Sample records for xenon inhibits excitatory

  1. Xenon inhibits excitatory but not inhibitory transmission in rat spinal cord dorsal horn neurons

    PubMed Central

    2010-01-01

    Background The molecular targets for the promising gaseous anaesthetic xenon are still under investigation. Most studies identify N-methyl-D-aspartate (NMDA) receptors as the primary molecular target for xenon, but the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA) receptors is less clear. In this study we evaluated the effect of xenon on excitatory and inhibitory synaptic transmission in the superficial dorsal horn of the spinal cord using in vitro patch-clamp recordings from rat spinal cord slices. We further evaluated the effects of xenon on innocuous and noxious stimuli using in vivo patch-clamp method. Results In vitro, xenon decreased the amplitude and area under the curve of currents induced by exogenous NMDA and AMPA and inhibited dorsal root stimulation-evoked excitatory postsynaptic currents. Xenon decreased the amplitude, but not the frequency, of miniature excitatory postsynaptic currents. There was no discernible effect on miniature or evoked inhibitory postsynaptic currents or on the current induced by inhibitory neurotransmitters. In vivo, xenon inhibited responses to tactile and painful stimuli even in the presence of NMDA receptor antagonist. Conclusions Xenon inhibits glutamatergic excitatory transmission in the superficial dorsal horn via a postsynaptic mechanism. There is no substantial effect on inhibitory synaptic transmission at the concentration we used. The blunting of excitation in the dorsal horn lamina II neurons could underlie the analgesic effect of xenon. PMID:20444263

  2. Mechanistic Insights into Xenon Inhibition of NMDA Receptors from MD Simulations

    PubMed Central

    Liu, Lu Tian; Xu, Yan; Tang, Pei

    2010-01-01

    Inhibition of N-methyl-D-aspartate (NMDA) receptors has been viewed as a primary cause of xenon anesthesia, yet the mechanism is unclear. Here, we investigated interactions between xenon and the ligand-binding domain (LBD) of a NMDA receptor and examined xenon-induced structural and dynamical changes that are relevant to functional changes of the NMDA receptor. Several comparative molecular dynamics simulations were performed on two X-ray structures representing the open- and closed-cleft LBD of the NMDA receptor. We identified plausible xenon action sites in the LBD, including those nearby agonist sites, in the hinge region, and at the interface between two subunits. The xenon binding energy varies from −5.3 to −0.7 kcal/mol. Xenon's effect on the NMDA receptor is conformation-dependent and is produced through both competitive and non-competitive mechanisms. Xenon can promote cleft opening in the absence of agonists and consequently stabilizes the closed channel. Xenon can also bind at the interface of two subunits, alter the inter-subunit interaction, and lead to a reduction of the distance between GT-links. This reduction corresponds to a rearrangement of the channel toward a direction of pore size decreasing, implying a closed or desensitized channel. In addition to these non-competitive actions, xenon was found to weaken the glutamate binding, which could lead to low agonist efficacy and appear as competitive inhibition. PMID:20560662

  3. Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel

    PubMed Central

    Sauguet, Ludovic; Fourati, Zeineb; Prangé, Thierry; Delarue, Marc; Colloc'h, Nathalie

    2016-01-01

    GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and “locally-closed” (inactive) conformations of GLIC. Major binding sites of xenon, which differ between the two conformations, were identified in three distinct regions that all belong to the trans-membrane domain of GLIC: 1) in an intra-subunit cavity, 2) at the interface between adjacent subunits, and 3) in the pore. The pore site is unique to the locally-closed form where the binding of xenon effectively seals the channel. A putative mechanism of the inhibition of GLIC by xenon is proposed, which might be extended to other pentameric cationic ligand-gated ion channels. PMID:26910105

  4. Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel.

    PubMed

    Sauguet, Ludovic; Fourati, Zeineb; Prangé, Thierry; Delarue, Marc; Colloc'h, Nathalie

    2016-01-01

    GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and "locally-closed" (inactive) conformations of GLIC. Major binding sites of xenon, which differ between the two conformations, were identified in three distinct regions that all belong to the trans-membrane domain of GLIC: 1) in an intra-subunit cavity, 2) at the interface between adjacent subunits, and 3) in the pore. The pore site is unique to the locally-closed form where the binding of xenon effectively seals the channel. A putative mechanism of the inhibition of GLIC by xenon is proposed, which might be extended to other pentameric cationic ligand-gated ion channels.

  5. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site.

    PubMed

    Harris, Katie; Armstrong, Scott P; Campos-Pires, Rita; Kiru, Louise; Franks, Nicholas P; Dickinson, Robert

    2013-11-01

    Xenon, the inert anesthetic gas, is neuroprotective in models of brain injury. The authors investigate the neuroprotective mechanisms of the inert gases such as xenon, argon, krypton, neon, and helium in an in vitro model of traumatic brain injury. The authors use an in vitro model using mouse organotypic hippocampal brain slices, subjected to a focal mechanical trauma, with injury quantified by propidium iodide fluorescence. Patch clamp electrophysiology is used to investigate the effect of the inert gases on N-methyl-D-aspartate receptors and TREK-1 channels, two molecular targets likely to play a role in neuroprotection. Xenon (50%) and, to a lesser extent, argon (50%) are neuroprotective against traumatic injury when applied after injury (xenon 43±1% protection at 72 h after injury [N=104]; argon 30±6% protection [N=44]; mean±SEM). Helium, neon, and krypton are devoid of neuroprotective effect. Xenon (50%) prevents development of secondary injury up to 48 h after trauma. Argon (50%) attenuates secondary injury, but is less effective than xenon (xenon 50±5% reduction in secondary injury at 72 h after injury [N=104]; argon 34±8% reduction [N=44]; mean±SEM). Glycine reverses the neuroprotective effect of xenon, but not argon, consistent with competitive inhibition at the N-methyl-D-aspartate receptor glycine site mediating xenon neuroprotection against traumatic brain injury. Xenon inhibits N-methyl-D-aspartate receptors and activates TREK-1 channels, whereas argon, krypton, neon, and helium have no effect on these ion channels. Xenon neuroprotection against traumatic brain injury can be reversed by increasing the glycine concentration, consistent with inhibition at the N-methyl-D-aspartate receptor glycine site playing a significant role in xenon neuroprotection. Argon and xenon do not act via the same mechanism.

  6. Excitatory Synaptic Drive and Feedforward Inhibition in the Hippocampal CA3 Circuit Are Regulated by SynCAM 1.

    PubMed

    Park, Kellie A; Ribic, Adema; Laage Gaupp, Fabian M; Coman, Daniel; Huang, Yuegao; Dulla, Chris G; Hyder, Fahmeed; Biederer, Thomas

    2016-07-13

    Select adhesion proteins control the development of synapses and modulate their structural and functional properties. Despite these important roles, the extent to which different synapse-organizing mechanisms act across brain regions to establish connectivity and regulate network properties is incompletely understood. Further, their functional roles in different neuronal populations remain to be defined. Here, we applied diffusion tensor imaging (DTI), a modality of magnetic resonance imaging (MRI), to map connectivity changes in knock-out (KO) mice lacking the synaptogenic cell adhesion protein SynCAM 1. This identified reduced fractional anisotropy in the hippocampal CA3 area in absence of SynCAM 1. In agreement, mossy fiber refinement in CA3 was impaired in SynCAM 1 KO mice. Mossy fibers make excitatory inputs onto postsynaptic specializations of CA3 pyramidal neurons termed thorny excrescences and these structures were smaller in the absence of SynCAM 1. However, the most prevalent targets of mossy fibers are GABAergic interneurons and SynCAM 1 loss unexpectedly reduced the number of excitatory terminals onto parvalbumin (PV)-positive interneurons in CA3. SynCAM 1 KO mice additionally exhibited lower postsynaptic GluA1 expression in these PV-positive interneurons. These synaptic imbalances in SynCAM 1 KO mice resulted in CA3 disinhibition, in agreement with reduced feedforward inhibition in this network in the absence of SynCAM 1-dependent excitatory drive onto interneurons. In turn, mice lacking SynCAM 1 were impaired in memory tasks involving CA3. Our results support that SynCAM 1 modulates excitatory mossy fiber inputs onto both interneurons and principal neurons in the hippocampal CA3 area to balance network excitability. This study advances our understanding of synapse-organizing mechanisms on two levels. First, the data support that synaptogenic proteins guide connectivity and can function in distinct brain regions even if they are expressed broadly

  7. Toward molecular mechanism of xenon anesthesia: a link to studies of xenon complexes with small aromatic molecules.

    PubMed

    Andrijchenko, Natalya N; Ermilov, Alexander Yu; Khriachtchev, Leonid; Räsänen, Markku; Nemukhin, Alexander V

    2015-03-19

    The present study illustrates the steps toward understanding molecular mechanism of xenon anesthesia by focusing on a link to the structures and spectra of intermolecular complexes of xenon with small aromatic molecules. A primary cause of xenon anesthesia is attributed to inhibition of N-methyl-D-aspartate (NMDA) receptors by an unknown mechanism. Following the results of quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) calculations we report plausible xenon action sites in the ligand binding domain of the NMDA receptor, which are due to interaction of xenon atoms with aromatic amino-acid residues. We rely in these calculations on computational protocols adjusted in combined experimental and theoretical studies of intermolecular complexes of xenon with phenol. Successful reproduction of vibrational shifts in molecular species upon complexation with xenon measured in low-temperature matrices allowed us to select a proper functional form in density functional theory (DFT) approach for use in QM subsystems, as well as to calibrate force field parameters for MD simulations. The results of molecular modeling show that xenon atoms can compete with agonists for a place in the corresponding protein cavity, thus indicating their active role in anesthetic action.

  8. Central adenosine A1 receptors inhibit cough via suppression of excitatory glutamatergic and tachykininergic neurotransmission.

    PubMed

    El-Hashim, Ahmed Z; Mathews, Seena; Al-Shamlan, Fajer

    2018-05-16

    The A 1 adenosine receptor is reported to mediate several excitatory effects in the airways and has inhibitory effects in the central nervous system. In this study, we investigated the role of peripheral and central A 1 adenosine receptors in regulating cough and airway obstruction. Drugs were administered to guinea pigs via the inhaled or intracerebroventricular (i.c.v.) routes. Cough was induced by exposing guinea pigs to aerosolised 0.4 M citric acid, following drug inhalation or i.c.v. infusion, in a plethysmograph box. An automated analyzer recorded simultaneously both cough and airway obstruction. Inhaled A 1 receptor agonist, cyclopentyladenosine (CPA), dose-dependently inhibited cough (cough: 8 ± 3.4, 6.0 ± 4.5 and 1.9 ± 0.6 vs. 15.4 ± 3.7 for 0.3, 0.6 and 1, mg ml -1 vs. vehicle, respectively) and also inhibited airway obstruction. Similarly, CPA, administered i.c.v., inhibited both the citric acid-induced cough (cough: 21.3 ± 4.0 and 8.8 ± 3.4 vs. 23 ± 3.0 for 1.8 and 3 nmole ml -1 vs. vehicle, respectively) and airway obstruction; this was prevented by pretreatment with the A 1 adenosine receptor antagonist cyclopenty l-1,3-dipropylxanthine (DPCPX; i.c.v.). Treatment with DPCPX alone, dose-dependently enhanced the citric acid-induced cough and airway obstruction. This was reversed following treatment with either the GLUN1 receptor antagonist DL-2-amino-5-phosphonovaleric acid or the NK 1 receptor antagonist FK-888. These findings suggest that activation of either peripheral or central A 1 adenosine receptors inhibits citric acid-induced cough and airway obstruction. The data also suggest that tonic activation of central adenosine A 1 receptors serves as a negative regulator of cough and airway obstruction, secondary to inhibition of excitatory glutamatergic and tachykininergic neurotransmission. This article is protected by copyright. All rights reserved.

  9. Neonatal maternal separation delays the GABA excitatory-to-inhibitory functional switch by inhibiting KCC2 expression.

    PubMed

    Furukawa, Minami; Tsukahara, Takao; Tomita, Kazuo; Iwai, Haruki; Sonomura, Takahiro; Miyawaki, Shouichi; Sato, Tomoaki

    2017-11-25

    The excitatory-to-inhibitory functional switch of γ-aminobutyric acid (GABA; GABA switch), which normally occurs in the first to the second postnatal week in the hippocampus, is necessary for the development of appropriate central nervous system function. A deficit in GABAergic inhibitory function could cause excitatory/inhibitory (E/I) neuron imbalance that is found in many neurodegenerative disorders. In the present study, we examined whether neonatal stress can affect the timing of the GABA functional switch and cause disorders during adolescence. Neonatal stress was induced in C57BL/6J male mouse pups by maternal separation (MS) on postnatal days (PND) 1-21. Histological quantification of K + -Cl - co-transporter (KCC2) and Ca 2+ imaging were performed to examine the timing of the GABA switch during the MS period. To evaluate the influence of neonatal MS on adolescent hippocampal function, we quantified KCC2 expression and evaluated hippocampal-related behavioral tasks at PND35-38. We showed that MS delayed the timing of the GABA switch in the hippocampus and inhibited the increase in membrane KCC2 expression, with KCC2 expression inhibition persisting until adolescence. Behavioral tests showed impaired cognition, declined attention, hyperlocomotion, and aggressive character in maternally separated mice. Taken together, our results show that neonatal stress delayed the timing of the GABA switch, which could change the E/I balance and cause neurodegenerative disorders in later life. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons

    PubMed Central

    Ripamonti, Silvia; Ambrozkiewicz, Mateusz C; Guzzi, Francesca; Gravati, Marta; Biella, Gerardo; Bormuth, Ingo; Hammer, Matthieu; Tuffy, Liam P; Sigler, Albrecht; Kawabe, Hiroshi; Nishimori, Katsuhiko; Toselli, Mauro; Brose, Nils; Parenti, Marco; Rhee, JeongSeop

    2017-01-01

    Beyond its role in parturition and lactation, oxytocin influences higher brain processes that control social behavior of mammals, and perturbed oxytocin signaling has been linked to the pathogenesis of several psychiatric disorders. However, it is still largely unknown how oxytocin exactly regulates neuronal function. We show that early, transient oxytocin exposure in vitro inhibits the development of hippocampal glutamatergic neurons, leading to reduced dendrite complexity, synapse density, and excitatory transmission, while sparing GABAergic neurons. Conversely, genetic elimination of oxytocin receptors increases the expression of protein components of excitatory synapses and excitatory synaptic transmission in vitro. In vivo, oxytocin-receptor-deficient hippocampal pyramidal neurons develop more complex dendrites, which leads to increased spine number and reduced γ-oscillations. These results indicate that oxytocin controls the development of hippocampal excitatory neurons and contributes to the maintenance of a physiological excitation/inhibition balance, whose disruption can cause neurobehavioral disturbances. DOI: http://dx.doi.org/10.7554/eLife.22466.001 PMID:28231043

  11. Population activity structure of excitatory and inhibitory neurons

    PubMed Central

    Doiron, Brent

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure. PMID:28817581

  12. Inhibition of excitatory non-adrenergic non-cholinergic bronchoconstriction in guinea-pig airways in vitro by activation of an atypical 5-HT receptor.

    PubMed Central

    Ward, J. K.; Fox, A. J.; Barnes, P. J.; Belvisi, M. G.

    1994-01-01

    1. The effect of 5-hydroxytryptamine (5-HT) was studied on excitatory neurally mediated non-adrenergic non-cholinergic (NANC) contractions evoked by electrical field stimulation (EFS) in guinea-pig isolated bronchi. 2. 5-HT (0.1-100 microM) produced a concentration-dependent inhibition of the excitatory NANC response with 50.9 +/- 5.0% (n = 5, P < 0.01) inhibition at 100 microM. This inhibition was not significantly affected by the 5-HT2 antagonist, ketanserin (1 microM) when inhibitions (+/- ketanserin) at each concentration of 5-HT were compared by unpaired t tests; however, this concentration appeared to produce a leftward shift (approximately 10 fold) of the 5-HT concentration-inhibition curve. Ketanserin (1 microM) was effective in blocking bronchoconstriction evoked by activation of 5-HT2A receptors on airway smooth muscle. In the presence of ketanserin (1 microM) 5-HT (100 microM) evoked an inhibition of 57.4 +/- 5.9% (n = 5, P < 0.01) with an EC50 of 0.57 microM. 3. Inhibition evoked by 5-HT (0.1-100 microM) was unaffected by the alpha-adrenoceptor antagonist phentolamine (1 microM), the beta 2-adrenoceptor antagonist, ICI 118551 (0.1 microM), the 5-HT1A/B antagonist, cyanopindolol (1 microM) or the 5-HT3/4 antagonist, ICS 205-930 (1 microM). 4. Methiothepin (0.1 microM) produced an insurmountable inhibition of the effect of 5-HT (0.1-100 microM), reducing the maximum inhibition produced by 5-HT (100 microM) to 30.2 +/- 5.0% (n = 5, P < 0.001) and suggesting a non-competitive antagonism. Methiothepin inhibited the effect of 5-HT (10 microM) in a concentration-dependent manner with an IC50 of 81 nM.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7518294

  13. Inhibition of excitatory non-adrenergic non-cholinergic bronchoconstriction in guinea-pig airways in vitro by activation of an atypical 5-HT receptor.

    PubMed

    Ward, J K; Fox, A J; Barnes, P J; Belvisi, M G

    1994-04-01

    1. The effect of 5-hydroxytryptamine (5-HT) was studied on excitatory neurally mediated non-adrenergic non-cholinergic (NANC) contractions evoked by electrical field stimulation (EFS) in guinea-pig isolated bronchi. 2. 5-HT (0.1-100 microM) produced a concentration-dependent inhibition of the excitatory NANC response with 50.9 +/- 5.0% (n = 5, P < 0.01) inhibition at 100 microM. This inhibition was not significantly affected by the 5-HT2 antagonist, ketanserin (1 microM) when inhibitions (+/- ketanserin) at each concentration of 5-HT were compared by unpaired t tests; however, this concentration appeared to produce a leftward shift (approximately 10 fold) of the 5-HT concentration-inhibition curve. Ketanserin (1 microM) was effective in blocking bronchoconstriction evoked by activation of 5-HT2A receptors on airway smooth muscle. In the presence of ketanserin (1 microM) 5-HT (100 microM) evoked an inhibition of 57.4 +/- 5.9% (n = 5, P < 0.01) with an EC50 of 0.57 microM. 3. Inhibition evoked by 5-HT (0.1-100 microM) was unaffected by the alpha-adrenoceptor antagonist phentolamine (1 microM), the beta 2-adrenoceptor antagonist, ICI 118551 (0.1 microM), the 5-HT1A/B antagonist, cyanopindolol (1 microM) or the 5-HT3/4 antagonist, ICS 205-930 (1 microM). 4. Methiothepin (0.1 microM) produced an insurmountable inhibition of the effect of 5-HT (0.1-100 microM), reducing the maximum inhibition produced by 5-HT (100 microM) to 30.2 +/- 5.0% (n = 5, P < 0.001) and suggesting a non-competitive antagonism. Methiothepin inhibited the effect of 5-HT (10 microM) in a concentration-dependent manner with an IC50 of 81 nM. 5. Selective 5-HT receptor agonists were also tested on excitatory NANC responses. 5-Carboxamidotryptamine (5-CT, 0.1-100 MicroM) was the most potent, producing a concentration-dependent inhibition with an EC50 of 0.13 MicroM. Calculation of approximate IC25 values (concentration of the agonist required to give a 25% inhibition of the excitatory NANC response

  14. Noble Gas Xenon Is a Novel Adenosine Triphosphate-sensitive Potassium Channel Opener

    PubMed Central

    Bantel, Carsten; Maze, Mervyn; Trapp, Stefan

    2010-01-01

    Background Adenosine triphosphate-sensitive potassium (KATP) channels in brain are involved in neuroprotective mechanisms. Pharmacologic activation of these channels is seen as beneficial, but clinical exploitation by using classic K+ channel openers is hampered by their inability to cross the blood–brain barrier. This is different with the inhalational anesthetic xenon, which recently has been suggested to activate KATP channels; it partitions freely into the brain. Methods To evaluate the type and mechanism of interaction of xenon with neuronal-type KATP channels, these channels, consisting of Kir6.2 pore-forming subunits and sulfonylurea receptor-1 regulatory subunits, were expressed in HEK293 cells and whole cell, and excised patch-clamp recordings were performed. Results Xenon, in contrast to classic KATP channel openers, acted directly on the Kir6.2 subunit of the channel. It had no effect on the closely related, adenosine triphosphate (ATP)-regulated Kir1.1 channel and failed to activate an ATP-insensitive mutant version of Kir6.2. Furthermore, concentration–inhibition curves for ATP obtained from inside-out patches in the absence or presence of 80% xenon revealed that xenon reduced the sensitivity of the KATP channel to ATP. This was reflected in an approximately fourfold shift of the concentration causing half-maximal inhibition (IC50) from 26 ± 4 to 96 ± 6 μm. Conclusions Xenon represents a novel KATP channel opener that increases KATP currents independently of the sulfonylurea receptor-1 subunit by reducing ATP inhibition of the channel. Through this action and by its ability to readily partition across the blood–brain barrier, xenon has considerable potential in clinical settings of neuronal injury, including stroke. PMID:20179498

  15. AgRP and MC3/4 receptor agonists both inhibit excitatory hypothalamic ventromedial nucleus neurons

    PubMed Central

    Fu, Li-Ying; van den Pol, Anthony N.

    2009-01-01

    Anorexigenic melanocortins decrease food intake by activating MC3/MC4 receptors (MC3/4R); the prevailing view is that the orexigenic neuropeptide AgRP exerts the opposite action by acting as an antagonist at MC3/MC4 receptors. 370 VMH glutamatergic neurons were studied using whole-cell recording in hypothalamic slices from a novel mouse expressing GFP under control of the vGluT2 promoter. Massive numbers of GFP-expressing VMH dendrites extended out of the core of the nucleus into the surrounding cell-poor shell. VMH dendrites received frequent appositions from AgRP immunoreactive axons in the shell of the nucleus, but not the core, suggesting that AgRP may influence target VMH neurons. Alpha-MSH, MTII, and selective MC3R or MC4R agonists were all inhibitory, reducing the spontaneous firing rate and hyperpolarizing vGluT2 neurons. The MC3/4R antagonist SHU9119 was excitatory. Unexpectedly, AgRP did not attenuate MTII actions on these neurons; instead these two compounds showed an additive inhibitory effect. In the absence of synaptic activity, no hyperpolarization or change in input resistance was evoked by either MTII or AgRP, suggesting indirect actions. Consistent with this view, MTII increased the frequency of spontaneous and miniature IPSCs. In contrast, the mechanism of AgRP inhibition was dependent on presynaptic inhibition of EPSCs mediated by Gi/Go proteins, and was attenuated by pertussis toxin and NF023, inconsistent with mediation by Gs proteins associated with MC receptors. Together, our data suggest that the mechanism of AgRP actions on these excitatory VMH cells appears to be independent of the actions of melanocortins on MC receptors. PMID:18495877

  16. Can xenon in water inhibit ice growth? Molecular dynamics of phase transitions in water-Xe system.

    PubMed

    Artyukhov, Vasilii I; Pulver, Alexander Yu; Peregudov, Alex; Artyuhov, Igor

    2014-07-21

    Motivated by recent experiments showing the promise of noble gases as cryoprotectants, we perform molecular dynamics modeling of phase transitions in water with xenon under cooling. We follow the structure and dynamics of xenon water solution as a function of temperature. Homogeneous nucleation of clathrate hydrate phase is observed and characterized. As the temperature is further reduced we observe hints of dissociation of clathrate due to stronger hydrophobic hydration, pointing towards a possible instability of clathrate at cryogenic temperatures and conversion to an amorphous phase comprised of "xenon + hydration shell" Xe·(H2O)21.5 clusters. Simulations of ice-xenon solution interface in equilibrium and during ice growth reveal the effects of xenon on the ice-liquid interface, where adsorbed xenon causes roughening of ice surface but does not preferentially form clathrate. These results provide evidence against the ice-blocker mechanism of xenon cryoprotection.

  17. Impaired Excitatory Drive to Spinal Gabaergic Neurons of Neuropathic Mice

    PubMed Central

    Leitner, Jörg; Westerholz, Sören; Heinke, Bernhard; Forsthuber, Liesbeth; Wunderbaldinger, Gabriele; Jäger, Tino; Gruber-Schoffnegger, Doris; Braun, Katharina; Sandkühler, Jürgen

    2013-01-01

    Adequate pain sensitivity requires a delicate balance between excitation and inhibition in the dorsal horn of the spinal cord. This balance is severely impaired in neuropathy leading to enhanced pain sensations (hyperalgesia). The underlying mechanisms remain elusive. Here we explored the hypothesis that the excitatory drive to spinal GABAergic neurons might be impaired in neuropathic animals. Transgenic adult mice expressing EGFP under the promoter for GAD67 underwent either chronic constriction injury of the sciatic nerve or sham surgery. In transverse slices from lumbar spinal cord we performed whole-cell patch-clamp recordings from identified GABAergic neurons in lamina II. In neuropathic animals rates of mEPSC were reduced indicating diminished global excitatory input. This downregulation of excitatory drive required a rise in postsynaptic Ca2+. Neither the density and morphology of dendritic spines on GABAergic neurons nor the number of excitatory synapses contacting GABAergic neurons were affected by neuropathy. In contrast, paired-pulse ratio of Aδ- or C-fiber-evoked monosynaptic EPSCs following dorsal root stimulation was increased in neuropathic animals suggesting reduced neurotransmitter release from primary afferents. Our data indicate that peripheral neuropathy triggers Ca2+-dependent signaling pathways in spinal GABAergic neurons. This leads to a global downregulation of the excitatory drive to GABAergic neurons. The downregulation involves a presynaptic mechanism and also applies to the excitation of GABAergic neurons by presumably nociceptive Aδ- and C-fibers. This then leads to an inadequately low recruitment of inhibitory interneurons during nociception. We suggest that this previously unrecognized mechanism of impaired spinal inhibition contributes to hyperalgesia in neuropathy. PMID:24009748

  18. Antiapoptotic activity of argon and xenon

    PubMed Central

    Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido

    2013-01-01

    Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects. PMID:23907115

  19. Is xenon eldest?

    NASA Technical Reports Server (NTRS)

    Zahnle, K.

    1994-01-01

    It is well known that the solubility of noble gases in magmas decreases with increasing atomic weight. Xenon, the weightiest of the stable noble gases, is the least soluble atmospheric gas in magma. It is not unreasonable to suppose that the noble gases should have degassed from (or equilibrated with) a bubbling mantle in order of increasing solubility, such that xenon was the most rapidly degassed and helium the least. The apparent relative ages of the famous radiogenic noble gas isotopes agrees, at least qualitatively, with this premise. When atmospheric loss processes are assigned their proper place, several long-standing xenonological puzzles become added evidence for xenon's relative antiquity. Xenon being the afore-mentioned sense the oldest atmospheric gas, will have been most greatly subject to escape, be it impact-driven or EUV-driven. Nonradiogenic xenon's pronounced isotopic fractionation has already been attributed to escape; why it should be more fractionated than krypton would be assigned to xenon's greater atmospheric age. The small atmospheric inventory of xenon relative to the other nonradiogenic noblegases, known as the 'missing xenon' problem, could easily be explained by differential escape. The relatively tiny atmospheric inventories of the radiogenic daughter products of 129 Iodine and 244 Plutonium, both much smaller than would be expected from the inferred abundances of the parents in meteorites, offer a third and fourth data to support the hypothesis that Earth has lost most of its xenon.

  20. Cadherin-10 Maintains Excitatory/Inhibitory Ratio through Interactions with Synaptic Proteins

    PubMed Central

    Jones, Kelly A.; Kopeikina, Katherine J.; Burette, Alain C.; Copits, Bryan A.; Forrest, Marc P.; Fawcett-Patel, Jessica M.

    2017-01-01

    Appropriate excitatory/inhibitory (E/I) balance is essential for normal cortical function and is altered in some psychiatric disorders, including autism spectrum disorders (ASDs). Cell-autonomous molecular mechanisms that control the balance of excitatory and inhibitory synapse function remain poorly understood; no proteins that regulate excitatory and inhibitory synapse strength in a coordinated reciprocal manner have been identified. Using super-resolution imaging, electrophysiology, and molecular manipulations, we show that cadherin-10, encoded by CDH10 within the ASD risk locus 5p14.1, maintains both excitatory and inhibitory synaptic scaffold structure in cultured cortical neurons from rats of both sexes. Cadherin-10 localizes to both excitatory and inhibitory synapses in neocortex, where it is organized into nanoscale puncta that influence the size of their associated PSDs. Knockdown of cadherin-10 reduces excitatory but increases inhibitory synapse size and strength, altering the E/I ratio in cortical neurons. Furthermore, cadherin-10 exhibits differential participation in complexes with PSD-95 and gephyrin, which may underlie its role in maintaining the E/I ratio. Our data provide a new mechanism whereby a protein encoded by a common ASD risk factor controls E/I ratios by regulating excitatory and inhibitory synapses in opposing directions. SIGNIFICANCE STATEMENT The correct balance between excitatory/inhibitory (E/I) is crucial for normal brain function and is altered in psychiatric disorders such as autism. However, the molecular mechanisms that underlie this balance remain elusive. To address this, we studied cadherin-10, an adhesion protein that is genetically linked to autism and understudied at the cellular level. Using a combination of advanced microscopy techniques and electrophysiology, we show that cadherin-10 forms nanoscale puncta at excitatory and inhibitory synapses, maintains excitatory and inhibitory synaptic structure, and is essential for

  1. Excitatory Cerebellar Nucleocortical Circuit Provides Internal Amplification during Associative Conditioning.

    PubMed

    Gao, Zhenyu; Proietti-Onori, Martina; Lin, Zhanmin; Ten Brinke, Michiel M; Boele, Henk-Jan; Potters, Jan-Willem; Ruigrok, Tom J H; Hoebeek, Freek E; De Zeeuw, Chris I

    2016-02-03

    Closed-loop circuitries between cortical and subcortical regions can facilitate precision of output patterns, but the role of such networks in the cerebellum remains to be elucidated. Here, we characterize the role of internal feedback from the cerebellar nuclei to the cerebellar cortex in classical eyeblink conditioning. We find that excitatory output neurons in the interposed nucleus provide efference-copy signals via mossy fibers to the cerebellar cortical zones that belong to the same module, triggering monosynaptic responses in granule and Golgi cells and indirectly inhibiting Purkinje cells. Upon conditioning, the local density of nucleocortical mossy fiber terminals significantly increases. Optogenetic activation and inhibition of nucleocortical fibers in conditioned animals increases and decreases the amplitude of learned eyeblink responses, respectively. Our data show that the excitatory nucleocortical closed-loop circuitry of the cerebellum relays a corollary discharge of premotor signals and suggests an amplifying role of this circuitry in controlling associative motor learning. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Regulation of spatial selectivity by crossover inhibition.

    PubMed

    Cafaro, Jon; Rieke, Fred

    2013-04-10

    Signals throughout the nervous system diverge into parallel excitatory and inhibitory pathways that later converge on downstream neurons to control their spike output. Converging excitatory and inhibitory synaptic inputs can exhibit a variety of temporal relationships. A common motif is feedforward inhibition, in which an increase (decrease) in excitatory input precedes a corresponding increase (decrease) in inhibitory input. The delay of inhibitory input relative to excitatory input originates from an extra synapse in the circuit shaping inhibitory input. Another common motif is push-pull or "crossover" inhibition, in which increases (decreases) in excitatory input occur together with decreases (increases) in inhibitory input. Primate On midget ganglion cells receive primarily feedforward inhibition and On parasol cells receive primarily crossover inhibition; this difference provides an opportunity to study how each motif shapes the light responses of cell types that play a key role in visual perception. For full-field stimuli, feedforward inhibition abbreviated and attenuated responses of On midget cells, while crossover inhibition, though plentiful, had surprisingly little impact on the responses of On parasol cells. Spatially structured stimuli, however, could cause excitatory and inhibitory inputs to On parasol cells to increase together, adopting a temporal relation very much like that for feedforward inhibition. In this case, inhibitory inputs substantially abbreviated a cell's spike output. Thus inhibitory input shapes the temporal stimulus selectivity of both midget and parasol ganglion cells, but its impact on responses of parasol cells depends strongly on the spatial structure of the light inputs.

  3. Calcium dynamics in cardiac excitatory and non-excitatory cells and the role of gap junction.

    PubMed

    Das, Phonindra Nath; Mehrotra, Parul; Mishra, Aseem; Bairagi, Nandadulal; Chatterjee, Samrat

    2017-07-01

    Calcium ions aid in the generation of action potential in myocytes and are responsible for the excitation-contraction coupling of heart. The heart muscle has specialized patches of cells, called excitatory cells (EC) such as the Sino-atrial node cells capable of auto-generation of action potential and cells which receive signals from the excitatory cells, called non-excitatory cells (NEC) such as cells of the ventricular and auricular walls. In order to understand cardiac calcium homeostasis, it is, therefore, important to study the calcium dynamics taking into account both types of cardiac cells. Here we have developed a model to capture the calcium dynamics in excitatory and non-excitatory cells taking into consideration the gap junction mediated calcium ion transfer from excitatory cell to non-excitatory cell. Our study revealed that the gap junctional coupling between excitatory and non-excitatory cells plays important role in the calcium dynamics. It is observed that any reduction in the functioning of gap junction may result in abnormal calcium oscillations in NEC, even when the calcium dynamics is normal in EC cell. Sensitivity of gap junction is observed to be independent of the pacing rate and hence a careful monitoring is required to maintain normal cardiomyocyte condition. It also highlights that sarcoplasmic reticulum may not be always able to control the amount of cytoplasmic calcium under the condition of calcium overload. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Xenon Feed System Progress

    DTIC Science & Technology

    2006-01-01

    From - To) 13-06-2006 Technical Paper 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER F04611-00-C-0055 Xenon Feed System Progress (Preprint) 5b. GRANT...propulsion xenon feed system for a flight technology demonstration program. Major accomplishments include: 1) Utilization of the Moog...successfully fed xenon to a 200 watt Hall Effect Thruster in a Technology Demonstration Program. The feed system has demonstrated throttling of xenon

  5. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger.

    PubMed

    Krashes, Michael J; Shah, Bhavik P; Madara, Joseph C; Olson, David P; Strochlic, David E; Garfield, Alastair S; Vong, Linh; Pei, Hongjuan; Watabe-Uchida, Mitsuko; Uchida, Naoshige; Liberles, Stephen D; Lowell, Bradford B

    2014-03-13

    Hunger is a hard-wired motivational state essential for survival. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus (ARC) at the base of the hypothalamus are crucial to the control of hunger. They are activated by caloric deficiency and, when naturally or artificially stimulated, they potently induce intense hunger and subsequent food intake. Consistent with their obligatory role in regulating appetite, genetic ablation or chemogenetic inhibition of AgRP neurons decreases feeding. Excitatory input to AgRP neurons is important in caloric-deficiency-induced activation, and is notable for its remarkable degree of caloric-state-dependent synaptic plasticity. Despite the important role of excitatory input, its source(s) has been unknown. Here, through the use of Cre-recombinase-enabled, cell-specific neuron mapping techniques in mice, we have discovered strong excitatory drive that, unexpectedly, emanates from the hypothalamic paraventricular nucleus, specifically from subsets of neurons expressing thyrotropin-releasing hormone (TRH) and pituitary adenylate cyclase-activating polypeptide (PACAP, also known as ADCYAP1). Chemogenetic stimulation of these afferent neurons in sated mice markedly activates AgRP neurons and induces intense feeding. Conversely, acute inhibition in mice with caloric-deficiency-induced hunger decreases feeding. Discovery of these afferent neurons capable of triggering hunger advances understanding of how this intense motivational state is regulated.

  6. Xenon Protects Against Septic Acute Kidney Injury via miR-21 Target Signaling Pathway.

    PubMed

    Jia, Ping; Teng, Jie; Zou, Jianzhou; Fang, Yi; Wu, Xie; Liang, Mingyu; Ding, Xiaoqiang

    2015-07-01

    Septic acute kidney injury is one of the most common and life-threatening complications in critically ill patients, and there is no approved effective treatment. We have shown xenon provides renoprotection against ischemia-reperfusion injury and nephrotoxicity in rodents via inhibiting apoptosis. Here, we studied the effects of xenon preconditioning on septic acute kidney injury and its mechanism. Experimental animal investigation. University research laboratory. Experiments were performed with male C57BL/6 mice, 10 weeks of age, weighing 20-25 g. We induced septic acute kidney injury by a single intraperitoneal injection of Escherichia coli lipopolysaccharide at a dose of 20 mg/kg. Mice were exposed for 2 hours to either 70% xenon or 70% nitrogen, 24 hours before the onset of septic acute kidney injury. In vivo knockdown of miR-21 was performed using locked nucleic acid-modified anti-miR, the role of miR-21 in renal protection conferred by the xenon preconditioning was examined, and miR-21 signaling pathways were analyzed. Xenon preconditioning provided morphologic and functional renoprotection, characterized by attenuation of renal tubular damage, apoptosis, and a reduction in inflammation. Furthermore, xenon treatment significantly upregulated the expression of miR-21 in kidney, suppressed proinflammatory factor programmed cell death protein 4 expression and nuclear factor-κB activity, and increased interleukin-10 production. Meanwhile, xenon preconditioning also suppressed the expression of proapoptotic protein phosphatase and tensin homolog deleted on chromosome 10, activating protein kinase B signaling pathway, subsequently increasing the expression of antiapoptotic B-cell lymphoma-2, and inhibiting caspase-3 activity. Knockdown of miR-21 upregulated its target effectors programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10 expression, resulted in an increase in apoptosis, and exacerbated lipopolysaccharide

  7. Xenon Protects Against Septic Acute Kidney Injury via miR-21 Target Signaling Pathway*

    PubMed Central

    Jia, Ping; Teng, Jie; Zou, Jianzhou; Fang, Yi; Wu, Xie; Liang, Mingyu

    2015-01-01

    Objectives: Septic acute kidney injury is one of the most common and life-threatening complications in critically ill patients, and there is no approved effective treatment. We have shown xenon provides renoprotection against ischemia-reperfusion injury and nephrotoxicity in rodents via inhibiting apoptosis. Here, we studied the effects of xenon preconditioning on septic acute kidney injury and its mechanism. Design: Experimental animal investigation. Setting: University research laboratory. Subjects: Experiments were performed with male C57BL/6 mice, 10 weeks of age, weighing 20–25 g. Interventions: We induced septic acute kidney injury by a single intraperitoneal injection of Escherichia coli lipopolysaccharide at a dose of 20 mg/kg. Mice were exposed for 2 hours to either 70% xenon or 70% nitrogen, 24 hours before the onset of septic acute kidney injury. In vivo knockdown of miR-21 was performed using locked nucleic acid-modified anti-miR, the role of miR-21 in renal protection conferred by the xenon preconditioning was examined, and miR-21 signaling pathways were analyzed. Measurements and Main Results: Xenon preconditioning provided morphologic and functional renoprotection, characterized by attenuation of renal tubular damage, apoptosis, and a reduction in inflammation. Furthermore, xenon treatment significantly upregulated the expression of miR-21 in kidney, suppressed proinflammatory factor programmed cell death protein 4 expression and nuclear factor-κB activity, and increased interleukin-10 production. Meanwhile, xenon preconditioning also suppressed the expression of proapoptotic protein phosphatase and tensin homolog deleted on chromosome 10, activating protein kinase B signaling pathway, subsequently increasing the expression of antiapoptotic B-cell lymphoma-2, and inhibiting caspase-3 activity. Knockdown of miR-21 upregulated its target effectors programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10

  8. The Genesis solar xenon composition and its relationship to planetary xenon signatures

    NASA Astrophysics Data System (ADS)

    Crowther, S. A.; Gilmour, J. D.

    2013-12-01

    The fluence and isotopic composition of solar wind xenon have been determined from silicon collector targets flown on the NASA Genesis mission. A protocol was developed to extract gas quantitatively from samples of ∼9-25 mm2, and xenon measured using the RELAX mass spectrometer. The fluence of implanted solar wind xenon is 1.202(87) × 106 atoms 132Xe cm-2, which equates to a flux of 5.14(21) × 106 atoms 132Xe cm-2 year-1 at the L1 point. This value is in good agreement with those reported in other studies. The isotopic composition of the solar wind is consistent with that extracted from the young lunar regolith and other Genesis collector targets. The more precise xenon isotopic data derived from the Genesis mission confirm models of relationships among planetary xenon signatures. The underlying composition of Xe-Q is mass fractionated solar wind; small, varying contributions of Xe-HL and 129Xe from 129I decay are present in reported meteorite analyses. In contrast, an s-process deficit is apparent in Xe-P3, which appears to have been mass fractionated to the same extent as Xe-Q from a precursor composition, suggesting similar trapping mechanisms. Solar wind xenon later evolved by the addition of ∼1% (at 132Xe) of s-process xenon to this precursor. As an alternative model to a single source reservoir for Xe-P3, we propose that trapping of xenon onto carbonaceous carriers has been an ongoing process across galactic history, and that preparation of the residues in which Xe-P3 has been identified preferentially preserves longer lived host phases; a higher proportion of these sample xenon isotopic compositions from earlier in galactic chemical evolution, allowing the s-process deficit to become apparent. The relationships among SW-Xe, Xe-Q and Xe-P3 predict that the 124Xe/132Xe ratio for the solar wind is 0.00481(6).

  9. Delayed excitatory and inhibitory feedback shape neural information transmission

    NASA Astrophysics Data System (ADS)

    Chacron, Maurice J.; Longtin, André; Maler, Leonard

    2005-11-01

    Feedback circuitry with conduction and synaptic delays is ubiquitous in the nervous system. Yet the effects of delayed feedback on sensory processing of natural signals are poorly understood. This study explores the consequences of delayed excitatory and inhibitory feedback inputs on the processing of sensory information. We show, through numerical simulations and theory, that excitatory and inhibitory feedback can alter the firing frequency response of stochastic neurons in opposite ways by creating dynamical resonances, which in turn lead to information resonances (i.e., increased information transfer for specific ranges of input frequencies). The resonances are created at the expense of decreased information transfer in other frequency ranges. Using linear response theory for stochastically firing neurons, we explain how feedback signals shape the neural transfer function for a single neuron as a function of network size. We also find that balanced excitatory and inhibitory feedback can further enhance information tuning while maintaining a constant mean firing rate. Finally, we apply this theory to in vivo experimental data from weakly electric fish in which the feedback loop can be opened. We show that it qualitatively predicts the observed effects of inhibitory feedback. Our study of feedback excitation and inhibition reveals a possible mechanism by which optimal processing may be achieved over selected frequency ranges.

  10. GAS CHROMATOGRAPHY-MASS SPECTROMETRY MEASUREMENT OF XENON IN GAS-LOADED LIPOSOMES FOR NEUROPROTECTIVE APPLICATIONS1

    PubMed Central

    Klegerman, Melvin E.; Moody, Melanie R.; Hurling, Jermaine R.; Peng, Tao; Huang, Shao-Ling; McPherson, David D.

    2016-01-01

    Rationale We have produced a liposomal formulation of xenon (Xe-ELIP) as a neuroprotectant for inhibition of brain damage in stroke patients. This mandates development of a reliable assay to measure the amount of dissolved xenon released from Xe-ELIP in water and blood samples. Methods Gas chromatography-Mass Spectrometry (GC-MS) was used to quantify xenon gas released into the headspace of vials containing Xe-ELIP samples in water or blood. In order to determine blood concentration of xenon in vivo after Xe-ELIP administration, 6 mg Xe-ELIP lipid was infused intravenously into rats. Blood samples were drawn directly from a catheterized right carotid artery. After introduction of the samples, each vial was allowed to equilibrate to 37° C in a water bath, followed by 20 minutes of sonication prior to headspace sampling. Xenon concentrations were calculated from a gas dose-response curve and normalized using the published xenon water-gas solubility coefficient. Results The mean corrected percent of xenon from Xe-ELIP released into water was 3.87 ± 0.56% (SD, n = 8), corresponding to 19.3 ± 2.8 μl/mg lipid, which is consistent with previous independent Xe-ELIP measurements. The corresponding xenon content of Xe-ELIP in rat blood was 23.38 ± 7.36 μl/mg lipid (n = 8). Mean rat blood xenon concentration after IV administration of Xe-ELIP was 14 ± 10 μM, which is approximately 15% of the estimated neuroprotective level. Conclusions Using this approach, we have established a reproducible method for measuring dissolved xenon in fluids. These measurements have established that neuroprotective effects can be elicited by less than 20% of the calculated neuroprotective xenon blood concentration. More work will have to be done to establish the protective xenon pharmacokinetic range. PMID:27689777

  11. Development of a liquid xenon time projection chamber for the XENON dark matter search

    NASA Astrophysics Data System (ADS)

    Ni, Kaixuan

    This thesis describes the research conducted for the XENON dark matter direct detection experiment. The tiny energy and small cross-section, from the interaction of dark matter particle on the target, requires a low threshold and sufficient background rejection capability of the detector. The XENON experiment uses dual phase technology to detect scintillation and ionization simultaneously from an event in liquid xenon (LXe). The distinct ratio, between scintillation and ionization, for nuclear recoil and electron recoil events provides excellent background rejection potential. The XENON detector is designed to have 3D position sensitivity down to mm scale, which provides additional event information for background rejection. Started in 2002, the XENON project made steady progress in the R&D phase during the past few years. Those include developing sensitive photon detectors in LXe, improving the energy resolution and LXe purity for detecting very low energy events. Two major quantities related to the dark matter detection, the scintillation efficiency and ionization yield of nuclear recoils in LXe, have been established. A prototype dual phase detector (XENON3) has been built and tested extensively in above ground laboratory. The 3D position sensitivity, as well as the background discrimination potential demonstrated from the XENON3 prototype, allows the construction of a 10 kg scale detector (XENON10), to be deployed underground in early 2006. With 99.5% electron recoil rejection efficiency and 16 keVr nuclear recoil energy threshold, XENON10 will be able to probe the WIMP-nucleon cross-section down to 2 x 10-44 cm2 in the supersymmetry parameter space, after one month operation in the Gran Sasso underground laboratory.

  12. Xenon elimination kinetics following brief exposure.

    PubMed

    Schaefer, Maximilian S; Piper, Thomas; Geyer, Hans; Schneemann, Julia; Neukirchen, Martin; Thevis, Mario; Kienbaum, Peter

    2017-05-01

    Xenon is a modern inhalative anaesthetic with a very low solubility in tissues providing rapid elimination and weaning from anaesthesia. Besides its anaesthetic properties, Xenon promotes the endogenous erythropoietin biosynthesis and thus has been enlisted as prohibited substance by the World Anti-Doping Agency (WADA). For effective doping controls, knowledge about the elimination kinetics of Xenon and the duration of traceability are of particular importance. Seventy-seven full blood samples were obtained from 7 normal weight patients undergoing routine Xenon-based general anaesthesia with a targeted inspiratory concentration of 60% Xenon in oxygen. Samples were taken before and during Xenon inhalation as well as one, two, 4, 8, 16, 24, 32, 40, and 48 h after exposure. Xenon concentrations were assessed in full blood by gas chromatography and triple quadrupole tandem mass spectrometry with a detection limit of 0.25 µmol/L. The elimination of Xenon was characterized by linear regression of log-transformed Xenon blood concentrations, as well as non-linear regression. Xenon exposure yielded maximum concentrations in arterial blood of 1.3 [1.1; 1.6] mmol/L. Xenon was traceable for 24 to 48 h. The elimination profile was characterized by a biphasic pattern with a rapid alpha phase, followed by a slower beta phase showing a first order kinetics (c[Xe] = 69.1e -0.26x , R 2  = 0.83, t 1/2  = 2.7 h). Time in hours after exposure could be estimated by 50*ln(1.39/c[Xe] 0.077 ). Xenon's elimination kinetics is biphasic with a delayed beta phase following a first order kinetics. Xenon can reliably be detected for at least 24 h after brief exposure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Optical pumping and xenon NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raftery, M. Daniel

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to highmore » magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.« less

  14. Optical pumping and xenon NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas tomore » high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.« less

  15. Gas chromatography/mass spectrometry measurement of xenon in gas-loaded liposomes for neuroprotective applications.

    PubMed

    Klegerman, Melvin E; Moody, Melanie R; Hurling, Jermaine R; Peng, Tao; Huang, Shao-Ling; McPherson, David D

    2017-01-15

    We have produced a liposomal formulation of xenon (Xe-ELIP) as a neuroprotectant for inhibition of brain damage in stroke patients. This mandates development of a reliable assay to measure the amount of dissolved xenon released from Xe-ELIP in water and blood samples. Gas chromatography/mass spectrometry (GC/MS) was used to quantify xenon gas released into the headspace of vials containing Xe-ELIP samples in water or blood. In order to determine blood concentration of xenon in vivo after Xe-ELIP administration, 6 mg of Xe-ELIP lipid was infused intravenously into rats. Blood samples were drawn directly from a catheterized right carotid artery. After introduction of the samples, each vial was allowed to equilibrate to 37°C in a water bath, followed by 20 minutes of sonication prior to headspace sampling. Xenon concentrations were calculated from a gas dose-response curve and normalized using the published xenon water-gas solubility coefficient. The mean corrected percent of xenon from Xe-ELIP released into water was 3.87 ± 0.56% (SD, n = 8), corresponding to 19.3 ± 2.8 μL/mg lipid, which is consistent with previous independent Xe-ELIP measurements. The corresponding xenon content of Xe-ELIP in rat blood was 23.38 ± 7.36 μL/mg lipid (n = 8). Mean rat blood xenon concentration after intravenous administration of Xe-ELIP was 14 ± 10 μM, which is approximately 15% of the estimated neuroprotective level. Using this approach, we have established a reproducible method for measuring dissolved xenon in fluids. These measurements have established that neuroprotective effects can be elicited by less than 20% of the calculated neuroprotective xenon blood concentration. More work will have to be done to establish the protective xenon pharmacokinetic range. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Pathway and Cell-Specific Kappa-Opioid Receptor Modulation of Excitatory-Inhibitory Balance Differentially Gates D1 and D2 Accumbens Neuron Activity

    PubMed Central

    Tejeda, Hugo A.; Wu, Jocelyn; Kornspun, Alana R.; Pignatelli, Marco; Kashtelyan, Vadim; Krashes, Michael J.; Lowell, Brad B.; Carlezon, William A.; Bonci, Antonello

    2018-01-01

    Endogenous dynorphin signaling via the kappa-opioid receptor (KOR) in the nucleus accumbens (NAcc) powerfully mediates negative affective states and stress reactivity. Excitatory inputs from the hippocampus and amygdala play a fundamental role in shaping the activity of both NAcc D1 and D2 MSNs, which encode positive and negative motivational valences, respectively. However, a circuit-based mechanism by which KOR modulation of excitation-inhibition balance modifies D1 and D2 MSN activity is lacking. Here, we provide a comprehensive synaptic framework wherein presynaptic KOR inhibition decreases excitatory drive of D1 MSN activity by the amygdala, but not hippocampus. Conversely, presynaptic inhibition by KORs of inhibitory synapses on D2 MSNs enhances integration of excitatory drive by the amygdala and hippocampus. In conclusion, we describe a circuit-based mechanism showing differential gating of afferent control of D1 and D2 MSN activity by KORs in a pathway specific manner. PMID:28056342

  17. XENON100 Dark Matter Search: Scintillation Response of Liquid Xenon to Electronic Recoils

    NASA Astrophysics Data System (ADS)

    Lim, Kyungeun Elizabeth

    Dark matter is one of the missing pieces necessary to complete the puzzle of the universe. Numerous astrophysical observations at all scales suggest that 23 % of the universe is made of nonluminous, cold, collisionless, nonbaryonic, yet undiscovered dark matter. Weakly Interacting Massive Particles (WIMPs) are the most well-motivated dark matter candidates and significant efforts have been made to search for WIMPs. The XENON100 dark matter experiment is currently the most sensitive experiment in the global race for the first direct detection of WIMP dark matter. XENON100 is a dual-phase (liquid-gas) time projection chamber containing a total of 161 kg of liquid xenon (LXe) with a 62kg WIMP target mass. It has been built with radiopure materials to achieve an ultra-low electromagnetic background and operated at the Laboratori Nazionali del Gran Sasso in Italy. WIMPs are expected to scatter off xenon nuclei in the target volume. Simultaneous measurement of ionization and scintillation produced by nuclear recoils allows for the detection of WIMPs in XENON100. Data from the XENON100 experiment have resulted in the most stringent limits on the spin-independent elastic WIMP-nucleon scattering cross sections for most of the significant WIMP masses. As the experimental precision increases, a better understanding of the scintillation and ionization response of LXe to low energy (< 10 keV) particles is crucial for the interpretation of data from LXe based WIMP searches. A setup has been built and operated at Columbia University to measure the scintillation response of LXe to both electronic and nuclear recoils down to energies of a few keV, in particular for the XENON100 experiment. In this thesis, I present the research carried out in the context of the XENON100 dark matter search experiment. For the theoretical foundation of the XENON100 experiment, the first two chapters are dedicated to the motivation for and detection medium choice of the XENON100 experiment

  18. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of liquid xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Resembling a tiny bit of window screen, the oscillator at the heart of CVX-2 will vibrate between two pairs of paddle-like electrodes. The slight bend in the shape of the mesh has no effect on the data. What counts are the mesh's displacement in the xenon fluid and the rate at which the displacement dampens. The unit shown here is encased in a small test cell and capped with a sapphire windown to contain the xenon at high pressure.

  19. Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity

    PubMed Central

    Lovatt, Ditte; Xu, Qiwu; Liu, Wei; Takano, Takahiro; Smith, Nathan A.; Schnermann, Jurgen; Tieu, Kim; Nedergaard, Maiken

    2012-01-01

    Adenosine is a potent anticonvulsant acting on excitatory synapses through A1 receptors. Cellular release of ATP, and its subsequent extracellular enzymatic degradation to adenosine, could provide a powerful mechanism for astrocytes to control the activity of neural networks during high-intensity activity. Despite adenosine's importance, the cellular source of adenosine remains unclear. We report here that multiple enzymes degrade extracellular ATP in brain tissue, whereas only Nt5e degrades AMP to adenosine. However, endogenous A1 receptor activation during cortical seizures in vivo or heterosynaptic depression in situ is independent of Nt5e activity, and activation of astrocytic ATP release via Ca2+ photolysis does not trigger synaptic depression. In contrast, selective activation of postsynaptic CA1 neurons leads to release of adenosine and synaptic depression. This study shows that adenosine-mediated synaptic depression is not a consequence of astrocytic ATP release, but is instead an autonomic feedback mechanism that suppresses excitatory transmission during prolonged activity. PMID:22421436

  20. Scalability study of solid xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, J.; Cease, H.; Jaskierny, W. F.

    2015-04-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.

  1. Xenon Fractionation and Archean Hydrogen Escape

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  2. Solid xenon radiation detectors

    NASA Astrophysics Data System (ADS)

    Dolinski, Michelle J.

    2014-03-01

    Cryogenic liquid xenon detectors have become a popular technology in the search for rare events, such as dark matter interactions and neutrinoless double beta decay. The power of the liquid xenon detector technology is in the combination of the ionization and scintillation signals, resulting in particle discrimination and improved energy resolution over the ionization-only signal. The improved energy resolution results from a unique anti-correlation phenomenon that has not been described from first principles. Solid xenon bolometers, under development at Drexel University, are expected to have excellent counting statistics in the phonon channel, with energy resolution of 0.1% or better. This additional energy channel may offer the final piece of the puzzle in understanding liquid xenon detector energy response. Supported by a grant from the Charles E. Kaufman Foundation.

  3. Separation and purification of xenon

    DOEpatents

    Schlea, deceased, Carl Solomon

    1978-03-14

    Xenon is separated from a mixture of xenon and krypton by extractive distillation using carbon tetrafluoride as the partitioning agent. Krypton is flushed out of the distillation column with CF.sub.4 in the gaseous overhead stream while purified xenon is recovered from the liquid bottoms. The distillation is conducted at about atmospheric pressure or at subatmospheric pressure.

  4. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Because xenon near the critical point will collapse under its own weight, experiments on Earth (green line) are limited as they get closer (toward the left) to the critical point. CVX in the microgravity of space (red line) moved into unmeasured territory that scientists had not been able to reach.

  5. Xenon preconditioning: the role of prosurvival signaling, mitochondrial permeability transition and bioenergetics in rats.

    PubMed

    Mio, Yasushi; Shim, Yon Hee; Richards, Ebony; Bosnjak, Zeljko J; Pagel, Paul S; Bienengraeber, Martin

    2009-03-01

    Similar to volatile anesthetics, the anesthetic noble gas xenon protects the heart from ischemia/reperfusion injury, but the mechanisms responsible for this phenomenon are not fully understood. We tested the hypothesis that xenon-induced cardioprotection is mediated by prosurvival signaling kinases that target mitochondria. Male Wistar rats instrumented for hemodynamic measurements were subjected to a 30 min left anterior descending coronary artery occlusion and 2 h reperfusion. Rats were randomly assigned to receive 70% nitrogen/30% oxygen (control) or three 5-min cycles of 70% xenon/30% oxygen interspersed with the oxygen/nitrogen mixture administered for 5 min followed by a 15 min memory period. Myocardial infarct size was measured using triphenyltetrazolium staining. Additional hearts from control and xenon-pretreated rats were excised for Western blotting of Akt and glycogen synthase kinase 3 beta (GSK-3beta) phosphorylation and isolation of mitochondria. Mitochondrial oxygen consumption before and after hypoxia/reoxygenation and mitochondrial permeability transition pore opening were determined. Xenon significantly (P < 0.05) reduced myocardial infarct size compared with control (32 +/- 4 and 59% +/- 4% of the left ventricular area at risk; mean +/- sd) and enhanced phosphorylation of Akt and GSK-3beta. Xenon pretreatment preserved state 3 respiration of isolated mitochondria compared with the results obtained in the absence of the gas. The Ca(2+) concentration required to induce mitochondrial membrane depolarization was larger in the presence compared with the absence of xenon pretreatment (78 +/- 17 and 56 +/- 17 microM, respectively). The phosphoinositol-3-kinase-kinase inhibitor wortmannin blocked the effect of xenon on infarct size and respiration. These results indicate that xenon preconditioning reduces myocardial infarct size, phosphorylates Akt, and GSK-3beta, preserves mitochondrial function, and inhibits Ca(2+)-induced mitochondrial permeability

  6. Development of Solid Xenon Bolometers

    NASA Astrophysics Data System (ADS)

    Dolinski, Michelle; Hansen, Erin

    2016-09-01

    Cryogenic liquid xenon detectors have become a popular technology in the search for rare events, such as dark matter interactions and neutrinoless double beta decay. The power of liquid xenon detector technology is in the combination of ionization and scintillation signals, resulting in particle discrimination and improved energy resolution over the ionization-only signal. The improved energy resolution results from a microscopic anti-correlation phenomenon that has not been described from first principles. Solid xenon bolometers operated at 10 mK are expected to have excellent counting statistics in the phonon channel, with energy resolution of 0.1% or better. This additional energy channel may offer the final piece of the puzzle in understanding liquid xenon detector energy response. We present work toward the development and characterization of solid xenon bolometers at Drexel University. Funding for this project was provided by the Charles E. Kaufman Foundation of The Pittsburgh Foundation.

  7. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks.

    PubMed

    Mastrogiuseppe, Francesca; Ostojic, Srdjan

    2017-04-01

    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynamical regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons.

  8. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

    PubMed Central

    Mastrogiuseppe, Francesca; Ostojic, Srdjan

    2017-01-01

    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynamical regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons. PMID:28437436

  9. Xenon is an inhibitor of tissue-plasminogen activator: adverse and beneficial effects in a rat model of thromboembolic stroke

    PubMed Central

    David, Hélène N; Haelewyn, Benoît; Risso, Jean-Jacques; Colloc'h, Nathalie; Abraini, Jacques H

    2010-01-01

    Preclinical evidence in rodents has proven that xenon may be a very promising neuroprotective agent for treating acute ischemic stroke. This has led to the general thinking that clinical trials with xenon could be initiated in acute stroke patients in a next future. However, an unappreciated physicochemical property of xenon has been that this gas also binds to the active site of a series of serine proteases. Because the active site of serine proteases is structurally conserved, we have hypothesized and investigated whether xenon may alter the catalytic efficiency of tissue-type plasminogen activator (tPA), a serine protease that is the only approved therapy for acute ischemic stroke today. Here, using molecular modeling and in vitro and in vivo studies, we show (1) xenon is a tPA inhibitor; (2) intraischemic xenon dose dependently inhibits tPA-induced thrombolysis and subsequent reduction of ischemic brain damage; (3) postischemic xenon virtually suppresses ischemic brain damage and tPA-induced brain hemorrhages and disruption of the blood–brain barrier. Taken together, these data indicate (1) xenon should not be administered before or together with tPA therapy; (2) xenon could be a golden standard for treating acute ischemic stroke if given after tPA-induced reperfusion, with both unique neuroprotective and antiproteolytic (anti-hemorrhaging) properties. PMID:20087367

  10. Search for WIMP inelastic scattering off xenon nuclei with XENON100

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Mora, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Xenon Collaboration

    2017-07-01

    We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64 ×103 kg .days . XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe 129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe 129 interactions. A profile likelihood analysis allows us to set a 90% C.L. upper limit on the inelastic, spin-dependent WIMP-nucleon cross section of 3.3 ×10-38 cm2 at 100 GeV /c2 . This is the most constraining result to date, and sets the pathway for an analysis of this interaction channel in upcoming, larger dual-phase xenon detectors.

  11. Selective functional interactions between excitatory and inhibitory cortical neurons and differential contribution to persistent activity of the slow oscillation.

    PubMed

    Tahvildari, Babak; Wölfel, Markus; Duque, Alvaro; McCormick, David A

    2012-08-29

    The neocortex depends upon a relative balance of recurrent excitation and inhibition for its operation. During spontaneous Up states, cortical pyramidal cells receive proportional barrages of excitatory and inhibitory synaptic potentials. Many of these synaptic potentials arise from the activity of nearby neurons, although the identity of these cells is relatively unknown, especially for those underlying the generation of inhibitory synaptic events. To address these fundamental questions, we developed an in vitro submerged slice preparation of the mouse entorhinal cortex that generates robust and regular spontaneous recurrent network activity in the form of the slow oscillation. By performing whole-cell recordings from multiple cell types identified with green fluorescent protein expression and electrophysiological and/or morphological properties, we show that distinct functional subpopulations of neurons exist in the entorhinal cortex, with large variations in contribution to the generation of balanced excitation and inhibition during the slow oscillation. The most active neurons during the slow oscillation are excitatory pyramidal and inhibitory fast spiking interneurons, receiving robust barrages of both excitatory and inhibitory synaptic potentials. Weak action potential activity was observed in stellate excitatory neurons and somatostatin-containing interneurons. In contrast, interneurons containing neuropeptide Y, vasoactive intestinal peptide, or the 5-hydroxytryptamine (serotonin) 3a receptor, were silent. Our data demonstrate remarkable functional specificity in the interactions between different excitatory and inhibitory cortical neuronal subtypes, and suggest that it is the large recurrent interaction between pyramidal neurons and fast spiking interneurons that is responsible for the generation of persistent activity that characterizes the depolarized states of the cortex.

  12. [How xenon works: neuro and cardioprotection mechanisms].

    PubMed

    Morais, Ricardo; Andrade, Luísa; Lourenço, André; Tavares, Jorge

    2014-01-01

    The Xenon, a noble gas, has anesthetics properties, associated with remarkable hemodynamic stability as well as cardioprotective, neuroprotective proprieties. Its physicochemical characteristics give him a quick induction and emergence of anesthesia, being free of deleterious effects in all organs and showing no teratogenicity. Such properties have led to a growing interest in improving the knowledge about this noble gas, in order to assess the mechanisms of neuro and cardioprotection induced and to assess the clinical indications for its use. Qualitative review of clinical trials on anesthesia with xenon. Studies were identified from MEDLINE and by hand-searching, using the following keywords: xenon, xenon anestesia, xenon neuroprotection, xenon cradioprotection. After several studies, including two randomized multicenter controlled trials, the use of xenon as an anesthetic in patients ASA I-II was approved in March 2007. However his use in clinical practice has been strongly limited by it's high price. It seems unlikely that the advantages it offers in relation to other anesthetics justify it's use in patients ASA I-II. Although, xenon may be a valuable asset in the reduction of co-morbilities and mortality in anesthesia of patients ASA III-IV, unfortunately, there are no large randomized control studies to prove it. Unfortunately, there are still no randomized or multicentric studies showing a favourable cost-benefit profile of xenon in ASA III-IV patients vs. other anaesthetics. The usefulness of xenon in Anesthesiology requires more studies to be defined.

  13. High-Rydberg Xenon Submillimeter-Wave Detector

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara

    1987-01-01

    Proposed detector for infrared and submillimeter-wavelength radiation uses excited xenon atoms as Rydberg sensors instead of customary beams of sodium, potassium, or cesium. Chemically inert xenon easily stored in pressurized containers, whereas beams of dangerously reactive alkali metals must be generated in cumbersome, unreliable ovens. Xenon-based detector potential for infrared astronomy and for Earth-orbiter detection of terrestrial radiation sources. Xenon atoms excited to high energy states in two stages. Doubly excited atoms sensitive to photons in submillimeter wavelength range, further excited by these photons, then ionized and counted.

  14. The interdependence of excitation and inhibition for the control of dynamic breathing rhythms.

    PubMed

    Baertsch, Nathan Andrew; Baertsch, Hans Christopher; Ramirez, Jan Marino

    2018-02-26

    The preBötzinger Complex (preBötC), a medullary network critical for breathing, relies on excitatory interneurons to generate the inspiratory rhythm. Yet, half of preBötC neurons are inhibitory, and the role of inhibition in rhythmogenesis remains controversial. Using optogenetics and electrophysiology in vitro and in vivo, we demonstrate that the intrinsic excitability of excitatory neurons is reduced following large depolarizing inspiratory bursts. This refractory period limits the preBötC to very slow breathing frequencies. Inhibition integrated within the network is required to prevent overexcitation of preBötC neurons, thereby regulating the refractory period and allowing rapid breathing. In vivo, sensory feedback inhibition also regulates the refractory period, and in slowly breathing mice with sensory feedback removed, activity of inhibitory, but not excitatory, neurons restores breathing to physiological frequencies. We conclude that excitation and inhibition are interdependent for the breathing rhythm, because inhibition permits physiological preBötC bursting by controlling refractory properties of excitatory neurons.

  15. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The sample cell at the heart of CVX-2 will sit inside a thermostat providing three layers of insulation. The cell itself comprises a copper body that conducts heat efficiently and smoothes out thermal variations that that would destroy the xenon's uniformity. Inside the cell, the oscillating screen viscometer element is supported between two pairs of electrodes that deflect the screen and then measure screen motion.

  16. On the behavior of solutions of xenon in liquid n-alkanes: solubility of xenon in n-pentane and n-hexane.

    PubMed

    Bonifácio, Rui P M F; Martins, Luís F G; McCabe, Clare; Filipe, Eduardo J M

    2010-12-09

    The solubility of xenon in liquid n-pentane and n-hexane has been studied experimentally, theoretically, and by computer simulation. Measurements of the solubility are reported for xenon + n-pentane as a function of temperature from 254 to 305 K. The uncertainty in the experimental data is less than 0.15%. The thermodynamic functions of solvation such as the standard Gibbs energy, enthalpy, and entropy of solvation have been calculated from Henry's law coefficients for xenon + n-pentane solutions and also for xenon + n-hexane, which were reported in previous work. The results provide a further example of the similarity between the xenon + n-alkane interaction and the n-alkane + n-alkane interactions. Using the SAFT-VR approach we were able to quantitatively predict the experimental solubility for xenon in n-pentane and semiquantitatively that of xenon in n-hexane using simple Lorentz-Berthelot combining rules to describe the unlikely interaction. Henry's constants at infinite dilution for xenon + n-pentane and xenon + n-hexane were also calculated by Monte Carlo simulation using a united atom force field to describe the n-alkane and the Widom test particle insertion method.

  17. Anticonvulsant effect of xenon on neonatal asphyxial seizures.

    PubMed

    Azzopardi, Denis; Robertson, Nicola J; Kapetanakis, Andrew; Griffiths, James; Rennie, Janet M; Mathieson, Sean R; Edwards, A David

    2013-09-01

    Xenon, a monoatomic gas with very high tissue solubility, is a non-competitive inhibitor of N-methyl-D-aspartate (NMDA) glutamate receptor, has antiapoptotic effects and is neuroprotective following hypoxic ischaemic injury in animals. Xenon may be expected to have anticonvulsant effects through glutamate receptor blockade, but this has not previously been demonstrated clinically. We examined seizure activity on the real time and amplitude integrated EEG records of 14 full-term infants with perinatal asphyxial encephalopathy treated within 12 h of birth with 30% inhaled xenon for 24 h combined with 72 h of moderate systemic hypothermia. Seizures were identified on 5 of 14 infants. Seizures stopped during xenon therapy but recurred within a few minutes of withdrawing xenon and stopped again after xenon was restarted. Our data show that subanaesthetic levels of xenon may have an anticonvulsant effect. Inhaled xenon may be a valuable new therapy in this hard-to-treat population.

  18. P-type Ca2+ channels mediate excitatory and inhibitory synaptic transmitter release in crayfish muscle.

    PubMed

    Araque, A; Clarac, F; Buño, W

    1994-05-10

    The toxin fraction (FTX) and peptide omega-Aga-IVA from the venom of the funnel-web spider Agelenopsis aperta, as well as a synthetic analogue of FTX, specifically block the P-type voltage-dependent Ca2+ channel (VDCC). The effects of these toxins on synaptic transmission were studied in the neuromuscular synapses of the crayfish opener muscle, which has a single excitatory and a single inhibitory motoneuron. FTX selectively and reversibly blocked excitatory and inhibitory postsynaptic currents and potentials in a dose-dependent manner. FTX had no effect on (i) resting and postsynaptic membrane conductance, (ii) postsynaptic L-type VDCC, and (iii) both glutamate- and gamma-aminobutyric acid-induced postsynaptic responses. Mean amplitude and frequency of miniature postsynaptic potentials were unchanged by FTX. The postsynaptic VDCC was inhibited by nifedipine, a selective dihydropyridine antagonist of L-type VDCC, whereas synaptic transmission was unaffected. Transmission was also undisturbed by omega-conotoxin, suggesting that N-type VDCCs are not involved. The peptide omega-Aga-IVA blocked excitatory and inhibitory transmission without affecting postsynaptic VDCC. Synaptic transmission was also blocked by synthetic FTX. We conclude that presynaptic P-type VDCCs are involved in both evoked excitatory and inhibitory transmitter release in crayfish neuromuscular synapses.

  19. P-type Ca2+ channels mediate excitatory and inhibitory synaptic transmitter release in crayfish muscle.

    PubMed Central

    Araque, A; Clarac, F; Buño, W

    1994-01-01

    The toxin fraction (FTX) and peptide omega-Aga-IVA from the venom of the funnel-web spider Agelenopsis aperta, as well as a synthetic analogue of FTX, specifically block the P-type voltage-dependent Ca2+ channel (VDCC). The effects of these toxins on synaptic transmission were studied in the neuromuscular synapses of the crayfish opener muscle, which has a single excitatory and a single inhibitory motoneuron. FTX selectively and reversibly blocked excitatory and inhibitory postsynaptic currents and potentials in a dose-dependent manner. FTX had no effect on (i) resting and postsynaptic membrane conductance, (ii) postsynaptic L-type VDCC, and (iii) both glutamate- and gamma-aminobutyric acid-induced postsynaptic responses. Mean amplitude and frequency of miniature postsynaptic potentials were unchanged by FTX. The postsynaptic VDCC was inhibited by nifedipine, a selective dihydropyridine antagonist of L-type VDCC, whereas synaptic transmission was unaffected. Transmission was also undisturbed by omega-conotoxin, suggesting that N-type VDCCs are not involved. The peptide omega-Aga-IVA blocked excitatory and inhibitory transmission without affecting postsynaptic VDCC. Synaptic transmission was also blocked by synthetic FTX. We conclude that presynaptic P-type VDCCs are involved in both evoked excitatory and inhibitory transmitter release in crayfish neuromuscular synapses. Images PMID:7910404

  20. [Xenon: From rare gaz to doping product].

    PubMed

    Tassel, Camille; Le Daré, Brendan; Morel, Isabelle; Gicquel, Thomas

    2016-04-01

    Doping is defined as the use of processes or substances to artificially increase physical or mental performance. Xenon is a noble gas used as an anesthetic and recently as a doping agent. Xenon is neuroprotective as an antagonist of NMDA glutamate receptors. Xenon stimulates the synthesis of erythropoietin (EPO) by increase of hypoxia inducible factor (HIF). Xenon would be a new doping product, maintaining doping methods ahead of detection. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Differential Modulation of Excitatory and Inhibitory Neurons during Periodic Stimulation

    PubMed Central

    Mahmud, Mufti; Vassanelli, Stefano

    2016-01-01

    Non-invasive transcranial neuronal stimulation, in addition to deep brain stimulation, is seen as a promising therapeutic and diagnostic approach for an increasing number of neurological diseases such as epilepsy, cluster headaches, depression, specific type of blindness, and other central nervous system disfunctions. Improving its effectiveness and widening its range of use may strongly rely on development of proper stimulation protocols that are tailored to specific brain circuits and that are based on a deep knowledge of different neuron types response to stimulation. To this aim, we have performed a simulation study on the behavior of excitatory and inhibitory neurons subject to sinusoidal stimulation. Due to the intrinsic difference in membrane conductance properties of excitatory and inhibitory neurons, we show that their firing is differentially modulated by the wave parameters. We analyzed the behavior of the two neuronal types for a broad range of stimulus frequency and amplitude and demonstrated that, within a small-world network prototype, parameters tuning allow for a selective enhancement or suppression of the excitation/inhibition ratio. PMID:26941602

  2. Excitatory amino acid receptors and disease.

    PubMed

    Meldrum, B S

    1992-08-01

    Recent advances in the molecular biology of excitatory amino acid receptors are reviewed. Evidence that drugs blocking the excitatory action of glutamate at the N-methyl-D-aspartate (NMDA) and non-NMDA receptors may be of clinical use in epilepsy, Parkinson's disease, cerebral ischaemia and trauma, acquired immune deficiency syndrome (AIDS) encephalopathy and neuropathic pain is summarized.

  3. Xenon lighting adjusted to plant requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koefferlein, M.; Doehring, T.; Payer, H.D.

