Sample records for xenon-133 ventilation study

  1. Intrabullous ventilation in pulmonary emphysema: assessment with dynamic xenon-133 gas SPECT.

    PubMed

    Suga, Kazuyoshi; Iwanaga, Hideyuki; Tokuda, Osamu; Okada, Munemasa; Matsunaga, Naofumi

    2012-04-01

    Intrabullous ventilation in patients with pulmonary emphysema (PE) was cross-sectionally evaluated using dynamic xenon-133 gas single photon emission computed tomography (SPECT). Fifty-two patients with PE with a total of 109 bullae of more than 4 cm in maximum diameter underwent xenon-133 gas SPECT. The real xenon-133 gas half-clearance time (T1/2) at each bulla was compared with that at the surrounding lung in the same lobe. The emphysema subtype of the surrounding lung was classified into centrilobular, panlobular, and paraseptal on computed tomography (CT). All bullae except for one in all patients showed xenon-133 gas wash-in. Of the 108 bullae with wash-in, 95 (87.9%) bullae in 46 (88%) patients showed marked xenon-133 gas retention with a T1/2 beyond 110 s (mean: 184 s ± 91). The surrounding lungs of these bullae also showed marked retention with a T1/2 of greater than 100 s (mean: 174 s ± 82), and the majority (N=92, 96.8%) were centrilobular or panlobular on CT. The remaining 13 (12.0%) bullae in six (11%) patients showed minimal retention with a T1/2 of less than 80 s (mean: 62 s ± 11), regardless of no significant difference in size compared with the bullae with marked retention. All the surrounding lungs of these bullae except for one also showed minimal retention with a T1/2 of less than 70 s (mean: 60 s ± 18), which was significantly less compared with that of the bullae with marked retention (P<0.0001), and the majority (N=11, 84.6%) were paraseptal with or without an interstitially fibrotic change and predominantly located at the lower lung lobe on CT. The T1/2 of the 108 bullae with xenon-133 gas wash-in was significantly correlated with that of the surrounding lungs (r=0.884, P<0.0001). Intrabullous ventilation in patients with PE appears to depend on the ventilation status of the surrounding lung, and bullae with the surrounding lungs of paraseptal-type emphysema tend to show minimal air trapping. Xenon-133 gas SPECT is useful for assessment of the interaction between intrabullous and surrounding lung's ventilation, which is difficult on CT.

  2. Preparation of sterile xenon-133 in saline for tissue perfusion studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiPiazza, H.J.; Harbert, J.C.

    1983-11-01

    A simple, inexpensive method of obtaining Xe-133 in sterile saline is presented. The method uses commercial xenon ampules supplied for pulmonary ventilation studies. As much as 10% of the gas activity can be recovered per aliquot by cooling the saline to 4/sup 0/C. The specific activities obtained are adequate for most tissue perfusion studies.

  3. 133Xe contamination found in internal bacteria filter of xenon ventilation system.

    PubMed

    Hackett, Michael T; Collins, Judith A; Wierzbinski, Rebecca S

    2003-09-01

    We report on (133)Xe contamination found in the reusable internal bacteria filter of our xenon ventilation system. Internal bacteria filters (n = 6) were evaluated after approximately 1 mo of normal use. The ventilation system was evacuated twice to eliminate (133)Xe in the system before removal of the filter. Upon removal, the filter was monitored using a survey meter with an energy-compensated probe and was imaged on a scintillation camera. The filter was monitored and imaged over several days and was stored in a fume hood. Estimated (133)Xe activity in each filter immediately after removal ranged from 132 to 2,035 kBq (3.6-55.0 micro Ci), based on imaging. Initial surface radiation levels ranged from 0.4 to 4.5 micro Sv/h (0.04-0.45 mrem/h). The (133)Xe activity did not readily leave the filter over time (i.e., time to reach half the counts of the initial decay-corrected image ranged from <6 to >72 h). The majority of the image counts (approximately 70%) were seen in 2 distinctive areas in the filter. They corresponded to sites where the manufacturer used polyurethane adhesive to attach the fiberglass filter medium to the filter housing. (133)Xe contamination within the reusable internal bacteria filter of our ventilation system was easily detected by a survey meter and imaging. Although initial activities and surface radiation levels were low, radiation safety practices would dictate that a (133)Xe-contaminated bacteria filter be stored preferably in a fume hood until it cannot be distinguished from background before autoclaving or disposal.

  4. Effect of stratified inequality of blood flow on gas exchange in liquid-filled lungs.

    NASA Technical Reports Server (NTRS)

    West, J. B.; Maloney, J. E.; Castle, B. L.

    1972-01-01

    This investigation set out to answer two questions: (1) are the distal alveoli in the terminal lung units less well perfused than the proximal alveoli, i.e., is there stratification of blood flow; and (2) if so, does this enhance gas exchange in the presence of stratified inequality of ventilation. Excised dog lungs were ventilated with saline and perfused with blood. Following single inspirations of xenon 133 in saline and various periods of breath holding, the expired xenon concentration against volume was measured and it confirmed marked stratified inequality of ventilation under these conditions. By measuring the rate of depletion of xenon from alveoli during a period of blood flow, we showed that the alveoli which emptied at the end of expiration had 16% less blood flow than those exhaling earlier. However, by measuring the xenon concentration in pulmonary venous blood, we found that about 10% less tracer was transferred from the alveoli into the blood when the inspired xenon was stratified within the respiratory zone. Thus while stratification of blood flow was confirmed, it was shown to impair rather than enhance the efficiency of gas transfer.

  5. Radioaerosol lung imaging in chronic obstructive pulmonary disease. Comparison with pulmonary function tests and roentgenography. [/sup 113m/In, /sup 99m/Tc, /sup 133/Xe tracer techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanna, L.; Tashkin, D.P.; Taplin, G.V.

    1975-11-01

    Seventy subjects with either no, mild, or definite evidence of pulmonary abnormality on screening studies volunteered to have detailed pulmonary function tests (PFTs), respiratory questionnaires, physical examinations, and /sup 113m/indium aerosol-inhalation lung imaging performed. Also, 22 and 52 of these subjects underwent /sup 133/xenon ventilation and lung perfusion imaging with /sup 99m/technetium-labelled macroaggregated albumin, and 56 had chest x-ray examinations performed. Results of the radionuclide lung-imaging procedures were compared with those of conventional PFTs and other clinical diagnostic procedures used to identify chronic obstructive pulmonary disease (COPD). Abnormal radioaerosol patterns were found in 32 of 33 subjects with abnormal findingsmore » on PFTs, whereas results of PFTs were abnormal in only 32 of 46 subjects with abnormal aerosol deposition. Aerosol lung images were abnormal more frequently than respiratory questionnaire responses, findings on physical examination, chest x-ray films, and perfusion lung images and with approximately the same frequency as /sup 133/xenon ventilation scintiscans. These results suggest that radioaerosol lung imaging may be a more sensitive indicator of early COPD than other diagnostic procedures, including maximal midexpiratory flow rates, single-breath nitrogen washout, and closing volume. Further studies are required to determine the physiologic and pathologic significance of isolated aerosol lung-imaging abnormalities.« less

  6. Idiopathic pulmonary fibrosis. A rare cause of scintigraphic ventilation-perfusion mismatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pochis, W.T.; Krasnow, A.Z.; Collier, B.D.

    1990-05-01

    A case of idiopathic pulmonary fibrosis with multiple areas of mismatch on ventilation-perfusion lung imaging in the absence of pulmonary embolism is presented. Idiopathic pulmonary fibrosis is one of the few nonembolic diseases producing a pulmonary ventilation-perfusion mismatch. In this condition, chest radiographs may not detect the full extent of disease, and xenon-133 ventilation imaging may be relatively insensitive to morbid changes in small airways. Thus, when examining patients with idiopathic pulmonary fibrosis, one should be aware that abnormal perfusion imaging patterns without matching ventilation abnormalities are not always due to embolism. In this setting, contrast pulmonary angiography is oftenmore » needed for accurate differential diagnosis.« less

  7. Pectus excavatum in children: pulmonary scintigraphy before and after corrective surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blickman, J.G.; Rosen, P.R.; Welch, K.J.

    1985-09-01

    Regional distribution of pulmonary function was evaluated preoperatively and postoperatively with xenon-133 perfusion and ventilation scintigraphy in 17 patients with pectus excavatum. Ventilatory preoperative studies were abnormal in 12 of 17 patients, resolving in seven of 12 postoperatively. Perfusion scans were abnormal in ten of 17 patients preoperatively; six of ten showed improvement postoperatively. Ventilation-perfusion ratios were abnormal in ten of 17 patients, normalizing postoperatively in six of ten. Symmetry of ventilation-perfusion ratio images improved in six out of nine in the latter group. The distribution of regional lung function in pectus excavatum can be evaluated preoperatively to support indicationsmore » for surgery. Postoperative improvement can be documented by physiological changes produced by the surgical correction.« less

  8. New insight into the assessment of asthma using xenon ventilation computed tomography.

    PubMed

    Jung, Jae-Woo; Kwon, Jae-Woo; Kim, Tae-Wan; Lee, So-Hee; Kim, Kyung-Mook; Kang, Hye-Ryun; Park, Heung-Woo; Lee, Chang-Hyun; Goo, Jin-Mo; Min, Kyung-Up; Cho, Sang-Heon

    2013-08-01

    Image analyses include computed tomography (CT), magnetic resonance imaging, and xenon ventilation CT, which is new modality to evaluate pulmonary functional imaging. To examine the usefulness of dual-energy xenon ventilation CT in asthmatic patients. A total of 43 patients 18 years or older who were nonsmokers were included in the study. Xenon CT images in wash-in and wash-out phases were obtained at baseline and after inhalation of methacholine and salbutamol. The degrees of ventilation defects and xenon trappings were evaluated through visual analysis. Ventilation defects and xenon trapping were significantly increased and decreased after methacholine challenge and salbutamol inhalation, respectively (P < .005). The ventilation abnormalities were not significantly related to the percentage of forced expiratory volume in 1 second (FEV1) or the ratio of FEV1 to forced vital capacity. Xenon trappings after salbutamol inhalation were negatively related to the scores of the asthma control test, wheezing, or night symptoms, with statistical significance (P < .05), whereas, FEV1 showed no significant correlation with symptom scores. Baseline FEV1 was significantly lower and dyspnea and wheezing were more severe in the non-full reversal group than in the full reversal group after salbutamol inhalation in xenon CT (P < .05). The degree of ventilation defects were positively correlated with FEV1 improvement after 3 months of treatment (P = .02). The results of this study suggest that xenon ventilation CT can be used as a new method to assess ventilation abnormalities in asthma, and these ventilation abnormalities can be used as novel parameters that reflect the status of asthma control and symptom severity. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Comparison of 133 xenon ventilation equilibrium scan (XV) and 99m technetium transmission (TT) scan for use in regional lung analysis by 2D gamma scintigraphy in healthy and cystic fibrosis lungs.

    PubMed

    Zeman, Kirby L; Wu, Jihong; Donaldson, Scott H; Bennett, William D

    2013-04-01

    Quantification of particle deposition in the lung by gamma scintigraphy requires a reference image for location of regions of interest (ROIs) and normalization to lung thickness. In various laboratories, the reference image is made by a transmission scan ((57)Co or (99m)Tc) or gas ventilation scan ((133)Xe or (81)Kr). There has not been a direct comparison of measures from the two methods. We compared (99m)Tc transmission scans to (133)Xe equilibrium ventilation scans as reference images for 38 healthy subjects and 14 cystic fibrosis (CF) patients for their effects on measures of regional particle deposition: the central-to-peripheral ratio of lung counts (C/P); and ROI area versus forced vital capacity. Whole right lung ROI was based on either an isocontour threshold of three times the soft tissue transmission (TT) or a threshold of 20% of peak xenon ventilation counts (XV). We used a central ROI drawn to 50% of height and of width of the whole right lung ROI and placed along the left lung margin and centered vertically. In general, the correlation of normalized C/P (nC/P) between the two methods was strong. However, the value of nC/P was significantly smaller for the XV method than the TT method. Regression equations for the relationship of nC/P between the two methods were, for healthy subjects, y=0.75x+0.61, R(2)=0.64 using rectangular ROIs and y=0.76x+0.45, R(2)=0.66 using isocontour ROIs; and for CF patients, y=0.94x+0.46, R(2)=0.43 and y=0.85x+0.42, R(2)=0.41, respectively. (1) A transmission scan with an isocontour outline in combination with a rectangular central region to define the lung borders may be more useful than a ventilation scan. (2) Close correlation of nC/Ps measured by transmission or gas ventilation should allow confident comparison of values determined by the two methods.

  10. Xenon ventilation computed tomography and the management of asthma in the elderly.

    PubMed

    Park, Heung-Woo; Jung, Jae-Woo; Kim, Kyung-Mook; Kim, Tae-Wan; Lee, So-Hee; Lee, Chang Hyun; Goo, Jin Mo; Min, Kyung-Up; Cho, Sang-Heon

    2014-04-01

    Xenon ventilation computed tomography (CT) has shown potential in assessing the regional ventilation status in subjects with asthma. The purpose of this study was to evaluate the usefulness of xenon ventilation CT in the management of asthma in the elderly. Treatment-naïve asthmatics aged 65 years or older were recruited. Before initiation of medication, spirometry with bronchodilator (BD) reversibility, questionnaires to assess the severity of symptoms including a visual analogue scale (VAS), tests to evaluate cognitive function and mood, and xenon ventilation CT were performed. Xenon gas trapping (XT) on xenon ventilation CT represents an area where inhaled xenon gas was not expired and was trapped. Symptoms and lung functions were measured again after the 12-week treatment. A total of 30 elderly asthmatics were enrolled. The severity of dyspnoea measured by the VAS showed a significant correlation with the total number of areas of XT on the xenon ventilation CT taken in the pre-BD wash-out phase (r = -0.723, P < 0.001). The total number of areas of XT significantly decreased after BD inhalation, and differences in the total number of areas of XT (between the pre- and post-BD wash-out phases) at baseline showed significant correlations with the per cent increases in forced expiratory volume in 1 s after subsequent anti-asthma treatment (r = -0.775, P < 0.001). Xenon ventilation CT may be an objective and promising tool in the measurement of dyspnoea and prediction of the treatment response in elderly asthmatics. © 2014 The Authors. Respirology © 2014 Asian Pacific Society of Respirology.

  11. Assessment of regional emphysema, air-trapping and Xenon-ventilation using dual-energy computed tomography in chronic obstructive pulmonary disease patients.

    PubMed

    Lee, Sang Min; Seo, Joon Beom; Hwang, Hye Jeon; Kim, Namkug; Oh, Sang Young; Lee, Jae Seung; Lee, Sei Won; Oh, Yeon-Mok; Kim, Tae Hoon

    2017-07-01

    To compare the parenchymal attenuation change between inspiration/expiration CTs with dynamic ventilation change between xenon wash-in (WI) inspiration and wash-out (WO) expiration CTs. 52 prospectively enrolled COPD patients underwent xenon ventilation dual-energy CT during WI and WO periods and pulmonary function tests (PFTs). The parenchymal attenuation parameters (emphysema index (EI), gas-trapping index (GTI) and air-trapping index (ATI)) and xenon ventilation parameters (xenon in WI (Xe-WI), xenon in WO (Xe-WO) and xenon dynamic (Xe-Dyna)) of whole lung and three divided areas (emphysema, hyperinflation and normal) were calculated on virtual non-contrast images and ventilation images. Pearson correlation, linear regression analysis and one-way ANOVA were performed. EI, GTI and ATI showed a significant correlation with Xe-WI, Xe-WO and Xe-Dyna (EI R = -.744, -.562, -.737; GTI R = -.621, -.442, -.629; ATI R = -.600, -.421, -.610, respectively, p < 0.01). All CT parameters showed significant correlation with PFTs except forced vital capacity (FVC). There was a significant difference in GTI, ATI and Xe-Dyna in each lung area (p < 0.01). The parenchymal attenuation change between inspiration/expiration CTs and xenon dynamic change between xenon WI- and WO-CTs correlate significantly. There are alterations in the dynamics of xenon ventilation between areas of emphysema. • The xenon ventilation change correlates with the parenchymal attenuation change. • The xenon ventilation change shows the difference between three lung areas. • The combination of attenuation and xenon can predict more accurate PFTs.

  12. Worsening respiratory function in mechanically ventilated intensive care patients: feasibility and value of xenon-enhanced dual energy CT.

    PubMed

    Hoegl, Sandra; Meinel, Felix G; Thieme, Sven F; Johnson, Thorsten R C; Eickelberg, Oliver; Zwissler, Bernhard; Nikolaou, Konstantin

    2013-03-01

    To evaluate the feasibility and incremental diagnostic value of xenon-enhanced dual-energy CT in mechanically ventilated intensive care patients with worsening respiratory function. The study was performed in 13 mechanically ventilated patients with severe pulmonary conditions (acute respiratory distress syndrome (ARDS), n=5; status post lung transplantation, n=5; other, n=3) and declining respiratory function. CT scans were performed using a dual-source CT scanner at an expiratory xenon concentration of 30%. Both ventilation images (Xe-DECT) and standard CT images were reconstructed from a single CT scan. Findings were recorded for Xe-DECT and standard CT images separately. Ventilation defects on xenon images were matched to morphological findings on standard CT images and incremental diagnostic information of xenon ventilation images was recorded if present. Mean xenon consumption was 2.95 l per patient. No adverse events occurred under xenon inhalation. In the visual CT analysis, the Xe-DECT ventilation defects matched with pathologic changes in lung parenchyma seen in the standard CT images in all patients. Xe-DECT provided additional diagnostic findings in 4/13 patients. These included preserved ventilation despite early pneumonia (n=1), more confident discrimination between a large bulla and pneumothorax (n=1), detection of an airway-to-pneumothorax fistula (n=1) and exclusion of a suspected airway-to-mediastinum fistula (n=1). In all 4 patients, the additional findings had a substantial impact on patients' management. Xenon-enhanced DECT is safely feasible and can add relevant diagnostic information in mechanically ventilated intensive care patients with worsening respiratory function. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Chronic obstructive pulmonary disease: quantitative and visual ventilation pattern analysis at xenon ventilation CT performed by using a dual-energy technique.

    PubMed

    Park, Eun-Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Hyun Ju; Lee, Chang Hyun; Park, Chang Min; Yoo, Chul-Gyu; Kim, Jong Hyo

    2010-09-01

    To evaluate the potential of xenon ventilation computed tomography (CT) in the quantitative and visual analysis of chronic obstructive pulmonary disease (COPD). This study was approved by the institutional review board. After informed consent was obtained, 32 patients with COPD underwent CT performed before the administration of xenon, two-phase xenon ventilation CT with wash-in (WI) and wash-out (WO) periods, and pulmonary function testing (PFT). For quantitative analysis, results of PFT were compared with attenuation parameters from prexenon images and xenon parameters from xenon-enhanced images in the following three areas at each phase: whole lung, lung with normal attenuation, and low-attenuating lung (LAL). For visual analysis, ventilation patterns were categorized according to the pattern of xenon attenuation in the area of structural abnormalities compared with that in the normal-looking background on a per-lobe basis: pattern A consisted of isoattenuation or high attenuation in the WI period and isoattenuation in the WO period; pattern B, isoattenuation or high attenuation in the WI period and high attenuation in the WO period; pattern C, low attenuation in both the WI and WO periods; and pattern D, low attenuation in the WI period and isoattenuation or high attenuation in the WO period. Among various attenuation and xenon parameters, xenon parameters of the LAL in the WO period showed the best inverse correlation with results of PFT (P < .0001). At visual analysis, while emphysema (which affected 99 lobes) commonly showed pattern A or B, airway diseases such as obstructive bronchiolitis (n = 5) and bronchiectasis (n = 2) and areas with a mucus plug (n = 1) or centrilobular nodules (n = 5) showed pattern D or C. WI and WO xenon ventilation CT is feasible for the simultaneous regional evaluation of structural and ventilation abnormalities both quantitatively and qualitatively in patients with COPD. (c) RSNA, 2010.

  14. Radiology compared with xenon—133 scanning and bronchoscopic lobar sampling as methods for assessing regional lung function in patients with emphysema

    PubMed Central

    Barter, C. E.; Hugh-Jones, P.; Laws, J. W.; Crosbie, W. A.

    1973-01-01

    Regional lung function was assessed by radiographic methods, by regional function studies using xenon-133 scans, and by lobar sampling with a mass spectrometer flow-meter at bronchoscopy in 12 patients who subsequently had bullae resected at operation. The information given by these three methods of regional assessment was subsequently compared with the findings at operation. When only one lobe was abnormal on the radiographs, these alone were adequate to locate the major site of the emphysema and the regional tests gave relatively little extra information. The xenon scan was sometimes helpful in assessing the state of the remaining lung, but this information could be deduced from the radiographs and overall lung function tests, especially the carbon monoxide transfer and mechanical measurements. Bronchoscopic sampling was helpful in determining whether the affected lobe was acting as a ventilated dead-space. When more than one lobe was affected the regional function tests supplemented the radiographs in defining the site of bullous change as well as locating dead space. Xenon scans, although widely employed for such preoperative assessments, added little to the topographical information obtained by careful radiology. The combination of radiology, lobar sampling, and overall function tests is recommended for assessing which emphysematous patients are likely to benefit from surgery. Images PMID:4685209

  15. XENON-133 IN CALIFORNIA, NEVADA, AND UTAH FROM THE CHERNOBYL ACCIDENT (JOURNAL VERSION)

    EPA Science Inventory

    The accident at the Chernobyl nuclear reactor in the USSR introduced numerous radioactive nuclides into the atmosphere, including the noble gas xenon-133. EPA's Environmental Monitoring Systems Laboratory, Las Vegas, NV, detected xenon-133 from the Chernobyl accident in air sampl...

  16. Detection of lipoid tumors by xenon-133

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, E.E.; DeLand, F.H.; Maruyama, Y.

    1978-01-01

    Three patients with biopsy-proven liposarcoma were studied with inhalation of xenon-133, a gas highly soluble in fat. Increased concentration of radioactivity in the region of the tumor suggested the potential usefulness of radioxenon for the detection of lipomatous tumors.

  17. Comparison of Xenon-Enhanced Area-Detector CT and Krypton Ventilation SPECT/CT for Assessment of Pulmonary Functional Loss and Disease Severity in Smokers.

    PubMed

    Ohno, Yoshiharu; Fujisawa, Yasuko; Takenaka, Daisuke; Kaminaga, Shigeo; Seki, Shinichiro; Sugihara, Naoki; Yoshikawa, Takeshi

    2018-02-01

    The objective of this study was to compare the capability of xenon-enhanced area-detector CT (ADCT) performed with a subtraction technique and coregistered 81m Kr-ventilation SPECT/CT for the assessment of pulmonary functional loss and disease severity in smokers. Forty-six consecutive smokers (32 men and 14 women; mean age, 67.0 years) underwent prospective unenhanced and xenon-enhanced ADCT, 81m Kr-ventilation SPECT/CT, and pulmonary function tests. Disease severity was evaluated according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification. CT-based functional lung volume (FLV), the percentage of wall area to total airway area (WA%), and ventilated FLV on xenon-enhanced ADCT and SPECT/CT were calculated for each smoker. All indexes were correlated with percentage of forced expiratory volume in 1 second (%FEV 1 ) using step-wise regression analyses, and univariate and multivariate logistic regression analyses were performed. In addition, the diagnostic accuracy of the proposed model was compared with that of each radiologic index by means of McNemar analysis. Multivariate logistic regression showed that %FEV 1 was significantly affected (r = 0.77, r 2 = 0.59) by two factors: the first factor, ventilated FLV on xenon-enhanced ADCT (p < 0.0001); and the second factor, WA% (p = 0.004). Univariate logistic regression analyses indicated that all indexes significantly affected GOLD classification (p < 0.05). Multivariate logistic regression analyses revealed that ventilated FLV on xenon-enhanced ADCT and CT-based FLV significantly influenced GOLD classification (p < 0.0001). The diagnostic accuracy of the proposed model was significantly higher than that of ventilated FLV on SPECT/CT (p = 0.03) and WA% (p = 0.008). Xenon-enhanced ADCT is more effective than 81m Kr-ventilation SPECT/CT for the assessment of pulmonary functional loss and disease severity.

  18. Application of Radioxenon Stack Emission Data in High-Resolution Atmospheric Transport Modelling

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Schoeppner, M.; Kalinowski, M.; Bourgouin, P.; Kushida, N.; Barè, J.

    2017-12-01

    The Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) has developed the capability to run high-resolution atmospheric transport modelling by employing WRF and Flexpart-WRF. This new capability is applied to simulate the impact of stack emission data on simulated concentrations and how the availability of such data improves the overall accuracy of atmospheric transport modelling. The presented case study focuses on xenon-133 emissions from IRE, a medical isotope production facility in Belgium, and air concentrations detected at DEX33, a monitoring station close to Freiburg, Germany. The CTBTO is currently monitoring the atmospheric concentration of xenon-133 at 25 stations and will further expand the monitoring efforts to 40 stations worldwide. The incentive is the ability to detect xenon-133 that has been produced and released from a nuclear explosion. A successful detection can be used to prove the nuclear nature of an explosion and even support localization efforts. However, xenon-133 is also released from nuclear power plants and to a larger degree from medical isotope production facilities. The availability of stack emission data in combination with atmospheric transport modelling can greatly facilitate the understanding of xenon-133 concentrations detected at monitoring stations to distinguish between xenon-133 that has been emitted from a nuclear explosion and from civilian sources. Newly available stack emission data is used with a high-resolution version of the Flexpart atmospheric transport model, namely Flexpart-WRF, to assess the impact of the emissions on the detected concentrations and the advantage gained from the availability of such stack emission data. The results are analyzed with regard to spatial and time resolution of the high-resolution model and in comparison to conventional atmospheric transport models with and without stack emission data.

  19. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon: Results of a preliminary study.

    PubMed

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results.Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon-oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images.Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects.Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images reflected pulmonary function. Xenon images obtained with xenon-enhanced CT using a single-breath-hold technique can qualitatively depict pulmonary ventilation. A larger study comprising only COPD patients should be conducted, as xenon-enhanced CT is expected to be a promising technique for the management of COPD.

  20. Abatement of Xenon and Iodine Emissions from Medical Isotope Production Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Charles G.; Sorensen, Christina M.; Bowyer, Ted W.

    2014-04-01

    The capability of the International Monitoring System (IMS) to detect xenon from underground nuclear explosions is dependent on the radioactive xenon background. Adding to the background, medical isotope production (MIP) by fission releases several important xenon isotopes including xenon-133 and iodine-133 that decays to xenon-133. The amount of xenon released from these facilities may be equivalent to or exceed that released from an underground nuclear explosion. Thus the release of gaseous fission products within days of irradiation makes it difficult to distinguish MIP emissions from a nuclear explosion. In addition, recent shortages in molybdenum-99 have created interest and investment opportunitiesmore » to design and build new MIP facilities in the United States and throughout the world. Due to the potential increase in the number of MIP facilities, a discussion of abatement technologies provides insight into how the problem of emission control from MIP facilities can be tackled. A review of practices is provided to delineate methods useful for abatement of medical isotopes.« less

  1. Collateral Ventilation to Congenital Hyperlucent Lung Lesions Assessed on Xenon-Enhanced Dynamic Dual-Energy CT: an Initial Experience

    PubMed Central

    Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    Objective We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Materials and Methods Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a time-xenon value curve analysis and assessing the amplitude of xenon enhancement (A) value, the rate of xenon enhancement (K) value and the time of arrival value. Based on the A value, the lung lesions were categorized into high or low (A value > 10 Hounsfield unit [HU]) resistance to collateral ventilation. In addition, the morphologic CT findings of the lung lesions, including cyst, mucocele and an accessory or incomplete fissure, were assessed on the weighted-average CT images. The xenon-enhanced CT radiation dose was estimated. Results Five of the eight lung lesions were categorized into the high resistance group and three lesions were categorized into the low resistance group. The A and K values in the normal lung were higher than those in the low resistance group. The time of arrival values were delayed in the low resistance group. Cysts were identified in five lesions, mucocele in four, accessory fissure in three and incomplete fissure in two. Either cyst or an accessory fissure was seen in four of the five lesions showing high resistance to collateral ventilation. The xenon-enhanced CT radiation dose was 2.3 ± 0.6 mSv. Conclusion Xenon-enhanced dynamic dual-energy CT can help visualize and quantitate various degrees of collateral ventilation to congenital hyperlucent lung lesions in addition to assessing the anatomic details of the lung. PMID:21228937

  2. Collateral ventilation to congenital hyperlucent lung lesions assessed on xenon-enhanced dynamic dual-energy CT: an initial experience.

    PubMed

    Goo, Hyun Woo; Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a time-xenon value curve analysis and assessing the amplitude of xenon enhancement (A) value, the rate of xenon enhancement (K) value and the time of arrival value. Based on the A value, the lung lesions were categorized into high or low (A value > 10 Hounsfield unit [HU]) resistance to collateral ventilation. In addition, the morphologic CT findings of the lung lesions, including cyst, mucocele and an accessory or incomplete fissure, were assessed on the weighted-average CT images. The xenon-enhanced CT radiation dose was estimated. Five of the eight lung lesions were categorized into the high resistance group and three lesions were categorized into the low resistance group. The A and K values in the normal lung were higher than those in the low resistance group. The time of arrival values were delayed in the low resistance group. Cysts were identified in five lesions, mucocele in four, accessory fissure in three and incomplete fissure in two. Either cyst or an accessory fissure was seen in four of the five lesions showing high resistance to collateral ventilation. The xenon-enhanced CT radiation dose was 2.3 ± 0.6 mSv. Xenon-enhanced dynamic dual-energy CT can help visualize and quantitate various degrees of collateral ventilation to congenital hyperlucent lung lesions in addition to assessing the anatomic details of the lung.

  3. Xenon-enhanced CT using subtraction CT: Basic and preliminary clinical studies for comparison of its efficacy with that of dual-energy CT and ventilation SPECT/CT to assess regional ventilation and pulmonary functional loss in smokers.

    PubMed

    Ohno, Yoshiharu; Yoshikawa, Takeshi; Takenaka, Daisuke; Fujisawa, Yasuko; Sugihara, Naoki; Kishida, Yuji; Seki, Shinichiro; Koyama, Hisanobu; Sugimura, Kazuro

    2017-01-01

    To prospectively and directly compare the capability for assessments of regional ventilation and pulmonary functional loss in smokers of xenon-ventilation CT obtained with the dual-energy CT (DE-CT) and subtraction CT (Sub-CT) MATERIALS AND METHODS: Twenty-three consecutive smokers (15 men and 8 women, mean age: 69.7±8.7years) underwent prospective unenhanced and xenon-enhanced CTs, the latter by Sub-CT and DE-CT methods, ventilation SPECT and pulmonary function tests. Sub-CT was generated from unenhanced and xenon-enhanced CT, and all co-registered SPECT/CT data were produced from SPECT and unenhanced CT data. For each method, regional ventilation was assessed by using a 11-point scoring system on a per-lobe basis. To determine the functional lung volume by each method, it was also calculated for individual sublets with a previously reported method. To determine inter-observer agreement for each method, ventilation defect assessment was evaluated by using the χ2 test with weighted kappa statistics. For evaluation of the efficacy of each method for pulmonary functional loss assessment, functional lung volume was correlated with%FEV 1 . Each inter-observer agreement was rated as substantial (Sub-CT: κ=0.69, p<0.0001; DE-CT: κ=0.64, p<0.0001; SPECT/CT: κ=0.64, p<0.0001). Functional lung volume for each method showed significant to good correlation with%FEV 1 (Sub-CT: r=0.72, p=0.0001; DE-CT: r=0.74, p<0.0001; SPECT/CT: r=0.66, p=0.0006). Xenon-enhanced CT obtained by Sub-CT can be considered at least as efficacious as that obtained by DE-CT and SPECT/CT for assessment of ventilation abnormality and pulmonary functional loss in smokers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Isolation and Purification of the Xenon Fraction of 252Cf Spontaneous Fission Products for the Production of Radio Xenon Calibration Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrath, Christopher A.

    2015-04-01

    The presence of radioactive xenon isotopes indicates that fission events have occurred, and is used to help enforce the Comprehensive Test Ban Treaty. Idaho National Laboratory (INL) produces 135Xe, 133mXe, 133Xe, and 131mXe standards used for the calibration and testing of collection equipment and analytical techniques used to monitor radio xenon emissions. At INL, xenon is produced and collected as one of several spontaneous fission products from a 252Cf source. Further chromatographic purification of the fission gases ensures the separations of the xenon fraction for selective collection. An explanation of the fission gas collection, separation and purification is presented. Additionally,more » the range of 135Xe to 133Xe ratio that can be isolated is explained. This is an operational update on the work introduced previously, now that it is in operation and has been recharged with a second 252Cf source.« less

  5. WE-AB-202-07: Ventilation CT: Voxel-Level Comparison with Hyperpolarized Helium-3 & Xenon-129 MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahir, B; Marshall, H; Hughes, P

    Purpose: To compare the spatial correlation of ventilation surrogates computed from inspiratory and expiratory breath-hold CT with hyperpolarized Helium-3 & Xenon-129 MRI in a cohort of lung cancer patients. Methods: 5 patients underwent expiration & inspiration breath-hold CT. Xenon-129 & {sup 1}H MRI were also acquired at the same inflation state as inspiratory CT. This was followed immediately by acquisition of Helium-3 & {sup 1}H MRI in the same breath and at the same inflation state as inspiratory CT. Expiration CT was deformably registered to inspiration CT for calculation of ventilation CT from voxel-wise differences in Hounsfield units. Inspiration CTmore » and the Xenon-129’s corresponding anatomical {sup 1}H MRI were registered to Helium-3 MRI via the same-breath anatomical {sup 1}H MRI. This enabled direct comparison of CT ventilation with Helium-3 MRI & Xenon-129 MRI for the median values in corresponding regions of interest, ranging from finer to coarser in-plane dimensions of 10 by 10, 20 by 20, 30 by 30 and 40 by 40, located within the lungs as defined by the same-breath {sup 1}H MRI lung mask. Spearman coefficients were used to assess voxel-level correlation. Results: The median Spearman’s coefficients of ventilation CT with Helium-3 & Xenon-129 MRI for ROIs of 10 by 10, 20 by 20, 30 by 30 and 40 by 40 were 0.52, 0.56, 0.60 and 0.68 and 0.40, 0.42, 0.52 and 0.70, respectively. Conclusion: This work demonstrates a method of acquiring CT & hyperpolarized gas MRI (Helium-3 & Xenon-129 MRI) in similar breath-holds to enable direct spatial comparison of ventilation maps. Initial results show moderate correlation between ventilation CT & hyperpolarized gas MRI, improving for coarser regions which could be attributable to the inherent noise in CT intensity, non-ventilatory effects and registration errors at the voxel-level. Thus, it may be more beneficial to quantify ventilation at a more regional level.« less

  6. Collateral Ventilation Quantification Using Xenon-Enhanced Dynamic Dual-Energy CT: Differences between Canine and Swine Models of Bronchial Occlusion.

    PubMed

    Park, Eun-Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Chang Hyun; Park, Chang Min

    2015-01-01

    The aim of this study was to evaluate whether the difference in the degree of collateral ventilation between canine and swine models of bronchial obstruction could be detected by using xenon-enhanced dynamic dual-energy CT. Eight mongrel dogs and six pigs underwent dynamic dual-energy scanning of 64-slice dual-source CT at 12-second interval for 2-minute wash-in period (60% xenon) and at 24-second interval for 3-minute wash-out period with segmental bronchus occluded. Ventilation parameters of magnitude (A value), maximal slope, velocity (K value), and time-to-peak (TTP) enhancement were calculated from dynamic xenon maps using exponential function of Kety model. A larger difference in A value between parenchyma was observed in pigs than in dogs (absolute difference, -33.0 ± 5.0 Hounsfield units [HU] vs. -2.8 ± 7.1 HU, p = 0.001; normalized percentage difference, -79.8 ± 1.8% vs. -5.4 ± 16.4%, p = 0.0007). Mean maximal slopes in both periods in the occluded parenchyma only decreased in pigs (all p < 0.05). K values of both periods were not different (p = 0.892) in dogs. However, a significant (p = 0.027) difference was found in pigs in the wash-in period. TTP was delayed in the occluded parenchyma in pigs (p = 0.013) but not in dogs (p = 0.892). Xenon-ventilation CT allows the quantification of collateral ventilation and detection of differences between canine and swine models of bronchial obstruction.

  7. Collateral Ventilation Quantification Using Xenon-Enhanced Dynamic Dual-Energy CT: Differences between Canine and Swine Models of Bronchial Occlusion

    PubMed Central

    Park, Eun-Ah; Park, Sang Joon; Lee, Chang Hyun; Park, Chang Min

    2015-01-01

    Objective The aim of this study was to evaluate whether the difference in the degree of collateral ventilation between canine and swine models of bronchial obstruction could be detected by using xenon-enhanced dynamic dual-energy CT. Materials and Methods Eight mongrel dogs and six pigs underwent dynamic dual-energy scanning of 64-slice dual-source CT at 12-second interval for 2-minute wash-in period (60% xenon) and at 24-second interval for 3-minute wash-out period with segmental bronchus occluded. Ventilation parameters of magnitude (A value), maximal slope, velocity (K value), and time-to-peak (TTP) enhancement were calculated from dynamic xenon maps using exponential function of Kety model. Results A larger difference in A value between parenchyma was observed in pigs than in dogs (absolute difference, -33.0 ± 5.0 Hounsfield units [HU] vs. -2.8 ± 7.1 HU, p = 0.001; normalized percentage difference, -79.8 ± 1.8% vs. -5.4 ± 16.4%, p = 0.0007). Mean maximal slopes in both periods in the occluded parenchyma only decreased in pigs (all p < 0.05). K values of both periods were not different (p = 0.892) in dogs. However, a significant (p = 0.027) difference was found in pigs in the wash-in period. TTP was delayed in the occluded parenchyma in pigs (p = 0.013) but not in dogs (p = 0.892). Conclusion Xenon-ventilation CT allows the quantification of collateral ventilation and detection of differences between canine and swine models of bronchial obstruction. PMID:25995696

  8. Xenon depresses aEEG background voltage activity whilst maintaining cardiovascular stability in sedated healthy newborn pigs.

    PubMed

    Sabir, Hemmen; Wood, Thomas; Gill, Hannah; Liu, Xun; Dingley, John; Thoresen, Marianne

    2016-04-15

    Changes in electroencephalography (EEG) voltage range are used to monitor the depth of anaesthesia, as well as predict outcome after hypoxia-ischaemia in neonates. Xenon is being investigated as a potential neuroprotectant after hypoxic-ischaemic brain injury, but the effect of Xenon on EEG parameters in children or neonates is not known. This study aimed to examine the effect of 50% inhaled Xenon on background amplitude-integrated EEG (aEEG) activity in sedated healthy newborn pigs. Five healthy newborn pigs, receiving intravenous fentanyl sedation, were ventilated for 24 h with 50%Xenon, 30%O2 and 20%N2 at normothermia. The upper and lower voltage-range of the aEEG was continuously monitored together with cardiovascular parameters throughout a 1 h baseline period with fentanyl sedation only, followed by 24 h of Xenon administration. The median (IQR) upper and lower aEEG voltage during 1 h baseline was 48.0 μV (46.0-50.0) and 25.0 μV (23.0-26.0), respectively. The median (IQR) aEEG upper and lower voltage ranges were significantly depressed to 21.5 μV (20.0-26.5) and 12.0 μV (12.0-16.5) from 10 min after the onset of 50% Xenon administration (p=0.002). After the initial Xenon induced depression in background aEEG voltage, no further aEEG changes were seen over the following 24h of ventilation with 50% xenon under fentanyl sedation. Mean arterial blood pressure and heart rate remained stable. Mean arterial blood pressure and heart rate were not significantly influenced by 24h Xenon ventilation. 50% Xenon rapidly depresses background aEEG voltage to a steady ~50% lower level in sedated healthy newborn pigs. Therefore, care must be taken when interpreting the background voltage in neonates also receiving Xenon. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon

    PubMed Central

    Kyoyama, Hiroyuki; Hirata, Yusuke; Kikuchi, Satoshi; Sakai, Kosuke; Saito, Yuriko; Mikami, Shintaro; Moriyama, Gaku; Yanagita, Hisami; Watanabe, Wataru; Otani, Katharina; Honda, Norinari; Uematsu, Kazutsugu

    2017-01-01

    Abstract Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results. Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon–oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images. Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects. Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images reflected pulmonary function. Xenon images obtained with xenon-enhanced CT using a single-breath-hold technique can qualitatively depict pulmonary ventilation. A larger study comprising only COPD patients should be conducted, as xenon-enhanced CT is expected to be a promising technique for the management of COPD. PMID:28099359

  10. Radioactive plume from the Three Mile Island accident: xenon-133 in air at a distance of 375 kilometers.

    PubMed

    Wahlen, M; Kunz, C O; Matuszek, J M; Mahoney, W E; Thompson, R C

    1980-02-08

    The transit of an air mass containing radioactive gas released from the Three Mile Island reactor was recorded in Albany, New York, by measuring xenon-133. These measurements provide an evaluation of Three Mile Island effluents to distances greater than 100 kilometers. Two independent techniques identified xenon-133 in ambient air at concentrations as high as 3900 picocuries per cubic meter. The local gamma-ray whole-body dose from the passing radioactivity amounted to 0.004 millirem, or 0.004 percent of the annual dose from natural sources.

  11. The feasibility of using a portable xenon delivery device to permit earlier xenon ventilation with therapeutic cooling of neonates during ambulance retrieval.

    PubMed

    Dingley, John; Liu, Xun; Gill, Hannah; Smit, Elisa; Sabir, Hemmen; Tooley, James; Chakkarapani, Ela; Windsor, David; Thoresen, Marianne

    2015-06-01

    Therapeutic hypothermia is the standard of care after perinatal asphyxia. Preclinical studies show 50% xenon improves outcome, if started early. During a 32-patient study randomized between hypothermia only and hypothermia with xenon, 5 neonates were given xenon during retrieval using a closed-circuit incubator-mounted system. Without xenon availability during retrieval, 50% of eligible infants exceeded the 5-hour treatment window. With the transportable system, 100% were recruited. Xenon delivery lasted 55 to 120 minutes, using 174 mL/h (117.5-193.2) (median [interquartile range]), after circuit priming (1300 mL). Xenon delivery during ambulance retrieval was feasible, reduced starting delays, and used very little gas.

  12. WE-AB-202-08: Feasibility of Single-Inhalation/Single-Energy Xenon CT for High-Resolution Imaging of Regional Lung Ventilation in Humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinkham, D; Schueler, E; Diehn, M

    Purpose: To demonstrate the efficacy of a novel functional lung imaging method that utilizes single-inhalation, single-energy xenon CT (Xe-CT) lung ventilation scans, and to compare it against the current clinical standard, ventilation single-photon emission CT (V-SPECT). Methods: In an IRB-approved clinical study, 14 patients undergoing thoracic radiotherapy received two successive single inhalation, single energy (80keV) CT images of the entire lung using 100% oxygen and a 70%/30% xenon-oxygen mixture. A subset of ten patients also received concurrent SPECT ventilation scans. Anatomic reproducibility between the two scans was achieved using a custom video biofeedback apparatus. The CT images were registered tomore » each other by deformable registration, and a calculated difference image served as surrogate xenon ventilation map. Both lungs were partitioned into twelve sectors, and a sector-wise correlation was performed between the xenon and V-SPECT scans. A linear regression model was developed with forced expiratory volume (FEV) as a predictor and the coefficient of variation (CoV) as the outcome. Results: The ventilation comparison for five of the patients had either moderate to strong Pearson correlation coefficients (0.47 to 0.69, p<0.05). Of these, four also had moderate to strong Spearman correlation coefficients (0.46 to 0.80, p<0.03). The patients with the strongest correlation had clear regional ventilation deficits. The patient comparisons with the weakest correlations had more homogeneous ventilation distributions, and those patients also had diminished lung function as assessed by spirometry. Analysis of the relationship between CoV and FEV yielded a non-significant trend toward negative correlation (Pearson coefficient −0.60, p<0.15). Conclusion: Significant correlations were found between the Xe-CT and V-SPECT ventilation imagery. The results from this small cohort of patients indicate that single inhalation, single energy Xe-CT has the potential to quantify regional lung ventilation volumetrically with high resolution using widely accessible radiologic equipment. Bill Loo and Peter Maxim are founders of TibaRay, Inc. Bill Loo is also a board member. Bill Loo and Peter Maxim have received research grants from Varian Medical Systems, Inc. and RaySearch Laboratory.« less

  13. Optimization of dual-energy xenon-computed tomography for quantitative assessment of regional pulmonary ventilation.

    PubMed

    Fuld, Matthew K; Halaweish, Ahmed F; Newell, John D; Krauss, Bernhard; Hoffman, Eric A

    2013-09-01

    Dual-energy x-ray computed tomography (DECT) offers visualization of the airways and quantitation of regional pulmonary ventilation using a single breath of inhaled xenon gas. In this study, we sought to optimize scanning protocols for DECT xenon gas ventilation imaging of the airways and lung parenchyma and to characterize the quantitative nature of the developed protocols through a series of test-object and animal studies. The Institutional Animal Care and Use Committee approved all animal studies reported here. A range of xenon/oxygen gas mixtures (0%, 20%, 25%, 33%, 50%, 66%, 100%; balance oxygen) were scanned in syringes and balloon test-objects to optimize the delivered gas mixture for assessment of regional ventilation while allowing for the development of improved 3-material decomposition calibration parameters. In addition, to alleviate gravitational effects on xenon gas distribution, we replaced a portion of the oxygen in the xenon/oxygen gas mixture with helium and compared gas distributions in a rapid-prototyped human central-airway test-object. Additional syringe tests were performed to determine if the introduction of helium had any effect on xenon quantitation. Xenon gas mixtures were delivered to anesthetized swine to assess airway and lung parenchymal opacification while evaluating various DECT scan acquisition settings. Attenuation curves for xenon were obtained from the syringe test-objects and were used to develop improved 3-material decomposition parameters (Hounsfield unit enhancement per percentage xenon: within the chest phantom, 2.25 at 80 kVp, 1.7 at 100 kVp, and 0.76 at 140 kVp with tin filtration; in open air, 2.5 at 80 kVp, 1.95 at 100 kVp, and 0.81 at 140 kVp with tin filtration). The addition of helium improved the distribution of xenon gas to the gravitationally nondependent portion of the airway tree test-object, while not affecting the quantitation of xenon in the 3-material decomposition DECT. The mixture 40% Xe/40% He/20% O2 provided good signal-to-noise ratio (SNR), greater than the Rose criterion (SNR > 5), while avoiding gravitational effects of similar concentrations of xenon in a 60% O2 mixture. Compared with 100/140 Sn kVp, 80/140 Sn kVp (Sn = tin filtered) provided improved SNR in a swine with an equivalent thoracic transverse density to a human subject with a body mass index of 33 kg/m. Airways were brighter in the 80/140 Sn kVp scan (80/140 Sn, 31.6%; 100/140 Sn, 25.1%) with considerably lower noise (80/140 Sn, coefficient of variation of 0.140; 100/140 Sn, coefficient of variation of 0.216). To provide a truly quantitative measure of regional lung function with xenon-DECT, the basic protocols and parameter calibrations need to be better understood and quantified. It is critically important to understand the fundamentals of new techniques to allow for proper implementation and interpretation of their results before widespread usage. With the use of an in-house derived xenon calibration curve for 3-material decomposition rather than the scanner supplied calibration and a xenon/helium/oxygen mixture, we demonstrate highly accurate quantitation of xenon gas volumes and avoid gravitational effects on gas distribution. This study provides a foundation for other researchers to use and test these methods with the goal of clinical translation.

  14. Optimization of Dual-Energy Xenon-CT for Quantitative Assessment of Regional Pulmonary Ventilation

    PubMed Central

    Fuld, Matthew K.; Halaweish, Ahmed; Newell, John D.; Krauss, Bernhard; Hoffman, Eric A.

    2013-01-01

    Objective Dual-energy X-ray computed tomography (DECT) offers visualization of the airways and quantitation of regional pulmonary ventilation using a single breath of inhaled xenon gas. In this study we seek to optimize scanning protocols for DECT xenon gas ventilation imaging of the airways and lung parenchyma and to characterize the quantitative nature of the developed protocols through a series of test-object and animal studies. Materials and Methods The Institutional Animal Care and Use Committee approved all animal studies reported here. A range of xenon-oxygen gas mixtures (0, 20, 25, 33, 50, 66, 100%; balance oxygen) were scanned in syringes and balloon test-objects to optimize the delivered gas mixture for assessment of regional ventilation while allowing for the development of improved three-material decomposition calibration parameters. Additionally, to alleviate gravitational effects on xenon gas distribution, we replaced a portion of the oxygen in the xenon/oxygen gas mixture with helium and compared gas distributions in a rapid-prototyped human central-airway test-object. Additional syringe tests were performed to determine if the introduction of helium had any effect on xenon quantitation. Xenon gas mixtures were delivered to anesthetized swine in order to assess airway and lung parenchymal opacification while evaluating various DECT scan acquisition settings. Results Attenuation curves for xenon were obtained from the syringe test objects and were used to develop improved three-material decomposition parameters (HU enhancement per percent xenon: Within the chest phantom: 2.25 at 80kVp, 1.7 at 100 kVp, and 0.76 at 140 kVp with tin filtration; In open air: 2.5 at 80kVp, 1.95 at 100 kVp, and 0.81 at 140 kVp with tin filtration). The addition of helium improved the distribution of xenon gas to the gravitationally non-dependent portion of the airway tree test-object, while not affecting quantitation of xenon in the three-material decomposition DECT. 40%Xe/40%He/20%O2 provided good signal-to-noise, greater than the Rose Criterion (SNR > 5), while avoiding gravitational effects of similar concentrations of xenon in a 60%O2 mixture. 80/140-kVp (tin-filtered) provided improved SNR compared with 100/140-kVp in a swine with an equivalent thoracic transverse density to a human subject with body mass index of 33. Airways were brighter in the 80/140 kVp scan (80/140Sn, 31.6%; 100/140Sn, 25.1%) with considerably lower noise (80/140Sn, CV of 0.140; 100/140Sn, CV of 0.216). Conclusion In order to provide a truly quantitative measure of regional lung function with xenon-DECT, the basic protocols and parameter calibrations needed to be better understood and quantified. It is critically important to understand the fundamentals of new techniques in order to allow for proper implementation and interpretation of their results prior to wide spread usage. With the use of an in house derived xenon calibration curve for three-material decomposition rather than the scanner supplied calibration and a xenon/helium/oxygen mixture we demonstrate highly accurate quantitation of xenon gas volumes and avoid gravitational effects on gas distribution. This study provides a foundation for other researchers to use and test these methods with the goal of clinical translation. PMID:23571834

  15. Computer-Aided Classification of Visual Ventilation Patterns in Patients with Chronic Obstructive Pulmonary Disease at Two-Phase Xenon-Enhanced CT

    PubMed Central

    Yoon, Soon Ho; Jung, Julip; Hong, Helen; Park, Eun Ah; Lee, Chang Hyun; Lee, Youkyung; Jin, Kwang Nam; Choo, Ji Yung; Lee, Nyoung Keun

    2014-01-01

    Objective To evaluate the technical feasibility, performance, and interobserver agreement of a computer-aided classification (CAC) system for regional ventilation at two-phase xenon-enhanced CT in patients with chronic obstructive pulmonary disease (COPD). Materials and Methods Thirty-eight patients with COPD underwent two-phase xenon ventilation CT with resulting wash-in (WI) and wash-out (WO) xenon images. The regional ventilation in structural abnormalities was visually categorized into four patterns by consensus of two experienced radiologists who compared the xenon attenuation of structural abnormalities with that of adjacent normal parenchyma in the WI and WO images, and it served as the reference. Two series of image datasets of structural abnormalities were randomly extracted for optimization and validation. The proportion of agreement on a per-lesion basis and receiver operating characteristics on a per-pixel basis between CAC and reference were analyzed for optimization. Thereafter, six readers independently categorized the regional ventilation in structural abnormalities in the validation set without and with a CAC map. Interobserver agreement was also compared between assessments without and with CAC maps using multirater κ statistics. Results Computer-aided classification maps were successfully generated in 31 patients (81.5%). The proportion of agreement and the average area under the curve of optimized CAC maps were 94% (75/80) and 0.994, respectively. Multirater κ value was improved from moderate (κ = 0.59; 95% confidence interval [CI], 0.56-0.62) at the initial assessment to excellent (κ = 0.82; 95% CI, 0.79-0.85) with the CAC map. Conclusion Our proposed CAC system demonstrated the potential for regional ventilation pattern analysis and enhanced interobserver agreement on visual classification of regional ventilation. PMID:24843245

  16. Computer-aided classification of visual ventilation patterns in patients with chronic obstructive pulmonary disease at two-phase xenon-enhanced CT.

    PubMed

    Yoon, Soon Ho; Goo, Jin Mo; Jung, Julip; Hong, Helen; Park, Eun Ah; Lee, Chang Hyun; Lee, Youkyung; Jin, Kwang Nam; Choo, Ji Yung; Lee, Nyoung Keun

    2014-01-01

    To evaluate the technical feasibility, performance, and interobserver agreement of a computer-aided classification (CAC) system for regional ventilation at two-phase xenon-enhanced CT in patients with chronic obstructive pulmonary disease (COPD). Thirty-eight patients with COPD underwent two-phase xenon ventilation CT with resulting wash-in (WI) and wash-out (WO) xenon images. The regional ventilation in structural abnormalities was visually categorized into four patterns by consensus of two experienced radiologists who compared the xenon attenuation of structural abnormalities with that of adjacent normal parenchyma in the WI and WO images, and it served as the reference. Two series of image datasets of structural abnormalities were randomly extracted for optimization and validation. The proportion of agreement on a per-lesion basis and receiver operating characteristics on a per-pixel basis between CAC and reference were analyzed for optimization. Thereafter, six readers independently categorized the regional ventilation in structural abnormalities in the validation set without and with a CAC map. Interobserver agreement was also compared between assessments without and with CAC maps using multirater κ statistics. Computer-aided classification maps were successfully generated in 31 patients (81.5%). The proportion of agreement and the average area under the curve of optimized CAC maps were 94% (75/80) and 0.994, respectively. Multirater κ value was improved from moderate (κ = 0.59; 95% confidence interval [CI], 0.56-0.62) at the initial assessment to excellent (κ = 0.82; 95% CI, 0.79-0.85) with the CAC map. Our proposed CAC system demonstrated the potential for regional ventilation pattern analysis and enhanced interobserver agreement on visual classification of regional ventilation.

  17. Technical note: adipose tissue blood flow in miniature swine (Sus scrofa) using the 133xenon washout technique.

    PubMed

    Moher, H E; Carey, G B

    2002-05-01

    The purpose of this study was to examine the 133xenon washout technique as a viable method for measuring adipose tissue blood flow (ATBF) in swine. Using a total of 32 female Yucatan miniature swine (Sus scrofa), the partition coefficient for 133xenon in swine subcutaneous adipose tissue was determined and ATBF was measured at rest and under various physiological conditions. These conditions included feeding, anesthesia, epinephrine infusion, and acute exercise. The effects of epinephrine and acute exercise were examined in both sedentary and exercise-trained swine. The partition coefficient value for 133xenon in swine subcutaneous adipose tissue was 9.23+/-0.26 mL/g (mean +/- SD, n = 10). The average value for resting ATBF in swine was 3.98+/-2.72 mL/(100 g tissue-min) (n = 19). Feeding increased ATBF by approximately fivefold over fasting values, and isoflurane anesthesia significantly decreased ATBF compared to rest (1.64+/-1.12 vs 3.92+/-4.22 mL/[100 g x min], n = 10). A 30-min epinephrine infusion (1 microg/[kg BW x min]) significantly increased ATBF from a resting value of 3.13+/-2.61 to 10.35+/-5.31 mL/(100 g x min) (n = 12). Epinephrine infusion into exercise-trained swine increased ATBF to the same extent as when infused into sedentary swine. An acute, 20-min bout of exercise significantly increased ATBF in swine, and the sedentary swine showed a larger increase in ATBF than their exercise-trained littermates relative to rest: 7.83 vs 2.98 mL/(100 g x min). In conclusion, the 133xenon washout technique appears to be a viable method for measuring ATBF in swine; our findings are comparable to swine ATBF values reported using the microsphere method and are consistent with values reported in animal and human studies.

  18. Timing of distant flap pedicle division using xenon 133 clearance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snelling, C.F.; Poomee, A.; Sutherland, J.B.

    1980-09-01

    Clearance of intradermally injected xenon 133 was used to measure blood flow in distant flaps in humans with the donor pedicle temporarily clamped just prior to division. All 18 flaps with a blood flow of 0.5 ml per 100 gm of tissue per minute or more survived completely after separation. Of 7 with lesser flow, 3 underwent marginal necrosis adjacent to the line of division and 4 survived entirely. Xenon 133 washout does permit quantitative evaluation of blood flow, and since it is a clean isotope, it appears superior to sodium 24 and technetium 99m, which have been used inmore » a similar manner. The test is proposed as an adjunct to clinical judgment in timing pedicle division.« less

  19. WE-FG-206-07: Assessing the Lung Function of Patients with Non-Small Cell Lung Cancer Using Hyperpolarized Xenon-129 Dissolved-Phase MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qing, K; Mugler, J; Chen, Q

    Purpose: Hyperpolarized xenon-129 dissolved-phase MRI is the first imaging technique that allows 3-dimensional regional mapping of ventilation and gas uptake by tissue and blood the in human lung. Multiple outcome measures can be produced from this method. Existing studies in subjects with major lung diseases compared to healthy controls demonstrated high sensitivities of this method to pulmonary physiological factors including ventilation, alveolar tissue density, surface-to-volume ratio, pulmonary perfusion and gas-blood barrier thickness. The purpose of this study is to evaluate the utility of this new imaging tool to assess the lung function in patients with non-small cell lung cancer (NSCLC).more » Methods: Ten healthy controls (age: 63±10) and five patients (age: 62±13) with NSCLC underwent the xenon-129 dissolved-phase MRI, pulmonary function test (PFT) and CT for clinical purpose. Three outcome measures were produced from xenon-129 dissolved-phase MRI, including ventilation defect fraction (Vdef%) reflecting the airflow obstruction, tissue-to-gas ratio reflecting lung tissue density, and RBC-to-tissue ratio reflecting pulmonary perfusion and gas exchange. Results: Compared to healthy controls, patients with NSCLC showed more ventilation defects (NSCLC: 22±6%; control: 40±18%; P=0.01), lower tissue-to-gas (NSCLC: 0.82±0.31%; control: 1.07±0.13%; P=0.05) and RBC-to-tissue ratios (NSCLC: 0.82±0.31%; control: 1.07±0.13%; P=0.01). Maps for ventilation and gas uptake by tissue and blood were highly heterogeneous in the lungs of patients. Vdef% and RBC-to-tissue ratios in all 15 subjects correlated with corresponding global lung functional measures from PFT: FEV1/FVC (R=−0.91, P<0.001) and DLCO % predicted (R=0.54, P=0.03), respectively. The tissue-to-gas ratios correlated with tissue density (HU) measured by CT (R=0.88, P<0.001). Conclusion: With the unique ability to provide detailed information about lung function including ventilation, tissue density, perfusion and gas exchange with 3D resolution, hyperpolarized xenon-129 dissolved-phase MRI has high potential to be used as an important reference for radiotherapy treatment planning and for evaluating the side effects of the treatment. Receive research support and funding from Siemens.« less

  20. Human Lung Homotransplantation

    PubMed Central

    White, J. J.; Tanser, P. H.; Anthonisen, N. R.; Wynands, J. E.; Pare, J. A. P.; Becklake, M. R.; Munro, D. D.; MacLean, L. D.

    1966-01-01

    Left lung homotransplantation was performed in a 31-year-old man in terminal irreversible respiratory failure due to advanced silicosis. Within 10 minutes of completion of transplantation, arterial pO2 rose from 52 to 211 mm. Hg, pCO2 dropped from 90 to 43 mm. Hg, and pH rose from 7.15 to 7.42. On assisted ventilation, arterial O2 tension was maintained within normal limits for the first four days. Thereafter, arterio-alveolar difference for O2 increased to 300 mm. and that for CO2 to 25 mm. Xenon-133 ventilation perfusion ratios confirmed differences between the two lungs. Terminally, bronchopneumonia and hypoxemia were present. Surfactant content of the lung was within normal limits. Postmortem examination revealed bronchopneumonia, bronchial infarction, lymphatic engorgement and mild rejection. Future efforts should emphasize selection of non-infected donors, minimal reliance on steroids for immunosuppression, cardiopulmonary bypass during transplantation, and more definite criteria for rejection. ImagesFig. 2Fig. 3Fig. 4Fig. 8Fig. 9Fig. 11Fig. 12Fig. 13Fig. 14 PMID:5328358

  1. Isotopic signature of atmospheric xenon released from light water reactors.

    PubMed

    Kalinowski, Martin B; Pistner, Christoph

    2006-01-01

    A global monitoring system for atmospheric xenon radioactivity is being established as part of the International Monitoring System to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The isotopic activity ratios of (135)Xe, (133m)Xe, (133)Xe and (131m)Xe are of interest for distinguishing nuclear explosion sources from civilian releases. Simulations of light water reactor (LWR) fuel burn-up through three operational reactor power cycles are conducted to explore the possible xenon isotopic signature of nuclear reactor releases under different operational conditions. It is studied how ratio changes are related to various parameters including the neutron flux, uranium enrichment and fuel burn-up. Further, the impact of diffusion and mixing on the isotopic activity ratio variability are explored. The simulations are validated with reported reactor emissions. In addition, activity ratios are calculated for xenon isotopes released from nuclear explosions and these are compared to the reactor ratios in order to determine whether the discrimination of explosion releases from reactor effluents is possible based on isotopic activity ratios.

  2. Uncertainty quantification for discrimination of nuclear events as violations of the comprehensive nuclear-test-ban treaty.

    PubMed

    Sloan, Jamison; Sun, Yunwei; Carrigan, Charles

    2016-05-01

    Enforcement of the Comprehensive Nuclear Test Ban Treaty (CTBT) will involve monitoring for radiologic indicators of underground nuclear explosions (UNEs). A UNE produces a variety of radioisotopes which then decay through connected radionuclide chains. A particular species of interest is xenon, namely the four isotopes (131m)Xe, (133m)Xe, (133)Xe, and (135)Xe. Due to their half lives, some of these isotopes can exist in the subsurface for more than 100 days. This convenient timescale, combined with modern detection capabilities, makes the xenon family a desirable candidate for UNE detection. Ratios of these isotopes as a function of time have been studied in the past for distinguishing nuclear explosions from civilian nuclear applications. However, the initial yields from UNEs have been treated as fixed values. In reality, these independent yields are uncertain to a large degree. This study quantifies the uncertainty in xenon ratios as a result of these uncertain initial conditions to better bound the values that xenon ratios can assume. We have successfully used a combination of analytical and sampling based statistical methods to reliably bound xenon isotopic ratios. We have also conducted a sensitivity analysis and found that xenon isotopic ratios are primarily sensitive to only a few of many uncertain initial conditions. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Radioxenon spiked air

    DOE PAGES

    Watrous, Matthew G.; Delmore, James E.; Hague, Robert K.; ...

    2015-08-27

    Four of the radioactive xenon isotopes ( 131mXe, 133mXe, 133Xe and 135Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. Themore » International Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This study focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.« less

  4. Radioxenon spiked air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watrous, Matthew G.; Delmore, James E.; Hague, Robert K.

    Four of the radioactive xenon isotopes ( 131mXe, 133mXe, 133Xe and 135Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. Themore » International Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This study focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.« less

  5. The use of stable xenon-enhanced computed tomographic studies of cerebral blood flow to define changes in cerebral carbon dioxide vasoresponsivity caused by a severe head injury.

    PubMed

    Marion, D W; Bouma, G J

    1991-12-01

    Previous studies using the xenon-133 cerebral blood flow (CBF) method have documented the impairment of CO2 vasoresponsivity after a severe head injury, but only global values can be obtained reliably with this technique. We studied CO2 vasoresponsivity using the stable xenon-enhanced computed tomographic CBF method, which provided information about well-defined cortical regions and deep brain structures not available with the xenon-133 method. In 17 patients with admission Glasgow Coma Scale scores of 8 or less, hemispheric CO2 vasoresponsivity ranged from 1.3 to 8.5% per mm Hg change in partial CO2 pressure. Lobar, cerebellar, basal ganglia, and brain stem CO2 vasoresponsivity frequently varied from the mean global value by more than 25%. In all but one patient, local CO2 vasoresponsivity in one or more of these areas differed from the mean global value by more than 50%. The greatest variability occurred in patients with acute subdural hematomas and diffuse (bihemispheric) injuries. This variability in CO2 vasoresponsivity has important implications for the effective and safe management of intracranial hypertension that frequently accompanies severe head injury.

  6. CTBTO Contractor Laboratory Test Sample Production Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bob Hague; Tracy Houghton; Nick Mann

    2013-08-01

    In October 2012 scientists from both Idaho National Laboratory (INL) and the CTBTO contact laboratory at Seibersdorf, Austria designed a system and capability test to determine if the INL could produce and deliver a short lived radio xenon standard in time for the standard to be measured at the CTBTO contact laboratory at Seibersdorf, Austria. The test included sample standard transportation duration and potential country entrance delays at customs. On October 23, 2012 scientists at the Idaho National Laboratory (INL) prepared and shipped a Seibersdorf contract laboratory supplied cylinder. The canister contained 1.0 scc of gas that consisted of 70%more » xenon and 30% nitrogen by volume. The t0 was October 24, 2012, 1200 ZULU. The xenon content was 0.70 +/ 0.01 scc at 0 degrees C. The 133mXe content was 4200 +/ 155 dpm per scc of stable xenon on t0 (1 sigma uncertainty). The 133Xe content was 19000 +/ 800 dpm per scc of stable xenon on t0 (1 sigma uncertainty).« less

  7. Xenon ventilation during therapeutic hypothermia in neonatal encephalopathy: a feasibility study.

    PubMed

    Dingley, John; Tooley, James; Liu, Xun; Scull-Brown, Emma; Elstad, Maja; Chakkarapani, Ela; Sabir, Hemmen; Thoresen, Marianne

    2014-05-01

    Therapeutic hypothermia has become standard of care in newborns with moderate and severe neonatal encephalopathy; however, additional interventions are needed. In experimental models, breathing xenon gas during cooling offers long-term additive neuroprotection. This is the first xenon feasibility study in cooled infants. Xenon is expensive, requiring a closed-circuit delivery system. Cooled newborns with neonatal encephalopathy were eligible for this single-arm, dose-escalation study if clinically stable, under 18 hours of age and requiring less than 35% oxygen. Xenon duration increased stepwise from 3 to 18 hours in 14 subjects; 1 received 25% xenon and 13 received 50%. Respiratory, cardiovascular, neurologic (ie, amplitude-integrated EEG, seizures), and inflammatory (C-reactive protein) effects were examined. The effects of starting or stopping xenon rapidly or slowly were studied. Three matched control subjects per xenon treated subject were selected from our cooling database. Follow-up was at 18 months using mental developmental and physical developmental indexes of the Bayley Scales of Infant Development II. No adverse respiratory or cardiovascular effects, including post-extubation stridor, were seen. Xenon increased sedation and suppressed seizures and background electroencephalographic activity. Seizures sometimes occurred during rapid weaning of xenon but not during slow weaning. C-reactive protein levels were similar between groups. Hourly xenon consumption was 0.52 L. Three died, and 7 of 11 survivors had mental and physical developmental index scores ≥70 at follow-up. Breathing 50% xenon for up to 18 hours with 72 hours of cooling was feasible, with no adverse effects seen with 18 months' follow-up. Copyright © 2014 by the American Academy of Pediatrics.

  8. Potential impact of releases from a new Molybdenum-99 production facility on regional measurements of airborne xenon isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowyer, Ted W.; Eslinger, Paul W.; Cameron, Ian M.

    2014-03-01

    The monitoring of the radioactive xenon isotopes 131mXe, 133Xe, 133mXe, and 135Xe is important for the detection of nuclear explosions. While backgrounds of the xenon isotopes are short-lived, they are constantly replenished from activities dominated by the fission-based production of 99Mo used for medical procedures. One of the most critical locations on earth for the monitoring of nuclear explosions is the Korean peninsula, where the Democratic Republic of North Korea (DPRK) has announced that it had conducted three nuclear tests between 2009 and 2013. This paper explores the backgrounds that would be caused by the medium to large scale productionmore » of 99Mo in the region of the Korean peninsula.« less

  9. TU-A-12A-02: Novel Lung Ventilation Imaging with Single Energy CT After Single Inhalation of Xenon: Comparison with SPECT Ventilation Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negahdar, M; Yamamoto, T; Shultz, D

    Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patientsmore » treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding.« less

  10. Measurement of fission product gases in the atmosphere

    NASA Astrophysics Data System (ADS)

    Schell, W. R.; Tobin, M. J.; Marsan, D. J.; Schell, C. W.; Vives-Batlle, J.; Yoon, S. R.

    1997-01-01

    The ability to quickly detect and assess the magnitude of releases of fission-produced radioactive material is of significant importance for ongoing operations of any conventional nuclear power plant or other activities with a potential for fission product release. In most instances, the control limits for the release of airborne radioactivity are low enough to preclude direct air sampling as a means of detection, especially for fission gases that decay by beta or electron emission. It is, therefore, customary to concentrate the major gaseous fission products (krypton, xenon and iodine) by cryogenic adsorption for subsequent separation and measurement. This study summarizes our initial efforts to develop an automated portable system for on-line separation and concentration with the potential for measuring environmental levels of radioactive gases, including 85Kr, 131,133,135Xe, 14C, 3H, 35S, 125,131I, etc., without using cryogenic fluids. Bench top and prototype models were constructed using the principle of heatless fractionation of the gases in a pressure swing system. This method removes the requirement for cryogenic fluids to concentrate gases and, with suitable electron and gamma ray detectors, provides for remote use under automatic computer control. Early results using 133Xe tracer show that kinetic chromatography, i.e., high pressure adsorption of xenon and low pressure desorption of air, using specific types of molecular sieves, permits the separation and quantification of xenon isotopes from large volume air samples. We are now developing the ability to measure the presence and amounts of fission-produced xenon isotopes that decay by internal conversion electrons and beta radiation with short half-lives, namely 131mXe, 11.8 d, 133mXe, 2.2 d, 133Xe, 5.2 d and 135Xe, 9.1 h. The ratio of the isotopic concentrations measured can be used to determine unequivocally the amount of fission gas and time of release of an air parcel many kilometers downwind from a nuclear activity where the fission products were discharged.

  11. The Modification and Performance of a Large Animal Anesthesia Machine (Tafonius®) in Order to Deliver Xenon to a Horse.

    PubMed

    Santangelo, Bruna; Robin, Astrid; Simpson, Keith; Potier, Julie; Guichardant, Michel; Portier, Karine

    2017-01-01

    Xenon, due to its interesting anesthetic properties, could improve the quality of anesthesia protocols in horses despite its high price. This study aimed to modify and test an anesthesia machine capable of delivering xenon to a horse. An equine anesthesia machine (Tafonius, Vetronic Services Ltd., UK) was modified by including a T-connector in the valve block to introduce xenon, so that the xenon was pushed into the machine cylinder by the expired gases. A xenon analyzer was connected to the expiratory limb of the patient circuit. The operation of the machine was modeled and experimentally tested for denitrogenation, wash-in, and maintenance phases. The system was considered to consist of two compartments, one being the horse's lungs, the other being the machine cylinder and circuit. A 15-year-old, 514-kg, healthy gelding horse was anesthetized for 70 min using acepromazine, romifidine, morphine, diazepam, and ketamine. Anesthesia was maintained with xenon and oxygen, co-administered with lidocaine. Ventilation was controlled. Cardiorespiratory variables, expired fraction of xenon (FeXe), blood gases were measured and xenon was detected in plasma. Recovery was unassisted and recorded. FeXe remained around 65%, using a xenon total volume of 250 L. Five additional boli of ketamine were required to maintain anesthesia. PaO 2 was 45 ± 1 mmHg. The recovery was calm. Xenon was detected in blood during the entire administration time. This pilot study describes how to deliver xenon to a horse. Although many technical problems were encountered, their correction could guide future endeavors to study the use of xenon in horses.

  12. Radioxenon Production from an Underground Nuclear Detonation

    NASA Astrophysics Data System (ADS)

    Sun, Y.

    2016-12-01

    The Comprehensive Nuclear Test Ban Treaty of 1996 has sparked the attention of many nations around the world for detecting Underground Nuclear Explosions (UNEs). The radioisotopes, specifically isotopes of xenon, Xe-131m, Xe-133m, Xe-133, and Xe-135, are being studied using their half-lives and decay networks for distinguishing civilian nuclear applications from UNEs. This study aims to simulate radioxenon concentrations and their uncertainties using analytical solutions of radioactive decay networks.

  13. The total release of xenon-133 from the Fukushima Dai-ichi nuclear power plant accident.

    PubMed

    Stohl, Andreas; Seibert, Petra; Wotawa, Gerhard

    2012-10-01

    The accident at the Fukushima Dai-ichi nuclear power plant (FD-NPP) on 11 March 2011 released large amounts of radioactivity into the atmosphere. We determine the total emission of the noble gas xenon-133 ((133)Xe) using global atmospheric concentration measurements. For estimating the emissions, we used three different methods: (i) using a purely observation-based multi-box model, (ii) comparisons of dispersion model results driven with GFS meteorological data with the observation data, and (iii) such comparisons with the dispersion model driven by ECMWF data. From these three methods, we have obtained total (133)Xe releases from FD-NPP of (i) 16.7 ± 1.9 EBq, (ii) 14.2 ± 0.8 EBq, and (iii) 19.0 ± 3.4 EBq, respectively. These values are substantially larger than the entire (133)Xe inventory of FD-NPP of about 12.2 EBq derived from calculations of nuclear fuel burn-up. Complete release of the entire (133)Xe inventory of FD-NPP and additional release of (133)Xe due to the decay of iodine-133 ((133)I), which can add another 2 EBq to the (133)Xe FD-NPP inventory, is required to explain the atmospheric observations. Two of our three methods indicate even higher emissions, but this may not be a robust finding given the differences between our estimates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. SPECT in Alzheimer`s disease and the dementias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonte, F.J.

    1991-12-31

    Among 90 patients with a clinical diagnosis of Alzheimer`s disease (AD), two subgroups were identified for special study, including 42 patients who had a history of dementia in one or more first-degree relatives, and 14 who had a diagnosis of early AD. Of the 42 patients with a family history of dementia, 34 out of the 35 patients whose final clinical diagnosis was possible or probable AD had positive SPECT rCBF studies. Studies in the 14 patients thought to have very early AD were positive in 11 cases. This finding suggests that altered cortical physiology, and hence, rCBF, occurs quitemore » early in the course of AD, perhaps before the onset of symptoms. It is possible that Xenon 133 rCBF studies might be used to detect the presence of subclinical AD in a population of individuals at risk to this disorder. Despite the drawbacks of a radionuclide with poor photon energy, Xenon 133, with its low cost and round-the-clock availability, deserves further study. Although the physical characteristics of Xenon 127 might make it preferable as a SPECT tracer, it is still not regularly available, and some instrument systems are not designed to handle its higher photon energies.« less

  15. Hyperpolarized xenon magnetic resonance of the lung and the brain

    NASA Astrophysics Data System (ADS)

    Venkatesh, Arvind Krishnamachari

    2001-04-01

    Hyperpolarized noble gas Magnetic Resonance Imaging (MRI) is a new diagnostic modality that has been used successfully for lung imaging. Xenon is soluble in blood and inhaled xenon is transported to the brain via circulating blood. Xenon also accumulates in the lipid rich white matter of the brain. Hyperpolarized xenon can hence be used as a tissue- sensitive probe of brain function. The goals of this study were to identify the NMR resonances of xenon in the rat brain and evaluate the role of hyperpolarized xenon for brain MRI. We have developed systems to produce sufficient volumes of hyperpolarized xenon for in vivo brain experiments. The specialized instrumentation developed include an apparatus for optical pump-cell manufacture and high purity gas manifolds for filling cells. A hyperpolarized gas delivery system was designed to ventilate small animals with hyperpolarized xenon for transport to the brain. The T1 of xenon dissolved in blood indicates that the lifetime of xenon in the blood is sufficient for significant magnetization to be transferred to distal tissues. A variety of carrier agents for intravenous delivery of hyperpolarized xenon were tested for transport to distal tissues. Using our new gas delivery system, high SNR 129Xe images of rat lungs were obtained. Spectroscopy with hyperpolarized xenon indicated that xenon was transported from the lungs to the blood and tissues with intact magnetization. After preliminary studies that indicated the feasibility for in vivo rat brain studies, experiments were performed with adult rats and young rats with different stages of white matter development. Both in vivo and in vitro experiments showed the prominence of one peak from xenon in the rat brain, which was assigned to brain lipids. Cerebral brain perfusion was calculated from the wash-out of the hyperpolarized xenon signal in the brain. An increase in brain perfusion during maturation was observed. These experiments showed that hyperpolarized xenon MRI can be used to develop unique approaches to studying white matter and gray matter in the brain. Some of the possible applications of hyperpolarized xenon MRI in the brain are clinical diagnosis of white matter diseases, functional MRI (fMRI) and measurement of cerebral blood perfusion.

  16. Minimum alveolar concentration (MAC) for sevoflurane and xenon at normothermia and hypothermia in newborn pigs.

    PubMed

    Liu, X; Dingley, J; Elstad, M; Scull-Brown, E; Steen, P A; Thoresen, M

    2013-05-01

    Neuroprotection from therapeutic hypothermia increases when combined with the anaesthetic gas xenon in animal studies. A clinical feasibility study of the combined treatment has been successfully undertaken in asphyxiated human term newborns. It is unknown whether xenon alone would be sufficient for sedation during hypothermia eliminating or reducing the need for other sedative or analgesic infusions in ventilated sick infants. Minimum alveolar concentration (MAC) of xenon is unknown in any neonatal species. Eight newborn pigs were anaesthetised with sevoflurane alone and then sevoflurane plus xenon at two temperatures. Pigs were randomised to start at either 38.5°C or 33.5°C. MAC for sevoflurane was determined using the claw clamp technique at the preset body temperature. For xenon MAC determination, a background of 0.5 MAC sevoflurane was used, and 60% xenon added to the gas mixture. The relationship between sevoflurane and xenon MAC is assumed to be additive. Xenon concentrations were changed in 5% steps until a positive clamp reaction was noted. Pigs' temperature was changed to the second target, and two MAC determinations for sevoflurane and 0.5 MAC sevoflurane plus xenon were repeated. MAC for sevoflurane was 4.1% [95% confidence interval (CI): 3.65-4.50] at 38.5°C and 3.05% (CI: 2.63-3.48) at 33.5°C, a significant reduction. MAC for xenon was 120% at 38.5°C and 116% at 33.5°C, not different. In newborn swine sevoflurane, MAC was temperature dependent, while xenon MAC was independent of temperature. There was large individual variability in xenon MAC, from 60% to 120%. © 2013 The Acta Anaesthesiologica Scandinavica Foundation.

  17. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.

    2014-10-31

    Abstract: The rare gases krypton, xenon, and radon pose both an economic opportunity and a potential environmental hazard. Xenon is used in commercial lighting, medical imaging, and anesthesia, and can sell for $5,000 per kilogram. Radon, by contrast, Is naturally radioactive and the second largest cause of lung cancer, and radioactive xenon, 133Xe, was a major pollutant released In the Fukushima Daiichi Nuclear Power Plant disaster. We describe an organic cage molecule that can capture xenon and radon with unprecedented selectivity, suggesting new technologies for environmental monitoring, removal of pollutants, or the recovery of rare, valuable elements from air.

  18. Diagnosis of vasculogenic impotence: Combination of penile xenon-133 washout and papaverine tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, S.N.; Liu, R.S.; Yu, P.C.

