control all telescope, detector, and instrument systems. The primary mirror is 10 cm thick and will be mounted on 120 electro-mechanical actuators to maintain its ideal optical figure at all elevations. The position of the light-weighted secondary mirror is adjusted to maintain collimation through use of a Shack-Hartmann wavefront sensor. The tertiary mirror feeds instruments and also jitters at up to 50 Hz to compensate for telescope shake and atmosphere wavefront tilt. The dome is a steel framework, with fiberglass panels. Air in the observing volume will be exchanged with that outside every few minutes by using large fans under computer control. All systems will be assembled and checked at the manufacturer's facility, then shipped to Chile. A short integration period is planned, and limited science

  5. The Mid-Infrared Imager/Spectrometer/Coronagraph Instrument (MISC) for the Origins Space Telescope

    NASA Astrophysics Data System (ADS)

    Roellig, Thomas; Sakon, Itsuki; Ennico, Kimberly; MISC Instrument Study Team, Origins Space Telescope Study Team

    2018-01-01

    The Origins Space Telescope (OST) is one of four potential flagship missions that have been funded by NASA for study for consideration in the upcoming Astrophysics Decadal Review expected in 2020. The OST telescope will be up to 9.3 meters in diameter, cooled to ~4K, and the mission will be optimized for efficient mid and far-infrared astronomical observations. An initial suite of five focal plane instruments are being baselined for this observatory. The Mid-infrared Imager Spectrometer Coronagraph (MISC) instrument will observe at the shortest wavelengths of any of these instruments, ranging from 5 to 38 microns, and consists of three separate optical modules providing imaging, spectroscopy, and coronagraph capabilities. The imaging camera covers a 3 arcmin x 3 arcmin field with filters and grisms from 6-38 microns. The spectrometers have spectral resolving powers R~1,000 from 9-38 microns (with a goal of 5-38 microns) and R~25,000 for 12-18 and 25-36 microns. The coronagraph covers 6-38 microns. There is a special densified pupil spectrometer channel that provides R~100-300 exoplanet transit and emission spectroscopy from 6-26 microns with very high spectro-photometric stability. As the shortest wavelength focal plane imager the MISC instrument will also be used for focal plane guiding as needed for the other OST science instruments. The science that MISC enables on OST includes: studying episodic accretion in protostellar envelopes, tracing the rise in metallacity and dust over cosmic time (when combined with far-infrared measurements), measuring dust in galactic outflows, assessing feedback from supernovae and AGN on the multi-phase ISM in galaxies, characterizing the AGN and starburst power in normal and massive galaxies, detecting exoplanet atmospheric biosignatures, and direct imaging of Jovian planets orbiting older stars at separations of 5-20 AU.

  6. An experimental assessment of the imaging quality of the low energy gamma-ray telescope ZEBRA

    NASA Technical Reports Server (NTRS)

    Butler, R. C.; Caroli, E.; Dicocco, G.; Natalucci, L.; Spada, G.; Spizzichino, A.; Stephen, J. B.; Carter, J. N.; Charalambous, P. M.; Dean, A. J.

    1985-01-01

    One gamma-ray detection plane of the ZEBRA telescope, consisting of nine position sensitive scintillation crystal bars designed to operate over the spectral range 0.2 to 10 MeV, has been constructed in the laboratory. A series of experimental images has been generated using a scaled down flight pattern mask in conjunction with a diverging gamma-ray beam. Point and extended sources have been imaged in order to assess quantitatively the performance of the system.

  7. Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.

    PubMed

    Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z

    2014-08-14

    The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found. Copyright © 2014. Published by Elsevier B.V.

  8. James Webb Space Telescope: Large Deployable Cryogenic Telescope in Space

    NASA Technical Reports Server (NTRS)

    Lightsey, Paul A.; Atkinson, Charles; Clampin, Mark; Feinberg, Lee D.

    2012-01-01

    The James Webb Space Telescope (JWST) is an infrared space telescope designed to explore four major science themes: first light and reionization, the assembly of galaxies, the birth of stars and protoplanetary systems, and planetary systems and origins of life. JWST is a segmented architecture telescope with an aperture of 6.6 m. It will operate at cryogenic temperature (40 K), achieved via passive cooling, in an orbit about the Earth-Sun second Lagrange point (L2). Passive cooling is facilitated by means of a large sunshield that provides thermal isolation and protection from direct illumination from the Sun. The large size of the telescope and spacecraft systems require that they are stowed for launch in a configuration that fits the Ariane 5 fairing, and then deployed after launch. Routine wavefront sensing and control measurements are used to achieve phasing of the segmented primary mirror and initial alignment of the telescope. A suite of instruments will provide the capability to observe over a spectral range from 0.6- to 27-micron wavelengths with imaging and spectroscopic configurations. An overview is presented of the architecture and selected optical design features of JWST are described

  9. Reflectance of polytetrafluoroethylene for xenon scintillation light

    NASA Astrophysics Data System (ADS)

    Silva, C.; Pinto da Cunha, J.; Pereira, A.; Chepel, V.; Lopes, M. I.; Solovov, V.; Neves, F.

    2010-03-01

    Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet (VUV) wavelength region (λ ≃175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work, we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived, and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Other fluoropolymers, namely, ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), and perfluoro-alkoxyalkane (PFA) were also measured.

  10. Impact of Hyperpolarization-activated, Cyclic Nucleotide-gated Cation Channel Type 2 for the Xenon-mediated Anesthetic Effect: Evidence from In Vitro and In Vivo Experiments.

    PubMed

    Mattusch, Corinna; Kratzer, Stephan; Buerge, Martina; Kreuzer, Matthias; Engel, Tatiana; Kopp, Claudia; Biel, Martin; Hammelmann, Verena; Ying, Shui-Wang; Goldstein, Peter A; Kochs, Eberhard; Haseneder, Rainer; Rammes, Gerhard

    2015-05-01

    The thalamus is thought to be crucially involved in the anesthetic state. Here, we investigated the effect of the inhaled anesthetic xenon on stimulus-evoked thalamocortical network activity and on excitability of thalamocortical neurons. Because hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are key regulators of neuronal excitability in the thalamus, the effect of xenon on HCN channels was examined. The effects of xenon on thalamocortical network activity were investigated in acutely prepared brain slices from adult wild-type and HCN2 knockout mice by means of voltage-sensitive dye imaging. The influence of xenon on single-cell excitability in brain slices was investigated using the whole-cell patch-clamp technique. Effects of xenon on HCN channels were verified in human embryonic kidney cells expressing HCN2 channels. Xenon concentration-dependently diminished thalamocortical signal propagation. In neurons, xenon reduced HCN channel-mediated Ih current amplitude by 33.4 ± 12.2% (at -133 mV; n = 7; P = 0.041) and caused a left-shift in the voltage of half-maximum activation (V1/2) from -98.8 ± 1.6 to -108.0 ± 4.2 mV (n = 8; P = 0.035). Similar effects were seen in human embryonic kidney cells. The impairment of HCN channel function was negligible when intracellular cyclic adenosine monophosphate level was increased. Using HCN2 mice, we could demonstrate that xenon did neither attenuate in vitro thalamocortical signal propagation nor did it show sedating effects in vivo. Here, we clearly showed that xenon impairs HCN2 channel function, and this impairment is dependent on intracellular cyclic adenosine monophosphate levels. We provide evidence that this effect reduces thalamocortical signal propagation and probably contributes to the hypnotic properties of xenon.

  11. Modeling Xenon Purification Systems in a Laser Inertial Fusion Engine

    NASA Astrophysics Data System (ADS)

    Hopkins, Ann; Gentile, Charles

    2011-10-01

    A Laser Inertial Fusion Engine (LIFE) is a proposed method to employ fusion energy to produce electricity for consumers. However, before it can be built and used as such, each aspect of a LIFE power plant must first be meticulously planned. We are in the process of developing and perfecting models for an exhaust processing and fuel recovery system. Such a system is especially essential because it must be able to recapture and purify expensive materials involved in the reaction so they may be reused. One such material is xenon, which is to be used as an intervention gas in the target chamber. Using Aspen HYSYS, we have modeled several subsystems for exhaust processing, including a subsystem for xenon recovery and purification. After removing hydrogen isotopes using lithium bubblers, we propose to use cryogenic distillation to purify the xenon from remaining contaminants. Aspen HYSYS allows us to analyze predicted flow rates, temperatures, pressures, and compositions within almost all areas of the xenon purification system. Through use of Aspen models, we hope to establish that we can use xenon in LIFE efficiently and in a practical manner.

  12. Liquid xenon purification, de-radonation (and de-kryptonation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pocar, Andrea, E-mail: pocar@umass.edu; Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550

    Liquid xenon detectors are at the forefront of rare event physics, including searches for neutrino-less double beta decay and WIMP dark matter. The xenon for these experiments needs to be purified from chemical impurities such as electronegative atoms and molecules, which absorb ionization electrons, and VUV (178 nm) scintillation light-absorbing chemical species. In addition, superb purification from radioactive impurities is required. Particularly challenging are radioactive noble isotopes ({sup 85}Kr,{sup 39,42}Ar,{sup 220,222}Rn). Radon is a particularly universal problem, due to the extended decay sequence of its daughters and its ubiquitous presence in detector materials. Purification and de-radonation of liquid xenon aremore » addressed with particular focus on the experience gained with the EXO-200 neutrino-less double beta decay detector.« less

  13. Penile blood flow by xenon-133 washout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haden, H.T.; Katz, P.G.; Mulligan, T.

    1989-06-01

    Penile erectile failure is often attributed to abnormalities of vascular supply or drainage, but few direct measurements of penile blood flow have been made. We describe the xenon washout method for measurement of penile blood flow, and present the results obtained in a group of normal and impotent subjects. The procedure was performed with standard nuclear imaging equipment. Flaccid-state penile blood flow in the impotent patients studied was not significantly different from the normal group, suggesting that flaccid-state measurements may not be helpful in evaluation of erectile failure. However, this method can be used to measure penile venous outflow withmore » stimulated or induced erection, and may provide a method for detecting abnormal venous leakage.« less

  14. Hubble Space Telescope, Faint Object Camera

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This drawing illustrates Hubble Space Telescope's (HST's), Faint Object Camera (FOC). The FOC reflects light down one of two optical pathways. The light enters a detector after passing through filters or through devices that can block out light from bright objects. Light from bright objects is blocked out to enable the FOC to see background images. The detector intensifies the image, then records it much like a television camera. For faint objects, images can be built up over long exposure times. The total image is translated into digital data, transmitted to Earth, and then reconstructed. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit. By placing the telescope in space, astronomers are able to collect data that is free of the Earth's atmosphere. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  15. Mobility and fluorescence of barium ions in xenon gas for the exo experiment

    NASA Astrophysics Data System (ADS)

    Benitez Medina, Julio Cesar

    The Enriched Xenon Observatory (EXO) is an experiment which aims to observe the neutrinoless double beta decay of 136Xe. The measurement of this decay would give information about the absolute neutrino mass and whether or not the neutrino is its own antiparticle. Since this is a very rare decay, the ability to reject background events by detecting the barium ion daughter from the double beta decay would be a major advantage. EXO is currently operating a detector with 200 kg of enriched liquid xenon, and there are plans to build a ton scale xenon detector. Measurements of the purity of liquid xenon in our liquid xenon test cell are reported. These results are relevant to the research on detection of single barium ions by our research group at Colorado State University. Details of the operation of the purity monitor are described. The effects of using a purifier, recirculation and laser ablation on the purity of liquid xenon are discussed. Mobility measurements of barium in xenon gas are reported for the first time. The variation of mobility with xenon gas pressure suggests that a significant fraction of molecular ions are formed when barium ions interact with xenon gas at high pressures. The measured mobility of Ba+ in Xe gas at different pressures is compared with the predicted theoretical value, and deviations are explained by a model that describes the fraction of molecular ions in Xe gas as a function of pressure. The results are useful for the analysis of experiments of fluorescence of Ba+ in xenon gas. It is also important to know the mobility of the ions in order to calculate the time they interact with an excitation laser in fluorescence experiments and in proposed 136 Ba+ daughter detection schemes. This thesis presents results of detection of laser induced fluorescence of Ba+ ions in Xe gas. Measurements of the pressure broadening of the excitation spectra of Ba+ in xenon gas are presented. Nonradiative decays due to gas collisions and optical pumping

  16. Hard X-ray Observation of Cygnus X-1 By the Marshall Imaging X-ray Experiment (MIXE2)

    NASA Technical Reports Server (NTRS)

    Minamitani, Takahisa; Apple, J. A.; Austin, R. A.; Dietz, K. L.; Koloziejczak, J. J.; Ramsey, B. D.; Weisskopf, M. C.

    1998-01-01

    The second generation of the Marshall Imaging X-ray Experiment (MIXE2) was flown from Fort Sumner, New Mexico on May 7-8, 1997. The experiment consists of coded-aperture telescope with a field of view of 1.8 degrees (FWHM) and an angular resolution of 6.9 arcminutes. The detector is a large (7.84x10(exp 4) sq cm) effective area microstrip proportional counter filled with 2.0x10(exp5) Pascals of xenon with 2% isobutylene. We present MIXE2 observation of the 20-80keV spectrum and timing variability of Cygnus X-1 made during balloon flight.

  17. A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon

    NASA Astrophysics Data System (ADS)

    Baudis, Laura; Biondi, Yanina; Capelli, Chiara; Galloway, Michelle; Kazama, Shingo; Kish, Alexander; Pakarha, Payam; Piastra, Francesco; Wulf, Julien

    2018-05-01

    A small-scale, two-phase (liquid/gas) xenon time projection chamber ( Xurich II) was designed, constructed and is under operation at the University of Zürich. Its main purpose is to investigate the microphysics of particle interactions in liquid xenon at energies below 50 keV, which are relevant for rare event searches using xenon as target material. Here we describe in detail the detector, its associated infrastructure, and the signal identification algorithm developed for processing and analysing the data. We present the first characterisation of the new instrument with calibration data from an internal ^83{m} Kr source. The zero-field light yield is 15.0 and 14.0 photoelectrons/keV at 9.4 and 32.1 keV, respectively, and the corresponding values at an electron drift field of 1 kV/cm are 10.8 and 7.9 photoelectrons/keV. The charge yields at these energies are 28 and 31 electrons/keV, with the proportional scintillation yield of 24 photoelectrons per one electron extracted into the gas phase, and an electron lifetime of 200 μ s. The relative energy resolution, σ /E, is 11.9 and 5.8% at 9.4 and 32.1 keV, respectively using a linear combination of the scintillation and ionisation signals. We conclude with measurements of the electron drift velocity at various electric fields, and compare these to literature values.

  18. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1994-01-01

    A comparison image of the M100 Galactic Nucleus, taken by the Hubble Space Telescope (HST) Wide Field Planetary Camera-1 (WF/PC1) and Wide Field Planetary Camera-2 (WF/PC2). The HST was placed in a low-Earth orbit by the Space Shuttle Discovery, STS-31 mission, in April 1990. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. During four spacewalks, the STS-61 crew replaced the solar panel with its flexing problems; the WF/PC1 with the WF/PC2, with built-in corrective optics; and the High-Speed Photometer with the Corrective Optics Space Telescope Axial Replacement (COSTAR), to correct the aberration for the remaining instruments. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects.

  19. Radon background in liquid xenon detectors

    NASA Astrophysics Data System (ADS)

    Rupp, N.

    2018-02-01

    The radioactive daughters isotope of 222Rn are one of the highest risk contaminants in liquid xenon detectors aiming for a small signal rate. The noble gas is permanently emanated from the detector surfaces and mixed with the xenon target. Because of its long half-life 222Rn is homogeneously distributed in the target and its subsequent decays can mimic signal events. Since no shielding is possible this background source can be the dominant one in future large scale experiments. This article provides an overview of strategies used to mitigate this source of background by means of material selection and on-line radon removal techniques.

  20. Commissioning Results on the JWST Testbed Telescope

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.; Acton, D. Scott

    2006-01-01

    The one-meter 18 segment JWST Testbed Telescope (TBT) has been developed at Ball Aerospace to facilitate commissioning operations for the JWST Observatory. Eight different commissioning activities were tested on the TBT: telescope focus sweep, segment ID and Search, image array, global alignment, image stacking, coarse phasing, fine phasing, and multi-field phasing. This paper describes recent commissioning results from experiments performed on the TBT.

  1. New Radio Telescope Makes First Scientific Observations

    NASA Astrophysics Data System (ADS)

    2001-05-01

    The world's two largest radio telescopes have combined to make detailed radar images of the cloud-shrouded surface of Venus and of a tiny asteroid that passed near the Earth. The images mark the first scientific contributions from the National Science Foundation's (NSF) new Robert C. Byrd Green Bank Telescope in West Virginia, which worked with the NSF's recently-upgraded Arecibo telescope in Puerto Rico. The project used the radar transmitter on the Arecibo telescope and the huge collecting areas of both telescopes to receive the echoes. GBT-Arecibo Radar Image of Maxwell Montes on Venus "These images are the first of many scientific contributions to come from the Robert C. Byrd Green Bank Telescope, and a great way for it to begin its scientific career," said Paul Vanden Bout, director of the National Radio Astronomy Observatory (NRAO). "Our congratulations go to the scientists involved in this project as well as to the hard-working staffs at Green Bank and Arecibo who made this accomplishment possible," Vanden Bout added. To the eye, Venus hides behind a veil of brilliant white clouds, but these clouds can be penetrated by radar waves, revealing the planet's surface. The combination of the Green Bank Telescope (GBT), the world's largest fully-steerable radio telescope, and the Arecibo telescope, the world's most powerful radar, makes an unmatched tool for studying Venus and other solar-system bodies. "Having a really big telescope like the new Green Bank Telescope to receive the radar echoes from small asteroids that are really close to the Earth and from very distant objects like Titan, the large moon of Saturn, will be a real boon to radar studies of the solar system." said Cornell University professor Donald Campbell, leader of the research team. Ten years ago, the radar system on NASA's Magellan spacecraft probed though the clouds of Venus to reveal in amazing detail the surface of the Earth's twin planet. These new studies using the GBT and Arecibo, the

  2. Density Functional Theory (dft) Simulations of Shocked Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Magyar, Rudolph J.

    2009-12-01

    Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as xenon is known to form compounds under normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. We present DFT-MD simulations of shocked liquid xenon with the goal of developing an improved equation of state. The calculated Hugoniot to 2 MPa compares well with available experimental shock data. Sandia is a mul-tiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Barium Tagging n Solid Xenon for nEXO Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Walton, Tim; Chambers, Chris; Craycraft, Adam; Fairbank, William; nEXO Collaboration

    2015-04-01

    nEXO is a next-generation experiment designed to search for neutrinoless double beta decay of the isotope Xe136 in a liquid xenon time projection chamber. Positive observation of this decay would determine the nature of the neutrino to be a Majorana particle. Since the daughter of this decay is barium (Ba136), detecting the presence of Ba136 at a decay site (called ``barium tagging'') would provide strong rejection of backgrounds in the search for this decay. This would involve detecting a single barium ion from within a macroscopic volume of liquid xenon. This technique may be available for a second phase of the nEXO detector and sensitivity beyond the inverted hierarchy to neutrino oscillations. Several methods of barium tagging are being explored by the nEXO collaboration, but here we present a method of trapping the barium ion/atom (it may neutralize) in solid xenon (SXe) at the end of a cold probe, and then detecting the ion/atom by its fluorescence in the SXe. Our group at CSU has been studying the fluorescence of Ba in SXe by laser excitation, in order to ultimately detect a single Ba +/Ba in a SXe sample. We present studies of fluorescence signals, as well as recent results on imaging small numbers of Ba atoms in SXe, in a focused laser region. This work is supported by grants from the National Science Foundation and the Department of Energy.

  4. SITELLE: a wide-field imaging Fourier transform spectrometer for the Canada-France-Hawaii Telescope

    NASA Astrophysics Data System (ADS)

    Drissen, L.; Bernier, A.-P.; Rousseau-Nepton, L.; Alarie, A.; Robert, C.; Joncas, G.; Thibault, S.; Grandmont, F.

    2010-07-01

    We describe the concept of a new instrument for the Canada-France-Hawaii telescope (CFHT), SITELLE (Spectromètre Imageur à Transformée de Fourier pour l'Etude en Long et en Large de raies d'Emission), as well as a science case and a technical study of its preliminary design. SITELLE will be an imaging Fourier transform spectrometer capable of obtaining the visible (350 nm - 950 nm) spectrum of every source of light in a field of view of 15 arcminutes, with 100% spatial coverage and a spectral resolution ranging from R = 1 (deep panchromatic image) to R = 104 (for gas dynamics). SITELLE will cover a field of view 100 to 1000 times larger than traditional integral field spectrographs, such as GMOS-IFU on Gemini or the future MUSE on the VLT. It is a legacy from BEAR, the first imaging FTS installed on the CFHT and the direct successor of SpIOMM, a similar instrument attached to the 1.6-m telescope of the Observatoire du Mont-Mégantic in Québec. SITELLE will be used to study the structure and kinematics of HII regions and ejecta around evolved stars in the Milky Way, emission-line stars in clusters, abundances in nearby gas-rich galaxies, and the star formation rate in distant galaxies.

  5. SMARTS 1.5-m Telescope | CTIO

    Science.gov Websites

    Visitor's Computer Guidelines Network Connection Request Instruments Instruments by Telescope IR Instruments and CIRIM IR imagers, a Cass focus CCD (CFCCD) Imager and the CPAPIR wide-field IR Imager. All

  6. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    PubMed

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  7. Minimum alveolar concentration (MAC) for sevoflurane and xenon at normothermia and hypothermia in newborn pigs.

    PubMed

    Liu, X; Dingley, J; Elstad, M; Scull-Brown, E; Steen, P A; Thoresen, M

    2013-05-01

    Neuroprotection from therapeutic hypothermia increases when combined with the anaesthetic gas xenon in animal studies. A clinical feasibility study of the combined treatment has been successfully undertaken in asphyxiated human term newborns. It is unknown whether xenon alone would be sufficient for sedation during hypothermia eliminating or reducing the need for other sedative or analgesic infusions in ventilated sick infants. Minimum alveolar concentration (MAC) of xenon is unknown in any neonatal species. Eight newborn pigs were anaesthetised with sevoflurane alone and then sevoflurane plus xenon at two temperatures. Pigs were randomised to start at either 38.5°C or 33.5°C. MAC for sevoflurane was determined using the claw clamp technique at the preset body temperature. For xenon MAC determination, a background of 0.5 MAC sevoflurane was used, and 60% xenon added to the gas mixture. The relationship between sevoflurane and xenon MAC is assumed to be additive. Xenon concentrations were changed in 5% steps until a positive clamp reaction was noted. Pigs' temperature was changed to the second target, and two MAC determinations for sevoflurane and 0.5 MAC sevoflurane plus xenon were repeated. MAC for sevoflurane was 4.1% [95% confidence interval (CI): 3.65-4.50] at 38.5°C and 3.05% (CI: 2.63-3.48) at 33.5°C, a significant reduction. MAC for xenon was 120% at 38.5°C and 116% at 33.5°C, not different. In newborn swine sevoflurane, MAC was temperature dependent, while xenon MAC was independent of temperature. There was large individual variability in xenon MAC, from 60% to 120%. © 2013 The Acta Anaesthesiologica Scandinavica Foundation.

  8. Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel

    PubMed Central

    Sauguet, Ludovic; Fourati, Zeineb; Prangé, Thierry; Delarue, Marc; Colloc'h, Nathalie

    2016-01-01

    GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and “locally-closed” (inactive) conformations of GLIC. Major binding sites of xenon, which differ between the two conformations, were identified in three distinct regions that all belong to the trans-membrane domain of GLIC: 1) in an intra-subunit cavity, 2) at the interface between adjacent subunits, and 3) in the pore. The pore site is unique to the locally-closed form where the binding of xenon effectively seals the channel. A putative mechanism of the inhibition of GLIC by xenon is proposed, which might be extended to other pentameric cationic ligand-gated ion channels. PMID:26910105

  9. Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel.

    PubMed

    Sauguet, Ludovic; Fourati, Zeineb; Prangé, Thierry; Delarue, Marc; Colloc'h, Nathalie

    2016-01-01

    GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and "locally-closed" (inactive) conformations of GLIC. Major binding sites of xenon, which differ between the two conformations, were identified in three distinct regions that all belong to the trans-membrane domain of GLIC: 1) in an intra-subunit cavity, 2) at the interface between adjacent subunits, and 3) in the pore. The pore site is unique to the locally-closed form where the binding of xenon effectively seals the channel. A putative mechanism of the inhibition of GLIC by xenon is proposed, which might be extended to other pentameric cationic ligand-gated ion channels.

  10. Gas chromatography/mass spectrometry measurement of xenon in gas-loaded liposomes for neuroprotective applications.

    PubMed

    Klegerman, Melvin E; Moody, Melanie R; Hurling, Jermaine R; Peng, Tao; Huang, Shao-Ling; McPherson, David D

    2017-01-15

    We have produced a liposomal formulation of xenon (Xe-ELIP) as a neuroprotectant for inhibition of brain damage in stroke patients. This mandates development of a reliable assay to measure the amount of dissolved xenon released from Xe-ELIP in water and blood samples. Gas chromatography/mass spectrometry (GC/MS) was used to quantify xenon gas released into the headspace of vials containing Xe-ELIP samples in water or blood. In order to determine blood concentration of xenon in vivo after Xe-ELIP administration, 6 mg of Xe-ELIP lipid was infused intravenously into rats. Blood samples were drawn directly from a catheterized right carotid artery. After introduction of the samples, each vial was allowed to equilibrate to 37°C in a water bath, followed by 20 minutes of sonication prior to headspace sampling. Xenon concentrations were calculated from a gas dose-response curve and normalized using the published xenon water-gas solubility coefficient. The mean corrected percent of xenon from Xe-ELIP released into water was 3.87 ± 0.56% (SD, n = 8), corresponding to 19.3 ± 2.8 μL/mg lipid, which is consistent with previous independent Xe-ELIP measurements. The corresponding xenon content of Xe-ELIP in rat blood was 23.38 ± 7.36 μL/mg lipid (n = 8). Mean rat blood xenon concentration after intravenous administration of Xe-ELIP was 14 ± 10 μM, which is approximately 15% of the estimated neuroprotective level. Using this approach, we have established a reproducible method for measuring dissolved xenon in fluids. These measurements have established that neuroprotective effects can be elicited by less than 20% of the calculated neuroprotective xenon blood concentration. More work will have to be done to establish the protective xenon pharmacokinetic range. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Final design of SITELLE: a wide-field imaging Fourier transform spectrometer for the Canada-France-Hawaii Telescope

    NASA Astrophysics Data System (ADS)

    Grandmont, F.; Drissen, L.; Mandar, Julie; Thibault, S.; Baril, Marc

    2012-09-01

    We report here on the current status of SITELLE, an imaging Fourier transform spectrometer to be installed on the Canada-France Hawaii Telescope in 2013. SITELLE is an Integral Field Unit (IFU) spectrograph capable of obtaining the visible (350 nm - 900 nm) spectrum of every pixel of a 2k x 2k CCD imaging a field of view of 11 x 11 arcminutes, with 100% spatial coverage and a spectral resolution ranging from R = 1 (deep panchromatic image) to R < 104 (for gas dynamics). SITELLE will cover a field of view 100 to 1000 times larger than traditional IFUs, such as GMOS-IFU on Gemini or the upcoming MUSE on the VLT. SITELLE follows on the legacy of BEAR, an imaging conversion of the CFHT FTS and the direct successor of SpIOMM, a similar instrument attached to the 1.6-m telescope of the Observatoire du Mont-Mégantic in Québec. SITELLE will be used to study the structure and kinematics of HII regions and ejecta around evolved stars in the Milky Way, emission-line stars in clusters, abundances in nearby gas-rich galaxies, and the star formation rate in distant galaxies.

  12. [Effects of xenon anesthesia on cerebral blood flow in neurosurgical patients without intracranial hypertension].