    1994-12-31

    The high luminous flux and spectral properties of xenon lamps would provide an ideal luminary for plant lighting if not excess IR radiation poses several problems for an application: the required filter systems reduce the irradiance at spectral regions of particular importance for plant development. Most of the economical drawbacks of xenon lamps are related to the difficult handling of that excess IR energy. Furthermore, the temporal variation of the xenon output depending on the oscillations of the applied AC voltage has to be considered for the plant development. However, xenon lamps outperform other lighting systems with respect to spectralmore » stability, immediate response, and maximum luminance. Therefore, despite considerable competition by other lighting techniques, xenon lamps provide a very useful tool for special purposes. In plant lighting however, they seem to play a less important role as other lamp and lighting developments can meet these particular requirements at lower costs.« less

  4. Xenon Feed System Progress (Postprint)

    DTIC Science & Technology

    2006-06-13

    development, assembly and test of an electric propulsion xenon feed system for a flight technology demonstration program. Major accomplishments...pressure transducer feedback, the PFCV has successfully fed xenon to a 200 watt Hall Effect Thruster in a Technology Demonstration Program. The feed

  5. [Cholinergic nature of hypothalamo-cortical excitatory effects].

    PubMed

    Kozhechkin, S N

    1982-05-01

    Excitatory effect of electric stimulation of the ventro-caudal area of the lateral hypothalamus on the neurons of the rabbit optic cortex was seen mainly in the cells whose activity increased under the influence of acetylcholine applied microiontophoretically. Meanwhile atropine applied microiontophoretically decreased or completely blocked the hypothalamic excitatory effect as well as that of acetylcholine. Atropine did not change the depressing influence of the rostral region of the lateral hypothalamus on the neuronal cortical activity. It is concluded that the hypothalamo-cortical excitatory relationships are M-cholinergic in nature.

  6. Excitatory Hindbrain–Forebrain Communication Is Required for Cisplatin-Induced Anorexia and Weight Loss

    PubMed Central

    Alhadeff, Amber L.; Holland, Ruby A.; Zheng, Huiyuan; Rinaman, Linda; Grill, Harvey J.

    2017-01-01

    Cisplatin chemotherapy is commonly used to treat cancer despite severe energy balance side effects. In rats, cisplatin activates nucleus tractus solitarius (NTS) projections to the lateral parabrachial nucleus (lPBN) and calcitonin-gene related peptide (CGRP) projections from the lPBN to the central nucleus of the amygdala (CeA). We demonstrated previously that CeA glutamate receptor signaling mediates cisplatin-induced anorexia and body weight loss. Here, we used neuroanatomical tracing, immunofluorescence, and confocal imaging to demonstrate that virtually all NTS→lPBN and lPBN→CeA CGRP projections coexpress vesicular glutamate transporter 2 (VGLUT2), providing evidence that excitatory projections mediate cisplatin-induced energy balance dysregulation. To test whether lPBN→CeA projection neurons are required for cisplatin-induced anorexia and weight loss, we inhibited these neurons chemogenetically using a retrograde Cre-recombinase-expressing canine adenovirus-2 in combination with Cre-dependent inhibitory Designer Receptors Exclusive Activated by Designer Drugs (DREADDs) before cisplatin treatment. Inhibition of lPBN→CeA neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Using a similar approach, we additionally demonstrated that inhibition of NTS→lPBN neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Together, our data support the view that excitatory hindbrain–forebrain projections are necessary for cisplatin's untoward effects on energy intake, elucidating a key neuroanatomical circuit driving pathological anorexia and weight loss that accompanies chemotherapy treatment. SIGNIFICANCE STATEMENT Chemotherapy treatments are commonly used to treat cancers despite accompanying anorexia and weight loss that may limit treatment adherence and reduce patient quality of life. Strikingly, we lack a neural understanding of, and effective treatments for, chemotherapy-induced anorexia and weight

  7. Seizures as imbalanced up states: excitatory and inhibitory conductances during seizure-like events

    PubMed Central

    Cressman, John R.; Schiff, Steven J.

    2013-01-01

    Precisely timed and dynamically balanced excitatory (E) and inhibitory (I) conductances underlie the basis of neural network activity. Normal E/I balance is often shifted in epilepsy, resulting in neuronal network hyperexcitability and recurrent seizures. However, dynamics of the actual excitatory and inhibitory synaptic conductances (ge and gi, respectively) during seizures remain unknown. To study the dynamics of E and I network balance, we calculated ge and gi during the initiation, body, and termination of seizure-like events (SLEs) in the rat hippocampus in vitro. Repetitive emergent SLEs in 4-aminopyridine (100 μM) and reduced extracellular magnesium (0.6 mM) were recorded in the identified CA1 pyramidal cells (PC) and oriens-lacunosum moleculare (O-LM) interneurons. Calculated ge/gi ratio dynamics showed that the initiation stage of the SLEs was dominated by inhibition in the PCs and was more balanced in the O-LM cells. During the body of the SLEs, the balance shifted toward excitation, with ge and gi peaking in both cell types at nearly the same time. In the termination phase, PCs were again dominated by inhibition, whereas O-LM cells experienced persistent excitatory synaptic barrage. In this way, increased excitability of interneurons may play roles in both seizure initiation (Žiburkus J, Cressman JR, Barreto E, Schiff SJ. J Neurophysiol 95: 3948–3954, 2006) and in their termination. Overall, SLE stages can be characterized in PC and O-LM cells by dynamically distinct changes in the balance of ge and gi, where a temporal sequence of imbalance shifts with the changing firing patterns of the cellular subtypes comprising the hyperexcitable microcircuits. PMID:23221405

  8. Excitatory Local Interneurons Enhance Tuning of Sensory Information

    PubMed Central

    Assisi, Collins; Stopfer, Mark; Bazhenov, Maxim

    2012-01-01

    Neurons in the insect antennal lobe represent odors as spatiotemporal patterns of activity that unfold over multiple time scales. As these patterns unspool they decrease the overlap between odor representations and thereby increase the ability of the olfactory system to discriminate odors. Using a realistic model of the insect antennal lobe we examined two competing components of this process –lateral excitation from local excitatory interneurons, and slow inhibition from local inhibitory interneurons. We found that lateral excitation amplified differences between representations of similar odors by recruiting projection neurons that did not receive direct input from olfactory receptors. However, this increased sensitivity also amplified noisy variations in input and compromised the ability of the system to respond reliably to multiple presentations of the same odor. Slow inhibition curtailed the spread of projection neuron activity and increased response reliability. These competing influences must be finely balanced in order to decorrelate odor representations. PMID:22807661

  9. The feasibility of using a portable xenon delivery device to permit earlier xenon ventilation with therapeutic cooling of neonates during ambulance retrieval.

    PubMed

    Dingley, John; Liu, Xun; Gill, Hannah; Smit, Elisa; Sabir, Hemmen; Tooley, James; Chakkarapani, Ela; Windsor, David; Thoresen, Marianne

    2015-06-01

    Therapeutic hypothermia is the standard of care after perinatal asphyxia. Preclinical studies show 50% xenon improves outcome, if started early. During a 32-patient study randomized between hypothermia only and hypothermia with xenon, 5 neonates were given xenon during retrieval using a closed-circuit incubator-mounted system. Without xenon availability during retrieval, 50% of eligible infants exceeded the 5-hour treatment window. With the transportable system, 100% were recruited. Xenon delivery lasted 55 to 120 minutes, using 174 mL/h (117.5-193.2) (median [interquartile range]), after circuit priming (1300 mL). Xenon delivery during ambulance retrieval was feasible, reduced starting delays, and used very little gas.

  10. Adsorption of xenon on vicinal copper and platinum surfaces

    NASA Astrophysics Data System (ADS)

    Baker, Layton

    The adsorption of xenon was studied on Cu(111), Cu(221), Cu(643) and on Pt(111), Pt(221), and Pt(531) using low energy electron diffraction (LEED), temperature programmed desorption (TPD) of xenon, and ultraviolet photoemission of adsorbed xenon (PAX). These experiments were performed to study the atomic and electronic structure of stepped and step-kinked, chiral metal surfaces. Xenon TPD and PAX were performed on each surface in an attempt to titrate terrace, step edge, and kink adsorption sites by adsorption energetics (TPD) and local work function differences (PAX). Due to the complex behavior of xenon on the vicinal copper and platinum metal surfaces, adsorption sites on these surfaces could not be adequately titrated by xenon TPD. On Cu(221) and Cu(643), xenon desorption from step adsorption sites was not apparent leading to the conclusion that the energy difference between terrace and step adsorption is minuscule. On Pt(221) and Pt(531), xenon TPD indicated that xenon prefers to bond at step edges and that the xenon-xenon interaction at step edges in repulsive but no further indication of step-kink adsorption was observed. The Pt(221) and Pt(531) TPD spectra indicated that the xenon overlayer undergoes strong compression near monolayer coverage on these surfaces due to repulsion between step-edge adsorbed xenon and other encroaching xenon atoms. The PAX experiments on the copper and platinum surfaces demonstrated that the step adsorption sites have lower local work functions than terrace adsorption sites and that higher step density leads to a larger separation in the local work function of terrace and step adsorption sites. The PAX spectra also indicated that, for all surfaces studied at 50--70 K, step adsorption is favored at low coverage but the step sites are not saturated until monolayer coverage is reached; this observation is due to the large entropy difference between terrace and step adsorption states and to repulsive interactions between xenon atoms

  11. Frequency tuning of synaptic inhibition underlying duration-tuned neurons in the mammalian inferior colliculus

    PubMed Central

    Valdizón-Rodríguez, Roberto

    2017-01-01

    Inhibition plays an important role in creating the temporal response properties of duration-tuned neurons (DTNs) in the mammalian inferior colliculus (IC). Neurophysiological and computational studies indicate that duration selectivity in the IC is created through the convergence of excitatory and inhibitory synaptic inputs offset in time. We used paired-tone stimulation and extracellular recording to measure the frequency tuning of the inhibition acting on DTNs in the IC of the big brown bat (Eptesicus fuscus). We stimulated DTNs with pairs of tones differing in duration, onset time, and frequency. The onset time of a short, best-duration (BD), probe tone set to the best excitatory frequency (BEF) was varied relative to the onset of a longer-duration, nonexcitatory (NE) tone whose frequency was varied. When the NE tone frequency was near or within the cell’s excitatory bandwidth (eBW), BD tone-evoked spikes were suppressed by an onset-evoked inhibition. The onset of the spike suppression was independent of stimulus frequency, but both the offset and duration of the suppression decreased as the NE tone frequency departed from the BEF. We measured the inhibitory frequency response area, best inhibitory frequency (BIF), and inhibitory bandwidth (iBW) of each cell. We found that the BIF closely matched the BEF, but the iBW was broader and usually overlapped the eBW measured from the same cell. These data suggest that temporal selectivity of midbrain DTNs is created and preserved by having cells receive an onset-evoked, constant-latency, broadband inhibition that largely overlaps the cell’s excitatory receptive field. We conclude by discussing possible neural sources of the inhibition. NEW & NOTEWORTHY Duration-tuned neurons (DTNs) arise from temporally offset excitatory and inhibitory synaptic inputs. We used single-unit recording and paired-tone stimulation to measure the spectral tuning of the inhibitory inputs to DTNs. The onset of inhibition was independent of

  12. Measuring xenon in human plasma and blood by gas chromatography/mass spectrometry.

    PubMed

    Thevis, Mario; Piper, Thomas; Geyer, Hans; Thomas, Andreas; Schaefer, Maximilian S; Kienbaum, Peter; Schänzer, Wilhelm

    2014-07-15

    Due to the favorable pharmacokinetic properties and minimal side effects of xenon, its use in modern anesthesia has been well accepted, and recent studies further demonstrated the intra- and postoperative neuro-, cardio-, and reno-protective action of the noble gas. Since the production of the hypoxia-inducible factor 1α (HIF-1α) and its downstream effector erythropoietin as well as noradrenalin reuptake inhibition have been found to play key roles in this context, the question arose as to whether the use of xenon is a matter for doping controls and preventive doping research. The aim of the present study was hence to evaluate whether the (ab)use of xenon can be detected from doping control samples with the instrumentation commonly available in sports drug testing laboratories. Plasma was saturated with xenon according to reported protocols, and the target analyte was measured by means of gas chromatography/time-of-flight and triple quadrupole mass spectrometry with headspace injection. Recording the accurate mass of three major xenon isotopes at m/z 128.9048, 130.9045 and 131.9042 allowed for the unequivocal identification of the analyte and the detection assay was characterized concerning limit of detection (LOD), intraday precision, and specificity as well as analyte recovery under different storage conditions. Xenon was detected in fortified plasma samples with detection limits of approximately 0.5 nmol/mL to 50 nmol/mL, depending on the type of mass spectrometer used. The method characteristics of intraday precision (coefficient of variation <20%) and specificity demonstrated the fitness-for-purpose of the analytical approach to unambiguously detect xenon at non-physiological concentrations in human plasma and blood. Eventually, authentic plasma and blood samples collected pre-, intra-, and post-operative (4, 8, and 24 h) were positively analyzed after storage for up to 30 h, and provided proof-of-concept for the developed assay. If relevant to

  13. Critical Viscosity of Xenon investigators

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Dr. Dr. Robert F. Berg (right), principal investigator and Dr. Micheal R. Moldover (left), co-investigator, for the Critical Viscosity of Xenon (CVX/CVX-2) experiment. They are with the National Institutes of Standards and Technology, Gaithersburg, MD. The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of chemicals.

  14. Functionalized xenon as a biosensor

    PubMed Central

    Spence, Megan M.; Rubin, Seth M.; Dimitrov, Ivan E.; Ruiz, E. Janette; Wemmer, David E.; Pines, Alexander; Yao, Shao Qin; Tian, Feng; Schultz, Peter G.

    2001-01-01

    The detection of biological molecules and their interactions is a significant component of modern biomedical research. In current biosensor technologies, simultaneous detection is limited to a small number of analytes by the spectral overlap of their signals. We have developed an NMR-based xenon biosensor that capitalizes on the enhanced signal-to-noise, spectral simplicity, and chemical-shift sensitivity of laser-polarized xenon to detect specific biomolecules at the level of tens of nanomoles. We present results using xenon “functionalized” by a biotin-modified supramolecular cage to detect biotin–avidin binding. This biosensor methodology can be extended to a multiplexing assay for multiple analytes. PMID:11535830

  15. Dynamics of excitatory and inhibitory networks are differentially altered by selective attention.

    PubMed

    Snyder, Adam C; Morais, Michael J; Smith, Matthew A

    2016-10-01

    Inhibition and excitation form two fundamental modes of neuronal interaction, yet we understand relatively little about their distinct roles in service of perceptual and cognitive processes. We developed a multidimensional waveform analysis to identify fast-spiking (putative inhibitory) and regular-spiking (putative excitatory) neurons in vivo and used this method to analyze how attention affects these two cell classes in visual area V4 of the extrastriate cortex of rhesus macaques. We found that putative inhibitory neurons had both greater increases in firing rate and decreases in correlated variability with attention compared with putative excitatory neurons. Moreover, the time course of attention effects for putative inhibitory neurons more closely tracked the temporal statistics of target probability in our task. Finally, the session-to-session variability in a behavioral measure of attention covaried with the magnitude of this effect. Together, these results suggest that selective targeting of inhibitory neurons and networks is a critical mechanism for attentional modulation. Copyright © 2016 the American Physiological Society.

  16. Dynamics of excitatory and inhibitory networks are differentially altered by selective attention

    PubMed Central

    Snyder, Adam C.; Morais, Michael J.

    2016-01-01

    Inhibition and excitation form two fundamental modes of neuronal interaction, yet we understand relatively little about their distinct roles in service of perceptual and cognitive processes. We developed a multidimensional waveform analysis to identify fast-spiking (putative inhibitory) and regular-spiking (putative excitatory) neurons in vivo and used this method to analyze how attention affects these two cell classes in visual area V4 of the extrastriate cortex of rhesus macaques. We found that putative inhibitory neurons had both greater increases in firing rate and decreases in correlated variability with attention compared with putative excitatory neurons. Moreover, the time course of attention effects for putative inhibitory neurons more closely tracked the temporal statistics of target probability in our task. Finally, the session-to-session variability in a behavioral measure of attention covaried with the magnitude of this effect. Together, these results suggest that selective targeting of inhibitory neurons and networks is a critical mechanism for attentional modulation. PMID:27466133

  17. Excitatory Amino Acids as Transmitters in the Brain

    DTIC Science & Technology

    1989-04-30

    Amino Acids as Transmitters in the Brain 12 PERSONAL AUTHOR(S) Cotman, C.W. 13a TYPE OF REPORT 1i3b TIME OYERED 14. DATE OF REPORT (Ye, Month, Day) 5s...necenearia i dentf by block number) FIEL.D GROUP SBGOP Excitatory receptors, excitatory amino acids , excitotoxicit N-methyl-D-aspartate, kainate...mediated by excitatory amino acids and their receptors. These receptors participate in both standard synaptic transmission as well as higher order

  18. Recovering Residual Xenon Propellant for an Ion Propulsion System

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani; Skakkottai, P.; wu, Jiunn Jeng

    2006-01-01

    Future nuclear-powered Ion-Propulsion- System-propelled spacecraft such as Jupiter Icy Moon Orbiter (JIMO) will carry more than 10,000 kg of xenon propellant. Typically, a small percentage of this propellant cannot be used towards the end of the mission because of the pressure drop requirements for maintaining flow. For large missions such as JIMO, this could easily translate to over 250 kg of unusable xenon. A proposed system, the Xenon Recovery System (XRS), for recovering almost all of the xenon remaining in the tank, would include a cryopump in the form of a condenser/evaporator that would be alternatively cooled by a radiator, then heated electrically. When the pressure of the xenon in the tank falls below 0.7 MPa (100 psia), the previously isolated XRS will be brought online and the gas from the tank would enter the cryopump that is initially cooled to a temperature below saturation temperature of xenon. This causes xenon liquefaction and further cryopumping from the tank till the cryopump is full of liquid xenon. At this point, the cryopump is heated electrically by small heaters (70 to 80 W) to evaporate the liquid that is collected as high-pressure gas (<7 MPa; 1,000 psia) in an intermediate accumulator. Check valves between the tank and the XRS prevent the reverse flow of xenon during the heating cycle. The accumulator serves as the high-pressure source of xenon gas to the Xenon Feed System (XFS) downstream of the XRS. This cycle is repeated till almost all the xenon is recovered. Currently, this system is being baselined for JIMO.

  19. Measuring and Modeling Xenon Uptake in Plastic Beta-Cells

    NASA Astrophysics Data System (ADS)

    Suarez, R.; Hayes, J. C.; Harper, W. W.; Humble, P.; Ripplinger, M. D.; Stephenson, D. E.; Williams, R. M.

    2013-12-01

    The precision of the stable xenon volume measurement in atmospheric monitoring radio-xenon systems is a critical parameter used to determine the activity concentration of a radio-xenon sample. Typically these types of systems use a plastic scintillating beta-cell as part of a beta-gamma detection scheme to measure the radioactivity present in the gas sample. Challenges arise when performing the stable xenon calculation during or after radioactive counting of the sample due to xenon uptake into the plastic beta-cells. Plastic beta cells can adsorb as much as 5% of the sample during counting. If quantification is performed after counting, the uptake of xenon into the plastic results in an underestimation of the xenon volume measurement. This behavior also causes what is typically known as 'memory effect' in the cell. Experiments were conducted using a small volume low pressure range thermal conductivity sensor to quantify the amount of xenon uptake into the cell over a given period of time. Understanding the xenon uptake in the cell provides a better estimate of the stable volume which improves the overall measurement capability of the system. The results from these experiments along with modeling will be presented.

  20. Anticipatory control of xenon in a pressurized water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Impink, A.J. Jr.

    1987-02-10

    A method is described for automatically dampening xenon-135 spatial transients in the core of a pressurized water reactor having control rods which regulate reactor power level, comprising the steps of: measuring the neutron flu in the reactor core at a plurality of axially spaced locations on a real-time, on-line basis; repetitively generating from the neutron flux measurements, on a point-by-point basis, signals representative of the current axial distribution of xenon-135, and signals representative of the current rate of change of the axial distribution of xenon-135; generating from the xenon-135 distribution signals and the rate of change of xenon distribution signals,more » control signals for reducing the xenon transients; and positioning the control rods as a function of the control signals to dampen the xenon-135 spatial transients.« less

  1. Astrocytic GABA transporter activity modulates excitatory neurotransmission

    PubMed Central

    Boddum, Kim; Jensen, Thomas P.; Magloire, Vincent; Kristiansen, Uffe; Rusakov, Dmitri A.; Pavlov, Ivan; Walker, Matthew C.

    2016-01-01

    Astrocytes are ideally placed to detect and respond to network activity. They express ionotropic and metabotropic receptors, and can release gliotransmitters. Astrocytes also express transporters that regulate the extracellular concentration of neurotransmitters. Here we report a previously unrecognized role for the astrocytic GABA transporter, GAT-3. GAT-3 activity results in a rise in astrocytic Na+ concentrations and a consequent increase in astrocytic Ca2+ through Na+/Ca2+ exchange. This leads to the release of ATP/adenosine by astrocytes, which then diffusely inhibits neuronal glutamate release via activation of presynaptic adenosine receptors. Through this mechanism, increases in astrocytic GAT-3 activity due to GABA released from interneurons contribute to 'diffuse' heterosynaptic depression. This provides a mechanism for homeostatic regulation of excitatory transmission in the hippocampus. PMID:27886179

  2. The XENON1T dark matter experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Antunes, B.; Arneodo, F.; Balata, M.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breskin, A.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Chiarini, A.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Corrieri, R.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Gangi, P. Di; Giovanni, A. Di; Diglio, S.; Disdier, J.-M.; Doets, M.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Front, D.; Fulgione, W.; Rosso, A. Gallo; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Giboni, K.-L.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Huhmann, C.; Itay, R.; James, A.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Maier, R.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morå, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orlandi, D.; Othegraven, R.; Pakarha, P.; Parlati, S.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; García, D. Ramírez; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Santos, J. M. F. dos; Saldanha, R.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stern, M.; Stein, A.; Tatananni, D.; Tatananni, L.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Vargas, M.; Wack, O.; Walet, R.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.

    2017-12-01

    The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented.

  3. Relationship between physiological excitatory and inhibitory measures of excitability in the left vs. right human motor cortex and peripheral electrodermal activity.

    PubMed

    Bracco, Martina; Turriziani, Patrizia; Smirni, Daniela; Mangano, Renata Giuseppa; Oliveri, Massimiliano

    2017-02-22

    The current study was aimed at investigating the relationships of excitatory and inhibitory circuits of the left vs. right primary motor cortex with peripheral electrodermal activity (EDA). Ten healthy subjects participated in two experimental sessions. In each session, EDA was recorded for 10min from the palmar surface of the left hand. Immediately after EDA recording, Transcranial Magnetic Stimulation (TMS) was used to probe excitatory and inhibitory circuits of the left or right primary motor cortex using two protocols of stimulation: the input-output curve for recording of motor evoked potentials, for testing excitatory circuits; the long-interval cortical inhibition (LICI) protocol, for testing inhibitory circuits. In both cases, motor evoked potentials were recorded with surface electrodes from a contralateral hand muscle. The main results showed that in the right motor cortex, excitatory circuits directly correlate and inhibitory circuits inversely correlate with sympathetic activation. In the left motor cortex, both excitatory and inhibitory circuits are inversely correlated with sympathetic activation. These findings may suggest a bi-hemispheric mode of control of vegetative system by motor cortices, with the right hemisphere mainly involved in sympathetic control. Copyright © 2017. Published by Elsevier B.V.

  4. Hyperpolarized xenon magnetic resonance of the lung and the brain

    NASA Astrophysics Data System (ADS)

    Venkatesh, Arvind Krishnamachari

    2001-04-01

    Hyperpolarized noble gas Magnetic Resonance Imaging (MRI) is a new diagnostic modality that has been used successfully for lung imaging. Xenon is soluble in blood and inhaled xenon is transported to the brain via circulating blood. Xenon also accumulates in the lipid rich white matter of the brain. Hyperpolarized xenon can hence be used as a tissue- sensitive probe of brain function. The goals of this study were to identify the NMR resonances of xenon in the rat brain and evaluate the role of hyperpolarized xenon for brain MRI. We have developed systems to produce sufficient volumes of hyperpolarized xenon for in vivo brain experiments. The specialized instrumentation developed include an apparatus for optical pump-cell manufacture and high purity gas manifolds for filling cells. A hyperpolarized gas delivery system was designed to ventilate small animals with hyperpolarized xenon for transport to the brain. The T1 of xenon dissolved in blood indicates that the lifetime of xenon in the blood is sufficient for significant magnetization to be transferred to distal tissues. A variety of carrier agents for intravenous delivery of hyperpolarized xenon were tested for transport to distal tissues. Using our new gas delivery system, high SNR 129Xe images of rat lungs were obtained. Spectroscopy with hyperpolarized xenon indicated that xenon was transported from the lungs to the blood and tissues with intact magnetization. After preliminary studies that indicated the feasibility for in vivo rat brain studies, experiments were performed with adult rats and young rats with different stages of white matter development. Both in vivo and in vitro experiments showed the prominence of one peak from xenon in the rat brain, which was assigned to brain lipids. Cerebral brain perfusion was calculated from the wash-out of the hyperpolarized xenon signal in the brain. An increase in brain perfusion during maturation was observed. These experiments showed that hyperpolarized xenon MRI

  5. Chromatographic separation of radioactive noble gases from xenon

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.

    2018-01-01

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85Kr and 39Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.

  6. Chromatographic separation of radioactive noble gases from xenon

    DOE PAGES

    Akerib, DS; Araújo, HM; Bai, X; ...

    2017-10-31

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopesmore » $$^{85}$$Kr and $$^{39}$$Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search exmperiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.« less

  7. Method for the simultaneous preparation of Radon-211, Xenon-125, Xenon-123, Astatine-211, Iodine-125 and Iodine-123

    DOEpatents

    Mirzadeh, Saed; Lambrecht, Richard M.

    1987-01-01

    A method for simultaneously preparing Radon-211, Astatine-211, Xenon-125, Xenon-123, Iodine-125 and Iodine-123 in a process that includes irradiating a fertile metal material then using a one-step chemical procedure to collect a first mixture of about equal amounts of Radon-211 and Xenon-125, and a separate second mixture of about equal amounts of Iodine-123 and Astatine-211.

  8. The atmosphere of Mars: detection of krypton and xenon.

    PubMed

    Owen, T; Biemann, K; Rushneck, D R; Biller, J E; Howarth, D W; Lafleur, A L

    1976-12-11

    Krypton and xenon have been discovered in the martian atmosphere with the mass spectrometer on the second Viking lander. Krypton is more abundant than xenon. The relative abundances of the krypton isotopes appear normal, but the ratio of xenon-129 to xenon-132 is enhanced on Mars relative to the terrestrial value for this ratio. Some possible implications of these findings are discussed.

  9. Solid Xenon Project

    NASA Astrophysics Data System (ADS)

    Balakishiyeva, Durdana N.; Mahapatra, Rupak; Saab, Tarek; Yoo, Jonghee

    2010-08-01

    Crystals like Germanium and Silicon need to be grown in specialized facilities which is time and money costly. It takes many runs to test the detector once it's manufactured and mishaps are very probable. It is of a great challenge to grow big germanium crystals and that's why stacking them up in a tower is the only way at the moment to increase testing mass. Liquid Noble gas experiments experiencing contamination problems, their predicted energy resolution at 10 keV and lower energy range is not as good as predicted. Every experiment is targeting one specific purpose, looking for one thing. Why not to design an experiment that is diverse and build a detector that can search for Dark Matter, Solar Axions, Neutrinoless Double Beta decay, etc. Solid Xenon detector is such detector. We designed a simple Xenon crystal growing chamber that was put together at Fermi National Accelerator Laboratory. The first phase of this experiment was to demonstrate that a good, crack free Xenon crystal can be grown (regardless of many failed attempts by various groups) and our first goal, 1 kg crystal, was successful.

  10. Cortical inhibitory and excitatory function in drug-naive generalized anxiety disorder.

    PubMed

    Li, Cheng-Ta; Lu, Chia-Feng; Lin, Hui-Ching; Huang, Ying-Zu; Juan, Chi-Hung; Su, Tung-Ping; Bai, Ya-Mei; Chen, Mu-Hong; Lin, Wei-Chen

    A growing body of evidence suggests that deficits in GABAergic inhibitory and glutamatergic excitatory neurotransmission may be involved in the core pathophysiology of generalized anxiety disorder (GAD), a disease characterized by pathological anxious worrying. The aim of the present study was to measure motor cortical excitability by paired-pulse transcranial magnetic stimulation (ppTMS) in patients with GAD. ppTMS measurements of excitation and inhibition from bilateral motor cortices were investigated in 26 right-handed GAD patients who were drug-naïve (half of them with a comorbidity of major depressive disorder) and 35 right-handed age- and sex-matched healthy controls. Short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), and long-interval intracortical inhibition (LICI) were studied; evidence indicated that these are mainly mediated by GABA-A receptors, glutamate receptors, and GABA-B receptors, respectively. After correcting for multiple comparisons, GAD patients had significantly lower left ICF (p < 0.001, Cohen's d = 1.348) and right ICF (p = 0.001, Cohen's d = 0.963), but not SICI and LICI, than did healthy controls. No significant difference of the ICF values was found between GAD with and without depressive disorders. Multivariate linear regression analysis revealed that left ICF (B = -4.990, 95% CI = -8.821 to -1.039, p = 0.007) and group (B = 13.179, 95% CI = 10.208 to 16.149, p = 0.001) predicted anxiety symptoms significantly. The present study provided direct evidence to support that generalized anxiety disorder is characterized by impaired intra-cortical facilitation of motor cortex, suggesting glutamate-related excitatory dysfunction may play a key role in pathological anxiety. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Radon depletion in xenon boil-off gas

    NASA Astrophysics Data System (ADS)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T. Marrodán; Simgen, H.

    2017-03-01

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of ^{222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of ≳ 4 for the ^{222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α -detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10^{-15} mol/mol level.

  12. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Shear thirning will cause a normally viscous fluid -- such as pie filling or whipped cream -- to deform and flow more readily under high shear conditions. In shear thinning, a pocket of fluid will deform and move one edge forward, as depicted here.

  13. Urine analysis concerning xenon for doping control purposes.

    PubMed

    Thevis, Mario; Piper, Thomas; Geyer, Hans; Schaefer, Maximilian S; Schneemann, Julia; Kienbaum, Peter; Schänzer, Wilhelm

    2015-01-15

    On September 1(st) 2014, a modified Prohibited List as established by the World Anti-Doping Agency (WADA) became effective featuring xenon as a banned substance categorized as hypoxia-inducible factor (HIF) activator. Consequently, the analysis of xenon from commonly provided doping control specimens such as blood and urine is desirable, and first data on the determination of xenon from urine in the context of human sports drug testing, are presented. In accordance to earlier studies utilizing plasma as doping control matrix, urine was enriched to saturation with xenon, sequentially diluted, and the target analyte was detected as supported by the internal standard d6 -cyclohexanone by means of gas chromatography/triple quadrupole mass spectrometry (GC/MS/MS) using headspace injection. Three major xenon isotopes at m/z 128.9, 130.9 and 131.9 were targeted in (pseudo) selected reaction monitoring mode enabling the unambiguous identification of the prohibited substance. Assay characteristics including limit of detection (LOD), intraday/interday precision, and specificity as well as analyte recovery under different storage conditions were determined. Proof-of-concept data were generated by applying the established method to urine samples collected from five patients before, during and after (up to 48 h) xenon-based general anesthesia. Xenon was traceable in enriched human urine samples down to the detection limit of approximately 0.5 nmol/mL. The intraday and interday imprecision values of the method were found below 25%, and specificity was demonstrated by analyzing 20 different blank urine samples that corroborated the fitness-for-purpose of the analytical approach to unequivocally detect xenon at non-physiological concentrations in human urine. The patients' urine specimens returned 'xenon-positive' test results up to 40 h post-anesthesia, indicating the limits of the expected doping control detection window. Since xenon has been considered a prohibited substance

  14. Parallel prefrontal pathways reach distinct excitatory and inhibitory systems in memory-related rhinal cortices.

    PubMed

    Bunce, Jamie G; Zikopoulos, Basilis; Feinberg, Marcia; Barbas, Helen

    2013-12-15

    To investigate how prefrontal cortices impinge on medial temporal cortices we labeled pathways from the anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) in rhesus monkeys to compare their relationship with excitatory and inhibitory systems in rhinal cortices. The ACC pathway terminated mostly in areas 28 and 35 with a high proportion of large terminals, whereas the pOFC pathway terminated mostly through small terminals in area 36 and sparsely in areas 28 and 35. Both pathways terminated in all layers. Simultaneous labeling of pathways and distinct neurochemical classes of inhibitory neurons, followed by analyses of appositions of presynaptic and postsynaptic fluorescent signal, or synapses, showed overall predominant association with spines of putative excitatory neurons, but also significant interactions with presumed inhibitory neurons labeled for calretinin, calbindin, or parvalbumin. In the upper layers of areas 28 and 35 the ACC pathway was associated with dendrites of neurons labeled with calretinin, which are thought to disinhibit neighboring excitatory neurons, suggesting facilitated hippocampal access. In contrast, in area 36 pOFC axons were associated with dendrites of calbindin neurons, which are poised to reduce noise and enhance signal. In the deep layers, both pathways innervated mostly dendrites of parvalbumin neurons, which strongly inhibit neighboring excitatory neurons, suggesting gating of hippocampal output to other cortices. These findings suggest that the ACC, associated with attention and context, and the pOFC, associated with emotional valuation, have distinct contributions to memory in rhinal cortices, in processes that are disrupted in psychiatric diseases. Copyright © 2013 Wiley Periodicals, Inc.

  15. Transdermal diffusion of xenon in vitro using diffusion cells

    NASA Astrophysics Data System (ADS)

    Verkhovsky, A.; Petrov, E.

    2015-11-01

    The aim of this research was to study the diffusion rate of xenon through guinea pig skin and how viscosity of cosmetic component capryl/capric triglyceride (CCT) facilitates to deliver xenon to surface of skin patches. They were placed in Franz cell for 24 hours and diffusion rate and permeability of xenon were calculated. Thus diffusion rate was 0.031 mg/hour*cm2 and permeability was 0.003 cm/hour. Using Brookfield viscometer it was shown that viscosity of CCT decreased upon increasing xenon concentration. Obtained results can be utilized in developing of new xenon containing drugs for topical administration.

  16. Excitatory Hindbrain-Forebrain Communication Is Required for Cisplatin-Induced Anorexia and Weight Loss.

    PubMed

    Alhadeff, Amber L; Holland, Ruby A; Zheng, Huiyuan; Rinaman, Linda; Grill, Harvey J; De Jonghe, Bart C

    2017-01-11

    Cisplatin chemotherapy is commonly used to treat cancer despite severe energy balance side effects. In rats, cisplatin activates nucleus tractus solitarius (NTS) projections to the lateral parabrachial nucleus (lPBN) and calcitonin-gene related peptide (CGRP) projections from the lPBN to the central nucleus of the amygdala (CeA). We demonstrated previously that CeA glutamate receptor signaling mediates cisplatin-induced anorexia and body weight loss. Here, we used neuroanatomical tracing, immunofluorescence, and confocal imaging to demonstrate that virtually all NTS→lPBN and lPBN→CeA CGRP projections coexpress vesicular glutamate transporter 2 (VGLUT2), providing evidence that excitatory projections mediate cisplatin-induced energy balance dysregulation. To test whether lPBN→CeA projection neurons are required for cisplatin-induced anorexia and weight loss, we inhibited these neurons chemogenetically using a retrograde Cre-recombinase-expressing canine adenovirus-2 in combination with Cre-dependent inhibitory Designer Receptors Exclusive Activated by Designer Drugs (DREADDs) before cisplatin treatment. Inhibition of lPBN→CeA neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Using a similar approach, we additionally demonstrated that inhibition of NTS→lPBN neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Together, our data support the view that excitatory hindbrain-forebrain projections are necessary for cisplatin's untoward effects on energy intake, elucidating a key neuroanatomical circuit driving pathological anorexia and weight loss that accompanies chemotherapy treatment. Chemotherapy treatments are commonly used to treat cancers despite accompanying anorexia and weight loss that may limit treatment adherence and reduce patient quality of life. Strikingly, we lack a neural understanding of, and effective treatments for, chemotherapy-induced anorexia and weight loss. The current data

  17. Xenon migration behaviour in titanium nitride

    NASA Astrophysics Data System (ADS)

    Gavarini, S.; Toulhoat, N.; Peaucelle, C.; Martin, P.; Mende, J.; Pipon, Y.; Jaffrezic, H.

    2007-05-01

    Titanium nitride is one of the inert matrixes proposed to surround the fuel in gas cooled fast reactor (GFR) systems. These reactors operate at high temperature and necessitate refractory materials presenting a high chemical stability and good mechanical properties. A total retention of the most volatile fission products, such as Xe, I or Cs, by the inert matrix is needed during the in pile process. The thermal migration of xenon in TiN was studied by implanting 800 keV Xe++ ions in sintered samples at an ion fluence of 5 × 1015 cm-2. Annealing was performed at temperatures ranging from 1673 to 1923 K for 1 and 3 h. Xenon concentration profiles were studied by Rutherford backscattering spectrometry (RBS) using 2.5 MeV α-particles. The migration behaviour of xenon corresponds to a gas migration model. It is dominated by a surface directed transport with a slight diffusion component. The mean activation energy corresponding to the diffusion component was found to be 2.2 ± 0.3 eV and corresponds to the Brownian motion of xenon bubbles. The directed Xe migration can be interpreted in term of bubble transport using Evans model. This last process is mostly responsible for xenon release from TiN.

  18. Electron drift in a large scale solid xenon

    DOE PAGES

    Yoo, J.; Jaskierny, W. F.

    2015-08-21

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor twomore » faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.« less

  19. Neuropeptide Y and peptide YY inhibit excitatory synaptic transmission in the rat dorsal motor nucleus of the vagus

    PubMed Central

    Browning, Kirsteen N; Travagli, R Alberto

    2003-01-01

    Pancreatic polypeptides (PPs) such as neuropeptide Y (NPY) and peptide YY (PYY) exert profound, vagally mediated effects on gastrointestinal (GI) motility and secretion. Whole-cell patch clamp recordings were made from brainstem slices containing identified GI-projecting rat dorsal motor nucleus of the vagus (DMV) neurons to determine the mechanism of action of PPs. Electrical stimulation of nucleus tractus solitarii (NTS) induced excitatory postsynaptic currents (EPSCs) that were reduced in a concentration-dependent manner by NPY and PYY (both at 0.1–300 nm) in 65 % of the neurons. An increase in the paired-pulse ratio without changes in the postsynaptic membrane input resistance or EPSC rise and decay time suggested that the effects of PPs on EPSCs were due to actions at presynaptic receptors. The Y1 and Y2 receptor selective agonists [Leu31,Pro34]NPY and NPY(3–36) (both at 100 nm) mimicked the inhibition of NPY and PYY on the EPSC amplitude. The effects of 100 nm NPY, but not PYY, were antagonized partially by the Y1 receptor selective antagonist BIBP3226 (0.1 μm). In addition, the inhibition of the EPSC amplitude induced by NPY, but not PYY, was attenuated partially by pretreatment with the α2 adrenoceptor antagonist yohimbine (10 μm), and occluded partially by the α2 adrenoceptor agonist UK14,304 (10 μm) as well as by pretreatment with reserpine. Pretreatment with a combination of BIBP3226 and yohimbine almost completely antagonized the NPY-mediated effects on EPSCs. Contrary to the inhibition of EPSCs, perfusion with PPs had no effect on the amplitude of inhibitory postsynaptic currents (IPSCs) and a minimal effect on a minority of DMV neurons. Differences in the receptor subtypes utilized and in the mechanism of action of NPY and PYY may indicate functional differences in their roles within the circuitry of the dorsal vagal complex (DVC). PMID:12730340

  20. Xenon lighting adjusted to plant requirements

    NASA Technical Reports Server (NTRS)

    Koefferlein, M.; Doehring, T.; Payer, Hans D.; Seidlitz, H. K.

    1994-01-01

    Xenon lamps are available as low and high power lamps with relatively high efficiency and a relatively long lifetime up to several thousand hours. Different construction types of short-arc and long-arc lamps permit a good adaptation to various applications in projection and illumination techniques without substantial changes of the spectral quality. Hence, the xenon lamp was the best choice for professional technical purposes where high power at simultaneously good spectral quality of the light was required. However, technical development does not stand still. Between the luminous efficacy of xenon lamps of 25-50 lm/W and the theoretical limit for 'white light' of 250 lm/W is still much room for improvement. The present development mainly favors other lamp types, like metal halide lamps and fluorescent lamps for commercial lighting purposes. The enclosed sections deal with some of the properties of xenon lamps relevant to plant illumination; particularly the spectral aspects, the temporal characteristics of the emission, and finally the economy of xenon lamps will be addressed. Due to radiation exceeding the natural global radiation in both the ultraviolet (UV) and the infrared (IR) regions, filter techniques have to be included into the discussion referring to the requirements of plant illumination. Most of the presented results were obtained by investigations in the GSF phytotron or in the closed Phytocell chambers of the University of Erlangen. As our experiences are restricted to area plant illumination rather than spot lights our discussion will concentrate on low pressure long-arc xenon lamps which are commonly used for such plant illuminations. As the spectral properties of short-arc lamps do not differ much from those of long-arc lamps most of our conclusions will be valid for high pressure xenon lamps too. These lamps often serve as light sources for small sun simulators and for monochromators which are used for action spectroscopy of plant responses.

  1. Neural Sequence Generation Using Spatiotemporal Patterns of Inhibition.

    PubMed

    Cannon, Jonathan; Kopell, Nancy; Gardner, Timothy; Markowitz, Jeffrey

    2015-11-01

    Stereotyped sequences of neural activity are thought to underlie reproducible behaviors and cognitive processes ranging from memory recall to arm movement. One of the most prominent theoretical models of neural sequence generation is the synfire chain, in which pulses of synchronized spiking activity propagate robustly along a chain of cells connected by highly redundant feedforward excitation. But recent experimental observations in the avian song production pathway during song generation have shown excitatory activity interacting strongly with the firing patterns of inhibitory neurons, suggesting a process of sequence generation more complex than feedforward excitation. Here we propose a model of sequence generation inspired by these observations in which a pulse travels along a spatially recurrent excitatory chain, passing repeatedly through zones of local feedback inhibition. In this model, synchrony and robust timing are maintained not through redundant excitatory connections, but rather through the interaction between the pulse and the spatiotemporal pattern of inhibition that it creates as it circulates the network. These results suggest that spatially and temporally structured inhibition may play a key role in sequence generation.

  2. Distinct sets of FGF receptors sculpt excitatory and inhibitory synaptogenesis.

    PubMed

    Dabrowski, Ania; Terauchi, Akiko; Strong, Cameron; Umemori, Hisashi

    2015-05-15

    Neurons in the brain must establish a balanced network of excitatory and inhibitory synapses during development for the brain to function properly. An imbalance between these synapses underlies various neurological and psychiatric disorders. The formation of excitatory and inhibitory synapses requires precise molecular control. In the hippocampus, the structure crucial for learning and memory, fibroblast growth factor 22 (FGF22) and FGF7 specifically promote excitatory or inhibitory synapse formation, respectively. Knockout of either Fgf gene leads to excitatory-inhibitory imbalance in the mouse hippocampus and manifests in an altered susceptibility to epileptic seizures, underscoring the importance of FGF-dependent synapse formation. However, the receptors and signaling mechanisms by which FGF22 and FGF7 induce excitatory and inhibitory synapse differentiation are unknown. Here, we show that distinct sets of overlapping FGF receptors (FGFRs), FGFR2b and FGFR1b, mediate excitatory or inhibitory presynaptic differentiation in response to FGF22 and FGF7. Excitatory presynaptic differentiation is impaired in Fgfr2b and Fgfr1b mutant mice; however, inhibitory presynaptic defects are only found in Fgfr2b mutants. FGFR2b and FGFR1b are required for an excitatory presynaptic response to FGF22, whereas only FGFR2b is required for an inhibitory presynaptic response to FGF7. We further find that FGFRs are required in the presynaptic neuron to respond to FGF22, and that FRS2 and PI3K, but not PLCγ, mediate FGF22-dependent presynaptic differentiation. Our results reveal the specific receptors and signaling pathways that mediate FGF-dependent presynaptic differentiation, and thereby provide a mechanistic understanding of precise excitatory and inhibitory synapse formation in the mammalian brain. © 2015. Published by The Company of Biologists Ltd.

  3. Nitric oxide mediates local activity-dependent excitatory synapse development.

    PubMed

    Nikonenko, Irina; Nikonenko, Alexander; Mendez, Pablo; Michurina, Tatyana V; Enikolopov, Grigori; Muller, Dominique

    2013-10-29

    Learning related paradigms play an important role in shaping the development and specificity of synaptic networks, notably by regulating mechanisms of spine growth and pruning. The molecular events underlying these synaptic rearrangements remain poorly understood. Here we identify NO signaling as a key mediator of activity-dependent excitatory synapse development. We find that chronic blockade of NO production in vitro and in vivo interferes with the development of hippocampal and cortical excitatory spine synapses. The effect results from a selective loss of activity-mediated spine growth mechanisms and is associated with morphological and functional alterations of remaining synapses. These effects of NO are mediated by a cGMP cascade and can be reproduced or prevented by postsynaptic expression of vasodilator-stimulated phosphoprotein phospho-mimetic or phospho-resistant mutants. In vivo analyses show that absence of NO prevents the increase in excitatory synapse density induced by environmental enrichment and interferes with the formation of local clusters of excitatory synapses. We conclude that NO plays an important role in regulating the development of excitatory synapses by promoting local activity-dependent spine-growth mechanisms.

  4. The Xenon1T Dark Matter Search Experiment

    NASA Astrophysics Data System (ADS)

    Aprile, Elena

    The worldwide race towards direct dark matter detection in the form of Weakly Interacting Massive Particles (WIMPs) has been dramatically accelerated by the remarkable progress and evolution of liquid xenon time projection chambers (LXeTPCs). With a realistic discovery potential, Xenon100 has already reached a sensitivity of 7 × 10-45 cm2, and continues to accrue data at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy towards its ultimate sensitivity reach at the σ SI ˜ 2 × 10-45 cm2 level for the spin-independent WIMP-nucleon cross-section. To fully explore the favoured parameter space for WIMP dark matter in search of a first robust and statistically significant discovery, or to confirm any hint of a signal from Xenon100, the next phase of the Xenon program will be a detector at the ton scale - Xenon1T. The Xenon1T detector, based on 2.2 ton of LXe viewed by low radioactivity photomultiplier tubes and housed in a water Cherenkov muon veto at LNGS, is presented. With an experimental aim of probing WIMP interaction cross-sections above of order σ SI ˜ 2 × 10-47 cm2 within 2 years of operation, Xenon1T will provide the sensitivity to probe a particularly favourable region of electroweak physics on a timescale compatible with complementary ground and satellite based indirect searches and with accelerator dark matter searches at the LHC. Indeed, for a σ SI ˜ 10-45 cm2 and 100 GeV/c2 WIMP mass, Xenon1T could detect of order 100 events in this exposure, providing statistics for placing significant constraints on the WIMP mass.

  5. Effects of sound intensity on temporal properties of inhibition in the pallid bat auditory cortex.

    PubMed

    Razak, Khaleel A

    2013-01-01

    Auditory neurons in bats that use frequency modulated (FM) sweeps for echolocation are selective for the behaviorally-relevant rates and direction of frequency change. Such selectivity arises through spectrotemporal interactions between excitatory and inhibitory components of the receptive field. In the pallid bat auditory system, the relationship between FM sweep direction/rate selectivity and spectral and temporal properties of sideband inhibition have been characterized. Of note is the temporal asymmetry in sideband inhibition, with low-frequency inhibition (LFI) exhibiting faster arrival times compared to high-frequency inhibition (HFI). Using the two-tone inhibition over time (TTI) stimulus paradigm, this study investigated the interactions between two sound parameters in shaping sideband inhibition: intensity and time. Specifically, the impact of changing relative intensities of the excitatory and inhibitory tones on arrival time of inhibition was studied. Using this stimulation paradigm, single unit data from the auditory cortex of pentobarbital-anesthetized cortex show that the threshold for LFI is on average ~8 dB lower than HFI. For equal intensity tones near threshold, LFI is stronger than HFI. When the inhibitory tone intensity is increased further from threshold, the strength asymmetry decreased. The temporal asymmetry in LFI vs. HFI arrival time is strongest when the excitatory and inhibitory tones are of equal intensities or if excitatory tone is louder. As inhibitory tone intensity is increased, temporal asymmetry decreased suggesting that the relative magnitude of excitatory and inhibitory inputs shape arrival time of inhibition and FM sweep rate and direction selectivity. Given that most FM bats use downward sweeps as echolocation calls, a similar asymmetry in threshold and strength of LFI vs. HFI may be a general adaptation to enhance direction selectivity while maintaining sweep-rate selective responses to downward sweeps.

  6. The Xenon record of Earth's early differentiaiton

    NASA Astrophysics Data System (ADS)

    Peto, M. K.; Mukhopadhyay, S.; Kelley, K. A.

    2011-12-01

    Xenon isotopes in mantle derived rocks provide information on the early differentiation of the silicate mantle of our planet. {131,132 134,136}Xe isotopes are produced by the spontaneous fission of two different elements: the now extinct radionuclide 244Pu, and the long-lived 238U. These two parent nuclides, however, yield rather different proportion of fissiogenic Xenon isotopes. Hence, the proportion of Pu- to U-derived fission xenon is indicative of the degree and rate of outgassing of a mantle reservoir. Recent data obtained from Iceland in our lab confirm that the Xenon isotopic composition of the plume source(s) is characterized by lower 136Xe/130Xe ratios than the MORB source and the Iceland plume is more enriched in the Pu-derived Xenon component. These features are interpreted as reflecting different degrees of outgassing and appear not to be the result of preferential recycling of Xenon to the deep mantle. To further investigate how representative the Icelandic measurements might be of other mantle plumes, we measured noble gases (He, Ne, Ar, Xe) in gas-rich basalt glasses from the Rochambeau Ridge (RR) in the Northern Lau Basin. Recent work suggests the presence of a "Samoan-like" OIB source in the northern Lau Basin and our measurements were performed on samples with plume-like 3He/4He ratios (15-28 RA) [1]. The Xenon isotopic measurements indicate that the maximum measured 136Xe/130Xe ratios in the Rochambeau samples are similar to Iceland. In particular, for one of the gas rich samples we were able to obtain 77 different isotopic measurements through step-crushing. Preliminary investigation of this sample suggests higher Pu- to U-derived fission Xenon than in MORBs. To quantitatively evaluate the degree and rate of outgassing of the plume and MORB reservoirs, particularly during the first few hundred million years of Earth's history, we have modified a geochemical reservoir model that was previously developed to investigate mantle overturn and mixing

  7. Xenon. Now More than Ever.

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2017-12-01

    Xenon is one of the major goals of proposed missions to Venus. This talk explains why xenon is important to understanding the evolution of Venus's atmosphere. Implications for the historic climate of Venus add a new wrinkle in the story. Xenon's 9 stable isotopes can tell us much about the contrasting histories of Earth, Mars, and Venus. Earth's atmospheric Xe is highly mass fractionated compared to any known solar system source. Moreover, Earth's Xe/Kr ratio is low. It would seem that our heaviest gas has been escaping. What is even more remarkable, Xe escape took place for billions of years until the advent of an O2 atmosphere (Srinivasan EPSL 31:129 (1976); Pujol et al. EPSL 308:298 (2011); Avice et al. Nature Comm 8 (2017)). (ii) Earth's original xenon - what Pepin named U-Xe and claimed was the true solar Xe - had not been seen anywhere else until this year, when the secret parent of U-Xe was found hiding in Comet 67P/Churyumov-Gerasimenko by Rosetta (Marty et al. Science 356:1069 (2017)). Apparently 20% of Earth's xenon came from this kind of comet. This has obvious consequences for volatiles in general. Mars's Xe is also strongly mass fractionated, but its original Xe is indistinguishable from solar Xe, which means that Xe escape is a planetary process that operated in parallel on the two planets. (iii) 7% of Earth's 129Xe are radiogenic daughters of extinct 129I, half-life 15.7 Myrs. This is only 1% of the radiogenic 129Xe that Earth would have had had Earth retained its full cosmic birthright. The missing 129Xe can be interpreted as dating the Moon-forming impact to 100 Myrs after the solar system formed. Venus will be different. Xenon loss probably requires escape as an ion, and therefore it likely depends on hydrogen escape and an organized planetary magnetic field. Xenon escape during Earth's Archean implies that hydrogen was abundant and that the planetary magnetic field was strong. Venus will have seen a different history of escape, so that the mass

  8. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2001 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure that is placed inside a pressure canister. A similar canister holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (not shown) of the National Institutes of Standards and Technology, Gaithersburg, MD. This is a detail view of MSFC 0100143.

  9. Excitatory amino acid transmitters in epilepsy.

    PubMed

    Meldrum, B S

    1991-01-01

    For the majority of human epilepsy syndromes, the molecular and cellular basis for the epileptic activity remains largely conjectural. The principal hypotheses currently concern: defects in membrane ionic conductances or transport mechanisms; defects in gamma-aminobutyric acid (GABA)-mediated inhibitory processes; and enhanced or abnormal excitatory synaptic action. Substantial evidence exists in humans and animals for acquired abnormalities in excitatory amino acid neurotransmission that may participate in the abnormal patterns of neuronal discharge, and this could provide the morphological basis for a recurrent excitatory pathway sustaining seizure discharges in temporal lobe epilepsy. In practice, two approaches appear significant in the suppression of seizures. One is to act postsynaptically on receptors to decrease the excitation induced by glutamate, and the other is to decrease synaptic release of glutamate and aspartate. Agents acting upon adenosine or GABAB receptors decrease glutamate release in vitro but do not have significant anticonvulsant activity, probably because of their predominant actions at other sites. Lamotrigine blocks stimulated release of glutamate and shows anticonvulsant activity in a wide range of animal models.

  10. Xenon Blocks Neuronal Injury Associated with Decompression

    PubMed Central

    Blatteau, Jean-Eric; David, Hélène N.; Vallée, Nicolas; Meckler, Cedric; Demaistre, Sebastien; Lambrechts, Kate; Risso, Jean-Jacques; Abraini, Jacques H.

    2015-01-01

    Despite state-of-the-art hyperbaric oxygen (HBO) treatment, about 30% of patients suffering neurologic decompression sickness (DCS) exhibit incomplete recovery. Since the mechanisms of neurologic DCS involve ischemic processes which result in excitotoxicity, it is likely that HBO in combination with an anti-excitotoxic treatment would improve the outcome in patients being treated for DCS. Therefore, in the present study, we investigated the effect of the noble gas xenon in an ex vivo model of neurologic DCS. Xenon has been shown to provide neuroprotection in multiple models of acute ischemic insults. Fast decompression compared to slow decompression induced an increase in lactate dehydrogenase (LDH), a well-known marker of sub-lethal cell injury. Post-decompression administration of xenon blocked the increase in LDH release induced by fast decompression. These data suggest that xenon could be an efficient additional treatment to HBO for the treatment of neurologic DCS. PMID:26469983

  11. Xenon Blocks Neuronal Injury Associated with Decompression.

    PubMed

    Blatteau, Jean-Eric; David, Hélène N; Vallée, Nicolas; Meckler, Cedric; Demaistre, Sebastien; Lambrechts, Kate; Risso, Jean-Jacques; Abraini, Jacques H

    2015-10-15

    Despite state-of-the-art hyperbaric oxygen (HBO) treatment, about 30% of patients suffering neurologic decompression sickness (DCS) exhibit incomplete recovery. Since the mechanisms of neurologic DCS involve ischemic processes which result in excitotoxicity, it is likely that HBO in combination with an anti-excitotoxic treatment would improve the outcome in patients being treated for DCS. Therefore, in the present study, we investigated the effect of the noble gas xenon in an ex vivo model of neurologic DCS. Xenon has been shown to provide neuroprotection in multiple models of acute ischemic insults. Fast decompression compared to slow decompression induced an increase in lactate dehydrogenase (LDH), a well-known marker of sub-lethal cell injury. Post-decompression administration of xenon blocked the increase in LDH release induced by fast decompression. These data suggest that xenon could be an efficient additional treatment to HBO for the treatment of neurologic DCS.

  12. Xenon decreases cell migration and secretion of a pro-angiogenesis factor in breast adenocarcinoma cells: comparison with sevoflurane.

    PubMed

    Ash, S A; Valchev, G I; Looney, M; Ni Mhathuna, A; Crowley, P D; Gallagher, H C; Buggy, D J

    2014-07-01

    While volatile agents have been implicated in metastasis-enhancing effects on cancer cells, the effects of xenon are unknown. We investigated xenon- and sevoflurane-mediated effects on migration and expression of angiogenesis biomarkers in human breast adenocarcinoma cells. MDA-MB-231 and MCF-7 cells were exposed to xenon 70% with O2 25%, CO2 5%; control gas containing O2 25%, CO2 5%, N2 70%; or sevoflurane 2.5 vol% administered in O2 60%, N2 37%, or control gas. Cell viability was determined by the MTT assay. Migration at 24 h was determined using the Oris™ Cell Migration Assay. Secretion of angiogenesis factors was measured using a membrane-based immunoassay array. Xenon reduced MDA-MB-231 migration to 59 (13%) after 1-h exposure (P=0.02), 64 (10%) after 3 h (P=0.01), and 71 (9%) after 5 h (P=0.04) compared with control gas, without affecting viability. Similarly, MCF-7 migration was significantly reduced at all timepoints [to 58 (12%) at 1 h, 65 (12%) at 3 h, and 65% (12%) at 5 h]. Sevoflurane did not affect migration when delivered in control gas. Glycine, an N-methyl-d-aspartate receptor co-agonist, antagonized the effects of xenon on migration. Expression of the pro-angiogenesis factor regulated on activation, normal T cell expressed and secreted (RANTES) was reduced in conditioned medium from xenon-exposed MDA-MB-231 cells compared with cells exposed to either control gas or sevoflurane [mean dot density 2.0 (0.2) compared with 3.0 (0.1) and 3.1 (0.3), respectively (P=0.02)]. Xenon, but not sevoflurane, inhibited migration in both oestrogen receptor positive and negative breast adenocarcinoma cells. Furthermore, xenon decreased release of the pro-angiogenic factor RANTES from MDA-MB-231 cells. © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    The benefits of high-power solar electric propulsion (SEP) for both NASA's human and science exploration missions combined with the technology investment from the Space Technology Mission Directorate have enabled the development of a 50kW-class SEP mission. NASA mission concepts developed, including the Asteroid Redirect Robotic Mission, and those proposed by contracted efforts for the 30kW-class demonstration have a range of xenon propellant loads from 100's of kg up to 10,000 kg. A xenon propellant load of 10 metric tons represents greater than 10% of the global annual production rate of xenon. A single procurement of this size with short-term delivery can disrupt the xenon market, driving up pricing, making the propellant costs for the mission prohibitive. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper discusses approaches for acquiring on the order of 10 MT of xenon propellant considering realistic programmatic constraints to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for mission campaigns utilizing multiple high-power solar electric propulsion vehicles requiring 100's of metric tons of xenon over an extended period of time where a longer term acquisition approach could be implemented.

  14. Deglutitive Inhibition, Latency Between Swallow and Esophageal Contractions and Primary Esophageal Motor Disorders

    PubMed Central

    Jafari, Jafar

    2012-01-01

    Swallowing induces an inhibitory wave that is followed by a contractile wave along the esophageal body. Deglutitive inhibition in the skeletal muscle of the esophagus is controlled in the brain stem whilst in the smooth muscle, an intrinsic peripheral control mechanism is critical. The latency between swallow and contractions is determined by the pattern of activation of the inhibitory and excitatory vagal pathways, the regional gradients of inhibitory and excitatory myenteric nerves, and the intrinsic properties of the smooth muscle. A wave of inhibition precedes a swallow-induced peristaltic contraction in the smooth muscle part of the human oesophagus involving both circular and longitudinal muscles in a peristaltic fashion. Deglutitive inhibition is necessary for drinking liquids which requires multiple rapid swallows (MRS). During MRS the esophageal body remains inhibited until the last of the series of swallows and then a peristaltic contraction wave follows. A normal response to MRS requires indemnity of both inhibitory and excitatory mechanisms and esophageal muscle. MRS has recently been used to assess deglutitive inhibition in patients with esophageal motor disorders. Examples with impairment of deglutitive inhibition are achalasia of the LES and diffuse esophageal spasm. PMID:22323983

  15. Deglutitive inhibition, latency between swallow and esophageal contractions and primary esophageal motor disorders.

    PubMed

    Sifrim, Daniel; Jafari, Jafar

    2012-01-01

    Swallowing induces an inhibitory wave that is followed by a contractile wave along the esophageal body. Deglutitive inhibition in the skeletal muscle of the esophagus is controlled in the brain stem whilst in the smooth muscle, an intrinsic peripheral control mechanism is critical. The latency between swallow and contractions is determined by the pattern of activation of the inhibitory and excitatory vagal pathways, the regional gradients of inhibitory and excitatory myenteric nerves, and the intrinsic properties of the smooth muscle. A wave of inhibition precedes a swallow-induced peristaltic contraction in the smooth muscle part of the human oesophagus involving both circular and longitudinal muscles in a peristaltic fashion. Deglutitive inhibition is necessary for drinking liquids which requires multiple rapid swallows (MRS). During MRS the esophageal body remains inhibited until the last of the series of swallows and then a peristaltic contraction wave follows. A normal response to MRS requires indemnity of both inhibitory and excitatory mechanisms and esophageal muscle. MRS has recently been used to assess deglutitive inhibition in patients with esophageal motor disorders. Examples with impairment of deglutitive inhibition are achalasia of the LES and diffuse esophageal spasm.

  16. Relaxation channels of multi-photon excited xenon clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serdobintsev, P. Yu.; Melnikov, A. S.; Department of Physics, St. Petersburg State University, Saint Petersburg 198904

    2015-09-21

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  17. Magnetic resonance imaging of convection in laser-polarized xenon

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Tseng, C. H.; Wong, G. P.; Cory, D. G.; Walsworth, R. L.

    2000-01-01

    We demonstrate nuclear magnetic resonance (NMR) imaging of the flow and diffusion of laser-polarized xenon (129Xe) gas undergoing convection above evaporating laser-polarized liquid xenon. The large xenon NMR signal provided by the laser-polarization technique allows more rapid imaging than one can achieve with thermally polarized gas-liquid systems, permitting shorter time-scale events such as rapid gas flow and gas-liquid dynamics to be observed. Two-dimensional velocity-encoded imaging shows convective gas flow above the evaporating liquid xenon, and also permits the measurement of enhanced gas diffusion near regions of large velocity variation.

  18. DFT-MD simulations of shocked Xenon

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph J.; Mattsson, Thomas R.

    2009-03-01

    Xenon is not only a technologically important element used in laser technologies, jet propulsion and dental anesthesia, but it is also arguably the simplest material in which to study the metal-insulator transition at high pressure. Because of its closed shell electronic configuration, Xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as Xenon is known to form compounds at normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. In this talk, we present DFT-MD simulations of shocked liquid Xenon with the goal of developing an improved equation of state. The relative importance of the van der Waals interaction compared to other Coulomb interactions is considered, and estimates of the relative accuracy of various density functionals are quantified. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Evidence of charge exchange pumping in calcium-xenon system

    NASA Technical Reports Server (NTRS)

    Chubb, D. L.

    1973-01-01

    Charge exchange between xenon ions and calcium atoms may produce an inversion between the 5s or 4d and 4p energy levels of the calcium ions. A low power flowing xenon plasma seeded with calcium was utilized to determine if charge exchange or electron collisions populate the 5s and 4d levels Ca(+). Line intensity ratios proportional to the density ratios n5s/n4p and n4d/n4p were measured. From the dependence of these intensity ratios on power input to the xenon plasma it was concluded that charge exchange pumping of the 5s and 4d levels predominates over electron collisional pumping of these levels. Also, by comparing intensity ratios obtained using argon and krypton in place of xenon with those obtained in xenon the same conclusion was made.

  20. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    PubMed

    Rompala, Gregory R; Zsiros, Veronika; Zhang, Shuqin; Kolata, Stefan M; Nakazawa, Kazu

    2013-01-01

    Pharmacological and genetic studies support a role for NMDA receptor (NMDAR) hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1) deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice), in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior). Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  1. Xenon ventilation during therapeutic hypothermia in neonatal encephalopathy: a feasibility study.

    PubMed

    Dingley, John; Tooley, James; Liu, Xun; Scull-Brown, Emma; Elstad, Maja; Chakkarapani, Ela; Sabir, Hemmen; Thoresen, Marianne

    2014-05-01

    Therapeutic hypothermia has become standard of care in newborns with moderate and severe neonatal encephalopathy; however, additional interventions are needed. In experimental models, breathing xenon gas during cooling offers long-term additive neuroprotection. This is the first xenon feasibility study in cooled infants. Xenon is expensive, requiring a closed-circuit delivery system. Cooled newborns with neonatal encephalopathy were eligible for this single-arm, dose-escalation study if clinically stable, under 18 hours of age and requiring less than 35% oxygen. Xenon duration increased stepwise from 3 to 18 hours in 14 subjects; 1 received 25% xenon and 13 received 50%. Respiratory, cardiovascular, neurologic (ie, amplitude-integrated EEG, seizures), and inflammatory (C-reactive protein) effects were examined. The effects of starting or stopping xenon rapidly or slowly were studied. Three matched control subjects per xenon treated subject were selected from our cooling database. Follow-up was at 18 months using mental developmental and physical developmental indexes of the Bayley Scales of Infant Development II. No adverse respiratory or cardiovascular effects, including post-extubation stridor, were seen. Xenon increased sedation and suppressed seizures and background electroencephalographic activity. Seizures sometimes occurred during rapid weaning of xenon but not during slow weaning. C-reactive protein levels were similar between groups. Hourly xenon consumption was 0.52 L. Three died, and 7 of 11 survivors had mental and physical developmental index scores ≥70 at follow-up. Breathing 50% xenon for up to 18 hours with 72 hours of cooling was feasible, with no adverse effects seen with 18 months' follow-up. Copyright © 2014 by the American Academy of Pediatrics.

  2. Purging means and method for Xenon arc lamps

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1973-01-01

    High pressure Xenon short-arc lamp with two reservoirs which are selectively connectable to the lamp's envelope is described. One reservoir contains an absorbent which will absorb both Xenon and contaminant gases such as CO2 and O2. The absorbent temperature is controlled to evacuate the envelope of both the Xenon and the contaminant gases. The temperature of the absorbent is then raised to desorb only clean Xenon while retaining the contaminant gases, thereby clearing the envelope of the contaminant gases. The second reservoir contains a gas whose specific purpose is, to remove the objectional metal film which deposits gradually on the interior surface of the lamp envelope during normal arc operation. The origin of the film is metal transferred from the cathode of the arc lamp by sputtering or other gas transfer processes.

  3. CGRP potentiates excitatory transmission to the circular muscle of guinea-pig colon.

    PubMed

    Maggi, C A; Giuliani, S; Santicioli, P

    1997-04-30

    We aimed to assess whether calcitonin gene-related peptide (CGRP) can modulate the release of tachykinins which are the main nonadrenergic noncholinergic (NANC) excitatory transmitters to the circular muscle of the guinea-pig proximal colon. In organ bath experiments, electrical field stimulation (EFS) in the presence of atropine (1 microM) and guanethidine (3 microM) evoked twitch phasic NANC contractions which were abolished by the combined administration of tachykinin NK1 and NK2 receptor antagonists. Human alphaCGRP (CGRP, 1-100 nM) produced a concentration-dependent potentiation of the amplitude of the NANC contractions induced by EFS while salmon calcitonin (up to 1 microM) had no effect. The potentiating effect of CGRP was unaffected by in vitro capsaicin pretreatment (10 microM for 15 min), peptidase inhibitors (captopril, bestatin and thiorphan, 1 microM each), apamin (0.3 microM) plus L-nitroarginine (L-NOARG, 100 microM) and by the CGRP1 receptor antagonist, the C-terminal fragment CGRP(8-37) (1 microM). The NK2 receptor antagonist MEN 10627 which, when administered alone, had only a partial inhibitory effect on the amplitude of NANC twitches, concentration-dependently (10 nM-1 microM) inhibited the potentiating effect of CGRP. CGRP (1-100 nM) produced a concentration-dependent potentiation of the atropine-sensitive cholinergic contractions evoked by EFS in the presence of guanethidine and of tachykinin NK1 and NK2 receptor antagonists. Similar to the effect of CGRP, application of capsaicin (0.1-1 microM) potentiated the amplitude of the NANC contraction to EFS, an effect undergoing complete desensitization upon a second application of the drug. CGRP (0.1 microM) did not affect the contractile action of a submaximally effective concentration of neurokinin A (2 nM) while it inhibited that induced by substance P (2 nM). In sucrose gap, single pulse EFS in the presence of atropine (1 microM) and guanethidine (3 microM) induced an inhibitory junction

  4. Plutonium-fission xenon found in Earth's mantle

    PubMed

    Kunz; Staudacher; Allegre

    1998-05-08

    Data from mid-ocean ridge basalt glasses indicate that the short-lived radionuclide plutonium-244 that was present during an early stage of the development of the solar system is responsible for roughly 30 percent of the fissiogenic xenon excesses in the interior of Earth today. The rest of the fissiogenic xenon can be ascribed to the spontaneous fission of still live uranium-238. This result, in combination with the refined determination of xenon-129 excesses from extinct iodine-129, implies that the accretion of Earth was finished roughly 50 million to 70 million years after solar system formation and that the atmosphere was formed by mantle degassing.

  5. MiX: a position sensitive dual-phase liquid xenon detector

    NASA Astrophysics Data System (ADS)

    Stephenson, S.; Haefner, J.; Lin, Q.; Ni, K.; Pushkin, K.; Raymond, R.; Schubnell, M.; Shutty, N.; Tarlé, G.; Weaverdyck, C.; Lorenzon, W.

    2015-10-01

    The need for precise characterization of dual-phase xenon detectors has grown as the technology has matured into a state of high efficacy for rare event searches. The Michigan Xenon detector was constructed to study the microphysics of particle interactions in liquid xenon across a large energy range in an effort to probe aspects of radiation detection in liquid xenon. We report the design and performance of a small 3D position sensitive dual-phase liquid xenon time projection chamber with high light yield (Ly122=15.2 pe/keV at zero field), long electron lifetime (τ > 200 μs), and excellent energy resolution (σ/E = 1% for 1,333 keV gamma rays in a drift field of 200 V/cm). Liquid xenon time projection chambers with such high energy resolution may find applications not only in dark matter direct detection searches, but also in neutrinoless double beta decay experiments and other applications.

  6. Hyperpolarized xenon NMR and MRI signal amplification by gas extraction

    PubMed Central

    Zhou, Xin; Graziani, Dominic; Pines, Alexander

    2009-01-01

    A method is reported for enhancing the sensitivity of NMR of dissolved xenon by detecting the signal after extraction to the gas phase. We demonstrate hyperpolarized xenon signal amplification by gas extraction (Hyper-SAGE) in both NMR spectra and magnetic resonance images with time-of-flight information. Hyper-SAGE takes advantage of a change in physical phase to increase the density of polarized gas in the detection coil. At equilibrium, the concentration of gas-phase xenon is ≈10 times higher than that of the dissolved-phase gas. After extraction the xenon density can be further increased by several orders of magnitude by compression and/or liquefaction. Additionally, being a remote detection technique, the Hyper-SAGE effect is further enhanced in situations where the sample of interest would occupy only a small proportion of the traditional NMR receiver. Coupled with targeted xenon biosensors, Hyper-SAGE offers another path to highly sensitive molecular imaging of specific cell markers by detection of exhaled xenon gas. PMID:19805177

  7. Assessing the depth of hypnosis of xenon anaesthesia with the EEG.

    PubMed

    Stuttmann, Ralph; Schultz, Arthur; Kneif, Thomas; Krauss, Terence; Schultz, Barbara

    2010-04-01

    Xenon was approved as an inhaled anaesthetic in Germany in 2005 and in other countries of the European Union in 2007. Owing to its low blood/gas partition coefficient, xenons effects on the central nervous system show a fast onset and offset and, even after long xenon anaesthetics, the wake-up times are very short. The aim of this study was to examine which electroencephalogram (EEG) stages are reached during xenon application and whether these stages can be identified by an automatic EEG classification. Therefore, EEG recordings were performed during xenon anaesthetics (EEG monitor: Narcotrend®). A total of 300 EEG epochs were assessed visually with regard to the EEG stages. These epochs were also classified automatically by the EEG monitor Narcotrend® using multivariate algorithms. There was a high correlation between visual and automatic classification (Spearman's rank correlation coefficient r=0.957, prediction probability Pk=0.949). Furthermore, it was observed that very deep stages of hypnosis were reached which are characterised by EEG activity in the low frequency range (delta waves). The burst suppression pattern was not seen. In deep hypnosis, in contrast to the xenon EEG, the propofol EEG was characterised by a marked superimposed higher frequency activity. To ensure an optimised dosage for the single patient, anaesthetic machines for xenon should be combined with EEG monitoring. To date, only a few anaesthetic machines for xenon are available. Because of the high price of xenon, new and further developments of machines focus on optimizing xenon consumption.

  8. Hugoniot measurements of double-shocked precompressed dense xenon plasmas

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Chen, Z. Y.

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ˜6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  9. Synthesis of the missing oxide of xenon, XeO2, and its implications for Earth's missing xenon.

    PubMed

    Brock, David S; Schrobilgen, Gary J

    2011-04-27

    The missing Xe(IV) oxide, XeO(2), has been synthesized at 0 °C by hydrolysis of XeF(4) in water and 2.00 M H(2)SO(4(aq)). Raman spectroscopy and (16/18)O isotopic enrichment studies indicate that XeO(2) possesses an extended structure in which Xe(IV) is oxygen bridged to four neighboring oxygen atoms to give a local square-planar XeO(4) geometry based on an AX(4)E(2) valence shell electron pair repulsion (VSEPR) arrangement. The vibrational spectra of Xe(16)O(2) and Xe(18)O(2) amend prior vibrational assignments of xenon doped SiO(2) and are in accordance with prior speculation that xenon depletion from the Earth's atmosphere may occur by xenon insertion at high temperatures and high pressures into SiO(2) in the Earth's crust.