    1989-07-01

    The present study evaluates both penile xenon-133 washout (XWT) and papaverine tests (PT) in the diagnosis of vasculogenic impotence. XWT was accomplished by subcutaneous injection of xenon-133 (1-2 mCi in 0.1 mL saline solution) into the dorsal coronal prepuce. Abnormal XWT was suggested in patients whose clearance time (T1/2) was longer than 7.5 minutes and whose penile blood flow rate (Q) was less than 6 mL/100 g tissue/min. PT was done by intracavernous injection of papaverine (60 mg in 20 mL normal saline). Abnormal PT was indicated in patients whose onset of full erection was more than ten minutes aftermore » papaverine injection and whose duration of erection was less than one hour. Ten young and 11 older normal volunteers were examined with XWT only; all showed normal results. A total of 60 impotent patients were examined with both XWT and PT and were classified into four groups: in 2 patients (3.3%) both XWT and PT were normal (group I); in 8 (13.3%) XWT was abnormal and PT normal (group II); in 14 (23.3%) XWT was normal and PT abnormal (group III); and in 36 (60%) both XWT and PT were abnormal (group IV). On further examination with bilateral hypogastric arteriography in 10 XWT-abnormal patients and on surgical correction of abnormal curvature in 5 XWT-abnormal patients, all (100%) were proved to have penile arterial insufficiency. Erection cavernosography performed in 15 PT-abnormal patients confirmed penile venous insufficiency in 80 percent. We conclude both XWT and PT are simple and effective for evaluation of the penile arterial blood flow and venous competence, respectively.« less

  19. Infra-red technique for cerebral blood flow: comparison with /sup 133/Xenon clearance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colacino, J.M.; Grubb, B.; Joebsis, F.F.

    A rapid infra-red optical technique has been developed for the measurement of cerebral blood flow. The method measures optical density changes across the intact skull during the passage of a bolus of the dye. Cardio-Green (CG). The clearance curves obtained for CG boluses are very short (less than 30 sec) in comparison with those obtained with tracers such as /sup 133/Xenon (10-30 min) that distribute into cerebral tissue. The volume of distribution of CG is totally intravascular, and the dye is relatively slowly cleared from the body. The important advantages of this spectrophotometric technique are its speed, versatility, and themore » avoidance of radioactive materials. The differential spectrophotometer used in this study, with trivial modifications, has been used to monitor changes in brain blood volume, oxygen saturation of hemoglobin, and cortical mitochondrial respiratory function, which illustrate the versatility of the technique for neurological assessments.« less

  20. SU-E-J-120: Comparing 4D CT Computed Ventilation to Lung Function Measured with Hyperpolarized Xenon-129 MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, B; Chen, Q

    2015-06-15

    Purpose: To correlate ventilation parameters computed from 4D CT to ventilation, profusion, and gas exchange measured with hyperpolarized Xenon-129 MRI for a set of lung cancer patients. Methods: Hyperpolarized Xe-129 MRI lung scans were acquired for lung cancer patients, before and after radiation therapy, measuring ventilation, perfusion, and gas exchange. In the standard clinical workflow, these patients also received 4D CT scans before treatment. Ventilation was computed from 4D CT using deformable image registration (DIR). All phases of the 4D CT scan were registered using a B-spline deformable registration. Ventilation at the voxel level was then computed for each phasemore » based on a Jacobian volume expansion metric, yielding phase sorted ventilation images. Ventilation based upon 4D CT and Xe-129 MRI were co-registered, allowing qualitative visual comparison and qualitative comparison via the Pearson correlation coefficient. Results: Analysis shows a weak correlation between hyperpolarized Xe-129 MRI and 4D CT DIR ventilation, with a Pearson correlation coefficient of 0.17 to 0.22. Further work will refine the DIR parameters to optimize the correlation. The weak correlation could be due to the limitations of 4D CT, registration algorithms, or the Xe-129 MRI imaging. Continued development will refine parameters to optimize correlation. Conclusion: Current analysis yields a minimal correlation between 4D CT DIR and Xe-129 MRI ventilation. Funding provided by the 2014 George Amorino Pilot Grant in Radiation Oncology at the University of Virginia.« less

  1. Ventilation patterns mimicking COPD in patients with diaphragmatic pacing for Ondine's curse. [/sup 133/Xe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhija, M.C.; Bronfman, H.J.; Lange, R.C.

    1978-10-01

    Ventilation was studied with /sup 133/Xe in 18 patients with central hypoventilation (Ondine's Curse) in whom diaphragmatic pacers were implanted. Three distinct patterns emerged: Type I, improvement in ventilation on the paced side (11 of 18 patients); Type II, improvement on both the paced and unpaced side (4 of 18); and Type III, no improvement (3 of 18). With the pacer off, many of these patients have patterns that mimic chronic obstructive pulmonary disease and that revert to normal with pacing. This retention, clearly reversible, cannot reflect permanent airways or airspace disease.

  2. Cerebral blood-flow tomography: xenon-133 compared with isopropyl-amphetamine-iodine-123: concise communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lassen, N.A.; Henriksen, L.; Holm, S.

    1983-01-01

    Tomographic maps of local cerebral blood flow (CBF) were obtained with xenon-133 and with isopropyl-amphetamine-iodine-123 (IMP) in 11 subjects: one normal, two tumor cases, and eight cerebrovascular cases. A highly sensitive four-face, rapidly rotating, single-photon emission tomograph was used. The Xe-133 flow maps are essentially based on the average Xe-133 concentration over the initial 2 min during and after an inhalation of the inert gas lasting 1 min. These maps agreed very well with the early IMP maps obtained over the initial 10 min following an i.v. bolus injection. The subsequent IMP tomograms showed a slight decrease in contrast amountingmore » to appr. five percentage points in the CBF ratio between diseased and contralateral areas. It is concluded that Xe-133 is more practical: low cost, available on a 7-day basis, easily repeatable, quantifiable without the need for arterial sampling, and with low radiation exposure to patient and personnel. On the other hand, IMP gives an image of slightly higher resolution. It also introduces a new class of iodinated brain-seeking compounds allowing, perhaps, imaging of other functions more important than mere blood flow.« less

  3. Phase II: Field Detector Development For Undeclared/Declared Nuclear Testing For Treaty Verfiation Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriz, M.; Hunter, D.; Riley, T.

    2015-10-02

    Radioactive xenon isotopes are a critical part of the Comprehensive Nuclear Test Ban Treaty (CTBT) for the detection or confirmation of nuclear weapons tests as well as on-site treaty verification monitoring. On-site monitoring is not currently conducted because there are no commercially available small/robust field detector devices to measure the radioactive xenon isotopes. Xenon is an ideal signature to detect clandestine nuclear events since they are difficult to contain and can diffuse and migrate through soils due to their inert nature. There are four key radioxenon isotopes used in monitoring: 135Xe (9 hour half-life), 133mXe (2 day half-life), 133Xe (5more » day half-life) and 131mXe (12 day half-life) that decay through beta emission and gamma emission. Savannah River National Laboratory (SRNL) is a leader in the field of gas collections and has developed highly selective molecular sieves that allow for the collection of xenon gas directly from air. Phase I assessed the development of a small, robust beta-gamma coincidence counting system, that combines collection and in situ detection methodologies. Phase II of the project began development of the custom electronics enabling 2D beta-gamma coincidence analysis in a field portable system. This will be a significant advancement for field detection/quantification of short-lived xenon isotopes that would not survive transport time for laboratory analysis.« less

  4. 135Xe measurements with a two-element CZT-based radioxenon detector for nuclear explosion monitoring.

    PubMed

    Ranjbar, Lily; Farsoni, Abi T; Becker, Eric M

    2017-04-01

    Measurement of elevated concentrations of xenon radioisotopes ( 131m Xe, 133m Xe, 133 Xe and 135 Xe) in the atmosphere has been shown to be a very powerful method for verifying whether or not a detected explosion is nuclear in nature. These isotopes are among the few with enough mobility and with half-lives long enough to make their detection at long distances realistic. Existing radioxenon detection systems used by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) suffer from problems such as complexity, need for high maintenance and memory effect. To study the response of CdZnTe (CZT) detectors to xenon radioisotopes and investigate whether it is capable of mitigating the aforementioned issues with the current radioxenon detection systems, a prototype detector utilizing two coplanar CZT detectors was built and tested at Oregon State University. The detection system measures xenon radioisotopes through beta-gamma coincidence technique by detecting coincidence events between the two detectors. In this paper, we introduce the detector design and report our measurement results with radioactive lab sources and 135 Xe produced in the OSU TRIGA reactor. Minimum Detectable Concentration (MDC) for 135 Xe was calculated to be 1.47 ± 0.05 mBq/m 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Therapeutic and Economic Impact of a Modern Amputation Program

    PubMed Central

    Malone, James M.; Moore, Wesley S.; Goldstone, Jerry; Malone, Sandee J.

    1979-01-01

    The experience with 142 below-knee amputations for vascular occlusive disease and/or diabetes mellitus in 133 patients has been reviewed. The program utilized Xenon133 skin bloodflow measurement for the selection of amputation level, emphasized the use of the long posterior skin flap as an important part of surgical technique, and employed immediate postoperative prosthesis with accelerated rehabilitation for postoperative management. The results of this program yielded a 0% postoperative mortality, 89% amputation healing, and 100% prosthesis rehabilitation of all unilateral below-knee amputees, and 93% rehabilitation of all bilateral below-knee amputees. The average time interval between amputation and fitting of a permanent prosthesis was 32 days. The use of Xenon133 clearance as a measurement of capillary skin bloodflow for purposes of amputation level selection continues to be valid. All amputations with flows in excess of 2.6 ml/100 g tissue/min healed primarily, including the last 58 consecutive amputations. The total amputation of the 172 hospital V.A. system was surveyed and a cost analysis, based upon duration of postamputation hospitalization, comparing immediate postoperative prosthesis with conventional techniques, was performed. The savings to the system, taking into account start-up and maintenance costs for a program which employs immediate postoperative prosthesis, was projected to be $80,000,000 over five years. We conclude that a modern amputation program employing Xenon133 clearance for amputation level selection and immediate postoperative prosthesis with accelerated rehabilitation is well justified based upon reduced morbidity, negligable mortality, and optimum patient prosthetic rehabilitation at a marked reduction in overall cost. PMID:453951

  6. Delayed post-ischaemic administration of xenon reduces brain damage in a rat model of global ischaemia.

    PubMed

    Metaxa, V; Lagoudaki, R; Meditskou, S; Thomareis, O; Oikonomou, L; Sakadamis, A

    2014-01-01

    Xenon and nitrous oxide have been shown to be neuroprotective in vivo and in vitro, but mainly in models of focal cerebral ischaemia. This study aimed to investigate whether the two gases are able to attenuate cerebral injury after global cerebral ischaemia. Adult male Wistar rats underwent bilateral common carotid artery occlusion and were ventilated for 1 hour with 21% O₂/78% N₂. They were then randomized to three groups which continued to receive atmospheric air, 50% N2O/50% O₂ and 50% Xe/50% O₂ for an additional period of 45 minutes. The number of ischaemic neurons, the cortical volume loss and the immunochemical and molecular expression of c-fos and MMP-9 were evaluated. Xenon reduced the number of ischaemic neurons in the cortex and CA1 hippocampal region (p < 0.001) and decreased the cortical volume loss (p < 0.01). Immunochemical induction of c-fos in the cortex was significantly suppressed (p < 0.01) after administration of xenon. The molecular analysis revealed significant effects of N2O and xenon administration on c-fos and MMP-9 expression. The data indicate that N2O and xenon administration is neuroprotective 1 hour after bilateral common carotid artery occlusion. These findings provide valuable evidence on the beneficial role of N2O and xenon in global cerebral injury.

  7. Effects of corticosteroids and local anaesthetics applied directly to the synovial vascular bed.

    PubMed Central

    De Ceulaer, K; Balint, G; El-Ghobarey, A; Dick, W C

    1979-01-01

    The effects of intra-articular injection of triamcinolone hexacetonide on the rate of clearance of radioactive xenon (133Xe) was studied in 11 patients with rheumatoid arthritis. No effect of the corticosteroid injection was observed, which suggests that the drug has no immediate effect on synovial blood vessels. PMID:518144

  8. Endometrial blood flow measured by xenon 133 clearance in women with normal menstrual cycles and dysfunctional uterine bleeding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraser, I.S.; McCarron, G.; Hutton, B.

    Endometrial blood flow was measured through the menstrual cycle in nonpregnant women (28 studies of 17 women with normal menstrual cycles and 32 studies of 20 women with dysfunctional uterine bleeding) with use of a clearance technique in which 100 to 400 microCi of the gamma-emitting isotope, xenon 133 in saline solution was instilled into the uterine cavity. The mean (+/- SEM) endometrial blood flow in normal cycles was 27.7 +/- 2.6 ml/100 gm/min, with a significant elevation in the middle to late follicular phase, followed by a substantial fall and a secondary slow luteal phase rise that was maintainedmore » until the onset of menstruation. There was a significant correlation between plasma estradiol levels and endometrial blood flow in the follicular but not the luteal phase. Blood flow patterns in women with ovulatory dysfunctional bleeding were similar to normal, except for a significantly lower middle follicular rate. Women with anovulatory dysfunctional bleeding exhibited exceedingly variable flow rates.« less

  9. Simultaneous magnetic resonance imaging of ventilation distribution and gas uptake in the human lung using hyperpolarized xenon-129

    PubMed Central

    Mugler, John P.; Altes, Talissa A.; Ruset, Iulian C.; Dregely, Isabel M.; Mata, Jaime F.; Miller, G. Wilson; Ketel, Stephen; Ketel, Jeffrey; Hersman, F. William; Ruppert, Kai

    2010-01-01

    Despite a myriad of technical advances in medical imaging, as well as the growing need to address the global impact of pulmonary diseases, such as asthma and chronic obstructive pulmonary disease, on health and quality of life, it remains challenging to obtain in vivo regional depiction and quantification of the most basic physiological functions of the lung—gas delivery to the airspaces and gas uptake by the lung parenchyma and blood—in a manner suitable for routine application in humans. We report a method based on MRI of hyperpolarized xenon-129 that permits simultaneous observation of the 3D distributions of ventilation (gas delivery) and gas uptake, as well as quantification of regional gas uptake based on the associated ventilation. Subjects with lung disease showed variations in gas uptake that differed from those in ventilation in many regions, suggesting that gas uptake as measured by this technique reflects such features as underlying pathological alterations of lung tissue or of local blood flow. Furthermore, the ratio of the signal associated with gas uptake to that associated with ventilation was substantially altered in subjects with lung disease compared with healthy subjects. This MRI-based method provides a way to quantify relationships among gas delivery, exchange, and transport, and appears to have significant potential to provide more insight into lung disease. PMID:21098267

  10. A 32-Channel Phased-Array Receive with Asymmetric Birdcage Transmit RF Coil for Hyperpolarized Xenon-129 Lung Imaging

    PubMed Central

    Dregely, Isabel; Ruset, Iulian C.; Wiggins, Graham; Mareyam, Azma; Mugler, John P.; Altes, Talissa A.; Meyer, Craig; Ruppert, Kai; Wald, Lawrence L.; Hersman, F. William

    2012-01-01

    Hyperpolarized xenon-129 (HP Xe) has the potential to become a non-invasive contrast agent for lung MRI. In addition to its utility for imaging of ventilated airspaces, the property of xenon to dissolve in lung tissue and blood upon inhalation provides the opportunity to study gas exchange. Implementations of imaging protocols for obtaining regional parameters that exploit the dissolved phase are limited by the available signal-to-noise ratio (SNR), excitation homogeneity, and length of acquisition times. To address these challenges, a 32-channel receive-array coil complemented by an asymmetric birdcage transmit coil tuned to the HP Xe resonance at 3T was developed. First results of spin-density imaging in healthy subjects and subjects with obstructive lung disease demonstrated the improvements in image quality by high resolution ventilation images with high SNR. Parallel imaging performance of the phased-array coil was demonstrated by acceleration factors up to three in 2D acquisitions and up to six in 3D acquisitions. Transmit-field maps showed a regional variation of only 8% across the whole lung. The newly developed phased-array receive coil with the birdcage transmit coil will lead to an improvement in existing imaging protocols, but moreover enable the development of new, functional lung imaging protocols based on the improvements in excitation homogeneity, SNR, and acquisition speed. PMID:23132336

  11. Impotence evaluated by the use of prostaglandin E1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, T.I.; Yang, C.R.; Wang, S.J.

    1989-06-01

    We screened 80 patients at our hospital for the differential diagnosis of impotence using intracavernous injection of prostaglandin E1 (20 micrograms). The rate of positive response was 78.8 per cent (63 patients). Neither systemic reactions nor priapism occurred. However, a considerable incidence (23.8 per cent, 19 of 80 patients) of tolerable injection pain was encountered. The 133-xenon penile washout study was conducted routinely in impotent men for hemodynamic evaluation of penile vascularity. In 80 patients a positive correlation between the response of intracavernous prostaglandin E1 injection and the result of the washout study was found (r equals 0.381, p lessmore » than 0.0002). We selected 14 subjects randomly to receive additional intravenous infusions of prostaglandin E1 (6 ampules, 120 micrograms total) for 3 days, after which another 133-xenon washout study was done. The washout studies before and after intravenous prostaglandin E1 infusion were compared, and 10 patients (71.4 per cent) appeared to obtain improvement in half-time clearance and penile blood flow. However, only 3 patients noticed improvement subjectively. We suggest that prostaglandin E1 could be a desirable alternative for the diagnosis and treatment of impotence.« less

  12. The role of hyperpolarized 129xenon in MR imaging of pulmonary function

    PubMed Central

    Ebner, Lukas; Kammerman, Jeff; Driehuys, Bastiaan; Schiebler, Mark L.; Cadman, Robert V.; Fain, Sean B.

    2016-01-01

    In the last two decades, functional imaging of the lungs using hyperpolarized noble gases has entered the clinical stage. Both helium (3 He) and xenon (129Xe) gas have been thoroughly investigated for their ability to assess both the global and regional patterns of lung ventilation. With advances in polarizer technology and the current transition towards the widely available 129Xe gas, this method is ready for translation to the clinic. Currently, hyperpolarized (HP) noble gas lung MRI is limited to selected academic institutions; yet, the promising results from initial clinical trials have drawn the attention of the pulmonary medicine community. HP 129Xe MRI provides not only 3-dimensional ventilation imaging, but also unique capabilities for probing regional lung physiology. In this review article, we aim to (1) provide a brief overview of current ventilation MR imaging techniques, (2) emphasize the role of HP 129Xe MRI within the array of different imaging strategies, (3) discuss the unique imaging possibilities with HP 129Xe MRI, and (4) propose clinical applications. PMID:27707585

  13. The utility of Xenon-133 liver scan in the diagnosis and management of nonalcoholic fatty liver disease.

    PubMed

    Al-Busafi, Said A; Ghali, Peter; Wong, Philip; Novales-Diaz, Javier A; Deschênes, Marc

    2012-03-01

    Nonalcoholic fatty liver disease (NAFLD) is an important and common condition affecting approximately 20% of the general population. Given the limitation of radiological investigations, diagnosis often requires a liver biopsy. To compare Xenon-133 (Xe-133) liver scanning with ultrasonography in the diagnosis of NAFLD. From January 2003 to February 2007, 258 consecutive patients with suspected NAFLD underwent Xe-133 liver scanning at Royal Victoria Hospital (Montreal, Quebec). Of these, 43 patients underwent ultrasonography and liver biopsy for the evaluation of NAFLD. Patients with other liver diseases and significant alcohol consumption were excluded. Two nuclear medicine physicians assessed liver Xe-133 uptake and measured the grade of steatosis using a standardized protocol. The degree of steatosis was determined from biopsy specimens assessed by two hepatopathologists. NAFLD was identified by liver biopsy in 35 of 43 patients (81.4%). Xe-133 scan demonstrated 94.3% sensitivity (95% CI 81.4% to 98.4%) and 87.5% specificity (95% CI 52.9% to 99.4%) for the presence of NAFLD. The positive and negative predictive values for detection of steatosis by Xe-133 scan were 97.1% (95% CI 85.1% to 99.8%) and 77.8% (95% CI 45.3% to 93.7%), respectively. The positive and negative likelihood ratios were 7.54 (95% CI 1.20 to 47.26) and 0.07 (95% CI 0.02 to 0.26), respectively. Two patients with NAFLD (5.7%) who had a negative Xe-133 scan result had histologically mild steatosis (<10%). The grade of steatosis on liver biopsy was highly correlated with the results of the Xe-133 scan (r=0.87; P<0.001). The sensitivity and specificity of ultrasound in diagnosing steatosis were 62.9% and 75%, respectively. Xe-133 liver scan proved to be a safe, reliable, noninvasive method for diagnosing and quantifying hepatic steatosis, and was superior to ultrasound.

  14. Xenon-Enhanced Dual-Energy CT Imaging in Combined Pulmonary Fibrosis and Emphysema

    PubMed Central

    Kobayashi, Masahiro; Nakamura, Yasuhiko; Gocho, Kyoko; Ishida, Fumiaki; Isobe, Kazutoshi; Shiraga, Nobuyuki; Homma, Sakae

    2017-01-01

    Background Little has been reported on the feasibility of xenon-enhanced dual-energy computed tomography (Xe-DECT) in the visual and quantitative analysis of combined pulmonary fibrosis and emphysema (CPFE). Objectives We compared CPFE with idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), as well as correlation with parameters of pulmonary function tests (PFTs). Methods Studied in 3 groups were 25 patients with CPFE, 25 with IPF without emphysema (IPF alone), 30 with COPD. Xe-DECT of the patients’ entire thorax was taken from apex to base after a patient’s single deep inspiration of 35% stable nonradioactive xenon. The differences in several parameters of PFTs and percentage of areas enhanced by xenon between 3 groups were compared and analyzed retrospectively. Results The percentage of areas enhanced by xenon in both lungs were calculated as CPFE/IPF alone/COPD = 72.2 ± 15.1% / 82.2 ± 14.7% /45.2 ± 23.2%, respectively. In the entire patients, the percentage of areas enhanced by xenon showed significantly a positive correlation with FEV1/FVC (R = 0.558, P < 0.0001) and %FEV1, (R = 0.528, P < 0.0001) and a negative correlation with %RV (R = -0.594, P < 0.0001) and RV/TLC (R = -0.579, P < 0.0001). The percentage of areas enhanced by xenon in patients with CPFE showed significantly a negative correlation with RV/TLC (R = -0.529, P = 0.007). Xenon enhancement of CPFE indicated 3 different patterns such as upper predominant, diffuse, and multifocal defect. The percentage of areas enhanced by xenon in upper predominant defect pattern was significantly higher than that in diffuse defect and multifocal defect pattern among these 3 different patterns in CPFE. Conclusion The percentage of areas enhanced by xenon demonstrated strong correlations with obstructive ventilation impairment. Therefore, we conclude that Xe-DECT may be useful for distinguishing emphysema lesion from fibrotic lesion in CPFE. PMID:28107411

  15. Xenon-Enhanced Dual-Energy CT Imaging in Combined Pulmonary Fibrosis and Emphysema.

    PubMed

    Sugino, Keishi; Kobayashi, Masahiro; Nakamura, Yasuhiko; Gocho, Kyoko; Ishida, Fumiaki; Isobe, Kazutoshi; Shiraga, Nobuyuki; Homma, Sakae

    2017-01-01

    Little has been reported on the feasibility of xenon-enhanced dual-energy computed tomography (Xe-DECT) in the visual and quantitative analysis of combined pulmonary fibrosis and emphysema (CPFE). We compared CPFE with idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), as well as correlation with parameters of pulmonary function tests (PFTs). Studied in 3 groups were 25 patients with CPFE, 25 with IPF without emphysema (IPF alone), 30 with COPD. Xe-DECT of the patients' entire thorax was taken from apex to base after a patient's single deep inspiration of 35% stable nonradioactive xenon. The differences in several parameters of PFTs and percentage of areas enhanced by xenon between 3 groups were compared and analyzed retrospectively. The percentage of areas enhanced by xenon in both lungs were calculated as CPFE/IPF alone/COPD = 72.2 ± 15.1% / 82.2 ± 14.7% /45.2 ± 23.2%, respectively. In the entire patients, the percentage of areas enhanced by xenon showed significantly a positive correlation with FEV1/FVC (R = 0.558, P < 0.0001) and %FEV1, (R = 0.528, P < 0.0001) and a negative correlation with %RV (R = -0.594, P < 0.0001) and RV/TLC (R = -0.579, P < 0.0001). The percentage of areas enhanced by xenon in patients with CPFE showed significantly a negative correlation with RV/TLC (R = -0.529, P = 0.007). Xenon enhancement of CPFE indicated 3 different patterns such as upper predominant, diffuse, and multifocal defect. The percentage of areas enhanced by xenon in upper predominant defect pattern was significantly higher than that in diffuse defect and multifocal defect pattern among these 3 different patterns in CPFE. The percentage of areas enhanced by xenon demonstrated strong correlations with obstructive ventilation impairment. Therefore, we conclude that Xe-DECT may be useful for distinguishing emphysema lesion from fibrotic lesion in CPFE.

  16. STS-133 Discovery

    NASA Image and Video Library

    2010-11-03

    An faint profile outline of the space shuttle Discovery and launch pad 39a are seen projected in the sky as powerful xenon lights illuminate launch pad 39a on Wednesday, Nov. 3, 2010 at the NASA Kennedy Space Center in Cape Canaveral, Fla. During space shuttle Discovery's final spaceflight, the STS-133 crew members will take important spare parts to the International Space Station along with the Express Logistics Carrier-4. Photo Credit: (NASA/Bill Ingalls)

  17. Prophylactic Use of High-Frequency Percussive Ventilation in Patients with Inhalation Injury,

    DTIC Science & Technology

    1991-06-01

    stabilizing such col- in burn wound management, infection control, lapsed diseased lung segments. 3- 2 In addition some in- and metabolic support increased the...confirmed in each patient by bronchoscopy and/or󈧥 Xe- 8. PCO2 < 50 mmHg but progressively increasing non ventilation-perfusion lung scan. The presence of...death for all patients admitted to the In- Inhalation injury documented by bronchoscopy or Xenon lung scan stitute of Surgical Research between January

  18. Evaluation of hemodynamic effects of xenon in dogs undergoing hemorrhagic shock

    PubMed Central

    Franceschi, Ruben C.; Malbouisson, Luiz; Yoshinaga, Eduardo; Auler, José Otavio Costa; de Figueiredo (in memoriam), Luiz Francisco Poli; Carmona, Maria José C.

    2013-01-01

    OBJECTIVES: The anesthetic gas xenon is reported to preserve hemodynamic stability during general anesthesia. However, the effects of the gas during shock are unclear. The objective of this study was to evaluate the effect of Xe on hemodynamic stability and tissue perfusion in a canine model of hemorrhagic shock. METHOD: Twenty-six dogs, mechanically ventilated with a fraction of inspired oxygen of 21% and anesthetized with etomidate and vecuronium, were randomized into Xenon (Xe; n = 13) or Control (C; n = 13) groups. Following hemodynamic monitoring, a pressure-driven shock was induced to reach an arterial pressure of 40 mmHg. Hemodynamic data and blood samples were collected prior to bleeding, immediately after bleeding and 5, 20 and 40 minutes following shock. The Xe group was treated with 79% Xe diluted in ambient air, inhaled for 20 minutes after shock. RESULT: The mean bleeding volume was 44 mL.kg−1 in the C group and 40 mL.kg−1 in the Xe group. Hemorrhage promoted a decrease in both the cardiac index (p<0.001) and mean arterial pressure (p<0.001). These changes were associated with an increase in lactate levels and worsening of oxygen transport variables in both groups (p<0.05). Inhalation of xenon did not cause further worsening of hemodynamics or tissue perfusion markers. CONCLUSIONS: Xenon did not alter hemodynamic stability or tissue perfusion in an experimentally controlled hemorrhagic shock model. However, further studies are necessary to validate this drug in other contexts. PMID:23525321

  19. Penile blood flow by xenon-133 washout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haden, H.T.; Katz, P.G.; Mulligan, T.

    1989-06-01

    Penile erectile failure is often attributed to abnormalities of vascular supply or drainage, but few direct measurements of penile blood flow have been made. We describe the xenon washout method for measurement of penile blood flow, and present the results obtained in a group of normal and impotent subjects. The procedure was performed with standard nuclear imaging equipment. Flaccid-state penile blood flow in the impotent patients studied was not significantly different from the normal group, suggesting that flaccid-state measurements may not be helpful in evaluation of erectile failure. However, this method can be used to measure penile venous outflow withmore » stimulated or induced erection, and may provide a method for detecting abnormal venous leakage.« less

  20. Cerebral blood flow tomography with xenon-133

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lassen, N.A.

    1985-10-01

    Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-/sup 133/. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission computed tomograph (SPECT) is required. Two brain-dedicated SPECT systems designed for this purpose are mentioned, and the method is described with special reference to the limitations inherent in the soft energy of the 133Xe primary photons. CBF tomography can be used for a multitude of clinical and investigative purposes. This articlemore » discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use of other tracers for CBF tomography using SPECT is summarized with emphasis on the /sup 99m/Tc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers.« less

  1. Production of beta-gamma coincidence spectra of individual radioxenon isotopes for improved analysis of nuclear explosion monitoring data

    NASA Astrophysics Data System (ADS)

    Haas, Derek Anderson

    Radioactive xenon gas is a fission product released in the detonation of nuclear devices that can be detected in atmospheric samples far from the detonation site. In order to improve the capabilities of radioxenon detection systems, this work produces beta-gamma coincidence spectra of individual isotopes of radioxenon. Previous methods of radioxenon production consisted of the removal of mixed isotope samples of radioxenon gas released from fission of contained fissile materials such as 235U. In order to produce individual samples of the gas, isotopically enriched stable xenon gas is irradiated with neutrons. The detection of the individual isotopes is also modeled using Monte Carlo simulations to produce spectra. The experiment shows that samples of 131mXe, 133 Xe, and 135Xe with a purity greater than 99% can be produced, and that a sample of 133mXe can be produced with a relatively low amount of 133Xe background. These spectra are compared to models and used as essential library data for the Spectral Deconvolution Analysis Tool (SDAT) to analyze atmospheric samples of radioxenon for evidence of nuclear events.

  2. A fence line noble gas monitoring system for nuclear power plants.

    PubMed

    Grasty, R L; Hovgaard, J; LaMarre, J R

    2001-01-01

    A noble gas monitoring system has been installed at Ontario Power Generation's Pickering Nuclear Generating Station (PNGS) near Toronto, Canada. This monitoring system allows a direct measure of air kerma from external radiation instead of calculating this based on plant emission data and meteorological models. This has resulted in a reduction in the reported effective dose from external radiation by a factor of at least ten. The system consists of nine self-contained units, each with a 7.6 cm x 7.6 cm (3 inch x 3 inch) NaI(TI) detector that is calibrated for air kerma. The 512-channel gamma ray spectral information is downloaded daily from each unit to a central computer where the data are stored and processed. A spectral stripping procedure is used to remove natural background variations from the spectral windows used to monitor xenon-133 (133Xe), xenon-135 (135Xe), argon-41 (41Ar), and skyshine radiation from the use of radiography sources. Typical monthly minimum detection limits in air kerma are 0.3 nGy for 133Xe, 0.7 nGy for 35Xe, 3 nGy for 41Ar and 2 nGy for skyshine radiation. Based on 9 months of continuous operation, the annualised air kerma due to 133Xe, 135Xe and 41Ar and skyshine radiation were 7 nGy, 8 nGy, 26 nGy and 107 nGy respectively.

  3. Cerebral blood flow during paroxysmal EEG activation induced by sleep in patients with complex partial seizures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gozukirmizi, E.; Meyer, J.S.; Okabe, T.

    1982-01-01

    Cerebral blood flow (CBF) measurements were combined with sleep polysomnography in nine patients with complex partial seizures. Two methods were used: the 133Xe method for measuring regional (rCBF) and the stable xenon CT method for local (LCBF). Compared to nonepileptic subjects, who show diffuse CBF decreases during stages I-II, non-REM sleep onset, patients with complex partial seizures show statistically significant increases in CBF which are maximal in regions where the EEG focus is localized and are predominantly seen in one temporal region but are also propagated to other cerebral areas. Both CBF methods gave comparable results, but greater statistical significancemore » was achieved by stable xenon CT methodology. CBF increases are more diffuse than predicted by EEG paroxysmal activity recorded from scalp electrodes. An advantage of the 133Xe inhalation method was achievement of reliable data despite movement of the head. This was attributed to the use of a helmet which maintained the probes approximated to the scalp. Disadvantages were poor resolution (7 cm3) and two-dimensional information. The advantage of stable xenon CT method is excellent resolution (80 mm3) in three dimensions, but a disadvantage is that movement of the head in patients with seizure disorders may limit satisfactory measurements.« less

  4. Automated QA/QC Check for Beta-Gamma Coincidence Detector

    DTIC Science & Technology

    2007-09-01

    of the ARSA, 222Rn gas can be introduced into the gas cell, along with the radioactive xenon isotopes. While this radon decays via alpha decay and...Explosion Monitoring Technologies 741 Figure 2. γ-singles spectrum from a 222Rn spike. The peaks are primarily from the radon daughter 214Pb with...National Laboratory (PNNL), can collect and detect several radioxenon isotopes. The ARSA is very sensitive to 133Xe, 131mXe, 133mXe, and 135Xe due to the

  5. Improved pressurized Marinelli beaker measurements of radioactive xenon in air.

    PubMed

    Robinson, Troy; Mann, Nick; Houghton, Tracy; Watrous, Matthew; Peterson, John; Fabian, Paul; Hipp, Pat; Reavis, Mark; Fernandez, Francisco

    2017-08-01

    INL has shown that a Marinelli beaker geometry can be used for the measurement of radioactive xenon in air using an aluminum Marinelli. A carbon fiber Marinelli was designed and constructed to improve overall performance. This composite Marinelli can withstand sample pressures of 276bar and achieve approximately a 4x performance improvement in the minimum detectable concentrations (MDCs) and concentration uncertainties. The MDCs obtained during a 24h assay for 133 Xe, 131m Xe, and 135 Xe are: 1.4, 13, and 0.35Bq/m 3 . Copyright © 2016. Published by Elsevier Ltd.

  6. Hippophae rhamnoides L. and dexpanthenol-bepanthene on blood flow after experimental skin burns in rats using 133Xe clearance technique.

    PubMed

    Seven, Bedri; Varoglu, Erhan; Aktas, Omer; Sahin, Ali; Gumustekin, Kenan; Dane, Senol; Suleyman, Halis

    2009-01-01

    The aim of the present experimental study was to determine and compare the effect of Hippophae rhamnoides L. extract (HRe-1) and of dexpanthenol on the blood flow of a wound region, in rats using xenon-133 ((133)Xe) clearance technique. Burn wounds were made on both thighs of rats and, HRe-1 and dexpanthenol were applied topically on the wound region only in the right thigh for a period of 8 days. The effect of HRe-1 and of dexpanthenol on blood flow of the wound region was assessed before and after their topical application by using the (133)Xe clearance technique. HRe-1 increased significantly blood flow of the wound region (P<0.05). Dexpanthenol showed a smaller increase in blood flow. In conclusion, our results in rats suggest that HRe-1 increases blood flow of the wound area and can be used for the treatment of skin wound healing, preferably than dexpanthenol.

  7. Radioactive 133-Xenon gas-filled balloon to prevent restenosis: dosimetry, efficacy, and safety considerations.

    PubMed

    Apple, Marc; Waksman, Ron; Chan, Rosanna C; Vodovotz, Yoram; Fournadjiev, Jana; Bass, Bill G

    2002-08-06

    Ionizing radiation administered intraluminally via catheter-based systems using solid beta and gamma sources or liquid-filled balloons has shown reduction in the neointima formation after injury in the porcine model. We propose a novel system that uses a 133-Xenon (133Xe) radioactive gas-filled balloon catheter system. Overstretch balloon injury was performed in the coronary arteries of 33 domestic pigs. A novel 133Xe radioactive gas-filled balloon (3.5/45 mm) was positioned to overlap the injured segment with margins. After vacuum was obtained in the balloon catheter, approximately 2.5 cc of 133Xe gas was injected to fill the balloon. Doses of 0, 7.5, 15, and 30 Gy were delivered to a distance of 0.25 mm from the balloon surface. The dwell time ranged from 1.0 to 4.0 minutes, depending on the dose. Localization of 133Xe in the balloon was verified by a gamma camera. The average activity in a 3.5/45-mm balloon was measured at 67.7+/-12.1 mCi, and the total diffusion loss of the injected dose was 0.26% per minute of the injected dose. Bedside radiation exposure measured between 2 and 6 mR/h, and the shallow dose equivalent was calculated as 0.037 mrem per treatment. Histomorphometric analysis at 2 weeks showed inhibition of the intimal area (intimal area corrected for medial fracture length [IA/FL]) in the irradiated segments of 0.26+/-0.08 with 30 Gy, 0.07+/-0.24 with 15 Gy, and 0.12+/-0.89 with 7.5 Gy versus 0.76+/-0.08 with control P<0.001. 133Xe gas-filled balloon is feasible and effective in the reduction of neointima formation in the porcine model and safe for use in coronary arteries.

  8. Impact of Hyperpolarization-activated, Cyclic Nucleotide-gated Cation Channel Type 2 for the Xenon-mediated Anesthetic Effect: Evidence from In Vitro and In Vivo Experiments.

    PubMed

    Mattusch, Corinna; Kratzer, Stephan; Buerge, Martina; Kreuzer, Matthias; Engel, Tatiana; Kopp, Claudia; Biel, Martin; Hammelmann, Verena; Ying, Shui-Wang; Goldstein, Peter A; Kochs, Eberhard; Haseneder, Rainer; Rammes, Gerhard

    2015-05-01

    The thalamus is thought to be crucially involved in the anesthetic state. Here, we investigated the effect of the inhaled anesthetic xenon on stimulus-evoked thalamocortical network activity and on excitability of thalamocortical neurons. Because hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are key regulators of neuronal excitability in the thalamus, the effect of xenon on HCN channels was examined. The effects of xenon on thalamocortical network activity were investigated in acutely prepared brain slices from adult wild-type and HCN2 knockout mice by means of voltage-sensitive dye imaging. The influence of xenon on single-cell excitability in brain slices was investigated using the whole-cell patch-clamp technique. Effects of xenon on HCN channels were verified in human embryonic kidney cells expressing HCN2 channels. Xenon concentration-dependently diminished thalamocortical signal propagation. In neurons, xenon reduced HCN channel-mediated Ih current amplitude by 33.4 ± 12.2% (at -133 mV; n = 7; P = 0.041) and caused a left-shift in the voltage of half-maximum activation (V1/2) from -98.8 ± 1.6 to -108.0 ± 4.2 mV (n = 8; P = 0.035). Similar effects were seen in human embryonic kidney cells. The impairment of HCN channel function was negligible when intracellular cyclic adenosine monophosphate level was increased. Using HCN2 mice, we could demonstrate that xenon did neither attenuate in vitro thalamocortical signal propagation nor did it show sedating effects in vivo. Here, we clearly showed that xenon impairs HCN2 channel function, and this impairment is dependent on intracellular cyclic adenosine monophosphate levels. We provide evidence that this effect reduces thalamocortical signal propagation and probably contributes to the hypnotic properties of xenon.

  9. Combined technetium radioisotope penile plethysmography and xenon washout: A technique for evaluating corpora cavernosal inflow and outflow during early tumescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, A.N.; Graham, M.M.

    1991-03-01

    Combined technetium radioisotope penile plethysmography and xenon washout is a new technique that measures both corporal arterial inflow and venous sinusoidal outflow during early tumescence in patients with erectile dysfunction. Fourteen patients were studied using 99mTc-RBCs to measure inflow and 133Xe or 127Xe in saline to measure outflow. Tumescence was induced by injecting papaverine intracorporally. Peak corporal rates corrected for inflow (r = 0.88) and uncorrected for outflow (r = 0.91) and change in volume over 2 min centered around peak inflow (r = 0.96) all correlated with angiography. Outflow measurements did not correlate with intracorporal resistance. Thus, outflow ratesmore » alone could not be used to predict venous sinusoidal competence. Normal inflow rate is greater than 20 ml/min; probable normal 12-20; indeterminate inflow 7-12; and abnormal inflow less than 7 ml/min. Technetium-99m radioisotope penile plethysmography and xenon washout can be performed together and both provide a method for simultaneously evaluating the relationship between corporal inflow and outflow rates in patients with erectile dysfunction.« less

  10. KSC-2010-5488

    NASA Image and Video Library

    2010-11-03

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, xenon lights illuminate space shuttle Discovery on Launch Pad 39A following the retraction of the rotating service structure. The structure provides weather protection and access to the shuttle while it awaits lift off on the pad. Launch of Discovery on the STS-133 mission to the International Space Station is set for 3:29 p.m. on Nov. 4. During the 11-day mission, Discovery and its six crew members will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2, to the orbiting laboratory. Discovery, which will fly its 39th mission, is scheduled to be retired following STS-133. This will be the 133rd Space Shuttle Program mission and the 35th shuttle voyage to the space station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Troy Cryder

  11. Vasoparalysis associated with brain damage in asphyxiated term infants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryds, O.; Greisen, G.; Lou, H.

    1990-07-01

    The relationship of cerebral blood flow to acute changes in arterial carbon dioxide and mean arterial blood pressure (MABP) was determined during the first day of life in 19 severely asphyxiated term infants supported by mechanical ventilation. For comparison, 12 infants without perinatal asphyxia were also investigated. Global cerebral blood flow (CBF infinity) was determined by xenon 133 clearance two or three times within approximately 2 hours. During the cerebral blood flow measurement, the amplitude-integrated electroencephalogram and visual-evoked potential were recorded. Changes in arterial carbon dioxide pressure followed adjustments of the ventilator settings, whereas MABP fluctuated spontaneously. Arterial oxygen pressuremore » and blood glucose concentration were in the normal range. Five of the asphyxiated infants had isoelectric electroencephalograms and died subsequently with severe brain damage. They had a high CBF infinity (mean 30.6 ml/100 gm/min) and abolished carbon dioxide and MABP reactivity. Lower CBF infinity (mean 14.7 ml/100 gm/min) and abolished MABP reactivity were found in another five asphyxiated infants with burst-suppression electroencephalograms in whom computed tomographic or clinical signs of brain lesions developed. The carbon dioxide reactivity was preserved in these infants. In the remaining nine asphyxiated infants without signs of central nervous system abnormality, carbon dioxide and MABP reactivity were preserved, as was also the case in the control group. We conclude that abolished autoregulation is associated with cerebral damage in asphyxiated infants and that the combination of isoelectric electroencephalograms and cerebral hyperperfusion is an early indicator of very severe brain damage.« less

  12. Effect of hematocrit and systolic blood pressure on cerebral blood flow in newborn infants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younkin, D.P.; Reivich, M.; Jaggi, J.L.

    1987-06-01

    The effects of hematocrit and systolic blood pressure on cerebral blood flow were measured in 15 stable, low birth weight babies. CBF was measured with a modification of the xenon-133 (/sup 133/Xe) clearance technique, which uses an intravenous bolus of /sup 133/Xe, an external chest detector to estimate arterial /sup 133/Xe concentration, eight external cranial detectors to measure cephalic /sup 133/Xe clearance curves, and a two-compartmental analysis of the cephalic /sup 133/Xe clearance curves to estimate CBF. There was a significant inverse correlation between hematocrit and CBF, presumably due to alterations in arterial oxygen content and blood viscosity. Newborn CBFmore » varied independently of systolic blood pressure between 60 and 84 mm Hg, suggesting an intact cerebrovascular autoregulatory mechanism. These results indicate that at least two of the factors that affect newborn animal CBF are operational in human newborns and may have important clinical implications.« less

  13. Krypton and Xenon Radionuclides Monitoring in the Northwest Region of Russia

    NASA Astrophysics Data System (ADS)

    Dubasov, Yuri V.; Okunev, Nikolay S.

    2010-05-01

    Monitoring of Xe and Kr radionuclides was conducted from August 2006 to 30 July 2008 within the framework of ISTC Project #2133. Cherepovets City in Vologda Province and St. Petersburg were chosen as monitoring locations. Kr-Xe concentrate samples were obtained as a result of processing of several thousand m3 of atmospheric air. New results of 85Kr monitoring show, that for last 15 years, the 85Kr volumetric activity in the atmospheric air of the northwest region of Russia has increased approximately 50% and has achieved a level of 1.5 Bq/m3. This value correlates well with similar data for Western Europe and Japan. The xenon fraction (80-160 cm3 under STP) is adsorbed on charcoal in the ampoule, which is measured in the well of HPGe gamma detector. Minimum detectable concentration (MDC) of 133Xe for this technique is 0.008 mBq/m3, and it is the most sensitive method used today. The 133Xe concentration in the atmospheric air of Cherepovets City varied in the monitoring period ranging from 0.09 to 2.5 mBq/m3. During the period of March 2007-30 July 2008, 133Xe activity concentration in the atmospheric air of St. Petersburg changed from background values (0.2-0.3 mBq/m3) to 185 mBq/m3 and for approximately 20% of the samples 135Xe was also measured with the 135Xe/133Xe activity ratio varied within the range of 0.03-3.5.

  14. Evaluation of the response to xenon-133 radiations by thermoluminescent dosimeters used during the accident at Three Mile Island.

    PubMed

    Riley, R J; Zanzonico, P B; Masterson, M E; St Germain, J M; Laughlin, J S

    1982-03-01

    An evaluation is presented of the accuracy and sensitivity of three types of TLD's used during the accident at the Three Mile Island Nuclear Station. This evaluation indicated that, due to the method of calibration, all the dosimeters over-responded to 133Xe radiations. The response ranged from slightly above unity to almost two. Exposures of the TLD's were of two types, namely, the characteristic X-rays either were or were not filtered from the beam. The angular sensitivity of the dosimeters is also reported.

  15. [Impact of low level laser therapy on skin blood flow].

    PubMed

    Podogrodzki, Jacek; Lebiedowski, Michał; Szalecki, Mieczysław; Kępa, Izabela; Syczewska, Małgorzata; Jóźwiak, Sergiusz

    2016-01-01

    The aim of this study was to objectively assess the impact of low level laser therapy on skin blood flow, in terms of two of its components - the flow and trophic and therapeutic effect. Nineteen children aged 3-15 years have been included in the study (seven boys and twelve girls) with a diagnosis of meningomyelocele in the lumbosacral area. In nine of them (47.3%) bedsores were found in the area of paresis location. Studies of skin blood flow were performed using xenon 133 clearance in the Department of Nuclear Medicine of the Children's Memorial Health Institute. Xenon 133 radioisotope in saline with intrinsic activity 74 MBq in 1 ml was used as the marker. Laser application was performed immediately prior to the application of the marker with a tag shower 60 mW probe, emitting 680 nm red light with surface power density of 0.5 J/cm2. Within the tested children the laser application resulted in a significantly increased skin blood flow. Average results in tested group before LLLT are 7.47 ml/100 g/min, after LLLT 11.08 ml/100 g/min. 1. LLLT significantly increases the perfusion of the skin. 2. The effect of the increased perfusion as the result of laserotherapy in the most evident in children with skin trophic abnormalities. 3. Results confirmed by clinical observation indicate, that perfusion increase in relation to LLLT takes place with participation of trophic component of skin blood circulation.

  16. The Development of the improved equipment for the measurement radionuclides of xenon in atmospheric air

    NASA Astrophysics Data System (ADS)

    Pakhomov, S. A.; Dubasov, Y. V.

    2009-04-01

    The Radium Khlopin Institute have developed the mobile (vehicle based) equipment attended for the providing of the monitoring of radioactive xenon isotopes in atmospheric air on territories, neighboring with NPP. This equipment comprises the improved sampling installation with sample-processing unit and specialized spectrometer of β-γ-coincidences. The principal specificity of sampling installation is the using of the gas-cooling machine attended for the reaching of the cryogenic temperatures, which works without helium, using for cooling the processed air itself. The capacity of sampling reaches 20 cubic meters per hour with the xenon extraction factor of 75%. The duration of the sampling cycle forms 3 - 7 hours depending of the xenon volume requirements. The sample-processing unit is designed on preparative gas chromatograph scheme. Duration of sample-processing procedure does not exceed one and half hour. The volume of the prepared sample is around half liter, it contains 3 - 7 cubic centimeters of the xenon, depending of sampling cycle time. For measurements of xenon radioisotopes containing in obtained sample, was developed a β-γ-coincidences spectrometer on the base of the "ORTEC" HP Ge detector equipped with scintillation β-detector designed as Marinelli chamber of 700 cm3 volume. This spectrometer allows to reduce the ambient background more than in 20 times, with γ-channel efficiency reduction not more than in 1.5 times. The minimum detectable activity of 133Хе (MDA), evaluated by Currie formula for probability 95 % is 0.05 Bq at the exposition of 20 hours. Spectrometer is also intended for determination of the stable krypton and xenon concentrations in β-chamber by X-ray-fluorescent method. Therefore, in a shield of the spectrometer collimating pinhole is made and 241Am source is installed. To improve the sensitivity of the analysis beryllium window is made in β-chamber wall, adjoining to the HPGe detector. X-ray-fluorescent analysis allows to surely define Xe volumetric concentration of 0.05% in β-cell, that is equivalent less then 0,5 cm3 of Xe. The first approbation of described equipment was fulfilled in St. Petersburg at autumn of 2007 year and have shown that the spectrometer allows to measure 133Xe concentration at the level of 2 mBq/m3, and this value is in a good agreement with the results of other measurements. Described equipment was practically approbated in field conditions on 2008 year during the expeditionary work carryout in Sosnovyi Bor, Udomlya and Polyarnie Zori - the cities of North-West of Russia, which are located in close neighboring with acting NPP.

  17. The global radioxenon background and its impact on the detection capability of underground nuclear explosions (Invited)

    NASA Astrophysics Data System (ADS)

    Ringbom, A.

    2010-12-01

    A detailed knowledge of both the spatial and isotopic distribution of anthropogenic radioxenon is essential in investigations of the performance of the radioxenon part of the IMS, as well as in the development of techniques to discriminate radioxenon signatures from a nuclear explosion from other sources. Further, the production processes in the facilities causing the radioxenon background has to be understood and be compatible with simulations. In this work, several aspects of the observed atmospheric radioxenon background are investigated, including the global distribution as well as the current understanding of the observed isotopic ratios. Analyzed radioxenon data from the IMS, as well as from other measurement stations, are used to create an up-to-date description of the global radioxenon background, including all four CTBT relevant xenon isotopes (133Xe, 131mXe, 133mXe, and 135Xe). In addition, measured isotopic ratios will be compared to simulations of neutron induced fission of 235U, and the uncertainties will be discussed. Finally, the impact of the radioxenon background on the detection capability of the IMS will be investigated. This work is a continuation of studies [1,2] that was presented at the International Scientific Studies conference held in Vienna in 2009. [1] A. Ringbom, et.al., “Characterization of the global distribution of atmospheric radioxenons”, International Scientific Studies Conference on CTBT Verification, 10-12 June 2009. [2] R. D'Amours and A. Ringbom, “A study on the global detection capability of IMS for all CTBT relevant xenon isotopes“, International Scientific Studies Conference on CTBT Verification, 10-12 June 2009.

  18. Bedside Xenon-CT Shows Lower CBF in SAH Patients with Impaired CBF Pressure Autoregulation as Defined by Pressure Reactivity Index (PRx).

    PubMed

    Johnson, Ulf; Engquist, Henrik; Howells, Tim; Nilsson, Pelle; Ronne-Engström, Elisabeth; Lewén, Anders; Rostami, Elham; Enblad, Per

    2016-08-01

    Subarachnoid hemorrhage (SAH) is a disease with a high rate of unfavorable outcome, often related to delayed cerebral ischemia (DCI), i.e., ischemic injury that develops days-weeks after onset, with a multifactorial etiology. Disturbances in cerebral pressure autoregulation, the ability to maintain a steady cerebral blood flow (CBF), despite fluctuations in systemic blood pressure, have been suggested to play a role in the development of DCI. Pressure reactivity index (PRx) is a well-established measure of cerebral pressure autoregulation that has been used to study traumatic brain injury, but not extensively in SAH. To study the relation between PRx and CBF in SAH patients, and to examine if PRx can be used to predict DCI. Retrospective analysis of prospectively collected data. PRx was calculated as the correlation coefficient between mean arterial blood pressure (MABP) and intracranial pressure (ICP) in a 5 min moving window. CBF was measured using bedside Xenon-CT (Xe-CT). DCI was diagnosed clinically. 47 poor-grade mechanically ventilated patients were studied. Patients with disturbed pressure autoregulation (high PRx values) had lower CBF, as measured by bedside Xe-CT; both in the early (day 0-3) and late (day 4-14) acute phase of the disease. PRx did not differ significantly between patients who developed DCI or not. In mechanically ventilated and sedated SAH patients, high PRx (more disturbed CBF pressure autoregulation) is associated with low CBF, both day 0-3 and day 4-14 after onset. The role of PRx as a monitoring tool in SAH patients needs further studying.

  19. 10 CFR 30.72 - Schedule C-Quantities of radioactive materials requiring consideration of the need for an...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-127m .01 5,000 Tellurium-129m .01 5,000 Terbium-160 .01 4,000 Thulium-170 .01 4,000 Tin-113 .01 10,000 Tin-123 .01 3,000 Tin-126 .01 1,000 Titanium-44 .01 100 Vanadium-48 .01 7,000 Xenon-133 1.0 900,000...

  20. 10 CFR 30.72 - Schedule C-Quantities of radioactive materials requiring consideration of the need for an...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-127m .01 5,000 Tellurium-129m .01 5,000 Terbium-160 .01 4,000 Thulium-170 .01 4,000 Tin-113 .01 10,000 Tin-123 .01 3,000 Tin-126 .01 1,000 Titanium-44 .01 100 Vanadium-48 .01 7,000 Xenon-133 1.0 900,000...

  1. 10 CFR 30.72 - Schedule C-Quantities of radioactive materials requiring consideration of the need for an...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-127m .01 5,000 Tellurium-129m .01 5,000 Terbium-160 .01 4,000 Thulium-170 .01 4,000 Tin-113 .01 10,000 Tin-123 .01 3,000 Tin-126 .01 1,000 Titanium-44 .01 100 Vanadium-48 .01 7,000 Xenon-133 1.0 900,000...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeJemtel, T.H.; Scortichini, D.; Katz, S.

    In patients with chronic congestive heart failure (CHF), skeletal muscle blood flow can be measured directly by the continuous thermodilution technique and by the xenon-133 clearance method. The continuous thermodilution technique requires retrograde catheterization of the femoral vein and, thus, cannot be repeated conveniently in patients during evaluation of pharmacologic interventions. The xenon-133 clearance, which requires only an intramuscular injection, allows repeated determination of skeletal muscle blood flow. In patients with severe CHF, a fixed capacity of the skeletal muscle vasculature to dilate appears to limit maximal exercise performance. Moreover, the changes in peak skeletal muscle blood flow noted duringmore » long-term administration of captopril, an angiotensin-converting enzyme inhibitor, appears to correlate with the changes in aerobic capacity. In patients with CHF, resting supine deep femoral vein oxygen content can be used as an indirect measurement of resting skeletal muscle blood flow. The absence of a steady state complicates the determination of peak skeletal muscle blood flow reached during graded bicycle or treadmill exercise in patients with chronic CHF. Indirect assessments of skeletal muscle blood flow and metabolism during exercise performed at submaximal work loads are currently developed in patients with chronic CHF.« less

  3. A prototype detection system for atmospheric monitoring of xenon radioisotopes

    NASA Astrophysics Data System (ADS)

    Czyz, Steven A.; Farsoni, Abi T.; Ranjbar, Lily

    2018-03-01

    The design of a radioxenon detection system utilizing a CdZeTe crystal and a plastic scintillator coupled to an array of SiPMs to conduct beta-gamma coincidence detection for atmospheric radioxenon monitoring, as well as the measurement of 135Xe and 133/133mXe, have been detailed previously. This paper presents recent measurements of 133/133mXe and 131mXe and the observation of conversion electrons in their coincidence spectra, as well as a 48-hour background measurement to calculate the Minimum Detectable Concentration (MDC) of radioxenon isotopes in the system. The identification of Regions of Interest (ROIs) in the coincidence spectra yielded from the radioxenon measurements, and the subsequent calculation of the MDCs of the system for 135Xe, 133/133mXe, and 131mXe, are also discussed. Calculated MDCs show that the detection system preforms respectably when compared to other state of the art radioxenon detection systems and achieved an MDC of less than 1 mBq/m3 for 131mXe, 133Xe, and 133mXe, in accordance with limits set by the Comprehensive Nuclear-Test-Ban Treaty (CTBTO). The system also provides the advantage of room temperature operation, compactness, low noise operation and having simple readout electronics.

  4. TH-E-BRF-02: 4D-CT Ventilation Image-Based IMRT Plans Are Dosimetrically Comparable to SPECT Ventilation Image-Based Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kida, S; University of Tokyo Hospital, Bunkyo, Tokyo; Bal, M

    Purpose: An emerging lung ventilation imaging method based on 4D-CT can be used in radiotherapy to selectively avoid irradiating highly-functional lung regions, which may reduce pulmonary toxicity. Efforts to validate 4DCT ventilation imaging have been focused on comparison with other imaging modalities including SPECT and xenon CT. The purpose of this study was to compare 4D-CT ventilation image-based functional IMRT plans with SPECT ventilation image-based plans as reference. Methods: 4D-CT and SPECT ventilation scans were acquired for five thoracic cancer patients in an IRB-approved prospective clinical trial. The ventilation images were created by quantitative analysis of regional volume changes (amore » surrogate for ventilation) using deformable image registration of the 4D-CT images. A pair of 4D-CT ventilation and SPECT ventilation image-based IMRT plans was created for each patient. Regional ventilation information was incorporated into lung dose-volume objectives for IMRT optimization by assigning different weights on a voxel-by-voxel basis. The objectives and constraints of the other structures in the plan were kept identical. The differences in the dose-volume metrics have been evaluated and tested by a paired t-test. SPECT ventilation was used to calculate the lung functional dose-volume metrics (i.e., mean dose, V20 and effective dose) for both 4D-CT ventilation image-based and SPECT ventilation image-based plans. Results: Overall there were no statistically significant differences in any dose-volume metrics between the 4D-CT and SPECT ventilation imagebased plans. For example, the average functional mean lung dose of the 4D-CT plans was 26.1±9.15 (Gy), which was comparable to 25.2±8.60 (Gy) of the SPECT plans (p = 0.89). For other critical organs and PTV, nonsignificant differences were found as well. Conclusion: This study has demonstrated that 4D-CT ventilation image-based functional IMRT plans are dosimetrically comparable to SPECT ventilation image-based plans, providing evidence to use 4D-CT ventilation imaging for clinical applications. Supported in part by Free to Breathe Young Investigator Research Grant and NIH/NCI R01 CA 093626. The authors thank Philips Radiation Oncology Systems for the Pinnacle3 treatment planning systems.« less

  5. Radioisotope scanning of brain, liver, lung and bone with a note on tumour localizing agents

    PubMed Central

    Lavender, J. P.

    1973-01-01

    Radioisotopic scanning of brain, liver, lungs and the skeleton is briefly reviewed with a survey of recent developments of clinical significance. In brain scanning neoplasm detection rates of greater than 90% are claimed. The true figure is probably 70-80%. Autopsy data shows a number of false negatives, particularly with vascular lesions. Attempts to make scanning more specific in differentiating neoplasm from vascular lesions by rapid sequence blood flow studies are reviewed. In liver scanning by means of colloids again high success rate is claimed but small metastases are frequently missed and the false negative scan rate is probably quite high. Lung scanning still has its main place in investigating pulmonary embolic disease. Ventilation studies using Xenon 133 are useful, particularly combined with perfusion studies. The various radiopharmaceuticals for use in bone scanning are reviewed. The appearance of technetium labelled phosphate compounds will probably allow much wider use of total skeletal scanning. Research into tumour localizing agents continues, the most recent and interesting being Gallium citrate and labelled bleomycin. Neither agent is predictable however although Gallium may have a place in Hodgkins disease and bronchogenic neoplasm and both may have a place in the detection of cerebral tumours. ImagesFig. 1Fig. 2Fig. 3p452-bFig. 3bFig. 4Fig. 5Fig. 5bFig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 12c & 12dFig. 13Fig. 13 b,c,dFig. 14Fig. 14bFig. 15Fig. 15bFig. 16Fig. 17Fig. 18 PMID:4602127

  6. KSC-2011-1265

    NASA Image and Video Library

    2011-01-31

    CAPE CANAVERAL, Fla. -- Xenon lights illuminate space shuttle Discovery as it makes its nighttime trek, known as "rollout," from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the shuttle, attached to its external fuel tank, twin solid rocket boosters and mobile launcher platform, about seven hours to complete the move atop a crawler-transporter. This is the second time Discovery has rolled out to the pad for the STS-133 mission, and comes after a thorough check and modifications to the shuttle's external tank. Targeted to liftoff Feb. 24, Discovery will take the Permanent Multipurpose Module (PMM) packed with supplies and critical spare parts, as well as Robonaut 2 (R2) to the International Space Station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  7. KSC-2011-1277

    NASA Image and Video Library

    2011-01-31

    CAPE CANAVERAL, Fla. -- Xenon lights illuminate space shuttle Discovery as it makes its nighttime trek, known as "rollout," from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the shuttle, attached to its external fuel tank, twin solid rocket boosters and mobile launcher platform, about seven hours to complete the move atop a crawler-transporter. This is the second time Discovery has rolled out to the pad for the STS-133 mission, and comes after a thorough check and modifications to the shuttle's external tank. Targeted to liftoff Feb. 24, Discovery will take the Permanent Multipurpose Module (PMM) packed with supplies and critical spare parts, as well as Robonaut 2 (R2) to the International Space Station. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Jim Grossmann

  8. Caesium isothermal migration behaviour in sintered titanium nitride: New data and comparison with previous results on iodine and xenon

    NASA Astrophysics Data System (ADS)

    Gavarini, S.; Bès, R.; Peaucelle, C.; Martin, P.; Esnouf, C.; Toulhoat, N.; Cardinal, S.; Moncoffre, N.; Malchère, A.; Garnier, V.; Millard-Pinard, N.; Guipponi, C.

    2009-06-01

    Titanium nitride has been proposed as a fission product barrier in fuel structures for gas cooled fast reactor (GFR) systems. The thermal migration of Cs was studied by implanting 800 keV 133Cs ++ ions into sintered samples of TiN at an ion fluence of 5 × 10 15 cm -2. Thermal treatments at temperatures ranging from 1500 to 1650 °C were performed under a secondary vacuum. Concentration profiles were determined by 2.5 MeV 4He + elastic backscattering. The results reveal that the global mobility of caesium in the host matrix is low compared to xenon and iodine implanted in the same conditions. Nevertheless, the evolution of caesium depth profile during thermal treatment presents similarities with that of xenon. Both species are homogeneously transported towards the surface and the transport rate increases with the temperature. In comparison, iodine exhibits singular migration behaviour. Several assumptions are proposed to explain the better retention of caesium in comparison with both other species. The potential role played by the oxidation is underlined since even a slight modification of the surface stoichiometry may modify species mobility. More generally, the apparition of square-like shapes on the surface of the samples after implantations and thermal treatments is discussed.

  9. Self-vapor cooled targets for production of I-123 at high current accelerators. [using Xe-123 production

    NASA Technical Reports Server (NTRS)

    Blue, J. W.; Scholz, K. L.; Sodd, V. J.

    1974-01-01

    The basic elements of the vapor cooled target system are shown. This system can be operated as a heat pipe or as a conventional condenser. The choice of target fluid is based on the specific nuclear reaction chosen to produce Xe-123. The reaction using I-127 was studied and shown to have a significant yield for bombarding energies from 47 to 63 MeV. The Cs-133 reaction is also included. Xenon-123 is applied to I-123 production in a purer form for thyroid studies.

  10. Effect of surfactant and partial liquid ventilation treatment on gas exchange and lung mechanics in immature lambs: influence of gestational age.

    PubMed

    Rey-Santano, Carmen; Mielgo, Victoria; Gastiasoro, Elena; Valls-i-Soler, Adolfo; Murgia, Xabier

    2013-01-01

    Surfactant (SF) and partial liquid ventilation (PLV) improve gas exchange and lung mechanics in neonatal RDS. However, variations in the effects of SF and PLV with degree of lung immaturity have not been thoroughly explored. Experimental Neonatal Respiratory Physiology Research Unit, Cruces University Hospital. Prospective, randomized study using sealed envelopes. 36 preterm lambs were exposed (at 125 or 133-days of gestational age) by laparotomy and intubated. Catheters were placed in the jugular vein and carotid artery. All the lambs were assigned to one of three subgroups given: 20 mL/Kg perfluorocarbon and managed with partial liquid ventilation (PLV), surfactant (Curosurf®, 200 mg/kg) or (3) no pulmonary treatment (Controls) for 3 h. Cardiovascular parameters, blood gases and pulmonary mechanics were measured. In 125-day gestation lambs, SF treatment partially improved gas exchange and lung mechanics, while PLV produced significant rapid improvements in these parameters. In 133-day lambs, treatments with SF or PLV achieved similarly good responses. Neither surfactant nor PLV significantly affected the cardiovascular parameters. SF therapy response was more effective in the older gestational age group whereas the effectiveness of PLV therapy was not gestational age dependent.

  11. Regional Mapping of Gas Uptake by Blood and Tissue in the Human Lung using Hyperpolarized Xenon-129 MRI

    PubMed Central

    Qing, Kun; Ruppert, Kai; Jiang, Yun; Mata, Jaime F.; Miller, G. Wilson; Shim, Y. Michael; Wang, Chengbo; Ruset, Iulian C.; Hersman, F. William; Altes, Talissa A.; Mugler, John P.

    2013-01-01

    Purpose To develop a breath-hold acquisition for regional mapping of ventilation and the fractions of hyperpolarized xenon-129 (Xe129) dissolved in tissue (lung parenchyma and plasma) and red blood cells (RBCs), and to perform an exploratory study to characterize data obtained in human subjects. Materials and Methods A three-dimensional, multi-echo, radial-trajectory pulse sequence was developed to obtain ventilation (gaseous Xe129), tissue and RBC images in healthy subjects, smokers and asthmatics. Signal ratios (total dissolved Xe129 to gas, tissue-to-gas, RBC-to-gas and RBC-to-tissue) were calculated from the images for quantitative comparison. Results Healthy subjects demonstrated generally uniform values within coronal slices, and a gradient in values along the anterior-to-posterior direction. In contrast, images and associated ratio maps in smokers and asthmatics were generally heterogeneous and exhibited values mostly lower than those in healthy subjects. Whole-lung values of total dissolved Xe129 to gas, tissue-to-gas, and RBC-to-gas ratios in healthy subjects were significantly larger than those in diseased subjects. Conclusion Regional maps of tissue and RBC fractions of dissolved Xe129 were obtained from a short breath-hold acquisition, well tolerated by healthy volunteers and subjects with obstructive lung disease. Marked differences were observed in spatial distributions and overall amounts of Xe129 dissolved in tissue and RBCs among healthy subjects, smokers and asthmatics. PMID:23681559

  12. Cerebral blood flow in normal and abnormal sleep and dreaming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, J.S.; Ishikawa, Y.; Hata, T.

    Measurements of regional or local cerebral blood flow (CBF) by the xenon-133 inhalation method and stable xenon computerized tomography CBF (CTCBF) method were made during relaxed wakefulness and different stages of REM and non-REM sleep in normal age-matched volunteers, narcoleptics, and sleep apneics. In the awake state, CBF values were reduced in both narcoleptics and sleep apneics in the brainstem and cerebellar regions. During sleep onset, whether REM or stage I-II, CBF values were paradoxically increased in narcoleptics but decreased severely in sleep apneics, while in normal volunteers they became diffusely but more moderately decreased. In REM sleep and dreamingmore » CBF values greatly increased, particularly in right temporo-parietal regions in subjects experiencing both visual and auditory dreaming.« less

  13. HOW THE LEED VENTILATION CREDIT IMPACTS ENERGY CONSUMPTION OF GSHP SYSTEMS A CASE STUDY FOR PRIMARY SCHOOLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaobing

    2011-01-01

    This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OAmore » ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.« less

  14. Source term estimates of radioxenon released from the BaTek medical isotope production facility using external measured air concentrations.

    PubMed

    Eslinger, Paul W; Cameron, Ian M; Dumais, Johannes Robert; Imardjoko, Yudi; Marsoem, Pujadi; McIntyre, Justin I; Miley, Harry S; Stoehlker, Ulrich; Widodo, Susilo; Woods, Vincent T

    2015-10-01

    BATAN Teknologi (BaTek) operates an isotope production facility in Serpong, Indonesia that supplies (99m)Tc for use in medical procedures. Atmospheric releases of (133)Xe in the production process at BaTek are known to influence the measurements taken at the closest stations of the radionuclide network of the International Monitoring System (IMS). The purpose of the IMS is to detect evidence of nuclear explosions, including atmospheric releases of radionuclides. The major xenon isotopes released from BaTek are also produced in a nuclear explosion, but the isotopic ratios are different. Knowledge of the magnitude of releases from the isotope production facility helps inform analysts trying to decide if a specific measurement result could have originated from a nuclear explosion. A stack monitor deployed at BaTek in 2013 measured releases to the atmosphere for several isotopes. The facility operates on a weekly cycle, and the stack data for June 15-21, 2013 show a release of 1.84 × 10(13) Bq of (133)Xe. Concentrations of (133)Xe in the air are available at the same time from a xenon sampler located 14 km from BaTek. An optimization process using atmospheric transport modeling and the sampler air concentrations produced a release estimate of 1.88 × 10(13) Bq. The same optimization process yielded a release estimate of 1.70 × 10(13) Bq for a different week in 2012. The stack release value and the two optimized estimates are all within 10% of each other. Unpublished production data and the release estimate from June 2013 yield a rough annual release estimate of 8 × 10(14) Bq of (133)Xe in 2014. These multiple lines of evidence cross-validate the stack release estimates and the release estimates based on atmospheric samplers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Source Term Estimates of Radioxenon Released from the BaTek Medical Isotope Production Facility Using External Measured Air Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Cameron, Ian M.; Dumais, Johannes R.

    2015-10-01

    Abstract Batan Teknologi (BaTek) operates an isotope production facility in Serpong, Indonesia that supplies 99mTc for use in medical procedures. Atmospheric releases of Xe-133 in the production process at BaTek are known to influence the measurements taken at the closest stations of the International Monitoring System (IMS). The purpose of the IMS is to detect evidence of nuclear explosions, including atmospheric releases of radionuclides. The xenon isotopes released from BaTek are the same as those produced in a nuclear explosion, but the isotopic ratios are different. Knowledge of the magnitude of releases from the isotope production facility helps inform analystsmore » trying to decide whether a specific measurement result came from a nuclear explosion. A stack monitor deployed at BaTek in 2013 measured releases to the atmosphere for several isotopes. The facility operates on a weekly cycle, and the stack data for June 15-21, 2013 show a release of 1.84E13 Bq of Xe-133. Concentrations of Xe-133 in the air are available at the same time from a xenon sampler located 14 km from BaTek. An optimization process using atmospheric transport modeling and the sampler air concentrations produced a release estimate of 1.88E13 Bq. The same optimization process yielded a release estimate of 1.70E13 Bq for a different week in 2012. The stack release value and the two optimized estimates are all within 10 percent of each other. Weekly release estimates of 1.8E13 Bq and a 40 percent facility operation rate yields a rough annual release estimate of 3.7E13 Bq of Xe-133. This value is consistent with previously published estimates of annual releases for this facility, which are based on measurements at three IMS stations. These multiple lines of evidence cross-validate the stack release estimates and the release estimates from atmospheric samplers.« less

  16. Winter ventilation rates at primary schools: comparison between Portugal and Finland.

    PubMed

    Canha, N; Almeida, S M; Freitas, M C; Täubel, M; Hänninen, O

    2013-01-01

    This study focused on examination of ventilation rates in classrooms with two different types of ventilation systems: natural and mechanical. Carbon dioxide (CO2) measurements were conducted in primary schools of Portugal characterized by natural ventilation and compared to Finland where mechanical ventilation is the norm. The winter period was selected since this season exerts a great influence in naturally ventilated classrooms, where opening of windows and doors occurs due to outdoor atmospheric conditions. The ventilation rates were calculated by monitoring CO2 concentrations generated by the occupants (used as a tracer gas) and application of the buildup phase method. A comparison between both countries' results was conducted with respect to ventilation rates and how these levels corresponded to national regulatory standards. Finnish primary schools (n = 2) registered a mean ventilation rate of 13.3 L/s per person, which is higher than the recommended ventilation standards. However, the Finnish classroom that presented the lowest ventilation rate (7.2 L/s per person) displayed short-term CO2 levels above 1200 ppm, which is the threshold limit value (TLV) recommended by national guidelines. The Portuguese classrooms (n = 2) showed low ventilation rates with mean values of 2.4 L/s per person, which is markedly lower than the minimum recommended value of 7 L/s per person as defined by ASHRAE and 20% less than the REHVA minimum of 3 L/s per person. Carbon dioxide levels of 1000 ppm, close to the TLV of 1200 ppm, were also reached in both Portuguese classrooms studied. The situation in Portugal indicates a potentially serious indoor air quality problem and strengthens the need for intervention to improve ventilation rates in naturally ventilated classrooms.

  17. Detection of (133)Xe from the Fukushima nuclear power plant in the upper troposphere above Germany.

    PubMed

    Simgen, Hardy; Arnold, Frank; Aufmhoff, Heinfried; Baumann, Robert; Kaether, Florian; Lindemann, Sebastian; Rauch, Ludwig; Schlager, Hans; Schlosser, Clemens; Schumann, Ulrich

    2014-06-01

    After the accident in the Japanese Fukushima Dai-ichi nuclear power plant in March 2011 large amounts of radioactivity were released and distributed in the atmosphere. Among them were also radioactive noble gas isotopes which can be used as tracers to test global atmospheric circulation models. This work presents unique measurements of the radionuclide (133)Xe from Fukushima in the upper troposphere above Germany. The measurements involve air sampling in a research jet aircraft followed by chromatographic xenon extraction and ultra-low background gas counting with miniaturized proportional counters. With this technique a detection limit of the order of 100 (133)Xe atoms in liter-scale air samples (corresponding to about 100 mBq/m(3)) is achievable. Our results provide proof that the (133)Xe-rich ground level air layer from Fukushima was lifted up to the tropopause and distributed hemispherically. Moreover, comparisons with ground level air measurements indicate that the arrival of the radioactive plume at high altitude over Germany occurred several days before the ground level plume. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Occult pulmonary embolism: a common occurrence in deep venous thrombosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorfman, G.S.; Cronan, J.J.; Tupper, T.B.

    1987-02-01

    Ventilation-perfusion scans were used in a prospective study to determine the prevalence of occult pulmonary embolus in proven deep venous thrombosis. Fifty-eight patients without symptoms of pulmonary embolism, but with venographically proven deep venous thrombosis, were subjected to chest radiographs, /sup 99m/Tc macroaggregated-albumin perfusion scans, and /sup 133/Xe ventilation scans. Of the 49 patients with deep venous thrombosis proximal to the calf veins, 17 (35%) had high-probability scans. Of all 58 patients, only 12 (21%) had normal scans. When the study population was compared with a group of 430 patients described in reports of pulmonary perfusion in asymptomatic persons, amore » significantly higher percentage of high-probability scans was found in the study population with deep venous thrombosis. Baseline ventilation-perfusion lung scanning is valuable for patients with proven above-knee deep venous thrombosis.« less

  19. Bacterial burden in the operating room: impact of airflow systems.

    PubMed

    Hirsch, Tobias; Hubert, Helmine; Fischer, Sebastian; Lahmer, Armin; Lehnhardt, Marcus; Steinau, Hans-Ulrich; Steinstraesser, Lars; Seipp, Hans-Martin

    2012-09-01

    Wound infections present one of the most prevalent and frequent complications associated with surgical procedures. This study analyzes the impact of currently used ventilation systems in the operating room to reduce bacterial contamination during surgical procedures. Four ventilation systems (window-based ventilation, supported air nozzle canopy, low-turbulence displacement airflow, and low-turbulence displacement airflow with flow stabilizer) were analyzed. Two hundred seventy-seven surgical procedures in 6 operating rooms of 5 different hospitals were analyzed for this study. Window-based ventilation showed the highest intraoperative contamination (13.3 colony-forming units [CFU]/h) followed by supported air nozzle canopy (6.4 CFU/h; P = .001 vs window-based ventilation) and low-turbulence displacement airflow (3.4 and 0.8 CFU/h; P < .001 vs window-based ventilation and supported air nozzle canopy). The highest protection was provided by the low-turbulence displacement airflow with flow stabilizer (0.7 CFU/h), which showed a highly significant difference compared with the best supported air nozzle canopy theatre (3.9 CFU/h; P < .001). Furthermore, this system showed no increase of contamination in prolonged durations of surgical procedures. This study shows that intraoperative contamination can be significantly reduced by the use of adequate ventilation systems. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  20. Global radioxenon emission inventory based on nuclear power reactor reports.

    PubMed

    Kalinowski, Martin B; Tuma, Matthias P

    2009-01-01

    Atmospheric radioactivity is monitored for the verification of the Comprehensive Nuclear-Test-Ban Treaty, with xenon isotopes 131mXe, 133Xe, 133mXe and 135Xe serving as important indicators of nuclear explosions. The treaty-relevant interpretation of atmospheric concentrations of radioxenon is enhanced by quantifying radioxenon emissions released from civilian facilities. This paper presents the first global radioxenon emission inventory for nuclear power plants, based on North American and European emission reports for the years 1995-2005. Estimations were made for all power plant sites for which emission data were unavailable. According to this inventory, a total of 1.3PBq of radioxenon isotopes are released by nuclear power plants as continuous or pulsed emissions in a generic year.

  1. Maximum reasonable radioxenon releases from medical isotope production facilities and their effect on monitoring nuclear explosions.

    PubMed

    Bowyer, Theodore W; Kephart, Rosara; Eslinger, Paul W; Friese, Judah I; Miley, Harry S; Saey, Paul R J

    2013-01-01

    Fission gases such as (133)Xe are used extensively for monitoring the world for signs of nuclear testing in systems such as the International Monitoring System (IMS). These gases are also produced by nuclear reactors and by fission production of (99)Mo for medical use. Recently, medical isotope production facilities have been identified as the major contributor to the background of radioactive xenon isotopes (radioxenon) in the atmosphere (Stocki et al., 2005; Saey, 2009). These releases pose a potential future problem for monitoring nuclear explosions if not addressed. As a starting point, a maximum acceptable daily xenon emission rate was calculated, that is both scientifically defendable as not adversely affecting the IMS, but also consistent with what is possible to achieve in an operational environment. This study concludes that an emission of 5 × 10(9) Bq/day from a medical isotope production facility would be both an acceptable upper limit from the perspective of minimal impact to monitoring stations, but also appears to be an achievable limit for large isotope producers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Innovative concept for a major breakthrough in atmospheric radioactive xenon detection for nuclear explosion monitoring.

    PubMed

    Le Petit, G; Cagniant, A; Morelle, M; Gross, P; Achim, P; Douysset, G; Taffary, T; Moulin, C

    The verification regime of the comprehensive test ban treaty (CTBT) is based on a network of three different waveform technologies together with global monitoring of aerosols and noble gas in order to detect, locate and identify a nuclear weapon explosion down to 1 kt TNT equivalent. In case of a low intensity underground or underwater nuclear explosion, it appears that only radioactive gases, especially the noble gas which are difficult to contain, will allow identification of weak yield nuclear tests. Four radioactive xenon isotopes, 131m Xe, 133m Xe, 133 Xe and 135 Xe, are sufficiently produced in fission reactions and exhibit suitable half-lives and radiation emissions to be detected in atmosphere at low level far away from the release site. Four different monitoring CTBT systems, ARIX, ARSA, SAUNA, and SPALAX™ have been developed in order to sample and to measure them with high sensitivity. The latest developed by the French Atomic Energy Commission (CEA) is likely to be drastically improved in detection sensitivity (especially for the metastable isotopes) through a higher sampling rate, when equipped with a new conversion electron (CE)/X-ray coincidence spectrometer. This new spectrometer is based on two combined detectors, both exhibiting very low radioactive background: a well-type NaI(Tl) detector for photon detection surrounding a gas cell equipped with two large passivated implanted planar silicon chips for electron detection. It is characterized by a low electron energy threshold and a much better energy resolution for the CE than those usually measured with the existing CTBT equipments. Furthermore, the compact geometry of the spectrometer provides high efficiency for X-ray and for CE associated to the decay modes of the four relevant radioxenons. The paper focus on the design of this new spectrometer and presents spectroscopic performances of a prototype based on recent results achieved from both radioactive xenon standards and air sample measurements. Major improvements in detection sensitivity have been reached and quantified, especially for metastable radioactive isotopes 131m Xe and 133m Xe with a gain in minimum detectable activity (about 2 × 10 -3  Bq) relative to current CTBT SPALAX™ system (air sampling frequency normalized to 8 h) of about 70 and 30 respectively.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringbom, Anders; Axelssson, A.; Aldener, M.