    PubMed

    Rylova, A V; Beliaev, A Iu; Lubnin, A Iu

    2013-01-01

    Among anesthetic agents used in neurosurgery xenon appears to be the most advantageous. It preserves arterial blood pressure, assures rapid recovery and neuroprotection. But the data is lacking on xenon effect upon cerebral blood flow under anesthetic conditions. We measured flow velocity in middle cerebral artery in neurosurgical patients without intracranial hypertension during closed circuit xenon anesthesia comparing propofol and xenon effect in the same patients. In our study xenon didn't seem to induce clinically relevant changes in cerebral blood flow and preserved cerebral vascular reactivity thus proving its safety in patients without intracranial hypertension.

  13. A Preliminary Research on the Development of the Hard X-Ray Imaging Telescope

    NASA Astrophysics Data System (ADS)

    Zheng, C. X.; Cai, M. S.; Hu, Y. M.; Huang, Y. Y.; Gong, Y. Z.

    2014-03-01

    Since the 1860s, astronomers have explored a new field with the discovery of X-ray. Instead of the conventional imaging technique by using mirrors or lens, which can not work in the high-energy bands, direct imaging, coded aperture, and Fourier transform are used for the high-energy imaging. It can be implemented in various hardware configurations, among which the spatial modulation collimator are widely used. We adopt the grating collimator based on Fourier transform that is discussed in detail. This paper makes an investigation on the fabrication process of grating. The key components of the hard X-ray telescope based on the spatial modulation are developed, which contains 8 CsI-detector modules, 8-channel shaping amplifiers, and data acquisition system. The preliminary test results of readout electronics system are obtained.

  14. Modeling the Removal of Xenon from Lithium Hydrate with Aspen HYSYS

    NASA Astrophysics Data System (ADS)

    Efthimion, Phillip; Gentile, Charles

    2011-10-01

    The Laser Inertial Fusion Engine (LIFE) project mission is to provide a long-term, carbon-free source of sustainable energy, in the form of electricity. A conceptual xenon removal system has been modeled with the aid of Aspen HYSYS, a chemical process simulator. Aspen HYSYS provides excellent capability to model chemical flow processes, which generates outputs which includes specific variables such as temperature, pressure, and molar flow. The system is designed to strip out hydrogen isotopes deuterium and tritium. The base design bubbles plasma exhaust laden with x filled with liquid helium. The system separates the xenon from the hydrogen, deuterium, and tritium with a lithium hydrate and a lithium bubbler. After the removal of the hydrogen and its isotopes, the xenon is then purified by way of the process of cryogenic distillation. The pure hydrogen, deuterium, and tritium are then sent to the isotope separation system (ISS). The removal of xenon is an integral part of the laser inertial fusion engine and Aspen HYSYS is an excellent tool to calculate how to create pure xenon.

  15. Xenon ventilation computed tomography and the management of asthma in the elderly.

    PubMed

    Park, Heung-Woo; Jung, Jae-Woo; Kim, Kyung-Mook; Kim, Tae-Wan; Lee, So-Hee; Lee, Chang Hyun; Goo, Jin Mo; Min, Kyung-Up; Cho, Sang-Heon

    2014-04-01

    Xenon ventilation computed tomography (CT) has shown potential in assessing the regional ventilation status in subjects with asthma. The purpose of this study was to evaluate the usefulness of xenon ventilation CT in the management of asthma in the elderly. Treatment-naïve asthmatics aged 65 years or older were recruited. Before initiation of medication, spirometry with bronchodilator (BD) reversibility, questionnaires to assess the severity of symptoms including a visual analogue scale (VAS), tests to evaluate cognitive function and mood, and xenon ventilation CT were performed. Xenon gas trapping (XT) on xenon ventilation CT represents an area where inhaled xenon gas was not expired and was trapped. Symptoms and lung functions were measured again after the 12-week treatment. A total of 30 elderly asthmatics were enrolled. The severity of dyspnoea measured by the VAS showed a significant correlation with the total number of areas of XT on the xenon ventilation CT taken in the pre-BD wash-out phase (r = -0.723, P < 0.001). The total number of areas of XT significantly decreased after BD inhalation, and differences in the total number of areas of XT (between the pre- and post-BD wash-out phases) at baseline showed significant correlations with the per cent increases in forced expiratory volume in 1 s after subsequent anti-asthma treatment (r = -0.775, P < 0.001). Xenon ventilation CT may be an objective and promising tool in the measurement of dyspnoea and prediction of the treatment response in elderly asthmatics. © 2014 The Authors. Respirology © 2014 Asian Pacific Society of Respirology.

  16. Upgraded cameras for the HESS imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gérard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-François; Gräber, Tobias; Hinton, James; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, François

    2016-08-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging atmospheric Cherenkov telescopes, sensitive to cosmic gamma rays of energies between 30 GeV and several tens of TeV. Four of them started operations in 2003 and their photomultiplier tube (PMT) cameras are currently undergoing a major upgrade, with the goals of improving the overall performance of the array and reducing the failure rate of the ageing systems. With the exception of the 960 PMTs, all components inside the camera have been replaced: these include the readout and trigger electronics, the power, ventilation and pneumatic systems and the control and data acquisition software. New designs and technical solutions have been introduced: the readout makes use of the NECTAr analog memory chip, which samples and stores the PMT signals and was developed for the Cherenkov Telescope Array (CTA). The control of all hardware subsystems is carried out by an FPGA coupled to an embedded ARM computer, a modular design which has proven to be very fast and reliable. The new camera software is based on modern C++ libraries such as Apache Thrift, ØMQ and Protocol buffers, offering very good performance, robustness, flexibility and ease of development. The first camera was upgraded in 2015, the other three cameras are foreseen to follow in fall 2016. We describe the design, the performance, the results of the tests and the lessons learned from the first upgraded H.E.S.S. camera.

  17. Hubble Space Telescope Image, Supernova Remnant Cassiopeia A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The colorful streamers that float across the sky in this photo taken by NASA's Hubble Space Telescope (HST) were created by the universe's biggest firecracker, the titanic supernova explosion of a massive star. The light from the exploding star reached Earth 320 years ago, nearly a century before the United States celebrated its birth with a bang. The dead star's shredded remains are called Cassiopeia A, or 'Cas A' for short. Cas A is the youngest known supernova remnant in our Milky Way Galaxy and resides 10,000 light-years away in the constellation Cassiopeia, so the star actually blew up 10,000 years before the light reached Earth in the late 1600s. This HST image of Cas A shows for the first time that the debris is arranged into thousands of small, cooling knots of gas. This material eventually will be recycled into building new generations of stars and planets. Our own Sun and planets are constructed from the debris of supernovae that exploded billions of years ago. This photo shows the upper rim of the super nova remnant's expanding shell. Near the top of the image are dozens of tiny clumps of matter. Each small clump, originally just a small fragment of the star, is tens of times larger than the diameter of our solar system. The colors highlight parts of the debris where chemical elements are glowing. The dark blue fragments, for example, are richest in oxygen; the red material is rich in sulfur. The images were taken with the Wide Field and Planetary Camera 2 in January 2000 and January 2002. Image Credit: NASA and HST team (Stoics/AURA). Acknowledgment: R. Fesen (Darmouth) and J. Morse ( Univ. of Colorado).

  18. Near Infrared Imaging of the Hubble Deep Field with Keck Telescope

    NASA Technical Reports Server (NTRS)

    Hogg, David W.; Neugebauer, G.; Armus, Lee; Matthews, K.; Pahre, Michael A.; Soifer, B. T.; Weinberger, A. J.

    1997-01-01

    Two deep K-band (2.2 micrometer) images, with point-source detection limits of K=25.2 mag (one sigma), taken with the Keck Telescope in subfields of the Hubble Deep Field, are presented and analyzed. A sample of objects to K=24 mag is constructed and V(sub 606)- I(sub 814) and I(sub 814)-K colors are measured. By stacking visually selected objects, mean I(sub 814)-K colors can be measured to very faint levels, the mean I(sub 814)-K color is constant with apparent magnitude down to V(sub 606)=28 mag.

  19. [Characteristics of perioperative period in Xenon-based combined general anaesthesia in neurosurgery].

    PubMed

    Viatkin, A A; Petrosian, L G; Mizikov, V M; Vasil'ev, S A

    2013-01-01

    Neuroprotection could be the aim to use Xenon for general anesthesia. However the experience of Xenon anesthesia in neurosurgery is quite limited. The appraisal of Xenon based anesthesia was accomplished in 12 patients during various brain surgery. Xe in concentration 65% was used to maintenance of anesthesia, other medication was avoided. As a resuIt there were 8 cases of arterial hypertension and 2 cases of superficial hypnotic state. Excitation (n = 3), hyperdynamic reaction (n = 8), PONV (n = 8) were detected in early postoperative period. An analysis of this study suggests a conclusion that studied method of Xenon-based anesthesia is inexpedient for neurosurgery.

  20. A telescope with augmented reality functions

    NASA Astrophysics Data System (ADS)

    Hou, Qichao; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian

    2016-10-01

    This study introduces a telescope with virtual reality (VR) and augmented reality (AR) functions. In this telescope, information on the micro-display screen is integrated to the reticule of telescope through a beam splitter and is then received by the observer. The design and analysis of telescope optical system with AR and VR ability is accomplished and the opto-mechanical structure is designed. Finally, a proof-of-concept prototype is fabricated and demonstrated. The telescope has an exit pupil diameter of 6 mm at an eye relief of 19 mm, 6° field of view, 5 to 8 times visual magnification , and a 30° field of view of the virtual image.

  1. Advanced electro-optical imaging techniques. [conference papers on sensor technology applicable to Large Space Telescope program

    NASA Technical Reports Server (NTRS)

    Sobieski, S. (Editor); Wampler, E. J. (Editor)

    1973-01-01

    The papers presented at the symposium are given which deal with the present state of sensors, as may be applicable to the Large Space Telescope (LST) program. Several aspects of sensors are covered including a discussion of the properties of photocathodes and the operational imaging camera tubes.

  2. Xenon Defects in Uranium Dioxide From First Principles and Interatomic Potentials

    NASA Astrophysics Data System (ADS)

    Thompson, Alexander

    In this thesis, we examine the defect energetics and migration energies of xenon atoms in uranium dioxide (UO2) from first principles and interatomic potentials. We also parameterize new, accurate interatomic potentials for xenon and uranium dioxide. To achieve accurate energetics and provide a foundation for subsequent calculations, we address difficulties in finding consistent energetics within Hubbard U corrected density functional theory (DFT+U). We propose a method of slowly ramping the U parameter in order to guide the calculation into low energy orbital occupations. We find that this method is successful for a variety of materials. We then examine the defect energetics of several noble gas atoms in UO2 for several different defect sites. We show that the energy to incorporate large noble gas atoms into interstitial sites is so large that it is energetically favorable for a Schottky defect cluster to be created to relieve the strain. We find that, thermodynamically, xenon will rarely ever be in the interstitial site of UO2. To study larger defects associated with the migration of xenon in UO 2, we turn to interatomic potentials. We benchmark several previously published potentials against DFT+U defect energetics and migration barriers. Using a combination of molecular dynamics and nudged elastic band calculations, we find a new, low energy migration pathway for xenon in UO2. We create a new potential for xenon that yields accurate defect energetics. We fit this new potential with a method we call Iterative Potential Refinement that parameterizes potentials to first principles data via a genetic algorithm. The potential finds accurate energetics for defects with relatively low amounts of strain (xenon in defect clusters). It is important to find accurate energetics for these sorts of low-strain defects because they essentially represent small xenon bubbles. Finally, we parameterize a new UO2 potential that simultaneously yields accurate vibrational properties

  3. GAS CHROMATOGRAPHY-MASS SPECTROMETRY MEASUREMENT OF XENON IN GAS-LOADED LIPOSOMES FOR NEUROPROTECTIVE APPLICATIONS1

    PubMed Central

    Klegerman, Melvin E.; Moody, Melanie R.; Hurling, Jermaine R.; Peng, Tao; Huang, Shao-Ling; McPherson, David D.

    2016-01-01

    Rationale We have produced a liposomal formulation of xenon (Xe-ELIP) as a neuroprotectant for inhibition of brain damage in stroke patients. This mandates development of a reliable assay to measure the amount of dissolved xenon released from Xe-ELIP in water and blood samples. Methods Gas chromatography-Mass Spectrometry (GC-MS) was used to quantify xenon gas released into the headspace of vials containing Xe-ELIP samples in water or blood. In order to determine blood concentration of xenon in vivo after Xe-ELIP administration, 6 mg Xe-ELIP lipid was infused intravenously into rats. Blood samples were drawn directly from a catheterized right carotid artery. After introduction of the samples, each vial was allowed to equilibrate to 37° C in a water bath, followed by 20 minutes of sonication prior to headspace sampling. Xenon concentrations were calculated from a gas dose-response curve and normalized using the published xenon water-gas solubility coefficient. Results The mean corrected percent of xenon from Xe-ELIP released into water was 3.87 ± 0.56% (SD, n = 8), corresponding to 19.3 ± 2.8 μl/mg lipid, which is consistent with previous independent Xe-ELIP measurements. The corresponding xenon content of Xe-ELIP in rat blood was 23.38 ± 7.36 μl/mg lipid (n = 8). Mean rat blood xenon concentration after IV administration of Xe-ELIP was 14 ± 10 μM, which is approximately 15% of the estimated neuroprotective level. Conclusions Using this approach, we have established a reproducible method for measuring dissolved xenon in fluids. These measurements have established that neuroprotective effects can be elicited by less than 20% of the calculated neuroprotective xenon blood concentration. More work will have to be done to establish the protective xenon pharmacokinetic range. PMID:27689777

  4. High-contrast imager for Complex Aperture Telescopes (HiCAT): APLC/shaped-pupil hybrid coronagraph designs

    NASA Astrophysics Data System (ADS)

    N'Diaye, Mamadou; Choquet, Elodie; Carlotti, Alexis; Pueyo, Laurent; Egron, Sylvain; Leboulleux, Lucie; Levecq, Olivier; Perrin, Marshall D.; Wallace, J. Kent; Long, Chris; Lajoie, Rachel; Lajoie, Charles-Philippe; Eldorado Riggs, A. J.; Zimmerman, Neil T.; Groff, Tyler Dean; Kasdin, N. Jeremy; Vanderbei, Robert J.; Mawet, Dimitri; Macintosh, Bruce; Shaklan, Stuart; Soummer, Remi

    2015-01-01

    HiCAT is a high-contrast imaging testbed designed to provide complete solutions in wavefront sensing, control and starlight suppression with complex aperture telescopes. Primary mirror segmentation, central obstruction and spiders in the pupil of an on-axis telescope introduces additional diffraction features in the point spread function, which make high-contrast imaging very challenging. The testbed alignment was completed in the summer of 2014, exceeding specifications with a total wavefront error of 12nm rms with a 18mm pupil. Two deformable mirrors are to be installed for wavefront control in the fall of 2014. In this communication, we report on the first testbed results using a classical Lyot coronagraph. We have developed novel coronagraph designs combining an Apodized Pupil Lyot Coronagraph (APLC) with shaped-pupil type optimizations. We present the results of these new APLC-type solutions with two-dimensional shaped-pupil apodizers for the HiCAT geometry. These solutions render the system quasi-insensitive to jitter and low-order aberrations, while improving the performance in terms of inner working angle, bandpass and contrast over a classical APLC.

  5. Xenon inhibits excitatory but not inhibitory transmission in rat spinal cord dorsal horn neurons

    PubMed Central

    2010-01-01

    Background The molecular targets for the promising gaseous anaesthetic xenon are still under investigation. Most studies identify N-methyl-D-aspartate (NMDA) receptors as the primary molecular target for xenon, but the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA) receptors is less clear. In this study we evaluated the effect of xenon on excitatory and inhibitory synaptic transmission in the superficial dorsal horn of the spinal cord using in vitro patch-clamp recordings from rat spinal cord slices. We further evaluated the effects of xenon on innocuous and noxious stimuli using in vivo patch-clamp method. Results In vitro, xenon decreased the amplitude and area under the curve of currents induced by exogenous NMDA and AMPA and inhibited dorsal root stimulation-evoked excitatory postsynaptic currents. Xenon decreased the amplitude, but not the frequency, of miniature excitatory postsynaptic currents. There was no discernible effect on miniature or evoked inhibitory postsynaptic currents or on the current induced by inhibitory neurotransmitters. In vivo, xenon inhibited responses to tactile and painful stimuli even in the presence of NMDA receptor antagonist. Conclusions Xenon inhibits glutamatergic excitatory transmission in the superficial dorsal horn via a postsynaptic mechanism. There is no substantial effect on inhibitory synaptic transmission at the concentration we used. The blunting of excitation in the dorsal horn lamina II neurons could underlie the analgesic effect of xenon. PMID:20444263

  6. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia.

    PubMed

    Ma, Daqing; Hossain, Mahmuda; Chow, Andre; Arshad, Mubarik; Battson, Renee M; Sanders, Robert D; Mehmet, Huseyin; Edwards, A David; Franks, Nicholas P; Maze, Mervyn

    2005-08-01

    Perinatal asphyxia can result in neuronal injury with long-term neurological and behavioral consequences. Although hypothermia may provide some modest benefit, the intervention itself can produce adverse consequences. We have investigated whether xenon, an antagonist of the N-methyl-D-aspartate subtype of the glutamate receptor, can enhance the neuroprotection provided by mild hypothermia. Cultured neurons injured by oxygen-glucose deprivation were protected by combinations of interventions of xenon and hypothermia that, when administered alone, were not efficacious. A combination of xenon and hypothermia administered 4 hours after hypoxic-ischemic injury in neonatal rats provided synergistic neuroprotection assessed by morphological criteria, by hemispheric weight, and by functional neurological studies up to 30 days after the injury. The protective mechanism of the combination, in both in vitro and in vivo models, involved an antiapoptotic action. If applied to humans, these data suggest that low (subanesthetic) concentrations of xenon in combination with mild hypothermia may provide a safe and effective therapy for perinatal asphyxia.

  7. NASA Webb Telescope

    NASA Image and Video Library

    2017-12-08

    NASA image release September 17, 2010 In preparation for a cryogenic test NASA Goddard technicians install instrument mass simulators onto the James Webb Space Telescope ISIM structure. The ISIM Structure supports and holds the four Webb telescope science instruments : the Mid-Infrared Instrument (MIRI), the Near-Infrared Camera (NIRCam), the Near-Infrared Spectrograph (NIRSpec) and the Fine Guidance Sensor (FGS). Credit: NASA/GSFC/Chris Gunn To learn more about the James Webb Space Telescope go to: www.jwst.nasa.gov/ NASA Goddard Space Flight Center contributes to NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s endeavors by providing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  8. Xenon Anesthesia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

    PubMed

    Law, Lawrence Siu-Chun; Lo, Elaine Ah-Gi; Gan, Tong Joo

    2016-03-01

    Xenon anesthesia has been studied for decades. However, no meta-analysis of randomized controlled trials (RCTs) on xenon anesthesia has been conducted. The aim of this study was to systematically review all available evidence from RCTs comparing xenon and other inhaled and IV anesthetics on anesthetic outcomes. Our meta-analysis attempted to quantify the effects of xenon anesthesia on clinical outcomes in relation to other anesthetics. We found 43 RCTs from PubMed, MEDLINE, CENTRAL, EMBASE, and CINAHL (until January 2015). A total of 31 studies comparing xenon (841 patients) with other inhaled agents (836 patients) and 12 studies comparing xenon (373 patients) with propofol (360 patients) were found. We evaluated clinical outcomes, such as intraoperative hemodynamics, emergence, and postoperative nausea and vomiting (PONV). Patients undergoing xenon anesthesia had a lower heart rate and higher mean arterial pressure (MAP) intraoperatively than those receiving volatile anesthesia (mean difference = -6 min⁻¹ [99% confidence interval {99% CI} -10.0 to -2.3]; mean difference = 9 mm Hg [99% CI 3.1-14.4]) and propofol anesthesia (mean difference = -10 min⁻¹ [99% CI -12.4 to -6.6]; mean difference = 7 mm Hg [99% CI 0.85-13.2]). Compared with baseline, intraoperative MAP remained relatively stable (change < 5.5%, 99% CI within ±20% of the baseline) under xenon anesthesia, but MAP decreased by ≥15% under volatile (mean difference = -17 mm Hg [99% CI -29.5 to - 4.9], percentage change = -17.5%) and propofol (mean difference = -14 mm Hg [99% CI -26.1 to -2.5], percentage change = -15.0%) anesthesia. Patients had faster emergence from xenon than from volatile anesthesia: eyes opening (versus all volatile agents: mean 4 vs 7 minutes, percentage change = -49.8% [99% CI -55.1% to -44.0%]), tracheal extubation (versus all volatile agents: mean 4 vs 8 minutes percentage change = -44.6% [99% CI -57.3% to -28.1%]), orientation (versus sevoflurane: mean 5 vs 10 minutes

  9. The Large Underground Xenon (LUX) experiment

    DOE PAGES

    Akerib, D. S.; Bai, X.; Bedikian, S.; ...

    2012-11-29

    The Large Underground Xenon (LUX) collaboration has designed and constructed a dual-phase xenon detector, in order to conduct a search for Weakly Interacting Massive Particles (WIMPs), a leading dark matter candidate. The goal of the LUX detector is to clearly detect (or exclude) WIMPS with a spin independent cross section per nucleon of 2×10 -46 cm 2, equivalent to ~1 event/100 kg/month in the inner 100-kg fiducial volume (FV) of the 370-kg detector. The overall background goals are set to have <1 background events characterized as possible WIMPs in the FV in 300 days of running. This work describes themore » design and construction of the LUX detector.« less

  10. Using frequency response functions to manage image degradation from equipment vibration in the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, providing a significant increase in the resolution of solar data available to the scientific community. Vibration mitigation is critical in long focal-length telescopes such as the Inouye Solar Telescope, especially when adaptive optics are employed to correct for atmospheric seeing. For this reason, a vibration error budget has been implemented. Initially, the FRFs for the various mounting points of ancillary equipment were estimated using the finite element analysis (FEA) of the telescope structures. FEA analysis is well documented and understood; the focus of this paper is on the methods involved in estimating a set of experimental (measured) transfer functions of the as-built telescope structure for the purpose of vibration management. Techniques to measure low-frequency single-input-single-output (SISO) frequency response functions (FRF) between vibration source locations and image motion on the focal plane are described. The measurement equipment includes an instrumented inertial-mass shaker capable of operation down to 4 Hz along with seismic accelerometers. The measurement of vibration at frequencies below 10 Hz with good signal-to-noise ratio (SNR) requires several noise reduction techniques including high-performance windows, noise-averaging, tracking filters, and spectral estimation. These signal-processing techniques are described in detail.

  11. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (Light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror.

  12. A Deployable Primary Mirror for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.

    1999-01-01

    NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55-m-diameter, proof-of-concept mirror.

  13. SMARTS 1.3-m Telescope | CTIO

    Science.gov Websites

    Visitor's Computer Guidelines Network Connection Request Instruments Instruments by Telescope IR Instruments telescope before SMARTS took over its operation. A permanently-mounted, dual-channel, optical-IR imager Consortium) with the optical detector since the 1998B semester. The IR array was installed in July 1999

  14. Design and end-to-end modelling of a deployable telescope

    NASA Astrophysics Data System (ADS)

    Dolkens, Dennis; Kuiper, Hans

    2017-09-01

    Deployable optics have the potential of revolutionizing the field of high resolution Earth Observation. By offering the same resolutions as a conventional telescope, while using a much smaller launch volume and mass, the costs of high resolution image data can be brought down drastically. In addition, the technology will ultimately enable resolutions that are currently unattainable due to limitations imposed by the size of launcher fairings. To explore the possibilities and system complexities of a deployable telescope, a concept study was done to design a competitive deployable imager. A deployable telescope was designed for a ground sampling distance of 25 cm from an orbital altitude of 550 km. It offers an angular field of view of 0.6° and has a panchromatic channel as well as four multispectral bands in the visible and near infrared spectrum. The optical design of the telescope is based on an off-axis Korsch Three Mirror Anastigmat. A freeform tertiary mirror is used to ensure a diffraction limited image quality for all channels, while maintaining a compact design. The segmented primary mirror consists of four tapered aperture segments, which can be folded down during launch, while the secondary mirror is mounted on a deployable boom. In its stowed configuration, the telescope fits within a quarter of the volume of a conventional telescope reaching the same resolution. To reach a diffraction limited performance while operating in orbit, the relative position of each individual mirror segment must be controlled to a fraction of a wavelength. Reaching such tolerances with deployable telescope challenging, due to inherent uncertainties in the deployment mechanisms. Adding to the complexity is the fact that the telescope will be operating in a Low Earth Orbit (LEO) where it will be exposed to very dynamic thermal conditions. Therefore, the telescope will be equipped with a robust calibration system. Actuators underneath the primary mirror will be controlled using

  15. Xenon Preconditioning Protects against Renal Ischemic-Reperfusion Injury via HIF-1α Activation

    PubMed Central

    Ma, Daqing; Lim, Ta; Xu, Jing; Tang, Haidy; Wan, Yanjie; Zhao, Hailin; Hossain, Mahmuda; Maxwell, Patrick H.; Maze, Mervyn

    2009-01-01

    The mortality rate from acute kidney injury after major cardiovascular operations can be as high as 60%, and no therapies have been proved to prevent acute kidney injury in this setting. Here, we show that preconditioning with the anesthetic gas xenon activates hypoxia-inducible factor 1α (HIF-1α) and its downstream effectors erythropoietin and vascular endothelial growth factor in a time-dependent manner in the kidneys of adult mice. Xenon increased the efficiency of HIF-1α translation via modulation of the mammalian target of rapamycin pathway. In a model of renal ischemia-reperfusion injury, xenon provided morphologic and functional renoprotection; hydrodynamic injection of HIF-1α small interfering RNA demonstrated that this protection is HIF-1α dependent. These results suggest that xenon preconditioning is a natural inducer of HIF-1α and that administration of xenon before renal ischemia can prevent acute renal failure. If these data are confirmed in the clinical setting, then preconditioning with xenon may be beneficial before procedures that temporarily interrupt renal perfusion. PMID:19144758

  16. Undergraduate Education with the WIYN 0.9-m Telescope

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.

    2017-01-01

    Several models have been explored at Indiana University Bloomington for undergraduate student engagement in astronomy using the WIYN 0.9-m telescope at Kitt Peak. These models include individual student research projects using the telescope, student observations as part of an observational techniques course for majors, and enrichment activities for non-science majors in general education courses. Where possible, we arrange for students to travel to the telescope. More often, we are able to use simple online tools such as Skype and VNC viewers to give students an authentic observing experience. Experiences with the telescope motivate students to learn basic content in astronomy, including the celestial sphere, the electromagnetic spectrum, telescopes and detectors, the variety of astronomical objects, date reduction processes, image analysis, and color image creation and appreciation. The WIYN 0.9-m telescope is an essential tool for our program at all levels of undergraduate education

  17. Doppler Imaging and Chemical Abundance Analysis of EK Dra: Capabilities of Small Telescopes

    NASA Astrophysics Data System (ADS)

    Kilicoglu, Tolgahan; Senavci, H. V.; Bahar, E.; Isik, E.; Montes, D.; Hussain, G. A. J.

    2018-04-01

    We investigate the chromospheric and spot activity behaviour of the young Solar-like star EK Dra via Doppler imaging and spectral synthesis methods, using mid-resolution time series spectra of the system. We also present the atmospheric parameters and detailed elemental photospheric abundances of the star. The chemical abundance pattern of EK Dra do not suggest any remarkable peculiarities except few elements. The Titanium Oxide (TiO) bandheads at 7000 - 7100 A region also give clues about the spot temperature that may be cooler than 4000 K. In addition, we also discuss the capabilities of small telescopes (40 cm in our case) and medium resolution spectrographs in terms of Doppler imaging and chemical abundance analysis.