  10. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  11. Removing krypton from xenon by cryogenic distillation to the ppq level

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Di Gangi, P.; Di Giovanni, A.; Diglio, S.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Huhmann, C.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Calloch, M. Le; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; Santos, J. M. F. dos; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Cristescu, I.

    2017-05-01

    The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β -emitter ^{85}Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon ^{nat}Kr/Xe < 200 ppq (parts per quadrillion, 1 ppq =10^{-15} mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4\\cdot 10^5 with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of ^{nat}Kr/Xe<26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN.

  12. Analgesic Effect of Xenon in Rat Model of Inflammatory Pain.

    PubMed

    Kukushkin, M L; Igon'kina, S I; Potapov, S V; Potapov, A V

    2017-02-01

    The analgesic effects of inert gas xenon were examined on rats. The formalin model of inflammatory pain, tail-flick test, and hot-plate test revealed the antinociceptive effects of subanesthetizing doses of inhalation anesthetic xenon. Inhalation of 50/50 xenon/oxygen mixture moderated the nociceptive responses during acute and tonic phases of inflammatory pain.

  13. Effect of xenon on the excited states of phototropic receptor flavin in corn seedlings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vierstra, R.D.; Poff, K.L.; Walker, E.B.

    1981-05-01

    The chemically inert, water-soluble heavy atom gas, xenon, at millimolar concentrations specifically quenches the triplet excited state of flavin in solution without quenching the flavin singlet excited state. The preferential quenching of the flavin triplet over the singlet excited state by Xe has been established by showing that the flavin triplet-sensitized photooxidation of NADH is inhibited while the fluorescence intensity and lifetime of flavin are not affected by Xe. No significant inhibition of phototropism and geotropism by Xe was observed, suggesting that a flavin singlet state is more likely involved than the triplet state in the primary photoprocess of phototropismmore » in corn.« less

  14. Enhanced excitatory input to MCH neurons during developmental period of high food intake is mediated by GABA

    PubMed Central

    Li, Ying; van den Pol, Anthony N.

    2010-01-01

    In contrast to the local axons of GABA neurons of the cortex and hippocampus, lateral hypothalamic neurons containing melanin concentrating hormone (MCH) and GABA send long axons throughout the brain and play key roles in energy homeostasis and mental status. In adults, MCH neurons maintain a hyperpolarized membrane potential and most of the synaptic input is inhibitory. In contrast, we found that developing MCH neurons received substantially more excitatory synaptic input. Based on gramicidicin-perforated patch recordings in hypothalamic slices from MCH-GFP transgenic mice, we found that GABA was the primary excitatory synaptic transmitter in embryonic and neonatal ages up to postnatal day 10. Surprisingly, glutamate assumed only a minor excitatory role, if any. GABA plays a complex role in developing MCH neurons, with its actions conditionally dependent on a number of factors. GABA depolarization could lead to an increase in spikes either independently or in summation with other depolarizing stimuli, or alternately, depending on the relative timing of other depolarizing events, could lead to shunting inhibition. The developmental shift from depolarizing to hyperpolarizing occurred later in the dendrites than in the cell body. Early GABA depolarization was based on a Cl− dependent inward current. An interesting secondary depolarization in mature neurons that followed an initial hyperpolarization was based on a bicarbonate mechanism. Thus during the early developmental period when food consumption is high, MCH neurons are more depolarized than in the adult, and an increased level of excitatory synaptic input to these orexigenic cells is mediated by GABA. PMID:19955372

  15. Critical Viscosity of Xenon team

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure (at left) that is placed inside a pressure canister. A similar canister (right) holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (left) of the National Institutes of Standards and Technology, Gaithersburg, MD.

  16. Critical Viscosity of Xenon team

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The thermostat for CVX sits inside the white cylinder on a support structure (at left) that is placed inside a pressure canister. A similar canister (right) holds the electronics and control systems. The CVX-2 arrangement is identical. The principal investigator is Dr. Robert F. Berg (not shown) of the National Institutes of Standards and Technology, Gaithersburg, MD.

  17. Aberrant excitatory rewiring of layer V pyramidal neurons early after neocortical trauma

    PubMed Central

    Takahashi, D. Koji; Isabel, Feng Gu; Parada, Shri Vyas; Prince, David A.

    2016-01-01

    Lesioned neuronal circuits form new functional connections after a traumatic brain injury (TBI). In humans and animal models, aberrant excitatory connections that form after TBI may contribute to the pathogenesis of post-traumatic epilepsy. Partial neocortical isolation (“undercut” or “UC”) leads to altered neuronal circuitry and network hyperexcitability recorded in vivo and in brain slices from chronically lesioned neocortex. Recent data suggest a critical period for maladaptive excitatory circuit formation within the first 3 days post UC injury (Graber and Prince, 1999, 2004; Li et al., 2011, 2012b). The present study focuses on alterations in excitatory connectivity within this critical period. Immunoreactivity (IR) for growth-associated protein (GAP)-43 was increased in the UC cortex 3 days after injury. Some GAP-43-expressing excitatory terminals targeted the somata of layer V pyramidal (Pyr) neurons, a domain usually innervated predominantly by inhibitory terminals. Immunocytochemical analysis of pre- and postsynaptic markers showed that putative excitatory synapses were present on somata of these neurons in UC neocortex. Excitatory postsynaptic currents from UC layer V Pyr cells displayed properties consistent with perisomatic inputs and also reflected an increase in the number of synaptic contacts. Laser scanning photostimulation (LSPS) experiments demonstrated reorganized excitatory connectivity after injury within the UC. Concurrent with these changes, spontaneous epileptiform bursts developed in UC slices. Results suggest that aberrant reorganization of excitatory connectivity contributes to early neocortical hyperexcitability in this model. The findings are relevant for understanding the pathophysiology of neocortical post-traumatic epileptogenesis and are important in terms of the timing of potential prophylactic treatments. PMID:26956396

  18. Hyperpolarized xenon-129 production and applications

    NASA Astrophysics Data System (ADS)

    Ruset, Iulian C.

    Hyperpolarized 3He and 129Xe were initially developed and used in the nuclear physics community. Lately they are primarily used in Medical Resonance Imaging (MRI). Although first MRI polarized gas images were acquired using 129Xe, the research community has focused mostly on 3He, due to the well-known polarizing methods and higher polarization numbers achieved. The main purpose of this thesis is to present a novel design of a large-scale SEOP polarizer for producing large quantities of highly polarized 129Xe. High Rb-Xe spin-exchange rates through long-lived van de Waals molecules at low total pressure, implemented in a novel counterflow polarizer design, resulted in xenon polarization as high as 50% for 1.2 liters/hour, with a maximum of 64% for 0.3 l/h. We characterized and improved the polarization process by finding the optimum operating parameters of the polarizer. Two new methods to efficiently use high-power diode lasers are described: a new optical arrangement for a better beam shaping of fiber coupled lasers and the first external-cavity spectrum narrowing of a stack of laser diode arrays. A new accumulation technique for the hyperpolarized xenon was developed and full recovery of polarization after a freeze-thaw cycle was demonstrated for the first time. Two approaches for xenon delivery, frozen and gas states, were developed. Hyperpolarized xenon transportation to Brigham and Women's Hospital was successfully accomplished for collaborative research. First MRI images using hyperpolarized xenon acquired at BWH are presented. Final chapter is focused on describing a low field human MRI scanner using hyperpolarized 3He. We built a human scale imager with open access for orientational studies of the lung functionality. Horizontal and vertical human lung images were acquired as a first stage of this project.

  19. Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network.

    PubMed

    Kim, Sang-Yoon; Lim, Woochang

    2017-10-01

    For studying how dynamical responses to external stimuli depend on the synaptic-coupling type, we consider two types of excitatory and inhibitory synchronization (i.e., synchronization via synaptic excitation and inhibition) in complex small-world networks of excitatory regular spiking (RS) pyramidal neurons and inhibitory fast spiking (FS) interneurons. For both cases of excitatory and inhibitory synchronization, effects of synaptic couplings on dynamical responses to external time-periodic stimuli S ( t ) (applied to a fraction of neurons) are investigated by varying the driving amplitude A of S ( t ). Stimulated neurons are phase-locked to external stimuli for both cases of excitatory and inhibitory couplings. On the other hand, the stimulation effect on non-stimulated neurons depends on the type of synaptic coupling. The external stimulus S ( t ) makes a constructive effect on excitatory non-stimulated RS neurons (i.e., it causes external phase lockings in the non-stimulated sub-population), while S ( t ) makes a destructive effect on inhibitory non-stimulated FS interneurons (i.e., it breaks up original inhibitory synchronization in the non-stimulated sub-population). As results of these different effects of S ( t ), the type and degree of dynamical response (e.g., synchronization enhancement or suppression), characterized by the dynamical response factor [Formula: see text] (given by the ratio of synchronization degree in the presence and absence of stimulus), are found to vary in a distinctly different way, depending on the synaptic-coupling type. Furthermore, we also measure the matching degree between the dynamics of the two sub-populations of stimulated and non-stimulated neurons in terms of a "cross-correlation" measure [Formula: see text]. With increasing A , based on [Formula: see text], we discuss the cross-correlations between the two sub-populations, affecting the dynamical responses to S ( t ).

  20. Observation of a barium xenon exciplex within a large argon cluster.

    PubMed

    Briant, M; Gaveau, M-A; Mestdagh, J-M

    2010-07-21

    Spectroscopic measurements provide fluorescence and excitation spectra of a single barium atom codeposited with xenon atoms on argon clusters of average size approximately 2000. The spectra are studied as a function of the number of xenon atoms per cluster. The excitation spectrum with approximately 10 xenon atoms per cluster is qualitatively similar to that observed when no xenon atom is present on the cluster. It consists of two bands located on each side of the 6s6p (1)P-6s(2) (1)S resonance line of the free barium. In contrast, the fluorescence spectrum differs qualitatively since a barium-xenon exciplex is observed, which has no counterpart in xenon free clusters. In particular an emission is observed, which is redshifted by 729 cm(-1) with respect to the Ba(6s6p (1)P-6s(2) (1)S) resonance line.

  1. Numerical study on xenon positive column discharges of mercury-free lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Jiting; He, Feng; Miao, Jinsong

    2007-02-15

    In this paper, the numerical study has been performed on the xenon positive column discharges of mercury-free fluorescent lamp. The plasma discharge characteristics are analyzed by numerical simulation based on two-dimensional fluid model. The effects of cell geometry, such as the dielectric layer, the electrode width, the electrode gap, and the cell height, and the filling gas including the pressure and the xenon percentage are investigated in terms of discharge current and discharge efficiency. The results show that a long transient positive column will form in the xenon lamp when applying ac sinusoidal power and the lamp can operate inmore » a large range of voltage and frequency. The front dielectric layer of the cell plays an important role in the xenon lamp while the back layer has little effect. The ratio of electrode gap to cell height should be large to achieve a long positive column xenon lamp and higher efficiency. Increase of pressure or xenon concentration results in an increase of discharge efficiency and voltage. The discussions will be helpful for the design of commercial xenon lamp cells.« less

  2. Extinction Generates Outcome-Specific Conditioned Inhibition.

    PubMed

    Laurent, Vincent; Chieng, Billy; Balleine, Bernard W

    2016-12-05

    Extinction involves altering a previously established predictive relationship between a cue and its outcome by repeatedly presenting that cue alone. Although it is widely accepted that extinction generates some form of inhibitory learning [1-4], direct evidence for this claim has been lacking, and the nature of the associative changes induced by extinction have, therefore, remained a matter of debate [5-8]. In the current experiments, we used a novel behavioral approach that we recently developed and that provides a direct measure of conditioned inhibition [9] to compare the influence of extinguished and non-extinguished cues on choice between goal-directed actions. Using this approach, we provide direct evidence that extinction generates outcome-specific conditioned inhibition. Furthermore, we demonstrate that this inhibitory learning is controlled by the infralimbic cortex (IL); inactivation of the IL using M4 DREADDs abolished outcome-specific inhibition and rendered the cue excitatory. Importantly, we found that context modulated this inhibition. Outside its extinction context, the cue was excitatory and functioned as a specific predictor of its previously associated outcome, biasing choice toward actions earning the same outcome. In its extinction context, however, the cue acted as a specific inhibitor and biased choice toward actions earning different outcomes. Context modulation of these excitatory and inhibitory memories was mediated by the dorsal hippocampus (HPC), suggesting that the HPC and IL act in concert to control the influence of conditioned inhibitors on choice. These findings demonstrate for the first time that extinction turns a cue into a net inhibitor that can influence choice via counterfactual action-outcome associations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The noble gas xenon provides protection and trophic stimulation to midbrain dopamine neurons.

    PubMed

    Lavaur, Jérémie; Le Nogue, Déborah; Lemaire, Marc; Pype, Jan; Farjot, Géraldine; Hirsch, Etienne C; Michel, Patrick P

    2017-07-01

    Despite its low chemical reactivity, the noble gas xenon possesses a remarkable spectrum of biological effects. In particular, xenon is a strong neuroprotectant in preclinical models of hypoxic-ischemic brain injury. In this study, we wished to determine whether xenon retained its neuroprotective potential in experimental settings that model the progressive loss of midbrain dopamine (DA) neurons in Parkinson's disease. Using rat midbrain cultures, we established that xenon was partially protective for DA neurons through either direct or indirect effects on these neurons. So, when DA neurons were exposed to l-trans-pyrrolidine-2,4-dicarboxylic acid so as to increase ambient glutamate levels and generate slow and sustained excitotoxicity, the effect of xenon on DA neurons was direct. The vitamin E analog Trolox also partially rescued DA neurons in this setting and enhanced neuroprotection by xenon. However, in the situation where DA cell death was spontaneous, the protection of DA neurons by xenon appeared indirect as it occurred through the repression of a mechanism mediated by proliferating glial cells, presumably astrocytes and their precursor cells. Xenon also exerted trophic effects for DA neurons in this paradigm. The effects of xenon were mimicked and improved by the N-methyl-d-aspartate glutamate receptor antagonist memantine and xenon itself appeared to work by antagonizing N-methyl-d-aspartate receptors. Note that another noble gas argon could not reproduce xenon effects. Overall, present data indicate that xenon can provide protection and trophic support to DA neurons that are vulnerable in Parkinson's disease. This suggests that xenon might have some therapeutic value for this disorder. © 2017 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  4. Aberrant excitatory rewiring of layer V pyramidal neurons early after neocortical trauma.

    PubMed

    Takahashi, D Koji; Gu, Feng; Parada, Isabel; Vyas, Shri; Prince, David A

    2016-07-01

    Lesioned neuronal circuits form new functional connections after a traumatic brain injury (TBI). In humans and animal models, aberrant excitatory connections that form after TBI may contribute to the pathogenesis of post-traumatic epilepsy. Partial neocortical isolation ("undercut" or "UC") leads to altered neuronal circuitry and network hyperexcitability recorded in vivo and in brain slices from chronically lesioned neocortex. Recent data suggest a critical period for maladaptive excitatory circuit formation within the first 3days post UC injury (Graber and Prince 1999, 2004; Li et al. 2011, 2012b). The present study focuses on alterations in excitatory connectivity within this critical period. Immunoreactivity (IR) for growth-associated protein (GAP)-43 was increased in the UC cortex 3days after injury. Some GAP-43-expressing excitatory terminals targeted the somata of layer V pyramidal (Pyr) neurons, a domain usually innervated predominantly by inhibitory terminals. Immunocytochemical analysis of pre- and postsynaptic markers showed that putative excitatory synapses were present on somata of these neurons in UC neocortex. Excitatory postsynaptic currents from UC layer V Pyr cells displayed properties consistent with perisomatic inputs and also reflected an increase in the number of synaptic contacts. Laser scanning photostimulation (LSPS) experiments demonstrated reorganized excitatory connectivity after injury within the UC. Concurrent with these changes, spontaneous epileptiform bursts developed in UC slices. Results suggest that aberrant reorganization of excitatory connectivity contributes to early neocortical hyperexcitability in this model. The findings are relevant for understanding the pathophysiology of neocortical post-traumatic epileptogenesis and are important in terms of the timing of potential prophylactic treatments. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Isolation and Purification of the Xenon Fraction of 252Cf Spontaneous Fission Products for the Production of Radio Xenon Calibration Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrath, Christopher A.

    2015-04-01

    The presence of radioactive xenon isotopes indicates that fission events have occurred, and is used to help enforce the Comprehensive Test Ban Treaty. Idaho National Laboratory (INL) produces 135Xe, 133mXe, 133Xe, and 131mXe standards used for the calibration and testing of collection equipment and analytical techniques used to monitor radio xenon emissions. At INL, xenon is produced and collected as one of several spontaneous fission products from a 252Cf source. Further chromatographic purification of the fission gases ensures the separations of the xenon fraction for selective collection. An explanation of the fission gas collection, separation and purification is presented. Additionally,more » the range of 135Xe to 133Xe ratio that can be isolated is explained. This is an operational update on the work introduced previously, now that it is in operation and has been recharged with a second 252Cf source.« less

  6. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon

    PubMed Central

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Abstract Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results. Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon–oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images. Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects. Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images

  7. [Intracranial and cerebral perfusion pressure in neurosurgical patients during anaesthesia with xenon].

    PubMed

    Rylova, A V; Gavrilov, A G; Lubnin, A Iu; Potapov, A A

    2014-01-01

    Despite difficulties in providing xenon anaesthesia, xenon still seems to be attractive for neurosurgical procedures. But data upon its effect on intracranial (ICP) and cerebral perfusion pressure (CPP) remains controversial. We monitored ICP and CPP in patients with or without intracranial hypertension during xenon inhalation in different concentrations. Our results suggest that caution should be used while inhaling xenon in high anaesthetic concentration in patients wiith known intracranial hypertension. We also address new possibilities of xenon use, e.g., for sedation in neurosurgery. The study was supported by Russian Fund for Fundamental Research, grant number 13-04-01640.

  8. Autonomous cycling between excitatory and inhibitory coupling in photosensitive chemical oscillators

    NASA Astrophysics Data System (ADS)

    Yengi, Desmond; Tinsley, Mark R.; Showalter, Kenneth

    2018-04-01

    Photochemically coupled Belousov-Zhabotinsky micro-oscillators are studied in experiments and simulations. The photosensitive oscillators exhibit excitatory or inhibitory coupling depending on the surrounding reaction mixture composition, which can be systematically varied. In-phase or out-of-phase synchronization is observed with predominantly excitatory or inhibitory coupling, respectively, and complex frequency cycling between excitatory and inhibitory coupling is found between these extremes. The dynamical behavior is characterized in terms of the corresponding phase response curves, and a map representation of the dynamics is presented.

  9. Signal yields, energy resolution, and recombination fluctuations in liquid xenon

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2017-01-01

    This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon recombination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2 and 16 keV with 3H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data.

  10. Abatement of Xenon and Iodine Emissions from Medical Isotope Production Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Charles G.; Sorensen, Christina M.; Bowyer, Ted W.

    2014-04-01

    The capability of the International Monitoring System (IMS) to detect xenon from underground nuclear explosions is dependent on the radioactive xenon background. Adding to the background, medical isotope production (MIP) by fission releases several important xenon isotopes including xenon-133 and iodine-133 that decays to xenon-133. The amount of xenon released from these facilities may be equivalent to or exceed that released from an underground nuclear explosion. Thus the release of gaseous fission products within days of irradiation makes it difficult to distinguish MIP emissions from a nuclear explosion. In addition, recent shortages in molybdenum-99 have created interest and investment opportunitiesmore » to design and build new MIP facilities in the United States and throughout the world. Due to the potential increase in the number of MIP facilities, a discussion of abatement technologies provides insight into how the problem of emission control from MIP facilities can be tackled. A review of practices is provided to delineate methods useful for abatement of medical isotopes.« less

  11. Parallel regulation of feedforward inhibition and excitation during whisker map plasticity

    PubMed Central

    House, David RC; Elstrott, Justin; Koh, Eileen; Chung, Jason; Feldman, Daniel E.

    2011-01-01

    Sensory experience drives robust plasticity of sensory maps in cerebral cortex, but the role of inhibitory circuits in this process is not fully understood. We show that classical deprivation-induced whisker map plasticity in layer 2/3 (L2/3) of rat somatosensory (S1) cortex involves robust weakening of L4-L2/3 feedforward inhibition. This weakening was caused by reduced L4 excitation onto L2/3 fast-spiking (FS) interneurons, which mediate sensitive feedforward inhibition, and was partially offset by strengthening of unitary FS to L2/3 pyramidal cell synapses. Weakening of feedforward inhibition paralleled the known weakening of feedforward excitation, so that mean excitatory-inhibitory balance and timing onto L2/3 pyramidal cells were preserved. Thus, reduced feedforward inhibition is a covert compensatory process that can maintain excitatory-inhibitory balance during classical deprivation-induced Hebbian map plasticity. PMID:22153377

  12. Inhibition of cystathionine-gamma-lyase leads to loss of glutathione and aggravation of mitochondrial dysfunction mediated by excitatory amino acid in the CNS.

    PubMed

    Diwakar, Latha; Ravindranath, Vijayalakshmi

    2007-01-01

    Oxidative stress has been implicated in the pathogenesis and progression of neurodegenerative disorders and antioxidants potentially have a major role in neuroprotection. Optimum levels of glutathione (gamma-glutamylcysteinyl glycine), an endogenous thiol antioxidant are required for the maintenance of the redox status of cells. Cystathionine gamma-lyase is the rate-limiting enzyme for the synthesis of cysteine from methionine and availability of cysteine is a critical factor in glutathione synthesis. In the present study, we have examined the role of cystathionine gamma-lyase in maintaining the redox homeostasis in brain, particularly with reference to mitochondrial function since the complex I of the electron transport chain is sensitive to redox perturbation. Inhibition of cystathionine gamma-lyase by l-propargylglycine caused loss of glutathione and decrease in complex I activity in the brain although the enzyme activity in mouse brain was 1% of the corresponding hepatic activity. We then examined the effect of this inhibition on the neurotoxicity mediated by the excitatory amino acid, l-beta-oxalyl amino-l-alanine, which is the causative factor of a type of motor neuron disease, neurolathyrism. l-beta-Oxalyl amino-l-alanine toxicity was exacerbated by l-propargylglycine measured as loss of complex I activity indicating the importance of cystathionine gamma-lyase in maintaining glutathione levels and in turn the mitochondrial function during excitotoxicity. Oxidative stress generated by l-beta-oxalyl amino-l-alanine itself inhibited cystathionine gamma-lyase, which could be prevented by prior treatment with thiol antioxidant. Thus, cystathionine gamma-lyase itself is susceptible to inactivation by oxidative stress and this can potentially exacerbate oxidant-induced damage. Cystathionine gamma-lyase is present in neuronal cells in human brain and its activity is several-fold higher compared to mouse brain. It could potentially play an important role in

  13. Xenon International Automated Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-08-05

    The Xenon International Automated Control software monitors, displays status, and allows for manual operator control as well as fully automatic control of multiple commercial and PNNL designed hardware components to generate and transmit atmospheric radioxenon concentration measurements every six hours.

  14. Excitatory amino acid neurotoxicity and neurodegenerative disease.

    PubMed

    Meldrum, B; Garthwaite, J

    1990-09-01

    The progress over the last 30 years in defining the role of excitatory amino acids in normal physiological function and in the abnormal neuronal activity of epilepsy has been reviewed in earlier articles in this series. In the last five years it has become clear that excitatory amino acids also play a role in a wide range of neurodegenerative processes. The evidence is clearest where the degenerative process is acute, but is more controversial for slow degenerative processes. In this article Brian Meldrum and John Garthwaite review in vivo and in vitro studies of the cytotoxicity of amino acids and summarize the contribution of such toxicity to acute and chronic neurodegenerative disorders.

  15. Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates.

    PubMed

    Vida, Imre; Bartos, Marlene; Jonas, Peter

    2006-01-05

    Networks of GABAergic neurons are key elements in the generation of gamma oscillations in the brain. Computational studies suggested that the emergence of coherent oscillations requires hyperpolarizing inhibition. Here, we show that GABA(A) receptor-mediated inhibition in mature interneurons of the hippocampal dentate gyrus is shunting rather than hyperpolarizing. Unexpectedly, when shunting inhibition is incorporated into a structured interneuron network model with fast and strong synapses, coherent oscillations emerge. In comparison to hyperpolarizing inhibition, networks with shunting inhibition show several advantages. First, oscillations are generated with smaller tonic excitatory drive. Second, network frequencies are tuned to the gamma band. Finally, robustness against heterogeneity in the excitatory drive is markedly improved. In single interneurons, shunting inhibition shortens the interspike interval for low levels of drive but prolongs it for high levels, leading to homogenization of neuronal firing rates. Thus, shunting inhibition may confer increased robustness to gamma oscillations in the brain.

  16. Terrestrial and Martian weathering signatures of xenon components in shergottite mineral separates

    NASA Astrophysics Data System (ADS)

    Cartwright, J. A.; Ocker, K. D.; Crowther, S. A.; Burgess, R.; Gilmour, J. D.

    2010-08-01

    Xenon-isotopic ratios, step-heating release patterns, and gas concentrations of mineral separates from Martian shergottites Roberts Massif (RBT) 04262, Dar al Gani (DaG) 489, Shergotty, and Elephant Moraine (EET) 79001 lithology B are reported. Concentrations of Martian atmospheric xenon are similar in mineral separates from all meteorites, but more weathered samples contain more terrestrial atmospheric xenon. The distributions of xenon from the Martian and terrestrial atmospheres among minerals in any one sample are similar, suggesting similarities in the processes by which they were acquired. However, in opaque and maskelynite fractions, Martian atmospheric xenon is released at higher temperatures than terrestrial atmospheric xenon. It is suggested that both Martian and terrestrial atmospheric xenon were initially introduced by weathering (low temperature alteration processes). However, the Martian component was redistributed by shock, accounting for its current residence in more retentive sites. The presence or absence of detectable 129Xe from the Martian atmosphere in mafic minerals may correspond to the extent of crustal contamination of the rock's parent melt. Variable contents of excess 129Xe contrast with previously reported consistent concentrations of excess 40Ar, suggesting distinct sources contributed these gases to the parent magma.

  17. Signal yields, energy resolution, and recombination fluctuations in liquid xenon

    DOE PAGES

    Akerib, D. ?S.; Alsum, S.; Ara?jo, H. ?M.; ...

    2017-01-19

    This study presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon recombination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronicmore » recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2 and 16 keV with 3H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data.« less

  18. Proactive interference by cues presented without outcomes: Differences in context specificity of latent inhibition and conditioned inhibition.

    PubMed

    Miguez, Gonzalo; McConnell, Bridget; Polack, Cody W; Miller, Ralph R

    2018-01-08

    This report is part of a larger project examining associative interference as a function of the nature of the interfering and target associations. Lick suppression experiments with rats assessed the effects of context shifts on proactive outcome interference by latent inhibition (LI) and Pavlovian conditioned inhibition (CI) treatments on subsequently trained Pavlovian conditioned excitation treatment. LI and CI were trained in Context A during Phase 1, and then excitation treatment was administered in Context B during Phase 2, followed by tests for conditioned excitation in Contexts A, B, or C. Experiment 1 preliminarily established our LI and CI treatments and resulted in equally retarded acquisition of behavioral control when the target cue was subsequently trained as a conditioned excitor and tested in Context A. However, only CI treatment caused the target to pass a summation test for inhibition. Centrally, Experiment 2 consisted of LI and CI treatments in Context A followed by excitatory training in Context B. Testing found low excitatory control by both LI and CI cues in Context A relative to strong excitatory control in Context B, but CI treatment transferred to Context C more strongly than LI treatment. Experiment 3 determined that LI treatment failed to transfer to Context C even when the number of LI trials was greatly increased. Thus, first-learned LI appears to be relatively context specific, whereas first-learned CI generalizes to a neutral context. These observations add to existing evidence that LI and CI treatments result in different types of learning that diverge sharply in transfer to a novel test context.

  19. Xenon in the treatment of panic disorder: an open label study.

    PubMed

    Dobrovolsky, Alexander; Ichim, Thomas E; Ma, Daqing; Kesari, Santosh; Bogin, Vladimir

    2017-06-13

    Current treatments of panic disorder (PD) are limited by adverse effects, poor efficacy, and need for chronic administration. The established safety profile of subanesthetic concentrations of xenon gas, which is known to act as a glutamate subtype NMDA receptor antagonist, coupled with preclinical studies demonstrating its effects in other anxiety related conditions, prompted us to evaluate its feasibility and efficacy in treatment of patients with PD. An open-label clinical trial of xenon-oxygen mixture was conducted in 81 patients with PD; group 1 consisting of patients only with PD (N = 42); and group 2 patients with PD and other comorbidities (N = 39). Based on the analysis of the results of a number of psychometric scales used in this study (SAS, HADS, CGI), several conclusions can be made: (1) xenon is a potentially effective modality in acute treatment of PD; (2) an anti-panic effect of xenon administration persists for at least 6 months after the completion of the active phase of treatment; (3) xenon inhalation is well tolerated, with the drop-out rates being much lower than that of conventional pharmacotherapy (5.8% vs. 15%); (4) the severity of depressive disorders that frequently accompany PD can be significantly reduced with the use of xenon; (5) xenon may be considered as an alternative to benzodiazepines in conjunction with cognitive-behavioral therapy as a safe modality in treatment of anxiety disorder. These data support the need for randomized double-blind clinical trials to further study xenon-based interventions. Trial registration This clinical trial was retrospectively registered on April 14th, 2017 as ISRCTN15184285 in the ISRCTN database.

  20. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    PubMed Central

    2010-01-01

    Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG) and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance motor output up to 32

  1. Enhanced excitatory input to melanin concentrating hormone neurons during developmental period of high food intake is mediated by GABA.

    PubMed

    Li, Ying; van den Pol, Anthony N

    2009-12-02

    In contrast to the local axons of GABA neurons of the cortex and hippocampus, lateral hypothalamic neurons containing melanin concentrating hormone (MCH) and GABA send long axons throughout the brain and play key roles in energy homeostasis and mental status. In adults, MCH neurons maintain a hyperpolarized membrane potential and most of the synaptic input is inhibitory. In contrast, we found that developing MCH neurons received substantially more excitatory synaptic input. Based on gramicidin-perforated patch recordings in hypothalamic slices from MCH-green fluorescent protein transgenic mice, we found that GABA was the primary excitatory synaptic transmitter in embryonic and neonatal ages up to postnatal day 10. Surprisingly, glutamate assumed only a minor excitatory role, if any. GABA plays a complex role in developing MCH neurons, with its actions conditionally dependent on a number of factors. GABA depolarization could lead to an increase in spikes either independently or in summation with other depolarizing stimuli, or alternately, depending on the relative timing of other depolarizing events, could lead to shunting inhibition. The developmental shift from depolarizing to hyperpolarizing occurred later in the dendrites than in the cell body. Early GABA depolarization was based on a Cl(-)-dependent inward current. An interesting secondary depolarization in mature neurons that followed an initial hyperpolarization was based on a bicarbonate mechanism. Thus during the early developmental period when food consumption is high, MCH neurons are more depolarized than in the adult, and an increased level of excitatory synaptic input to these orexigenic cells is mediated by GABA.

  2. Density Functional Theory (DFT) Simulations of Shocked Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Magyar, Rudolph J.

    2009-06-01

    Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, Xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as Xenon is known to form compounds at normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. In this talk, we present DFT-MD simulations of shocked liquid Xenon with the goal of developing an improved equation of state. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. NWA 8114: Analysis of Xenon in this Unique Martian Meteorite

    NASA Astrophysics Data System (ADS)

    Crowther, S. A.; Jastrzebski, N. D.; Nottingham, M.; Theis, K. J.; Gilmour, J. D.

    2014-09-01

    The Xe composition of NWA 8114 is dominated by martian atmospheric xenon, with contributions from terrestrial atmospheric contamination at low temperature and fissiogenic xenon at high temperature. The overall systematics are similar to Nakhla.

  4. Enhancement by citral of glutamatergic spontaneous excitatory transmission in adult rat substantia gelatinosa neurons.

    PubMed

    Zhu, Lan; Fujita, Tsugumi; Jiang, Chang-Yu; Kumamoto, Eiichi

    2016-02-10

    Although citral, which is abundantly present in lemongrass, has various actions including antinociception, how citral affects synaptic transmission has not been examined as yet. Citral activates in heterologous cells transient receptor potential vanilloid-1, ankyrin-1, and melastatin-8 (TRPV1, TRPA1, and TRPM8, respectively) channels, the activation of which in the spinal lamina II [substantia gelatinosa (SG)] increases the spontaneous release of L-glutamate from nerve terminals. It remains to be examined what types of transient receptor potential channel in native neurons are activated by citral. With a focus on transient receptor potential activation, we examined the effect of citral on glutamatergic spontaneous excitatory transmission using the whole-cell patch-clamp technique to SG neurons in adult rat spinal cord slices. Bath-applied citral for 3 min increased the frequency of spontaneous excitatory postsynaptic current in a concentration-dependent manner (half-maximal effective concentration=0.58 mM), with a small increase in its amplitude. The spontaneous excitatory postsynaptic current frequency increase produced by citral was repeated at a time interval of 30 min, albeit this action recovered with a slow time course after washout. The presynaptic effect of citral was inhibited by TRPA1 antagonist HC-030031, but not by voltage-gated Na-channel blocker tetrodotoxin, TRPV1 antagonist capsazepine, and TRPM8 antagonist BCTC. It is concluded that citral increases spontaneous L-glutamate release in SG neurons by activating TRPA1 channels. Considering that the SG plays a pivotal role in modulating nociceptive transmission from the periphery, the citral activity could contribute toward at least a part of the modulation.

  5. A Decade of Xenon Chemistry

    ERIC Educational Resources Information Center

    Moody, G. J.

    1974-01-01

    Presents reactions for the formation of xenon compounds and compounds of the other inert gases. Provides bonding and structure theories for noble gas compounds and speculates on possible applications. (GS)

  6. Piracetam ameliorated oxygen and glucose deprivation-induced injury in rat cortical neurons via inhibition of oxidative stress, excitatory amino acids release and P53/Bax.

    PubMed

    He, Zhi; Hu, Min; Zha, Yun-hong; Li, Zi-cheng; Zhao, Bo; Yu, Ling-ling; Yu, Min; Qian, Ying

    2014-05-01

    Our previous work has demonstrated that piracetam inhibited the decrease in amino acid content induced by chronic hypoperfusion, ameliorated the dysfunction of learning and memory in a hypoperfusion rat model, down-regulated P53, and BAX protein, facilitated the synaptic plasticity, and may be helpful in the treatment of vascular dementia. To explore the precise mechanism, the present study further evaluated effects of piracetam on Oxygen and glucose deprivation (OGD)-induced neuronal damage in rat primary cortical cells. The addition of piracetam to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and lactate dehydrogenase release experiments. Piracetam also lowered the levels of malondialdehyde, nitrogen monoxidum, and xanthine oxidase which was increased in the OGD cells, and enhanced the activities of superoxide dismutase and glutathione peroxidase, which were decreased in the OGD cells. We also demonstrated that piracetam could decrease glutamate and aspartate release when cortical cells were subjected to OGD. Furthermore, Western blot study demonstrated that piracetam attenuated the increased expression of P53 and BAX protein in OGD cells. These observations demonstrated that piracetam reduced OGD-induced neuronal damage by inhibiting the oxidative stress and decreasing excitatory amino acids release and lowering P53/Bax protein expression in OGD cells.

  7. Multiple effects of β-amyloid on single excitatory synaptic connections in the PFC.

    PubMed

    Wang, Yun; Zhou, Thomas H; Zhi, Zhina; Barakat, Amey; Hlatky, Lynn; Querfurth, Henry

    2013-01-01

    Prefrontal cortex (PFC) is recognized as an AD-vulnerable region responsible for defects in cognitive functioning. Pyramidal cell (PC) connections are typically facilitating (F) or depressing (D) in PFC. Excitatory post-synaptic potentials (EPSPs) were recorded using patch-clamp from single connections in PFC slices of rats and ferrets in the presence of β-amyloid (Aβ). Synaptic transmission was significantly enhanced or reduced depending on their intrinsic type (facilitating or depressing), Aβ species (Aβ 40 or Aβ 42) and concentration (1-200 nM vs. 0.3-1 μ M). Nanomolar Aβ 40 and Aβ 42 had opposite effects on F-connections, resulting in fewer or increased EPSP failure rates, strengthening or weakening EPSPs and enhancing or inhibiting short-term potentiation [STP: synaptic augmentation (SA) and post-tetanic potentiation (PTP)], respectively. High Aβ 40 concentrations induced inhibition regardless of synaptic type. D-connections were inhibited regardless of Aβ species or concentration. The inhibition induced with bath application was hard to recover by washout, but a complete recovery was obtained with brief local application and prompt washout. Our data suggests that Aβ 40 acts on the prefrontal neuronal network by modulating facilitating and depressing synapses. At higher levels, both Aβ 40 and Aβ 42 inhibit synaptic activity and cause irreversible toxicity once diffusely accumulated in the synaptic environment.

  8. Multiple effects of β-amyloid on single excitatory synaptic connections in the PFC

    PubMed Central

    Wang, Yun; Zhou, Thomas H.; Zhi, Zhina; Barakat, Amey; Hlatky, Lynn; Querfurth, Henry

    2013-01-01

    Prefrontal cortex (PFC) is recognized as an AD-vulnerable region responsible for defects in cognitive functioning. Pyramidal cell (PC) connections are typically facilitating (F) or depressing (D) in PFC. Excitatory post-synaptic potentials (EPSPs) were recorded using patch-clamp from single connections in PFC slices of rats and ferrets in the presence of β-amyloid (Aβ). Synaptic transmission was significantly enhanced or reduced depending on their intrinsic type (facilitating or depressing), Aβ species (Aβ 40 or Aβ 42) and concentration (1–200 nM vs. 0.3–1 μ M). Nanomolar Aβ 40 and Aβ 42 had opposite effects on F-connections, resulting in fewer or increased EPSP failure rates, strengthening or weakening EPSPs and enhancing or inhibiting short-term potentiation [STP: synaptic augmentation (SA) and post-tetanic potentiation (PTP)], respectively. High Aβ 40 concentrations induced inhibition regardless of synaptic type. D-connections were inhibited regardless of Aβ species or concentration. The inhibition induced with bath application was hard to recover by washout, but a complete recovery was obtained with brief local application and prompt washout. Our data suggests that Aβ 40 acts on the prefrontal neuronal network by modulating facilitating and depressing synapses. At higher levels, both Aβ 40 and Aβ 42 inhibit synaptic activity and cause irreversible toxicity once diffusely accumulated in the synaptic environment. PMID:24027495

  9. GraXe, graphene and xenon for neutrinoless double beta decay searches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Monrabal, F.

    2012-02-01

    We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in {sup 136}XE. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, graphene. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the {sup 136}XE isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to themore » xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope {sup 136}XE is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.« less

  10. Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.

    PubMed

    Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z

    2014-08-14

    The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found. Copyright © 2014. Published by Elsevier B.V.

  11. Parallel processing by cortical inhibition enables context-dependent behavior.

    PubMed

    Kuchibhotla, Kishore V; Gill, Jonathan V; Lindsay, Grace W; Papadoyannis, Eleni S; Field, Rachel E; Sten, Tom A Hindmarsh; Miller, Kenneth D; Froemke, Robert C

    2017-01-01

    Physical features of sensory stimuli are fixed, but sensory perception is context dependent. The precise mechanisms that govern contextual modulation remain unknown. Here, we trained mice to switch between two contexts: passively listening to pure tones and performing a recognition task for the same stimuli. Two-photon imaging showed that many excitatory neurons in auditory cortex were suppressed during behavior, while some cells became more active. Whole-cell recordings showed that excitatory inputs were affected only modestly by context, but inhibition was more sensitive, with PV + , SOM + , and VIP + interneurons balancing inhibition and disinhibition within the network. Cholinergic modulation was involved in context switching, with cholinergic axons increasing activity during behavior and directly depolarizing inhibitory cells. Network modeling captured these findings, but only when modulation coincidently drove all three interneuron subtypes, ruling out either inhibition or disinhibition alone as sole mechanism for active engagement. Parallel processing of cholinergic modulation by cortical interneurons therefore enables context-dependent behavior.

  12. Reflectance of polytetrafluoroethylene for xenon scintillation light

    NASA Astrophysics Data System (ADS)

    Silva, C.; Pinto da Cunha, J.; Pereira, A.; Chepel, V.; Lopes, M. I.; Solovov, V.; Neves, F.

    2010-03-01

    Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet (VUV) wavelength region (λ ≃175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work, we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived, and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Other fluoropolymers, namely, ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), and perfluoro-alkoxyalkane (PFA) were also measured.

  13. Gravity assisted recovery of liquid xenon at large mass flow rates

    NASA Astrophysics Data System (ADS)

    Virone, L.; Acounis, S.; Beaupère, N.; Beney, J.-L.; Bert, J.; Bouvier, S.; Briend, P.; Butterworth, J.; Carlier, T.; Chérel, M.; Crespi, P.; Cussonneau, J.-P.; Diglio, S.; Manzano, L. Gallego; Giovagnoli, D.; Gossiaux, P.-B.; Kraeber-Bodéré, F.; Ray, P. Le; Lefèvre, F.; Marty, P.; Masbou, J.; Morteau, E.; Picard, G.; Roy, D.; Staempflin, M.; Stutzmann, J.-S.; Visvikis, D.; Xing, Y.; Zhu, Y.; Thers, D.

    2018-06-01

    We report on a liquid xenon gravity assisted recovery method for nuclear medical imaging applications. The experimental setup consists of an elevated detector enclosed in a cryostat connected to a storage tank called ReStoX. Both elements are part of XEMIS2 (XEnon Medical Imaging System): an innovative medical imaging facility for pre-clinical research that uses pure liquid xenon as detection medium. Tests based on liquid xenon transfer from the detector to ReStoX have been successfully performed showing that an unprecedented mass flow rate close to 1 ton per hour can be reached. This promising achievement as well as future areas of improvement will be discussed in this paper.

  14. Modeling Xenon Purification Systems in a Laser Inertial Fusion Engine

    NASA Astrophysics Data System (ADS)

    Hopkins, Ann; Gentile, Charles

    2011-10-01

    A Laser Inertial Fusion Engine (LIFE) is a proposed method to employ fusion energy to produce electricity for consumers. However, before it can be built and used as such, each aspect of a LIFE power plant must first be meticulously planned. We are in the process of developing and perfecting models for an exhaust processing and fuel recovery system. Such a system is especially essential because it must be able to recapture and purify expensive materials involved in the reaction so they may be reused. One such material is xenon, which is to be used as an intervention gas in the target chamber. Using Aspen HYSYS, we have modeled several subsystems for exhaust processing, including a subsystem for xenon recovery and purification. After removing hydrogen isotopes using lithium bubblers, we propose to use cryogenic distillation to purify the xenon from remaining contaminants. Aspen HYSYS allows us to analyze predicted flow rates, temperatures, pressures, and compositions within almost all areas of the xenon purification system. Through use of Aspen models, we hope to establish that we can use xenon in LIFE efficiently and in a practical manner.

  15. Liquid xenon purification, de-radonation (and de-kryptonation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pocar, Andrea, E-mail: pocar@umass.edu; Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550

    Liquid xenon detectors are at the forefront of rare event physics, including searches for neutrino-less double beta decay and WIMP dark matter. The xenon for these experiments needs to be purified from chemical impurities such as electronegative atoms and molecules, which absorb ionization electrons, and VUV (178 nm) scintillation light-absorbing chemical species. In addition, superb purification from radioactive impurities is required. Particularly challenging are radioactive noble isotopes ({sup 85}Kr,{sup 39,42}Ar,{sup 220,222}Rn). Radon is a particularly universal problem, due to the extended decay sequence of its daughters and its ubiquitous presence in detector materials. Purification and de-radonation of liquid xenon aremore » addressed with particular focus on the experience gained with the EXO-200 neutrino-less double beta decay detector.« less

  16. Mobility and fluorescence of barium ions in xenon gas for the exo experiment

    NASA Astrophysics Data System (ADS)

    Benitez Medina, Julio Cesar

    The Enriched Xenon Observatory (EXO) is an experiment which aims to observe the neutrinoless double beta decay of 136Xe. The measurement of this decay would give information about the absolute neutrino mass and whether or not the neutrino is its own antiparticle. Since this is a very rare decay, the ability to reject background events by detecting the barium ion daughter from the double beta decay would be a major advantage. EXO is currently operating a detector with 200 kg of enriched liquid xenon, and there are plans to build a ton scale xenon detector. Measurements of the purity of liquid xenon in our liquid xenon test cell are reported. These results are relevant to the research on detection of single barium ions by our research group at Colorado State University. Details of the operation of the purity monitor are described. The effects of using a purifier, recirculation and laser ablation on the purity of liquid xenon are discussed. Mobility measurements of barium in xenon gas are reported for the first time. The variation of mobility with xenon gas pressure suggests that a significant fraction of molecular ions are formed when barium ions interact with xenon gas at high pressures. The measured mobility of Ba+ in Xe gas at different pressures is compared with the predicted theoretical value, and deviations are explained by a model that describes the fraction of molecular ions in Xe gas as a function of pressure. The results are useful for the analysis of experiments of fluorescence of Ba+ in xenon gas. It is also important to know the mobility of the ions in order to calculate the time they interact with an excitation laser in fluorescence experiments and in proposed 136 Ba+ daughter detection schemes. This thesis presents results of detection of laser induced fluorescence of Ba+ ions in Xe gas. Measurements of the pressure broadening of the excitation spectra of Ba+ in xenon gas are presented. Nonradiative decays due to gas collisions and optical pumping

  17. Excitatory motor neurons are local oscillators for backward locomotion

    PubMed Central

    Guan, Sihui Asuka; Fouad, Anthony D; Meng, Jun; Kawano, Taizo; Huang, Yung-Chi; Li, Yi; Alcaire, Salvador; Hung, Wesley; Lu, Yangning; Qi, Yingchuan Billy; Jin, Yishi; Alkema, Mark; Fang-Yen, Christopher

    2018-01-01

    Cell- or network-driven oscillators underlie motor rhythmicity. The identity of C. elegans oscillators remains unknown. Through cell ablation, electrophysiology, and calcium imaging, we show: (1) forward and backward locomotion is driven by different oscillators; (2) the cholinergic and excitatory A-class motor neurons exhibit intrinsic and oscillatory activity that is sufficient to drive backward locomotion in the absence of premotor interneurons; (3) the UNC-2 P/Q/N high-voltage-activated calcium current underlies A motor neuron’s oscillation; (4) descending premotor interneurons AVA, via an evolutionarily conserved, mixed gap junction and chemical synapse configuration, exert state-dependent inhibition and potentiation of A motor neuron’s intrinsic activity to regulate backward locomotion. Thus, motor neurons themselves derive rhythms, which are dually regulated by the descending interneurons to control the reversal motor state. These and previous findings exemplify compression: essential circuit properties are conserved but executed by fewer numbers and layers of neurons in a small locomotor network. PMID:29360035

  18. Excitatory motor neurons are local oscillators for backward locomotion.

    PubMed

    Gao, Shangbang; Guan, Sihui Asuka; Fouad, Anthony D; Meng, Jun; Kawano, Taizo; Huang, Yung-Chi; Li, Yi; Alcaire, Salvador; Hung, Wesley; Lu, Yangning; Qi, Yingchuan Billy; Jin, Yishi; Alkema, Mark; Fang-Yen, Christopher; Zhen, Mei

    2018-01-23

    Cell- or network-driven oscillators underlie motor rhythmicity. The identity of C. elegans oscillators remains unknown. Through cell ablation, electrophysiology, and calcium imaging, we show: (1) forward and backward locomotion is driven by different oscillators; (2) the cholinergic and excitatory A-class motor neurons exhibit intrinsic and oscillatory activity that is sufficient to drive backward locomotion in the absence of premotor interneurons; (3) the UNC-2 P/Q/N high-voltage-activated calcium current underlies A motor neuron's oscillation; (4) descending premotor interneurons AVA, via an evolutionarily conserved, mixed gap junction and chemical synapse configuration, exert state-dependent inhibition and potentiation of A motor neuron's intrinsic activity to regulate backward locomotion. Thus, motor neurons themselves derive rhythms, which are dually regulated by the descending interneurons to control the reversal motor state. These and previous findings exemplify compression: essential circuit properties are conserved but executed by fewer numbers and layers of neurons in a small locomotor network. © 2017, Gao et al.

  19. Effects of Neuromodulation on Excitatory-Inhibitory Neural Network Dynamics Depend on Network Connectivity Structure

    NASA Astrophysics Data System (ADS)

    Rich, Scott; Zochowski, Michal; Booth, Victoria

    2018-01-01

    Acetylcholine (ACh), one of the brain's most potent neuromodulators, can affect intrinsic neuron properties through blockade of an M-type potassium current. The effect of ACh on excitatory and inhibitory cells with this potassium channel modulates their membrane excitability, which in turn affects their tendency to synchronize in networks. Here, we study the resulting changes in dynamics in networks with inter-connected excitatory and inhibitory populations (E-I networks), which are ubiquitous in the brain. Utilizing biophysical models of E-I networks, we analyze how the network connectivity structure in terms of synaptic connectivity alters the influence of ACh on the generation of synchronous excitatory bursting. We investigate networks containing all combinations of excitatory and inhibitory cells with high (Type I properties) or low (Type II properties) modulatory tone. To vary network connectivity structure, we focus on the effects of the strengths of inter-connections between excitatory and inhibitory cells (E-I synapses and I-E synapses), and the strengths of intra-connections among excitatory cells (E-E synapses) and among inhibitory cells (I-I synapses). We show that the presence of ACh may or may not affect the generation of network synchrony depending on the network connectivity. Specifically, strong network inter-connectivity induces synchronous excitatory bursting regardless of the cellular propensity for synchronization, which aligns with predictions of the PING model. However, when a network's intra-connectivity dominates its inter-connectivity, the propensity for synchrony of either inhibitory or excitatory cells can determine the generation of network-wide bursting.

  20. A dual-phase xenon TPC for scintillation and ionisation yield measurements in liquid xenon

    NASA Astrophysics Data System (ADS)

    Baudis, Laura; Biondi, Yanina; Capelli, Chiara; Galloway, Michelle; Kazama, Shingo; Kish, Alexander; Pakarha, Payam; Piastra, Francesco; Wulf, Julien

    2018-05-01

    A small-scale, two-phase (liquid/gas) xenon time projection chamber ( Xurich II) was designed, constructed and is under operation at the University of Zürich. Its main purpose is to investigate the microphysics of particle interactions in liquid xenon at energies below 50 keV, which are relevant for rare event searches using xenon as target material. Here we describe in detail the detector, its associated infrastructure, and the signal identification algorithm developed for processing and analysing the data. We present the first characterisation of the new instrument with calibration data from an internal ^83{m} Kr source. The zero-field light yield is 15.0 and 14.0 photoelectrons/keV at 9.4 and 32.1 keV, respectively, and the corresponding values at an electron drift field of 1 kV/cm are 10.8 and 7.9 photoelectrons/keV. The charge yields at these energies are 28 and 31 electrons/keV, with the proportional scintillation yield of 24 photoelectrons per one electron extracted into the gas phase, and an electron lifetime of 200 μ s. The relative energy resolution, σ /E, is 11.9 and 5.8% at 9.4 and 32.1 keV, respectively using a linear combination of the scintillation and ionisation signals. We conclude with measurements of the electron drift velocity at various electric fields, and compare these to literature values.

  1. Radon background in liquid xenon detectors

    NASA Astrophysics Data System (ADS)

    Rupp, N.

    2018-02-01

    The radioactive daughters isotope of 222Rn are one of the highest risk contaminants in liquid xenon detectors aiming for a small signal rate. The noble gas is permanently emanated from the detector surfaces and mixed with the xenon target. Because of its long half-life 222Rn is homogeneously distributed in the target and its subsequent decays can mimic signal events. Since no shielding is possible this background source can be the dominant one in future large scale experiments. This article provides an overview of strategies used to mitigate this source of background by means of material selection and on-line radon removal techniques.

  2. Density Functional Theory (dft) Simulations of Shocked Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Magyar, Rudolph J.

    2009-12-01

    Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as xenon is known to form compounds under normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. We present DFT-MD simulations of shocked liquid xenon with the goal of developing an improved equation of state. The calculated Hugoniot to 2 MPa compares well with available experimental shock data. Sandia is a mul-tiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    PubMed

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  4. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity.

    PubMed

    Sonsalla, P K; Nicklas, W J; Heikkila, R E

    1989-01-20

    The systemic administration of either methamphetamine or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to experimental animals produces degenerative changes in nigrostriatal dopaminergic neurons or their axon terminals. This study was conducted to determine if excitatory amino acids, which appear to be involved in various neurodegenerative disorders, might also contribute to the dopaminergic neurotoxicity produced in mice by either methamphetamine or MPTP. MK-801, phencyclidine, and ketamine, noncompetitive antagonists of one subtype of excitatory amino acid receptor, the N-methyl-D-aspartate receptor, provided substantial protection against neurotoxicity produced by methamphetamine but not that produced by MPTP. These findings indicate that excitatory amino acids play an important role in the nigrostriatal dopaminergic damage induced by methamphetamine.

  5. Minimum alveolar concentration (MAC) for sevoflurane and xenon at normothermia and hypothermia in newborn pigs.

    PubMed

    Liu, X; Dingley, J; Elstad, M; Scull-Brown, E; Steen, P A; Thoresen, M

    2013-05-01

    Neuroprotection from therapeutic hypothermia increases when combined with the anaesthetic gas xenon in animal studies. A clinical feasibility study of the combined treatment has been successfully undertaken in asphyxiated human term newborns. It is unknown whether xenon alone would be sufficient for sedation during hypothermia eliminating or reducing the need for other sedative or analgesic infusions in ventilated sick infants. Minimum alveolar concentration (MAC) of xenon is unknown in any neonatal species. Eight newborn pigs were anaesthetised with sevoflurane alone and then sevoflurane plus xenon at two temperatures. Pigs were randomised to start at either 38.5°C or 33.5°C. MAC for sevoflurane was determined using the claw clamp technique at the preset body temperature. For xenon MAC determination, a background of 0.5 MAC sevoflurane was used, and 60% xenon added to the gas mixture. The relationship between sevoflurane and xenon MAC is assumed to be additive. Xenon concentrations were changed in 5% steps until a positive clamp reaction was noted. Pigs' temperature was changed to the second target, and two MAC determinations for sevoflurane and 0.5 MAC sevoflurane plus xenon were repeated. MAC for sevoflurane was 4.1% [95% confidence interval (CI): 3.65-4.50] at 38.5°C and 3.05% (CI: 2.63-3.48) at 33.5°C, a significant reduction. MAC for xenon was 120% at 38.5°C and 116% at 33.5°C, not different. In newborn swine sevoflurane, MAC was temperature dependent, while xenon MAC was independent of temperature. There was large individual variability in xenon MAC, from 60% to 120%. © 2013 The Acta Anaesthesiologica Scandinavica Foundation.

  6. Cell tracking with caged xenon: using cryptophanes as MRI reporters upon cellular internalization.

    PubMed

    Klippel, Stefan; Döpfert, Jörg; Jayapaul, Jabadurai; Kunth, Martin; Rossella, Federica; Schnurr, Matthias; Witte, Christopher; Freund, Christian; Schröder, Leif

    2014-01-07

    Caged xenon has great potential in overcoming sensitivity limitations for solution-state NMR detection of dilute molecules. However, no application of such a system as a magnetic resonance imaging (MRI) contrast agent has yet been performed with live cells. We demonstrate MRI localization of cells labeled with caged xenon in a packed-bed bioreactor working under perfusion with hyperpolarized-xenon-saturated medium. Xenon hosts enable NMR/MRI experiments with switchable contrast and selectivity for cell-associated versus unbound cages. We present MR images with 10(3) -fold sensitivity enhancement for cell-internalized, dual-mode (fluorescence/MRI) xenon hosts at low micromolar concentrations. Our results illustrate the capability of functionalized xenon to act as a highly sensitive cell tracer for MRI detection even without signal averaging. The method will bridge the challenging gap for translation to in vivo studies for the optimization of targeted biosensors and their multiplexing applications. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. [Effects of xenon anesthesia on cerebral blood flow in neurosurgical patients without intracranial hypertension].

    PubMed

    Rylova, A V; Beliaev, A Iu; Lubnin, A Iu

    2013-01-01

    Among anesthetic agents used in neurosurgery xenon appears to be the most advantageous. It preserves arterial blood pressure, assures rapid recovery and neuroprotection. But the data is lacking on xenon effect upon cerebral blood flow under anesthetic conditions. We measured flow velocity in middle cerebral artery in neurosurgical patients without intracranial hypertension during closed circuit xenon anesthesia comparing propofol and xenon effect in the same patients. In our study xenon didn't seem to induce clinically relevant changes in cerebral blood flow and preserved cerebral vascular reactivity thus proving its safety in patients without intracranial hypertension.

  8. Modeling the Removal of Xenon from Lithium Hydrate with Aspen HYSYS

    NASA Astrophysics Data System (ADS)

    Efthimion, Phillip; Gentile, Charles

    2011-10-01

    The Laser Inertial Fusion Engine (LIFE) project mission is to provide a long-term, carbon-free source of sustainable energy, in the form of electricity. A conceptual xenon removal system has been modeled with the aid of Aspen HYSYS, a chemical process simulator. Aspen HYSYS provides excellent capability to model chemical flow processes, which generates outputs which includes specific variables such as temperature, pressure, and molar flow. The system is designed to strip out hydrogen isotopes deuterium and tritium. The base design bubbles plasma exhaust laden with x filled with liquid helium. The system separates the xenon from the hydrogen, deuterium, and tritium with a lithium hydrate and a lithium bubbler. After the removal of the hydrogen and its isotopes, the xenon is then purified by way of the process of cryogenic distillation. The pure hydrogen, deuterium, and tritium are then sent to the isotope separation system (ISS). The removal of xenon is an integral part of the laser inertial fusion engine and Aspen HYSYS is an excellent tool to calculate how to create pure xenon.

  9. Xenon ventilation computed tomography and the management of asthma in the elderly.

    PubMed

    Park, Heung-Woo; Jung, Jae-Woo; Kim, Kyung-Mook; Kim, Tae-Wan; Lee, So-Hee; Lee, Chang Hyun; Goo, Jin Mo; Min, Kyung-Up; Cho, Sang-Heon

    2014-04-01

    Xenon ventilation computed tomography (CT) has shown potential in assessing the regional ventilation status in subjects with asthma. The purpose of this study was to evaluate the usefulness of xenon ventilation CT in the management of asthma in the elderly. Treatment-naïve asthmatics aged 65 years or older were recruited. Before initiation of medication, spirometry with bronchodilator (BD) reversibility, questionnaires to assess the severity of symptoms including a visual analogue scale (VAS), tests to evaluate cognitive function and mood, and xenon ventilation CT were performed. Xenon gas trapping (XT) on xenon ventilation CT represents an area where inhaled xenon gas was not expired and was trapped. Symptoms and lung functions were measured again after the 12-week treatment. A total of 30 elderly asthmatics were enrolled. The severity of dyspnoea measured by the VAS showed a significant correlation with the total number of areas of XT on the xenon ventilation CT taken in the pre-BD wash-out phase (r = -0.723, P < 0.001). The total number of areas of XT significantly decreased after BD inhalation, and differences in the total number of areas of XT (between the pre- and post-BD wash-out phases) at baseline showed significant correlations with the per cent increases in forced expiratory volume in 1 s after subsequent anti-asthma treatment (r = -0.775, P < 0.001). Xenon ventilation CT may be an objective and promising tool in the measurement of dyspnoea and prediction of the treatment response in elderly asthmatics. © 2014 The Authors. Respirology © 2014 Asian Pacific Society of Respirology.

  10. [Characteristics of perioperative period in Xenon-based combined general anaesthesia in neurosurgery].

    PubMed

    Viatkin, A A; Petrosian, L G; Mizikov, V M; Vasil'ev, S A

    2013-01-01

    Neuroprotection could be the aim to use Xenon for general anesthesia. However the experience of Xenon anesthesia in neurosurgery is quite limited. The appraisal of Xenon based anesthesia was accomplished in 12 patients during various brain surgery. Xe in concentration 65% was used to maintenance of anesthesia, other medication was avoided. As a resuIt there were 8 cases of arterial hypertension and 2 cases of superficial hypnotic state. Excitation (n = 3), hyperdynamic reaction (n = 8), PONV (n = 8) were detected in early postoperative period. An analysis of this study suggests a conclusion that studied method of Xenon-based anesthesia is inexpedient for neurosurgery.

  11. Xenon Defects in Uranium Dioxide From First Principles and Interatomic Potentials

    NASA Astrophysics Data System (ADS)

    Thompson, Alexander

    In this thesis, we examine the defect energetics and migration energies of xenon atoms in uranium dioxide (UO2) from first principles and interatomic potentials. We also parameterize new, accurate interatomic potentials for xenon and uranium dioxide. To achieve accurate energetics and provide a foundation for subsequent calculations, we address difficulties in finding consistent energetics within Hubbard U corrected density functional theory (DFT+U). We propose a method of slowly ramping the U parameter in order to guide the calculation into low energy orbital occupations. We find that this method is successful for a variety of materials. We then examine the defect energetics of several noble gas atoms in UO2 for several different defect sites. We show that the energy to incorporate large noble gas atoms into interstitial sites is so large that it is energetically favorable for a Schottky defect cluster to be created to relieve the strain. We find that, thermodynamically, xenon will rarely ever be in the interstitial site of UO2. To study larger defects associated with the migration of xenon in UO 2, we turn to interatomic potentials. We benchmark several previously published potentials against DFT+U defect energetics and migration barriers. Using a combination of molecular dynamics and nudged elastic band calculations, we find a new, low energy migration pathway for xenon in UO2. We create a new potential for xenon that yields accurate defect energetics. We fit this new potential with a method we call Iterative Potential Refinement that parameterizes potentials to first principles data via a genetic algorithm. The potential finds accurate energetics for defects with relatively low amounts of strain (xenon in defect clusters). It is important to find accurate energetics for these sorts of low-strain defects because they essentially represent small xenon bubbles. Finally, we parameterize a new UO2 potential that simultaneously yields accurate vibrational properties

  12. Dendritic excitation–inhibition balance shapes cerebellar output during motor behaviour

    PubMed Central

    Jelitai, Marta; Puggioni, Paolo; Ishikawa, Taro; Rinaldi, Arianna; Duguid, Ian

    2016-01-01

    Feedforward excitatory and inhibitory circuits regulate cerebellar output, but how these circuits interact to shape the somatodendritic excitability of Purkinje cells during motor behaviour remains unresolved. Here we perform dendritic and somatic patch-clamp recordings in vivo combined with optogenetic silencing of interneurons to investigate how dendritic excitation and inhibition generates bidirectional (that is, increased or decreased) Purkinje cell output during self-paced locomotion. We find that granule cells generate a sustained depolarization of Purkinje cell dendrites during movement, which is counterbalanced by variable levels of feedforward inhibition from local interneurons. Subtle differences in the dendritic excitation–inhibition balance generate robust, bidirectional changes in simple spike (SSp) output. Disrupting this balance by selectively silencing molecular layer interneurons results in unidirectional firing rate changes, increased SSp regularity and disrupted locomotor behaviour. Our findings provide a mechanistic understanding of how feedforward excitatory and inhibitory circuits shape Purkinje cell output during motor behaviour. PMID:27976716

  13. Xenon-Enhanced Dual-Energy CT Imaging in Combined Pulmonary Fibrosis and Emphysema

    PubMed Central

    Kobayashi, Masahiro; Nakamura, Yasuhiko; Gocho, Kyoko; Ishida, Fumiaki; Isobe, Kazutoshi; Shiraga, Nobuyuki; Homma, Sakae

    2017-01-01

    Background Little has been reported on the feasibility of xenon-enhanced dual-energy computed tomography (Xe-DECT) in the visual and quantitative analysis of combined pulmonary fibrosis and emphysema (CPFE). Objectives We compared CPFE with idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), as well as correlation with parameters of pulmonary function tests (PFTs). Methods Studied in 3 groups were 25 patients with CPFE, 25 with IPF without emphysema (IPF alone), 30 with COPD. Xe-DECT of the patients’ entire thorax was taken from apex to base after a patient’s single deep inspiration of 35% stable nonradioactive xenon. The differences in several parameters of PFTs and percentage of areas enhanced by xenon between 3 groups were compared and analyzed retrospectively. Results The percentage of areas enhanced by xenon in both lungs were calculated as CPFE/IPF alone/COPD = 72.2 ± 15.1% / 82.2 ± 14.7% /45.2 ± 23.2%, respectively. In the entire patients, the percentage of areas enhanced by xenon showed significantly a positive correlation with FEV1/FVC (R = 0.558, P < 0.0001) and %FEV1, (R = 0.528, P < 0.0001) and a negative correlation with %RV (R = -0.594, P < 0.0001) and RV/TLC (R = -0.579, P < 0.0001). The percentage of areas enhanced by xenon in patients with CPFE showed significantly a negative correlation with RV/TLC (R = -0.529, P = 0.007). Xenon enhancement of CPFE indicated 3 different patterns such as upper predominant, diffuse, and multifocal defect. The percentage of areas enhanced by xenon in upper predominant defect pattern was significantly higher than that in diffuse defect and multifocal defect pattern among these 3 different patterns in CPFE. Conclusion The percentage of areas enhanced by xenon demonstrated strong correlations with obstructive ventilation impairment. Therefore, we conclude that Xe-DECT may be useful for distinguishing emphysema lesion from fibrotic lesion in CPFE. PMID:28107411

  14. Xenon-Enhanced Dual-Energy CT Imaging in Combined Pulmonary Fibrosis and Emphysema.

    PubMed

    Sugino, Keishi; Kobayashi, Masahiro; Nakamura, Yasuhiko; Gocho, Kyoko; Ishida, Fumiaki; Isobe, Kazutoshi; Shiraga, Nobuyuki; Homma, Sakae

    2017-01-01

    Little has been reported on the feasibility of xenon-enhanced dual-energy computed tomography (Xe-DECT) in the visual and quantitative analysis of combined pulmonary fibrosis and emphysema (CPFE). We compared CPFE with idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), as well as correlation with parameters of pulmonary function tests (PFTs). Studied in 3 groups were 25 patients with CPFE, 25 with IPF without emphysema (IPF alone), 30 with COPD. Xe-DECT of the patients' entire thorax was taken from apex to base after a patient's single deep inspiration of 35% stable nonradioactive xenon. The differences in several parameters of PFTs and percentage of areas enhanced by xenon between 3 groups were compared and analyzed retrospectively. The percentage of areas enhanced by xenon in both lungs were calculated as CPFE/IPF alone/COPD = 72.2 ± 15.1% / 82.2 ± 14.7% /45.2 ± 23.2%, respectively. In the entire patients, the percentage of areas enhanced by xenon showed significantly a positive correlation with FEV1/FVC (R = 0.558, P < 0.0001) and %FEV1, (R = 0.528, P < 0.0001) and a negative correlation with %RV (R = -0.594, P < 0.0001) and RV/TLC (R = -0.579, P < 0.0001). The percentage of areas enhanced by xenon in patients with CPFE showed significantly a negative correlation with RV/TLC (R = -0.529, P = 0.007). Xenon enhancement of CPFE indicated 3 different patterns such as upper predominant, diffuse, and multifocal defect. The percentage of areas enhanced by xenon in upper predominant defect pattern was significantly higher than that in diffuse defect and multifocal defect pattern among these 3 different patterns in CPFE. The percentage of areas enhanced by xenon demonstrated strong correlations with obstructive ventilation impairment. Therefore, we conclude that Xe-DECT may be useful for distinguishing emphysema lesion from fibrotic lesion in CPFE.

  15. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia.

    PubMed

    Ma, Daqing; Hossain, Mahmuda; Chow, Andre; Arshad, Mubarik; Battson, Renee M; Sanders, Robert D; Mehmet, Huseyin; Edwards, A David; Franks, Nicholas P; Maze, Mervyn

    2005-08-01

    Perinatal asphyxia can result in neuronal injury with long-term neurological and behavioral consequences. Although hypothermia may provide some modest benefit, the intervention itself can produce adverse consequences. We have investigated whether xenon, an antagonist of the N-methyl-D-aspartate subtype of the glutamate receptor, can enhance the neuroprotection provided by mild hypothermia. Cultured neurons injured by oxygen-glucose deprivation were protected by combinations of interventions of xenon and hypothermia that, when administered alone, were not efficacious. A combination of xenon and hypothermia administered 4 hours after hypoxic-ischemic injury in neonatal rats provided synergistic neuroprotection assessed by morphological criteria, by hemispheric weight, and by functional neurological studies up to 30 days after the injury. The protective mechanism of the combination, in both in vitro and in vivo models, involved an antiapoptotic action. If applied to humans, these data suggest that low (subanesthetic) concentrations of xenon in combination with mild hypothermia may provide a safe and effective therapy for perinatal asphyxia.

  16. Xenon Anesthesia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

    PubMed

    Law, Lawrence Siu-Chun; Lo, Elaine Ah-Gi; Gan, Tong Joo

    2016-03-01

    Xenon anesthesia has been studied for decades. However, no meta-analysis of randomized controlled trials (RCTs) on xenon anesthesia has been conducted. The aim of this study was to systematically review all available evidence from RCTs comparing xenon and other inhaled and IV anesthetics on anesthetic outcomes. Our meta-analysis attempted to quantify the effects of xenon anesthesia on clinical outcomes in relation to other anesthetics. We found 43 RCTs from PubMed, MEDLINE, CENTRAL, EMBASE, and CINAHL (until January 2015). A total of 31 studies comparing xenon (841 patients) with other inhaled agents (836 patients) and 12 studies comparing xenon (373 patients) with propofol (360 patients) were found. We evaluated clinical outcomes, such as intraoperative hemodynamics, emergence, and postoperative nausea and vomiting (PONV). Patients undergoing xenon anesthesia had a lower heart rate and higher mean arterial pressure (MAP) intraoperatively than those receiving volatile anesthesia (mean difference = -6 min⁻¹ [99% confidence interval {99% CI} -10.0 to -2.3]; mean difference = 9 mm Hg [99% CI 3.1-14.4]) and propofol anesthesia (mean difference = -10 min⁻¹ [99% CI -12.4 to -6.6]; mean difference = 7 mm Hg [99% CI 0.85-13.2]). Compared with baseline, intraoperative MAP remained relatively stable (change < 5.5%, 99% CI within ±20% of the baseline) under xenon anesthesia, but MAP decreased by ≥15% under volatile (mean difference = -17 mm Hg [99% CI -29.5 to - 4.9], percentage change = -17.5%) and propofol (mean difference = -14 mm Hg [99% CI -26.1 to -2.5], percentage change = -15.0%) anesthesia. Patients had faster emergence from xenon than from volatile anesthesia: eyes opening (versus all volatile agents: mean 4 vs 7 minutes, percentage change = -49.8% [99% CI -55.1% to -44.0%]), tracheal extubation (versus all volatile agents: mean 4 vs 8 minutes percentage change = -44.6% [99% CI -57.3% to -28.1%]), orientation (versus sevoflurane: mean 5 vs 10 minutes

  17. The Large Underground Xenon (LUX) experiment

    DOE PAGES

    Akerib, D. S.; Bai, X.; Bedikian, S.; ...

    2012-11-29

    The Large Underground Xenon (LUX) collaboration has designed and constructed a dual-phase xenon detector, in order to conduct a search for Weakly Interacting Massive Particles (WIMPs), a leading dark matter candidate. The goal of the LUX detector is to clearly detect (or exclude) WIMPS with a spin independent cross section per nucleon of 2×10 -46 cm 2, equivalent to ~1 event/100 kg/month in the inner 100-kg fiducial volume (FV) of the 370-kg detector. The overall background goals are set to have <1 background events characterized as possible WIMPs in the FV in 300 days of running. This work describes themore » design and construction of the LUX detector.« less

  18. Optimization of Dual-Energy Xenon-CT for Quantitative Assessment of Regional Pulmonary Ventilation

    PubMed Central

    Fuld, Matthew K.; Halaweish, Ahmed; Newell, John D.; Krauss, Bernhard; Hoffman, Eric A.