    Abstract: Observations of the radioxenon isotopes 133Xe and 131mXe collected at the IMS stations RN38 and RN58 on April 7-8, and April 12-13 2013, respectively, are unique with respect to the measurement history of these stations. Comparison of measured data with calculated isotopic ratios as well as analysis using atmospheric transport modeling indicate that it is likely that the xenon measured was created in the underground nuclear test conducted by North Korea on February 12, 2013, and released 7 weeks later. More than one release is required to explain all observations. The 131mXe source terms for each release were calculatedmore » to 7x1011 Bq, corresponding to about 1-10% of the total xenon inventory for a 10-kt explosion, depending on fractionation and release scenario. The observed ratios could not be used to obtain any information regarding the fissile material that was used in the test.« less

  4. Effects of staff training on the care of mechanically ventilated patients: a prospective cohort study.

    PubMed

    Bloos, F; Müller, S; Harz, A; Gugel, M; Geil, D; Egerland, K; Reinhart, K; Marx, G

    2009-08-01

    Adherence to guidelines to avoid complications associated with mechanical ventilation is often incomplete. The goal of this study was to assess whether staff training in pre-defined interventions (bundle) improves the quality of care in mechanically ventilated patients. This study was performed on a 50-bed intensive care unit of a tertiary care university hospital. Application of a ventilator bundle consisting of semirecumbent positioning, lung protective ventilation in patients with acute lung injury (ALI), ulcer prophylaxis, and deep vein thrombosis prophylaxis (DVTP) was assessed before and after staff training in post-surgical patients requiring mechanical ventilation for at least 24 h. A total of 133 patients before and 141 patients after staff training were included. Overall bundle adherence increased from 15 to 33.8% (P<0.001). Semirecumbent position was achieved in 24.9% of patient days before and 46.9% of patient days after staff training (P<0.001). Administration of DVTP increased from 89.5 to 91.5% (P=0.048). Ulcer prophylaxis of >90% was achieved in both groups. Median tidal volume in patients with ALI remained unaltered. Days on mechanical ventilation were reduced from 6 (interquartile range 2.0-15.0) to 4 (2.0-9.0) (P=0.017). Rate of ventilator-associated pneumonia (VAP), ICU length of stay, and ICU mortality remained unaffected. In patients with VAP, the median ICU length of stay was reduced by 9 days (P=0.04). Staff training by an ICU change team improved compliance to a pre-defined ventilator bundle. This led to a reduction in the days spent on mechanical ventilation, despite incomplete bundle implementation.

  5. Spalax™ new generation: A sensitive and selective noble gas system for nuclear explosion monitoring.

    PubMed

    Le Petit, G; Cagniant, A; Gross, P; Douysset, G; Topin, S; Fontaine, J P; Taffary, T; Moulin, C

    2015-09-01

    In the context of the verification regime of the Comprehensive nuclear Test ban Treaty (CTBT), CEA is developing a new generation (NG) of SPALAX™ system for atmospheric radioxenon monitoring. These systems are able to extract more than 6cm(3) of pure xenon from air samples each 12h and to measure the four relevant xenon radioactive isotopes using a high resolution detection system operating in electron-photon coincidence mode. This paper presents the performances of the SPALAX™ NG prototype in operation at Bruyères-le-Châtel CEA centre, integrating the most recent CEA developments. It especially focuses on an innovative detection system made up of a gas cell equipped with two face-to-face silicon detectors associated to one or two germanium detectors. Minimum Detectable activity Concentrations (MDCs) of environmental samples were calculated to be approximately 0.1 mBq/m(3) for the isotopes (131m)Xe, (133m)Xe, (133)Xe and 0.4 mBq/m(3) for (135)Xe (single germanium configuration). The detection system might be used to simultaneously measure particulate and noble gas samples from the CTBT International Monitoring System (IMS). That possibility could lead to new capacities for particulate measurements by allowing electron-photon coincidence detection of certain fission products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Comparison of measured and simulated concentrations of 133Xe in the shallow subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Christine M.; Biegalski, Steven R.; Lowre

    2018-09-01

    Radioactive isotopes of the noble gases xenon and argon are considered primary indicators of an underground nuclear explosion. However, high atmospheric concentrations from other anthropogenic sources may lead to an elevation in the underground levels of these gases, particularly in times of increasing atmospheric pressure. In 2014, a week long sampling campaign near Canadian Nuclear Laboratories in the Ottawa River Valley resulted in first of their kind measurements of atmospheric 133Xe that had been pressed into the subsurface. In an effort to better understand this imprinting process, a second follow-up sampling campaign was conducted in the same location in 2016.more » The results of the second sampling campaign, where samples were collected at depths of 1 and 2 meters over a 14 day period and measured for their 133Xe concentration, are presented here. Gas transport and sample concentrations were predicted using the Subsurface Transport over Multiple Phases (STOMP) simulator. These results are examined and compared to the corresponding experimental results.« less

  7. Comparison of measured and simulated concentrations of 133 Xe in the shallow subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.; Biegalski, S. R.; Lowrey, J. D.

    Radioactive isotopes of the noble gases xenon and argon are considered primary indicators of an underground nuclear explosion. However, high atmospheric concentrations from other anthropogenic sources may lead to an elevation in the underground levels of these gases, particularly in times of increasing atmospheric pressure. In 2014, a week long sampling campaign near Canadian Nuclear Laboratories in the Ottawa River Valley resulted in first of their kind measurements of atmospheric 133Xe that had been pressed into the subsurface. In an effort to better understand this imprinting process, a second follow-up sampling campaign was conducted in the same location in 2016.more » The results of the second sampling campaign, where samples were collected at depths of 1 and 2 meters over a 14 day period and measured for their 133Xe concentration, are presented here. Gas transport and sample concentrations were predicted using the Subsurface Transport over Multiple Phases (STOMP) simulator. These results are examined and compared to the corresponding experimental results.« less

  8. Single-photon tomographic determination of regional cerebral blood flow in epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonte, F.J.; Devous, M.D. Sr.; Stokely, E.M.

    Using a single-photon emission computed tomographic scanner (SPECT) the authors determined regional cerebral blood flow (rCBF) with inhaled xenon-133, a noninvasive procedure. Studies were performed in 40 normal individuals, and these were compared with rCBF determinations in 51 patients with seizure disorders. Although positive results were obtained in 15 of 16 patients with mass lesions, the group of principal interest comprised 25 patients suffering from ''temporal lobe'' epilepsy. Only one of these had a positive x-ray computed tomogram, but 16 had positive findings on rCBF study. These findings included increased local blood flow in the ictal state and reduced flowmore » interictally.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassata, W. S.; Velsko, C. A.; Stoeffl, W.

    We determined fission yields of xenon ( 133mXe, 135Xe, 135mXe, 137Xe, 138Xe, and 139Xe) resulting from 14 MeV neutron induced fission of depleted uranium at the National Ignition Facility. Measurements begin approximately 20 s after shot time, and yields have been determined for nuclides with half-lives as short as tens of seconds. We determined the relative independent yields of 133mXe, 135Xe, and 135mXe to significantly higher precision than previously reported. The relative fission yields of all nuclides are statistically indistinguishable from values reported by England and Rider (ENDF-349. LA-UR-94-3106, 1994), with exception of the cumulative yield of 139Xe. Furthermore, considerablemore » differences exist between our measured yields and the JEFF-3.1 database values.« less

  10. Gas exchange and intrapulmonary distribution of ventilation during continuous-flow ventilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vettermann, J.; Brusasco, V.; Rehder, K.

    1988-05-01

    In 12 anesthetized paralyzed dogs, pulmonary gas exchange and intrapulmonary inspired gas distribution were compared between continuous-flow ventilation (CFV) and conventional mechanical ventilation (CMV). Nine dogs were studied while they were lying supine, and three dogs were studied while they were lying prone. A single-lumen catheter for tracheal insufflation and a double-lumen catheter for bilateral endobronchial insufflation (inspired O2 fraction = 0.4; inspired minute ventilation = 1.7 +/- 0.3 (SD) 1.kg-1.min-1) were evaluated. Intrapulmonary gas distribution was assessed from regional 133Xe clearances. In dogs lying supine, CO2 elimination was more efficient with endobronchial insufflation than with tracheal insufflation, but themore » alveolar-arterial O2 partial pressure difference was larger during CFV than during CMV, regardless of the type of insufflation. By contrast, endobronchial insufflation maintained both arterial PCO2 and alveolar-arterial O2 partial pressure difference at significantly lower levels in dogs lying prone than in dogs lying supine. In dogs lying supine, the dependent lung was preferentially ventilated during CMV but not during CFV. In dogs lying prone, gas distribution was uniform with both modes of ventilation. The alveolar-arterial O2 partial pressure difference during CFV in dogs lying supine was negatively correlated with the reduced ventilation of the dependent lung, which suggests that increased ventilation-perfusion mismatching was responsible for the increase in alveolar-arterial O2 partial pressure difference. The more efficient oxygenation during CFV in dogs lying prone suggests a more efficient matching of ventilation to perfusion, presumably because the distribution of blood flow is also nearly uniform.« less

  11. Spectroscopics database for warm Xenon and Iron in Astrophysics and Laboratory Astrophysics conditions

    NASA Astrophysics Data System (ADS)

    Busquet, Michel; Klapisch, Marcel; Bar-Shalom, Avi; Oreg, Josse

    2010-11-01

    The main contribution to spectral properties of astrophysics mixtures come often from Iron. On the other hand, in the so-called domain of ``Laboratory Astrophysics,'' where astrophysics phenomena are scaled down to the laboratory, Xenon (and Argon) are commonly used gases. At so called ``warm'' temperatures (T=5-50eV), L-shell Iron and M-shell Xenon present a very large number of spectral lines, originating from billions of levels. More often than not, Local Thermodynamical Equilibrium is assumed, leading to noticeable simplification of the computation. Nevertheless, complex and powerful atomic structure codes are required. We take benefit of powerful statistics and numerics, included in our atomic structure codes, STA[1] and HULLAC[2], to generate the required spectra. Recent improvements in both fields (statistics, numerics and convergence control) allow obtaining large databases (ro x T grid of > 200x200 points, and > 10000 frequencies) for temperature down to a few eV. We plan to port these improvements in the NLTE code SCROLL[3]. [1] A.Bar-Shalom, et al, Phys. Rev. A 40, 3183 (1989) [2] M.Busquet,et al, J.Phys. IV France 133, 973-975 (2006); A.Bar-Shalom, M.Klapisch, J.Oreg, J.Oreg, JQSRT 71, 169, (2001) [3] A.Bar-Shalom, et al, Phys. Rev. E 56, R70 (1997)

  12. Blood flow and vascular reactivity during attacks of classic migraine--limitations of the Xe-133 intraarterial technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skyhoj Olsen, T.; Lassen, N.A.

    1989-01-01

    The present study reports cerebral blood flow (CBF) measurements in 11 patients during attacks of classic migraine (CM)--migraine with aura. In 6 and 7 patients, respectively, cerebral vascular reactivity to increased blood pressure and to hypocapnia was also investigated during the CM attacks. The Xenon-133 intraarterial injection technique was used to measure CBF. In this study, based in part on previously published data, methodological limitations, in particular caused by scattered radiation (Compton scatter), are critically analysed. Based on this analysis and the results of the CBF studies it is concluded: During CM attacks CBF appears to decrease focally in themore » posterior part of the brain to a level around 20 ml/100 g/min which is consistent with a mild degree of ischemia. Changes of CBF in focal low flow areas are difficult to evaluate accurately with the Xe-133 technique. In most cases true CBF may change 50% or more in the low flow areas without giving rise to significantly measurable changes of CBF. This analysis suggests that the autoregulation response cannot be evaluated in the low flow areas with the technique used while the observations are compatible with the concept that a vasoconstrictive state, unresponsive to hypocapnia, prevails in the low flow areas during CM attacks. The gradual increase in size of the low flow area seen in several cases may be interpreted in two different ways. A spreading process may actually exist. However, due to Compton scatter, a gradual decrease of CBF in a territory that does not increase in size will also appear as a gradually spreading low flow area when studied with the Xe-133 intracarotid technique.« less

  13. Long- range transport of Xe-133 emissions under convective and non-convective conditions.

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, Jolanta; Gheddou, Abdelhakim

    2015-04-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 80 stations, of which more than 60 are certified. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases, in particular xenon isotopes, supported by the atmospheric transport modeling (ATM). The aim of this study is to investigate the long-range transport of Xe-133 emissions under convective and non-convective conditions. For that purpose a series of 14 days forward simulations was conducted using the Lagrangian Particle Diffusion Model FLEXPART, designed for calculating the long-range and mesoscale dispersion of air pollution from point sources. The release point was at the ANSTO facility in Australia. The geographical localization to some extent justifies the assumption that the only source of Xe-133 observed at the neighbouring stations, comes from the ANSTO facility. In the simulations the analysed wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) were used with the spatial resolution of 0.5 degree. Studies have been performed to link Xe-133 emissions with detections at the IMS stations supported by the ATM, and to assess the impact of atmospheric convection on non-detections at the IMS stations. The results of quantitative and qualitative comparison will be presented.

  14. Cerebral blood flow variations in CNS lupus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushner, M.J.; Tobin, M.; Fazekas, F.

    1990-01-01

    We studied the patterns of cerebral blood flow (CBF), over time, in patients with systemic lupus erythematosus and varying neurologic manifestations including headache, stroke, psychosis, and encephalopathy. For 20 paired xenon-133 CBF measurements, CBF was normal during CNS remissions, regardless of the symptoms. CBF was significantly depressed during CNS exacerbations. The magnitude of change in CBF varied with the neurologic syndrome. CBF was least affected in patients with nonspecific symptoms such as headache or malaise, whereas patients with encephalopathy or psychosis exhibited the greatest reductions in CBF. In 1 patient with affective psychosis, without clinical or CT evidence of cerebralmore » ischemia, serial SPECT studies showed resolution of multifocal cerebral perfusion defects which paralleled clinical recovery.« less

  15. Cerebral blood flow changes during sodium-lactate-induced panic attacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, R.S.; Devous, M.D. Sr.; Rush, A.J.

    1988-04-01

    Dynamic single-photon emission computed axial tomography (CAT) with inhaled xenon-133 was used to measure regional cerebral blood flow in 10 drug-free patients with DSM-III-diagnosed panic disorder and in five normal control subjects. All subjects underwent regional cerebral blood flow studies while at rest or during normal saline infusion and during sodium lactate infusion. Six of the 10 patients and none of the control subjects experienced lactate-induced panic attacks. Lactate infusion markedly raised hemispheric blood flow levels in both control subjects and patients who did not panic. Patients who did panic experienced either a minimal increase or a decrease in hemisphericmore » blood flow.« less

  16. Hyperpolarized Gas MRI: Technique and Applications

    PubMed Central

    McAdams, Holman P.; Kaushik, S. Sivaram; Driehuys, Bastiaan

    2015-01-01

    Synopsis Functional imaging today offers a rich world of information that is more sensitive to changes in lung structure and function than traditionally obtained pulmonary function tests. Hyperpolarized helium (3He) and xenon (129Xe) MR imaging of the lungs provided new sensitive contrast mechanisms to probe changes in pulmonary ventilation, microstructure and gas exchange. With the recent scarcity in the supply of 3He the field of hyperpolarized gas imaging shifted to the use of cheaper and naturally available 129Xe. Xenon is well tolerated and recent technical advances have ensured that the 129Xe image quality is on par with that of 3He. The added advantage of 129Xe is its solubility in pulmonary tissue, which allows exploring specific lung function characteristics involved in gas exchange and alveolar oxygenation. With a plethora of contrast mechanisms, hyperpolarized gases and 129Xe in particular, stands to be an excellent probe of pulmonary structure and function, and provide sensitive and non-invasive biomarkers for a wide variety of pulmonary diseases. PMID:25952516

  17. Non-invasive ventilation effectiveness and the effect of ventilatory mode on survival in ALS patients.

    PubMed

    Sancho, Jesus; Servera, Emilio; Morelot-Panzini, Capucine; Salachas, François; Similowski, Thomas; Gonzalez-Bermejo, Jesus

    2014-03-01

    Non-invasive ventilation (NIV) prolongs survival in amyotrophic lateral sclerosis (ALS), but there are no data with which to compare the effectiveness of the different ventilator modes - volume (Vol-NIV) or pressure-cycled (Pres-NIV) ventilation - in ALS. We aimed to determine whether the ventilatory mode has an effect on ventilation effectiveness and survival of ALS patients using NIV. We used a retrospective study that included all ALS patients for whom NIV was indicated in two referral units: one using Vol-NIV and the other using Pres-NIV. Demographic, functional and nocturnal gas exchange parameters at NIV initiation were recorded. Eighty-two ALS patients ventilated using Pres-NIV and 62 using Vol-NIV were included. No differences were found in survival from NIV initiation between Vol-NIV (median 15.00 (7.48-22.41) months) and Pres-NIV (median 15.00 (10.25-19.75) months, p = 0.533) patients. Effective NIV was achieved in 72.41% Vol-NIV patients and in 48.78% Pres-NIV patients (p < 0.001). Ventilator mode (OR 12.066 (4.251-32.270), p < 0.001) and severity of bulbar dysfunction (OR 1.07 (1.011-1.133), p = 0.02) were the variables correlated with effective NIV. In conclusion, although Vol-NIV provides more effective ventilation, Vol-NIV and Pres-NIV present similar survival in ALS. Effectiveness of NIV is related to the severity of bulbar dysfunction.

  18. Determination of gaseous fission product yields from 14 MeV neutron induced fission of 238U at the National Ignition Facility

    DOE PAGES

    Cassata, W. S.; Velsko, C. A.; Stoeffl, W.; ...

    2016-01-14

    We determined fission yields of xenon ( 133mXe, 135Xe, 135mXe, 137Xe, 138Xe, and 139Xe) resulting from 14 MeV neutron induced fission of depleted uranium at the National Ignition Facility. Measurements begin approximately 20 s after shot time, and yields have been determined for nuclides with half-lives as short as tens of seconds. We determined the relative independent yields of 133mXe, 135Xe, and 135mXe to significantly higher precision than previously reported. The relative fission yields of all nuclides are statistically indistinguishable from values reported by England and Rider (ENDF-349. LA-UR-94-3106, 1994), with exception of the cumulative yield of 139Xe. Furthermore, considerablemore » differences exist between our measured yields and the JEFF-3.1 database values.« less

  19. Matrix isolation infrared spectroscopic and theoretical study of 1,1,1-trifluoro-2-chloroethane (HCFC-133a)

    NASA Astrophysics Data System (ADS)

    Rodrigues, Gessenildo Pereira; Lucena, Juracy Régis; Ventura, Elizete; Andrade do Monte, Silmar; Reva, Igor; Fausto, Rui

    2013-11-01

    The molecular structure and infrared spectrum of the atmospheric pollutant 1,1,1-trifluoro-2-chloroethane (HCFC-133a; CF3CH2Cl) in the ground electronic state were characterized experimentally and theoretically. Excited state calculations (at the CASSCF, MR-CISD, and MR-CISD+Q levels) have also been performed in the range up to ˜9.8 eV. The theoretical calculations show the existence of one (staggered) conformer, which has been identified spectroscopically for the monomeric compound isolated in cryogenic (˜10 K) argon and xenon matrices. The observed infrared spectra of the matrix-isolated HCFC-133a were interpreted with the aid of MP2/aug-cc-pVTZ calculations and normal coordinate analysis, which allowed a detailed assignment of the observed spectra to be carried out, including identification of bands due to different isotopologues (35Cl and 37Cl containing molecules). The calculated energies of the several excited states along with the values of oscillator strengths and previous results obtained for CFCs and HCFCs suggest that the previously reported photolyses of the title compound at 147 and 123.6 nm [T. Ichimura, A. W. Kirk, and E. Tschuikow-Roux, J. Phys. Chem. 81, 1153 (1977)] are likely to be initiated in the n-4s and n-4p Rydberg states, respectively.

  20. [How xenon works: neuro and cardioprotection mechanisms].

    PubMed

    Morais, Ricardo; Andrade, Luísa; Lourenço, André; Tavares, Jorge

    2014-01-01

    The Xenon, a noble gas, has anesthetics properties, associated with remarkable hemodynamic stability as well as cardioprotective, neuroprotective proprieties. Its physicochemical characteristics give him a quick induction and emergence of anesthesia, being free of deleterious effects in all organs and showing no teratogenicity. Such properties have led to a growing interest in improving the knowledge about this noble gas, in order to assess the mechanisms of neuro and cardioprotection induced and to assess the clinical indications for its use. Qualitative review of clinical trials on anesthesia with xenon. Studies were identified from MEDLINE and by hand-searching, using the following keywords: xenon, xenon anestesia, xenon neuroprotection, xenon cradioprotection. After several studies, including two randomized multicenter controlled trials, the use of xenon as an anesthetic in patients ASA I-II was approved in March 2007. However his use in clinical practice has been strongly limited by it's high price. It seems unlikely that the advantages it offers in relation to other anesthetics justify it's use in patients ASA I-II. Although, xenon may be a valuable asset in the reduction of co-morbilities and mortality in anesthesia of patients ASA III-IV, unfortunately, there are no large randomized control studies to prove it. Unfortunately, there are still no randomized or multicentric studies showing a favourable cost-benefit profile of xenon in ASA III-IV patients vs. other anaesthetics. The usefulness of xenon in Anesthesiology requires more studies to be defined.

  1. Scintigraphic results in patients with lung transplants: a prospective comparative study.

    PubMed

    Humplik, B I; Sandrock, D; Aurisch, R; Richter, W-St; Ewert, R; Munz, D L

    2005-04-01

    We addressed the feasibility of scintigraphy in the postoperative monitoring of lung transplants. 37 patients (22 women, 15 men, 37 +/- 15 years) in good clinical condition were examined after lung transplantation. Scintigraphic procedures for assessing ventilation (133Xe), perfusion (99mTc microspheres) and aerosol-inhalation (99mTc aerosol) were performed for all patients. The findings were compared with those of established diagnostic modalities. All lung transplants showed homogeneous ventilation but with a non-physiologic difference of over 20% between both pulmonary lobes in one-third of the cases. There was a difference between the impairement of perfusion and ventilation in the presence of an impaired Euler-Liljestrand reflex in 14/37 (38%) patients. Furthermore, bronchoscopy and aerosol-inhalation scans often did not correlate, e. g. a bronchoscopically evident stenosis was not necessarily associated with an increased activity, and vice versa. Although peripheral mucociliary clearance was preserved after transplantation, stasis in central airways resulted in significantly impaired global clearance. Ventilation and perfusion scintigraphy reveal in a significant number of lung recipients pathologic findings and therefore can be recommended for postoperative monitoring. From a clinical point of view aerosol-inhalation scintigraphy (clearance) is not of any additional value.

  2. Brain activation during a linguistic task in conduction aphasia.

    PubMed

    Demeurisse, G; Capon, A

    1991-06-01

    In order to investigate functional cortical reorganization during recovery from conduction aphasia, regional cerebral blood flows (rCBF) were measured by the two-dimensional 133 Xenon inhalation method in ten stroke patients. rCBF measurements were performed at rest and during the performance of a linguistic task, one month and three months after onset. The analysis of flow changes from rest to test condition indicates an increasing contribution of the right hemisphere as time goes on. The absence of flow increase in Broca's region suggests that this region is definitively disconnected from posterior language "centers" by the arcuate fasciculus lesion.

  3. Chronicity and a low anteroposterior gradient of cerebral blood flow in schizophrenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathew, R.J.; Wilson, W.H.

    1990-02-01

    Regional cerebral blood flow (CBF) was measured with the 133xenon inhalation technique in 27 patients with schizophrenia of less than 5 years' duration and in 27 patients with schizophrenia of more than 12 years' duration, under resting conditions. Similar measurements were also performed in 54 normal control subjects matched for age and sex. Patients with schizophrenia of long duration had lower anteroposterior gradients of CBF than patients with schizophrenia of short duration and matched control subjects. Covarying out age and end-tidal levels of CO2 did not alter the results.

  4. Radioxenon detections in the CTBT international monitoring system likely related to the announced nuclear test in North Korea on February 12, 2013.

    PubMed

    Ringbom, A; Axelsson, A; Aldener, M; Auer, M; Bowyer, T W; Fritioff, T; Hoffman, I; Khrustalev, K; Nikkinen, M; Popov, V; Popov, Y; Ungar, K; Wotawa, G

    2014-02-01

    Observations made in April 2013 of the radioxenon isotopes (133)Xe and (131m)Xe at measurement stations in Japan and Russia, belonging to the International Monitoring System for verification of the Comprehensive Nuclear-Test-Ban Treaty, are unique with respect to the measurement history of these stations. Comparison of measured data with calculated isotopic ratios as well as analysis using atmospheric transport modeling indicate that it is likely that the xenon measured was created in the underground nuclear test conducted by North Korea on February 12, 2013, and released 7-8 weeks later. More than one release is required to explain all observations. The (131m)Xe source terms for each release were calculated to 0.7 TBq, corresponding to about 1-10% of the total xenon inventory for a 10 kt explosion, depending on fractionation and release scenario. The observed ratios could not be used to obtain any information regarding the fissile material that was used in the test. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme.

    PubMed

    Quillin, M L; Breyer, W A; Griswold, I J; Matthews, B W

    2000-09-29

    To investigate the relative importance of size and polarizability in ligand binding within proteins, we have determined the crystal structures of pseudo wild-type and cavity-containing mutant phage T4 lysozymes in the presence of argon, krypton, and xenon. These proteins provide a representative sample of predominantly apolar cavities of varying size and shape. Even though the volumes of these cavities range up to the equivalent of five xenon atoms, the noble gases bind preferentially at highly localized sites that appear to be defined by constrictions in the walls of the cavities, coupled with the relatively large radii of the noble gases. The cavities within pseudo wild-type and L121A lysozymes each bind only a single atom of noble gas, while the cavities within mutants L133A and F153A have two independent binding sites, and the L99A cavity has three interacting sites. The binding of noble gases within two double mutants was studied to characterize the additivity of binding at such sites. In general, when a cavity in a protein is created by a "large-to-small" substitution, the surrounding residues relax somewhat to reduce the volume of the cavity. The binding of xenon and, to a lesser degree, krypton and argon, tend to expand the volume of the cavity and to return it closer to what it would have been had no relaxation occurred. In nearly all cases, the extent of binding of the noble gases follows the trend xenon>krypton>argon. Pressure titrations of the L99A mutant have confirmed that the crystallographic occupancies accurately reflect fractional saturation of the binding sites. The trend in noble gas affinity can be understood in terms of the effects of size and polarizability on the intermolecular potential. The plasticity of the protein matrix permits repulsion due to increased ligand size to be more than compensated for by attraction due to increased ligand polarizability. These results have implications for the mechanism of general anesthesia, the migration of small ligands within proteins, the detection of water molecules within apolar cavities and the determination of crystallographic phases. Copyright 2000 Academic Press.

  6. Toward molecular mechanism of xenon anesthesia: a link to studies of xenon complexes with small aromatic molecules.

    PubMed

    Andrijchenko, Natalya N; Ermilov, Alexander Yu; Khriachtchev, Leonid; Räsänen, Markku; Nemukhin, Alexander V

    2015-03-19

    The present study illustrates the steps toward understanding molecular mechanism of xenon anesthesia by focusing on a link to the structures and spectra of intermolecular complexes of xenon with small aromatic molecules. A primary cause of xenon anesthesia is attributed to inhibition of N-methyl-D-aspartate (NMDA) receptors by an unknown mechanism. Following the results of quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) calculations we report plausible xenon action sites in the ligand binding domain of the NMDA receptor, which are due to interaction of xenon atoms with aromatic amino-acid residues. We rely in these calculations on computational protocols adjusted in combined experimental and theoretical studies of intermolecular complexes of xenon with phenol. Successful reproduction of vibrational shifts in molecular species upon complexation with xenon measured in low-temperature matrices allowed us to select a proper functional form in density functional theory (DFT) approach for use in QM subsystems, as well as to calibrate force field parameters for MD simulations. The results of molecular modeling show that xenon atoms can compete with agonists for a place in the corresponding protein cavity, thus indicating their active role in anesthetic action.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldemar, G.; Vorstrup, S.; Andersen, A.R.

    The effect of the angiotensin-converting enzyme (ACE) inhibitor captopril on regional cerebral blood flow (rCBF) was studied in 12 patients within 5 days after their first acute stroke. rCBF was studied by xenon-133 inhalation and single-photon emission computed tomography (SPECT) scan before and 1 h after oral administration of 25 mg captopril. No increase in rCBF was observed in any of the 12 patients included in the study. In only one patient was there a slight redistribution of blood flow in favor of the low-flow area, but the absolute flow value did not increase. Captopril did not cause any significantmore » change in mean hemispheric blood flow, mean arterial blood pressure (MAP), or end-expiratory CO2 fraction (FECO2). The assumption that ACE inhibition might increase cerebral blood flow in the periinfarct zone and preserve some still viable brain tissue could not be verified in the present study.« less

  8. Xenon improves neurological outcome and reduces secondary injury following trauma in an in vivo model of traumatic brain injury

    PubMed Central

    Luh, Clara; Gruss, Marco; Radyushkin, Konstantin; Hirnet, Tobias; Werner, Christian; Engelhard, Kristin; Franks, Nicholas P; Thal, Serge C; Dickinson, Robert

    2015-01-01

    Objectives To determine the neuroprotective efficacy of the inert gas xenon following traumatic brain injury, and to determine whether application of xenon has a clinically relevant therapeutic time window. Design Controlled animal study. Setting University research laboratory. Subjects Male C57BL/6N mice (n=196) Interventions 75% xenon, 50% xenon or 30% xenon, with 25% oxygen (balance nitrogen) treatment following mechanical brain lesion by controlled cortical impact. Measurements & Main Results Outcome following trauma was measured using: 1) functional neurological outcome score, 2) histological measurement of contusion volume, 3) analysis of locomotor function and gait. Our study shows that xenon-treatment improves outcome following traumatic brain injury. Neurological outcome scores were significantly (p<0.05) better in xenon-treated groups in the early phase (24 hours) and up to 4 days after injury. Contusion volume was significantly (p<0.05) reduced in the xenon-treated groups. Xenon treatment significantly (p<0.05) reduced contusion volume when xenon was given 15 minutes after injury or when treatment was delayed 1 hour or 3 hours after injury. Neurological outcome was significantly (p<0.05) improved when xenon treatment was given 15 minutes or 1 hour after injury. Improvements in locomotor function (p<0.05) were observed in the xenon-treated group, 1 month after trauma. Conclusions These results show for the first time that xenon improves neurological outcome and reduces contusion volume following traumatic brain injury in mice. In this model, xenon application has a therapeutic time window of up to at least 3 hours. These findings support the idea that xenon may be of benefit as a neuroprotective treatment in brain trauma patients. PMID:25188549

  9. Xenon improves neurologic outcome and reduces secondary injury following trauma in an in vivo model of traumatic brain injury.

    PubMed

    Campos-Pires, Rita; Armstrong, Scott P; Sebastiani, Anne; Luh, Clara; Gruss, Marco; Radyushkin, Konstantin; Hirnet, Tobias; Werner, Christian; Engelhard, Kristin; Franks, Nicholas P; Thal, Serge C; Dickinson, Robert

    2015-01-01

    To determine the neuroprotective efficacy of the inert gas xenon following traumatic brain injury and to determine whether application of xenon has a clinically relevant therapeutic time window. Controlled animal study. University research laboratory. Male C57BL/6N mice (n = 196). Seventy-five percent xenon, 50% xenon, or 30% xenon, with 25% oxygen (balance nitrogen) treatment following mechanical brain lesion by controlled cortical impact. Outcome following trauma was measured using 1) functional neurologic outcome score, 2) histological measurement of contusion volume, and 3) analysis of locomotor function and gait. Our study shows that xenon treatment improves outcome following traumatic brain injury. Neurologic outcome scores were significantly (p < 0.05) better in xenon-treated groups in the early phase (24 hr) and up to 4 days after injury. Contusion volume was significantly (p < 0.05) reduced in the xenon-treated groups. Xenon treatment significantly (p < 0.05) reduced contusion volume when xenon was given 15 minutes after injury or when treatment was delayed 1 or 3 hours after injury. Neurologic outcome was significantly (p < 0.05) improved when xenon treatment was given 15 minutes or 1 hour after injury. Improvements in locomotor function (p < 0.05) were observed in the xenon-treated group, 1 month after trauma. These results show for the first time that xenon improves neurologic outcome and reduces contusion volume following traumatic brain injury in mice. In this model, xenon application has a therapeutic time window of up to at least 3 hours. These findings support the idea that xenon may be of benefit as a neuroprotective treatment in patients with brain trauma.

  10. Adsorption of xenon on vicinal copper and platinum surfaces

    NASA Astrophysics Data System (ADS)

    Baker, Layton

    The adsorption of xenon was studied on Cu(111), Cu(221), Cu(643) and on Pt(111), Pt(221), and Pt(531) using low energy electron diffraction (LEED), temperature programmed desorption (TPD) of xenon, and ultraviolet photoemission of adsorbed xenon (PAX). These experiments were performed to study the atomic and electronic structure of stepped and step-kinked, chiral metal surfaces. Xenon TPD and PAX were performed on each surface in an attempt to titrate terrace, step edge, and kink adsorption sites by adsorption energetics (TPD) and local work function differences (PAX). Due to the complex behavior of xenon on the vicinal copper and platinum metal surfaces, adsorption sites on these surfaces could not be adequately titrated by xenon TPD. On Cu(221) and Cu(643), xenon desorption from step adsorption sites was not apparent leading to the conclusion that the energy difference between terrace and step adsorption is minuscule. On Pt(221) and Pt(531), xenon TPD indicated that xenon prefers to bond at step edges and that the xenon-xenon interaction at step edges in repulsive but no further indication of step-kink adsorption was observed. The Pt(221) and Pt(531) TPD spectra indicated that the xenon overlayer undergoes strong compression near monolayer coverage on these surfaces due to repulsion between step-edge adsorbed xenon and other encroaching xenon atoms. The PAX experiments on the copper and platinum surfaces demonstrated that the step adsorption sites have lower local work functions than terrace adsorption sites and that higher step density leads to a larger separation in the local work function of terrace and step adsorption sites. The PAX spectra also indicated that, for all surfaces studied at 50--70 K, step adsorption is favored at low coverage but the step sites are not saturated until monolayer coverage is reached; this observation is due to the large entropy difference between terrace and step adsorption states and to repulsive interactions between xenon atoms adsorbed at step edges (on the platinum surfaces). The results herein provide several novel observations regarding the adsorptive behavior of xenon on vicinal copper and platinum surfaces.

  11. Quantitative in vivo studies of hyperemia in the course of the tissue response to biomaterial implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouet, T.; Schmitt, M.; Desuzinges, C.

    1990-11-01

    Hyperemia associated with an inflammatory response has been investigated in rats, by using four different experimental models, i.e., positive and negative polymer implants from the pharmacopea, operative control, and abscess induced by turpentine oil. 133Xenon clearance, infrared thermography and Laser Doppler Flowmetry (LDF) were used to monitor the subcutaneous local hemodynamic changes from 1 to 40 postoperative days. LDF proved to be a sensitive, reproducible method, able to discriminate positive from negative implants already at the 3rd postoperative day and up to 40 days. This increased local blood flow was also visualized at the site of positive implants at themore » 14th and 21st postoperative days by means of 133Xe Clearance. Additional information obtained by infrared thermography allowed discrimination between positive implants and control sites but only at the very early stage (1 to 3 days). The significance of the different data collected by the three techniques was correlated with histological events occurring at the different implant sites. LDF may therefore represent a useful technique for noninvasive semiquantitative assessment of tissue response to biomaterials.« less

  12. A comparison of Listerine® and sodium bicarbonate oral cleansing solutions on dental plaque colonisation and incidence of ventilator associated pneumonia in mechanically ventilated patients: a randomised control trial.

    PubMed

    Berry, A M

    2013-10-01

    Effective oral hygiene has been proposed as a key factor in the reduction of dental plaque colonisation and subsequent development of ventilator associated pneumonia (VAP). Listerine(®) oral rinse, while used extensively in dental practice has rarely been tested in mechanically ventilated patients. Sodium bicarbonate as an oral rinse has been more commonly utilised in oral hygiene regimens in intensive care patients. To test the efficacies of the essential oil mouth rinse, Listerine(®) (Pfizer) and sodium bicarbonate in the reduction of dental plaque colonisation with respiratory pathogens and the subsequent development of VAP. The study design was a prospective, single blind randomised comparative study of adult patients mechanically ventilated for at least 4 days. Patients were randomised to Listerine(®) (Pfizer) oral rinse twice daily, sodium bicarbonate oral rinse 2/24 or sterile water 2/24 (control group). All groups received tooth brushing 3 times a day. Dental plaque colonisation (primary outcome) and incidence of ventilator associated pneumonia (secondary outcome) were studied. Three hundred and ninety-eight patients were randomised to either the Listerine group (127), sodium bicarbonate group (133) or the control group (138). Baseline characteristics were similar for all groups. There were no significant differences between the control and study groups in colonisation of dental plaque at Day 4 (p=0.243). Ventilator associated pneumonia was diagnosed in 18 patients. The incidence was, Listerine(®) group 4.7%, sodium bicarbonate group 4.5% and control 4.3% [OR, 0.99; 95% CI, 0.31 to 3.16; p=0.92]. Compared to the control group, Listerine(®) or sodium bicarbonate oral rinses were not more effective in the reduction of colonisation of dental plaque or the incidence of VAP. Given the low incidence of VAP, the common factor of a small, soft toothbrush as part of an oral hygiene regimen suggests possible benefit in mechanically ventilated patients. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  13. WE-AB-202-03: Quantifying Ventilation Change Due to Radiation Therapy Using 4DCT Jacobian Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, T; Du, K; Bayouth, J

    Purpose: Four-dimensional computed tomography (4DCT) and image registration can be used to determine regional lung ventilation changes after radiation therapy (RT). This study aimed to determine if lung ventilation change following radiation therapy was affected by the pre-RT ventilation of the lung. Methods: 13 subjects had three 4DCT scans: two repeat scans acquired before RT and one three months after RT. Regional ventilation was computed using Jacobian determinant calculations on the registered 4DCT images. The post-RT ventilation map was divided by the pre-RT ventilation map to get a voxel-by-voxel Jacobian ratio map depicting ventilation change over the course of RT.more » Jacobian ratio change was compared over the range of delivered doses. The first pre-RT ventilation image was divided by the second to establish a control for Jacobian ratio change without radiation delivered. The functional change between scans was assessed using histograms of the Jacobian ratios. Results: There were significantly (p < 0.05) more voxels that had a large decrease in Jacobian ratio in the post-RT divided by pre-RT map (15.6%) than the control (13.2%). There were also significantly (p < .01) more voxels that had a large increase in Jacobian ratio (16.2%) when compared to control (13.3%). Lung regions with low function (<10% expansion by Jacobian) showed a slight linear reduction in expansion (0.2%/10 Gy delivered), while high function regions (>10% expansion) showed a greater response (1.2% reduction/10 Gy). Contiguous high function regions > 1 liter occurred in 11 of 13 subjects. Conclusion: There is a significant change in regional ventilation following a course of radiation therapy. The change in Jacobian following RT is dependent both on the delivered dose and the initial ventilation of the lung tissue: high functioning lung has greater ventilation loss for equivalent radiation doses. Substantial regions of high function lung tissue are prevalent. Research support from NIH grants CA166119 and CA166703, a gift from Roger Koch, and a Pilot Grant from University of Iowa Carver College of Medicine.« less

  14. Protection of xenon against postoperative oxygen impairment in adults undergoing Stanford Type-A acute aortic dissection surgery: Study protocol for a prospective, randomized controlled clinical trial.

    PubMed

    Jin, Mu; Cheng, Yi; Yang, Yanwei; Pan, Xudong; Lu, Jiakai; Cheng, Weiping

    2017-08-01

    The available evidence shows that hypoxemia after Stanford Type-A acute aortic dissection (AAD) surgery is a frequent cause of several adverse consequences. The pathogenesis of postoperative hypoxemia after AAD surgery is complex, and ischemia/reperfusion and inflammation are likely to be underlying risk factors. Xenon, recognized as an ideal anesthetic and anti-inflammatory treatment, might be a possible treatment for these adverse effects. The trial is a prospective, double-blind, 4-group, parallel, randomized controlled, a signal-center clinical trial. We will recruit 160 adult patients undergoing Stanford type-A AAD surgery. Patients will be allocated a study number and will be randomized on a 1:1:1:1 basis to receive 1 of the 3 treatment options (pulmonary inflated with 50% xenon, 75% xenon, or 100% xenon) or no treatment (control group, pulmonary inflated with 50% nitrogen). The aims of this study are to clarify the lung protection capability of xenon and its possible mechanisms in patients undergoing the Stanford type-A AAD surgery. This trial uses an innovative design to account for the xenon effects of postoperative oxygen impairment, and it also delineates the mechanism for any benefit from xenon. The investigational xenon group is considered a treatment intervention, as it includes 3 groups of pulmonary static inflation with 50%, 75%, and 100% xenon. It is suggested that future trials might define an appropriate concentration of xenon for the best practice intervention.

  15. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Seibert, P.; Wotawa, G.; Arnold, D.; Burkhart, J. F.; Eckhardt, S.; Tapia, C.; Vargas, A.; Yasunari, T. J.

    2011-10-01

    On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant (FD-NPP) developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions of two isotopes, the noble gas xenon-133 (133Xe) and the aerosol-bound caesium-137 (137Cs), which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined the first guess with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for 137Cs, measurements of bulk deposition. Regarding 133Xe, we find a total release of 16.7 (uncertainty range 13.4-20.0) EBq, which is the largest radioactive noble gas release in history not associated with nuclear bomb testing. There is strong evidence that the first strong 133Xe release started very early, possibly immediately after the earthquake and the emergency shutdown on 11 March at 06:00 UTC. The entire noble gas inventory of reactor units 1-3 was set free into the atmosphere between 11 and 15 March 2011. For 137Cs, the inversion results give a total emission of 35.8 (23.3-50.1) PBq, or about 42% of the estimated Chernobyl emission. Our results indicate that 137Cs emissions peaked on 14-15 March but were generally high from 12 until 19 March, when they suddenly dropped by orders of magnitude exactly when spraying of water on the spent-fuel pool of unit 4 started. This indicates that emissions were not only coming from the damaged reactor cores, but also from the spent-fuel pool of unit 4 and confirms that the spraying was an effective countermeasure. We also explore the main dispersion and deposition patterns of the radioactive cloud, both regionally for Japan as well as for the entire Northern Hemisphere. While at first sight it seemed fortunate that westerly winds prevailed most of the time during the accident, a different picture emerges from our detailed analysis. Exactly during and following the period of the strongest 137Cs emissions on 14 and 15 March as well as after another period with strong emissions on 19 March, the radioactive plume was advected over Eastern Honshu Island, where precipitation deposited a large fraction of 137Cs on land surfaces. The plume was also dispersed quickly over the entire Northern Hemisphere, first reaching North America on 15 March and Europe on 22 March. In general, simulated and observed concentrations of 133Xe and 137Cs both at Japanese as well as at remote sites were in good quantitative agreement with each other. Altogether, we estimate that 6.4 TBq of 137Cs, or 19% of the total fallout until 20 April, were deposited over Japanese land areas, while most of the rest fell over the North Pacific Ocean. Only 0.7 TBq, or 2% of the total fallout were deposited on land areas other than Japan.

  16. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Seibert, P.; Wotawa, G.; Arnold, D.; Burkhart, J. F.; Eckhardt, S.; Tapia, C.; Vargas, A.; Yasunari, T. J.

    2012-03-01

    On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions into the atmosphere of two isotopes, the noble gas xenon-133 (133Xe) and the aerosol-bound caesium-137 (137Cs), which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined it with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for 137Cs, measurements of bulk deposition. Regarding 133Xe, we find a total release of 15.3 (uncertainty range 12.2-18.3) EBq, which is more than twice as high as the total release from Chernobyl and likely the largest radioactive noble gas release in history. The entire noble gas inventory of reactor units 1-3 was set free into the atmosphere between 11 and 15 March 2011. In fact, our release estimate is higher than the entire estimated 133Xe inventory of the Fukushima Dai-ichi nuclear power plant, which we explain with the decay of iodine-133 (half-life of 20.8 h) into 133Xe. There is strong evidence that the 133Xe release started before the first active venting was made, possibly indicating structural damage to reactor components and/or leaks due to overpressure which would have allowed early release of noble gases. For 137Cs, the inversion results give a total emission of 36.6 (20.1-53.1) PBq, or about 43% of the estimated Chernobyl emission. Our results indicate that 137Cs emissions peaked on 14-15 March but were generally high from 12 until 19 March, when they suddenly dropped by orders of magnitude at the time when spraying of water on the spent-fuel pool of unit 4 started. This indicates that emissions may not have originated only from the damaged reactor cores, but also from the spent-fuel pool of unit 4. This would also confirm that the spraying was an effective countermeasure. We explore the main dispersion and deposition patterns of the radioactive cloud, both regionally for Japan as well as for the entire Northern Hemisphere. While at first sight it seemed fortunate that westerly winds prevailed most of the time during the accident, a different picture emerges from our detailed analysis. Exactly during and following the period of the strongest 137Cs emissions on 14 and 15 March as well as after another period with strong emissions on 19 March, the radioactive plume was advected over Eastern Honshu Island, where precipitation deposited a large fraction of 137Cs on land surfaces. Radioactive clouds reached North America on 15 March and Europe on 22 March. By middle of April, 133Xe was fairly uniformly distributed in the middle latitudes of the entire Northern Hemisphere and was for the first time also measured in the Southern Hemisphere (Darwin station, Australia). In general, simulated and observed concentrations of 133Xe and 137Cs both at Japanese as well as at remote sites were in good quantitative agreement. Altogether, we estimate that 6.4 PBq of 137Cs, or 18% of the total fallout until 20 April, were deposited over Japanese land areas, while most of the rest fell over the North Pacific Ocean. Only 0.7 PBq, or 1.9% of the total fallout were deposited on land areas other than Japan.

  17. Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.

    PubMed

    Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z

    2014-08-14

    The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found. Copyright © 2014. Published by Elsevier B.V.

  18. [Short and long-term changes in cortical circulation caused by autogenic training].

    PubMed

    Meyer, H K; Diehl, B J; Ulrich, P; Meinig, G

    1987-01-01

    The well-known hyperfrontal pattern of hemispheric blood flow measured with 133-Xenon is not found in 12 healthy resting men who have been practicing Autogenic Training for at least six months. This might indicate a long-term decrease in the level of activation. Successfully practiced exercises of Autogenic Training lead to an increased blood flow in the Rolandic area representing the body sceme and to a decreased blood flow in regions related to acoustical attention and to autonomic functions. Left hemispheric cerebral blood flow ist lower in rest. The relative activation of the left hemisphere during Autogenic Training is discussed.

  19. 13kW Advanced Electric Propulsion Flight System Development and Qualification

    NASA Technical Reports Server (NTRS)

    Jackson, Jerry; Allen, May; Myers, Roger; Soendker, Erich; Welander, Benjamin; Tolentino, Artie; Hablitzel, Sam; Yeatts, Chyrl; Xu, Steven; Sheehan, Chris; hide

    2017-01-01

    The next phase of robotic and human deep space exploration missions is enhanced by high performance, high power solar electric propulsion systems for large-scale science missions and cargo transportation. Aerojet Rocketdynes Advanced Electric Propulsion System (AEPS) program is completing development, qualification and delivery of five flight 13.3kW EP systems to NASA. The flight AEPS includes a magnetically-shielded, long-life Hall thruster, power processing unit (PPU), xenon flow controller (XFC), and intrasystem harnesses. The Hall thruster, originally developed and demonstrated by NASAs Glenn Research Center and the Jet Propulsion Laboratory, operates at input powers up to 12.5kW while providing a specific impulse over 2600s at an input voltage of 600V. The power processor is designed to accommodate an input voltage range of 95 to 140V, consistent with operation beyond the orbit of Mars. The integrated system is continuously throttleable between 3 and 13.3kW. The program has completed the system requirement review; the system, thruster, PPU and XFC preliminary design reviews; development of engineering models, and initial system integration testing. This paper will present the high power AEPS capabilities, overall program and design status and the latest test results for the 13.3kW flight system development and qualification program.

  20. Scalability study of solid xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, J.; Cease, H.; Jaskierny, W. F.

    2015-04-01

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon.

  1. Protection of xenon against postoperative oxygen impairment in adults undergoing Stanford Type-A acute aortic dissection surgery

    PubMed Central

    Jin, Mu; Cheng, Yi; Yang, Yanwei; Pan, Xudong; Lu, Jiakai; Cheng, Weiping

    2017-01-01

    Abstract Objectives: The available evidence shows that hypoxemia after Stanford Type-A acute aortic dissection (AAD) surgery is a frequent cause of several adverse consequences. The pathogenesis of postoperative hypoxemia after AAD surgery is complex, and ischemia/reperfusion and inflammation are likely to be underlying risk factors. Xenon, recognized as an ideal anesthetic and anti-inflammatory treatment, might be a possible treatment for these adverse effects. Methods/Design: The trial is a prospective, double-blind, 4-group, parallel, randomized controlled, a signal-center clinical trial. We will recruit 160 adult patients undergoing Stanford type-A AAD surgery. Patients will be allocated a study number and will be randomized on a 1:1:1:1 basis to receive 1 of the 3 treatment options (pulmonary inflated with 50% xenon, 75% xenon, or 100% xenon) or no treatment (control group, pulmonary inflated with 50% nitrogen). The aims of this study are to clarify the lung protection capability of xenon and its possible mechanisms in patients undergoing the Stanford type-A AAD surgery. Discussion: This trial uses an innovative design to account for the xenon effects of postoperative oxygen impairment, and it also delineates the mechanism for any benefit from xenon. The investigational xenon group is considered a treatment intervention, as it includes 3 groups of pulmonary static inflation with 50%, 75%, and 100% xenon. It is suggested that future trials might define an appropriate concentration of xenon for the best practice intervention. PMID:28834897

  2. On the behavior of solutions of xenon in liquid n-alkanes: solubility of xenon in n-pentane and n-hexane.

    PubMed

    Bonifácio, Rui P M F; Martins, Luís F G; McCabe, Clare; Filipe, Eduardo J M

    2010-12-09

    The solubility of xenon in liquid n-pentane and n-hexane has been studied experimentally, theoretically, and by computer simulation. Measurements of the solubility are reported for xenon + n-pentane as a function of temperature from 254 to 305 K. The uncertainty in the experimental data is less than 0.15%. The thermodynamic functions of solvation such as the standard Gibbs energy, enthalpy, and entropy of solvation have been calculated from Henry's law coefficients for xenon + n-pentane solutions and also for xenon + n-hexane, which were reported in previous work. The results provide a further example of the similarity between the xenon + n-alkane interaction and the n-alkane + n-alkane interactions. Using the SAFT-VR approach we were able to quantitatively predict the experimental solubility for xenon in n-pentane and semiquantitatively that of xenon in n-hexane using simple Lorentz-Berthelot combining rules to describe the unlikely interaction. Henry's constants at infinite dilution for xenon + n-pentane and xenon + n-hexane were also calculated by Monte Carlo simulation using a united atom force field to describe the n-alkane and the Widom test particle insertion method.

  3. Optical pumping and xenon NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raftery, M. Daniel

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to highmore » magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.« less

  4. Optical pumping and xenon NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas tomore » high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.« less

  5. Transdermal diffusion of xenon in vitro using diffusion cells

    NASA Astrophysics Data System (ADS)

    Verkhovsky, A.; Petrov, E.

    2015-11-01

    The aim of this research was to study the diffusion rate of xenon through guinea pig skin and how viscosity of cosmetic component capryl/capric triglyceride (CCT) facilitates to deliver xenon to surface of skin patches. They were placed in Franz cell for 24 hours and diffusion rate and permeability of xenon were calculated. Thus diffusion rate was 0.031 mg/hour*cm2 and permeability was 0.003 cm/hour. Using Brookfield viscometer it was shown that viscosity of CCT decreased upon increasing xenon concentration. Obtained results can be utilized in developing of new xenon containing drugs for topical administration.

  6. [Effects of xenon anesthesia on cerebral blood flow in neurosurgical patients without intracranial hypertension].

    PubMed

    Rylova, A V; Beliaev, A Iu; Lubnin, A Iu

    2013-01-01

    Among anesthetic agents used in neurosurgery xenon appears to be the most advantageous. It preserves arterial blood pressure, assures rapid recovery and neuroprotection. But the data is lacking on xenon effect upon cerebral blood flow under anesthetic conditions. We measured flow velocity in middle cerebral artery in neurosurgical patients without intracranial hypertension during closed circuit xenon anesthesia comparing propofol and xenon effect in the same patients. In our study xenon didn't seem to induce clinically relevant changes in cerebral blood flow and preserved cerebral vascular reactivity thus proving its safety in patients without intracranial hypertension.

  7. [Intracranial and cerebral perfusion pressure in neurosurgical patients during anaesthesia with xenon].

    PubMed

    Rylova, A V; Gavrilov, A G; Lubnin, A Iu; Potapov, A A

    2014-01-01

    Despite difficulties in providing xenon anaesthesia, xenon still seems to be attractive for neurosurgical procedures. But data upon its effect on intracranial (ICP) and cerebral perfusion pressure (CPP) remains controversial. We monitored ICP and CPP in patients with or without intracranial hypertension during xenon inhalation in different concentrations. Our results suggest that caution should be used while inhaling xenon in high anaesthetic concentration in patients wiith known intracranial hypertension. We also address new possibilities of xenon use, e.g., for sedation in neurosurgery. The study was supported by Russian Fund for Fundamental Research, grant number 13-04-01640.

  8. Numerical study on xenon positive column discharges of mercury-free lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Jiting; He, Feng; Miao, Jinsong

    2007-02-15

    In this paper, the numerical study has been performed on the xenon positive column discharges of mercury-free fluorescent lamp. The plasma discharge characteristics are analyzed by numerical simulation based on two-dimensional fluid model. The effects of cell geometry, such as the dielectric layer, the electrode width, the electrode gap, and the cell height, and the filling gas including the pressure and the xenon percentage are investigated in terms of discharge current and discharge efficiency. The results show that a long transient positive column will form in the xenon lamp when applying ac sinusoidal power and the lamp can operate inmore » a large range of voltage and frequency. The front dielectric layer of the cell plays an important role in the xenon lamp while the back layer has little effect. The ratio of electrode gap to cell height should be large to achieve a long positive column xenon lamp and higher efficiency. Increase of pressure or xenon concentration results in an increase of discharge efficiency and voltage. The discussions will be helpful for the design of commercial xenon lamp cells.« less

  9. Xenon inhibits excitatory but not inhibitory transmission in rat spinal cord dorsal horn neurons

    PubMed Central

    2010-01-01

    Background The molecular targets for the promising gaseous anaesthetic xenon are still under investigation. Most studies identify N-methyl-D-aspartate (NMDA) receptors as the primary molecular target for xenon, but the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA) receptors is less clear. In this study we evaluated the effect of xenon on excitatory and inhibitory synaptic transmission in the superficial dorsal horn of the spinal cord using in vitro patch-clamp recordings from rat spinal cord slices. We further evaluated the effects of xenon on innocuous and noxious stimuli using in vivo patch-clamp method. Results In vitro, xenon decreased the amplitude and area under the curve of currents induced by exogenous NMDA and AMPA and inhibited dorsal root stimulation-evoked excitatory postsynaptic currents. Xenon decreased the amplitude, but not the frequency, of miniature excitatory postsynaptic currents. There was no discernible effect on miniature or evoked inhibitory postsynaptic currents or on the current induced by inhibitory neurotransmitters. In vivo, xenon inhibited responses to tactile and painful stimuli even in the presence of NMDA receptor antagonist. Conclusions Xenon inhibits glutamatergic excitatory transmission in the superficial dorsal horn via a postsynaptic mechanism. There is no substantial effect on inhibitory synaptic transmission at the concentration we used. The blunting of excitation in the dorsal horn lamina II neurons could underlie the analgesic effect of xenon. PMID:20444263

  10. In Vivo Measurement in Pigs of Wash-In Kinetics of Xenon at its Site of Action.

    PubMed

    Froeba, Gebhard; Adolph, Oliver

    2016-01-01

    Xenon (Xe) in many respects is an ideal anaesthetic agent. Its blood/gas partition coefficient is lower than that of any other anaesthetic, enabling rapid induction of and emergence from anaesthesia. While the whole body kinetics during wash-in of inhalational anaesthesia is well known, data describing the pharmacokinetics of xenon in the cerebral compartment at the site of action are still largely missing. In order to illuminate xenon's cerebral pharmacokinetics, we anaesthetised five pigs and measured arterial, mixed- and sagittal sinus-venous blood, as well as end-expiratory gas concentrations of xenon by gas chromatography-mass spectrometry (GCMS) up to 30 minutes after starting the anaesthetic gas mixture. Despite xenon's fast onset of effect the half-time for equilibration between xenon concentration in arterial blood and at the site of action is measured to be 1.49 ± 0.04 minutes versus 3.91 ± 0.1 minutes. Successful loading of xenon in the brain during inhalational anesthesia was accomplished after approximately 15 minutes although the end-expiratory xenon concentration reached a plateau after 7 minutes. Thus cerebral xenon uptake rate is only moderate, xenon fast onset of action being largely due to its extremely fast alveolar uptake. To ensure safety and precise control during anaesthesia we need a profound knowledge about to what extent the measured end-tidal concentrations reflect the drug concentrations in the target tissue. The results of this study expand our knowledge about the temporal characteristics of xenon´s pharmacokinetics at its site of action and provide the basis for appropriate clinical protocols and experimental designs of future studies.

  11. Feasibility and cardiac safety of inhaled xenon in combination with therapeutic hypothermia following out-of-hospital cardiac arrest.

    PubMed

    Arola, Olli J; Laitio, Ruut M; Roine, Risto O; Grönlund, Juha; Saraste, Antti; Pietilä, Mikko; Airaksinen, Juhani; Perttilä, Juha; Scheinin, Harry; Olkkola, Klaus T; Maze, Mervyn; Laitio, Timo T

    2013-09-01

    Preclinical studies reveal the neuroprotective properties of xenon, especially when combined with hypothermia. The purpose of this study was to investigate the feasibility and cardiac safety of inhaled xenon treatment combined with therapeutic hypothermia in out-of-hospital cardiac arrest patients. An open controlled and randomized single-centre clinical drug trial (clinicaltrials.gov NCT00879892). A multipurpose ICU in university hospital. Thirty-six adult out-of-hospital cardiac arrest patients (18-80 years old) with ventricular fibrillation or pulseless ventricular tachycardia as initial cardiac rhythm. Patients were randomly assigned to receive either mild therapeutic hypothermia treatment with target temperature of 33°C (mild therapeutic hypothermia group, n=18) alone or in combination with xenon by inhalation, to achieve a target concentration of at least 40% (Xenon+mild therapeutic hypothermia group, n=18) for 24 hours. Thirty-three patients were evaluable (mild therapeutic hypothermia group, n=17; Xenon+mild therapeutic hypothermia group, n=16). Patients were treated and monitored according to the Utstein protocol. The release of troponin-T was determined at arrival to hospital and at 24, 48, and 72 hours after out-of-hospital cardiac arrest. The median end-tidal xenon concentration was 47% and duration of the xenon inhalation was 25.5 hours. The frequency of serious adverse events, including inhospital mortality, status epilepticus, and acute kidney injury, was similar in both groups and there were no unexpected serious adverse reactions to xenon during hospital stay. In addition, xenon did not induce significant conduction, repolarization, or rhythm abnormalities. Median dose of norepinephrine during hypothermia was lower in xenon-treated patients (mild therapeutic hypothermia group=5.30 mg vs Xenon+mild therapeutic hypothermia group=2.95 mg, p=0.06). Heart rate was significantly lower in Xenon+mild therapeutic hypothermia patients during hypothermia (p=0.04). Postarrival incremental change in troponin-T at 72 hours was significantly less in the Xenon+mild therapeutic hypothermia group (p=0.04). Xenon treatment in combination with hypothermia is feasible and has favorable cardiac features in survivors of out-of-hospital cardiac arrest.

  12. Myocardial Blood Flow in Man: Effects of Coronary Collateral Circulation and Coronary Artery Bypass Surgery

    PubMed Central

    Smith, Sidney C.; Gorlin, Richard; Herman, Michael V.; Taylor, Warren J.; Collins, John J.

    1972-01-01

    The effects of coronary artery bypass graft (CAB) and coronary collaterals (CC) on myocardial blood flow (MBF) were studied in 24 patients undergoing 29 CAB's. MBF after CAB was compared to preexisting MBF by intraoperatively injecting 133xenon via distal CAB with proximal CAB first occluded then open. Pressure gradients across bypassed obstructions were measured. The results were correlated with preoperative coronary arteriograms to determine the effects of CC on MBF and postobstructive perfusion pressures. Mean MBF was increased by CAB from 32±6 (se) ml/min per 100 g (CAB occluded) to 118±13 ml/min per 100 g (CAB open). The 133Xe clearance curves with CAB open were resolved into slow (19±2 ml/min per 100 g) and rapid (133±12 ml/min per 100 g) phases, suggesting that MBF remained heterogeneous after CAB. Vessels with less than 80% stenosis by angiography had pressure gradients less than 20 mm Hg across obstructions, high postobstructive perfusion pressures (75±7 mm Hg), and normal MBF (87±6 ml/min per 100 g) even with CAB occluded. Vessels with greater than 80% stenosis or total occlusion by angiography had significant pressure gradients with marked reduction of postobstructive MBF. No significant difference in postobstructive MBF was found when vessels with CC (21±4 ml/min per 100 g) were compared to those without CC (17±4 ml/min per 100 g) (P > 0.4). These studies demonstrate that (a) mean MBF increased 268% after CAB, (b) heterogeneous MBF persisted after CAB, (c) CC were not associated with significant increases in MBF, and (d) vessels with less than 80% stenosis had less than 20 mm Hg gradient with minimal effect on resting MBF. Images PMID:5056655

  13. Comparison of xenon-based anaesthesia compared with total intravenous anaesthesia in high risk surgical patients.

    PubMed

    Bein, B; Turowski, P; Renner, J; Hanss, R; Steinfath, M; Scholz, J; Tonner, P H

    2005-10-01

    Xenon, a noble gas with anaesthetic and analgesic properties, has gained renewed interest due to its favourable physical properties which allow a rapid emergence from anaesthesia. However, high costs limit its use to a subset of patients who may benefit from xenon, thereby offsetting its costs. To date, there are only limited data available on the performance of xenon in high risk patients. We studied 39 patients with ASA physical status III undergoing aortic surgery. The patients were randomly assigned to either a xenon (Xe, n = 20) or a TIVA (T, n = 19) group. Global cardiac performance and myocardial contractility were assessed using transoesophageal echocardiography, and myocardial cell damage with troponin T and CK-MB. Echocardiographic measurements were made prior to xenon administration, following xenon administration, and after clamping of the abdominal aorta, after declamping and at corresponding time points in the TIVA group. Laboratory values were determined repeatedly for up to 72 h. Data were analysed using two-way anova factoring for time and anaesthetic agent or with ancova comparing linear regression lines. No significant differences were found in global myocardial performance, myocardial contractility or laboratory values at any time during the study period. Mean (SEM) duration of stay on the ICU (xenon: 38 +/- 46 vs. TIVA 25 +/- 15 h) or in hospital (xenon: 14 +/- 12 vs. TIVA 10 +/- 6 days) did not differ significantly between the groups. Although xenon has previously been shown to exert superior haemodynamic stability, we were unable to demonstrate an advantage of xenon-based anaesthesia compared to TIVA in high risk surgical patients.

  14. Safety and feasibility of xenon as an adjuvant to sevoflurane anaesthesia in children undergoing interventional or diagnostic cardiac catheterization: study protocol for a randomised controlled trial.

    PubMed

    Devroe, Sarah; Lemiere, Jurgen; Van de Velde, Marc; Gewillig, Marc; Boshoff, Derize; Rex, Steffen

    2015-03-04

    Xenon has minimal haemodynamic side effects when compared to volatile or intravenous anaesthetics. Moreover, in in vitro and in animal experiments, xenon has been demonstrated to convey cardio- and neuroprotective effects. Neuroprotection could be advantageous in paediatric anaesthesia as there is growing concern, based on both laboratory studies and retrospective human clinical studies, that anaesthetics may trigger an injury in the developing brain, resulting in long-lasting neurodevelopmental consequences. Furthermore, xenon-mediated neuroprotection could help to prevent emergence delirium/agitation. Altogether, the beneficial haemodynamic profile combined with its putative organ-protective properties could render xenon an attractive option for anaesthesia of children undergoing cardiac catheterization. In a phase-II, mono-centre, prospective, single-blind, randomised, controlled study, we will test the hypothesis that the administration of 50% xenon as an adjuvant to general anaesthesia with sevoflurane in children undergoing elective cardiac catheterization is safe and feasible. Secondary aims include the evaluation of haemodynamic parameters during and after the procedure, emergence characteristics, and the analysis of peri-operative neuro-cognitive function. A total of 40 children ages 4 to 12 years will be recruited and randomised into two study groups, receiving either a combination of sevoflurane and xenon or sevoflurane alone. Children undergoing diagnostic or interventional cardiac catheterization are a vulnerable patient population, one particularly at risk for intra-procedural haemodynamic instability. Xenon provides remarkable haemodynamic stability and potentially has cardio- and neuroprotective properties. Unfortunately, evidence is scarce on the use of xenon in the paediatric population. Our pilot study will therefore deliver important data required for prospective future clinical trials. EudraCT: 2014-002510-23 (5 September 2014).

  15. [Characteristics of perioperative period in Xenon-based combined general anaesthesia in neurosurgery].

    PubMed

    Viatkin, A A; Petrosian, L G; Mizikov, V M; Vasil'ev, S A

    2013-01-01

    Neuroprotection could be the aim to use Xenon for general anesthesia. However the experience of Xenon anesthesia in neurosurgery is quite limited. The appraisal of Xenon based anesthesia was accomplished in 12 patients during various brain surgery. Xe in concentration 65% was used to maintenance of anesthesia, other medication was avoided. As a resuIt there were 8 cases of arterial hypertension and 2 cases of superficial hypnotic state. Excitation (n = 3), hyperdynamic reaction (n = 8), PONV (n = 8) were detected in early postoperative period. An analysis of this study suggests a conclusion that studied method of Xenon-based anesthesia is inexpedient for neurosurgery.

  16. Successful management of drug-induced hypercapnic acidosis with naloxone and noninvasive positive pressure ventilation.

    PubMed

    Agrafiotis, Michalis; Tryfon, Stavros; Siopi, Demetra; Chassapidou, Georgia; Galanou, Artemis; Tsara, Venetia

    2015-02-01

    A 74-year-old man was referred to our hospital due to deteriorating level of consciousness and desaturation. His Glasgow Coma Scale was 6, and his pupils were constricted but responded to light. Chest radiograph was negative for significant findings. Arterial blood gas evaluation on supplemental oxygen revealed severe acute on chronic respiratory acidosis: pH 7.15; PCO2, 133 mm Hg; PO2,64 mm Hg; and HCO3, 31 mmol/L. He regained full consciousness (Glasgow Coma Scale, 15) after receiving a 0.4 mg dose of naloxone, but because of persistent severe respiratory acidosis (pH 7.21; PCO2, 105 mm Hg), he was immediately commenced on noninvasive positive pressure ventilation (NIV) displaying a remarkable improvement in arterial blood gas values within the next few hours. However, in the days that followed, he remained dependent on NIV, and he was finally discharged on a home mechanical ventilation prescription. In cases of drug-induced respiratory depression, NIV should be regarded as an acceptable treatment, as it can provide ventilatory support without the increased risks associated with invasive mechanical ventilation.

  17. MCNPX CALCULATIONS OF SPECIFIC ABSORBED FRACTIONS IN SOME ORGANS OF THE HUMAN BODY DUE TO APPLICATION OF 133Xe, 99mTc and 81mKr RADIONUCLIDES.

    PubMed

    Jovanovic, Z; Krstic, D; Nikezic, D; Ros, J M Gomez; Ferrari, P

    2018-03-01

    Monte Carlo simulations were performed to evaluate treatment doses with wide spread used radionuclides 133Xe, 99mTc and 81mKr. These different radionuclides are used in perfusion or ventilation examinations in nuclear medicine and as indicators for cardiovascular and pulmonary diseases. The objective of this work was to estimate the specific absorbed fractions in surrounding organs and tissues, when these radionuclides are incorporated in the lungs. For this purpose a voxel thorax model has been developed and compared with the ORNL phantom. All calculations and simulations were performed by means of the MCNP5/X code.

  18. Cerebral blood flow in humans following resuscitation from cardiac arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohan, S.L.; Mun, S.K.; Petite, J.

    1989-06-01

    Cerebral blood flow was measured by xenon-133 washout in 13 patients 6-46 hours after being resuscitated from cardiac arrest. Patients regaining consciousness had relatively normal cerebral blood flow before regaining consciousness, but all patients who died without regaining consciousness had increased cerebral blood flow that appeared within 24 hours after resuscitation (except in one patient in whom the first measurement was delayed until 28 hours after resuscitation, by which time cerebral blood flow was increased). The cause of the delayed-onset increase in cerebral blood flow is not known, but the increase may have adverse effects on brain function and maymore » indicate the onset of irreversible brain damage.« less

  19. The noble gas xenon provides protection and trophic stimulation to midbrain dopamine neurons.

    PubMed

    Lavaur, Jérémie; Le Nogue, Déborah; Lemaire, Marc; Pype, Jan; Farjot, Géraldine; Hirsch, Etienne C; Michel, Patrick P

    2017-07-01

    Despite its low chemical reactivity, the noble gas xenon possesses a remarkable spectrum of biological effects. In particular, xenon is a strong neuroprotectant in preclinical models of hypoxic-ischemic brain injury. In this study, we wished to determine whether xenon retained its neuroprotective potential in experimental settings that model the progressive loss of midbrain dopamine (DA) neurons in Parkinson's disease. Using rat midbrain cultures, we established that xenon was partially protective for DA neurons through either direct or indirect effects on these neurons. So, when DA neurons were exposed to l-trans-pyrrolidine-2,4-dicarboxylic acid so as to increase ambient glutamate levels and generate slow and sustained excitotoxicity, the effect of xenon on DA neurons was direct. The vitamin E analog Trolox also partially rescued DA neurons in this setting and enhanced neuroprotection by xenon. However, in the situation where DA cell death was spontaneous, the protection of DA neurons by xenon appeared indirect as it occurred through the repression of a mechanism mediated by proliferating glial cells, presumably astrocytes and their precursor cells. Xenon also exerted trophic effects for DA neurons in this paradigm. The effects of xenon were mimicked and improved by the N-methyl-d-aspartate glutamate receptor antagonist memantine and xenon itself appeared to work by antagonizing N-methyl-d-aspartate receptors. Note that another noble gas argon could not reproduce xenon effects. Overall, present data indicate that xenon can provide protection and trophic support to DA neurons that are vulnerable in Parkinson's disease. This suggests that xenon might have some therapeutic value for this disorder. © 2017 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  20. Extravasation from venous catheter: a serious complication potentially missed by lung imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spicer, K.M.; Gordon, L.

    Three patients were referred for lung ventiliation and perfusion (V/Q) imaging with symptoms strongly suggestive of pulmonary embolus (PE). Chest roentgenograms and xenon ventilation studies on all three were normal, save for prominent mediastinal silhouettes and effusions. Technetium-99m macroaggregated albumin(Tc-99m MAA), when injected through the central venous catheter (CVP), revealed mediastinal localization, whereas antecubital injections showed normal pulmonary perfusion. Contrast fluoroscopy introduced through the venous catheter in the first patient defined the extravasation. For patients under strong suspicion of PE, with a venous catheter whose distal tip is seen about the level of the heart on chest radiograph, the authorsmore » recommend administering the perfusion agent slowly through the central catheter to exclude catheter-induced complications. When extravasation is detected, injection of Tc-99m MAA by peripheral vein should be used to exclude PE.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lou, H.C.; Henriksen, L.; Bruhn, P.

    We have previously reported that periventricular structures are hypoperfused in attention deficit and hyperactivity disorder (ADHD). This study has expanded the number of patients, who were divided into two groups: six patients with pure ADHD, and 13 patients with ADHD in combination with other neurologic symptoms. By using xenon 133 inhalation and emission tomography, the regional cerebral blood flow distribution was determined and compared with a control group. Striatal regions were found to be hypoperfused and, by inference, hypofunctional in both groups. This hypoperfusion was statistically significant in the right striatum in ADHD, and in both striatal regions in ADHDmore » with other neuropsychologic and neurologic symptoms. The primary sensory and sensorimotor cortical regions were highly perfused. Methylphenidate increased flow to striatal and posterior periventricular regions, and tended to decrease flow to primary sensory regions. Low striatal activity, partially reversible with methylphenidate, appears to be a cardinal feature in ADHD.« less

  2. Xenon in the treatment of panic disorder: an open label study.

    PubMed

    Dobrovolsky, Alexander; Ichim, Thomas E; Ma, Daqing; Kesari, Santosh; Bogin, Vladimir

    2017-06-13

    Current treatments of panic disorder (PD) are limited by adverse effects, poor efficacy, and need for chronic administration. The established safety profile of subanesthetic concentrations of xenon gas, which is known to act as a glutamate subtype NMDA receptor antagonist, coupled with preclinical studies demonstrating its effects in other anxiety related conditions, prompted us to evaluate its feasibility and efficacy in treatment of patients with PD. An open-label clinical trial of xenon-oxygen mixture was conducted in 81 patients with PD; group 1 consisting of patients only with PD (N = 42); and group 2 patients with PD and other comorbidities (N = 39). Based on the analysis of the results of a number of psychometric scales used in this study (SAS, HADS, CGI), several conclusions can be made: (1) xenon is a potentially effective modality in acute treatment of PD; (2) an anti-panic effect of xenon administration persists for at least 6 months after the completion of the active phase of treatment; (3) xenon inhalation is well tolerated, with the drop-out rates being much lower than that of conventional pharmacotherapy (5.8% vs. 15%); (4) the severity of depressive disorders that frequently accompany PD can be significantly reduced with the use of xenon; (5) xenon may be considered as an alternative to benzodiazepines in conjunction with cognitive-behavioral therapy as a safe modality in treatment of anxiety disorder. These data support the need for randomized double-blind clinical trials to further study xenon-based interventions. Trial registration This clinical trial was retrospectively registered on April 14th, 2017 as ISRCTN15184285 in the ISRCTN database.

  3. Observation of a barium xenon exciplex within a large argon cluster.

    PubMed

    Briant, M; Gaveau, M-A; Mestdagh, J-M

    2010-07-21

    Spectroscopic measurements provide fluorescence and excitation spectra of a single barium atom codeposited with xenon atoms on argon clusters of average size approximately 2000. The spectra are studied as a function of the number of xenon atoms per cluster. The excitation spectrum with approximately 10 xenon atoms per cluster is qualitatively similar to that observed when no xenon atom is present on the cluster. It consists of two bands located on each side of the 6s6p (1)P-6s(2) (1)S resonance line of the free barium. In contrast, the fluorescence spectrum differs qualitatively since a barium-xenon exciplex is observed, which has no counterpart in xenon free clusters. In particular an emission is observed, which is redshifted by 729 cm(-1) with respect to the Ba(6s6p (1)P-6s(2) (1)S) resonance line.

  4. MiX: a position sensitive dual-phase liquid xenon detector

    NASA Astrophysics Data System (ADS)

    Stephenson, S.; Haefner, J.; Lin, Q.; Ni, K.; Pushkin, K.; Raymond, R.; Schubnell, M.; Shutty, N.; Tarlé, G.; Weaverdyck, C.; Lorenzon, W.

    2015-10-01

    The need for precise characterization of dual-phase xenon detectors has grown as the technology has matured into a state of high efficacy for rare event searches. The Michigan Xenon detector was constructed to study the microphysics of particle interactions in liquid xenon across a large energy range in an effort to probe aspects of radiation detection in liquid xenon. We report the design and performance of a small 3D position sensitive dual-phase liquid xenon time projection chamber with high light yield (Ly122=15.2 pe/keV at zero field), long electron lifetime (τ > 200 μs), and excellent energy resolution (σ/E = 1% for 1,333 keV gamma rays in a drift field of 200 V/cm). Liquid xenon time projection chambers with such high energy resolution may find applications not only in dark matter direct detection searches, but also in neutrinoless double beta decay experiments and other applications.

  5. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    PubMed

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  6. Assessing the depth of hypnosis of xenon anaesthesia with the EEG.

    PubMed

    Stuttmann, Ralph; Schultz, Arthur; Kneif, Thomas; Krauss, Terence; Schultz, Barbara

    2010-04-01

    Xenon was approved as an inhaled anaesthetic in Germany in 2005 and in other countries of the European Union in 2007. Owing to its low blood/gas partition coefficient, xenons effects on the central nervous system show a fast onset and offset and, even after long xenon anaesthetics, the wake-up times are very short. The aim of this study was to examine which electroencephalogram (EEG) stages are reached during xenon application and whether these stages can be identified by an automatic EEG classification. Therefore, EEG recordings were performed during xenon anaesthetics (EEG monitor: Narcotrend®). A total of 300 EEG epochs were assessed visually with regard to the EEG stages. These epochs were also classified automatically by the EEG monitor Narcotrend® using multivariate algorithms. There was a high correlation between visual and automatic classification (Spearman's rank correlation coefficient r=0.957, prediction probability Pk=0.949). Furthermore, it was observed that very deep stages of hypnosis were reached which are characterised by EEG activity in the low frequency range (delta waves). The burst suppression pattern was not seen. In deep hypnosis, in contrast to the xenon EEG, the propofol EEG was characterised by a marked superimposed higher frequency activity. To ensure an optimised dosage for the single patient, anaesthetic machines for xenon should be combined with EEG monitoring. To date, only a few anaesthetic machines for xenon are available. Because of the high price of xenon, new and further developments of machines focus on optimizing xenon consumption.

  7. The effect of adaptive servo-ventilation on dyspnoea, haemodynamic parameters and plasma catecholamine concentrations in acute cardiogenic pulmonary oedema.

    PubMed

    Nakano, Shintaro; Kasai, Takatoshi; Tanno, Jun; Sugi, Keiki; Sekine, Yasumasa; Muramatsu, Toshihiro; Senbonmatsu, Takaaki; Nishimura, Shigeyuki

    2015-08-01

    Adaptive servo-ventilation has a potential sympathoinhibitory effect in acute cardiogenic pulmonary oedema (ACPO). To evaluate the acute effects of adaptive servo-ventilation in patients with ACPO. Fifty-eight consecutive patients with ACPO were divided into those who underwent adaptive servo-ventilation and those who received oxygen therapy alone as part of their immediate care. Visual analogue scale, vital signs, blood gas data and plasma catecholamine concentrations at baseline and 1 h during emergency care, and subsequent clinical events (death within 30 days, intubation within seven days or between seven and 30 days, and length of hospital stay) were assessed. Pre-matched and post-propensity score (PS)-matched datasets were analysed. During the first hour of adaptive servo-ventilation, plasma catecholamine concentrations fell significantly (baseline versus 1 h: epinephrine p = 0.003, norepinephrine p < 0.001, dopamine p < 0.001), with falls in blood pressure, heart rate, respiratory rate and pCO2, and rise in HCO3 and pH. In the PS-matched model, visual analogue scale (p = 0.036), systolic blood pressure (from 153.8 ± 30.7 to 133.1 ± 16.3 mmHg; p = 0.025) and plasma dopamine concentration (p = 0.034) fell significantly in the adaptive servo-ventilation group compared with the oxygen therapy alone group. The clinical outcomes between the groups were comparable. In patients with ACPO, emergency care using adaptive servo-ventilation attenuated plasma catecholamine concentrations and led to the improvement of dyspnoea, vital signs and acid-base balance, without adversely influencing clinical outcomes. Using adaptive servo-ventilation, rather than standard oxygen alone, may relieve dyspnoea and improve haemodynamic status, possibly by modulating sympathetic nerve activity. © The European Society of Cardiology 2014.