  18. Ultraviolet Imaging Telescope ultraviolet images - Large-scale structure, H II regions, and extinction in M81

    NASA Technical Reports Server (NTRS)

    Hill, Jesse K.; Bohlin, Ralph C.; Cheng, Kwang-Ping; Hintzen, Paul M. N.; Landsman, Wayne B.; Neff, Susan G.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.

    1992-01-01

    The study employs UV images of M81 obtained by the Ultraviolet Imaging Telescope (UIT) during the December 1990 Astro-1 spacelab mission to determine 2490- and 1520-A fluxes from 46 H II regions and global surface brightness profiles. Comparison photometry in the V band is obtained from a ground-based CCD image. UV radial profiles show bulge and exponential disk components, with a local decrease in disk surface brightness inside the inner Lindblad Resonance about 4 arcmin from the nucleus. The V profile shows typical bulge plus exponential disk structure, with no local maximum in the disk. There is little change of UV color across the disk, although there is a strong gradient in the bulge. Observed m152-V colors of the H II regions are consistent with model spectra for young clusters, after dereddening using Av determined from m249-V and the Galactic extinction curve. The value of Av, so determined, is 0.4 mag greater on the average than Av derived from radio continuum and H-alpha fluxes.

  19. Origins Space Telescope: Telescope Design and Instrument Specifications

    NASA Astrophysics Data System (ADS)

    Meixner, Margaret; Carter, Ruth; Leisawitz, David; Dipirro, Mike; Flores, Anel; Staguhn, Johannes; Kellog, James; Roellig, Thomas L.; Melnick, Gary J.; Bradford, Charles; Wright, Edward L.; Zmuidzinas, Jonas; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. The renaming of the mission reflects Origins science goals that will discover and characterize the most distant galaxies, nearby galaxies and the Milky Way, exoplanets, and the outer reaches of our Solar system. This poster will show the preliminary telescope design that will be a large aperture (>8 m in diameter), cryogenically cooled telescope. We will also present the specifications for the spectrographs and imagers over a potential wavelength range of ~10 microns to 1 millimeter. We look forward to community input into this mission definition over the coming year as we work on the concept design for the mission. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. We welcome you to contact the Science and Technology Definition Team (STDT) with your science needs and ideas by emailing us at firsurveyor_info@lists.ipac.caltech.edu.

  20. Preclinical neuroprotective actions of xenon and possible implications for human therapeutics: a narrative review.

    PubMed

    Maze, Mervyn

    2016-02-01

    The purpose of this report is to facilitate an understanding of the possible application of xenon for neuroprotection in critical care settings. This narrative review appraises the literature assessing the efficacy and safety of xenon in preclinical models of acute ongoing neurologic injury. Databases of the published literature (MEDLINE® and EMBASE™) were appraised for peer-reviewed manuscripts addressing the use of xenon in both preclinical models and disease states of acute ongoing neurologic injury. For randomized clinical trials not yet reported, the investigators' declarations in the National Institutes of Health clinical trials website were considered. While not a primary focus of this review, to date, xenon cannot be distinguished as superior for surgical anesthesia over existing alternatives in adults. Nevertheless, studies in a variety of preclinical disease models from multiple laboratories have consistently shown xenon's neuroprotective properties. These properties are enhanced in settings where xenon is combined with hypothermia. Small randomized clinical trials are underway to explore xenon's efficacy and safety in clinical settings of acute neurologic injury where hypothermia is the current standard of care. According to the evidence to date, the neuroprotective efficacy of xenon in preclinical models and its safety in clinical anesthesia set the stage for the launch of randomized clinical trials to determine whether these encouraging neuroprotective findings can be translated into clinical utility.

  1. Comparison of xenon-based anaesthesia compared with total intravenous anaesthesia in high risk surgical patients.

    PubMed

    Bein, B; Turowski, P; Renner, J; Hanss, R; Steinfath, M; Scholz, J; Tonner, P H

    2005-10-01

    Xenon, a noble gas with anaesthetic and analgesic properties, has gained renewed interest due to its favourable physical properties which allow a rapid emergence from anaesthesia. However, high costs limit its use to a subset of patients who may benefit from xenon, thereby offsetting its costs. To date, there are only limited data available on the performance of xenon in high risk patients. We studied 39 patients with ASA physical status III undergoing aortic surgery. The patients were randomly assigned to either a xenon (Xe, n = 20) or a TIVA (T, n = 19) group. Global cardiac performance and myocardial contractility were assessed using transoesophageal echocardiography, and myocardial cell damage with troponin T and CK-MB. Echocardiographic measurements were made prior to xenon administration, following xenon administration, and after clamping of the abdominal aorta, after declamping and at corresponding time points in the TIVA group. Laboratory values were determined repeatedly for up to 72 h. Data were analysed using two-way anova factoring for time and anaesthetic agent or with ancova comparing linear regression lines. No significant differences were found in global myocardial performance, myocardial contractility or laboratory values at any time during the study period. Mean (SEM) duration of stay on the ICU (xenon: 38 +/- 46 vs. TIVA 25 +/- 15 h) or in hospital (xenon: 14 +/- 12 vs. TIVA 10 +/- 6 days) did not differ significantly between the groups. Although xenon has previously been shown to exert superior haemodynamic stability, we were unable to demonstrate an advantage of xenon-based anaesthesia compared to TIVA in high risk surgical patients.

  2. Large Binocular Telescope project

    NASA Astrophysics Data System (ADS)

    Hill, John M.; Salinari, Piero

    2000-08-01

    The Large Binocular Telescope (LBT) Project is a collaboration between institutions in Arizona, Germany, Italy, and Ohio. The telescope will have two 8.4 meter diameter primary mirrors phased on a common mounting with a 22.8 meter baseline. The second of two borosilicate honeycomb primary mirrors for LBT is being case at the Steward Observatory Mirror Lab this year. The baseline optical configuration of LBT includes adaptive infrared secondaries of a Gregorian design. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4 arcminute diameter field-of- view. The interferometric focus combining the light from the two 8.4 meter primaries will reimage the two folded Gregorian focal planes to three central locations. The telescope elevation structure accommodates swing arm spiders which allow rapid interchange of the various secondary and tertiary mirrors as well as prime focus cameras. Maximum stiffness and minimal thermal disturbance were important drivers for the design of the telescope in order to provide the best possible images for interferometric observations. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The telescope structure is being fabricated in Italy by Ansaldo Energia S.p.A. in Milan. After pre-erection in the factory, the telescope will be shipped to Arizona in early 2001. The enclosure is being built on Mt. Graham under the auspices of Hart Construction Management Services of Safford, Arizona. The enclosure will be completed by late 2001 and ready for telescope installation.

  3. First Light for Mimir, a Near-Infrared Wide-Field Imager, Spectrometer, and Polarimeter for the Perkins Telescope

    NASA Astrophysics Data System (ADS)

    Clemens, D. P.; Sarcia, D.; Tollestrup, E. V.; Grabau, A.; Bosh, A.; Buie, M.; Taylor, B.; Dunham, E.

    2004-12-01

    The Mimir instrument completed its 5-year development in our Boston University lab and was delivered this past July to Flagstaff, Arizona and the Perkins telescope for commissioning. Mimir is a "facility-class" multi-function near-infrared imager, spectrometer, and polarimeter developed under a joint program by Boston University and Lowell Observatory scientists, staff, and engineers. It fully covers the wavelength range 1-5 microns onto its 1024x1024 Aladdin III InSb array detector. In its wide-field imaging mode, a 10x10 arcmin field is sampled at 0.6 arcsec per pixel. In its narrow-field mode, the field is 3x3 arcmin, sampled at 0.2 arcsec per pixel. A full complement of JHKsL'M' broad-band filters are present in its four filter wheels. Spectroscopy is accomplished using a matched slit-plate and selector system, three grisms, and special spectroscopy filters (for order suppression). Polarimetry is accomplished using rotating half-wave plates and a fixed wire grid. All of these modes were certified in the lab; all have been certified at the Perkins telescope during the August/September commissioning run. Mode switches are accomplished in a matter of only seconds, making Mimir exceedingly versatile. The poster highlights the designs and components of Mimir as well as examples of images, spectra, and polarimetry from the commissioning telescope runs this past fall. Internal, shared-risk observations with Mimir begin this quarter. Mimir design and development has been funded by NASA, NSF, and the W.M. Keck Foundation.

  4. Measuring double-electron capture with liquid xenon experiments

    NASA Astrophysics Data System (ADS)

    Mei, D.-M.; Marshall, I.; Wei, W.-Z.; Zhang, C.

    2014-01-01

    We investigate the possibilities of observing the decay mode for 124Xe in which two electrons are captured, two neutrinos are emitted, and the final daughter nucleus is in its ground state, using dark matter experiments with liquid xenon. The first upper limit of the decay half-life is calculated to be 1.66 × 1021 years at a 90% confidence level (C.L.) obtained with the published background data from the XENON100 experiment. Employing a known background model from the large underground xenon (LUX) experiment, we predict that the detection of double-electron capture of 124Xe to the ground state of 124Te with LUX will have approximately 115 events, assuming a half-life of 2.9 × 1021 years. We conclude that measuring 124Xe 2ν double-electron capture to the ground state of 124Te can be performed more precisely with the proposed LUX-Zeplin (LZ) experiment.

  5. Sub-arcsec X-Ray Telescope for Imaging The Solar Corona In the 0.25 - 1.2 keV Band

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis; Cash, Webster; Jelsma, Schuyler; Farmer, Jason

    1996-01-01

    We have developed an X-ray telescope that uses a new technique for focusing X-rays with grazing incidence optics. The telescope was built with spherical optics for all of its components, utilizing the high quality surfaces obtainable when polishing spherical (as opposed to aspherical) optics. We tested the prototype X-ray telescope in the 300 meter vacuum pipe at White Sands Missile Range, NM. The telescope features 2 degee graze angles with tungsten coatings, yielding a bandpass of 0.25-1.5 keV with a peak effective area of 0.8 sq cm at 0.83 keV. Results from X-ray testing at energies of 0.25 keV and 0.93 keV (C-K and Cu-L) verify 0.5 arcsecond performance at 0.93 keV. Results from modeling the X-ray telescope's response to the Sun show that the current design would be capable of recording 10 half arcsecond images of a solar active region during a 300 second NASA sounding rocket flight.

  6. Five-hundred-meter Aperture Spherical Telescope, China

    NASA Image and Video Library

    2016-09-07

    The Five-hundred-meter Aperture Spherical Telescope (FAST) is a radio telescope in China's Guizhou Province. When it is completed in September, it will be the world's second largest radio telescope, with a diameter of 500m.The largest telescope is the operating Russian RATAN-600, with a diameter of 576m. The image was acquired April 14, 2013, covers an area of 6.2 by 8.2 km, and is located at 25.7 degrees north, 106.9 degrees east. http://photojournal.jpl.nasa.gov/catalog/PIA20986

  7. Material radioassay and selection for the XENON1T dark matter experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Di Gangi, P.; Di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Le Calloch, M.; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Laubenstein, M.; Nisi, S.

    2017-12-01

    The XENON1T dark matter experiment aims to detect weakly interacting massive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations.

  8. An improved interatomic potential for xenon in UO2: a combined density functional theory/genetic algorithm approach.

    PubMed

    Thompson, Alexander E; Meredig, Bryce; Wolverton, C

    2014-03-12

    We have created an improved xenon interatomic potential for use with existing UO2 potentials. This potential was fit to density functional theory calculations with the Hubbard U correction (DFT + U) using a genetic algorithm approach called iterative potential refinement (IPR). We examine the defect energetics of the IPR-fitted xenon interatomic potential as well as other, previously published xenon potentials. We compare these potentials to DFT + U derived energetics for a series of xenon defects in a variety of incorporation sites (large, intermediate, and small vacant sites). We find the existing xenon potentials overestimate the energy needed to add a xenon atom to a wide set of defect sites representing a range of incorporation sites, including failing to correctly rank the energetics of the small incorporation site defects (xenon in an interstitial and xenon in a uranium site neighboring uranium in an interstitial). These failures are due to problematic descriptions of Xe-O and/or Xe-U interactions of the previous xenon potentials. These failures are corrected by our newly created xenon potential: our IPR-generated potential gives good agreement with DFT + U calculations to which it was not fitted, such as xenon in an interstitial (small incorporation site) and xenon in a double Schottky defect cluster (large incorporation site). Finally, we note that IPR is very flexible and can be applied to a wide variety of potential forms and materials systems, including metals and EAM potentials.

  9. Calculation of characteristics of compressed gaseous xenon gamma-ray detectors

    NASA Astrophysics Data System (ADS)

    Komarov, V. B.; Dmitrenko, V. V.; Ulin, S. E.; Uteshev, Z. M.

    1992-12-01

    Energy resolution and pulse distribution of a compressed gaseous xenon cylindrical detector were calculated. The analytical calculation took into account gamma-ray energy, fluctuation of electron-ion pairs, electron distribution, recombination, and H excess. The calculation was performed for a xenon density less than 0.6 g/cm and H excess less than 2 percent.

  10. New 50-m-class single-dish telescope: Large Submillimeter Telescope (LST)

    NASA Astrophysics Data System (ADS)

    Kawabe, Ryohei; Kohno, Kotaro; Tamura, Yoichi; Takekoshi, Tatsuya; Oshima, Tai; Ishii, Shun

    2016-08-01

    We report on a plan to construct a 50-m-class single-dish telescope, the Large Submillimeter Telescope (LST). The conceptual design and key science behind the LST are presented, together with its tentative specifications. This telescope is optimized for wide-area imaging and spectroscopic surveys in the 70-420 GHz frequency range, which spans the main atmospheric windows at millimeter and submillimeter wavelengths for good observation sites such as the Atacama Large Millimeter/submillimeter Array (ALMA) site in Chile. We also target observations at higher frequencies of up to 1 THz, using an inner high-precision surface. Active surface control is required in order to correct gravitational and thermal deformations of the surface, and will be useful for correction of the wind-load deformation. The LST will facilitate new discovery spaces such as wide-field imaging with both continuum and spectral lines, along with new developments for time-domain science. Through exploitation of its synergy with ALMA and other telescopes, the LST will contribute to research on a wide range of topics in the fields of astronomy and astrophysics, e.g., astrochemistry, star formation in our Galaxy and galaxies, the evolution of galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect, the search for transients such as γ-ray burst reverse shocks produced during the epoch of re-ionization, electromagnetic follow up of detected gravitational wave sources, and examination of general relativity in the vicinity of super massive black holes via submillimeter very-long-baseline interferometry (VLBI).

  11. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images

    NASA Technical Reports Server (NTRS)

    Barrett, Todd K.; Sandler, David G.

    1993-01-01

    An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 micron rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.

  12. Astro-1 ultraviolet imaging of the 30 Doradus and SN 1987A fields with the Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Cheng, Kwang-Ping; Michalitsianos, Andrew G.; Hintzen, Paul; Bohlin, Ralph C.; O'Connell, Robert W.; Cornett, Robert H.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.

    1992-01-01

    A preliminary analysis of Ultraviolet Imaging Telescope (UIT) images in the 30 Doradus region is reported. Photometry was obtained for the 30 Doradus cluster and its UV-bright core, R136, in various UIT bandpasses. It is found that about 14 percent of the total FUV light and about 16 percent of the total near-UV light of the 3-arcmin diameter 30 Doradus cluster originates from the region within 5 arcsec of R136. The UV magnitudes and colors of R136 and other known O and Wolf-Rayet WN stars in the same field were measured. The UIT data, combined with published observations at longer wavelengths, indicate that R136a1, the brightest component of R136, is not a supermassive stars. A qualitative comparison between the UIT images, Einstein X-ray data, IRAS HiRes images, and ground-based CCD images in forbidden O III 5007 A, H-alpha, B, R, U, and Stromgren u is performed. The extended diffuse UV feature detected in the UIT images is correlated with the IR structure seen in the IRAS 60-micron HiRes image, which suggests the existence of large amounts of widely distributed dust in this region.

  13. Astro-1 ultraviolet imaging of the 30 Doradus and SN 1987A fields with the Ultraviolet Imaging Telescope

    NASA Astrophysics Data System (ADS)

    Cheng, Kwang-Ping; Michalitsianos, Andrew G.; Hintzen, Paul; Bohlin, Ralph C.; O'Connell, Robert W.; Cornett, Robert H.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.

    1992-08-01

    A preliminary analysis of Ultraviolet Imaging Telescope (UIT) images in the 30 Doradus region is reported. Photometry was obtained for the 30 Doradus cluster and its UV-bright core, R136, in various UIT bandpasses. It is found that about 14 percent of the total FUV light and about 16 percent of the total near-UV light of the 3-arcmin diameter 30 Doradus cluster originates from the region within 5 arcsec of R136. The UV magnitudes and colors of R136 and other known O and Wolf-Rayet WN stars in the same field were measured. The UIT data, combined with published observations at longer wavelengths, indicate that R136a1, the brightest component of R136, is not a supermassive stars. A qualitative comparison between the UIT images, Einstein X-ray data, IRAS HiRes images, and ground-based CCD images in forbidden O III 5007 A, H-alpha, B, R, U, and Stromgren u is performed. The extended diffuse UV feature detected in the UIT images is correlated with the IR structure seen in the IRAS 60-micron HiRes image, which suggests the existence of large amounts of widely distributed dust in this region.

  14. Early outgassing of Mars supported by differential water solubility of iodine and xenon

    NASA Technical Reports Server (NTRS)

    Musselwhite, Donald S.; Drake, Michael J.; Swindle, Timothy D.

    1991-01-01

    The Martian atmosphere has a high X-129/Xe-132 ratio compared to the Martian mantle. As Xe-129 is the daughter product of the extinct nuclide I-129, a means of fractionating iodine from xenon early in Martian history appears necessary to account for the X-129/Xe-132 ratios of its known reservoirs. A model is presented here to account for the Marian xenon data which relies on the very different solubilities of xenon and iodine in water to fractionate them after outgassing. Atmospheric xenon is lost by impact erosion during heavy bombardment, followed by release of Xe-129 produced from I-129 decay in the crust.

  15. Noble Gas Xenon Is a Novel Adenosine Triphosphate-sensitive Potassium Channel Opener

    PubMed Central

    Bantel, Carsten; Maze, Mervyn; Trapp, Stefan

    2010-01-01

    Background Adenosine triphosphate-sensitive potassium (KATP) channels in brain are involved in neuroprotective mechanisms. Pharmacologic activation of these channels is seen as beneficial, but clinical exploitation by using classic K+ channel openers is hampered by their inability to cross the blood–brain barrier. This is different with the inhalational anesthetic xenon, which recently has been suggested to activate KATP channels; it partitions freely into the brain. Methods To evaluate the type and mechanism of interaction of xenon with neuronal-type KATP channels, these channels, consisting of Kir6.2 pore-forming subunits and sulfonylurea receptor-1 regulatory subunits, were expressed in HEK293 cells and whole cell, and excised patch-clamp recordings were performed. Results Xenon, in contrast to classic KATP channel openers, acted directly on the Kir6.2 subunit of the channel. It had no effect on the closely related, adenosine triphosphate (ATP)-regulated Kir1.1 channel and failed to activate an ATP-insensitive mutant version of Kir6.2. Furthermore, concentration–inhibition curves for ATP obtained from inside-out patches in the absence or presence of 80% xenon revealed that xenon reduced the sensitivity of the KATP channel to ATP. This was reflected in an approximately fourfold shift of the concentration causing half-maximal inhibition (IC50) from 26 ± 4 to 96 ± 6 μm. Conclusions Xenon represents a novel KATP channel opener that increases KATP currents independently of the sulfonylurea receptor-1 subunit by reducing ATP inhibition of the channel. Through this action and by its ability to readily partition across the blood–brain barrier, xenon has considerable potential in clinical settings of neuronal injury, including stroke. PMID:20179498

  16. Adaptive optics using a MEMS deformable mirror for a segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Miyamura, Norihide

    2017-09-01

    For small satellite remote sensing missions, a large aperture telescope more than 400mm is required to realize less than 1m GSD observations. However, it is difficult or expensive to realize the large aperture telescope using a monolithic primary mirror with high surface accuracy. A segmented mirror telescope should be studied especially for small satellite missions. Generally, not only high accuracy of optical surface but also high accuracy of optical alignment is required for large aperture telescopes. For segmented mirror telescopes, the alignment is more difficult and more important. For conventional systems, the optical alignment is adjusted before launch to achieve desired imaging performance. However, it is difficult to adjust the alignment for large sized optics in high accuracy. Furthermore, thermal environment in orbit and vibration in a launch vehicle cause the misalignments of the optics. We are developing an adaptive optics system using a MEMS deformable mirror for an earth observing remote sensing sensor. An image based adaptive optics system compensates the misalignments and wavefront aberrations of optical elements using the deformable mirror by feedback of observed images. We propose the control algorithm of the deformable mirror for a segmented mirror telescope by using of observed image. The numerical simulation results and experimental results show that misalignment and wavefront aberration of the segmented mirror telescope are corrected and image quality is improved.

  17. Sub-anesthetic Xenon Increases Erythropoietin Levels in Humans: A Randomized Controlled Trial.

    PubMed

    Stoppe, Christian; Ney, Julia; Brenke, Martin; Goetzenich, Andreas; Emontzpohl, Christoph; Schälte, Gereon; Grottke, Oliver; Moeller, Manfred; Rossaint, Rolf; Coburn, Mark

    2016-11-01

    The licensed anesthetic xenon, which exerts organ protective properties, was recently added by the World Anti-Doping Agency to the list of prohibited substances. Xenon is supposed to trigger the production of hypoxia-inducible factor 1α (HIF-1α) and subsequently erythropoietin, but data are limited to in vivo experimental work. Therefore we evaluated the effect of xenon on erythropoietin levels in healthy persons. Twenty-four healthy volunteers were randomly assigned either to a group spontaneously breathing xenon 30 % (Xe/O 2 30 %/60 %) or a group breathing control gas (N 2 /O 2 40 %/60 %) for 45 min. Primary outcome parameters were erythropoietin levels at several time-points after exposure. Secondary outcome parameters were serum levels of testosterone, cytokines, and growth factors as well as concentrations of xenon in blood and exhalation samples measured at several time-points after exposure. In addition, hemodynamic safety parameters were monitored during exposure. The administration of xenon significantly increased erythropoietin levels 8 h after exposure (1.34 [±0.368]; p = 0.008), peaking at 24 h compared to the baseline values (1.45 [±0.498]; p = 0.01) and remained traceable in blood and exhalation probes until 24 h after exposure. In contrast, no significant change was observed in the control group. Measurement of stromal cell-derived factor 1 (SDF-1) revealed a significant increase of SDF-1 levels (p = 0.005), whereas no differences were observed with respect to growth factors, cytokines, or androgens. In an in vitro chemotaxis assay, endothelial progenitor cells (EPCs) showed a trend towards increased migration in serum samples received from participants after xenon exposure (p = 0.080). The present study presents first evidence about a xenon-induced effect on increased erythropoietin levels in healthy volunteers. The study was registered at the European Medicines Agency (EudraCT-number: 2014-000973-38) and at Clinical

  18. Can xenon in water inhibit ice growth? Molecular dynamics of phase transitions in water-Xe system.

    PubMed

    Artyukhov, Vasilii I; Pulver, Alexander Yu; Peregudov, Alex; Artyuhov, Igor

    2014-07-21

    Motivated by recent experiments showing the promise of noble gases as cryoprotectants, we perform molecular dynamics modeling of phase transitions in water with xenon under cooling. We follow the structure and dynamics of xenon water solution as a function of temperature. Homogeneous nucleation of clathrate hydrate phase is observed and characterized. As the temperature is further reduced we observe hints of dissociation of clathrate due to stronger hydrophobic hydration, pointing towards a possible instability of clathrate at cryogenic temperatures and conversion to an amorphous phase comprised of "xenon + hydration shell" Xe·(H2O)21.5 clusters. Simulations of ice-xenon solution interface in equilibrium and during ice growth reveal the effects of xenon on the ice-liquid interface, where adsorbed xenon causes roughening of ice surface but does not preferentially form clathrate. These results provide evidence against the ice-blocker mechanism of xenon cryoprotection.

  19. Xenon treatment attenuates early renal allograft injury associated with prolonged hypothermic storage in rats.

    PubMed

    Zhao, Hailin; Yoshida, Akira; Xiao, Wei; Ologunde, Rele; O'Dea, Kieran P; Takata, Masao; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2013-10-01

    Prolonged hypothermic storage elicits severe ischemia-reperfusion injury (IRI) to renal grafts, contributing to delayed graft function (DGF) and episodes of acute immune rejection and shortened graft survival. Organoprotective strategies are therefore needed for improving long-term transplant outcome. The aim of this study is to investigate the renoprotective effect of xenon on early allograft injury associated with prolonged hypothermic storage. Xenon exposure enhanced the expression of heat-shock protein 70 (HSP-70) and heme oxygenase 1 (HO-1) and promoted cell survival after hypothermia-hypoxia insult in human proximal tubular (HK-2) cells, which was abolished by HSP-70 or HO-1 siRNA. In the brown Norway to Lewis rat renal transplantation, xenon administered to donor or recipient decreased the renal tubular cell death, inflammation, and MHC II expression, while delayed graft function (DGF) was therefore reduced. Pathological changes associated with acute rejection, including T-cell, macrophage, and fibroblast infiltration, were also decreased with xenon treatment. Donors or recipients treated with xenon in combination with cyclosporin A had prolonged renal allograft survival. Xenon protects allografts against delayed graft function, attenuates acute immune rejection, and enhances graft survival after prolonged hypothermic storage. Furthermore, xenon works additively with cyclosporin A to preserve post-transplant renal function.

  20. [Effects of xenon preconditioning against ischemia/reperfusion injury and oxidative stress in immature heart].

    PubMed

    Li, Qian; Lian, Chun-Wei; Fang, Li-Qun; Liu, Bin; Yang, Bo

    2014-09-01

    To investigate whether xenon preconditioning (PC) could protect immature myocardium against ischemia-reperfusion (I/R) injury in a dose-dependent manner and clarify the role of xenon PC on oxidative stress. Forty-eight isolated perfused immature rabbit hearts were randomly divided into four groups (n = 12): The sham group had the hearts perfused continuously for 300 min. In I/R group, the hearts were subjected to 60 min perfusion followed by 60 min ischemia and 180 min reperfusion. In 1 minimum alveolar concentration (MAC) and 0.5 MAC xenon PC groups, the hearts were preconditioned with 1 MAC or 0.5 MAC xenon respectively, following 60 min ischemia and 180 min reperfusion. The cardiac function, myocardial infarct size, mitochondrial structure, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in each group were determined after reperfusion. Compared with I/R group, both 1 MAC and 0. 5 MAC xenon preconditioning significantly improved cardiac function (P < 0.01), reduced myocardial infarct size (P < 0.01) and mitochondrial damage, increased SOD activity and decreased MDA level (P < 0.01). There were no differences between 1 MAC group and 0.5 MAC xenon group (P > 0.05). Xenon preconditioning at 0. 5 and 1 MAC produce similar cardioprotective effects against I/R injury in isolated perfused immature heart.

  1. Xenon preconditioning: the role of prosurvival signaling, mitochondrial permeability transition and bioenergetics in rats.