    2013-01-01

    Objective Dual-energy X-ray computed tomography (DECT) offers visualization of the airways and quantitation of regional pulmonary ventilation using a single breath of inhaled xenon gas. In this study we seek to optimize scanning protocols for DECT xenon gas ventilation imaging of the airways and lung parenchyma and to characterize the quantitative nature of the developed protocols through a series of test-object and animal studies. Materials and Methods The Institutional Animal Care and Use Committee approved all animal studies reported here. A range of xenon-oxygen gas mixtures (0, 20, 25, 33, 50, 66, 100%; balance oxygen) were scanned in syringes and balloon test-objects to optimize the delivered gas mixture for assessment of regional ventilation while allowing for the development of improved three-material decomposition calibration parameters. Additionally, to alleviate gravitational effects on xenon gas distribution, we replaced a portion of the oxygen in the xenon/oxygen gas mixture with helium and compared gas distributions in a rapid-prototyped human central-airway test-object. Additional syringe tests were performed to determine if the introduction of helium had any effect on xenon quantitation. Xenon gas mixtures were delivered to anesthetized swine in order to assess airway and lung parenchymal opacification while evaluating various DECT scan acquisition settings. Results Attenuation curves for xenon were obtained from the syringe test objects and were used to develop improved three-material decomposition parameters (HU enhancement per percent xenon: Within the chest phantom: 2.25 at 80kVp, 1.7 at 100 kVp, and 0.76 at 140 kVp with tin filtration; In open air: 2.5 at 80kVp, 1.95 at 100 kVp, and 0.81 at 140 kVp with tin filtration). The addition of helium improved the distribution of xenon gas to the gravitationally non-dependent portion of the airway tree test-object, while not affecting quantitation of xenon in the three-material decomposition DECT. 40%Xe

  19. New insight into the assessment of asthma using xenon ventilation computed tomography.

    PubMed

    Jung, Jae-Woo; Kwon, Jae-Woo; Kim, Tae-Wan; Lee, So-Hee; Kim, Kyung-Mook; Kang, Hye-Ryun; Park, Heung-Woo; Lee, Chang-Hyun; Goo, Jin-Mo; Min, Kyung-Up; Cho, Sang-Heon

    2013-08-01

    Image analyses include computed tomography (CT), magnetic resonance imaging, and xenon ventilation CT, which is new modality to evaluate pulmonary functional imaging. To examine the usefulness of dual-energy xenon ventilation CT in asthmatic patients. A total of 43 patients 18 years or older who were nonsmokers were included in the study. Xenon CT images in wash-in and wash-out phases were obtained at baseline and after inhalation of methacholine and salbutamol. The degrees of ventilation defects and xenon trappings were evaluated through visual analysis. Ventilation defects and xenon trapping were significantly increased and decreased after methacholine challenge and salbutamol inhalation, respectively (P < .005). The ventilation abnormalities were not significantly related to the percentage of forced expiratory volume in 1 second (FEV1) or the ratio of FEV1 to forced vital capacity. Xenon trappings after salbutamol inhalation were negatively related to the scores of the asthma control test, wheezing, or night symptoms, with statistical significance (P < .05), whereas, FEV1 showed no significant correlation with symptom scores. Baseline FEV1 was significantly lower and dyspnea and wheezing were more severe in the non-full reversal group than in the full reversal group after salbutamol inhalation in xenon CT (P < .05). The degree of ventilation defects were positively correlated with FEV1 improvement after 3 months of treatment (P = .02). The results of this study suggest that xenon ventilation CT can be used as a new method to assess ventilation abnormalities in asthma, and these ventilation abnormalities can be used as novel parameters that reflect the status of asthma control and symptom severity. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. Xenon Preconditioning Protects against Renal Ischemic-Reperfusion Injury via HIF-1α Activation

    PubMed Central

    Ma, Daqing; Lim, Ta; Xu, Jing; Tang, Haidy; Wan, Yanjie; Zhao, Hailin; Hossain, Mahmuda; Maxwell, Patrick H.; Maze, Mervyn

    2009-01-01

    The mortality rate from acute kidney injury after major cardiovascular operations can be as high as 60%, and no therapies have been proved to prevent acute kidney injury in this setting. Here, we show that preconditioning with the anesthetic gas xenon activates hypoxia-inducible factor 1α (HIF-1α) and its downstream effectors erythropoietin and vascular endothelial growth factor in a time-dependent manner in the kidneys of adult mice. Xenon increased the efficiency of HIF-1α translation via modulation of the mammalian target of rapamycin pathway. In a model of renal ischemia-reperfusion injury, xenon provided morphologic and functional renoprotection; hydrodynamic injection of HIF-1α small interfering RNA demonstrated that this protection is HIF-1α dependent. These results suggest that xenon preconditioning is a natural inducer of HIF-1α and that administration of xenon before renal ischemia can prevent acute renal failure. If these data are confirmed in the clinical setting, then preconditioning with xenon may be beneficial before procedures that temporarily interrupt renal perfusion. PMID:19144758

  1. Inhibition of histone deacetylase 3 via RGFP966 facilitates cortical plasticity underlying unusually accurate auditory associative cue memory for excitatory and inhibitory cue-reward associations.

    PubMed

    Shang, Andrea; Bylipudi, Sooraz; Bieszczad, Kasia M

    2018-05-31

    Epigenetic mechanisms are key for regulating long-term memory (LTM) and are known to exert control on memory formation in multiple systems of the adult brain, including the sensory cortex. One epigenetic mechanism is chromatin modification by histone acetylation. Blocking the action of histone de-acetylases (HDACs) that normally negatively regulate LTM by repressing transcription has been shown to enable memory formation. Indeed, HDAC inhibition appears to facilitate memory by altering the dynamics of gene expression events important for memory consolidation. However, less understood are the ways in which molecular-level consolidation processes alter subsequent memory to enhance storage or facilitate retrieval. Here we used a sensory perspective to investigate whether the characteristics of memory formed with HDAC inhibitors are different from naturally-formed memory. One possibility is that HDAC inhibition enables memory to form with greater sensory detail than normal. Because the auditory system undergoes learning-induced remodeling that provides substrates for sound-specific LTM, we aimed to identify behavioral effects of HDAC inhibition on memory for specific sound features using a standard model of auditory associative cue-reward learning, memory, and cortical plasticity. We found that three systemic post-training treatments of an HDAC3-inhibitor (RGPF966, Abcam Inc.) in rats in the early phase of training facilitated auditory discriminative learning, changed auditory cortical tuning, and increased the specificity for acoustic frequency formed in memory of both excitatory (S+) and inhibitory (S-) associations for at least 2 weeks. The findings support that epigenetic mechanisms act on neural and behavioral sensory acuity to increase the precision of associative cue memory, which can be revealed by studying the sensory characteristics of long-term associative memory formation with HDAC inhibitors. Published by Elsevier B.V.

  2. Excitatory interneurons dominate sensory processing in the spinal substantia gelatinosa of rat

    PubMed Central

    Santos, Sónia F A; Rebelo, Sandra; Derkach, Victor A; Safronov, Boris V

    2007-01-01

    Substantia gelatinosa (SG, lamina II) is a spinal cord region where most unmyelinated primary afferents terminate and the central nociceptive processing begins. It is formed by several distinct groups of interneurons whose functional properties and synaptic connections are poorly understood, in part, because recordings from synaptically coupled pairs of SG neurons are quite challenging due to a very low probability of finding connected cells. Here, we describe an efficient method for identifying synaptically coupled interneurons in rat spinal cord slices and characterizing their excitatory or inhibitory function. Using tight-seal whole-cell recordings and a cell-attached stimulation technique, we routinely tested about 1500 SG interneurons, classifying 102 of them as monosynaptically connected to neurons in lamina I–III. Surprisingly, the vast majority of SG interneurons (n = 87) were excitatory and glutamatergic, while only 15 neurons were inhibitory. According to their intrinsic firing properties, these 102 SG neurons were also classified as tonic (n = 49), adapting (n = 17) or delayed-firing neurons (n = 36). All but two tonic neurons and all adapting neurons were excitatory interneurons. Of 36 delayed-firing neurons, 23 were excitatory and 13 were inhibitory. We conclude that sensory integration in the intrinsic SG neuronal network is dominated by excitatory interneurons. Such organization of neuronal circuitries in the spinal SG can be important for nociceptive encoding. PMID:17331995

  3. Preclinical neuroprotective actions of xenon and possible implications for human therapeutics: a narrative review.

    PubMed

    Maze, Mervyn

    2016-02-01

    The purpose of this report is to facilitate an understanding of the possible application of xenon for neuroprotection in critical care settings. This narrative review appraises the literature assessing the efficacy and safety of xenon in preclinical models of acute ongoing neurologic injury. Databases of the published literature (MEDLINE® and EMBASE™) were appraised for peer-reviewed manuscripts addressing the use of xenon in both preclinical models and disease states of acute ongoing neurologic injury. For randomized clinical trials not yet reported, the investigators' declarations in the National Institutes of Health clinical trials website were considered. While not a primary focus of this review, to date, xenon cannot be distinguished as superior for surgical anesthesia over existing alternatives in adults. Nevertheless, studies in a variety of preclinical disease models from multiple laboratories have consistently shown xenon's neuroprotective properties. These properties are enhanced in settings where xenon is combined with hypothermia. Small randomized clinical trials are underway to explore xenon's efficacy and safety in clinical settings of acute neurologic injury where hypothermia is the current standard of care. According to the evidence to date, the neuroprotective efficacy of xenon in preclinical models and its safety in clinical anesthesia set the stage for the launch of randomized clinical trials to determine whether these encouraging neuroprotective findings can be translated into clinical utility.

  4. In vivo detection of cucurbit[6]uril, a hyperpolarized xenon contrast agent for a xenon magnetic resonance imaging biosensor

    PubMed Central

    Hane, Francis T.; Li, Tao; Smylie, Peter; Pellizzari, Raiili M.; Plata, Jennifer A.; DeBoef, Brenton; Albert, Mitchell S.

    2017-01-01

    The Hyperpolarized gas Chemical Exchange Saturation Transfer (HyperCEST) Magnetic Resonance (MR) technique has the potential to increase the sensitivity of a hyperpolarized xenon-129 MRI contrast agent. Signal enhancement is accomplished by selectively depolarizing the xenon within a cage molecule which, upon exchange, reduces the signal in the dissolved phase pool. Herein we demonstrate the in vivo detection of the cucurbit[6]uril (CB6) contrast agent within the vasculature of a living rat. Our work may be used as a stepping stone towards using the HyperCEST technique as a molecular imaging modality. PMID:28106110

  5. Comparison of xenon-based anaesthesia compared with total intravenous anaesthesia in high risk surgical patients.

    PubMed

    Bein, B; Turowski, P; Renner, J; Hanss, R; Steinfath, M; Scholz, J; Tonner, P H

    2005-10-01

    Xenon, a noble gas with anaesthetic and analgesic properties, has gained renewed interest due to its favourable physical properties which allow a rapid emergence from anaesthesia. However, high costs limit its use to a subset of patients who may benefit from xenon, thereby offsetting its costs. To date, there are only limited data available on the performance of xenon in high risk patients. We studied 39 patients with ASA physical status III undergoing aortic surgery. The patients were randomly assigned to either a xenon (Xe, n = 20) or a TIVA (T, n = 19) group. Global cardiac performance and myocardial contractility were assessed using transoesophageal echocardiography, and myocardial cell damage with troponin T and CK-MB. Echocardiographic measurements were made prior to xenon administration, following xenon administration, and after clamping of the abdominal aorta, after declamping and at corresponding time points in the TIVA group. Laboratory values were determined repeatedly for up to 72 h. Data were analysed using two-way anova factoring for time and anaesthetic agent or with ancova comparing linear regression lines. No significant differences were found in global myocardial performance, myocardial contractility or laboratory values at any time during the study period. Mean (SEM) duration of stay on the ICU (xenon: 38 +/- 46 vs. TIVA 25 +/- 15 h) or in hospital (xenon: 14 +/- 12 vs. TIVA 10 +/- 6 days) did not differ significantly between the groups. Although xenon has previously been shown to exert superior haemodynamic stability, we were unable to demonstrate an advantage of xenon-based anaesthesia compared to TIVA in high risk surgical patients.

  6. Supernova Neutrino Physics with Xenon Dark Matter Detectors

    NASA Astrophysics Data System (ADS)

    Reichard, Shayne; Lang, Rafael F.; McCabe, Christopher; Selvi, Marco; Tamborra, Irene

    2017-09-01

    The dark matter experiment XENON1T is operational and sensitive to all flavors of neutrinos emitted from a supernova. We show that the proportional scintillation signal (S2) allows for a clear observation of the neutrino signal and guarantees a particularly low energy threshold, while the backgrounds are rendered negligible during the SN burst. XENON1T (XENONnT and LZ; DARWIN) will be sensitive to a SN burst up to 25 (40; 70) kpc from Earth at a significance of more than 5σ, observing approximately 35 (123; 704) events from a 27 M ⊙ SN progenitor at 10 kpc. Moreover, it will be possible to measure the average neutrino energy of all flavors, to constrain the total explosion energy, and to reconstruct the SN neutrino light curve. Our results suggest that a large xenon detector such as DARWIN will be competitive with dedicated neutrino telescopes, while providing complementary information that is not otherwise accessible.

  7. Measuring double-electron capture with liquid xenon experiments

    NASA Astrophysics Data System (ADS)

    Mei, D.-M.; Marshall, I.; Wei, W.-Z.; Zhang, C.

    2014-01-01

    We investigate the possibilities of observing the decay mode for 124Xe in which two electrons are captured, two neutrinos are emitted, and the final daughter nucleus is in its ground state, using dark matter experiments with liquid xenon. The first upper limit of the decay half-life is calculated to be 1.66 × 1021 years at a 90% confidence level (C.L.) obtained with the published background data from the XENON100 experiment. Employing a known background model from the large underground xenon (LUX) experiment, we predict that the detection of double-electron capture of 124Xe to the ground state of 124Te with LUX will have approximately 115 events, assuming a half-life of 2.9 × 1021 years. We conclude that measuring 124Xe 2ν double-electron capture to the ground state of 124Te can be performed more precisely with the proposed LUX-Zeplin (LZ) experiment.

  8. Material radioassay and selection for the XENON1T dark matter experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Di Gangi, P.; Di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Le Calloch, M.; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Laubenstein, M.; Nisi, S.

    2017-12-01

    The XENON1T dark matter experiment aims to detect weakly interacting massive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations.

  9. An improved interatomic potential for xenon in UO2: a combined density functional theory/genetic algorithm approach.

    PubMed

    Thompson, Alexander E; Meredig, Bryce; Wolverton, C

    2014-03-12

    We have created an improved xenon interatomic potential for use with existing UO2 potentials. This potential was fit to density functional theory calculations with the Hubbard U correction (DFT + U) using a genetic algorithm approach called iterative potential refinement (IPR). We examine the defect energetics of the IPR-fitted xenon interatomic potential as well as other, previously published xenon potentials. We compare these potentials to DFT + U derived energetics for a series of xenon defects in a variety of incorporation sites (large, intermediate, and small vacant sites). We find the existing xenon potentials overestimate the energy needed to add a xenon atom to a wide set of defect sites representing a range of incorporation sites, including failing to correctly rank the energetics of the small incorporation site defects (xenon in an interstitial and xenon in a uranium site neighboring uranium in an interstitial). These failures are due to problematic descriptions of Xe-O and/or Xe-U interactions of the previous xenon potentials. These failures are corrected by our newly created xenon potential: our IPR-generated potential gives good agreement with DFT + U calculations to which it was not fitted, such as xenon in an interstitial (small incorporation site) and xenon in a double Schottky defect cluster (large incorporation site). Finally, we note that IPR is very flexible and can be applied to a wide variety of potential forms and materials systems, including metals and EAM potentials.

  10. Calculation of characteristics of compressed gaseous xenon gamma-ray detectors

    NASA Astrophysics Data System (ADS)

    Komarov, V. B.; Dmitrenko, V. V.; Ulin, S. E.; Uteshev, Z. M.

    1992-12-01

    Energy resolution and pulse distribution of a compressed gaseous xenon cylindrical detector were calculated. The analytical calculation took into account gamma-ray energy, fluctuation of electron-ion pairs, electron distribution, recombination, and H excess. The calculation was performed for a xenon density less than 0.6 g/cm and H excess less than 2 percent.

  11. Early outgassing of Mars supported by differential water solubility of iodine and xenon

    NASA Technical Reports Server (NTRS)

    Musselwhite, Donald S.; Drake, Michael J.; Swindle, Timothy D.

    1991-01-01

    The Martian atmosphere has a high X-129/Xe-132 ratio compared to the Martian mantle. As Xe-129 is the daughter product of the extinct nuclide I-129, a means of fractionating iodine from xenon early in Martian history appears necessary to account for the X-129/Xe-132 ratios of its known reservoirs. A model is presented here to account for the Marian xenon data which relies on the very different solubilities of xenon and iodine in water to fractionate them after outgassing. Atmospheric xenon is lost by impact erosion during heavy bombardment, followed by release of Xe-129 produced from I-129 decay in the crust.

  12. Discrimination Between Patients With Alzheimer Disease and Healthy Subjects Using Layer Analysis of Cerebral Blood Flow and Xenon Solubility Coefficient in Xenon-Enhanced Computed Tomography.

    PubMed

    Sase, Shigeru; Yamamoto, Homaro; Kawashima, Ena; Tan, Xin; Sawa, Yutaka

    The aim of this study was to develop a method for discriminating between patients with Alzheimer disease (AD) and healthy subjects using layer analysis of cerebral blood flow (CBF) and xenon solubility coefficient (λ) in xenon-enhanced computed tomography (CT). Xenon-enhanced CT was performed on 27 patients with AD (81.7 [3.3] years old) and 15 healthy volunteers (78.6 [4.0] years old) using a wide volume CT. For each subject, we created the first- (surface) to sixth-layer images of CBF and λ for the 6 viewing directions (layer thickness, 5 mm). For the discriminant views, receiver operating characteristic curves for the ratio of CBF to λ were created to identify patients with AD. For the third- and fourth-layer left lateral views, which were designated as the discriminant views, areas under the receiver operating characteristic curve were 96.8% and 97.4%, respectively. With the use of the discriminant views obtained by xenon-enhanced CT, we could effectively discriminate between patients with AD and healthy subjects using both CBF and λ.

  13. Sub-anesthetic Xenon Increases Erythropoietin Levels in Humans: A Randomized Controlled Trial.

    PubMed

    Stoppe, Christian; Ney, Julia; Brenke, Martin; Goetzenich, Andreas; Emontzpohl, Christoph; Schälte, Gereon; Grottke, Oliver; Moeller, Manfred; Rossaint, Rolf; Coburn, Mark

    2016-11-01

    The licensed anesthetic xenon, which exerts organ protective properties, was recently added by the World Anti-Doping Agency to the list of prohibited substances. Xenon is supposed to trigger the production of hypoxia-inducible factor 1α (HIF-1α) and subsequently erythropoietin, but data are limited to in vivo experimental work. Therefore we evaluated the effect of xenon on erythropoietin levels in healthy persons. Twenty-four healthy volunteers were randomly assigned either to a group spontaneously breathing xenon 30 % (Xe/O 2 30 %/60 %) or a group breathing control gas (N 2 /O 2 40 %/60 %) for 45 min. Primary outcome parameters were erythropoietin levels at several time-points after exposure. Secondary outcome parameters were serum levels of testosterone, cytokines, and growth factors as well as concentrations of xenon in blood and exhalation samples measured at several time-points after exposure. In addition, hemodynamic safety parameters were monitored during exposure. The administration of xenon significantly increased erythropoietin levels 8 h after exposure (1.34 [±0.368]; p = 0.008), peaking at 24 h compared to the baseline values (1.45 [±0.498]; p = 0.01) and remained traceable in blood and exhalation probes until 24 h after exposure. In contrast, no significant change was observed in the control group. Measurement of stromal cell-derived factor 1 (SDF-1) revealed a significant increase of SDF-1 levels (p = 0.005), whereas no differences were observed with respect to growth factors, cytokines, or androgens. In an in vitro chemotaxis assay, endothelial progenitor cells (EPCs) showed a trend towards increased migration in serum samples received from participants after xenon exposure (p = 0.080). The present study presents first evidence about a xenon-induced effect on increased erythropoietin levels in healthy volunteers. The study was registered at the European Medicines Agency (EudraCT-number: 2014-000973-38) and at Clinical

  14. Xenon treatment attenuates early renal allograft injury associated with prolonged hypothermic storage in rats.

    PubMed

    Zhao, Hailin; Yoshida, Akira; Xiao, Wei; Ologunde, Rele; O'Dea, Kieran P; Takata, Masao; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2013-10-01

    Prolonged hypothermic storage elicits severe ischemia-reperfusion injury (IRI) to renal grafts, contributing to delayed graft function (DGF) and episodes of acute immune rejection and shortened graft survival. Organoprotective strategies are therefore needed for improving long-term transplant outcome. The aim of this study is to investigate the renoprotective effect of xenon on early allograft injury associated with prolonged hypothermic storage. Xenon exposure enhanced the expression of heat-shock protein 70 (HSP-70) and heme oxygenase 1 (HO-1) and promoted cell survival after hypothermia-hypoxia insult in human proximal tubular (HK-2) cells, which was abolished by HSP-70 or HO-1 siRNA. In the brown Norway to Lewis rat renal transplantation, xenon administered to donor or recipient decreased the renal tubular cell death, inflammation, and MHC II expression, while delayed graft function (DGF) was therefore reduced. Pathological changes associated with acute rejection, including T-cell, macrophage, and fibroblast infiltration, were also decreased with xenon treatment. Donors or recipients treated with xenon in combination with cyclosporin A had prolonged renal allograft survival. Xenon protects allografts against delayed graft function, attenuates acute immune rejection, and enhances graft survival after prolonged hypothermic storage. Furthermore, xenon works additively with cyclosporin A to preserve post-transplant renal function.

  15. [Effects of xenon preconditioning against ischemia/reperfusion injury and oxidative stress in immature heart].

    PubMed

    Li, Qian; Lian, Chun-Wei; Fang, Li-Qun; Liu, Bin; Yang, Bo

    2014-09-01

    To investigate whether xenon preconditioning (PC) could protect immature myocardium against ischemia-reperfusion (I/R) injury in a dose-dependent manner and clarify the role of xenon PC on oxidative stress. Forty-eight isolated perfused immature rabbit hearts were randomly divided into four groups (n = 12): The sham group had the hearts perfused continuously for 300 min. In I/R group, the hearts were subjected to 60 min perfusion followed by 60 min ischemia and 180 min reperfusion. In 1 minimum alveolar concentration (MAC) and 0.5 MAC xenon PC groups, the hearts were preconditioned with 1 MAC or 0.5 MAC xenon respectively, following 60 min ischemia and 180 min reperfusion. The cardiac function, myocardial infarct size, mitochondrial structure, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in each group were determined after reperfusion. Compared with I/R group, both 1 MAC and 0. 5 MAC xenon preconditioning significantly improved cardiac function (P < 0.01), reduced myocardial infarct size (P < 0.01) and mitochondrial damage, increased SOD activity and decreased MDA level (P < 0.01). There were no differences between 1 MAC group and 0.5 MAC xenon group (P > 0.05). Xenon preconditioning at 0. 5 and 1 MAC produce similar cardioprotective effects against I/R injury in isolated perfused immature heart.

  16. Parvalbumin interneuron mediated feedforward inhibition controls signal output in the deep layers of the perirhinal‐entorhinal cortex

    PubMed Central

    Willems, Janske G. P.; Wadman, Wytse J.

    2018-01-01

    Abstract The perirhinal (PER) and lateral entorhinal (LEC) cortex form an anatomical link between the neocortex and the hippocampus. However, neocortical activity is transmitted through the PER and LEC to the hippocampus with a low probability, suggesting the involvement of the inhibitory network. This study explored the role of interneuron mediated inhibition, activated by electrical stimulation in the agranular insular cortex (AiP), in the deep layers of the PER and LEC. Activated synaptic input by AiP stimulation rarely evoked action potentials in the PER‐LEC deep layer excitatory principal neurons, most probably because the evoked synaptic response consisted of a small excitatory and large inhibitory conductance. Furthermore, parvalbumin positive (PV) interneurons—a subset of interneurons projecting onto the axo‐somatic region of principal neurons—received synaptic input earlier than principal neurons, suggesting recruitment of feedforward inhibition. This synaptic input in PV interneurons evoked varying trains of action potentials, explaining the fast rising, long lasting synaptic inhibition received by deep layer principal neurons. Altogether, the excitatory input from the AiP onto deep layer principal neurons is overruled by strong feedforward inhibition. PV interneurons, with their fast, extensive stimulus‐evoked firing, are able to deliver this fast evoked inhibition in principal neurons. This indicates an essential role for PV interneurons in the gating mechanism of the PER‐LEC network. PMID:29341361

  17. Requirements for Xenon International

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, James C.; Ely, James H.; Haas, Derek A.

    2015-12-30

    This document defines the requirements for the new Xenon International radioxenon system. The output of this project will be a Pacific Northwest National Laboratory (PNNL) developed prototype and a manufacturer-developed production prototype. The two prototypes are intended to be as close to matching as possible; this will be facilitated by overlapping development cycles and open communication between PNNL and the manufacturer.

  18. Optimization of dual-energy xenon-computed tomography for quantitative assessment of regional pulmonary ventilation.

    PubMed

    Fuld, Matthew K; Halaweish, Ahmed F; Newell, John D; Krauss, Bernhard; Hoffman, Eric A

    2013-09-01

    Dual-energy x-ray computed tomography (DECT) offers visualization of the airways and quantitation of regional pulmonary ventilation using a single breath of inhaled xenon gas. In this study, we sought to optimize scanning protocols for DECT xenon gas ventilation imaging of the airways and lung parenchyma and to characterize the quantitative nature of the developed protocols through a series of test-object and animal studies. The Institutional Animal Care and Use Committee approved all animal studies reported here. A range of xenon/oxygen gas mixtures (0%, 20%, 25%, 33%, 50%, 66%, 100%; balance oxygen) were scanned in syringes and balloon test-objects to optimize the delivered gas mixture for assessment of regional ventilation while allowing for the development of improved 3-material decomposition calibration parameters. In addition, to alleviate gravitational effects on xenon gas distribution, we replaced a portion of the oxygen in the xenon/oxygen gas mixture with helium and compared gas distributions in a rapid-prototyped human central-airway test-object. Additional syringe tests were performed to determine if the introduction of helium had any effect on xenon quantitation. Xenon gas mixtures were delivered to anesthetized swine to assess airway and lung parenchymal opacification while evaluating various DECT scan acquisition settings. Attenuation curves for xenon were obtained from the syringe test-objects and were used to develop improved 3-material decomposition parameters (Hounsfield unit enhancement per percentage xenon: within the chest phantom, 2.25 at 80 kVp, 1.7 at 100 kVp, and 0.76 at 140 kVp with tin filtration; in open air, 2.5 at 80 kVp, 1.95 at 100 kVp, and 0.81 at 140 kVp with tin filtration). The addition of helium improved the distribution of xenon gas to the gravitationally nondependent portion of the airway tree test-object, while not affecting the quantitation of xenon in the 3-material decomposition DECT. The mixture 40% Xe/40% He/20% O2

  19. Low excitatory innervation balances high intrinsic excitability of immature dentate neurons

    PubMed Central

    Dieni, Cristina V.; Panichi, Roberto; Aimone, James B.; Kuo, Chay T.; Wadiche, Jacques I.; Overstreet-Wadiche, Linda

    2016-01-01

    Persistent neurogenesis in the dentate gyrus produces immature neurons with high intrinsic excitability and low levels of inhibition that are predicted to be more broadly responsive to afferent activity than mature neurons. Mounting evidence suggests that these immature neurons are necessary for generating distinct neural representations of similar contexts, but it is unclear how broadly responsive neurons help distinguish between similar patterns of afferent activity. Here we show that stimulation of the entorhinal cortex in mouse brain slices paradoxically generates spiking of mature neurons in the absence of immature neuron spiking. Immature neurons with high intrinsic excitability fail to spike due to insufficient excitatory drive that results from low innervation rather than silent synapses or low release probability. Our results suggest that low synaptic connectivity prevents immature neurons from responding broadly to cortical activity, potentially enabling excitable immature neurons to contribute to sparse and orthogonal dentate representations. PMID:27095423

  20. Monitoring xenon purity in the LUX detector with a mass spectrometry system

    NASA Astrophysics Data System (ADS)

    Balajthy, Jon; LUX Experiment Collaboration

    2015-04-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. To monitor for radioactive impurities such as krypton and impurities which limit charge yield such as oxygen, LUX uses a xenon sampling system consisting of a mass spectrometer and a liquid nitrogen cold trap. The cold trap separates the gaseous impurities from a small sample of xenon and allows them to pass to the mass spectrometer for analysis. We report here on results from the LUX xenon sampling program. We also report on methods to enhance the sensitivity of the cold trap technique in preparation for the next-generation LUX-ZEPLIN experiment which will have even more stringent purity requirements.

  1. A technique for administering xenon gas anesthesia during surgical procedures in mice.

    PubMed

    Ruder, Arne Mathias; Schmidt, Michaela; Ludiro, Alessia; Riva, Marco A; Gass, Peter

    2014-11-01

    Carrying out invasive procedures in animals requires the administration of anesthesia. Xenon gas offers advantages as an anesthetic agent compared with other agents, such as its protection of the brain and heart from hypoxia-induced damage. The high cost of xenon gas has limited its use as an anesthetic in animal experiments, however. The authors designed and constructed simple boxes for the induction and maintenance of xenon gas and isoflurane anesthesia in small rodents in order to minimize the amount of xenon gas that is wasted. While using their anesthesia delivery system to anesthetize pregnant mice undergoing caesarean sections, they measured the respiratory rates of the anesthetized mice, the survival of the pups and the percentages of oxygen and carbon dioxide within the system to confirm the system's safety.

  2. In Vivo Measurement in Pigs of Wash-In Kinetics of Xenon at its Site of Action.

    PubMed

    Froeba, Gebhard; Adolph, Oliver

    2016-01-01

    Xenon (Xe) in many respects is an ideal anaesthetic agent. Its blood/gas partition coefficient is lower than that of any other anaesthetic, enabling rapid induction of and emergence from anaesthesia. While the whole body kinetics during wash-in of inhalational anaesthesia is well known, data describing the pharmacokinetics of xenon in the cerebral compartment at the site of action are still largely missing. In order to illuminate xenon's cerebral pharmacokinetics, we anaesthetised five pigs and measured arterial, mixed- and sagittal sinus-venous blood, as well as end-expiratory gas concentrations of xenon by gas chromatography-mass spectrometry (GCMS) up to 30 minutes after starting the anaesthetic gas mixture. Despite xenon's fast onset of effect the half-time for equilibration between xenon concentration in arterial blood and at the site of action is measured to be 1.49 ± 0.04 minutes versus 3.91 ± 0.1 minutes. Successful loading of xenon in the brain during inhalational anesthesia was accomplished after approximately 15 minutes although the end-expiratory xenon concentration reached a plateau after 7 minutes. Thus cerebral xenon uptake rate is only moderate, xenon fast onset of action being largely due to its extremely fast alveolar uptake. To ensure safety and precise control during anaesthesia we need a profound knowledge about to what extent the measured end-tidal concentrations reflect the drug concentrations in the target tissue. The results of this study expand our knowledge about the temporal characteristics of xenon´s pharmacokinetics at its site of action and provide the basis for appropriate clinical protocols and experimental designs of future studies.

  3. Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures

    DOE PAGES

    Seoung, Donghoon; Cynn, Hyunchae; Park, Changyong; ...

    2014-09-01

    Pressure drastically alters the chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained under ambient conditions. Particularly exciting is the high-pressure chemistry of xenon, which is known to react with hydrogen and ice at high pressures and form stable compounds. Here, we show that Ag 16Al 16Si 24O 8·16H 2O (Ag-natrolite) irreversibly inserts xenon into its micropores at 1.7 GPa and 250 °C, while Ag + is reduced to metallic Ag and possibly oxidized to Ag 2+. In contrast to krypton, xenon is retained within themore » pores of this zeolite after pressure release and requires heat to desorb. This irreversible insertion and trapping of xenon in Ag-natrolite under moderate conditions sheds new light on chemical reactions that could account for the xenon deficiency relative to argon observed in terrestrial and Martian atmospheres.« less

  4. Excitatory and inhibitory synaptic connectivity to layer V fast-spiking interneurons in the freeze lesion model of cortical microgyria

    PubMed Central

    Jin, Xiaoming; Jiang, Kewen

    2014-01-01

    A variety of major developmental cortical malformations are closely associated with clinically intractable epilepsy. Pathophysiological aspects of one such disorder, human polymicrogyria, can be modeled by making neocortical freeze lesions (FL) in neonatal rodents, resulting in the formation of microgyri. Previous studies showed enhanced excitatory and inhibitory synaptic transmission and connectivity in cortical layer V pyramidal neurons in the paramicrogyral cortex. In young adult transgenic mice that express green fluorescent protein (GFP) specifically in parvalbumin positive fast-spiking (FS) interneurons, we used laser scanning photostimulation (LSPS) of caged glutamate to map excitatory and inhibitory synaptic connectivity onto FS interneurons in layer V of paramicrogyral cortex in control and FL groups. The proportion of uncaging sites from which excitatory postsynaptic currents (EPSCs) could be evoked (hotspot ratio) increased slightly but significantly in FS cells of the FL vs. control cortex, while the mean amplitude of LSPS-evoked EPSCs at hotspots did not change. In contrast, the hotspot ratio of inhibitory postsynaptic currents (IPSCs) was significantly decreased in FS neurons of the FL cortex. These alterations in synaptic inputs onto FS interneurons may result in an enhanced inhibitory output. We conclude that alterations in synaptic connectivity to cortical layer V FS interneurons do not contribute to hyperexcitability of the FL model. Instead, the enhanced inhibitory output from these neurons may partially offset an earlier demonstrated increase in synaptic excitation of pyramidal cells and thereby maintain a relative balance between excitation and inhibition in the affected cortical circuitry. PMID:24990567

  5. Functional evidence for a direct excitatory projection from the lateral habenula to the ventral tegmental area in the rat

    PubMed Central

    Shepard, Paul D.

    2016-01-01

    The lateral habenula, a phylogenetically conserved epithalamic structure, is activated by aversive stimuli and reward omission. Excitatory efferents from the lateral habenula predominately inhibit midbrain dopamine neuronal firing through a disynaptic, feedforward inhibitory mechanism involving the rostromedial tegmental nucleus. However, the lateral habenula also directly targets dopamine neurons within the ventral tegmental area, suggesting that opposing actions may result from increased lateral habenula activity. In the present study, we tested the effect of habenular efferent stimulation on dopamine and nondopamine neurons in the ventral tegmental area of Sprague-Dawley rats using a parasagittal brain slice preparation. Single pulse stimulation of the fasciculus retroflexus excited 48% of dopamine neurons and 51% of nondopamine neurons in the ventral tegmental area of rat pups. These proportions were not altered by excision of the rostromedial tegmental nucleus and were evident in both cortical- and striatal-projecting dopamine neurons. Glutamate receptor antagonists blocked this excitation, and fasciculus retroflexus stimulation elicited evoked excitatory postsynaptic potentials with a nearly constant onset latency, indicative of a monosynaptic, glutamatergic connection. Comparison of responses in rat pups and young adults showed no significant difference in the proportion of neurons excited by fasciculus retroflexus stimulation. Our data indicate that the well-known, indirect inhibitory effect of lateral habenula activation on midbrain dopamine neurons is complemented by a significant, direct excitatory effect. This pathway may contribute to the role of midbrain dopamine neurons in processing aversive stimuli and salience. PMID:27358317

  6. Functional evidence for a direct excitatory projection from the lateral habenula to the ventral tegmental area in the rat.

    PubMed

    Brown, P Leon; Shepard, Paul D

    2016-09-01

    The lateral habenula, a phylogenetically conserved epithalamic structure, is activated by aversive stimuli and reward omission. Excitatory efferents from the lateral habenula predominately inhibit midbrain dopamine neuronal firing through a disynaptic, feedforward inhibitory mechanism involving the rostromedial tegmental nucleus. However, the lateral habenula also directly targets dopamine neurons within the ventral tegmental area, suggesting that opposing actions may result from increased lateral habenula activity. In the present study, we tested the effect of habenular efferent stimulation on dopamine and nondopamine neurons in the ventral tegmental area of Sprague-Dawley rats using a parasagittal brain slice preparation. Single pulse stimulation of the fasciculus retroflexus excited 48% of dopamine neurons and 51% of nondopamine neurons in the ventral tegmental area of rat pups. These proportions were not altered by excision of the rostromedial tegmental nucleus and were evident in both cortical- and striatal-projecting dopamine neurons. Glutamate receptor antagonists blocked this excitation, and fasciculus retroflexus stimulation elicited evoked excitatory postsynaptic potentials with a nearly constant onset latency, indicative of a monosynaptic, glutamatergic connection. Comparison of responses in rat pups and young adults showed no significant difference in the proportion of neurons excited by fasciculus retroflexus stimulation. Our data indicate that the well-known, indirect inhibitory effect of lateral habenula activation on midbrain dopamine neurons is complemented by a significant, direct excitatory effect. This pathway may contribute to the role of midbrain dopamine neurons in processing aversive stimuli and salience. Copyright © 2016 the American Physiological Society.

  7. All optical experimental design for neuron excitation, inhibition, and action potential detection

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Tolstykh, Gleb; Martens, Stacey; Sedelnikova, Anna; Ibey, Bennett L.; Beier, Hope T.

    2016-03-01

    Recently, infrared light has been shown to both stimulate and inhibit excitatory cells. However, studies of infrared light for excitatory cell inhibition have been constrained by the use of invasive and cumbersome electrodes for cell excitation and action potential recording. Here, we present an all optical experimental design for neuronal excitation, inhibition, and action potential detection. Primary rat neurons were transfected with plasmids containing the light sensitive ion channel CheRiff. CheRiff has a peak excitation around 450 nm, allowing excitation of transfected neurons with pulsed blue light. Additionally, primary neurons were transfected with QuasAr2, a fast and sensitive fluorescent voltage indicator. QuasAr2 is excited with yellow or red light and therefore does not spectrally overlap CheRiff, enabling imaging and action potential activation, simultaneously. Using an optic fiber, neurons were exposed to blue light sequentially to generate controlled action potentials. A second optic fiber delivered a single pulse of 1869nm light to the neuron causing inhibition of the evoked action potentials (by the blue light). When used in concert, these optical techniques enable electrode free neuron excitation, inhibition, and action potential recording, allowing research into neuronal behaviors with high spatial fidelity.

  8. Bispectral index, entropy, and quantitative electroencephalogram during single-agent xenon anesthesia.

    PubMed

    Laitio, Ruut M; Kaskinoro, Kimmo; Särkelä, Mika O K; Kaisti, Kaike K; Salmi, Elina; Maksimow, Anu; Långsjö, Jaakko W; Aantaa, Riku; Kangas, Katja; Jääskeläinen, Satu; Scheinin, Harry

    2008-01-01

    The aim was to evaluate the performance of anesthesia depth monitors, Bispectral Index (BIS) and Entropy, during single-agent xenon anesthesia in 17 healthy subjects. After mask induction with xenon and intubation, anesthesia was continued with xenon only. BIS, State Entropy and Response Entropy, and electroencephalogram were monitored throughout induction, steady-state anesthesia, and emergence. The performance of BIS, State Entropy, and Response Entropy were evaluated with prediction probability, sensitivity, and specificity analyses. The power spectrum of the raw electroencephalogram signal was calculated. The mean (SD) xenon concentration during anesthesia was 66.4% (2.4%). BIS, State Entropy, and Response Entropy demonstrated low prediction probability values at loss of response (0.455, 0.656, and 0.619) but 1 min after that the values were high (0.804, 0.941, and 0.929). Thereafter, equally good performance was demonstrated for all indices. At emergence, the prediction probability values to distinguish between steady-state anesthesia and return of response for BIS, State Entropy, and Response Entropy were 0.988, 0.892, and 0.992. No statistical differences between the performances of the monitors were observed. Quantitative electroencephalogram analyses showed generalized increase in total power (P < 0.001), delta (P < 0.001) and theta activity (P < 0.001), and increased alpha activity (P = 0.003) in the frontal brain regions. Electroencephalogram-derived depth of sedation indices BIS and Entropy showed a delay to detect loss of response during induction of xenon anesthesia. Both monitors performed well in distinguishing between conscious and unconscious states during steady-state anesthesia. Xenon-induced changes in electroencephalogram closely resemble those induced by propofol.

  9. Neither xenon nor fentanyl induces neuroapoptosis in the newborn pig brain.

    PubMed

    Sabir, Hemmen; Bishop, Sarah; Cohen, Nicki; Maes, Elke; Liu, Xun; Dingley, John; Thoresen, Marianne

    2013-08-01

    Some inhalation anesthetics increase apoptotic cell death in the developing brain. Xenon, an inhalation anesthetic, increases neuroprotection when combined with therapeutic hypothermia after hypoxic-ischemic brain injury in newborn animals. The authors, therefore, examined whether there was any neuroapoptotic effect of breathing 50% xenon with continuous fentanyl sedation for 24 h at normothermia or hypothermia on newborn pigs. Twenty-six healthy pigs (<24-h old) were randomized into four groups: (1) 24  h of 50% inhaled xenon with fentanyl at hypothermia (Trec = 33.5 °C), (2) 24 h of 50% inhaled xenon with fentanyl at normothermia (Trec = 38.5 °C), (3) 24 h of fentanyl at normothermia, or (4) nonventilated juvenile controls at normothermia. Five additional nonrandomized pigs inhaled 2% isoflurane at normothermia for 24 h to verify any proapoptotic effect of inhalation anesthetics in our model. Pathological cells were morphologically assessed in cortex, putamen, hippocampus, thalamus, and white matter. To quantify the findings, immunostained cells (caspase-3 and terminal deoxynucleotidyl transferase-mediated deoxyuridine-triphosphate nick-end labeling) were counted in the same brain regions. For groups (1) to (4), the total number of apoptotic cells was less than 5 per brain region, representing normal developmental neuroapoptosis. After immunostaining and cell counting, regression analysis showed that neither 50% xenon with fentanyl nor fentanyl alone increased neuroapoptosis. Isoflurane caused on average a 5- to 10-fold increase of immunostained cells. At normothermia or hypothermia, neither 24 h of inhaled 50% xenon with fentanyl sedation nor fentanyl alone induces neuroapoptosis in the neonatal pig brain. Breathing 2% isoflurane increases neuroapoptosis in neonatal pigs.

  10. Xenon depresses aEEG background voltage activity whilst maintaining cardiovascular stability in sedated healthy newborn pigs.

    PubMed

    Sabir, Hemmen; Wood, Thomas; Gill, Hannah; Liu, Xun; Dingley, John; Thoresen, Marianne

    2016-04-15

    Changes in electroencephalography (EEG) voltage range are used to monitor the depth of anaesthesia, as well as predict outcome after hypoxia-ischaemia in neonates. Xenon is being investigated as a potential neuroprotectant after hypoxic-ischaemic brain injury, but the effect of Xenon on EEG parameters in children or neonates is not known. This study aimed to examine the effect of 50% inhaled Xenon on background amplitude-integrated EEG (aEEG) activity in sedated healthy newborn pigs. Five healthy newborn pigs, receiving intravenous fentanyl sedation, were ventilated for 24 h with 50%Xenon, 30%O2 and 20%N2 at normothermia. The upper and lower voltage-range of the aEEG was continuously monitored together with cardiovascular parameters throughout a 1 h baseline period with fentanyl sedation only, followed by 24 h of Xenon administration. The median (IQR) upper and lower aEEG voltage during 1 h baseline was 48.0 μV (46.0-50.0) and 25.0 μV (23.0-26.0), respectively. The median (IQR) aEEG upper and lower voltage ranges were significantly depressed to 21.5 μV (20.0-26.5) and 12.0 μV (12.0-16.5) from 10 min after the onset of 50% Xenon administration (p=0.002). After the initial Xenon induced depression in background aEEG voltage, no further aEEG changes were seen over the following 24h of ventilation with 50% xenon under fentanyl sedation. Mean arterial blood pressure and heart rate remained stable. Mean arterial blood pressure and heart rate were not significantly influenced by 24h Xenon ventilation. 50% Xenon rapidly depresses background aEEG voltage to a steady ~50% lower level in sedated healthy newborn pigs. Therefore, care must be taken when interpreting the background voltage in neonates also receiving Xenon. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Anesthetic agent-specific effects on synaptic inhibition.

    PubMed

    MacIver, M Bruce

    2014-09-01

    Anesthetics enhance γ-aminobutyric acid (GABA)-mediated inhibition in the central nervous system. Different agents have been shown to act on tonic versus synaptic GABA receptors to different degrees, but it remains unknown whether different forms of synaptic inhibition are also differentially engaged. With this in mind, we tested the hypothesis that different types of GABA-mediated synapses exhibit different anesthetic sensitivities. The present study compared effects produced by isoflurane, halothane, pentobarbital, thiopental, and propofol on paired-pulse GABAA receptor-mediated synaptic inhibition. Effects on glutamate-mediated facilitation were also studied. Synaptic responses were measured in rat hippocampal brain slices. Orthodromic paired-pulse stimulation was used to assess anesthetic effects on either glutamate-mediated excitatory inputs or GABA-mediated inhibitory inputs to CA1 neurons. Antidromic stimulation was used to assess anesthetic effects on CA1 background excitability. Agents were studied at equieffective concentrations for population spike depression to compare their relative degree of effect on synaptic inhibition. Differing degrees of anesthetic effect on paired-pulse facilitation at excitatory glutamate synapses were evident, and blocking GABA inhibition revealed a previously unseen presynaptic action for pentobarbital. Although all 5 anesthetics depressed synaptically evoked excitation of CA1 neurons, the involvement of enhanced GABA-mediated inhibition differed considerably among agents. Single-pulse inhibition was enhanced by propofol, thiopental, and pentobarbital, but only marginally by halothane and isoflurane. In contrast, isoflurane enhanced paired-pulse inhibition strongly, as did thiopental, but propofol, pentobarbital, and halothane were less effective. These observations support the idea that different GABA synapses use receptors with differing subunit compositions and that anesthetics exhibit differing degrees of selectivity for

  12. Differential Alterations in Excitatory and Inhibitory Networks Involving Dentate Granule Cells Following Chronic Treatment with Distinct Classes of NMDAR Antagonists in Hippocampal Slice Cultures

    DTIC Science & Technology

    2010-03-08

    1992; Jung and McNaughton, 1993); (2) low incidence of recurrent excitatory synapses between granule cells (Molnar and Nadler, 1999; Okazaki et al...neurons, dentate granule cells have a relatively more negative resting membrane potential and exhibit low-frequency firing (Staley et al., 1992; Jung ...inhibition plays a dual role in brain function and possibly seizure occurrence through balancing excitation and synchronizing neuronal firing. An

  13. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon: Results of a preliminary study.

    PubMed

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results.Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon-oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images.Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects.Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images reflected

  14. Development of a high-resolution liquid xenon detector for gamma-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Mukherjee, Reshmi

    It has been shown here that liquid xenon is one of the most promising detector media for future gamma-ray detectors, owing to an excellent combination of physical properties. The feasibility of the construction of a high resolution liquid xenon detector as a gamma-ray detector for astrophysics has been demonstrated. Up to 3.5 liters of liquid xenon has been successfully purified and using both small and large volume prototypes, the charge and the energy resolution response of such detectors to gamma-rays, internal conversion electrons and alpha particles have been measured. The best energy resolution measured was 4.5 percent FWHM at 1 MeV. Cosmic ray tracks have been imaged using a 2-dimensional liquid xenon multiwire imaging chamber. The spatial resolution along the direction of the drifting electrons was 180 microns rms. Experiments have been performed to study the scintillation light in liquid xenon, as the prompt scintillation signal in the liquid is an electron-ion pair in liquid krypton was measured for the first time with a pulsed ionization chamber to be 18.4 plus or minus 0.3 eV.

  15. Specific excitatory connectivity for feature integration in mouse primary visual cortex

    PubMed Central

    Molina-Luna, Patricia; Roth, Morgane M.

    2017-01-01

    Local excitatory connections in mouse primary visual cortex (V1) are stronger and more prevalent between neurons that share similar functional response features. However, the details of how functional rules for local connectivity shape neuronal responses in V1 remain unknown. We hypothesised that complex responses to visual stimuli may arise as a consequence of rules for selective excitatory connectivity within the local network in the superficial layers of mouse V1. In mouse V1 many neurons respond to overlapping grating stimuli (plaid stimuli) with highly selective and facilitatory responses, which are not simply predicted by responses to single gratings presented alone. This complexity is surprising, since excitatory neurons in V1 are considered to be mainly tuned to single preferred orientations. Here we examined the consequences for visual processing of two alternative connectivity schemes: in the first case, local connections are aligned with visual properties inherited from feedforward input (a ‘like-to-like’ scheme specifically connecting neurons that share similar preferred orientations); in the second case, local connections group neurons into excitatory subnetworks that combine and amplify multiple feedforward visual properties (a ‘feature binding’ scheme). By comparing predictions from large scale computational models with in vivo recordings of visual representations in mouse V1, we found that responses to plaid stimuli were best explained by assuming feature binding connectivity. Unlike under the like-to-like scheme, selective amplification within feature-binding excitatory subnetworks replicated experimentally observed facilitatory responses to plaid stimuli; explained selective plaid responses not predicted by grating selectivity; and was consistent with broad anatomical selectivity observed in mouse V1. Our results show that visual feature binding can occur through local recurrent mechanisms without requiring feedforward convergence, and

  16. Scalability, Scintillation Readout and Charge Drift in a Kilogram Scale Solid Xenon Particle Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, J.; Cease, H.; Jaskierny, W. F.

    2014-10-23

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used amore » conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.« less

  17. Ultrastructure of identified fast excitatory, slow excitatory and inhibitory neuromuscular junctions in the locust.

    PubMed

    Titmus, M J

    1981-06-01

    The specialized jumping muscle of the locust, the metathoracic extensor tibiae (ETi), is innervated by four physiologically different motoneurons, including FETi, a phasic excitor, SETi, a tonic excitor, and CI, a tonic common inhibitor. FETi neuromuscular junctions were examined in three phasic ETi bundles innervated by FETi. FETi terminals were characterized by patchy contacts on to granular sarcoplasm. The ETi accessory extensor, innervated by both SETi and CI, contains two morphologically different types of axon ending. When this muscle was soaked in horseradish peroxidase, stimulation of SETi led to selective uptake in vesicles in terminals similar to those of FETi axons but containing smaller vesicles, while stimulation by CI caused increased uptake into terminals with more extensive contact directly on to fibrillar sarcoplasm. As has been observed in excitatory and inhibitory synapses in some crustacean and vertebrate nervous systems, the synaptic vesicles in the locust excitatory endings are round and electron-lucent while those in the inhibitory endings are more irregular in shape. The tonic neuromuscular junctions, SETi and CI, are more densely packed with vesicles, larger in cross-sectional area and appear to be of more complex shape than the smaller, vesicle-sparse, phasic FETi terminals. Following long duration stimulation at 10 Hz, the tonic neuromuscular junctions showed little morphological change. FETi endings, which fatigue within minutes at the same stimulation frequency, showed a 20% decrease in synaptic vesicle density and an increase in irregularly shaped membrane inclusions.

  18. Xenon improves neurological outcome and reduces secondary injury following trauma in an in vivo model of traumatic brain injury

    PubMed Central

    Luh, Clara; Gruss, Marco; Radyushkin, Konstantin; Hirnet, Tobias; Werner, Christian; Engelhard, Kristin; Franks, Nicholas P; Thal, Serge C; Dickinson, Robert

    2015-01-01

    Objectives To determine the neuroprotective efficacy of the inert gas xenon following traumatic brain injury, and to determine whether application of xenon has a clinically relevant therapeutic time window. Design Controlled animal study. Setting University research laboratory. Subjects Male C57BL/6N mice (n=196) Interventions 75% xenon, 50% xenon or 30% xenon, with 25% oxygen (balance nitrogen) treatment following mechanical brain lesion by controlled cortical impact. Measurements & Main Results Outcome following trauma was measured using: 1) functional neurological outcome score, 2) histological measurement of contusion volume, 3) analysis of locomotor function and gait. Our study shows that xenon-treatment improves outcome following traumatic brain injury. Neurological outcome scores were significantly (p<0.05) better in xenon-treated groups in the early phase (24 hours) and up to 4 days after injury. Contusion volume was significantly (p<0.05) reduced in the xenon-treated groups. Xenon treatment significantly (p<0.05) reduced contusion volume when xenon was given 15 minutes after injury or when treatment was delayed 1 hour or 3 hours after injury. Neurological outcome was significantly (p<0.05) improved when xenon treatment was given 15 minutes or 1 hour after injury. Improvements in locomotor function (p<0.05) were observed in the xenon-treated group, 1 month after trauma. Conclusions These results show for the first time that xenon improves neurological outcome and reduces contusion volume following traumatic brain injury in mice. In this model, xenon application has a therapeutic time window of up to at least 3 hours. These findings support the idea that xenon may be of benefit as a neuroprotective treatment in brain trauma patients. PMID:25188549

  19. Xenon improves neurologic outcome and reduces secondary injury following trauma in an in vivo model of traumatic brain injury.

    PubMed

    Campos-Pires, Rita; Armstrong, Scott P; Sebastiani, Anne; Luh, Clara; Gruss, Marco; Radyushkin, Konstantin; Hirnet, Tobias; Werner, Christian; Engelhard, Kristin; Franks, Nicholas P; Thal, Serge C; Dickinson, Robert

    2015-01-01

    To determine the neuroprotective efficacy of the inert gas xenon following traumatic brain injury and to determine whether application of xenon has a clinically relevant therapeutic time window. Controlled animal study. University research laboratory. Male C57BL/6N mice (n = 196). Seventy-five percent xenon, 50% xenon, or 30% xenon, with 25% oxygen (balance nitrogen) treatment following mechanical brain lesion by controlled cortical impact. Outcome following trauma was measured using 1) functional neurologic outcome score, 2) histological measurement of contusion volume, and 3) analysis of locomotor function and gait. Our study shows that xenon treatment improves outcome following traumatic brain injury. Neurologic outcome scores were significantly (p < 0.05) better in xenon-treated groups in the early phase (24 hr) and up to 4 days after injury. Contusion volume was significantly (p < 0.05) reduced in the xenon-treated groups. Xenon treatment significantly (p < 0.05) reduced contusion volume when xenon was given 15 minutes after injury or when treatment was delayed 1 or 3 hours after injury. Neurologic outcome was significantly (p < 0.05) improved when xenon treatment was given 15 minutes or 1 hour after injury. Improvements in locomotor function (p < 0.05) were observed in the xenon-treated group, 1 month after trauma. These results show for the first time that xenon improves neurologic outcome and reduces contusion volume following traumatic brain injury in mice. In this model, xenon application has a therapeutic time window of up to at least 3 hours. These findings support the idea that xenon may be of benefit as a neuroprotective treatment in patients with brain trauma.

  20. Online ^{222}Rn removal by cryogenic distillation in the XENON100 experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Gangi, P. Di; Giovanni, A. Di; Diglio, S.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Calloch, M. Le; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Cristescu, I.

    2017-06-01

    We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant ^{222}Rn background originating from radon emanation. After inserting an auxiliary ^{222}Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the ^{222}Rn activity concentration inside the XENON100 detector.

  1. Sequential dynamics in the motif of excitatory coupled elements

    NASA Astrophysics Data System (ADS)

    Korotkov, Alexander G.; Kazakov, Alexey O.; Osipov, Grigory V.

    2015-11-01

    In this article a new model of motif (small ensemble) of neuron-like elements is proposed. It is built with the use of the generalized Lotka-Volterra model with excitatory couplings. The main motivation for this work comes from the problems of neuroscience where excitatory couplings are proved to be the predominant type of interaction between neurons of the brain. In this paper it is shown that there are two modes depending on the type of coupling between the elements: the mode with a stable heteroclinic cycle and the mode with a stable limit cycle. Our second goal is to examine the chaotic dynamics of the generalized three-dimensional Lotka-Volterra model.

  2. Inference and analysis of xenon outflow curves under multi-pulse injection in two-dimensional chromatography.

    PubMed

    Shu-Jiang, Liu; Zhan-Ying, Chen; Yin-Zhong, Chang; Shi-Lian, Wang; Qi, Li; Yuan-Qing, Fan

    2013-10-11

    Multidimensional gas chromatography is widely applied to atmospheric xenon monitoring for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). To improve the capability for xenon sampling from the atmosphere, sampling techniques have been investigated in detail. The sampling techniques are designed by xenon outflow curves which are influenced by many factors, and the injecting condition is one of the key factors that could influence the xenon outflow curves. In this paper, the xenon outflow curves of single-pulse injection in two-dimensional gas chromatography has been tested and fitted as a function of exponential modified Gaussian distribution. An inference formula of the xenon outflow curve for six-pulse injection is derived, and the inference formula is also tested to compare with its fitting formula of the xenon outflow curve. As a result, the curves of both the one-pulse and six-pulse injections obey the exponential modified Gaussian distribution when the temperature of the activated carbon column's temperature is 26°C and the flow rate of the carrier gas is 35.6mLmin(-1). The retention time of the xenon peak for one-pulse injection is 215min, and the peak width is 138min. For the six-pulse injection, however, the retention time is delayed to 255min, and the peak width broadens to 222min. According to the inferred formula of the xenon outflow curve for the six-pulse injection, the inferred retention time is 243min, the relative deviation of the retention time is 4.7%, and the inferred peak width is 225min, with a relative deviation of 1.3%. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Deriving excitatory neurons of the neocortex from pluripotent stem cells

    PubMed Central

    Hansen, David V.; Rubenstein, John L.R.; Kriegstein, Arnold R.

    2011-01-01

    The human cerebral cortex is an immensely complex structure that subserves critical functions that can be disrupted in developmental and degenerative disorders. Recent innovations in cellular reprogramming and differentiation techniques have provided new ways to study the cellular components of the cerebral cortex. Here we discuss approaches to generate specific subtypes of excitatory cortical neurons from pluripotent stem cells. We review spatial and temporal aspects of cortical neuron specification that can guide efforts to produce excitatory neuron subtypes with increased resolution. Finally, we discuss distinguishing features of human cortical development and their translational ramifications for cortical stem cell technologies. PMID:21609822

  4. Pulse propagation in discrete excitatory networks of integrate-and-fire neurons.

    PubMed

    Badel, Laurent; Tonnelier, Arnaud

    2004-07-01

    We study the propagation of solitary waves in a discrete excitatory network of integrate-and-fire neurons. We show the existence and the stability of a fast wave and a family of slow waves. Fast waves are similar to those already described in continuum networks. Stable slow waves have not been previously reported in purely excitatory networks and their propagation is particular to the discrete nature of the network. The robustness of our results is studied in the presence of noise.

  5. Early treatment with xenon protects against the cold ischemia associated with chronic allograft nephropathy in rats.

    PubMed

    Zhao, Hailin; Luo, Xianghong; Zhou, Zhaowei; Liu, Juying; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2014-01-01

    Chronic allograft nephropathy (CAN) is a common finding in kidney grafts with functional impairment. Prolonged hypothermic storage-induced ischemia-reperfusion injury is associated with the early onset of CAN. As the noble gas xenon is clinically used as an anesthetic and has renoprotective properties in a rodent model of ischemia-reperfusion injury, we studied whether early treatment with xenon could attenuate CAN associated with prolonged hypothermic storage. Exposure to xenon enhanced the expression of insulin growth factor-1 (IGF-1) and its receptor in human proximal tubular (HK-2) cells, which, in turn, increased cell proliferation. Xenon treatment before or after hypothermia-hypoxia decreased cell apoptosis and cell inflammation after reoxygenation. The xenon-induced HK-2 cell proliferation was abolished by blocking the IGF-1 receptor, mTOR, and HIF-1α individually. In the Fischer-to-Lewis rat allogeneic renal transplantation model, xenon exposure of donors before graft retrieval or recipients after engraftment enhanced tubular cell proliferation and decreased tubular cell death and cell inflammation associated with ischemia-reperfusion injury. Compared with control allografts, xenon treatment significantly suppressed T-cell infiltration and fibrosis, prevented the development of CAN, and improved renal function. Thus, xenon treatment promoted recovery from ischemia-reperfusion injury and reduced susceptibility to the subsequent development of CAN in allografts.

  6. Excess thermodynamics of mixtures involving xenon and light linear alkanes by computer simulation.

    PubMed

    Carvalho, A J Palace; Ramalho, J P Prates; Martins, Luís F G

    2007-06-14

    Excess molar enthalpies and excess molar volumes as a function of composition for liquid mixtures of xenon + ethane (at 161.40 K), xenon + propane (at 161.40 K) and xenon + n-butane (at 182.34 K) have been obtained by Monte Carlo computer simulations and compared with available experimental data. Simulation conditions were chosen to closely match those of the corresponding experimental results. The TraPPE-UA force field was selected among other force fields to model all the alkanes studied, whereas the one-center Lennard-Jones potential from Bohn et al. was used for xenon. The calculated H(m)(E) and V(m)(E) for all systems are negative, increasing in magnitude as the alkane chain length increases. The results for these systems were compared with experimental data and with other theoretical calculations using the SAFT approach. An excellent agreement between simulation and experimental results was found for xenon + ethane system, whereas for the remaining two systems, some deviations that become progressively more significant as the alkane chain length increases were observed.

  7. Protection of xenon against postoperative oxygen impairment in adults undergoing Stanford Type-A acute aortic dissection surgery

    PubMed Central

    Jin, Mu; Cheng, Yi; Yang, Yanwei; Pan, Xudong; Lu, Jiakai; Cheng, Weiping

    2017-01-01

    Abstract Objectives: The available evidence shows that hypoxemia after Stanford Type-A acute aortic dissection (AAD) surgery is a frequent cause of several adverse consequences. The pathogenesis of postoperative hypoxemia after AAD surgery is complex, and ischemia/reperfusion and inflammation are likely to be underlying risk factors. Xenon, recognized as an ideal anesthetic and anti-inflammatory treatment, might be a possible treatment for these adverse effects. Methods/Design: The trial is a prospective, double-blind, 4-group, parallel, randomized controlled, a signal-center clinical trial. We will recruit 160 adult patients undergoing Stanford type-A AAD surgery. Patients will be allocated a study number and will be randomized on a 1:1:1:1 basis to receive 1 of the 3 treatment options (pulmonary inflated with 50% xenon, 75% xenon, or 100% xenon) or no treatment (control group, pulmonary inflated with 50% nitrogen). The aims of this study are to clarify the lung protection capability of xenon and its possible mechanisms in patients undergoing the Stanford type-A AAD surgery. Discussion: This trial uses an innovative design to account for the xenon effects of postoperative oxygen impairment, and it also delineates the mechanism for any benefit from xenon. The investigational xenon group is considered a treatment intervention, as it includes 3 groups of pulmonary static inflation with 50%, 75%, and 100% xenon. It is suggested that future trials might define an appropriate concentration of xenon for the best practice intervention. PMID:28834897

  8. Intraglomerular inhibition shapes the strength and temporal structure of glomerular output

    PubMed Central

    Shao, Zuoyi; Puche, Adam C.; Liu, Shaolin

    2012-01-01

    Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MCs) and external tufted cells (ETCs). ETCs, in turn, provide feedforward excitatory input to MCs. MC and ETCs are also regulated by inhibition: intraglomerular and interglomerular inhibitory circuits act at MC and ETC apical dendrites; granule cells (GCs) inhibit MC lateral dendrites via the MC→GC→MC circuit. We investigated the contribution of intraglomerular inhibition to MC and ETCs responses to ON input. ON input evokes initial excitation followed by early, strongly summating inhibitory postsynaptic currents (IPSCs) in MCs; this is followed by prolonged, intermittent IPSCs. The N-methyl-d-aspartate receptor antagonist dl-amino-5-phosphovaleric acid, known to suppress GABA release by GCs, reduced late IPSCs but had no effect on early IPSCs. In contrast, selective intraglomerular block of GABAA receptors eliminated all early IPSCs and caused a 5-fold increase in ON-evoked MC spiking and a 10-fold increase in response duration. ETCs also receive intraglomerular inhibition; blockade of inhibition doubled ETC spike responses. By reducing ETC excitatory drive and directly inhibiting MCs, intraglomerular inhibition is a key factor shaping the strength and temporal structure of MC responses to sensory input. Sensory input generates an intraglomerular excitation-inhibition sequence that limits MC spike output to a brief temporal window. Glomerular circuits may dynamically regulate this input-output window to optimize MC encoding across sniff-sampled inputs. PMID:22592311

  9. Intraglomerular inhibition shapes the strength and temporal structure of glomerular output.

    PubMed

    Shao, Zuoyi; Puche, Adam C; Liu, Shaolin; Shipley, Michael T

    2012-08-01

    Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MCs) and external tufted cells (ETCs). ETCs, in turn, provide feedforward excitatory input to MCs. MC and ETCs are also regulated by inhibition: intraglomerular and interglomerular inhibitory circuits act at MC and ETC apical dendrites; granule cells (GCs) inhibit MC lateral dendrites via the MC→GC→MC circuit. We investigated the contribution of intraglomerular inhibition to MC and ETCs responses to ON input. ON input evokes initial excitation followed by early, strongly summating inhibitory postsynaptic currents (IPSCs) in MCs; this is followed by prolonged, intermittent IPSCs. The N-methyl-d-aspartate receptor antagonist dl-amino-5-phosphovaleric acid, known to suppress GABA release by GCs, reduced late IPSCs but had no effect on early IPSCs. In contrast, selective intraglomerular block of GABA(A) receptors eliminated all early IPSCs and caused a 5-fold increase in ON-evoked MC spiking and a 10-fold increase in response duration. ETCs also receive intraglomerular inhibition; blockade of inhibition doubled ETC spike responses. By reducing ETC excitatory drive and directly inhibiting MCs, intraglomerular inhibition is a key factor shaping the strength and temporal structure of MC responses to sensory input. Sensory input generates an intraglomerular excitation-inhibition sequence that limits MC spike output to a brief temporal window. Glomerular circuits may dynamically regulate this input-output window to optimize MC encoding across sniff-sampled inputs.

  10. Measurement of radon and xenon binding to a cryptophane molecular host

    PubMed Central

    Jacobson, David R.; Khan, Najat S.; Collé, Ronald; Fitzgerald, Ryan; Laureano-Pérez, Lizbeth; Bai, Yubin; Dmochowski, Ivan J.

    2011-01-01

    Xenon and radon have many similar properties, a difference being that all 35 isotopes of radon (195Rn–229Rn) are radioactive. Radon is a pervasive indoor air pollutant believed to cause significant incidence of lung cancer in many geographic regions, yet radon affinity for a discrete molecular species has never been determined. By comparison, the chemistry of xenon has been widely studied and applied in science and technology. Here, both noble gases were found to bind with exceptional affinity to tris-(triazole ethylamine) cryptophane, a previously unsynthesized water-soluble organic host molecule. The cryptophane–xenon association constant, Ka = 42,000 ± 2,000 M-1 at 293 K, was determined by isothermal titration calorimetry. This value represents the highest measured xenon affinity for a host molecule. The partitioning of radon between air and aqueous cryptophane solutions of varying concentration was determined radiometrically to give the cryptophane–radon association constant Ka = 49,000 ± 12,000 M-1 at 293 K. PMID:21690357

  11. Low excitatory innervation balances high intrinsic excitability of immature dentate neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieni, Cristina V.; Panichi, Roberto; Aimone, James B.

    Persistent neurogenesis in the dentate gyrus produces immature neurons with high intrinsic excitability and low levels of inhibition that are predicted to be more broadly responsive to afferent activity than mature neurons. Mounting evidence suggests that these immature neurons are necessary for generating distinct neural representations of similar contexts, but it is unclear how broadly responsive neurons help distinguish between similar patterns of afferent activity. Here we show that stimulation of the entorhinal cortex in mouse brain slices paradoxically generates spiking of mature neurons in the absence of immature neuron spiking. Immature neurons with high intrinsic excitability fail to spikemore » due to insufficient excitatory drive that results from low innervation rather than silent synapses or low release probability. Here, our results suggest that low synaptic connectivity prevents immature neurons from responding broadly to cortical activity, potentially enabling excitable immature neurons to contribute to sparse and orthogonal dentate representations.« less

  12. Low excitatory innervation balances high intrinsic excitability of immature dentate neurons

    DOE PAGES

    Dieni, Cristina V.; Panichi, Roberto; Aimone, James B.; ...

    2016-04-20

    Persistent neurogenesis in the dentate gyrus produces immature neurons with high intrinsic excitability and low levels of inhibition that are predicted to be more broadly responsive to afferent activity than mature neurons. Mounting evidence suggests that these immature neurons are necessary for generating distinct neural representations of similar contexts, but it is unclear how broadly responsive neurons help distinguish between similar patterns of afferent activity. Here we show that stimulation of the entorhinal cortex in mouse brain slices paradoxically generates spiking of mature neurons in the absence of immature neuron spiking. Immature neurons with high intrinsic excitability fail to spikemore » due to insufficient excitatory drive that results from low innervation rather than silent synapses or low release probability. Here, our results suggest that low synaptic connectivity prevents immature neurons from responding broadly to cortical activity, potentially enabling excitable immature neurons to contribute to sparse and orthogonal dentate representations.« less

  13. Dopaminergic Modulation of Excitatory Transmission in the Anterior Cingulate Cortex of Adult Mice

    PubMed Central

    Darvish-Ghane, Soroush; Yamanaka, Manabu

    2016-01-01

    Dopamine (DA) possesses potent neuromodulatory properties in the central nervous system. In the anterior cingulate cortex, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) are key ion channels in mediating nerve injury induced long-term potentiation (LTP) and chronic pain phenotype. In the present study, we reported the effects of DA on glutamate mediated excitatory post-synaptic currents (EPSCs) in pyramidal neurons of layer II/III of the ACC in adult mice. Bath application of DA (50 μM) caused a significant, rapid and reversible inhibition of evoked EPSCs (eEPSC). This inhibitory effect is dose-related and was absent in lower concentration of DA (5 μM). Furthermore, selective postsynaptic application of GDP-β-S (1.6 mM) in the internal solution completely abolished the inhibitory effects of DA (50 μM). We also investigated modulation of spontaneous EPSCs (sEPSCs) and TTX sensitive, miniature EPSCs (mEPSCs) by DA. Our results indicated mixed effects of potentiation and inhibition of frequency and amplitude for sEPSCs and mEPSCs. Furthermore, high doses of SCH23390 (100 μM) and sulpiride (100 μM) revealed that, inhibition of eEPSCs is mediated by postsynaptic D2-receptors (D2R). Our finding posits a pre- and postsynaptic mode of pyramidal neuron EPSC modulation in mice ACC by DA. PMID:27317578

  14. Xenon neurotoxicity in rat hippocampal slice cultures is similar to isoflurane and sevoflurane.

    PubMed

    Brosnan, Heather; Bickler, Philip E

    2013-08-01

    Anesthetic neurotoxicity in the developing brain of rodents and primates has raised concern. Xenon may be a nonneurotoxic alternative to halogenated anesthetics, but its toxicity has only been studied at low concentrations, where neuroprotective effects predominate in animal models. An equipotent comparison of xenon and halogenated anesthetics with respect to neurotoxicity in developing neurons has not been made. Organotypic hippocampal cultures from 7-day-old rats were exposed to 0.75, 1, and 2 minimum alveolar concentrations (MAC) partial pressures (60% xenon at 1.2, 2.67, and 3.67 atm; isoflurane at 1.4, 1.9, and 3.8%; and sevoflurane at 3.4 and 6.8%) for 6 h, at atmospheric pressure or in a pressure chamber. Cell death was assessed 24 h later with fluorojade and fluorescent dye exclusion techniques. Xenon caused death of hippocampal neurons in CA1, CA3, and dentate regions after 1 and 2 MAC exposures, but not at 0.75 MAC. At 1 MAC, xenon increased cell death 40% above baseline (P < 0.01; ANOVA with Dunnett test). Both isoflurane and sevoflurane increased neuron death at 1 but not 2 MAC. At 1 MAC, the increase in cell death compared with controls was 63% with isoflurane and 90% with sevoflurane (both P < 0.001). Pretreatment of cultures with isoflurane (0.75 MAC) reduced neuron death after 1 MAC xenon, isoflurane, and sevoflurane. Xenon causes neuronal cell death in an in vitro model of the developing rodent brain at 1 MAC, as does isoflurane and sevoflurane at similarly potent concentrations. Preconditioning with a subtoxic dose of isoflurane eliminates this toxicity.

  15. Venus, Earth, Xenon

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2013-12-01

    Xenon has been regarded as an important goal of many proposed missions to Venus. This talk is intended to explain why. Despite its being the heaviest gas found in natural planetary atmospheres, there is more evidence that Xe escaped from Earth than for any element apart from helium: (i) Atmospheric Xe is very strongly mass fractionated (at about 4% per amu) from any known solar system source. This suggests fractionating escape that preferentially left the heavy Xe isotopes behind. (ii) Xe is underabundant compared to Kr, a lighter noble gas that is not strongly mass fractionated in air. (iii) Radiogenic Xe is strongly depleted by factors of several to ~100 compared to the quantities expected from radioactive decay of primordial solar system materials. In these respects Xe on Mars is similar to Xe on Earth, but with one key difference: Xe on Mars is readily explained by a simple process like hydrodynamic escape that acts on an initially solar or meteoritic Xe. This is not so for Earth. Earth's Xe cannot be derived by an uncontrived mass fractionating process acting on any known type of Solar System Xe. Earth is a stranger, made from different stuff than any known meteorite or Mars or even the Sun. Who else is in Earth's family? Comets? We know nothing. Father Zeus? Data from Jupiter are good enough to show that jovian Xe is not strongly mass-fractionated but not good enough to determine whether Jupiter resembles the Earth or the Sun. Sister Venus? Noble gas data from Venus are incomplete, with Kr uncertain and Xe unmeasured. Krypton was measured by several instruments on several spacecraft. The reported Kr abundances are discrepant and were once highly controversial. These discrepancies appear to have been not so much resolved as forgotten. Xenon was not detected on Venus. Upper limits were reported for the two most abundant xenon isotopes 129Xe and 132Xe. From the limited data it is not possible to tell whether Venus's affinities lie with the solar wind, or with

  16. Feasibility and cardiac safety of inhaled xenon in combination with therapeutic hypothermia following out-of-hospital cardiac arrest.