  8. Crystallographic studies with xenon and nitrous oxide provide evidence for protein-dependent processes in the mechanisms of general anesthesia.

    PubMed

    Abraini, Jacques H; Marassio, Guillaume; David, Helene N; Vallone, Beatrice; Prangé, Thierry; Colloc'h, Nathalie

    2014-11-01

    The mechanisms by which general anesthetics, including xenon and nitrous oxide, act are only beginning to be discovered. However, structural approaches revealed weak but specific protein-gas interactions. To improve knowledge, we performed x-ray crystallography studies under xenon and nitrous oxide pressure in a series of 10 binding sites within four proteins. Whatever the pressure, we show (1) hydrophobicity of the gas binding sites has a screening effect on xenon and nitrous oxide binding, with a threshold value of 83% beyond which and below which xenon and nitrous oxide, respectively, binds to their sites preferentially compared to each other; (2) xenon and nitrous oxide occupancies are significantly correlated respectively to the product and the ratio of hydrophobicity by volume, indicating that hydrophobicity and volume are binding parameters that complement and oppose each other's effects; and (3) the ratio of occupancy of xenon to nitrous oxide is significantly correlated to hydrophobicity of their binding sites. These data demonstrate that xenon and nitrous oxide obey different binding mechanisms, a finding that argues against all unitary hypotheses of narcosis and anesthesia, and indicate that the Meyer-Overton rule of a high correlation between anesthetic potency and solubility in lipids of general anesthetics is often overinterpreted. This study provides evidence that the mechanisms of gas binding to proteins and therefore of general anesthesia should be considered as the result of a fully reversible interaction between a drug ligand and a receptor as this occurs in classical pharmacology.

  9. Xenon is an inhibitor of tissue-plasminogen activator: adverse and beneficial effects in a rat model of thromboembolic stroke

    PubMed Central

    David, Hélène N; Haelewyn, Benoît; Risso, Jean-Jacques; Colloc'h, Nathalie; Abraini, Jacques H

    2010-01-01

    Preclinical evidence in rodents has proven that xenon may be a very promising neuroprotective agent for treating acute ischemic stroke. This has led to the general thinking that clinical trials with xenon could be initiated in acute stroke patients in a next future. However, an unappreciated physicochemical property of xenon has been that this gas also binds to the active site of a series of serine proteases. Because the active site of serine proteases is structurally conserved, we have hypothesized and investigated whether xenon may alter the catalytic efficiency of tissue-type plasminogen activator (tPA), a serine protease that is the only approved therapy for acute ischemic stroke today. Here, using molecular modeling and in vitro and in vivo studies, we show (1) xenon is a tPA inhibitor; (2) intraischemic xenon dose dependently inhibits tPA-induced thrombolysis and subsequent reduction of ischemic brain damage; (3) postischemic xenon virtually suppresses ischemic brain damage and tPA-induced brain hemorrhages and disruption of the blood–brain barrier. Taken together, these data indicate (1) xenon should not be administered before or together with tPA therapy; (2) xenon could be a golden standard for treating acute ischemic stroke if given after tPA-induced reperfusion, with both unique neuroprotective and antiproteolytic (anti-hemorrhaging) properties. PMID:20087367

  10. Electron drift in a large scale solid xenon

    DOE PAGES

    Yoo, J.; Jaskierny, W. F.

    2015-08-21

    A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor twomore » faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.« less

  11. Perfluorocarbon-associated gas exchange in normal and acid-injured large sheep.

    PubMed

    Hernan, L J; Fuhrman, B P; Kaiser, R E; Penfil, S; Foley, C; Papo, M C; Leach, C L

    1996-03-01

    We hypothesized that a) perfluorocarbon-associated gas exchange could be accomplished in normal large sheep; b) the determinants of gas exchange would be similar during perfluorocarbon-associated gas exchange and conventional gas ventilation; c)in large animals with lung injury, perfluorocarbon-associated gas exchange could be used to enhance gas exchange without adverse effects on hemodynamics; and d) the large animal with lung injury could be supported with an FIO2 of <1.0 during perfluorocarbon-associated gas exchange. Prospective, observational animal study and prospective randomized, controlled animal study. An animal laboratory in a university setting. Thirty adult ewes. Five normal ewes (61.0 +/- 4.0 kg) underwent perfluorocarbon-associated gas exchange to ascertain the effects of tidal volume, end-inspiratory pressure, and positive end-expiratory pressure (PEEP) on oxygenation. Respiratory rate, tidal volume, and minute ventilation were studied to determine their effects on CO2 clearance. Sheep, weighing 58.9 +/- 8.3 kg, had lung injury induced by instilling 2 mL/kg of 0.05 Normal hydrochloric acid into the trachea. Five minutes after injury, PEEP was increased to 10 cm H2O. Ten minutes after injury, sheep with Pao2 values of <100 torr (<13.3 kPa) were randomized to continue gas ventilation (control, n=9) or to institute perfluorocarbon-associated gas exchange (n=9) by instilling 1.6 L of unoxygenated perflubron into the trachea and resuming gas ventilation. Blood gas and hemodynamic measurements were obtained throughout the 4-hr study. Both tidal volume and end-inspiratory pressure influenced oxygenation in normal sheep during perfluorocarbon-associated gas exchange. Minute ventilation determined CO2 clearance during perfluorocarbon-associated gas exchange in normal sheep. After acid aspiration lung injury, perfluorocarbon-associated gas exchange increased PaO2 and reduced intrapulmonary shunt fraction. Hypoxia and intrapulmonary shunting were unabated after injury in control animals. Hemodynamics were not influenced by the institution of perfluorocarbon-associated gas exchange. Tidal volume and end-inspiratory pressure directly influence oxygenation during perfluorocarbon-associated gas exchange in large animals. Minute ventilation influences clearance of CO2. In adult sheep with acid aspiration lung injury, perfluorocarbon-associated gas exchange at an FIO2 of <1.0 supports oxygenation and improves intrapulmonary shunting, without adverse hemodynamic effects, when compared with conventional gas ventilation.

  12. Nuclear Spin Attenuates the Anesthetic Potency of Xenon Isotopes in Mice: Implications for the Mechanisms of Anesthesia and Consciousness.

    PubMed

    Li, Na; Lu, Dongshi; Yang, Lei; Tao, Huan; Xu, Younian; Wang, Chenchen; Fu, Lisha; Liu, Hui; Chummum, Yatisha; Zhang, Shihai

    2018-04-11

    Xenon is an elemental anesthetic with nine stable isotopes. Nuclear spin is a quantum property which may differ among isotopes. Xenon 131 (Xe) has nuclear spin of 3/2, xenon 129 (Xe) a nuclear spin of 1/2, and the other seven isotopes have no nuclear spin. This study was aimed to explore the effect of nuclear spin on xenon anesthetic potency. Eighty C57BL/6 male mice (7 weeks old) were randomly divided into four groups, xenon 132 (Xe), xenon 134 (Xe), Xe, and Xe groups. Due to xenon's low potency, loss of righting reflex ED50 for mice to xenon was determined with 0.50% isoflurane. Loss of righting reflex ED50 of isoflurane was also measured, and the loss of righting reflex ED50 values of the four xenon isotopes were then calculated. The exact polarizabilities of the isotopes were calculated. Combined with 0.50% isoflurane, the loss of righting reflex ED50 values were 15 ± 4%, 16 ± 5%, 22 ± 5%, and 23 ± 7% for Xe, Xe, Xe, and Xe, respectively. For xenon alone, the loss of righting reflex ED50 values of Xe, Xe, Xe, and Xe were 70 ± 4%, 72 ± 5%, 99 ± 5%, and 105 ± 7%, respectively. Four isotopes had a same exact polarizability of 3.60 Å. Xenon isotopes with nuclear spin are less potent than those without, and polarizability cannot account for the difference. The lower anesthetic potency of Xe may be the result of it participating in conscious processing and therefore partially antagonizing its own anesthetic potency. Nuclear spin is a quantum property, and our results are consistent with theories that implicate quantum mechanisms in consciousness.

  13. Nausea and Vomiting following Balanced Xenon Anesthesia Compared to Sevoflurane: A Post-Hoc Explorative Analysis of a Randomized Controlled Trial.

    PubMed

    Fahlenkamp, Astrid V; Stoppe, Christian; Cremer, Jan; Biener, Ingeborg A; Peters, Dirk; Leuchter, Ricarda; Eisert, Albrecht; Apfel, Christian C; Rossaint, Rolf; Coburn, Mark

    2016-01-01

    Like other inhalational anesthetics xenon seems to be associated with post-operative nausea and vomiting (PONV). We assessed nausea incidence following balanced xenon anesthesia compared to sevoflurane, and dexamethasone for its prophylaxis in a randomized controlled trial with post-hoc explorative analysis. 220 subjects with elevated PONV risk (Apfel score ≥2) undergoing elective abdominal surgery were randomized to receive xenon or sevoflurane anesthesia and dexamethasone or placebo after written informed consent. 93 subjects in the xenon group and 94 subjects in the sevoflurane group completed the trial. General anesthesia was maintained with 60% xenon or 2.0% sevoflurane. Dexamethasone 4mg or placebo was administered in the first hour. Subjects were analyzed for nausea and vomiting in predefined intervals during a 24h post-anesthesia follow-up. Logistic regression, controlled for dexamethasone and anesthesia/dexamethasone interaction, showed a significant risk to develop nausea following xenon anesthesia (OR 2.30, 95% CI 1.02-5.19, p = 0.044). Early-onset nausea incidence was 46% after xenon and 35% after sevoflurane anesthesia (p = 0.138). After xenon, nausea occurred significantly earlier (p = 0.014), was more frequent and rated worse in the beginning. Dexamethasone did not markedly reduce nausea occurrence in both groups. Late-onset nausea showed no considerable difference between the groups. In our study setting, xenon anesthesia was associated with an elevated risk to develop nausea in sensitive subjects. Dexamethasone 4mg was not effective preventing nausea in our study. Group size or dosage might have been too small, and change of statistical analysis parameters in the post-hoc evaluation might have further contributed to a limitation of our results. Further trials will be needed to address prophylaxis of xenon-induced nausea. EU Clinical Trials EudraCT-2008-004132-20 ClinicalTrials.gov NCT00793663.

  14. Nausea and Vomiting following Balanced Xenon Anesthesia Compared to Sevoflurane: A Post-Hoc Explorative Analysis of a Randomized Controlled Trial

    PubMed Central

    Fahlenkamp, Astrid V.; Stoppe, Christian; Cremer, Jan; Biener, Ingeborg A.; Peters, Dirk; Leuchter, Ricarda; Eisert, Albrecht; Apfel, Christian C.; Rossaint, Rolf; Coburn, Mark

    2016-01-01

    Objective Like other inhalational anesthetics xenon seems to be associated with post-operative nausea and vomiting (PONV). We assessed nausea incidence following balanced xenon anesthesia compared to sevoflurane, and dexamethasone for its prophylaxis in a randomized controlled trial with post-hoc explorative analysis. Methods 220 subjects with elevated PONV risk (Apfel score ≥2) undergoing elective abdominal surgery were randomized to receive xenon or sevoflurane anesthesia and dexamethasone or placebo after written informed consent. 93 subjects in the xenon group and 94 subjects in the sevoflurane group completed the trial. General anesthesia was maintained with 60% xenon or 2.0% sevoflurane. Dexamethasone 4mg or placebo was administered in the first hour. Subjects were analyzed for nausea and vomiting in predefined intervals during a 24h post-anesthesia follow-up. Results Logistic regression, controlled for dexamethasone and anesthesia/dexamethasone interaction, showed a significant risk to develop nausea following xenon anesthesia (OR 2.30, 95% CI 1.02–5.19, p = 0.044). Early-onset nausea incidence was 46% after xenon and 35% after sevoflurane anesthesia (p = 0.138). After xenon, nausea occurred significantly earlier (p = 0.014), was more frequent and rated worse in the beginning. Dexamethasone did not markedly reduce nausea occurrence in both groups. Late-onset nausea showed no considerable difference between the groups. Conclusion In our study setting, xenon anesthesia was associated with an elevated risk to develop nausea in sensitive subjects. Dexamethasone 4mg was not effective preventing nausea in our study. Group size or dosage might have been too small, and change of statistical analysis parameters in the post-hoc evaluation might have further contributed to a limitation of our results. Further trials will be needed to address prophylaxis of xenon-induced nausea. Trial Registration EU Clinical Trials EudraCT-2008-004132-20 ClinicalTrials.gov NCT00793663 PMID:27111335

  15. Penning Effects in High-Pressure Discharge of the Plasma Display Panel

    NASA Astrophysics Data System (ADS)

    Kim, S. S.; Choi, E. H.; Uhm, H. S.

    2001-10-01

    The plasma display panel is operated with high-pressure gas, for which the breakdown voltage reduction may be accomplished by mixing a small amount of xenon with neon gas. The UV light emitted from xenon discharge plasma is converted into fluorescent light, providing TV images. A recent theoretical calculation indicates that the breakdown voltage is significantly reduced for the mixed gas due to collisional frequency decrease. It is easy to ionize xenon atoms with low ionization energy. The electrons can also easily get their kinetic energy in neon gas mixed with xenon atoms, thereby reducing their collisional cross section and ionizing xenon atoms. However, previous study indicates that the breakdown voltage can be further reduced by the Penning effects, which has been mostly studied in a low pressure discharge. Influence of the Penning effects on the high-pressure discharge in a neon-xenon mixed gas is investigated in connection with applications to the plasma display panel. A theoretical model for high-pressure discharge is developed. It is shown that the breakdown voltage is reduced by 20 percent at the xenon mole fraction of 0.015, which agree remarkably well with experimental data.

  16. Relaxation channels of multi-photon excited xenon clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serdobintsev, P. Yu.; Melnikov, A. S.; Department of Physics, St. Petersburg State University, Saint Petersburg 198904

    2015-09-21

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  17. Urine analysis concerning xenon for doping control purposes.

    PubMed

    Thevis, Mario; Piper, Thomas; Geyer, Hans; Schaefer, Maximilian S; Schneemann, Julia; Kienbaum, Peter; Schänzer, Wilhelm

    2015-01-15

    On September 1(st) 2014, a modified Prohibited List as established by the World Anti-Doping Agency (WADA) became effective featuring xenon as a banned substance categorized as hypoxia-inducible factor (HIF) activator. Consequently, the analysis of xenon from commonly provided doping control specimens such as blood and urine is desirable, and first data on the determination of xenon from urine in the context of human sports drug testing, are presented. In accordance to earlier studies utilizing plasma as doping control matrix, urine was enriched to saturation with xenon, sequentially diluted, and the target analyte was detected as supported by the internal standard d6 -cyclohexanone by means of gas chromatography/triple quadrupole mass spectrometry (GC/MS/MS) using headspace injection. Three major xenon isotopes at m/z 128.9, 130.9 and 131.9 were targeted in (pseudo) selected reaction monitoring mode enabling the unambiguous identification of the prohibited substance. Assay characteristics including limit of detection (LOD), intraday/interday precision, and specificity as well as analyte recovery under different storage conditions were determined. Proof-of-concept data were generated by applying the established method to urine samples collected from five patients before, during and after (up to 48 h) xenon-based general anesthesia. Xenon was traceable in enriched human urine samples down to the detection limit of approximately 0.5 nmol/mL. The intraday and interday imprecision values of the method were found below 25%, and specificity was demonstrated by analyzing 20 different blank urine samples that corroborated the fitness-for-purpose of the analytical approach to unequivocally detect xenon at non-physiological concentrations in human urine. The patients' urine specimens returned 'xenon-positive' test results up to 40 h post-anesthesia, indicating the limits of the expected doping control detection window. Since xenon has been considered a prohibited substance according to WADA regulations in September 2014, its analysis from common specimens of routine sports drug testing is desirable. In previous studies, its traceability in whole blood and plasma was shown, and herein a complementary approach utilizing doping control urine samples for the GC/MS/MS analysis of xenon was reported. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Early treatment with xenon protects against the cold ischemia associated with chronic allograft nephropathy in rats.

    PubMed

    Zhao, Hailin; Luo, Xianghong; Zhou, Zhaowei; Liu, Juying; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2014-01-01

    Chronic allograft nephropathy (CAN) is a common finding in kidney grafts with functional impairment. Prolonged hypothermic storage-induced ischemia-reperfusion injury is associated with the early onset of CAN. As the noble gas xenon is clinically used as an anesthetic and has renoprotective properties in a rodent model of ischemia-reperfusion injury, we studied whether early treatment with xenon could attenuate CAN associated with prolonged hypothermic storage. Exposure to xenon enhanced the expression of insulin growth factor-1 (IGF-1) and its receptor in human proximal tubular (HK-2) cells, which, in turn, increased cell proliferation. Xenon treatment before or after hypothermia-hypoxia decreased cell apoptosis and cell inflammation after reoxygenation. The xenon-induced HK-2 cell proliferation was abolished by blocking the IGF-1 receptor, mTOR, and HIF-1α individually. In the Fischer-to-Lewis rat allogeneic renal transplantation model, xenon exposure of donors before graft retrieval or recipients after engraftment enhanced tubular cell proliferation and decreased tubular cell death and cell inflammation associated with ischemia-reperfusion injury. Compared with control allografts, xenon treatment significantly suppressed T-cell infiltration and fibrosis, prevented the development of CAN, and improved renal function. Thus, xenon treatment promoted recovery from ischemia-reperfusion injury and reduced susceptibility to the subsequent development of CAN in allografts.

  19. Comparison of image registration based measures of regional lung ventilation from dynamic spiral CT with Xe-CT

    PubMed Central

    Ding, Kai; Cao, Kunlin; Fuld, Matthew K.; Du, Kaifang; Christensen, Gary E.; Hoffman, Eric A.; Reinhardt, Joseph M.

    2012-01-01

    Purpose: Regional lung volume change as a function of lung inflation serves as an index of parenchymal and airway status as well as an index of regional ventilation and can be used to detect pathologic changes over time. In this paper, the authors propose a new regional measure of lung mechanics—the specific air volume change by corrected Jacobian. The authors compare this new measure, along with two existing registration based measures of lung ventilation, to a regional ventilation measurement derived from xenon-CT (Xe-CT) imaging. Methods: 4DCT and Xe-CT datasets from four adult sheep are used in this study. Nonlinear, 3D image registration is applied to register an image acquired near end inspiration to an image acquired near end expiration. Approximately 200 annotated anatomical points are used as landmarks to evaluate registration accuracy. Three different registration based measures of regional lung mechanics are derived and compared: the specific air volume change calculated from the Jacobian (SAJ); the specific air volume change calculated by the corrected Jacobian (SACJ); and the specific air volume change by intensity change (SAI). The authors show that the commonly used SAI measure can be derived from the direct SAJ measure by using the air-tissue mixture model and assuming there is no tissue volume change between the end inspiration and end expiration datasets. All three ventilation measures are evaluated by comparing to Xe-CT estimates of regional ventilation. Results: After registration, the mean registration error is on the order of 1 mm. For cubical regions of interest (ROIs) in cubes with size 20 mm × 20 mm × 20 mm, the SAJ and SACJ measures show significantly higher correlation (linear regression, average r2 = 0.75 and r2 = 0.82) with the Xe-CT based measure of specific ventilation (sV) than the SAI measure. For ROIs in slabs along the ventral-dorsal vertical direction with size of 150 mm × 8 mm × 40 mm, the SAJ, SACJ, and SAI all show high correlation (linear regression, average r2 = 0.88, r2 = 0.92, and r2 = 0.87) with the Xe-CT based sV without significant differences when comparing between the three methods. The authors demonstrate a linear relationship between the difference of specific air volume change and difference of tissue volume in all four animals (linear regression, average r2 = 0.86). Conclusions: Given a deformation field by an image registration algorithm, significant differences between the SAJ, SACJ, and SAI measures were found at a regional level compared to the Xe-CT sV in four sheep that were studied. The SACJ introduced here, provides better correlations with Xe-CT based sV than the SAJ and SAI measures, thus providing an improved surrogate for regional ventilation. PMID:22894434

  20. Fuel preparation for use in the production of medical isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Policke, Timothy A.; Aase, Scott B.; Stagg, William R.

    The present invention relates generally to the field of medical isotope production by fission of uranium-235 and the fuel utilized therein (e.g., the production of suitable Low Enriched Uranium (LEU is uranium having 20 weight percent or less uranium-235) fuel for medical isotope production) and, in particular to a method for producing LEU fuel and a LEU fuel product that is suitable for use in the production of medical isotopes. In one embodiment, the LEU fuel of the present invention is designed to be utilized in an Aqueous Homogeneous Reactor (AHR) for the production of various medical isotopes including, butmore » not limited to, molybdenum-99, cesium-137, iodine-131, strontium-89, xenon-133 and yttrium-90.« less

  1. KSC-2010-4716

    NASA Image and Video Library

    2010-09-20

    CAPE CANAVERAL, Fla. -- Bathed in bright xenon lights, space shuttle Discovery makes its nighttime trek, known as "rollout," from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the shuttle, attached to its external fuel tank, twin solid rocket boosters and mobile launcher platform, about six hours to complete the move atop a crawler-transporter. Rollout sets the stage for Discovery's STS-133 crew to practice countdown and launch procedures during the Terminal Countdown Demonstration Test in mid-October. Targeted to liftoff Nov. 1, Discovery will take the Permanent Multipurpose Module (PMM) packed with supplies and critical spare parts, as well as Robonaut 2 (R2) to the International Space Station. Photo credit: NASA/Frankie Martin

  2. KSC-2010-4707

    NASA Image and Video Library

    2010-09-20

    CAPE CANAVERAL, Fla. -- Bathed in bright xenon lights, space shuttle Discovery makes its nighttime trek, known as "rollout," from the Vehicle Assembly Building to Launch Pad 39A at NASA's Kennedy Space Center in Florida. It will take the shuttle, attached to its external fuel tank, twin solid rocket boosters and mobile launcher platform, about six hours to complete the move atop a crawler-transporter. Rollout sets the stage for Discovery's STS-133 crew to practice countdown and launch procedures during the Terminal Countdown Demonstration Test in mid-October. Targeted to liftoff Nov. 1, Discovery will take the Permanent Multipurpose Module (PMM) packed with supplies and critical spare parts, as well as Robonaut 2 (R2) to the International Space Station. Photo credit: NASA/Jim Grossmann

  3. Risk factors for agitation in critically ill patients

    PubMed Central

    de Almeida, Thiago Miranda Lopes; de Azevedo, Luciano Cesar Pontes; Nosé, Paulo Maurício Garcia; de Freitas, Flavio Geraldo Resende; Machado, Flávia Ribeiro

    2016-01-01

    Objective To evaluate the incidence of agitation in the first 7 days after intensive care unit admission, its risk factors and its associations with clinical outcomes. Methods This single-center prospective cohort study included all patients older than 18 years with a predicted stay > 48 hours within the first 24 hours of intensive care unit admission. Agitation was defined as a Richmond Agitation Sedation Scale score ≥ +2, an episode of agitation or the use of a specific medication recorded in patient charts. Results Agitation occurred in 31.8% of the 113 patients. Multivariate analysis showed that delirium [OR = 24.14; CI95% 5.15 - 113.14; p < 0.001], moderate or severe pain [OR = 5.74; CI95% 1.73 - 19.10; p = 0.004], mechanical ventilation [OR = 10.14; CI95% 2.93 - 35.10; p < 0.001], and smoking habits [OR = 4.49; CI95% 1.33 - 15.17; p = 0.015] were independent factors for agitation, while hyperlactatemia was associated with a lower risk [OR = 0.169; CI95% 0.04 - 0.77; p = 0.021]. Agitated patients had fewer mechanical ventilation-free days at day 7 (p = 0.003). Conclusion The incidence of agitation in the first 7 days after admission to the intensive care unit was high. Delirium, moderate/severe pain, mechanical ventilation, and smoking habits were independent risk factors. Agitated patients had fewer ventilator-free days in the first 7 days. PMID:28099638

  4. Cell tracking with caged xenon: using cryptophanes as MRI reporters upon cellular internalization.

    PubMed

    Klippel, Stefan; Döpfert, Jörg; Jayapaul, Jabadurai; Kunth, Martin; Rossella, Federica; Schnurr, Matthias; Witte, Christopher; Freund, Christian; Schröder, Leif

    2014-01-07

    Caged xenon has great potential in overcoming sensitivity limitations for solution-state NMR detection of dilute molecules. However, no application of such a system as a magnetic resonance imaging (MRI) contrast agent has yet been performed with live cells. We demonstrate MRI localization of cells labeled with caged xenon in a packed-bed bioreactor working under perfusion with hyperpolarized-xenon-saturated medium. Xenon hosts enable NMR/MRI experiments with switchable contrast and selectivity for cell-associated versus unbound cages. We present MR images with 10(3) -fold sensitivity enhancement for cell-internalized, dual-mode (fluorescence/MRI) xenon hosts at low micromolar concentrations. Our results illustrate the capability of functionalized xenon to act as a highly sensitive cell tracer for MRI detection even without signal averaging. The method will bridge the challenging gap for translation to in vivo studies for the optimization of targeted biosensors and their multiplexing applications. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Renal function following xenon anesthesia for partial nephrectomy-An explorative analysis of a randomized controlled study.

    PubMed

    Stevanovic, Ana; Schaefer, Patrick; Coburn, Mark; Rossaint, Rolf; Stoppe, Christian; Boor, Peter; Pfister, David; Heidenreich, Axel; Christ, Hildegard; Hellmich, Martin; Fahlenkamp, Astrid V

    2017-01-01

    Perioperative preservation of renal function has a significant impact on morbidity and mortality in kidney surgery. Nephroprotective effects of the anesthetic xenon on ischemia-reperfusion injury were found in several experimental studies. We aimed to explore whether xenon anesthesia can reduce renal damage in humans undergoing partial nephrectomy and to gather pilot data of possible nephroprotection in these patients. A prospective randomized, single-blinded, controlled study. Single-center, University Hospital of Aachen, Germany between July 2013-October 2015. Forty-six patients with regular renal function undergoing partial nephrectomy. Patients were randomly assigned to receive xenon- (n = 23) or isoflurane (n = 23) anesthesia. Primary outcome was the maximum postoperative glomerular filtration rate (GFR) decline within seven days after surgery. Secondary outcomes included intraoperative and tumor-related data, assessment of further kidney injury markers, adverse events and optional determination of renal function after 3-6 months. Unexpected radical nephrectomy was performed in 5 patients, thus they were excluded from the per-protocol analysis, but included in the intention-to-treat analysis. The maximum postoperative GFR decline was attenuated by 45% in the xenon-group (10.9 ml min-1 1.73 cm-2 versus 19.7 ml min-1 1.73 cm-2 in the isoflurane group), but without significance (P = 0.084). Occurrence of adverse events was reduced (P = 0.003) in the xenon group. Renal function was similar among the groups after 3-6 months. Xenon anesthesia was feasible and safe in patients undergoing partial nephrectomy with regard to postoperative renal function. We found no significant effect on early renal function but less adverse events in the xenon group. Larger randomized controlled studies in more heterogeneous collectives are required, to confirm or refute the possible clinical benefit on renal function by xenon. ClinicalTrials.gov NCT01839084 and EudraCT 2012-005698-30.

  6. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Seibert, P.; Wotawa, G.; Arnold, D.; Burkhart, J. F.; Eckhardt, S.; Tapia, C.; Vargas, A.; Yasunari, T. J.

    2012-04-01

    This presentation will show the results of a paper currently under review in ACPD and some additional new results, including more data and with an independent box modeling approach to support some of the findings of the ACPD paper. On 11 March 2011, an earthquake occurred about 130 km off the Pacific coast of Japan's main island Honshu, followed by a large tsunami. The resulting loss of electric power at the Fukushima Dai-ichi nuclear power plant (FD-NPP) developed into a disaster causing massive release of radioactivity into the atmosphere. In this study, we determine the emissions of two isotopes, the noble gas xenon-133 (133Xe) and the aerosol-bound caesium-137 (137Cs), which have very different release characteristics as well as behavior in the atmosphere. To determine radionuclide emissions as a function of height and time until 20 April, we made a first guess of release rates based on fuel inventories and documented accident events at the site. This first guess was subsequently improved by inverse modeling, which combined the first guess with the results of an atmospheric transport model, FLEXPART, and measurement data from several dozen stations in Japan, North America and other regions. We used both atmospheric activity concentration measurements as well as, for 137Cs, measurements of bulk deposition. Regarding 133Xe, we find a total release of 16.7 (uncertainty range 13.4-20.0) EBq, which is the largest radioactive noble gas release in history not associated with nuclear bomb testing. There is strong evidence that the first strong 133Xe release started early, before active venting was performed. The entire noble gas inventory of reactor units 1-3 was set free into the atmosphere between 11 and 15 March 2011. For 137Cs, the inversion results give a total emission of 35.8 (23.3-50.1) PBq, or about 42% of the estimated Chernobyl emission. Our results indicate that 137Cs emissions peaked on 14-15 March but were generally high from 12 until 19 March, when they suddenly dropped by orders of magnitude exactly when spraying of water on the spent-fuel pool of unit 4 started. This indicates that emissions were not only coming from the damaged reactor cores, but also from the spent-fuel pool of unit 4 and confirms that the spraying was an effective countermeasure. We also explore the main dispersion and deposition patterns of the radioactive cloud, both regionally for Japan as well as for the entire Northern Hemisphere. While at first sight it seemed fortunate that westerly winds prevailed most of the time during the accident, a different picture emerges from our detailed analysis. Exactly during and following the period of the strongest 137Cs emissions on 14 and 15 March as well as after another period with strong emissions on 19 March, the radioactive plume was advected over Eastern Honshu Island, where precipitation deposited a large fraction of 137Cs on land surfaces. The plume was also dispersed quickly over the entire Northern Hemisphere, first reaching North America on 15 March and Europe on 22 March. In general, simulated and observed concentrations of 133Xe and 137Cs both at Japanese as well as at remote sites were in good quantitative agreement with each other. Altogether, we estimate that 6.4 PBq of 137Cs, or 19% of the total fallout until 20 April, were deposited over Japanese land areas, while most of the rest fell over the North Pacific Ocean. Only 0.7 PBq, or 2% of the total fallout were deposited on land areas other than Japan.

  7. Preclinical neuroprotective actions of xenon and possible implications for human therapeutics: a narrative review.

    PubMed

    Maze, Mervyn

    2016-02-01

    The purpose of this report is to facilitate an understanding of the possible application of xenon for neuroprotection in critical care settings. This narrative review appraises the literature assessing the efficacy and safety of xenon in preclinical models of acute ongoing neurologic injury. Databases of the published literature (MEDLINE® and EMBASE™) were appraised for peer-reviewed manuscripts addressing the use of xenon in both preclinical models and disease states of acute ongoing neurologic injury. For randomized clinical trials not yet reported, the investigators' declarations in the National Institutes of Health clinical trials website were considered. While not a primary focus of this review, to date, xenon cannot be distinguished as superior for surgical anesthesia over existing alternatives in adults. Nevertheless, studies in a variety of preclinical disease models from multiple laboratories have consistently shown xenon's neuroprotective properties. These properties are enhanced in settings where xenon is combined with hypothermia. Small randomized clinical trials are underway to explore xenon's efficacy and safety in clinical settings of acute neurologic injury where hypothermia is the current standard of care. According to the evidence to date, the neuroprotective efficacy of xenon in preclinical models and its safety in clinical anesthesia set the stage for the launch of randomized clinical trials to determine whether these encouraging neuroprotective findings can be translated into clinical utility.

  8. Magnetization transfer from laser-polarized xenon to protons located in the hydrophobic cavity of the wheat nonspecific lipid transfer protein

    PubMed Central

    Landon, Céline; Berthault, Patrick; Vovelle, Françoise; Desvaux, Hervé

    2001-01-01

    Nonspecific lipid transfer protein from wheat is studied by liquid-state NMR in the presence of xenon. The gas–protein interaction is indicated by the dependence of the protein proton chemical shifts on the xenon pressure and formally confirmed by the first observation of magnetization transfer from laser-polarized xenon to the protein protons. Twenty-six heteronuclear nOes have allowed the characterization of four interaction sites inside the wheat ns-LTP cavity. Their locations are in agreement with the variations of the chemical shifts under xenon pressure and with solvation simulations. The richness of the information obtained by the noble gas with a nuclear polarization multiplied by ∼12,000 makes this approach based on dipolar cross-relaxation with laser-polarized xenon promising for probing protein hydrophobic pockets at ambient pressure. PMID:11274467

  9. Capnography and chest wall impedance algorithms for ventilation detection during cardiopulmonary resuscitation

    PubMed Central

    Edelson, Dana P.; Eilevstjønn, Joar; Weidman, Elizabeth K.; Retzer, Elizabeth; Vanden Hoek, Terry L.; Abella, Benjamin S.

    2009-01-01

    Objective Hyperventilation is both common and detrimental during cardiopulmonary resuscitation (CPR). Chest wall impedance algorithms have been developed to detect ventilations during CPR. However, impedance signals are challenged by noise artifact from multiple sources, including chest compressions. Capnography has been proposed as an alternate method to measure ventilations. We sought to assess and compare the adequacy of these two approaches. Methods Continuous chest wall impedance and capnography were recorded during consecutive in-hospital cardiac arrests. Algorithms utilizing each of these data sources were compared to a manually determined “gold standard” reference ventilation rate. In addition, a combination algorithm, which utilized the highest of the impedance or capnography values in any given minute, was similarly evaluated. Results Data were collected from 37 cardiac arrests, yielding 438 min of data with continuous chest compressions and concurrent recording of impedance and capnography. The manually calculated mean ventilation rate was 13.3±4.3/min. In comparison, the defibrillator’s impedance-based algorithm yielded an average rate of 11.3±4.4/min (p=0.0001) while the capnography rate was 11.7±3.7/min (p=0.0009). There was no significant difference in sensitivity and positive predictive value between the two methods. The combination algorithm rate was 12.4±3.5/min (p=0.02), which yielded the highest fraction of minutes with respiratory rates within 2/min of the reference. The impedance signal was uninterpretable 19.5% of the time, compared with 9.7% for capnography. However, the signals were only simultaneously non-interpretable 0.8% of the time. Conclusions Both the impedance and capnography-based algorithms underestimated the ventilation rate. Reliable ventilation rate determination may require a novel combination of multiple algorithms during resuscitation. PMID:20036047

  10. Source Term Estimation of Radioxenon Released from the Fukushima Dai-ichi Nuclear Reactors Using Measured Air Concentrations and Atmospheric Transport Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Biegalski, S.; Bowyer, Ted W.

    2014-01-01

    Systems designed to monitor airborne radionuclides released from underground nuclear explosions detected radioactive fallout from the Fukushima Daiichi nuclear accident in March 2011. Atmospheric transport modeling (ATM) of plumes of noble gases and particulates were performed soon after the accident to determine plausible detection locations of any radioactive releases to the atmosphere. We combine sampling data from multiple International Modeling System (IMS) locations in a new way to estimate the magnitude and time sequence of the releases. Dilution factors from the modeled plume at five different detection locations were combined with 57 atmospheric concentration measurements of 133-Xe taken from Marchmore » 18 to March 23 to estimate the source term. This approach estimates that 59% of the 1.24×1019 Bq of 133-Xe present in the reactors at the time of the earthquake was released to the atmosphere over a three day period. Source term estimates from combinations of detection sites have lower spread than estimates based on measurements at single detection sites. Sensitivity cases based on data from four or more detection locations bound the source term between 35% and 255% of available xenon inventory.« less

  11. 129Xe nuclear magnetic resonance study of pitch-based activated carbon modified by air oxidation/pyrolysis cycles: a new approach to probe the micropore size.

    PubMed

    Romanenko, Konstantin V; Py, Xavier; d'Espinose de Lacaillerie, Jean-Baptiste; Lapina, Olga B; Fraissard, Jacques

    2006-02-23

    (129)Xe NMR has been used to study a series of homologous activated carbons obtained from a KOH-activated pitch-based carbon molecular sieve modified by air oxidation/pyrolysis cycles. A clear correlation between the pore size of microporous carbons and the (129)Xe NMR of adsorbed xenon is proposed for the first time. The virial coefficient delta(Xe)(-)(Xe) arising from binary xenon collisions varied linearly with the micropore size and appeared to be a better probe of the microporosity than the chemical shift extrapolated to zero pressure. This correlation was explained by the fact that the xenon collision frequency increases with increasing micropore size. The chemical shift has been shown to vary very little with temperature (less than 9 ppm) for xenon trapped inside narrow and wide micropores. This is indicative of a smooth xenon-surface interaction potential.

  12. Studies of K-Ar dating and xenon from extinct radioactivities in breccia 14318; implications for early lunar history

    NASA Technical Reports Server (NTRS)

    Reynolds, J. H.; Alexander, E. C., Jr.; Davis, P. K.; Srinivasan, B.

    1974-01-01

    The lunar breccia 14318 is one of three Apollo-14 breccias containing substantial amounts of parentless xenon from the spontaneous fission of extinct Pu-244. The argon and xenon contained in this breccia were studied by stepwise heating of pristine and neutron-irradiated samples. The isotopic composition of xenon from fission, determined by an improved method, is shown to be from Pu-244. Concentrations of this fissiogenic xenon are in substantial excess (15-fold) of what could be produced by spontaneous fission of U-238. The breccia is found to contain abundant trapped argon with an Ar-40/Ar-36 ratio of roughly 14. Otherwise, the argon is radiogenic and gives a convincing K-Ar age of 3.69 plus or minus 0.09 b.y. by the stepwise Ar-40/Ar-39 method, nearly in agreement with ages for other Apollo-14 breccias.

  13. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Study of emission of a volume nanosecond discharge plasma in xenon, krypton and argon at high pressures

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh; Lomaev, Mikhail I.; Rybka, D. V.; Tarasenko, Viktor F.

    2006-06-01

    The emission properties of a volume nanosecond discharge plasma produced in xenon, krypton and argon at high pressures in a discharge gap with a cathode having a small radius of curvature are studied. Spectra in the range 120-850 nm and amplitude—time characteristics of xenon emission at different regimes and excitation techniques are recorded and analysed. It is shown that upon excitation of the volume discharge initiated by a beam of avalanche electrons, at least 90% of the energy in the spectral range 120-850 nm is emitted by xenon dimers. For xenon at a pressure of 1.2 atm, ~45 mJ of the spontaneous emission energy was obtained in the full solid angle in a pulse with the full width at half-maximum ~130 ns.

  14. Xenon Anesthesia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

    PubMed

    Law, Lawrence Siu-Chun; Lo, Elaine Ah-Gi; Gan, Tong Joo

    2016-03-01

    Xenon anesthesia has been studied for decades. However, no meta-analysis of randomized controlled trials (RCTs) on xenon anesthesia has been conducted. The aim of this study was to systematically review all available evidence from RCTs comparing xenon and other inhaled and IV anesthetics on anesthetic outcomes. Our meta-analysis attempted to quantify the effects of xenon anesthesia on clinical outcomes in relation to other anesthetics. We found 43 RCTs from PubMed, MEDLINE, CENTRAL, EMBASE, and CINAHL (until January 2015). A total of 31 studies comparing xenon (841 patients) with other inhaled agents (836 patients) and 12 studies comparing xenon (373 patients) with propofol (360 patients) were found. We evaluated clinical outcomes, such as intraoperative hemodynamics, emergence, and postoperative nausea and vomiting (PONV). Patients undergoing xenon anesthesia had a lower heart rate and higher mean arterial pressure (MAP) intraoperatively than those receiving volatile anesthesia (mean difference = -6 min⁻¹ [99% confidence interval {99% CI} -10.0 to -2.3]; mean difference = 9 mm Hg [99% CI 3.1-14.4]) and propofol anesthesia (mean difference = -10 min⁻¹ [99% CI -12.4 to -6.6]; mean difference = 7 mm Hg [99% CI 0.85-13.2]). Compared with baseline, intraoperative MAP remained relatively stable (change < 5.5%, 99% CI within ±20% of the baseline) under xenon anesthesia, but MAP decreased by ≥15% under volatile (mean difference = -17 mm Hg [99% CI -29.5 to - 4.9], percentage change = -17.5%) and propofol (mean difference = -14 mm Hg [99% CI -26.1 to -2.5], percentage change = -15.0%) anesthesia. Patients had faster emergence from xenon than from volatile anesthesia: eyes opening (versus all volatile agents: mean 4 vs 7 minutes, percentage change = -49.8% [99% CI -55.1% to -44.0%]), tracheal extubation (versus all volatile agents: mean 4 vs 8 minutes percentage change = -44.6% [99% CI -57.3% to -28.1%]), orientation (versus sevoflurane: mean 5 vs 10 minutes, percentage change = -45.1% [99% CI -58.5% to -28.1%]), countdown (versus sevoflurane: mean 6 vs 10 minutes, percentage change = -41.7% [99% CI -50.3% to -31.6%]; versus isoflurane: mean 6 vs 14 minutes, percentage change = -57.7% [99% CI -65.7% to -48.3%]), and reaction on demand (versus sevoflurane: mean 4 vs 8 minutes, percentage change = -53.2% [99% CI -65.7% to -35.6%]). However, xenon anesthesia increased the risks of PONV (incidence 34.4% vs 19.9%; risk ratio = 1.72 [99% CI 1.10-2.69], risk difference = 0.19 [99% CI 0.04-0.33]). Xenon anesthesia provides relatively more stable intraoperative blood pressure, lower heart rate, and faster emergence from anesthesia than volatile and propofol anesthesia. However, xenon is associated with a higher incidence of PONV.

  15. Effects of pulmonary static inflation with 50% xenon on oxygen impairment during cardiopulmonary bypass for stanford type A acute aortic dissection: A pilot study.

    PubMed

    Jin, Mu; Yang, Yanwei; Pan, Xudong; Lu, Jiakai; Zhang, Zhiquan; Cheng, Weiping

    2017-03-01

    The goal of this study was to investigate the effects of pulmonary static inflation with 50% xenon on postoperative oxygen impairment during cardiopulmonary bypass (CPB) for Stanford type A acute aortic dissection (AAD). This prospective single-center nonrandomized controlled clinical trial included 100 adult patients undergoing surgery for Stanford type A AAD at an academic hospital in China. Fifty subjects underwent pulmonary static inflation with 50% oxygen from January 2013 to January 2014, and 50 underwent inflation with 50% xenon from January 2014 to December 2014. During CPB, the lungs were inflated with either 50% xenon (xenon group) or 50% oxygen (control group) to maintain an airway pressure of 5 cm H2O. The primary outcome was oxygenation index (OI) value after intubation, and 10 minutes and 6 hours after the operation. The second outcome was cytokine and reactive oxygen species levels after intubation and 10 minutes, 6 hours, and 24 hours after the operation. Patients treated with xenon had lower OI levels compared to the control group before surgery (P = 0.002); however, there was no difference in postoperative values between the 2 groups. Following surgery, mean maximal OI values decreased by 18.8% and 33.8%, respectively, in the xenon and control groups. After surgery, the levels of interleukin-6 (IL-6), tumor necrosis factor alpha, and thromboxane B2 decreased by 23.5%, 9.1%, and 30.2%, respectively, in the xenon group, but increased by 10.8%, 26.2%, and 26.4%, respectively, in the control group. Moreover, IL-10 levels increased by 28% in the xenon group and decreased by 7.5% in the control group. There were significant time and treatment-time interaction effects on methane dicarboxylic aldehyde (P = 0.000 and P = 0.050, respectively) and myeloperoxidase (P = 0.000 and P = 0.001 in xenon and control groups, respectively). There was no difference in hospital mortality and 1-year survival rate between the 2 groups. Pulmonary static inflation with 50% xenon during CPB could attenuate OI decreases at the end of surgery for Stanford type A AAD. Thus, xenon may function by triggering anti-inflammatory responses and suppressing pro-inflammatory and oxidative effects.

  16. Xenon treatment attenuates early renal allograft injury associated with prolonged hypothermic storage in rats.

    PubMed

    Zhao, Hailin; Yoshida, Akira; Xiao, Wei; Ologunde, Rele; O'Dea, Kieran P; Takata, Masao; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2013-10-01

    Prolonged hypothermic storage elicits severe ischemia-reperfusion injury (IRI) to renal grafts, contributing to delayed graft function (DGF) and episodes of acute immune rejection and shortened graft survival. Organoprotective strategies are therefore needed for improving long-term transplant outcome. The aim of this study is to investigate the renoprotective effect of xenon on early allograft injury associated with prolonged hypothermic storage. Xenon exposure enhanced the expression of heat-shock protein 70 (HSP-70) and heme oxygenase 1 (HO-1) and promoted cell survival after hypothermia-hypoxia insult in human proximal tubular (HK-2) cells, which was abolished by HSP-70 or HO-1 siRNA. In the brown Norway to Lewis rat renal transplantation, xenon administered to donor or recipient decreased the renal tubular cell death, inflammation, and MHC II expression, while delayed graft function (DGF) was therefore reduced. Pathological changes associated with acute rejection, including T-cell, macrophage, and fibroblast infiltration, were also decreased with xenon treatment. Donors or recipients treated with xenon in combination with cyclosporin A had prolonged renal allograft survival. Xenon protects allografts against delayed graft function, attenuates acute immune rejection, and enhances graft survival after prolonged hypothermic storage. Furthermore, xenon works additively with cyclosporin A to preserve post-transplant renal function.

  17. Design and development of a non-rigid phantom for the quantitative evaluation of DIR-based mapping of simulated pulmonary ventilation.

    PubMed

    Miyakawa, Shin; Tachibana, Hidenobu; Moriya, Shunsuke; Kurosawa, Tomoyuki; Nishio, Teiji; Sato, Masanori

    2018-05-28

    The validation of deformable image registration (DIR)-based pulmonary ventilation mapping is time-consuming and prone to inaccuracies and is also affected by deformation parameters. In this study, we developed a non-rigid phantom as a quality assurance (QA) tool that simulates ventilation to evaluate DIR-based images quantitatively. The phantom consists of an acrylic cylinder filled with polyurethane foam designed to simulate pulmonic alveoli. A polyurethane membrane is attached to the inferior end of the phantom to simulate the diaphragm. In addition, tracheobronchial-tree-shaped polyurethane tubes are inserted through the foam and converge outside the phantom to simulate the trachea. Solid polyurethane is also used to model arteries, which closely follow the model airways. Two three-dimensional CT scans were performed during exhalation and inhalation phases using xenon (Xe) gas as the inhaled contrast agent. The exhalation 3D-CT image is deformed to an inhalation 3D-CT image using our in-house program based on the NiftyReg open-source package. The target registration error (TRE) between the two images was calculated for 16 landmarks located in the simulated lung volume. The DIR-based ventilation image was generated using Jacobian determinant (JD) metrics. Subsequently, differences in the Hounsfield unit (HU) values between the two images were measured. The correlation coefficient between the JD and HU differences was calculated. In addition, three 4D-CT scans are performed to evaluate the reproducibility of the phantom motion and Xe gas distribution. The phantom exhibited a variety of displacements for each landmark (range: 1-20 mm). The reproducibility analysis indicated that the location differences were < 1 mm for all landmarks, and the HU variation in the Xe gas distribution was close to zero. The mean TRE in the evaluation of spatial accuracy according to the DIR software was 1.47 ± 0.71 mm (maximum: 2.6 mm). The relationship between the JD and HU differences had a large correlation (R = -0.71) for the DIR software. The phantom implemented new features, namely, deformation and simulated ventilation. To assess the accuracy of the DIR-based mapping of the simulated pulmonary ventilation, the phantom allows for simulation of Xe gas wash-in and wash-out. The phantom may be an effective QA tool, because the DIR algorithm can be quickly changed and its accuracy evaluated with a high degree of precision. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Active versus passive humidification for self-ventilating tracheostomy and laryngectomy patients: a systematic review of the literature.

    PubMed

    Wong, C Y Y; Shakir, A A; Farboud, A; Whittet, H B

    2016-12-01

    To determine whether active or passive humidification methods are more effective in preventing pulmonary complications in self-ventilating neck breather patients. Systematic Review adhering to PRISMA guidance (checklist sourced from www.equator-network.org/). Review of current published relevant literature at a tertiary department of Otolaryngology and Head & Neck Surgery. We included all separate studies and comparison studies of active and passive humidification techniques in adult and paediatric neck breather patients. The primary outcome is the reduction in pulmonary complications. Secondary outcomes include patient compliance; carer and user satisfaction. Seven studies were included in this review: two RCTs (133 patients), one randomised controlled cross-over trial (29 patients), three randomised prospective studies (171 patients), and one retrospective study (73 patients). Only one study was conducted on paediatric neck breathers. The overall quality of the studies was low. Five studies were at a high risk of bias. Of the remaining two studies, one study had a low risk of bias and the other had an unclear risk. Despite limited subject evidence, results show that passive methods of humidification (mainly HME) is the preferred choice of humidification in the spontaneously breathing neck breather patients group mainly due to the reduction in pulmonary complaints, and better patient compliance. © 2015 John Wiley & Sons Ltd.

  19. Comparison of the effects of xenon and sevoflurane anaesthesia on leucocyte function in surgical patients: a randomized trial.

    PubMed

    Fahlenkamp, A V; Coburn, M; Rossaint, R; Stoppe, C; Haase, H

    2014-02-01

    While most anaesthetics are known to suppress immune reactions, data from experimental studies indicate the enhancement of reactivity to inflammatory stimulators under xenon treatment. We investigated the effect of xenon anaesthesia on leucocyte function in surgical patients. We performed a subgroup analysis of subjects undergoing xenon or sevoflurane anaesthesia in a randomized clinical trial. After oral premedication with midazolam, two separate blood samples were obtained from subjects undergoing elective abdominal surgery, directly before and 1 h after induction of anaesthesia. General anaesthesia was maintained with either 60% xenon or 2.0% sevoflurane in 30% O2. Leucocyte count, phagocytotic function, and pro-inflammatory cytokine release after ex vivo lipopolysaccharide (LPS) stimulation were determined. Except for lymphocyte numbers, leucocyte subpopulations did not differ between the groups. Phagocytosis and oxidative burst of granulocytes were reduced in both groups after 1 h of anaesthesia, whereas monocytes were not affected. Pro-inflammatory cytokine release in response to LPS was not affected. In vivo, xenon and sevoflurane anaesthesia did not have a pro-inflammatory effect, at least in combination with the types of surgery performed in this study. Notably, the impact of xenon anaesthesia did not differ significantly from sevoflurane anaesthesia with regard to leucocyte function. However, an underestimation of treatment effects due to limited sample sizes cannot be fully excluded.

  20. New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon

    NASA Astrophysics Data System (ADS)

    Essig, Rouven; Volansky, Tomer; Yu, Tien-Tien

    2017-08-01

    We study in detail sub-GeV dark matter scattering off electrons in xenon, including the expected electron recoil spectra and annual modulation spectra. We derive improved constraints using low-energy XENON10 and XENON100 ionization-only data. For XENON10, in addition to including electron-recoil data corresponding to about 1-3 electrons, we include for the first time events corresponding to about 4-7 electrons. Assuming the scattering is momentum independent (FDM=1 ), this strengthens a previous cross-section bound by almost an order of magnitude for dark matter masses above 50 MeV. The available XENON100 data corresponds to events with about 4-50 electrons, and leads to a constraint that is comparable to the XENON10 bound above 50 MeV for FDM=1 . We demonstrate that a search for an annual modulation signal in upcoming xenon experiments (XENON1T, XENONnT, LZ) could substantially improve the above bounds even in the presence of large backgrounds. We also emphasize that in simple benchmark models of sub-GeV dark matter, the dark matter-electron scattering rate can be as high as one event every ten (two) seconds in the XENON1T (XENONnT or LZ) experiments, without being in conflict with any other known experimental bounds. While there are several sources of backgrounds that can produce single- or few-electron events, a large event rate can be consistent with a dark matter signal and should not be simply written off as purely a detector curiosity. This fact motivates a detailed analysis of the ionization-data ("S2") data, taking into account the expected annual modulation spectrum of the signal rate, as well as the DM-induced electron-recoil spectra, which are another powerful discriminant between signal and background.

  1. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  2. Global Xenon-133 Emission Inventory Caused by Medical Isotope Production and Derived from the Worldwide Technetium-99m Demand

    NASA Astrophysics Data System (ADS)

    Kalinowski, Martin B.; Grosch, Martina; Hebel, Simon

    2014-03-01

    Emissions from medical isotope production are the most important source of background for atmospheric radioxenon measurements, which are an essential part of nuclear explosion monitoring. This article presents a new approach for estimating the global annual radioxenon emission inventory caused by medical isotope production using the amount of Tc-99m applications in hospitals as the basis. Tc-99m is the most commonly used isotope in radiology and dominates the medical isotope production. This paper presents the first estimate of the global production of Tc-99m. Depending on the production and transport scenario, global xenon emissions of 11-45 PBq/year can be derived from the global isotope demand. The lower end of this estimate is in good agreement with other estimations which are making use of reported releases and realistic process simulations. This proves the validity of the complementary assessment method proposed in this paper. It may be of relevance for future emission scenarios and for estimating the contribution to the global source term from countries and operators that do not make sufficient radioxenon release information available. It depends on sound data on medical treatments with radio-pharmaceuticals and on technical information on the production process of the supplier. This might help in understanding the apparent underestimation of the global emission inventory that has been found by atmospheric transport modelling.

  3. Feasibility and safety of xenon compared with sevoflurane anaesthesia in coronary surgical patients: a randomized controlled pilot study.

    PubMed

    Stoppe, C; Fahlenkamp, A V; Rex, S; Veeck, N C; Gozdowsky, S C; Schälte, G; Autschbach, R; Rossaint, R; Coburn, M

    2013-09-01

    To date, only limited data exist about the use of xenon as an anaesthetic agent in patients undergoing cardiac surgery. The favourable cardio- and neuroprotective properties of xenon might attenuate postoperative complications, improve outcome, and reduce the incidence of delirium. Thus, the aims of this study were to investigate the feasibility and safety of balanced xenon anaesthesia in patients undergoing cardiac surgery and to gather pilot data for a future randomized multicentre study. Thirty patients undergoing elective coronary artery bypass grafting were enrolled in this randomized, single-blind controlled trial. They were randomized to receive balanced general anaesthesia with either xenon (45-50 vol%) or sevoflurane (1-1.4 vol%). The primary outcome was the occurrence of adverse events (AEs). Secondary outcome parameters were feasibility criteria (bispectral index, perioperative haemodynamic, and respiratory profile) and safety parameters (dosage of study treatments, renal function, intraoperative blood loss, need for inotropic support, regional cerebral tissue oxygenation). Furthermore, at predefined time points, systemic and pulmonary haemodynamics were assessed by the use of a pulmonary artery catheter. There were no patient characteristic differences between the groups. Patients undergoing xenon anaesthesia did not differ with respect to the incidence of AE (6 vs 8, P=0.464) compared with the sevoflurane group. No differences were detected regarding secondary feasibility and safety criteria. The haemodynamic and respiratory profile was comparable between the treatment groups. Balanced xenon anaesthesia is feasible and safe compared with sevoflurane anaesthesia in patients undergoing coronary artery bypass surgery. Acronym CARDIAX: A pre- and post-coronary artery bypass graft implantation disposed application of xenon. Clinical trial registration ClinicalTrials.gov: NCT01285271; EudraCT-number: 2010-023942-63. Approved by the ethics committee 'Ethik-Kommission an der Medizinischen Fakultät der Rheinisch-Westfälischen Technischen Hochschule Aachen (RWTH Aachen)': EK-218/10.

  4. Controlled study on the effect of pentoxifylline and an ergot alkaloid derivative on regional cerebral blood flow in patients with chronic cerebrovascular disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, A.; Tsuda, Y.

    Regional cerebral blood flow (rCBF) in 90 patients with CBF decreased due to vascular diseases was studied by using the xenon 133 inhalation technique and a 32-detector setup. Whereas 30 patients received their standard basic therapy only and were regarded as controls, 30 others received 3 x 2 mg/day of an ergot alkaloid (co-dergocrine mesylate), and 30 others received 3 x 400 mg pentoxifylline (slow-release formulation)/day orally. Therapy was performed for eight weeks and CBF measured before start of treatment, after a four-week treatment period, and at the end of the study. CBF did not change significantly in the controlmore » group; both the pentoxifylline and the ergot alkaloid group presented with a significant increase in the CBF. This positive effect was significantly more pronounced in the pentoxifylline group and affected more ischemic than other brain tissues. In addition, symptoms like sleep disturbances, vertigo, and tinnitus improved significantly during the pentoxifylline observation period.« less

  5. Facile xenon capture and release at room temperature using a metal-organic framework: a comparison with activated charcoal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thallapally, Praveen K.; Grate, Jay W.; Motkuri, Radha K.

    2012-01-11

    Two well known Metal organic frameworks (MOF-5, NiDOBDC) were synthesized and studied for facile xenon capture and separation. Our results indicate the NiDOBDC adsorbs significantly more xenon than MOF-5, releases it more readily than activated carbon, and is more selective for Xe over Kr than activated carbon.

  6. Survey of High-Pressure Effects in Solids.

    DTIC Science & Technology

    1979-11-01

    phenomenological Lennard - Jones and Morse potentials . The resulting study of the GrUneisen parameter is most illuminating. A more am- bitious program would to...the Gordon-Kim-Boyer scheme with our suggested modifications; use of the exchange-correlation potential in the local-density approximation i such an...Xenon Hugoniot Calculations and Experiments .......... 41 3.8. Xenon Intermolecular Potentials ...................... 42 3.9. Xenon Hugoniot Calculations

  7. Xenon migration behaviour in titanium nitride

    NASA Astrophysics Data System (ADS)

    Gavarini, S.; Toulhoat, N.; Peaucelle, C.; Martin, P.; Mende, J.; Pipon, Y.; Jaffrezic, H.

    2007-05-01

    Titanium nitride is one of the inert matrixes proposed to surround the fuel in gas cooled fast reactor (GFR) systems. These reactors operate at high temperature and necessitate refractory materials presenting a high chemical stability and good mechanical properties. A total retention of the most volatile fission products, such as Xe, I or Cs, by the inert matrix is needed during the in pile process. The thermal migration of xenon in TiN was studied by implanting 800 keV Xe++ ions in sintered samples at an ion fluence of 5 × 1015 cm-2. Annealing was performed at temperatures ranging from 1673 to 1923 K for 1 and 3 h. Xenon concentration profiles were studied by Rutherford backscattering spectrometry (RBS) using 2.5 MeV α-particles. The migration behaviour of xenon corresponds to a gas migration model. It is dominated by a surface directed transport with a slight diffusion component. The mean activation energy corresponding to the diffusion component was found to be 2.2 ± 0.3 eV and corresponds to the Brownian motion of xenon bubbles. The directed Xe migration can be interpreted in term of bubble transport using Evans model. This last process is mostly responsible for xenon release from TiN.

  8. Surface damage on polycrystalline β-SiC by xenon ion irradiation at high fluence

    NASA Astrophysics Data System (ADS)

    Baillet, J.; Gavarini, S.; Millard-Pinard, N.; Garnier, V.; Peaucelle, C.; Jaurand, X.; Duranti, A.; Bernard, C.; Rapegno, R.; Cardinal, S.; Escobar Sawa, L.; De Echave, T.; Lanfant, B.; Leconte, Y.

    2018-05-01

    Polycrystalline β-silicon carbide (β-SiC) pellets were prepared by Spark Plasma Sintering (SPS). These were implanted at room temperature with 800 keV xenon at ion fluences of 5.1015 and 1.1017 cm-2. Microstructural modifications were studied by electronic microscopy (TEM and SEM) and xenon profiles were determined by Rutherford Backscattering Spectroscopy (RBS). A complete amorphization of the implanted area associated with a significant oxidation is observed for the highest fluence. Large xenon bubbles formed in the oxide phase are responsible of surface swelling. No significant gas release has been measured up to 1017 at.cm-2. A model is proposed to explain the different steps of the oxidation process and xenon bubbles formation as a function of ion fluence.

  9. Visualizing dissolved oxygen transport for liquid ventilation in an in vitro model of the human airways

    NASA Astrophysics Data System (ADS)

    Janke, T.; Bauer, K.

    2017-04-01

    Up until to now, the measurement of dissolved oxygen concentrations during liquid ventilation is limited to the determination of averaged concentrations of the liquid entering or leaving the body. The work presented in this paper aims to extend the possible measurement techniques in the research of liquid ventilation. Therefore optical measurements of the dissolved oxygen concentration, using a luminescent sensor dye, are performed. The preparation of a suitable sensor liquid, based on the metal complex Dichlorotris(1,10)-(phenanthroline)ruthenium(II), is presented. A transparent simplified human lung geometry is used for conducting the experiments. Inspiratory as well as expiratory flow at three different constant flow rates is investigated, covering the flow regimes \\text{Re}=83 -333 and \\text{Pe}=33 300 -133 000. The applied measurement technique is capable to reveal distinctive concentration patterns during inspiration and expiration caused by the laminar flow characteristics. Allowing a sufficiently long flow duration, local concentration inhomogeneities disappear and an exponential rise and decay of the mean values can be observed for inspiration and expiration.

  10. Signal yields, energy resolution, and recombination fluctuations in liquid xenon

    DOE PAGES

    Akerib, D. ?S.; Alsum, S.; Ara?jo, H. ?M.; ...

    2017-01-19

    This study presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon recombination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronicmore » recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2 and 16 keV with 3H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data.« less

  11. The Genesis solar xenon composition and its relationship to planetary xenon signatures

    NASA Astrophysics Data System (ADS)

    Crowther, S. A.; Gilmour, J. D.

    2013-12-01

    The fluence and isotopic composition of solar wind xenon have been determined from silicon collector targets flown on the NASA Genesis mission. A protocol was developed to extract gas quantitatively from samples of ∼9-25 mm2, and xenon measured using the RELAX mass spectrometer. The fluence of implanted solar wind xenon is 1.202(87) × 106 atoms 132Xe cm-2, which equates to a flux of 5.14(21) × 106 atoms 132Xe cm-2 year-1 at the L1 point. This value is in good agreement with those reported in other studies. The isotopic composition of the solar wind is consistent with that extracted from the young lunar regolith and other Genesis collector targets. The more precise xenon isotopic data derived from the Genesis mission confirm models of relationships among planetary xenon signatures. The underlying composition of Xe-Q is mass fractionated solar wind; small, varying contributions of Xe-HL and 129Xe from 129I decay are present in reported meteorite analyses. In contrast, an s-process deficit is apparent in Xe-P3, which appears to have been mass fractionated to the same extent as Xe-Q from a precursor composition, suggesting similar trapping mechanisms. Solar wind xenon later evolved by the addition of ∼1% (at 132Xe) of s-process xenon to this precursor. As an alternative model to a single source reservoir for Xe-P3, we propose that trapping of xenon onto carbonaceous carriers has been an ongoing process across galactic history, and that preparation of the residues in which Xe-P3 has been identified preferentially preserves longer lived host phases; a higher proportion of these sample xenon isotopic compositions from earlier in galactic chemical evolution, allowing the s-process deficit to become apparent. The relationships among SW-Xe, Xe-Q and Xe-P3 predict that the 124Xe/132Xe ratio for the solar wind is 0.00481(6).

  12. [Study on the discharge properties of xeon flash lamp and experimental measurement].

    PubMed

    Zhao, You-Quan; Miao, Pei-Liang; He, Feng; Gu, Jian; Zhai, Rui-Wei

    2014-07-01

    The Xenon flash lamp is a new type of light source for analytical instrument. The present paper analyzed the discharge process of xenon flash lamp, presented the discharge test system, and conducted experimental measurement of the voltage, current and optical pulse signal in the process of discharge. The results show that in the preliminary discharge, the free electron concentration was at a low level, so the energy was at a low level, then following the gas discharge, numerous free electrons formed in the lamp, resultin in the increase in the concentration of free electrons, therefore discharge current rised rapidly and voltage reduced. The lamp released photons to generate light pulse in the moment of ionic recombination, The pulse xenon lamp light energy output and spectral characteristic is related to electron energy in recombination and combination level of xenon, if the input energy and the energy consumption of the xenon lamp is inconsistent, it will lead to repeated capacitor charging and discharging and produce oscillation waveform. This paper is very useful for understanding the process of xenon lamp discharge, optimizing the driver circuit and the production of xenon flash lamp.

  13. Anxiety and cerebral blood flow during behavioral challenge. Dissociation of central from peripheral and subjective measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohar, J.; Insel, T.R.; Berman, K.F.

    1989-06-01

    To investigate the relationship between anxiety and regional cerebral blood flow, we administered behavioral challenges to 10 patients with obsessive-compulsive disorder while measuring regional cerebral blood flow with the xenon 133 inhalation technique. Each patient was studied under three conditions: relaxation, imaginal flooding, and in vivo (actual) exposure to the phobic stimulus. Subjective anxiety, obsessive-compulsive ratings, and autonomic measures (heart rate, blood pressure) increased significantly, but respiratory rate and PCO/sub 2/ did not change across the three conditions. Regional cerebral blood flow increased slightly (in the temporal region) during imaginal flooding, but decreased markedly in several cortical regions during inmore » vivo exposure, when anxiety was highest by subjective and peripheral autonomic measures. These results demonstrate that intense anxiety can be associated with decreased rather than increased cortical perfusion and that ostensibly related states of anxiety (eg, anticipatory and obsessional anxiety) may be associated with opposite effects on regional cerebral blood flow.« less

  14. Effect of anxiety on cortical cerebral blood flow and metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gur, R.C.; Gur, R.E.; Resnick, S.M.

    1987-04-01

    The relation between anxiety and cortical activity was compared in two samples of normal volunteers. One group was studied with the noninvasive xenon-133 inhalation technique for measuring cerebral blood flow (CBF) and the other with positron emission tomography (PET) using /sup 18/Flurodeoxyglucose (/sup 18/FDG) for measuring cerebral metabolic rates (CMR) for glucose. The inhalation technique produced less anxiety than the PET procedure, and for low anxiety subjects, there was a linear increase in CBF with anxiety. For higher anxiety subjects, however, there was a linear decrease in CBF with increased anxiety. The PET group manifested a linear decrease in CMRmore » with increased anxiety. The results indicate that anxiety can have systematic effects on cortical activity, and this should be taken into consideration when comparing data from different procedures. They also suggest a physiologic explanation of a fundamental behavioral law that stipulates a curvilinear, inverted-U relationship between anxiety and performance.« less

  15. Adding 5 h delayed xenon to delayed hypothermia treatment improves long-term function in neonatal rats surviving to adulthood.

    PubMed

    Liu, Xun; Dingley, John; Scull-Brown, Emma; Thoresen, Marianne

    2015-06-01

    We previously reported that combining immediate hypothermia with immediate or 2 h delayed inhalation of an inert gas, xenon, gave additive neuroprotection in rats after a hypoxic-ischemic insult, compared to hypothermia alone. Defining the therapeutic time window for this new combined intervention is crucial in clinical practice when immediate treatment is not always feasible. The aim of this study is to investigate whether combined hypothermia and xenon still provide neuroprotection in rats after a 5 h delay for both hypothermia and xenon. Seven-day-old Wistar rat pups underwent a unilateral hypoxic-ischemic insult. Pups received 5 h of treatment starting 5 h after the insult randomized between normothermia, hypothermia, or hypothermia with 50% xenon. Surviving pups were tested for fine motor function through weeks 8-10 before being euthanized at week 11. Their hemispheric and hippocampal areas were assessed. Both delayed hypothermia-xenon and hypothermia-only treated groups had significantly less brain tissue loss than those which underwent normothermia. The functional performance after 1 wk and adulthood was significantly better after hypothermia-xenon treatment as compared to the hypothermia-only or normothermia groups. Adding 50% xenon to 5 h delayed hypothermia significantly improved functional outcome as compared to delayed hypothermia alone despite similar reductions in brain area.

  16. Solubility of xenon in amino-acid solutions. II. Nine less-soluble amino acids

    NASA Astrophysics Data System (ADS)

    Kennan, Richard P.; Himm, Jeffrey F.; Pollack, Gerald L.

    1988-05-01

    Ostwald solubility (L) of xenon gas, as the radioisotope 133Xe, has been measured as a function of solute concentration, at 25.0 °C, in aqueous solutions of nine amino acids. The amino-acid concentrations investigated covered much of their solubility ranges in water, viz., asparagine monohydrate (0-0.19 M), cysteine (0-1.16 M), glutamine (0-0.22 M), histidine (0-0.26 M), isoleucine (0-0.19 M), methionine (0-0.22 M), serine (0-0.38 M), threonine (0-1.4 M), and valine (0-0.34 M). We have previously reported solubility results for aqueous solutions of six other, generally more soluble, amino acids (alanine, arginine, glycine, hydroxyproline, lysine, and proline), of sucrose and sodium chloride. In general, L decreases approximately linearly with increasing solute concentration in these solutions. If we postulate that the observed decreases in gas solubility are due to hydration, the results under some assumptions can be used to calculate hydration numbers (H), i.e., the number of H2O molecules associated with each amino-acid solute molecule. The average values of hydration number (H¯) obtained at 25.0 °C are 15.3±1.5 for asparagine, 6.8±0.3 for cysteine, 11.5±1.1 for glutamine, 7.3±0.7 for histidine, 5.9±0.4 for isoleucine, 10.6±0.8 for methionine, 11.2±1.3 for serine, 7.7± 1.0 for threonine, and 6.6±0.6 for valine. We have also measured the temperature dependence of solubility L(T) from 5-40 °C for arginine, glycine, and proline, and obtained hydration numbers H¯(T) in this range. Between 25-40 °C, arginine has an H¯ near zero. This may be evidence for an attractive interaction between xenon and arginine molecules in aqueous solution.

  17. Pretreatment with xenon protected immature rabbit heart from ischaemia/reperfusion injury by opening of the mitoKATP channel.

    PubMed

    Li, Qian; Lian, Chunwei; Zhou, Ronghua; Li, Tao; Xiang, Xujin; Liu, Bin

    2013-04-01

    The noble gas anaesthetic, xenon has previously been shown to protect the adult myocardium from ischaemia/reperfusion (I/R) injury, however its effect on immature myocardium is unclear. The aim of this study was to investigate the effect of xenon on the isolated immature heart. Isolated, immature (2-3weeks old) New Zealand rabbit hearts were perfused with Krebs-Henseleit buffer via Langendorff-mode. After 20min of baseline equilibration, hearts were pretreated with 75% xenon, 75% xenon+100μM diazoxide, or 75% xenon+100μM 5-hydroxydecanoate, and then subjected to 1h of global ischaemia and 3h of reperfusion. Pretreatment with 75% xenon significantly improved cardiac function (P<0.01 vs. the I/R group, respectively), limited myocardial infarct size (20.83±2.16%, P<0.01 vs. 35.82±2.14% of the I/R group), reduced cardiac enzyme release (CK-MB, 1.00±0.19IU/L, P<0.01 vs. 0.44±0.14IU/L of the I/R group; LDH, 6.15±1.06IU/L P<0.01 vs. 3.49±0.37IU/L of the I/R group) and decreased apoptosis (6.17±0.56%, P<0.01 vs. 11.31±0.93% of the I/R group). In addition, the mitochondrial structure changes caused by I/R injury were largely prevented by 75% xenon pretreatment (1.37±0.16, P<0.01 vs. 2.32±0.13 of the I/R group). The mitochondrial adenosine triphosphate-sensitive potassium (mitoKATP) channel opener diazoxide did not influence the effect of xenon, but the specific mitoKATP channel blocker 5-hydroxydecanoate completely abolished this effect. Our study demonstrated that pretreatment with 75% xenon protected immature heart from I/R injury, and this protection was probably mediated by preservation of myocardial mitochondria and opening of mitoKATP channel. Copyright © 2012 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  18. Sub-anesthetic Xenon Increases Erythropoietin Levels in Humans: A Randomized Controlled Trial.

    PubMed

    Stoppe, Christian; Ney, Julia; Brenke, Martin; Goetzenich, Andreas; Emontzpohl, Christoph; Schälte, Gereon; Grottke, Oliver; Moeller, Manfred; Rossaint, Rolf; Coburn, Mark

    2016-11-01

    The licensed anesthetic xenon, which exerts organ protective properties, was recently added by the World Anti-Doping Agency to the list of prohibited substances. Xenon is supposed to trigger the production of hypoxia-inducible factor 1α (HIF-1α) and subsequently erythropoietin, but data are limited to in vivo experimental work. Therefore we evaluated the effect of xenon on erythropoietin levels in healthy persons. Twenty-four healthy volunteers were randomly assigned either to a group spontaneously breathing xenon 30 % (Xe/O 2 30 %/60 %) or a group breathing control gas (N 2 /O 2 40 %/60 %) for 45 min. Primary outcome parameters were erythropoietin levels at several time-points after exposure. Secondary outcome parameters were serum levels of testosterone, cytokines, and growth factors as well as concentrations of xenon in blood and exhalation samples measured at several time-points after exposure. In addition, hemodynamic safety parameters were monitored during exposure. The administration of xenon significantly increased erythropoietin levels 8 h after exposure (1.34 [±0.368]; p = 0.008), peaking at 24 h compared to the baseline values (1.45 [±0.498]; p = 0.01) and remained traceable in blood and exhalation probes until 24 h after exposure. In contrast, no significant change was observed in the control group. Measurement of stromal cell-derived factor 1 (SDF-1) revealed a significant increase of SDF-1 levels (p = 0.005), whereas no differences were observed with respect to growth factors, cytokines, or androgens. In an in vitro chemotaxis assay, endothelial progenitor cells (EPCs) showed a trend towards increased migration in serum samples received from participants after xenon exposure (p = 0.080). The present study presents first evidence about a xenon-induced effect on increased erythropoietin levels in healthy volunteers. The study was registered at the European Medicines Agency (EudraCT-number: 2014-000973-38) and at ClinicalTrials.gov (NCT number: 02129400).

  19. Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.

    2014-09-01

    Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medicalmore » isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8×1014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.2×1016 to 2.5×1016 Bq and estimates for the facility in Indonesia vary from 6.1×1013 to 3.6×1014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.« less

  20. Evaluation of lung clearance of inhaled pertechnegas.

    PubMed

    Fanti, S; Compagnone, G; Pancaldi, D; Franchi, R; Corbelli, C; Marengo, M; Onofri, C; Galassi, R; Levorato, M; Monetti, N

    1996-02-01

    Pertechnegas is a new ventilation agent produced by modifying the atmosphere of combustion of Technegas. Due to its rapid disappearance from the lungs, Pertechnegas has been suggested as useful in measuring pulmonary epithelial permeability. This study aimed to assess the reliability of ventilation scans with Pertechnegas to evaluate alveolar-capillary permeability. Six non-smokers with no evidence of pulmonary disease were investigated. Scintigraphic data were used to evaluate the site of Pertechnegas deposition (by assessing the Penetration Index [PI] of the gas), its clearance rate (by calculating the time to half-clearance [T1/2]) and its lung distribution (by means of a pixel-by-pixel analysis. PI measurements produced a mean value of 88.8 +/- 13.3% (range 69-117%). Time activity curves showed a fast clearance in all cases (mean T1/2 = 10.7 +/- 2.1 min, range 8.1-14.3 min). Comparison of statistical indices of uniform deposition (skewness and kurtosis) indicated satisfactory homogeneity of Pertechnegas distribution throughout the lungs. These data show that after inhalation Pertechnegas has a peripheral deposition and a homogeneous distribution in the lungs and is rapidly cleared through the alveolar-capillary barrier. In conclusion Pertechnegas can be recommended as a potential radiopharmaceutical for studying the pulmonary epithelial barrier.

  1. Anticonvulsant effect of xenon on neonatal asphyxial seizures.

    PubMed

    Azzopardi, Denis; Robertson, Nicola J; Kapetanakis, Andrew; Griffiths, James; Rennie, Janet M; Mathieson, Sean R; Edwards, A David

    2013-09-01

    Xenon, a monoatomic gas with very high tissue solubility, is a non-competitive inhibitor of N-methyl-D-aspartate (NMDA) glutamate receptor, has antiapoptotic effects and is neuroprotective following hypoxic ischaemic injury in animals. Xenon may be expected to have anticonvulsant effects through glutamate receptor blockade, but this has not previously been demonstrated clinically. We examined seizure activity on the real time and amplitude integrated EEG records of 14 full-term infants with perinatal asphyxial encephalopathy treated within 12 h of birth with 30% inhaled xenon for 24 h combined with 72 h of moderate systemic hypothermia. Seizures were identified on 5 of 14 infants. Seizures stopped during xenon therapy but recurred within a few minutes of withdrawing xenon and stopped again after xenon was restarted. Our data show that subanaesthetic levels of xenon may have an anticonvulsant effect. Inhaled xenon may be a valuable new therapy in this hard-to-treat population.

  2. An improved interatomic potential for xenon in UO2: a combined density functional theory/genetic algorithm approach.

    PubMed

    Thompson, Alexander E; Meredig, Bryce; Wolverton, C

    2014-03-12

    We have created an improved xenon interatomic potential for use with existing UO2 potentials. This potential was fit to density functional theory calculations with the Hubbard U correction (DFT + U) using a genetic algorithm approach called iterative potential refinement (IPR). We examine the defect energetics of the IPR-fitted xenon interatomic potential as well as other, previously published xenon potentials. We compare these potentials to DFT + U derived energetics for a series of xenon defects in a variety of incorporation sites (large, intermediate, and small vacant sites). We find the existing xenon potentials overestimate the energy needed to add a xenon atom to a wide set of defect sites representing a range of incorporation sites, including failing to correctly rank the energetics of the small incorporation site defects (xenon in an interstitial and xenon in a uranium site neighboring uranium in an interstitial). These failures are due to problematic descriptions of Xe-O and/or Xe-U interactions of the previous xenon potentials. These failures are corrected by our newly created xenon potential: our IPR-generated potential gives good agreement with DFT + U calculations to which it was not fitted, such as xenon in an interstitial (small incorporation site) and xenon in a double Schottky defect cluster (large incorporation site). Finally, we note that IPR is very flexible and can be applied to a wide variety of potential forms and materials systems, including metals and EAM potentials.

  3. Excess thermodynamics of mixtures involving xenon and light linear alkanes by computer simulation.

    PubMed

    Carvalho, A J Palace; Ramalho, J P Prates; Martins, Luís F G

    2007-06-14

    Excess molar enthalpies and excess molar volumes as a function of composition for liquid mixtures of xenon + ethane (at 161.40 K), xenon + propane (at 161.40 K) and xenon + n-butane (at 182.34 K) have been obtained by Monte Carlo computer simulations and compared with available experimental data. Simulation conditions were chosen to closely match those of the corresponding experimental results. The TraPPE-UA force field was selected among other force fields to model all the alkanes studied, whereas the one-center Lennard-Jones potential from Bohn et al. was used for xenon. The calculated H(m)(E) and V(m)(E) for all systems are negative, increasing in magnitude as the alkane chain length increases. The results for these systems were compared with experimental data and with other theoretical calculations using the SAFT approach. An excellent agreement between simulation and experimental results was found for xenon + ethane system, whereas for the remaining two systems, some deviations that become progressively more significant as the alkane chain length increases were observed.

  4. Development of a high-resolution liquid xenon detector for gamma-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Mukherjee, Reshmi

    It has been shown here that liquid xenon is one of the most promising detector media for future gamma-ray detectors, owing to an excellent combination of physical properties. The feasibility of the construction of a high resolution liquid xenon detector as a gamma-ray detector for astrophysics has been demonstrated. Up to 3.5 liters of liquid xenon has been successfully purified and using both small and large volume prototypes, the charge and the energy resolution response of such detectors to gamma-rays, internal conversion electrons and alpha particles have been measured. The best energy resolution measured was 4.5 percent FWHM at 1 MeV. Cosmic ray tracks have been imaged using a 2-dimensional liquid xenon multiwire imaging chamber. The spatial resolution along the direction of the drifting electrons was 180 microns rms. Experiments have been performed to study the scintillation light in liquid xenon, as the prompt scintillation signal in the liquid is an electron-ion pair in liquid krypton was measured for the first time with a pulsed ionization chamber to be 18.4 plus or minus 0.3 eV.