    PubMed

    Mio, Yasushi; Shim, Yon Hee; Richards, Ebony; Bosnjak, Zeljko J; Pagel, Paul S; Bienengraeber, Martin

    2009-03-01

    Similar to volatile anesthetics, the anesthetic noble gas xenon protects the heart from ischemia/reperfusion injury, but the mechanisms responsible for this phenomenon are not fully understood. We tested the hypothesis that xenon-induced cardioprotection is mediated by prosurvival signaling kinases that target mitochondria. Male Wistar rats instrumented for hemodynamic measurements were subjected to a 30 min left anterior descending coronary artery occlusion and 2 h reperfusion. Rats were randomly assigned to receive 70% nitrogen/30% oxygen (control) or three 5-min cycles of 70% xenon/30% oxygen interspersed with the oxygen/nitrogen mixture administered for 5 min followed by a 15 min memory period. Myocardial infarct size was measured using triphenyltetrazolium staining. Additional hearts from control and xenon-pretreated rats were excised for Western blotting of Akt and glycogen synthase kinase 3 beta (GSK-3beta) phosphorylation and isolation of mitochondria. Mitochondrial oxygen consumption before and after hypoxia/reoxygenation and mitochondrial permeability transition pore opening were determined. Xenon significantly (P < 0.05) reduced myocardial infarct size compared with control (32 +/- 4 and 59% +/- 4% of the left ventricular area at risk; mean +/- sd) and enhanced phosphorylation of Akt and GSK-3beta. Xenon pretreatment preserved state 3 respiration of isolated mitochondria compared with the results obtained in the absence of the gas. The Ca(2+) concentration required to induce mitochondrial membrane depolarization was larger in the presence compared with the absence of xenon pretreatment (78 +/- 17 and 56 +/- 17 microM, respectively). The phosphoinositol-3-kinase-kinase inhibitor wortmannin blocked the effect of xenon on infarct size and respiration. These results indicate that xenon preconditioning reduces myocardial infarct size, phosphorylates Akt, and GSK-3beta, preserves mitochondrial function, and inhibits Ca(2+)-induced mitochondrial permeability

  2. Requirements for Xenon International

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, James C.; Ely, James H.; Haas, Derek A.

    2015-12-30

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  3. Monitoring xenon purity in the LUX detector with a mass spectrometry system

    NASA Astrophysics Data System (ADS)

    Balajthy, Jon; LUX Experiment Collaboration

    2015-04-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. To monitor for radioactive impurities such as krypton and impurities which limit charge yield such as oxygen, LUX uses a xenon sampling system consisting of a mass spectrometer and a liquid nitrogen cold trap. The cold trap separates the gaseous impurities from a small sample of xenon and allows them to pass to the mass spectrometer for analysis. We report here on results from the LUX xenon sampling program. We also report on methods to enhance the sensitivity of the cold trap technique in preparation for the next-generation LUX-ZEPLIN experiment which will have even more stringent purity requirements.

  4. A technique for administering xenon gas anesthesia during surgical procedures in mice.

    PubMed

    Ruder, Arne Mathias; Schmidt, Michaela; Ludiro, Alessia; Riva, Marco A; Gass, Peter

    2014-11-01

    Carrying out invasive procedures in animals requires the administration of anesthesia. Xenon gas offers advantages as an anesthetic agent compared with other agents, such as its protection of the brain and heart from hypoxia-induced damage. The high cost of xenon gas has limited its use as an anesthetic in animal experiments, however. The authors designed and constructed simple boxes for the induction and maintenance of xenon gas and isoflurane anesthesia in small rodents in order to minimize the amount of xenon gas that is wasted. While using their anesthesia delivery system to anesthetize pregnant mice undergoing caesarean sections, they measured the respiratory rates of the anesthetized mice, the survival of the pups and the percentages of oxygen and carbon dioxide within the system to confirm the system's safety.

  5. In Vivo Measurement in Pigs of Wash-In Kinetics of Xenon at its Site of Action.

    PubMed

    Froeba, Gebhard; Adolph, Oliver

    2016-01-01

    Xenon (Xe) in many respects is an ideal anaesthetic agent. Its blood/gas partition coefficient is lower than that of any other anaesthetic, enabling rapid induction of and emergence from anaesthesia. While the whole body kinetics during wash-in of inhalational anaesthesia is well known, data describing the pharmacokinetics of xenon in the cerebral compartment at the site of action are still largely missing. In order to illuminate xenon's cerebral pharmacokinetics, we anaesthetised five pigs and measured arterial, mixed- and sagittal sinus-venous blood, as well as end-expiratory gas concentrations of xenon by gas chromatography-mass spectrometry (GCMS) up to 30 minutes after starting the anaesthetic gas mixture. Despite xenon's fast onset of effect the half-time for equilibration between xenon concentration in arterial blood and at the site of action is measured to be 1.49 ± 0.04 minutes versus 3.91 ± 0.1 minutes. Successful loading of xenon in the brain during inhalational anesthesia was accomplished after approximately 15 minutes although the end-expiratory xenon concentration reached a plateau after 7 minutes. Thus cerebral xenon uptake rate is only moderate, xenon fast onset of action being largely due to its extremely fast alveolar uptake. To ensure safety and precise control during anaesthesia we need a profound knowledge about to what extent the measured end-tidal concentrations reflect the drug concentrations in the target tissue. The results of this study expand our knowledge about the temporal characteristics of xenon´s pharmacokinetics at its site of action and provide the basis for appropriate clinical protocols and experimental designs of future studies.

  6. Bringing Perfect Vision to the Daniel K. Inouye Solar Telescope

    NASA Astrophysics Data System (ADS)

    Matijevich, Russ; Johansson, Erik; Johnson, Luke; Cavaco, Jeff; National Solar Observatory

    2016-01-01

    The world's largest ground-based solar telescope is one step closer to operation with the acceptance of the deformable mirror engineered by AOA Xinetics, a Northrop Grumman Corporation company. The Daniel K. Inouye Solar Telescope (DKIST), currently under construction in Haleakala, Hawaii, will offer unprecedented high-resolution images of the sun using the latest adaptive optics technology to provide its distortion-free imaging.Led by the National Solar Observatory (NSO) and the Association of Universities for Research in Astronomy (AURA), the Inouye Solar Telescope will help scientists better understand how magnetic fields affect the physical properties of the Sun, what roles they play in our solar system and how they affect Earth.Ground-based telescopes, whether observing the sun or the night sky must contend with atmospheric turbulence that acts as a flexible lens, constantly reshaping observed images. This turbulence makes research on solar activity difficult and drives the need for the latest adaptive optics technology.To provide DKIST with the distortion-free imaging it requires, AOA Xinetics designed a deformable mirror with 1,600 actuators, four times the normal actuator density. This deformable mirror (DM) is instrumental in removing all of the atmospheric blurriness that would otherwise limit the telescope's performance. The mirror also has an internal thermal management system to handle the intense solar energy coming from DKIST's telescope. This poster provides the history behind this incredible success story.

  7. Intraoperative Fluorescence Cerebral Angiography by Laser Surgical Microscopy: Comparison With Xenon Microscopy and Simultaneous Observation of Cerebral Blood Flow and Surrounding Structures.

    PubMed

    Ito, Yuhei; Suzuki, Kyouichi; Ichikawa, Tsuyoshi; Watanabe, Yoichi; Sato, Taku; Sakuma, Jun; Saito, Kiyoshi

    2018-06-12

    Laser surgical microscopes should enable uniform illumination of the operative field, and require less luminous energy compared with existing xenon surgical microscopes. To examine the utility of laser illumination in fluorescence cerebral angiography. Fluorescein sodium (fluorescein) was used as a fluorescent dye. We first compared the clarity of cerebral blood flow images collected by fluorescence angiography between the laser illumination and xenon illumination methods. We then assessed use of the laser illuminator for simultaneous observation of blood flow and surrounding structures during fluorescence angiography. Furthermore, the study was designed to evaluate usefulness of the thus determined excitation light in clinical cases. Fluorescence angiography using blue light laser for excitation provided higher clarity and contrast blood flow images compared with using blue light generated from a xenon lamp. Further, illumination with excitation light consisting of a combination of 3 types of laser (higher level of blue light, no green light, and lower level of red light) enabled both blood flow and surrounding structures to be observed through the microscope directly by the surgeon. Laser-illuminated fluorescence angiography provides high clarity and contrast images of cerebral blood flow. Further, a laser providing strong blue light and weak red light for excitation light enables simultaneous visual observation of fluorescent blood flow and surrounding structures by the surgeon using a surgical microscope. Overall, these data suggest that laser surgical microscopes are useful for both ordinary operative manipulations and fluorescence angiography.

  8. Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures

    DOE PAGES

    Seoung, Donghoon; Cynn, Hyunchae; Park, Changyong; ...

    2014-09-01

    Pressure drastically alters the chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained under ambient conditions. Particularly exciting is the high-pressure chemistry of xenon, which is known to react with hydrogen and ice at high pressures and form stable compounds. Here, we show that Ag 16Al 16Si 24O 8·16H 2O (Ag-natrolite) irreversibly inserts xenon into its micropores at 1.7 GPa and 250 °C, while Ag + is reduced to metallic Ag and possibly oxidized to Ag 2+. In contrast to krypton, xenon is retained within themore » pores of this zeolite after pressure release and requires heat to desorb. This irreversible insertion and trapping of xenon in Ag-natrolite under moderate conditions sheds new light on chemical reactions that could account for the xenon deficiency relative to argon observed in terrestrial and Martian atmospheres.« less

  9. Hartman Testing of X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Biskasch, Michael; Zhang, William W.

    2013-01-01

    Hartmann testing of x-ray telescopes is a simple test method to retrieve and analyze alignment errors and low-order circumferential errors of x-ray telescopes and their components. A narrow slit is scanned along the circumference of the telescope in front of the mirror and the centroids of the images are calculated. From the centroid data, alignment errors, radius variation errors, and cone-angle variation errors can be calculated. Mean cone angle, mean radial height (average radius), and the focal length of the telescope can also be estimated if the centroid data is measured at multiple focal plane locations. In this paper we present the basic equations that are used in the analysis process. These equations can be applied to full circumference or segmented x-ray telescopes. We use the Optical Surface Analysis Code (OSAC) to model a segmented x-ray telescope and show that the derived equations and accompanying analysis retrieves the alignment errors and low order circumferential errors accurately.

  10. Fish-Eye Observing with Phased Array Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Wijnholds, S. J.

    The radio astronomical community is currently developing and building several new radio telescopes based on phased array technology. These telescopes provide a large field-of-view, that may in principle span a full hemisphere. This makes calibration and imaging very challenging tasks due to the complex source structures and direction dependent radio wave propagation effects. In this thesis, calibration and imaging methods are developed based on least squares estimation of instrument and source parameters. Monte Carlo simulations and actual observations with several prototype show that this model based approach provides statistically and computationally efficient solutions. The error analysis provides a rigorous mathematical framework to assess the imaging performance of current and future radio telescopes in terms of the effective noise, which is the combined effect of propagated calibration errors, noise in the data and source confusion.

  11. Relay telescope for high power laser alignment system

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2006-09-19

    A laser system includes an optical path having an intracavity relay telescope with a telescope focal point for imaging an output of the gain medium between an image location at or near the gain medium and an image location at or near an output coupler for the laser system. A kinematic mount is provided within a vacuum chamber, and adapted to secure beam baffles near the telescope focal point. An access port on the vacuum chamber is adapted for allowing insertion and removal of the beam baffles. A first baffle formed using an alignment pinhole aperture is used during alignment of the laser system. A second tapered baffle replaces the alignment aperture during operation and acts as a far-field baffle in which off angle beams strike the baffle a grazing angle of incidence, reducing fluence levels at the impact areas.

  12. Bispectral index, entropy, and quantitative electroencephalogram during single-agent xenon anesthesia.

    PubMed

    Laitio, Ruut M; Kaskinoro, Kimmo; Särkelä, Mika O K; Kaisti, Kaike K; Salmi, Elina; Maksimow, Anu; Långsjö, Jaakko W; Aantaa, Riku; Kangas, Katja; Jääskeläinen, Satu; Scheinin, Harry

    2008-01-01

    The aim was to evaluate the performance of anesthesia depth monitors, Bispectral Index (BIS) and Entropy, during single-agent xenon anesthesia in 17 healthy subjects. After mask induction with xenon and intubation, anesthesia was continued with xenon only. BIS, State Entropy and Response Entropy, and electroencephalogram were monitored throughout induction, steady-state anesthesia, and emergence. The performance of BIS, State Entropy, and Response Entropy were evaluated with prediction probability, sensitivity, and specificity analyses. The power spectrum of the raw electroencephalogram signal was calculated. The mean (SD) xenon concentration during anesthesia was 66.4% (2.4%). BIS, State Entropy, and Response Entropy demonstrated low prediction probability values at loss of response (0.455, 0.656, and 0.619) but 1 min after that the values were high (0.804, 0.941, and 0.929). Thereafter, equally good performance was demonstrated for all indices. At emergence, the prediction probability values to distinguish between steady-state anesthesia and return of response for BIS, State Entropy, and Response Entropy were 0.988, 0.892, and 0.992. No statistical differences between the performances of the monitors were observed. Quantitative electroencephalogram analyses showed generalized increase in total power (P < 0.001), delta (P < 0.001) and theta activity (P < 0.001), and increased alpha activity (P = 0.003) in the frontal brain regions. Electroencephalogram-derived depth of sedation indices BIS and Entropy showed a delay to detect loss of response during induction of xenon anesthesia. Both monitors performed well in distinguishing between conscious and unconscious states during steady-state anesthesia. Xenon-induced changes in electroencephalogram closely resemble those induced by propofol.

  13. Neither xenon nor fentanyl induces neuroapoptosis in the newborn pig brain.

    PubMed

    Sabir, Hemmen; Bishop, Sarah; Cohen, Nicki; Maes, Elke; Liu, Xun; Dingley, John; Thoresen, Marianne

    2013-08-01

    Some inhalation anesthetics increase apoptotic cell death in the developing brain. Xenon, an inhalation anesthetic, increases neuroprotection when combined with therapeutic hypothermia after hypoxic-ischemic brain injury in newborn animals. The authors, therefore, examined whether there was any neuroapoptotic effect of breathing 50% xenon with continuous fentanyl sedation for 24 h at normothermia or hypothermia on newborn pigs. Twenty-six healthy pigs (<24-h old) were randomized into four groups: (1) 24  h of 50% inhaled xenon with fentanyl at hypothermia (Trec = 33.5 °C), (2) 24 h of 50% inhaled xenon with fentanyl at normothermia (Trec = 38.5 °C), (3) 24 h of fentanyl at normothermia, or (4) nonventilated juvenile controls at normothermia. Five additional nonrandomized pigs inhaled 2% isoflurane at normothermia for 24 h to verify any proapoptotic effect of inhalation anesthetics in our model. Pathological cells were morphologically assessed in cortex, putamen, hippocampus, thalamus, and white matter. To quantify the findings, immunostained cells (caspase-3 and terminal deoxynucleotidyl transferase-mediated deoxyuridine-triphosphate nick-end labeling) were counted in the same brain regions. For groups (1) to (4), the total number of apoptotic cells was less than 5 per brain region, representing normal developmental neuroapoptosis. After immunostaining and cell counting, regression analysis showed that neither 50% xenon with fentanyl nor fentanyl alone increased neuroapoptosis. Isoflurane caused on average a 5- to 10-fold increase of immunostained cells. At normothermia or hypothermia, neither 24 h of inhaled 50% xenon with fentanyl sedation nor fentanyl alone induces neuroapoptosis in the neonatal pig brain. Breathing 2% isoflurane increases neuroapoptosis in neonatal pigs.

  14. Bokeh mirror alignment for Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Domke, M.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Lustermann, W.; Mannheim, K.; Mueller, S. A.; Neise, D.; Neronov, A.; Noethe, M.; Overkemping, A.-K.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Toscano, S.; Vogler, P.; Walter, R.; Wilbert, A.

    2016-09-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment remains a challenge. Here we present a simple, yet extendable method, to align a segmented reflector using its Bokeh. Bokeh alig nment does not need a star or good weather nights but can be done even during daytime. Bokeh alignment optimizes the facet orientations by comparing the segmented reflectors Bokeh to a predefined template. The optimal Bokeh template is highly constricted by the reflector's aperture and is easy accessible. The Bokeh is observed using the out of focus image of a near by point like light source in a distance of about 10 focal lengths. We introduce Bokeh alignment on segmented reflectors and demonstrate it on the First Geiger-mode Avalanche Cherenkov Telescope (FACT) on La Palma, Spain.

  15. Hubble Space Telescope Resolves Volcanoes on Io

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This picture is a composite of a black and white near infrared image of Jupiter and its satellite Io and a color image of Io at shorter wavelengths taken at almost the same time on March 5, 1994. These are the first images of a giant planet or its satellites taken by NASA's Hubble Space Telescope (HST) since the repair mission in December 1993.

    Io is too small for ground-based telescopes to see the surface details. The moon's angular diameter of one arc second is at the resolution limit of ground based telescopes.

    Many of these markings correspond to volcanoes that were first revealed in 1979 during the Voyager spacecraft flyby of Jupiter. Several of the volcanoes periodically are active because Io is heated by tides raised by Jupiter's powerful gravity.

    The volcano Pele appears as a dark spot surrounded by an irregular orange oval in the lower part of the image. The orange material has been ejected from the volcano and spread over a huge area. Though the volcano was first discovered by Voyager, the distinctive orange color of the volcanic deposits is a new discovery in these HST images. (Voyager missed it because its cameras were not sensitive to the near-infrared wavelengths where the color is apparent). The sulfur and sulfur dioxide that probably dominate Io's surface composition cannot produce this orange color, so the Pele volcano must be generating material with a more unusual composition, possibly rich in sodium.

    The Jupiter image, taken in near-infrared light, was obtained with HST's Wide Field and Planetary Camera in wide field mode. High altitude ammonia crystal clouds are bright in this image because they reflect infrared light before it is absorbed by methane in Jupiter's atmosphere. The most prominent feature is the Great Red Spot, which is conspicuous because of its high clouds. A cap of high-altitude haze appears at Jupiter's south pole.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the

  16. Xenon depresses aEEG background voltage activity whilst maintaining cardiovascular stability in sedated healthy newborn pigs.

    PubMed

    Sabir, Hemmen; Wood, Thomas; Gill, Hannah; Liu, Xun; Dingley, John; Thoresen, Marianne

    2016-04-15

    Changes in electroencephalography (EEG) voltage range are used to monitor the depth of anaesthesia, as well as predict outcome after hypoxia-ischaemia in neonates. Xenon is being investigated as a potential neuroprotectant after hypoxic-ischaemic brain injury, but the effect of Xenon on EEG parameters in children or neonates is not known. This study aimed to examine the effect of 50% inhaled Xenon on background amplitude-integrated EEG (aEEG) activity in sedated healthy newborn pigs. Five healthy newborn pigs, receiving intravenous fentanyl sedation, were ventilated for 24 h with 50%Xenon, 30%O2 and 20%N2 at normothermia. The upper and lower voltage-range of the aEEG was continuously monitored together with cardiovascular parameters throughout a 1 h baseline period with fentanyl sedation only, followed by 24 h of Xenon administration. The median (IQR) upper and lower aEEG voltage during 1 h baseline was 48.0 μV (46.0-50.0) and 25.0 μV (23.0-26.0), respectively. The median (IQR) aEEG upper and lower voltage ranges were significantly depressed to 21.5 μV (20.0-26.5) and 12.0 μV (12.0-16.5) from 10 min after the onset of 50% Xenon administration (p=0.002). After the initial Xenon induced depression in background aEEG voltage, no further aEEG changes were seen over the following 24h of ventilation with 50% xenon under fentanyl sedation. Mean arterial blood pressure and heart rate remained stable. Mean arterial blood pressure and heart rate were not significantly influenced by 24h Xenon ventilation. 50% Xenon rapidly depresses background aEEG voltage to a steady ~50% lower level in sedated healthy newborn pigs. Therefore, care must be taken when interpreting the background voltage in neonates also receiving Xenon. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Scalability, Scintillation Readout and Charge Drift in a Kilogram Scale Solid Xenon Particle Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, J.; Cease, H.; Jaskierny, W. F.

    2014-10-23

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used amore » conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.« less

  18. Measurement of xenon diffusing capacity in the rat lung by hyperpolarized 129Xe MRI and dynamic spectroscopy in a single breath-hold.

    PubMed

    Abdeen, Nishard; Cross, Albert; Cron, Gregory; White, Steven; Rand, Thomas; Miller, David; Santyr, Giles

    2006-08-01

    We used the dual capability of hyperpolarized 129Xe for spectroscopy and imaging to develop new measures of xenon diffusing capacity in the rat lung that (analogously to the diffusing capacity of carbon monoxide or DLCO) are calculated as a product of total lung volume and gas transfer rate constants divided by the pressure gradient. Under conditions of known constant pressure breath-hold, the volume is measured by hyperpolarized 129Xe MRI, and the transfer rate is measured by dynamic spectroscopy. The new quantities (xenon diffusing capacity in lung parenchyma (DLXeLP)), xenon diffusing capacity in RBCs (DLXeRBC), and total lung xenon diffusing capacity (DLXe)) were measured in six normal rats and six rats with lung inflammation induced by instillation of fungal spores of Stachybotrys chartarum. DLXeLP, DLXeRBC, and DLXe were 56 +/- 10 ml/min/mmHg, 64 +/- 35 ml/min/mmHg, and 29 +/- 9 ml/min/mmHg, respectively, for normal rats, and 27 +/- 9 ml/min/mmHg, 42 +/- 27 ml/min/mmHg, and 16 +/- 7 ml/min/mmHg, respectively, for diseased rats. Lung volumes and gas transfer times for LP (TtrLP) were 16 +/- 2 ml and 22 +/- 3 ms, respectively, for normal rats and 12 +/- 2 ml and 35 +/- 8 ms, respectively, for diseased rats. Xenon diffusing capacities may be useful for measuring changes in gas exchange associated with inflammation and other lung diseases. Copyright 2006 Wiley-Liss, Inc.

  19. Xenon improves neurological outcome and reduces secondary injury following trauma in an in vivo model of traumatic brain injury

    PubMed Central

    Luh, Clara; Gruss, Marco; Radyushkin, Konstantin; Hirnet, Tobias; Werner, Christian; Engelhard, Kristin; Franks, Nicholas P; Thal, Serge C; Dickinson, Robert

    2015-01-01

    Objectives To determine the neuroprotective efficacy of the inert gas xenon following traumatic brain injury, and to determine whether application of xenon has a clinically relevant therapeutic time window. Design Controlled animal study. Setting University research laboratory. Subjects Male C57BL/6N mice (n=196) Interventions 75% xenon, 50% xenon or 30% xenon, with 25% oxygen (balance nitrogen) treatment following mechanical brain lesion by controlled cortical impact. Measurements & Main Results Outcome following trauma was measured using: 1) functional neurological outcome score, 2) histological measurement of contusion volume, 3) analysis of locomotor function and gait. Our study shows that xenon-treatment improves outcome following traumatic brain injury. Neurological outcome scores were significantly (p<0.05) better in xenon-treated groups in the early phase (24 hours) and up to 4 days after injury. Contusion volume was significantly (p<0.05) reduced in the xenon-treated groups. Xenon treatment significantly (p<0.05) reduced contusion volume when xenon was given 15 minutes after injury or when treatment was delayed 1 hour or 3 hours after injury. Neurological outcome was significantly (p<0.05) improved when xenon treatment was given 15 minutes or 1 hour after injury. Improvements in locomotor function (p<0.05) were observed in the xenon-treated group, 1 month after trauma. Conclusions These results show for the first time that xenon improves neurological outcome and reduces contusion volume following traumatic brain injury in mice. In this model, xenon application has a therapeutic time window of up to at least 3 hours. These findings support the idea that xenon may be of benefit as a neuroprotective treatment in brain trauma patients. PMID:25188549

  20. Xenon improves neurologic outcome and reduces secondary injury following trauma in an in vivo model of traumatic brain injury.

    PubMed

    Campos-Pires, Rita; Armstrong, Scott P; Sebastiani, Anne; Luh, Clara; Gruss, Marco; Radyushkin, Konstantin; Hirnet, Tobias; Werner, Christian; Engelhard, Kristin; Franks, Nicholas P; Thal, Serge C; Dickinson, Robert

    2015-01-01

    To determine the neuroprotective efficacy of the inert gas xenon following traumatic brain injury and to determine whether application of xenon has a clinically relevant therapeutic time window. Controlled animal study. University research laboratory. Male C57BL/6N mice (n = 196). Seventy-five percent xenon, 50% xenon, or 30% xenon, with 25% oxygen (balance nitrogen) treatment following mechanical brain lesion by controlled cortical impact. Outcome following trauma was measured using 1) functional neurologic outcome score, 2) histological measurement of contusion volume, and 3) analysis of locomotor function and gait. Our study shows that xenon treatment improves outcome following traumatic brain injury. Neurologic outcome scores were significantly (p < 0.05) better in xenon-treated groups in the early phase (24 hr) and up to 4 days after injury. Contusion volume was significantly (p < 0.05) reduced in the xenon-treated groups. Xenon treatment significantly (p < 0.05) reduced contusion volume when xenon was given 15 minutes after injury or when treatment was delayed 1 or 3 hours after injury. Neurologic outcome was significantly (p < 0.05) improved when xenon treatment was given 15 minutes or 1 hour after injury. Improvements in locomotor function (p < 0.05) were observed in the xenon-treated group, 1 month after trauma. These results show for the first time that xenon improves neurologic outcome and reduces contusion volume following traumatic brain injury in mice. In this model, xenon application has a therapeutic time window of up to at least 3 hours. These findings support the idea that xenon may be of benefit as a neuroprotective treatment in patients with brain trauma.

  1. Online ^{222}Rn removal by cryogenic distillation in the XENON100 experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Gangi, P. Di; Giovanni, A. Di; Diglio, S.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Calloch, M. Le; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Cristescu, I.

    2017-06-01

    We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant ^{222}Rn background originating from radon emanation. After inserting an auxiliary ^{222}Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the ^{222}Rn activity concentration inside the XENON100 detector.

  2. Systems engineering analysis of five 'as-manufactured' SXI telescopes

    NASA Astrophysics Data System (ADS)

    Harvey, James E.; Atanassova, Martina; Krywonos, Andrey

    2005-09-01

    Four flight models and a spare of the Solar X-ray Imager (SXI) telescope mirrors have been fabricated. The first of these is scheduled to be launched on the NOAA GOES- N satellite on July 29, 2005. A complete systems engineering analysis of the "as-manufactured" telescope mirrors has been performed that includes diffraction effects, residual design errors (aberrations), surface scatter effects, and all of the miscellaneous errors in the mirror manufacturer's error budget tree. Finally, a rigorous analysis of mosaic detector effects has been included. SXI is a staring telescope providing full solar disc images at X-ray wavelengths. For wide-field applications such as this, a field-weighted-average measure of resolution has been modeled. Our performance predictions have allowed us to use metrology data to model the "as-manufactured" performance of the X-ray telescopes and to adjust the final focal plane location to optimize the number of spatial resolution elements in a given operational field-of-view (OFOV) for either the aerial image or the detected image. The resulting performance predictions from five separate mirrors allow us to evaluate and quantify the optical fabrication process for producing these very challenging grazing incidence X-ray optics.

  3. Conceptual design of a coherent optical system of modular imaging collectors (COSMIC). [telescope array deployed by space shuttle in 1990's

    NASA Technical Reports Server (NTRS)

    Nein, M. E.; Davis, B. G.

    1982-01-01

    The Coherent Optical System of Modular Imaging Collectors (COSMIC) is the design concept for a phase-coherent optical telescope array that may be placed in earth orbit by the Space Shuttle in the 1990s. The initial system module is a minimum redundancy array whose photon collecting area is three times larger than that of the Space Telescope, and possesses a one-dimensional resoution of better than 0.01 arcsec in the visible range. Thermal structural requirements are assessed. Although the coherent beam combination requirements will be met by an active control system, the COSMIC structural/thermal design must meet more stringent performance criteria than even those of the Space Telescope.

  4. Adaptive optics for array telescopes using piston-and-tilt wave-front sensing

    NASA Technical Reports Server (NTRS)

    Wizinowich, P.; Mcleod, B.; Lloyd-Yhart, M.; Angel, J. R. P.; Colucci, D.; Dekany, R.; Mccarthy, D.; Wittman, D.; Scott-Fleming, I.