    PubMed

    Arola, Olli J; Laitio, Ruut M; Roine, Risto O; Grönlund, Juha; Saraste, Antti; Pietilä, Mikko; Airaksinen, Juhani; Perttilä, Juha; Scheinin, Harry; Olkkola, Klaus T; Maze, Mervyn; Laitio, Timo T

    2013-09-01

    Preclinical studies reveal the neuroprotective properties of xenon, especially when combined with hypothermia. The purpose of this study was to investigate the feasibility and cardiac safety of inhaled xenon treatment combined with therapeutic hypothermia in out-of-hospital cardiac arrest patients. An open controlled and randomized single-centre clinical drug trial (clinicaltrials.gov NCT00879892). A multipurpose ICU in university hospital. Thirty-six adult out-of-hospital cardiac arrest patients (18-80 years old) with ventricular fibrillation or pulseless ventricular tachycardia as initial cardiac rhythm. Patients were randomly assigned to receive either mild therapeutic hypothermia treatment with target temperature of 33°C (mild therapeutic hypothermia group, n=18) alone or in combination with xenon by inhalation, to achieve a target concentration of at least 40% (Xenon+mild therapeutic hypothermia group, n=18) for 24 hours. Thirty-three patients were evaluable (mild therapeutic hypothermia group, n=17; Xenon+mild therapeutic hypothermia group, n=16). Patients were treated and monitored according to the Utstein protocol. The release of troponin-T was determined at arrival to hospital and at 24, 48, and 72 hours after out-of-hospital cardiac arrest. The median end-tidal xenon concentration was 47% and duration of the xenon inhalation was 25.5 hours. The frequency of serious adverse events, including inhospital mortality, status epilepticus, and acute kidney injury, was similar in both groups and there were no unexpected serious adverse reactions to xenon during hospital stay. In addition, xenon did not induce significant conduction, repolarization, or rhythm abnormalities. Median dose of norepinephrine during hypothermia was lower in xenon-treated patients (mild therapeutic hypothermia group=5.30 mg vs Xenon+mild therapeutic hypothermia group=2.95 mg, p=0.06). Heart rate was significantly lower in Xenon+mild therapeutic hypothermia patients during hypothermia

  17. New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essig, Rouven; Volansky, Tomer; Yu, Tien-Tien

    2017-08-30

    We study in detail sub-GeV dark matter scattering off electrons in xenon, including the expected electron recoil spectra and annual modulation spectra. We derive improved constraints using low-energy XENON10 and XENON100 ionization-only data. For XENON10, in addition to including electron-recoil data corresponding to about 1–3 electrons, we include for the first time events corresponding to about 4–7 electrons. Assuming the scattering is momentum independent (F DM = 1 ), this strengthens a previous cross-section bound by almost an order of magnitude for dark matter masses above 50 MeV. The available XENON100 data corresponds to events with about 4–50 electrons, andmore » leads to a constraint that is comparable to the XENON10 bound above 50 MeV for F DM = 1 . We demonstrate that a search for an annual modulation signal in upcoming xenon experiments (XENON1T, XENONnT, LZ) could substantially improve the above bounds even in the presence of large backgrounds. We also emphasize that in simple benchmark models of sub-GeV dark matter, the dark matter-electron scattering rate can be as high as one event every ten (two) seconds in the XENON1T (XENONnT or LZ) experiments, without being in conflict with any other known experimental bounds. While there are several sources of backgrounds that can produce single- or few-electron events, a large event rate can be consistent with a dark matter signal and should not be simply written off as purely a detector curiosity. This fact motivates a detailed analysis of the ionization-data (“S2”) data, taking into account the expected annual modulation spectrum of the signal rate, as well as the DM-induced electron-recoil spectra, which are another powerful discriminant between signal and background.« less

  18. New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon

    NASA Astrophysics Data System (ADS)

    Essig, Rouven; Volansky, Tomer; Yu, Tien-Tien

    2017-08-01

    We study in detail sub-GeV dark matter scattering off electrons in xenon, including the expected electron recoil spectra and annual modulation spectra. We derive improved constraints using low-energy XENON10 and XENON100 ionization-only data. For XENON10, in addition to including electron-recoil data corresponding to about 1-3 electrons, we include for the first time events corresponding to about 4-7 electrons. Assuming the scattering is momentum independent (FDM=1 ), this strengthens a previous cross-section bound by almost an order of magnitude for dark matter masses above 50 MeV. The available XENON100 data corresponds to events with about 4-50 electrons, and leads to a constraint that is comparable to the XENON10 bound above 50 MeV for FDM=1 . We demonstrate that a search for an annual modulation signal in upcoming xenon experiments (XENON1T, XENONnT, LZ) could substantially improve the above bounds even in the presence of large backgrounds. We also emphasize that in simple benchmark models of sub-GeV dark matter, the dark matter-electron scattering rate can be as high as one event every ten (two) seconds in the XENON1T (XENONnT or LZ) experiments, without being in conflict with any other known experimental bounds. While there are several sources of backgrounds that can produce single- or few-electron events, a large event rate can be consistent with a dark matter signal and should not be simply written off as purely a detector curiosity. This fact motivates a detailed analysis of the ionization-data ("S2") data, taking into account the expected annual modulation spectrum of the signal rate, as well as the DM-induced electron-recoil spectra, which are another powerful discriminant between signal and background.

  19. Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice.

    PubMed

    Garcia-Pino, Elisabet; Gessele, Nikodemus; Koch, Ursula

    2017-08-02

    Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS ( Fmr1 KO ), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS. SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social

  20. Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives

    NASA Astrophysics Data System (ADS)

    Azevedo, C. D. R.; González-Díaz, D.; Biagi, S. F.; Oliveira, C. A. B.; Henriques, C. A. O.; Escada, J.; Monrabal, F.; Gómez-Cadenas, J. J.; Álvarez, V.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gutiérrez, R. M.; Hauptman, J.; Hernandez, A. I.; Morata, J. A. Hernando; Herrero, V.; Jones, B. J. P.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; Lopez-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; McDonald, A. D.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Vidal, J. Muñoz; Musti, M.; Nebot-Guinot, M.; Novella, P.; Nygren, D.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.

    2018-01-01

    We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence of additives, that are of interest to the OTPC technology.

  1. CO adsorption on ion bombarded Ni(111): characterization by photoemission from adsorbed xenon

    NASA Astrophysics Data System (ADS)

    Fu, Sabrina S.; Malafsky, Geoffrey P.; Hsu, David S. Y.

    1993-11-01

    The adsorption of CO on Ni(111), ion bombarded with various fluences of 1.0 keV Ar + ions, has been investigated using photoemission from adsorbed xenon (PAX). After ion bombardment of the Ni(111) surface, various amounts of CO were adsorbed, followed by adsorption of xenon at 85 K. Two pressures of xenon were used in examining the 3d {5}/{2} peak of xenon: 5 × 10 -6 and 7 × 10 -10 Torr. PAX data taken at both pressures show that CO selectively adsorbs onto the defect (step) sites created by ion bombardment. In addition, it was found that the amount of CO which could occupy a defect site previously occupied by one Xe atom varied from 10 to 2.5, depending on the ion fluence.

  2. New constraints and discovery potential of sub-GeV dark matter with xenon detectors

    NASA Astrophysics Data System (ADS)

    McCabe, Christopher

    2017-08-01

    Existing xenon dark matter (DM) direct detection experiments can probe the DM-nucleon interaction of DM with a sub-GeV mass through a search for photon emission from the recoiling xenon atom. We show that LUX's constraints on sub-GeV DM, which utilize the scintillation (S1) and ionization (S2) signals, are approximately 3 orders of magnitude more stringent than previous xenon constraints in this mass range, derived from the XENON10 and XENON100 S2-only searches. The new LUX constraints provide the most stringent direct detection constraints for DM particles with a mass below 0.5 GeV. In addition, the photon emission signal in LUX and its successor LZ maintain the discrimination between background and signal events so that an unambiguous discovery of sub-GeV DM is possible. We show that LZ has the potential to reconstruct the DM mass with ≃20 % accuracy for particles lighter than 0.5 GeV.

  3. Status of the Large Underground Xenon (LUX) Detector

    NASA Astrophysics Data System (ADS)

    Larsen, Nicole

    2012-03-01

    The LUX (Large Underground Xenon) experiment is a 350-kg xenon-based direct dark matter detection experiment consisting of a two-phase (liquid/gas) xenon time projection chamber with a 100-kg fiducial mass. This technology has many advantages, including scalability, self-shielding, the absence of any long-lived isotopes, high gamma ray stopping power, and the ability to precisely measure the charge-to-light ratio of interactions within the detector, which provides an accurate method for discriminating between electron recoils (gamma rays, beta decays) and nuclear recoils (neutrons, WIMPS) within the detector. LUX's projected sensitivity for 300 days of acquisition is a cross-section of 7 x10-46 cm^2 for a WIMP mass of 100 GeV, representing an increase of nearly an order of magnitude over previous WIMP cross-section limits. From November 2011 through February 2012, LUX was deployed in a surface laboratory at the Homestake Mine in South Dakota for its second surface run. This talk will provide an overview of the LUX design and a report on the status of the experiment after the surface run and before underground deployment.

  4. The physics of background discrimination in liquid xenon, and first results from Xenon10 in the hunt for WIMP dark matter

    NASA Astrophysics Data System (ADS)

    Dahl, Carl Eric

    2009-06-01

    The WIMP limit set by the Xenon10 experiment in 2007 signals a new era in direct detection of dark matter, with several large-scale liquid target detectors now under construction. A major challenge in these detectors will be to understand backgrounds at the level necessary to claim a positive WIMP signal. In liquid xenon, these backgrounds are dominated by electron recoils, which may be distinguished from the WIMP signal (nuclear recoils) by their higher charge-to-light ratio. During the construction and operation of Xenon10, the prototype detector Xed probed the physics of this discrimination. Particle interactions in liquid xenon both ionize and excite xenon atoms, giving charge and scintillation signals, respectively. Some fraction of ions recombine, reducing the charge signal and creating additional scintillation. The charge-to-light ratio, determined by the initial exciton-ion ratio and the ion recombination fraction, provides the basis for discrimination between electron and nuclear recoils. Intrinsic fluctuations in the recombination fraction limit discrimination. Changes in recombination induce an exact anti-correlation between charge and light, and when calibrated this anti-correlation distinguishes recombination fluctuations from uncorrelated fluctuations in the measured signals. We determine the mean recombination and recombination fluctuations as a function of energy and applied field for electron and nuclear recoils, finding that recombination fluctuations are already the limiting factor for discrimination above ~12 keVr (nuclear recoil energy). Below 12 keVr statistical fluctuations in the number of scintillation photons counted dominate, and we project a x6 improvement in background rejection with a x2 increase in light collection efficiency. We also build a simple recombination model that successfully reproduces the mean recombination in electron and nuclear recoils, including the surprising reversal of the expected trend for recombination with

  5. Stimulus selectivity and response latency in putative inhibitory and excitatory neurons of the primate inferior temporal cortex

    PubMed Central

    Mruczek, Ryan E. B.

    2012-01-01

    The cerebral cortex is composed of many distinct classes of neurons. Numerous studies have demonstrated corresponding differences in neuronal properties across cell types, but these comparisons have largely been limited to conditions outside of awake, behaving animals. Thus the functional role of the various cell types is not well understood. Here, we investigate differences in the functional properties of two widespread and broad classes of cells in inferior temporal cortex of macaque monkeys: inhibitory interneurons and excitatory projection cells. Cells were classified as putative inhibitory or putative excitatory neurons on the basis of their extracellular waveform characteristics (e.g., spike duration). Consistent with previous intracellular recordings in cortical slices, putative inhibitory neurons had higher spontaneous firing rates and higher stimulus-evoked firing rates than putative excitatory neurons. Additionally, putative excitatory neurons were more susceptible to spike waveform adaptation following very short interspike intervals. Finally, we compared two functional properties of each neuron's stimulus-evoked response: stimulus selectivity and response latency. First, putative excitatory neurons showed stronger stimulus selectivity compared with putative inhibitory neurons. Second, putative inhibitory neurons had shorter response latencies compared with putative excitatory neurons. Selectivity differences were maintained and latency differences were enhanced during a visual search task emulating more natural viewing conditions. Our results suggest that short-latency inhibitory responses are likely to sculpt visual processing in excitatory neurons, yielding a sparser visual representation. PMID:22933717

  6. Excitatory and inhibitory STDP jointly tune feedforward neural circuits to selectively propagate correlated spiking activity

    PubMed Central

    Kleberg, Florence I.; Fukai, Tomoki; Gilson, Matthieu

    2014-01-01

    Spike-timing-dependent plasticity (STDP) has been well established between excitatory neurons and several computational functions have been proposed in various neural systems. Despite some recent efforts, however, there is a significant lack of functional understanding of inhibitory STDP (iSTDP) and its interplay with excitatory STDP (eSTDP). Here, we demonstrate by analytical and numerical methods that iSTDP contributes crucially to the balance of excitatory and inhibitory weights for the selection of a specific signaling pathway among other pathways in a feedforward circuit. This pathway selection is based on the high sensitivity of STDP to correlations in spike times, which complements a recent proposal for the role of iSTDP in firing-rate based selection. Our model predicts that asymmetric anti-Hebbian iSTDP exceeds asymmetric Hebbian iSTDP for supporting pathway-specific balance, which we show is useful for propagating transient neuronal responses. Furthermore, we demonstrate how STDPs at excitatory–excitatory, excitatory–inhibitory, and inhibitory–excitatory synapses cooperate to improve the pathway selection. We propose that iSTDP is crucial for shaping the network structure that achieves efficient processing of synchronous spikes. PMID:24847242

  7. Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites.

    PubMed

    Behabadi, Bardia F; Polsky, Alon; Jadi, Monika; Schiller, Jackie; Mel, Bartlett W

    2012-01-01

    Neocortical pyramidal neurons (PNs) receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors.

  8. Tourette syndrome and excitatory substances: is there a connection?

    PubMed

    Zou, Li-Ping; Wang, Ying; Zhang, Li-Ping; Zhao, Jian-Bo; Lu, Jin-Fang; Liu, Qun; Wang, Hang-Yan

    2011-05-01

    The objective of this study is to investigate the relationship between excitatory substances by testing the urine in children with Tourette syndrome (TS). We performed a control study involving 44 patients with TS and 44 normal children by investigating the children's daily eating habits. We used the gas chromatograph-mass spectrometer and liquid chromatograph-mass spectrometer from Agilent. Substances for detection included 197 excitatory substances prohibited by the International Olympic Committee and other substances with similar chemical structures or biological functions for urine samples. Forty-four patients who did not take any drugs in the past 2 weeks enrolled in the study. The positive rate in the experiment group was three cases, while it was negative in the control group. The level of 1-testosterone increased in one extremely severe TS patient who ate large amounts of puffed food and drank an average of 350 ml of cola per day. Cathine and other substances with similar chemical constitution or similar biological effects increased in one severe TS patient who ate bags of instant noodles daily, according to the high score of the Yale Global Tic Severity Scale. An increase in ephedrine type, testosterone, and stimulants may be related to the pathogenesis of TS. Unhealthy food possibly causes TS. The relationship between excitatory substances and TS needs to be explored with the goal of providing more information on diagnosing and treating TS.

  9. Contribution of presynaptic HCN channels to excitatory inputs of spinal substantia gelatinosa neurons.

    PubMed

    Peng, S-C; Wu, J; Zhang, D-Y; Jiang, C-Y; Xie, C-N; Liu, T

    2017-09-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pathological pain-associated voltage-gated ion channels. They are widely expressed in central nervous system including spinal lamina II (also named the substantia gelatinosa, SG). Here, we examined the distribution of HCN channels in glutamatergic synaptic terminals as well as their role in the modulation of synaptic transmission in SG neurons from SD rats and glutamic acid decarboxylase-67 (GAD67)-GFP mice. We found that the expression of the HCN channel isoforms was varied in SG. The HCN4 isoform showed the highest level of co-localization with VGLUT2 (23±3%). In 53% (n=21/40 neurons) of the SG neurons examined in SD rats, application of HCN channel blocker, ZD7288 (10μM), decreased the frequency of spontaneous (s) and miniature (m) excitatory postsynaptic currents (EPSCs) by 37±4% and 33±4%, respectively. Consistently, forskolin (FSK) (an activator of adenylate cyclase) significantly increased the frequency of mEPSCs by 225±34%, which could be partially inhibited by ZD7288. Interestingly, the effects of ZD7288 and FSK on sEPSC frequency were replicated in non-GFP-expressing neurons, but not in GFP-expressing GABAergic SG neurons, in GAD67-GFP transgenic C57/BL6 mice. In summary, our results represent a previously unknown cellular mechanism by which presynaptic HCN channels, especially HCN4, regulate the glutamate release from presynaptic terminals that target excitatory, but not inhibitory SG interneurons. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Progress on Acoustic Measurements of the Bulk Viscosity of Near-Critical Xenon (BVX)

    NASA Technical Reports Server (NTRS)

    Gillis, Keith A.; Shinder, Iosif I.; Moldover, Michael R.; Zimmerli, Gregory A.

    2004-01-01

    We plan to determine the bulk viscosity of xenon 10 times closer [in reduced temperature tau = (T-Tc)/Tc] to its liquid-vapor critical point than ever before. (Tc is the critical temperature.) To do so, we must measure the dispersion and attenuation of sound at frequencies 1/100 of those used previously. In general, sound attenuation has contributions from the bulk viscosity acting throughout the volume of the xenon as well as contributions from the thermal conductivity and the shear viscosity acting within thin thermoacoustic boundary layers at the interface between the xenon and the solid walls of the resonator. Thus, we can determine the bulk viscosity only when the boundary layer attenuation is small and well understood. We present a comparison of calculations and measurements of sound attenuation in the acoustic boundary layer of xenon near its liquid-vapor critical point.

  11. Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death

    PubMed Central

    Wallace, Martina; Buren, Caodu; Martyniuk, Kelly; Andreyev, Alexander Y.; Li, Edward; Fields, Jerel A.; Cordes, Thekla; Reynolds, Ian J.; Bloodgood, Brenda L.; Metallo, Christian M.

    2017-01-01

    Glutamate is the dominant excitatory neurotransmitter in the brain, but under conditions of metabolic stress it can accumulate to excitotoxic levels. Although pharmacologic modulation of excitatory amino acid receptors is well studied, minimal consideration has been given to targeting mitochondrial glutamate metabolism to control neurotransmitter levels. Here we demonstrate that chemical inhibition of the mitochondrial pyruvate carrier (MPC) protects primary cortical neurons from excitotoxic death. Reductions in mitochondrial pyruvate uptake do not compromise cellular energy metabolism, suggesting neuronal metabolic flexibility. Rather, MPC inhibition rewires mitochondrial substrate metabolism to preferentially increase reliance on glutamate to fuel energetics and anaplerosis. Mobilizing the neuronal glutamate pool for oxidation decreases the quantity of glutamate released upon depolarization and, in turn, limits the positive-feedback cascade of excitotoxic neuronal injury. The finding links mitochondrial pyruvate metabolism to glutamatergic neurotransmission and establishes the MPC as a therapeutic target to treat neurodegenerative diseases characterized by excitotoxicity. PMID:28254829

  12. XENON-133 IN CALIFORNIA, NEVADA, AND UTAH FROM THE CHERNOBYL ACCIDENT (JOURNAL VERSION)

    EPA Science Inventory

    The accident at the Chernobyl nuclear reactor in the USSR introduced numerous radioactive nuclides into the atmosphere, including the noble gas xenon-133. EPA's Environmental Monitoring Systems Laboratory, Las Vegas, NV, detected xenon-133 from the Chernobyl accident in air sampl...

  13. Surface damage on polycrystalline β-SiC by xenon ion irradiation at high fluence

    NASA Astrophysics Data System (ADS)

    Baillet, J.; Gavarini, S.; Millard-Pinard, N.; Garnier, V.; Peaucelle, C.; Jaurand, X.; Duranti, A.; Bernard, C.; Rapegno, R.; Cardinal, S.; Escobar Sawa, L.; De Echave, T.; Lanfant, B.; Leconte, Y.

    2018-05-01

    Polycrystalline β-silicon carbide (β-SiC) pellets were prepared by Spark Plasma Sintering (SPS). These were implanted at room temperature with 800 keV xenon at ion fluences of 5.1015 and 1.1017 cm-2. Microstructural modifications were studied by electronic microscopy (TEM and SEM) and xenon profiles were determined by Rutherford Backscattering Spectroscopy (RBS). A complete amorphization of the implanted area associated with a significant oxidation is observed for the highest fluence. Large xenon bubbles formed in the oxide phase are responsible of surface swelling. No significant gas release has been measured up to 1017 at.cm-2. A model is proposed to explain the different steps of the oxidation process and xenon bubbles formation as a function of ion fluence.

  14. Prefrontal NMDA receptors expressed in excitatory neurons control fear discrimination and fear extinction.

    PubMed

    Vieira, Philip A; Corches, Alex; Lovelace, Jonathan W; Westbrook, Kevin B; Mendoza, Michael; Korzus, Edward

    2015-03-01

    N-methyl-D-aspartate receptors (NMDARs) are critically involved in various learning mechanisms including modulation of fear memory, brain development and brain disorders. While NMDARs mediate opposite effects on medial prefrontal cortex (mPFC) interneurons and excitatory neurons, NMDAR antagonists trigger profound cortical activation. The objectives of the present study were to determine the involvement of NMDARs expressed specifically in excitatory neurons in mPFC-dependent adaptive behaviors, specifically fear discrimination and fear extinction. To achieve this, we tested mice with locally deleted Grin1 gene encoding the obligatory NR1 subunit of the NMDAR from prefrontal CamKIIα positive neurons for their ability to distinguish frequency modulated (FM) tones in fear discrimination test. We demonstrated that NMDAR-dependent signaling in the mPFC is critical for effective fear discrimination following initial generalization of conditioned fear. While mice with deficient NMDARs in prefrontal excitatory neurons maintain normal responses to a dangerous fear-conditioned stimulus, they exhibit abnormal generalization decrement. These studies provide evidence that NMDAR-dependent neural signaling in the mPFC is a component of a neural mechanism for disambiguating the meaning of fear signals and supports discriminative fear learning by retaining proper gating information, viz. both dangerous and harmless cues. We also found that selective deletion of NMDARs from excitatory neurons in the mPFC leads to a deficit in fear extinction of auditory conditioned stimuli. These studies suggest that prefrontal NMDARs expressed in excitatory neurons are involved in adaptive behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Mechanisms of excitatory synapse maturation by trans-synaptic organizing complexes

    PubMed Central

    McMahon, Samuel A.; Díaz, Elva

    2011-01-01

    Synapses are specialized cell-cell adhesion contacts that mediate communication within neural networks. During development, excitatory synapses are generated by step-wise recruitment of pre- and postsynaptic proteins to sites of contact. Several classes of synaptic organizing complexes have been identified that function during the initial stages of synapse formation. However, mechanisms underlying the later stages of synapse development are less well understood. In recent years, molecules have been discovered that appear to play a role in synapse maturation. In this review, we highlight recent findings that have provided key insights for understanding postsynaptic maturation of developing excitatory synapses with a focus on recruitment of AMPA receptors to developing synapses. PMID:21242087

  16. Adaptive evolution of insect selective excitatory β-type sodium channel neurotoxins from scorpion venom.

    PubMed

    Wu, Wenlan; Li, Zhongjie; Ma, Yibao

    2017-06-01

    Insect selective excitatory β-type sodium channel neurotoxins from scorpion venom (β-NaScTxs) are composed of about 70-76 amino acid residues and share a common scaffold stabilized by four unique disulfide bonds. The phylogenetic analysis of these toxins was hindered by limited sequence data. In our recent study, two new insect selective excitatory β-NaScTxs, LmIT and ImIT, were isolated from Lychas mucronatus and Isometrus maculatus, respectively. With the sequences previously reported, we examined the adaptive molecular evolution of insect selective excitatory β-NaScTxs by estimating the nonsynonymous-to-synonymous rate ratio (ω=d N /d S ). The results revealed 12 positively selected sites in the genes of insect selective excitatory β-NaScTxs. Moreover, these positively selected sites match well with the sites important for interacting with sodium channels, as demonstrated in previous mutagenesis study. These results reveal that adaptive evolution after gene duplication is one of the most important genetic mechanisms of scorpion neurotoxin diversification. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Xenon Treatment Protects against Remote Lung Injury after Kidney Transplantation in Rats.

    PubMed

    Zhao, Hailin; Huang, Han; Ologunde, Rele; Lloyd, Dafydd G; Watts, Helena; Vizcaychipi, Marcela P; Lian, Qingquan; George, Andrew J T; Ma, Daqing

    2015-06-01

    Ischemia-reperfusion injury (IRI) of renal grafts may cause remote organ injury including lungs. The authors aimed to evaluate the protective effect of xenon exposure against remote lung injury due to renal graft IRI in a rat renal transplantation model. For in vitro studies, human lung epithelial cell A549 was challenged with H2O2, tumor necrosis factor-α, or conditioned medium from human kidney proximal tubular cells (HK-2) after hypothermia-hypoxia insults. For in vivo studies, the Lewis renal graft was stored in 4°C Soltran preserving solution for 24 h and transplanted into the Lewis recipient, and the lungs were harvested 24 h after grafting. Cultured lung cells or the recipient after engraftment was exposed to 70% Xe or N2. Phospho (p)-mammalian target of rapamycin (mTOR), hypoxia-inducible factor-1α (HIF-1α), Bcl-2, high-mobility group protein-1 (HMGB-1), TLR-4, and nuclear factor κB (NF-κB) expression, lung inflammation, and cell injuries were assessed. Recipients receiving ischemic renal grafts developed pulmonary injury. Xenon treatment enhanced HIF-1α, which attenuated HMGB-1 translocation and NF-κB activation in A549 cells with oxidative and inflammatory stress. Xenon treatment enhanced p-mTOR, HIF-1α, and Bcl-2 expression and, in turn, promoted cell proliferation in the lung. Upon grafting, HMGB-1 translocation from lung epithelial nuclei was reduced; the TLR-4/NF-κB pathway was suppressed by xenon treatment; and subsequent tissue injury score (nitrogen vs. xenon: 26 ± 1.8 vs. 10.7 ± 2.6; n = 6) was significantly reduced. Xenon treatment confers protection against distant lung injury triggered by renal graft IRI, which is likely through the activation of mTOR-HIF-1α pathway and suppression of the HMGB-1 translocation from nuclei to cytoplasm.

  18. Experimental investigations of argon and xenon ion sources

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1975-01-01

    The multipole thruster was used to investigate the use of argon and xenon propellants as possible alternatives to the electric thruster propellants of mercury and cesium. The multipole approach was used because of its general high performance level. The design employed, using flat and cylindrical rolled sections of sheet metal, was selected for ease of fabrication, design, assembly, and modification. All testing was conducted in a vacuum facility and the pumping was accomplished by a 0.8 m diffusion pump together with liquid nitrogen cooled liner. Minimum discharge losses were in the 200-250 ev. ion range for both argon and xenon. Flatness parameters were typically in the 0.70-0.75 range.

  19. Nerve-mediated descending inhibition in the proximal colon of the rabbit.

    PubMed

    Julé, Y

    1980-12-01

    1. Descending inhibition in the rabbit proximal colon, evoked by distension, was studied in vivo by recording extracellularly electrical activity from pressure electrodes placed on the serosa. 2. Distention produced, blow the level of the balloon, a brief hyperpolarization of smooth muscle fibres which could be recorded up to 20 cm from the point of distension. 3. This hyperpolarization like that produced by vagal stimulation (inhibitory junction potentials) persisted in the presence of sympathetic blocking agents and atropine, and was produced by non-adrenergic non-cholinergic intramural neurones. 4. In the presence of vagally evoked excitatory junction potentials (e.j.p.s), distension produced a transient inhibition of e.j.p.s, in addition to the hyperpolarization of smooth muscle. 5. The inhibition of these e.j.p.s persisted in the presence of sympathetic blocking agents, but in contrast to the hyperpolarization of smooth muscle produced by distension alone, was modulated by drugs interfering with 5-HT synthesis, re-uptake and activity. 6. The results indicate that descending inhibition in the rabbit proximal colon was produced by two distinct neuronal non-adrenergic inhibitory mechanisms exerted simultaneously on the smooth muscle and on the cholinergic excitatory pathways which innervate it.

  20. Nerve-mediated descending inhibition in the proximal colon of the rabbit.

    PubMed Central

    Julé, Y

    1980-01-01

    1. Descending inhibition in the rabbit proximal colon, evoked by distension, was studied in vivo by recording extracellularly electrical activity from pressure electrodes placed on the serosa. 2. Distention produced, blow the level of the balloon, a brief hyperpolarization of smooth muscle fibres which could be recorded up to 20 cm from the point of distension. 3. This hyperpolarization like that produced by vagal stimulation (inhibitory junction potentials) persisted in the presence of sympathetic blocking agents and atropine, and was produced by non-adrenergic non-cholinergic intramural neurones. 4. In the presence of vagally evoked excitatory junction potentials (e.j.p.s), distension produced a transient inhibition of e.j.p.s, in addition to the hyperpolarization of smooth muscle. 5. The inhibition of these e.j.p.s persisted in the presence of sympathetic blocking agents, but in contrast to the hyperpolarization of smooth muscle produced by distension alone, was modulated by drugs interfering with 5-HT synthesis, re-uptake and activity. 6. The results indicate that descending inhibition in the rabbit proximal colon was produced by two distinct neuronal non-adrenergic inhibitory mechanisms exerted simultaneously on the smooth muscle and on the cholinergic excitatory pathways which innervate it. PMID:6454779

  1. Ketone bodies do not directly alter excitatory or inhibitory hippocampal synaptic transmission.

    PubMed

    Thio, L L; Wong, M; Yamada, K A

    2000-01-25

    To determine the effect of the ketone bodies beta-hydroxybutyrate (betaHB) and acetoacetate (AA) on excitatory and inhibitory neurotransmission in the mammalian CNS. The ketogenic diet is presumed to be an effective anticonvulsant regimen for some children with medically intractable seizures. However, its mechanism of action remains a mystery. According to one hypothesis, ketone bodies have anticonvulsant properties. The authors examined the effect of betaHB and AA on excitatory and inhibitory synaptic transmission in rat hippocampal-entorhinal cortex slices and cultured hippocampal neurons. In cultured neurons, their effect was also directly assayed on postsynaptic receptor properties. Finally, their ability to prevent spontaneous seizures was determined in a hippocampal-entorhinal cortex slice model. betaHB and AA did not alter synaptic transmission in these models. The anticonvulsant properties of the ketogenic diet do not result from a direct effect of ketone bodies on the primary voltage and ligand gated ion channels mediating excitatory or inhibitory neurotransmission in the hippocampus.

  2. Measurement of aircraft xenon strobe light characteristics

    DOT National Transportation Integrated Search

    1976-08-01

    This report provides data on the characteristics of aircraft xenon strobe lights related to their potential for use as the cooperative element in Optical IR (Infrared) Airborne Proximity Warning Indicator (APWI) systems. It includes a description of ...

  3. Chondritic xenon in the Earth's mantle.

    PubMed

    Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G; Füri, Evelyn; Marty, Bernard

    2016-05-05

    Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth's mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth's mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth's accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.

  4. Spiking and Excitatory/Inhibitory Input Dynamics of Barrel Cells in Response to Whisker Deflections of Varying Velocity and Angular Direction.

    PubMed

    Patel, Mainak

    2018-01-15

    The spiking of barrel regular-spiking (RS) cells is tuned for both whisker deflection direction and velocity. Velocity tuning arises due to thalamocortical (TC) synchrony (but not spike quantity) varying with deflection velocity, coupled with feedforward inhibition, while direction selectivity is not fully understood, though may be due partly to direction tuning of TC spiking. Data show that as deflection direction deviates from the preferred direction of an RS cell, excitatory input to the RS cell diminishes minimally, but temporally shifts to coincide with the time-lagged inhibitory input. This work constructs a realistic large-scale model of a barrel; model RS cells exhibit velocity and direction selectivity due to TC input dynamics, with the experimentally observed sharpening of direction tuning with decreasing velocity. The model puts forth the novel proposal that RS→RS synapses can naturally and simply account for the unexplained direction dependence of RS cell inputs - as deflection direction deviates from the preferred direction of an RS cell, and TC input declines, RS→RS synaptic transmission buffers the decline in total excitatory input and causes a shift in timing of the excitatory input peak from the peak in TC input to the delayed peak in RS input. The model also provides several experimentally testable predictions on the velocity dependence of RS cell inputs. This model is the first, to my knowledge, to study the interaction of direction and velocity and propose physiological mechanisms for the stimulus dependence in the timing and amplitude of RS cell inputs. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  6. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  7. Xenon adsorption on geological media and implications for radionuclide signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, M. J.; Biegalski, S. R.; Haas, D. A.

    Here, the detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isothermmore » measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures.« less

  8. Xenon adsorption on geological media and implications for radionuclide signatures

    DOE PAGES

    Paul, M. J.; Biegalski, S. R.; Haas, D. A.; ...

    2018-02-13

    Here, the detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isothermmore » measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures.« less

  9. Intrabullous ventilation in pulmonary emphysema: assessment with dynamic xenon-133 gas SPECT.

    PubMed

    Suga, Kazuyoshi; Iwanaga, Hideyuki; Tokuda, Osamu; Okada, Munemasa; Matsunaga, Naofumi

    2012-04-01

    Intrabullous ventilation in patients with pulmonary emphysema (PE) was cross-sectionally evaluated using dynamic xenon-133 gas single photon emission computed tomography (SPECT). Fifty-two patients with PE with a total of 109 bullae of more than 4 cm in maximum diameter underwent xenon-133 gas SPECT. The real xenon-133 gas half-clearance time (T1/2) at each bulla was compared with that at the surrounding lung in the same lobe. The emphysema subtype of the surrounding lung was classified into centrilobular, panlobular, and paraseptal on computed tomography (CT). All bullae except for one in all patients showed xenon-133 gas wash-in. Of the 108 bullae with wash-in, 95 (87.9%) bullae in 46 (88%) patients showed marked xenon-133 gas retention with a T1/2 beyond 110 s (mean: 184 s ± 91). The surrounding lungs of these bullae also showed marked retention with a T1/2 of greater than 100 s (mean: 174 s ± 82), and the majority (N=92, 96.8%) were centrilobular or panlobular on CT. The remaining 13 (12.0%) bullae in six (11%) patients showed minimal retention with a T1/2 of less than 80 s (mean: 62 s ± 11), regardless of no significant difference in size compared with the bullae with marked retention. All the surrounding lungs of these bullae except for one also showed minimal retention with a T1/2 of less than 70 s (mean: 60 s ± 18), which was significantly less compared with that of the bullae with marked retention (P<0.0001), and the majority (N=11, 84.6%) were paraseptal with or without an interstitially fibrotic change and predominantly located at the lower lung lobe on CT. The T1/2 of the 108 bullae with xenon-133 gas wash-in was significantly correlated with that of the surrounding lungs (r=0.884, P<0.0001). Intrabullous ventilation in patients with PE appears to depend on the ventilation status of the surrounding lung, and bullae with the surrounding lungs of paraseptal-type emphysema tend to show minimal air trapping. Xenon-133 gas SPECT is useful for assessment

  10. Anesthetic Agent-Specific Effects on Synaptic Inhibition

    PubMed Central

    MacIver, M. Bruce

    2014-01-01

    Background Anesthetics enhance gamma-aminobutyric acid (GABA)-mediated inhibition in the central nervous system. Different agents have been shown to act on tonic versus synaptic GABA receptors to different degrees, but it remains unknown whether different forms of synaptic inhibition are also differentially engaged. With this in mind, we tested the hypothesis that different types of GABA-mediated synapses exhibit different anesthetic sensitivities. The present study compared effects produced by isoflurane, halothane, pentobarbital, thiopental and propofol on paired pulse GABAA receptor-mediated synaptic inhibition. Effects on glutamate-mediated facilitation were also studied. Methods Synaptic responses were measured in rat hippocampal brain slices. Orthodromic paired pulse stimulation was used to assess anesthetic effects on either glutamate-mediated excitatory inputs or GABA-mediated inhibitory inputs to CA1 neurons. Antidromic stimulation was used to assess anesthetic effects on CA1 background excitability. Agents were studied at equi-effective concentrations for population spike depression to compare their relative degree of effect on synaptic inhibition. Results Differing degrees of anesthetic effect on paired pulse facilitation at excitatory glutamate synapses were evident, and blocking GABA inhibition revealed a previously unseen presynaptic action for pentobarbital. Although all five anesthetics depressed synaptically evoked excitation of CA1 neurons, the involvement of enhanced GABA-mediated inhibition differed considerably among agents. Single pulse inhibition was enhanced by propofol, thiopental and pentobarbital, but only marginally by halothane and isoflurane. In contrast, isoflurane enhanced paired pulse inhibition strongly, as did thiopental, but propofol, pentobarbital and halothane were less effective. Conclusions These observations support the idea that different GABA synapses use receptors with differing subunit compositions, and that anesthetics

  11. Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse

    PubMed Central

    Caldeira, Vanessa; Dougherty, Kimberly J.; Borgius, Lotta; Kiehn, Ole

    2017-01-01

    Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype and progenitor domain, but does not overlap with the Shox2 non-V2a population. We also show that Hb9::Cre-derived INs include the comparatively small medial population of INs which continues to express Hb9 postnatally. When excitatory neurotransmission is selectively blocked by deleting Vglut2 from Hb9::Cre-derived INs, there is no difference in left-right and/or flexor-extensor phasing between these cords and controls, suggesting that excitatory Hb9::Cre-derived INs do not affect pattern generation. In contrast, the frequencies of locomotor activity are significantly lower in cords from Hb9::Cre-Vglut2Δ/Δ mice than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion. PMID:28128321

  12. Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients.

    PubMed

    Lee, Sang Min; Seo, Joon Beom; Hwang, Hye Jeon; Kim, Namkug; Oh, Sang Young; Lee, Jae Seung; Lee, Sei Won; Oh, Yeon-Mok; Kim, Tae Hoon

    2017-07-01

    To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p < 0.01). All CT parameters showed significant correlation with PFTs except forced vital capacity (FVC). There was a significant difference in GTI, ATI and Xe-Dyna in each lung area (p < 0.01). The parenchymal attenuation change between inspiration/expiration CTs and xenon dynamic change between xenon WI- and WO-CTs correlate significantly. There are alterations in the dynamics of xenon ventilation between areas of emphysema. • The xenon ventilation change correlates with the parenchymal attenuation change. • The xenon ventilation change shows the difference between three lung areas. • The combination of attenuation and xenon can predict more accurate PFTs.

  13. Feedforward Inhibition Allows Input Summation to Vary in Recurrent Cortical Networks

    PubMed Central

    2018-01-01

    Abstract Brain computations depend on how neurons transform inputs to spike outputs. Here, to understand input-output transformations in cortical networks, we recorded spiking responses from visual cortex (V1) of awake mice of either sex while pairing sensory stimuli with optogenetic perturbation of excitatory and parvalbumin-positive inhibitory neurons. We found that V1 neurons’ average responses were primarily additive (linear). We used a recurrent cortical network model to determine whether these data, as well as past observations of nonlinearity, could be described by a common circuit architecture. Simulations showed that cortical input-output transformations can be changed from linear to sublinear with moderate (∼20%) strengthening of connections between inhibitory neurons, but this change away from linear scaling depends on the presence of feedforward inhibition. Simulating a variety of recurrent connection strengths showed that, compared with when input arrives only to excitatory neurons, networks produce a wider range of output spiking responses in the presence of feedforward inhibition. PMID:29682603

  14. Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death.

    PubMed

    Divakaruni, Ajit S; Wallace, Martina; Buren, Caodu; Martyniuk, Kelly; Andreyev, Alexander Y; Li, Edward; Fields, Jerel A; Cordes, Thekla; Reynolds, Ian J; Bloodgood, Brenda L; Raymond, Lynn A; Metallo, Christian M; Murphy, Anne N

    2017-04-03

    Glutamate is the dominant excitatory neurotransmitter in the brain, but under conditions of metabolic stress it can accumulate to excitotoxic levels. Although pharmacologic modulation of excitatory amino acid receptors is well studied, minimal consideration has been given to targeting mitochondrial glutamate metabolism to control neurotransmitter levels. Here we demonstrate that chemical inhibition of the mitochondrial pyruvate carrier (MPC) protects primary cortical neurons from excitotoxic death. Reductions in mitochondrial pyruvate uptake do not compromise cellular energy metabolism, suggesting neuronal metabolic flexibility. Rather, MPC inhibition rewires mitochondrial substrate metabolism to preferentially increase reliance on glutamate to fuel energetics and anaplerosis. Mobilizing the neuronal glutamate pool for oxidation decreases the quantity of glutamate released upon depolarization and, in turn, limits the positive-feedback cascade of excitotoxic neuronal injury. The finding links mitochondrial pyruvate metabolism to glutamatergic neurotransmission and establishes the MPC as a therapeutic target to treat neurodegenerative diseases characterized by excitotoxicity. © 2017 Divakaruni et al.

  15. Balanced feedforward inhibition and dominant recurrent inhibition in olfactory cortex

    PubMed Central

    Large, Adam M.; Vogler, Nathan W.; Mielo, Samantha; Oswald, Anne-Marie M.

    2016-01-01

    Throughout the brain, the recruitment of feedforward and recurrent inhibition shapes neural responses. However, disentangling the relative contributions of these often-overlapping cortical circuits is challenging. The piriform cortex provides an ideal system to address this issue because the interneurons responsible for feedforward and recurrent inhibition are anatomically segregated in layer (L) 1 and L2/3 respectively. Here we use a combination of optical and electrical activation of interneurons to profile the inhibitory input received by three classes of principal excitatory neuron in the anterior piriform cortex. In all classes, we find that L1 interneurons provide weaker inhibition than L2/3 interneurons. Nonetheless, feedforward inhibitory strength covaries with the amount of afferent excitation received by each class of principal neuron. In contrast, intracortical stimulation of L2/3 evokes strong inhibition that dominates recurrent excitation in all classes. Finally, we find that the relative contributions of feedforward and recurrent pathways differ between principal neuron classes. Specifically, L2 neurons receive more reliable afferent drive and less overall inhibition than L3 neurons. Alternatively, L3 neurons receive substantially more intracortical inhibition. These three features—balanced afferent drive, dominant recurrent inhibition, and differential recruitment by afferent vs. intracortical circuits, dependent on cell class—suggest mechanisms for olfactory processing that may extend to other sensory cortices. PMID:26858458

  16. Excitatory synaptic inputs to mouse on-off direction-selective retinal ganglion cells lack direction tuning.

    PubMed

    Park, Silvia J H; Kim, In-Jung; Looger, Loren L; Demb, Jonathan B; Borghuis, Bart G

    2014-03-12

    Direction selectivity represents a fundamental visual computation. In mammalian retina, On-Off direction-selective ganglion cells (DSGCs) respond strongly to motion in a preferred direction and weakly to motion in the opposite, null direction. Electrical recordings suggested three direction-selective (DS) synaptic mechanisms: DS GABA release during null-direction motion from starburst amacrine cells (SACs) and DS acetylcholine and glutamate release during preferred direction motion from SACs and bipolar cells. However, evidence for DS acetylcholine and glutamate release has been inconsistent and at least one bipolar cell type that contacts another DSGC (On-type) lacks DS release. Here, whole-cell recordings in mouse retina showed that cholinergic input to On-Off DSGCs lacked DS, whereas the remaining (glutamatergic) input showed apparent DS. Fluorescence measurements with the glutamate biosensor intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) conditionally expressed in On-Off DSGCs showed that glutamate release in both On- and Off-layer dendrites lacked DS, whereas simultaneously recorded excitatory currents showed apparent DS. With GABA-A receptors blocked, both iGluSnFR signals and excitatory currents lacked DS. Our measurements rule out DS release from bipolar cells onto On-Off DSGCs and support a theoretical model suggesting that apparent DS excitation in voltage-clamp recordings results from inadequate voltage control of DSGC dendrites during null-direction inhibition. SAC GABA release is the apparent sole source of DS input onto On-Off DSGCs.

  17. Supernova neutrino physics with xenon dark matter detectors: A timely perspective

    NASA Astrophysics Data System (ADS)

    Lang, Rafael F.; McCabe, Christopher; Reichard, Shayne; Selvi, Marco; Tamborra, Irene

    2016-11-01

    Dark matter detectors that utilize liquid xenon have now achieved tonne-scale targets, giving them sensitivity to all flavors of supernova neutrinos via coherent elastic neutrino-nucleus scattering. Considering for the first time a realistic detector model, we simulate the expected supernova neutrino signal for different progenitor masses and nuclear equations of state in existing and upcoming dual-phase liquid xenon experiments. We show that the proportional scintillation signal (S2) of a dual-phase detector allows for a clear observation of the neutrino signal and guarantees a particularly low energy threshold, while the backgrounds are rendered negligible during the supernova burst. XENON1T (XENONnT and LZ; DARWIN) experiments will be sensitive to a supernova burst up to 25 (35; 65) kpc from Earth at a significance of more than 5 σ , observing approximately 35 (123; 704) events from a 27 M⊙ supernova progenitor at 10 kpc. Moreover, it will be possible to measure the average neutrino energy of all flavors, to constrain the total explosion energy, and to reconstruct the supernova neutrino light curve. Our results suggest that a large xenon detector such as DARWIN will be competitive with dedicated neutrino telescopes, while providing complementary information that is not otherwise accessible.

  18. Xenon migration in UO2 under irradiation studied by SIMS profilometry

    NASA Astrophysics Data System (ADS)

    Marchand, B.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Garnier, C.; Raimbault, L.; Sainsot, P.; Epicier, T.; Delafoy, C.; Fraczkiewicz, M.; Gaillard, C.; Toulhoat, N.; Perrat-Mabilon, A.; Peaucelle, C.

    2013-09-01

    During Pressurized Water Reactor operation, around 25% of the created Fission Products (FP) are Xenon and Krypton. They have a low solubility in the nuclear fuel and can either (i) agglomerate into bubbles which induce mechanical stress in the fuel pellets or (ii) be released from the pellets, increasing the pressure within the cladding and decreasing the thermal conductivity of the gap between pellets and cladding. After fifty years of studies on the nuclear fuel, all mechanisms of Fission Gas Release (FGR) are still not fully understood. This paper aims at studying the FGR mechanisms by decoupling thermal and irradiation effects and by assessing the Xenon behavior for the first time by profilometry. Samples are first implanted with 136Xe at 800 keV corresponding to a projected range of 140 nm. They are then either annealed in the temperature range 1400-1600 °C, or irradiated with heavy energy ions (182 MeV Iodine) at Room Temperature (RT), 600 °C or 1000 °C. Depth profiles of implanted Xenon in UO2 are determined by Secondary Ion Mass Spectrometry (SIMS). It is shown that Xenon is mobile during irradiation at 1000 °C. In contrast, thermal treatments do not induce any Xenon migration process: these results are correlated to the formation of Xenon bubbles observed by Transmission Electron Microscopy. At depths lower than about 40 nm (zone 1), no bubbles are observed, At depths in between 40 nm and 110 nm (zone 2), a large number of small bubbles (around 2 nm in diameter) can be observed. By comparing with the SRIM profile, it appears that this area corresponds to the maximum of the defect profile, The third zone displays two bubble populations. The first population has the same size than the bubbles present in zone 2. The bubble size of the second population is significantly larger (up to around 10 nm). A STEM micrograph is presented in Fig. 4. It highlights the Xenon bubbles more clearly. It appears that the largest bubbles are located mainly near dislocations

  19. Detection of lipoid tumors by xenon-133

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, E.E.; DeLand, F.H.; Maruyama, Y.

    1978-01-01

    Three patients with biopsy-proven liposarcoma were studied with inhalation of xenon-133, a gas highly soluble in fat. Increased concentration of radioactivity in the region of the tumor suggested the potential usefulness of radioxenon for the detection of lipomatous tumors.

  20. Xenon fluorides show potential as fluorinating agents

    NASA Technical Reports Server (NTRS)

    Chernick, C. L.; Shieh, T. C.; Yang, N. C.

    1967-01-01

    Xenon fluorides permit the controlled addition of fluorine across an olefinic double bond. They provide a series of fluorinating agents that permit ready separation from the product at a high purity. The reactions may be carried out in the vapor phase.

  1. The Modification and Performance of a Large Animal Anesthesia Machine (Tafonius®) in Order to Deliver Xenon to a Horse.

    PubMed

    Santangelo, Bruna; Robin, Astrid; Simpson, Keith; Potier, Julie; Guichardant, Michel; Portier, Karine

    2017-01-01

    Xenon, due to its interesting anesthetic properties, could improve the quality of anesthesia protocols in horses despite its high price. This study aimed to modify and test an anesthesia machine capable of delivering xenon to a horse. An equine anesthesia machine (Tafonius, Vetronic Services Ltd., UK) was modified by including a T-connector in the valve block to introduce xenon, so that the xenon was pushed into the machine cylinder by the expired gases. A xenon analyzer was connected to the expiratory limb of the patient circuit. The operation of the machine was modeled and experimentally tested for denitrogenation, wash-in, and maintenance phases. The system was considered to consist of two compartments, one being the horse's lungs, the other being the machine cylinder and circuit. A 15-year-old, 514-kg, healthy gelding horse was anesthetized for 70 min using acepromazine, romifidine, morphine, diazepam, and ketamine. Anesthesia was maintained with xenon and oxygen, co-administered with lidocaine. Ventilation was controlled. Cardiorespiratory variables, expired fraction of xenon (FeXe), blood gases were measured and xenon was detected in plasma. Recovery was unassisted and recorded. FeXe remained around 65%, using a xenon total volume of 250 L. Five additional boli of ketamine were required to maintain anesthesia. PaO 2 was 45 ± 1 mmHg. The recovery was calm. Xenon was detected in blood during the entire administration time. This pilot study describes how to deliver xenon to a horse. Although many technical problems were encountered, their correction could guide future endeavors to study the use of xenon in horses.

  2. Live-cell MRI with xenon hyper-CEST biosensors targeted to metabolically labeled cell-surface glycans.

    PubMed

    Witte, Christopher; Martos, Vera; Rose, Honor May; Reinke, Stefan; Klippel, Stefan; Schröder, Leif; Hackenberger, Christian P R

    2015-02-23

    The targeting of metabolically labeled glycans with conventional MRI contrast agents has proved elusive. In this work, which further expands the utility of xenon Hyper-CEST biosensors in cell experiments, we present the first successful molecular imaging of such glycans using MRI. Xenon Hyper-CEST biosensors are a novel class of MRI contrast agents with very high sensitivity. We designed a multimodal biosensor for both fluorescent and xenon MRI detection that is targeted to metabolically labeled sialic acid through bioorthogonal chemistry. Through the use of a state of the art live-cell bioreactor, it was demonstrated that xenon MRI biosensors can be used to image cell-surface glycans at nanomolar concentrations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Extensive excitatory network interactions shape temporal processing of communication signals in a model sensory system.

    PubMed

    Ma, Xiaofeng; Kohashi, Tsunehiko; Carlson, Bruce A

    2013-07-01

    Many sensory brain regions are characterized by extensive local network interactions. However, we know relatively little about the contribution of this microcircuitry to sensory coding. Detailed analyses of neuronal microcircuitry are usually performed in vitro, whereas sensory processing is typically studied by recording from individual neurons in vivo. The electrosensory pathway of mormyrid fish provides a unique opportunity to link in vitro studies of synaptic physiology with in vivo studies of sensory processing. These fish communicate by actively varying the intervals between pulses of electricity. Within the midbrain posterior exterolateral nucleus (ELp), the temporal filtering of afferent spike trains establishes interval tuning by single neurons. We characterized pairwise neuronal connectivity among ELp neurons with dual whole cell recording in an in vitro whole brain preparation. We found a densely connected network in which single neurons influenced the responses of other neurons throughout the network. Similarly tuned neurons were more likely to share an excitatory synaptic connection than differently tuned neurons, and synaptic connections between similarly tuned neurons were stronger than connections between differently tuned neurons. We propose a general model for excitatory network interactions in which strong excitatory connections both reinforce and adjust tuning and weak excitatory connections make smaller modifications to tuning. The diversity of interval tuning observed among this population of neurons can be explained, in part, by each individual neuron receiving a different complement of local excitatory inputs.

  4. Excitatory and inhibitory effects of opiates in the rat vas deferens: a dual mechanism of opiate action.

    PubMed

    Jacquet, Y F

    1980-10-03

    Both natural (-)-morphine and its unnatural enantiomer (+)-morphine exert an excitatory action on electrically stimulated contractions of rat vas deferens. Preexposure to (-)-morphine results in cross-tolerance to the inhibitory action of beta-endorphin. (-)-Naloxone and its stereoisomer (+)-naloxone also exert an excitatory action, but only (-)-naloxone bocks the inhibtory action of beta-endorphin. Thus morphine exerts a dual action on a peripheral organ: one an inhibitory action mediated by the stereospecific endorphin receptor that is blocked stereospecifically by naloxone, the other an excitatory action mediated by a nonstereospecific receptor that is not blocked by naloxone. The opiate abstinence syndrome is seen as due to the unmasking of the excitatory action of opiates when its concomitant inhibitory influence is removed by selective blockade by naloxone or weakened by selective tolerance. The view that the rat vas deferens is devoid of morphine receptors is now seen as arising from a reverse example of morphine's dual action: the masking of the inhibitory action of morphine by its concomitant and more potent excitatory action.

  5. Xenon does not increase heart rate-corrected cardiac QT interval in volunteers and in patients free of cardiovascular disease.

    PubMed

    Neukirchen, Martin; Schaefer, Maximilian S; Kern, Carolin; Brett, Sarah; Werdehausen, Robert; Rellecke, Philipp; Reyle-Hahn, Matthias; Kienbaum, Peter

    2015-09-01

    Impaired cardiac repolarization, indicated by prolonged QT interval, may cause critical ventricular arrhythmias. Many anesthetics increase the QT interval by blockade of rapidly acting potassium rectifier channels. Although xenon does not affect these channels in isolated cardiomyocytes, the authors hypothesized that xenon increases the QT interval by direct and/or indirect sympathomimetic effects. Thus, the authors tested the hypothesis that xenon alters the heart rate-corrected cardiac QT (QTc) interval in anesthetic concentrations. The effect of xenon on the QTc interval was evaluated in eight healthy volunteers and in 35 patients undergoing abdominal or trauma surgery. The QTc interval was recorded on subjects in awake state, after their denitrogenation, and during xenon monoanesthesia (FetXe > 0.65). In patients, the QTc interval was recorded while awake, after anesthesia induction with propofol and remifentanil, and during steady state of xenon/remifentanil anesthesia (FetXe > 0.65). The QTc interval was determined from three consecutive cardiac intervals on electrocardiogram printouts in a blinded manner and corrected with Bazett formula. In healthy volunteers, xenon did not alter the QTc interval (mean difference: +0.11 ms [95% CI, -22.4 to 22.7]). In patients, after anesthesia induction with propofol/remifentanil, no alteration of QTc interval was noted. After propofol was replaced with xenon, the QTc interval remained unaffected (417 ± 32 ms vs. awake: 414 ± 25 ms) with a mean difference of 4.4 ms (95% CI, -4.6 to 13.5). Xenon monoanesthesia in healthy volunteers and xenon/remifentanil anesthesia in patients without clinically relevant cardiovascular disease do not increase QTc interval.

  6. Nuclear Spin Attenuates the Anesthetic Potency of Xenon Isotopes in Mice: Implications for the Mechanisms of Anesthesia and Consciousness.

    PubMed

    Li, Na; Lu, Dongshi; Yang, Lei; Tao, Huan; Xu, Younian; Wang, Chenchen; Fu, Lisha; Liu, Hui; Chummum, Yatisha; Zhang, Shihai

    2018-04-11

    Xenon is an elemental anesthetic with nine stable isotopes. Nuclear spin is a quantum property which may differ among isotopes. Xenon 131 (Xe) has nuclear spin of 3/2, xenon 129 (Xe) a nuclear spin of 1/2, and the other seven isotopes have no nuclear spin. This study was aimed to explore the effect of nuclear spin on xenon anesthetic potency. Eighty C57BL/6 male mice (7 weeks old) were randomly divided into four groups, xenon 132 (Xe), xenon 134 (Xe), Xe, and Xe groups. Due to xenon's low potency, loss of righting reflex ED50 for mice to xenon was determined with 0.50% isoflurane. Loss of righting reflex ED50 of isoflurane was also measured, and the loss of righting reflex ED50 values of the four xenon isotopes were then calculated. The exact polarizabilities of the isotopes were calculated. Combined with 0.50% isoflurane, the loss of righting reflex ED50 values were 15 ± 4%, 16 ± 5%, 22 ± 5%, and 23 ± 7% for Xe, Xe, Xe, and Xe, respectively. For xenon alone, the loss of righting reflex ED50 values of Xe, Xe, Xe, and Xe were 70 ± 4%, 72 ± 5%, 99 ± 5%, and 105 ± 7%, respectively. Four isotopes had a same exact polarizability of 3.60 Å. Xenon isotopes with nuclear spin are less potent than those without, and polarizability cannot account for the difference. The lower anesthetic potency of Xe may be the result of it participating in conscious processing and therefore partially antagonizing its own anesthetic potency. Nuclear spin is a quantum property, and our results are consistent with theories that implicate quantum mechanisms in consciousness.

  7. Xenon isotopic composition of the Mid Ocean Ridge Basalt (MORB) source

    NASA Astrophysics Data System (ADS)

    Peto, M. K.; Mukhopadhyay, S.

    2012-12-01

    Although convection models do not preclude preservation of smaller mantle regions with more pristine composition throughout Earth's history, it has been widely assumed that the moon forming giant impact likely homogenizes the whole mantle following a magma ocean that extended all the way to the bottom of the mantle. Recent findings of tungsten and xenon heterogeneities in the mantle [1,2,3,4], however, imply that i) the moon forming giant impact may not have homogenized the whole mantle and ii) plate tectonics was inefficient in erasing early formed compositional differences, particularly for the xenon isotopes. Therefore, the xenon isotope composition in the present day mantle still preserves a memory of early Earth processes. However, determination of the xenon isotopic composition of the mantle source is still scarce, since the mantle composition is overprinted by post-eruptive atmospheric contamination in basalts erupted at ocean islands and mid ocean ridges. The xenon composition of the depleted upper mantle has been defined by the gas rich sample, 2πD43 (also known as "popping rock"), from the North Atlantic (13° 469`N). However, the composition of a single sample is not likely to define the composition of the upper mantle, especially since popping rock has an "enriched" trace element composition. We will present Ne, Ar and Xe isotope data on MORB glass samples with "normal" helium isotope composition (8±1 Ra) from the Southeast Indian Ridge, the South Atlantic Ridge, the Sojourn Ridge, the Juan de Fuca, the East Pacific Rise, and the Gakkel Ridge. Following the approach of [1], we correct for syn- and post-eruptive atmosphere contamination, and determine the variation of Ar and Xe isotope composition of the "normal" MORB source. We investigate the effect of atmospheric recycling in the variation of MORB mantle 40Ar/36Ar and 129Xe/130Xe ratios, and attempt to constrain the average upper mantle argon and xenon isotopic compositions. [1] Mukhopadhyay, Nature

  8. Diffusion NMR methods applied to xenon gas for materials study

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

  9. Dendritic spines linearize the summation of excitatory potentials

    PubMed Central

    Araya, Roberto; Eisenthal, Kenneth B.; Yuste, Rafael

    2006-01-01

    In mammalian cortex, most excitatory inputs occur on dendritic spines, avoiding dendritic shafts. Although spines biochemically isolate inputs, nonspiny neurons can also implement biochemical compartmentalization; so, it is possible that spines have an additional function. We have recently shown that the spine neck can filter membrane potentials going into and out of the spine. To investigate the potential function of this electrical filtering, we used two-photon uncaging of glutamate and compared the integration of electrical signals in spines vs. dendritic shafts from basal dendrites of mouse layer 5 pyramidal neurons. Uncaging potentials onto spines summed linearly, whereas potentials on dendritic shafts reduced each other's effect. Linear integration of spines was maintained regardless of the amplitude of the response, distance between spines (as close as <2 μm), distance of the spines to the soma, dendritic diameter, or spine neck length. Our findings indicate that spines serve as electrical isolators to prevent input interaction, and thus generate a linear arithmetic of excitatory inputs. Linear integration could be an essential feature of cortical and other spine-laden circuits. PMID:17132736

  10. Dendritic spines linearize the summation of excitatory potentials.

    PubMed

    Araya, Roberto; Eisenthal, Kenneth B; Yuste, Rafael

    2006-12-05

    In mammalian cortex, most excitatory inputs occur on dendritic spines, avoiding dendritic shafts. Although spines biochemically isolate inputs, nonspiny neurons can also implement biochemical compartmentalization; so, it is possible that spines have an additional function. We have recently shown that the spine neck can filter membrane potentials going into and out of the spine. To investigate the potential function of this electrical filtering, we used two-photon uncaging of glutamate and compared the integration of electrical signals in spines vs. dendritic shafts from basal dendrites of mouse layer 5 pyramidal neurons. Uncaging potentials onto spines summed linearly, whereas potentials on dendritic shafts reduced each other's effect. Linear integration of spines was maintained regardless of the amplitude of the response, distance between spines (as close as < 2 microm), distance of the spines to the soma, dendritic diameter, or spine neck length. Our findings indicate that spines serve as electrical isolators to prevent input interaction, and thus generate a linear arithmetic of excitatory inputs. Linear integration could be an essential feature of cortical and other spine-laden circuits.

  11. Schaffer Collateral Inputs to CA1 Excitatory and Inhibitory Neurons Follow Different Connectivity Rules.

    PubMed

    Kwon, Osung; Feng, Linqing; Druckmann, Shaul; Kim, Jinhyun

    2018-05-30

    Neural circuits, governed by a complex interplay between excitatory and inhibitory neurons, are the substrate for information processing, and the organization of synaptic connectivity in neural network is an important determinant of circuit function. Here, we analyzed the fine structure of connectivity in hippocampal CA1 excitatory and inhibitory neurons innervated by Schaffer collaterals (SCs) using mGRASP in male mice. Our previous study revealed spatially structured synaptic connectivity between CA3 and CA1 pyramidal cells (PCs). Surprisingly, parvalbumin-positive interneurons (PVs) showed a significantly more random pattern spatial structure. Notably, application of Peters' rule for synapse prediction by random overlap between axons and dendrites enhanced structured connectivity in PCs, but, by contrast, made the connectivity pattern in PVs more random. In addition, PCs in a deep sublayer of striatum pyramidale appeared more highly structured than PCs in superficial layers, and little or no sublayer specificity was found in PVs. Our results show that CA1 excitatory PCs and inhibitory PVs innervated by the same SC inputs follow different connectivity rules. The different organizations of fine scale structured connectivity in hippocampal excitatory and inhibitory neurons provide important insights into the development and functions of neural networks. SIGNIFICANCE STATEMENT Understanding how neural circuits generate behavior is one of the central goals of neuroscience. An important component of this endeavor is the mapping of fine-scale connection patterns that underlie, and help us infer, signal processing in the brain. Here, using our recently developed synapse detection technology (mGRASP and neuTube), we provide detailed profiles of synaptic connectivity in excitatory (CA1 pyramidal) and inhibitory (CA1 parvalbumin-positive) neurons innervated by the same presynaptic inputs (CA3 Schaffer collaterals). Our results reveal that these two types of CA1 neurons

  12. The search for dark matter in xenon: Innovative calibration strategies and novel search channels

    NASA Astrophysics Data System (ADS)

    Reichard, Shayne Edward

    The direct detection dark matter experiment XENON1T became operational in early 2016, heralding the era of tonne-scale dark matter detectors. Direct detection experiments typically search for elastic scatters of dark matter particles off target nuclei. XENON1T's larger xenon target provides the advantage of stronger dark matter signals and lower background rates compared to its predecessors, XENON10 and XENON100; but, at the same time, calibration of the detector's response to backgrounds with traditional external sources becomes exceedingly more difficult. A 220Rn source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. I show that the subsequent 212Pb beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. I find no increase in the activity of the troublesome 222Rn background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to 222Rn. Using the delayed coincidence of 220Rn/216Po, I map for the first time the convective motion of particles in the XENON100 detector. Additionally, I make a competitive measurement of the half-life of 212Po, t1/2=293.9+/-(1.0)stat+/-(0.6)ns. In contrast to the elastic scattering of dark matter particles off nuclei, I explore inelastic scattering where the nucleus is excited to a low-lying state of 10-100 keV, with a subsequent prompt de-excitation. I use the inelastic structure factors for the odd-mass xenon isotopes based on state-of-the-art large-scale shell-model calculations with chiral effective field theory WIMP-nucleon currents, finding that the inelastic channel is comparable to or can dominate the elastic channel for momentum transfers around 150 Me

  13. Nootropic agents enhance the recruitment of fast GABAA inhibition in rat neocortex.

    PubMed

    Ling, Douglas S F; Benardo, Larry S

    2005-07-01

    It is widely believed that nootropic (cognition-enhancing) agents produce their therapeutic effects by augmenting excitatory synaptic transmission in cortical circuits, primarily through positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors (AMPARs). However, GABA-mediated inhibition is also critical for cognition, and enhanced GABA function may be likewise therapeutic for cognitive disorders. Could nootropics act through such a mechanism as well? To address this question, we examined the effects of nootropic agents on excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) recorded from layer V pyramidal cells in acute slices of somatosensory cortex. Aniracetam, a positive modulator of AMPA/kainate receptors, increased the peak amplitude of evoked EPSCs and the amplitude and duration of polysynaptic fast IPSCs, manifested as a greater total charge carried by IPSCs. As a result, the EPSC/IPSC ratio of total charge was decreased, representing a shift in the excitation-inhibition balance that favors inhibition. Aniracetam did not affect the magnitude of either monosynaptic IPSCs (mono-IPSCs) recorded in the presence of excitatory amino acid receptor antagonists, or miniature IPSCs (mIPSCs) recorded in the presence of tetrodotoxin. However, the duration of both mono-IPSCs and mIPSCs was prolonged, suggesting that aniracetam also directly modulates GABAergic transmission. Cyclothiazide, a preferential modulator of AMPAR function, enhanced the magnitude and duration of polysynaptic IPSCs, similar to aniracetam, but did not affect mono-IPSCs. Concanavalin A, a kainate receptor modulator, had little effect on EPSCs or IPSCs, suggesting there was no contribution from kainate receptor activity. These findings indicate that AMPAR modulators strengthen inhibition in neocortical pyramidal cells, most likely by altering the kinetics of AMPARs on synaptically connected interneurons and possibly by modulating GABA(A) receptor responses

  14. Search for bosonic super-WIMP interactions with the XENON100 experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Capelli, C.; Cardoso, J. M. R.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Howlett, J.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Ramírez García, D.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.; Zhu, T.; Xenon Collaboration

    2017-12-01

    We present results of searches for vector and pseudoscalar bosonic super-weakly interacting massive particles (WIMPs), which are dark matter candidates with masses at the keV-scale, with the XENON100 experiment. XENON100 is a dual-phase xenon time projection chamber operated at the Laboratori Nazionali del Gran Sasso. A profile likelihood analysis of data with an exposure of 224.6 live days ×34 kg showed no evidence for a signal above the expected background. We thus obtain new and stringent upper limits in the (8 - 125 ) keV /c2 mass range, excluding couplings to electrons with coupling constants of ga e>3 ×10-13 for pseudo-scalar and α'/α >2 ×10-28 for vector super-WIMPs, respectively. These limits are derived under the assumption that super-WIMPs constitute all of the dark matter in our galaxy.

  15. Extreme Confinement of Xenon by Cryptophane-111 in the Solid State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Akil I.; Lapidus, Saul H.; Kane, Christopher M.

    2014-12-11

    Solids that sorb, capture and/or store the heavier noble gases are of interest because of their potential for transformative rare gas separation/production, storage, or recovery technologies. Herein, we report the isolation, crystal structures, and thermal stabilities of a series of xenon and krypton clathrates of (±)-cryptophane-111 (111). One trigonal crystal form, Xe@111•y(solvent), is exceptionally stable, retaining xenon at temperatures of up to about 300 °C. The high kinetic stability is attributable not only to the high xenon affinity and cage-like nature of the host, but also to the crystal packing of the clathrate, wherein each window of the molecular containermore » is blocked by the bridges of adjacent containers, effectively imprisoning the noble gas in the solid state. The results highlight the potential of discrete molecule materials exhibiting intrinsic microcavities or zero-dimensional pores.« less

  16. Stirring Up an Elastic Fluid: Critical Viscosity of Xenon-2 (CVX-2)

    NASA Astrophysics Data System (ADS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    2002-12-01

    Whipped cream stays in place even when turned upside down. Yet it readily flows through the nozzle of a spray can to reach the dessert plate. This demonstrates the phenomenon of shear thinning that is important to many industrial and physical processes. Paints, film emulsions, and other complex solutions that are highly viscous under normal conditions but become thin and flow easily under shear forces. A simple fluid, such as water, does not exhibit shear thinning under normal conditions. Very close to the liquid-vapor critical point, where the distinction between liquid and vapor disappears, the fluid becomes more complex and is predicted to display shear thinning. At the critical point, xenon atoms interact over long distances in a classical model of cooperative phenomena. Physicists rely on this system to learn how long-range order arises. The Critical Viscosity of Xenon Experiment (CVX-2) will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of fluids. Viscosity originates from the interactions of individual molecules. It is so complicated that, except for the simplest gas, it cannot be calculated accurately from theory. Tests with critical fluids can provide key data, but are limited on Earth because critical fluids are highly compressed by gravity. CVX-2 employs a tiny metal screen vibrating between two electrodes in a bath of critical xenon. The vibrations and how they dampen are used to measure viscosity. CVX flew on STS-85 (1997), where it revealed that, close to the critical point, the xenon is partly elastic: it can 'stretch' as well as flow. For STS-107, the hardware has been enhanced to determine if critical xenon is a shear-thinning fluid.

  17. Stirring Up an Elastic Fluid: Critical Viscosity of Xenon-2 (CVX-2)

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.; Motil, Susan M. (Technical Monitor)

    2002-01-01

    Whipped cream stays in place even when turned upside down. Yet it readily flows through the nozzle of a spray can to reach the dessert plate. This demonstrates the phenomenon of shear thinning that is important to many industrial and physical processes. Paints, film emulsions, and other complex solutions that are highly viscous under normal conditions but become thin and flow easily under shear forces. A simple fluid, such as water, does not exhibit shear thinning under normal conditions. Very close to the liquid-vapor critical point, where the distinction between liquid and vapor disappears, the fluid becomes more complex and is predicted to display shear thinning. At the critical point, xenon atoms interact over long distances in a classical model of cooperative phenomena. Physicists rely on this system to learn how long-range order arises. The Critical Viscosity of Xenon Experiment (CVX-2) will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of fluids. Viscosity originates from the interactions of individual molecules. It is so complicated that, except for the simplest gas, it cannot be calculated accurately from theory. Tests with critical fluids can provide key data, but are limited on Earth because critical fluids are highly compressed by gravity. CVX-2 employs a tiny metal screen vibrating between two electrodes in a bath of critical xenon. The vibrations and how they dampen are used to measure viscosity. CVX flew on STS-85 (1997), where it revealed that, close to the critical point, the xenon is partly elastic: it can 'stretch' as well as flow. For STS-107, the hardware has been enhanced to determine if critical xenon is a shear-thinning fluid.

  18. Timing of xenon-induced delayed postconditioning to protect against spinal cord ischaemia-reperfusion injury in rats.

    PubMed

    Yang, Y W; Cheng, W P; Lu, J K; Dong, X H; Wang, C B; Zhang, J; Zhao, L Y; Gao, Z F

    2014-07-01

    This study was designed to assess the neuroprotective effect of xenon-induced delayed postconditioning on spinal cord ischaemia-reperfusion injury (IRI) and to determine the time of administration for best neuroprotection in a rat model of spinal cord IRI. Fifty male rats were randomly divided equally into a sham group, control group, and three xenon postconditioning groups (n=10 per group). The control group underwent spinal cord IRI and immediately inhaled 50% nitrogen/50% oxygen for 3 h at the initiation of reperfusion. The three xenon postconditioning groups underwent the same surgical procedure and immediately inhaled 50% xenon/50% oxygen for 3 h at the initiation of reperfusion or 1 and 2 h after reperfusion. The sham operation group underwent the same surgical procedure without aortic occlusion, and inhaled 50% nitrogen/50% oxygen. Neurological function was assessed using the Basso, Beattie, and Bresnahan score at 4, 24, and 48 h of reperfusion. Histological examination was performed using Nissl staining and immunohistochemistry, and apoptosis was detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labelling staining. Compared with the control group, the three xenon postconditioning groups showed improvements in neurological outcomes, and had more morphologically normal neurones at 48 h of reperfusion. Apoptotic cell death was reduced and the ratio of Bcl-2/Bax immunoreactivity increased in xenon-treated rats compared with controls. Xenon postconditioning up to 2 h after reperfusion provided protection against spinal cord IRI in rats, but the greatest neuroprotection occurred with administration of xenon for 1 h at reperfusion. © The Author [2013]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Renal function following xenon anesthesia for partial nephrectomy-An explorative analysis of a randomized controlled study.

    PubMed

    Stevanovic, Ana; Schaefer, Patrick; Coburn, Mark; Rossaint, Rolf; Stoppe, Christian; Boor, Peter; Pfister, David; Heidenreich, Axel; Christ, Hildegard; Hellmich, Martin; Fahlenkamp, Astrid V

    2017-01-01

    Perioperative preservation of renal function has a significant impact on morbidity and mortality in kidney surgery. Nephroprotective effects of the anesthetic xenon on ischemia-reperfusion injury were found in several experimental studies. We aimed to explore whether xenon anesthesia can reduce renal damage in humans undergoing partial nephrectomy and to gather pilot data of possible nephroprotection in these patients. A prospective randomized, single-blinded, controlled study. Single-center, University Hospital of Aachen, Germany between July 2013-October 2015. Forty-six patients with regular renal function undergoing partial nephrectomy. Patients were randomly assigned to receive xenon- (n = 23) or isoflurane (n = 23) anesthesia. Primary outcome was the maximum postoperative glomerular filtration rate (GFR) decline within seven days after surgery. Secondary outcomes included intraoperative and tumor-related data, assessment of further kidney injury markers, adverse events and optional determination of renal function after 3-6 months. Unexpected radical nephrectomy was performed in 5 patients, thus they were excluded from the per-protocol analysis, but included in the intention-to-treat analysis. The maximum postoperative GFR decline was attenuated by 45% in the xenon-group (10.9 ml min-1 1.73 cm-2 versus 19.7 ml min-1 1.73 cm-2 in the isoflurane group), but without significance (P = 0.084). Occurrence of adverse events was reduced (P = 0.003) in the xenon group. Renal function was similar among the groups after 3-6 months. Xenon anesthesia was feasible and safe in patients undergoing partial nephrectomy with regard to postoperative renal function. We found no significant effect on early renal function but less adverse events in the xenon group. Larger randomized controlled studies in more heterogeneous collectives are required, to confirm or refute the possible clinical benefit on renal function by xenon. ClinicalTrials.gov NCT01839084 and EudraCT 2012-005698-30.

  20. Xenon adsorption on geological media and implications for radionuclide signatures.

    PubMed

    Paul, M J; Biegalski, S R; Haas, D A; Jiang, H; Daigle, H; Lowrey, J D

    2018-07-01

    The detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isotherm measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Isotopic signature of atmospheric xenon released from light water reactors.

    PubMed

    Kalinowski, Martin B; Pistner, Christoph

    2006-01-01

    A global monitoring system for atmospheric xenon radioactivity is being established as part of the International Monitoring System to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The isotopic activity ratios of (135)Xe, (133m)Xe, (133)Xe and (131m)Xe are of interest for distinguishing nuclear explosion sources from civilian releases. Simulations of light water reactor (LWR) fuel burn-up through three operational reactor power cycles are conducted to explore the possible xenon isotopic signature of nuclear reactor releases under different operational conditions. It is studied how ratio changes are related to various parameters including the neutron flux, uranium enrichment and fuel burn-up. Further, the impact of diffusion and mixing on the isotopic activity ratio variability are explored. The simulations are validated with reported reactor emissions. In addition, activity ratios are calculated for xenon isotopes released from nuclear explosions and these are compared to the reactor ratios in order to determine whether the discrimination of explosion releases from reactor effluents is possible based on isotopic activity ratios.