  5. Timing of xenon-induced delayed postconditioning to protect against spinal cord ischaemia-reperfusion injury in rats.

    PubMed

    Yang, Y W; Cheng, W P; Lu, J K; Dong, X H; Wang, C B; Zhang, J; Zhao, L Y; Gao, Z F

    2014-07-01

    This study was designed to assess the neuroprotective effect of xenon-induced delayed postconditioning on spinal cord ischaemia-reperfusion injury (IRI) and to determine the time of administration for best neuroprotection in a rat model of spinal cord IRI. Fifty male rats were randomly divided equally into a sham group, control group, and three xenon postconditioning groups (n=10 per group). The control group underwent spinal cord IRI and immediately inhaled 50% nitrogen/50% oxygen for 3 h at the initiation of reperfusion. The three xenon postconditioning groups underwent the same surgical procedure and immediately inhaled 50% xenon/50% oxygen for 3 h at the initiation of reperfusion or 1 and 2 h after reperfusion. The sham operation group underwent the same surgical procedure without aortic occlusion, and inhaled 50% nitrogen/50% oxygen. Neurological function was assessed using the Basso, Beattie, and Bresnahan score at 4, 24, and 48 h of reperfusion. Histological examination was performed using Nissl staining and immunohistochemistry, and apoptosis was detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labelling staining. Compared with the control group, the three xenon postconditioning groups showed improvements in neurological outcomes, and had more morphologically normal neurones at 48 h of reperfusion. Apoptotic cell death was reduced and the ratio of Bcl-2/Bax immunoreactivity increased in xenon-treated rats compared with controls. Xenon postconditioning up to 2 h after reperfusion provided protection against spinal cord IRI in rats, but the greatest neuroprotection occurred with administration of xenon for 1 h at reperfusion. © The Author [2013]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essig, Rouven; Volansky, Tomer; Yu, Tien-Tien

    2017-08-30

    We study in detail sub-GeV dark matter scattering off electrons in xenon, including the expected electron recoil spectra and annual modulation spectra. We derive improved constraints using low-energy XENON10 and XENON100 ionization-only data. For XENON10, in addition to including electron-recoil data corresponding to about 1–3 electrons, we include for the first time events corresponding to about 4–7 electrons. Assuming the scattering is momentum independent (F DM = 1 ), this strengthens a previous cross-section bound by almost an order of magnitude for dark matter masses above 50 MeV. The available XENON100 data corresponds to events with about 4–50 electrons, andmore » leads to a constraint that is comparable to the XENON10 bound above 50 MeV for F DM = 1 . We demonstrate that a search for an annual modulation signal in upcoming xenon experiments (XENON1T, XENONnT, LZ) could substantially improve the above bounds even in the presence of large backgrounds. We also emphasize that in simple benchmark models of sub-GeV dark matter, the dark matter-electron scattering rate can be as high as one event every ten (two) seconds in the XENON1T (XENONnT or LZ) experiments, without being in conflict with any other known experimental bounds. While there are several sources of backgrounds that can produce single- or few-electron events, a large event rate can be consistent with a dark matter signal and should not be simply written off as purely a detector curiosity. This fact motivates a detailed analysis of the ionization-data (“S2”) data, taking into account the expected annual modulation spectrum of the signal rate, as well as the DM-induced electron-recoil spectra, which are another powerful discriminant between signal and background.« less

  7. Xenon Blocks Neuronal Injury Associated with Decompression

    PubMed Central

    Blatteau, Jean-Eric; David, Hélène N.; Vallée, Nicolas; Meckler, Cedric; Demaistre, Sebastien; Lambrechts, Kate; Risso, Jean-Jacques; Abraini, Jacques H.

    2015-01-01

    Despite state-of-the-art hyperbaric oxygen (HBO) treatment, about 30% of patients suffering neurologic decompression sickness (DCS) exhibit incomplete recovery. Since the mechanisms of neurologic DCS involve ischemic processes which result in excitotoxicity, it is likely that HBO in combination with an anti-excitotoxic treatment would improve the outcome in patients being treated for DCS. Therefore, in the present study, we investigated the effect of the noble gas xenon in an ex vivo model of neurologic DCS. Xenon has been shown to provide neuroprotection in multiple models of acute ischemic insults. Fast decompression compared to slow decompression induced an increase in lactate dehydrogenase (LDH), a well-known marker of sub-lethal cell injury. Post-decompression administration of xenon blocked the increase in LDH release induced by fast decompression. These data suggest that xenon could be an efficient additional treatment to HBO for the treatment of neurologic DCS. PMID:26469983

  8. Xenon Blocks Neuronal Injury Associated with Decompression.

    PubMed

    Blatteau, Jean-Eric; David, Hélène N; Vallée, Nicolas; Meckler, Cedric; Demaistre, Sebastien; Lambrechts, Kate; Risso, Jean-Jacques; Abraini, Jacques H

    2015-10-15

    Despite state-of-the-art hyperbaric oxygen (HBO) treatment, about 30% of patients suffering neurologic decompression sickness (DCS) exhibit incomplete recovery. Since the mechanisms of neurologic DCS involve ischemic processes which result in excitotoxicity, it is likely that HBO in combination with an anti-excitotoxic treatment would improve the outcome in patients being treated for DCS. Therefore, in the present study, we investigated the effect of the noble gas xenon in an ex vivo model of neurologic DCS. Xenon has been shown to provide neuroprotection in multiple models of acute ischemic insults. Fast decompression compared to slow decompression induced an increase in lactate dehydrogenase (LDH), a well-known marker of sub-lethal cell injury. Post-decompression administration of xenon blocked the increase in LDH release induced by fast decompression. These data suggest that xenon could be an efficient additional treatment to HBO for the treatment of neurologic DCS.

  9. Synthesis of the missing oxide of xenon, XeO2, and its implications for Earth's missing xenon.

    PubMed

    Brock, David S; Schrobilgen, Gary J

    2011-04-27

    The missing Xe(IV) oxide, XeO(2), has been synthesized at 0 °C by hydrolysis of XeF(4) in water and 2.00 M H(2)SO(4(aq)). Raman spectroscopy and (16/18)O isotopic enrichment studies indicate that XeO(2) possesses an extended structure in which Xe(IV) is oxygen bridged to four neighboring oxygen atoms to give a local square-planar XeO(4) geometry based on an AX(4)E(2) valence shell electron pair repulsion (VSEPR) arrangement. The vibrational spectra of Xe(16)O(2) and Xe(18)O(2) amend prior vibrational assignments of xenon doped SiO(2) and are in accordance with prior speculation that xenon depletion from the Earth's atmosphere may occur by xenon insertion at high temperatures and high pressures into SiO(2) in the Earth's crust.

  10. Xenon elimination kinetics following brief exposure.

    PubMed

    Schaefer, Maximilian S; Piper, Thomas; Geyer, Hans; Schneemann, Julia; Neukirchen, Martin; Thevis, Mario; Kienbaum, Peter

    2017-05-01

    Xenon is a modern inhalative anaesthetic with a very low solubility in tissues providing rapid elimination and weaning from anaesthesia. Besides its anaesthetic properties, Xenon promotes the endogenous erythropoietin biosynthesis and thus has been enlisted as prohibited substance by the World Anti-Doping Agency (WADA). For effective doping controls, knowledge about the elimination kinetics of Xenon and the duration of traceability are of particular importance. Seventy-seven full blood samples were obtained from 7 normal weight patients undergoing routine Xenon-based general anaesthesia with a targeted inspiratory concentration of 60% Xenon in oxygen. Samples were taken before and during Xenon inhalation as well as one, two, 4, 8, 16, 24, 32, 40, and 48 h after exposure. Xenon concentrations were assessed in full blood by gas chromatography and triple quadrupole tandem mass spectrometry with a detection limit of 0.25 µmol/L. The elimination of Xenon was characterized by linear regression of log-transformed Xenon blood concentrations, as well as non-linear regression. Xenon exposure yielded maximum concentrations in arterial blood of 1.3 [1.1; 1.6] mmol/L. Xenon was traceable for 24 to 48 h. The elimination profile was characterized by a biphasic pattern with a rapid alpha phase, followed by a slower beta phase showing a first order kinetics (c[Xe] = 69.1e -0.26x , R 2  = 0.83, t 1/2  = 2.7 h). Time in hours after exposure could be estimated by 50*ln(1.39/c[Xe] 0.077 ). Xenon's elimination kinetics is biphasic with a delayed beta phase following a first order kinetics. Xenon can reliably be detected for at least 24 h after brief exposure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Effects of pulmonary static inflation with 50% xenon on oxygen impairment during cardiopulmonary bypass for stanford type A acute aortic dissection

    PubMed Central

    Jin, Mu; Yang, Yanwei; Pan, Xudong; Lu, Jiakai; Zhang, Zhiquan; Cheng, Weiping

    2017-01-01

    Abstract Background: The goal of this study was to investigate the effects of pulmonary static inflation with 50% xenon on postoperative oxygen impairment during cardiopulmonary bypass (CPB) for Stanford type A acute aortic dissection (AAD). Methods: This prospective single-center nonrandomized controlled clinical trial included 100 adult patients undergoing surgery for Stanford type A AAD at an academic hospital in China. Fifty subjects underwent pulmonary static inflation with 50% oxygen from January 2013 to January 2014, and 50 underwent inflation with 50% xenon from January 2014 to December 2014. During CPB, the lungs were inflated with either 50% xenon (xenon group) or 50% oxygen (control group) to maintain an airway pressure of 5 cm H2O. The primary outcome was oxygenation index (OI) value after intubation, and 10 minutes and 6 hours after the operation. The second outcome was cytokine and reactive oxygen species levels after intubation and 10 minutes, 6 hours, and 24 hours after the operation. Results: Patients treated with xenon had lower OI levels compared to the control group before surgery (P = 0.002); however, there was no difference in postoperative values between the 2 groups. Following surgery, mean maximal OI values decreased by 18.8% and 33.8%, respectively, in the xenon and control groups. After surgery, the levels of interleukin-6 (IL-6), tumor necrosis factor alpha, and thromboxane B2 decreased by 23.5%, 9.1%, and 30.2%, respectively, in the xenon group, but increased by 10.8%, 26.2%, and 26.4%, respectively, in the control group. Moreover, IL-10 levels increased by 28% in the xenon group and decreased by 7.5% in the control group. There were significant time and treatment-time interaction effects on methane dicarboxylic aldehyde (P = 0.000 and P = 0.050, respectively) and myeloperoxidase (P = 0.000 and P = 0.001 in xenon and control groups, respectively). There was no difference in hospital mortality and 1-year survival rate between the 2 groups. Conclusion: Pulmonary static inflation with 50% xenon during CPB could attenuate OI decreases at the end of surgery for Stanford type A AAD. Thus, xenon may function by triggering anti-inflammatory responses and suppressing pro-inflammatory and oxidative effects. PMID:28272227

  12. Atmospheric removal times of the aerosol-bound radionuclides 137Cs and 131I during the months after the Fukushima Dai-ichi nuclear power plant accident - a constraint for air quality and climate models

    NASA Astrophysics Data System (ADS)

    Kristiansen, N. I.; Stohl, A.; Wotawa, G.

    2012-05-01

    Caesium-137 (137Cs) and iodine-131 (131I) are radionuclides of particular concern during nuclear accidents, because they are emitted in large amounts and are of significant health impact. 137Cs and 131I attach to the ambient accumulation-mode (AM) aerosols and share their fate as the aerosols are removed from the atmosphere by scavenging within clouds, precipitation and dry deposition. Here, we estimate their removal times from the atmosphere using a unique high-precision global measurement data set collected over several months after the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. The noble gas xenon-133 (133Xe), also released during the accident, served as a passive tracer of air mass transport for determining the removal times of 137Cs and 131I via the decrease in the measured ratios 137Cs/133Xe and 131I/133Xe over time. After correction for radioactive decay, the 137Cs/133Xe ratios reflect the removal of aerosols by wet and dry deposition, whereas the 131I/133Xe ratios are also influenced by aerosol production from gaseous 131I. We find removal times for 137Cs of 10.0-13.9 days and for 131I of 17.1-24.2 days during April and May 2011. We discuss possible caveats (e.g. late emissions, resuspension) that can affect the results, and compare the 137Cs removal times with observation-based and modeled aerosol lifetimes. Our 137Cs removal time of 10.0-13.9 days should be representative of a "background" AM aerosol well mixed in the extratropical Northern Hemisphere troposphere. It is expected that the lifetime of this vertically mixed background aerosol is longer than the lifetime of AM aerosols originating from surface sources. However, the substantial difference to the mean lifetimes of AM aerosols obtained from aerosol models, typically in the range of 3-7 days, warrants further research on the cause of this discrepancy. Too short modeled AM aerosol lifetimes would have serious implications for air quality and climate model predictions.

  13. Recovering Residual Xenon Propellant for an Ion Propulsion System

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani; Skakkottai, P.; wu, Jiunn Jeng

    2006-01-01

    Future nuclear-powered Ion-Propulsion- System-propelled spacecraft such as Jupiter Icy Moon Orbiter (JIMO) will carry more than 10,000 kg of xenon propellant. Typically, a small percentage of this propellant cannot be used towards the end of the mission because of the pressure drop requirements for maintaining flow. For large missions such as JIMO, this could easily translate to over 250 kg of unusable xenon. A proposed system, the Xenon Recovery System (XRS), for recovering almost all of the xenon remaining in the tank, would include a cryopump in the form of a condenser/evaporator that would be alternatively cooled by a radiator, then heated electrically. When the pressure of the xenon in the tank falls below 0.7 MPa (100 psia), the previously isolated XRS will be brought online and the gas from the tank would enter the cryopump that is initially cooled to a temperature below saturation temperature of xenon. This causes xenon liquefaction and further cryopumping from the tank till the cryopump is full of liquid xenon. At this point, the cryopump is heated electrically by small heaters (70 to 80 W) to evaporate the liquid that is collected as high-pressure gas (<7 MPa; 1,000 psia) in an intermediate accumulator. Check valves between the tank and the XRS prevent the reverse flow of xenon during the heating cycle. The accumulator serves as the high-pressure source of xenon gas to the Xenon Feed System (XFS) downstream of the XRS. This cycle is repeated till almost all the xenon is recovered. Currently, this system is being baselined for JIMO.

  14. Detection of Alpha Particles and Low Energy Gamma Rays by Thermo-Bonded Micromegas in Xenon Gas

    NASA Astrophysics Data System (ADS)

    Wei, Yuehuan; Guan, Liang; Zhang, Zhiyong; Lin, Qing; Wang, Xiaolian; Ni, Kaixuan; Zhao, Tianchi

    2013-08-01

    Micromegas is a type of micro-pattern gaseous detector currently under R&D for applications in rare event search experiments. Here we report the performance of a Micromegas structure constructed with a micromesh thermo-bonded to a readout plane, motivated by its potential application in two-phase xenon detectors for dark matter and neutrinoless double beta decay experiments. The study is carried out in pure xenon at room temperature. Measurements with alpha particles from the Americium-241 source showed that gas gains larger than 200 can be obtained at xenon pressure up to 3 atm. Gamma rays down to 8 keV were observed with such a device.

  15. 40 CFR Appendix D to Part 61 - Methods for Estimating Radionuclide Emissions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for decay Xenon 0.5/wk Based on xenon half-life of 5.3 days; Douglas bags: Released within one week Xenon 1 Provides no reduction of exposure to general public. Venturi scrubbers ParticulatesGases 0.051... precipitators Particulates 0.05 Not applicable for gaseous radionuclides Xenon traps Xenon 0.1 Efficiency is...

  16. 40 CFR Appendix D to Part 61 - Methods for Estimating Radionuclide Emissions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for decay Xenon 0.5/wk Based on xenon half-life of 5.3 days; Douglas bags: Released within one week Xenon 1 Provides no reduction of exposure to general public. Venturi scrubbers ParticulatesGases 0.051... precipitators Particulates 0.05 Not applicable for gaseous radionuclides Xenon traps Xenon 0.1 Efficiency is...

  17. Inhaled Xenon Attenuates Myocardial Damage in Comatose Survivors of Out-of-Hospital Cardiac Arrest: The Xe-Hypotheca Trial.

    PubMed

    Arola, Olli; Saraste, Antti; Laitio, Ruut; Airaksinen, Juhani; Hynninen, Marja; Bäcklund, Minna; Ylikoski, Emmi; Wennervirta, Johanna; Pietilä, Mikko; Roine, Risto O; Harjola, Veli-Pekka; Niiranen, Jussi; Korpi, Kirsi; Varpula, Marjut; Scheinin, Harry; Maze, Mervyn; Vahlberg, Tero; Laitio, Timo

    2017-11-28

    The authors previously reported that inhaled xenon combined with hypothermia attenuates brain white matter injury in comatose survivors of out-of-hospital cardiac arrest (OHCA). A pre-defined secondary objective was to assess the effect of inhaled xenon on myocardial ischemic damage in the same study population. A total of 110 comatose patients who had experienced OHCA from a cardiac cause were randomized to receive either inhaled xenon (40% end-tidal concentration) combined with hypothermia (33°C) for 24 h (n = 55; xenon group) or hypothermia treatment alone (n = 55; control group). Troponin-T levels were measured at hospital admission, and at 24 h, 48 h, and 72 h post-cardiac arrest. All available cases were analyzed for troponin-T release. Troponin-T measurements were available from 54 xenon patients and 54 control patients. The baseline characteristics did not differ significantly between the groups. After adjustments for age, sex, study site, primary coronary percutaneous intervention (PCI), and norepinephrine dose, the mean ± SD post-arrival incremental change of the ln-transformed troponin-T at 72 h was 0.79 ± 1.54 in the xenon group and 1.56 ± 1.38 in the control group (adjusted mean difference -0.66; 95% confidence interval: -1.16 to -0.16; p = 0.01). The effect of xenon on the change in the troponin-T values did not differ in patients with or without PCI or in those with a diagnosis of ST-segment elevation myocardial infarction (group by PCI or ST-segment elevation myocardial infarction interaction effect; p = 0.86 and p = 0.71, respectively). Among comatose survivors of OHCA, in comparison with hypothermia alone, inhaled xenon combined with hypothermia suggested a less severe myocardial injury as demonstrated by the significantly reduced release of troponin-T. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  18. Anticipatory control of xenon in a pressurized water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Impink, A.J. Jr.

    1987-02-10

    A method is described for automatically dampening xenon-135 spatial transients in the core of a pressurized water reactor having control rods which regulate reactor power level, comprising the steps of: measuring the neutron flu in the reactor core at a plurality of axially spaced locations on a real-time, on-line basis; repetitively generating from the neutron flux measurements, on a point-by-point basis, signals representative of the current axial distribution of xenon-135, and signals representative of the current rate of change of the axial distribution of xenon-135; generating from the xenon-135 distribution signals and the rate of change of xenon distribution signals,more » control signals for reducing the xenon transients; and positioning the control rods as a function of the control signals to dampen the xenon-135 spatial transients.« less

  19. Measuring and Modeling Xenon Uptake in Plastic Beta-Cells

    NASA Astrophysics Data System (ADS)

    Suarez, R.; Hayes, J. C.; Harper, W. W.; Humble, P.; Ripplinger, M. D.; Stephenson, D. E.; Williams, R. M.

    2013-12-01

    The precision of the stable xenon volume measurement in atmospheric monitoring radio-xenon systems is a critical parameter used to determine the activity concentration of a radio-xenon sample. Typically these types of systems use a plastic scintillating beta-cell as part of a beta-gamma detection scheme to measure the radioactivity present in the gas sample. Challenges arise when performing the stable xenon calculation during or after radioactive counting of the sample due to xenon uptake into the plastic beta-cells. Plastic beta cells can adsorb as much as 5% of the sample during counting. If quantification is performed after counting, the uptake of xenon into the plastic results in an underestimation of the xenon volume measurement. This behavior also causes what is typically known as 'memory effect' in the cell. Experiments were conducted using a small volume low pressure range thermal conductivity sensor to quantify the amount of xenon uptake into the cell over a given period of time. Understanding the xenon uptake in the cell provides a better estimate of the stable volume which improves the overall measurement capability of the system. The results from these experiments along with modeling will be presented.

  20. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site.

    PubMed

    Harris, Katie; Armstrong, Scott P; Campos-Pires, Rita; Kiru, Louise; Franks, Nicholas P; Dickinson, Robert

    2013-11-01

    Xenon, the inert anesthetic gas, is neuroprotective in models of brain injury. The authors investigate the neuroprotective mechanisms of the inert gases such as xenon, argon, krypton, neon, and helium in an in vitro model of traumatic brain injury. The authors use an in vitro model using mouse organotypic hippocampal brain slices, subjected to a focal mechanical trauma, with injury quantified by propidium iodide fluorescence. Patch clamp electrophysiology is used to investigate the effect of the inert gases on N-methyl-D-aspartate receptors and TREK-1 channels, two molecular targets likely to play a role in neuroprotection. Xenon (50%) and, to a lesser extent, argon (50%) are neuroprotective against traumatic injury when applied after injury (xenon 43±1% protection at 72 h after injury [N=104]; argon 30±6% protection [N=44]; mean±SEM). Helium, neon, and krypton are devoid of neuroprotective effect. Xenon (50%) prevents development of secondary injury up to 48 h after trauma. Argon (50%) attenuates secondary injury, but is less effective than xenon (xenon 50±5% reduction in secondary injury at 72 h after injury [N=104]; argon 34±8% reduction [N=44]; mean±SEM). Glycine reverses the neuroprotective effect of xenon, but not argon, consistent with competitive inhibition at the N-methyl-D-aspartate receptor glycine site mediating xenon neuroprotection against traumatic brain injury. Xenon inhibits N-methyl-D-aspartate receptors and activates TREK-1 channels, whereas argon, krypton, neon, and helium have no effect on these ion channels. Xenon neuroprotection against traumatic brain injury can be reversed by increasing the glycine concentration, consistent with inhibition at the N-methyl-D-aspartate receptor glycine site playing a significant role in xenon neuroprotection. Argon and xenon do not act via the same mechanism.

  1. Can xenon in water inhibit ice growth? Molecular dynamics of phase transitions in water-Xe system.

    PubMed

    Artyukhov, Vasilii I; Pulver, Alexander Yu; Peregudov, Alex; Artyuhov, Igor

    2014-07-21

    Motivated by recent experiments showing the promise of noble gases as cryoprotectants, we perform molecular dynamics modeling of phase transitions in water with xenon under cooling. We follow the structure and dynamics of xenon water solution as a function of temperature. Homogeneous nucleation of clathrate hydrate phase is observed and characterized. As the temperature is further reduced we observe hints of dissociation of clathrate due to stronger hydrophobic hydration, pointing towards a possible instability of clathrate at cryogenic temperatures and conversion to an amorphous phase comprised of "xenon + hydration shell" Xe·(H2O)21.5 clusters. Simulations of ice-xenon solution interface in equilibrium and during ice growth reveal the effects of xenon on the ice-liquid interface, where adsorbed xenon causes roughening of ice surface but does not preferentially form clathrate. These results provide evidence against the ice-blocker mechanism of xenon cryoprotection.

  2. Discrimination Between Patients With Alzheimer Disease and Healthy Subjects Using Layer Analysis of Cerebral Blood Flow and Xenon Solubility Coefficient in Xenon-Enhanced Computed Tomography.

    PubMed

    Sase, Shigeru; Yamamoto, Homaro; Kawashima, Ena; Tan, Xin; Sawa, Yutaka

    The aim of this study was to develop a method for discriminating between patients with Alzheimer disease (AD) and healthy subjects using layer analysis of cerebral blood flow (CBF) and xenon solubility coefficient (λ) in xenon-enhanced computed tomography (CT). Xenon-enhanced CT was performed on 27 patients with AD (81.7 [3.3] years old) and 15 healthy volunteers (78.6 [4.0] years old) using a wide volume CT. For each subject, we created the first- (surface) to sixth-layer images of CBF and λ for the 6 viewing directions (layer thickness, 5 mm). For the discriminant views, receiver operating characteristic curves for the ratio of CBF to λ were created to identify patients with AD. For the third- and fourth-layer left lateral views, which were designated as the discriminant views, areas under the receiver operating characteristic curve were 96.8% and 97.4%, respectively. With the use of the discriminant views obtained by xenon-enhanced CT, we could effectively discriminate between patients with AD and healthy subjects using both CBF and λ.

  3. The price for reduced light toxicity: Do endoilluminator spectral filters decrease color contrast during Brilliant Blue G-assisted chromovitrectomy?

    PubMed

    Henrich, Paul B; Valmaggia, Christophe; Lang, Corina; Cattin, Philippe C

    2014-03-01

    Vitreoretinal surgeons have been slow to adopt the use of spectral filters for endoillumination to reduce retinal light toxicity. This study shows that spectral filters can be used without a loss in color contrast during brilliant blue G chromovitrectomy. To evaluate the influence of intra operative spectral light filters on perceivable contrast during Brilliant Blue G chromovitrectomy, a prospective, observational clinical study was carried out on 59 consecutive Brilliant Blue G chromovitrectomy interventions in 59 patients admitted for macular holes, macular pucker or vitreomacular traction syndromes. Subsequent to peeling of the internal limiting membrane, six different illumination modes were enabled consecutively: mercury vapor, mercury vapor/xenon, and xenon followed by xenon combined with an amber, green or yellow spectral filter. Main outcome measure was the chromaticity spread between stained internal limiting membrane and unstained retina as a measure for the color contrast perceived by the human eye. Mean chromaticity scores were similar for all light sources: mercury vapor 7.97, mercury vapor/xenon 7.96 (p = 0.96), and xenon 7.41 (p = 0.55). Compared to xenon, the additional use of endoillumination spectral filters did not change contrast recognizability: Chromaticity scores were 9.38 for the amber filter (p = 0.13), 6.63 for the green and 7.02 for the yellow filter (p = 0.37 and 0.64, respectively). When comparing the different filters head-to-head, the amber filter was superior to the green filter (p = 0.03), while the yellow was intermediate and not significantly different from either the amber (p = 0.08) or the green filter (p = 0.51). Color contrast perceptibility during Brilliant Blue G assisted chromovitrectomy is similar with mercury vapor, mercury vapor/xenon or xenon light sources. Spectral filters do not decrease color contrast recognizability. Head-to-head comparison shows a significant advantage for the amber over the green filter with respect to contrast generation, the yellow filter is intermediate. As spectral filters are known to greatly reduce retinal light toxicity, we suggest donor eye studies to validate whether the amber filter should be generally recommended for Brilliant Blue G chromovitrectomy.

  4. Xenon Feed System Progress

    DTIC Science & Technology

    2006-01-01

    From - To) 13-06-2006 Technical Paper 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER F04611-00-C-0055 Xenon Feed System Progress (Preprint) 5b. GRANT...propulsion xenon feed system for a flight technology demonstration program. Major accomplishments include: 1) Utilization of the Moog...successfully fed xenon to a 200 watt Hall Effect Thruster in a Technology Demonstration Program. The feed system has demonstrated throttling of xenon

  5. The atmosphere of Mars: detection of krypton and xenon.

    PubMed

    Owen, T; Biemann, K; Rushneck, D R; Biller, J E; Howarth, D W; Lafleur, A L

    1976-12-11

    Krypton and xenon have been discovered in the martian atmosphere with the mass spectrometer on the second Viking lander. Krypton is more abundant than xenon. The relative abundances of the krypton isotopes appear normal, but the ratio of xenon-129 to xenon-132 is enhanced on Mars relative to the terrestrial value for this ratio. Some possible implications of these findings are discussed.

  6. XENON100 Dark Matter Search: Scintillation Response of Liquid Xenon to Electronic Recoils

    NASA Astrophysics Data System (ADS)

    Lim, Kyungeun Elizabeth

    Dark matter is one of the missing pieces necessary to complete the puzzle of the universe. Numerous astrophysical observations at all scales suggest that 23 % of the universe is made of nonluminous, cold, collisionless, nonbaryonic, yet undiscovered dark matter. Weakly Interacting Massive Particles (WIMPs) are the most well-motivated dark matter candidates and significant efforts have been made to search for WIMPs. The XENON100 dark matter experiment is currently the most sensitive experiment in the global race for the first direct detection of WIMP dark matter. XENON100 is a dual-phase (liquid-gas) time projection chamber containing a total of 161 kg of liquid xenon (LXe) with a 62kg WIMP target mass. It has been built with radiopure materials to achieve an ultra-low electromagnetic background and operated at the Laboratori Nazionali del Gran Sasso in Italy. WIMPs are expected to scatter off xenon nuclei in the target volume. Simultaneous measurement of ionization and scintillation produced by nuclear recoils allows for the detection of WIMPs in XENON100. Data from the XENON100 experiment have resulted in the most stringent limits on the spin-independent elastic WIMP-nucleon scattering cross sections for most of the significant WIMP masses. As the experimental precision increases, a better understanding of the scintillation and ionization response of LXe to low energy (< 10 keV) particles is crucial for the interpretation of data from LXe based WIMP searches. A setup has been built and operated at Columbia University to measure the scintillation response of LXe to both electronic and nuclear recoils down to energies of a few keV, in particular for the XENON100 experiment. In this thesis, I present the research carried out in the context of the XENON100 dark matter search experiment. For the theoretical foundation of the XENON100 experiment, the first two chapters are dedicated to the motivation for and detection medium choice of the XENON100 experiment, respectively. A general review about dark matter focusing on WIMPs and their direct detection with liquid noble gas detectors is presented in Chap. 1. LXe as an attractive WIMP detection medium is explained in Chap. 2. The XENON100 detector design, the detector, and its subsystems are detailed in Chap. 3. The calibration of the detector and the characterized detector response used for the discrimination of a WIMP-like signal against background are explained in Chap. 4. In an effort to understand the background, anomalous electronic recoils were studied extensively and are described in Chap. 5. In order to obtain a better understanding of the electronic recoil background of XENON100, including an estimation of the electronic recoil background contribution, as well as to interpret dark matter results such as annual modulation, measurement of the scintillation yield of low-energy electrons in LXe was performed in 2011, with the dedicated setup mentioned above. The results from this measurement are discussed in Chap. 6. Finally, the results for the latest science data from XENON100 to search for WIMPs, comprising 225 live-days taken over 13 months during 2011 and 2012 are explained in Chap. 7.

  7. International challenge to predict the impact of radioxenon releases from medical isotope production on a comprehensive nuclear test ban treaty sampling station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Bowyer, Ted W.; Achim, Pascal

    Abstract The International Monitoring System (IMS) is part of the verification regime for the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear explosions, and then the full network may be populated with xenon monitoring afterward (Bowyer et al., 2013). Fission-based production of 99Mo for medical purposes also releases radioxenon isotopes to the atmosphere (Saey, 2009). One of the ways to mitigate the effect of emissions from medical isotope production is the use of stack monitoring data, if it were available, so thatmore » the effect of radioactive xenon emissions could be subtracted from the effect from a presumed nuclear explosion, when detected at an IMS station location. To date, no studies have addressed the impacts the time resolution or data accuracy of stack monitoring data have on predicted concentrations at an IMS station location. Recently, participants from seven nations used atmospheric transport modeling to predict the time-history of 133Xe concentration measurements at an IMS station in Germany using stack monitoring data from a medical isotope production facility in Belgium. Participants received only stack monitoring data and used the atmospheric transport model and meteorological data of their choice. Some of the models predicted the highest measured concentrations quite well (a high composite statistical model comparison rank or a small mean square error with the measured values). The results suggest release data on a 15 min time spacing is best. The model comparison rank and ensemble analysis suggests that combining multiple models may provide more accurate predicted concentrations than any single model. Further research is needed to identify optimal methods for selecting ensemble members and those methods may depend on the specific transport problem. None of the submissions based only on the stack monitoring data predicted the small measured concentrations very well. The one submission that best predicted small concentrations also included releases from nuclear power plants. Modeling of sources by other nuclear facilities with smaller releases than medical isotope production facilities may be important in discriminating those releases from releases from a nuclear explosion.« less

  8. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    PubMed

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. Published by Elsevier Inc.

  9. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia.

    PubMed

    Ma, Daqing; Hossain, Mahmuda; Chow, Andre; Arshad, Mubarik; Battson, Renee M; Sanders, Robert D; Mehmet, Huseyin; Edwards, A David; Franks, Nicholas P; Maze, Mervyn

    2005-08-01

    Perinatal asphyxia can result in neuronal injury with long-term neurological and behavioral consequences. Although hypothermia may provide some modest benefit, the intervention itself can produce adverse consequences. We have investigated whether xenon, an antagonist of the N-methyl-D-aspartate subtype of the glutamate receptor, can enhance the neuroprotection provided by mild hypothermia. Cultured neurons injured by oxygen-glucose deprivation were protected by combinations of interventions of xenon and hypothermia that, when administered alone, were not efficacious. A combination of xenon and hypothermia administered 4 hours after hypoxic-ischemic injury in neonatal rats provided synergistic neuroprotection assessed by morphological criteria, by hemispheric weight, and by functional neurological studies up to 30 days after the injury. The protective mechanism of the combination, in both in vitro and in vivo models, involved an antiapoptotic action. If applied to humans, these data suggest that low (subanesthetic) concentrations of xenon in combination with mild hypothermia may provide a safe and effective therapy for perinatal asphyxia.

  10. Density Functional Theory (dft) Simulations of Shocked Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Magyar, Rudolph J.

    2009-12-01

    Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as xenon is known to form compounds under normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. We present DFT-MD simulations of shocked liquid xenon with the goal of developing an improved equation of state. The calculated Hugoniot to 2 MPa compares well with available experimental shock data. Sandia is a mul-tiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Density Functional Theory (DFT) Simulations of Shocked Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Magyar, Rudolph J.

    2009-06-01

    Xenon is not only a technologically important element used in laser technologies and jet propulsion, but it is also one of the most accessible materials in which to study the metal-insulator transition with increasing pressure. Because of its closed shell electronic configuration, Xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as Xenon is known to form compounds at normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. In this talk, we present DFT-MD simulations of shocked liquid Xenon with the goal of developing an improved equation of state. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Purification for the XENONnT dark matter experiment

    NASA Astrophysics Data System (ADS)

    Brown, Ethan; Xenon Collaboration

    2017-01-01

    The XENON1T experiment uses 3.5 tons of liquid xenon in a cryogenic detector to search for dark matter. Its upgrade, XENONnT, will similarly house 7.5 tons of liquid xenon. Operation of these large detectors requires continual purification of the xenon in an external purifier, and the need for less than part per billion level oxygen in the xenon, coupled with the large quantity of xenon to be purified, places high demands on the rate of flow through this purification system. Building on the success of the XENON10 and XENON100 experiments, XENON1T circulates gaseous xenon through heated getters at a rate of up to 100 SLPM, pushing commercial pumps to their limits moving this large quantity of gas without interruption for several years. Two upgrades are considered for XENONnT. A custom high-capacity magnetic piston pump based on the one developed for the EXO200 experiment has been scaled up to support the high demands of this much larger experiment. Additionally, a liquid phase circulation and purification system that purifies the cryogenic liquid directly is being developed, which takes advantage of the much smaller volumetric flow demands of liquid relative to gas. The implementation of both upgrades will be presented. Supported by the National Science Foundation.

  13. Xenon Fractionation and Archean Hydrogen Escape

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.

    2015-01-01

    Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.

  14. Xenon Protects Against Septic Acute Kidney Injury via miR-21 Target Signaling Pathway.

    PubMed

    Jia, Ping; Teng, Jie; Zou, Jianzhou; Fang, Yi; Wu, Xie; Liang, Mingyu; Ding, Xiaoqiang

    2015-07-01

    Septic acute kidney injury is one of the most common and life-threatening complications in critically ill patients, and there is no approved effective treatment. We have shown xenon provides renoprotection against ischemia-reperfusion injury and nephrotoxicity in rodents via inhibiting apoptosis. Here, we studied the effects of xenon preconditioning on septic acute kidney injury and its mechanism. Experimental animal investigation. University research laboratory. Experiments were performed with male C57BL/6 mice, 10 weeks of age, weighing 20-25 g. We induced septic acute kidney injury by a single intraperitoneal injection of Escherichia coli lipopolysaccharide at a dose of 20 mg/kg. Mice were exposed for 2 hours to either 70% xenon or 70% nitrogen, 24 hours before the onset of septic acute kidney injury. In vivo knockdown of miR-21 was performed using locked nucleic acid-modified anti-miR, the role of miR-21 in renal protection conferred by the xenon preconditioning was examined, and miR-21 signaling pathways were analyzed. Xenon preconditioning provided morphologic and functional renoprotection, characterized by attenuation of renal tubular damage, apoptosis, and a reduction in inflammation. Furthermore, xenon treatment significantly upregulated the expression of miR-21 in kidney, suppressed proinflammatory factor programmed cell death protein 4 expression and nuclear factor-κB activity, and increased interleukin-10 production. Meanwhile, xenon preconditioning also suppressed the expression of proapoptotic protein phosphatase and tensin homolog deleted on chromosome 10, activating protein kinase B signaling pathway, subsequently increasing the expression of antiapoptotic B-cell lymphoma-2, and inhibiting caspase-3 activity. Knockdown of miR-21 upregulated its target effectors programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10 expression, resulted in an increase in apoptosis, and exacerbated lipopolysaccharide-induced acute kidney injury. Our findings demonstrated that xenon preconditioning protected against lipopolysaccharide-induced acute kidney injury via activation of miR-21 target signaling pathways.

  15. The noble gas xenon induces pharmacological preconditioning in the rat heart in vivo via induction of PKC-ɛ and p38 MAPK

    PubMed Central

    Weber, Nina C; Toma, Octavian; Wolter, Jessica I; Obal, Detlef; Müllenheim, Jost; Preckel, Benedikt; Schlack, Wolfgang

    2004-01-01

    Xenon is an anesthetic with minimal hemodynamic side effects, making it an ideal agent for cardiocompromised patients. We investigated if xenon induces pharmacological preconditioning (PC) of the rat heart and elucidated the underlying molecular mechanisms. For infarct size measurements, anesthetized rats were subjected to 25 min of coronary artery occlusion followed by 120 min of reperfusion. Rats received either the anesthetic gas xenon, the volatile anesthetic isoflurane or as positive control ischemic preconditioning (IPC) during three 5-min periods before 25-min ischemia. Control animals remained untreated for 45 min. To investigate the involvement of protein kinase C (PKC) and p38 mitogen-activated protein kinase (MAPK), rats were pretreated with the PKC inhibitor calphostin C (0.1 mg kg−1) or the p38 MAPK inhibitor SB203580 (1 mg kg−1). Additional hearts were excised for Western blot and immunohistochemistry. Infarct size was reduced from 50.9±16.7% in controls to 28.1±10.3% in xenon, 28.6±9.9% in isoflurane and to 28.5±5.4% in IPC hearts. Both, calphostin C and SB203580, abolished the observed cardioprotection after xenon and isoflurane administration but not after IPC. Immunofluorescence staining and Western blot assay revealed an increased phosphorylation and translocation of PKC-ɛ in xenon treated hearts. This effect could be blocked by calphostin C but not by SB203580. Moreover, the phosphorylation of p38 MAPK was induced by xenon and this effect was blocked by calphostin C. In summary, we demonstrate that xenon induces cardioprotection by PC and that activation of PKC-ɛ and its downstream target p38 MAPK are central molecular mechanisms involved. Thus, the results of the present study may contribute to elucidate the beneficial cardioprotective effects of this anesthetic gas. PMID:15644876

  16. Neuroprotection and neurotoxicity in the developing brain: an update on the effects of dexmedetomidine and xenon.

    PubMed

    Alam, Azeem; Suen, Ka Chun; Hana, Zac; Sanders, Robert D; Maze, Mervyn; Ma, Daqing

    Growing and consistent preclinical evidence, combined with early clinical epidemiological observations, suggest potentially neurotoxic effects of commonly used anesthetic agents in the developing brain. This has prompted the FDA to issue a safety warning for all sedatives and anesthetics approved for use in children under three years of age. Recent studies have identified dexmedetomidine, the potent α2-adrenoceptor agonist, and xenon, the noble gas, as effective anesthetic adjuvants that are both less neurotoxic to the developing brain, and also possess neuroprotective properties in neonatal and other settings of acute ongoing neurologic injury. Dexmedetomidine and xenon are effective anesthetic adjuvants that appear to be less neurotoxic than other existing agents and have the potential to be neuroprotective in the neonatal and pediatric settings. Although results from recent clinical trials and case reports have indicated the neuroprotective potential of xenon and dexmedetomidine, additional randomized clinical trials corroborating these studies are necessary. By reviewing both the existing preclinical and clinical evidence on the neuroprotective effects of dexmedetomidine and xenon, we hope to provide insight into the potential clinical efficacy of these agents in the management of pediatric surgical patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Xenon neurotoxicity in rat hippocampal slice cultures is similar to isoflurane and sevoflurane.

    PubMed

    Brosnan, Heather; Bickler, Philip E

    2013-08-01

    Anesthetic neurotoxicity in the developing brain of rodents and primates has raised concern. Xenon may be a nonneurotoxic alternative to halogenated anesthetics, but its toxicity has only been studied at low concentrations, where neuroprotective effects predominate in animal models. An equipotent comparison of xenon and halogenated anesthetics with respect to neurotoxicity in developing neurons has not been made. Organotypic hippocampal cultures from 7-day-old rats were exposed to 0.75, 1, and 2 minimum alveolar concentrations (MAC) partial pressures (60% xenon at 1.2, 2.67, and 3.67 atm; isoflurane at 1.4, 1.9, and 3.8%; and sevoflurane at 3.4 and 6.8%) for 6 h, at atmospheric pressure or in a pressure chamber. Cell death was assessed 24 h later with fluorojade and fluorescent dye exclusion techniques. Xenon caused death of hippocampal neurons in CA1, CA3, and dentate regions after 1 and 2 MAC exposures, but not at 0.75 MAC. At 1 MAC, xenon increased cell death 40% above baseline (P < 0.01; ANOVA with Dunnett test). Both isoflurane and sevoflurane increased neuron death at 1 but not 2 MAC. At 1 MAC, the increase in cell death compared with controls was 63% with isoflurane and 90% with sevoflurane (both P < 0.001). Pretreatment of cultures with isoflurane (0.75 MAC) reduced neuron death after 1 MAC xenon, isoflurane, and sevoflurane. Xenon causes neuronal cell death in an in vitro model of the developing rodent brain at 1 MAC, as does isoflurane and sevoflurane at similarly potent concentrations. Preconditioning with a subtoxic dose of isoflurane eliminates this toxicity.

  18. Heat dissipation in controlled environment enclosures through the application of water screens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warrington, I.J.; Halligan, E.A.; Ruby, L.C.

    1994-12-31

    The use of plate glass-water thermal barriers in controlled environment facilities effectively reduces the thermal load within the plant growth chamber. This allows high PPFs to be provided for plant growth and development studies, adequate simulation of daily light integrals, and simulation of peak PPFs. Further, substantial amounts of incandescent lamp supplementation can be used to achieve simulation of daylight R:FR ratios which are needed to ensure adequate stem development in some species. While the focus in this paper has been on the use of entire thermal barriers which separate the lighting enclosure from the plant growth chamber, the samemore » principles apply to the use of water jackets for cooling individual lamps (such as can occur with xenon-arc lamps). In this instance, the barrier separating the lamps from the plant chamber can be much simpler (e.g., plexiglas) as the main function of the barrier is to separate the air ventilation of the lamp enclosure from the air system within the plant growth chamber. The main advantage of water as a thermal barrier is the negligible absorption of radiation in the photosynthetically-active and near infra-red wavebands. Consequently, plate glass-water barriers typically allow transmission of approximately 90% of radiation in these regions. While ventilated double and triple glazing systems appear to be attractive alternative to water barriers from an operating standpoint, their significant absorption in the biologically-important wavebands (7 - 12 %) with each glass layer and longer-wave cut-offs (typically 2500 - 4000 nm) makes them a much less attractive alternative. The data presented demonstrate clearly that measurement of PPF alone is not an adequate representation of the radiation environment being used in a controlled environment study.« less

  19. GAS CHROMATOGRAPHY-MASS SPECTROMETRY MEASUREMENT OF XENON IN GAS-LOADED LIPOSOMES FOR NEUROPROTECTIVE APPLICATIONS1

    PubMed Central

    Klegerman, Melvin E.; Moody, Melanie R.; Hurling, Jermaine R.; Peng, Tao; Huang, Shao-Ling; McPherson, David D.

    2016-01-01

    Rationale We have produced a liposomal formulation of xenon (Xe-ELIP) as a neuroprotectant for inhibition of brain damage in stroke patients. This mandates development of a reliable assay to measure the amount of dissolved xenon released from Xe-ELIP in water and blood samples. Methods Gas chromatography-Mass Spectrometry (GC-MS) was used to quantify xenon gas released into the headspace of vials containing Xe-ELIP samples in water or blood. In order to determine blood concentration of xenon in vivo after Xe-ELIP administration, 6 mg Xe-ELIP lipid was infused intravenously into rats. Blood samples were drawn directly from a catheterized right carotid artery. After introduction of the samples, each vial was allowed to equilibrate to 37° C in a water bath, followed by 20 minutes of sonication prior to headspace sampling. Xenon concentrations were calculated from a gas dose-response curve and normalized using the published xenon water-gas solubility coefficient. Results The mean corrected percent of xenon from Xe-ELIP released into water was 3.87 ± 0.56% (SD, n = 8), corresponding to 19.3 ± 2.8 μl/mg lipid, which is consistent with previous independent Xe-ELIP measurements. The corresponding xenon content of Xe-ELIP in rat blood was 23.38 ± 7.36 μl/mg lipid (n = 8). Mean rat blood xenon concentration after IV administration of Xe-ELIP was 14 ± 10 μM, which is approximately 15% of the estimated neuroprotective level. Conclusions Using this approach, we have established a reproducible method for measuring dissolved xenon in fluids. These measurements have established that neuroprotective effects can be elicited by less than 20% of the calculated neuroprotective xenon blood concentration. More work will have to be done to establish the protective xenon pharmacokinetic range. PMID:27689777

  20. Gas chromatography/mass spectrometry measurement of xenon in gas-loaded liposomes for neuroprotective applications.

    PubMed

    Klegerman, Melvin E; Moody, Melanie R; Hurling, Jermaine R; Peng, Tao; Huang, Shao-Ling; McPherson, David D

    2017-01-15

    We have produced a liposomal formulation of xenon (Xe-ELIP) as a neuroprotectant for inhibition of brain damage in stroke patients. This mandates development of a reliable assay to measure the amount of dissolved xenon released from Xe-ELIP in water and blood samples. Gas chromatography/mass spectrometry (GC/MS) was used to quantify xenon gas released into the headspace of vials containing Xe-ELIP samples in water or blood. In order to determine blood concentration of xenon in vivo after Xe-ELIP administration, 6 mg of Xe-ELIP lipid was infused intravenously into rats. Blood samples were drawn directly from a catheterized right carotid artery. After introduction of the samples, each vial was allowed to equilibrate to 37°C in a water bath, followed by 20 minutes of sonication prior to headspace sampling. Xenon concentrations were calculated from a gas dose-response curve and normalized using the published xenon water-gas solubility coefficient. The mean corrected percent of xenon from Xe-ELIP released into water was 3.87 ± 0.56% (SD, n = 8), corresponding to 19.3 ± 2.8 μL/mg lipid, which is consistent with previous independent Xe-ELIP measurements. The corresponding xenon content of Xe-ELIP in rat blood was 23.38 ± 7.36 μL/mg lipid (n = 8). Mean rat blood xenon concentration after intravenous administration of Xe-ELIP was 14 ± 10 μM, which is approximately 15% of the estimated neuroprotective level. Using this approach, we have established a reproducible method for measuring dissolved xenon in fluids. These measurements have established that neuroprotective effects can be elicited by less than 20% of the calculated neuroprotective xenon blood concentration. More work will have to be done to establish the protective xenon pharmacokinetic range. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. European cardiovascular nurses' and allied professionals' knowledge and practical skills regarding cardiopulmonary resuscitation.

    PubMed

    Pettersen, Trond R; Mårtensson, Jan; Axelsson, Åsa; Jørgensen, Marianne; Strömberg, Anna; Thompson, David R; Norekvål, Tone M

    2018-04-01

    Cardiopulmonary resuscitation (CPR) remains a cornerstone in the treatment of cardiac arrest, and is directly linked to survival rates. Nurses are often first responders and need to be skilled in the performance of cardiopulmonary resuscitation. As cardiopulmonary resuscitation skills deteriorate rapidly, the purpose of this study was to investigate whether there was an association between participants' cardiopulmonary resuscitation training and their practical cardiopulmonary resuscitation test results. This comparative study was conducted at the 2014 EuroHeartCare meeting in Stavanger ( n=133) and the 2008 Spring Meeting on Cardiovascular Nursing in Malmö ( n=85). Participants performed cardiopulmonary resuscitation for three consecutive minutes CPR training manikins from Laerdal Medical®. Data were collected with a questionnaire on demographics and participants' level of cardiopulmonary resuscitation training. Most participants were female (78%) nurses (91%) from Nordic countries (77%), whose main role was in nursing practice (63%), and 71% had more than 11 years' experience ( n=218). Participants who conducted cardiopulmonary resuscitation training once a year or more ( n=154) performed better regarding ventilation volume than those who trained less (859 ml vs. 1111 ml, p=0.002). Those who had cardiopulmonary resuscitation training offered at their workplace ( n=161) also performed better regarding ventilation volume (889 ml vs. 1081 ml, p=0.003) and compression rate per minute (100 vs. 91, p=0.04) than those who had not. Our study indicates a positive association between participants' performance on the practical cardiopulmonary resuscitation test and the frequency of cardiopulmonary resuscitation training and whether cardiopulmonary resuscitation training was offered in the workplace. Large ventilation volumes were the most common error at both measuring points.

  2. Effects of chlorhexidine gluconate oral care on hospital mortality: a hospital-wide, observational cohort study.

    PubMed

    Deschepper, Mieke; Waegeman, Willem; Eeckloo, Kristof; Vogelaers, Dirk; Blot, Stijn

    2018-05-09

    Chlorhexidine oral care is widely used in critically and non-critically ill hospitalized patients to maintain oral health. We investigated the effect of chlorhexidine oral care on mortality in a general hospitalized population. In this single-center, retrospective, hospital-wide, observational cohort study we included adult hospitalized patients (2012-2014). Mortality associated with chlorhexidine oral care was assessed by logistic regression analysis. A threshold cumulative dose of 300 mg served as a dichotomic proxy for chlorhexidine exposure. We adjusted for demographics, diagnostic category, and risk of mortality expressed in four categories (minor, moderate, major, and extreme). The study cohort included 82,274 patients of which 11,133 (14%) received chlorhexidine oral care. Low-level exposure to chlorhexidine oral care (≤ 300 mg) was associated with increased risk of death [odds ratio (OR) 2.61; 95% confidence interval (CI) 2.32-2.92]. This association was stronger among patients with a lower risk of death: OR 5.50 (95% CI 4.51-6.71) with minor/moderate risk, OR 2.33 (95% CI 1.96-2.78) with a major risk, and a not significant OR 1.13 (95% CI 0.90-1.41) with an extreme risk of mortality. Similar observations were made for high-level exposure (> 300 mg). No harmful effect was observed in ventilated and non-ventilated ICU patients. Increased risk of death was observed in patients who did not receive mechanical ventilation and were not admitted to ICUs. The adjusted number of patients needed to be exposed to result in one additional fatality case was 47.1 (95% CI 45.2-49.1). These data argue against the indiscriminate widespread use of chlorhexidine oral care in hospitalized patients, in the absence of proven benefit in specific populations.

  3. Method for the simultaneous preparation of Radon-211, Xenon-125, Xenon-123, Astatine-211, Iodine-125 and Iodine-123

    DOEpatents

    Mirzadeh, Saed; Lambrecht, Richard M.

    1987-01-01

    A method for simultaneously preparing Radon-211, Astatine-211, Xenon-125, Xenon-123, Iodine-125 and Iodine-123 in a process that includes irradiating a fertile metal material then using a one-step chemical procedure to collect a first mixture of about equal amounts of Radon-211 and Xenon-125, and a separate second mixture of about equal amounts of Iodine-123 and Astatine-211.

  4. [Xenon: From rare gaz to doping product].

    PubMed

    Tassel, Camille; Le Daré, Brendan; Morel, Isabelle; Gicquel, Thomas

    2016-04-01

    Doping is defined as the use of processes or substances to artificially increase physical or mental performance. Xenon is a noble gas used as an anesthetic and recently as a doping agent. Xenon is neuroprotective as an antagonist of NMDA glutamate receptors. Xenon stimulates the synthesis of erythropoietin (EPO) by increase of hypoxia inducible factor (HIF). Xenon would be a new doping product, maintaining doping methods ahead of detection. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Is xenon eldest?

    NASA Technical Reports Server (NTRS)

    Zahnle, K.

    1994-01-01

    It is well known that the solubility of noble gases in magmas decreases with increasing atomic weight. Xenon, the weightiest of the stable noble gases, is the least soluble atmospheric gas in magma. It is not unreasonable to suppose that the noble gases should have degassed from (or equilibrated with) a bubbling mantle in order of increasing solubility, such that xenon was the most rapidly degassed and helium the least. The apparent relative ages of the famous radiogenic noble gas isotopes agrees, at least qualitatively, with this premise. When atmospheric loss processes are assigned their proper place, several long-standing xenonological puzzles become added evidence for xenon's relative antiquity. Xenon being the afore-mentioned sense the oldest atmospheric gas, will have been most greatly subject to escape, be it impact-driven or EUV-driven. Nonradiogenic xenon's pronounced isotopic fractionation has already been attributed to escape; why it should be more fractionated than krypton would be assigned to xenon's greater atmospheric age. The small atmospheric inventory of xenon relative to the other nonradiogenic noblegases, known as the 'missing xenon' problem, could easily be explained by differential escape. The relatively tiny atmospheric inventories of the radiogenic daughter products of 129 Iodine and 244 Plutonium, both much smaller than would be expected from the inferred abundances of the parents in meteorites, offer a third and fourth data to support the hypothesis that Earth has lost most of its xenon.

  6. Mechanistic Insights into Xenon Inhibition of NMDA Receptors from MD Simulations

    PubMed Central

    Liu, Lu Tian; Xu, Yan; Tang, Pei

    2010-01-01

    Inhibition of N-methyl-D-aspartate (NMDA) receptors has been viewed as a primary cause of xenon anesthesia, yet the mechanism is unclear. Here, we investigated interactions between xenon and the ligand-binding domain (LBD) of a NMDA receptor and examined xenon-induced structural and dynamical changes that are relevant to functional changes of the NMDA receptor. Several comparative molecular dynamics simulations were performed on two X-ray structures representing the open- and closed-cleft LBD of the NMDA receptor. We identified plausible xenon action sites in the LBD, including those nearby agonist sites, in the hinge region, and at the interface between two subunits. The xenon binding energy varies from −5.3 to −0.7 kcal/mol. Xenon's effect on the NMDA receptor is conformation-dependent and is produced through both competitive and non-competitive mechanisms. Xenon can promote cleft opening in the absence of agonists and consequently stabilizes the closed channel. Xenon can also bind at the interface of two subunits, alter the inter-subunit interaction, and lead to a reduction of the distance between GT-links. This reduction corresponds to a rearrangement of the channel toward a direction of pore size decreasing, implying a closed or desensitized channel. In addition to these non-competitive actions, xenon was found to weaken the glutamate binding, which could lead to low agonist efficacy and appear as competitive inhibition. PMID:20560662

  7. Measuring xenon in human plasma and blood by gas chromatography/mass spectrometry.

    PubMed

    Thevis, Mario; Piper, Thomas; Geyer, Hans; Thomas, Andreas; Schaefer, Maximilian S; Kienbaum, Peter; Schänzer, Wilhelm

    2014-07-15

    Due to the favorable pharmacokinetic properties and minimal side effects of xenon, its use in modern anesthesia has been well accepted, and recent studies further demonstrated the intra- and postoperative neuro-, cardio-, and reno-protective action of the noble gas. Since the production of the hypoxia-inducible factor 1α (HIF-1α) and its downstream effector erythropoietin as well as noradrenalin reuptake inhibition have been found to play key roles in this context, the question arose as to whether the use of xenon is a matter for doping controls and preventive doping research. The aim of the present study was hence to evaluate whether the (ab)use of xenon can be detected from doping control samples with the instrumentation commonly available in sports drug testing laboratories. Plasma was saturated with xenon according to reported protocols, and the target analyte was measured by means of gas chromatography/time-of-flight and triple quadrupole mass spectrometry with headspace injection. Recording the accurate mass of three major xenon isotopes at m/z 128.9048, 130.9045 and 131.9042 allowed for the unequivocal identification of the analyte and the detection assay was characterized concerning limit of detection (LOD), intraday precision, and specificity as well as analyte recovery under different storage conditions. Xenon was detected in fortified plasma samples with detection limits of approximately 0.5 nmol/mL to 50 nmol/mL, depending on the type of mass spectrometer used. The method characteristics of intraday precision (coefficient of variation <20%) and specificity demonstrated the fitness-for-purpose of the analytical approach to unambiguously detect xenon at non-physiological concentrations in human plasma and blood. Eventually, authentic plasma and blood samples collected pre-, intra-, and post-operative (4, 8, and 24 h) were positively analyzed after storage for up to 30 h, and provided proof-of-concept for the developed assay. If relevant to doping controls, xenon can be determined from plasma and blood samples, i.e. common specimens of routine sports drug testing in the context of Athlete Biological Passport (ABP) analyses. Optimization of sampling and analytical procedures will allow the detection limit to be further improved and potentially enable accurate quantification of the anesthetic agent. Copyright © 2014 John Wiley & Sons, Ltd.

  8. [Non-invasive ventilation improves comfort in pediatric palliative care patients].

    PubMed

    Bosch-Alcaraz, A

    2014-01-01

    To analyze the appropriate use of non-invasive ventilation and its contribution to improving comfort in pediatric palliative care patients. This is a descriptive cross-sectional study comprising 55 palliative care patients from San Juan de Dios Hospital in Barcelona. The effectiveness was evaluated using a register of socio-demographic, clinical-ventilatory and oxymetric parameters, the comfort and dyspnea's grade using Silverman Anderson scale, and pain level using pediatric scales. The effectiveness of the technique was proved by a decreased heart rate (133.53±25.8 vs. 111.04±23.1; p<0.0001), respiratory rate (35.02±12.9 vs. 25.63±5.7; p<0.0001) and an increase of partial oxygen saturation (95.7±2.9 vs. 96.87±7.2; p<0.0001) and partial oxygen saturation/fraction of inspired oxygen ratio (297.12±113.4 vs. 336.97±100.7; p<0.0001). Dyspnea and pain levels improved in 100% of the patients. The therapy was effective and the comfort improved in 100% of the patients. Copyright © 2013 Elsevier España, S.L.U. y SEEIUC. All rights reserved.

  9. [Age-associated peculiarities of microcirculation system in skeletal muscles and their role in muscle work capacity in human aging (author's transl)].

    PubMed

    Korkusko, O V; Sarkisov, K G; Frajfel'd, V E

    1982-01-01

    The muscle blood flow was investigated at rest (MBFR) and after physical load under ischemia conditions (maximal muscle blood flow--MMBF) in 87 practically healthy persons (45 women and 42 men) aged 20--90. The state of muscle blood flow was evaluated by means of the clearance of 133xenon injected into M. tibialis anterior. The data obtained showed a decrease of MBFR and MMBF in older people as compared with younger subjects. In realization of this phenomenon a decrease in muscle capillarisation and a reduction in reactivity of microcirculatory link of vascular system plays an increasingly greater role with aging. The reduction in muscle blood flow forms a circulatory component of the age-associated hypoxia. This fact results in a decrease of muscle blood flow and limits the functional capacity of skeletal muscle under conditions of activity.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barry, D.I.; Paulson, O.B.; Jarden, J.O.

    Cerebrovascular effects of the angiotensin converting enzyme inhibitor captopril were examined in normotensive and hypertensive rats. Cerebral blood flow was measured with the intracarotid /sup 133/xenon injection method in halothane-anesthetized animals. The blood-brain barrier permeability of captopril (determined with an integral-uptake method) was negligible, the permeability-surface area product in most brain regions being 1 X 10(-5) cm3/g per second, that is, three to four times lower than that of sodium ion. When administered into the cerebral ventricles to bypass the blood-brain barrier, captopril had no effect on cerebral blood flow: furthermore, cerebral blood flow autoregulation (studied by raising and loweringmore » blood pressure) was identical to that in controls. In contrast, when given intravenously, captopril had a marked effect on cerebral blood flow autoregulation--both the lower and upper limits of autoregulation being shifted to a lower pressure (by about 20 to 30 and 50 to 60 mm Hg, respectively), and the autoregulatory range was shortened by about 40 mm Hg. This effect may be ascribed to inhibition of converting enzyme in the cerebral blood vessels rather than within the brain.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulson, O.B.; Jarden, J.O.; Godtfredsen, J.

    The effect of captopril on cerebral blood flow was studied in five patients with severe congestive heart failure and in five control subjects. Cerebral blood flow was measured by inhalation of /sup 133/xenon and registration of its uptake and washout from the brain by single photon emission computer tomography. In addition, cerebral (internal jugular) venous oxygen tension was determined in the controls. The measurements were made before and 15, 60, and 180 minutes after a single oral dose of captopril (6.25 mg in patients with congestive heart failure and 25 mg in controls). Despite a marked decrease in blood pressure,more » cerebral blood flow increased slightly in the patients with severe congestive heart failure. When a correction was applied to take account of a change in arterial carbon dioxide tension, however, cerebral blood flow was unchanged after captopril administration even in patients with the greatest decrease in blood pressure, in whom a decrease in cerebral blood flow might have been expected. In the controls, blood pressure was little affected by captopril, whereas a slight, but not statistically significant, decrease in cerebral blood flow was observed. The cerebral venous oxygen tension decreased concomitantly.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajagopalan, B.; Raine, A.E.; Cooper, R.

    The intravenous /sup 133/xenon injection method was used to estimate global cerebral blood flow before and after treatment with captopril in nine patients with severe heart failure. The pretreatment mean blood pressure was 94.9 mm Hg (S.D. 13.9) and fell to 85.1 mm Hg (S.D. 18.1) after treatment with captopril for between four and 15 days. The cerebral blood flow before captopril was 61.1 ml/100 g per minute (S.D. 6.9), which was less than the value of 75.8 ml/100 g per minute found in control subjects. After treatment with captopril the cerebral blood flow increased to 73.8 ml/100 g permore » minute (S.D. 11.8, p less than 0.01). The fraction of carbon dioxide in the expired air was not significantly different in the two studies (4.1 +/- 0.88 versus 3.97 +/- 0.65). It is concluded that cerebral blood flow is reduced in severe heart failure and can be restored by treatment with captopril, but the reasons for the reduced flow and its improvement after converting enzyme inhibition are not known.« less

  13. Barium isotopes in Allende meteorite - Evidence against an extinct superheavy element

    NASA Technical Reports Server (NTRS)

    Lewis, R. S.; Anders, E.; Shimamura, T.; Lugmair, G. W.

    1983-01-01

    Carbon and chromite fractions from the Allende meteorite that contain isotopically anomalous xenon-131 to xenon-136 (carbonaceous chondrite fission or CCF xenon) at up to 5 x 10 to the 11th atoms per gram show no detectable isotopic anomalies in barium-130 to barium-138. This rules out the possibility that the CCF xenon was formed by in situ fission of an extinct superheavy element. Apparently the CCF xenon and its carbonaceous carrier are relics from stellar nucleosynthesis.

  14. Design and development of radioactive xenon gas purification and analysis system based on molecular sieves.

    PubMed

    Sabzian, M; Nasrabadi, M N; Haji-Hosseini, M

    2018-10-01

    The dynamic adsorption of xenon on molecular sieve packed columns was investigated. The modified Wheeler-Jonas equation was used to describe adsorption parameters such as adsorption capacity and adsorption rate coefficient. Different experimental conditions were accomplished to study their effects and to touch appropriate adsorbing circumstances. Respectable consistency was reached between experimental and modeled values. A purification and analysis setup was developed for radioactive xenon gas determination. Standard sample analysis results approved acceptable quantification accuracy. Copyright © 2018. Published by Elsevier Ltd.

  15. Xenon anaesthesia for patients undergoing off-pump coronary artery bypass graft surgery: a prospective randomized controlled pilot trial.

    PubMed

    Al Tmimi, L; Van Hemelrijck, J; Van de Velde, M; Sergeant, P; Meyns, B; Missant, C; Jochmans, I; Poesen, K; Coburn, M; Rex, S

    2015-10-01

    Off-pump coronary artery bypass (OPCAB) surgery carries a high risk for haemodynamic instability and perioperative organ injury. Favourable haemodynamic effects and organ-protective properties could render xenon an attractive anaesthetic for OPCAB surgery. The primary aim of this study was to assess whether xenon anaesthesia for OPCAB surgery is non-inferior to sevoflurane anaesthesia with regard to intraoperative vasopressor requirements. Forty-two patients undergoing elective OPCAB surgery were enrolled in this prospective, single-blind, randomized controlled pilot trial. Patients were randomized to either xenon (50-60 vol%) or sevoflurane (1.1-1.4 vol%) anaesthesia. Primary outcome was intraoperative noradrenaline requirements necessary to achieve predefined haemodynamic goals. Secondary outcomes included safety variables such as the occurrence of adverse events (intraoperatively and during a 6-month follow-up after surgery) and the perioperative cardiorespiratory and inflammatory profile. Baseline and intraoperative data did not differ between groups. Xenon was non-inferior to sevoflurane, as xenon patients required significantly less noradrenaline intraoperatively to achieve the predefined haemodynamic goals {geometric mean 428 [95% confidence interval (CI) 312, 588] vs 1702 [1267, 2285] µg, P<0.0001}. No differences were found for safety. Significantly more sevoflurane patients developed postoperative delirium (POD) (hazard ratio 4.2, P=0.044). The average arterial pressure was lower in the sevoflurane group {median75 [interquartile range (IQR) 6] vs 72 [4] mmHg, P=0.002}. No differences were found for other haemodynamic parameters, the respiratory profile and the perioperative release of inflammatory cytokines, troponin T, serum protein S-100β and erythropoietin. Compared with sevoflurane, xenon anaesthesia allows a significant reduction in vasopressor administration in OPCAB surgery. Moreover, xenon anaesthesia was associated with a lower risk for POD, a finding that has to be confirmed in larger studies. ClinicalTrials.gov (NCT01757106) and EudraCT (2012-002316-12). © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Chromatographic separation of radioactive noble gases from xenon

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.

    2018-01-01

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85Kr and 39Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.

  17. Chromatographic separation of radioactive noble gases from xenon

    DOE PAGES

    Akerib, DS; Araújo, HM; Bai, X; ...

    2017-10-31

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopesmore » $$^{85}$$Kr and $$^{39}$$Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search exmperiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.« less

  18. Xenon for the prevention of postoperative delirium in cardiac surgery: study protocol for a randomized controlled clinical trial.

    PubMed

    Al Tmimi, Layth; Van de Velde, Marc; Herijgers, Paul; Meyns, Bart; Meyfroidt, Geert; Milisen, Koen; Fieuws, Steffen; Coburn, Mark; Poesen, Koen; Rex, Steffen

    2015-10-09

    Postoperative delirium (POD) is a manifestation of acute postoperative brain dysfunction that is frequently observed after cardiac surgery. POD is associated with short-term complications such as an increase in mortality, morbidity, costs and length of stay, but can also have long-term sequelae, including persistent cognitive deficits, loss of independence, and increased mortality for up to 2 years. The noble gas xenon has been demonstrated in various models of neuronal injury to exhibit remarkable neuroprotective properties. We therefore hypothesize that xenon anesthesia reduces the incidence of POD in elderly patients undergoing cardiac surgery with the use of cardiopulmonary bypass. One hundred and ninety patients, older than 65 years, and scheduled for elective cardiac surgery, will be enrolled in this prospective, randomized, controlled trial. Patients will be randomized to receive general anesthesia with either xenon or sevoflurane. Primary outcome parameter will be the incidence of POD in the first 5 postoperative days. The occurrence of POD will be assessed by trained research personnel, blinded to study group, with the validated 3-minute Diagnostic Confusion Assessment Method (3D-CAM) (on the intensive care unit in its version specifically adapted for the ICU), in addition to chart review and the results of delirium screening tools that will be performed by the bedside nurses). Secondary outcome parameters include duration and severity of POD, and postoperative cognitive function as assessed with the Mini-Mental State Examination. Older patients undergoing cardiac surgery are at particular risk to develop POD. Xenon provides remarkable hemodynamic stability and has been suggested in preclinical studies to exhibit neuroprotective properties. The present trial will assess whether the promising profile of xenon can be translated into a better outcome in the geriatric population. EudraCT Identifier: 2014-005370-11 (13 May 2015).

  19. Separation and purification of xenon

    DOEpatents

    Schlea, deceased, Carl Solomon

    1978-03-14

    Xenon is separated from a mixture of xenon and krypton by extractive distillation using carbon tetrafluoride as the partitioning agent. Krypton is flushed out of the distillation column with CF.sub.4 in the gaseous overhead stream while purified xenon is recovered from the liquid bottoms. The distillation is conducted at about atmospheric pressure or at subatmospheric pressure.

  20. Removing krypton from xenon by cryogenic distillation to the ppq level

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Di Gangi, P.; Di Giovanni, A.; Diglio, S.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Huhmann, C.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Calloch, M. Le; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; Santos, J. M. F. dos; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Cristescu, I.

    2017-05-01

    The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β -emitter ^{85}Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon ^{nat}Kr/Xe < 200 ppq (parts per quadrillion, 1 ppq =10^{-15} mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4\\cdot 10^5 with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of ^{nat}Kr/Xe<26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN.

  1. The XENONnT Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Aprile, Elena; Xenon Collaboration

    2017-01-01

    With XENON1T ready to search for dark matter with the highest sensivity of any experiment to-date the XENON collaboration started to secure funding and resources to upgrade the detector by the end of 2018- phase which we refer to as XENONnT. The XENONnT experiment will utilize the already-built-and-tested XENON1T infrastructures, such as the cryogenic system, Kr distillation system and Xe storage and recovery system, with the main upgrade of the time projection chamber (TPC). The upgraded XENONnT detector will be filled with 7.5-ton ultra-pure liquid xenon, tripling the active liquid xenon target mass of XENON1T. About 500 low-radioactive three-inch R11410 PMTs will be used. Background from internal sources such as radon will be reduced. It will enable another order of magnitude improvement in dark matter search sensitivity compared to that of XENON1T, or accumulate statistics if a positive dark matter signal is observed by XENON1T. The detailed TPC upgrade plan, the background control and reduction techniques, the predicted sensitivity reach will be presented.

  2. Performance Characteristics of the NEXT Long-Duration Test After 16,550 h and 337 kg of Xenon Processed

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Patterson, Michael J.; Herman, Daniel A.

    2009-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation ion propulsion system with significant enhancements beyond the state-of-the-art in ion propulsion to provide future NASA science missions with enhanced mission capabilities at a low total development cost. As part of a comprehensive thruster service life assessment utilizing both testing and analyses, a Long-Duration Test (LDT) was initiated to verify the NEXT propellant throughput capability to a qualification-level of 450 kg, 1.5 times the anticipated throughput requirement of 300 kg from mission analyses conducted utilizing the NEXT propulsion system. The LDT is being conducted with a modified, flight-representative NEXT engineering model ion thruster, designated EM3. As of June 25, 2008, the thruster has accumulated 16,550 h of operation: the first 13,042 h at the thruster full-input-power of 6.9 kW with 3.52 A beam current and 1800 V beam power supply voltage. Operation since 13,042 h, i.e., the most recent 3,508 h, has been at an input power of 4.7 kW with 3.52 A beam current and 1180 V beam power supply voltage. The thruster has processed 337 kg of xenon (Xe) surpassing the NSTAR propellant throughput demonstrated during the extended life testing of the Deep Space 1 flight spare ion thruster. The NEXT LDT has demonstrated a total impulse of 13.3 106 N s; the highest total impulse ever demonstrated by an ion thruster. Thruster performance tests are conducted periodically over the entire NEXT throttle table with input power ranging 0.5 to 6.9 kW. Thruster performance parameters including thrust, input power, specific impulse, and thruster efficiency have been nominal with little variation to date. This paper presents the performance of the NEXT LDT to date with emphasis on performance variations following throttling of the thruster to the new operating condition and comparison of performance to the NSTAR extended life test.

  3. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    The benefits of high-power solar electric propulsion (SEP) for both NASA's human and science exploration missions combined with the technology investment from the Space Technology Mission Directorate have enabled the development of a 50kW-class SEP mission. NASA mission concepts developed, including the Asteroid Redirect Robotic Mission, and those proposed by contracted efforts for the 30kW-class demonstration have a range of xenon propellant loads from 100's of kg up to 10,000 kg. A xenon propellant load of 10 metric tons represents greater than 10% of the global annual production rate of xenon. A single procurement of this size with short-term delivery can disrupt the xenon market, driving up pricing, making the propellant costs for the mission prohibitive. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper discusses approaches for acquiring on the order of 10 MT of xenon propellant considering realistic programmatic constraints to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for mission campaigns utilizing multiple high-power solar electric propulsion vehicles requiring 100's of metric tons of xenon over an extended period of time where a longer term acquisition approach could be implemented.

  4. Development of a liquid xenon time projection chamber for the XENON dark matter search

    NASA Astrophysics Data System (ADS)

    Ni, Kaixuan

    This thesis describes the research conducted for the XENON dark matter direct detection experiment. The tiny energy and small cross-section, from the interaction of dark matter particle on the target, requires a low threshold and sufficient background rejection capability of the detector. The XENON experiment uses dual phase technology to detect scintillation and ionization simultaneously from an event in liquid xenon (LXe). The distinct ratio, between scintillation and ionization, for nuclear recoil and electron recoil events provides excellent background rejection potential. The XENON detector is designed to have 3D position sensitivity down to mm scale, which provides additional event information for background rejection. Started in 2002, the XENON project made steady progress in the R&D phase during the past few years. Those include developing sensitive photon detectors in LXe, improving the energy resolution and LXe purity for detecting very low energy events. Two major quantities related to the dark matter detection, the scintillation efficiency and ionization yield of nuclear recoils in LXe, have been established. A prototype dual phase detector (XENON3) has been built and tested extensively in above ground laboratory. The 3D position sensitivity, as well as the background discrimination potential demonstrated from the XENON3 prototype, allows the construction of a 10 kg scale detector (XENON10), to be deployed underground in early 2006. With 99.5% electron recoil rejection efficiency and 16 keVr nuclear recoil energy threshold, XENON10 will be able to probe the WIMP-nucleon cross-section down to 2 x 10-44 cm2 in the supersymmetry parameter space, after one month operation in the Gran Sasso underground laboratory.

  5. Xenon does not increase heart rate-corrected cardiac QT interval in volunteers and in patients free of cardiovascular disease.

    PubMed

    Neukirchen, Martin; Schaefer, Maximilian S; Kern, Carolin; Brett, Sarah; Werdehausen, Robert; Rellecke, Philipp; Reyle-Hahn, Matthias; Kienbaum, Peter

    2015-09-01

    Impaired cardiac repolarization, indicated by prolonged QT interval, may cause critical ventricular arrhythmias. Many anesthetics increase the QT interval by blockade of rapidly acting potassium rectifier channels. Although xenon does not affect these channels in isolated cardiomyocytes, the authors hypothesized that xenon increases the QT interval by direct and/or indirect sympathomimetic effects. Thus, the authors tested the hypothesis that xenon alters the heart rate-corrected cardiac QT (QTc) interval in anesthetic concentrations. The effect of xenon on the QTc interval was evaluated in eight healthy volunteers and in 35 patients undergoing abdominal or trauma surgery. The QTc interval was recorded on subjects in awake state, after their denitrogenation, and during xenon monoanesthesia (FetXe > 0.65). In patients, the QTc interval was recorded while awake, after anesthesia induction with propofol and remifentanil, and during steady state of xenon/remifentanil anesthesia (FetXe > 0.65). The QTc interval was determined from three consecutive cardiac intervals on electrocardiogram printouts in a blinded manner and corrected with Bazett formula. In healthy volunteers, xenon did not alter the QTc interval (mean difference: +0.11 ms [95% CI, -22.4 to 22.7]). In patients, after anesthesia induction with propofol/remifentanil, no alteration of QTc interval was noted. After propofol was replaced with xenon, the QTc interval remained unaffected (417 ± 32 ms vs. awake: 414 ± 25 ms) with a mean difference of 4.4 ms (95% CI, -4.6 to 13.5). Xenon monoanesthesia in healthy volunteers and xenon/remifentanil anesthesia in patients without clinically relevant cardiovascular disease do not increase QTc interval.

  6. Effect of Inhaled Xenon on Cerebral White Matter Damage in Comatose Survivors of Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial.

    PubMed

    Laitio, Ruut; Hynninen, Marja; Arola, Olli; Virtanen, Sami; Parkkola, Riitta; Saunavaara, Jani; Roine, Risto O; Grönlund, Juha; Ylikoski, Emmi; Wennervirta, Johanna; Bäcklund, Minna; Silvasti, Päivi; Nukarinen, Eija; Tiainen, Marjaana; Saraste, Antti; Pietilä, Mikko; Airaksinen, Juhani; Valanne, Leena; Martola, Juha; Silvennoinen, Heli; Scheinin, Harry; Harjola, Veli-Pekka; Niiranen, Jussi; Korpi, Kirsi; Varpula, Marjut; Inkinen, Outi; Olkkola, Klaus T; Maze, Mervyn; Vahlberg, Tero; Laitio, Timo

    2016-03-15

    Evidence from preclinical models indicates that xenon gas can prevent the development of cerebral damage after acute global hypoxic-ischemic brain injury but, thus far, these putative neuroprotective properties have not been reported in human studies. To determine the effect of inhaled xenon on ischemic white matter damage assessed with magnetic resonance imaging (MRI). A randomized single-blind phase 2 clinical drug trial conducted between August 2009 and March 2015 at 2 multipurpose intensive care units in Finland. One hundred ten comatose patients (aged 24-76 years) who had experienced out-of-hospital cardiac arrest were randomized. Patients were randomly assigned to receive either inhaled xenon combined with hypothermia (33°C) for 24 hours (n = 55 in the xenon group) or hypothermia treatment alone (n = 55 in the control group). The primary end point was cerebral white matter damage as evaluated by fractional anisotropy from diffusion tensor MRI scheduled to be performed between 36 and 52 hours after cardiac arrest. Secondary end points included neurological outcome assessed using the modified Rankin Scale (score 0 [no symptoms] through 6 [death]) and mortality at 6 months. Among the 110 randomized patients (mean age, 61.5 years; 80 men [72.7%]), all completed the study. There were MRI data from 97 patients (88.2%) a median of 53 hours (interquartile range [IQR], 47-64 hours) after cardiac arrest. The mean global fractional anisotropy values were 0.433 (SD, 0.028) in the xenon group and 0.419 (SD, 0.033) in the control group. The age-, sex-, and site-adjusted mean global fractional anisotropy value was 3.8% higher (95% CI, 1.1%-6.4%) in the xenon group (adjusted mean difference, 0.016 [95% CI, 0.005-0.027], P = .006). At 6 months, 75 patients (68.2%) were alive. Secondary end points at 6 months did not reveal statistically significant differences between the groups. In ordinal analysis of the modified Rankin Scale, the median (IQR) value was 1 (1-6) in the xenon group and 1 (0-6) in the control group (median difference, 0 [95% CI, 0-0]; P = .68). The 6-month mortality rate was 27.3% (15/55) in the xenon group and 34.5% (19/55) in the control group (adjusted hazard ratio, 0.49 [95% CI, 0.23-1.01]; P = .053). Among comatose survivors of out-of-hospital cardiac arrest, inhaled xenon combined with hypothermia compared with hypothermia alone resulted in less white matter damage as measured by fractional anisotropy of diffusion tensor MRI. However, there was no statistically significant difference in neurological outcomes or mortality at 6 months. These preliminary findings require further evaluation in an adequately powered clinical trial designed to assess clinical outcomes associated with inhaled xenon among survivors of out-of-hospital cardiac arrest. clinicaltrials.gov Identifier: NCT00879892.

  7. Measurement of radon and xenon binding to a cryptophane molecular host

    PubMed Central

    Jacobson, David R.; Khan, Najat S.; Collé, Ronald; Fitzgerald, Ryan; Laureano-Pérez, Lizbeth; Bai, Yubin; Dmochowski, Ivan J.