    1992-01-01

    A near-infrared adaptive optics system operating at about 50 Hz has been used to control phase errors adaptively between two mirrors of the Multiple Mirror Telescope by stabilizing the position of the interference fringe in the combined unresolved far-field image. The resultant integrated images have angular resolutions of better than 0.1 arcsec and fringe contrasts of more than 0.6. Measurements of wave-front tilt have confirmed the wavelength independence of image motion. These results show that interferometric sensing of phase errors, when combined with a system for sensing the wave-front tilt of the individual telescopes, will provide a means of achieving a stable diffraction-limited focus with segmented telescopes or arrays of telescopes.

  5. The Magellan Telescopes

    NASA Astrophysics Data System (ADS)

    Shectman, Stephen A.; Johns, Matthew

    2003-02-01

    Commissioning of the two 6.5-meter Magellan telescopes is nearing completion at the Las Campanas Observatory in Chile. The Magellan 1 primary mirror was successfully aluminized at Las Campanas in August 2000. Science operations at Magellan 1 began in February 2001. The second Nasmyth focus on Magellan 1 went into operation in September 2001. Science operations on Magellan 2 are scheduled to begin shortly. The ability to deliver high-quality images is maintained at all times by the simultaneous operation of the primary mirror support system, the primary mirror thermal control system, and a real-time active optics system, based on a Shack-Hartmann image analyzer. Residual aberrations in the delivered image (including focus) are typically 0.10-0.15" fwhm, and real images as good as 0.25" fwhm have been obtained at optical wavelengths. The mount points reliably to 2" rms over the entire sky, using a pointing model which is stable from year to year. The tracking error under typical wind conditions is better than 0.03" rms, although some degradation is observed under high wind conditions when the dome is pointed in an unfavorable direction. Instruments used at Magellan 1 during the first year of operation include two spectrographs previously used at other telescopes (B&C, LDSS-2), a mid-infrared imager (MIRAC) and an optical imager (MAGIC, the first Magellan-specific facility instrument). Two facility spectrographs are scheduled to be installed shortly: IMACS, a wide-field spectrograph, and MIKE, a double echelle spectrograph.

  6. Large Binocular Telescope project

    NASA Astrophysics Data System (ADS)

    Hill, John M.; Salinari, Piero

    2003-02-01

    The Large Binocular Telescope (LBT) Project is a collaboration between institutions in Arizona, Germany, Italy, and Ohio. The first of two 8.4-meter borosilicate honeycomb primary mirrors for LBT is being polished at the Steward Observatory Mirror Lab this year. The second of the two 8.4-meter mirror blanks waits its turn in the polishing queue. The baseline optical configuration of LBT includes adaptive infrared secondaries of a Gregorian design. The F/15 secondaries are undersized to provide a low thermal background focal plane which is unvignetted over a 4-arcminute diameter field-of-view. These adaptive secondary mirrors with 672 voice-coil actuators are now in the early stages of fabrication. The interferometric focus combining the light from the two 8.4-meter primaries will reimage the two folded Gregorian focal planes to three central locations for phased array imaging. The telescope elevation structure accommodates swing arm spiders which allow rapid interchange of the various secondary and tertiary mirrors as well as prime focus cameras. The telescope structure accommodates installation of a vacuum bell jar for aluminizing the primary mirrors in-situ on the telescope. The telescope structure was fabricated and pre-assembled in Italy by Ansaldo-Camozzi in Milan. The structure was disassembled, packed and shipped to Arizona. The enclosure was built on Mt. Graham and is ready for telescope installation.

  7. Inference and analysis of xenon outflow curves under multi-pulse injection in two-dimensional chromatography.

    PubMed

    Shu-Jiang, Liu; Zhan-Ying, Chen; Yin-Zhong, Chang; Shi-Lian, Wang; Qi, Li; Yuan-Qing, Fan

    2013-10-11

    Multidimensional gas chromatography is widely applied to atmospheric xenon monitoring for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). To improve the capability for xenon sampling from the atmosphere, sampling techniques have been investigated in detail. The sampling techniques are designed by xenon outflow curves which are influenced by many factors, and the injecting condition is one of the key factors that could influence the xenon outflow curves. In this paper, the xenon outflow curves of single-pulse injection in two-dimensional gas chromatography has been tested and fitted as a function of exponential modified Gaussian distribution. An inference formula of the xenon outflow curve for six-pulse injection is derived, and the inference formula is also tested to compare with its fitting formula of the xenon outflow curve. As a result, the curves of both the one-pulse and six-pulse injections obey the exponential modified Gaussian distribution when the temperature of the activated carbon column's temperature is 26°C and the flow rate of the carrier gas is 35.6mLmin(-1). The retention time of the xenon peak for one-pulse injection is 215min, and the peak width is 138min. For the six-pulse injection, however, the retention time is delayed to 255min, and the peak width broadens to 222min. According to the inferred formula of the xenon outflow curve for the six-pulse injection, the inferred retention time is 243min, the relative deviation of the retention time is 4.7%, and the inferred peak width is 225min, with a relative deviation of 1.3%. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Berkeley Lab Scientists to Play Role in New Space Telescope

    Science.gov Websites

    circling distant suns, among other science aims. The Wide Field Infrared Survey Telescope (WFIRST) will Hubble Space Telescope's Wide Field Camera 3 infrared imager. A Hubble large-scale mapping survey of the survey of the M31 galaxy (shown here) required 432 "pointings" of its imager, while only two

  9. Lights Out on the James Webb Space Telescope

    NASA Image and Video Library

    2017-12-08

    What happens when the lights are turned out in the enormous clean room that currently houses NASA's James Webb Space Telescope? The technicians who are inspecting the telescope and its expansive golden mirrors look like ghostly wraiths in this image as they conduct a "lights out inspection" in the Spacecraft Systems Development and Integration Facility (SSDIF) at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The clean room lights were turned off to inspect the telescope after it experienced vibration and acoustic testing. The contamination control engineer used a bright flashlight and special ultraviolet flashlights to inspect for contamination because it's easier to find in the dark. NASA photographer Chris Gunn said "The people have a ghostly appearance because it's a long exposure." He left the camera's shutter open for a longer than normal time so the movement of the technicians appear as a blur. He also used a special light "painting" technique to light up the primary mirror. The James Webb Space Telescope is the scientific successor to NASA's Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency. For more information about the Webb telescope visit: www.jwst.nasa.gov or www.nasa.gov/webb Image Credit: NASA/Chris Gunn

  10. Early treatment with xenon protects against the cold ischemia associated with chronic allograft nephropathy in rats.

    PubMed

    Zhao, Hailin; Luo, Xianghong; Zhou, Zhaowei; Liu, Juying; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2014-01-01

    Chronic allograft nephropathy (CAN) is a common finding in kidney grafts with functional impairment. Prolonged hypothermic storage-induced ischemia-reperfusion injury is associated with the early onset of CAN. As the noble gas xenon is clinically used as an anesthetic and has renoprotective properties in a rodent model of ischemia-reperfusion injury, we studied whether early treatment with xenon could attenuate CAN associated with prolonged hypothermic storage. Exposure to xenon enhanced the expression of insulin growth factor-1 (IGF-1) and its receptor in human proximal tubular (HK-2) cells, which, in turn, increased cell proliferation. Xenon treatment before or after hypothermia-hypoxia decreased cell apoptosis and cell inflammation after reoxygenation. The xenon-induced HK-2 cell proliferation was abolished by blocking the IGF-1 receptor, mTOR, and HIF-1α individually. In the Fischer-to-Lewis rat allogeneic renal transplantation model, xenon exposure of donors before graft retrieval or recipients after engraftment enhanced tubular cell proliferation and decreased tubular cell death and cell inflammation associated with ischemia-reperfusion injury. Compared with control allografts, xenon treatment significantly suppressed T-cell infiltration and fibrosis, prevented the development of CAN, and improved renal function. Thus, xenon treatment promoted recovery from ischemia-reperfusion injury and reduced susceptibility to the subsequent development of CAN in allografts.

  11. Deployable Integral Field Units, Multislits, and Image Slicer for the Goodman Imaging Spectrograph on the SOAR Telescope

    NASA Astrophysics Data System (ADS)

    Cecil, Gerald N.; Moffett, A. J.; Cui, Y.; Eckert, K. D.; McBride, J.; Kannappan, S.; Keller, K.; Barlow, B. N.; Dunlap, B.; Bland-Hawthorn, J.

    2010-01-01

    The Goodman Imager-Spectrograph on the 4.1m SOAR telescope has operated on Cerro Pachon, Chile with volume-phase holographic gratings in long-slit mode since its commissioning in 2008. Recently, UNC graduate students played key roles to implement robust upgrades for multi-object spectroscopy that will soon be available to US astronomers through the NOAO time share on SOAR: • Multislits over 3x5 arcmin, generated on PCB solder stencils with exceptional sharpness compared to conventional laser cuts, initially to survey globular clusters for pulsating hot sub-dwarfs • An image slicer to obtain 3 simultaneous parallel spectra 70-arcsec long, 1- or 2-arcsec wide, spanning 320-750 nm to map stellar and gaseous emission and mass over the 1500 galaxies in the RESOLVE survey underway on SOAR • Four integral field units, each composed of 5-arcsec diameter, fused bundles of 0.5-arcsec diameter thin-clad optical fiber, independently deployed over a 10x5 arcmin field targeted by an EMCCD also used for Lucky Imaging. Initially will study aperture effects in single fiber surveys, extragalactic globular clusters, and demonstrate technology prior to deployment on larger telescopes • New wheels supporting a large set of existing narrow-band and Sloan filters • A trombone-style atmospheric dispersion compensator that corrects the full 12-arcmin diameter science field down to 30 deg elevation. Working in UNC's Goodman Laboratory for Astronomical Instrumentation, students employed SolidWorks and ZEMAX to design parts for in-house CAM on CNC machines and a 3D printer. All motors are controlled by LabVIEW as is the SOAR TCS. The deployable IFU axes are controlled by Quicksilver Controls Inc. intelligent servos and $80 model robot (Firgelli Corp.) actuators driven by a PIC-microcontroller and a student designed custom PCB. Upgrades and students were supported by $200K from SOAR Corporation, Research Corporation, NSF, and UNC competitive funds, and NC NASA Space Grant, Sigma Xi

  12. Excess thermodynamics of mixtures involving xenon and light linear alkanes by computer simulation.

    PubMed

    Carvalho, A J Palace; Ramalho, J P Prates; Martins, Luís F G

    2007-06-14

    Excess molar enthalpies and excess molar volumes as a function of composition for liquid mixtures of xenon + ethane (at 161.40 K), xenon + propane (at 161.40 K) and xenon + n-butane (at 182.34 K) have been obtained by Monte Carlo computer simulations and compared with available experimental data. Simulation conditions were chosen to closely match those of the corresponding experimental results. The TraPPE-UA force field was selected among other force fields to model all the alkanes studied, whereas the one-center Lennard-Jones potential from Bohn et al. was used for xenon. The calculated H(m)(E) and V(m)(E) for all systems are negative, increasing in magnitude as the alkane chain length increases. The results for these systems were compared with experimental data and with other theoretical calculations using the SAFT approach. An excellent agreement between simulation and experimental results was found for xenon + ethane system, whereas for the remaining two systems, some deviations that become progressively more significant as the alkane chain length increases were observed.

  13. Protection of xenon against postoperative oxygen impairment in adults undergoing Stanford Type-A acute aortic dissection surgery

    PubMed Central

    Jin, Mu; Cheng, Yi; Yang, Yanwei; Pan, Xudong; Lu, Jiakai; Cheng, Weiping

    2017-01-01

    Abstract Objectives: The available evidence shows that hypoxemia after Stanford Type-A acute aortic dissection (AAD) surgery is a frequent cause of several adverse consequences. The pathogenesis of postoperative hypoxemia after AAD surgery is complex, and ischemia/reperfusion and inflammation are likely to be underlying risk factors. Xenon, recognized as an ideal anesthetic and anti-inflammatory treatment, might be a possible treatment for these adverse effects. Methods/Design: The trial is a prospective, double-blind, 4-group, parallel, randomized controlled, a signal-center clinical trial. We will recruit 160 adult patients undergoing Stanford type-A AAD surgery. Patients will be allocated a study number and will be randomized on a 1:1:1:1 basis to receive 1 of the 3 treatment options (pulmonary inflated with 50% xenon, 75% xenon, or 100% xenon) or no treatment (control group, pulmonary inflated with 50% nitrogen). The aims of this study are to clarify the lung protection capability of xenon and its possible mechanisms in patients undergoing the Stanford type-A AAD surgery. Discussion: This trial uses an innovative design to account for the xenon effects of postoperative oxygen impairment, and it also delineates the mechanism for any benefit from xenon. The investigational xenon group is considered a treatment intervention, as it includes 3 groups of pulmonary static inflation with 50%, 75%, and 100% xenon. It is suggested that future trials might define an appropriate concentration of xenon for the best practice intervention. PMID:28834897

  14. High resolution telescope including an array of elemental telescopes aligned along a common axis and supported on a space frame with a pivot at its geometric center

    DOEpatents

    Norbert, M.A.; Yale, O.

    1992-04-28

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employes speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by a electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes. 15 figs.

  15. High resolution telescope including an array of elemental telescopes aligned along a common axis and supported on a space frame with a pivot at its geometric center

    DOEpatents

    Norbert, Massie A.; Yale, Oster

    1992-01-01

    A large effective-aperture, low-cost optical telescope with diffraction-limited resolution enables ground-based observation of near-earth space objects. The telescope has a non-redundant, thinned-aperture array in a center-mount, single-structure space frame. It employes speckle interferometric imaging to achieve diffraction-limited resolution. The signal-to-noise ratio problem is mitigated by moving the wavelength of operation to the near-IR, and the image is sensed by a Silicon CCD. The steerable, single-structure array presents a constant pupil. The center-mount, radar-like mount enables low-earth orbit space objects to be tracked as well as increases stiffness of the space frame. In the preferred embodiment, the array has elemental telescopes with subaperture of 2.1 m in a circle-of-nine configuration. The telescope array has an effective aperture of 12 m which provides a diffraction-limited resolution of 0.02 arc seconds. Pathlength matching of the telescope array is maintained by a electro-optical system employing laser metrology. Speckle imaging relaxes pathlength matching tolerance by one order of magnitude as compared to phased arrays. Many features of the telescope contribute to substantial reduction in costs. These include eliminating the conventional protective dome and reducing on-site construction activities. The cost of the telescope scales with the first power of the aperture rather than its third power as in conventional telescopes.

  16. Measurement of radon and xenon binding to a cryptophane molecular host

    PubMed Central

    Jacobson, David R.; Khan, Najat S.; Collé, Ronald; Fitzgerald, Ryan; Laureano-Pérez, Lizbeth; Bai, Yubin; Dmochowski, Ivan J.

    2011-01-01

    Xenon and radon have many similar properties, a difference being that all 35 isotopes of radon (195Rn–229Rn) are radioactive. Radon is a pervasive indoor air pollutant believed to cause significant incidence of lung cancer in many geographic regions, yet radon affinity for a discrete molecular species has never been determined. By comparison, the chemistry of xenon has been widely studied and applied in science and technology. Here, both noble gases were found to bind with exceptional affinity to tris-(triazole ethylamine) cryptophane, a previously unsynthesized water-soluble organic host molecule. The cryptophane–xenon association constant, Ka = 42,000 ± 2,000 M-1 at 293 K, was determined by isothermal titration calorimetry. This value represents the highest measured xenon affinity for a host molecule. The partitioning of radon between air and aqueous cryptophane solutions of varying concentration was determined radiometrically to give the cryptophane–radon association constant Ka = 49,000 ± 12,000 M-1 at 293 K. PMID:21690357

  17. ORAC-DR: One Pipeline for Multiple Telescopes

    NASA Astrophysics Data System (ADS)

    Cavanagh, B.; Hirst, P.; Jenness, T.; Economou, F.; Currie, M. J.; Todd, S.; Ryder, S. D.

    ORAC-DR, a flexible and extensible data reduction pipeline, has been successfully used for real-time data reduction from UFTI and IRCAM (infrared cameras), CGS4 (near-infrared spectrometer), Michelle (mid-infrared imager and echelle spectrometer), at UKIRT; and SCUBA (sub-millimeter bolometer array) at JCMT. We have now added the infrared imaging spectrometers IRIS2 at the Anglo-Australian Telescope and UIST at UKIRT to the list of officially supported instruments. We also present initial integral field unit support for UIST, along with unofficial support for the imager and multi-object spectrograph GMOS at Gemini. This paper briefly describes features of the pipeline along with details of adopting ORAC-DR for other instruments on telescopes around the world.

  18. SPM-Twin Telescopes: Project Overview

    NASA Astrophysics Data System (ADS)

    González, J. J.

    2007-06-01

    The SPM-Twin Project is an international initiative for a pair of 6.5-m telescopes, at the San Pedro Mártir Observatory (SPM), to provide a limber, and highly competitive, platform for discovery by focusing on scientific niches technically difficult for existing or planned larger aperture telescopes, and by exploiting the superiority of the SPM site. The telescopes are based on the proven and highly efficient Magellan concept, but each with a distinct optimization to cover two complementary but mutually exclusive aspects: (a) the "Standard Field Telescope" would have a field of view of 15'- 30', capable of observing in the optical through the thermal infrared (0.4 - 24 μm) and prepared for adaptive optics, and (b) the "Wide Field Telescope" (WFT) with a field of view of 1.5° or more, capable of multi-object fiber spectroscopy, integral field unit (IFU) spectroscopy, and potentially narrow-band imaging as well. The WFT spectroscopy would extend from 0.36 to 1.8 μm, and would contain several thousand fibers. We present a general overview of the project.

  19. Image Properties of an X-Ray Telescope of the Wolter-1 Type with Emphasis on Contrast Reduction by Diffuse Reflection. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lenzen, R.

    1980-01-01

    Theoretical and experimental results are presented on the geometrical-optic imaging properties of a Wolter-1 type paraboloid-hyperboloid X-ray telescope. Particular consideration is given to the effect of microroughness of the mirror on the imaging properties. Experiments were conducted in which scattering properties were determined as a function of wavelength, incidence angle, and roughness of the plane mirrors. Results indicate the need for optimization of mirror material and polishing technology as well as the development of improved mirror manufacturing techniques. The use of transmission gratings along with the Wolter-1 type telescope in spectroscopy applications is discussed.

  20. The NIRCam Optical Telescope Simulator (NOTES)

    NASA Technical Reports Server (NTRS)

    Kubalak, David; Hakun, Claef; Greeley, Bradford; Eichorn, William; Leviton, Douglas; Guishard, Corina; Gong, Qian; Warner, Thomas; Bugby, David; Robinson, Frederick; hide

    2007-01-01

    The Near Infra-Red Camera (NIRCam), the 0.6-5.0 micron imager and wavefront sensing instrument for the James Webb Space Telescope (JWST), will be used on orbit both as a science instrument, and to tune the alignment of the telescope. The NIRCam Optical Telescope Element Simulator (NOTES) will be used during ground testing to provide an external stimulus to verify wavefront error, imaging characteristics, and wavefront sensing performance of this crucial instrument. NOTES is being designed and built by NASA Goddard Space Flight Center with the help of Swales Aerospace and Orbital Sciences Corporation. It is a single-point imaging system that uses an elliptical mirror to form an U20 image of a point source. The point source will be fed via optical fibers from outside the vacuum chamber. A tip/tilt mirror is used to change the chief ray angle of the beam as it passes through the aperture stop and thus steer the image over NIRCam's field of view without moving the pupil or introducing field aberrations. Interchangeable aperture stop elements allow us to simulate perfect JWST wavefronts for wavefront error testing, or introduce transmissive phase plates to simulate a misaligned JWST segmented mirror for wavefront sensing verification. NOTES will be maintained at an operating temperature of 80K during testing using thermal switches, allowing it to operate within the same test chamber as the NIRCam instrument. We discuss NOTES' current design status and on-going development activities.

  1. Xenon neurotoxicity in rat hippocampal slice cultures is similar to isoflurane and sevoflurane.

    PubMed

    Brosnan, Heather; Bickler, Philip E

    2013-08-01

    Anesthetic neurotoxicity in the developing brain of rodents and primates has raised concern. Xenon may be a nonneurotoxic alternative to halogenated anesthetics, but its toxicity has only been studied at low concentrations, where neuroprotective effects predominate in animal models. An equipotent comparison of xenon and halogenated anesthetics with respect to neurotoxicity in developing neurons has not been made. Organotypic hippocampal cultures from 7-day-old rats were exposed to 0.75, 1, and 2 minimum alveolar concentrations (MAC) partial pressures (60% xenon at 1.2, 2.67, and 3.67 atm; isoflurane at 1.4, 1.9, and 3.8%; and sevoflurane at 3.4 and 6.8%) for 6 h, at atmospheric pressure or in a pressure chamber. Cell death was assessed 24 h later with fluorojade and fluorescent dye exclusion techniques. Xenon caused death of hippocampal neurons in CA1, CA3, and dentate regions after 1 and 2 MAC exposures, but not at 0.75 MAC. At 1 MAC, xenon increased cell death 40% above baseline (P < 0.01; ANOVA with Dunnett test). Both isoflurane and sevoflurane increased neuron death at 1 but not 2 MAC. At 1 MAC, the increase in cell death compared with controls was 63% with isoflurane and 90% with sevoflurane (both P < 0.001). Pretreatment of cultures with isoflurane (0.75 MAC) reduced neuron death after 1 MAC xenon, isoflurane, and sevoflurane. Xenon causes neuronal cell death in an in vitro model of the developing rodent brain at 1 MAC, as does isoflurane and sevoflurane at similarly potent concentrations. Preconditioning with a subtoxic dose of isoflurane eliminates this toxicity.

  2. Venus, Earth, Xenon

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2013-12-01

    Xenon has been regarded as an important goal of many proposed missions to Venus. This talk is intended to explain why. Despite its being the heaviest gas found in natural planetary atmospheres, there is more evidence that Xe escaped from Earth than for any element apart from helium: (i) Atmospheric Xe is very strongly mass fractionated (at about 4% per amu) from any known solar system source. This suggests fractionating escape that preferentially left the heavy Xe isotopes behind. (ii) Xe is underabundant compared to Kr, a lighter noble gas that is not strongly mass fractionated in air. (iii) Radiogenic Xe is strongly depleted by factors of several to ~100 compared to the quantities expected from radioactive decay of primordial solar system materials. In these respects Xe on Mars is similar to Xe on Earth, but with one key difference: Xe on Mars is readily explained by a simple process like hydrodynamic escape that acts on an initially solar or meteoritic Xe. This is not so for Earth. Earth's Xe cannot be derived by an uncontrived mass fractionating process acting on any known type of Solar System Xe. Earth is a stranger, made from different stuff than any known meteorite or Mars or even the Sun. Who else is in Earth's family? Comets? We know nothing. Father Zeus? Data from Jupiter are good enough to show that jovian Xe is not strongly mass-fractionated but not good enough to determine whether Jupiter resembles the Earth or the Sun. Sister Venus? Noble gas data from Venus are incomplete, with Kr uncertain and Xe unmeasured. Krypton was measured by several instruments on several spacecraft. The reported Kr abundances are discrepant and were once highly controversial. These discrepancies appear to have been not so much resolved as forgotten. Xenon was not detected on Venus. Upper limits were reported for the two most abundant xenon isotopes 129Xe and 132Xe. From the limited data it is not possible to tell whether Venus's affinities lie with the solar wind, or with

  3. Technical aspects of the Space Telescope Imaging Spectrograph Repair (STIS-R)

    NASA Astrophysics Data System (ADS)

    Rinehart, S. A.; Domber, J.; Faulkner, T.; Gull, T.; Kimble, R.; Klappenberger, M.; Leckrone, D.; Niedner, M.; Proffitt, C.; Smith, H.; Woodgate, B.

    2008-07-01

    In August 2004, the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) ceased operation due to a failure of the 5V mechanism power converter in the Side 2 Low Voltage Power Supply (LVPS2). The failure precluded movement of any STIS mechanism and, because of the earlier (2001) loss of the Side 1 electronics chain, left the instrument shuttered and in safe mode after 7.5 years of science operations. A team was assembled to analyze the fault and to determine if STIS repair (STIS-R) was feasible. The team conclusively pinpointed the Side 2 failure to the 5V mechanism converter, and began studying EVA techniques for opening STIS during Servicing Mission 4 (SM4) to replace the failed LVPS2 board. The restoration of STIS functionality via surgical repair by astronauts has by now reached a mature and final design state, and will, along with a similar repair procedure for the Advanced Camera for Surveys (ACS), represent a first for Hubble servicing. STIS-R will restore full scientific functionality of the spectrograph on Side 2, while Side 1 will remain inoperative. Because of the high degree of complementarity between STIS and the new Cosmic Origins Spectrograph (COS, to be installed during SM4)), successful repair of the older spectrograph is an important scientific objective. In this presentation, we focus on the technical aspects associated with STIS-R.

  4. Feasibility and cardiac safety of inhaled xenon in combination with therapeutic hypothermia following out-of-hospital cardiac arrest.

    PubMed

    Arola, Olli J; Laitio, Ruut M; Roine, Risto O; Grönlund, Juha; Saraste, Antti; Pietilä, Mikko; Airaksinen, Juhani; Perttilä, Juha; Scheinin, Harry; Olkkola, Klaus T; Maze, Mervyn; Laitio, Timo T

    2013-09-01

    Preclinical studies reveal the neuroprotective properties of xenon, especially when combined with hypothermia. The purpose of this study was to investigate the feasibility and cardiac safety of inhaled xenon treatment combined with therapeutic hypothermia in out-of-hospital cardiac arrest patients. An open controlled and randomized single-centre clinical drug trial (clinicaltrials.gov NCT00879892). A multipurpose ICU in university hospital. Thirty-six adult out-of-hospital cardiac arrest patients (18-80 years old) with ventricular fibrillation or pulseless ventricular tachycardia as initial cardiac rhythm. Patients were randomly assigned to receive either mild therapeutic hypothermia treatment with target temperature of 33°C (mild therapeutic hypothermia group, n=18) alone or in combination with xenon by inhalation, to achieve a target concentration of at least 40% (Xenon+mild therapeutic hypothermia group, n=18) for 24 hours. Thirty-three patients were evaluable (mild therapeutic hypothermia group, n=17; Xenon+mild therapeutic hypothermia group, n=16). Patients were treated and monitored according to the Utstein protocol. The release of troponin-T was determined at arrival to hospital and at 24, 48, and 72 hours after out-of-hospital cardiac arrest. The median end-tidal xenon concentration was 47% and duration of the xenon inhalation was 25.5 hours. The frequency of serious adverse events, including inhospital mortality, status epilepticus, and acute kidney injury, was similar in both groups and there were no unexpected serious adverse reactions to xenon during hospital stay. In addition, xenon did not induce significant conduction, repolarization, or rhythm abnormalities. Median dose of norepinephrine during hypothermia was lower in xenon-treated patients (mild therapeutic hypothermia group=5.30 mg vs Xenon+mild therapeutic hypothermia group=2.95 mg, p=0.06). Heart rate was significantly lower in Xenon+mild therapeutic hypothermia patients during hypothermia

  5. Imaging of cerebral blood flow in patients with severe traumatic brain injury in the neurointensive care.

    PubMed

    Rostami, Elham; Engquist, Henrik; Enblad, Per

    2014-01-01

    Ischemia is a common and deleterious secondary injury following traumatic brain injury (TBI). A great challenge for the treatment of TBI patients in the neurointensive care unit (NICU) is to detect early signs of ischemia in order to prevent further advancement and deterioration of the brain tissue. Today, several imaging techniques are available to monitor cerebral blood flow (CBF) in the injured brain such as positron emission tomography (PET), single-photon emission computed tomography, xenon computed tomography (Xenon-CT), perfusion-weighted magnetic resonance imaging (MRI), and CT perfusion scan. An ideal imaging technique would enable continuous non-invasive measurement of blood flow and metabolism across the whole brain. Unfortunately, no current imaging method meets all these criteria. These techniques offer snapshots of the CBF. MRI may also provide some information about the metabolic state of the brain. PET provides images with high resolution and quantitative measurements of CBF and metabolism; however, it is a complex and costly method limited to few TBI centers. All of these methods except mobile Xenon-CT require transfer of TBI patients to the radiological department. Mobile Xenon-CT emerges as a feasible technique to monitor CBF in the NICU, with lower risk of adverse effects. Promising results have been demonstrated with Xenon-CT in predicting outcome in TBI patients. This review covers available imaging methods used to monitor CBF in patients with severe TBI.