  2. XENON100 exclusion limit without considering Leff as a nuisance parameter

    NASA Astrophysics Data System (ADS)

    Davis, Jonathan H.; Bœhm, Céline; Oppermann, Niels; Ensslin, Torsten; Lacroix, Thomas

    2012-07-01

    In 2011, the XENON100 experiment has set unprecedented constraints on dark matter-nucleon interactions, excluding dark matter candidates with masses down to 6 GeV if the corresponding cross section is larger than 10-39cm2. The dependence of the exclusion limit in terms of the scintillation efficiency (Leff) has been debated at length. To overcome possible criticisms XENON100 performed an analysis in which Leff was considered as a nuisance parameter and its uncertainties were profiled out by using a Gaussian likelihood in which the mean value corresponds to the best fit Leff value (smoothly extrapolated to 0 below 3 keVnr). Although such a method seems fairly robust, it does not account for more extreme types of extrapolation nor does it enable us to anticipate how much the exclusion limit would vary if new data were to support a flat behavior for Leff below 3 keVnr, for example. Yet, such a question is crucial for light dark matter models which are close to the published XENON100 limit. To answer this issue, we use a maximum likelihood ratio analysis, as done by the XENON100 Collaboration, but do not consider Leff as a nuisance parameter. Instead, Leff is obtained directly from the fits to the data. This enables us to define frequentist confidence intervals by marginalizing over Leff.

  3. Measurement of xenon plasma properties in an ion thruster using laser Thomson scattering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, N.; Tomita, K.; Sugita, K.

    2012-07-15

    This paper reports on the development of a method for measuring xenon plasma properties using the laser Thomson scattering technique, for application to ion engine system design. The thresholds of photo-ionization of xenon plasma were investigated and the number density of metastable atoms, which are photo-ionized by a probe laser, was measured using laser absorption spectroscopy, for several conditions. The measured threshold energy of the probe laser using a plano-convex lens with a focal length of 200 mm was 150 mJ for a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W; the probe lasermore » energy was therefore set as 80 mJ. Electron number density was found to be (6.2 {+-} 0.4) Multiplication-Sign 10{sup 17} m{sup -3} and electron temperature was found to be 2.2 {+-} 0.4 eV at a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W. The threshold of the probe laser intensity against photo-ionization in a miniature xenon ion thruster is almost constant for various mass flow rates, since the ratio of population of the metastable atoms to the electron number density is little changed.« less

  4. Cortical inhibition and excitation by bilateral transcranial alternating current stimulation.

    PubMed

    Cancelli, Andrea; Cottone, Carlo; Zito, Giancarlo; Di Giorgio, Marina; Pasqualetti, Patrizio; Tecchio, Franca

    2015-01-01

    Transcranial electric stimulations (tES) with amplitude-modulated currents are promising tools to enhance neuromodulation effects. It is essential to select the correct cortical targets and inhibitory/excitatory protocols to reverse changes in specific networks. We aimed at assessing the dependence of cortical excitability changes on the current amplitude of 20 Hz transcranial alternating current stimulation (tACS) over the bilateral primary motor cortex. We chose two amplitude ranges of the stimulations, around 25 μA/cm2 and 63 μA/cm2 from peak to peak, with three values (at steps of about 2.5%) around each, to generate, respectively, inhibitory and excitatory effects of the primary motor cortex. We checked such changes online through transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs). Cortical excitability changes depended upon current density (p = 0.001). Low current densities decreased MEP amplitudes (inhibition) while high current densities increased them (excitation). tACS targeting bilateral homologous cortical areas can induce online inhibition or excitation as a function of the current density.

  5. Model-Free Reconstruction of Excitatory Neuronal Connectivity from Calcium Imaging Signals

    PubMed Central

    Stetter, Olav; Battaglia, Demian; Soriano, Jordi; Geisel, Theo

    2012-01-01

    A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium imaging. We focus in this study on the inference of excitatory synaptic links. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the functional network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (bursting or non-bursting). Thus by conditioning with respect to the global mean activity, we improve the performance of our method. This allows us to focus the analysis to specific dynamical regimes of the network in which the inferred functional connectivity is shaped by monosynaptic excitatory connections, rather than by collective synchrony. Our method can discriminate between actual causal influences between neurons and spurious non-causal correlations due to light scattering artifacts, which inherently affect the quality of fluorescence imaging. Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good estimation of the excitatory network clustering coefficient, allowing for discrimination between weakly and strongly clustered topologies. Finally, we demonstrate the applicability of our method to analyses of real recordings of in vitro disinhibited cortical cultures where we suggest that excitatory connections are characterized

  6. The effect of inhibition on the existence of traveling wave solutions for a neural field model of human seizure termination.

    PubMed

    González-Ramírez, L R; Kramer, M A

    2018-06-01

    In this paper we study the influence of inhibition on an activity-based neural field model consisting of an excitatory population with a linear adaptation term that directly regulates the activity of the excitatory population. Such a model has been used to replicate traveling wave data as observed in high density local field potential recordings (González-Ramírez et al. PLoS Computational Biology, 11(2), e1004065, 2015). In this work, we show that by adding an inhibitory population to this model we can still replicate wave properties as observed in human clinical data preceding seizure termination, but the parameter range over which such waves exist becomes more restricted. This restriction depends on the strength of the inhibition and the timescale at which the inhibition acts. In particular, if inhibition acts on a slower timescale relative to excitation then it is possible to still replicate traveling wave patterns as observed in the clinical data even with a relatively strong effect of inhibition. However, if inhibition acts on the same timescale as the excitation, or faster, then traveling wave patterns with the desired characteristics cease to exist when the inhibition becomes sufficiently strong.

  7. Shear Thinning in Xenon

    NASA Technical Reports Server (NTRS)

    Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.

    2009-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.

  8. Neutrino physics with multi-ton scale liquid xenon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baudis, L.; Ferella, A.; Kish, A.

    2014-01-01

    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and {sup 7}Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon,more » after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ∼ 2 × 10{sup −48} cm{sup 2} and WIMP masses around 50 GeV⋅c{sup −2}, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ∼ 6 GeV⋅c{sup −2} to cross sections above ∼ 4 × 10{sup −45}cm{sup 2}. DARWIN could reach a competitive half-life sensitivity of 5.6 × 10{sup 26} y to the neutrinoless double beta decay of {sup 136}Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.« less

  9. Near-infrared scintillation of xenon by 63Ni beta decay

    NASA Astrophysics Data System (ADS)

    Yoshimizu, Norimasa; Lal, Amit; Pollock, Clifford R.

    2006-07-01

    The near-infrared scintillation of xenon gas by the β decay of 37MBq of Ni63 was studied, in the interest of its use in integrated devices for applications such as optical beacons and wavelength calibration. The emission was imaged and analyzed using Spencer's theory of electron penetration using xenon scattering cross sections derived from Thomas-Fermi theory. The total emission was approximately 2×105photons/s at 20kPa and 1×105photons/s at 100kPa. Spectral data show three dominant peaks at 823, 828, and 882nm as well as the formation of metastable states.

  10. First-principles calculation of the reflectance of shock-compressed xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, G. E.; Saitov, I. M., E-mail: saitovilnur@gmail.com; Stegailov, V. V.

    2015-05-15

    Within electron density functional theory (DFT), the reflectance of radiation from shock-compressed xenon plasma is calculated. The dependence of the reflectance on the frequency of the incident radiation and on the plasma density is considered. The Fresnel formula is used. The expression for the longitudinal dielectric tensor in the long-wavelength limit is used to calculate the imaginary part of the dielectric function (DF). The real part of the DF is determined by the Kramers-Kronig transformation. The results are compared with experimental data. An approach is proposed to estimate the plasma frequency in shock-compressed xenon.

  11. miR-21 Contributes to Xenon-conferred Amelioration of Renal Ischemia–Reperfusion Injury in Mice

    PubMed Central

    Jia, Ping; Teng, Jie; Zou, Jianzhou; Fang, Yi; Zhang, Xiaoyan; Bosnjak, Zeljko J.; Liang, Mingyu; Ding, Xiaoqiang

    2015-01-01

    Background MicroRNAs participate in the regulation of numerous physiological and disease processes. The in vivo role of microRNAs in anesthetics-conferred organoprotection is unknown. Methods Mice were exposed for 2 h to either 70% xenon, or 70% nitrogen, 24 h before the induction of renal ischemia-reperfusion injury. The role of microRNA, miR-21, in renal protection conferred by the delayed xenon preconditioning was examined using in vivo knockdown of miR-21 and analysis of miR-21 target pathways. Results Xenon preconditioning provided morphologic and functional protection against renal ischemia-reperfusion injury (n = 6), characterized by attenuation of renal tubular damage, apoptosis, and oxidative stress. Xenon preconditioning significantly increased the expression of miR-21 in the mouse kidney. A locked nucleic acid-modified anti–miR-21, given before xenon preconditioning, knocked down miR-21 effectively, and exacerbated subsequent renal ischemia-reperfusion injury. Mice treated with anti–miR-21 and ischemia-reperfusion injury showed significantly higher serum creatinine than antiscrambled oligonucleotides-treated mice, 24 h after ischemia-reperfusion (1.37 ± 0.28 vs. 0.81 ± 0.14 mg/dl; n = 5; P < 0.05). Knockdown of miR-21 induced significant up-regulation of programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10, two proapoptotic target effectors of miR-21, and resulted in significant down-regulation of phosphorylated protein kinase B and increased tubular cell apoptosis. In addition, xenon preconditioning up-regulated hypoxia-inducible factor-1α and its downstream effector vascular endothelial growth factor in a time-dependent manner. Knockdown of miR-21 resulted in a significant decrease of hypoxia-inducible factor-1α. Conclusions These results indicate that miR-21 contributes to the renoprotective effect of xenon preconditioning. PMID:23681145

  12. miR-21 contributes to xenon-conferred amelioration of renal ischemia-reperfusion injury in mice.

    PubMed

    Jia, Ping; Teng, Jie; Zou, Jianzhou; Fang, Yi; Zhang, Xiaoyan; Bosnjak, Zeljko J; Liang, Mingyu; Ding, Xiaoqiang

    2013-09-01

    MicroRNAs participate in the regulation of numerous physiological and disease processes. The in vivo role of microRNAs in anesthetics-conferred organoprotection is unknown. Mice were exposed for 2 h to either 70% xenon, or 70% nitrogen, 24 h before the induction of renal ischemia-reperfusion injury. The role of microRNA, miR-21, in renal protection conferred by the delayed xenon preconditioning was examined using in vivo knockdown of miR-21 and analysis of miR-21 target pathways. Xenon preconditioning provided morphologic and functional protection against renal ischemia-reperfusion injury (n = 6), characterized by attenuation of renal tubular damage, apoptosis, and oxidative stress. Xenon preconditioning significantly increased the expression of miR-21 in the mouse kidney. A locked nucleic acid-modified anti-miR-21, given before xenon preconditioning, knocked down miR-21 effectively, and exacerbated subsequent renal ischemia-reperfusion injury. Mice treated with anti-miR-21 and ischemia-reperfusion injury showed significantly higher serum creatinine than antiscrambled oligonucleotides-treated mice, 24 h after ischemia-reperfusion (1.37 ± 0.28 vs. 0.81 ± 0.14 mg/dl; n = 5; P < 0.05). Knockdown of miR-21 induced significant up-regulation of programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10, two proapoptotic target effectors of miR-21, and resulted in significant down-regulation of phosphorylated protein kinase B and increased tubular cell apoptosis. In addition, xenon preconditioning up-regulated hypoxia-inducible factor-1α and its downstream effector vascular endothelial growth factor in a time-dependent manner. Knockdown of miR-21 resulted in a significant decrease of hypoxia-inducible factor-1α. These results indicate that miR-21 contributes to the renoprotective effect of xenon preconditioning.

  13. Structural-Functional Properties of Identified Excitatory and Inhibitory Interneurons within Pre-Bötzinger Complex Respiratory Microcircuits

    PubMed Central

    Koizumi, Hidehiko; Koshiya, Naohiro; Chia, Justine X.; Cao, Fang; Nugent, Joseph; Zhang, Ruli

    2013-01-01

    We comparatively analyzed cellular and circuit properties of identified rhythmic excitatory and inhibitory interneurons within respiratory microcircuits of the neonatal rodent pre-Bötzinger complex (pre-BötC), the structure generating inspiratory rhythm in the brainstem. We combined high-resolution structural–functional imaging, molecular assays for neurotransmitter phenotype identification in conjunction with electrophysiological property phenotyping, and morphological reconstruction of interneurons in neonatal rat and mouse slices in vitro. This approach revealed previously undifferentiated structural–functional features that distinguish excitatory and inhibitory interneuronal populations. We identified distinct subpopulations of pre-BötC glutamatergic, glycinergic, GABAergic, and glycine-GABA coexpressing interneurons. Most commissural pre-BötC inspiratory interneurons were glutamatergic, with a substantial subset exhibiting intrinsic oscillatory bursting properties. Commissural excitatory interneurons projected with nearly planar trajectories to the contralateral pre-BötC, many also with axon collaterals to areas containing inspiratory hypoglossal (XII) premotoneurons and motoneurons. Inhibitory neurons as characterized in the present study did not exhibit intrinsic oscillatory bursting properties, but were electrophysiologically distinguished by more pronounced spike frequency adaptation properties. Axons of many inhibitory neurons projected ipsilaterally also to regions containing inspiratory XII premotoneurons and motoneurons, whereas a minority of inhibitory neurons had commissural axonal projections. Dendrites of both excitatory and inhibitory interneurons were arborized asymmetrically, primarily in the coronal plane. The dendritic fields of inhibitory neurons were more spatially compact than those of excitatory interneurons. Our results are consistent with the concepts of a compartmental circuit organization, a bilaterally coupled excitatory

  14. Adaptive regulation of sparseness by feedforward inhibition

    PubMed Central

    Assisi, Collins; Stopfer, Mark; Laurent, Gilles; Bazhenov, Maxim

    2014-01-01

    In the mushroom body of insects, odors are represented by very few spikes in a small number of neurons, a highly efficient strategy known as sparse coding. Physiological studies of these neurons have shown that sparseness is maintained across thousand-fold changes in odor concentration. Using a realistic computational model, we propose that sparseness in the olfactory system is regulated by adaptive feedforward inhibition. When odor concentration changes, feedforward inhibition modulates the duration of the temporal window over which the mushroom body neurons may integrate excitatory presynaptic input. This simple adaptive mechanism could maintain the sparseness of sensory representations across wide ranges of stimulus conditions. PMID:17660812

  15. Adenosine inhibits activity of hypocretin/orexin neurons via A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect

    PubMed Central

    Liu, Zhong-Wu; Gao, Xiao-Bing

    2006-01-01

    Neurons in the lateral hypothalamus (LH) that contain hypocretin/orexin have been established as important promoters of arousal. Deficiencies in the hypocretin/orexin system lead to narcolepsy. The inhibition of hypocretin/orexin neurons by sleep-promoting neurotransmitters has been suggested as one part of the sleep regulation machinery. Adenosine has been identified as a sleep promoter and its role in sleep regulation in the basal forebrain has been well documented. However, the effect of adenosine on arousal-promoting hypocretin/orexin neurons has not been addressed, despite recent evidence that immunocytochemical visualization of adenosine receptors was detected in these neurons. In this study, we examined the hypothesis that adenosine inhibits the activity of hypocretin/orexin neurons by using electrophysiological methods in brain slices from mice expressing green fluorescent protein in hypocretin/orexin neurons. We found that adenosine significantly attenuated the frequency of action potentials without a change in membrane potential in hypocretin/orexin neurons. The adenosine-mediated inhibition is due to depression of excitatory synaptic transmission to hypocretin/orexin neurons, since adenosine depresses the amplitude of evoked excitatory postsynaptic potential and the frequency of spontaneous and miniature excitatory postsynaptic currents in these neurons. At the cell body of the hypocretin/orexin neurons, adenosine inhibits voltage-dependent calcium currents without the induction of GIRK current. The inhibitory effect of adenosine is dose-dependent, pertussis toxin-sensitive and mediated via A1 receptors. In summary, our data suggest that in addition to its effect in the basal forebrain, adenosine exerts its sleep-promoting effect in the LH via inhibition of hypocretin/orexin neurons. PMID:17093123

  16. Cocaine cues retain silent traces of an excitatory history after conversion into conditioned inhibitors: 'the ghost in the addict'.

    PubMed

    Weiss, Stanley J; Kearns, David N

    2016-04-01

    The present experiment investigated the extent to which the A+/AB- conditioned inhibition procedure could counteract an excitatory drug-related conditioning history. In two groups of rats, a light stimulus was established as a signal for the absence of cocaine. For the History group, the light had previously been a discriminative stimulus (S) that occasioned cocaine self-administration and could thus be classified as a cocaine excitor. In comparison, the No-History group first encountered the light during conditioned inhibition training. During conditioned inhibition training, both groups self-administered cocaine during tone as well as during click Ss, whereas drug seeking was eliminated in click-plus-light, wherein cocaine was not available (A+/AB-). Drug seeking was essentially eliminated in both groups. Nevertheless, on a summation test the light reduced cocaine seeking occasioned by the tone S by 95% in the No-History group, but by less than 50% in the History group. This summation test result showed that the effects of a drug-related history persisted even after the light was converted into an effective conditioned inhibitor on the training baseline through the powerful A+/AB- procedure. Future research should seek procedures that produce even stronger conditioned inhibition that eliminates such residual 'silent' drug excitation, the 'ghost in the addict'.

  17. Rapid Long-Range Disynaptic Inhibition Explains the Formation of Cortical Orientation Maps

    PubMed Central

    Antolík, Ján

    2017-01-01

    Competitive interactions are believed to underlie many types of cortical processing, ranging from memory formation, attention and development of cortical functional organization (e.g., development of orientation maps in primary visual cortex). In the latter case, the competitive interactions happen along the cortical surface, with local populations of neurons reinforcing each other, while competing with those displaced more distally. This specific configuration of lateral interactions is however in stark contrast with the known properties of the anatomical substrate, i.e., excitatory connections (mediating reinforcement) having longer reach than inhibitory ones (mediating competition). No satisfactory biologically plausible resolution of this conflict between anatomical measures, and assumed cortical function has been proposed. Recently a specific pattern of delays between different types of neurons in cat cortex has been discovered, where direct mono-synaptic excitation has approximately the same delay, as the combined delays of the disynaptic inhibitory interactions between excitatory neurons (i.e., the sum of delays from excitatory to inhibitory and from inhibitory to excitatory neurons). Here we show that this specific pattern of delays represents a biologically plausible explanation for how short-range inhibition can support competitive interactions that underlie the development of orientation maps in primary visual cortex. We demonstrate this statement analytically under simplifying conditions, and subsequently show using network simulations that development of orientation maps is preserved when long-range excitation, direct inhibitory to inhibitory interactions, and moderate inequality in the delays between excitatory and inhibitory pathways is added. PMID:28408869

  18. Collateral Ventilation to Congenital Hyperlucent Lung Lesions Assessed on Xenon-Enhanced Dynamic Dual-Energy CT: an Initial Experience

    PubMed Central

    Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    Objective We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Materials and Methods Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a time-xenon value curve analysis and assessing the amplitude of xenon enhancement (A) value, the rate of xenon enhancement (K) value and the time of arrival value. Based on the A value, the lung lesions were categorized into high or low (A value > 10 Hounsfield unit [HU]) resistance to collateral ventilation. In addition, the morphologic CT findings of the lung lesions, including cyst, mucocele and an accessory or incomplete fissure, were assessed on the weighted-average CT images. The xenon-enhanced CT radiation dose was estimated. Results Five of the eight lung lesions were categorized into the high resistance group and three lesions were categorized into the low resistance group. The A and K values in the normal lung were higher than those in the low resistance group. The time of arrival values were delayed in the low resistance group. Cysts were identified in five lesions, mucocele in four, accessory fissure in three and incomplete fissure in two. Either cyst or an accessory fissure was seen in four of the five lesions showing high resistance to collateral ventilation. The xenon-enhanced CT radiation dose was 2.3 ± 0.6 mSv. Conclusion Xenon-enhanced dynamic dual-energy CT can help visualize and quantitate various degrees of collateral ventilation to congenital hyperlucent lung lesions in addition to assessing the anatomic details of the lung. PMID:21228937

  19. Collateral ventilation to congenital hyperlucent lung lesions assessed on xenon-enhanced dynamic dual-energy CT: an initial experience.

    PubMed

    Goo, Hyun Woo; Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a time-xenon value curve analysis and assessing the amplitude of xenon enhancement (A) value, the rate of xenon enhancement (K) value and the time of arrival value. Based on the A value, the lung lesions were categorized into high or low (A value > 10 Hounsfield unit [HU]) resistance to collateral ventilation. In addition, the morphologic CT findings of the lung lesions, including cyst, mucocele and an accessory or incomplete fissure, were assessed on the weighted-average CT images. The xenon-enhanced CT radiation dose was estimated. Five of the eight lung lesions were categorized into the high resistance group and three lesions were categorized into the low resistance group. The A and K values in the normal lung were higher than those in the low resistance group. The time of arrival values were delayed in the low resistance group. Cysts were identified in five lesions, mucocele in four, accessory fissure in three and incomplete fissure in two. Either cyst or an accessory fissure was seen in four of the five lesions showing high resistance to collateral ventilation. The xenon-enhanced CT radiation dose was 2.3 ± 0.6 mSv. Xenon-enhanced dynamic dual-energy CT can help visualize and quantitate various degrees of collateral ventilation to congenital hyperlucent lung lesions in addition to assessing the anatomic details of the lung.

  20. The immunoglobulin family member dendrite arborization and synapse maturation 1 (Dasm1) controls excitatory synapse maturation

    PubMed Central

    Shi, Song-Hai; Cheng, Tong; Jan, Lily Yeh; Jan, Yuh-Nung

    2004-01-01

    In the developing mammalian brain, a large fraction of excitatory synapses initially contain only N-methyl-d-aspartate receptor and thus are “silent” at the resting membrane potential. As development progresses, synapses acquire α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs). Although this maturation of excitatory synapses has been well characterized, the molecular basis for this developmental change is not known. Here, we report that dendrite arborization and synapse maturation 1 (Dasm1), an Ig superfamily member, controls excitatory synapse maturation. Dasm1 is localized at the excitatory synapses. Suppression of Dasm1 expression by using RNA interference or expression of dominant negative deletion mutants of Dasm1 in hippocampal neurons at late developmental stage specifically impairs AMPA-R-mediated, but not N-methyl-d-aspartate receptor-mediated, synaptic transmission. The ability of Dasm1 to regulate synaptic AMPA-Rs requires its intracellular C-terminal PDZ domain-binding motif, which interacts with two synaptic PDZ domain-containing proteins involved in spine/synapse maturation, Shank and S-SCAM. Moreover, expression of dominant negative deletion mutants of Dasm1 leads to more immature silent synapses. These results suggest that Dasm1, as a transmembrane molecule, likely provides a link to bridge extracellular signals and intracellular signaling complexes in controlling excitatory synapse maturation. PMID:15340156

  1. The spatial extent of excitatory and inhibitory zones in the receptive field of superficial layer hypercomplex cells

    PubMed Central

    Sillito, A. M.

    1977-01-01

    1. An investigation has been made of the extent of inhibitory and excitatory components in the receptive field of superficial layer hypercomplex cells in the cat's striate cortex and the relation of the components to the length preference exhibited by these cells. 2. Maximal responses were produced by an optimal length stimulus moving through a restricted region of the receptive field. The length of this receptive field region was less than the total length of the excitatory zone as mapped with a very short slit. Slits of similar length to the excitatory zone produced a smaller response than an optimal length slit. 3. An increase of slit length so that it passed over receptive field regions either side of the excitatory zone resulted in an elimination of the response. When background discharge levels were increased by the iontophoretic application of D, L-homocysteic acid slits of this length were observed to produce a suppression of the resting discharge as they passed over the receptive field. They did not modify the resting discharge level when it was induced by the iontophoretic application of the GABA antagonist bicuculline. This data is taken to indicate that long slits activate a powerful post-synaptic inhibitory input to the cell. 4. Maximal inhibitory effects were only observed if the testing slit passed over the receptive field centre. That is slits with a gap positioned midway along their length so as to exclude the optimal excitatory response region surprisingly tended to produce excitatory effects rather than the expected inhibitory effects. It appears that simultaneous stimulation of the receptive field centre is a precondition for the inhibitory effect of stimulation of regions either side of the excitatory zone to be activated. 5. It is suggested that the interneurones mediating the inhibitory input to the superficial layer hypercomplex cells are driven both by cells in adjacent hypercolumns with receptive fields spatially displaced to either side

  2. Melatonin inhibits voltage-sensitive Ca(2+) channel-mediated neurotransmitter release.

    PubMed

    Choi, Tae-Yong; Kwon, Ji Eun; Durrance, Eunice Sung; Jo, Su-Hyun; Choi, Se-Young; Kim, Kyong-Tai

    2014-04-04

    Melatonin is involved in various neuronal functions such as circadian rhythmicity and thermoregulation. Melatonin has a wide range of pharmacologically effective concentration levels from the nanomolar to millimolar levels. Recently, the antiepileptic effect of high dose melatonin has been the focus of clinical studies; however, its detailed mechanism especially in relation to neurotransmitter release and synaptic transmission remains unclear. We studied the effect of melatonin at high concentrations on the neurotransmitter release by monitoring norepinephrine release in PC12 cells, and excitatory postsynaptic potential in rat hippocampal slices. Melatonin inhibits the 70mM K(+)-induced Ca(2+) increase at millimolar levels without effect on bradykinin-triggered Ca(2+) increase in PC12 cells. Melatonin (1mM) did not affect A2A adenosine receptor-evoked cAMP production, and classical melatonin receptor antagonists did not reverse the melatonin-induced inhibitory effect, suggesting G-protein coupled receptor independency. Melatonin inhibits the 70mM K(+)-induced norepinephrine release at a similar effective concentration range in PC12 cells. We confirmed that melatonin (100µM) inhibits excitatory synaptic transmission of the hippocampal Schaffer collateral pathway with the decrease in basal synaptic transmission and the increase in paired pulse ratio. These results show that melatonin inhibits neurotransmitter release through the blocking of voltage-sensitive Ca(2+) channels and suggest a possible mechanism for the antiepileptic effect of melatonin. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Chondritic xenon in the Earth’s mantle

    NASA Astrophysics Data System (ADS)

    Caracausi, Antonio; Avice, Guillaume; Burnard, Peter G.; Füri, Evelyn; Marty, Bernard

    2016-05-01

    Noble gas isotopes are powerful tracers of the origins of planetary volatiles, and the accretion and evolution of the Earth. The compositions of magmatic gases provide insights into the evolution of the Earth’s mantle and atmosphere. Despite recent analytical progress in the study of planetary materials and mantle-derived gases, the possible dual origin of the planetary gases in the mantle and the atmosphere remains unconstrained. Evidence relating to the relationship between the volatiles within our planet and the potential cosmochemical end-members is scarce. Here we show, using high-precision analysis of magmatic gas from the Eifel volcanic area (in Germany), that the light xenon isotopes identify a chondritic primordial component that differs from the precursor of atmospheric xenon. This is consistent with an asteroidal origin for the volatiles in the Earth’s mantle, and indicates that the volatiles in the atmosphere and mantle originated from distinct cosmochemical sources. Furthermore, our data are consistent with the origin of Eifel magmatism being a deep mantle plume. The corresponding mantle source has been isolated from the convective mantle since about 4.45 billion years ago, in agreement with models that predict the early isolation of mantle domains. Xenon isotope systematics support a clear distinction between mid-ocean-ridge and continental or oceanic plume sources, with chemical heterogeneities dating back to the Earth’s accretion. The deep reservoir now sampled by the Eifel gas had a lower volatile/refractory (iodine/plutonium) composition than the shallower mantle sampled by mid-ocean-ridge volcanism, highlighting the increasing contribution of volatile-rich material during the first tens of millions of years of terrestrial accretion.

  4. Extent and Location of the Excitatory and Inhibitory Cortical Hand Representation Maps: A Navigated Transcranial Magnetic Stimulation Study.

    PubMed

    Pitkänen, Minna; Kallioniemi, Elisa; Julkunen, Petro

    2015-09-01

    Voluntary muscle action and control are modulated by the primary motor cortex, which is characterized by a well-defined somatotopy. Muscle action and control depend on a sensitive balance between excitatory and inhibitory mechanisms in the cortex and in the corticospinal tract. The cortical locations evoking excitatory and inhibitory responses in brain stimulation can be mapped, for example, as a pre-surgical procedure. The purpose of this study was to find the differences between excitatory and inhibitory motor representations mapped using navigated transcranial magnetic stimulation (nTMS). The representations of small hand muscles were mapped to determine the areas and the center of gravities (CoGs) in both hemispheres of healthy right-handed volunteers. The excitatory representations were obtained via resting motor evoked potential (MEP) mapping, with and without a stimulation grid. The inhibitory representations were mapped using the grid and measuring corticospinal silent periods (SPs) during voluntary muscle contraction. The excitatory representations were larger on the dominant hemisphere compared with the non-dominant (p < 0.05). The excitatory CoGs were more medial (p < 0.001) and anterior (p < 0.001) than the inhibitory CoGs. The use of the grid did not influence the areas or the CoGs. The results support the common hypothesis that the MEP and SP representations are located at adjacent sites. Furthermore, the dominant hemisphere seems to be better organized for controlling excitatory motor functions with respect to TMS. In addition, the inhibitory representations could provide further information about motor reorganization and aid in surgery planning when the functional cortical representations are located in abnormal cortical regions.

  5. Delayed post-ischaemic administration of xenon reduces brain damage in a rat model of global ischaemia.

    PubMed

    Metaxa, V; Lagoudaki, R; Meditskou, S; Thomareis, O; Oikonomou, L; Sakadamis, A

    2014-01-01

    Xenon and nitrous oxide have been shown to be neuroprotective in vivo and in vitro, but mainly in models of focal cerebral ischaemia. This study aimed to investigate whether the two gases are able to attenuate cerebral injury after global cerebral ischaemia. Adult male Wistar rats underwent bilateral common carotid artery occlusion and were ventilated for 1 hour with 21% O₂/78% N₂. They were then randomized to three groups which continued to receive atmospheric air, 50% N2O/50% O₂ and 50% Xe/50% O₂ for an additional period of 45 minutes. The number of ischaemic neurons, the cortical volume loss and the immunochemical and molecular expression of c-fos and MMP-9 were evaluated. Xenon reduced the number of ischaemic neurons in the cortex and CA1 hippocampal region (p < 0.001) and decreased the cortical volume loss (p < 0.01). Immunochemical induction of c-fos in the cortex was significantly suppressed (p < 0.01) after administration of xenon. The molecular analysis revealed significant effects of N2O and xenon administration on c-fos and MMP-9 expression. The data indicate that N2O and xenon administration is neuroprotective 1 hour after bilateral common carotid artery occlusion. These findings provide valuable evidence on the beneficial role of N2O and xenon in global cerebral injury.

  6. Xenon Treatment Protects Against Cold Ischemia Associated Delayed Graft Function and Prolongs Graft Survival in Rats

    PubMed Central

    Zhao, H; Watts, H R; Chong, M; Huang, H; Tralau-Stewart, C; Maxwell, P H; Maze, M; George, A J T; Ma, D

    2013-01-01

    Prolonged hypothermic storage causes ischemia-reperfusion injury (IRI) in the renal graft, which is considered to contribute to the occurrence of the delayed graft function (DGF) and chronic graft failure. Strategies are required to protect the graft and to prolong renal graft survival. We demonstrated that xenon exposure to human proximal tubular cells (HK-2) led to activation of range of protective proteins. Xenon treatment prior to or after hypothermia–hypoxia challenge stabilized the HK-2 cellular structure, diminished cytoplasmic translocation of high-mobility group box (HMGB) 1 and suppressed NF-κB activation. In the syngeneic Lewis-to-Lewis rat model of kidney transplantation, xenon exposure to donors before graft retrieval or to recipients after engraftment decreased caspase-3 expression, localized HMGB-1 within nuclei and prevented TLR-4/NF-κB activation in tubular cells; serum pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced and renal function was preserved. Xenon treatment of graft donors or of recipients prolonged renal graft survival following IRI in both Lewis-to-Lewis isografts and Fischer-to-Lewis allografts. Xenon induced cell survival or graft functional recovery was abolished by HIF-1α siRNA. Our data suggest that xenon treatment attenuates DGF and enhances graft survival. This approach could be translated into clinical practice leading to a considerable improvement in long-term graft survival. PMID:23710625

  7. Activity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks.

    PubMed

    Perea, Gertrudis; Gómez, Ricardo; Mederos, Sara; Covelo, Ana; Ballesteros, Jesús J; Schlosser, Laura; Hernández-Vivanco, Alicia; Martín-Fernández, Mario; Quintana, Ruth; Rayan, Abdelrahman; Díez, Adolfo; Fuenzalida, Marco; Agarwal, Amit; Bergles, Dwight E; Bettler, Bernhard; Manahan-Vaughan, Denise; Martín, Eduardo D; Kirchhoff, Frank; Araque, Alfonso

    2016-12-24

    Interneurons are critical for proper neural network function and can activate Ca 2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneuron-astrocyte signaling dynamically affected excitatory neurotransmission in an activity- and time-dependent manner, and determined the sign (inhibition vs potentiation) of the GABA-mediated effects. While synaptic inhibition was mediated by GABA A receptors, potentiation involved astrocyte GABA B receptors, astrocytic glutamate release, and presynaptic metabotropic glutamate receptors. Using conditional astrocyte-specific GABA B receptor ( Gabbr1 ) knockout mice, we confirmed the glial source of the interneuron-induced potentiation, and demonstrated the involvement of astrocytes in hippocampal theta and gamma oscillations in vivo. Therefore, astrocytes decode interneuron activity and transform inhibitory into excitatory signals, contributing to the emergence of novel network properties resulting from the interneuron-astrocyte interplay.

  8. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders.

    PubMed

    Gao, R; Penzes, P

    2015-01-01

    Autism Spectrum Disorders (ASD) and Schizophrenia (SCZ) are cognitive disorders with complex genetic architectures but overlapping behavioral phenotypes, which suggests common pathway perturbations. Multiple lines of evidence implicate imbalances in excitatory and inhibitory activity (E/I imbalance) as a shared pathophysiological mechanism. Thus, understanding the molecular underpinnings of E/I imbalance may provide essential insight into the etiology of these disorders and may uncover novel targets for future drug discovery. Here, we review key genetic, physiological, neuropathological, functional, and pathway studies that suggest alterations to excitatory/inhibitory circuits are keys to ASD and SCZ pathogenesis.

  9. Irregular behavior in an excitatory-inhibitory neuronal network

    NASA Astrophysics Data System (ADS)

    Park, Choongseok; Terman, David

    2010-06-01

    Excitatory-inhibitory networks arise in many regions throughout the central nervous system and display complex spatiotemporal firing patterns. These neuronal activity patterns (of individual neurons and/or the whole network) are closely related to the functional status of the system and differ between normal and pathological states. For example, neurons within the basal ganglia, a group of subcortical nuclei that are responsible for the generation of movement, display a variety of dynamic behaviors such as correlated oscillatory activity and irregular, uncorrelated spiking. Neither the origins of these firing patterns nor the mechanisms that underlie the patterns are well understood. We consider a biophysical model of an excitatory-inhibitory network in the basal ganglia and explore how specific biophysical properties of the network contribute to the generation of irregular spiking. We use geometric dynamical systems and singular perturbation methods to systematically reduce the model to a simpler set of equations, which is suitable for analysis. The results specify the dependence on the strengths of synaptic connections and the intrinsic firing properties of the cells in the irregular regime when applied to the subthalamopallidal network of the basal ganglia.

  10. ARGON, XENON, HYDROGEN, AND THE OXYGEN CONSUMPTION AND GLYCOLYSIS OF MOUSE TISSUE SLICES

    PubMed Central

    South, Frank E.; Cook, Sherburne F.

    1954-01-01

    The effects of xenon, argon, and hydrogen on the aerobic and anaerobic metabolism of mouse liver, brain, and sarcoma slices have been investigated. Xenon was found to alter the rates of metabolism of these tissues in a manner almost identical with helium. The gas increased the rate of oxygen consumption in all three tissues and significantly depressed that of anaerobic glycolysis in brain and liver. The depression of glycolysis in sarcoma was less pronounced and not highly significant. Although both the magnitude and statistical significance of the effects observed with argon were much smaller, there was a seeming adherence to the general pattern established by xenon and helium. Hydrogen while remaining essentially ineffective insofar as oxygen uptake was concerned, depressed glycolysis in both liver and brain slices but did not significantly affect sarcoma slices. The following points are stressed in the Discussion: (1) the magnitude and direction of effects exerted by helium, argon, xenon, hydrogen, and nitrogen do not conform with the relative values of molecular weight, density, and solubility of these gases; (2) the effect of these gases on tissue metabolism does not necessarily parallel that exerted upon the whole organism. PMID:13118104

  11. GABAergic inhibition shapes frequency tuning and modifies response properties in the superior olivary nucleus of the leopard frog.

    PubMed

    Zheng, W; Hall, J C

    2000-01-01

    The role of gamma-aminobutyric acid (GABA)ergic inhibition in shaping the excitatory frequency tuning of 74 neurons in the superior olivary nucleus of the leopard frog, Rana pipiens, was studied using iontophoretic application of the GABA(A) receptor antagonist, bicuculline methiodide. For 37 neurons, bicuculline application broadened and/or changed the configuration of the excitatory frequency-tuning curve. Results indicate that GABA-mediated inhibition not only sharpens the tuning curves of neurons but also plays a critical role in creating new frequency tuning properties in the superior olivary nucleus. Bicuculline application affected other neuronal response properties as well. Spontaneous firing rate increased 11-338% for 18 of 59 neurons. For 32 of 58 neurons there was an increase in stimulus-evoked discharge rate and a change in rate-level function. There was no qualitative effect on the discharge pattern of 60 neurons, though 2 tonically responding neurons did show an increase (> 30%) in response duration. Additional roles for GABAergic inhibition in monaural signal analysis are discussed.

  12. Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

    DOE PAGES

    Aprile, E.; Agostini, F.; Alfonsi, M.; ...

    2015-11-23

    The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, wemore » detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment.« less

  13. Ethane and Xenon mixing: density functional theory (DFT) simulations and experiments on Sandia's Z machine

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph; Root, Seth; Mattsson, Thomas; Cochrane, Kyle

    2012-02-01

    The combination of ethane and xenon is one of the simplest binary mixtures in which bond breaking is expected to play a role under shock conditions. At cryogenic conditions, xenon is often understood to mix with alkanes such as Ethane as if it were also an alkane, but this model is expected to break down at higher temperatures and pressures. To investigate the breakdown, we have performed density functional theory (DFT) calculations on several xenon/ethane mixtures. Additionally, we have performed shock compression experiments on Xenon-Ethane using the Sandia Z - accelerator. The DFT and experimental results are compared to hydrodynamic simulations using different mixing models in the equation of state. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Depolarizing GABA/glycine synaptic events switch from excitation to inhibition during frequency increases

    NASA Astrophysics Data System (ADS)

    Branchereau, Pascal; Cattaert, Daniel; Delpy, Alain; Allain, Anne-Emilie; Martin, Elodie; Meyrand, Pierre

    2016-02-01

    By acting on their ionotropic chloride channel receptors, GABA and glycine represent the major inhibitory transmitters of the central nervous system. Nevertheless, in various brain structures, depolarizing GABAergic/glycinergic postsynaptic potentials (dGPSPs) lead to dual inhibitory (shunting) and excitatory components, the functional consequences of which remain poorly acknowledged. Indeed, the extent to which each component prevails during dGPSP is unclear. Understanding the mechanisms predicting the dGPSP outcome on neural network activity is therefore a major issue in neurobiology. By combining electrophysiological recordings of spinal embryonic mouse motoneurons and modelling study, we demonstrate that increasing the chloride conductance (gCl) favors inhibition either during a single dGPSP or during trains in which gCl summates. Finally, based on this summation mechanism, the excitatory effect of EPSPs is overcome by dGPSPs in a frequency-dependent manner. These results reveal an important mechanism by which dGPSPs protect against the overexcitation of neural excitatory circuits.

  15. Predictors for postoperative nausea and vomiting after xenon-based anaesthesia.

    PubMed

    Schaefer, M S; Apfel, C C; Sachs, H-J; Stuttmann, R; Bein, B; Tonner, P H; Hein, M; Neukirchen, M; Reyle-Hahn, M; Kienbaum, P

    2015-07-01

    In contrast to volatile anaesthetics, xenon acts by antagonism at N-methyl-d-aspartate receptors and antagonizes 5-hydroxytryptamine type 3 receptors that mediate nausea and vomiting. Therefore, it is unknown whether the same risk factors for postoperative nausea and vomiting (PONV) after volatile anaesthetics apply to xenon-based anaesthesia. With ethics committee approval and written informed consent, 502 consecutive patients undergoing xenon-based anaesthesia were included in a multicentre prospective observational study. Antiemetic prophylaxis was administered at the discretion of the attending anaesthetists. Postoperative nausea and vomiting and need for antiemetic rescue medication were assessed for 24 h after anaesthesia. Multivariate logistic regression analysis was performed to quantify risk factors for PONV and need for rescue medication. Four hundred and eighty-eight subjects were available for the final analysis. The incidence of PONV in subjects without prophylaxis was lower than expected according to the Apfel Score (28% observed; 42% expected, P<0.001). Independent predictors for PONV were (adjusted odds ratio; 95% confidence interval) female sex (1.76; 1.08-2.89), younger patient age (0.82 per 10 yr; 0.69-0.97), and longer duration of anaesthesia (1.36 per hour; 1.17-1.59). The incidence of PONV was significantly lower than predicted by the Apfel Score. Female sex, younger age, and longer duration of anaesthesia are risk factors for PONV after xenon-based anaesthesia. German Federal Institute for Drugs and Medical Devices number AL-PMS-01/07GER. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Dynamic Balance of Excitation and Inhibition in Human and Monkey Neocortex

    NASA Astrophysics Data System (ADS)

    Dehghani, Nima; Peyrache, Adrien; Telenczuk, Bartosz; Le van Quyen, Michel; Halgren, Eric; Cash, Sydney S.; Hatsopoulos, Nicholas G.; Destexhe, Alain

    2016-03-01

    Balance of excitation and inhibition is a fundamental feature of in vivo network activity and is important for its computations. However, its presence in the neocortex of higher mammals is not well established. We investigated the dynamics of excitation and inhibition using dense multielectrode recordings in humans and monkeys. We found that in all states of the wake-sleep cycle, excitatory and inhibitory ensembles are well balanced, and co-fluctuate with slight instantaneous deviations from perfect balance, mostly in slow-wave sleep. Remarkably, these correlated fluctuations are seen for many different temporal scales. The similarity of these computational features with a network model of self-generated balanced states suggests that such balanced activity is essentially generated by recurrent activity in the local network and is not due to external inputs. Finally, we find that this balance breaks down during seizures, where the temporal correlation of excitatory and inhibitory populations is disrupted. These results show that balanced activity is a feature of normal brain activity, and break down of the balance could be an important factor to define pathological states.

  17. Impossibility of asymptotic synchronization for pulse-coupled oscillators with delayed excitatory coupling.

    PubMed

    Wu, Wei; Chen, Tianping

    2009-12-01

    Fireflies, as one of the most spectacular examples of synchronization in nature, have been investigated widely. In 1990, Mirollo and Strogatz proposed a pulse-coupled oscillator model to explain the synchronization of South East Asian fireflies (Pteroptyx malaccae). However, transmission delays were not considered in their model. In fact, when transmission delays are introduced, the dynamic behaviors of pulse-coupled networks change a lot. In this paper, pulse-coupled oscillator networks with delayed excitatory coupling are studied. A concept of synchronization, named weak asymptotic synchronization, which is weaker than asymptotic synchronization, is proposed. We prove that for pulse-coupled oscillator networks with delayed excitatory coupling, weak asymptotic synchronization cannot occur.

  18. Expression of gastrin-releasing peptide by excitatory interneurons in the mouse superficial dorsal horn.

    PubMed

    Gutierrez-Mecinas, Maria; Watanabe, Masahiko; Todd, Andrew J

    2014-12-11

    Gastrin-releasing peptide (GRP) and its receptor have been shown to play an important role in the sensation of itch. However, although GRP immunoreactivity has been detected in the spinal dorsal horn, there is debate about whether this originates from primary afferents or local excitatory interneurons. We therefore examined the relation of GRP immunoreactivity to that seen with antibodies that label primary afferent or excitatory interneuron terminals. We tested the specificity of the GRP antibody by preincubating with peptides with which it could potentially cross-react. We also examined tissue from a mouse line in which enhanced green fluorescent protein (EGFP) is expressed under control of the GRP promoter. GRP immunoreactivity was seen in both primary afferent and non-primary glutamatergic axon terminals in the superficial dorsal horn. However, immunostaining was blocked by pre-incubation of the antibody with substance P, which is present at high levels in many nociceptive primary afferents. EGFP+ cells in the GRP-EGFP mouse did not express Pax2, and their axons contained the vesicular glutamate transporter 2 (VGLUT2), indicating that they are excitatory interneurons. In most cases, their axons were also GRP-immunoreactive. Multiple-labelling immunocytochemical studies indicated that these cells did not express either of the preprotachykinin peptides, and that they generally lacked protein kinase Cγ, which is expressed by a subset of the excitatory interneurons in this region. These results show that GRP is expressed by a distinct population of excitatory interneurons in laminae I-II that are likely to be involved in the itch pathway. They also suggest that the GRP immunoreactivity seen in primary afferents in previous studies may have resulted from cross-reaction of the GRP antibody with substance P or the closely related peptide neurokinin A.

  19. Enhanced astroglial Ca2+ signaling increases excitatory synaptic strength in the epileptic brain.

    PubMed

    Álvarez-Ferradas, Carla; Morales, Juan Carlos; Wellmann, Mario; Nualart, Francisco; Roncagliolo, Manuel; Fuenzalida, Marco; Bonansco, Christian

    2015-09-01

    The fine-tuning of synaptic transmission by astrocyte signaling is crucial to CNS physiology. However, how exactly astroglial excitability and gliotransmission are affected in several neuropathologies, including epilepsy, remains unclear. Here, using a chronic model of temporal lobe epilepsy (TLE) in rats, we found that astrocytes from astrogliotic hippocampal slices displayed an augmented incidence of TTX-insensitive spontaneous slow Ca(2+) transients (STs), suggesting a hyperexcitable pattern of astroglial activity. As a consequence, elevated glutamate-mediated gliotransmission, observed as increased slow inward current (SICs) frequency, up-regulates the probability of neurotransmitter release in CA3-CA1 synapses. Selective blockade of spontaneous astroglial Ca(2+) elevations as well as the inhibition of purinergic P2Y1 or mGluR5 receptors relieves the abnormal enhancement of synaptic strength. Moreover, mGluR5 blockade eliminates any synaptic effects induced by P2Y1R inhibition alone, suggesting that the Pr modulation via mGluR occurs downstream of P2Y1R-mediated Ca(2+)-dependent glutamate release from astrocyte. Our findings show that elevated Ca(2+)-dependent glutamate gliotransmission from hyperexcitable astrocytes up-regulates excitatory neurotransmission in epileptic hippocampus, suggesting that gliotransmission should be considered as a novel functional key in a broad spectrum of neuropathological conditions. © 2015 Wiley Periodicals, Inc.

  20. Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model.

    PubMed

    Campos-Pires, Rita; Koziakova, Mariia; Yonis, Amina; Pau, Ashni; Macdonald, Warren; Harris, Katie; Edge, Christopher J; Franks, Nicholas P; Mahoney, Peter F; Dickinson, Robert

    2018-04-15

    The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave-induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury.

  1. Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model

    PubMed Central

    Campos-Pires, Rita; Koziakova, Mariia; Yonis, Amina; Pau, Ashni; Macdonald, Warren; Harris, Katie; Edge, Christopher J.; Franks, Nicholas P.; Mahoney, Peter F.

    2018-01-01

    Abstract The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave–induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury. PMID:29285980

  2. Pairwise additivity in the nuclear magnetic resonance interactions of atomic xenon.

    PubMed

    Hanni, Matti; Lantto, Perttu; Vaara, Juha

    2009-04-14

    Nuclear magnetic resonance (NMR) of atomic (129/131)Xe is used as a versatile probe of the structure and dynamics of various host materials, due to the sensitivity of the Xe NMR parameters to intermolecular interactions. The principles governing this sensitivity can be investigated using the prototypic system of interacting Xe atoms. In the pairwise additive approximation (PAA), the binary NMR chemical shift, nuclear quadrupole coupling (NQC), and spin-rotation (SR) curves for the xenon dimer are utilized for fast and efficient evaluation of the corresponding NMR tensors in small xenon clusters Xe(n) (n = 2-12). If accurate, the preparametrized PAA enables the analysis of the NMR properties of xenon clusters, condensed xenon phases, and xenon gas without having to resort to electronic structure calculations of instantaneous configurations for n > 2. The binary parameters for Xe(2) at different internuclear distances were obtained at the nonrelativistic Hartree-Fock level of theory. Quantum-chemical (QC) calculations at the corresponding level were used to obtain the NMR parameters of the Xe(n) (n = 2-12) clusters at the equilibrium geometries. Comparison of PAA and QC data indicates that the direct use of the binary property curves of Xe(2) can be expected to be well-suited for the analysis of Xe NMR in the gaseous phase dominated by binary collisions. For use in condensed phases where many-body effects should be considered, effective binary property functions were fitted using the principal components of QC tensors from Xe(n) clusters. Particularly, the chemical shift in Xe(n) is strikingly well-described by the effective PAA. The coordination number Z of the Xe site is found to be the most important factor determining the chemical shift, with the largest shifts being found for high-symmetry sites with the largest Z. This is rationalized in terms of the density of virtual electronic states available for response to magnetic perturbations.

  3. Multi-level characterization of balanced inhibitory-excitatory cortical neuron network derived from human pluripotent stem cells.

    PubMed

    Nadadhur, Aishwarya G; Emperador Melero, Javier; Meijer, Marieke; Schut, Desiree; Jacobs, Gerbren; Li, Ka Wan; Hjorth, J J Johannes; Meredith, Rhiannon M; Toonen, Ruud F; Van Kesteren, Ronald E; Smit, August B; Verhage, Matthijs; Heine, Vivi M

    2017-01-01

    Generation of neuronal cultures from induced pluripotent stem cells (hiPSCs) serve the studies of human brain disorders. However we lack neuronal networks with balanced excitatory-inhibitory activities, which are suitable for single cell analysis. We generated low-density networks of hPSC-derived GABAergic and glutamatergic cortical neurons. We used two different co-culture models with astrocytes. We show that these cultures have balanced excitatory-inhibitory synaptic identities using confocal microscopy, electrophysiological recordings, calcium imaging and mRNA analysis. These simple and robust protocols offer the opportunity for single-cell to multi-level analysis of patient hiPSC-derived cortical excitatory-inhibitory networks; thereby creating advanced tools to study disease mechanisms underlying neurodevelopmental disorders.

  4. Clinical efficacy of xenon versus propofol: A systematic review and meta-analysis.

    PubMed

    Xia, Yimeng; Fang, Hongwei; Xu, Jindong; Jia, Chenfei; Tao, Guorong; Yu, Buwei

    2018-05-01

    Interest in the anesthetic use of xenon, a noble gas, has waxed and waned for decades, and the clinical effects of xenon are still debated. We performed a meta-analysis to compare the clinical efficacy of xenon with that of propofol. Electronic searches were performed through December 2017 using various databases, including PubMed, Embase, and the Cochrane Library. We identified thirteen trials that included a total of 817 patients. Patients treated with xenon had a lower bispectral index (BIS) (weighted mean difference (WMD): -6.26, 95% confidence interval (CI): -11.33 to -1.18, P = .02), a higher mean arterial blood pressure (MAP) (WMD: 7.00, 95% CI: 2.32-11.68, P = .003) and a lower heart rate (HR) (WMD: -9.45, 95% CI: -12.28 to -6.63, P < 0.00001) than propofol-treated patients. However, there were no significant differences between the 2 treatment groups in the effects of nondepolarizing muscular relaxants, the duration spent in the postanesthesia care unit (PACU) (WMD: -0.94, 95% CI: -8.79-6.91, P = .81), or the incidence of perioperative complications [assessed using the outcomes of postoperative nausea and vomiting (PONV) (relative risk (RR): 2.01, 95% CI: 0.79-5.11, P = .14), hypotension (RR: 0.62, 95% CI: 0.27 to 1.40, P = .25), hypertension (RR: 1.27, 95% CI: 0.73-2.21, P = .39) and bradycardia (RR: 1.00, 95% CI: 0.36-2.74, P = 1.00)]. In this meta-analysis of randomized controlled trials, we found that xenon treatment resulted in a higher MAP, a lower HR, and a smaller BIS index than treatment with propofol.

  5. Inner-Shell Electron Recoil Discrimination in Xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trask, Makayla; Lippincott, Hugh; Baxter, Dan

    2017-01-01

    \\bulletmore » $$$$ Dark matter searches using time projection chambers (TPCs) rely on the ability to distinguish between nuclear and electron interactions $$$$ Xenon TPCs are specifically searching for a low energy nuclear recoil ( < 30 keV ) signal $$$$ To do this, these interactions must be discernable from the electron recoil background« less

  6. The search for majoron emission in xenon-136 and two-neutrino double-beta decay of xenon-134 with the enriched xenon observatory

    NASA Astrophysics Data System (ADS)

    Walton, Josiah

    Despite neutrino oscillation experiments firmly establishing neutrinos have non-zero mass, the absolute mass scale is unknown. Moreover, it's unknown whether the neutrino is distinguishable from its antiparticle. The most promising approach for measuring the neutrino mass scale and answering the issue of neutrino-antineutrino distinguishability is by searching for neutrinoless double-beta decay, a very rare theorized process not allowed under the current theoretical framework of particle physics. Positive observation of neutrinoless double-beta decay would usher in a revolution in particle physics, since it would determine the neutrino mass scale, establish that neutrinos and antineutrinos are indistinguishable, and that the particle physics conservation law of total lepton number is violated in nature. The latter two consequences are particularly salient, as they lead to potential explanations of neutrino mass generation and the observed large asymmetry of matter over antimatter in the universe. The Enriched Xenon Observatory (EXO-200) is an international collaboration searching for the neutrinoless double-beta decay of the isotope 136 Xe. EXO-200 operates a unique world-class low-radioactivity detector containing 110 kg of liquified xenon isotopically enriched to 80.6% in 136Xe. Recently, EXO-200 published the most precise two-neutrino double-beta decay half-life ever measured and one of the strongest limits on the half-life of the neutrinoless double-beta decay mode of 136Xe. This work presents an improved experimental search for the majoron-mediated neutrinoless double-beta decay modes of 136Xe and a novel search for the yet unobserved two neutrino double-beta decay of 134Xe.

  7. Shear Thinning Near the Critical Point of Xenon

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.; Yao, Minwu

    2008-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids, near the critical point of xenon. The data span a wide range of reduced shear rate: 10(exp -3) < gamma-dot tau < 700, where gamma-dot tau is the shear rate scaled by the relaxation time tau of critical fluctuations. The measurements had a temperature resolution of 0.01 mK and were conducted in microgravity aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity. The viscometer measured the drag on a delicate nickel screen as it oscillated in the xenon at amplitudes 3 mu,m < chi (sub 0) >430 mu, and frequencies 1 Hz < omega/2 pi < 5 Hz. To separate shear thinning from other nonlinearities, we computed the ratio of the viscous force on the screen at gamma-dot tau to the force at gamma-dot tau approximates 0: C(sub gamma) is identical with F(chi(sub 0), omega tau, gamma-dot tau )/F)(chi(sub 0, omega tau, 0). At low frequencies, (omega tau)(exp 2) < gamma-dot tau, C(sub gamma) depends only on gamma-dot tau, as predicted by dynamic critical scaling. At high frequencies, (omega tau)(exp 2) > gamma-dot tau, C(sub gamma) depends also on both x(sub 0) and omega. The data were compared with numerical calculations based on the Carreau-Yasuda relation for complex fluids: eta(gamma-dot)/eta(0)=[1+A(sub gamma)|gamma-dot tau|](exp - chi(sub eta)/3+chi(sub eta)), where chi(sub eta) =0.069 is the critical exponent for viscosity and mode-coupling theory predicts A(sub gamma) =0.121. For xenon we find A(sub gamma) =0.137 +/- 0.029, in agreement with the mode coupling value. Remarkably, the xenon data close to the critical temperature T(sub c) were independent of the cooling rate (both above and below T(sub c) and these data were symmetric about T(sub c) to within a temperature scale factor. The scale factors for the magnitude of the oscillator s response differed from those for the oscillator's phase; this suggests that the surface tension of the two

  8. Effects of memantine on the excitation-inhibition balance in prefrontal cortex

    PubMed Central

    Povysheva, Nadezhda V.; Johnson, Jon W.

    2016-01-01

    Memantine is one of the few drugs currently approved for treatment of Alzheimer’s disease (AD). The clinical effects of memantine are thought to be associated with inhibition of NMDA receptors (NMDARs). Surprisingly, other open-channel NMDAR blockers have unacceptable side effects that prevent their consideration for AD treatment. One of the mechanisms proposed to explain the therapeutic benefits of memantine involves preferential decrease of excitatory drive to inhibitory neurons in the cortical circuitry and consequent changes in balance between excitation and inhibition (E/I). In this study we addressed effects of memantine on E/I balance in the prefrontal cortex (PFC). We found that a moderate concentration of memantine shifted E/I balance away from inhibition in the PFC circuitry. Indeed, memantine decreased the frequency and amplitude of spontaneous inhibitory postsynaptic currents in pyramidal neurons while leaving spontaneous excitatory postsynaptic currents unaffected. These circuitry effects of memantine were occluded by the competitive NMDAR inhibitor AP-5, and thus are associated with NMDAR inhibition. We also found that memantine decreased feed-forward disynaptic inhibitory input to pyramidal neurons, which is thought to be mediated by parvalbumin (PV)-positive interneurons. Accordingly, memantine caused a greater decrease of the amplitude of NMDAR-mediated synaptic responses in PV-positive interneurons than in pyramidal neurons. Finally, memantine reduced firing activity in PV-positive interneurons while increasing firing in pyramidal neurons. This study elucidates a novel mechanism of action of memantine associated with shifting of the E/I balance away from inhibition in neocortical circuitry, and provides important insights for AD drug development. PMID:27546057

  9. Nausea and Vomiting following Balanced Xenon Anesthesia Compared to Sevoflurane: A Post-Hoc Explorative Analysis of a Randomized Controlled Trial.

    PubMed

    Fahlenkamp, Astrid V; Stoppe, Christian; Cremer, Jan; Biener, Ingeborg A; Peters, Dirk; Leuchter, Ricarda; Eisert, Albrecht; Apfel, Christian C; Rossaint, Rolf; Coburn, Mark

    2016-01-01

    Like other inhalational anesthetics xenon seems to be associated with post-operative nausea and vomiting (PONV). We assessed nausea incidence following balanced xenon anesthesia compared to sevoflurane, and dexamethasone for its prophylaxis in a randomized controlled trial with post-hoc explorative analysis. 220 subjects with elevated PONV risk (Apfel score ≥2) undergoing elective abdominal surgery were randomized to receive xenon or sevoflurane anesthesia and dexamethasone or placebo after written informed consent. 93 subjects in the xenon group and 94 subjects in the sevoflurane group completed the trial. General anesthesia was maintained with 60% xenon or 2.0% sevoflurane. Dexamethasone 4mg or placebo was administered in the first hour. Subjects were analyzed for nausea and vomiting in predefined intervals during a 24h post-anesthesia follow-up. Logistic regression, controlled for dexamethasone and anesthesia/dexamethasone interaction, showed a significant risk to develop nausea following xenon anesthesia (OR 2.30, 95% CI 1.02-5.19, p = 0.044). Early-onset nausea incidence was 46% after xenon and 35% after sevoflurane anesthesia (p = 0.138). After xenon, nausea occurred significantly earlier (p = 0.014), was more frequent and rated worse in the beginning. Dexamethasone did not markedly reduce nausea occurrence in both groups. Late-onset nausea showed no considerable difference between the groups. In our study setting, xenon anesthesia was associated with an elevated risk to develop nausea in sensitive subjects. Dexamethasone 4mg was not effective preventing nausea in our study. Group size or dosage might have been too small, and change of statistical analysis parameters in the post-hoc evaluation might have further contributed to a limitation of our results. Further trials will be needed to address prophylaxis of xenon-induced nausea. EU Clinical Trials EudraCT-2008-004132-20 ClinicalTrials.gov NCT00793663.

  10. Nausea and Vomiting following Balanced Xenon Anesthesia Compared to Sevoflurane: A Post-Hoc Explorative Analysis of a Randomized Controlled Trial

    PubMed Central

    Fahlenkamp, Astrid V.; Stoppe, Christian; Cremer, Jan; Biener, Ingeborg A.; Peters, Dirk; Leuchter, Ricarda; Eisert, Albrecht; Apfel, Christian C.; Rossaint, Rolf; Coburn, Mark

    2016-01-01

    Objective Like other inhalational anesthetics xenon seems to be associated with post-operative nausea and vomiting (PONV). We assessed nausea incidence following balanced xenon anesthesia compared to sevoflurane, and dexamethasone for its prophylaxis in a randomized controlled trial with post-hoc explorative analysis. Methods 220 subjects with elevated PONV risk (Apfel score ≥2) undergoing elective abdominal surgery were randomized to receive xenon or sevoflurane anesthesia and dexamethasone or placebo after written informed consent. 93 subjects in the xenon group and 94 subjects in the sevoflurane group completed the trial. General anesthesia was maintained with 60% xenon or 2.0% sevoflurane. Dexamethasone 4mg or placebo was administered in the first hour. Subjects were analyzed for nausea and vomiting in predefined intervals during a 24h post-anesthesia follow-up. Results Logistic regression, controlled for dexamethasone and anesthesia/dexamethasone interaction, showed a significant risk to develop nausea following xenon anesthesia (OR 2.30, 95% CI 1.02–5.19, p = 0.044). Early-onset nausea incidence was 46% after xenon and 35% after sevoflurane anesthesia (p = 0.138). After xenon, nausea occurred significantly earlier (p = 0.014), was more frequent and rated worse in the beginning. Dexamethasone did not markedly reduce nausea occurrence in both groups. Late-onset nausea showed no considerable difference between the groups. Conclusion In our study setting, xenon anesthesia was associated with an elevated risk to develop nausea in sensitive subjects. Dexamethasone 4mg was not effective preventing nausea in our study. Group size or dosage might have been too small, and change of statistical analysis parameters in the post-hoc evaluation might have further contributed to a limitation of our results. Further trials will be needed to address prophylaxis of xenon-induced nausea. Trial Registration EU Clinical Trials EudraCT-2008-004132-20 ClinicalTrials.gov NCT

  11. Xenon treatment protects against cold ischemia associated delayed graft function and prolongs graft survival in rats.

    PubMed

    Zhao, H; Watts, H R; Chong, M; Huang, H; Tralau-Stewart, C; Maxwell, P H; Maze, M; George, A J T; Ma, D

    2013-08-01

    Prolonged hypothermic storage causes ischemia-reperfusion injury (IRI) in the renal graft, which is considered to contribute to the occurrence of the delayed graft function (DGF) and chronic graft failure. Strategies are required to protect the graft and to prolong renal graft survival. We demonstrated that xenon exposure to human proximal tubular cells (HK-2) led to activation of range of protective proteins. Xenon treatment prior to or after hypothermia-hypoxia challenge stabilized the HK-2 cellular structure, diminished cytoplasmic translocation of high-mobility group box (HMGB) 1 and suppressed NF-κB activation. In the syngeneic Lewis-to-Lewis rat model of kidney transplantation, xenon exposure to donors before graft retrieval or to recipients after engraftment decreased caspase-3 expression, localized HMGB-1 within nuclei and prevented TLR-4/NF-κB activation in tubular cells; serum pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced and renal function was preserved. Xenon treatment of graft donors or of recipients prolonged renal graft survival following IRI in both Lewis-to-Lewis isografts and Fischer-to-Lewis allografts. Xenon induced cell survival or graft functional recovery was abolished by HIF-1α siRNA. Our data suggest that xenon treatment attenuates DGF and enhances graft survival. This approach could be translated into clinical practice leading to a considerable improvement in long-term graft survival. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  12. Stability and instability of a neuron network with excitatory and inhibitory small-world connections.

    PubMed

    Yu, Dongyuan; Xu, Xu; Zhou, Jing; Li, Eric

    2017-05-01

    This study considers a delayed neural network with excitatory and inhibitory shortcuts. The global stability of the trivial equilibrium is investigated based on Lyapunov's direct method and the delay-dependent criteria are obtained. It is shown that both the excitatory and inhibitory shortcuts decrease the stability interval, but a time delay can be employed as a global stabilizer. In addition, we analyze the bounds of the eigenvalues of the adjacent matrix using matrix perturbation theory and then obtain the generalized sufficient conditions for local stability. The possibility of small inhibitory shortcuts is helpful for maintaining stability. The mechanisms of instability, bifurcation modes, and chaos are also investigated. Compared with methods based on mean-field theory, the proposed method can guarantee the stability of the system in most cases with random events. The proposed method is effective for cases where excitatory and inhibitory shortcuts exist simultaneously in the network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of excitatory and inhibitory neurotransmission on motor patterns of human sigmoid colon in vitro

    PubMed Central

    Aulí, M; Martínez, E; Gallego, D; Opazo, A; Espín, F; Martí-Gallostra, M; Jiménez, M; Clavé, P

    2008-01-01

    Background and purpose: To characterize the in vitro motor patterns and the neurotransmitters released by enteric motor neurons (EMNs) in the human sigmoid colon. Experimental approach: Sigmoid circular strips were studied in organ baths. EMNs were stimulated by electrical field stimulation (EFS) and through nicotinic ACh receptors. Key results: Strips developed weak spontaneous rhythmic contractions (3.67±0.49 g, 2.54±0.15 min) unaffected by the neurotoxin tetrodotoxin (TTX; 1 μM). EFS induced strong contractions during (on, 56%) or after electrical stimulus (off, 44%), both abolished by TTX. Nicotine (1–100 μM) inhibited spontaneous contractions. Latency of off-contractions and nicotine responses were reduced by NG-nitro-L-arginine (1 mM) and blocked after further addition of apamin (1 μM) or the P2Y1 receptor antagonist MRS 2179 (10 μM) and were unaffected by the P2X antagonist NF279 (10 μM) or α-chymotrypsin (10 U mL−1). Amplitude of on- and off-contractions was reduced by atropine (1 μM) and the selective NK2 receptor antagonist Bz-Ala-Ala-D-Trp-Phe-D-Pro-Pro-Nle-NH2 (1 μM). MRS 2179 reduced the amplitude of EFS on- and off-contractions without altering direct muscular contractions induced by ACh (1 nM–1 mM) or substance P (1 nM–10 μM). Conclusions and implications: Latency of EFS-induced off-contractions and inhibition of spontaneous motility by nicotine are caused by stimulation of inhibitory EMNs coreleasing NO and a purine acting at muscular P2Y1 receptors through apamin-sensitive K+ channels. EFS-induced on- and off-contractions are caused by stimulation of excitatory EMNs coreleasing ACh and tachykinins acting on muscular muscarinic and NK2 receptors. Prejunctional P2Y1 receptors might modulate the activity of excitatory EMNs. P2Y1 and NK2 receptors might be therapeutic targets for colonic motor disorders. PMID:18846038

  14. Development and evaluation of a silver mordenite composite sorbent for the partitioning of xenon from krypton in gas compositions

    DOE PAGES

    Garn, Troy G.; Greenhalgh, Mitchell; Law, Jack D.

    2015-12-22

    A new engineered form composite sorbent for the selective separation of xenon from krypton in simulant composition off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A sodium mordenite powder was incorporated into a macroporous polymer binder, formed into spherical beads and successfully converted to a 9 wt.% silver form composite sorbent. The final engineered form sorbent retained the characteristic surface area indicative of sodium mordenite powder. The sorbent was evaluated for xenon adsorption potential with capacities measured as high as 30 millimoles of xenon per kilogram of sorbent achieved at ambient temperature andmore » 460 millimoles of xenon per kilogram sorbent at 220 K. Xenon/krypton selectivity was calculated to be 22.4 with a 1020 µL/L xenon, 150 µL/L krypton in a balance of air feed gas at 220 K. Furthermore, adsorption/desorption thermal cycling effects were evaluated with results indicating sorbent performance was not significantly impacted while undergoing numerous adsorption/desorption thermal cycles.« less

  15. Loss of MeCP2 From Forebrain Excitatory Neurons Leads to Cortical Hyperexcitation and Seizures

    PubMed Central

    Zhang, Wen; Peterson, Matthew; Beyer, Barbara; Frankel, Wayne N.

    2014-01-01

    Mutations of MECP2 cause Rett syndrome (RTT), a neurodevelopmental disorder leading to loss of motor and cognitive functions, impaired social interactions, and seizure at young ages. Defects of neuronal circuit development and function are thought to be responsible for the symptoms of RTT. The majority of RTT patients show recurrent seizures, indicating that neuronal hyperexcitation is a common feature of RTT. However, mechanisms underlying hyperexcitation in RTT are poorly understood. Here we show that deletion of Mecp2 from cortical excitatory neurons but not forebrain inhibitory neurons in the mouse leads to spontaneous seizures. Selective deletion of Mecp2 from excitatory but not inhibitory neurons in the forebrain reduces GABAergic transmission in layer 5 pyramidal neurons in the prefrontal and somatosensory cortices. Loss of MeCP2 from cortical excitatory neurons reduces the number of GABAergic synapses in the cortex, and enhances the excitability of layer 5 pyramidal neurons. Using single-cell deletion of Mecp2 in layer 2/3 pyramidal neurons, we show that GABAergic transmission is reduced in neurons without MeCP2, but is normal in neighboring neurons with MeCP2. Together, these results suggest that MeCP2 in cortical excitatory neurons plays a critical role in the regulation of GABAergic transmission and cortical excitability. PMID:24523563

  16. Xenon Sputter Yield Measurements for Ion Thruster Materials

    NASA Technical Reports Server (NTRS)

    Williams, John D.; Gardner, Michael M.; Johnson, Mark L.; Wilbur, Paul J.

    2003-01-01

    In this paper, we describe a technique that was used to measure total and differential sputter yields of materials important to high specific impulse ion thrusters. The heart of the technique is a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. Differential sputtering yields were generally measured over a full 180 deg arc in a plane that included the beam centerline and the normal vector to the target surface. Sputter yield results are presented for a xenon ion energy range from 0.5 to 10 keV and an angle of incidence range from 0 deg to 70 deg from the target surface normal direction for targets consisting of molybdenum, titanium, solid (Poco) graphite, and flexible graphite (grafoil). Total sputter yields are calculated using a simple integration procedure and comparisons are made to sputter yields obtained from the literature. In general, the agreement between the available data is good. As expected for heavy xenon ions, the differential and total sputter yields are found to be strong functions of angle of incidence. Significant under- and over-cosine behavior is observed at low- and high-ion energies, respectively. In addition, strong differences in differential yield behavior are observed between low-Z targets (C and Ti) and high-Z targets (Mo). Curve fits to the differential sputter yield data are provided. They should prove useful to analysts interested in predicting the erosion profiles of ion thruster components and determining where the erosion products re-deposit.

  17. Evaluation of hemodynamic effects of xenon in dogs undergoing hemorrhagic shock

    PubMed Central

    Franceschi, Ruben C.; Malbouisson, Luiz; Yoshinaga, Eduardo; Auler, José Otavio Costa; de Figueiredo (in memoriam), Luiz Francisco Poli; Carmona, Maria José C.

    2013-01-01

    OBJECTIVES: The anesthetic gas xenon is reported to preserve hemodynamic stability during general anesthesia. However, the effects of the gas during shock are unclear. The objective of this study was to evaluate the effect of Xe on hemodynamic stability and tissue perfusion in a canine model of hemorrhagic shock. METHOD: Twenty-six dogs, mechanically ventilated with a fraction of inspired oxygen of 21% and anesthetized with etomidate and vecuronium, were randomized into Xenon (Xe; n = 13) or Control (C; n = 13) groups. Following hemodynamic monitoring, a pressure-driven shock was induced to reach an arterial pressure of 40 mmHg. Hemodynamic data and blood samples were collected prior to bleeding, immediately after bleeding and 5, 20 and 40 minutes following shock. The Xe group was treated with 79% Xe diluted in ambient air, inhaled for 20 minutes after shock. RESULT: The mean bleeding volume was 44 mL.kg−1 in the C group and 40 mL.kg−1 in the Xe group. Hemorrhage promoted a decrease in both the cardiac index (p<0.001) and mean arterial pressure (p<0.001). These changes were associated with an increase in lactate levels and worsening of oxygen transport variables in both groups (p<0.05). Inhalation of xenon did not cause further worsening of hemodynamics or tissue perfusion markers. CONCLUSIONS: Xenon did not alter hemodynamic stability or tissue perfusion in an experimentally controlled hemorrhagic shock model. However, further studies are necessary to validate this drug in other contexts. PMID:23525321

  18. Frequency-Dependent Viscosity of Xenon Near the Critical Point

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    1999-01-01

    We used a novel, overdamped oscillator aboard the Space Shuttle to measure the viscosity eta of xenon near its critical density rho(sub c), and temperature T(sub c). In microgravity, useful data were obtained within 0.1 mK of T(sub c), corresponding to a reduced temperature t = (T -T(sub c))/T(sub c) = 3 x 10(exp -7). The data extend two decades closer to T(sub c) than the best ground measurements, and they directly reveal the expected power-law behavior eta proportional to t(sup -(nu)z(sub eta)). Here nu is the correlation length exponent, and our result for the small viscosity exponent is z(sub eta) = 0.0690 +/- 0.0006. (All uncertainties are one standard uncertainty.) Our value for z(sub eta) depends only weakly on the form of the viscosity crossover function, and it agrees with the value 0.067 +/- 0.002 obtained from a recent two-loop perturbation expansion. The measurements spanned the frequency range 2 Hz less than or equal to f less than or equal to 12 Hz and revealed viscoelasticity when t less than or equal to 10(exp -1), further from T(sub c) than predicted. The viscoelasticity scales as Af(tau), where tau is the fluctuation-decay time. The fitted value of the viscoelastic time-scale parameter A is 2.0 +/- 0.3 times the result of a one-loop perturbation calculation. Near T(sub c), the xenon's calculated time constant for thermal diffusion exceeded days. Nevertheless, the viscosity results were independent of the xenon's temperature history, indicating that the density was kept near rho(sub c), by judicious choices of the temperature vs. time program. Deliberately bad choices led to large density inhomogeneities. At t greater than 10(exp -5), the xenon approached equilibrium much faster than expected, suggesting that convection driven by microgravity and by electric fields slowly stirred the sample.