    2011-01-01

    Xenon and radon have many similar properties, a difference being that all 35 isotopes of radon (195Rn–229Rn) are radioactive. Radon is a pervasive indoor air pollutant believed to cause significant incidence of lung cancer in many geographic regions, yet radon affinity for a discrete molecular species has never been determined. By comparison, the chemistry of xenon has been widely studied and applied in science and technology. Here, both noble gases were found to bind with exceptional affinity to tris-(triazole ethylamine) cryptophane, a previously unsynthesized water-soluble organic host molecule. The cryptophane–xenon association constant, Ka = 42,000 ± 2,000 M-1 at 293 K, was determined by isothermal titration calorimetry. This value represents the highest measured xenon affinity for a host molecule. The partitioning of radon between air and aqueous cryptophane solutions of varying concentration was determined radiometrically to give the cryptophane–radon association constant Ka = 49,000 ± 12,000 M-1 at 293 K. PMID:21690357

  8. DFT-MD simulations of shocked Xenon

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph J.; Mattsson, Thomas R.

    2009-03-01

    Xenon is not only a technologically important element used in laser technologies, jet propulsion and dental anesthesia, but it is also arguably the simplest material in which to study the metal-insulator transition at high pressure. Because of its closed shell electronic configuration, Xenon is often assumed to be chemically inert, interacting almost entirely through the van der Waals interaction, and at liquid density, is typically modeled well using Leonard-Jones potentials. However, such modeling has a limited range of validity as Xenon is known to form compounds at normal conditions and likely exhibits considerably more chemistry at higher densities when hybridization of occupied orbitals becomes significant. In this talk, we present DFT-MD simulations of shocked liquid Xenon with the goal of developing an improved equation of state. The relative importance of the van der Waals interaction compared to other Coulomb interactions is considered, and estimates of the relative accuracy of various density functionals are quantified. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Influence of atmospheric transport patterns on xenon detections at the CTBTO radionuclide network

    NASA Astrophysics Data System (ADS)

    Krysta, Monika; Kusmierczyk-Michulec, Jolanta

    2016-04-01

    In order to fulfil its task of monitoring for signals emanating from nuclear explosions, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) operates global International Monitoring System (IMS) comprising seismic, infrasound, hydroacoustic and radionuclide measurement networks. At present, 24 among 80 radionuclide stations foreseen by the Comprehensive Nuclear-Test-Ban Treaty (CTBT) are equipped with certified noble gas measurement systems. Over a past couple of years these systems collected a rich set of measurements of radioactive isotopes of xenon. Atmospheric transport modelling simulations are crucial to an assessment of the origin of xenon detected at the IMS stations. Numerous studies undertaken in the past enabled linking these detections to non Treaty-relevant activities and identifying main contributors. Presence and quantity of xenon isotopes at the stations is hence a result of an interplay of emission patterns and atmospheric circulation. In this presentation we analyse the presence or absence of radioactive xenon at selected stations from an angle of such an interplay. We attempt to classify the stations according to similarity of detection patterns, examine seasonality in those patterns and link them to large scale or local meteorological phenomena. The studies are undertaken using crude hypotheses on emission patterns from known sources and atmospheric transport modelling simulations prepared with the FLEXPART model.

  10. A study of intrinsic statistical variation for low-energy nuclear recoils in liquid xenon detector for dark matter searches

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Wei, Wenzhao; Mei, Dongming; Cubed Collaboration

    2015-10-01

    Noble liquid xenon experiments, such as XENON100, LUX, XENON 1-Ton, and LZ are large dark matter experiments directly searches for weakly interacting massive particles (WIMPs). One of the most important features is to discriminate nuclear recoils from electronic recoils. Detector response is generally calibrated with different radioactive sources including 83mKr, tritiated methane, 241AmBe, 252Cf, and DD-neutrons. The electronic recoil and nuclear recoil bands have been determined by these calibrations. However, the width of nuclear recoil band needs to be fully understood. We derive a theoretical model to understand the correlation of the width of nuclear recoil band and intrinsic statistical variation. In addition, we conduct experiments to validate the theoretical model. In this paper, we present the study of intrinsic statistical variation contributing to the width of nuclear recoil band. DE-FG02-10ER46709 and the state of South Dakota.

  11. Energy and Emission Characteristics of a Short-Arc Xenon Flash Lamp Under "Saturated" Optical Brightness Conditions

    NASA Astrophysics Data System (ADS)

    Kamrukov, A. S.; Kireev, S. G.; Kozlov, N. P.; Shashkovskii, S. G.

    2017-09-01

    We present the results of a study of the electrical, energy, and spectral brightness characteristics of an experimental three-electrode high-pressure xenon flash lamp under conditions ensuring close to maximum possible spectral brightness for the xenon emission. We show that under saturated optical brightness conditions (brightness temperature in the visible region of the spectrum 30,000 K), emission of a pulsed discharge in xenon is quite different from the emission from an ideal blackbody: the maximum brightness temperatures are 24,000 K in the short-wavelength UV region and 19,000 K in the near IR range. The relative fraction of UV radiation in the emission spectrum of the lamp is >50%, which lets us consider such lamps as promising broadband sources of radiation with high spectral brightness for many important practical applications.

  12. Atmospheric removal times of the aerosol-bound radionuclides 137Cs and 131I measured after the Fukushima Dai-ichi nuclear accident - a constraint for air quality and climate models

    NASA Astrophysics Data System (ADS)

    Kristiansen, N. I.; Stohl, A.; Wotawa, G.

    2012-11-01

    Caesium-137 (137Cs) and iodine-131 (131I) are radionuclides of particular concern during nuclear accidents, because they are emitted in large amounts and are of significant health impact. 137Cs and 131I attach to the ambient accumulation-mode (AM) aerosols and share their fate as the aerosols are removed from the atmosphere by scavenging within clouds, precipitation and dry deposition. Here, we estimate their removal times from the atmosphere using a unique high-precision global measurement data set collected over several months after the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. The noble gas xenon-133 (133Xe), also released during the accident, served as a passive tracer of air mass transport for determining the removal times of 137Cs and 131I via the decrease in the measured ratios 137Cs/133Xe and 131I/133Xe over time. After correction for radioactive decay, the 137Cs/133Xe ratios reflect the removal of aerosols by wet and dry deposition, whereas the 131I/133Xe ratios are also influenced by aerosol production from gaseous 131I. We find removal times for 137Cs of 10.0-13.9 days and for 131I of 17.1-24.2 days during April and May 2011. The removal time of 131I is longer due to the aerosol production from gaseous 131I, thus the removal time for 137Cs serves as a better estimate for aerosol lifetime. The removal time of 131I is of interest for semi-volatile species. We discuss possible caveats (e.g. late emissions, resuspension) that can affect the results, and compare the 137Cs removal times with observation-based and modeled aerosol lifetimes. Our 137Cs removal time of 10.0-13.9 days should be representative of a "background" AM aerosol well mixed in the extratropical Northern Hemisphere troposphere. It is expected that the lifetime of this vertically mixed background aerosol is longer than the lifetime of fresh AM aerosols directly emitted from surface sources. However, the substantial difference to the mean lifetimes of AM aerosols obtained from aerosol models, typically in the range of 3-7 days, warrants further research on the cause of this discrepancy. Too short modeled AM aerosol lifetimes would have serious implications for air quality and climate model predictions.

  13. Xenon Defects in Uranium Dioxide From First Principles and Interatomic Potentials

    NASA Astrophysics Data System (ADS)

    Thompson, Alexander

    In this thesis, we examine the defect energetics and migration energies of xenon atoms in uranium dioxide (UO2) from first principles and interatomic potentials. We also parameterize new, accurate interatomic potentials for xenon and uranium dioxide. To achieve accurate energetics and provide a foundation for subsequent calculations, we address difficulties in finding consistent energetics within Hubbard U corrected density functional theory (DFT+U). We propose a method of slowly ramping the U parameter in order to guide the calculation into low energy orbital occupations. We find that this method is successful for a variety of materials. We then examine the defect energetics of several noble gas atoms in UO2 for several different defect sites. We show that the energy to incorporate large noble gas atoms into interstitial sites is so large that it is energetically favorable for a Schottky defect cluster to be created to relieve the strain. We find that, thermodynamically, xenon will rarely ever be in the interstitial site of UO2. To study larger defects associated with the migration of xenon in UO 2, we turn to interatomic potentials. We benchmark several previously published potentials against DFT+U defect energetics and migration barriers. Using a combination of molecular dynamics and nudged elastic band calculations, we find a new, low energy migration pathway for xenon in UO2. We create a new potential for xenon that yields accurate defect energetics. We fit this new potential with a method we call Iterative Potential Refinement that parameterizes potentials to first principles data via a genetic algorithm. The potential finds accurate energetics for defects with relatively low amounts of strain (xenon in defect clusters). It is important to find accurate energetics for these sorts of low-strain defects because they essentially represent small xenon bubbles. Finally, we parameterize a new UO2 potential that simultaneously yields accurate vibrational properties and defect energetics, important properties for UO2 because of the high temperature and defective reactor environment.. Previously published potentials could only yield accurate defect energetics or accurate phonons, but never both.

  14. Xenon Protects Against Septic Acute Kidney Injury via miR-21 Target Signaling Pathway*

    PubMed Central

    Jia, Ping; Teng, Jie; Zou, Jianzhou; Fang, Yi; Wu, Xie; Liang, Mingyu

    2015-01-01

    Objectives: Septic acute kidney injury is one of the most common and life-threatening complications in critically ill patients, and there is no approved effective treatment. We have shown xenon provides renoprotection against ischemia-reperfusion injury and nephrotoxicity in rodents via inhibiting apoptosis. Here, we studied the effects of xenon preconditioning on septic acute kidney injury and its mechanism. Design: Experimental animal investigation. Setting: University research laboratory. Subjects: Experiments were performed with male C57BL/6 mice, 10 weeks of age, weighing 20–25 g. Interventions: We induced septic acute kidney injury by a single intraperitoneal injection of Escherichia coli lipopolysaccharide at a dose of 20 mg/kg. Mice were exposed for 2 hours to either 70% xenon or 70% nitrogen, 24 hours before the onset of septic acute kidney injury. In vivo knockdown of miR-21 was performed using locked nucleic acid-modified anti-miR, the role of miR-21 in renal protection conferred by the xenon preconditioning was examined, and miR-21 signaling pathways were analyzed. Measurements and Main Results: Xenon preconditioning provided morphologic and functional renoprotection, characterized by attenuation of renal tubular damage, apoptosis, and a reduction in inflammation. Furthermore, xenon treatment significantly upregulated the expression of miR-21 in kidney, suppressed proinflammatory factor programmed cell death protein 4 expression and nuclear factor-κB activity, and increased interleukin-10 production. Meanwhile, xenon preconditioning also suppressed the expression of proapoptotic protein phosphatase and tensin homolog deleted on chromosome 10, activating protein kinase B signaling pathway, subsequently increasing the expression of antiapoptotic B-cell lymphoma-2, and inhibiting caspase-3 activity. Knockdown of miR-21 upregulated its target effectors programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10 expression, resulted in an increase in apoptosis, and exacerbated lipopolysaccharide-induced acute kidney injury. Conclusion: Our findings demonstrated that xenon preconditioning protected against lipopolysaccharide-induced acute kidney injury via activation of miR-21 target signaling pathways. PMID:25844699

  15. Analgesic Effect of Xenon in Rat Model of Inflammatory Pain.

    PubMed

    Kukushkin, M L; Igon'kina, S I; Potapov, S V; Potapov, A V

    2017-02-01

    The analgesic effects of inert gas xenon were examined on rats. The formalin model of inflammatory pain, tail-flick test, and hot-plate test revealed the antinociceptive effects of subanesthetizing doses of inhalation anesthetic xenon. Inhalation of 50/50 xenon/oxygen mixture moderated the nociceptive responses during acute and tonic phases of inflammatory pain.

  16. High-Rydberg Xenon Submillimeter-Wave Detector

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara

    1987-01-01

    Proposed detector for infrared and submillimeter-wavelength radiation uses excited xenon atoms as Rydberg sensors instead of customary beams of sodium, potassium, or cesium. Chemically inert xenon easily stored in pressurized containers, whereas beams of dangerously reactive alkali metals must be generated in cumbersome, unreliable ovens. Xenon-based detector potential for infrared astronomy and for Earth-orbiter detection of terrestrial radiation sources. Xenon atoms excited to high energy states in two stages. Doubly excited atoms sensitive to photons in submillimeter wavelength range, further excited by these photons, then ionized and counted.

  17. Xenon Treatment Protects against Remote Lung Injury after Kidney Transplantation in Rats.

    PubMed

    Zhao, Hailin; Huang, Han; Ologunde, Rele; Lloyd, Dafydd G; Watts, Helena; Vizcaychipi, Marcela P; Lian, Qingquan; George, Andrew J T; Ma, Daqing

    2015-06-01

    Ischemia-reperfusion injury (IRI) of renal grafts may cause remote organ injury including lungs. The authors aimed to evaluate the protective effect of xenon exposure against remote lung injury due to renal graft IRI in a rat renal transplantation model. For in vitro studies, human lung epithelial cell A549 was challenged with H2O2, tumor necrosis factor-α, or conditioned medium from human kidney proximal tubular cells (HK-2) after hypothermia-hypoxia insults. For in vivo studies, the Lewis renal graft was stored in 4°C Soltran preserving solution for 24 h and transplanted into the Lewis recipient, and the lungs were harvested 24 h after grafting. Cultured lung cells or the recipient after engraftment was exposed to 70% Xe or N2. Phospho (p)-mammalian target of rapamycin (mTOR), hypoxia-inducible factor-1α (HIF-1α), Bcl-2, high-mobility group protein-1 (HMGB-1), TLR-4, and nuclear factor κB (NF-κB) expression, lung inflammation, and cell injuries were assessed. Recipients receiving ischemic renal grafts developed pulmonary injury. Xenon treatment enhanced HIF-1α, which attenuated HMGB-1 translocation and NF-κB activation in A549 cells with oxidative and inflammatory stress. Xenon treatment enhanced p-mTOR, HIF-1α, and Bcl-2 expression and, in turn, promoted cell proliferation in the lung. Upon grafting, HMGB-1 translocation from lung epithelial nuclei was reduced; the TLR-4/NF-κB pathway was suppressed by xenon treatment; and subsequent tissue injury score (nitrogen vs. xenon: 26 ± 1.8 vs. 10.7 ± 2.6; n = 6) was significantly reduced. Xenon treatment confers protection against distant lung injury triggered by renal graft IRI, which is likely through the activation of mTOR-HIF-1α pathway and suppression of the HMGB-1 translocation from nuclei to cytoplasm.

  18. Impact of pulsed xenon ultraviolet light on hospital-acquired infection rates in a community hospital.

    PubMed

    Vianna, Pedro G; Dale, Charles R; Simmons, Sarah; Stibich, Mark; Licitra, Carmelo M

    2016-03-01

    The role of contaminated environments in the spread of hospital-associated infections has been well documented. This study reports the impact of a pulsed xenon ultraviolet no-touch disinfection system on infection rates in a community care facility. This study was conducted in a community hospital in Southern Florida. Beginning November 2012, a pulsed xenon ultraviolet disinfection system was implemented as an adjunct to traditional cleaning methods on discharge of select rooms. The technology uses a xenon flashlamp to generate germicidal light that damages the DNA of organisms in the hospital environment. The device was implemented in the intensive care unit (ICU), with a goal of using the pulsed xenon ultraviolet system for disinfecting all discharges and transfers after standard cleaning and prior to occupation of the room by the next patient. For all non-ICU discharges and transfers, the pulsed xenon ultraviolet system was only used for Clostridium difficile rooms. Infection data were collected for methicillin-resistant Staphylococcus aureus, C difficile, and vancomycin-resistant Enterococci (VRE). The intervention period was compared with baseline using a 2-sample Wilcoxon rank-sum test. In non-ICU areas, a significant reduction was found for C difficile. There was a nonsignificant decrease in VRE and a significant increase in methicillin-resistant S aureus. In the ICU, all infections were reduced, but only VRE was significant. This may be because of the increased role that environment plays in the transmission of this pathogen. Overall, there were 36 fewer infections in the whole facility and 16 fewer infections in the ICU during the intervention period than would have been expected based on baseline data. Implementation of pulsed xenon ultraviolet disinfection is associated with significant decreases in facility-wide and ICU infection rates. These outcomes suggest that enhanced environmental disinfection plays a role in the risk mitigation of hospital-acquired infections. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  19. A study of the discharge characteristics and energy balance of a Ne/Xe pulsed planar dielectric barrier: simulation via the one-dimensional particle-in-cell with Monte Carlo collision method

    NASA Astrophysics Data System (ADS)

    Benstâali, W.; Harrache, Z.; Belasri, A.

    2012-06-01

    Plasma display panels (PDPs) are one of the leading technologies in the flat panels market. However, they are facing intense competition. Different fluid models, both one-dimensional (1D) and 2D, have been used to analyze the energy balance in PDP cells in order to find out how the xenon excitation part can be improved to optimize the luminous efficiency. The aim of this work is to present a 1D particle-in-cell with Monte Carlo collision (PIC-MCC) model for PDPs. The discharge takes place in a Xe10-Ne gas mixture at 560 Torr. The applied voltage is 381 V. We show at first that this model reproduces the electric characteristics of a single PDP discharge pulse. Then, we calculate the energy deposited by charged particles in each collision. The total energy is about 19 μJ cm-2, and the energy used in xenon excitation is of the order of 12.5% compared to the total energy deposited in the discharge. The effect of xenon content in a Xe-Ne mixture is also analyzed. The energies deposited in xenon excitation and ionization are more important when the xenon percentage has been increased from 1 to 30%. The applied voltage increases the energy deposited in xenon excitation.

  20. A comparative study of TiN and TiC: Oxidation resistance and retention of xenon at high temperature and under degraded vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavarini, S.; Bes, R.; Millard-Pinard, N.

    2011-01-01

    Dense TiN and TiC samples were prepared by hot pressing using micrometric powders. Xenon species (simulating rare gas fission products) were then implanted into the ceramics. The samples were annealed for 1 h at 1500 deg. C under several degraded vacuums with P{sub O{sub 2}} varying from 10{sup -6} to 2x10{sup -4} mbars. The oxidation resistance of the samples and their retention properties with respect to preimplanted xenon species were analyzed using scanning electron microscopy, grazing incidence x-ray diffraction, Rutherford backscattering spectrometry, and nuclear backscattering spectrometry. Results indicate that TiC is resistant to oxidation and does not release xenon formore » P{sub O{sub 2{<=}}}6x10{sup -6} mbars. When P{sub O{sub 2}} increases, geometric oxide crystallites appear at the surface depending on the orientation and size of TiC grains. These oxide phases are Ti{sub 2}O{sub 3}, Ti{sub 3}O{sub 5}, and TiO{sub 2}. Apparition of oxide crystallites is associated with the beginning of xenon release. TiC surface is completely covered by the oxide phases at P{sub O{sub 2}}=2x10{sup -4} mbars up to a depth of 3 {mu}m and the xenon is then completely released. For TiN samples, the results show a progressive apparition of oxide crystallites (Ti{sub 3}O{sub 5} mainly) at the surface when P{sub O{sub 2}} increases. The presence of the oxide crystallites is also directly correlated with xenon release, the more oxide crystallites are growing the more xenon is released. TiN surface is completely covered by an oxide layer at P{sub O{sub 2}}=2x10{sup -4} mbars up to 1 {mu}m. A correlation between the initial fine microstructure of TiN and the properties of the growing layer is suggested.« less

  1. Terrestrial and Martian weathering signatures of xenon components in shergottite mineral separates

    NASA Astrophysics Data System (ADS)

    Cartwright, J. A.; Ocker, K. D.; Crowther, S. A.; Burgess, R.; Gilmour, J. D.

    2010-08-01

    Xenon-isotopic ratios, step-heating release patterns, and gas concentrations of mineral separates from Martian shergottites Roberts Massif (RBT) 04262, Dar al Gani (DaG) 489, Shergotty, and Elephant Moraine (EET) 79001 lithology B are reported. Concentrations of Martian atmospheric xenon are similar in mineral separates from all meteorites, but more weathered samples contain more terrestrial atmospheric xenon. The distributions of xenon from the Martian and terrestrial atmospheres among minerals in any one sample are similar, suggesting similarities in the processes by which they were acquired. However, in opaque and maskelynite fractions, Martian atmospheric xenon is released at higher temperatures than terrestrial atmospheric xenon. It is suggested that both Martian and terrestrial atmospheric xenon were initially introduced by weathering (low temperature alteration processes). However, the Martian component was redistributed by shock, accounting for its current residence in more retentive sites. The presence or absence of detectable 129Xe from the Martian atmosphere in mafic minerals may correspond to the extent of crustal contamination of the rock's parent melt. Variable contents of excess 129Xe contrast with previously reported consistent concentrations of excess 40Ar, suggesting distinct sources contributed these gases to the parent magma.

  2. Hyperpolarized xenon NMR and MRI signal amplification by gas extraction

    PubMed Central

    Zhou, Xin; Graziani, Dominic; Pines, Alexander

    2009-01-01

    A method is reported for enhancing the sensitivity of NMR of dissolved xenon by detecting the signal after extraction to the gas phase. We demonstrate hyperpolarized xenon signal amplification by gas extraction (Hyper-SAGE) in both NMR spectra and magnetic resonance images with time-of-flight information. Hyper-SAGE takes advantage of a change in physical phase to increase the density of polarized gas in the detection coil. At equilibrium, the concentration of gas-phase xenon is ≈10 times higher than that of the dissolved-phase gas. After extraction the xenon density can be further increased by several orders of magnitude by compression and/or liquefaction. Additionally, being a remote detection technique, the Hyper-SAGE effect is further enhanced in situations where the sample of interest would occupy only a small proportion of the traditional NMR receiver. Coupled with targeted xenon biosensors, Hyper-SAGE offers another path to highly sensitive molecular imaging of specific cell markers by detection of exhaled xenon gas. PMID:19805177

  3. Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel

    PubMed Central

    Sauguet, Ludovic; Fourati, Zeineb; Prangé, Thierry; Delarue, Marc; Colloc'h, Nathalie

    2016-01-01

    GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and “locally-closed” (inactive) conformations of GLIC. Major binding sites of xenon, which differ between the two conformations, were identified in three distinct regions that all belong to the trans-membrane domain of GLIC: 1) in an intra-subunit cavity, 2) at the interface between adjacent subunits, and 3) in the pore. The pore site is unique to the locally-closed form where the binding of xenon effectively seals the channel. A putative mechanism of the inhibition of GLIC by xenon is proposed, which might be extended to other pentameric cationic ligand-gated ion channels. PMID:26910105

  4. Structural Basis for Xenon Inhibition in a Cationic Pentameric Ligand-Gated Ion Channel.

    PubMed

    Sauguet, Ludovic; Fourati, Zeineb; Prangé, Thierry; Delarue, Marc; Colloc'h, Nathalie

    2016-01-01

    GLIC receptor is a bacterial pentameric ligand-gated ion channel whose action is inhibited by xenon. Xenon has been used in clinical practice as a potent gaseous anaesthetic for decades, but the molecular mechanism of interactions with its integral membrane receptor targets remains poorly understood. Here we characterize by X-ray crystallography the xenon-binding sites within both the open and "locally-closed" (inactive) conformations of GLIC. Major binding sites of xenon, which differ between the two conformations, were identified in three distinct regions that all belong to the trans-membrane domain of GLIC: 1) in an intra-subunit cavity, 2) at the interface between adjacent subunits, and 3) in the pore. The pore site is unique to the locally-closed form where the binding of xenon effectively seals the channel. A putative mechanism of the inhibition of GLIC by xenon is proposed, which might be extended to other pentameric cationic ligand-gated ion channels.

  5. 129 Xe NMR Relaxation-Based Macromolecular Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, Muller D.; Dao, Phuong; Jeong, Keunhong

    2016-07-29

    A 129Xe NMR relaxation-based sensing approach is reported on that exploits changes in the bulk xenon relaxation rate induced by slowed tumbling of a cryptophane-based sensor upon target binding. The amplification afforded by detection of the bulk dissolved xenon allows sensitive detection of targets. The sensor comprises a xenon-binding cryptophane cage, a target interaction element, and a metal chelating agent. Xenon associated with the target-bound cryptophane cage is rapidly relaxed and then detected after exchange with the bulk. Here we show that large macromolecular targets increase the rotational correlation time of xenon, increasing its relaxation rate. Upon binding of amore » biotin-containing sensor to avidin at 1.5 μM concentration, the free xenon T 2 is reduced by a factor of 4.« less

  6. The Noble Gases in A-Level Chemistry.

    ERIC Educational Resources Information Center

    Marchant, G. W.

    1983-01-01

    Suggests two methods of developing the study of the noble gases: first, the discovery of the elements and recent discovery of xenon show the human face of chemistry (historical development); second, the properties of noble gas compounds (particularly xenon) can be used to test the framework of conventional chemistry. (Author/JM)

  7. Early exposure to hyperoxia and mortality in critically ill patients with severe traumatic injuries.

    PubMed

    Russell, Derek W; Janz, David R; Emerson, William L; May, Addison K; Bernard, Gordon R; Zhao, Zhiguo; Koyama, Tatsuki; Ware, Lorraine B

    2017-02-03

    Hyperoxia is common early in the course of resuscitation of critically ill patients. It has been associated with mortality in some, but not all, studies of cardiac arrest patients and other critically ill cohorts. Reasons for the inconsistency are unclear and may depend on unmeasured patient confounders, the timing and duration of hyperoxia, population characteristics, or the way that hyperoxia is defined and measured. We sought to determine whether, in a prospectively collected cohort of mechanically ventilated patients with traumatic injuries with and without head trauma, higher maximum partial pressure of arterial oxygen (PaO2) within 24 hours of admission would be associated with increased risk of in-hospital mortality. Critically ill patients with traumatic injuries undergoing invasive mechanical ventilation enrolled in the Validating Acute Lung Injury biomarkers for Diagnosis (VALID) study were included in this study. All arterial blood gases (ABGs) from the first 24 hours of admission were recorded. Primary analysis was comparison of the highest PaO2 between hospital survivors and non-survivors. A total of 653 patients were evaluated for inclusion. Of these, 182 were not mechanically ventilated or did not have an ABG measured in the first 24 hours, leaving 471 patients in the primary analysis. In survivors, the maximum PaO2 was 141 mmHg (median, interquartile range 103 - 212) compared to 148 mmHg (IQR 105 - 209) in non-survivors (p = 0.82). In the subgroup with head trauma (n = 266), the maximum PaO2 was 133 mmHg (IQR 97 - 187) among survivors and 152 mmHg (108 - 229) among nonsurvivors (p = 0.19). After controlling for age, injury severity score, number of arterial blood gases, and fraction of inspired oxygen, maximum PaO2 was not associated with increased mortality (OR 1.27 for every fold increase of PaO2 (95% CI 0.72 - 2.25). In mechanically ventilated patients with severe traumatic injuries, hyperoxia in the first 24 hours of admission was not associated with increased risk of death or worsened neurological outcomes in a setting without brain tissue oxygenation monitoring.

  8. Magnetic resonance imaging of convection in laser-polarized xenon

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Tseng, C. H.; Wong, G. P.; Cory, D. G.; Walsworth, R. L.

    2000-01-01

    We demonstrate nuclear magnetic resonance (NMR) imaging of the flow and diffusion of laser-polarized xenon (129Xe) gas undergoing convection above evaporating laser-polarized liquid xenon. The large xenon NMR signal provided by the laser-polarization technique allows more rapid imaging than one can achieve with thermally polarized gas-liquid systems, permitting shorter time-scale events such as rapid gas flow and gas-liquid dynamics to be observed. Two-dimensional velocity-encoded imaging shows convective gas flow above the evaporating liquid xenon, and also permits the measurement of enhanced gas diffusion near regions of large velocity variation.

  9. Mobility and fluorescence of barium ions in xenon gas for the exo experiment

    NASA Astrophysics Data System (ADS)

    Benitez Medina, Julio Cesar

    The Enriched Xenon Observatory (EXO) is an experiment which aims to observe the neutrinoless double beta decay of 136Xe. The measurement of this decay would give information about the absolute neutrino mass and whether or not the neutrino is its own antiparticle. Since this is a very rare decay, the ability to reject background events by detecting the barium ion daughter from the double beta decay would be a major advantage. EXO is currently operating a detector with 200 kg of enriched liquid xenon, and there are plans to build a ton scale xenon detector. Measurements of the purity of liquid xenon in our liquid xenon test cell are reported. These results are relevant to the research on detection of single barium ions by our research group at Colorado State University. Details of the operation of the purity monitor are described. The effects of using a purifier, recirculation and laser ablation on the purity of liquid xenon are discussed. Mobility measurements of barium in xenon gas are reported for the first time. The variation of mobility with xenon gas pressure suggests that a significant fraction of molecular ions are formed when barium ions interact with xenon gas at high pressures. The measured mobility of Ba+ in Xe gas at different pressures is compared with the predicted theoretical value, and deviations are explained by a model that describes the fraction of molecular ions in Xe gas as a function of pressure. The results are useful for the analysis of experiments of fluorescence of Ba+ in xenon gas. It is also important to know the mobility of the ions in order to calculate the time they interact with an excitation laser in fluorescence experiments and in proposed 136 Ba+ daughter detection schemes. This thesis presents results of detection of laser induced fluorescence of Ba+ ions in Xe gas. Measurements of the pressure broadening of the excitation spectra of Ba+ in xenon gas are presented. Nonradiative decays due to gas collisions and optical pumping affect the number of fluorescence counts detected. A model that treats the barium ion as a three level system is used to predict the total number of fluorescence counts and correct for optical pumping. A pressure broadening coefficient for Ba+ in xenon gas is extracted and limits for p-d and d-s nonradiative decay rates are extracted. Although fluorescence is reduced significantly at 5-10 atm xenon pressure, the measurements in this thesis indicate that it is still feasible to detect 136Ba+ ions directly in high pressure xenon gas, e.g. in a double beta decay detector.

  10. Reflectance of polytetrafluoroethylene for xenon scintillation light

    NASA Astrophysics Data System (ADS)

    Silva, C.; Pinto da Cunha, J.; Pereira, A.; Chepel, V.; Lopes, M. I.; Solovov, V.; Neves, F.

    2010-03-01

    Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet (VUV) wavelength region (λ ≃175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work, we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived, and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Other fluoropolymers, namely, ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), and perfluoro-alkoxyalkane (PFA) were also measured.

  11. Studies of discharge mechanisms in high pressure gases-applications to high efficiency high power lasers. Ph.D. Thesis. Semiannual Progress Report

    NASA Technical Reports Server (NTRS)

    Cherrington, B. E.; Verdeyen, J. T.; Eden, J. G.; Leslie, S. G.

    1975-01-01

    By measuring the absorption and emission cantinua of various states in the cesium/xenon molecule, the collisional rates critical in populating the alkali/rare gas excimer levels have been estimated. Cs atomic states that are weakly optically connected to ground have been shown to form excimer levels that are attractive as potential dissociation lasers. In particular, the (Cs/7 2S/Xe) excited molecule appears promising as a source of high energy laser radiation due to its large dissociation energy, stimulated emission cross section, and small population inversion densities. Monitoring of the optically pumped Cs2 molecular absorption profile in the presence of xenon shows a drastic change with increasing xenon pressure for the Cs2C band. Dominant absorption at large xenon densities is centered around approximately 6380 A as opposed to 6300 A for lower perturber pressure.

  12. Multi-Column Xe/Kr Separation with AgZ-PAN and HZ-PAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenhalgh, Mitchell Randy; Garn, Troy Gerry; Welty, Amy Keil

    Previous multi-column xenon/krypton separation tests have demonstrated the capability of separating xenon from krypton in a mixed gas feed stream. The results of this initial testing with AgZ-PAN and HZ-PAN indicated that an excellent separation of xenon from krypton could be achieved. Building upon these initial results, a series of additional multi-column testing were performed in FY-16. The purpose of this testing was to scale up the sorbent beds, test a different composition of feed gas and attempt to improve the accuracy of the analysis of the individual capture columns’ compositions. Two Stirling coolers were installed in series to performmore » this testing. The use of the coolers instead of the cryostat provided two desired improvements, 1) removal of the large dilution due to the internal volume of the cryostat adsorption chamber, and 2) ability to increase the sorbent bed size for scale-up. The AgZ-PAN sorbent, due to its xenon selectivity, was loaded in the first column to capture the xenon while allowing the krypton to flow through and be routed to a second column containing the HZ-PAN for capture and analysis. The gases captured on both columns were sampled with evacuated sample bombs and subsequently analyzed via GC-MS for both krypton and xenon. The results of these tests can be used to develop the scope of future testing and analysis using this test bed for demonstrating the capture and separation of xenon and krypton using sorbents, for demonstrating desorption and regeneration of the sorbents, and for determining compositions of the desorbed gases. They indicate a need for future desorption studies in order to better quantify co-adsorbed species and final krypton purity.« less

  13. Effect of Xenon Anesthesia Compared to Sevoflurane and Total Intravenous Anesthesia for Coronary Artery Bypass Graft Surgery on Postoperative Cardiac Troponin Release: An International, Multicenter, Phase 3, Single-blinded, Randomized Noninferiority Trial.

    PubMed

    Hofland, Jan; Ouattara, Alexandre; Fellahi, Jean-Luc; Gruenewald, Matthias; Hazebroucq, Jean; Ecoffey, Claude; Joseph, Pierre; Heringlake, Matthias; Steib, Annick; Coburn, Mark; Amour, Julien; Rozec, Bertrand; Liefde, Inge de; Meybohm, Patrick; Preckel, Benedikt; Hanouz, Jean-Luc; Tritapepe, Luigi; Tonner, Peter; Benhaoua, Hamina; Roesner, Jan Patrick; Bein, Berthold; Hanouz, Luc; Tenbrinck, Rob; Bogers, Ad J J C; Mik, Bert G; Coiffic, Alain; Renner, Jochen; Steinfath, Markus; Francksen, Helga; Broch, Ole; Haneya, Assad; Schaller, Manuella; Guinet, Patrick; Daviet, Lauren; Brianchon, Corinne; Rosier, Sebastien; Lehot, Jean-Jacques; Paarmann, Hauke; Schön, Julika; Hanke, Thorsten; Ettel, Joachym; Olsson, Silke; Klotz, Stefan; Samet, Amir; Laurinenas, Giedrius; Thibaud, Adrien; Cristinar, Mircea; Collanges, Olivier; Levy, François; Rossaint, Rolf; Stevanovic, Ana; Schaelte, Gereon; Stoppe, Christian; Hamou, Nora Ait; Hariri, Sarah; Quessard, Astrid; Carillion, Aude; Morin, Hélène; Silleran, Jacqueline; Robert, David; Crouzet, Anne-Sophie; Zacharowski, Kai; Reyher, Christian; Iken, Sonja; Weber, Nina C; Hollmann, Marcus; Eberl, Susanne; Carriero, Giovanni; Collacchi, Daria; Di Persio, Alessandra; Fourcade, Olivier; Bergt, Stefan; Alms, Angela

    2017-12-01

    Ischemic myocardial damage accompanying coronary artery bypass graft surgery remains a clinical challenge. We investigated whether xenon anesthesia could limit myocardial damage in coronary artery bypass graft surgery patients, as has been reported for animal ischemia models. In 17 university hospitals in France, Germany, Italy, and The Netherlands, low-risk elective, on-pump coronary artery bypass graft surgery patients were randomized to receive xenon, sevoflurane, or propofol-based total intravenous anesthesia for anesthesia maintenance. The primary outcome was the cardiac troponin I concentration in the blood 24 h postsurgery. The noninferiority margin for the mean difference in cardiac troponin I release between the xenon and sevoflurane groups was less than 0.15 ng/ml. Secondary outcomes were the safety and feasibility of xenon anesthesia. The first patient included at each center received xenon anesthesia for practical reasons. For all other patients, anesthesia maintenance was randomized (intention-to-treat: n = 492; per-protocol/without major protocol deviation: n = 446). Median 24-h postoperative cardiac troponin I concentrations (ng/ml [interquartile range]) were 1.14 [0.76 to 2.10] with xenon, 1.30 [0.78 to 2.67] with sevoflurane, and 1.48 [0.94 to 2.78] with total intravenous anesthesia [per-protocol]). The mean difference in cardiac troponin I release between xenon and sevoflurane was -0.09 ng/ml (95% CI, -0.30 to 0.11; per-protocol: P = 0.02). Postoperative cardiac troponin I release was significantly less with xenon than with total intravenous anesthesia (intention-to-treat: P = 0.05; per-protocol: P = 0.02). Perioperative variables and postoperative outcomes were comparable across all groups, with no safety concerns. In postoperative cardiac troponin I release, xenon was noninferior to sevoflurane in low-risk, on-pump coronary artery bypass graft surgery patients. Only with xenon was cardiac troponin I release less than with total intravenous anesthesia. Xenon anesthesia appeared safe and feasible.

  14. Xenon preconditioning: the role of prosurvival signaling, mitochondrial permeability transition and bioenergetics in rats.

    PubMed

    Mio, Yasushi; Shim, Yon Hee; Richards, Ebony; Bosnjak, Zeljko J; Pagel, Paul S; Bienengraeber, Martin

    2009-03-01

    Similar to volatile anesthetics, the anesthetic noble gas xenon protects the heart from ischemia/reperfusion injury, but the mechanisms responsible for this phenomenon are not fully understood. We tested the hypothesis that xenon-induced cardioprotection is mediated by prosurvival signaling kinases that target mitochondria. Male Wistar rats instrumented for hemodynamic measurements were subjected to a 30 min left anterior descending coronary artery occlusion and 2 h reperfusion. Rats were randomly assigned to receive 70% nitrogen/30% oxygen (control) or three 5-min cycles of 70% xenon/30% oxygen interspersed with the oxygen/nitrogen mixture administered for 5 min followed by a 15 min memory period. Myocardial infarct size was measured using triphenyltetrazolium staining. Additional hearts from control and xenon-pretreated rats were excised for Western blotting of Akt and glycogen synthase kinase 3 beta (GSK-3beta) phosphorylation and isolation of mitochondria. Mitochondrial oxygen consumption before and after hypoxia/reoxygenation and mitochondrial permeability transition pore opening were determined. Xenon significantly (P < 0.05) reduced myocardial infarct size compared with control (32 +/- 4 and 59% +/- 4% of the left ventricular area at risk; mean +/- sd) and enhanced phosphorylation of Akt and GSK-3beta. Xenon pretreatment preserved state 3 respiration of isolated mitochondria compared with the results obtained in the absence of the gas. The Ca(2+) concentration required to induce mitochondrial membrane depolarization was larger in the presence compared with the absence of xenon pretreatment (78 +/- 17 and 56 +/- 17 microM, respectively). The phosphoinositol-3-kinase-kinase inhibitor wortmannin blocked the effect of xenon on infarct size and respiration. These results indicate that xenon preconditioning reduces myocardial infarct size, phosphorylates Akt, and GSK-3beta, preserves mitochondrial function, and inhibits Ca(2+)-induced mitochondrial permeability transition pore opening. These data suggest that xenon-induced cardioprotection occurs because of activation of prosurvival signaling that targets mitochondria and renders them less vulnerable to ischemia-reperfusion injury.

  15. Inference and analysis of xenon outflow curves under multi-pulse injection in two-dimensional chromatography.

    PubMed

    Shu-Jiang, Liu; Zhan-Ying, Chen; Yin-Zhong, Chang; Shi-Lian, Wang; Qi, Li; Yuan-Qing, Fan

    2013-10-11

    Multidimensional gas chromatography is widely applied to atmospheric xenon monitoring for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). To improve the capability for xenon sampling from the atmosphere, sampling techniques have been investigated in detail. The sampling techniques are designed by xenon outflow curves which are influenced by many factors, and the injecting condition is one of the key factors that could influence the xenon outflow curves. In this paper, the xenon outflow curves of single-pulse injection in two-dimensional gas chromatography has been tested and fitted as a function of exponential modified Gaussian distribution. An inference formula of the xenon outflow curve for six-pulse injection is derived, and the inference formula is also tested to compare with its fitting formula of the xenon outflow curve. As a result, the curves of both the one-pulse and six-pulse injections obey the exponential modified Gaussian distribution when the temperature of the activated carbon column's temperature is 26°C and the flow rate of the carrier gas is 35.6mLmin(-1). The retention time of the xenon peak for one-pulse injection is 215min, and the peak width is 138min. For the six-pulse injection, however, the retention time is delayed to 255min, and the peak width broadens to 222min. According to the inferred formula of the xenon outflow curve for the six-pulse injection, the inferred retention time is 243min, the relative deviation of the retention time is 4.7%, and the inferred peak width is 225min, with a relative deviation of 1.3%. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Long-range transport of Xe-133 emissions under convective and non-convective conditions.

    PubMed

    Kuśmierczyk-Michulec, J; Krysta, M; Kalinowski, M; Hoffmann, E; Baré, J

    2017-09-01

    To investigate the transport of xenon emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. The air mass trajectory ideally provides a "link" between a radionuclide release and a detection confirmed by radionuclide measurements. This paper investigates the long-range transport of Xe-133 emissions under convective and non-convective conditions, with special emphasis on evaluating the changes in the simulated activity concentration values due to the inclusion of the convective transport in the ATM simulations. For that purpose a series of 14 day forward simulations, with and without convective transport, released daily in the period from 1 January 2011 to 30 June 2013, were analysed. The release point was at the ANSTO facility in Australia. The simulated activity concentrations for the period January 2011 to February 2012 were calculated using the daily emission values provided by the ANSTO facility; outside the aforementioned period, the median daily emission value was used. In the simulations the analysed meteorological input data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) were used with the spatial resolution of 0.5°. It was found that the long-range transport of Xe-133 emissions under convective conditions, where convection was included in the ATM simulation, led to a small decrease in the activity concentration, as compared to transport without convection. In special cases related to deep convection, the opposite effect was observed. Availability of both daily emission values and measured Xe-133 activity concentration values was an opportunity to validate the simulations. Based on the paired t-test, a 95% confidence interval for the true mean difference between simulations without convective transport and measurements was constructed. It was estimated that the overall uncertainty lies between 0.08 and 0.25 mBq/m 3 . The uncertainty for the simulations with the convective transport included is slighted shifted to the lower values and is in the range between 0.06 and 0.20 mBq/m 3 . Copyright © 2017. Published by Elsevier Ltd.

  17. Evidence of charge exchange pumping in calcium-xenon system

    NASA Technical Reports Server (NTRS)

    Chubb, D. L.

    1973-01-01

    Charge exchange between xenon ions and calcium atoms may produce an inversion between the 5s or 4d and 4p energy levels of the calcium ions. A low power flowing xenon plasma seeded with calcium was utilized to determine if charge exchange or electron collisions populate the 5s and 4d levels Ca(+). Line intensity ratios proportional to the density ratios n5s/n4p and n4d/n4p were measured. From the dependence of these intensity ratios on power input to the xenon plasma it was concluded that charge exchange pumping of the 5s and 4d levels predominates over electron collisional pumping of these levels. Also, by comparing intensity ratios obtained using argon and krypton in place of xenon with those obtained in xenon the same conclusion was made.

  18. Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping

    NASA Astrophysics Data System (ADS)

    Wahl, C. G.; Bernard, E. P.; Lippincott, W. H.; Nikkel, J. A.; Shin, Y.; McKinsey, D. N.

    2014-06-01

    Liquid-argon scintillation detectors are used in fundamental physics experiments and are being considered for security applications. Previous studies have suggested that the addition of small amounts of xenon dopant improves performance in light or signal yield, energy resolution, and particle discrimination. In this study, we investigate the detector response for xenon dopant concentrations from 9 ± 5 ppm to 1100 ± 500 ppm xenon (by weight) in 6 steps. The 3.14-liter detector uses tetraphenyl butadiene (TPB) wavelength shifter with dual photomultiplier tubes and is operated in single-phase mode. Gamma-ray-interaction signal yield of 4.0 ± 0.1 photoelectrons/keV improved to 5.0 ± 0.1 photoelectrons/keV with dopant. Energy resolution at 662 keV improved from (4.4 ± 0.2)% (σ) to (3.5 ± 0.2)% (σ) with dopant. Pulse-shape discrimination performance degraded greatly at the first addition of dopant, slightly improved with additional additions, then rapidly improved near the end of our dopant range, with performance becoming slightly better than pure argon at the highest tested dopant concentration. Some evidence of reduced neutron scintillation efficiency with increasing dopant concentration was observed. Finally, the waveform shape outside the TPB region is discussed, suggesting that the contribution to the waveform from xenon-produced light is primarily in the last portion of the slow component.

  19. Assessment of the effectiveness of a ventilator associated pneumonia prevention bundle that contains endotracheal tube with subglottic drainage and cuff pressure monitorization.

    PubMed

    Akdogan, Ozlem; Ersoy, Yasemin; Kuzucu, Ciğdem; Gedik, Ender; Togal, Turkan; Yetkin, Funda

    The effectiveness of prevention bundles on the occurrence and mortality of ventilator associated pneumonia (VAP) was evaluated in many studies. However, the effectiveness of endotracheal tube with subglottic secretion drainage (ETT-SD) and cuff pressure monitorization in VAP bundles have not been adequately assessed. In this study, we aimed to evaluate the effectiveness of VAP bundle containing ETT-SD and cuff pressure monitorization. This was a prospective, controlled study that was carried out between March 2011 and April 2012 including intubated patients. The study was conducted at the Anesthesiology Intensive Care Unit 1 and 2 (10 beds each) in a 898-bed university hospital. Occurrence of VAP and compliance with the parameters of the VAP prevention bundles were assessed daily. Patients intubated with the standard endotracheal tube were recruited as controls, mainly in the first six months of the study as ETT-SD and cuff pressure monometer had not yet been implemented. In the second term, patients intubated with ETT-SD were included as cases. Occurrence of VAP, mortality, and compliance with VAP prevention bundles were monitored. A total of 133 patients, 37 cases and 96 controls were recruited. VAP incidence declined from 40.82 to 22.16 per 1000 ventilator days among controls and cases, respectively (p<005). On average, VAP occurred 17.33±21.09 days in the case group and 10.43±7.83 days in the control group (p=0.04). However, mortality of cases and controls at the 14th and 30th days was not different. VAP prevention bundles including the utilization of ETT-SD, monitoring cuff pressure, and oral care with chlorhexidine were efficient in reducing the rate of VAP. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. Characteristics of Japanese Patients with Becker Muscular Dystrophy and Intermediate Muscular Dystrophy in a Japanese National Registry of Muscular Dystrophy (Remudy): Heterogeneity and Clinical Variation.

    PubMed

    Mori-Yoshimura, Madoka; Mitsuhashi, Satomi; Nakamura, Harumasa; Komaki, Hirofumi; Goto, Kanako; Yonemoto, Naohiro; Takeuchi, Fumi; Hayashi, Yukiko K; Murata, Miho; Takahashi, Yuji; Nishino, Ichizo; Takeda, Shin'ichi; Kimura, En

    2018-01-01

    Obtaining an adequate number of patients to conduct a natural history study for rare diseases such as Becker muscular dystrophy (BMD) is difficult. The present study used data from Remudy, a national registry for neuromuscular diseases in Japan, to conduct a phenotypic analysis of BMD. We analyzed Remudy data of participants with dystrophinopathy. All participants who were aged 17 and older and were ambulant at age 13 were included in this study. Participants were divided into two groups: those with BMD who were ambulant at age 17, and those with intermediate muscular dystrophy (IMD) who lost ambulation by age 17. Frequent mutations were analyzed by age at ambulation, cardiopulmonary function, and genotype. For clinical comparisons, participants who were administered steroids were excluded. From July 2009 through September 2015, 192 participants had registered with Remudy. Mean participant age was 34.80±13.3 (range, 17-78) years, and 52.1% of participants were ambulant. Of the entire study population, 50.5% had cardiomyopathy and 35.9% had respiratory failure. Three participants required invasive ventilation and 30 required non-invasive ventilation. Nineteen of the 30 non-invasive ventilator users were part-time users. In total, 138 (71.9%) had BMD and 54 (28.1%) had IMD. The most frequent mutation was ex45_ex47del (36 participants). Among participants with frequent in-frame mutations, those with the ex45-49del mutation lost their ambulation earlier than those with the ex45_ex47del mutation. A total of 67 different exon deletions and duplications were identified in the study population. We clarified the clinical phenotypes of Japanese patients with BMD/IMD using data from Remudy. Our results suggest that not only IMD but also BMD are associated with risk of respiratory dysfunction.

  1. [Effects of xenon preconditioning against ischemia/reperfusion injury and oxidative stress in immature heart].

    PubMed

    Li, Qian; Lian, Chun-Wei; Fang, Li-Qun; Liu, Bin; Yang, Bo

    2014-09-01

    To investigate whether xenon preconditioning (PC) could protect immature myocardium against ischemia-reperfusion (I/R) injury in a dose-dependent manner and clarify the role of xenon PC on oxidative stress. Forty-eight isolated perfused immature rabbit hearts were randomly divided into four groups (n = 12): The sham group had the hearts perfused continuously for 300 min. In I/R group, the hearts were subjected to 60 min perfusion followed by 60 min ischemia and 180 min reperfusion. In 1 minimum alveolar concentration (MAC) and 0.5 MAC xenon PC groups, the hearts were preconditioned with 1 MAC or 0.5 MAC xenon respectively, following 60 min ischemia and 180 min reperfusion. The cardiac function, myocardial infarct size, mitochondrial structure, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in each group were determined after reperfusion. Compared with I/R group, both 1 MAC and 0. 5 MAC xenon preconditioning significantly improved cardiac function (P < 0.01), reduced myocardial infarct size (P < 0.01) and mitochondrial damage, increased SOD activity and decreased MDA level (P < 0.01). There were no differences between 1 MAC group and 0.5 MAC xenon group (P > 0.05). Xenon preconditioning at 0. 5 and 1 MAC produce similar cardioprotective effects against I/R injury in isolated perfused immature heart.

  2. The XENON1T dark matter experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Antunes, B.; Arneodo, F.; Balata, M.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breskin, A.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Chiarini, A.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Corrieri, R.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Gangi, P. Di; Giovanni, A. Di; Diglio, S.; Disdier, J.-M.; Doets, M.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Front, D.; Fulgione, W.; Rosso, A. Gallo; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Giboni, K.-L.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Huhmann, C.; Itay, R.; James, A.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Maier, R.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morå, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orlandi, D.; Othegraven, R.; Pakarha, P.; Parlati, S.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; García, D. Ramírez; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Santos, J. M. F. dos; Saldanha, R.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stern, M.; Stein, A.; Tatananni, D.; Tatananni, L.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Vargas, M.; Wack, O.; Walet, R.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.

    2017-12-01

    The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented.

  3. Xenon Release by the In-Vacuum Etching of Aerogel: Implications for the Study of Noble Gases in Comet Wild 2 Stardust

    NASA Astrophysics Data System (ADS)

    O'Mara, A.; Busemann, H.; Clay, P. L.; Crowther, S. A.; Gilmour, J. D.; Wieler, R.

    2014-09-01

    Xenon detection in comet Wild 2 stardust is hampered by the large adsorption of Xe on aerogel. In-vacuum etching presented here may enable the stepwise separation of terrestrial Xe, cometary Xe trapped in melted aerogel and Xe in cometary silicates.

  4. Xenon Preconditioning Protects against Renal Ischemic-Reperfusion Injury via HIF-1α Activation

    PubMed Central

    Ma, Daqing; Lim, Ta; Xu, Jing; Tang, Haidy; Wan, Yanjie; Zhao, Hailin; Hossain, Mahmuda; Maxwell, Patrick H.; Maze, Mervyn

    2009-01-01

    The mortality rate from acute kidney injury after major cardiovascular operations can be as high as 60%, and no therapies have been proved to prevent acute kidney injury in this setting. Here, we show that preconditioning with the anesthetic gas xenon activates hypoxia-inducible factor 1α (HIF-1α) and its downstream effectors erythropoietin and vascular endothelial growth factor in a time-dependent manner in the kidneys of adult mice. Xenon increased the efficiency of HIF-1α translation via modulation of the mammalian target of rapamycin pathway. In a model of renal ischemia-reperfusion injury, xenon provided morphologic and functional renoprotection; hydrodynamic injection of HIF-1α small interfering RNA demonstrated that this protection is HIF-1α dependent. These results suggest that xenon preconditioning is a natural inducer of HIF-1α and that administration of xenon before renal ischemia can prevent acute renal failure. If these data are confirmed in the clinical setting, then preconditioning with xenon may be beneficial before procedures that temporarily interrupt renal perfusion. PMID:19144758

  5. Development and evaluation of a silver mordenite composite sorbent for the partitioning of xenon from krypton in gas compositions

    DOE PAGES

    Garn, Troy G.; Greenhalgh, Mitchell; Law, Jack D.

    2015-12-22

    A new engineered form composite sorbent for the selective separation of xenon from krypton in simulant composition off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A sodium mordenite powder was incorporated into a macroporous polymer binder, formed into spherical beads and successfully converted to a 9 wt.% silver form composite sorbent. The final engineered form sorbent retained the characteristic surface area indicative of sodium mordenite powder. The sorbent was evaluated for xenon adsorption potential with capacities measured as high as 30 millimoles of xenon per kilogram of sorbent achieved at ambient temperature andmore » 460 millimoles of xenon per kilogram sorbent at 220 K. Xenon/krypton selectivity was calculated to be 22.4 with a 1020 µL/L xenon, 150 µL/L krypton in a balance of air feed gas at 220 K. Furthermore, adsorption/desorption thermal cycling effects were evaluated with results indicating sorbent performance was not significantly impacted while undergoing numerous adsorption/desorption thermal cycles.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosendahl, S., E-mail: rosendahl@wwu.de; Brown, E.; Fieguth, A.

    The separation of krypton and xenon is of particular importance for the field of direct dark matter search with liquid xenon detectors. The intrinsic contamination of the xenon with radioactive {sup 85}Kr makes a significant background for these kinds of low count-rate experiments and has to be removed beforehand. This can be achieved by cryogenic distillation, a technique widely used in industry, using the different vapor pressures of krypton and xenon. In this paper, we present an investigation on the separation performance of a single stage distillation system using a radioactive {sup 83m}Kr-tracer method. The separation characteristics under different operationmore » conditions are determined for very low concentrations of krypton in xenon at the level of {sup 83m}Kr/Xe = 1.9 ⋅ 10{sup −15}, demonstrating, that cryogenic distillation in this regime is working. The observed separation is in agreement with the expectation from the different volatilities of krypton and xenon. This cryogenic distillation station is the first step on the way to a multi-stage cryogenic distillation column for the next generation of direct dark matter experiment XENON1T.« less

  7. Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model.

    PubMed

    Campos-Pires, Rita; Koziakova, Mariia; Yonis, Amina; Pau, Ashni; Macdonald, Warren; Harris, Katie; Edge, Christopher J; Franks, Nicholas P; Mahoney, Peter F; Dickinson, Robert

    2018-04-15

    The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave-induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury.

  8. Simultaneous detection of xenon and krypton in equine plasma by gas chromatography-tandem mass spectrometry for doping control.

    PubMed

    Kwok, Wai Him; Choi, Timmy L S; So, Pui-Kin; Yao, Zhong-Ping; Wan, Terence S M

    2017-02-01

    Xenon can activate the hypoxia-inducible factors (HIFs). As such, it has been allegedly used in human sports for increasing erythropoiesis. Krypton, another noble gas with reported narcosis effect, can also be expected to be a potential and less expensive erythropoiesis stimulating agent. This has raised concern about the misuse of noble gases as doping agents in equine sports. The aim of the present study is to establish a method for the simultaneous detection of xenon and krypton in equine plasma for the purpose of doping control. Xenon- or krypton-fortified equine plasma samples were prepared according to reported protocols. The target noble gases were simultaneously detected by gas chromatography-triple quadrupole mass spectrometry using headspace injection. Three xenon isotopes at m/z 129, 131, and 132, and four krypton isotopes at m/z 82, 83, 84, and 86 were targeted in selected reaction monitoring mode (with the precursor ions and product ions at identical mass settings), allowing unambiguous identification of the target analytes. Limits of detection for xenon and krypton were about 19 pmol/mL and 98 pmol/mL, respectively. Precision for both analytes was less than 15%. The method has good specificity as background analyte signals were not observed in negative equine plasma samples (n = 73). Loss of analytes under different storage temperatures has also been evaluated. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Xenon triggers pro-inflammatory effects and suppresses the anti-inflammatory response compared to sevoflurane in patients undergoing cardiac surgery.

    PubMed

    Breuer, Thomas; Emontzpohl, Christoph; Coburn, Mark; Benstoem, Carina; Rossaint, Rolf; Marx, Gernot; Schälte, Gereon; Bernhagen, Juergen; Bruells, Christian S; Goetzenich, Andreas; Stoppe, Christian

    2015-10-15

    Cardiac surgery encompasses various stimuli that trigger pro-inflammatory mediators, reactive oxygen species and mobilization of leucocytes. The aim of this study was to evaluate the effect of xenon on the inflammatory response during cardiac surgery. This randomized trial enrolled 30 patients who underwent elective on-pump coronary-artery bypass grafting in balanced anaesthesia of either xenon or sevoflurane. For this secondary analysis, blood samples were drawn prior to the operation, intra-operatively and on the first post-operative day to measure the pro- and anti-inflammatory cytokines interleukin-6 (IL-6), interleukin-8/C-X-C motif ligand 8 (IL-8/CXCL8), and interleukin-10 (IL-10). Chemokines such as C-X-C motif ligand 12/ stromal cell-derived factor-1α (CXCL12/SDF-1α) and macrophage migration inhibitory factor (MIF) were measured to characterize xenon's perioperative inflammatory profile and its impact on migration of peripheral blood mononuclear cells (PBMC). Xenon enhanced the postoperative increase of IL-6 compared to sevoflurane (Xenon: 90.7 versus sevoflurane: 33.7 pg/ml; p = 0.035) and attenuated the increase of IL-10 (Xenon: 127.9 versus sevoflurane: 548.3 pg/ml; p = 0.028). Both groups demonstrated a comparable intraoperative increase of oxidative stress (intra-OP: p = 0.29; post-OP: p = 0.65). While both groups showed an intraoperative increase of the cardioprotective mediators MIF and CXCL12/SDF-1α, only MIF levels decreased in the xenon group on the first postoperative day (50.0 ng/ml compared to 23.3 ng/ml; p = 0.012), whereas it remained elevated after sevoflurane anaesthesia (58.3 ng/ml to 53.6 ng/ml). Effects of patients' serum on chemotactic migration of peripheral mononuclear blood cells taken from healthy volunteers indicated a tendency towards enhanced migration after sevoflurane anaesthesia (p = 0.07). Compared to sevoflurane, balanced xenon anaesthesia triggers pro-inflammatory effects and suppresses the anti-inflammatory response in cardiac surgery patients even though the clinical significance remains unknown. This clinical trial was approved by the European Medicines Agency (EudraCT-number: 2010-023942-63) and at ClinicalTrials.gov ( NCT01285271 ; first received: January 24, 2011).

  10. Near-infrared scintillation of xenon by 63Ni beta decay

    NASA Astrophysics Data System (ADS)

    Yoshimizu, Norimasa; Lal, Amit; Pollock, Clifford R.

    2006-07-01

    The near-infrared scintillation of xenon gas by the β decay of 37MBq of Ni63 was studied, in the interest of its use in integrated devices for applications such as optical beacons and wavelength calibration. The emission was imaged and analyzed using Spencer's theory of electron penetration using xenon scattering cross sections derived from Thomas-Fermi theory. The total emission was approximately 2×105photons/s at 20kPa and 1×105photons/s at 100kPa. Spectral data show three dominant peaks at 823, 828, and 882nm as well as the formation of metastable states.

  11. NWA 8114: Analysis of Xenon in this Unique Martian Meteorite

    NASA Astrophysics Data System (ADS)

    Crowther, S. A.; Jastrzebski, N. D.; Nottingham, M.; Theis, K. J.; Gilmour, J. D.

    2014-09-01

    The Xe composition of NWA 8114 is dominated by martian atmospheric xenon, with contributions from terrestrial atmospheric contamination at low temperature and fissiogenic xenon at high temperature. The overall systematics are similar to Nakhla.

  12. A magnetically driven piston pump for ultra-clean applications

    NASA Astrophysics Data System (ADS)

    LePort, F.; Neilson, R.; Barbeau, P. S.; Barry, K.; Bartoszek, L.; Counts, I.; Davis, J.; deVoe, R.; Dolinski, M. J.; Gratta, G.; Green, M.; Díez, M. Montero; Müller, A. R.; O'Sullivan, K.; Rivas, A.; Twelker, K.; Aharmim, B.; Auger, M.; Belov, V.; Benitez-Medina, C.; Breidenbach, M.; Burenkov, A.; Cleveland, B.; Conley, R.; Cook, J.; Cook, S.; Craddock, W.; Daniels, T.; Dixit, M.; Dobi, A.; Donato, K.; Fairbank, W.; Farine, J.; Fierlinger, P.; Franco, D.; Giroux, G.; Gornea, R.; Graham, K.; Green, C.; Hägemann, C.; Hall, C.; Hall, K.; Hallman, D.; Hargrove, C.; Herrin, S.; Hughes, M.; Hodgson, J.; Juget, F.; Kaufman, L. J.; Karelin, A.; Ku, J.; Kuchenkov, A.; Kumar, K.; Leonard, D. S.; Lutter, G.; Mackay, D.; MacLellan, R.; Marino, M.; Mong, B.; Morgan, P.; Odian, A.; Piepke, A.; Pocar, A.; Prescott, C. Y.; Pushkin, K.; Rollin, E.; Rowson, P. C.; Schmoll, B.; Sinclair, D.; Skarpaas, K.; Slutsky, S.; Stekhanov, V.; Strickland, V.; Swift, M.; Vuilleumier, J.-L.; Vuilleumier, J.-M.; Wichoski, U.; Wodin, J.; Yang, L.; Yen, Y.-R.

    2011-10-01

    A magnetically driven piston pump for xenon gas recirculation is presented. The pump is designed to satisfy extreme purity and containment requirements, as is appropriate for the recirculation of isotopically enriched xenon through the purification system and large liquid xenon time projection chamber of EXO-200. The pump, using sprung polymer gaskets, is capable of pumping more than 16 standard liters per minute of xenon gas with 750 Torr differential pressure.

  13. A magnetically driven piston pump for ultra-clean applications.

    PubMed

    LePort, F; Neilson, R; Barbeau, P S; Barry, K; Bartoszek, L; Counts, I; Davis, J; deVoe, R; Dolinski, M J; Gratta, G; Green, M; Montero Díez, M; Müller, A R; O'Sullivan, K; Rivas, A; Twelker, K; Aharmim, B; Auger, M; Belov, V; Benitez-Medina, C; Breidenbach, M; Burenkov, A; Cleveland, B; Conley, R; Cook, J; Cook, S; Craddock, W; Daniels, T; Dixit, M; Dobi, A; Donato, K; Fairbank, W; Farine, J; Fierlinger, P; Franco, D; Giroux, G; Gornea, R; Graham, K; Green, C; Hägemann, C; Hall, C; Hall, K; Hallman, D; Hargrove, C; Herrin, S; Hughes, M; Hodgson, J; Juget, F; Kaufman, L J; Karelin, A; Ku, J; Kuchenkov, A; Kumar, K; Leonard, D S; Lutter, G; Mackay, D; MacLellan, R; Marino, M; Mong, B; Morgan, P; Odian, A; Piepke, A; Pocar, A; Prescott, C Y; Pushkin, K; Rollin, E; Rowson, P C; Schmoll, B; Sinclair, D; Skarpaas, K; Slutsky, S; Stekhanov, V; Strickland, V; Swift, M; Vuilleumier, J-L; Vuilleumier, J-M; Wichoski, U; Wodin, J; Yang, L; Yen, Y-R

    2011-10-01

    A magnetically driven piston pump for xenon gas recirculation is presented. The pump is designed to satisfy extreme purity and containment requirements, as is appropriate for the recirculation of isotopically enriched xenon through the purification system and large liquid xenon time projection chamber of EXO-200. The pump, using sprung polymer gaskets, is capable of pumping more than 16 standard liters per minute of xenon gas with 750 Torr differential pressure.

  14. Development of Solid Xenon Bolometers

    NASA Astrophysics Data System (ADS)

    Dolinski, Michelle; Hansen, Erin

    2016-09-01

    Cryogenic liquid xenon detectors have become a popular technology in the search for rare events, such as dark matter interactions and neutrinoless double beta decay. The power of liquid xenon detector technology is in the combination of ionization and scintillation signals, resulting in particle discrimination and improved energy resolution over the ionization-only signal. The improved energy resolution results from a microscopic anti-correlation phenomenon that has not been described from first principles. Solid xenon bolometers operated at 10 mK are expected to have excellent counting statistics in the phonon channel, with energy resolution of 0.1% or better. This additional energy channel may offer the final piece of the puzzle in understanding liquid xenon detector energy response. We present work toward the development and characterization of solid xenon bolometers at Drexel University. Funding for this project was provided by the Charles E. Kaufman Foundation of The Pittsburgh Foundation.

  15. Hugoniot measurements of double-shocked precompressed dense xenon plasmas

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Chen, Z. Y.

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ˜6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  16. Xenon lighting adjusted to plant requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koefferlein, M.; Doehring, T.; Payer, H.D.

    1994-12-31

    The high luminous flux and spectral properties of xenon lamps would provide an ideal luminary for plant lighting if not excess IR radiation poses several problems for an application: the required filter systems reduce the irradiance at spectral regions of particular importance for plant development. Most of the economical drawbacks of xenon lamps are related to the difficult handling of that excess IR energy. Furthermore, the temporal variation of the xenon output depending on the oscillations of the applied AC voltage has to be considered for the plant development. However, xenon lamps outperform other lighting systems with respect to spectralmore » stability, immediate response, and maximum luminance. Therefore, despite considerable competition by other lighting techniques, xenon lamps provide a very useful tool for special purposes. In plant lighting however, they seem to play a less important role as other lamp and lighting developments can meet these particular requirements at lower costs.« less

  17. Scalability, Scintillation Readout and Charge Drift in a Kilogram Scale Solid Xenon Particle Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, J.; Cease, H.; Jaskierny, W. F.

    2014-10-23

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used amore » conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.« less

  18. Retinal endoilluminator toxicity of xenon and light-emitting diode (LED) light source: rabbit model.

    PubMed

    Aydin, Bahri; Dinç, Erdem; Yilmaz, S Necat; Altiparmak, U Emrah; Yülek, Fatma; Ertekin, Sevda; Yilmaz, Mustafa; Yakın, Mehmet

    2014-09-01

    This study evaluates retinal toxicity due to endoillumination with the light-emitting diode (LED) light source in comparison to endoillumination with xenon light source. Twenty-five eyes of 14 New Zealand pigmented rabbits were used in the study. The LED light (Omesis Medical Systems, Turkey) group was composed of 7 right eyes, while the other 7 right eyes constituted the xenon group (420 nm filter, 357mW/cm(2)) (Bright Star; DORC, Zuidland, Netherlands). Eleven untreated left eyes composed the control group. Twenty gauge pars plana incision 1.5 mm behind the limbus was performed in the right eyes. Twenty gauge bullet type fiberoptic endoilluminator was inserted into the eye from the incision without any pars plana vitrectomy. Fiberoptic endoilluminator was placed in such a way that it was directed toward visual streak of the rabbit retina with a 5 mm distance to retinal surface. Endoillumination was then applied for 20 min with a maximum light intensity for LED and xenon light. In left control eyes, no surgical procedure and no endoillumination were performed. One week after the endoillumination procedure, both eyes of the rabbits were enucleated following electroretinography. Sections stained with hematoxylin and eosin to evaluate morphologic changes. Retina tissues were assessed by active caspase-3 staining. There was no difference in the shape of the waveforms recorded in the eyes endoilluminated with LED light and xenon light sources compared to control eyes both before and after endoillumination application (p > 0.05). Microscopic evaluation of the retinas with hematoxylin and eosin staining demonstrated that all study groups have normal histologic properties similar to control group. No apoptosis positive cells were found within all sections in all groups. When the LED light source is used with maximum power and limited duration for endoillumination in rabbit eyes it does not produce phototoxic effects that may be detectable by electrophysiology and histology similar to xenon light.

  19. [A comparison of leak compensation in six acute care ventilators during non-invasive ventilation].

    PubMed

    Hu, X S; Wang, Y; Wang, Z T; Yan, P; Zhang, X G; Zhao, S F; Xie, F; Gu, H J; Xie, L X

    2017-02-12

    Objective: To compare the ability of leak compensation in 6 medical ventilators during non-invasive ventilation. Methods: Six medical ventilators were selected, including 3 non-invasive ventilators (V60, Flexo and Stellar150), and 3 invasive ventilators(Avea, Servo I and BellaVist). Using a lung simulator, the ability of leak compensation was evaluated during triggering and cycling in 2 respiratory mechanics conditions (high airway resistance condition and high elastance resistance condition), and each condition was performed under 2 PEEP levels (4, and 8 cmH(2)O, 1 mmHg=0.098 kPa) at 4 air leak level conditions (L0: 2-3 L/min, L1: 8-10 L/min, L2: 22-27 L/min, L3: 35-40 L/min). Results: In the high elastance resistance condition (L2, L3)with different leak levels, the number of auto-triggering and miss-triggering of the non-invasive ventilator Flexo was significantly less than those of the others (L2: 1, 1; L3: 1.67, 1.33, P <0.01), and had better synchronization (L2: 2.33, 2.33; L3: 3.33, 3.33, P <0.01). In the high airway resistance condition with PEEP 4 cmH(2)O, V60 had less number of auto-triggering than other ventilators ( P <0.01), while in the high airway resistance condition with PEEP 8 cmH(2)O, Stellar150 had less number of miss-triggering than other ventilators (1, 0.67, 0, P <0.01). Flexo had a shorter trigger delay time than other ventilators in both high airway resistance and high elastance resistance conditions with L0 and L1 leak levels and PEEP levels [ARDS, PEEP=4: (109.8±1.8) ms, (112.0±0.6) ms; ARDS, PEEP=8: (103.1±0.7) ms, (109.7±0.7) ms; COPD, PEEP=4: (207.3±1.1) ms, (220.8±1.1) ms; COPD, PEEP=8: (195.6±6.7) ms, (200.0±1.2) ms , P <0.01]. Stellar150 had the shortest trigger delay time in high airway resistance condition with PEEP 4 cmH(2)O and high leak level L3[(262.8±0.8) ms , P <0.01]. V60 had a good performance on trigger delay time in high elastance resistance condition with PEEP 4 and 8 cmH(2)O, and also was most stable in increasing leak levels. Conclusion: In high airway resistance and high elastance resistance conditions with different PEEP levels and leak levels, V60, Stellar150, Flexo and BellaVista ventilators could be synchronized, among which V60, Stellar150 and Flexo presented a good performance features in specific conditions.

  20. Ischemia may be the primary cause of the neurologic deficits in classic migraine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skyhoj Olsen, T.; Friberg, L.; Lassen, N.A.

    1987-02-01

    This study investigates whether the cerebral blood flow reduction occurring in attacks of classic migraine is sufficient to cause neurologic deficits. Regional cerebral blood flow measured with the xenon 133 intracarotid injection technique was analyzed in 11 patients in whom a low-flow area developed during attacks of classic migraine. When measured with this technique, regional cerebral blood flow in focal low-flow areas will be overestimated because of the effect of scattered radiation (Compton scatter) on the recordings. In this study, this effect was particularly taken into account when evaluating the degree of blood flow reduction. During attacks of classic migraine,more » cerebral blood flow reductions averaging 52% were observed focally in the 11 patients. Cerebral blood flow levels known to be insufficient for normal cortical function (less than 16 to 23 mL/100 g/min) were measured in seven patients during the attacks. This was probably also the case in the remaining four patients, but the effect of scattered radiation made a reliable evaluation of blood flow impossible. It is concluded that the blood flow reduction that occurs during attacks of classic migraine is sufficient to cause ischemia and neurologic deficits. Hence, this study suggests a vascular origin of the prodromal neurologic deficits that may accompany attacks of classic migraine.« less

  1. Xenon Feed System Progress (Postprint)

    DTIC Science & Technology

    2006-06-13

    development, assembly and test of an electric propulsion xenon feed system for a flight technology demonstration program. Major accomplishments...pressure transducer feedback, the PFCV has successfully fed xenon to a 200 watt Hall Effect Thruster in a Technology Demonstration Program. The feed

  2. Radon depletion in xenon boil-off gas

    NASA Astrophysics Data System (ADS)

    Bruenner, S.; Cichon, D.; Lindemann, S.; Undagoitia, T. Marrodán; Simgen, H.

    2017-03-01

    An important background in detectors using liquid xenon for rare event searches arises from the decays of radon and its daughters. We report for the first time a reduction of ^{222}Rn in the gas phase above a liquid xenon reservoir. We show a reduction factor of ≳ 4 for the ^{222}Rn concentration in boil-off xenon gas compared to the radon enriched liquid phase. A semiconductor-based α -detector and miniaturized proportional counters are used to detect the radon. As the radon depletion in the boil-off gas is understood as a single-stage distillation process, this result establishes the suitability of cryogenic distillation to separate radon from xenon down to the 10^{-15} mol/mol level.

  3. Gravity assisted recovery of liquid xenon at large mass flow rates

    NASA Astrophysics Data System (ADS)

    Virone, L.; Acounis, S.; Beaupère, N.; Beney, J.-L.; Bert, J.; Bouvier, S.; Briend, P.; Butterworth, J.; Carlier, T.; Chérel, M.; Crespi, P.; Cussonneau, J.-P.; Diglio, S.; Manzano, L. Gallego; Giovagnoli, D.; Gossiaux, P.-B.; Kraeber-Bodéré, F.; Ray, P. Le; Lefèvre, F.; Marty, P.; Masbou, J.; Morteau, E.; Picard, G.; Roy, D.; Staempflin, M.; Stutzmann, J.-S.; Visvikis, D.; Xing, Y.; Zhu, Y.; Thers, D.

    2018-06-01

    We report on a liquid xenon gravity assisted recovery method for nuclear medical imaging applications. The experimental setup consists of an elevated detector enclosed in a cryostat connected to a storage tank called ReStoX. Both elements are part of XEMIS2 (XEnon Medical Imaging System): an innovative medical imaging facility for pre-clinical research that uses pure liquid xenon as detection medium. Tests based on liquid xenon transfer from the detector to ReStoX have been successfully performed showing that an unprecedented mass flow rate close to 1 ton per hour can be reached. This promising achievement as well as future areas of improvement will be discussed in this paper.

  4. Early outgassing of Mars supported by differential water solubility of iodine and xenon

    NASA Technical Reports Server (NTRS)

    Musselwhite, Donald S.; Drake, Michael J.; Swindle, Timothy D.

    1991-01-01

    The Martian atmosphere has a high X-129/Xe-132 ratio compared to the Martian mantle. As Xe-129 is the daughter product of the extinct nuclide I-129, a means of fractionating iodine from xenon early in Martian history appears necessary to account for the X-129/Xe-132 ratios of its known reservoirs. A model is presented here to account for the Marian xenon data which relies on the very different solubilities of xenon and iodine in water to fractionate them after outgassing. Atmospheric xenon is lost by impact erosion during heavy bombardment, followed by release of Xe-129 produced from I-129 decay in the crust.

  5. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of liquid xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Resembling a tiny bit of window screen, the oscillator at the heart of CVX-2 will vibrate between two pairs of paddle-like electrodes. The slight bend in the shape of the mesh has no effect on the data. What counts are the mesh's displacement in the xenon fluid and the rate at which the displacement dampens. The unit shown here is encased in a small test cell and capped with a sapphire windown to contain the xenon at high pressure.

  6. Lorazepam vs diazepam for pediatric status epilepticus: a randomized clinical trial.

    PubMed

    Chamberlain, James M; Okada, Pamela; Holsti, Maija; Mahajan, Prashant; Brown, Kathleen M; Vance, Cheryl; Gonzalez, Victor; Lichenstein, Richard; Stanley, Rachel; Brousseau, David C; Grubenhoff, Joseph; Zemek, Roger; Johnson, David W; Clemons, Traci E; Baren, Jill

    Benzodiazepines are considered first-line therapy for pediatric status epilepticus. Some studies suggest that lorazepam may be more effective or safer than diazepam, but lorazepam is not Food and Drug Administration approved for this indication. To test the hypothesis that lorazepam has better efficacy and safety than diazepam for treating pediatric status epilepticus. This double-blind, randomized clinical trial was conducted from March 1, 2008, to March 14, 2012. Patients aged 3 months to younger than 18 years with convulsive status epilepticus presenting to 1 of 11 US academic pediatric emergency departments were eligible. There were 273 patients; 140 randomized to diazepam and 133 to lorazepam. Patients received either 0.2 mg/kg of diazepam or 0.1 mg/kg of lorazepam intravenously, with half this dose repeated at 5 minutes if necessary. If status epilepticus continued at 12 minutes, fosphenytoin was administered. The primary efficacy outcome was cessation of status epilepticus by 10 minutes without recurrence within 30 minutes. The primary safety outcome was the performance of assisted ventilation. Secondary outcomes included rates of seizure recurrence and sedation and times to cessation of status epilepticus and return to baseline mental status. Outcomes were measured 4 hours after study medication administration. Cessation of status epilepticus for 10 minutes without recurrence within 30 minutes occurred in 101 of 140 (72.1%) in the diazepam group and 97 of 133 (72.9%) in the lorazepam group, with an absolute efficacy difference of 0.8% (95% CI, -11.4% to 9.8%). Twenty-six patients in each group required assisted ventilation (16.0% given diazepam and 17.6% given lorazepam; absolute risk difference, 1.6%; 95% CI, -9.9% to 6.8%). There were no statistically significant differences in secondary outcomes except that lorazepam patients were more likely to be sedated (66.9% vs 50%, respectively; absolute risk difference, 16.9%; 95% CI, 6.1% to 27.7%). Among pediatric patients with convulsive status epilepticus, treatment with lorazepam did not result in improved efficacy or safety compared with diazepam. These findings do not support the preferential use of lorazepam for this condition. clinicaltrials.gov Identifier: NCT00621478.

  7. Xenon adsorption on geological media and implications for radionuclide signatures

    DOE PAGES

    Paul, M. J.; Biegalski, S. R.; Haas, D. A.; ...

    2018-02-13

    Here, the detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isothermmore » measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures.« less

  8. Xenon adsorption on geological media and implications for radionuclide signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, M. J.; Biegalski, S. R.; Haas, D. A.

    Here, the detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isothermmore » measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures.« less

  9. Xenon adsorption on geological media and implications for radionuclide signatures.

    PubMed

    Paul, M J; Biegalski, S R; Haas, D A; Jiang, H; Daigle, H; Lowrey, J D

    2018-07-01

    The detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isotherm measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Because xenon near the critical point will collapse under its own weight, experiments on Earth (green line) are limited as they get closer (toward the left) to the critical point. CVX in the microgravity of space (red line) moved into unmeasured territory that scientists had not been able to reach.

  11. Molecular oxygen migration through the xenon docking sites of human hemoglobin in the R-state.

    PubMed

    Lepeshkevich, Sergei V; Gilevich, Syargey N; Parkhats, Marina V; Dzhagarov, Boris M

    2016-09-01

    A nanosecond laser flash-photolysis technique was used to study bimolecular and geminate molecular oxygen (O2) rebinding to tetrameric human hemoglobin and its isolated α and β chains in buffer solutions equilibrated with 1atm of air and up to 25atm of xenon. Xenon binding to the isolated α chains and to the α subunits within tetrameric hemoglobin was found to cause a decrease in the efficiency of O2 escape by a factor of ~1.30 and 3.3, respectively. A kinetic model for O2 dissociation, rebinding, and migration through two alternative pathways in the hemoglobin subunits was introduced and discussed. It was shown that, in the isolated α chains and α subunits within tetrameric hemoglobin, nearly one- and two-third escaping molecules of O2 leave the protein via xenon docking sites, respectively. The present experimental data support the idea that O2 molecule escapes from the β subunits mainly through the His(E7) gate, and show unambiguously that, in the α subunits, in addition to the direct E7 channel, there is at least one alternative escape route leading to the exterior via the xenon docking sites. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Rapid assessment of pulmonary gas transport with hyperpolarized 129Xe MRI using a 3D radial double golden-means acquisition with variable flip angles.