  6. Imaging of Cerebral Blood Flow in Patients with Severe Traumatic Brain Injury in the Neurointensive Care

    PubMed Central

    Rostami, Elham; Engquist, Henrik; Enblad, Per

    2014-01-01

    Ischemia is a common and deleterious secondary injury following traumatic brain injury (TBI). A great challenge for the treatment of TBI patients in the neurointensive care unit (NICU) is to detect early signs of ischemia in order to prevent further advancement and deterioration of the brain tissue. Today, several imaging techniques are available to monitor cerebral blood flow (CBF) in the injured brain such as positron emission tomography (PET), single-photon emission computed tomography, xenon computed tomography (Xenon-CT), perfusion-weighted magnetic resonance imaging (MRI), and CT perfusion scan. An ideal imaging technique would enable continuous non-invasive measurement of blood flow and metabolism across the whole brain. Unfortunately, no current imaging method meets all these criteria. These techniques offer snapshots of the CBF. MRI may also provide some information about the metabolic state of the brain. PET provides images with high resolution and quantitative measurements of CBF and metabolism; however, it is a complex and costly method limited to few TBI centers. All of these methods except mobile Xenon-CT require transfer of TBI patients to the radiological department. Mobile Xenon-CT emerges as a feasible technique to monitor CBF in the NICU, with lower risk of adverse effects. Promising results have been demonstrated with Xenon-CT in predicting outcome in TBI patients. This review covers available imaging methods used to monitor CBF in patients with severe TBI. PMID:25071702

  7. Imaging Human Brain Perfusion with Inhaled Hyperpolarized 129Xe MR Imaging.

    PubMed

    Rao, Madhwesha R; Stewart, Neil J; Griffiths, Paul D; Norquay, Graham; Wild, Jim M

    2018-02-01

    Purpose To evaluate the feasibility of directly imaging perfusion of human brain tissue by using magnetic resonance (MR) imaging with inhaled hyperpolarized xenon 129 ( 129 Xe). Materials and Methods In vivo imaging with 129 Xe was performed in three healthy participants. The combination of a high-yield spin-exchange optical pumping 129 Xe polarizer, custom-built radiofrequency coils, and an optimized gradient-echo MR imaging protocol was used to achieve signal sensitivity sufficient to directly image hyperpolarized 129 Xe dissolved in the human brain. Conventional T1-weighted proton (hydrogen 1 [ 1 H]) images and perfusion images by using arterial spin labeling were obtained for comparison. Results Images of 129 Xe uptake were obtained with a signal-to-noise ratio of 31 ± 9 and demonstrated structural similarities to the gray matter distribution on conventional T1-weighted 1 H images and to perfusion images from arterial spin labeling. Conclusion Hyperpolarized 129 Xe MR imaging is an injection-free means of imaging the perfusion of cerebral tissue. The proposed method images the uptake of inhaled xenon gas to the extravascular brain tissue compartment across the intact blood-brain barrier. This level of sensitivity is not readily available with contemporary MR imaging methods. © RSNA, 2017.

  8. Hubble Space Telescope Imaging of the Mass-losing Supergiant VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Weintraub, David A.

    1998-04-01

    The highly luminous M supergiant VY CMa is a massive star that appears to be in its final death throes, losing mass at high rate en route to exploding as a supernova. Subarcsecond-resolution optical images of VY CMa, obtained with the Faint Object Camera (FOC) aboard the Hubble Space Telescope, vividly demonstrate that mass loss from VY CMa is highly anisotropic. In the FOC images, the optical ``star'' VY CMa constitutes the bright, well-resolved core of an elongated reflection nebula. The imaged nebula is ~3" (~4500 AU) in extent and is clumpy and highly asymmetric. The images indicate that the bright core, which lies near one edge of the nebula, is pure scattered starlight. We conclude that at optical wavelengths VY CMa is obscured from view along our line of sight by its own dusty envelope. The presence of the extended reflection nebula then suggests that this envelope is highly flattened and/or that the star is surrounded by a massive circumstellar disk. Such axisymmetric circumstellar density structure should have profound effects on post-red supergiant mass loss from VY CMa and, ultimately, on the shaping of the remnant of the supernova that will terminate its post-main-sequence evolution.

  9. New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essig, Rouven; Volansky, Tomer; Yu, Tien-Tien

    2017-08-30

    We study in detail sub-GeV dark matter scattering off electrons in xenon, including the expected electron recoil spectra and annual modulation spectra. We derive improved constraints using low-energy XENON10 and XENON100 ionization-only data. For XENON10, in addition to including electron-recoil data corresponding to about 1–3 electrons, we include for the first time events corresponding to about 4–7 electrons. Assuming the scattering is momentum independent (F DM = 1 ), this strengthens a previous cross-section bound by almost an order of magnitude for dark matter masses above 50 MeV. The available XENON100 data corresponds to events with about 4–50 electrons, andmore » leads to a constraint that is comparable to the XENON10 bound above 50 MeV for F DM = 1 . We demonstrate that a search for an annual modulation signal in upcoming xenon experiments (XENON1T, XENONnT, LZ) could substantially improve the above bounds even in the presence of large backgrounds. We also emphasize that in simple benchmark models of sub-GeV dark matter, the dark matter-electron scattering rate can be as high as one event every ten (two) seconds in the XENON1T (XENONnT or LZ) experiments, without being in conflict with any other known experimental bounds. While there are several sources of backgrounds that can produce single- or few-electron events, a large event rate can be consistent with a dark matter signal and should not be simply written off as purely a detector curiosity. This fact motivates a detailed analysis of the ionization-data (“S2”) data, taking into account the expected annual modulation spectrum of the signal rate, as well as the DM-induced electron-recoil spectra, which are another powerful discriminant between signal and background.« less

  10. New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon

    NASA Astrophysics Data System (ADS)

    Essig, Rouven; Volansky, Tomer; Yu, Tien-Tien

    2017-08-01

    We study in detail sub-GeV dark matter scattering off electrons in xenon, including the expected electron recoil spectra and annual modulation spectra. We derive improved constraints using low-energy XENON10 and XENON100 ionization-only data. For XENON10, in addition to including electron-recoil data corresponding to about 1-3 electrons, we include for the first time events corresponding to about 4-7 electrons. Assuming the scattering is momentum independent (FDM=1 ), this strengthens a previous cross-section bound by almost an order of magnitude for dark matter masses above 50 MeV. The available XENON100 data corresponds to events with about 4-50 electrons, and leads to a constraint that is comparable to the XENON10 bound above 50 MeV for FDM=1 . We demonstrate that a search for an annual modulation signal in upcoming xenon experiments (XENON1T, XENONnT, LZ) could substantially improve the above bounds even in the presence of large backgrounds. We also emphasize that in simple benchmark models of sub-GeV dark matter, the dark matter-electron scattering rate can be as high as one event every ten (two) seconds in the XENON1T (XENONnT or LZ) experiments, without being in conflict with any other known experimental bounds. While there are several sources of backgrounds that can produce single- or few-electron events, a large event rate can be consistent with a dark matter signal and should not be simply written off as purely a detector curiosity. This fact motivates a detailed analysis of the ionization-data ("S2") data, taking into account the expected annual modulation spectrum of the signal rate, as well as the DM-induced electron-recoil spectra, which are another powerful discriminant between signal and background.

  11. Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives

    NASA Astrophysics Data System (ADS)

    Azevedo, C. D. R.; González-Díaz, D.; Biagi, S. F.; Oliveira, C. A. B.; Henriques, C. A. O.; Escada, J.; Monrabal, F.; Gómez-Cadenas, J. J.; Álvarez, V.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gutiérrez, R. M.; Hauptman, J.; Hernandez, A. I.; Morata, J. A. Hernando; Herrero, V.; Jones, B. J. P.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; Lopez-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; McDonald, A. D.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Vidal, J. Muñoz; Musti, M.; Nebot-Guinot, M.; Novella, P.; Nygren, D.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.

    2018-01-01

    We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence of additives, that are of interest to the OTPC technology.

  12. CO adsorption on ion bombarded Ni(111): characterization by photoemission from adsorbed xenon

    NASA Astrophysics Data System (ADS)

    Fu, Sabrina S.; Malafsky, Geoffrey P.; Hsu, David S. Y.

    1993-11-01

    The adsorption of CO on Ni(111), ion bombarded with various fluences of 1.0 keV Ar + ions, has been investigated using photoemission from adsorbed xenon (PAX). After ion bombardment of the Ni(111) surface, various amounts of CO were adsorbed, followed by adsorption of xenon at 85 K. Two pressures of xenon were used in examining the 3d {5}/{2} peak of xenon: 5 × 10 -6 and 7 × 10 -10 Torr. PAX data taken at both pressures show that CO selectively adsorbs onto the defect (step) sites created by ion bombardment. In addition, it was found that the amount of CO which could occupy a defect site previously occupied by one Xe atom varied from 10 to 2.5, depending on the ion fluence.

  13. New constraints and discovery potential of sub-GeV dark matter with xenon detectors

    NASA Astrophysics Data System (ADS)

    McCabe, Christopher

    2017-08-01

    Existing xenon dark matter (DM) direct detection experiments can probe the DM-nucleon interaction of DM with a sub-GeV mass through a search for photon emission from the recoiling xenon atom. We show that LUX's constraints on sub-GeV DM, which utilize the scintillation (S1) and ionization (S2) signals, are approximately 3 orders of magnitude more stringent than previous xenon constraints in this mass range, derived from the XENON10 and XENON100 S2-only searches. The new LUX constraints provide the most stringent direct detection constraints for DM particles with a mass below 0.5 GeV. In addition, the photon emission signal in LUX and its successor LZ maintain the discrimination between background and signal events so that an unambiguous discovery of sub-GeV DM is possible. We show that LZ has the potential to reconstruct the DM mass with ≃20 % accuracy for particles lighter than 0.5 GeV.

  14. Remote observing capability with Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Kosugi, George; Sasaki, Toshiyuki; Yagi, Masafumi; Ogasawara, Ryusuke; Mizumoto, Yoshihiko; Noumaru, Junichi; Kawai, Jun A.; Koura, Norikazu; Kusumoto, Toyoaki; Yamamoto, Tadahiro; Watanabe, Noboru; Ukawa, Kentaro

    2004-09-01

    We've implemented remote observing function to Subaru telescope Observation Software system (SOSs). Subaru telescope has three observing-sites, i.e., a telescope local-site and two remote observing-sites, Hilo base facility in Hawaii and Mitaka NAOJ headquarter in Japan. Our remote observing system is designed to allow operations not only from one of three observing-sites, but also from more than two sites concurrently or simultaneously. Considering allowance for delay in observing operations and a bandwidth of the network between the telescope-site and the remote observing-sites, three types of interfaces (protocols) have been implemented. In the remote observing mode, we use socket interface for the command and the status communication, vnc for ready-made applications and pop-up windows, and ftp for the actual data transfer. All images taken at the telescope-site are transferred to both of two remote observing-sites immediately after the acquisition to enable the observers' evaluation of the data. We present the current status of remote observations with Subaru telescope.

  15. A flat array large telescope concept for use on the moon, earth, and in space

    NASA Technical Reports Server (NTRS)

    Woodgate, Bruce E.

    1991-01-01

    An astronomical optical telescope concept is described which can provide very large collecting areas, of order 1000 sq m. This is an order of magnitude larger than the new generation of telescopes now being designed and built. Multiple gimballed flat mirrors direct the beams from a celestial source into a single telescope of the same aperture as each flat mirror. Multiple images of the same source are formed at the telescope focal plane. A beam combiner collects these images and superimposes them into a single image, onto a detector or spectrograph aperture. This telescope could be used on the earth, the moon, or in space.

  16. Status of the Large Underground Xenon (LUX) Detector

    NASA Astrophysics Data System (ADS)

    Larsen, Nicole

    2012-03-01

    The LUX (Large Underground Xenon) experiment is a 350-kg xenon-based direct dark matter detection experiment consisting of a two-phase (liquid/gas) xenon time projection chamber with a 100-kg fiducial mass. This technology has many advantages, including scalability, self-shielding, the absence of any long-lived isotopes, high gamma ray stopping power, and the ability to precisely measure the charge-to-light ratio of interactions within the detector, which provides an accurate method for discriminating between electron recoils (gamma rays, beta decays) and nuclear recoils (neutrons, WIMPS) within the detector. LUX's projected sensitivity for 300 days of acquisition is a cross-section of 7 x10-46 cm^2 for a WIMP mass of 100 GeV, representing an increase of nearly an order of magnitude over previous WIMP cross-section limits. From November 2011 through February 2012, LUX was deployed in a surface laboratory at the Homestake Mine in South Dakota for its second surface run. This talk will provide an overview of the LUX design and a report on the status of the experiment after the surface run and before underground deployment.

  17. The physics of background discrimination in liquid xenon, and first results from Xenon10 in the hunt for WIMP dark matter

    NASA Astrophysics Data System (ADS)

    Dahl, Carl Eric

    2009-06-01

    The WIMP limit set by the Xenon10 experiment in 2007 signals a new era in direct detection of dark matter, with several large-scale liquid target detectors now under construction. A major challenge in these detectors will be to understand backgrounds at the level necessary to claim a positive WIMP signal. In liquid xenon, these backgrounds are dominated by electron recoils, which may be distinguished from the WIMP signal (nuclear recoils) by their higher charge-to-light ratio. During the construction and operation of Xenon10, the prototype detector Xed probed the physics of this discrimination. Particle interactions in liquid xenon both ionize and excite xenon atoms, giving charge and scintillation signals, respectively. Some fraction of ions recombine, reducing the charge signal and creating additional scintillation. The charge-to-light ratio, determined by the initial exciton-ion ratio and the ion recombination fraction, provides the basis for discrimination between electron and nuclear recoils. Intrinsic fluctuations in the recombination fraction limit discrimination. Changes in recombination induce an exact anti-correlation between charge and light, and when calibrated this anti-correlation distinguishes recombination fluctuations from uncorrelated fluctuations in the measured signals. We determine the mean recombination and recombination fluctuations as a function of energy and applied field for electron and nuclear recoils, finding that recombination fluctuations are already the limiting factor for discrimination above ~12 keVr (nuclear recoil energy). Below 12 keVr statistical fluctuations in the number of scintillation photons counted dominate, and we project a x6 improvement in background rejection with a x2 increase in light collection efficiency. We also build a simple recombination model that successfully reproduces the mean recombination in electron and nuclear recoils, including the surprising reversal of the expected trend for recombination with

  18. NIFTE: The Near Infrared Faint-Object Telescope Experiment

    NASA Technical Reports Server (NTRS)

    Bock, James J.; Lange, Andrew E.; Matsumoto, T.; Eisenhardt, Peter B.; Hacking, Perry B.; Schember, Helene R.

    1994-01-01

    The high sensitivity of large format InSb arrays can be used to obtain deep images of the sky at 3-5 micrometers. In this spectral range cool or highly redshifted objects (e.g. brown dwarfs and protogalaxies) which are not visible at shorter wavelengths may be observed. Sensitivity at these wavelengths in ground-based observations is severly limited by the thermal flux from the telescope and from the earth's atmosphere. The Near Infrared Faint-Object Telescope Experiment (NIFTE), a 50 cm cooled rocket-borne telescope combined with large format, high performance InSb arrays, can reach a limiting flux less than 1 micro-Jy(1-sigma) over a large field-of-view in a single flight. In comparison, the Infrared Space Observatory (ISO) will require days of observation to reach a sensitivity more than one order of magnitude worse over a similar area of the sky. The deep 3-5 micrometer images obtained by the rocket-borne telescope will assist in determining the nature of faint red objects detected by ground-based telescopes at 2 micrometers, and by ISO at wavelengths longer than 5 micrometers.

  19. Applications of Gas Imaging Micro-Well Detectors to an Advanced Compton Telescope

    NASA Technical Reports Server (NTRS)

    Bloser, P. F.; Hunter, S. D.; Ryan, J. M.; McConnell, M. L.; Miller, R. S.; Jackson, T. N.; Bai, B.; Jung, S.

    2003-01-01

    We present a concept for an Advanced Compton Telescope (ACT) based on the use of pixelized gas micro-well detectors to form a three-dimensional electron track imager. A micro-well detector consists of an array of individual micro-patterned proportional counters opposite a planar drift electrode. When combined with thin film transistor array readouts, large gas volumes may be imaged with very good spatial and energy resolution at reasonable cost. The third dimension is determined by timing the drift of the ionization electrons. The primary advantage of this approach is the excellent tracking of the Compton recoil electron that is possible in a gas volume. Such good electron tracking allows us to reduce the point spread function of a single incident photon dramatically, greatly improving the imaging capability and sensitivity. The polarization sensitivity, which relies on events with large Compton scattering angles, is particularly enhanced. We describe a possible ACT implementation of this technique, in which the gas tracking volume is surrounded by a CsI calorimeter, and present our plans to build and test a small prototype over the next three years.

  20. Cardiac Mitochondria l Membrane Stability after Deep Hypothermia using a Xenon Clathrate Cryostasis Protocol – an Electron Microscopy Study

    PubMed Central

    Sheleg, Sergey; Hixon, Hugh; Cohen, Bruce; Lowry, David; Nedzved, Mikhail

    2008-01-01

    We investigated a new cryopreservation method using xenon, a clathrate-forming gas, under medium pressure (100psi). The objective of the study was to determine whether this cryostasis protocol could protect cardiac mitochondria at cryogenic temperatures (below 100 degrees Celsius).We analyzed transmission electron microscopy images to obtain information about changes in mitochondrial morphology induced by cryopreservation of the hearts. Our data showed absence of mitochondrial swelling, rupture of inner and outer membranes, and leakage of mitochondrial matrix into the cytoplasm after applying this cryostasis protocol. The electron microscopy results provided the first evidence that a cryostasis protocol using xenon as a clathrate-forming gas under pressure may have protective effects on intracellular membranes. This cryostasis technology may find applications in developing new approaches for long-term cryopreservation protocols. PMID:18787624

  1. Progress on Acoustic Measurements of the Bulk Viscosity of Near-Critical Xenon (BVX)

    NASA Technical Reports Server (NTRS)

    Gillis, Keith A.; Shinder, Iosif I.; Moldover, Michael R.; Zimmerli, Gregory A.

    2004-01-01

    We plan to determine the bulk viscosity of xenon 10 times closer [in reduced temperature tau = (T-Tc)/Tc] to its liquid-vapor critical point than ever before. (Tc is the critical temperature.) To do so, we must measure the dispersion and attenuation of sound at frequencies 1/100 of those used previously. In general, sound attenuation has contributions from the bulk viscosity acting throughout the volume of the xenon as well as contributions from the thermal conductivity and the shear viscosity acting within thin thermoacoustic boundary layers at the interface between the xenon and the solid walls of the resonator. Thus, we can determine the bulk viscosity only when the boundary layer attenuation is small and well understood. We present a comparison of calculations and measurements of sound attenuation in the acoustic boundary layer of xenon near its liquid-vapor critical point.

  2. TIFR Near Infrared Imaging Camera-II on the 3.6 m Devasthal Optical Telescope

    NASA Astrophysics Data System (ADS)

    Baug, T.; Ojha, D. K.; Ghosh, S. K.; Sharma, S.; Pandey, A. K.; Kumar, Brijesh; Ghosh, Arpan; Ninan, J. P.; Naik, M. B.; D’Costa, S. L. A.; Poojary, S. S.; Sandimani, P. R.; Shah, H.; Krishna Reddy, B.; Pandey, S. B.; Chand, H.

    Tata Institute of Fundamental Research (TIFR) Near Infrared Imaging Camera-II (TIRCAM2) is a closed-cycle Helium cryo-cooled imaging camera equipped with a Raytheon 512×512 pixels InSb Aladdin III Quadrant focal plane array (FPA) having sensitivity to photons in the 1-5μm wavelength band. In this paper, we present the performance of the camera on the newly installed 3.6m Devasthal Optical Telescope (DOT) based on the calibration observations carried out during 2017 May 11-14 and 2017 October 7-31. After the preliminary characterization, the camera has been released to the Indian and Belgian astronomical community for science observations since 2017 May. The camera offers a field-of-view (FoV) of ˜86.5‧‧×86.5‧‧ on the DOT with a pixel scale of 0.169‧‧. The seeing at the telescope site in the near-infrared (NIR) bands is typically sub-arcsecond with the best seeing of ˜0.45‧‧ realized in the NIR K-band on 2017 October 16. The camera is found to be capable of deep observations in the J, H and K bands comparable to other 4m class telescopes available world-wide. Another highlight of this camera is the observational capability for sources up to Wide-field Infrared Survey Explorer (WISE) W1-band (3.4μm) magnitudes of 9.2 in the narrow L-band (nbL; λcen˜ 3.59μm). Hence, the camera could be a good complementary instrument to observe the bright nbL-band sources that are saturated in the Spitzer-Infrared Array Camera (IRAC) ([3.6] ≲ 7.92 mag) and the WISE W1-band ([3.4] ≲ 8.1 mag). Sources with strong polycyclic aromatic hydrocarbon (PAH) emission at 3.3μm are also detected. Details of the observations and estimated parameters are presented in this paper.

  3. Measuring xenon in human plasma and blood by gas chromatography/mass spectrometry.

    PubMed

    Thevis, Mario; Piper, Thomas; Geyer, Hans; Thomas, Andreas; Schaefer, Maximilian S; Kienbaum, Peter; Schänzer, Wilhelm

    2014-07-15

    Due to the favorable pharmacokinetic properties and minimal side effects of xenon, its use in modern anesthesia has been well accepted, and recent studies further demonstrated the intra- and postoperative neuro-, cardio-, and reno-protective action of the noble gas. Since the production of the hypoxia-inducible factor 1α (HIF-1α) and its downstream effector erythropoietin as well as noradrenalin reuptake inhibition have been found to play key roles in this context, the question arose as to whether the use of xenon is a matter for doping controls and preventive doping research. The aim of the present study was hence to evaluate whether the (ab)use of xenon can be detected from doping control samples with the instrumentation commonly available in sports drug testing laboratories. Plasma was saturated with xenon according to reported protocols, and the target analyte was measured by means of gas chromatography/time-of-flight and triple quadrupole mass spectrometry with headspace injection. Recording the accurate mass of three major xenon isotopes at m/z 128.9048, 130.9045 and 131.9042 allowed for the unequivocal identification of the analyte and the detection assay was characterized concerning limit of detection (LOD), intraday precision, and specificity as well as analyte recovery under different storage conditions. Xenon was detected in fortified plasma samples with detection limits of approximately 0.5 nmol/mL to 50 nmol/mL, depending on the type of mass spectrometer used. The method characteristics of intraday precision (coefficient of variation <20%) and specificity demonstrated the fitness-for-purpose of the analytical approach to unambiguously detect xenon at non-physiological concentrations in human plasma and blood. Eventually, authentic plasma and blood samples collected pre-, intra-, and post-operative (4, 8, and 24 h) were positively analyzed after storage for up to 30 h, and provided proof-of-concept for the developed assay. If relevant to

  4. HUBBLE SPACE TELESCOPE (HST) IMAGERY OF THE 30 DORADUS NEBULA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Hubble Space Telescope (HST) images of the 30 Doradus Nebula show its remarkable cluster of tightly-packed young stars 160,000 light years from Earth in the large Magellanic cloud galaxy. Panel A is a portion of a image made with the HST Wide Field Planetary Camera (WFPC). WFPC photographed four adjoining sky regions simultaneously which are assembled in this mosaic. Panel B is an enlargement of the central portion of the HST image which was made in violet light. It shows the compact star cluster R136, which consists of very hot and massive young stars. The star images have bright cores that are only 0.1 arc seconds wide, allowing many more stars to be distinguished than in previous ground-based telescopic photos. Panel C is a photograph of the same region as Panel B, obtained with the Max Planck 2.2 meter telescope at the European Southern Observatory in Chile. The star images are 0.6 arc seconds wide. Panel D shows how computer processing of the HST image in Panel B has sharpened its

  5. XENON-133 IN CALIFORNIA, NEVADA, AND UTAH FROM THE CHERNOBYL ACCIDENT (JOURNAL VERSION)

    EPA Science Inventory

    The accident at the Chernobyl nuclear reactor in the USSR introduced numerous radioactive nuclides into the atmosphere, including the noble gas xenon-133. EPA's Environmental Monitoring Systems Laboratory, Las Vegas, NV, detected xenon-133 from the Chernobyl accident in air sampl...

  6. Remote secure observing for the Faulkes Telescopes

    NASA Astrophysics Data System (ADS)

    Smith, Robert J.; Steele, Iain A.; Marchant, Jonathan M.; Fraser, Stephen N.; Mucke-Herzberg, Dorothea

    2004-09-01

    Since the Faulkes Telescopes are to be used by a wide variety of audiences, both powerful engineering level and simple graphical interfaces exist giving complete remote and robotic control of the telescope over the internet. Security is extremely important to protect the health of both humans and equipment. Data integrity must also be carefully guarded for images being delivered directly into the classroom. The adopted network architecture is described along with the variety of security and intrusion detection software. We use a combination of SSL, proxies, IPSec, and both Linux iptables and Cisco IOS firewalls to ensure only authenticated and safe commands are sent to the telescopes. With an eye to a possible future global network of robotic telescopes, the system implemented is capable of scaling linearly to any moderate (of order ten) number of telescopes.

  7. Surface damage on polycrystalline β-SiC by xenon ion irradiation at high fluence

    NASA Astrophysics Data System (ADS)

    Baillet, J.; Gavarini, S.; Millard-Pinard, N.; Garnier, V.; Peaucelle, C.; Jaurand, X.; Duranti, A.; Bernard, C.; Rapegno, R.; Cardinal, S.; Escobar Sawa, L.; De Echave, T.; Lanfant, B.; Leconte, Y.

    2018-05-01

    Polycrystalline β-silicon carbide (β-SiC) pellets were prepared by Spark Plasma Sintering (SPS). These were implanted at room temperature with 800 keV xenon at ion fluences of 5.1015 and 1.1017 cm-2. Microstructural modifications were studied by electronic microscopy (TEM and SEM) and xenon profiles were determined by Rutherford Backscattering Spectroscopy (RBS). A complete amorphization of the implanted area associated with a significant oxidation is observed for the highest fluence. Large xenon bubbles formed in the oxide phase are responsible of surface swelling. No significant gas release has been measured up to 1017 at.cm-2. A model is proposed to explain the different steps of the oxidation process and xenon bubbles formation as a function of ion fluence.

  8. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (SDK) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. The science goals for JWST include the formation of the first stars and galaxies in the early universe; the chemical, morphological and dynamical buildup of galaxies and the formation of stars and planetary systems. Recently, the goals have expanded to include studies of dark energy, dark matter, active galactic nuclei, exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to S microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory is confirmed for launch in 2018; the design is complete and it is in its construction phase. Recent progress includes the completion of the mirrors, the delivery of the first flight instruments and the start of the integration and test phase.

  9. Hypatia: a 4m active space telescope concept and capabilities

    NASA Astrophysics Data System (ADS)

    Devaney, Nicholas; Goncharov, A.; Goy, M.; Reinlein, C.; Lange, N.

    2017-09-01

    While ambitious plans are being developed for giant, segmented telescopes in space, we feel that a large monolithic mirror telescope would have several advantages in the near term. In particular, the risk involved in deploying the optics will be significantly reduced, and the telescope can provide excellent image quality without the need for precise segment alignment and phasing.