  19. Postconditioning effects of argon or xenon on early graft function in a porcine model of kidney autotransplantation.

    PubMed

    De Deken, J; Rex, S; Lerut, E; Martinet, W; Monbaliu, D; Pirenne, J; Jochmans, I

    2018-07-01

    Ischaemia-reperfusion injury is inevitable during renal transplantation and can lead to delayed graft function and primary non-function. Preconditioning, reconditioning and postconditioning with argon and xenon protects against renal ischaemia-reperfusion injury in rodent models. The hypothesis that postconditioning with argon or xenon inhalation would improve graft function in a porcine renal autotransplant model was tested. Pigs (n = 6 per group) underwent left nephrectomy after 60 min of warm ischaemia (renal artery and vein clamping). The procured kidney was autotransplanted in a separate procedure after 18 h of cold storage, immediately after a right nephrectomy. Upon reperfusion, pigs were randomized to inhalation of control gas (70 per cent nitrogen and 30 per cent oxygen), argon (70 per cent and 30 per cent oxygen) or xenon (70 per cent and 30 per cent oxygen) for 2 h. The primary outcome parameter was peak plasma creatinine; secondary outcome parameters included further markers of graft function (creatinine course, urine output), graft injury (aspartate aminotransferase, heart-type fatty acid-binding protein, histology), apoptosis and autophagy (western blot, terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) staining), inflammatory mediators and markers of cell survival/growth (mRNA and tissue protein quantification), and animal survival. Results are presented as median (i.q.r.). ANOVA and Kruskal-Wallis tests were used where indicated. Peak plasma creatinine levels were similar between the groups: control 20·8 (16·4-23·1) mg/dl, argon 21·4 (17·1-24·9) mg/dl and xenon 19·4 (17·5-21·0) mg/dl (P = 0·607). Xenon was associated with an increase in autophagy and proapoptotic markers. Creatinine course, urine output, injury markers, histology, survival and inflammatory mediators were not affected by the intervention. Postconditioning with argon or xenon did not improve kidney graft function in this

  20. Measurement of the absolute reflectance of polytetrafluoroethylene (PTFE) immersed in liquid xenon

    NASA Astrophysics Data System (ADS)

    Neves, F.; Lindote, A.; Morozov, A.; Solovov, V.; Silva, C.; Bras, P.; Rodrigues, J. P.; Lopes, M. I.

    2017-01-01

    The performance of a detector using liquid xenon (LXe) as a scintillator is strongly dependent on the collection efficiency for xenon scintillation light, which in turn is critically dependent on the reflectance of the surfaces that surround the active volume. To improve the light collection in such detectors the active volume is usually surrounded by polytetrafluoroethylene (PTFE) reflector panels, used due to its very high reflectance—even at the short wavelength of scintillation light of LXe (peaked at 178 nm). In this work, which contributed to the overall R&D effort towards the LUX-ZEPLIN (LZ) experiment, we present experimental results for the absolute reflectance measurements of three different PTFE samples (including the material used in the LUX detector) immersed in LXe for its scintillation light. The obtained results show that very high bi-hemispherical reflectance values (>= 97%) can be achieved, enabling very low energy thresholds in liquid xenon scintillator-based detectors.

  1. Research on the measurement of the ultraviolet irradiance in the xenon lamp aging test chamber

    NASA Astrophysics Data System (ADS)

    Ji, Muyao; Li, Tiecheng; Lin, Fangsheng; Yin, Dejin; Cheng, Weihai; Huang, Biyong; Lai, Lei; Xia, Ming

    2018-01-01

    This paper briefly introduces the methods of calibrating the irradiance in the Xenon lamp aging test chamber. And the irradiance under ultraviolet region is mainly researched. Three different detectors whose response wave range are respectively UVA (320 400nm), UVB (275 330nm) and UVA+B (280 400nm) are used in the experiment. Through comparing the measuring results with different detectors under the same xenon lamp source, we discuss the difference between UVA, UVB and UVA+B on the basis of the spectrum of the xenon lamp and the response curve of the detectors. We also point out the possible error source, when use these detectors to calibrate the chamber.

  2. Influence of atmospheric transport patterns on xenon detections at the CTBTO radionuclide network

    NASA Astrophysics Data System (ADS)

    Krysta, Monika; Kusmierczyk-Michulec, Jolanta

    2016-04-01

    In order to fulfil its task of monitoring for signals emanating from nuclear explosions, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) operates global International Monitoring System (IMS) comprising seismic, infrasound, hydroacoustic and radionuclide measurement networks. At present, 24 among 80 radionuclide stations foreseen by the Comprehensive Nuclear-Test-Ban Treaty (CTBT) are equipped with certified noble gas measurement systems. Over a past couple of years these systems collected a rich set of measurements of radioactive isotopes of xenon. Atmospheric transport modelling simulations are crucial to an assessment of the origin of xenon detected at the IMS stations. Numerous studies undertaken in the past enabled linking these detections to non Treaty-relevant activities and identifying main contributors. Presence and quantity of xenon isotopes at the stations is hence a result of an interplay of emission patterns and atmospheric circulation. In this presentation we analyse the presence or absence of radioactive xenon at selected stations from an angle of such an interplay. We attempt to classify the stations according to similarity of detection patterns, examine seasonality in those patterns and link them to large scale or local meteorological phenomena. The studies are undertaken using crude hypotheses on emission patterns from known sources and atmospheric transport modelling simulations prepared with the FLEXPART model.

  3. A relativistic coupled-cluster interaction potential and rovibrational constants for the xenon dimer

    NASA Astrophysics Data System (ADS)

    Jerabek, Paul; Smits, Odile; Pahl, Elke; Schwerdtfeger, Peter

    2018-01-01

    An accurate potential energy curve has been derived for the xenon dimer using state-of-the-art relativistic coupled-cluster theory up to quadruple excitations accounting for both basis set superposition and incompleteness errors. The data obtained is fitted to a computationally efficient extended Lennard-Jones potential form and to a modified Tang-Toennies potential function treating the short- and long-range part separately. The vibrational spectrum of Xe2 obtained from a numerical solution of the rovibrational Schrödinger equation and subsequently derived spectroscopic constants are in excellent agreement with experimental values. We further present solid-state calculations for xenon using a static many-body expansion up to fourth-order in the xenon interaction potential including dynamic effects within the Einstein approximation. Again we find very good agreement with the experimental (face-centred cubic) lattice constant and cohesive energy.

  4. Configuration interaction in charge exchange spectra of tin and xenon

    NASA Astrophysics Data System (ADS)

    D'Arcy, R.; Morris, O.; Ohashi, H.; Suda, S.; Tanuma, H.; Fujioka, S.; Nishimura, H.; Nishihara, K.; Suzuki, C.; Kato, T.; Koike, F.; O'Sullivan, G.

    2011-06-01

    Charge-state-specific extreme ultraviolet spectra from both tin ions and xenon ions have been recorded at Tokyo Metropolitan University. The electron cyclotron resonance source spectra were produced from charge exchange collisions between the ions and rare gas target atoms. To identify unknown spectral lines of tin and xenon, atomic structure calculations were performed for Sn14+-Sn17+ and Xe16+-Xe20+ using the Hartree-Fock configuration interaction code of Cowan (1981 The Theory of Atomic Structure and Spectra (Berkeley, CA: University of California Press)). The energies of the capture states involved in the single-electron process that occurs in these slow collisions were estimated using the classical over-barrier model.

  5. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  6. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, Raoul B.

    1988-01-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  7. Role of GABAergic inhibition in hippocampal network oscillations.

    PubMed

    Mann, Edward O; Paulsen, Ole

    2007-07-01

    Physiological rhythmic activity in cortical circuits relies on GABAergic inhibition to balance excitation and control spike timing. With a focus on recent experimental progress in the hippocampus, here we review the mechanisms by which synaptic inhibition can control the precise timing of spike generation, by way of effects of GABAergic events on membrane conductance ('shunting' inhibition) and membrane potential ('hyperpolarizing' inhibition). Synaptic inhibition itself can be synchronized by way of interactions within networks of GABAergic neurons, and by excitatory neurons. The importance of GABAergic mechanisms for generation of cortical rhythms is now well established. What remains to be resolved is how such inhibitory control of spike timing can be harnessed for long-range fast synchronization, and the relevance of these mechanisms to network function. This review is part of the INMED/TINS special issue Physiogenic and pathogenic oscillations: the beauty and the beast, based on presentations at the annual INMED/TINS symposium (http://inmednet.com).

  8. Entorhinal Denervation Induces Homeostatic Synaptic Scaling of Excitatory Postsynapses of Dentate Granule Cells in Mouse Organotypic Slice Cultures

    PubMed Central

    Vlachos, Andreas; Becker, Denise; Jedlicka, Peter; Winkels, Raphael; Roeper, Jochen; Deller, Thomas

    2012-01-01

    Denervation-induced changes in excitatory synaptic strength were studied following entorhinal deafferentation of hippocampal granule cells in mature (≥3 weeks old) mouse organotypic entorhino-hippocampal slice cultures. Whole-cell patch-clamp recordings revealed an increase in excitatory synaptic strength in response to denervation during the first week after denervation. By the end of the second week synaptic strength had returned to baseline. Because these adaptations occurred in response to the loss of excitatory afferents, they appeared to be in line with a homeostatic adjustment of excitatory synaptic strength. To test whether denervation-induced changes in synaptic strength exploit similar mechanisms as homeostatic synaptic scaling following pharmacological activity blockade, we treated denervated cultures at 2 days post lesion for 2 days with tetrodotoxin. In these cultures, the effects of denervation and activity blockade were not additive, suggesting that similar mechanisms are involved. Finally, we investigated whether entorhinal denervation, which removes afferents from the distal dendrites of granule cells while leaving the associational afferents to the proximal dendrites of granule cells intact, results in a global or a local up-scaling of granule cell synapses. By using computational modeling and local electrical stimulations in Strontium (Sr2+)-containing bath solution, we found evidence for a lamina-specific increase in excitatory synaptic strength in the denervated outer molecular layer at 3–4 days post lesion. Taken together, our data show that entorhinal denervation results in homeostatic functional changes of excitatory postsynapses of denervated dentate granule cells in vitro. PMID:22403720

  9. Adult-born neurons modify excitatory synaptic transmission to existing neurons

    PubMed Central

    Adlaf, Elena W; Vaden, Ryan J; Niver, Anastasia J; Manuel, Allison F; Onyilo, Vincent C; Araujo, Matheus T; Dieni, Cristina V; Vo, Hai T; King, Gwendalyn D; Wadiche, Jacques I; Overstreet-Wadiche, Linda

    2017-01-01

    Adult-born neurons are continually produced in the dentate gyrus but it is unclear whether synaptic integration of new neurons affects the pre-existing circuit. Here we investigated how manipulating neurogenesis in adult mice alters excitatory synaptic transmission to mature dentate neurons. Enhancing neurogenesis by conditional deletion of the pro-apoptotic gene Bax in stem cells reduced excitatory postsynaptic currents (EPSCs) and spine density in mature neurons, whereas genetic ablation of neurogenesis increased EPSCs in mature neurons. Unexpectedly, we found that Bax deletion in developing and mature dentate neurons increased EPSCs and prevented neurogenesis-induced synaptic suppression. Together these results show that neurogenesis modifies synaptic transmission to mature neurons in a manner consistent with a redistribution of pre-existing synapses to newly integrating neurons and that a non-apoptotic function of the Bax signaling pathway contributes to ongoing synaptic refinement within the dentate circuit. DOI: http://dx.doi.org/10.7554/eLife.19886.001 PMID:28135190

  10. Xenon plasma sustained by pulse-periodic laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.

    2015-10-15

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10–20 bar in a focused 1.07-μm Yb{sup 3+} laser beam with a pulse repetition rate of f{sub rep} ⩾ 2 kHz, pulse duration of τ ⩾ 200 μs, and power of P = 200–300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse,more » plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5p{sup 5}6s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.« less

  11. The relative contributions of MNTB and LNTB neurons to inhibition in the medial superior olive assessed through single and paired recordings

    PubMed Central

    Roberts, Michael T.; Seeman, Stephanie C.; Golding, Nace L.

    2014-01-01

    The medial superior olive (MSO) senses microsecond differences in the coincidence of binaural signals, a critical cue for detecting sound location along the azimuth. An important component of this circuit is provided by inhibitory neurons of the medial and lateral nuclei of the trapezoid body (MNTB and LNTB, respectively). While MNTB neurons are fairly well described, little is known about the physiology of LNTB neurons. Using whole cell recordings from gerbil brainstem slices, we found that LNTB and MNTB neurons have similar membrane time constants and input resistances and fire brief action potentials, but only LNTB neurons fire repetitively in response to current steps. We observed that LNTB neurons receive graded excitatory and inhibitory synaptic inputs, with at least some of the latter arriving from other LNTB neurons. To address the relative timing of inhibition to the MSO from the LNTB versus the MNTB, we examined inhibitory responses to auditory nerve stimulation using a slice preparation that retains the circuitry from the auditory nerve to the MSO intact. Despite the longer physical path length of excitatory inputs driving contralateral inhibition, inhibition from both pathways arrived with similar latency and jitter. An analysis of paired whole cell recordings between MSO and MNTB neurons revealed a short and reliable delay between the action potential peak in MNTB neurons and the onset of the resulting IPSP (0.55 ± 0.01 ms, n = 4, mean ± SEM). Reconstructions of biocytin-labeled neurons showed that MNTB axons ranged from 580 to 858 μm in length (n = 4). We conclude that while both LNTB and MNTB neurons provide similarly timed inhibition to MSO neurons, the reliability of inhibition from the LNTB at higher frequencies is more constrained relative to that from the MNTB due to differences in intrinsic properties, the strength of excitatory inputs, and the presence of feedforward inhibition. PMID:24860434

  12. Modeling Xenon Tank Pressurization using One-Dimensional Thermodynamic and Heat Transfer Equations

    NASA Technical Reports Server (NTRS)

    Gilligan, Ryan P.; Tomsik, Thomas M.

    2017-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  13. Nothing can be coincidence: synaptic inhibition and plasticity in the cerebellar nuclei

    PubMed Central

    Pugh, Jason R.; Raman, Indira M.

    2009-01-01

    Many cerebellar neurons fire spontaneously, generating 10–100 action potentials per second even without synaptic input. This high basal activity correlates with information-coding mechanisms that differ from those of cells that are quiescent until excited synaptically. For example, in the deep cerebellar nuclei, Hebbian patterns of coincident synaptic excitation and postsynaptic firing fail to induce long-term increases in the strength of excitatory inputs. Instead, excitatory synaptic currents are potentiated by combinations of inhibition and excitation that resemble the activity of Purkinje and mossy fiber afferents that is predicted to occur during cerebellar associative learning tasks. Such results indicate that circuits with intrinsically active neurons have rules for information transfer and storage that distinguish them from other brain regions. PMID:19178955

  14. Adding 5 h delayed xenon to delayed hypothermia treatment improves long-term function in neonatal rats surviving to adulthood.

    PubMed

    Liu, Xun; Dingley, John; Scull-Brown, Emma; Thoresen, Marianne

    2015-06-01

    We previously reported that combining immediate hypothermia with immediate or 2 h delayed inhalation of an inert gas, xenon, gave additive neuroprotection in rats after a hypoxic-ischemic insult, compared to hypothermia alone. Defining the therapeutic time window for this new combined intervention is crucial in clinical practice when immediate treatment is not always feasible. The aim of this study is to investigate whether combined hypothermia and xenon still provide neuroprotection in rats after a 5 h delay for both hypothermia and xenon. Seven-day-old Wistar rat pups underwent a unilateral hypoxic-ischemic insult. Pups received 5 h of treatment starting 5 h after the insult randomized between normothermia, hypothermia, or hypothermia with 50% xenon. Surviving pups were tested for fine motor function through weeks 8-10 before being euthanized at week 11. Their hemispheric and hippocampal areas were assessed. Both delayed hypothermia-xenon and hypothermia-only treated groups had significantly less brain tissue loss than those which underwent normothermia. The functional performance after 1 wk and adulthood was significantly better after hypothermia-xenon treatment as compared to the hypothermia-only or normothermia groups. Adding 50% xenon to 5 h delayed hypothermia significantly improved functional outcome as compared to delayed hypothermia alone despite similar reductions in brain area.

  15. Dynamic Excitatory and Inhibitory Gain Modulation Can Produce Flexible, Robust and Optimal Decision-making

    PubMed Central

    Niyogi, Ritwik K.; Wong-Lin, KongFatt

    2013-01-01

    Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the experimentally fitted

  16. Reflectance measurements of PTFE, Kapton, and PEEK for xenon scintillation light for the LZ detector.

    NASA Astrophysics Data System (ADS)

    Arthurs, M.; Batista, E.; Haefner, J.; Lorenzon, W.; Morton, D.; Neff, A.; Okunawo, M.; Pushkin, K.; Sander, A.; Stephenson, S.; Wang, Y.; LZ Collaboration

    2017-01-01

    LZ (LUX-Zeplin) is an international collaboration that will look for dark matter candidates, WIMPs (Weakly Interacting Massive Particles), through direct detection by dual-phase time projection chamber (TPC) using liquid xenon. The LZ detector will be located nearly a mile underground at SURF, South Dakota, shielded from cosmic background radiation. Seven tons active mass of liquid xenon will be used for detecting the weak interaction of WIMPs with ordinary matter. Over three years of operation it is expected to reach the ultimate sensitivity of 2x10-48 cm2 for a WIMP mass of 50 GeV. As for many other rare event searches, high light collection efficiency is essential for LZ detector. Moreover, in order to achieve greater active volume for detection as well as reduce potential backgrounds, thinner detector walls without significant loss in reflectance are desired. Reflectance measurements of polytetrafluoroethylene (PTFE), Kapton, and PEEK for xenon scintillation light (178 nm), conducted at the University of Michigan using the Michigan Xenon Detector (MiX) will be presented. The University of Michigan, LZ Collaboration, The US Department of Energy.

  17. Magnetization transfer from laser-polarized xenon to protons located in the hydrophobic cavity of the wheat nonspecific lipid transfer protein

    PubMed Central

    Landon, Céline; Berthault, Patrick; Vovelle, Françoise; Desvaux, Hervé

    2001-01-01

    Nonspecific lipid transfer protein from wheat is studied by liquid-state NMR in the presence of xenon. The gas–protein interaction is indicated by the dependence of the protein proton chemical shifts on the xenon pressure and formally confirmed by the first observation of magnetization transfer from laser-polarized xenon to the protein protons. Twenty-six heteronuclear nOes have allowed the characterization of four interaction sites inside the wheat ns-LTP cavity. Their locations are in agreement with the variations of the chemical shifts under xenon pressure and with solvation simulations. The richness of the information obtained by the noble gas with a nuclear polarization multiplied by ∼12,000 makes this approach based on dipolar cross-relaxation with laser-polarized xenon promising for probing protein hydrophobic pockets at ambient pressure. PMID:11274467

  18. Constraints on Nucleosynthesis from Xenon Isotopes in Presolar Material

    NASA Astrophysics Data System (ADS)

    Gilmour, J. D.; Turner, G.

    2007-03-01

    By applying theoretical constraints to three-dimensional fits of xenon isotope data from presolar grains, we show that they strongly suggest a nucleosynthesis process that produces ``r-process'' isotopes without producing s-process isotopes (128Xe, 130Xe) and without producing the conventional r-process isotope 136Xe. It is one of three distinct nucleosynthetic sources that are necessary and sufficient to explain the gross variation in xenon isotopic data across all presolar material. The other source contributing r-process isotopes is responsible for the heavy isotope signature identified in nanodiamonds, which is also present in presolar SiC, and is associated with light isotope enrichment. The relative enrichments of heavy and light isotopes in this component in nanodiamonds and SiC grains are different, implying that the parent nucleosynthetic processes are not inextricably linked. Because minor variations in the isotopic compositions of xenon trapped in nanodiamonds show that two distinct sites contributed nanodiamonds to the early solar system within the average grain lifetime, it is suggested that Type IIa supernovae (SNe IIa) are not the source of the nanodiamonds. The s-process signature derived is consistent with that derived from mixing lines between grain subpopulations for isotopes on the s-process path. This implies that a pure end-member is present in the grains (although not approached in analyses). Our approach is more general and provides a less restrictive set of numerical constraints to be satisfied by proposed theoretical treatments of nucleosynthesis.

  19. Improved xenon lamp for solar simulators: A concept

    NASA Technical Reports Server (NTRS)

    Schmidt, L. F.

    1974-01-01

    Short-arc xenon lamp proposes to produce more uniform solar output. With this lamp, both axes of sensors can be tested with same setup. Lamp includes cathode with conical tip and annular anode. Annulus is supported by angled projection to avoid interference with passage of light generated by arc.

  20. Assessing the Role of Inhibition in Stabilizing Neocortical Networks Requires Large-Scale Perturbation of the Inhibitory Population

    PubMed Central

    Mrsic-Flogel, Thomas D.

    2017-01-01

    Neurons within cortical microcircuits are interconnected with recurrent excitatory synaptic connections that are thought to amplify signals (Douglas and Martin, 2007), form selective subnetworks (Ko et al., 2011), and aid feature discrimination. Strong inhibition (Haider et al., 2013) counterbalances excitation, enabling sensory features to be sharpened and represented by sparse codes (Willmore et al., 2011). This balance between excitation and inhibition makes it difficult to assess the strength, or gain, of recurrent excitatory connections within cortical networks, which is key to understanding their operational regime and the computations that they perform. Networks that combine an unstable high-gain excitatory population with stabilizing inhibitory feedback are known as inhibition-stabilized networks (ISNs) (Tsodyks et al., 1997). Theoretical studies using reduced network models predict that ISNs produce paradoxical responses to perturbation, but experimental perturbations failed to find evidence for ISNs in cortex (Atallah et al., 2012). Here, we reexamined this question by investigating how cortical network models consisting of many neurons behave after perturbations and found that results obtained from reduced network models fail to predict responses to perturbations in more realistic networks. Our models predict that a large proportion of the inhibitory network must be perturbed to reliably detect an ISN regime robustly in cortex. We propose that wide-field optogenetic suppression of inhibition under promoters targeting a large fraction of inhibitory neurons may provide a perturbation of sufficient strength to reveal the operating regime of cortex. Our results suggest that detailed computational models of optogenetic perturbations are necessary to interpret the results of experimental paradigms. SIGNIFICANCE STATEMENT Many useful computational mechanisms proposed for cortex require local excitatory recurrence to be very strong, such that local inhibitory

  1. Search for magnetic inelastic dark matter with XENON100

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Di Gangi, P.; Di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.

    2017-10-01

    We present the first search for dark matter-induced delayed coincidence signals in a dual-phase xenon time projection chamber, using the 224.6 live days of the XENON100 science run II. This very distinct signature is predicted in the framework of magnetic inelastic dark matter which has been proposed to reconcile the modulation signal reported by the DAMA/LIBRA collaboration with the null results from other direct detection experiments. No candidate event has been found in the region of interest and upper limits on the WIMP's magnetic dipole moment are derived. The scenarios proposed to explain the DAMA/LIBRA modulation signal by magnetic inelastic dark matter interactions of WIMPs with masses of 58.0 GeV/c2 and 122.7 GeV/c2 are excluded at 3.3 σ and 9.3 σ, respectively.

  2. Pretreatment with xenon protected immature rabbit heart from ischaemia/reperfusion injury by opening of the mitoKATP channel.

    PubMed

    Li, Qian; Lian, Chunwei; Zhou, Ronghua; Li, Tao; Xiang, Xujin; Liu, Bin

    2013-04-01

    The noble gas anaesthetic, xenon has previously been shown to protect the adult myocardium from ischaemia/reperfusion (I/R) injury, however its effect on immature myocardium is unclear. The aim of this study was to investigate the effect of xenon on the isolated immature heart. Isolated, immature (2-3weeks old) New Zealand rabbit hearts were perfused with Krebs-Henseleit buffer via Langendorff-mode. After 20min of baseline equilibration, hearts were pretreated with 75% xenon, 75% xenon+100μM diazoxide, or 75% xenon+100μM 5-hydroxydecanoate, and then subjected to 1h of global ischaemia and 3h of reperfusion. Pretreatment with 75% xenon significantly improved cardiac function (P<0.01 vs. the I/R group, respectively), limited myocardial infarct size (20.83±2.16%, P<0.01 vs. 35.82±2.14% of the I/R group), reduced cardiac enzyme release (CK-MB, 1.00±0.19IU/L, P<0.01 vs. 0.44±0.14IU/L of the I/R group; LDH, 6.15±1.06IU/L P<0.01 vs. 3.49±0.37IU/L of the I/R group) and decreased apoptosis (6.17±0.56%, P<0.01 vs. 11.31±0.93% of the I/R group). In addition, the mitochondrial structure changes caused by I/R injury were largely prevented by 75% xenon pretreatment (1.37±0.16, P<0.01 vs. 2.32±0.13 of the I/R group). The mitochondrial adenosine triphosphate-sensitive potassium (mitoKATP) channel opener diazoxide did not influence the effect of xenon, but the specific mitoKATP channel blocker 5-hydroxydecanoate completely abolished this effect. Our study demonstrated that pretreatment with 75% xenon protected immature heart from I/R injury, and this protection was probably mediated by preservation of myocardial mitochondria and opening of mitoKATP channel. Copyright © 2012 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  3. Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex.

    PubMed

    Adesnik, Hillel

    2018-05-01

    Understanding the balance between synaptic excitation and inhibition in cortical circuits in the brain, and how this contributes to cortical rhythms, is fundamental to explaining information processing in the cortex. This study used cortical layer-specific optogenetic activation in mouse cortex to show that excitatory neurons in any cortical layer can drive powerful gamma rhythms, while inhibition balances excitation. The net impact of this is to keep activity within each layer in check, but simultaneously to promote the propagation of activity to downstream layers. The data show that rhythm-generating circuits exist in all principle layers of the cortex, and provide layer-specific balances of excitation and inhibition that affect the flow of information across the layers. Rhythmic activity can synchronize neural ensembles within and across cortical layers. While gamma band rhythmicity has been observed in all layers, the laminar sources and functional impacts of neuronal synchronization in the cortex remain incompletely understood. Here, layer-specific optogenetic stimulation demonstrates that populations of excitatory neurons in any cortical layer of the mouse's primary visual cortex are sufficient to powerfully entrain neuronal oscillations in the gamma band. Within each layer, inhibition balances excitation and keeps activity in check. Across layers, translaminar output overcomes inhibition and drives downstream firing. These data establish that rhythm-generating circuits exist in all principle layers of the cortex, but provide layer-specific balances of excitation and inhibition that may dynamically shape the flow of information through cortical circuits. These data might help explain how excitation/inhibition (E/I) balances across cortical layers shape information processing, and shed light on the diverse nature and functional impacts of cortical gamma rhythms. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  4. The missing piece in the 'use it or lose it' puzzle: is inhibition regulated by activity or does it act on its own accord?

    PubMed

    Sun, Qian-Quan

    2007-01-01

    We have gained enormous insight into the mechanisms underlying both activity-dependent and (to a lesser degree) -independent plasticity of excitatory synapses. Recently, cortical inhibition has been shown to play a vital role in the formation of critical periods for sensory plasticity. As such, sculpting of neuronal circuits by inhibition may be a common mechanism by which activity organizes or reorganizes brain circuits. Disturbances in the balance of excitation and inhibition in the neocortex provoke abnormal activities, such as epileptic seizures and abnormal cortical development. However, both the process of experience-dependent postnatal maturation of neocortical inhibitory networks and its underlying mechanisms remain elusive. Mechanisms that match excitation and inhibition are central to achieving balanced function at the level of individual circuits. The goal of this review is to reinforce our understanding of the mechanisms by which developing inhibitory networks are able to adapt to sensory inputs, and to maintain their balance with developing excitatory networks. Discussion is centered on the following questions related to experience-dependent plasticity of neocortical inhibitory networks: 1) What are the roles of GABAergic inhibition in the postnatal maturation of neocortical circuits? 2) Does the maturation of neocortical inhibitory circuits proceed in an activity-dependent manner or do they develop independently of sensory inputs? 3) Does activity regulate inhibitory networks in the same way it regulates excitatory networks? 4) What are the molecular and cellular mechanisms that underlie the activity-dependent maturation of inhibitory networks? 5) What are the functional advantages of experience-dependent plasticity of inhibitory networks to network processing in sensory cortices?

  5. Crystallographic studies with xenon and nitrous oxide provide evidence for protein-dependent processes in the mechanisms of general anesthesia.

    PubMed

    Abraini, Jacques H; Marassio, Guillaume; David, Helene N; Vallone, Beatrice; Prangé, Thierry; Colloc'h, Nathalie

    2014-11-01

    The mechanisms by which general anesthetics, including xenon and nitrous oxide, act are only beginning to be discovered. However, structural approaches revealed weak but specific protein-gas interactions. To improve knowledge, we performed x-ray crystallography studies under xenon and nitrous oxide pressure in a series of 10 binding sites within four proteins. Whatever the pressure, we show (1) hydrophobicity of the gas binding sites has a screening effect on xenon and nitrous oxide binding, with a threshold value of 83% beyond which and below which xenon and nitrous oxide, respectively, binds to their sites preferentially compared to each other; (2) xenon and nitrous oxide occupancies are significantly correlated respectively to the product and the ratio of hydrophobicity by volume, indicating that hydrophobicity and volume are binding parameters that complement and oppose each other's effects; and (3) the ratio of occupancy of xenon to nitrous oxide is significantly correlated to hydrophobicity of their binding sites. These data demonstrate that xenon and nitrous oxide obey different binding mechanisms, a finding that argues against all unitary hypotheses of narcosis and anesthesia, and indicate that the Meyer-Overton rule of a high correlation between anesthetic potency and solubility in lipids of general anesthetics is often overinterpreted. This study provides evidence that the mechanisms of gas binding to proteins and therefore of general anesthesia should be considered as the result of a fully reversible interaction between a drug ligand and a receptor as this occurs in classical pharmacology.

  6. Plasticity of spontaneous excitatory and inhibitory synaptic activity in morphologically defined vestibular nuclei neurons during early vestibular compensation

    PubMed Central

    Shao, Mei; Hirsch, June C.

    2012-01-01

    After unilateral peripheral vestibular lesions, the brain plasticity underlying early recovery from the static symptoms is not fully understood. Principal cells of the chick tangential nucleus offer a subset of morphologically defined vestibular nuclei neurons to study functional changes after vestibular lesions. Chickens show posture and balance deficits immediately after unilateral vestibular ganglionectomy (UVG), but by 3 days most subjects begin to recover, although some remain uncompensated. With the use of whole cell voltage-clamp, spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) and miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) were recorded from principal cells in brain slices 1 and 3 days after UVG. One day after UVG, sEPSC frequency increased on the lesion side and remained elevated at 3 days in uncompensated chickens only. Also by 3 days, sIPSC frequency increased on the lesion side in all operated chickens due to major increases in GABAergic events. Significant change also occurred in decay time of the events. To determine whether fluctuations in frequency and kinetics influenced overall excitatory or inhibitory synaptic drive, synaptic charge transfer was calculated. Principal cells showed significant increase in excitatory synaptic charge transfer only on the lesion side of uncompensated chickens. Thus compensation continues when synaptic charge transfer is in balance bilaterally. Furthermore, excessive excitatory drive in principal cells on the lesion side may prevent vestibular compensation. Altogether, this work is important for it defines the time course and excitatory and inhibitory nature of changing spontaneous synaptic inputs to a morphologically defined subset of vestibular nuclei neurons during critical early stages of recovery after UVG. PMID:21957228

  7. Short-term high-fat diet primes excitatory synapses for long-term depression in orexin neurons.

    PubMed

    Linehan, Victoria; Fang, Lisa Z; Hirasawa, Michiru

    2018-01-15

    High-fat diet consumption is a major cause of obesity. Orexin neurons are known to be activated by a high-fat diet and in turn promote further consumption of a high-fat diet. Our study shows that excitatory synapses to orexin neurons become amenable to long-term depression (LTD) after 1 week of high-fat diet feeding. However, this effect reverses after 4 weeks of a high-fat diet. This LTD may be a homeostatic response to a high-fat diet to curb the activity of orexin neurons and hence caloric consumption. Adaptation seen after prolonged high-fat diet intake may contribute to the development of obesity. Overconsumption of high-fat diets is one of the strongest contributing factors to the rise of obesity rates. Orexin neurons are known to be activated by a palatable high-fat diet and mediate the activation of the mesolimbic reward pathway, resulting in further food intake. While short-term exposure to a high-fat diet is known to induce synaptic plasticity within the mesolimbic pathway, it is unknown if such changes occur in orexin neurons. To investigate this, 3-week-old male rats were fed a palatable high-fat western diet (WD) or control chow for 1 week and then in vitro patch clamp recording was performed. In the WD condition, an activity-dependent long-term depression (LTD) of excitatory synapses was observed in orexin neurons, but not in chow controls. This LTD was presynaptic and depended on postsynaptic metabotropic glutamate receptor 5 (mGluR5) and retrograde endocannabinoid signalling. WD also increased extracellular glutamate levels, suggesting that glutamate spillover and subsequent activation of perisynaptic mGluR5 may occur more readily in the WD condition. In support of this, pharmacological inhibition of glutamate uptake was sufficient to prime chow control synapses to undergo a presynaptic LTD. Interestingly, these WD effects are transient, as extracellular glutamate levels were similar to controls and LTD was no longer observed in orexin neurons

  8. Timing of distant flap pedicle division using xenon 133 clearance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snelling, C.F.; Poomee, A.; Sutherland, J.B.

    1980-09-01

    Clearance of intradermally injected xenon 133 was used to measure blood flow in distant flaps in humans with the donor pedicle temporarily clamped just prior to division. All 18 flaps with a blood flow of 0.5 ml per 100 gm of tissue per minute or more survived completely after separation. Of 7 with lesser flow, 3 underwent marginal necrosis adjacent to the line of division and 4 survived entirely. Xenon 133 washout does permit quantitative evaluation of blood flow, and since it is a clean isotope, it appears superior to sodium 24 and technetium 99m, which have been used inmore » a similar manner. The test is proposed as an adjunct to clinical judgment in timing pedicle division.« less

  9. Effects of memantine on the excitation-inhibition balance in prefrontal cortex.

    PubMed

    Povysheva, Nadezhda V; Johnson, Jon W

    2016-12-01

    Memantine is one of the few drugs currently approved for treatment of Alzheimer's disease (AD). The clinical effects of memantine are thought to be associated with inhibition of NMDA receptors (NMDARs). Surprisingly, other open-channel NMDAR blockers have unacceptable side effects that prevent their consideration for AD treatment. One of the mechanisms proposed to explain the therapeutic benefits of memantine involves preferential decrease of excitatory drive to inhibitory neurons in the cortical circuitry and consequent changes in balance between excitation and inhibition (E/I). In this study we addressed effects of memantine on E/I balance in the prefrontal cortex (PFC). We found that a moderate concentration of memantine shifted E/I balance away from inhibition in the PFC circuitry. Indeed, memantine decreased the frequency and amplitude of spontaneous inhibitory postsynaptic currents in pyramidal neurons while leaving spontaneous excitatory postsynaptic currents unaffected. These circuitry effects of memantine were occluded by the competitive NMDAR inhibitor AP-5, and thus are associated with NMDAR inhibition. We also found that memantine decreased feed-forward disynaptic inhibitory input to pyramidal neurons, which is thought to be mediated by parvalbumin (PV)-positive interneurons. Accordingly, memantine caused a greater decrease of the amplitude of NMDAR-mediated synaptic responses in PV-positive interneurons than in pyramidal neurons. Finally, memantine reduced firing activity in PV-positive interneurons while increasing firing in pyramidal neurons. This study elucidates a novel mechanism of action of memantine associated with shifting of the E/I balance away from inhibition in neocortical circuitry, and provides important insights for AD drug development. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Activity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks

    PubMed Central

    Perea, Gertrudis; Gómez, Ricardo; Mederos, Sara; Covelo, Ana; Ballesteros, Jesús J; Schlosser, Laura; Hernández-Vivanco, Alicia; Martín-Fernández, Mario; Quintana, Ruth; Rayan, Abdelrahman; Díez, Adolfo; Fuenzalida, Marco; Agarwal, Amit; Bergles, Dwight E; Bettler, Bernhard; Manahan-Vaughan, Denise; Martín, Eduardo D; Kirchhoff, Frank; Araque, Alfonso

    2016-01-01

    Interneurons are critical for proper neural network function and can activate Ca2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneuron-astrocyte signaling dynamically affected excitatory neurotransmission in an activity- and time-dependent manner, and determined the sign (inhibition vs potentiation) of the GABA-mediated effects. While synaptic inhibition was mediated by GABAA receptors, potentiation involved astrocyte GABAB receptors, astrocytic glutamate release, and presynaptic metabotropic glutamate receptors. Using conditional astrocyte-specific GABAB receptor (Gabbr1) knockout mice, we confirmed the glial source of the interneuron-induced potentiation, and demonstrated the involvement of astrocytes in hippocampal theta and gamma oscillations in vivo. Therefore, astrocytes decode interneuron activity and transform inhibitory into excitatory signals, contributing to the emergence of novel network properties resulting from the interneuron-astrocyte interplay. DOI: http://dx.doi.org/10.7554/eLife.20362.001 PMID:28012274

  11. Post-Test Inspection of Nasa's Evolutionary Xenon Thruster Long Duration Test Hardware: Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Shastry, Rohit

    2016-01-01

    A Long Duration Test (LDT) was initiated in June 2005 as a part of NASAs Evolutionary Xenon Thruster (NEXT) service life validation approach. Testing was voluntarily terminated in February 2014, with the thruster accumulating 51,184 hours of operation, processing 918 kg of xenon propellant, and delivering 35.5 MN-s of total impulse. This presentation will present the post-test inspection results to date for the thrusters ion optics.

  12. Comparison of the effects of xenon and sevoflurane anaesthesia on leucocyte function in surgical patients: a randomized trial.

    PubMed

    Fahlenkamp, A V; Coburn, M; Rossaint, R; Stoppe, C; Haase, H

    2014-02-01

    While most anaesthetics are known to suppress immune reactions, data from experimental studies indicate the enhancement of reactivity to inflammatory stimulators under xenon treatment. We investigated the effect of xenon anaesthesia on leucocyte function in surgical patients. We performed a subgroup analysis of subjects undergoing xenon or sevoflurane anaesthesia in a randomized clinical trial. After oral premedication with midazolam, two separate blood samples were obtained from subjects undergoing elective abdominal surgery, directly before and 1 h after induction of anaesthesia. General anaesthesia was maintained with either 60% xenon or 2.0% sevoflurane in 30% O2. Leucocyte count, phagocytotic function, and pro-inflammatory cytokine release after ex vivo lipopolysaccharide (LPS) stimulation were determined. Except for lymphocyte numbers, leucocyte subpopulations did not differ between the groups. Phagocytosis and oxidative burst of granulocytes were reduced in both groups after 1 h of anaesthesia, whereas monocytes were not affected. Pro-inflammatory cytokine release in response to LPS was not affected. In vivo, xenon and sevoflurane anaesthesia did not have a pro-inflammatory effect, at least in combination with the types of surgery performed in this study. Notably, the impact of xenon anaesthesia did not differ significantly from sevoflurane anaesthesia with regard to leucocyte function. However, an underestimation of treatment effects due to limited sample sizes cannot be fully excluded.

  13. Electrophysiological evidence showing muscarinic agonist-antagonist activities of N-desmethylclozapine using hippocampal excitatory and inhibitory neurons.

    PubMed

    Sugawara, Yuto; Kikuchi, Yui; Yoneda, Mitsugu; Ohno-Shosaku, Takako

    2016-07-01

    The atypical antipsychotic clozapine is widely used for treatment-resistant schizophrenic patients. Clozapine and its major active metabolite, N-desmethylclozapine (NDMC), have complex pharmacological properties, and interact with various neurotransmitter receptors. There are several biochemical studies reporting that NDMC exhibits a partial agonist profile at the human recombinant M1 muscarinic receptors. However, direct electrophysiological evidence showing the ability of NDMC to activate native M1 receptors in intact neurons is poor. Using rat hippocampal neurons, we previously demonstrated that activation of muscarinic receptors by a muscarinic agonist, oxotremorine M (oxo-M), induces a decrease in outward K(+)current at -40mV. In the present study, using this muscarinic current response we assessed agonist and antagonist activities of clozapine and NDMC at native muscarinic receptors in intact hippocampal excitatory and inhibitory neurons. Suppression of the oxo-M-induced current response by the M1 antagonist pirenzepine was evident only in excitatory neurons, while the M3 antagonist darifenacin was effective in both types of neurons. Muscarinic agonist activity of NDMC was higher than that of clozapine, higher in excitatory neurons than in inhibitory neurons, sensitive to pirenzepine, and partially masked when co-applied with clozapine. Muscarinic antagonist activity of clozapine as well as NDMC was not different between excitatory and inhibitory neurons, but clozapine was more effective than NDMC. These results demonstrate that NDMC has the ability to activate native M1 receptors expressed in hippocampal excitatory neurons, but its agonist activity might be limited in clozapine-treated patients because of the presence of excessive clozapine with muscarinic antagonist activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Partial-wave analysis for positronium-xenon collisions in the ultralow-energy region

    NASA Astrophysics Data System (ADS)

    Shibuya, Kengo; Saito, Haruo

    2018-05-01

    We propose a method to convert measured positronium annihilation rates in gaseous xenon into total and differential cross sections of positronium-xenon collisions in an ultralow-energy region of less than 80 meV where their experimental determinations as functions of the positronium kinetic energy are extremely difficult. This method makes it possible to determine not only the s -wave collisional parameters but also the p -wave and d -wave parameters. We have found a small positive value of the scattering length, A0=2.06 ±0.10 a0 , which indicates that the positronium-xenon interaction in this energy region is repulsive and suggests that it is dominated by the scattering amplitude of the positron rather than that of the electron. An extrapolation of the analytical result into the experimentally inaccessible energy regions from 80 meV to 1.0 eV indicates that there should not be a Ramsauer-Townsend minimum but rather a peak in the total cross section at an energy of approximately 0.4 eV.

  15. Dissociable effects of local inhibitory and excitatory theta-burst stimulation on large-scale brain dynamics

    PubMed Central

    Sale, Martin V.; Lord, Anton; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B.

    2015-01-01

    Normal brain function depends on a dynamic balance between local specialization and large-scale integration. It remains unclear, however, how local changes in functionally specialized areas can influence integrated activity across larger brain networks. By combining transcranial magnetic stimulation with resting-state functional magnetic resonance imaging, we tested for changes in large-scale integration following the application of excitatory or inhibitory stimulation on the human motor cortex. After local inhibitory stimulation, regions encompassing the sensorimotor module concurrently increased their internal integration and decreased their communication with other modules of the brain. There were no such changes in modular dynamics following excitatory stimulation of the same area of motor cortex nor were there changes in the configuration and interactions between core brain hubs after excitatory or inhibitory stimulation of the same area. These results suggest the existence of selective mechanisms that integrate local changes in neural activity, while preserving ongoing communication between brain hubs. PMID:25717162

  16. The amygdala excitatory/inhibitory balance in a valproate-induced rat autism model.

    PubMed

    Lin, Hui-Ching; Gean, Po-Wu; Wang, Chao-Chuan; Chan, Yun-Han; Chen, Po See

    2013-01-01

    The amygdala is an important structure contributing to socio-emotional behavior. However, the role of the amygdala in autism remains inconclusive. In this study, we used the 28-35 days valproate (VPA)-induced rat model of autism to observe the autistic phenotypes and evaluate their synaptic characteristics in the lateral nucleus (LA) of the amygdala. The VPA-treated offspring demonstrated less social interaction, increased anxiety, enhanced fear learning and impaired fear memory extinction. Slice preparation and electrophysiological recordings of the amygdala showed significantly enhanced long-term potentiation (LTP) while stimulating the thalamic-amygdala pathway of the LA. In addition, the pair pulse facilitation (PPF) at 30- and 60-ms intervals decreased significantly. Whole-cell recordings of the LA pyramidal neurons showed an increased miniature excitatory postsynaptic current (EPSC) frequency and amplitude. The relative contributions of the AMPA receptor and NMDA receptor to the EPSCs did not differ significantly between groups. These results suggested that the enhancement of the presynaptic efficiency of excitatory synaptic transmission might be associated with hyperexcitibility and enhanced LTP in LA pyramidal neurons. Disruption of the synaptic excitatory/inhibitory (E/I) balance in the LA of VPA-treated rats might play certain roles in the development of behaviors in the rat that may be relevant to autism. Further experiments to demonstrate the direct link are warranted.

  17. Worsening respiratory function in mechanically ventilated intensive care patients: feasibility and value of xenon-enhanced dual energy CT.

    PubMed

    Hoegl, Sandra; Meinel, Felix G; Thieme, Sven F; Johnson, Thorsten R C; Eickelberg, Oliver; Zwissler, Bernhard; Nikolaou, Konstantin

    2013-03-01

    To evaluate the feasibility and incremental diagnostic value of xenon-enhanced dual-energy CT in mechanically ventilated intensive care patients with worsening respiratory function. The study was performed in 13 mechanically ventilated patients with severe pulmonary conditions (acute respiratory distress syndrome (ARDS), n=5; status post lung transplantation, n=5; other, n=3) and declining respiratory function. CT scans were performed using a dual-source CT scanner at an expiratory xenon concentration of 30%. Both ventilation images (Xe-DECT) and standard CT images were reconstructed from a single CT scan. Findings were recorded for Xe-DECT and standard CT images separately. Ventilation defects on xenon images were matched to morphological findings on standard CT images and incremental diagnostic information of xenon ventilation images was recorded if present. Mean xenon consumption was 2.95 l per patient. No adverse events occurred under xenon inhalation. In the visual CT analysis, the Xe-DECT ventilation defects matched with pathologic changes in lung parenchyma seen in the standard CT images in all patients. Xe-DECT provided additional diagnostic findings in 4/13 patients. These included preserved ventilation despite early pneumonia (n=1), more confident discrimination between a large bulla and pneumothorax (n=1), detection of an airway-to-pneumothorax fistula (n=1) and exclusion of a suspected airway-to-mediastinum fistula (n=1). In all 4 patients, the additional findings had a substantial impact on patients' management. Xenon-enhanced DECT is safely feasible and can add relevant diagnostic information in mechanically ventilated intensive care patients with worsening respiratory function. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Excitatory and inhibitory synaptic mechanisms at the first stage of integration in the electroreception system of the shark

    PubMed Central

    Rotem, Naama; Sestieri, Emanuel; Hounsgaard, Jorn; Yarom, Yosef

    2014-01-01

    High impulse rate in afferent nerves is a common feature in many sensory systems that serve to accommodate a wide dynamic range. However, the first stage of integration should be endowed with specific properties that enable efficient handling of the incoming information. In elasmobranches, the afferent nerve originating from the ampullae of Lorenzini targets specific neurons located at the Dorsal Octavolateral Nucleus (DON), the first stage of integration in the electroreception system. Using intracellular recordings in an isolated brainstem preparation from the shark we analyze the properties of this afferent pathway. We found that stimulating the afferent nerve activates a mixture of excitatory and inhibitory synapses mediated by AMPA-like and GABAA receptors, respectively. The excitatory synapses that are extremely efficient in activating the postsynaptic neurons display unusual voltage dependence, enabling them to operate as a current source. The inhibitory input is powerful enough to completely eliminate the excitatory action of the afferent nerve but is ineffective regarding other excitatory inputs. These observations can be explained by the location and efficiency of the synapses. We conclude that the afferent nerve provides powerful and reliable excitatory input as well as a feed-forward inhibitory input, which is partially presynaptic in origin. These results question the cellular location within the DON where cancelation of expected incoming signals occurs. PMID:24639631

  19. Detection of Alpha Particles and Low Energy Gamma Rays by Thermo-Bonded Micromegas in Xenon Gas

    NASA Astrophysics Data System (ADS)

    Wei, Yuehuan; Guan, Liang; Zhang, Zhiyong; Lin, Qing; Wang, Xiaolian; Ni, Kaixuan; Zhao, Tianchi

    2013-08-01

    Micromegas is a type of micro-pattern gaseous detector currently under R&D for applications in rare event search experiments. Here we report the performance of a Micromegas structure constructed with a micromesh thermo-bonded to a readout plane, motivated by its potential application in two-phase xenon detectors for dark matter and neutrinoless double beta decay experiments. The study is carried out in pure xenon at room temperature. Measurements with alpha particles from the Americium-241 source showed that gas gains larger than 200 can be obtained at xenon pressure up to 3 atm. Gamma rays down to 8 keV were observed with such a device.

  20. Inhaled Xenon Attenuates Myocardial Damage in Comatose Survivors of Out-of-Hospital Cardiac Arrest: The Xe-Hypotheca Trial.

    PubMed

    Arola, Olli; Saraste, Antti; Laitio, Ruut; Airaksinen, Juhani; Hynninen, Marja; Bäcklund, Minna; Ylikoski, Emmi; Wennervirta, Johanna; Pietilä, Mikko; Roine, Risto O; Harjola, Veli-Pekka; Niiranen, Jussi; Korpi, Kirsi; Varpula, Marjut; Scheinin, Harry; Maze, Mervyn; Vahlberg, Tero; Laitio, Timo

    2017-11-28

    The authors previously reported that inhaled xenon combined with hypothermia attenuates brain white matter injury in comatose survivors of out-of-hospital cardiac arrest (OHCA). A pre-defined secondary objective was to assess the effect of inhaled xenon on myocardial ischemic damage in the same study population. A total of 110 comatose patients who had experienced OHCA from a cardiac cause were randomized to receive either inhaled xenon (40% end-tidal concentration) combined with hypothermia (33°C) for 24 h (n = 55; xenon group) or hypothermia treatment alone (n = 55; control group). Troponin-T levels were measured at hospital admission, and at 24 h, 48 h, and 72 h post-cardiac arrest. All available cases were analyzed for troponin-T release. Troponin-T measurements were available from 54 xenon patients and 54 control patients. The baseline characteristics did not differ significantly between the groups. After adjustments for age, sex, study site, primary coronary percutaneous intervention (PCI), and norepinephrine dose, the mean ± SD post-arrival incremental change of the ln-transformed troponin-T at 72 h was 0.79 ± 1.54 in the xenon group and 1.56 ± 1.38 in the control group (adjusted mean difference -0.66; 95% confidence interval: -1.16 to -0.16; p = 0.01). The effect of xenon on the change in the troponin-T values did not differ in patients with or without PCI or in those with a diagnosis of ST-segment elevation myocardial infarction (group by PCI or ST-segment elevation myocardial infarction interaction effect; p = 0.86 and p = 0.71, respectively). Among comatose survivors of OHCA, in comparison with hypothermia alone, inhaled xenon combined with hypothermia suggested a less severe myocardial injury as demonstrated by the significantly reduced release of troponin-T. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition.

    PubMed

    Chiu, Chiayu Q; Martenson, James S; Yamazaki, Maya; Natsume, Rie; Sakimura, Kenji; Tomita, Susumu; Tavalin, Steven J; Higley, Michael J

    2018-01-17

    Preservation of a balance between synaptic excitation and inhibition is critical for normal brain function. A number of homeostatic cellular mechanisms have been suggested to play a role in maintaining this balance, including long-term plasticity of GABAergic inhibitory synapses. Many previous studies have demonstrated a coupling of postsynaptic spiking with modification of perisomatic inhibition. Here, we demonstrate that activation of NMDA-type glutamate receptors leads to input-specific long-term potentiation of dendritic inhibition mediated by somatostatin-expressing interneurons. This form of plasticity is expressed postsynaptically and requires both CaMKIIα and the β2 subunit of the GABA-A receptor. Importantly, this process may function to preserve dendritic inhibition, as genetic deletion of NMDAR signaling results in a selective weakening of dendritic inhibition. Overall, our results reveal a new mechanism for linking excitatory and inhibitory input in neuronal dendrites and provide novel insight into the homeostatic regulation of synaptic transmission in cortical circuits. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Very low concentrations of ethanol suppress excitatory synaptic transmission in rat visual cortex.

    PubMed

    Luong, Lucas; Bannon, Nicholas M; Redenti, Andrew; Chistiakova, Marina; Volgushev, Maxim

    2017-05-01

    Ethanol is one of the most commonly used substances in the world. Behavioral effects of alcohol are well described, however, cellular mechanisms of its action are poorly understood. There is an apparent contradiction between measurable behavioral changes produced by low concentrations of ethanol, and lack of evidence of synaptic changes at these concentrations. Furthermore, effects of ethanol on synaptic transmission in the neocortex are poorly understood. Here, we set to determine effects of ethanol on excitatory synaptic transmission in the neocortex. We show that 1-50 mm ethanol suppresses excitatory synaptic transmission to layer 2/3 pyramidal neurons in rat visual cortex in a concentration-dependent manner. To the best of our knowledge, this is the first demonstration of the effects of very low concentrations of ethanol (from 1 mm) on synaptic transmission in the neocortex. We further show that a selective antagonist of A 1 adenosine receptors, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), blocks effects of 1-10 mm ethanol on synaptic transmission. However, the reduction in excitatory postsynaptic potential amplitude by 50 mm ethanol was not affected by DPCPX. We propose that ethanol depresses excitatory synaptic transmission in the neocortex by at least two mechanisms, engaged at different concentrations: low concentrations of ethanol reduce synaptic transmission via A 1 R-dependent mechanism and involve presynaptic changes, while higher concentrations activate additional, adenosine-independent mechanisms with predominantly postsynaptic action. Involvement of adenosine signaling in mediating effects of low concentrations of ethanol may have important implications for understanding alcohol's effects on brain function, and provide a mechanistic explanation to the interaction between alcohol and caffeine. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding.

    PubMed

    Suyama, Shigetomo; Maekawa, Fumihiko; Maejima, Yuko; Kubota, Naoto; Kadowaki, Takashi; Yada, Toshihiko

    2016-08-09

    Adiponectin regulates glucose and lipid metabolism, acting against metabolic syndrome and atherosclerosis. Accumulating evidence suggest that adiponectin acts on the brain including hypothalamic arcuate nucleus (ARC), where proopiomelanocortin (POMC) neurons play key roles in feeding regulation. Several studies have examined intracerebroventricular (ICV) injection of adiponectin and reported opposite effects, increase or decrease of food intake. These reports used different nutritional states. The present study aimed to clarify whether adiponectin exerts distinct effects on food intake and ARC POMC neurons depending on the glucose concentration. Adiponectin was ICV injected with or without glucose for feeding experiments and administered to ARC slices with high or low glucose for patch clamp experiments. We found that adiponectin at high glucose inhibited POMC neurons and increased food intake while at low glucose it exerted opposite effects. The results demonstrate that glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding.

  4. Synchronous firing patterns of induced pluripotent stem cell-derived cortical neurons depend on the network structure consisting of excitatory and inhibitory neurons.

    PubMed

    Iida, Shoko; Shimba, Kenta; Sakai, Koji; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2018-06-18

    The balance between glutamate-mediated excitation and GABA-mediated inhibition is critical to cortical functioning. However, the contribution of network structure consisting of the both neurons to cortical functioning has not been elucidated. We aimed to evaluate the relationship between the network structure and functional activity patterns in vitro. We used mouse induced pluripotent stem cells (iPSCs) to construct three types of neuronal populations; excitatory-rich (Exc), inhibitory-rich (Inh), and control (Cont). Then, we analyzed the activity patterns of these neuronal populations using microelectrode arrays (MEAs). Inhibitory synaptic densities differed between the three types of iPSC-derived neuronal populations, and the neurons showed spontaneously synchronized bursting activity with functional maturation for one month. Moreover, different firing patterns were observed between the three populations; Exc demonstrated the highest firing rates, including frequent, long, and dominant bursts. In contrast, Inh demonstrated the lowest firing rates and the least dominant bursts. Synchronized bursts were enhanced by disinhibition via GABA A receptor blockade. The present study, using iPSC-derived neurons and MEAs, for the first time show that synchronized bursting of cortical networks in vitro depends on the network structure consisting of excitatory and inhibitory neurons. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Search for magnetic inelastic dark matter with XENON100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aprile, E.; Anthony, M.; Aalbers, J.

    2017-10-01

    We present the first search for dark matter-induced delayed coincidence signals in a dual-phase xenon time projection chamber, using the 224.6 live days of the XENON100 science run II. This very distinct signature is predicted in the framework of magnetic inelastic dark matter which has been proposed to reconcile the modulation signal reported by the DAMA/LIBRA collaboration with the null results from other direct detection experiments. No candidate event has been found in the region of interest and upper limits on the WIMP's magnetic dipole moment are derived. The scenarios proposed to explain the DAMA/LIBRA modulation signal by magnetic inelasticmore » dark matter interactions of WIMPs with masses of 58.0 GeV/c{sup 2} and 122.7 GeV/c{sup 2} are excluded at 3.3 σ and 9.3 σ, respectively.« less

  6. Dark matter sensitivity of multi-ton liquid xenon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, Marc; Bütikofer, Lukas; Baudis, Laura

    2015-10-01

    We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t × y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as 2.5 × 10{sup −49} cm{sup 2} can be probed for WIMP masses around 40 GeV/c{sup 2}. Additional improvementsmore » in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei.« less

  7. Incipient triple point for adsorbed xenon monolayers: Pt(111) versus graphite substrates

    NASA Astrophysics Data System (ADS)

    Novaco, Anthony D.; Bruch, L. W.; Bavaresco, Jessica

    2015-04-01

    Simulation evidence of an incipient triple point is reported for xenon submonolayers adsorbed on the (111) surface of platinum. This is in stark contrast to the "normal" triple point found in simulations and experiments for xenon on the basal plane surface of graphite. The motions of the atoms in the surface plane are treated with standard 2D "NVE" molecular dynamics simulations using modern interactions. The simulation evidence strongly suggests an incipient triple point in the 120 -150 K range for adsorption on the Pt (111) surface while the adsorption on graphite shows a normal triple point at about 100 K.

  8. Long term spectral irradiance measurements of a 1000-watt xenon arc lamp

    NASA Technical Reports Server (NTRS)

    Schneider, W. E.

    1974-01-01

    Spectral irradiance measurements over the range of 200 to 1060 nm were made on a 1000-watt xenon arc lamp over a period of 1500 hours. Four sets of measurements were made after periods of 70, 525, 1000, and 1500 hours of operation. The lamp (Hanovia Compact Xenon Arc Lamp) was mounted in the NASA Solar Irradiation System. When used in the System, the lamp is used as the radiating source for six test stations. Measurements were made of both the longterm stability (or variation of spectral irradiance as a function of time) and the actual spectral irradiance incident on the test specimen.

  9. Measurement of Xenon Viscosity as a Function of Low Temperature and Pressure

    NASA Technical Reports Server (NTRS)

    Grisnik, Stanley P.

    1998-01-01

    The measurement of xenon gas viscosity at low temperatures (175-298 K) and low pressures (350 torr-760 torr) has been performed in support of Hall Thruster testing at NASA Lewis Research Center. The measurements were taken using the capillary flow technique. Viscosity measurements were repeatable to within 3%. The results in this paper are in agreement with data from Hanley and Childs and suggest that the data from Clarke and Smith is approximately 2% low. There are no noticeable pressure effects on xenon absolute viscosity for the pressure range from 350 torr to 760 torr.

  10. Xenon ion propulsion for orbit transfer

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Patterson, M. J.; Gruber, R. P.

    1990-01-01

    For more than 30 years, NASA has conducted an ion propulsion program which has resulted in several experimental space flight demonstrations and the development of many supporting technologies. Technologies appropriate for geosynchronous stationkeeping, earth-orbit transfer missions, and interplanetary missions are defined and evaluated. The status of critical ion propulsion system elements is reviewed. Electron bombardment ion thrusters for primary propulsion have evolved to operate on xenon in the 5 to 10 kW power range. Thruster efficiencies of 0.7 and specific impulse values of 4000 s were documented. The baseline thruster currently under development by NASA LeRC includes ring-cusp magnetic field plasma containment and dished two-grid ion optics. Based on past experience and demonstrated simplifications, power processors for these thrusters should have approximately 500 parts, a mass of 40 kg, and an efficiency near 0.94. Thrust vector control, via individual thruster gimbals, is a mature technology. High pressure, gaseous xenon propellant storage and control schemes, using flight qualified hardware, result in propellant tankage fractions between 0.1 and 0.2. In-space and ground integration testing has demonstrated that ion propulsion systems can be successfully integrated with their host spacecraft. Ion propulsion system technologies are mature and can significantly enhance and/or enable a variety of missions in the nation's space propulsion program.

  11. Cryogenic readout for multiple VUV4 Multi-Pixel Photon Counters in liquid xenon

    NASA Astrophysics Data System (ADS)

    Di Giovanni, A.

    2018-03-01

    This work concerned the preliminary tests and characterization of a cryogenic preamplifier board for an array made of 16 S13370-3050CN (VUV4 family) Multi-Pixel Photon Counters manufactured by Hamamatsu and operated at liquid xenon temperature. The proposed prototype is based on the use of the Analog Devices AD8011 current feedback operational amplifier. The detector allows for single photon detection, making this device a promising choice for the future generation of neutrino and dark matter detectors based on liquid xenon targets.

  12. Chronic obstructive pulmonary disease: quantitative and visual ventilation pattern analysis at xenon ventilation CT performed by using a dual-energy technique.

    PubMed

    Park, Eun-Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Hyun Ju; Lee, Chang Hyun; Park, Chang Min; Yoo, Chul-Gyu; Kim, Jong Hyo

    2010-09-01

    To evaluate the potential of xenon ventilation computed tomography (CT) in the quantitative and visual analysis of chronic obstructive pulmonary disease (COPD). This study was approved by the institutional review board. After informed consent was obtained, 32 patients with COPD underwent CT performed before the administration of xenon, two-phase xenon ventilation CT with wash-in (WI) and wash-out (WO) periods, and pulmonary function testing (PFT). For quantitative analysis, results of PFT were compared with attenuation parameters from prexenon images and xenon parameters from xenon-enhanced images in the following three areas at each phase: whole lung, lung with normal attenuation, and low-attenuating lung (LAL). For visual analysis, ventilation patterns were categorized according to the pattern of xenon attenuation in the area of structural abnormalities compared with that in the normal-looking background on a per-lobe basis: pattern A consisted of isoattenuation or high attenuation in the WI period and isoattenuation in the WO period; pattern B, isoattenuation or high attenuation in the WI period and high attenuation in the WO period; pattern C, low attenuation in both the WI and WO periods; and pattern D, low attenuation in the WI period and isoattenuation or high attenuation in the WO period. Among various attenuation and xenon parameters, xenon parameters of the LAL in the WO period showed the best inverse correlation with results of PFT (P < .0001). At visual analysis, while emphysema (which affected 99 lobes) commonly showed pattern A or B, airway diseases such as obstructive bronchiolitis (n = 5) and bronchiectasis (n = 2) and areas with a mucus plug (n = 1) or centrilobular nodules (n = 5) showed pattern D or C. WI and WO xenon ventilation CT is feasible for the simultaneous regional evaluation of structural and ventilation abnormalities both quantitatively and qualitatively in patients with COPD. (c) RSNA, 2010.

  13. Synaptic inhibition and γ-aminobutyric acid in the mammalian central nervous system

    PubMed Central

    OBATA, Kunihiko

    2013-01-01

    Signal transmission through synapses connecting two neurons is mediated by release of neurotransmitter from the presynaptic axon terminals and activation of its receptor at the postsynaptic neurons. γ-Aminobutyric acid (GABA), non-protein amino acid formed by decarboxylation of glutamic acid, is a principal neurotransmitter at inhibitory synapses of vertebrate and invertebrate nervous system. On one hand glutamic acid serves as a principal excitatory neurotransmitter. This article reviews GABA researches on; (1) synaptic inhibition by membrane hyperpolarization, (2) exclusive localization in inhibitory neurons, (3) release from inhibitory neurons, (4) excitatory action at developmental stage, (5) phenotype of GABA-deficient mouse produced by gene-targeting, (6) developmental adjustment of neural network and (7) neurological/psychiatric disorder. In the end, GABA functions in simple nervous system and plants, and non-amino acid neurotransmitters were supplemented. PMID:23574805

  14. Heat capacity of xenon adsorbed on nanobundle grooves

    NASA Astrophysics Data System (ADS)

    Chishko, K. A.; Sokolova, E. S.

    2016-02-01

    A model of a one-dimensional nonideal gas in an external transverse force field is used to interpret the experimentally observed thermodynamic properties of xenon deposited in grooves on the surface of carbon nanobundles. A nonideal gas model with pairwise interactions is not entirely adequate for describing dense adsorbates (at low temperatures), but makes it easy to account for the exchange of particles between the 1D adsorbate and the 3D atmosphere, which is an important factor at intermediate (on the order of 35 K for xenon) and, especially, high (˜100 K) temperatures. In this paper, we examine a 1D real gas taking only the one-dimensional Lennard-Jones interaction into account, but under exact equilibrium with respect to the number of particles between the 1D adsorbate and the 3D atmosphere of the measurement cell. The low-temperature branch of the specific heat is fitted independently by an elastic chain model so as to obtain the best agreement between theory and experiment over the widest possible region, beginning at zero temperature. The gas approximation sets in after temperatures for which the phonon specific heat of the chain essentially transforms to a one-dimensional equipartition law. Here the basic parameters of both models can be chosen so that the heat capacity C(T) of the chain transforms essentially continuously into the corresponding curve for the gas approximation. Thus, it can be expected that an adequate interpretation of the real temperature dependences of the specific heat of low-dimensionality atomic adsorbates can be obtained through a reasonable combination of the phonon and gas approximations. The main parameters of the gas approximation (such as the desorption energy) obtained by fitting the theory to experiments on the specific heat of xenon correlate well with published data.

  15. GABA(B) receptor modulation of feedforward inhibition through hippocampal neurogliaform cells.

    PubMed

    Price, Christopher J; Scott, Ricardo; Rusakov, Dmitri A; Capogna, Marco

    2008-07-02

    Feedforward inhibition of neurons is a fundamental component of information flow control in the brain. We studied the roles played by neurogliaform cells (NGFCs) of stratum lacunosum moleculare of the hippocampus in providing feedforward inhibition to CA1 pyramidal cells. We recorded from synaptically coupled pairs of anatomically identified NGFCs and CA1 pyramidal cells and found that, strikingly, a single presynaptic action potential evoked a biphasic unitary IPSC (uIPSC), consisting of two distinct components mediated by GABA(A) and GABA(B) receptors. A GABA(B) receptor-mediated unitary response has not previously been observed in hippocampal excitatory neurons. The decay of the GABA(A) receptor-mediated response was slow (time constant = 50 ms), and was tightly regulated by presynaptic GABA(B) receptors. Surprisingly, the GABA(B) receptor ligands baclofen and (2S)-3-{[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl}(phenylmethyl)phosphinic acid (CGP55845), while affecting the NGFC-mediated uIPSCs, had no effect on action potential-evoked presynaptic Ca2+ signals monitored in individual axonal boutons of NGFCs with two-photon microscopy. In contrast, baclofen clearly depressed presynaptic Ca2+ transients in non-NGF interneurons. Changes in extracellular Ca2+ concentration that mimicked the effects of baclofen or CGP55845 on uIPSCs significantly altered presynaptic Ca2+ transients. Electrophysiological data suggest that GABA(B) receptors expressed by NGFCs contribute to the dynamic control of the excitatory input to CA1 pyramidal neurons from the temporoammonic path. The NGFC-CA1 pyramidal cell connection therefore provides a unique and subtle mechanism to shape the integration time domain for signals arriving via a major excitatory input to CA1 pyramidal cells.

  16. Feasibility and safety of xenon compared with sevoflurane anaesthesia in coronary surgical patients: a randomized controlled pilot study.

    PubMed

    Stoppe, C; Fahlenkamp, A V; Rex, S; Veeck, N C; Gozdowsky, S C; Schälte, G; Autschbach, R; Rossaint, R; Coburn, M

    2013-09-01

    To date, only limited data exist about the use of xenon as an anaesthetic agent in patients undergoing cardiac surgery. The favourable cardio- and neuroprotective properties of xenon might attenuate postoperative complications, improve outcome, and reduce the incidence of delirium. Thus, the aims of this study were to investigate the feasibility and safety of balanced xenon anaesthesia in patients undergoing cardiac surgery and to gather pilot data for a future randomized multicentre study. Thirty patients undergoing elective coronary artery bypass grafting were enrolled in this randomized, single-blind controlled trial. They were randomized to receive balanced general anaesthesia with either xenon (45-50 vol%) or sevoflurane (1-1.4 vol%). The primary outcome was the occurrence of adverse events (AEs). Secondary outcome parameters were feasibility criteria (bispectral index, perioperative haemodynamic, and respiratory profile) and safety parameters (dosage of study treatments, renal function, intraoperative blood loss, need for inotropic support, regional cerebral tissue oxygenation). Furthermore, at predefined time points, systemic and pulmonary haemodynamics were assessed by the use of a pulmonary artery catheter. There were no patient characteristic differences between the groups. Patients undergoing xenon anaesthesia did not differ with respect to the incidence of AE (6 vs 8, P=0.464) compared with the sevoflurane group. No differences were detected regarding secondary feasibility and safety criteria. The haemodynamic and respiratory profile was comparable between the treatment groups. Balanced xenon anaesthesia is feasible and safe compared with sevoflurane anaesthesia in patients undergoing coronary artery bypass surgery. Acronym CARDIAX: A pre- and post-coronary artery bypass graft implantation disposed application of xenon. Clinical trial registration ClinicalTrials.gov: NCT01285271; EudraCT-number: 2010-023942-63. Approved by the ethics committee 'Ethik

  17. Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.

    PubMed

    Vaara, Juha; Hanni, Matti; Jokisaari, Jukka

    2013-03-14

    Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation.

  18. Modeling ARRM Xenon Tank Pressurization Using 1D Thermodynamic and Heat Transfer Equations

    NASA Technical Reports Server (NTRS)

    Gilligan, Patrick; Tomsik, Thomas

    2016-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  19. Xenon Purification Research and Development for the LZ Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Pech, Katherin

    2013-04-01

    The LZ Experiment is a next generation dark matter detector based on the current LUX detector design, with a 7-ton active volume. Although many research and development breakthroughs were achieved for the 350 kg LUX detector, the large volume scaling required for LZ presents a new set of design challenges that need to be overcome. Because the search for WIMP-like dark matter requires ultra low background experiments, the xenon target material in the LZ detector must meet purity specifications beyond what is commercially available. This challenge is two-fold. The xenon must contain extremely low amounts of electronegative impurities such as oxygen, which attenuate the charge signal. Additionally, it must also have very little of the inert isotope Kr-85, a beta-emitter that can obscure the dark matter signal in the detector volume. The purity requirements for the LUX experiment have been achieved, but the factor of 20 scaling in volume for LZ and increased demands for sensitivity mean that new research and development work must be done to increase our xenon purification capabilities. This talk will focus on the efforts being done at Case Western Reserve University to meet these strict purity requirements for the LZ Experiment.

  20. Xenon for tunnelling analysis of the efflux pump component OprN.

    PubMed

    Ntsogo Enguéné, Yvette Véronique; Phan, Gilles; Garnier, Cyril; Ducruix, Arnaud; Prangé, Thierry; Broutin, Isabelle

    2017-01-01

    Tripartite efflux pumps are among the main actors responsible for antibiotics resistance in Gram-negative bacteria. In the last two decades, structural studies gave crucial information about the assembly interfaces and the mechanistic motions. Thus rigidifying the assembly seems to be an interesting way to hamper the drug efflux. In this context, xenon is a suitable probe for checking whether small ligands could act as conformational lockers by targeting hydrophobic cavities. Here we focus on OprN, the outer membrane channel of the MexEF efflux pump from Pseudomonas aeruginosa. After exposing OprN crystals to xenon gas pressure, 14 binding sites were observed using X-ray crystallography. These binding sites were unambiguously characterized in hydrophobic cavities of OprN. The major site is observed in the sensitive iris-like region gating the channel at the periplasmic side, built by the three key-residues Leu 405, Asp 109, and Arg 412. This arrangement defines along the tunnel axis a strong hydrophobic/polar gradient able to enhance the passive efflux mechanism of OprN. The other xenon atoms reveal strategic hydrophobic regions of the channel scaffold to target, with the aim to freeze the dynamic movements responsible of the open/close conformational equilibrium in OprN.