    PubMed

    Ruppert, Kai; Amzajerdian, Faraz; Hamedani, Hooman; Xin, Yi; Loza, Luis; Achekzai, Tahmina; Duncan, Ian F; Profka, Harrilla; Siddiqui, Sarmad; Pourfathi, Mehrdad; Cereda, Maurizio F; Kadlecek, Stephen; Rizi, Rahim R

    2018-04-22

    To demonstrate the feasibility of using a 3D radial double golden-means acquisition with variable flip angles to monitor pulmonary gas transport in a single breath hold with hyperpolarized xenon-129 MRI. Hyperpolarized xenon-129 MRI scans with interleaved gas-phase and dissolved-phase excitations were performed using a 3D radial double golden-means acquisition in mechanically ventilated rabbits. The flip angle was either held fixed at 15 ° or 5 °, or it was varied linearly in ascending or descending order between 5 ° and 15 ° over a sampling interval of 1000 spokes. Dissolved-phase and gas-phase images were reconstructed at high resolution (32 × 32 × 32 matrix size) using all 1000 spokes, or at low resolution (22 × 22 × 22 matrix size) using 400 spokes at a time in a sliding-window fashion. Based on these sliding-window images, relative change maps were obtained using the highest mean flip angle as the reference, and aggregated pixel-based changes were tracked. Although the signal intensities in the dissolve-phase maps were mostly constant in the fixed flip-angle acquisitions, they varied significantly as a function of average flip angle in the variable flip-angle acquisitions. The latter trend reflects the underlying changes in observed dissolve-phase magnetization distribution due to pulmonary gas uptake and transport. 3D radial double golden-means acquisitions with variable flip angles provide a robust means for rapidly assessing lung function during a single breath hold, thereby constituting a particularly valuable tool for imaging uncooperative or pediatric patient populations. © 2018 International Society for Magnetic Resonance in Medicine.

  13. The Xenon1T Dark Matter Search Experiment

    NASA Astrophysics Data System (ADS)

    Aprile, Elena

    The worldwide race towards direct dark matter detection in the form of Weakly Interacting Massive Particles (WIMPs) has been dramatically accelerated by the remarkable progress and evolution of liquid xenon time projection chambers (LXeTPCs). With a realistic discovery potential, Xenon100 has already reached a sensitivity of 7 × 10-45 cm2, and continues to accrue data at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy towards its ultimate sensitivity reach at the σ SI ˜ 2 × 10-45 cm2 level for the spin-independent WIMP-nucleon cross-section. To fully explore the favoured parameter space for WIMP dark matter in search of a first robust and statistically significant discovery, or to confirm any hint of a signal from Xenon100, the next phase of the Xenon program will be a detector at the ton scale - Xenon1T. The Xenon1T detector, based on 2.2 ton of LXe viewed by low radioactivity photomultiplier tubes and housed in a water Cherenkov muon veto at LNGS, is presented. With an experimental aim of probing WIMP interaction cross-sections above of order σ SI ˜ 2 × 10-47 cm2 within 2 years of operation, Xenon1T will provide the sensitivity to probe a particularly favourable region of electroweak physics on a timescale compatible with complementary ground and satellite based indirect searches and with accelerator dark matter searches at the LHC. Indeed, for a σ SI ˜ 10-45 cm2 and 100 GeV/c2 WIMP mass, Xenon1T could detect of order 100 events in this exposure, providing statistics for placing significant constraints on the WIMP mass.

  14. Xenon as an Adjuvant to Propofol Anesthesia in Patients Undergoing Off-Pump Coronary Artery Bypass Graft Surgery: A Pragmatic Randomized Controlled Clinical Trial.

    PubMed

    Al Tmimi, Layth; Devroe, Sarah; Dewinter, Geertrui; Van de Velde, Marc; Poortmans, Gert; Meyns, Bart; Meuris, Bart; Coburn, Mark; Rex, Steffen

    2017-10-01

    Xenon was shown to cause less hemodynamic instability and reduce vasopressor needs during off-pump coronary artery bypass (OPCAB) surgery when compared with conventionally used anesthetics. As xenon exerts its organ protective properties even in subanesthetic concentrations, we hypothesized that in patients undergoing OPCAB surgery, 30% xenon added to general anesthesia with propofol results in superior hemodynamic stability when compared to anesthesia with propofol alone. Fifty patients undergoing elective OPCAB surgery were randomized to receive general anesthesia with 30% xenon adjuvant to a target-controlled infusion of propofol or with propofol alone. The primary end point was the total intraoperative dose of norepinephrine required to maintain an intraoperative mean arterial pressure >70 mm Hg. Secondary outcomes included the perioperative cardiorespiratory profile and the incidence of adverse and serious adverse events. Adding xenon to propofol anesthesia resulted in a significant reduction of norepinephrine required to attain the predefined hemodynamic goals (cumulative intraoperative dose: median [interquartile range]: 370 [116-570] vs 840 [335-1710] µg, P = .001). In the xenon-propofol group, significantly less propofol was required to obtain a similar depth of anesthesia as judged by clinical signs and the bispectral index (propofol effect site concentration [mean ± SD]: 1.8 ± 0.5 vs 2.8 ± 0.3 mg, P≤ .0001). Moreover, the xenon-propofol group required significantly less norepinephrine during the first 24 hours on the intensive care unit (median [interquartile range]: 1.5 [0.1-7] vs 5 [2-8] mg, P = .048). Other outcomes and safety parameters were similar in both groups. Thirty percent xenon added to propofol anesthesia improves hemodynamic stability by decreasing norepinephrine requirements in patients undergoing OPCAB surgery.

  15. World-Wide Variation in Incidence of Staphylococcus aureus Associated Ventilator-Associated Pneumonia: A Meta-Regression

    PubMed Central

    2018-01-01

    Staphylococcus aureus (S. aureus) is a common Ventilator-Associated Pneumonia (VAP) isolate. The objective here is to define the extent and possible reasons for geographic variation in the incidences of S. aureus-associated VAP, MRSA-VAP and overall VAP. A meta-regression model of S. aureus-associated VAP incidence per 1000 Mechanical Ventilation Days (MVD) was undertaken using random effects methods among publications obtained from a search of the English language literature. This model incorporated group level factors such as admission to a trauma ICU, year of publication and use of bronchoscopic sampling towards VAP diagnosis. The search identified 133 publications from seven worldwide regions published over three decades. The summary S. aureus-associated VAP incidence was 4.5 (3.9–5.3) per 1000 MVD. The highest S. aureus-associated VAP incidence is amongst reports from the Mediterranean (mean; 95% confidence interval; 6.1; 4.1–8.5) versus that from Asian ICUs (2.1; 1.5–3.0). The incidence of S. aureus-associated VAP varies by up to three-fold (for the lowest versus highest incidence) among seven geographic regions worldwide, whereas the incidence of VAP varies by less than two-fold. Admission to a trauma unit is the most important group level correlate for S. aureus-associated VAP. PMID:29495472

  16. Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model

    PubMed Central

    Campos-Pires, Rita; Koziakova, Mariia; Yonis, Amina; Pau, Ashni; Macdonald, Warren; Harris, Katie; Edge, Christopher J.; Franks, Nicholas P.; Mahoney, Peter F.

    2018-01-01

    Abstract The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave–induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury. PMID:29285980

  17. Solid xenon radiation detectors

    NASA Astrophysics Data System (ADS)

    Dolinski, Michelle J.

    2014-03-01

    Cryogenic liquid xenon detectors have become a popular technology in the search for rare events, such as dark matter interactions and neutrinoless double beta decay. The power of the liquid xenon detector technology is in the combination of the ionization and scintillation signals, resulting in particle discrimination and improved energy resolution over the ionization-only signal. The improved energy resolution results from a unique anti-correlation phenomenon that has not been described from first principles. Solid xenon bolometers, under development at Drexel University, are expected to have excellent counting statistics in the phonon channel, with energy resolution of 0.1% or better. This additional energy channel may offer the final piece of the puzzle in understanding liquid xenon detector energy response. Supported by a grant from the Charles E. Kaufman Foundation.

  18. The impact of 24-hr, in-hospital pediatric critical care attending physician presence on process of care and patient outcomes*.

    PubMed

    Nishisaki, Akira; Pines, Jesse M; Lin, Richard; Helfaer, Mark A; Berg, Robert A; Tenhave, Thomas; Nadkarni, Vinay M

    2012-07-01

    Attending physicians are only required to provide in-hospital coverage during daytime hours in many pediatric intensive care units. An in-hospital 24-hr pediatric intensive care unit attending coverage model has been increasingly popular, but the impact of 24-hr, in-hospital attending coverage on care processes and outcomes has not been reported. We compared processes of care and outcomes before and after the implementation of a 24-hr in-hospital pediatric intensive care unit attending physician model. Retrospective comparison of before and after cohorts. A single large, academic tertiary medical/surgical pediatric intensive care unit. : Pediatric intensive care unit admissions in 2000-2006. Transition to 24-hr from 12-hr in-hospital pediatric critical care attending physician coverage model in January 2004. A total of 18,702 patients were admitted to intensive care unit: 8,520 in 24 hrs; 10,182 in 12 hrs. Duration of mechanical ventilation was lower (median 33 hrs [interquartile range 12-88] vs. 48 hrs [interquartile range 16-133], adjusted reduction of 35% [95% confidence interval 25%-44%], p < .001) and intensive care unit length of stay was shorter (median 2 days [interquartile range 1-4] vs. 2 days [interquartile range 1-5], adjusted p < .001) for 24 hr vs. 12 hr coverage. The reduction in mechanical ventilation hours was similar when noninvasive, mechanical ventilation was included in ventilation hours (median 42 hrs vs. 56 hrs, adjusted reduction in ventilation hours: 33% [95% confidence interval 20-45], p < .001). Intensive care unit mortality was not significantly different (2.2% vs. 2.5%, adjusted p =.23). These associations were consistent across daytime and nighttime admissions, weekend and weekday admissions, and among subgroups with higher Pediatric Risk of Mortality III scores, postsurgical patients, and histories of previous intensive care unit admission. Implementation of 24-hr in-hospital pediatric critical care attending coverage was associated with shorter duration of mechanical ventilation and shorter length of intensive care unit stay. After accounting for potential confounders, this finding was consistent across a broad spectrum of critically ill children.

  19. Cerebral blood flow in patients with congestive heart failure treated with captopril.

    PubMed

    Paulson, O B; Jarden, J O; Godtfredsen, J; Vorstrup, S

    1984-05-31

    The effect of captopril on cerebral blood flow was studied in five patients with severe congestive heart failure and in five control subjects. Cerebral blood flow was measured by inhalation of 133xenon and registration of its uptake and washout from the brain by single photon emission computer tomography. In addition, cerebral (internal jugular) venous oxygen tension was determined in the controls. The measurements were made before and 15, 60, and 180 minutes after a single oral dose of captopril (6.25 mg in patients with congestive heart failure and 25 mg in controls). Despite a marked decrease in blood pressure, cerebral blood flow increased slightly in the patients with severe congestive heart failure. When a correction was applied to take account of a change in arterial carbon dioxide tension, however, cerebral blood flow was unchanged after captopril administration even in patients with the greatest decrease in blood pressure, in whom a decrease in cerebral blood flow might have been expected. In the controls, blood pressure was little affected by captopril, whereas a slight, but not statistically significant, decrease in cerebral blood flow was observed. The cerebral venous oxygen tension decreased concomitantly.

  20. Specific low temperature release of 131Xe from irradiated MOX fuel

    NASA Astrophysics Data System (ADS)

    Hiernaut, J.-P.; Wiss, T.; Rondinella, V. V.; Colle, J.-Y.; Sasahara, A.; Sonoda, T.; Konings, R. J. M.

    2009-08-01

    A particular low temperature behaviour of the 131Xe isotope was observed during release studies of fission gases from MOX fuel samples irradiated at 44.5 GWd/tHM. A reproducible release peak, representing 2.7% of the total release of the only 131Xe, was observed at ˜1000 K, the rest of the release curve being essentially identical for all the other xenon isotopes. The integral isotopic composition of the different xenon isotopes is in very good agreement with the inventory calculated using ORIGEN-2. The presence of this particular release is explained by the relation between the thermal diffusion and decay properties of the various iodine radioisotopes decaying all into xenon.

  1. New constraints and discovery potential of sub-GeV dark matter with xenon detectors

    NASA Astrophysics Data System (ADS)

    McCabe, Christopher

    2017-08-01

    Existing xenon dark matter (DM) direct detection experiments can probe the DM-nucleon interaction of DM with a sub-GeV mass through a search for photon emission from the recoiling xenon atom. We show that LUX's constraints on sub-GeV DM, which utilize the scintillation (S1) and ionization (S2) signals, are approximately 3 orders of magnitude more stringent than previous xenon constraints in this mass range, derived from the XENON10 and XENON100 S2-only searches. The new LUX constraints provide the most stringent direct detection constraints for DM particles with a mass below 0.5 GeV. In addition, the photon emission signal in LUX and its successor LZ maintain the discrimination between background and signal events so that an unambiguous discovery of sub-GeV DM is possible. We show that LZ has the potential to reconstruct the DM mass with ≃20 % accuracy for particles lighter than 0.5 GeV.

  2. Signal yields, energy resolution, and recombination fluctuations in liquid xenon

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2017-01-01

    This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon recombination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2 and 16 keV with 3H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data.

  3. Irreversible xenon insertion into a small-pore zeolite at moderate pressures and temperatures

    DOE PAGES

    Seoung, Donghoon; Cynn, Hyunchae; Park, Changyong; ...

    2014-09-01

    Pressure drastically alters the chemical and physical properties of materials and allows structural phase transitions and chemical reactions to occur that defy much of our understanding gained under ambient conditions. Particularly exciting is the high-pressure chemistry of xenon, which is known to react with hydrogen and ice at high pressures and form stable compounds. Here, we show that Ag 16Al 16Si 24O 8·16H 2O (Ag-natrolite) irreversibly inserts xenon into its micropores at 1.7 GPa and 250 °C, while Ag + is reduced to metallic Ag and possibly oxidized to Ag 2+. In contrast to krypton, xenon is retained within themore » pores of this zeolite after pressure release and requires heat to desorb. This irreversible insertion and trapping of xenon in Ag-natrolite under moderate conditions sheds new light on chemical reactions that could account for the xenon deficiency relative to argon observed in terrestrial and Martian atmospheres.« less

  4. Convective transport in ATM simulations and its relation to the atmospheric stability conditions

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, Jolanta

    2017-04-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 80 stations, of which more than 60 are certified. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases, in particular xenon isotopes, supported by the atmospheric transport modeling (ATM). One of the important noble gases, monitored on a daily basis, is radioxenon. It can be produced either during a nuclear explosion with a high fission yield, and thus be considered as an important tracer to prove the nuclear character of an explosion, or be emitted from nuclear power plants (NPPs) or from isotope production facilities (IPFs). To investigate the transport of xenon emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. To address the question whether including the convective transport in ATM simulations will change the results significantly, the differences between the outputs with the convective transport turned off and turned on, were computed and further investigated taking into account the atmospheric stability conditions. For that purpose series of 14 days forward simulations, with convective transport and without it, released daily in the period January 2011 to February 2012, were analysed. The release point was at the ANSTO facility in Australia. The unique opportunity of having access to both daily emission values for ANSTO as well as measured Xe-133 activity concentration (AC) values at the IMS stations, gave a chance to validate the simulations.

  5. Radiogenic Xenon-129 in Silicate Inclusions in the Campo Del Cielo Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Meshik, A.; Kurat, G.; Pravdivtseva, O.; Hohenberg, C. M.

    2004-01-01

    Iron meteorites present a challenge for the I-Xe dating technique because it is usually the inclusions, not metal, that contain radiogenic xenon and iodine. Silicate inclusions are frequent in only types IAB and IIE, and earlier studies of irons have demonstrated that I-Xe system can survive intact in these inclusions preserving valuable age information. Our previous studies of the I-Xe record in pyroxene grains from Toluca iron suggested an intriguing relationship between apparent I-Xe ages and (Mg+Fe)/Fe ratios. The I-Xe system in K-feldspar inclusions from Colomera (IIE) had the fingerprint of slow cooling, with an indicated cooling rate of 2-4 C/Ma. Here we present studies of the iodine-xenon system in a silicate-graphite-metal (SiGrMet) inclusion of the IA Campo del Cielo iron meteorite from the collection of the Museum of Natural History in Vienna.

  6. Multi-Column Experimental Test Bed for Xe/Kr Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenhalgh, Mitchell Randy; Garn, Troy Gerry; Welty, Amy Keil

    Previous research studies have shown that INL-developed engineered form sorbents are capable of capturing both Kr and Xe from various composite gas streams. The previous experimental test bed provided single column testing for capacity evaluations over a broad temperature range. To advance research capabilities, the employment of an additional column to study selective capture of target species to provide a defined final gas composition for waste storage was warranted. The second column addition also allows for compositional analyses of the final gas product to provide for final storage determinations. The INL krypton capture system was modified by adding an additionalmore » adsorption column in order to create a multi-column test bed. The purpose of this modification was to investigate the separation of xenon from krypton supplied as a mixed gas feed. The extra column was placed in a Stirling Ultra-low Temperature Cooler, capable of controlling temperatures between 190 and 253K. Additional piping and valves were incorporated into the system to allow for a variety of flow path configurations. The new column was filled with the AgZ-PAN sorbent which was utilized as the capture medium for xenon while allowing the krypton to pass through. The xenon-free gas stream was then routed to the cryostat filled with the HZ-PAN sorbent to capture the krypton at 191K. Selectivities of xenon over krypton were determined using the new column to verify the system performance and to establish the operating conditions required for multi-column testing. Results of these evaluations verified that the system was operating as designed and also demonstrated that AgZ-PAN exhibits excellent selectivity for xenon over krypton in air at or near room temperature. Two separation tests were performed utilizing a feed gas consisting of 1000 ppmv xenon and 150 ppmv krypton with the balance being made up of air. The AgZ-PAN temperature was held at 295 or 253K while the HZ-PAN was held at 191K for both tests. The effluent from the AgZ-PAN column was monitored via GC-TCD during the tests with no xenon being observed exiting the column during either test. Samples from each column were taken via evacuated sample bombs and were analyzed by GC-MS analysis. The results demonstrated the ability to separate xenon from krypton from a mixed gas feed utilizing the new multi-column system.« less

  7. GraXe, graphene and xenon for neutrinoless double beta decay searches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Monrabal, F.

    2012-02-01

    We propose a new detector concept, GraXe (to be pronounced as grace), to search for neutrinoless double beta decay in {sup 136}XE. GraXe combines a popular detection medium in rare-event searches, liquid xenon, with a new, background-free material, graphene. In our baseline design of GraXe, a sphere made of graphene-coated titanium mesh and filled with liquid xenon (LXe) enriched in the {sup 136}XE isotope is immersed in a large volume of natural LXe instrumented with photodetectors. Liquid xenon is an excellent scintillator, reasonably transparent to its own light. Graphene is transparent over a large frequency range, and impermeable to themore » xenon. Event position could be deduced from the light pattern detected in the photosensors. External backgrounds would be shielded by the buffer of natural LXe, leaving the ultra-radiopure internal volume virtually free of background. Industrial graphene can be manufactured at a competitive cost to produce the sphere. Enriching xenon in the isotope {sup 136}XE is easy and relatively cheap, and there is already near one ton of enriched xenon available in the world (currently being used by the EXO, KamLAND-Zen and NEXT experiments). All the cryogenic know-how is readily available from the numerous experiments using liquid xenon. An experiment using the GraXe concept appears realistic and affordable in a short time scale, and its physics potential is enormous.« less

  8. Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olesen, J.; Larsen, B.; Lauritzen, M.

    1981-04-01

    Regional cerebral blood flow (rCBF) was measured in 254 areas of a hemisphere with the xenon 133 intraarterial injection method. Six cases of classic migraine were followed from the normal state into the prodromal phase, and in 3 cases further into the headache phase. One patient with common migraine was similarly followed during his only classic attack. The attacks were initiated by focal hyperemia in 3 patients. During prodromes all patients displayed occipitoparietal rCBF reduction (oligemia), but in only 1 case did the reduction approach critical values. Oligemia gradually spread anteriorly in the course of 15 to 45 minutes. Inmore » 4 patients a global oligemia was observed. In 4 patients severe headache was present concomitantly with oligemia and with no sign of hyperemia or nonhomogeneous brain perfusion. The normal rCBF increase during cortical activity (hand movement, speech, and similar activities) was impaired in 6 patients. The results indicate that the vasospastic model of the migraine attack is too simplistic.« less

  9. Nonalcoholic Fatty Liver Disease: Noninvasive Methods of Diagnosing Hepatic Steatosis

    PubMed Central

    AlShaalan, Rasha; Aljiffry, Murad; Al-Busafi, Said; Metrakos, Peter; Hassanain, Mazen

    2015-01-01

    Hepatic steatosis is the buildup of lipids within hepatocytes. It is the simplest stage in nonalcoholic fatty liver disease (NAFLD). It occurs in approximately 30% of the general population and as much as 90% of the obese population in the United States. It may progress to nonalcoholic steatohepatitis, which is a state of hepatocellular inflammation and damage in response to the accumulated fat. Liver biopsy remains the gold standard tool to diagnose and stage NAFLD. However, it comes with the risk of complications ranging from simple pain to life-threatening bleeding. It is also associated with sampling error. For these reasons, a variety of noninvasive radiological markers, including ultrasound, computed tomography, magnetic resonance spectroscopy, and the controlled attenuation parameter using transient elastography and Xenon-133 scan have been proposed to increase our ability to diagnose NAFLD, hence avoiding liver biopsy. The aim of this review is to discuss the utility and accuracy of using available noninvasive diagnostic modalities for fatty liver in NAFLD. PMID:25843191

  10. Impact of noninvasive ventilation (NIV) trial for various types of acute respiratory failure in the emergency department; decreased mortality and use of the ICU.

    PubMed

    Tomii, Keisuke; Seo, Ryutaro; Tachikawa, Ryo; Harada, Yuka; Murase, Kimihiko; Kaji, Reiko; Takeshima, Yoshimi; Hayashi, Michio; Nishimura, Takashi; Ishihara, Kyosuke

    2009-01-01

    Trial of noninvasive ventilation (NIV) in the emergency department (ED) for heterogeneous acute respiratory failure (ARF) has been optional and its clinical benefit unclear. We conducted a retrospective cohort study comparing between two periods, October 2001-September 2003 and October 2004-September 2006, i.e., before and after adopting an NIV-trial strategy in which NIV was applied in the ED to any noncontraindicated ARF patients needing ventilatory support and was then continued in the intermediate-care-unit. During these two periods, we retrieved cases of ARF treated either invasively or with NIV, and compared the patients' in-hospital mortalities and the length of ICU and intermediate-care-unit stay. Compared were 73 (invasive 56, NIV 17) and 125 cases (invasive 31, NIV 94) retrieved from 271 and 415 emergent admissions with proper pulmonary etiologies for mechanical ventilation, respectively. Of their respiratory failures, type (hypercapnic/non-hypercapnic, 0.97 vs. 0.98) and severity (pH 7.23 vs. 7.21 for hypercapnic; PaO(2)/FiO(2) 133 vs. 137 for non-hypercapnic) were similar, and the rate of predisposing etiologies was not significantly different. However, excluding those with recurrent aspiration pneumonia for whom NIV was mostly used as "ceiling" treatment, significant reductions in both overall in-hospital mortality (38%-19%, risk ratio 0.51, 95% CI 0.31-0.84), and median length of ICU and intermediate-care-unit stay (12 vs. 5 days, P<0.0001) were found. NIV-trial in the ED for all possible patients with ARF of pulmonary etiologies, excluding those with recurrent aspiration pneumonia, may reduce overall in-hospital mortality and ICU stays.

  11. Strongyloides stercoralis hyperinfection syndrome: a case series and a review of the literature.

    PubMed

    Geri, Guillaume; Rabbat, Antoine; Mayaux, Julien; Zafrani, Lara; Chalumeau-Lemoine, Ludivine; Guidet, Bertrand; Azoulay, Elie; Pène, Frédéric

    2015-12-01

    Strongyloides stercoralis may lead to overwhelming infestation [Strongyloides hyperinfection syndrome (SHS)]. We aimed at describing a case series of patients admitted in intensive care unit (ICU) with SHS and report a literature review of such cases. Retrospective multicenter study of 11 patients admitted to the ICU of tertiary hospitals with SHS between 2000 and 2013. Literature review with Pubmed retrieved 122 cases. Logistic regression analysis was performed to identify predictive factors of ICU mortality and shock occurrence. 133 patients [median age 53 (39, 64), 72.2 % males] were included. Underlying immunosuppression was present in 127 patients, mostly long-term corticosteroid treatment in 111 (83.5 %) patients. Fever (80.8 %), respiratory (88.6 %), and gastrointestinal (71.2 %) symptoms were common clinical manifestations. Shock occurred in 75 (57.3 %) patients and mechanical ventilation was required in 89 (67.9 %) patients. Hypereosinophilia and a concomitant bacterial infection were observed in 34 (34.3 %) and 51 (38.4 %) patients, respectively. The in-ICU mortality rate was 60.3 %. Predictive factors of ICU mortality were shock occurrence [Odds ratio (OR) 18.1, 95 % confidence interval (95 % CI) 3.03-107.6, p < 0.01] and mechanical ventilation (OR 28.1, 95 % CI 3.6-217, p < 0.01). Hypereosinophilia (OR 0.21, 95 % CI 0.06-0.7, p = 0.01) and a concomitant bacterial infection (OR 4.68, 95 % CI 1.3-16.8, p = 0.02) were independent predictors of shock occurrence. SHS remains associated with a poor outcome, especially when associated with shock and mechanical ventilation. Deterioration to shock is often related to concomitant bacterial infection. The poor outcome of established SHS pleads for a large application of antiparasitic primary prophylaxis in at-risk patients.

  12. Influence of intrapulmonary percussive ventilation in upright position on gastro-oesophageal reflux in infants.

    PubMed

    Van Ginderdeuren, F; Kerckhofs, E; Deneyer, M; Vanlaethem, S; Buyl, R; Vandenplas, Y

    2016-10-01

    To determine the influence of physiotherapy using intrapulmonary percussive ventilation on gastro-oesophageal reflux (GOR) in infants <1 year. In this controlled trial with intra-subject design, children were studied using multichannel intraluminal impedance pH (pH-MII) monitoring over 24 hr, during which they received one 20-min session of intrapulmonary percussive ventilation in upright position (IPV R ), 2 hr after their latest feeding. Two hours after each feeding, the number of reflux episodes (RE) over a 20-min period was registered for each infant and a mean per 20 min was calculated in order to obtain a baseline value. The number of RE during IPV R intervention was compared to baseline. Fifty infants with a median age of 133 days were recruited of whom 21 were diagnosed with pathological GOR. During IPV R , the incidence of RE in the entire group was significantly lower compared to baseline; median (inter-quartile range [IQR]) 0 (0-1) versus 0.71 (0-1.33) RE, respectively, P = 0.003. The subgroup with abnormal GOR showed also a significant decrease of RE during IPV R ; median (IQR) 0 (0-1) versus 1.17 (0.55-2.16) RE, respectively, P = 0.03. No difference was detected in the group with normal reflux; median (IQR) 0.6 (0-1) compared to 0 (0-1) RE, respectively, P = 0.34. IPV R does not induce, nor aggravate GOR in infants without and with pathological GOR, respectively, but on the contrary decreases the number of RE in patients with pathological reflux. Pediatr Pulmonol. 2016;51:1065-1071. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Cardiac Mitochondria l Membrane Stability after Deep Hypothermia using a Xenon Clathrate Cryostasis Protocol – an Electron Microscopy Study

    PubMed Central

    Sheleg, Sergey; Hixon, Hugh; Cohen, Bruce; Lowry, David; Nedzved, Mikhail

    2008-01-01

    We investigated a new cryopreservation method using xenon, a clathrate-forming gas, under medium pressure (100psi). The objective of the study was to determine whether this cryostasis protocol could protect cardiac mitochondria at cryogenic temperatures (below 100 degrees Celsius).We analyzed transmission electron microscopy images to obtain information about changes in mitochondrial morphology induced by cryopreservation of the hearts. Our data showed absence of mitochondrial swelling, rupture of inner and outer membranes, and leakage of mitochondrial matrix into the cytoplasm after applying this cryostasis protocol. The electron microscopy results provided the first evidence that a cryostasis protocol using xenon as a clathrate-forming gas under pressure may have protective effects on intracellular membranes. This cryostasis technology may find applications in developing new approaches for long-term cryopreservation protocols. PMID:18787624

  14. Thermal desorption study of physical forces at the PTFE surface

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1987-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possible role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  15. Thermal desorption study of physical forces at the PTFE surface

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1985-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possibile role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  16. Cerebrovascular aspects of converting-enzyme inhibition II: Blood-brain barrier permeability and effect of intracerebroventricular administration of captopril.

    PubMed

    Jarden, J O; Barry, D I; Juhler, M; Graham, D I; Strandgaard, S; Paulson, O B

    1984-12-01

    The blood-brain barrier permeability to captopril, and the cerebrovascular effects of intracerebroventricular administration of captopril, were studied in normotensive Wistar rats. The blood-brain barrier permeability-surface area product (PS), determined by an integral-uptake method, was about 1 X 10(-5) cm3/g/s in all brain regions studied. This was three to four times lower than the simultaneously determined PS of Na+ and Cl-, both of which are known to have very low blood-brain barrier permeability. Cerebral blood flow, determined by the intra-arterial 133xenon injection method, was unaffected by intracerebroventricular administration of 100 micrograms captopril. Furthermore the lower limit of cerebral blood flow autoregulation during haemorrhagic hypotension was also unaffected, being in the mean arterial pressure range (50-69 mmHg) in both controls and captopril-treated rats. It was concluded that the blood-brain barrier permeability of captopril was negligible and that inhibition of the brain renin-angiotensin system has no effect on global cerebral blood flow. The cerebrovascular effects of intravenously administered captopril (a resetting to lower pressure of the limits and range of cerebral blood flow autoregulation) are probably exerted via converting enzyme on the luminal surface of cerebral vessels.

  17. CO adsorption on ion bombarded Ni(111): characterization by photoemission from adsorbed xenon

    NASA Astrophysics Data System (ADS)

    Fu, Sabrina S.; Malafsky, Geoffrey P.; Hsu, David S. Y.

    1993-11-01

    The adsorption of CO on Ni(111), ion bombarded with various fluences of 1.0 keV Ar + ions, has been investigated using photoemission from adsorbed xenon (PAX). After ion bombardment of the Ni(111) surface, various amounts of CO were adsorbed, followed by adsorption of xenon at 85 K. Two pressures of xenon were used in examining the 3d {5}/{2} peak of xenon: 5 × 10 -6 and 7 × 10 -10 Torr. PAX data taken at both pressures show that CO selectively adsorbs onto the defect (step) sites created by ion bombardment. In addition, it was found that the amount of CO which could occupy a defect site previously occupied by one Xe atom varied from 10 to 2.5, depending on the ion fluence.

  18. Material radioassay and selection for the XENON1T dark matter experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Di Gangi, P.; Di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Le Calloch, M.; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Laubenstein, M.; Nisi, S.

    2017-12-01

    The XENON1T dark matter experiment aims to detect weakly interacting massive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations.

  19. Live-cell MRI with xenon hyper-CEST biosensors targeted to metabolically labeled cell-surface glycans.

    PubMed

    Witte, Christopher; Martos, Vera; Rose, Honor May; Reinke, Stefan; Klippel, Stefan; Schröder, Leif; Hackenberger, Christian P R

    2015-02-23

    The targeting of metabolically labeled glycans with conventional MRI contrast agents has proved elusive. In this work, which further expands the utility of xenon Hyper-CEST biosensors in cell experiments, we present the first successful molecular imaging of such glycans using MRI. Xenon Hyper-CEST biosensors are a novel class of MRI contrast agents with very high sensitivity. We designed a multimodal biosensor for both fluorescent and xenon MRI detection that is targeted to metabolically labeled sialic acid through bioorthogonal chemistry. Through the use of a state of the art live-cell bioreactor, it was demonstrated that xenon MRI biosensors can be used to image cell-surface glycans at nanomolar concentrations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A technique for administering xenon gas anesthesia during surgical procedures in mice.

    PubMed

    Ruder, Arne Mathias; Schmidt, Michaela; Ludiro, Alessia; Riva, Marco A; Gass, Peter

    2014-11-01

    Carrying out invasive procedures in animals requires the administration of anesthesia. Xenon gas offers advantages as an anesthetic agent compared with other agents, such as its protection of the brain and heart from hypoxia-induced damage. The high cost of xenon gas has limited its use as an anesthetic in animal experiments, however. The authors designed and constructed simple boxes for the induction and maintenance of xenon gas and isoflurane anesthesia in small rodents in order to minimize the amount of xenon gas that is wasted. While using their anesthesia delivery system to anesthetize pregnant mice undergoing caesarean sections, they measured the respiratory rates of the anesthetized mice, the survival of the pups and the percentages of oxygen and carbon dioxide within the system to confirm the system's safety.

  1. Purging means and method for Xenon arc lamps

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1973-01-01

    High pressure Xenon short-arc lamp with two reservoirs which are selectively connectable to the lamp's envelope is described. One reservoir contains an absorbent which will absorb both Xenon and contaminant gases such as CO2 and O2. The absorbent temperature is controlled to evacuate the envelope of both the Xenon and the contaminant gases. The temperature of the absorbent is then raised to desorb only clean Xenon while retaining the contaminant gases, thereby clearing the envelope of the contaminant gases. The second reservoir contains a gas whose specific purpose is, to remove the objectional metal film which deposits gradually on the interior surface of the lamp envelope during normal arc operation. The origin of the film is metal transferred from the cathode of the arc lamp by sputtering or other gas transfer processes.

  2. NEXT Long-Duration Test Plume and Wear Characteristics after 16,550 h of Operation and 337 kg of Xenon Processed

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2009-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation ion propulsion system with significant enhancements beyond the state-of-the-art. The NEXT ion propulsion system provides improved mission capabilities for future NASA science missions to enhance and enable Discovery, New Frontiers, and Flagship-type NASA missions. As part of a comprehensive thruster service life assessment utilizing both testing and analyses, a Long-Duration Test (LDT) was initiated to validate and qualify the NEXT propellant throughput capability to a qualification-level of 450 kg, 1.5 times the mission-derived throughput requirement of 300 kg. This wear test is being conducted with a modified, flight-representative NEXT engineering model ion thruster, designated EM3. As of June 25, 2008, the thruster has accumulated 16,550 h of operation: the first 13,042 h at the thruster full-input-power of 6.9 kW with 3.52 A beam current and 1800 V beam power supply voltage. Operation since 13,042 h, i.e., the most recent 3,508 h, has been at an input power of 4.7 kW with 3.52 A beam current and 1180 V beam power supply voltage. The thruster has processed 337 kg of xenon (Xe) surpassing the NSTAR propellant throughput demonstrated during the extended life testing of the Deep Space 1 flight spare. The NEXT LDT has demonstrated a total impulse of 13.3 106 N s; the highest total impulse ever demonstrated by an ion thruster. Thruster plume diagnostics and erosion measurements are obtained periodically over the entire NEXT throttle table with input power ranging 0.5 to 6.9 kW. Observed thruster component erosion rates are consistent with predictions and the thruster service life assessment. There have not been any observed anomalous erosion and all erosion estimates indicate a thruster throughput capability that exceeds 750 kg of Xe, an equivalent of 36,500 h of continuous operation at the full-power operating condition. This paper presents the erosion measurements and plume diagnostic results for the NEXT LDT to date with emphasis on the change in thruster operating condition and resulting impact on wear characteristics. Ion optics grid-gap data, both cold and operating, are presented. Performance and wear predictions for the LDT throttle profile are presented.

  3. Utility and safety of a novel surgical microscope laser light source

    PubMed Central

    Bakhit, Mudathir S.; Suzuki, Kyouichi; Sakuma, Jun; Fujii, Masazumi; Murakami, Yuta; Ito, Yuhei; Sugano, Tetsuo; Saito, Kiyoshi

    2018-01-01

    Objective Tissue injuries caused by the thermal effects of xenon light microscopes have previously been reported. Due to this, the development of a safe microscope light source became a necessity. A newly developed laser light source is evaluated regarding its effectiveness and safety as an alternative to conventional xenon light source. Methods We developed and tested a new laser light source for surgical microscopes. Four experiments were conducted to compare xenon and laser lights: 1) visual luminance comparison, 2) luminous and light chromaticity measurements, 3) examination and analysis of visual fatigue, and 4) comparison of focal temperature elevation due to light source illumination using porcine muscle samples. Results Results revealed that the laser light could be used at a lower illumination value than the xenon light (p < 0.01). There was no significant difference in visual fatigue status between the laser light and the xenon light. The laser light was superior to the xenon light regarding luminous intensity and color chromaticity. The focal temperature elevation of the muscle samples was significantly higher when irradiated with xenon light in vitro than with laser light (p < 0.01). Conclusion The newly developed laser light source is more efficient and safer than a conventional xenon light source. It lacks harmful ultraviolet waves, has a longer lifespan, a lower focal temperature than that of other light sources, a wide range of brightness and color production, and improved safety for the user’s vision. Further clinical trials are necessary to validate the impact of this new light source on the patient’s outcome and prognosis. PMID:29390016

  4. Hyperpolarized xenon-129 production and applications

    NASA Astrophysics Data System (ADS)

    Ruset, Iulian C.

    Hyperpolarized 3He and 129Xe were initially developed and used in the nuclear physics community. Lately they are primarily used in Medical Resonance Imaging (MRI). Although first MRI polarized gas images were acquired using 129Xe, the research community has focused mostly on 3He, due to the well-known polarizing methods and higher polarization numbers achieved. The main purpose of this thesis is to present a novel design of a large-scale SEOP polarizer for producing large quantities of highly polarized 129Xe. High Rb-Xe spin-exchange rates through long-lived van de Waals molecules at low total pressure, implemented in a novel counterflow polarizer design, resulted in xenon polarization as high as 50% for 1.2 liters/hour, with a maximum of 64% for 0.3 l/h. We characterized and improved the polarization process by finding the optimum operating parameters of the polarizer. Two new methods to efficiently use high-power diode lasers are described: a new optical arrangement for a better beam shaping of fiber coupled lasers and the first external-cavity spectrum narrowing of a stack of laser diode arrays. A new accumulation technique for the hyperpolarized xenon was developed and full recovery of polarization after a freeze-thaw cycle was demonstrated for the first time. Two approaches for xenon delivery, frozen and gas states, were developed. Hyperpolarized xenon transportation to Brigham and Women's Hospital was successfully accomplished for collaborative research. First MRI images using hyperpolarized xenon acquired at BWH are presented. Final chapter is focused on describing a low field human MRI scanner using hyperpolarized 3He. We built a human scale imager with open access for orientational studies of the lung functionality. Horizontal and vertical human lung images were acquired as a first stage of this project.

  5. Diffusion NMR methods applied to xenon gas for materials study

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Rosen, M. S.; Wang, R.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report initial NMR studies of (i) xenon gas diffusion in model heterogeneous porous media and (ii) continuous flow laser-polarized xenon gas. Both areas utilize the pulsed gradient spin-echo (PGSE) techniques in the gas phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients--a brief overview of this area is provided in the Introduction. The heterogeneous or multiple-length scale model porous media consisted of random packs of mixed glass beads of two different sizes. We focus on observing the approach of the time-dependent gas diffusion coefficient, D(t) (an indicator of mean squared displacement), to the long-time asymptote, with the aim of understanding the long-length scale structural information that may be derived from a heterogeneous porous system. We find that D(t) of imbibed xenon gas at short diffusion times is similar for the mixed bead pack and a pack of the smaller sized beads alone, hence reflecting the pore surface area to volume ratio of the smaller bead sample. The approach of D(t) to the long-time limit follows that of a pack of the larger sized beads alone, although the limiting D(t) for the mixed bead pack is lower, reflecting the lower porosity of the sample compared to that of a pack of mono-sized glass beads. The Pade approximation is used to interpolate D(t) data between the short- and long-time limits. Initial studies of continuous flow laser-polarized xenon gas demonstrate velocity-sensitive imaging of much higher flows than can generally be obtained with liquids (20-200 mm s-1). Gas velocity imaging is, however, found to be limited to a resolution of about 1 mm s-1 owing to the high diffusivity of gases compared with liquids. We also present the first gas-phase NMR scattering, or diffusive-diffraction, data, namely flow-enhanced structural features in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack. c2002 John Wiley & Sons, Ltd.

  6. Reducing Relaxation of Hyperpolarized ^129 Xe during Cryogenic Separation

    NASA Astrophysics Data System (ADS)

    Patton, B.; Kuzma, N. N.; Happer, W.

    2004-05-01

    Recent experimental results^1 indicate that the T1 relaxation time of solid ^129Xe is much shorter than previous models had predicted^2 near the xenon melting point of 161 K and at low magnetic fields. This enhanced relaxation is detrimental to commercial xenon polarizers, which cryogenically distill hyperpolarized ^129Xe from a buffer gas mixture. We have measured the fraction of xenon polarization lost during a typical cryogenic collection, using different permanent magnets to vary the holding field from 700 gauss to over a tesla. The results indicate that using a stronger permanent magnet around the cryo-trap is a simple way to increase the final polarization of the pure xenon gas. An additional experiment was conducted in order to determine whether the majority of the xenon relaxation occurs throughout accumulation (possibly as a result of temperature inhomogeneities within the frozen sample) or during the brief thawing time. In pinpointing the polarization loss, this research may suggest new designs for xenon polarizers. 1. Kuzma et al., Phys. Rev. Lett. 88, 147602 (2002). 2. Fitzgerald et al., Phys. Rev. B 59, 8795 (1999).

  7. Modeling the Removal of Xenon from Lithium Hydrate with Aspen HYSYS

    NASA Astrophysics Data System (ADS)

    Efthimion, Phillip; Gentile, Charles

    2011-10-01

    The Laser Inertial Fusion Engine (LIFE) project mission is to provide a long-term, carbon-free source of sustainable energy, in the form of electricity. A conceptual xenon removal system has been modeled with the aid of Aspen HYSYS, a chemical process simulator. Aspen HYSYS provides excellent capability to model chemical flow processes, which generates outputs which includes specific variables such as temperature, pressure, and molar flow. The system is designed to strip out hydrogen isotopes deuterium and tritium. The base design bubbles plasma exhaust laden with x filled with liquid helium. The system separates the xenon from the hydrogen, deuterium, and tritium with a lithium hydrate and a lithium bubbler. After the removal of the hydrogen and its isotopes, the xenon is then purified by way of the process of cryogenic distillation. The pure hydrogen, deuterium, and tritium are then sent to the isotope separation system (ISS). The removal of xenon is an integral part of the laser inertial fusion engine and Aspen HYSYS is an excellent tool to calculate how to create pure xenon.

  8. Modeling Xenon Purification Systems in a Laser Inertial Fusion Engine

    NASA Astrophysics Data System (ADS)

    Hopkins, Ann; Gentile, Charles

    2011-10-01

    A Laser Inertial Fusion Engine (LIFE) is a proposed method to employ fusion energy to produce electricity for consumers. However, before it can be built and used as such, each aspect of a LIFE power plant must first be meticulously planned. We are in the process of developing and perfecting models for an exhaust processing and fuel recovery system. Such a system is especially essential because it must be able to recapture and purify expensive materials involved in the reaction so they may be reused. One such material is xenon, which is to be used as an intervention gas in the target chamber. Using Aspen HYSYS, we have modeled several subsystems for exhaust processing, including a subsystem for xenon recovery and purification. After removing hydrogen isotopes using lithium bubblers, we propose to use cryogenic distillation to purify the xenon from remaining contaminants. Aspen HYSYS allows us to analyze predicted flow rates, temperatures, pressures, and compositions within almost all areas of the xenon purification system. Through use of Aspen models, we hope to establish that we can use xenon in LIFE efficiently and in a practical manner.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grondein, P.; Lafleur, T.; Chabert, P.

    Most state-of-the-art electric space propulsion systems such as gridded and Hall effect thrusters use xenon as the propellant gas. However, xenon is very rare, expensive to produce, and used in a number of competing industrial applications. Alternatives to xenon are currently being investigated, and iodine has emerged as a potential candidate. Its lower cost and larger availability, its solid state at standard temperature and pressure, its low vapour pressure and its low ionization potential make it an attractive option. In this work, we compare the performances of a gridded ion thruster operating separately with iodine and xenon, under otherwise identicalmore » conditions using a global model. The thruster discharge properties such as neutral, ion, and electron densities and electron temperature are calculated, as well as the thruster performance parameters such as thrust, specific impulse, and system efficiencies. For similar operating conditions, representative of realistic thrusters, the model predicts similar thrust levels and performances for both iodine and xenon. The thruster efficiency is however slightly higher for iodine compared with xenon, due to its lower ionization potential. This demonstrates that iodine could be a viable alternative propellant for gridded plasma thrusters.« less

  10. The Production of Hadrons in Muon Scattering on Deuterium and Xenon Nuclei at 480-GeV (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soldner-Rembold, Stefan

    1992-01-01

    For the present thesis the hadronic final states of 6309 muon-deuterium events and 2064 muon-xenon events in the kinematical range Q 2>1 (GeV/c) 2, x>0.002, 0.1< y<0.85, 8< W<30 GeV, and θ>3.5 mrad were studied. The multiplicity distributions of the muon-deuterium events and the muon-xenon events were described by means of the negative binomial distribution in intervals of the c.m. energy W. The two parameters anti n (mean multiplicity) and 1/k show for the muon-deuterium events a linear dependence on ln W2. The mean multiplicity anti n on xenon (anti n=10.43±0.19) is distinctly higher than on deuterium (anti n=7.76±0.07). Themore » rapidity distributions of the positively charged and the negatively charged hadrons from muon-deuterium events are very well described by the Monte-Carlo program LUND. In the two-particle rapidity correlation both short-range and long-range correlations can be detected. The two-particle rapidity correlation in the xenon data are different from the deuterium data in the backward range. This difference indicates that the intranuclear cascade takes place in a limited range of small rapidities - relatively independently on the residual fragmentation process.« less

  11. Hyperpolarized Xenon-129 Gas-Exchange Imaging of Lung Microstructure: First Case Studies in Subjects with Obstructive Lung Disease

    PubMed Central

    Dregely, Isabel; Mugler, John P.; Ruset, Iulian C.; Altes, Talissa A.; Mata, Jaime F.; Miller, G. Wilson; Ketel, Jeffrey; Ketel, Steve; Distelbrink, Jan; Hersman, F.W.; Ruppert, Kai

    2011-01-01

    Purpose To develop and test a method to non-invasively assess the functional lung microstructure. Materials and Methods The Multiple exchange time Xenon polarization Transfer Contrast technique (MXTC) encodes xenon gas-exchange contrast at multiple delay times permitting two lung-function parameters to be derived: 1) MXTC-F, the long exchange-time depolarization value, which is proportional to the tissue to alveolar-volume ratio and 2) MXTC-S, the square root of the xenon exchange-time constant, which characterizes thickness and composition of alveolar septa. Three healthy volunteers, one asthmatic and two COPD (GOLD stage I and II) subjects were imaged with MXTC MRI. In a subset of subjects, hyperpolarized xenon-129 ADC MRI and CT imaging were also performed. Results The MXTC-S parameter was found to be elevated in subjects with lung disease (p-value = 0.018). In the MXTC-F parameter map it was feasible to identify regional loss of functional tissue in a COPD patient. Further, the MXTC-F map showed excellent regional correlation with CT and ADC (ρ ≥ 0.90) in one COPD subject. Conclusion The functional tissue-density parameter MXTC-F showed regional agreement with other imaging techniques. The newly developed parameter MXTC-S, which characterizes the functional thickness of alveolar septa, has potential as a novel biomarker for regional parenchymal inflammation or thickening. PMID:21509861

  12. Modeling ARRM Xenon Tank Pressurization Using 1D Thermodynamic and Heat Transfer Equations

    NASA Technical Reports Server (NTRS)

    Gilligan, Patrick; Tomsik, Thomas

    2016-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  13. Modeling Xenon Tank Pressurization using One-Dimensional Thermodynamic and Heat Transfer Equations

    NASA Technical Reports Server (NTRS)

    Gilligan, Ryan P.; Tomsik, Thomas M.

    2017-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  14. Xenon migration in UO2 under irradiation studied by SIMS profilometry

    NASA Astrophysics Data System (ADS)

    Marchand, B.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Garnier, C.; Raimbault, L.; Sainsot, P.; Epicier, T.; Delafoy, C.; Fraczkiewicz, M.; Gaillard, C.; Toulhoat, N.; Perrat-Mabilon, A.; Peaucelle, C.

    2013-09-01

    During Pressurized Water Reactor operation, around 25% of the created Fission Products (FP) are Xenon and Krypton. They have a low solubility in the nuclear fuel and can either (i) agglomerate into bubbles which induce mechanical stress in the fuel pellets or (ii) be released from the pellets, increasing the pressure within the cladding and decreasing the thermal conductivity of the gap between pellets and cladding. After fifty years of studies on the nuclear fuel, all mechanisms of Fission Gas Release (FGR) are still not fully understood. This paper aims at studying the FGR mechanisms by decoupling thermal and irradiation effects and by assessing the Xenon behavior for the first time by profilometry. Samples are first implanted with 136Xe at 800 keV corresponding to a projected range of 140 nm. They are then either annealed in the temperature range 1400-1600 °C, or irradiated with heavy energy ions (182 MeV Iodine) at Room Temperature (RT), 600 °C or 1000 °C. Depth profiles of implanted Xenon in UO2 are determined by Secondary Ion Mass Spectrometry (SIMS). It is shown that Xenon is mobile during irradiation at 1000 °C. In contrast, thermal treatments do not induce any Xenon migration process: these results are correlated to the formation of Xenon bubbles observed by Transmission Electron Microscopy. At depths lower than about 40 nm (zone 1), no bubbles are observed, At depths in between 40 nm and 110 nm (zone 2), a large number of small bubbles (around 2 nm in diameter) can be observed. By comparing with the SRIM profile, it appears that this area corresponds to the maximum of the defect profile, The third zone displays two bubble populations. The first population has the same size than the bubbles present in zone 2. The bubble size of the second population is significantly larger (up to around 10 nm). A STEM micrograph is presented in Fig. 4. It highlights the Xenon bubbles more clearly. It appears that the largest bubbles are located mainly near dislocations which are predominantly in zone 3. TEM micrographs obtained on the samples annealed at 1400 °C (not shown here) show only small sized bubbles (around 2 nm). The presence of these bubbles could explain that no Xenon migration occurs even after annealing at 1600 °C during 16 h. Moreover, concerning Xe thermal resolution, this can only occur if the bubble is overpressurized [21]. It was shown by Martin et al. [22] that at high temperature (over 1400 °C) non pressurized aggregates are observed. So in our experiments, Xe thermal resolution is unlikely.The bubble sizes measured after 1400 °C and 1600 °C annealing are in agreement with literature data, in particular, with those of Michel et al. [23] obtained in Xenon implanted UO2 samples. Indeed they observed 1 nm sized bubbles at 600 °C, which could reach 3 nm at 1400 °C. Either conditions of the Neumann type for which the surface is impermeable which means that the Xenon flux is equal to zero and can be expressed by Eq. (2). {dC}/{dx}|surface=0 Or conditions of the Dirichlet type with a constant Xenon concentration at the surface expressed by Eq. (3). C(0,t)=constant We chose Neumann conditions since we observed a slight increase of Xenon concentration at the surface for the profiles of the samples irradiated at 600 °C and at 1000 °C. In order to simulate the evolution of the Xenon concentration profiles, as-implanted profiles were first fitted with Gaussian shaped curves. The evolution of these curves was then simulated by using the one dimensional finite difference method. Therefore, the total depth profile was discretized into 1.5 nm slices. D, v, k parameters were thus deduced from successive iterations until the final profile is correctly fitted. It is important to keep in mind that each migration mechanism induces a particular modification of the profile shape: a broadening is characteristic of a diffusion process, a profile shift is significant of a transport process and an area decrease means a release mechanism. Consequently, only one set of parameters can allow a correct fit of the final profile.This method was applied for the sample irradiated at 1000 °C and the fitted spectrum is presented in Fig. 6. The obtained values are respectively: D=9.5×10-16 cm s, v=3.1×10-10 cm s and k=2.5×10-5 s. The deduced apparent diffusion coefficient (9.5 × 10-16 cm2 s-1) is one order of magnitude higher than the one given by Turnbull [25] who studied the fission gas release of in-pile irradiated UO2 pellets and who found around 1 × 10-16 cm2 s-1 at 1000 °C.The differences between our results and Turnbull results could be mainly explained by the fact that Turnbull deduced his results from in-pile experiments whereas we performed irradiation on UO2 samples implanted with Xenon. More precisely, Turnbull experiments were made with a neutron flux of 4 × 1016 m-2 s-1 generating fission products with a wide energy range up to 110 MeV. In our experiments, irradiation was performed with Iodine ions of a single energy (186 MeV) with a pretty high flux of 5 × 1019 I m-2 s-1.Moreover, Turnbull measured Xe release and had to use the Booth model to determine Xe diffusion coefficient. In this last model, several hypotheses are made, the major ones being a spherical shape of grains and no possible accumulation of Xenon at the grain surface. Our diffusion coefficient is obtained after solving the Fick's equation without any hypothesis on the grain geometry.

  15. Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks

    NASA Astrophysics Data System (ADS)

    Avice, G.; Marty, B.; Burgess, R.; Hofmann, A.; Philippot, P.; Zahnle, K.; Zakharov, D.

    2018-07-01

    We have analyzed ancient atmospheric gases trapped in fluid inclusions contained in minerals of Archean (3.3 Ga) to Paleozoic (404 Ma) rocks in an attempt to document the evolution of the elemental composition and isotopic signature of the atmosphere with time. Doing so, we aimed at understanding how physical and chemical processes acted over geological time to shape the modern atmosphere. Modern atmospheric xenon is enriched in heavy isotopes by 30-40‰ u-1 relative to Solar or Chondritic xenon. Previous studies demonstrated that, 3.3 Ga ago, atmospheric xenon was isotopically fractionated (enriched in the light isotopes) relative to the modern atmosphere, by 12.9 ± 1.2 (1σ) ‰ u-1, whereas krypton was isotopically identical to modern atmospheric Kr. Details about the specific and progressive isotopic fractionation of Xe during the Archean, originally proposed by Pujol et al. (2011), are now well established by this work. Xe isotope fractionation has evolved from 21‰ u-1 at 3.5 Ga to 12.9‰ u-1 at 3.3 Ga. The current dataset provides some evidence for stabilization of the Xe fractionation between 3.3 and 2.7 Ga. However, further studies will be needed to confirm this observation. After 2.7 Ga, the composition kept evolving and reach the modern-like atmospheric Xe composition at around 2.1 Ga ago. Xenon may be the second atmospheric element, after sulfur, to show a secular isotope evolution during the Archean that ended shortly after the Archean-Proterozoic transition. Fractionation of xenon indicates that xenon escaped from Earth, probably as an ion, and that Xe escape stopped when the atmosphere became oxygen-rich. We speculate that the Xe escape was enabled by a vigorous hydrogen escape on the early anoxic Earth. Organic hazes, scavenging isotopically heavy Xe, could also have played a role in the evolution of atmospheric Xe. For 3.3 Ga-old samples, Ar-N2 correlations are consistent with a partial pressure of nitrogen (pN2) in the Archean atmosphere similar to, or lower than, the modern one, thus requiring other processes than a high pN2 to keep the Earth's surface warm despite a fainter Sun. The nitrogen isotope composition of the atmosphere at 3.3 Ga was already modern-like, attesting to inefficient nitrogen escape to space since that time.

  16. Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives

    NASA Astrophysics Data System (ADS)

    Azevedo, C. D. R.; González-Díaz, D.; Biagi, S. F.; Oliveira, C. A. B.; Henriques, C. A. O.; Escada, J.; Monrabal, F.; Gómez-Cadenas, J. J.; Álvarez, V.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gutiérrez, R. M.; Hauptman, J.; Hernandez, A. I.; Morata, J. A. Hernando; Herrero, V.; Jones, B. J. P.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; Lopez-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; McDonald, A. D.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Vidal, J. Muñoz; Musti, M.; Nebot-Guinot, M.; Novella, P.; Nygren, D.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.

    2018-01-01

    We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence of additives, that are of interest to the OTPC technology.

  17. Monitoring xenon purity in the LUX detector with a mass spectrometry system

    NASA Astrophysics Data System (ADS)

    Balajthy, Jon; LUX Experiment Collaboration

    2015-04-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. To monitor for radioactive impurities such as krypton and impurities which limit charge yield such as oxygen, LUX uses a xenon sampling system consisting of a mass spectrometer and a liquid nitrogen cold trap. The cold trap separates the gaseous impurities from a small sample of xenon and allows them to pass to the mass spectrometer for analysis. We report here on results from the LUX xenon sampling program. We also report on methods to enhance the sensitivity of the cold trap technique in preparation for the next-generation LUX-ZEPLIN experiment which will have even more stringent purity requirements.

  18. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The sample cell at the heart of CVX-2 will sit inside a thermostat providing three layers of insulation. The cell itself comprises a copper body that conducts heat efficiently and smoothes out thermal variations that that would destroy the xenon's uniformity. Inside the cell, the oscillating screen viscometer element is supported between two pairs of electrodes that deflect the screen and then measure screen motion.

  19. Online ^{222}Rn removal by cryogenic distillation in the XENON100 experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Gangi, P. Di; Giovanni, A. Di; Diglio, S.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Calloch, M. Le; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Cristescu, I.

    2017-06-01

    We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant ^{222}Rn background originating from radon emanation. After inserting an auxiliary ^{222}Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the ^{222}Rn activity concentration inside the XENON100 detector.

  20. Critical Viscosity of Xenon investigators

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Dr. Dr. Robert F. Berg (right), principal investigator and Dr. Micheal R. Moldover (left), co-investigator, for the Critical Viscosity of Xenon (CVX/CVX-2) experiment. They are with the National Institutes of Standards and Technology, Gaithersburg, MD. The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of chemicals.

  1. A study of 173 nm light emission from discharge cells in plasma display panel

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Choi, Eun H.; Jung, Kyu B.

    2005-03-01

    Emission properties of the 173nm lights from the electrical discharge cells of the plasma display panel are investigated. The dimer formation and a theoretical model of 173nm emission are presented. It is shown that the diffusion loss of the excited xenon atoms in the metastable level is one of the most important population depreciation factor of excited xenon atoms. The decay time τd of excited atom number increases from zero, reaches its peak, and then decreases to zero, as the gas pressure p increases from zero, agreeing well with experimental data. A simple analytical expression Y of the total emission intensity is described in terms of the diffusion loss df, the three-body collision η, the gas pressure p, and the xenon mole fraction χ. The emission intensity Y of 173nm photon decreases with an increasing value of parameter df. Moreover, the emission intensity Y increases drastically with an increasing value of the gas pressure p and the xenon mole fraction χ. Results from the theoretical model agree remarkably well with experimental data.

  2. Understanding cage effects in imidazolium ionic liquids by 129Xe NMR: MD simulations and relativistic DFT calculations.

    PubMed

    Saielli, Giacomo; Bagno, Alessandro; Castiglione, Franca; Simonutti, Roberto; Mauri, Michele; Mele, Andrea

    2014-12-04

    (129)Xe NMR has been recently employed to probe the local structure of ionic liquids (ILs). However, no theoretical investigation has been yet reported addressing the problem of the dependence of the chemical shift of xenon on the cage structure of the IL. Therefore, we present here a study of the chemical shift of (129)Xe in two ionic liquids, [bmim][Cl] and [bmim][PF6], by a combination of classical MD simulations and relativistic DFT calculations of the xenon shielding constant. The bulk structure of the two ILs is investigated by means of the radial distribution functions, paying special attention to the local structure, volume, and charge distribution of the cage surrounding the xenon atom. Relativistic DFT calculations, based on the ZORA formalism, on clusters extracted from the trajectory files of the two systems, yield an average relative chemical shift in good agreement with the experimental data. Our results demonstrate the importance of the cage volume and the average charge surrounding the xenon nucleus in the IL cage as the factors determining the effective shielding.

  3. Troctolite 76535 - A study in the preservation of early isotopic records

    NASA Technical Reports Server (NTRS)

    Caffee, M.; Hohenberg, C. M.; Hudson, B.

    1982-01-01

    The lunar rock considered in the present investigation is a coarse-grained troctolite granulite containing about 58(vol)% plagioclase, 37% olivine, 4% pyroxene, and less than 1% accessory phases with a texture which indicates formation as a cumulate at depths between 10 and 30 km followed by an extended period of slow cooling. A description is presented of noble gas studies of separated minerals from 76535. The quantity of fission xenon from the in situ decay of Pu-244 provides further evidence for different, mineral-specific, isotopic closure times. The presented data shows that 76535 loses its surface-correlated xenon component upon disaggregation. No other xenon component is lost. The presence of solar gases in 76535 would seem to argue in favor of the external acquisition of the parentless extinct isotope effects and consequently favor 'thermal diffusion' and 'adsorption' over local redistribution models.

  4. The vacuum ultraviolet spectrum of krypton and xenon excimers excited in a cooled dc discharge

    NASA Astrophysics Data System (ADS)

    Gerasimov, G.; Krylov, B.; Loginov, A.; Zvereva, G.; Hallin, R.; Arnesen, A.; Heijkenskjöld, F.

    1998-01-01

    We present results of an experimental and theoretical study of the VUV spectra of krypton and xenon excimers excited by a dc discharge in a capillary tube cooled by liquid nitrogen. The studied spectral regions of 115-170 nm and 140-195 nm for krypton and xenon respectively correspond to transitions between the lowest excited dimer states 1u, 0u+ and the weakly bound ground state 0g+. A semiempirical method was suggested and applied to describe the experimental spectra and to estimate the temperature of the radiating plasma volume. Electron impact, transferring dimers from the ground state to the excited states, is shown to be an efficient excitation mechanism in the 100-850 hPa and the 10-50 mA pressure and discharge current ranges. The spectra obtained as well as the results of calculations corroborate the high rate of this mechanism.

  5. Thermally driven advection for radioxenon transport from an underground nuclear explosion

    NASA Astrophysics Data System (ADS)

    Sun, Yunwei; Carrigan, Charles R.

    2016-05-01

    Barometric pumping is a ubiquitous process resulting in migration of gases in the subsurface that has been studied as the primary mechanism for noble gas transport from an underground nuclear explosion (UNE). However, at early times following a UNE, advection driven by explosion residual heat is relevant to noble gas transport. A rigorous measure is needed for demonstrating how, when, and where advection is important. In this paper three physical processes of uncertain magnitude (oscillatory advection, matrix diffusion, and thermally driven advection) are parameterized by using boundary conditions, system properties, and source term strength. Sobol' sensitivity analysis is conducted to evaluate the importance of all physical processes influencing the xenon signals. This study indicates that thermally driven advection plays a more important role in producing xenon signals than oscillatory advection and matrix diffusion at early times following a UNE, and xenon isotopic ratios are observed to have both time and spatial dependence.

  6. Xenon Treatment Protects Against Cold Ischemia Associated Delayed Graft Function and Prolongs Graft Survival in Rats

    PubMed Central

    Zhao, H; Watts, H R; Chong, M; Huang, H; Tralau-Stewart, C; Maxwell, P H; Maze, M; George, A J T; Ma, D

    2013-01-01

    Prolonged hypothermic storage causes ischemia-reperfusion injury (IRI) in the renal graft, which is considered to contribute to the occurrence of the delayed graft function (DGF) and chronic graft failure. Strategies are required to protect the graft and to prolong renal graft survival. We demonstrated that xenon exposure to human proximal tubular cells (HK-2) led to activation of range of protective proteins. Xenon treatment prior to or after hypothermia–hypoxia challenge stabilized the HK-2 cellular structure, diminished cytoplasmic translocation of high-mobility group box (HMGB) 1 and suppressed NF-κB activation. In the syngeneic Lewis-to-Lewis rat model of kidney transplantation, xenon exposure to donors before graft retrieval or to recipients after engraftment decreased caspase-3 expression, localized HMGB-1 within nuclei and prevented TLR-4/NF-κB activation in tubular cells; serum pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced and renal function was preserved. Xenon treatment of graft donors or of recipients prolonged renal graft survival following IRI in both Lewis-to-Lewis isografts and Fischer-to-Lewis allografts. Xenon induced cell survival or graft functional recovery was abolished by HIF-1α siRNA. Our data suggest that xenon treatment attenuates DGF and enhances graft survival. This approach could be translated into clinical practice leading to a considerable improvement in long-term graft survival. PMID:23710625

  7. Calculation of characteristics of compressed gaseous xenon gamma-ray detectors

    NASA Astrophysics Data System (ADS)

    Komarov, V. B.; Dmitrenko, V. V.; Ulin, S. E.; Uteshev, Z. M.

    1992-12-01

    Energy resolution and pulse distribution of a compressed gaseous xenon cylindrical detector were calculated. The analytical calculation took into account gamma-ray energy, fluctuation of electron-ion pairs, electron distribution, recombination, and H excess. The calculation was performed for a xenon density less than 0.6 g/cm and H excess less than 2 percent.

  8. Xenon/remifentanil anesthesia protects against adverse effects of losartan on hemodynamic challenges induced by anesthesia and acute blood loss.

    PubMed

    Francis, Roland C E; Philippi-Höhne, Claudia; Klein, Adrian; Pickerodt, Philipp A; Reyle-Hahn, Matthias S; Boemke, Willehad

    2010-12-01

    The authors aimed to test the hypothesis that xenon anesthesia limits adverse hypotensive effects of losartan during acute hemorrhage. In six conscious unsedated Beagle dogs, the systemic and pulmonary circulation were monitored invasively, and two subsequent 60-min hypotensive challenges were performed by (a) induction (propofol) and maintenance of anesthesia with isoflurane/remifentanil or xenon/remifentanil and by (b) subsequent hemorrhage (20 mL kg⁻¹ within 5 min) from a central vein. The same amount of blood was retransfused 1 h after hemorrhage. Experiments were performed with or without acute angiotensin II receptor subtype 1 blockade by i.v. losartan (100 μg·kg⁻¹·min⁻¹) starting 45 min before induction of anesthesia. Four experiments were performed in each individual dog. Xenon/remifentanil anesthesia provided higher baseline mean arterial blood pressure (85 ± 6 mmHg) than isoflurane/remifentanil anesthesia (67 ± 3 mmHg). In losartan-treated animals, isoflurane/remifentanil caused significant hypotension (42 ± 4 mmHg for isoflurane/remifentanil vs. 71 ± 6 mmHg for xenon/remifentanil). Independent of losartan, hemorrhage did not induce any further reduction of mean arterial blood pressure or cardiac output in either group. Spontaneous hemodynamic recovery was observed in all groups before retransfusion was started. Losartan did not alter the adrenaline, noradrenaline, and vasopressin response to acute hemorrhage. Losartan potentiates hypotension induced by isoflurane/remifentanil anesthesia but does not affect the hemodynamic stability during xenon/remifentanil anesthesia. Losartan does not deteriorate the hemodynamic adaptation to hemorrhage of 20 mL kg⁻¹ during xenon/remifentanil and isoflurane/remifentanil anesthesia. Therefore, xenon/remifentanil anesthesia protects against circulatory side effects of losartan pretreatment and thus may afford safer therapeutic use of losartan during acute hemorrhage.

  9. Noble Gas Xenon Is a Novel Adenosine Triphosphate-sensitive Potassium Channel Opener

    PubMed Central

    Bantel, Carsten; Maze, Mervyn; Trapp, Stefan

    2010-01-01

    Background Adenosine triphosphate-sensitive potassium (KATP) channels in brain are involved in neuroprotective mechanisms. Pharmacologic activation of these channels is seen as beneficial, but clinical exploitation by using classic K+ channel openers is hampered by their inability to cross the blood–brain barrier. This is different with the inhalational anesthetic xenon, which recently has been suggested to activate KATP channels; it partitions freely into the brain. Methods To evaluate the type and mechanism of interaction of xenon with neuronal-type KATP channels, these channels, consisting of Kir6.2 pore-forming subunits and sulfonylurea receptor-1 regulatory subunits, were expressed in HEK293 cells and whole cell, and excised patch-clamp recordings were performed. Results Xenon, in contrast to classic KATP channel openers, acted directly on the Kir6.2 subunit of the channel. It had no effect on the closely related, adenosine triphosphate (ATP)-regulated Kir1.1 channel and failed to activate an ATP-insensitive mutant version of Kir6.2. Furthermore, concentration–inhibition curves for ATP obtained from inside-out patches in the absence or presence of 80% xenon revealed that xenon reduced the sensitivity of the KATP channel to ATP. This was reflected in an approximately fourfold shift of the concentration causing half-maximal inhibition (IC50) from 26 ± 4 to 96 ± 6 μm. Conclusions Xenon represents a novel KATP channel opener that increases KATP currents independently of the sulfonylurea receptor-1 subunit by reducing ATP inhibition of the channel. Through this action and by its ability to readily partition across the blood–brain barrier, xenon has considerable potential in clinical settings of neuronal injury, including stroke. PMID:20179498

  10. Predictive factors of mortality in pediatric patients with acute renal injury associated with sepsis.

    PubMed

    Riyuzo, Marcia C; Silveira, Liciana V de A; Macedo, Célia S; Fioretto, José R

    To evaluate the prognosis factors of children with sepsis and acute kidney injury. This was a retrospective study of children with sepsis and acute kidney injury that were admitted to the pediatric intensive care unit (PICU) of a tertiary hospital. A multivariate analysis was performed to compare risk factors for mortality. Seventy-seven children (47 males) were retrospectively studied, median age of 4 months. Mean length of hospital stay was 7.33±0.16 days, 68.9% of patients received mechanical ventilation, 25.9% had oligo-anuria, and peritoneal dialysis was performed in 42.8%. The pRIFLE criteria were: injury (5.2%) and failure (94.8%), and the staging system criteria were: stage 1 (14.3%), stage 2 (29.9%), and stage 3 (55.8%). The mortality rate was 33.7%. In the multivariate analysis, the risk factors for mortality were PICU length of stay (OR=0.615, SE=0.1377, 95% CI=0.469-0.805, p=0.0004); invasive mechanical ventilation (OR=14.599, SE=1.1178, 95% CI=1.673-133.7564, p=0.0155); need for dialysis (OR=9.714, SE=0.8088, 95% CI=1.990-47.410, p=0.0049), and hypoalbuminemia (OR=10.484, SE=1.1147, 95% CI=1.179-93.200, p=0.035). The risk factors for mortality in children with acute kidney injury were associated with sepsis severity. Copyright © 2016. Published by Elsevier Editora Ltda.

  11. Method of detecting leakage of reactor core components of liquid metal cooled fast reactors

    DOEpatents

    Holt, Fred E.; Cash, Robert J.; Schenter, Robert E.

    1977-01-01

    A method of detecting the failure of a sealed non-fueled core component of a liquid-metal cooled fast reactor having an inert cover gas. A gas mixture is incorporated in the component which includes Xenon-124; under neutron irradiation, Xenon-124 is converted to radioactive Xenon-125. The cover gas is scanned by a radiation detector. The occurrence of 188 Kev gamma radiation and/or other identifying gamma radiation-energy level indicates the presence of Xenon-125 and therefore leakage of a component. Similarly, Xe-126, which transmutes to Xe-127 and Kr-84, which produces Kr-85.sup.m can be used for detection of leakage. Different components are charged with mixtures including different ratios of isotopes other than Xenon-124. On detection of the identifying radiation, the cover gas is subjected to mass spectroscopic analysis to locate the leaking component.

  12. Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

    DOE PAGES

    Aprile, E.; Agostini, F.; Alfonsi, M.; ...

    2015-11-23

    The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, wemore » detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment.« less

  13. The quantitative analysis of silicon carbide surface smoothing by Ar and Xe cluster ions

    NASA Astrophysics Data System (ADS)

    Ieshkin, A. E.; Kireev, D. S.; Ermakov, Yu. A.; Trifonov, A. S.; Presnov, D. E.; Garshev, A. V.; Anufriev, Yu. V.; Prokhorova, I. G.; Krupenin, V. A.; Chernysh, V. S.

    2018-04-01

    The gas cluster ion beam technique was used for the silicon carbide crystal surface smoothing. The effect of processing by two inert cluster ions, argon and xenon, was quantitatively compared. While argon is a standard element for GCIB, results for xenon clusters were not reported yet. Scanning probe microscopy and high resolution transmission electron microscopy techniques were used for the analysis of the surface roughness and surface crystal layer quality. The gas cluster ion beam processing results in surface relief smoothing down to average roughness about 1 nm for both elements. It was shown that xenon as the working gas is more effective: sputtering rate for xenon clusters is 2.5 times higher than for argon at the same beam energy. High resolution transmission electron microscopy analysis of the surface defect layer gives values of 7 ± 2 nm and 8 ± 2 nm for treatment with argon and xenon clusters.

  14. Progress on Acoustic Measurements of the Bulk Viscosity of Near-Critical Xenon (BVX)

    NASA Technical Reports Server (NTRS)

    Gillis, Keith A.; Shinder, Iosif I.; Moldover, Michael R.; Zimmerli, Gregory A.

    2004-01-01

    We plan to determine the bulk viscosity of xenon 10 times closer [in reduced temperature tau = (T-Tc)/Tc] to its liquid-vapor critical point than ever before. (Tc is the critical temperature.) To do so, we must measure the dispersion and attenuation of sound at frequencies 1/100 of those used previously. In general, sound attenuation has contributions from the bulk viscosity acting throughout the volume of the xenon as well as contributions from the thermal conductivity and the shear viscosity acting within thin thermoacoustic boundary layers at the interface between the xenon and the solid walls of the resonator. Thus, we can determine the bulk viscosity only when the boundary layer attenuation is small and well understood. We present a comparison of calculations and measurements of sound attenuation in the acoustic boundary layer of xenon near its liquid-vapor critical point.

  15. Ethane and Xenon mixing: density functional theory (DFT) simulations and experiments on Sandia's Z machine

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph; Root, Seth; Mattsson, Thomas; Cochrane, Kyle

    2012-02-01

    The combination of ethane and xenon is one of the simplest binary mixtures in which bond breaking is expected to play a role under shock conditions. At cryogenic conditions, xenon is often understood to mix with alkanes such as Ethane as if it were also an alkane, but this model is expected to break down at higher temperatures and pressures. To investigate the breakdown, we have performed density functional theory (DFT) calculations on several xenon/ethane mixtures. Additionally, we have performed shock compression experiments on Xenon-Ethane using the Sandia Z - accelerator. The DFT and experimental results are compared to hydrodynamic simulations using different mixing models in the equation of state. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. A liquid xenon imaging telescope for 1-30 MeV gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Aprile, Elena; Mukherjee, Reshmi; Suzuki, Masayo

    1989-01-01

    A study of the primary scintillation light in liquid xenon excited by 241 Am alpha particles and 207 Bi internal conversion electrons are discussed. The time dependence and the intensity of the light at different field strengths have been measured with a specifically designed chamber, equipped with a CaF sub 2 light transmitting window coupled to a UV sensitive PMT. The time correlation between the fast light signal and the charge signal shows that the scintillation signals produced in liquid xenon by ionizing particles provides an ideal trigger in a Time Projection type LXe detector aiming at full imaging of complex gamma-ray events. Researchers also started Monte Carlo calculations to establish the performance of a LXe imaging telescope for high energy gamma-rays.

  17. Characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter concentrations in high-rise and manure-belt layer hen houses

    NASA Astrophysics Data System (ADS)

    Ni, Ji-Qin; Chai, Lilong; Chen, Lide; Bogan, Bill W.; Wang, Kaiying; Cortus, Erin L.; Heber, Albert J.; Lim, Teng-Teeh; Diehl, Claude A.

    2012-09-01

    Indoor air pollutants at high concentrations in poultry houses can potentially affect workers' health, and animal welfare and productivity. This paper presents research results of a 2-year continuous monitoring of ammonia (NH3), carbon dioxide (CO2), hydrogen sulfide (H2S), and particulate matter (PM) concentrations from to date the most comprehensive study on a single farm in two 180,000-bird high-rise (HR) and two 200,000-bird manure-belt (MB) layer hen houses located in Indiana, USA. Air was sampled at ventilation fans of the mechanically-ventilated houses. Concentrations of NH3 and CO2 were measured with photoacoustic multi-gas monitors. Concentrations of H2S and PM10 were monitored with pulsed fluorescence analyzers and Tapered Element Oscillating Microbalances (TEOM), respectively. The 2-year mean ± standard deviation concentrations at ventilation fans of the four layer hen houses were 48.9 ± 39 and 51.9 ± 40.7 ppm in HR, and 13.3 ± 9.1 and 12.9 ± 10.5 ppm in MB for NH3; 26.4 ± 17.6 and 24.9 ± 19 ppb in HR, 40.0 ± 21.1 and 41.2 ± 31.5 ppb in MB for H2S; 1755 ± 848 and 1804 ± 887 ppm in HR, and 2295 ± 871 and 2285 ± 946 ppm in MB for CO2; and 540 ± 303 and 552 ± 338 μg m-3 in HR, and 415 ± 428 and 761 ± 661 μg m-3 in MB for PM10. Compared with the MB houses, concentrations of the HR houses were higher for NH3, and lower for CO2, H2S, and PM10 (P < 0.05). High concentrations of NH3 detected in winter represent potential challenges to workers' health and animal welfare. Variations in pollutant concentrations at the exhaust fans were affected by outdoor temperature, ventilation, bird condition, and farm operation. A new weekly variation, characterized by significantly lower PM10 concentrations on Sundays, was identified and was related to the weekly schedule of house operational activities.

  18. Plutonium-fission xenon found in Earth's mantle

    PubMed

    Kunz; Staudacher; Allegre

    1998-05-08

    Data from mid-ocean ridge basalt glasses indicate that the short-lived radionuclide plutonium-244 that was present during an early stage of the development of the solar system is responsible for roughly 30 percent of the fissiogenic xenon excesses in the interior of Earth today. The rest of the fissiogenic xenon can be ascribed to the spontaneous fission of still live uranium-238. This result, in combination with the refined determination of xenon-129 excesses from extinct iodine-129, implies that the accretion of Earth was finished roughly 50 million to 70 million years after solar system formation and that the atmosphere was formed by mantle degassing.

  19. In vivo detection of cucurbit[6]uril, a hyperpolarized xenon contrast agent for a xenon magnetic resonance imaging biosensor

    PubMed Central

    Hane, Francis T.; Li, Tao; Smylie, Peter; Pellizzari, Raiili M.; Plata, Jennifer A.; DeBoef, Brenton; Albert, Mitchell S.

    2017-01-01

    The Hyperpolarized gas Chemical Exchange Saturation Transfer (HyperCEST) Magnetic Resonance (MR) technique has the potential to increase the sensitivity of a hyperpolarized xenon-129 MRI contrast agent. Signal enhancement is accomplished by selectively depolarizing the xenon within a cage molecule which, upon exchange, reduces the signal in the dissolved phase pool. Herein we demonstrate the in vivo detection of the cucurbit[6]uril (CB6) contrast agent within the vasculature of a living rat. Our work may be used as a stepping stone towards using the HyperCEST technique as a molecular imaging modality. PMID:28106110

  20. Functionalized xenon as a biosensor

    PubMed Central

    Spence, Megan M.; Rubin, Seth M.; Dimitrov, Ivan E.; Ruiz, E. Janette; Wemmer, David E.; Pines, Alexander; Yao, Shao Qin; Tian, Feng; Schultz, Peter G.

    2001-01-01

    The detection of biological molecules and their interactions is a significant component of modern biomedical research. In current biosensor technologies, simultaneous detection is limited to a small number of analytes by the spectral overlap of their signals. We have developed an NMR-based xenon biosensor that capitalizes on the enhanced signal-to-noise, spectral simplicity, and chemical-shift sensitivity of laser-polarized xenon to detect specific biomolecules at the level of tens of nanomoles. We present results using xenon “functionalized” by a biotin-modified supramolecular cage to detect biotin–avidin binding. This biosensor methodology can be extended to a multiplexing assay for multiple analytes. PMID:11535830

  1. Indoor Air in Beauty Salons and Occupational Health Exposure of Cosmetologists to Chemical Substances

    PubMed Central

    Tsigonia, Alexandra; Lagoudi, Argyro; Chandrinou, Stavroula; Linos, Athena; Evlogias, Nikos; Alexopoulos, Evangelos C.