  10. DynamiX, numerical tool for design of next-generation x-ray telescopes.

    PubMed

    Chauvin, Maxime; Roques, Jean-Pierre

    2010-07-20

    We present a new code aimed at the simulation of grazing-incidence x-ray telescopes subject to deformations and demonstrate its ability with two test cases: the Simbol-X and the International X-ray Observatory (IXO) missions. The code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, accounting for the x-ray interactions and for the telescope motion and deformation. The simulation produces images and spectra for any telescope configuration using Wolter I mirrors and semiconductor detectors. This numerical tool allows us to study the telescope performance in terms of angular resolution, effective area, and detector efficiency, accounting for the telescope behavior. We have implemented an image reconstruction method based on the measurement of the detector drifts by an optical sensor metrology. Using an accurate metrology, this method allows us to recover the loss of angular resolution induced by the telescope instability. In the framework of the Simbol-X mission, this code was used to study the impacts of the parameters on the telescope performance. In this paper we present detailed performance analysis of Simbol-X, taking into account the satellite motions and the image reconstruction. To illustrate the versatility of the code, we present an additional performance analysis with a particular configuration of IXO.

  11. Feasibility study of an optically coherent telescope array in space

    NASA Technical Reports Server (NTRS)

    Traub, W. A.

    1983-01-01

    Numerical methods of image construction which can be used to produce very high angular resolution images at optical wavelengths of astronomical objects from an orbiting array of telescopes are discussed and a concept is presented for a phase-coherent optical telescope array which may be deployed by space shuttle in the 1990's. The system would start as a four-element linear array with a 12 m baseline. The initial module is a minimum redundant array with a photon-counting collecting area three times larger than space telescope and a one dimensional resolution of better than 0.01 arc seconds in the visible range. Later additions to the array would build up facility capability. The advantages of a VLBI observatory in space are considered as well as apertures for the telescopes.

  12. Yes, the James Webb Space Telescope Mirrors 'Can'

    NASA Image and Video Library

    2017-12-08

    The powerful primary mirrors of the James Webb Space Telescope will be able to detect the light from distant galaxies. The manufacturer of those mirrors, Ball Aerospace & Technologies Corp. of Boulder, Colo., recently celebrated their successful efforts as mirror segments were packed up in special shipping canisters (cans) for shipping to NASA. The Webb telescope has 21 mirrors, with 18 primary mirror segments working together as one large 21.3-foot (6.5-meter) primary mirror. The mirror segments are made of beryllium, which was selected for its stiffness, light weight and stability at cryogenic temperatures. Bare beryllium is not very reflective of near-infrared light, so each mirror is coated with about 0.12 ounce of gold. Northrop Grumman Corp. Aerospace Systems is the principal contractor on the telescope and commissioned Ball for the optics system's development, design, manufacturing, integration and testing. The Webb telescope is the world's next-generation space observatory and successor to the Hubble Space Telescope. The most powerful space telescope ever built, the Webb telescope will provide images of the first galaxies ever formed, and explore planets around distant stars. It is a joint project of NASA, the European Space Agency and the Canadian Space Agency. For more information about the James Webb Space Telescope, visit: www.jwst.nasa.gov Credit: Ball Aerospace NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. HabEx Optical Telescope Concepts: Design and Performance Analysis

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; NASA MSFC HabEx Telescope Design Team

    2018-01-01

    The Habitable-Exoplanet Imaging Mission (HabEx) engineering study team has been tasked by NASA with developing a compelling and feasible exoplanet direct imaging concept as part of the 2020 Decadal Survey. This paper summarizes design concepts for two off-axis unobscured telescope concepts: a 4-meter monolithic aperture and a 6-meter segmented aperutre. HabEx telescopes are designed for launch vehicle accommodation. Analysis includes prediction of on-orbit dynamic structural and thermal optical performance.

  14. Antares reference telescope system

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.

    Antares is a 24 beam, 40 TW carbon dioxide laser fusion system currently nearing completion. The 24 beams will be focused onto a tiny target. It is to position the targets to within 10 (SIGMA)m of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares reference telescope system is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares reference telescope system consists of two similar electrooptical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9% optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front lighting subsystem which illuminates the target; and (4) an adjustable back lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and tradeoffs are discussed. The final system chosen and its current status are described.

  15. SCUBA-2: The next generation wide-field imager for the James Clerk Maxwell Telescope

    NASA Astrophysics Data System (ADS)

    Holland, W. S.; Duncan, W. D.; Kelly, B. D.; Peacocke, T.; Robson, E. I.; Irwin, K. D.; Hilton, G.; Rinehart, S.; Ade, P. A. R.; Griffin, M. J.

    2000-12-01

    We describe SCUBA-2 - the next generation continuum imaging camera for the James Clerk Maxwell Telescope. The instrument will capitalise on the success of the current SCUBA camera, by having a much larger field-of- view and improved sensitivity. SCUBA-2 will be able to map the submillimetre sky several hundred times faster than SCUBA to the same noise level. Many areas of astronomy are expected to benefit - from large scale cosmological surveys to probe galaxy formation and evolution to studies of the earliest stages of star formation in our own Galaxy. Perhaps the most exciting prospect that SCUBA-2 will offer is in the statistical significance of wide-field surveys. The key science requirements of the new camera are the ability to make very deep images - reaching background confusion levels in only a couple of hours; to generate high fidelity images at two wavelengths simultaneously; to map large areas of sky (tens of degrees) to a reasonable depth in only a few hours; carry out photometry of known-position point-sources to a high accuracy. The technical design of SCUBA-2 will incorporate new technology transition-edge sensors as the detecting element, with signals being read out using multiplexed SQUID amplifiers. As in SCUBA there will be two arrays operating at 450 and 850 microns simultaneously. Fully-sampling a field-of-voew of 8 arcminutes square will require 25,600 and 6,400 pixels at 450 and 850 microns respectively (cf 91 and 37 pixels with SCUBA!). Each pixel will have diffraction-limited resolution on the sky and a sensitivity dominated by the background photon noise. SCUBA-2 is a collaboration between a number of institutions. We anticipate delivery of the final instrument to the telescope before the end of 2005.

  16. New Frontiers for Massive Star Winds: Imaging and Spectroscopy with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Sonneborn, George

    2007-01-01

    The James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2013. JWST will find the first stars and galaxies that formed in the early universe, connecting the Big Bang to our own Milky Way galaxy. JWST will peer through dusty clouds to see stars forming planetary systems, connecting the Milky Way to our own Solar System. JWST's instruments are designed to work primarily in the infrared range of 1 - 28 microns, with some capability in the visible range. JWST will have a large mirror, 6.5 meters in diameter, and will be diffraction-limited at 2 microns (0.1 arcsec resolution). JWST will be placed in an L2 orbit about 1.5 million km from the Earth. The instruments will provide imaging, coronography, and multi-object and integral-field spectroscopy across the full 1 - 28 micron wavelength range. The breakthrough capabilities of JWST will enable new studies of massive star winds from the Milky Way to the early universe.

  17. Xenon Treatment Protects against Remote Lung Injury after Kidney Transplantation in Rats.

    PubMed

    Zhao, Hailin; Huang, Han; Ologunde, Rele; Lloyd, Dafydd G; Watts, Helena; Vizcaychipi, Marcela P; Lian, Qingquan; George, Andrew J T; Ma, Daqing

    2015-06-01

    Ischemia-reperfusion injury (IRI) of renal grafts may cause remote organ injury including lungs. The authors aimed to evaluate the protective effect of xenon exposure against remote lung injury due to renal graft IRI in a rat renal transplantation model. For in vitro studies, human lung epithelial cell A549 was challenged with H2O2, tumor necrosis factor-α, or conditioned medium from human kidney proximal tubular cells (HK-2) after hypothermia-hypoxia insults. For in vivo studies, the Lewis renal graft was stored in 4°C Soltran preserving solution for 24 h and transplanted into the Lewis recipient, and the lungs were harvested 24 h after grafting. Cultured lung cells or the recipient after engraftment was exposed to 70% Xe or N2. Phospho (p)-mammalian target of rapamycin (mTOR), hypoxia-inducible factor-1α (HIF-1α), Bcl-2, high-mobility group protein-1 (HMGB-1), TLR-4, and nuclear factor κB (NF-κB) expression, lung inflammation, and cell injuries were assessed. Recipients receiving ischemic renal grafts developed pulmonary injury. Xenon treatment enhanced HIF-1α, which attenuated HMGB-1 translocation and NF-κB activation in A549 cells with oxidative and inflammatory stress. Xenon treatment enhanced p-mTOR, HIF-1α, and Bcl-2 expression and, in turn, promoted cell proliferation in the lung. Upon grafting, HMGB-1 translocation from lung epithelial nuclei was reduced; the TLR-4/NF-κB pathway was suppressed by xenon treatment; and subsequent tissue injury score (nitrogen vs. xenon: 26 ± 1.8 vs. 10.7 ± 2.6; n = 6) was significantly reduced. Xenon treatment confers protection against distant lung injury triggered by renal graft IRI, which is likely through the activation of mTOR-HIF-1α pathway and suppression of the HMGB-1 translocation from nuclei to cytoplasm.

  18. Experimental investigations of argon and xenon ion sources

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1975-01-01

    The multipole thruster was used to investigate the use of argon and xenon propellants as possible alternatives to the electric thruster propellants of mercury and cesium. The multipole approach was used because of its general high performance level. The design employed, using flat and cylindrical rolled sections of sheet metal, was selected for ease of fabrication, design, assembly, and modification. All testing was conducted in a vacuum facility and the pumping was accomplished by a 0.8 m diffusion pump together with liquid nitrogen cooled liner. Minimum discharge losses were in the 200-250 ev. ion range for both argon and xenon. Flatness parameters were typically in the 0.70-0.75 range.

  19. Xenon Protects Against Septic Acute Kidney Injury via miR-21 Target Signaling Pathway.

    PubMed

    Jia, Ping; Teng, Jie; Zou, Jianzhou; Fang, Yi; Wu, Xie; Liang, Mingyu; Ding, Xiaoqiang

    2015-07-01

    Septic acute kidney injury is one of the most common and life-threatening complications in critically ill patients, and there is no approved effective treatment. We have shown xenon provides renoprotection against ischemia-reperfusion injury and nephrotoxicity in rodents via inhibiting apoptosis. Here, we studied the effects of xenon preconditioning on septic acute kidney injury and its mechanism. Experimental animal investigation. University research laboratory. Experiments were performed with male C57BL/6 mice, 10 weeks of age, weighing 20-25 g. We induced septic acute kidney injury by a single intraperitoneal injection of Escherichia coli lipopolysaccharide at a dose of 20 mg/kg. Mice were exposed for 2 hours to either 70% xenon or 70% nitrogen, 24 hours before the onset of septic acute kidney injury. In vivo knockdown of miR-21 was performed using locked nucleic acid-modified anti-miR, the role of miR-21 in renal protection conferred by the xenon preconditioning was examined, and miR-21 signaling pathways were analyzed. Xenon preconditioning provided morphologic and functional renoprotection, characterized by attenuation of renal tubular damage, apoptosis, and a reduction in inflammation. Furthermore, xenon treatment significantly upregulated the expression of miR-21 in kidney, suppressed proinflammatory factor programmed cell death protein 4 expression and nuclear factor-κB activity, and increased interleukin-10 production. Meanwhile, xenon preconditioning also suppressed the expression of proapoptotic protein phosphatase and tensin homolog deleted on chromosome 10, activating protein kinase B signaling pathway, subsequently increasing the expression of antiapoptotic B-cell lymphoma-2, and inhibiting caspase-3 activity. Knockdown of miR-21 upregulated its target effectors programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10 expression, resulted in an increase in apoptosis, and exacerbated lipopolysaccharide

  20. Xenon Protects Against Septic Acute Kidney Injury via miR-21 Target Signaling Pathway*

    PubMed Central

    Jia, Ping; Teng, Jie; Zou, Jianzhou; Fang, Yi; Wu, Xie; Liang, Mingyu

    2015-01-01

    Objectives: Septic acute kidney injury is one of the most common and life-threatening complications in critically ill patients, and there is no approved effective treatment. We have shown xenon provides renoprotection against ischemia-reperfusion injury and nephrotoxicity in rodents via inhibiting apoptosis. Here, we studied the effects of xenon preconditioning on septic acute kidney injury and its mechanism. Design: Experimental animal investigation. Setting: University research laboratory. Subjects: Experiments were performed with male C57BL/6 mice, 10 weeks of age, weighing 20–25 g. Interventions: We induced septic acute kidney injury by a single intraperitoneal injection of Escherichia coli lipopolysaccharide at a dose of 20 mg/kg. Mice were exposed for 2 hours to either 70% xenon or 70% nitrogen, 24 hours before the onset of septic acute kidney injury. In vivo knockdown of miR-21 was performed using locked nucleic acid-modified anti-miR, the role of miR-21 in renal protection conferred by the xenon preconditioning was examined, and miR-21 signaling pathways were analyzed. Measurements and Main Results: Xenon preconditioning provided morphologic and functional renoprotection, characterized by attenuation of renal tubular damage, apoptosis, and a reduction in inflammation. Furthermore, xenon treatment significantly upregulated the expression of miR-21 in kidney, suppressed proinflammatory factor programmed cell death protein 4 expression and nuclear factor-κB activity, and increased interleukin-10 production. Meanwhile, xenon preconditioning also suppressed the expression of proapoptotic protein phosphatase and tensin homolog deleted on chromosome 10, activating protein kinase B signaling pathway, subsequently increasing the expression of antiapoptotic B-cell lymphoma-2, and inhibiting caspase-3 activity. Knockdown of miR-21 upregulated its target effectors programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10

  1. James Webb Space Telescope Status

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2005-01-01

    The James Webb Space Telescope (JWST) is the first deployable infrared to millimeter wave space telescopes. We will describe the progress on JWST and introduce other speakers in the session. The JWST will operate at the Sun-Earth Lagrange point L2, where radiative cooling lowers the telescope and instrument temperatures to about 35 K. It will have an 18-segment beryllium primary mirror with a 25 m2 area fitting inside a 6.6m circumscribed circle, and will provide spectroscopy and imaging over the wavelength range from 0.6 to 28 microns. It is planned for launch in 2011 on an Ariane 5 rocket. The project is a partnership of NASA, ESA, and CSA, and the prime contractor is Northrop Grumman. See http://www.jwst.nasa.gov for more details on JWST.

  2. Measurement of aircraft xenon strobe light characteristics

    DOT National Transportation Integrated Search

    1976-08-01

    This report provides data on the characteristics of aircraft xenon strobe lights related to their potential for use as the cooperative element in Optical IR (Infrared) Airborne Proximity Warning Indicator (APWI) systems. It includes a description of ...

  3. Chondritic xenon in the Earth's mantle.

    PubMed

    Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G; Füri, Evelyn; Marty, Bernard

    2016-05-05

    Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth's mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth's mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth's accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.

  4. Adaptive optics at the Subaru telescope: current capabilities and development

    NASA Astrophysics Data System (ADS)

    Guyon, Olivier; Hayano, Yutaka; Tamura, Motohide; Kudo, Tomoyuki; Oya, Shin; Minowa, Yosuke; Lai, Olivier; Jovanovic, Nemanja; Takato, Naruhisa; Kasdin, Jeremy; Groff, Tyler; Hayashi, Masahiko; Arimoto, Nobuo; Takami, Hideki; Bradley, Colin; Sugai, Hajime; Perrin, Guy; Tuthill, Peter; Mazin, Ben

    2014-08-01

    Current AO observations rely heavily on the AO188 instrument, a 188-elements system that can operate in natural or laser guide star (LGS) mode, and delivers diffraction-limited images in near-IR. In its LGS mode, laser light is transported from the solid state laser to the launch telescope by a single mode fiber. AO188 can feed several instruments: the infrared camera and spectrograph (IRCS), a high contrast imaging instrument (HiCIAO) or an optical integral field spectrograph (Kyoto-3DII). Adaptive optics development in support of exoplanet observations has been and continues to be very active. The Subaru Coronagraphic Extreme-AO (SCExAO) system, which combines extreme-AO correction with advanced coronagraphy, is in the commissioning phase, and will greatly increase Subaru Telescope's ability to image and study exoplanets. SCExAO currently feeds light to HiCIAO, and will soon be combined with the CHARIS integral field spectrograph and the fast frame MKIDs exoplanet camera, which have both been specifically designed for high contrast imaging. SCExAO also feeds two visible-light single pupil interferometers: VAMPIRES and FIRST. In parallel to these direct imaging activities, a near-IR high precision spectrograph (IRD) is under development for observing exoplanets with the radial velocity technique. Wide-field adaptive optics techniques are also being pursued. The RAVEN multi-object adaptive optics instrument was installed on Subaru telescope in early 2014. Subaru Telescope is also planning wide field imaging with ground-layer AO with the ULTIMATE-Subaru project.

  5. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  6. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  7. Xenon adsorption on geological media and implications for radionuclide signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, M. J.; Biegalski, S. R.; Haas, D. A.

    Here, the detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isothermmore » measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures.« less

  8. Xenon adsorption on geological media and implications for radionuclide signatures

    DOE PAGES

    Paul, M. J.; Biegalski, S. R.; Haas, D. A.; ...

    2018-02-13

    Here, the detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isothermmore » measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures.« less

  9. Optical design of a Michelson wide-field multiple-aperture telescope

    NASA Astrophysics Data System (ADS)

    Cassaing, Frederic; Sorrente, Beatrice; Fleury, Bruno; Laubier, David

    2004-02-01

    Multiple-Aperture Optical Telescopes (MAOTs) are a promising solution for very high resolution imaging. In the Michelson configuration, the instrument is made of sub-telescopes distributed in the pupil and combined by a common telescope via folding periscopes. The phasing conditions of the sub-pupils lead to specific optical constraints in these subsystems. The amplitude of main contributors to the wavefront error (WFE) is given as a function of high level requirements (such as field or resolution) and free parameters, mainly the sub-telescope type, magnification and diameter. It is shown that for the periscopes, the field-to-resolution ratio is the main design driver and can lead to severe specifications. The effect of sub-telescopes aberrations on the global WFE can be minimized by reducing their diameter. An analytical tool for the MAOT design has been derived from this analysis, illustrated and validated in three different cases: LEO or GEO Earth observation and astronomy with extremely large telescopes. The last two cases show that a field larger than 10 000 resolution elements can be covered with a very simple MAOT based on Mersenne paraboloid-paraboloid sub-telescopes. Michelson MAOTs are thus a solution to be considered for high resolution wide-field imaging, from space or ground.

  10. Intrabullous ventilation in pulmonary emphysema: assessment with dynamic xenon-133 gas SPECT.

    PubMed

    Suga, Kazuyoshi; Iwanaga, Hideyuki; Tokuda, Osamu; Okada, Munemasa; Matsunaga, Naofumi

    2012-04-01

    Intrabullous ventilation in patients with pulmonary emphysema (PE) was cross-sectionally evaluated using dynamic xenon-133 gas single photon emission computed tomography (SPECT). Fifty-two patients with PE with a total of 109 bullae of more than 4 cm in maximum diameter underwent xenon-133 gas SPECT. The real xenon-133 gas half-clearance time (T1/2) at each bulla was compared with that at the surrounding lung in the same lobe. The emphysema subtype of the surrounding lung was classified into centrilobular, panlobular, and paraseptal on computed tomography (CT). All bullae except for one in all patients showed xenon-133 gas wash-in. Of the 108 bullae with wash-in, 95 (87.9%) bullae in 46 (88%) patients showed marked xenon-133 gas retention with a T1/2 beyond 110 s (mean: 184 s ± 91). The surrounding lungs of these bullae also showed marked retention with a T1/2 of greater than 100 s (mean: 174 s ± 82), and the majority (N=92, 96.8%) were centrilobular or panlobular on CT. The remaining 13 (12.0%) bullae in six (11%) patients showed minimal retention with a T1/2 of less than 80 s (mean: 62 s ± 11), regardless of no significant difference in size compared with the bullae with marked retention. All the surrounding lungs of these bullae except for one also showed minimal retention with a T1/2 of less than 70 s (mean: 60 s ± 18), which was significantly less compared with that of the bullae with marked retention (P<0.0001), and the majority (N=11, 84.6%) were paraseptal with or without an interstitially fibrotic change and predominantly located at the lower lung lobe on CT. The T1/2 of the 108 bullae with xenon-133 gas wash-in was significantly correlated with that of the surrounding lungs (r=0.884, P<0.0001). Intrabullous ventilation in patients with PE appears to depend on the ventilation status of the surrounding lung, and bullae with the surrounding lungs of paraseptal-type emphysema tend to show minimal air trapping. Xenon-133 gas SPECT is useful for assessment

  11. New Mission Concept Study: Energetic X-Ray Imaging Survey Telescope (EXIST)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This Report summarizes the activity carried out under the New Mission Concept (NMC) study for a mission to conduct a sensitive all-sky imaging survey in the hard x-ray (HX) band (approximately 10-600 keV). The Energetic X-ray Imaging Survey Telescope (EXIST) mission was originally proposed for this NMC study and was then subsequently proposed for a MIDEX mission as part of this study effort. Development of the EXIST (and related) concepts continues for a future flight proposal. The hard x-ray band (approximately 10-600 keV) is nearly the final band of the astronomical spectrum still without a sensitive imaging all-sky survey. This is despite the enormous potential of this band to address a wide range of fundamental and timely objectives - from the origin and physical mechanisms of cosmological gamma-ray bursts (GRBs) to the processes on strongly magnetic neutron stars that produce soft gamma-repeaters and bursting pulsars; from the study of active galactic nuclei (AGN) and quasars to the origin and evolution of the hard x-ray diffuse background; from the nature and number of black holes and neutron stars and the accretion processes onto them to the extreme non-thermal flares of normal stars; and from searches for expected diffuse (but relatively compact) nuclear line (Ti-44) emission in uncatalogued supernova remnants to diffuse non-thermal inverse Compton emission from galaxy clusters. A high sensitivity all-sky survey mission in the hard x-ray band, with imaging to both address source confusion and time-variable background radiations, is very much needed.

  12. Advanced X-Ray Telescope Mirrors Provide Sharpest Focus Ever

    NASA Astrophysics Data System (ADS)

    1997-03-01

    Performing beyond expectations, the high- resolution mirrors for NASA's most powerful orbiting X-ray telescope have successfully completed initial testing at Marshall Space Flight Center's X-ray Calibration Facility, Huntsville, AL. "We have the first ground test images ever generated by the telescope's mirror assembly, and they are as good as -- or better than -- expected," said Dr. Martin Weisskopf, Marshall's chief scientist for NASA's Advanced X-ray Astrophysics Facility (AXAF). The mirror assembly, four pairs of precisely shaped and aligned cylindrical mirrors, will form the heart of NASA's third great observatory. The X-ray telescope produces an image by directing incoming X-rays to detectors at a focal point some 30 feet beyond the telescope's mirrors. The greater the percentage of X-rays brought to focus and the smaller the size of the focal spot, the sharper the image. Tests show that on orbit, the mirror assembly of the Advanced X-ray Astrophysics Facility will be able to focus approximately 70 percent of X-rays from a source to a spot less than one-half arc second in radius. The telescope's resolution is equivalent to being able to read the text of a newspaper from half a mile away. "The telescope's focus is very clear, very sharp," said Weisskopf. "It will be able to show us details of very distant sources that we know are out there, but haven't been able to see clearly." In comparison, previous X-ray telescopes -- Einstein and Rosat -- were only capable of focusing X- rays to five arc seconds. The Advanced X-ray Telescope's resolving power is ten times greater. "Images from the new telescope will allow us to make major advances toward understanding how exploding stars create and disperse many of the elements necessary for new solar systems and for life itself," said Dr. Harvey Tananbaum, director of the Advanced X- ray Astrophysics Facility Science Center at the Smithsonian Astrophysical Observatory, in Cambridge, MA -- responsible for the telescope

  13. Variability in the vacuum-ultraviolet transmittance of magnesium fluoride windows. [for Space Telescope Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Herzig, Howard; Fleetwood, Charles M., Jr.; Toft, Albert R.

    1992-01-01

    Sample window materials tested during the development of a domed magnesium fluoride detector window for the Hubble Space Telescope's Imaging Spectrograph are noted to exhibit wide variability in VUV transmittance; a test program was accordingly instituted to maximize a prototype domed window's transmittance. It is found that VUV transmittance can be maximized if the boule from which the window is fashioned is sufficiently large to allow such a component to be cut from the purest available portion of the boule.

  14. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1993-12-01

    Astronaut Hoffman held the Hubble Space Telescope (HST) Wide Field/Planetary Camera-1 (WF/PC1) that was replaced by WF/PC2 in the cargo bay of the Space Shuttle orbiter Endeavour during Extravehicular Activity (EVA). The STS-61 mission was the first of the series of the HST servicing missions. Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. During four spacewalks, the STS-61 crew replaced the solar panel with its flexing problems; the WF/PC1 with WF/PC2, with built-in corrective optics; and the High-Speed Photometer with the Corrective Optics Space Telescope Axial Replacement (COSTAR) to correct the aberration for the remaining instruments. The purpose of the HST, the most complex and sensitive optical telescope ever made, is to study the cosmos from a low-Earth orbit for 15 years or more. The HST provides fine detail imaging, produces ultraviolet images and spectra, and detects very faint objects. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Cornecticut, developed the optical system and guidance sensors.

  15. IBIS: An Interferometer-Based Imaging System for Detecting Extrasolar Planets with a Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Diner, David J.

    1989-01-01

    The direct detection of extrasolar planetary systems is a challenging observational objective. The observing system must be able to detect faint planetary signals against the background of diffracted and scattered starlight, zodiacal light, and in the IR, mirror thermal radiation. As part of a JPL study, we concluded that the best long-term approach is a 10-20 m filled-aperture telescope operating in the thermal IR (10-15 microns). At these wavelengths, the star/planet flux ratio is on the order of 10(exp 6)-10(exp 8). Our study supports the work of Angel et al., who proposed a cooled 16-m IR telescope and a special apodization mask to suppress the stellar light within a limited angular region around the star. Our scheme differs in that it is capable of stellar suppression over a much broader field-of- view, enabling more efficient planet searches. To do this, certain key optical signal-processing components are needed, including a coronagraph to apodize the stellar diffraction pattern, an infrared interferometer to provide further starlight suppression, a complementary visible-wavelength interferometer to sense figure errors in the telescope optics, and a deformable mirror to adaptively compensate for these errors. Because of the central role of interferometry we have designated this concept the Interferometer-Based Imaging System (IBIS). IBIS incorporates techniques originally suggested by Ken Knight for extrasolar planet detection at visible wavelengths. The type of telescope discussed at this workshop is well suited to implementation of the IBIS concept.

  16. Studies on a silicon-photomultiplier-based camera for Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Arcaro, C.; Corti, D.; De Angelis, A.; Doro, M.; Manea, C.; Mariotti, M.; Rando, R.; Reichardt, I.; Tescaro, D.

    2017-12-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) represent a class of instruments which are dedicated to the ground-based observation of cosmic VHE gamma ray emission based on the detection of the Cherenkov radiation produced in the interaction of gamma rays with the Earth atmosphere. One of the key elements of such instruments is a pixelized focal-plane camera consisting of photodetectors. To date, photomultiplier tubes (PMTs) have been the common choice given their high photon detection efficiency (PDE) and fast time response. Recently, silicon photomultipliers (SiPMs) are emerging as an alternative. This rapidly evolving technology has strong potential to become superior to that based on PMTs in terms of PDE, which would further improve the sensitivity of IACTs, and see a price reduction per square millimeter of detector area. We are working to develop a SiPM-based module for the focal-plane cameras of the MAGIC telescopes to probe this technology for IACTs with large focal plane cameras of an area of few square meters. We will describe the solutions we are exploring in order to balance a competitive performance with a minimal impact on the overall MAGIC camera design using ray tracing simulations. We further present a comparative study of the overall light throughput based on Monte Carlo simulations and considering the properties of the major hardware elements of an IACT.