  1. Xenon for tunnelling analysis of the efflux pump component OprN

    PubMed Central

    Garnier, Cyril; Ducruix, Arnaud; Broutin, Isabelle

    2017-01-01

    Tripartite efflux pumps are among the main actors responsible for antibiotics resistance in Gram-negative bacteria. In the last two decades, structural studies gave crucial information about the assembly interfaces and the mechanistic motions. Thus rigidifying the assembly seems to be an interesting way to hamper the drug efflux. In this context, xenon is a suitable probe for checking whether small ligands could act as conformational lockers by targeting hydrophobic cavities. Here we focus on OprN, the outer membrane channel of the MexEF efflux pump from Pseudomonas aeruginosa. After exposing OprN crystals to xenon gas pressure, 14 binding sites were observed using X-ray crystallography. These binding sites were unambiguously characterized in hydrophobic cavities of OprN. The major site is observed in the sensitive iris-like region gating the channel at the periplasmic side, built by the three key-residues Leu 405, Asp 109, and Arg 412. This arrangement defines along the tunnel axis a strong hydrophobic/polar gradient able to enhance the passive efflux mechanism of OprN. The other xenon atoms reveal strategic hydrophobic regions of the channel scaffold to target, with the aim to freeze the dynamic movements responsible of the open/close conformational equilibrium in OprN. PMID:28886086

  2. Impact of pulsed xenon ultraviolet light on hospital-acquired infection rates in a community hospital.

    PubMed

    Vianna, Pedro G; Dale, Charles R; Simmons, Sarah; Stibich, Mark; Licitra, Carmelo M

    2016-03-01

    The role of contaminated environments in the spread of hospital-associated infections has been well documented. This study reports the impact of a pulsed xenon ultraviolet no-touch disinfection system on infection rates in a community care facility. This study was conducted in a community hospital in Southern Florida. Beginning November 2012, a pulsed xenon ultraviolet disinfection system was implemented as an adjunct to traditional cleaning methods on discharge of select rooms. The technology uses a xenon flashlamp to generate germicidal light that damages the DNA of organisms in the hospital environment. The device was implemented in the intensive care unit (ICU), with a goal of using the pulsed xenon ultraviolet system for disinfecting all discharges and transfers after standard cleaning and prior to occupation of the room by the next patient. For all non-ICU discharges and transfers, the pulsed xenon ultraviolet system was only used for Clostridium difficile rooms. Infection data were collected for methicillin-resistant Staphylococcus aureus, C difficile, and vancomycin-resistant Enterococci (VRE). The intervention period was compared with baseline using a 2-sample Wilcoxon rank-sum test. In non-ICU areas, a significant reduction was found for C difficile. There was a nonsignificant decrease in VRE and a significant increase in methicillin-resistant S aureus. In the ICU, all infections were reduced, but only VRE was significant. This may be because of the increased role that environment plays in the transmission of this pathogen. Overall, there were 36 fewer infections in the whole facility and 16 fewer infections in the ICU during the intervention period than would have been expected based on baseline data. Implementation of pulsed xenon ultraviolet disinfection is associated with significant decreases in facility-wide and ICU infection rates. These outcomes suggest that enhanced environmental disinfection plays a role in the risk mitigation of hospital

  3. Maturation- and sex-sensitive depression of hippocampal excitatory transmission in a rat schizophrenia model.

    PubMed

    Patrich, Eti; Piontkewitz, Yael; Peretz, Asher; Weiner, Ina; Attali, Bernard

    2016-01-01

    Schizophrenia is associated with behavioral and brain structural abnormalities, of which the hippocampus appears to be one of the most consistent region affected. Previous studies performed on the poly I:C model of schizophrenia suggest that alterations in hippocampal synaptic transmission and plasticity take place in the offspring. However, these investigations yielded conflicting results and the neurophysiological alterations responsible for these deficits are still unclear. Here we performed for the first time a longitudinal study examining the impact of prenatal poly I:C treatment and of gender on hippocampal excitatory neurotransmission. In addition, we examined the potential preventive/curative effects of risperidone (RIS) treatment during the peri-adolescence period. Excitatory synaptic transmission was determined by stimulating Schaffer collaterals and monitoring fiber volley amplitude and slope of field-EPSP (fEPSP) in CA1 pyramidal neurons in male and female offspring hippocampal slices from postnatal days (PNDs) 18-20, 34, 70 and 90. Depression of hippocampal excitatory transmission appeared at juvenile age in male offspring of the poly I:C group, while it expressed with a delay in female, manifesting at adulthood. In addition, a reduced hippocampal size was found in both adult male and female offspring of poly I:C treated dams. Treatment with RIS at the peri-adolescence period fully restored in males but partly repaired in females these deficiencies. A maturation- and sex-dependent decrease in hippocampal excitatory transmission occurs in the offspring of poly I:C treated pregnant mothers. Pharmacological intervention with RIS during peri-adolescence can cure in a gender-sensitive fashion early occurring hippocampal synaptic deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity.

    PubMed

    Srinivasa, Narayan; Cho, Youngkwan

    2014-01-01

    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns-both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity.

  5. The XENON100 Dark Matter Experiment: Design, Construction, Calibration and 2010 Search Results with Improved Measurement of the Scintillation Response of Liquid Xenon to Low-Energy Nuclear Recoils

    NASA Astrophysics Data System (ADS)

    Plante, Guillaume

    An impressive array of astrophysical observations suggest that 83% of the matter in the universe is in a form of non-luminous, cold, collisionless, non-baryonic dark matter. Several extensions of the Standard Model of particle physics aimed at solving the hierarchy problem predict stable weakly interacting massive particles (WIMPs) that could naturally have the right cosmological relic abundance today to compose most of the dark matter if their interactions with normal matter are on the order of a weak scale cross section. These candidates also have the added benefit that their properties and interaction rates can be computed in a well defined particle physics model. A considerable experimental effort is currently under way to uncover the nature of dark matter. One method of detecting WIMP dark matter is to look for its interactions in terrestrial detectors where it is expected to scatter off nuclei. In 2007, the XENON10 experiment took the lead over the most sensitive direct detection dark matter search in operation, the CDMS II experiment, by probing spin-independent WIMP-nucleon interaction cross sections down to sigmachi N ˜ 5 x 10-44 cm 2 at 30 GeV/c2. Liquefied noble gas detectors are now among the technologies at the forefront of direct detection experiments. Liquid xenon (LXe), in particular, is a well suited target for WIMP direct detection. It is easily scalable to larger target masses, allows discrimination between nuclear recoils and electronic recoils, and has an excellent stopping power to shield against external backgrounds. A particle losing energy in LXe creates both ionization electrons and scintillation light. In a dual-phase LXe time projection chamber (TPC) the ionization electrons are drifted and extracted into the gas phase where they are accelerated to amplify the charge signal into a proportional scintillation signal. These two signals allow the three-dimensional localization of events with millimeter precision and the ability to

  6. TRPV1 regulates excitatory innervation of OLM neurons in the hippocampus

    PubMed Central

    Hurtado-Zavala, Joaquin I.; Ramachandran, Binu; Ahmed, Saheeb; Halder, Rashi; Bolleyer, Christiane; Awasthi, Ankit; Stahlberg, Markus A.; Wagener, Robin J.; Anderson, Kristin; Drenan, Ryan M.; Lester, Henry A.; Miwa, Julie M.; Staiger, Jochen F.; Fischer, Andre; Dean, Camin

    2017-01-01

    TRPV1 is an ion channel activated by heat and pungent agents including capsaicin, and has been extensively studied in nociception of sensory neurons. However, the location and function of TRPV1 in the hippocampus is debated. We found that TRPV1 is expressed in oriens-lacunosum-moleculare (OLM) interneurons in the hippocampus, and promotes excitatory innervation. TRPV1 knockout mice have reduced glutamatergic innervation of OLM neurons. When activated by capsaicin, TRPV1 recruits more glutamatergic, but not GABAergic, terminals to OLM neurons in vitro. When TRPV1 is blocked, glutamatergic input to OLM neurons is dramatically reduced. Heterologous expression of TRPV1 also increases excitatory innervation. Moreover, TRPV1 knockouts have reduced Schaffer collateral LTP, which is rescued by activating OLM neurons with nicotine—via α2β2-containing nicotinic receptors—to bypass innervation defects. Our results reveal a synaptogenic function of TRPV1 in a specific interneuron population in the hippocampus, where it is important for gating hippocampal plasticity. PMID:28722015

  7. Boltzmann expansion in a radiofrequency conical helicon thruster operating in xenon and argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles, C.; Boswell, R.; Takahashi, K.

    2013-06-03

    A low pressure ({approx}0.5 mTorr in xenon and {approx}1 mTorr in argon) Boltzmann expansion is experimentally observed on axis within a magnetized (60 to 180 G) radiofrequency (13.56 MHz) conical helicon thruster for input powers up to 900 W using plasma parameters measured with a Langmuir probe. The axial forces, respectively, resulting from the electron and magnetic field pressures are directly measured using a thrust balance for constant maximum plasma pressure and show a higher fuel efficiency for argon compared to xenon.

  8. Dynamic Control of Excitatory Synapse Development by a Rac1 GEF/GAP Regulatory Complex

    PubMed Central

    Um, Kyongmi; Niu, Sanyong; Duman, Joseph G.; Cheng, Jinxuan; Tu, Yen-Kuei; Schwechter, Brandon; Liu, Feng; Hiles, Laura; Narayanan, Anjana; Ash, Ryan T.; Mulherkar, Shalaka; Alpadi, Kannan; Smirnakis, Stelios M.; Tolias, Kimberley F.

    2014-01-01

    SUMMARY The small GTPase Rac1 orchestrates actin-dependent remodeling essential for numerous cellular processes including synapse development. While precise spatiotemporal regulation of Rac1 is necessary for its function, little is known about the mechanisms that enable Rac1 activators (GEFs) and inhibitors (GAPs) to act in concert to regulate Rac1 signaling. Here we identify a regulatory complex composed of a Rac-GEF (Tiam1) and a Rac-GAP (Bcr) that cooperate to control excitatory synapse development. Disruption of Bcr function within this complex increases Rac1 activity and dendritic spine remodeling, resulting in excessive synaptic growth that is rescued by Tiam1 inhibition. Notably, EphB receptors utilize the Tiam1-Bcr complex to control synaptogenesis. Following EphB activation, Tiam1 induces Rac1-dependent spine formation, whereas Bcr prevents Rac1-mediated receptor internalization, promoting spine growth over retraction. The finding that a Rac-specific GEF/GAP complex is required to maintain optimal levels of Rac1 signaling provides an important insight into the regulation of small GTPases. PMID:24960694

  9. Effects of pulmonary static inflation with 50% xenon on oxygen impairment during cardiopulmonary bypass for stanford type A acute aortic dissection

    PubMed Central

    Jin, Mu; Yang, Yanwei; Pan, Xudong; Lu, Jiakai; Zhang, Zhiquan; Cheng, Weiping

    2017-01-01

    Abstract Background: The goal of this study was to investigate the effects of pulmonary static inflation with 50% xenon on postoperative oxygen impairment during cardiopulmonary bypass (CPB) for Stanford type A acute aortic dissection (AAD). Methods: This prospective single-center nonrandomized controlled clinical trial included 100 adult patients undergoing surgery for Stanford type A AAD at an academic hospital in China. Fifty subjects underwent pulmonary static inflation with 50% oxygen from January 2013 to January 2014, and 50 underwent inflation with 50% xenon from January 2014 to December 2014. During CPB, the lungs were inflated with either 50% xenon (xenon group) or 50% oxygen (control group) to maintain an airway pressure of 5 cm H2O. The primary outcome was oxygenation index (OI) value after intubation, and 10 minutes and 6 hours after the operation. The second outcome was cytokine and reactive oxygen species levels after intubation and 10 minutes, 6 hours, and 24 hours after the operation. Results: Patients treated with xenon had lower OI levels compared to the control group before surgery (P = 0.002); however, there was no difference in postoperative values between the 2 groups. Following surgery, mean maximal OI values decreased by 18.8% and 33.8%, respectively, in the xenon and control groups. After surgery, the levels of interleukin-6 (IL-6), tumor necrosis factor alpha, and thromboxane B2 decreased by 23.5%, 9.1%, and 30.2%, respectively, in the xenon group, but increased by 10.8%, 26.2%, and 26.4%, respectively, in the control group. Moreover, IL-10 levels increased by 28% in the xenon group and decreased by 7.5% in the control group. There were significant time and treatment-time interaction effects on methane dicarboxylic aldehyde (P = 0.000 and P = 0.050, respectively) and myeloperoxidase (P = 0.000 and P = 0.001 in xenon and control groups, respectively). There was no difference in hospital mortality and 1-year

  10. Pulsed xenon flashlamp device for the treatment of psoriasis

    NASA Astrophysics Data System (ADS)

    Baumgardner, Jonathan M.; Hennings, David R.; Johnston, Thomas F., Jr.; Taylor, Eric

    2003-06-01

    We present our research into a pulsed xenon lamp source for the treatment of psoriasis and other skin disorders. Various filtering techniques, lamp configurations, power supply configurations and delivery systems are discussed. Comparisons are made to existing treatment modalities. Cryogen cooling of the treatment site is discussed.

  11. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Shapiro, Mikhail G.; Ramirez, R. Matthew; Sperling, Lindsay J.; Sun, George; Sun, Jinny; Pines, Alexander; Schaffer, David V.; Bajaj, Vikram S.

    2014-07-01

    Magnetic resonance imaging (MRI) enables high-resolution non-invasive observation of the anatomy and function of intact organisms. However, previous MRI reporters of key biological processes tied to gene expression have been limited by the inherently low molecular sensitivity of conventional 1H MRI. This limitation could be overcome through the use of hyperpolarized nuclei, such as in the noble gas xenon, but previous reporters acting on such nuclei have been synthetic. Here, we introduce the first genetically encoded reporters for hyperpolarized 129Xe MRI. These expressible reporters are based on gas vesicles (GVs), gas-binding protein nanostructures expressed by certain buoyant microorganisms. We show that GVs are capable of chemical exchange saturation transfer interactions with xenon, which enables chemically amplified GV detection at picomolar concentrations (a 100- to 10,000-fold improvement over comparable constructs for 1H MRI). We demonstrate the use of GVs as heterologously expressed indicators of gene expression and chemically targeted exogenous labels in MRI experiments performed on living cells.

  12. Performance characteristics of ring-cusp thrusters with xenon propellant

    NASA Technical Reports Server (NTRS)

    Patterson, M. J.

    1986-01-01

    The performance characteristics and operating envelope of several 30-cm ring-cusp ion thrusters with xenon propellant were investigated. Results indicate a strong performance dependence on the discharge chamber boundary magnetic fields and resultant distribution of electron currents. Significant improvements in discharge performance over J-series divergent-field thrusters were achieved for large throttling ranges, which translate into reduced cathode emission currents and reduced power dissipation which should be of significant benefit for operation at thruster power levels in excess of 10 kW. Mass spectrometry of the ion beam was documented for both the ring-cusp and J-series thrusters with xenon propellant for determination of overall thruster efficiency, and lifetime. Based on the lower centerline values of doubly charged ions in the ion beam and the lower operating discharge voltage, the screen grid erosion rate of the ring-cusp thruster is expected to be lower than the divergent-field J-series thruster by a factor of 2.

  13. Performance characteristics of ring-cusp thrusters with xenon propellant

    NASA Technical Reports Server (NTRS)

    Patterson, M. J.

    1986-01-01

    The performance characteristics and operating envelope of several 30-cm ring-cusp ion thrusters with xenon propellant were investigated. Results indicate a strong performance dependence on the discharge chamber boundary magnetic fields and resultant distribution of electron currents. Significant improvements in discharge performance over J-series divergent-field thrusters were achieved for large throttling ranges, which translate into reduced cathode emission currents and reduced power dissipation which should be of significant benefit for operation at thruster power levels in excess of 10 kW. Mass spectrometer of the ion beam was documented for both the ring-cusp and J-series thrusters with xenon propellant for determination of overall thruster efficiency, and lifetime. Based on the lower centerline values of doubly charged ions in the ion beam and the lower operating discharge voltage, the screen grid erosion rate of the ring-cusp thruster is expected to be lower than the divergent-field J-series thruster by a factor of 2.

  14. In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    DOE PAGES

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; ...

    2016-11-01

    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. But, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stablemore » isotopes, unmeasured by Viking. Our new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, but, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.« less

  15. In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Pepin, R. O.; Trainer, M. G.; Schwenzer, S. P.; Atreya, S. K.; Freissinet, C.; Jones, J. H.; Manning, H.; Owen, T.; Pavlov, A. A.; Wiens, R. C.; Wong, M. H.; Mahaffy, P. R.

    2016-11-01

    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.

  16. Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping

    NASA Astrophysics Data System (ADS)

    Wahl, C. G.; Bernard, E. P.; Lippincott, W. H.; Nikkel, J. A.; Shin, Y.; McKinsey, D. N.

    2014-06-01

    Liquid-argon scintillation detectors are used in fundamental physics experiments and are being considered for security applications. Previous studies have suggested that the addition of small amounts of xenon dopant improves performance in light or signal yield, energy resolution, and particle discrimination. In this study, we investigate the detector response for xenon dopant concentrations from 9 ± 5 ppm to 1100 ± 500 ppm xenon (by weight) in 6 steps. The 3.14-liter detector uses tetraphenyl butadiene (TPB) wavelength shifter with dual photomultiplier tubes and is operated in single-phase mode. Gamma-ray-interaction signal yield of 4.0 ± 0.1 photoelectrons/keV improved to 5.0 ± 0.1 photoelectrons/keV with dopant. Energy resolution at 662 keV improved from (4.4 ± 0.2)% (σ) to (3.5 ± 0.2)% (σ) with dopant. Pulse-shape discrimination performance degraded greatly at the first addition of dopant, slightly improved with additional additions, then rapidly improved near the end of our dopant range, with performance becoming slightly better than pure argon at the highest tested dopant concentration. Some evidence of reduced neutron scintillation efficiency with increasing dopant concentration was observed. Finally, the waveform shape outside the TPB region is discussed, suggesting that the contribution to the waveform from xenon-produced light is primarily in the last portion of the slow component.

  17. In Situ Measurement of Atmospheric Krypton and Xenon on Mars with Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Pepin, R. O.; Trainer, M. G.; Schwenzer, S. P.; Atreya, S. K.; Freissinet, C.; Jones, J. H.; Manning, H.; hide

    2016-01-01

    Mars Science Laboratorys Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking missions krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.

  18. In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, P. G.; Malespin, C. A.; Franz, H. B.

    Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. But, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stablemore » isotopes, unmeasured by Viking. Our new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, but, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites.« less

  19. Prospects for dark matter detection with inelastic transitions of xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Christopher

    2016-05-16

    Dark matter can scatter and excite a nucleus to a low-lying excitation in a direct detection experiment. This signature is distinct from the canonical elastic scattering signal because the inelastic signal also contains the energy deposited from the subsequent prompt de-excitation of the nucleus. A measurement of the elastic and inelastic signal will allow a single experiment to distinguish between a spin-independent and spin-dependent interaction. For the first time, we characterise the inelastic signal for two-phase xenon detectors in which dark matter inelastically scatters off the {sup 129}Xe or {sup 131}Xe isotope. We do this by implementing a realistic simulationmore » of a typical tonne-scale two-phase xenon detector and by carefully estimating the relevant background signals. With our detector simulation, we explore whether the inelastic signal from the axial-vector interaction is detectable with upcoming tonne-scale detectors. We find that two-phase detectors allow for some discrimination between signal and background so that it is possible to detect dark matter that inelastically scatters off either the {sup 129}Xe or {sup 131}Xe isotope for dark matter particles that are heavier than approximately 100 GeV. If, after two years of data, the XENON1T search for elastic scattering nuclei finds no evidence for dark matter, the possibility of ever detecting an inelastic signal from the axial-vector interaction will be almost entirely excluded.« less

  20. Neural networks with excitatory and inhibitory components: Direct and inverse problems by a mean-field approach

    NASA Astrophysics Data System (ADS)

    di Volo, Matteo; Burioni, Raffaella; Casartelli, Mario; Livi, Roberto; Vezzani, Alessandro

    2016-01-01

    We study the dynamics of networks with inhibitory and excitatory leak-integrate-and-fire neurons with short-term synaptic plasticity in the presence of depressive and facilitating mechanisms. The dynamics is analyzed by a heterogeneous mean-field approximation, which allows us to keep track of the effects of structural disorder in the network. We describe the complex behavior of different classes of excitatory and inhibitory components, which give rise to a rich dynamical phase diagram as a function of the fraction of inhibitory neurons. Using the same mean-field approach, we study and solve a global inverse problem: reconstructing the degree probability distributions of the inhibitory and excitatory components and the fraction of inhibitory neurons from the knowledge of the average synaptic activity field. This approach unveils new perspectives on the numerical study of neural network dynamics and the possibility of using these models as a test bed for the analysis of experimental data.

  1. Studies of K-Ar dating and xenon from extinct radioactivities in breccia 14318; implications for early lunar history

    NASA Technical Reports Server (NTRS)

    Reynolds, J. H.; Alexander, E. C., Jr.; Davis, P. K.; Srinivasan, B.

    1974-01-01

    The lunar breccia 14318 is one of three Apollo-14 breccias containing substantial amounts of parentless xenon from the spontaneous fission of extinct Pu-244. The argon and xenon contained in this breccia were studied by stepwise heating of pristine and neutron-irradiated samples. The isotopic composition of xenon from fission, determined by an improved method, is shown to be from Pu-244. Concentrations of this fissiogenic xenon are in substantial excess (15-fold) of what could be produced by spontaneous fission of U-238. The breccia is found to contain abundant trapped argon with an Ar-40/Ar-36 ratio of roughly 14. Otherwise, the argon is radiogenic and gives a convincing K-Ar age of 3.69 plus or minus 0.09 b.y. by the stepwise Ar-40/Ar-39 method, nearly in agreement with ages for other Apollo-14 breccias.

  2. Post-Test Inspection of NASA's Evolutionary Xenon Thruster Long-Duration Test Hardware: Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Soulas, George C.

    2016-01-01

    NASAs Evolutionary Xenon Thruster (NEXT) Long-Duration Test (LDT) is part of the comprehensive service life assessment of the NEXT thruster. The test was voluntarily terminated in April 2014 after accumulating 51,184 hours of high voltage operation, processing 918 kg of xenon, and delivering 35.5 MN-s of total impulse. This presentation covers the post-test inspection of the thruster hardware, in particular of the discharge chamber and other miscellaneous components such as propellant isolators and electrical cabling.

  3. Conditioned inhibition in the spatial domain.

    PubMed

    Sansa, J; Rodrigo, T; Santamaría, J J; Manteiga, R D; Chamizo, V D

    2009-10-01

    Using a variation on the standard procedure of conditioned inhibition (Trials A+ and AX-), rats (Rattus norvegicus) in a circular pool were trained to find a hidden platform that was located in a specific spatial position in relation to 2 individual landmarks (Trials A --> platform and B --> platform; Experiments 1a and 1b) and to 2 configurations of landmarks (Trials ABC --> platform and FGH --> platform; Experiment 2a). The rats also underwent inhibitory trials (Experiment 1: Trials AZ --> no platform; Experiment 2a: Trials CDE --> no platform) interspersed with these excitatory trials. In both experiments, subsequent test trials without the platform showed both a summation effect and retardation of excitatory conditioning, and in Experiment 2a rats learned to avoid the CDE quadrant over the course of the experiment. Two further experiments established that these results could not be attributed to any difference in salience between the conditioned inhibitors and the control stimuli. All these results contribute to the growing body of evidence consistent with the idea that there is a general mechanism of learning that is associative in nature. PsycINFO Database Record (c) 2009 APA, all rights reserved.

  4. Glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding

    PubMed Central

    Suyama, Shigetomo; Maekawa, Fumihiko; Maejima, Yuko; Kubota, Naoto; Kadowaki, Takashi; Yada, Toshihiko

    2016-01-01

    Adiponectin regulates glucose and lipid metabolism, acting against metabolic syndrome and atherosclerosis. Accumulating evidence suggest that adiponectin acts on the brain including hypothalamic arcuate nucleus (ARC), where proopiomelanocortin (POMC) neurons play key roles in feeding regulation. Several studies have examined intracerebroventricular (ICV) injection of adiponectin and reported opposite effects, increase or decrease of food intake. These reports used different nutritional states. The present study aimed to clarify whether adiponectin exerts distinct effects on food intake and ARC POMC neurons depending on the glucose concentration. Adiponectin was ICV injected with or without glucose for feeding experiments and administered to ARC slices with high or low glucose for patch clamp experiments. We found that adiponectin at high glucose inhibited POMC neurons and increased food intake while at low glucose it exerted opposite effects. The results demonstrate that glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding. PMID:27503800

  5. Neuromodulation by Mg2+ and polyamines of excitatory amino acid currents in rodent neurones in culture.

    PubMed

    Kumamoto, E

    1996-12-01

    Excitatory amino-acid currents in rodent central neurones are mediated by the activation of glutamate receptors. Ionotropic types of the receptors are divided into alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), kainate and N-methyl-D-aspartate (NMDA) receptors, and the former two are collectively called non-NMDA receptors. The NMDA receptor is modulated by a number of endogenous neuromodulators including Mg2+, polyamines, glycine and protons in extracellular solutions. Although it has been generally thought that each of the neuromodulators acts on a distinct site in the NMDA receptor, recent studies have revealed that these actions may be not necessarily independent of each other. The NMDA receptor response is not only inhibited but also potentiated by Mg2+, and the latter action is due to an interaction of a Mg2+ site with either glycine- or proton-binding site. In the presence of polyamines, a tonic inhibition by protons of the NMDA receptor response is relieved, resulting in a potentiation of the response. Alternatively, it has been recently revealed that there are some subtypes of non-NMDA receptors which are negatively modulated by polyamines in either extra- or intra cellular solutions. The difference in polyamine sensitivity among non-NMDA receptors is attributed to a distinction in their constituted subunits. The inhibition of non-NMDA receptor by intracellular polyamines results in inward rectification of the current-voltage relation which is not seen for polyamine-insensitive ones. This polyamine action is not mimicked by intracellular Mg2+.

  6. A slow excitatory postsynaptic current mediated by a novel metabotropic glutamate receptor in CA1 pyramidal neurons.

    PubMed

    Sheng, Nengyin; Yang, Jing; Silm, Katlin; Edwards, Robert H; Nicoll, Roger A

    2017-03-15

    Slow excitatory postsynaptic currents (EPSCs) mediated by metabotropic glutamate receptors (mGlu receptors) have been reported in several neuronal subtypes, but their presence in hippocampal pyramidal neurons remains elusive. Here we find that in CA1 pyramidal neurons a slow EPSC is induced by repetitive stimulation while ionotropic glutamate receptors and glutamate-uptake are blocked whereas it is absent in the VGLUT1 knockout mouse in which presynaptic glutamate is lost, suggesting the slow EPSC is mediated by glutamate activating mGlu receptors. However, it is not inhibited by known mGlu receptor antagonists. These findings suggest that this slow EPSC is mediated by a novel mGlu receptor, and that it may be involved in neurological diseases associated with abnormal high-concentration of extracellular glutamate. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Transmission to interneurons is via slow excitatory synaptic potentials mediated by P2Y(1) receptors during descending inhibition in guinea-pig ileum.

    PubMed

    Thornton, Peter D J; Gwynne, Rachel M; McMillan, Darren J; Bornstein, Joel C

    2013-01-01

    The nature of synaptic transmission at functionally distinct synapses in intestinal reflex pathways has not been fully identified. In this study, we investigated whether transmission between interneurons in the descending inhibitory pathway is mediated by a purine acting at P2Y receptors to produce slow excitatory synaptic potentials (EPSPs). Myenteric neurons from guinea-pig ileum in vitro were impaled with intracellular microelectrodes. Responses to distension 15 mm oral to the recording site, in a separately perfused stimulation chamber and to electrical stimulation of local nerve trunks were recorded. A subset of neurons, previously identified as nitric oxide synthase immunoreactive descending interneurons, responded to both stimuli with slow EPSPs that were reversibly abolished by a high concentration of PPADS (30 μM, P2 receptor antagonist). When added to the central chamber of a three chambered organ bath, PPADS concentration-dependently depressed transmission through that chamber of descending inhibitory reflexes, measured as inhibitory junction potentials in the circular muscle of the anal chamber. Reflexes evoked by distension in the central chamber were unaffected. A similar depression of transmission was seen when the specific P2Y(1) receptor antagonist MRS 2179 (10 μM) was in the central chamber. Blocking either nicotinic receptors (hexamethonium 200 μM) or 5-HT(3) receptors (granisetron 1 μM) together with P2 receptors had no greater effect than blocking P2 receptors alone. Slow EPSPs mediated by P2Y(1) receptors, play a primary role in transmission between descending interneurons of the inhibitory reflexes in the guinea-pig ileum. This is the first demonstration for a primary role of excitatory metabotropic receptors in physiological transmission at a functionally identified synapse.

  8. Performance analysis of photoresistor and phototransistor for automotive’s halogen and xenon bulbs light output

    NASA Astrophysics Data System (ADS)

    Rammohan, A.; Kumar, C. Ramesh

    2017-11-01

    Illumination of any light is measured using a different kind of calibrated equipment’s available in the market such as a goniometer, spectral radiometer, photometer, Lux meter and camera based systems which directly display the illumination of automotive headlights light distribution in the unit of lux, foot-candles, lumens/sq. ft. and Lambert etc., In this research, we dealt with evaluating the photo resistor or Light Dependent Resistor (LDR) and phototransistor whether it is useful for sensing light patterns of Automotive Halogen and Xenon bulbs. The experiments are conducted during night hours under complete dark space. We have used the headlamp setup available in TATA SUMO VICTA vehicle in the Indian market and conducted the experiments separately for Halogen and Xenon bulbs under low and high beam operations at various degrees and test points within ten meters of distance. Also, we have compared the light intensity of halogen and xenon bulbs to prove the highest light intensity between halogen and Xenon bulbs. After doing a rigorous test with these two sensors it is understood both are good to sensing beam pattern of automotive bulbs and even it is good if we use an array of sensors or a mixed combination of sensors for measuring illumination purposes under perfect calibrations.

  9. Molecular oxygen migration through the xenon docking sites of human hemoglobin in the R-state.

    PubMed

    Lepeshkevich, Sergei V; Gilevich, Syargey N; Parkhats, Marina V; Dzhagarov, Boris M

    2016-09-01

    A nanosecond laser flash-photolysis technique was used to study bimolecular and geminate molecular oxygen (O2) rebinding to tetrameric human hemoglobin and its isolated α and β chains in buffer solutions equilibrated with 1atm of air and up to 25atm of xenon. Xenon binding to the isolated α chains and to the α subunits within tetrameric hemoglobin was found to cause a decrease in the efficiency of O2 escape by a factor of ~1.30 and 3.3, respectively. A kinetic model for O2 dissociation, rebinding, and migration through two alternative pathways in the hemoglobin subunits was introduced and discussed. It was shown that, in the isolated α chains and α subunits within tetrameric hemoglobin, nearly one- and two-third escaping molecules of O2 leave the protein via xenon docking sites, respectively. The present experimental data support the idea that O2 molecule escapes from the β subunits mainly through the His(E7) gate, and show unambiguously that, in the α subunits, in addition to the direct E7 channel, there is at least one alternative escape route leading to the exterior via the xenon docking sites. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Comparison of recovery parameters for xenon versus other inhalation anesthetics: systematic review and meta-analysis.

    PubMed

    Hou, Bingzong; Li, Fujing; Ou, Shanshan; Yang, Lukun; Zhou, Shaopeng

    2016-03-01

    To summarize and evaluate the available data describing the recovery parameters of xenon anesthesia. Systematic review and meta-analysis. Anesthesia for elective surgeries. Systematic review of randomized controlled trials (RCTs) from databases including Medline (1964-2013), the Cochrane Central Register of Controlled Trials (CENTRAL, 1990-2012), and Google Scholar (1966-2013). Inhalation of xenon or other anesthetics was administered in elective surgery. Recovery parameters (time to recovery, alertness/sedation scale scores at "eye opening," bispectral index at "reaction on demand," time to extubation, and time to orientation). Eleven RCTs (N = 661 patients) met the inclusion criteria. Recovery from xenon anesthesia was significantly faster in terms of the time to eye opening (mean difference [MD], -4.18 minutes; 95% confidence interval [CI], -5.03 to -3.32 minutes; P < .00001), the time to reaction on demand (MD, -5.35 minutes; 95% CI, -6.59 to -4.11 minutes; P < .00001), the time to extubation (MD, -4.49 minutes; 95% CI, -5.40 to -3.58 minutes; P < .00001), and the time to orientation (MD, -4.99 minutes; 95% CI, -6.45 to -3.52 minutes; P < .00001). This meta-analysis confirmed that recovery from xenon anesthesia is faster than other inhalation anesthesia. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Measurement of light and charge yield of low-energy electronic recoils in liquid xenon

    NASA Astrophysics Data System (ADS)

    Goetzke, L. W.; Aprile, E.; Anthony, M.; Plante, G.; Weber, M.

    2017-11-01

    The dependence of the light and charge yield of liquid xenon on the applied electric field and recoil energy is important for dark matter detectors using liquid xenon time projections chambers. Few measurements have been made of this field dependence at recoil energies less than 10 keV. In this paper, we present results of such measurements using a specialized detector. Recoil energies are determined via the Compton coincidence technique at four drift fields relevant for liquid xenon dark matter detectors: 0.19, 0.48, 1.02, and 2.32 kV /cm . Mean recoil energies down to 1 keV were measured with unprecedented precision. We find that the charge and light yield are anticorrelated above ˜3 keV and that the field dependence becomes negligible below ˜6 keV . However, below 3 keV, we find a charge yield significantly higher than expectation and a reconstructed energy deviating from linearity.

  12. Glucose rapidly induces different forms of excitatory synaptic plasticity in hypothalamic POMC neurons.

    PubMed

    Hu, Jun; Jiang, Lin; Low, Malcolm J; Rui, Liangyou

    2014-01-01

    Hypothalamic POMC neurons are required for glucose and energy homeostasis. POMC neurons have a wide synaptic connection with neurons both within and outside the hypothalamus, and their activity is controlled by a balance between excitatory and inhibitory synaptic inputs. Brain glucose-sensing plays an essential role in the maintenance of normal body weight and metabolism; however, the effect of glucose on synaptic transmission in POMC neurons is largely unknown. Here we identified three types of POMC neurons (EPSC(+), EPSC(-), and EPSC(+/-)) based on their glucose-regulated spontaneous excitatory postsynaptic currents (sEPSCs), using whole-cell patch-clamp recordings. Lowering extracellular glucose decreased the frequency of sEPSCs in EPSC(+) neurons, but increased it in EPSC(-) neurons. Unlike EPSC(+) and EPSC(-) neurons, EPSC(+/-) neurons displayed a bi-phasic sEPSC response to glucoprivation. In the first phase of glucoprivation, both the frequency and the amplitude of sEPSCs decreased, whereas in the second phase, they increased progressively to the levels above the baseline values. Accordingly, lowering glucose exerted a bi-phasic effect on spontaneous action potentials in EPSC(+/-) neurons. Glucoprivation decreased firing rates in the first phase, but increased them in the second phase. These data indicate that glucose induces distinct excitatory synaptic plasticity in different subpopulations of POMC neurons. This synaptic remodeling is likely to regulate the sensitivity of the melanocortin system to neuronal and hormonal signals.

  13. Optogenetic Activation of the Sensorimotor Cortex Reveals "Local Inhibitory and Global Excitatory" Inputs to the Basal Ganglia.

    PubMed

    Ozaki, Mitsunori; Sano, Hiromi; Sato, Shigeki; Ogura, Mitsuhiro; Mushiake, Hajime; Chiken, Satomi; Nakao, Naoyuki; Nambu, Atsushi

    2017-12-01

    To understand how information from different cortical areas is integrated and processed through the cortico-basal ganglia pathways, we used optogenetics to systematically stimulate the sensorimotor cortex and examined basal ganglia activity. We utilized Thy1-ChR2-YFP transgenic mice, in which channelrhodopsin 2 is robustly expressed in layer V pyramidal neurons. We applied light spots to the sensorimotor cortex in a grid pattern and examined neuronal responses in the globus pallidus (GP) and entopeduncular nucleus (EPN), which are the relay and output nuclei of the basal ganglia, respectively. Light stimulation typically induced a triphasic response composed of early excitation, inhibition, and late excitation in GP/EPN neurons. Other response patterns lacking 1 or 2 of the components were also observed. The distribution of the cortical sites whose stimulation induced a triphasic response was confined, whereas stimulation of the large surrounding areas induced early and late excitation without inhibition. Our results suggest that cortical inputs to the GP/EPN are organized in a "local inhibitory and global excitatory" manner. Such organization seems to be the neuronal basis for information processing through the cortico-basal ganglia pathways, that is, releasing and terminating necessary information at an appropriate timing, while simultaneously suppressing other unnecessary information. © The Author 2017. Published by Oxford University Press.

  14. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity

    PubMed Central

    Srinivasa, Narayan; Cho, Youngkwan

    2014-01-01

    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns—both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity. PMID:25566045

  15. Xenon/remifentanil anesthesia protects against adverse effects of losartan on hemodynamic challenges induced by anesthesia and acute blood loss.

    PubMed

    Francis, Roland C E; Philippi-Höhne, Claudia; Klein, Adrian; Pickerodt, Philipp A; Reyle-Hahn, Matthias S; Boemke, Willehad

    2010-12-01

    The authors aimed to test the hypothesis that xenon anesthesia limits adverse hypotensive effects of losartan during acute hemorrhage. In six conscious unsedated Beagle dogs, the systemic and pulmonary circulation were monitored invasively, and two subsequent 60-min hypotensive challenges were performed by (a) induction (propofol) and maintenance of anesthesia with isoflurane/remifentanil or xenon/remifentanil and by (b) subsequent hemorrhage (20 mL kg⁻¹ within 5 min) from a central vein. The same amount of blood was retransfused 1 h after hemorrhage. Experiments were performed with or without acute angiotensin II receptor subtype 1 blockade by i.v. losartan (100 μg·kg⁻¹·min⁻¹) starting 45 min before induction of anesthesia. Four experiments were performed in each individual dog. Xenon/remifentanil anesthesia provided higher baseline mean arterial blood pressure (85 ± 6 mmHg) than isoflurane/remifentanil anesthesia (67 ± 3 mmHg). In losartan-treated animals, isoflurane/remifentanil caused significant hypotension (42 ± 4 mmHg for isoflurane/remifentanil vs. 71 ± 6 mmHg for xenon/remifentanil). Independent of losartan, hemorrhage did not induce any further reduction of mean arterial blood pressure or cardiac output in either group. Spontaneous hemodynamic recovery was observed in all groups before retransfusion was started. Losartan did not alter the adrenaline, noradrenaline, and vasopressin response to acute hemorrhage. Losartan potentiates hypotension induced by isoflurane/remifentanil anesthesia but does not affect the hemodynamic stability during xenon/remifentanil anesthesia. Losartan does not deteriorate the hemodynamic adaptation to hemorrhage of 20 mL kg⁻¹ during xenon/remifentanil and isoflurane/remifentanil anesthesia. Therefore, xenon/remifentanil anesthesia protects against circulatory side effects of losartan pretreatment and thus may afford safer therapeutic use of losartan during acute hemorrhage.

  16. Neuroprotection and neurotoxicity in the developing brain: an update on the effects of dexmedetomidine and xenon.

    PubMed

    Alam, Azeem; Suen, Ka Chun; Hana, Zac; Sanders, Robert D; Maze, Mervyn; Ma, Daqing

    Growing and consistent preclinical evidence, combined with early clinical epidemiological observations, suggest potentially neurotoxic effects of commonly used anesthetic agents in the developing brain. This has prompted the FDA to issue a safety warning for all sedatives and anesthetics approved for use in children under three years of age. Recent studies have identified dexmedetomidine, the potent α2-adrenoceptor agonist, and xenon, the noble gas, as effective anesthetic adjuvants that are both less neurotoxic to the developing brain, and also possess neuroprotective properties in neonatal and other settings of acute ongoing neurologic injury. Dexmedetomidine and xenon are effective anesthetic adjuvants that appear to be less neurotoxic than other existing agents and have the potential to be neuroprotective in the neonatal and pediatric settings. Although results from recent clinical trials and case reports have indicated the neuroprotective potential of xenon and dexmedetomidine, additional randomized clinical trials corroborating these studies are necessary. By reviewing both the existing preclinical and clinical evidence on the neuroprotective effects of dexmedetomidine and xenon, we hope to provide insight into the potential clinical efficacy of these agents in the management of pediatric surgical patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Carbamazepine and oxcarbazepine, but not eslicarbazepine, enhance excitatory synaptic transmission onto hippocampal CA1 pyramidal cells through an antagonist action at adenosine A1 receptors.

    PubMed

    Booker, Sam A; Pires, Nuno; Cobb, Stuart; Soares-da-Silva, Patrício; Vida, Imre

    2015-06-01

    This study assessed the anticonvulsant and seizure generation effects of carbamazepine (CBZ), oxcarbazepine (OXC) and eslicarbazepine (S-Lic) in wild-type mice. Electrophysiological recordings were made to discriminate potential cellular and synaptic mechanisms underlying anti- and pro-epileptic actions. The anticonvulsant and pro-convulsant effects were evaluated in the MES, the 6-Hz and the Irwin tests. Whole-cell patch-clamp recordings were used to investigate the effects on fast excitatory and inhibitory synaptic transmission in hippocampal area CA1. The safety window for CBZ, OXC and eslicarbazepine (ED50 value against the MES test and the dose that produces grade 5 convulsions in all mice), was 6.3, 6.0 and 12.5, respectively. At high concentrations the three drugs reduced synaptic transmission. CBZ and OXC enhanced excitatory postsynaptic currents (EPSCs) at low, therapeutically-relevant concentrations. These effects were associated with no change in inhibitory postsynaptic currents (IPSCs) resulting in altered balance between excitation and inhibition. S-Lic had no effect on EPSC or IPSC amplitudes over the same concentration range. The CBZ mediated enhancement of EPSCs was blocked by DPCPX, a selective antagonist, and occluded by CCPA, a selective agonist of the adenosine A1 receptor. Furthermore, reduction of endogenous adenosine by application of the enzyme adenosine deaminase also abolished the CBZ- and OXC-induced increase of EPSCs, indicating that the two drugs act as antagonists at native adenosine receptors. In conclusion, CBZ and OXC possess pro-epileptic actions at clinically-relevant concentrations through the enhancement of excitatory synaptic transmission. S-Lic by comparison has no such effect on synaptic transmission, explaining its lack of seizure exacerbation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The effect of propofol on CA1 pyramidal cell excitability and GABAA-mediated inhibition in the rat hippocampal slice.

    PubMed

    Albertson, T E; Walby, W F; Stark, L G; Joy, R M

    1996-05-24

    An in vitro paired-pulse orthodromic stimulation technique was used to examine the effects of propofol on excitatory afferent terminals, CA1 pyramidal cells and recurrent collateral evoked inhibition in the rat hippocampal slice. Hippocampal slices 400 microns thick were perfused with oxygenated artificial cerebrospinal fluid, and electrodes were placed in the CA1 region to record extracellular field population spike (PS) or excitatory postsynaptic potential (EPSP) responses to stimulation of Schaffer collateral/commissural fibers. Gamma-aminobutyric acid (GABA)-mediated recurrent inhibition was measured using a paired-pulse technique. The major effect of propofol (7-28 microM) was a dose and time dependent increase in the intensity and duration of GABA-mediated inhibition. This propofol effect could be rapidly and completely reversed by exposure to known GABAA antagonists, including picrotoxin, bicuculline and pentylenetetrazol. It was also reversed by the chloride channel antagonist, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). It was not antagonized by central (flumazenil) or peripheral (PK11195) benzodiazepine antagonists. Reversal of endogenous inhibition was also noted with the antagonists picrotoxin and pentylenetetrazol. Input/output curves constructed using stimulus propofol caused only a small enhancement of EPSPs at higher stimulus intensities but had no effect on PS amplitudes. These studies are consistent with propofol having a GABAA-chloride channel mechanism causing its effect on recurrent collateral evoked inhibition in the rat hippocampal slice.

  19. Xenon-Ion Drilling of Tungsten Films

    NASA Technical Reports Server (NTRS)

    Garner, C. E.

    1986-01-01

    High-velocity xenon ions used to drill holes of controlled size and distribution through tungsten layer that sheaths surface of controlled-porosity dispenser cathode of traveling wave-tube electron emitter. Controlled-porosity dispenser cathode employs barium/calcium/ aluminum oxide mixture that migrates through pores in cathode surface, thus coating it and reducing its work function. Rapid, precise drilling technique applied to films of other metals and used in other applications where micron-scale holes required. Method requires only few hours, as opposed to tens of hours by prior methods.

  20. Protection of xenon against postoperative oxygen impairment in adults undergoing Stanford Type-A acute aortic dissection surgery: Study protocol for a prospective, randomized controlled clinical trial.

    PubMed

    Jin, Mu; Cheng, Yi; Yang, Yanwei; Pan, Xudong; Lu, Jiakai; Cheng, Weiping

    2017-08-01

    The available evidence shows that hypoxemia after Stanford Type-A acute aortic dissection (AAD) surgery is a frequent cause of several adverse consequences. The pathogenesis of postoperative hypoxemia after AAD surgery is complex, and ischemia/reperfusion and inflammation are likely to be underlying risk factors. Xenon, recognized as an ideal anesthetic and anti-inflammatory treatment, might be a possible treatment for these adverse effects. The trial is a prospective, double-blind, 4-group, parallel, randomized controlled, a signal-center clinical trial. We will recruit 160 adult patients undergoing Stanford type-A AAD surgery. Patients will be allocated a study number and will be randomized on a 1:1:1:1 basis to receive 1 of the 3 treatment options (pulmonary inflated with 50% xenon, 75% xenon, or 100% xenon) or no treatment (control group, pulmonary inflated with 50% nitrogen). The aims of this study are to clarify the lung protection capability of xenon and its possible mechanisms in patients undergoing the Stanford type-A AAD surgery. This trial uses an innovative design to account for the xenon effects of postoperative oxygen impairment, and it also delineates the mechanism for any benefit from xenon. The investigational xenon group is considered a treatment intervention, as it includes 3 groups of pulmonary static inflation with 50%, 75%, and 100% xenon. It is suggested that future trials might define an appropriate concentration of xenon for the best practice intervention.

  1. Selective modulation of intracortical inhibition by low-intensity Theta Burst Stimulation.

    PubMed

    McAllister, S M; Rothwell, J C; Ridding, M C

    2009-04-01

    Theta Burst Stimulation (TBS) is a repetitive transcranial magnetic stimulation paradigm which has effects on both excitatory and inhibitory intracortical pathways when applied at an intensity of 80% of active motor threshold. As intracortical inhibitory pathways have a lower threshold for activation than excitatory pathways, we sought to determine whether it was possible to selectively target cortical inhibitory circuitry by reducing the intensity of TBS to 70% of active motor threshold. Motor evoked potentials (MEPs), short latency intracortical facilitation (SICF), intracortical facilitation (ICF) and short interval intracortical inhibition (SICI) were measured at baseline, 5-20 and 20-35 min following continuous (cTBS) and intermittent (iTBS) low-intensity TBS in nine healthy subjects. Low-intensity cTBS significantly reduced SICI 5-20 min following stimulation, whilst having no effect on MEPs, SICF or ICF. Low-intensity iTBS had no effect on SICI, MEPs, SICF or ICF. It is possible to selectively target intracortical inhibitory networks for modulation by low-intensity TBS, however, responses may critically depend upon the particular paradigm chosen. These findings have important implications for the treatment of neurological disorders where abnormal levels of intracortical inhibition are present, such as Parkinson's disease and focal hand dystonia and requires further investigation.

  2. Re-solution of xenon clusters in plutonium dioxide under the collision cascade impact: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Seitov, D. D.; Nekrasov, K. A.; Kupryazhkin, A. Ya.; Gupta, S. K.; Akilbekov, A. T.

    2017-09-01

    The interaction of xenon clusters with the collision cascades in the PuO2 crystals is investigated using the molecular dynamics simulation and the approximation of the pair interaction potentials. The potentials of interaction of Xe atoms with the surrounding particles in the crystal lattice are suggested, that are valid in the range of high collision energies. The cascades created by the recoil 235U ions formed as the plutonium α-decay product are considered, and the influence of such cascades on the structure of the xenon clusters is analyzed. It is shown, that the cascade-cluster interaction leads to release of the xenon atoms from the clusters and their subsequent re-solution in the crystal bulk.

  3. Xenon anaesthesia for patients undergoing off-pump coronary artery bypass graft surgery: a prospective randomized controlled pilot trial.

    PubMed

    Al Tmimi, L; Van Hemelrijck, J; Van de Velde, M; Sergeant, P; Meyns, B; Missant, C; Jochmans, I; Poesen, K; Coburn, M; Rex, S

    2015-10-01

    Off-pump coronary artery bypass (OPCAB) surgery carries a high risk for haemodynamic instability and perioperative organ injury. Favourable haemodynamic effects and organ-protective properties could render xenon an attractive anaesthetic for OPCAB surgery. The primary aim of this study was to assess whether xenon anaesthesia for OPCAB surgery is non-inferior to sevoflurane anaesthesia with regard to intraoperative vasopressor requirements. Forty-two patients undergoing elective OPCAB surgery were enrolled in this prospective, single-blind, randomized controlled pilot trial. Patients were randomized to either xenon (50-60 vol%) or sevoflurane (1.1-1.4 vol%) anaesthesia. Primary outcome was intraoperative noradrenaline requirements necessary to achieve predefined haemodynamic goals. Secondary outcomes included safety variables such as the occurrence of adverse events (intraoperatively and during a 6-month follow-up after surgery) and the perioperative cardiorespiratory and inflammatory profile. Baseline and intraoperative data did not differ between groups. Xenon was non-inferior to sevoflurane, as xenon patients required significantly less noradrenaline intraoperatively to achieve the predefined haemodynamic goals {geometric mean 428 [95% confidence interval (CI) 312, 588] vs 1702 [1267, 2285] µg, P<0.0001}. No differences were found for safety. Significantly more sevoflurane patients developed postoperative delirium (POD) (hazard ratio 4.2, P=0.044). The average arterial pressure was lower in the sevoflurane group {median75 [interquartile range (IQR) 6] vs 72 [4] mmHg, P=0.002}. No differences were found for other haemodynamic parameters, the respiratory profile and the perioperative release of inflammatory cytokines, troponin T, serum protein S-100β and erythropoietin. Compared with sevoflurane, xenon anaesthesia allows a significant reduction in vasopressor administration in OPCAB surgery. Moreover, xenon anaesthesia was associated with a lower risk for POD, a

  4. WE-AB-202-07: Ventilation CT: Voxel-Level Comparison with Hyperpolarized Helium-3 & Xenon-129 MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahir, B; Marshall, H; Hughes, P

    Purpose: To compare the spatial correlation of ventilation surrogates computed from inspiratory and expiratory breath-hold CT with hyperpolarized Helium-3 & Xenon-129 MRI in a cohort of lung cancer patients. Methods: 5 patients underwent expiration & inspiration breath-hold CT. Xenon-129 & {sup 1}H MRI were also acquired at the same inflation state as inspiratory CT. This was followed immediately by acquisition of Helium-3 & {sup 1}H MRI in the same breath and at the same inflation state as inspiratory CT. Expiration CT was deformably registered to inspiration CT for calculation of ventilation CT from voxel-wise differences in Hounsfield units. Inspiration CTmore » and the Xenon-129’s corresponding anatomical {sup 1}H MRI were registered to Helium-3 MRI via the same-breath anatomical {sup 1}H MRI. This enabled direct comparison of CT ventilation with Helium-3 MRI & Xenon-129 MRI for the median values in corresponding regions of interest, ranging from finer to coarser in-plane dimensions of 10 by 10, 20 by 20, 30 by 30 and 40 by 40, located within the lungs as defined by the same-breath {sup 1}H MRI lung mask. Spearman coefficients were used to assess voxel-level correlation. Results: The median Spearman’s coefficients of ventilation CT with Helium-3 & Xenon-129 MRI for ROIs of 10 by 10, 20 by 20, 30 by 30 and 40 by 40 were 0.52, 0.56, 0.60 and 0.68 and 0.40, 0.42, 0.52 and 0.70, respectively. Conclusion: This work demonstrates a method of acquiring CT & hyperpolarized gas MRI (Helium-3 & Xenon-129 MRI) in similar breath-holds to enable direct spatial comparison of ventilation maps. Initial results show moderate correlation between ventilation CT & hyperpolarized gas MRI, improving for coarser regions which could be attributable to the inherent noise in CT intensity, non-ventilatory effects and registration errors at the voxel-level. Thus, it may be more beneficial to quantify ventilation at a more regional level.« less

  5. Low-Energy Sputtering Studies of Boron Nitride with Xenon Ions

    NASA Technical Reports Server (NTRS)

    Ray, P. K.; Shutthanandan, V.

    1999-01-01

    Sputtering of boron nitride with xenon ions was investigated using secondary ion (SIMS) and secondary neutral (SNMS) mass spectrometry. The ions generated from the ion gun were incident on the target at an angle of 50' with respect to the surface'normal. The energy of ions ranged from 100 eV to 3 keV. A flood electron gun was used to neutralize the positive charge build-up on the target surface. The intensities of sputtered neutral and charged particles, including single atoms, molecules, and clusters, were measured as a function of ion energy. Positive SIMS spectra were dominated by the two boron isotopes whereas BN- and B- were the two major constituents of the negative SIMS spectra. Nitrogen could be detected only in the SNMS spectra. The intensity-energy curves of the sputtered particles were similar in shape. The knees in P-SIMS and SNMS intensity-energy curves appear at around I keV which is significantly higher that 100 to 200 eV energy range at which knees appear in the sputtering of medium and heavy elements by ions of argon and xenon. This difference in the position of the sputter yield knee between boron nitride and heavier targets is due to the reduced ion energy differences. The isotopic composition of secondary ions of boron were measured by bombarding boron nitride with xenon ions at energies ranging from 100 eV to 1.5 keV using a quadrupole mass spectrometer. An ion gun was used to generate the ion beam. A flood electron gun was used to neutralize the positive charge buildup on the target surface. The secondary ion flux was found to be enriched in heavy isotopes at lower incident ion energies. The heavy isotope enrichment was observed to decrease with increasing primary ion energy. Beyond 350 eV, light isotopes were sputtered preferentially with the enrichment increasing to an asymptotic value of 1.27 at 1.5 keV. The trend is similar to that of the isotopic enrichment observed earlier when copper was sputtered with xenon ions in the same energy

  6. Simplified Ion Thruster Xenon Feed System for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Randolph, Thomas M.; Hofer, Richard R.; Goebel, Dan M.

    2009-01-01

    The successful implementation of ion thruster technology on the Deep Space 1 technology demonstration mission paved the way for its first use on the Dawn science mission, which launched in September 2007. Both Deep Space 1 and Dawn used a "bang-bang" xenon feed system which has proven to be highly successful. This type of feed system, however, is complex with many parts and requires a significant amount of engineering work for architecture changes. A simplified feed system, with fewer parts and less engineering work for architecture changes, is desirable to reduce the feed system cost to future missions. An attractive new path for ion thruster feed systems is based on new components developed by industry in support of commercial applications of electric propulsion systems. For example, since the launch of Deep Space 1 tens of mechanical xenon pressure regulators have successfully flown on commercial spacecraft using electric propulsion. In addition, active proportional flow controllers have flown on the Hall-thruster-equipped Tacsat-2, are flying on the ion thruster GOCE mission, and will fly next year on the Advanced EHF spacecraft. This present paper briefly reviews the Dawn xenon feed system and those implemented on other xenon electric propulsion flight missions. A simplified feed system architecture is presented that is based on assembling flight-qualified components in a manner that will reduce non-recurring engineering associated with propulsion system architecture changes, and is compared to the NASA Dawn standard. The simplified feed system includes, compared to Dawn, passive high-pressure regulation, a reduced part count, reduced complexity due to cross-strapping, and reduced non-recurring engineering work required for feed system changes. A demonstration feed system was assembled using flight-like components and used to operate a laboratory NSTAR-class ion engine. Feed system components integrated into a single-string architecture successfully operated

  7. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics.

    PubMed

    Uzunova, Genoveva; Pallanti, Stefano; Hollander, Eric

    2016-04-01

    Imbalance between excitation and inhibition and increased excitatory-inhibitory (E-I) ratio is a common mechanism in autism spectrum disorders (ASD) that is responsible for the learning and memory, cognitive, sensory, motor deficits, and seizures occurring in these disorders. ASD are very heterogeneous and better understanding of E-I imbalance in brain will lead to better diagnosis and treatments. We perform a critical literature review of the causes and presentations of E-I imbalance in ASD. E-I imbalance in ASD is due primarily to abnormal glutamatergic and GABAergic neurotransmission in key brain regions such as neocortex, hippocampus, amygdala, and cerebellum. Other causes are due to dysfunction of neuropeptides (oxytocin), synaptic proteins (neuroligins), and immune system molecules (cytokines). At the neuropathological level E-I imbalance in ASD is presented as a "minicolumnopathy". E-I imbalance alters the manner by which the brain processes information and regulates behaviour. New developments for investigating E-I imbalance such as optogenetics and transcranial magnetic stimulation (TMS) are presented. Non-invasive brain stimulation methods such as TMS for treatment of the core symptoms of ASD are discussed. Understanding E-I imbalance has important implications for developing better pharmacological and behavioural treatments for ASD, including TMS, new drugs, biomarkers and patient stratification.

  8. Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks

    NASA Astrophysics Data System (ADS)

    Avice, G.; Marty, B.; Burgess, R.; Hofmann, A.; Philippot, P.; Zahnle, K.; Zakharov, D.

    2018-07-01

    We have analyzed ancient atmospheric gases trapped in fluid inclusions contained in minerals of Archean (3.3 Ga) to Paleozoic (404 Ma) rocks in an attempt to document the evolution of the elemental composition and isotopic signature of the atmosphere with time. Doing so, we aimed at understanding how physical and chemical processes acted over geological time to shape the modern atmosphere. Modern atmospheric xenon is enriched in heavy isotopes by 30-40‰ u-1 relative to Solar or Chondritic xenon. Previous studies demonstrated that, 3.3 Ga ago, atmospheric xenon was isotopically fractionated (enriched in the light isotopes) relative to the modern atmosphere, by 12.9 ± 1.2 (1σ) ‰ u-1, whereas krypton was isotopically identical to modern atmospheric Kr. Details about the specific and progressive isotopic fractionation of Xe during the Archean, originally proposed by Pujol et al. (2011), are now well established by this work. Xe isotope fractionation has evolved from 21‰ u-1 at 3.5 Ga to 12.9‰ u-1 at 3.3 Ga. The current dataset provides some evidence for stabilization of the Xe fractionation between 3.3 and 2.7 Ga. However, further studies will be needed to confirm this observation. After 2.7 Ga, the composition kept evolving and reach the modern-like atmospheric Xe composition at around 2.1 Ga ago. Xenon may be the second atmospheric element, after sulfur, to show a secular isotope evolution during the Archean that ended shortly after the Archean-Proterozoic transition. Fractionation of xenon indicates that xenon escaped from Earth, probably as an ion, and that Xe escape stopped when the atmosphere became oxygen-rich. We speculate that the Xe escape was enabled by a vigorous hydrogen escape on the early anoxic Earth. Organic hazes, scavenging isotopically heavy Xe, could also have played a role in the evolution of atmospheric Xe. For 3.3 Ga-old samples, Ar-N2 correlations are consistent with a partial pressure of nitrogen (pN2) in the Archean atmosphere

  9. Energy and Emission Characteristics of a Short-Arc Xenon Flash Lamp Under "Saturated" Optical Brightness Conditions

    NASA Astrophysics Data System (ADS)

    Kamrukov, A. S.; Kireev, S. G.; Kozlov, N. P.; Shashkovskii, S. G.

    2017-09-01

    We present the results of a study of the electrical, energy, and spectral brightness characteristics of an experimental three-electrode high-pressure xenon flash lamp under conditions ensuring close to maximum possible spectral brightness for the xenon emission. We show that under saturated optical brightness conditions (brightness temperature in the visible region of the spectrum 30,000 K), emission of a pulsed discharge in xenon is quite different from the emission from an ideal blackbody: the maximum brightness temperatures are 24,000 K in the short-wavelength UV region and 19,000 K in the near IR range. The relative fraction of UV radiation in the emission spectrum of the lamp is >50%, which lets us consider such lamps as promising broadband sources of radiation with high spectral brightness for many important practical applications.

  10. Relaxation times measurement in single and multiply excited xenon clusters

    NASA Astrophysics Data System (ADS)

    Serdobintsev, P. Yu.; Melnikov, A. S.; Pastor, A. A.; Timofeev, N. A.; Khodorkovskiy, M. A.

    2018-05-01

    Direct measurement of the rates of nonradiative relaxation processes in electronically excited xenon clusters was carried out. The clusters were created in a pulsed supersonic beam and two-photon excited by femtosecond laser pulses with a wavelength of 263 nm. The measurements were performed using the pump-probe method and electron spectroscopy. It is shown that relaxation of light clusters XeN (N < 15) predominantly occurs by desorption of excited xenon atoms with a characteristic time constant of 3 ps. Heavier electronically excited clusters (N > 10) vibrationally relax to the lowest electronically excited state at a rate of about 0.075 eV/ps. Multiply excited clusters are deactivated via energy exchange between excited centers with the ionization of one of them. The production of electrons in this process occurs with a delay of ˜4 ps from the pump pulse, and the process is completed in 10 ps.

  11. Primary afferent activity, putative excitatory transmitters and extracellular potassium levels in frog spinal cord.

    PubMed Central

    Davidoff, R A; Hackman, J C; Holohean, A M; Vega, J L; Zhang, D X

    1988-01-01

    1. Changes in extracellular K+ activity were measured with ion-selective microelectrodes in the grey matter of the isolated hemisected frog spinal cord. The magnitude of the elevation of [K+]o (delta[K+]o) produced by repetitive stimulation (25 Hz, 10 s) of afferent fibres in the sciatic nerve was monotonically related to the strength of the electrical stimuli applied to the sciatic nerve. Repetitive stimulation of the largest diameter A alpha and A beta fibres, which were found histologically to comprise only 11% of the afferent axons in the dorsal root, elevated [K+]o to approximately 60% of the maximum level seen when all afferent fibres were stimulated. 2. Addition of Mg2+ (20 mM) to Ringer solution devoid of Mg2+ reduced delta[K+]o by over 85% suggesting that about 15% of delta[K+]o results from action potentials in presynaptic primary afferents. When 20 mM-Mg2+ was added to spinal cords bathed in Ringer solution containing a physiological (i.e. 1.0 mM) concentration of Mg2+, delta[K+]o was reduced by ca. 65-75% indicating that in spinal cords bathed in medium containing 'physiological' concentrations of Mg2+ about 25-35% of the K+ is released from primary afferent fibres. 3. Application of excitatory amino acids and agonists increased [K+]o with the following potency pattern: quisqualate greater than kainate greater than NMDA (N-methyl-D-aspartate) greater than glutamate greater than aspartate. 4. D(-)-2-Amino-5-phosphonovalerate (APV), an NMDA antagonist, reduced [K+]o by only about 50%, but kynurenate, an NMDA and non-NMDA antagonist, reduced [K+]o by approximately 85%; i.e. the same levels observed when synaptic transmission was blocked with 20 mM-Mg2+. These findings support the idea that synaptic release of excitatory amino acids such as L-glutamate and/or L-aspartate and subsequent activation of specific receptors by these putative transmitters are necessary for the postsynaptic component of delta[K+]o. 5. Addition of tachykinins elevated [K+]o but the

  12. Primary afferent activity, putative excitatory transmitters and extracellular potassium levels in frog spinal cord.

    PubMed

    Davidoff, R A; Hackman, J C; Holohean, A M; Vega, J L; Zhang, D X

    1988-03-01

    1. Changes in extracellular K+ activity were measured with ion-selective microelectrodes in the grey matter of the isolated hemisected frog spinal cord. The magnitude of the elevation of [K+]o (delta[K+]o) produced by repetitive stimulation (25 Hz, 10 s) of afferent fibres in the sciatic nerve was monotonically related to the strength of the electrical stimuli applied to the sciatic nerve. Repetitive stimulation of the largest diameter A alpha and A beta fibres, which were found histologically to comprise only 11% of the afferent axons in the dorsal root, elevated [K+]o to approximately 60% of the maximum level seen when all afferent fibres were stimulated. 2. Addition of Mg2+ (20 mM) to Ringer solution devoid of Mg2+ reduced delta[K+]o by over 85% suggesting that about 15% of delta[K+]o results from action potentials in presynaptic primary afferents. When 20 mM-Mg2+ was added to spinal cords bathed in Ringer solution containing a physiological (i.e. 1.0 mM) concentration of Mg2+, delta[K+]o was reduced by ca. 65-75% indicating that in spinal cords bathed in medium containing 'physiological' concentrations of Mg2+ about 25-35% of the K+ is released from primary afferent fibres. 3. Application of excitatory amino acids and agonists increased [K+]o with the following potency pattern: quisqualate greater than kainate greater than NMDA (N-methyl-D-aspartate) greater than glutamate greater than aspartate. 4. D(-)-2-Amino-5-phosphonovalerate (APV), an NMDA antagonist, reduced [K+]o by only about 50%, but kynurenate, an NMDA and non-NMDA antagonist, reduced [K+]o by approximately 85%; i.e. the same levels observed when synaptic transmission was blocked with 20 mM-Mg2+. These findings support the idea that synaptic release of excitatory amino acids such as L-glutamate and/or L-aspartate and subsequent activation of specific receptors by these putative transmitters are necessary for the postsynaptic component of delta[K+]o. 5. Addition of tachykinins elevated [K+]o but the

  13. Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Vidal, J. Muñoz

    2013-03-01

    The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Σm{sub ν} = (0.32±0.11) eV. This result, if confirmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m{sub ββ} involved in neutrinoless double beta decay (ββ0ν) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based ββ0ν experiments, on themore » double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg·year, could already have a sizeable opportunity to observe ββ0ν events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton·year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely.« less

  14. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    PubMed

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. Published by Elsevier Inc.

  15. Calcium Channel α2δ1 Proteins Mediate Trigeminal Neuropathic Pain States Associated with Aberrant Excitatory Synaptogenesis*

    PubMed Central

    Li, Kang-Wu; Yu, Yanhui Peter; Zhou, Chunyi; Kim, Doo-Sik; Lin, Bin; Sharp, Kelli; Steward, Oswald; Luo, Z. David

    2014-01-01

    To investigate a potential mechanism underlying trigeminal nerve injury-induced orofacial hypersensitivity, we used a rat model of chronic constriction injury to the infraorbital nerve (CCI-ION) to study whether CCI-ION caused calcium channel α2δ1 (Cavα2δ1) protein dysregulation in trigeminal ganglia and associated spinal subnucleus caudalis and C1/C2 cervical dorsal spinal cord (Vc/C2). Furthermore, we studied whether this neuroplasticity contributed to spinal neuron sensitization and neuropathic pain states. CCI-ION caused orofacial hypersensitivity that correlated with Cavα2δ1 up-regulation in trigeminal ganglion neurons and Vc/C2. Blocking Cavα2δ1 with gabapentin, a ligand for the Cavα2δ1 proteins, or Cavα2δ1 antisense oligodeoxynucleotides led to a reversal of orofacial hypersensitivity, supporting an important role of Cavα2δ1 in orofacial pain processing. Importantly, increased Cavα2δ1 in Vc/C2 superficial dorsal horn was associated with increased excitatory synaptogenesis and increased frequency, but not the amplitude, of miniature excitatory postsynaptic currents in dorsal horn neurons that could be blocked by gabapentin. Thus, CCI-ION-induced Cavα2δ1 up-regulation may contribute to orofacial neuropathic pain states through abnormal excitatory synapse formation and enhanced presynaptic excitatory neurotransmitter release in Vc/C2. PMID:24459143

  16. Differentiation and Characterization of Excitatory and Inhibitory Synapses by Cryo-electron Tomography and Correlative Microscopy

    PubMed Central

    Sun, Rong; Zhang, Bin; Qi, Lei; Shivakoti, Sakar; Tian, Chong-Li; Lau, Pak-Ming

    2018-01-01

    As key functional units in neural circuits, different types of neuronal synapses play distinct roles in brain information processing, learning, and memory. Synaptic abnormalities are believed to underlie various neurological and psychiatric disorders. Here, by combining cryo-electron tomography and cryo-correlative light and electron microscopy, we distinguished intact excitatory and inhibitory synapses of cultured hippocampal neurons, and visualized the in situ 3D organization of synaptic organelles and macromolecules in their native state. Quantitative analyses of >100 synaptic tomograms reveal that excitatory synapses contain a mesh-like postsynaptic density (PSD) with thickness ranging from 20 to 50 nm. In contrast, the PSD in inhibitory synapses assumes a thin sheet-like structure ∼12 nm from the postsynaptic membrane. On the presynaptic side, spherical synaptic vesicles (SVs) of 25–60 nm diameter and discus-shaped ellipsoidal SVs of various sizes coexist in both synaptic types, with more ellipsoidal ones in inhibitory synapses. High-resolution tomograms obtained using a Volta phase plate and electron filtering and counting reveal glutamate receptor-like and GABAA receptor-like structures that interact with putative scaffolding and adhesion molecules, reflecting details of receptor anchoring and PSD organization. These results provide an updated view of the ultrastructure of excitatory and inhibitory synapses, and demonstrate the potential of our approach to gain insight into the organizational principles of cellular architecture underlying distinct synaptic functions. SIGNIFICANCE STATEMENT To understand functional properties of neuronal synapses, it is desirable to analyze their structure at molecular resolution. We have developed an integrative approach combining cryo-electron tomography and correlative fluorescence microscopy to visualize 3D ultrastructural features of intact excitatory and inhibitory synapses in their native state. Our approach shows

  17. Differentiation and Characterization of Excitatory and Inhibitory Synapses by Cryo-electron Tomography and Correlative Microscopy.

    PubMed

    Tao, Chang-Lu; Liu, Yun-Tao; Sun, Rong; Zhang, Bin; Qi, Lei; Shivakoti, Sakar; Tian, Chong-Li; Zhang, Peijun; Lau, Pak-Ming; Zhou, Z Hong; Bi, Guo-Qiang

    2018-02-07

    As key functional units in neural circuits, different types of neuronal synapses play distinct roles in brain information processing, learning, and memory. Synaptic abnormalities are believed to underlie various neurological and psychiatric disorders. Here, by combining cryo-electron tomography and cryo-correlative light and electron microscopy, we distinguished intact excitatory and inhibitory synapses of cultured hippocampal neurons, and visualized the in situ 3D organization of synaptic organelles and macromolecules in their native state. Quantitative analyses of >100 synaptic tomograms reveal that excitatory synapses contain a mesh-like postsynaptic density (PSD) with thickness ranging from 20 to 50 nm. In contrast, the PSD in inhibitory synapses assumes a thin sheet-like structure ∼12 nm from the postsynaptic membrane. On the presynaptic side, spherical synaptic vesicles (SVs) of 25-60 nm diameter and discus-shaped ellipsoidal SVs of various sizes coexist in both synaptic types, with more ellipsoidal ones in inhibitory synapses. High-resolution tomograms obtained using a Volta phase plate and electron filtering and counting reveal glutamate receptor-like and GABA A receptor-like structures that interact with putative scaffolding and adhesion molecules, reflecting details of receptor anchoring and PSD organization. These results provide an updated view of the ultrastructure of excitatory and inhibitory synapses, and demonstrate the potential of our approach to gain insight into the organizational principles of cellular architecture underlying distinct synaptic functions. SIGNIFICANCE STATEMENT To understand functional properties of neuronal synapses, it is desirable to analyze their structure at molecular resolution. We have developed an integrative approach combining cryo-electron tomography and correlative fluorescence microscopy to visualize 3D ultrastructural features of intact excitatory and inhibitory synapses in their native state. Our approach shows

  18. Xenon triggers pro-inflammatory effects and suppresses the anti-inflammatory response compared to sevoflurane in patients undergoing cardiac surgery.

    PubMed

    Breuer, Thomas; Emontzpohl, Christoph; Coburn, Mark; Benstoem, Carina; Rossaint, Rolf; Marx, Gernot; Schälte, Gereon; Bernhagen, Juergen; Bruells, Christian S; Goetzenich, Andreas; Stoppe, Christian

    2015-10-15

    Cardiac surgery encompasses various stimuli that trigger pro-inflammatory mediators, reactive oxygen species and mobilization of leucocytes. The aim of this study was to evaluate the effect of xenon on the inflammatory response during cardiac surgery. This randomized trial enrolled 30 patients who underwent elective on-pump coronary-artery bypass grafting in balanced anaesthesia of either xenon or sevoflurane. For this secondary analysis, blood samples were drawn prior to the operation, intra-operatively and on the first post-operative day to measure the pro- and anti-inflammatory cytokines interleukin-6 (IL-6), interleukin-8/C-X-C motif ligand 8 (IL-8/CXCL8), and interleukin-10 (IL-10). Chemokines such as C-X-C motif ligand 12/ stromal cell-derived factor-1α (CXCL12/SDF-1α) and macrophage migration inhibitory factor (MIF) were measured to characterize xenon's perioperative inflammatory profile and its impact on migration of peripheral blood mononuclear cells (PBMC). Xenon enhanced the postoperative increase of IL-6 compared to sevoflurane (Xenon: 90.7 versus sevoflurane: 33.7 pg/ml; p = 0.035) and attenuated the increase of IL-10 (Xenon: 127.9 versus sevoflurane: 548.3 pg/ml; p = 0.028). Both groups demonstrated a comparable intraoperative increase of oxidative stress (intra-OP: p = 0.29; post-OP: p = 0.65). While both groups showed an intraoperative increase of the cardioprotective mediators MIF and CXCL12/SDF-1α, only MIF levels decreased in the xenon group on the first postoperative day (50.0 ng/ml compared to 23.3 ng/ml; p = 0.012), whereas it remained elevated after sevoflurane anaesthesia (58.3 ng/ml to 53.6 ng/ml). Effects of patients' serum on chemotactic migration of peripheral mononuclear blood cells taken from healthy volunteers indicated a tendency towards enhanced migration after sevoflurane anaesthesia (p = 0.07). Compared to sevoflurane, balanced xenon anaesthesia triggers pro-inflammatory effects and suppresses the anti-inflammatory response in

  19. Control of CA3 output by feedforward inhibition despite developmental changes in the excitation-inhibition balance.

    PubMed

    Torborg, Christine L; Nakashiba, Toshiaki; Tonegawa, Susumu; McBain, Chris J

    2010-11-17

    In somatosensory cortex, the relative balance of excitation and inhibition determines how effectively feedforward inhibition enforces the temporal fidelity of action potentials. Within the CA3 region of the hippocampus, glutamatergic mossy fiber (MF) synapses onto CA3 pyramidal cells (PCs) provide strong monosynaptic excitation that exhibit prominent facilitation during repetitive activity. We demonstrate in the juvenile CA3 that MF-driven polysynaptic IPSCs facilitate to maintain a fixed EPSC-IPSC ratio during short-term plasticity. In contrast, in young adult mice this MF-driven polysynaptic inhibitory input can facilitate or depress in response to short trains of activity. Transgenic mice lacking the feedback inhibitory loop continue to exhibit both facilitating and depressing polysynaptic IPSCs, indicating that this robust inhibition is not caused by the secondary engagement of feedback inhibition. Surprisingly, eliminating MF-driven inhibition onto CA3 pyramidal cells by blockade of GABA(A) receptors did not lead to a loss of temporal precision of the first action potential observed after a stimulus but triggered in many cases a long excitatory plateau potential capable of triggering repetitive action potential firing. These observations indicate that, unlike other regions of the brain, the temporal precision of single MF-driven action potentials is dictated primarily by the kinetics of MF EPSPs, not feedforward inhibition. Instead, feedforward inhibition provides a robust regulation of CA3 PC excitability across development to prevent excessive depolarization by the monosynaptic EPSP and multiple action potential firings.

  20. Facile xenon capture and release at room temperature using a metal-organic framework: a comparison with activated charcoal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thallapally, Praveen K.; Grate, Jay W.; Motkuri, Radha K.

    2012-01-11

    Two well known Metal organic frameworks (MOF-5, NiDOBDC) were synthesized and studied for facile xenon capture and separation. Our results indicate the NiDOBDC adsorbs significantly more xenon than MOF-5, releases it more readily than activated carbon, and is more selective for Xe over Kr than activated carbon.