  17. Xenon migration in UO2 under irradiation studied by SIMS profilometry

    NASA Astrophysics Data System (ADS)

    Marchand, B.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Garnier, C.; Raimbault, L.; Sainsot, P.; Epicier, T.; Delafoy, C.; Fraczkiewicz, M.; Gaillard, C.; Toulhoat, N.; Perrat-Mabilon, A.; Peaucelle, C.

    2013-09-01

    During Pressurized Water Reactor operation, around 25% of the created Fission Products (FP) are Xenon and Krypton. They have a low solubility in the nuclear fuel and can either (i) agglomerate into bubbles which induce mechanical stress in the fuel pellets or (ii) be released from the pellets, increasing the pressure within the cladding and decreasing the thermal conductivity of the gap between pellets and cladding. After fifty years of studies on the nuclear fuel, all mechanisms of Fission Gas Release (FGR) are still not fully understood. This paper aims at studying the FGR mechanisms by decoupling thermal and irradiation effects and by assessing the Xenon behavior for the first time by profilometry. Samples are first implanted with 136Xe at 800 keV corresponding to a projected range of 140 nm. They are then either annealed in the temperature range 1400-1600 °C, or irradiated with heavy energy ions (182 MeV Iodine) at Room Temperature (RT), 600 °C or 1000 °C. Depth profiles of implanted Xenon in UO2 are determined by Secondary Ion Mass Spectrometry (SIMS). It is shown that Xenon is mobile during irradiation at 1000 °C. In contrast, thermal treatments do not induce any Xenon migration process: these results are correlated to the formation of Xenon bubbles observed by Transmission Electron Microscopy. At depths lower than about 40 nm (zone 1), no bubbles are observed, At depths in between 40 nm and 110 nm (zone 2), a large number of small bubbles (around 2 nm in diameter) can be observed. By comparing with the SRIM profile, it appears that this area corresponds to the maximum of the defect profile, The third zone displays two bubble populations. The first population has the same size than the bubbles present in zone 2. The bubble size of the second population is significantly larger (up to around 10 nm). A STEM micrograph is presented in Fig. 4. It highlights the Xenon bubbles more clearly. It appears that the largest bubbles are located mainly near dislocations

  18. Overview of the James Webb Space Telescope observatory

    NASA Astrophysics Data System (ADS)

    Clampin, Mark

    2011-09-01

    The James Webb Space Telescope (JWST) is a large aperture, space telescope designed to provide imaging and spectroscopy over the near and mid-infrared from 1.0 μm to 28 μm. JWST is a passively cooled infrared telescope, employing a five layer sunshield to achieve an operating temperature of ~40 K. JWST will be launched to an orbit at L2 aboard an Ariane 5 launcher in 2013. The Goddard Space Flight Center (GSFC) is the lead center for the JWST program and manages the project for NASA. The prime contractor for JWST is Northrop Grumman Aerospace Systems (NGST). JWST is an international partnership with the European Space Agency (ESA), and the Canadian Space Agency (CSA). ESA will contribute the Ariane 5 launch, and a multi-object infrared spectrograph. CSA will contribute the Fine Guidance Sensor (FGS), which includes the Tunable Filter Imager (TFI). A European consortium, in collaboration with the Jet Propulsion Laboratory (JPL), builds the mid-infrared imager (MIRI). In this paper we present an overview of the JWST science program, and discuss recent progress in the development of the observatory. In this paper we will discuss the scientific motivations for JWST, and discuss recent progress in the construction of the observatory, focusing on the telescope and its optics, which have recently completed polishing.

  19. Detection of lipoid tumors by xenon-133

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, E.E.; DeLand, F.H.; Maruyama, Y.

    1978-01-01

    Three patients with biopsy-proven liposarcoma were studied with inhalation of xenon-133, a gas highly soluble in fat. Increased concentration of radioactivity in the region of the tumor suggested the potential usefulness of radioxenon for the detection of lipomatous tumors.

  20. Xenon fluorides show potential as fluorinating agents

    NASA Technical Reports Server (NTRS)

    Chernick, C. L.; Shieh, T. C.; Yang, N. C.

    1967-01-01

    Xenon fluorides permit the controlled addition of fluorine across an olefinic double bond. They provide a series of fluorinating agents that permit ready separation from the product at a high purity. The reactions may be carried out in the vapor phase.

  1. NASA's Webb Telescope Inside Goddard Clean Room

    NASA Image and Video Library

    2017-12-08

    The James Webb Space Telescope was lifted out of its assembly stand for the last time at NASA's Goddard Space Flight Center in Greenbelt, Md. In this photo, the telescope was hanging upside down as the lift crew were about to install it in the rollover fixture where it will be situated before moving on to its upcoming center of curvature test. Image credit: NASA/Goddard/Chris Gunn

  2. LISA Telescope Spacer Design Issues

    NASA Technical Reports Server (NTRS)

    Livas, Jeff; Arsenovic, P.; Catelluci, K.; Generie, J.; Howard, J.; Stebbins, Howard R.; Preston, A.; Sanjuan, J.; Williams, L.; Mueller, G.

    2010-01-01

    The LISA mission observes gravitational waves by measuring the separations between freely floating proof masses located 5 million kilometers apart with an accuracy of - 10 picometers. The separations are measured interferometrically. The telescope is an afocal Cassegrain style design with a magnification of 80x. The entrance pupil has a 40 cm diameter and will either be centered on-axis or de-centered off-axis to avoid obscurations. Its two main purposes are to transform the small diameter beam used on the optical bench to a diffraction limited collimated beam to efficiently transfer the metrology laser between spacecraft, and to receive the incoming light from the far spacecraft. It transmits and receives simultaneously. The basic optical design and requirements are well understood for a conventional telescope design for imaging applications, but the LISA design is complicated by the additional requirement that the total optical path through the telescope must remain stable at the picometer level over the measurement band during the mission to meet the measurement accuracy. We describe the mechanical requirements for the telescope and the preliminary work that has been done to understand the materials and mechanical issues associated with the design of a passive metering structure to support the telescope and to maintain the spacing between the primary and secondary mirrors in the LISA on-orbit environment. This includes the requirements flowdown from the science goals, thermal modeling of the spacecraft and telescope to determine the expected temperature distribution, layout options for the telescope including an on- and off-axis design. Plans for fabrication and testing will be outlined.

  3. The Modification and Performance of a Large Animal Anesthesia Machine (Tafonius®) in Order to Deliver Xenon to a Horse.

    PubMed

    Santangelo, Bruna; Robin, Astrid; Simpson, Keith; Potier, Julie; Guichardant, Michel; Portier, Karine

    2017-01-01

    Xenon, due to its interesting anesthetic properties, could improve the quality of anesthesia protocols in horses despite its high price. This study aimed to modify and test an anesthesia machine capable of delivering xenon to a horse. An equine anesthesia machine (Tafonius, Vetronic Services Ltd., UK) was modified by including a T-connector in the valve block to introduce xenon, so that the xenon was pushed into the machine cylinder by the expired gases. A xenon analyzer was connected to the expiratory limb of the patient circuit. The operation of the machine was modeled and experimentally tested for denitrogenation, wash-in, and maintenance phases. The system was considered to consist of two compartments, one being the horse's lungs, the other being the machine cylinder and circuit. A 15-year-old, 514-kg, healthy gelding horse was anesthetized for 70 min using acepromazine, romifidine, morphine, diazepam, and ketamine. Anesthesia was maintained with xenon and oxygen, co-administered with lidocaine. Ventilation was controlled. Cardiorespiratory variables, expired fraction of xenon (FeXe), blood gases were measured and xenon was detected in plasma. Recovery was unassisted and recorded. FeXe remained around 65%, using a xenon total volume of 250 L. Five additional boli of ketamine were required to maintain anesthesia. PaO 2 was 45 ± 1 mmHg. The recovery was calm. Xenon was detected in blood during the entire administration time. This pilot study describes how to deliver xenon to a horse. Although many technical problems were encountered, their correction could guide future endeavors to study the use of xenon in horses.

  4. High-Resolution X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.

    2010-01-01

    Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.

  5. Xenon is an inhibitor of tissue-plasminogen activator: adverse and beneficial effects in a rat model of thromboembolic stroke

    PubMed Central

    David, Hélène N; Haelewyn, Benoît; Risso, Jean-Jacques; Colloc'h, Nathalie; Abraini, Jacques H

    2010-01-01

    Preclinical evidence in rodents has proven that xenon may be a very promising neuroprotective agent for treating acute ischemic stroke. This has led to the general thinking that clinical trials with xenon could be initiated in acute stroke patients in a next future. However, an unappreciated physicochemical property of xenon has been that this gas also binds to the active site of a series of serine proteases. Because the active site of serine proteases is structurally conserved, we have hypothesized and investigated whether xenon may alter the catalytic efficiency of tissue-type plasminogen activator (tPA), a serine protease that is the only approved therapy for acute ischemic stroke today. Here, using molecular modeling and in vitro and in vivo studies, we show (1) xenon is a tPA inhibitor; (2) intraischemic xenon dose dependently inhibits tPA-induced thrombolysis and subsequent reduction of ischemic brain damage; (3) postischemic xenon virtually suppresses ischemic brain damage and tPA-induced brain hemorrhages and disruption of the blood–brain barrier. Taken together, these data indicate (1) xenon should not be administered before or together with tPA therapy; (2) xenon could be a golden standard for treating acute ischemic stroke if given after tPA-induced reperfusion, with both unique neuroprotective and antiproteolytic (anti-hemorrhaging) properties. PMID:20087367

  6. Development of an Energetic X-Ray Imaging Telescope Experiment (EXITE) and Associated Balloon Gondola System

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is the Final Report for grant NAGW-624, which was our original grant to develop the Energetic X- ray Imaging Telescope Experiment (EXITE) and Associated Balloon Gondola. The EXITE grant was changed over to a new grant (from GSFC), NAG5-5103, beginning in FY97 and is currently very much continuing under that grant. The Final Report presented here then covers the EXITE development under the original grant, which in fact continued (with a 1 year no-cost extension) through December 31, 1997.

  7. Xenon does not increase heart rate-corrected cardiac QT interval in volunteers and in patients free of cardiovascular disease.

    PubMed

    Neukirchen, Martin; Schaefer, Maximilian S; Kern, Carolin; Brett, Sarah; Werdehausen, Robert; Rellecke, Philipp; Reyle-Hahn, Matthias; Kienbaum, Peter

    2015-09-01

    Impaired cardiac repolarization, indicated by prolonged QT interval, may cause critical ventricular arrhythmias. Many anesthetics increase the QT interval by blockade of rapidly acting potassium rectifier channels. Although xenon does not affect these channels in isolated cardiomyocytes, the authors hypothesized that xenon increases the QT interval by direct and/or indirect sympathomimetic effects. Thus, the authors tested the hypothesis that xenon alters the heart rate-corrected cardiac QT (QTc) interval in anesthetic concentrations. The effect of xenon on the QTc interval was evaluated in eight healthy volunteers and in 35 patients undergoing abdominal or trauma surgery. The QTc interval was recorded on subjects in awake state, after their denitrogenation, and during xenon monoanesthesia (FetXe > 0.65). In patients, the QTc interval was recorded while awake, after anesthesia induction with propofol and remifentanil, and during steady state of xenon/remifentanil anesthesia (FetXe > 0.65). The QTc interval was determined from three consecutive cardiac intervals on electrocardiogram printouts in a blinded manner and corrected with Bazett formula. In healthy volunteers, xenon did not alter the QTc interval (mean difference: +0.11 ms [95% CI, -22.4 to 22.7]). In patients, after anesthesia induction with propofol/remifentanil, no alteration of QTc interval was noted. After propofol was replaced with xenon, the QTc interval remained unaffected (417 ± 32 ms vs. awake: 414 ± 25 ms) with a mean difference of 4.4 ms (95% CI, -4.6 to 13.5). Xenon monoanesthesia in healthy volunteers and xenon/remifentanil anesthesia in patients without clinically relevant cardiovascular disease do not increase QTc interval.

  8. OAJ 2.6m survey telescope: optical alignment and on-sky evaluation of IQ performances

    NASA Astrophysics Data System (ADS)

    Lousberg, Gregory P.; Bastin, Christian; Moreau, Vincent; Pirnay, Olivier; Flebus, Carlo; Chueca, Sergio; Iñiguez, César; Ederoclite, Alessandro; Ramió, Héctor V.; Cenarro, A. Javier

    2016-08-01

    AMOS has recently completed the alignment campaign of the 2.6m telescope for the Observatorio Astrofisico de Javalambre (OAJ). AMOS developed an innovative alignment technique for wide field-of-view telescopes that has been successfully implemented on the OAJ 2.6m telescope with the active support of the team of CEFCA (Centro de Estudios de Física del Cosmos de Aragón). The alignment relies on two fundamental techniques: (1) the wavefront-curvature sensing (WCS) for the evaluation of the telescope aberrations at arbitrary locations in the focal plane, and (2) the comafree point method for the adjustment of the position of the secondary mirror (M2) and of the focal plane (FP). The alignment campaign unfolds in three steps: (a) analysis of the repeatability of the WCS measurements, (b) assessment of the sensitivity of telescope wavefront error to M2 and FP position adjustments, and (c) optical alignment of the telescope. At the end of the campaign, seeing-limited performances are demonstrated in the complete focal plane. With the help of CEFCA team, the image quality of the telescope are investigated with a lucky-imaging method. Image sizes of less than 0.3 arcsec FWHM are obtained, and this excellent image quality is observed over the complete focal plane.

  9. Artificial Intelligence in Autonomous Telescopes

    NASA Astrophysics Data System (ADS)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  10. Nuclear Spin Attenuates the Anesthetic Potency of Xenon Isotopes in Mice: Implications for the Mechanisms of Anesthesia and Consciousness.

    PubMed

    Li, Na; Lu, Dongshi; Yang, Lei; Tao, Huan; Xu, Younian; Wang, Chenchen; Fu, Lisha; Liu, Hui; Chummum, Yatisha; Zhang, Shihai

    2018-04-11

    Xenon is an elemental anesthetic with nine stable isotopes. Nuclear spin is a quantum property which may differ among isotopes. Xenon 131 (Xe) has nuclear spin of 3/2, xenon 129 (Xe) a nuclear spin of 1/2, and the other seven isotopes have no nuclear spin. This study was aimed to explore the effect of nuclear spin on xenon anesthetic potency. Eighty C57BL/6 male mice (7 weeks old) were randomly divided into four groups, xenon 132 (Xe), xenon 134 (Xe), Xe, and Xe groups. Due to xenon's low potency, loss of righting reflex ED50 for mice to xenon was determined with 0.50% isoflurane. Loss of righting reflex ED50 of isoflurane was also measured, and the loss of righting reflex ED50 values of the four xenon isotopes were then calculated. The exact polarizabilities of the isotopes were calculated. Combined with 0.50% isoflurane, the loss of righting reflex ED50 values were 15 ± 4%, 16 ± 5%, 22 ± 5%, and 23 ± 7% for Xe, Xe, Xe, and Xe, respectively. For xenon alone, the loss of righting reflex ED50 values of Xe, Xe, Xe, and Xe were 70 ± 4%, 72 ± 5%, 99 ± 5%, and 105 ± 7%, respectively. Four isotopes had a same exact polarizability of 3.60 Å. Xenon isotopes with nuclear spin are less potent than those without, and polarizability cannot account for the difference. The lower anesthetic potency of Xe may be the result of it participating in conscious processing and therefore partially antagonizing its own anesthetic potency. Nuclear spin is a quantum property, and our results are consistent with theories that implicate quantum mechanisms in consciousness.

  11. The COROT telescope

    NASA Astrophysics Data System (ADS)

    Viard, Thierry

    2017-11-01

    The COROT telescope, of which the customer is the French "INSU" / "CNES" (Institut National des Sciences de l'Univers / Centre National des Etudes Spatiales) is in fact a very precise and stable imaging instrument, which will be pointed towards fixed areas in the sky (each containing more than 3000 target stars) for periods of at least 5 months, in order to carry out its two missions.

  12. The soft x ray telescope for Solar-A

    NASA Technical Reports Server (NTRS)

    Brown, W. A.; Acton, L. W.; Bruner, M. E.; Lemen, J. R.; Strong, K. T.

    1989-01-01

    The Solar-A satellite being prepared by the Institute for Sapce and Astronautical Sciences (ISAS) in Japan is dedicated to high energy observations of solar flares. The Soft X Ray Telescope (SXT) is being prepared to provide filtered images in the 2 to 60 A interval. The flight model is now undergoing tests in the 1000 foot tunnel at MSFC. Launch will be in September 1991. Earlier resolution and efficiency tests on the grazing incidence mirror have established its performance in soft x rays. The one-piece, two mirror grazing incidence telescope is supported in a strain free mount separated from the focal plane assembly by a carbon-epoxy metering tube whose windings and filler are chosen to minimize thermal and hygroscopic effects. The CCD detector images both the x ray and the concentric visible light aspect telescope. Optical filters provide images at 4308 and 4700 A. The SXT will be capable of producing over 8000 of the smallest partial frame images per day, or fewer but larger images, up to 1024 x 1024 pixel images. Image sequence with two or more of the five x ray analysis filters, with automatic exposure compensation to optimize the charge collection by the CCD detector, will be used to provide plasma diagnostics. Calculations using a differential emission measure code were used to optimize filter selection over the range of emission measure variations and to avoid redundancy, but the filters were chosen primarily to give ratios that are monotonic in plasma temperature.

  13. Xenon isotopic composition of the Mid Ocean Ridge Basalt (MORB) source

    NASA Astrophysics Data System (ADS)

    Peto, M. K.; Mukhopadhyay, S.

    2012-12-01

    Although convection models do not preclude preservation of smaller mantle regions with more pristine composition throughout Earth's history, it has been widely assumed that the moon forming giant impact likely homogenizes the whole mantle following a magma ocean that extended all the way to the bottom of the mantle. Recent findings of tungsten and xenon heterogeneities in the mantle [1,2,3,4], however, imply that i) the moon forming giant impact may not have homogenized the whole mantle and ii) plate tectonics was inefficient in erasing early formed compositional differences, particularly for the xenon isotopes. Therefore, the xenon isotope composition in the present day mantle still preserves a memory of early Earth processes. However, determination of the xenon isotopic composition of the mantle source is still scarce, since the mantle composition is overprinted by post-eruptive atmospheric contamination in basalts erupted at ocean islands and mid ocean ridges. The xenon composition of the depleted upper mantle has been defined by the gas rich sample, 2πD43 (also known as "popping rock"), from the North Atlantic (13° 469`N). However, the composition of a single sample is not likely to define the composition of the upper mantle, especially since popping rock has an "enriched" trace element composition. We will present Ne, Ar and Xe isotope data on MORB glass samples with "normal" helium isotope composition (8±1 Ra) from the Southeast Indian Ridge, the South Atlantic Ridge, the Sojourn Ridge, the Juan de Fuca, the East Pacific Rise, and the Gakkel Ridge. Following the approach of [1], we correct for syn- and post-eruptive atmosphere contamination, and determine the variation of Ar and Xe isotope composition of the "normal" MORB source. We investigate the effect of atmospheric recycling in the variation of MORB mantle 40Ar/36Ar and 129Xe/130Xe ratios, and attempt to constrain the average upper mantle argon and xenon isotopic compositions. [1] Mukhopadhyay, Nature

  14. Effect of Inhaled Xenon on Cerebral White Matter Damage in Comatose Survivors of Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial.

    PubMed

    Laitio, Ruut; Hynninen, Marja; Arola, Olli; Virtanen, Sami; Parkkola, Riitta; Saunavaara, Jani; Roine, Risto O; Grönlund, Juha; Ylikoski, Emmi; Wennervirta, Johanna; Bäcklund, Minna; Silvasti, Päivi; Nukarinen, Eija; Tiainen, Marjaana; Saraste, Antti; Pietilä, Mikko; Airaksinen, Juhani; Valanne, Leena; Martola, Juha; Silvennoinen, Heli; Scheinin, Harry; Harjola, Veli-Pekka; Niiranen, Jussi; Korpi, Kirsi; Varpula, Marjut; Inkinen, Outi; Olkkola, Klaus T; Maze, Mervyn; Vahlberg, Tero; Laitio, Timo

    2016-03-15

    Evidence from preclinical models indicates that xenon gas can prevent the development of cerebral damage after acute global hypoxic-ischemic brain injury but, thus far, these putative neuroprotective properties have not been reported in human studies. To determine the effect of inhaled xenon on ischemic white matter damage assessed with magnetic resonance imaging (MRI). A randomized single-blind phase 2 clinical drug trial conducted between August 2009 and March 2015 at 2 multipurpose intensive care units in Finland. One hundred ten comatose patients (aged 24-76 years) who had experienced out-of-hospital cardiac arrest were randomized. Patients were randomly assigned to receive either inhaled xenon combined with hypothermia (33°C) for 24 hours (n = 55 in the xenon group) or hypothermia treatment alone (n = 55 in the control group). The primary end point was cerebral white matter damage as evaluated by fractional anisotropy from diffusion tensor MRI scheduled to be performed between 36 and 52 hours after cardiac arrest. Secondary end points included neurological outcome assessed using the modified Rankin Scale (score 0 [no symptoms] through 6 [death]) and mortality at 6 months. Among the 110 randomized patients (mean age, 61.5 years; 80 men [72.7%]), all completed the study. There were MRI data from 97 patients (88.2%) a median of 53 hours (interquartile range [IQR], 47-64 hours) after cardiac arrest. The mean global fractional anisotropy values were 0.433 (SD, 0.028) in the xenon group and 0.419 (SD, 0.033) in the control group. The age-, sex-, and site-adjusted mean global fractional anisotropy value was 3.8% higher (95% CI, 1.1%-6.4%) in the xenon group (adjusted mean difference, 0.016 [95% CI, 0.005-0.027], P = .006). At 6 months, 75 patients (68.2%) were alive. Secondary end points at 6 months did not reveal statistically significant differences between the groups. In ordinal analysis of the modified Rankin Scale, the median (IQR) value was 1 (1

  15. RIMAS - Optical Design Development of the Imager/Spectrometer for the Discovery Channel Telescope

    NASA Technical Reports Server (NTRS)

    Capone, John

    2012-01-01

    The Rapid IMAger - Spectrometer (RIMAS) is a collaborative effort between the University of Maryland at College Park, NASA-GSFC and Lowell Observatory designed for use on the 4.3 meter Discovery Channel Telescope at Lowell. The primary science goal of the instrument is the study of gamma-ray burst (ORB) afterglow appearing in the near-infrared. Continuous operation will allow measurements beginning minutes after the prompt emission. We present the results of the RIMAS optical design development. The instrument consists of two arms separated by a dichroic: the first for the Y and J bands (0.9 - 1.35 microns) and the second for the Hand K-bands (1.5 - 1.8 and 2.0 - 2.4 microns). Each arm will be equipped with two broad band filters for imaging, as well as low resolution and echelle grisms. The imaging modes are designed to be diffraction limited, with one pixel corresponding to approx.0.35 arcseconds, while the diffractive modes have resolving powers of approximately 20 and 4,000. With photometric and spectroscopic capabilities, RIMAS will be well positioned to quickly determine redshifts, followed by high resolution spectroscopic studies of ORB afterglow.

  16. Pulmonary hyperpolarized (129) Xe morphometry for mapping xenon gas concentrations and alveolar oxygen partial pressure: Proof-of-concept demonstration in healthy and COPD subjects.

    PubMed

    Ouriadov, A; Farag, A; Kirby, M; McCormack, D G; Parraga, G; Santyr, G E

    2015-12-01

    Diffusion-weighted (DW) hyperpolarized (129) Xe morphometry magnetic resonance imaging (MRI) can be used to map regional differences in lung tissue micro-structure. We aimed to generate absolute xenon concentration ([Xe]) and alveolar oxygen partial pressure (pA O2 ) maps by extracting the unrestricted diffusion coefficient (D0 ) of xenon as a morphometric parameter. In this proof-of-concept demonstration, morphometry was performed using multi b-value (0, 12, 20, 30 s/cm(2) ) DW hyperpolarized (129) Xe images obtained in four never-smokers and four COPD ex-smokers. Morphometric parameters and D0 maps were computed and the latter used to generate [Xe] and pA O2 maps. Xenon concentration phantoms estimating a range of values mimicking those observed in vivo were also investigated. Xenon D0 was significantly increased (P = 0.035) in COPD (0.14 ± 0.03 cm(2) /s) compared with never-smokers (0.12 ± 0.02 cm(2) /s). COPD ex-smokers also had significantly decreased [Xe] (COPD = 8 ± 7% versus never-smokers = 13 ± 8%, P = 0.012) and increased pA O2 (COPD = 18 ± 3% versus never-smokers = 15 ± 3%, P = 0.009) compared with never-smokers. Phantom measurements showed the expected dependence of D0 on [Xe] over the range of concentrations anticipated in vivo. DW hyperpolarized (129) Xe MRI morphometry can be used to simultaneously map [Xe] and pA O2 in addition to providing micro-structural biomarkers of emphysematous destruction in COPD. Phantom measurements of D0 ([Xe]) supported the hypotheses that differences in subjects may reflect differences in functional residual capacity. © 2014 Wiley Periodicals, Inc.

  17. Simulation of the Simbol-X Telescope

    NASA Astrophysics Data System (ADS)

    Chauvin, M.; Roques, J. P.

    2009-05-01

    We have developed a simulation tool for a Wolter I telescope operating in formation flight. The aim is to understand and predict the behavior of the Simbol-X instrument. As the geometry is variable, formation flight introduces new challenges and complex implications. Our code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, along with the relative drifts of the two spacecrafts. It takes into account angle and energy dependent interactions of the photons with the mirrors and applies to any grazing incidence telescope. The resulting images of simulated sources from 0.1 keV to 100 keV allow us to optimize the configuration of the instrument and to assess the performance of the Simbol-X telescope.

  18. Search for bosonic super-WIMP interactions with the XENON100 experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Capelli, C.; Cardoso, J. M. R.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Howlett, J.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Ramírez García, D.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.; Zhu, T.; Xenon Collaboration

    2017-12-01

    We present results of searches for vector and pseudoscalar bosonic super-weakly interacting massive particles (WIMPs), which are dark matter candidates with masses at the keV-scale, with the XENON100 experiment. XENON100 is a dual-phase xenon time projection chamber operated at the Laboratori Nazionali del Gran Sasso. A profile likelihood analysis of data with an exposure of 224.6 live days ×34 kg showed no evidence for a signal above the expected background. We thus obtain new and stringent upper limits in the (8 - 125 ) keV /c2 mass range, excluding couplings to electrons with coupling constants of ga e>3 ×10-13 for pseudo-scalar and α'/α >2 ×10-28 for vector super-WIMPs, respectively. These limits are derived under the assumption that super-WIMPs constitute all of the dark matter in our galaxy.

  19. Extreme Confinement of Xenon by Cryptophane-111 in the Solid State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Akil I.; Lapidus, Saul H.; Kane, Christopher M.

    2014-12-11

    Solids that sorb, capture and/or store the heavier noble gases are of interest because of their potential for transformative rare gas separation/production, storage, or recovery technologies. Herein, we report the isolation, crystal structures, and thermal stabilities of a series of xenon and krypton clathrates of (±)-cryptophane-111 (111). One trigonal crystal form, Xe@111•y(solvent), is exceptionally stable, retaining xenon at temperatures of up to about 300 °C. The high kinetic stability is attributable not only to the high xenon affinity and cage-like nature of the host, but also to the crystal packing of the clathrate, wherein each window of the molecular containermore » is blocked by the bridges of adjacent containers, effectively imprisoning the noble gas in the solid state. The results highlight the potential of discrete molecule materials exhibiting intrinsic microcavities or zero-dimensional pores.« less

  20. Design study of the accessible focal plane telescope for shuttle

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design and cost analysis of an accessible focal plane telescope for Spacelab is presented in blueprints, tables, and graphs. Topics covered include the telescope tube, the telescope mounting, the airlock plus Spacelab module aft plate, the instrument adapter, and the instrument package. The system allows access to the image plane with instrumentation that can be operated by a scientist in a shirt sleeve environment inside a Spacelab module.