    2010-01-01

    The indoor environment in four beauty salons located in Athens (Greece) was examined in order to investigate the occupational health exposure of cosmetologists to various chemical products typically used in their work. Chemical substances chosen for investigation were volatile organic compounds (VOCs), formaldehyde, ozone and carbon dioxide. Total VOCs levels measured showed significant variation (100–1,450 μg m−3) depending on the products used and the number of treatments carried out, as well as ventilation. The main VOCs found in the salons were aromatics (toluene, xylene), esters and ketones (ethyl acetate, acetone, etc.) which are used as solvents in various beauty products; terpenes (pinene, limonene, camphor, menthenol) which have a particular odor and others like camphor which have specific properties. Ozone concentrations measured in all salons were quite low (0.1 and 13.3 μg m−3) and formaldehyde concentrations detected were lower than the detection limit of the method in all salons (<0.05 ppm). Carbon dioxide levels ranged between 402 and 1,268 ppm, depending on the number of people present in the salons during measurements and ventilation. Cosmetologists may be exposed to high concentrations of a mixture of volatile organic compounds although these levels could be decreased significantly by following certain practices such as good ventilation of the areas, closing the packages of the beauty products when not in use and finally selecting safer beauty products without strong odor. PMID:20195448

  2. Search for WIMP inelastic scattering off xenon nuclei with XENON100

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Mora, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Xenon Collaboration

    2017-07-01

    We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64 ×103 kg .days . XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe 129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe 129 interactions. A profile likelihood analysis allows us to set a 90% C.L. upper limit on the inelastic, spin-dependent WIMP-nucleon cross section of 3.3 ×10-38 cm2 at 100 GeV /c2 . This is the most constraining result to date, and sets the pathway for an analysis of this interaction channel in upcoming, larger dual-phase xenon detectors.

  3. The Xenon record of Earth's early differentiaiton

    NASA Astrophysics Data System (ADS)

    Peto, M. K.; Mukhopadhyay, S.; Kelley, K. A.

    2011-12-01

    Xenon isotopes in mantle derived rocks provide information on the early differentiation of the silicate mantle of our planet. {131,132 134,136}Xe isotopes are produced by the spontaneous fission of two different elements: the now extinct radionuclide 244Pu, and the long-lived 238U. These two parent nuclides, however, yield rather different proportion of fissiogenic Xenon isotopes. Hence, the proportion of Pu- to U-derived fission xenon is indicative of the degree and rate of outgassing of a mantle reservoir. Recent data obtained from Iceland in our lab confirm that the Xenon isotopic composition of the plume source(s) is characterized by lower 136Xe/130Xe ratios than the MORB source and the Iceland plume is more enriched in the Pu-derived Xenon component. These features are interpreted as reflecting different degrees of outgassing and appear not to be the result of preferential recycling of Xenon to the deep mantle. To further investigate how representative the Icelandic measurements might be of other mantle plumes, we measured noble gases (He, Ne, Ar, Xe) in gas-rich basalt glasses from the Rochambeau Ridge (RR) in the Northern Lau Basin. Recent work suggests the presence of a "Samoan-like" OIB source in the northern Lau Basin and our measurements were performed on samples with plume-like 3He/4He ratios (15-28 RA) [1]. The Xenon isotopic measurements indicate that the maximum measured 136Xe/130Xe ratios in the Rochambeau samples are similar to Iceland. In particular, for one of the gas rich samples we were able to obtain 77 different isotopic measurements through step-crushing. Preliminary investigation of this sample suggests higher Pu- to U-derived fission Xenon than in MORBs. To quantitatively evaluate the degree and rate of outgassing of the plume and MORB reservoirs, particularly during the first few hundred million years of Earth's history, we have modified a geochemical reservoir model that was previously developed to investigate mantle overturn and mixing from He, Ar and lithophile isotopes [2]. We will present the results from this geochemical reservoirs model, which is constrained by our high precision dataset from the Rochambeau Rift (Northern Lau Basin) and Iceland along with the Xenon dataset from popping rock [3]. [1] Lupton et al., GRL, 2009. [2] Gonnermann and Mukhopadhyay, Nature, 2009. [3] Kunz et al., Science, 1998.

  4. Xenon treatment protects against cold ischemia associated delayed graft function and prolongs graft survival in rats.

    PubMed

    Zhao, H; Watts, H R; Chong, M; Huang, H; Tralau-Stewart, C; Maxwell, P H; Maze, M; George, A J T; Ma, D

    2013-08-01

    Prolonged hypothermic storage causes ischemia-reperfusion injury (IRI) in the renal graft, which is considered to contribute to the occurrence of the delayed graft function (DGF) and chronic graft failure. Strategies are required to protect the graft and to prolong renal graft survival. We demonstrated that xenon exposure to human proximal tubular cells (HK-2) led to activation of range of protective proteins. Xenon treatment prior to or after hypothermia-hypoxia challenge stabilized the HK-2 cellular structure, diminished cytoplasmic translocation of high-mobility group box (HMGB) 1 and suppressed NF-κB activation. In the syngeneic Lewis-to-Lewis rat model of kidney transplantation, xenon exposure to donors before graft retrieval or to recipients after engraftment decreased caspase-3 expression, localized HMGB-1 within nuclei and prevented TLR-4/NF-κB activation in tubular cells; serum pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced and renal function was preserved. Xenon treatment of graft donors or of recipients prolonged renal graft survival following IRI in both Lewis-to-Lewis isografts and Fischer-to-Lewis allografts. Xenon induced cell survival or graft functional recovery was abolished by HIF-1α siRNA. Our data suggest that xenon treatment attenuates DGF and enhances graft survival. This approach could be translated into clinical practice leading to a considerable improvement in long-term graft survival. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  5. Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.

    PubMed

    Vaara, Juha; Hanni, Matti; Jokisaari, Jukka

    2013-03-14

    Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation.

  6. Postconditioning effects of argon or xenon on early graft function in a porcine model of kidney autotransplantation.

    PubMed

    De Deken, J; Rex, S; Lerut, E; Martinet, W; Monbaliu, D; Pirenne, J; Jochmans, I

    2018-07-01

    Ischaemia-reperfusion injury is inevitable during renal transplantation and can lead to delayed graft function and primary non-function. Preconditioning, reconditioning and postconditioning with argon and xenon protects against renal ischaemia-reperfusion injury in rodent models. The hypothesis that postconditioning with argon or xenon inhalation would improve graft function in a porcine renal autotransplant model was tested. Pigs (n = 6 per group) underwent left nephrectomy after 60 min of warm ischaemia (renal artery and vein clamping). The procured kidney was autotransplanted in a separate procedure after 18 h of cold storage, immediately after a right nephrectomy. Upon reperfusion, pigs were randomized to inhalation of control gas (70 per cent nitrogen and 30 per cent oxygen), argon (70 per cent and 30 per cent oxygen) or xenon (70 per cent and 30 per cent oxygen) for 2 h. The primary outcome parameter was peak plasma creatinine; secondary outcome parameters included further markers of graft function (creatinine course, urine output), graft injury (aspartate aminotransferase, heart-type fatty acid-binding protein, histology), apoptosis and autophagy (western blot, terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) staining), inflammatory mediators and markers of cell survival/growth (mRNA and tissue protein quantification), and animal survival. Results are presented as median (i.q.r.). ANOVA and Kruskal-Wallis tests were used where indicated. Peak plasma creatinine levels were similar between the groups: control 20·8 (16·4-23·1) mg/dl, argon 21·4 (17·1-24·9) mg/dl and xenon 19·4 (17·5-21·0) mg/dl (P = 0·607). Xenon was associated with an increase in autophagy and proapoptotic markers. Creatinine course, urine output, injury markers, histology, survival and inflammatory mediators were not affected by the intervention. Postconditioning with argon or xenon did not improve kidney graft function in this experimental model. Surgical relevance Ischaemia-reperfusion injury is inevitable during renal transplantation and can lead to delayed graft function and primary non-function. Based on mainly small animal experiments, noble gases (argon and xenon) have been proposed to minimize this ischaemia-reperfusion injury and improve outcomes after transplantation. The hypothesis that postconditioning with argon or xenon inhalation would improve graft function was tested in a porcine kidney autotransplantation model. The peak plasma creatinine concentration was similar in the control, argon and xenon groups. No other secondary outcome parameters, including animal survival, were affected by the intervention. Xenon was associated with an increase in autophagy and proapoptotic markers. Despite promising results in small animal models, postconditioning with argon or xenon in a translational model of kidney autotransplantation was not beneficial. Clinical trials would require better results. © 2018 BJS Society Ltd Published by John Wiley & Sons Ltd.

  7. Extinct Plutonium Geochemistry of Ancient Hadean Zircons

    NASA Astrophysics Data System (ADS)

    Turner, G.; Gilmour, J.; Crowther, S.; Busfield, A.; Mojzsis, S.; Harrison, M.

    2005-12-01

    The abundance of 244Pu in the early solar system has important implications for r-process nucleosynthesis and models of noble gas transport within the Earth's mantle. Our recent discovery(1) of xenon isotopes from the in-situ decay of 244Pu in ancient Jack Hills zircons promises to provide a new time-sensitive window on the first 500 Ma of Earth history. We have extended this initial work by the use of resonance ioniisation mass spectrometry to analyse xenon released by stepped heating from 17 individual zircons with Pb-Pb ages in the range 3.95 to 4.18 Ga. Our immediate objectives are to determine the causes of variations in the inferred Pu/U ratios and in the longer term to determine the initial Pu/U ratio of the Earth. The Pu/U ratios calculated for individual zircons may be expected to vary as a result of igneous fractionation and also from differential loss of Pu and U fission xenon in the last 4 Ga. We have studied the effects of xenon loss by irradiating the zircons with thermal neutrons to generate xenon from 235U neutron fission in order to determine U/Xe ratios and apparent ages. 131Xe/134Xe and 132Xe/134Xe ratios can be used to calculate the relative contributions from 244Pu and 238U spontaneous fission and 235U neutron fission. The measured Pu/U ratios (back calculated to 4.56 Ga on the basis of the individual Pb-Pb ages) range from zero to 0.012. The highest ratio in our initial study was 0.008 (note that the published ratio has been revised upwards on the basis of improved decay parameters for 238U spontaneous fission). Comparison of Pb-Pb and U-Xe ages indicate varying amounts of xenon loss, over 50% in some cases. While this accounts for some of the variability in the inferred Pu/U, igneous fractionation may also play a part, and we are currently attempting to investigate this by a comparison with REE abundances. Reference: (1) Turner et al. (2004) Science, 306, 89-91.

  8. Xenon decreases cell migration and secretion of a pro-angiogenesis factor in breast adenocarcinoma cells: comparison with sevoflurane.

    PubMed

    Ash, S A; Valchev, G I; Looney, M; Ni Mhathuna, A; Crowley, P D; Gallagher, H C; Buggy, D J

    2014-07-01

    While volatile agents have been implicated in metastasis-enhancing effects on cancer cells, the effects of xenon are unknown. We investigated xenon- and sevoflurane-mediated effects on migration and expression of angiogenesis biomarkers in human breast adenocarcinoma cells. MDA-MB-231 and MCF-7 cells were exposed to xenon 70% with O2 25%, CO2 5%; control gas containing O2 25%, CO2 5%, N2 70%; or sevoflurane 2.5 vol% administered in O2 60%, N2 37%, or control gas. Cell viability was determined by the MTT assay. Migration at 24 h was determined using the Oris™ Cell Migration Assay. Secretion of angiogenesis factors was measured using a membrane-based immunoassay array. Xenon reduced MDA-MB-231 migration to 59 (13%) after 1-h exposure (P=0.02), 64 (10%) after 3 h (P=0.01), and 71 (9%) after 5 h (P=0.04) compared with control gas, without affecting viability. Similarly, MCF-7 migration was significantly reduced at all timepoints [to 58 (12%) at 1 h, 65 (12%) at 3 h, and 65% (12%) at 5 h]. Sevoflurane did not affect migration when delivered in control gas. Glycine, an N-methyl-d-aspartate receptor co-agonist, antagonized the effects of xenon on migration. Expression of the pro-angiogenesis factor regulated on activation, normal T cell expressed and secreted (RANTES) was reduced in conditioned medium from xenon-exposed MDA-MB-231 cells compared with cells exposed to either control gas or sevoflurane [mean dot density 2.0 (0.2) compared with 3.0 (0.1) and 3.1 (0.3), respectively (P=0.02)]. Xenon, but not sevoflurane, inhibited migration in both oestrogen receptor positive and negative breast adenocarcinoma cells. Furthermore, xenon decreased release of the pro-angiogenic factor RANTES from MDA-MB-231 cells. © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Timing of antibiotics, volume, and vasoactive infusions in children with sepsis admitted to intensive care.

    PubMed

    van Paridon, Bregje M; Sheppard, Cathy; G, Garcia Guerra; Joffe, Ari R

    2015-08-17

    Early administration of antibiotics for sepsis, and of fluid boluses and vasoactive agents for septic shock, is recommended. Evidence for this in children is limited. The Alberta Sepsis Network prospectively enrolled eligible children admitted to the Pediatric Intensive Care Unit (PICU) with sepsis from 04/2012-10/2014. Demographics, severity of illness, and outcomes variables were prospectively entered into the ASN database after deferred consent. Timing of interventions were determined by retrospective chart review using a study manual and case-report-form. We aimed to determine the association of intervention timing and outcome in children with sepsis. Univariate (t-test and Fisher's Exact) and multiple linear regression statistics evaluated predictors of outcomes of PICU length of stay (LOS) and ventilation days. Seventy-nine children, age median 60 (IQR 22-133) months, 40 (51%) female, 39 (49%) with severe underlying co-morbidity, 44 (56%) with septic shock, and median PRISM-III 10.5 [IQR 6.0-17.0] were enrolled. Most patients presented in an ED: 36 (46%) at an outlying hospital ED, and 21 (27%) at the Children's Hospital ED. Most infections were pneumonia with/without empyema (42, 53%), meningitis (11, 14%), or bacteremia (10, 13%). The time from presentation to acceptable antibiotic administration was a median of 115.0 [IQR 59.0-323.0] minutes; 20 (25%) of patients received their antibiotics in the first hour from presentation. Independent predictors of PICU LOS were PRISM-III, and severe underlying co-morbidity, but not time to antibiotics. In the septic shock subgroup, the volume of fluid boluses given in the first 2 hours was independently associated with longer PICU LOS (effect size 0.22 days; 95% CI 0.5, 0.38; per ml/kg). Independent predictors of ventilator days were PRISM-III score and severe underlying co-morbidity. In the septic shock subgroup, volume of fluid boluses in the first 2 hours was independently associated with more ventilator days (effect size 0.09 days; 95% CI 0.02, 0.15; per ml/kg). Higher volume of early fluid boluses in children with sepsis and septic shock was independently associated with longer PICU LOS and ventilator days. More study on the benefits and harms of fluid bolus therapy in children are needed.

  10. Research on the measurement of the ultraviolet irradiance in the xenon lamp aging test chamber

    NASA Astrophysics Data System (ADS)

    Ji, Muyao; Li, Tiecheng; Lin, Fangsheng; Yin, Dejin; Cheng, Weihai; Huang, Biyong; Lai, Lei; Xia, Ming

    2018-01-01

    This paper briefly introduces the methods of calibrating the irradiance in the Xenon lamp aging test chamber. And the irradiance under ultraviolet region is mainly researched. Three different detectors whose response wave range are respectively UVA (320 400nm), UVB (275 330nm) and UVA+B (280 400nm) are used in the experiment. Through comparing the measuring results with different detectors under the same xenon lamp source, we discuss the difference between UVA, UVB and UVA+B on the basis of the spectrum of the xenon lamp and the response curve of the detectors. We also point out the possible error source, when use these detectors to calibrate the chamber.

  11. Microgravity

    NASA Image and Video Library

    2001-01-24

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of liquid xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Resembling a tiny bit of window screen, the oscillator at the heart of CVX-2 will vibrate between two pairs of paddle-like electrodes. The slight bend in the shape of the mesh has no effect on the data. What counts are the mesh's displacement in the xenon fluid and the rate at which the displacement dampens. The unit shown here is encased in a small test cell and capped with a sapphire windown to contain the xenon at high pressure.

  12. [Effects of lung protective ventilation strategy combined with lung recruitment maneuver on patients with severe burn complicated with acute respiratory distress syndrome].

    PubMed

    Li, Xiaojian; Zhong, Xiaomin; Deng, Zhongyuan; Zhang Xuhui; Zhang, Zhi; Zhang, Tao; Tang, Wenbin; Chen, Bib; Liu, Changling; Cao, Wenjuan

    2014-08-01

    To investigate the effects of lung protective ventilation strategy combined with lung recruitment maneuver on ARDS complicating patients with severe burn. Clinical data of 15 severely burned patients with ARDS admitted to our burn ICU from September 2011 to September 2013 and conforming to the study criteria were analyzed. Right after the diagnosis of acute lung injury/ARDS, patients received mechanical ventilation with lung protective ventilation strategy. When the oxygenation index (OI) was below or equal to 200 mmHg (1 mmHg = 0. 133 kPa), lung recruitment maneuver was performed combining incremental positive end-expiratory pressure. When OI was above 200 mmHg, lung recruitment maneuver was stopped and ventilation with lung protective ventilation strategy was continued. When OI was above 300 mmHg, mechanical ventilation was stopped. Before combining lung recruitment maneuver, 24 h after combining lung recruitment maneuver, and at the end of combining lung recruitment maneuver, variables of blood gas analysis (pH, PaO2, and PaCO2) were obtained by blood gas analyzer, and the OI values were calculated; hemodynamic parameters including heart rate, mean arterial pressure (MAP), central venous pressure (CVP) of all patients and the cardiac output (CO), extravascular lung water index (EVLWI) of 4 patients who received pulse contour cardiac output (PiCCO) monitoring were monitored. Treatment measures and outcome of patients were recorded. Data were processed with analysis of variance of repeated measurement of a single group and LSD test. (1) Before combining lung recruitment maneuver, 24 h after combining lung recruitment maneuver, and at the end of combining lung recruitment maneuver, the levels of PaO2 and OI of patients were respectively (77 ± 8), (113 ± 5), (142 ± 6) mmHg, and (128 ± 12), (188 ± 8), (237 ± 10) mmHg. As a whole, levels of PaO2 and OI changed significantly at different time points (with F values respectively 860. 96 and 842. 09, P values below 0. 01); levels of pH and PaCO2 showed no obvious changes (with F values respectively 0.35 and 3.13, P values above 0.05). (2) Levels of heart rate, MAP, CVP of all patients and CO of 4 patients who received PiCCO monitoring showed no significant changes at different time points (with F values from 0. 13 to 4. 26, P values above 0.05). Before combining lung recruitment maneuver, 24 h after combining lung recruitment maneuver, and at the end of combining lung recruitment maneuver, the EVLWI values of 4 patients who received PiCCO monitoring were respectively (13.5 ± 1.3), (10.2 ± 1.0), (7.0 ± 0.8) mL/kg ( F =117.00, P <0.01). (3) The patients received mechanical ventilation at 2 to 72 h after burn, lasting for 14-32 (21 ± 13) d. At post injury day 3-14 (7 ± 5) d, lung recruitment maneuver was applied for 2-5 (3.0 ± 2.0) d. All 15 patients recovered without other complications. Lung protective ventilation strategy combining lung recruitment maneuver can significantly improve the oxygenation in patients with severe burn complicated with ARDS and may therefore improve the prognosis.

  13. X-Ray Micro-CT Observations of Hydrate Pore Habit and Lattice Boltzmann Simulations on Permeability Evolution in Hydrate Bearing Sediments (HBS)

    NASA Astrophysics Data System (ADS)

    Chen, X.; Espinoza, N.; Verma, R.; Prodanovic, M.

    2017-12-01

    We use X-ray micro-computed tomography (μCT) to observe xenon hydrate growth. During xenon hydrate formation in a single pore and a sandpack, we observe heterogeneous (patchy) hydrate distribution at both pore (10 μm) and core scales (10 cm). These results present similarities with earlier observations on naturally occurring and synthetic hydrate-bearing sediment (HBS). Based on image analyses of xenon hydrate in the single pore, we find that, under the quasi-isothermal condition, the xenon volumetric growth rate versus overpressurization curve fits an Arrhenius type equation. Using the μCT images of HBS, we are able to calculate the permeability of HBS using a lattice Boltzmann method. We find the reduced permeability versus hydrate saturation curve fits a simple Corey-type model as suggested by earlier studies. However, patchy distribution of hydrate does not permit a straightforward interpretation of the saturation exponent. This work provides fundamental observations of hydrate growth and pore habit in sediments and how hydrate habit affects the hydraulic conductivity of HBS. Further implications can be extended to the strength, seismic velocities and electrical properties of HBS.

  14. Measurement of xenon plasma properties in an ion thruster using laser Thomson scattering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, N.; Tomita, K.; Sugita, K.

    2012-07-15

    This paper reports on the development of a method for measuring xenon plasma properties using the laser Thomson scattering technique, for application to ion engine system design. The thresholds of photo-ionization of xenon plasma were investigated and the number density of metastable atoms, which are photo-ionized by a probe laser, was measured using laser absorption spectroscopy, for several conditions. The measured threshold energy of the probe laser using a plano-convex lens with a focal length of 200 mm was 150 mJ for a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W; the probe lasermore » energy was therefore set as 80 mJ. Electron number density was found to be (6.2 {+-} 0.4) Multiplication-Sign 10{sup 17} m{sup -3} and electron temperature was found to be 2.2 {+-} 0.4 eV at a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W. The threshold of the probe laser intensity against photo-ionization in a miniature xenon ion thruster is almost constant for various mass flow rates, since the ratio of population of the metastable atoms to the electron number density is little changed.« less

  15. Photoionization of atoms and molecules. [of hydrogen, helium, and xenon

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1976-01-01

    A literature review on the present state of knowledge in photoionization is presented. Various experimental techniques that have been developed to study photoionization, such as fluorescence and photoelectron spectroscopy, mass spectroscopy, are examined. Various atoms and molecules were chosen to illustrate these techniques, specifically helium and xenon atoms and hydrogen molecules. Specialized photoionization such as in positive and negative ions, excited states, and free radicals is also treated. Absorption cross sections and ionization potentials are also discussed.

  16. Bispectral index, entropy, and quantitative electroencephalogram during single-agent xenon anesthesia.

    PubMed

    Laitio, Ruut M; Kaskinoro, Kimmo; Särkelä, Mika O K; Kaisti, Kaike K; Salmi, Elina; Maksimow, Anu; Långsjö, Jaakko W; Aantaa, Riku; Kangas, Katja; Jääskeläinen, Satu; Scheinin, Harry

    2008-01-01

    The aim was to evaluate the performance of anesthesia depth monitors, Bispectral Index (BIS) and Entropy, during single-agent xenon anesthesia in 17 healthy subjects. After mask induction with xenon and intubation, anesthesia was continued with xenon only. BIS, State Entropy and Response Entropy, and electroencephalogram were monitored throughout induction, steady-state anesthesia, and emergence. The performance of BIS, State Entropy, and Response Entropy were evaluated with prediction probability, sensitivity, and specificity analyses. The power spectrum of the raw electroencephalogram signal was calculated. The mean (SD) xenon concentration during anesthesia was 66.4% (2.4%). BIS, State Entropy, and Response Entropy demonstrated low prediction probability values at loss of response (0.455, 0.656, and 0.619) but 1 min after that the values were high (0.804, 0.941, and 0.929). Thereafter, equally good performance was demonstrated for all indices. At emergence, the prediction probability values to distinguish between steady-state anesthesia and return of response for BIS, State Entropy, and Response Entropy were 0.988, 0.892, and 0.992. No statistical differences between the performances of the monitors were observed. Quantitative electroencephalogram analyses showed generalized increase in total power (P < 0.001), delta (P < 0.001) and theta activity (P < 0.001), and increased alpha activity (P = 0.003) in the frontal brain regions. Electroencephalogram-derived depth of sedation indices BIS and Entropy showed a delay to detect loss of response during induction of xenon anesthesia. Both monitors performed well in distinguishing between conscious and unconscious states during steady-state anesthesia. Xenon-induced changes in electroencephalogram closely resemble those induced by propofol.

  17. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    DOE PAGES

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; ...

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at themore » 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.« less

  18. An automated multidimensional preparative gas chromatographic system for isolation and enrichment of trace amounts of xenon from ambient air.

    PubMed

    Larson, Tuula; Östman, Conny; Colmsjö, Anders

    2011-04-01

    The monitoring of radioactive xenon isotopes is one of the principal methods for the detection of nuclear explosions in order to identify clandestine nuclear testing. In this work, a miniaturized, multiple-oven, six-column, preparative gas chromatograph was constructed in order to isolate trace quantities of radioactive xenon isotopes from ambient air, utilizing nitrogen as the carrier gas. The multidimensional chromatograph comprised preparative stainless steel columns packed with molecular sieves, activated carbon, and synthetic carbon adsorbents (e.g., Anasorb®-747 and Carbosphere®). A combination of purification techniques--ambient adsorption, thermal desorption, back-flushing, thermal focusing, and heart cutting--was selectively optimized to produce a well-defined xenon peak that facilitated reproducible heart cutting and accurate quantification. The chromatographic purification of a sample requires approximately 4 h and provides complete separation of xenon from potentially interfering components (such as water vapor, methane, carbon dioxide, and radon) with recovery and accuracy close to 100%. The preparative enrichment process isolates and concentrates a highly purified xenon gas fraction that is suitable for subsequent ultra-low-level γ-, ß/γ-spectroscopic or high-resolution mass spectrometric measurement (e.g., to monitor the gaseous fission products of nuclear explosions at remote locations). The Xenon Processing Unit is a free-standing, relatively lightweight, and transportable system that can be interfaced to a variety of sampling and detection systems. It has a relatively inexpensive, rugged, and compact modular (19-inch rack) design that provides easy access to all parts for maintenance and has a low power requirement.

  19. Neither xenon nor fentanyl induces neuroapoptosis in the newborn pig brain.

    PubMed

    Sabir, Hemmen; Bishop, Sarah; Cohen, Nicki; Maes, Elke; Liu, Xun; Dingley, John; Thoresen, Marianne

    2013-08-01

    Some inhalation anesthetics increase apoptotic cell death in the developing brain. Xenon, an inhalation anesthetic, increases neuroprotection when combined with therapeutic hypothermia after hypoxic-ischemic brain injury in newborn animals. The authors, therefore, examined whether there was any neuroapoptotic effect of breathing 50% xenon with continuous fentanyl sedation for 24 h at normothermia or hypothermia on newborn pigs. Twenty-six healthy pigs (<24-h old) were randomized into four groups: (1) 24  h of 50% inhaled xenon with fentanyl at hypothermia (Trec = 33.5 °C), (2) 24 h of 50% inhaled xenon with fentanyl at normothermia (Trec = 38.5 °C), (3) 24 h of fentanyl at normothermia, or (4) nonventilated juvenile controls at normothermia. Five additional nonrandomized pigs inhaled 2% isoflurane at normothermia for 24 h to verify any proapoptotic effect of inhalation anesthetics in our model. Pathological cells were morphologically assessed in cortex, putamen, hippocampus, thalamus, and white matter. To quantify the findings, immunostained cells (caspase-3 and terminal deoxynucleotidyl transferase-mediated deoxyuridine-triphosphate nick-end labeling) were counted in the same brain regions. For groups (1) to (4), the total number of apoptotic cells was less than 5 per brain region, representing normal developmental neuroapoptosis. After immunostaining and cell counting, regression analysis showed that neither 50% xenon with fentanyl nor fentanyl alone increased neuroapoptosis. Isoflurane caused on average a 5- to 10-fold increase of immunostained cells. At normothermia or hypothermia, neither 24 h of inhaled 50% xenon with fentanyl sedation nor fentanyl alone induces neuroapoptosis in the neonatal pig brain. Breathing 2% isoflurane increases neuroapoptosis in neonatal pigs.

  20. Xenon lighting adjusted to plant requirements

    NASA Technical Reports Server (NTRS)

    Koefferlein, M.; Doehring, T.; Payer, Hans D.; Seidlitz, H. K.

    1994-01-01

    Xenon lamps are available as low and high power lamps with relatively high efficiency and a relatively long lifetime up to several thousand hours. Different construction types of short-arc and long-arc lamps permit a good adaptation to various applications in projection and illumination techniques without substantial changes of the spectral quality. Hence, the xenon lamp was the best choice for professional technical purposes where high power at simultaneously good spectral quality of the light was required. However, technical development does not stand still. Between the luminous efficacy of xenon lamps of 25-50 lm/W and the theoretical limit for 'white light' of 250 lm/W is still much room for improvement. The present development mainly favors other lamp types, like metal halide lamps and fluorescent lamps for commercial lighting purposes. The enclosed sections deal with some of the properties of xenon lamps relevant to plant illumination; particularly the spectral aspects, the temporal characteristics of the emission, and finally the economy of xenon lamps will be addressed. Due to radiation exceeding the natural global radiation in both the ultraviolet (UV) and the infrared (IR) regions, filter techniques have to be included into the discussion referring to the requirements of plant illumination. Most of the presented results were obtained by investigations in the GSF phytotron or in the closed Phytocell chambers of the University of Erlangen. As our experiences are restricted to area plant illumination rather than spot lights our discussion will concentrate on low pressure long-arc xenon lamps which are commonly used for such plant illuminations. As the spectral properties of short-arc lamps do not differ much from those of long-arc lamps most of our conclusions will be valid for high pressure xenon lamps too. These lamps often serve as light sources for small sun simulators and for monochromators which are used for action spectroscopy of plant responses.

  1. miR-21 Contributes to Xenon-conferred Amelioration of Renal Ischemia–Reperfusion Injury in Mice

    PubMed Central

    Jia, Ping; Teng, Jie; Zou, Jianzhou; Fang, Yi; Zhang, Xiaoyan; Bosnjak, Zeljko J.; Liang, Mingyu; Ding, Xiaoqiang

    2015-01-01

    Background MicroRNAs participate in the regulation of numerous physiological and disease processes. The in vivo role of microRNAs in anesthetics-conferred organoprotection is unknown. Methods Mice were exposed for 2 h to either 70% xenon, or 70% nitrogen, 24 h before the induction of renal ischemia-reperfusion injury. The role of microRNA, miR-21, in renal protection conferred by the delayed xenon preconditioning was examined using in vivo knockdown of miR-21 and analysis of miR-21 target pathways. Results Xenon preconditioning provided morphologic and functional protection against renal ischemia-reperfusion injury (n = 6), characterized by attenuation of renal tubular damage, apoptosis, and oxidative stress. Xenon preconditioning significantly increased the expression of miR-21 in the mouse kidney. A locked nucleic acid-modified anti–miR-21, given before xenon preconditioning, knocked down miR-21 effectively, and exacerbated subsequent renal ischemia-reperfusion injury. Mice treated with anti–miR-21 and ischemia-reperfusion injury showed significantly higher serum creatinine than antiscrambled oligonucleotides-treated mice, 24 h after ischemia-reperfusion (1.37 ± 0.28 vs. 0.81 ± 0.14 mg/dl; n = 5; P < 0.05). Knockdown of miR-21 induced significant up-regulation of programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10, two proapoptotic target effectors of miR-21, and resulted in significant down-regulation of phosphorylated protein kinase B and increased tubular cell apoptosis. In addition, xenon preconditioning up-regulated hypoxia-inducible factor-1α and its downstream effector vascular endothelial growth factor in a time-dependent manner. Knockdown of miR-21 resulted in a significant decrease of hypoxia-inducible factor-1α. Conclusions These results indicate that miR-21 contributes to the renoprotective effect of xenon preconditioning. PMID:23681145

  2. miR-21 contributes to xenon-conferred amelioration of renal ischemia-reperfusion injury in mice.

    PubMed

    Jia, Ping; Teng, Jie; Zou, Jianzhou; Fang, Yi; Zhang, Xiaoyan; Bosnjak, Zeljko J; Liang, Mingyu; Ding, Xiaoqiang

    2013-09-01

    MicroRNAs participate in the regulation of numerous physiological and disease processes. The in vivo role of microRNAs in anesthetics-conferred organoprotection is unknown. Mice were exposed for 2 h to either 70% xenon, or 70% nitrogen, 24 h before the induction of renal ischemia-reperfusion injury. The role of microRNA, miR-21, in renal protection conferred by the delayed xenon preconditioning was examined using in vivo knockdown of miR-21 and analysis of miR-21 target pathways. Xenon preconditioning provided morphologic and functional protection against renal ischemia-reperfusion injury (n = 6), characterized by attenuation of renal tubular damage, apoptosis, and oxidative stress. Xenon preconditioning significantly increased the expression of miR-21 in the mouse kidney. A locked nucleic acid-modified anti-miR-21, given before xenon preconditioning, knocked down miR-21 effectively, and exacerbated subsequent renal ischemia-reperfusion injury. Mice treated with anti-miR-21 and ischemia-reperfusion injury showed significantly higher serum creatinine than antiscrambled oligonucleotides-treated mice, 24 h after ischemia-reperfusion (1.37 ± 0.28 vs. 0.81 ± 0.14 mg/dl; n = 5; P < 0.05). Knockdown of miR-21 induced significant up-regulation of programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10, two proapoptotic target effectors of miR-21, and resulted in significant down-regulation of phosphorylated protein kinase B and increased tubular cell apoptosis. In addition, xenon preconditioning up-regulated hypoxia-inducible factor-1α and its downstream effector vascular endothelial growth factor in a time-dependent manner. Knockdown of miR-21 resulted in a significant decrease of hypoxia-inducible factor-1α. These results indicate that miR-21 contributes to the renoprotective effect of xenon preconditioning.

  3. Moderate hypothermia within 6 h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBY-Xe): a proof-of-concept, open-label, randomised controlled trial

    PubMed Central

    Azzopardi, Denis; Robertson, Nicola J; Bainbridge, Alan; Cady, Ernest; Charles-Edwards, Geoffrey; Deierl, Aniko; Fagiolo, Gianlorenzo; Franks, Nicholas P; Griffiths, James; Hajnal, Joseph; Juszczak, Edmund; Kapetanakis, Basil; Linsell, Louise; Maze, Mervyn; Omar, Omar; Strohm, Brenda; Tusor, Nora; Edwards, A David

    2016-01-01

    Summary Background Moderate cooling after birth asphyxia is associated with substantial reductions in death and disability, but additional therapies might provide further benefit. We assessed whether the addition of xenon gas, a promising novel therapy, after the initiation of hypothermia for birth asphyxia would result in further improvement. Methods Total Body hypothermia plus Xenon (TOBY-Xe) was a proof-of-concept, randomised, open-label, parallel-group trial done at four intensive-care neonatal units in the UK. Eligible infants were 36–43 weeks of gestational age, had signs of moderate to severe encephalopathy and moderately or severely abnormal background activity for at least 30 min or seizures as shown by amplitude-integrated EEG (aEEG), and had one of the following: Apgar score of 5 or less 10 min after birth, continued need for resuscitation 10 min after birth, or acidosis within 1 h of birth. Participants were allocated in a 1:1 ratio by use of a secure web-based computer-generated randomisation sequence within 12 h of birth to cooling to a rectal temperature of 33·5°C for 72 h (standard treatment) or to cooling in combination with 30% inhaled xenon for 24 h started immediately after randomisation. The primary outcomes were reduction in lactate to N-acetyl aspartate ratio in the thalamus and in preserved fractional anisotropy in the posterior limb of the internal capsule, measured with magnetic resonance spectroscopy and MRI, respectively, within 15 days of birth. The investigator assessing these outcomes was masked to allocation. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00934700, and with ISRCTN, as ISRCTN08886155. Findings The study was done from Jan 31, 2012, to Sept 30, 2014. We enrolled 92 infants, 46 of whom were randomly assigned to cooling only and 46 to xenon plus cooling. 37 infants in the cooling only group and 41 in the cooling plus xenon group underwent magnetic resonance assessments and were included in the analysis of the primary outcomes. We noted no significant differences in lactate to N-acetyl aspartate ratio in the thalamus (geometric mean ratio 1·09, 95% CI 0·90 to 1·32) or fractional anisotropy (mean difference −0·01, 95% CI −0·03 to 0·02) in the posterior limb of the internal capsule between the two groups. Nine infants died in the cooling group and 11 in the xenon group. Two adverse events were reported in the xenon group: subcutaneous fat necrosis and transient desaturation during the MRI. No serious adverse events were recorded. Interpretation Administration of xenon within the delayed timeframe used in this trial is feasible and apparently safe, but is unlikely to enhance the neuroprotective effect of cooling after birth asphyxia. Funding UK Medical Research Council. PMID:26708675

  4. Nuclear structure studies in highly neutron-deficient (114,116)Xe

    NASA Astrophysics Data System (ADS)

    Degraaf, James Hendrick

    Lifetimes of nuclear states in 114Xe and 116Xe were measured for the first time; these nuclei represent the most neutron-deficient isotopes of xenon for which lifetimes have now been measured. The fusion-evaporation reactions 58Ni(60Ni, 2p)116Xe at 223 MeV beam energy and 58Ni(58Ni, 2p)114Xe at 215 MeV beam energy were used. Lifetimes were measured using the Recoil Distance Method (RDM) with the 8π gamma-ray spectrometer at Chalk River Laboratories. The new measurements of the B(E2;2+/to 0+) strength in these nuclei, coupled with the recent measurements for heavier xenon isotopes, are well described within the framework of the O(6) symmetry limit of the Interacting Boson Approximation. The octupole nature of the negative parity side-band was also studied, and the lifetime measurements indicate a change from a K/approx 3 structure in heavier xenon isotopes to a K/approx 0,/ 1 structure in 114Xe.

  5. Variable mechanical ventilation

    PubMed Central

    Fontela, Paula Caitano; Prestes, Renata Bernardy; Forgiarini Jr., Luiz Alberto; Friedman, Gilberto

    2017-01-01

    Objective To review the literature on the use of variable mechanical ventilation and the main outcomes of this technique. Methods Search, selection, and analysis of all original articles on variable ventilation, without restriction on the period of publication and language, available in the electronic databases LILACS, MEDLINE®, and PubMed, by searching the terms "variable ventilation" OR "noisy ventilation" OR "biologically variable ventilation". Results A total of 36 studies were selected. Of these, 24 were original studies, including 21 experimental studies and three clinical studies. Conclusion Several experimental studies reported the beneficial effects of distinct variable ventilation strategies on lung function using different models of lung injury and healthy lungs. Variable ventilation seems to be a viable strategy for improving gas exchange and respiratory mechanics and preventing lung injury associated with mechanical ventilation. However, further clinical studies are necessary to assess the potential of variable ventilation strategies for the clinical improvement of patients undergoing mechanical ventilation. PMID:28444076

  6. Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models

    DOE PAGES

    Kristiansen, N. I.; Stohl, A.; Olivie, D. J. L.; ...

    2016-03-17

    Aerosols have important impacts on air quality and climate, but the processes affecting their removal from the atmosphere are not fully understood and are poorly constrained by observations. This makes modelled aerosol lifetimes uncertain. In this study, we make use of an observational constraint on aerosol lifetimes provided by radionuclide measurements and investigate the causes of differences within a set of global models. During the Fukushima Dai-Ichi nuclear power plant accident of March 2011, the radioactive isotopes cesium-137 ( 137Cs) and xenon-133 ( 133Xe) were released in large quantities. Cesium attached to particles in the ambient air, approximately according to theirmore » available aerosol surface area. 137Cs size distribution measurements taken close to the power plant suggested that accumulation-mode (AM) sulfate aerosols were the main carriers of cesium. Hence, 137Cs can be used as a proxy tracer for the AM sulfate aerosol's fate in the atmosphere. In contrast, the noble gas 133Xe behaves almost like a passive transport tracer. Global surface measurements of the two radioactive isotopes taken over several months after the release allow the derivation of a lifetime of the carrier aerosol. We compare this to the lifetimes simulated by 19 different atmospheric transport models initialized with identical emissions of 137Cs that were assigned to an aerosol tracer with each model's default properties of AM sulfate, and 133Xe emissions that were assigned to a passive tracer. We investigate to what extent the modelled sulfate tracer can reproduce the measurements, especially with respect to the observed loss of aerosol mass with time. Modelled 137Cs and 133Xe concentrations sampled at the same location and times as station measurements allow a direct comparison between measured and modelled aerosol lifetime. The e-folding lifetime τ e, calculated from station measurement data taken between 2 and 9 weeks after the start of the emissions, is 14.3 days (95 % confidence interval 13.1–15.7 days). The equivalent modelled τ e lifetimes have a large spread, varying between 4.8 and 26.7 days with a model median of 9.4 ± 2.3 days, indicating too fast a removal in most models. Because sufficient measurement data were only available from about 2 weeks after the release, the estimated lifetimes apply to aerosols that have undergone long-range transport, i.e. not for freshly emitted aerosol. However, modelled instantaneous lifetimes show that the initial removal in the first 2 weeks was quicker (lifetimes between 1 and 5 days) due to the emissions occurring at low altitudes and co-location of the fresh plume with strong precipitation. Deviations between measured and modelled aerosol lifetimes are largest for the northernmost stations and at later time periods, suggesting that models do not transport enough of the aerosol towards the Arctic. The models underestimate passive tracer ( 133Xe) concentrations in the Arctic as well but to a smaller extent than for the aerosol ( 137Cs) tracer. As a result, this indicates that in addition to too fast an aerosol removal in the models, errors in simulated atmospheric transport towards the Arctic in most models also contribute to the underestimation of the Arctic aerosol concentrations.« less

  7. Evaluation of Observed and Modelled Aerosol Lifetimes Using Radioactive Tracers of Opportunity and an Ensemble of 19 Global Models

    NASA Technical Reports Server (NTRS)

    Kristiansen, N. I.; Stohl, A.; Olivie, D. J. L.; Croft, B.; Sovde, O. A.; Klein, H.; Christoudias, T.; Kunkel, D.; Leadbetter, S. J.; Lee, Y. H.; hide

    2016-01-01

    Aerosols have important impacts on air quality and climate, but the processes affecting their removal from the atmosphere are not fully understood and are poorly constrained by observations. This makes modelled aerosol lifetimes uncertain. In this study, we make use of an observational constraint on aerosol lifetimes provided by radionuclide measurements and investigate the causes of differences within a set of global models. During the Fukushima Dai-Ichi nuclear power plant accident of March 2011, the radioactive isotopes cesium-137 (Cs-137) and xenon-133 (Xe-133) were released in large quantities. Cesium attached to particles in the ambient air, approximately according to their available aerosol surface area. Cs-137 size distribution measurements taken close to the power plant suggested that accumulation mode (AM) sulfate aerosols were the main carriers of cesium. Hence, Cs-137 can be used as a proxy tracer for the AM sulfate aerosol's fate in the atmosphere. In contrast, the noble gas Xe-133 behaves almost like a passive transport tracer. Global surface measurements of the two radioactive isotopes taken over several months after the release allow the derivation of a lifetime of the carrier aerosol. We compare this to the lifetimes simulated by 19 different atmospheric transport models initialized with identical emissions of Cs-137that were assigned to an aerosol tracer with each model's default properties of AM sulfate, and Xe-133 emissions that were assigned to a passive tracer. We investigate to what extent the modelled sulfate tracer can reproduce the measurements, especially with respect to the observed loss of aerosol mass with time. Modelled Cs-137and Xe-133 concentrations sampled at the same location and times as station measurements allow a direct comparison between measured and modelled aerosol lifetime. The e-folding lifetime e, calculated from station measurement data taken between 2 and 9 weeks after the start of the emissions, is 14.3 days (95% confidence interval 13.1-15.7 days). The equivalent modelled e lifetimes have a large spread, varying between 4.8 and 26.7 days with a model median of 9.42.3 days, indicating too fast a removal in most models. Because sufficient measurement data were only available from about 2 weeks after the release, the estimated lifetimes apply to aerosols that have undergone long-range transport, i.e. not for freshly emitted aerosol. However, modelled instantaneous lifetimes show that the initial removal in the first 2 weeks was quicker (lifetimes between 1 and 5 days) due to the emissions occurring at low altitudes and co-location of the fresh plume with strong precipitation. Deviations between measured and modelled aerosol lifetimes are largest for the northernmost stations and at later time periods, suggesting that models do not transport enough of the aerosol towards the Arctic. The models underestimate passive tracer (Xe-133) concentrations in the Arctic as well but to a smaller extent than for the aerosol (Cs-137) tracer. This indicates that in addition to too fast an aerosol removal in the models, errors in simulated atmospheric transport towards the Arctic in most models also contribute to the underestimation of the Arctic aerosol concentrations.

  8. First-principles study of uranium carbide: Accommodation of point defects and of helium, xenon, and oxygen impurities

    NASA Astrophysics Data System (ADS)

    Freyss, Michel

    2010-01-01

    Point defects and volatile impurities (helium, xenon, oxygen) in uranium monocarbide UC are studied by first-principles calculations. Preliminarily, bulk properties of UC and of two other uranium carbide phases, UC2 and U2C3 , are calculated in order to compare them to experimental data and to get confidence in the use of the generalized gradient approximation for this class of compounds. The subsequent study of different types of point defects shows that the carbon sublattice best accommodates the defects. The perturbation of the crystal structure induced by the defects is weak and the interaction between defects is found short range. Interstitial carbon dumbbells possibly play an important role in the diffusion of carbon atoms. The most favorable location of diluted helium, xenon, and oxygen impurities in the UC crystal lattice is then determined. The rare-gas atoms occupy preferably a uranium substitution site or a uranium site in a U-C bivacancy. But their incorporation in UC is, however, not energetically favorable, especially for xenon, suggesting their propensity to diffuse in the material and/or form bubbles. On the other hand, oxygen atoms are very favorably incorporated as diluted atoms in the UC lattice, confirming the easy oxidation of UC. The oxygen atoms preferably occupy a carbon substitution site or the carbon site of a U-C bivacancy. Our results are compared to available experimental data on UC and to similar studies by first-principles calculations for other carbides and nitrides with the rock-salt structure.

  9. Re-solution of xenon clusters in plutonium dioxide under the collision cascade impact: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Seitov, D. D.; Nekrasov, K. A.; Kupryazhkin, A. Ya.; Gupta, S. K.; Akilbekov, A. T.

    2017-09-01

    The interaction of xenon clusters with the collision cascades in the PuO2 crystals is investigated using the molecular dynamics simulation and the approximation of the pair interaction potentials. The potentials of interaction of Xe atoms with the surrounding particles in the crystal lattice are suggested, that are valid in the range of high collision energies. The cascades created by the recoil 235U ions formed as the plutonium α-decay product are considered, and the influence of such cascades on the structure of the xenon clusters is analyzed. It is shown, that the cascade-cluster interaction leads to release of the xenon atoms from the clusters and their subsequent re-solution in the crystal bulk.

  10. Bayesian Inference for Source Reconstruction: A Real-World Application

    PubMed Central

    Yee, Eugene; Hoffman, Ian; Ungar, Kurt

    2014-01-01

    This paper applies a Bayesian probabilistic inferential methodology for the reconstruction of the location and emission rate from an actual contaminant source (emission from the Chalk River Laboratories medical isotope production facility) using a small number of activity concentration measurements of a noble gas (Xenon-133) obtained from three stations that form part of the International Monitoring System radionuclide network. The sampling of the resulting posterior distribution of the source parameters is undertaken using a very efficient Markov chain Monte Carlo technique that utilizes a multiple-try differential evolution adaptive Metropolis algorithm with an archive of past states. It is shown that the principal difficulty in the reconstruction lay in the correct specification of the model errors (both scale and structure) for use in the Bayesian inferential methodology. In this context, two different measurement models for incorporation of the model error of the predicted concentrations are considered. The performance of both of these measurement models with respect to their accuracy and precision in the recovery of the source parameters is compared and contrasted. PMID:27379292

  11. Noble gases in the moon

    NASA Technical Reports Server (NTRS)

    Manuel, O. K.; Srinivasan, B.; Hennecke, E. W.; Sinclair, D. E.

    1972-01-01

    The abundance and isotopic composition of helium, neon, argon, krypton, and xenon which were released by stepwise heating of lunar fines (15601.64) and (15271.65) were measured spectrometrically. The results of a composition of noble gases released from the lunar fines with noble gases in meteorites and in the earth are presented along with the isotopic composition of noble gases in lunar fines, in meteorites, and in the atmosphere. A study of two isotopically distinct components of trapped xenon in carbonaceous chondrites is also included.

  12. Dark matter sensitivity of multi-ton liquid xenon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, Marc; Bütikofer, Lukas; Baudis, Laura

    2015-10-01

    We study the sensitivity of multi ton-scale time projection chambers using a liquid xenon target, e.g., the proposed DARWIN instrument, to spin-independent and spin-dependent WIMP-nucleon scattering interactions. Taking into account realistic backgrounds from the detector itself as well as from neutrinos, we examine the impact of exposure, energy threshold, background rejection efficiency and energy resolution on the dark matter sensitivity. With an exposure of 200 t × y and assuming detector parameters which have been already demonstrated experimentally, spin-independent cross sections as low as 2.5 × 10{sup −49} cm{sup 2} can be probed for WIMP masses around 40 GeV/c{sup 2}. Additional improvementsmore » in terms of background rejection and exposure will further increase the sensitivity, while the ultimate WIMP science reach will be limited by neutrinos scattering coherently off the xenon nuclei.« less

  13. Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez-Cadenas, J.J.; Martín-Albo, J.; Vidal, J. Muñoz

    2013-03-01

    The South Pole Telescope (SPT) has probed an expanded angular range of the CMB temperature power spectrum. Their recent analysis of the latest cosmological data prefers nonzero neutrino masses, with Σm{sub ν} = (0.32±0.11) eV. This result, if confirmed by the upcoming Planck data, has deep implications on the discovery of the nature of neutrinos. In particular, the values of the effective neutrino mass m{sub ββ} involved in neutrinoless double beta decay (ββ0ν) are severely constrained for both the direct and inverse hierarchy, making a discovery much more likely. In this paper, we focus in xenon-based ββ0ν experiments, on themore » double grounds of their good performance and the suitability of the technology to large-mass scaling. We show that the current generation, with effective masses in the range of 100 kg and conceivable exposures in the range of 500 kg·year, could already have a sizeable opportunity to observe ββ0ν events, and their combined discovery potential is quite large. The next generation, with an exposure in the range of 10 ton·year, would have a much more enhanced sensitivity, in particular due to the very low specific background that all the xenon technologies (liquid xenon, high-pressure xenon and xenon dissolved in liquid scintillator) can achieve. In addition, a high-pressure xenon gas TPC also features superb energy resolution. We show that such detector can fully explore the range of allowed effective Majorana masses, thus making a discovery very likely.« less

  14. A z-pinch photo-pumped pulsed atomic iodine laser

    NASA Astrophysics Data System (ADS)

    Stone, D. H.; Saunders, D. P.; Clark, M. C.

    1984-03-01

    A pulsed atomic iodine laser (CF3I) was designed and constructed using a coaxial xenon flash lamp as a pump source. The flash lamp was operated at low pressure to obtain pulse compression via xenon self-pinch. Electrical and optical diagnostics were performed for various xenon and CF3I pressures. Calorimeter data and burn patterns were obtained for the laser. Time-resolved spectroscopic data were taken throughout the CF3I pump band.

  15. Post-Test Inspection of Nasa's Evolutionary Xenon Thruster Long Duration Test Hardware: Ion Optics

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Shastry, Rohit

    2016-01-01

    A Long Duration Test (LDT) was initiated in June 2005 as a part of NASAs Evolutionary Xenon Thruster (NEXT) service life validation approach. Testing was voluntarily terminated in February 2014, with the thruster accumulating 51,184 hours of operation, processing 918 kg of xenon propellant, and delivering 35.5 MN-s of total impulse. This presentation will present the post-test inspection results to date for the thrusters ion optics.

  16. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Shear thirning will cause a normally viscous fluid -- such as pie filling or whipped cream -- to deform and flow more readily under high shear conditions. In shear thinning, a pocket of fluid will deform and move one edge forward, as depicted here.

  17. SPALAX new generation: New process design for a more efficient xenon production system for the CTBT noble gas network.

    PubMed

    Topin, Sylvain; Greau, Claire; Deliere, Ludovic; Hovesepian, Alexandre; Taffary, Thomas; Le Petit, Gilbert; Douysset, Guilhem; Moulin, Christophe

    2015-11-01

    The SPALAX (Système de Prélèvement Automatique en Ligne avec l'Analyse du Xénon) is one of the systems used in the International Monitoring System of the Comprehensive Nuclear Test Ban Treaty (CTBT) to detect radioactive xenon releases following a nuclear explosion. Approximately 10 years after the industrialization of the first system, the CEA has developed the SPALAX New Generation, SPALAX-NG, with the aim of increasing the global sensitivity and reducing the overall size of the system. A major breakthrough has been obtained by improving the sampling stage and the purification/concentration stage. The sampling stage evolution consists of increasing the sampling capacity and improving the gas treatment efficiency across new permeation membranes, leading to an increase in the xenon production capacity by a factor of 2-3. The purification/concentration stage evolution consists of using a new adsorbent Ag@ZSM-5 (or Ag-PZ2-25) with a much larger xenon retention capacity than activated charcoal, enabling a significant reduction in the overall size of this stage. The energy consumption of the system is similar to that of the current SPALAX system. The SPALAX-NG process is able to produce samples of almost 7 cm(3) of xenon every 12 h, making it the most productive xenon process among the IMS systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Systems for Lung Volume Standardization during Static and Dynamic MDCT-based Quantitative Assessment of Pulmonary Structure and Function

    PubMed Central

    Fuld, Matthew K.; Grout, Randall; Guo, Junfeng; Morgan, John H.; Hoffman, Eric A.

    2013-01-01

    Rationale and Objectives Multidetector-row Computed Tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics) and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breath-hold at a standardized volume. Materials and Methods A computer monitored turbine-based flow meter system was developed to control patient breath-holds and facilitate static imaging at fixed percentages of the vital capacity. Due to calibration challenges with gas density changes during multi-breath xenon-CT an alternative system was required. The design incorporated dual rolling seal pistons. Both systems were tested in a laboratory environment and human subject trials. Results The turbine-based system successfully controlled lung volumes in 32/37 subjects, having a linear relationship for CT measured air volume between repeated scans: for all scans, the mean and confidence interval of the differences (scan1-scan2) was −9 ml (−169, 151); for TLC alone 6 ml (−164, 177); for FRC alone, −23 ml (−172, 126). The dual-piston system successfully controlled lung volume in 31/41 subjects. Study failures related largely to subject non-compliance with verbal instruction and gas leaks around the mouthpiece. Conclusion We demonstrate the successful use of a turbine-based system for static lung volume control and demonstrate its inadequacies for dynamic xenon-CT studies. Implementation of a dual-rolling seal spirometer has been shown to adequately control lung volume for multi-breath wash-in xenon-CT studies. These systems coupled with proper patient coaching provide the tools for the use of CT to quantitate regional lung structure and function. The wash-in xenon-CT method for assessing regional lung function, while not necessarily practical for routine clinical studies, provides for a dynamic protocol against which newly emerging single breath, dual-energy xenon-CT measures can be validated. PMID:22555001

  19. Systems for lung volume standardization during static and dynamic MDCT-based quantitative assessment of pulmonary structure and function.

    PubMed

    Fuld, Matthew K; Grout, Randall W; Guo, Junfeng; Morgan, John H; Hoffman, Eric A

    2012-08-01

    Multidetector-row computed tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics), and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breathhold at a standardized volume. A computer monitored turbine-based flow meter system was developed to control patient breathholds and facilitate static imaging at fixed percentages of the vital capacity. Because of calibration challenges with gas density changes during multibreath xenon CT, an alternative system was required. The design incorporated dual rolling seal pistons. Both systems were tested in a laboratory environment and human subject trials. The turbine-based system successfully controlled lung volumes in 32/37 subjects, having a linear relationship for CT measured air volume between repeated scans: for all scans, the mean and confidence interval of the differences (scan1-scan2) was -9 mL (-169, 151); for total lung capacity alone 6 mL (-164, 177); for functional residual capacity alone, -23 mL (-172, 126). The dual-piston system successfully controlled lung volume in 31/41 subjects. Study failures related largely to subject noncompliance with verbal instruction and gas leaks around the mouthpiece. We demonstrate the successful use of a turbine-based system for static lung volume control and demonstrate its inadequacies for dynamic xenon CT studies. Implementation of a dual-rolling seal spirometer has been shown to adequately control lung volume for multibreath wash-in xenon CT studies. These systems coupled with proper patient coaching provide the tools for the use of CT to quantitate regional lung structure and function. The wash-in xenon CT method for assessing regional lung function, although not necessarily practical for routine clinical studies, provides for a dynamic protocol against which newly emerging single breath, dual-energy xenon CT measures can be validated. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  20. A Decade of Xenon Chemistry

    ERIC Educational Resources Information Center

    Moody, G. J.

    1974-01-01

    Presents reactions for the formation of xenon compounds and compounds of the other inert gases. Provides bonding and structure theories for noble gas compounds and speculates on possible applications. (GS)

  1. Reflectance measurements of PTFE, Kapton, and PEEK for xenon scintillation light for the LZ detector.

    NASA Astrophysics Data System (ADS)

    Arthurs, M.; Batista, E.; Haefner, J.; Lorenzon, W.; Morton, D.; Neff, A.; Okunawo, M.; Pushkin, K.; Sander, A.; Stephenson, S.; Wang, Y.; LZ Collaboration

    2017-01-01

    LZ (LUX-Zeplin) is an international collaboration that will look for dark matter candidates, WIMPs (Weakly Interacting Massive Particles), through direct detection by dual-phase time projection chamber (TPC) using liquid xenon. The LZ detector will be located nearly a mile underground at SURF, South Dakota, shielded from cosmic background radiation. Seven tons active mass of liquid xenon will be used for detecting the weak interaction of WIMPs with ordinary matter. Over three years of operation it is expected to reach the ultimate sensitivity of 2x10-48 cm2 for a WIMP mass of 50 GeV. As for many other rare event searches, high light collection efficiency is essential for LZ detector. Moreover, in order to achieve greater active volume for detection as well as reduce potential backgrounds, thinner detector walls without significant loss in reflectance are desired. Reflectance measurements of polytetrafluoroethylene (PTFE), Kapton, and PEEK for xenon scintillation light (178 nm), conducted at the University of Michigan using the Michigan Xenon Detector (MiX) will be presented. The University of Michigan, LZ Collaboration, The US Department of Energy.

  2. Increasing the sensitivity of LXe TPCs to dark matter by doping with helium or neon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippincott, W. Hugh; Alexander, Thomas R.; Hime, Andrew

    Next generation liquid xenon TPCs are poised to increase our sensitivity to dark matter by two orders of magnitude over a wide range of possible dark matter candidates. This proceedings describes an idea to expand the reach and flexibility of such detectors even further, by adding helium and neon to the xenon to enable searches for very light dark matter and combining high and low Z targets in the same detector. Adding helium or neon to LXe-TPCs has many advantages. First, the helium or neon target benefits from the excellent self-shielding provided by a large liquid xenon detector. Second, themore » same instrumentation, PMTs, and data acquisition can be used. Third, light nuclei are more robust to the systematic uncertainties that affect light WIMP searches. Fourth, helium and neon recoils will likely produce larger signals in liquid xenon than xenon recoils, achieving lower energy thresholds, and further increasing the sensitivity to light WIMPs. Finally, by adding He/Ne in sequence after a Xe-only run, the source of any observed signal can be isolated.« less

  3. Increasing the sensitivity of LXe TPCs to dark matter by doping with helium or neon

    DOE PAGES

    Lippincott, W. Hugh; Alexander, Thomas R.; Hime, Andrew

    2017-02-03

    Next generation liquid xenon TPCs are poised to increase our sensitivity to dark matter by two orders of magnitude over a wide range of possible dark matter candidates. This proceedings describes an idea to expand the reach and flexibility of such detectors even further, by adding helium and neon to the xenon to enable searches for very light dark matter and combining high and low Z targets in the same detector. Adding helium or neon to LXe-TPCs has many advantages. First, the helium or neon target benefits from the excellent self-shielding provided by a large liquid xenon detector. Second, themore » same instrumentation, PMTs, and data acquisition can be used. Third, light nuclei are more robust to the systematic uncertainties that affect light WIMP searches. Fourth, helium and neon recoils will likely produce larger signals in liquid xenon than xenon recoils, achieving lower energy thresholds, and further increasing the sensitivity to light WIMPs. Finally, by adding He/Ne in sequence after a Xe-only run, the source of any observed signal can be isolated.« less

  4. Liquid xenon purification, de-radonation (and de-kryptonation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pocar, Andrea, E-mail: pocar@umass.edu; Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550

    Liquid xenon detectors are at the forefront of rare event physics, including searches for neutrino-less double beta decay and WIMP dark matter. The xenon for these experiments needs to be purified from chemical impurities such as electronegative atoms and molecules, which absorb ionization electrons, and VUV (178 nm) scintillation light-absorbing chemical species. In addition, superb purification from radioactive impurities is required. Particularly challenging are radioactive noble isotopes ({sup 85}Kr,{sup 39,42}Ar,{sup 220,222}Rn). Radon is a particularly universal problem, due to the extended decay sequence of its daughters and its ubiquitous presence in detector materials. Purification and de-radonation of liquid xenon aremore » addressed with particular focus on the experience gained with the EXO-200 neutrino-less double beta decay detector.« less

  5. Nasal versus face mask for multiple-breath washout technique in preterm infants.

    PubMed

    Schulzke, S M; Deeptha, K; Sinhal, S; Baldwin, D N; Pillow, J J

    2008-09-01

    The large dead space associated with face masks might impede the accuracy and feasibility of multiple-breath washout (MBW) measurements in small infants. We asked if a low dead space nasal mask would provide measurements of resting lung volume and ventilation inhomogeneity comparable to those obtained with a face mask, when using the MBW technique. Unsedated preterm infants breathing without mechanical assistance and weighing between 1.50 and 2.49 kg were studied. Paired MBW tests with nasal and face masks were obtained using sulphur hexafluoride (SF(6)) as the tracer gas. The order of mask application was quasi-randomized. Bland-Altman method and intraclass correlation coefficient were used to analyze outcomes. Measurements were obtained in 20 infants with a mean (SD) postmenstrual age of 36 (1.4) w and a test weight of 2.0 (0.3) kg. The mean difference (95% CI) for nasal vs. face mask was -3.2 breaths/min (-6.2, -0.1 breaths/min) for respiratory rate, -1.0 ml/kg (-2.3, 0.3 ml/kg) for lung volume, 0.6 (0.1, 1.1) for lung clearance index, 0.2 (0.1, 0.3) for first to zeroeth moment ratio and 1.33 (0.6, 2.4) for second to zeroeth moment ratio. Paired measurements of lung volume showed acceptable agreement and good correlation, but there was poor agreement and poor correlation between indices of ventilation inhomogeneity obtained with the two masks. Functional dead space of the nasal mask was similar to that of the face mask despite its smaller water displacement volume. During MBW in infants below 2.5 kg body weight, a nasal mask results in comparable lung volume measurements. Indices of ventilation inhomogeneity may not be directly comparable using masks with different dead space. (c) 2008 Wiley-Liss, Inc.

  6. Dornase alpha compared to hypertonic saline for lung atelectasis in critically ill patients.

    PubMed

    Youness, Houssein A; Mathews, Kathryn; Elya, Marwan K; Kinasewitz, Gary T; Keddissi, Jean I

    2012-12-01

    Despite the lack of randomized trials, nebulized Dornase alpha and hypertonic saline are used empirically to treat atelectasis in mechanically ventilated patients. Our objective was to determine the clinical and radiological efficacy of these medications as an adjunct to standard therapy in critically ill patients. Mechanically ventilated patients with new onset (<48 h) lobar or multilobar atelectasis were randomized into three groups: nebulized Dornase alpha, hypertonic (7%) saline or normal saline every 12 h. All patients received standard therapy, including chest percussion therapy, kinetic therapy, and bronchodilators. The primary endpoint was the change in the daily chest X-ray atelectasis score. A total of 33 patients met the inclusion criteria and were randomized equally into the three groups. Patients in the Dornase alpha group showed a reduction of 2.18±1.33 points in the CXR score from baseline to day 7, whereas patients in the normal saline group had a reduction of 1.00±1.79 points, and patients in the hypertonic saline group showed a score reduction of 1.09±1.51 points. Pairwise comparison of the mean change of the CXR score showed no statistical difference between hypertonic saline, normal saline, and dornase alpha. Airway pressures as well as oxygenation, expressed as PaO(2)/F(I)O(2) and time to extubation also were similar among groups. During the study period the rate of extubation was 54% (6/11), 45% (5/11), and 63% (7/11) in the normal saline, hypertonic saline, and Dornase alpha groups, respectively (p=0.09). No treatment related complications were observed. There was no significant improvement in the chest X-ray atelectasis score in mechanically ventilated patients with new onset atelectasis who were nebulized with Dornase alpha twice a day. Hypertonic saline was no more effective than normal saline in this population. Larger randomized control trials are needed to confirm our results.

  7. Xenon for tunnelling analysis of the efflux pump component OprN.

    PubMed

    Ntsogo Enguéné, Yvette Véronique; Phan, Gilles; Garnier, Cyril; Ducruix, Arnaud; Prangé, Thierry; Broutin, Isabelle

    2017-01-01

    Tripartite efflux pumps are among the main actors responsible for antibiotics resistance in Gram-negative bacteria. In the last two decades, structural studies gave crucial information about the assembly interfaces and the mechanistic motions. Thus rigidifying the assembly seems to be an interesting way to hamper the drug efflux. In this context, xenon is a suitable probe for checking whether small ligands could act as conformational lockers by targeting hydrophobic cavities. Here we focus on OprN, the outer membrane channel of the MexEF efflux pump from Pseudomonas aeruginosa. After exposing OprN crystals to xenon gas pressure, 14 binding sites were observed using X-ray crystallography. These binding sites were unambiguously characterized in hydrophobic cavities of OprN. The major site is observed in the sensitive iris-like region gating the channel at the periplasmic side, built by the three key-residues Leu 405, Asp 109, and Arg 412. This arrangement defines along the tunnel axis a strong hydrophobic/polar gradient able to enhance the passive efflux mechanism of OprN. The other xenon atoms reveal strategic hydrophobic regions of the channel scaffold to target, with the aim to freeze the dynamic movements responsible of the open/close conformational equilibrium in OprN.

  8. Xenon for tunnelling analysis of the efflux pump component OprN

    PubMed Central

    Garnier, Cyril; Ducruix, Arnaud; Broutin, Isabelle

    2017-01-01

    Tripartite efflux pumps are among the main actors responsible for antibiotics resistance in Gram-negative bacteria. In the last two decades, structural studies gave crucial information about the assembly interfaces and the mechanistic motions. Thus rigidifying the assembly seems to be an interesting way to hamper the drug efflux. In this context, xenon is a suitable probe for checking whether small ligands could act as conformational lockers by targeting hydrophobic cavities. Here we focus on OprN, the outer membrane channel of the MexEF efflux pump from Pseudomonas aeruginosa. After exposing OprN crystals to xenon gas pressure, 14 binding sites were observed using X-ray crystallography. These binding sites were unambiguously characterized in hydrophobic cavities of OprN. The major site is observed in the sensitive iris-like region gating the channel at the periplasmic side, built by the three key-residues Leu 405, Asp 109, and Arg 412. This arrangement defines along the tunnel axis a strong hydrophobic/polar gradient able to enhance the passive efflux mechanism of OprN. The other xenon atoms reveal strategic hydrophobic regions of the channel scaffold to target, with the aim to freeze the dynamic movements responsible of the open/close conformational equilibrium in OprN. PMID:28886086

  9. Preemptive antibiotic treatment based on gram staining reduced the incidence of ARDS in mechanically ventilated patients.

    PubMed

    Matsushima, Asako; Tasaki, Osamu; Shimizu, Kentaro; Tomono, Kazunori; Ogura, Hiroshi; Shimazu, Takeshi; Sugimoto, Hisashi

    2008-08-01

    Ventilator-associated pneumonia (VAP) is one of the major complications in the intensive care unit. VAP sometimes results in acute respiratory distress syndrome (ARDS), and the associated mortality is high. We hypothesized that preemptive antibiotic therapy based on results of bedside gram staining would reduce the incidence of VAP. Patients who were endotracheally intubated in our intensive care unit for more than 72 hours were included. Patients younger than 16 years of age or patients died because of brain death were excluded. The study was divided into two periods. During the first period, we used antibiotics according to the American Thoracic Society guidelines. During the second period, antibiotics were given according to the results of bedside gram staining even before radiographic infiltrate appeared. One hundred twenty-eight patients and 133 patients were included in the first and second periods, respectively. The incidence of VAP was significantly decreased in the second period (first period, 22%; second period, 9%, p < 0.01). The incidence of ARDS was also decreased significantly in the second period (first period, 11%; second period, 3%, p < 0.01). The duration and total amount of antibiotics administered did not increase in the second period. VAP associated mortality was significantly lower in the second period (first period, 5%; second period, 0.8%, p < 0.05). Early diagnosis and treatment of respiratory infection based on results of gram staining significantly reduced the incidences of VAP and ARDS without an increase in the use of antibiotics.

  10. Interpretation of indeterminate lung scintigrams. [/sup 99m/Tc, /sup 133/Xe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biello, D.R.; Mattar, A.G.; Osei-Wusu, A.

    1979-10-01

    Lung scintigrams and pulmonary angiograms of 111 patients with suspected pulmonary embolism who had matching perfusion defects and radiographic abnormalities (infiltrate, atelectasis, or effusion) were reviewed. In 14 patients perfusion defects were substantially smaller than the corresponding radiographic opacity; only 1 (7%) had pulmonary embolism. In 77 the opacities and perfusion defects were of similar size; the abnormality was due to embolism in 20 (26%). In 18 patients perfusion defects were substantially larger than the radiographic opacities and were not associated with matching ventilation abnormalities; of these, 16 (89%) had pulmonary embolism. Evaluation of the relative size of perfusion defectsmore » and radiographic abnormalities occurring in the same region improves the ability of lung scintigrams to predict pulmonary emboli.« less

  11. International challenge to predict the impact of radioxenon releases from medical isotope production on a comprehensive nuclear test ban treaty sampling station.

    PubMed

    Eslinger, Paul W; Bowyer, Ted W; Achim, Pascal; Chai, Tianfeng; Deconninck, Benoit; Freeman, Katie; Generoso, Sylvia; Hayes, Philip; Heidmann, Verena; Hoffman, Ian; Kijima, Yuichi; Krysta, Monika; Malo, Alain; Maurer, Christian; Ngan, Fantine; Robins, Peter; Ross, J Ole; Saunier, Olivier; Schlosser, Clemens; Schöppner, Michael; Schrom, Brian T; Seibert, Petra; Stein, Ariel F; Ungar, Kurt; Yi, Jing

    2016-06-01

    The International Monitoring System (IMS) is part of the verification regime for the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear explosions, and then the full network may be populated with xenon monitoring afterward. An understanding of natural and man-made radionuclide backgrounds can be used in accordance with the provisions of the treaty (such as event screening criteria in Annex 2 to the Protocol of the Treaty) for the effective implementation of the verification regime. Fission-based production of (99)Mo for medical purposes also generates nuisance radioxenon isotopes that are usually vented to the atmosphere. One of the ways to account for the effect emissions from medical isotope production has on radionuclide samples from the IMS is to use stack monitoring data, if they are available, and atmospheric transport modeling. Recently, individuals from seven nations participated in a challenge exercise that used atmospheric transport modeling to predict the time-history of (133)Xe concentration measurements at the IMS radionuclide station in Germany using stack monitoring data from a medical isotope production facility in Belgium. Participants received only stack monitoring data and used the atmospheric transport model and meteorological data of their choice. Some of the models predicted the highest measured concentrations quite well. A model comparison rank and ensemble analysis suggests that combining multiple models may provide more accurate predicted concentrations than any single model. None of the submissions based only on the stack monitoring data predicted the small measured concentrations very well. Modeling of sources by other nuclear facilities with smaller releases than medical isotope production facilities may be important in understanding how to discriminate those releases from releases from a nuclear explosion. Published by Elsevier Ltd.

  12. Post-Test Inspection of NASA's Evolutionary Xenon Thruster Long-Duration Test Hardware: Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Soulas, George C.

    2016-01-01

    NASAs Evolutionary Xenon Thruster (NEXT) Long-Duration Test (LDT) is part of the comprehensive service life assessment of the NEXT thruster. The test was voluntarily terminated in April 2014 after accumulating 51,184 hours of high voltage operation, processing 918 kg of xenon, and delivering 35.5 MN-s of total impulse. This presentation covers the post-test inspection of the thruster hardware, in particular of the discharge chamber and other miscellaneous components such as propellant isolators and electrical cabling.

  13. Microgravity

    NASA Image and Video Library

    2001-01-24

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Because xenon near the critical point will collapse under its own weight, experiments on Earth (green line) are limited as they get closer (toward the left) to the critical point. CVX in the microgravity of space (red line) moved into unmeasured territory that scientists had not been able to reach.

  14. Barium Tagging n Solid Xenon for nEXO Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Walton, Tim; Chambers, Chris; Craycraft, Adam; Fairbank, William; nEXO Collaboration

    2015-04-01

    nEXO is a next-generation experiment designed to search for neutrinoless double beta decay of the isotope Xe136 in a liquid xenon time projection chamber. Positive observation of this decay would determine the nature of the neutrino to be a Majorana particle. Since the daughter of this decay is barium (Ba136), detecting the presence of Ba136 at a decay site (called ``barium tagging'') would provide strong rejection of backgrounds in the search for this decay. This would involve detecting a single barium ion from within a macroscopic volume of liquid xenon. This technique may be available for a second phase of the nEXO detector and sensitivity beyond the inverted hierarchy to neutrino oscillations. Several methods of barium tagging are being explored by the nEXO collaboration, but here we present a method of trapping the barium ion/atom (it may neutralize) in solid xenon (SXe) at the end of a cold probe, and then detecting the ion/atom by its fluorescence in the SXe. Our group at CSU has been studying the fluorescence of Ba in SXe by laser excitation, in order to ultimately detect a single Ba +/Ba in a SXe sample. We present studies of fluorescence signals, as well as recent results on imaging small numbers of Ba atoms in SXe, in a focused laser region. This work is supported by grants from the National Science Foundation and the Department of Energy.

  15. Chondritic Xenon in the Earth's mantle: new constrains on a mantle plume below central Europe

    NASA Astrophysics Data System (ADS)

    Caracausi, Antonio; Avice, Guillaume; Bernard, Peter; Furi, Evelin; Marty, Bernard

    2016-04-01

    Due to their inertness, their low abundances, and the presence of several different radiochronometers in their isotope systematics, the noble gases are excellent tracers of mantle dynamics, heterogeneity and differentiation with respect to the atmosphere. Xenon deserves particular attention because its isotope systematic can be related to specific processes during terrestrial accretion (e.g., Marty, 1989; Mukhopadhyay, 2012). The origin of heavy noble gases in the Earth's mantle is still debated, and might not be solar (Holland et al., 2009). Mantle-derived CO2-rich gases are particularly powerful resources for investigating mantle-derived noble gases as large quantities of these elements are available and permit high precision isotope analysis. Here, we report high precision xenon isotopic measurements in gases from a CO2 well in the Eifel volcanic region (Germany), where volcanic activity occurred between 700 ka and 11 ka years ago. Our Xe isotope data (normalized to 130Xe) show deviations at all masses compared to the Xe isotope composition of the modern atmosphere. The improved analytical precision of the present study, and the nature of the sample, constrains the primordial Xe end-member as being "chondritic", and not solar, in the Eifel mantle source. This is consistent with an asteroidal origin for the volatile elements in Earth's mantle and it implies that volatiles in the atmosphere and in the mantle originated from distinct cosmochemical sources. Despite a significant fraction of recycled atmospheric xenon in the mantle, primordial Xe signatures still survive in the mantle. This is also a demonstration of a primordial component in a plume reservoir. Our data also show that the reservoir below the Eifel region contains heavy-radiogenic/fissiogenic xenon isotopes, whose ratios are typical of plume-derived reservoirs. The fissiogenic Pu-Xe contribution is 2.26±0.28 %, the UXe contribution is negligible, the remainder being atmospheric plus primordial. Our data support the notion that the fraction of plutonium-derived Xe in plume sources (oceanic as well as continental) is higher than in the MORB source reservoir. Hence, the MORB - type reservoirs appear to be well distinguished and more degassed than the plume sources (oceanic as well as continental) supporting the heterogeneity of Earth's mantle. Finally this study highlights that xenon isotopes in the Eifel gas have preserved a chemical signature that is characteristic of other mantle plume sources. This is very intriguing because the presence of a mantle plume in this sector of Central Europe was already inferred from geophysical and geochemical studies(Buikin et al., 2005; Goes et al., 1999). Notably, tomographic images show a low-velocity structure down to 2000 km depth, representing deep mantle upwelling under central Europe, that may feed smaller upper-mantle plumes (Eifel volcanic district-Germany). References Buikin A., Trieloff M., HoppJ., Althaus T., Korochantseva E., Schwarz W.H. &Altherr R., (2005), Noble gas isotopessuggestdeepmantleplume source of late Cenozoicmaficalkalinevolcanism in Europe, Earth Planet. Sci. Lett. 230, 143-162. Goes S., Spakman W. &BijwaardH., (1999), A lowermantle source for centraleuropeanvolcanism, Science, 286, 1928-1931.G. Holland, M. Cassidy, C.J. Ballentine, Meteorite Kr in the Earth's mantle suggests a late accretionary source for the atmosphere, Science, 326, 1522-1525, (2009). Marty, B. Neon and xenon isotopes in MORB: implications for the Earth-atmosphere evolution. Earth Planet. Sci. Lett. 94, 45-56 (1989). Mukhopadhyay S., Early differentiation and volatile accretion recorded in deep-mantle neon and xenon Nature, 486, 101-106, (2013).

  16. Moderate hypothermia within 6 h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBY-Xe): a proof-of-concept, open-label, randomised controlled trial.

    PubMed

    Azzopardi, Denis; Robertson, Nicola J; Bainbridge, Alan; Cady, Ernest; Charles-Edwards, Geoffrey; Deierl, Aniko; Fagiolo, Gianlorenzo; Franks, Nicholas P; Griffiths, James; Hajnal, Joseph; Juszczak, Edmund; Kapetanakis, Basil; Linsell, Louise; Maze, Mervyn; Omar, Omar; Strohm, Brenda; Tusor, Nora; Edwards, A David

    2016-02-01

    Moderate cooling after birth asphyxia is associated with substantial reductions in death and disability, but additional therapies might provide further benefit. We assessed whether the addition of xenon gas, a promising novel therapy, after the initiation of hypothermia for birth asphyxia would result in further improvement. Total Body hypothermia plus Xenon (TOBY-Xe) was a proof-of-concept, randomised, open-label, parallel-group trial done at four intensive-care neonatal units in the UK. Eligible infants were 36-43 weeks of gestational age, had signs of moderate to severe encephalopathy and moderately or severely abnormal background activity for at least 30 min or seizures as shown by amplitude-integrated EEG (aEEG), and had one of the following: Apgar score of 5 or less 10 min after birth, continued need for resuscitation 10 min after birth, or acidosis within 1 h of birth. Participants were allocated in a 1:1 ratio by use of a secure web-based computer-generated randomisation sequence within 12 h of birth to cooling to a rectal temperature of 33·5°C for 72 h (standard treatment) or to cooling in combination with 30% inhaled xenon for 24 h started immediately after randomisation. The primary outcomes were reduction in lactate to N-acetyl aspartate ratio in the thalamus and in preserved fractional anisotropy in the posterior limb of the internal capsule, measured with magnetic resonance spectroscopy and MRI, respectively, within 15 days of birth. The investigator assessing these outcomes was masked to allocation. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00934700, and with ISRCTN, as ISRCTN08886155. The study was done from Jan 31, 2012, to Sept 30, 2014. We enrolled 92 infants, 46 of whom were randomly assigned to cooling only and 46 to xenon plus cooling. 37 infants in the cooling only group and 41 in the cooling plus xenon group underwent magnetic resonance assessments and were included in the analysis of the primary outcomes. We noted no significant differences in lactate to N-acetyl aspartate ratio in the thalamus (geometric mean ratio 1·09, 95% CI 0·90 to 1·32) or fractional anisotropy (mean difference -0·01, 95% CI -0·03 to 0·02) in the posterior limb of the internal capsule between the two groups. Nine infants died in the cooling group and 11 in the xenon group. Two adverse events were reported in the xenon group: subcutaneous fat necrosis and transient desaturation during the MRI. No serious adverse events were recorded. Administration of xenon within the delayed timeframe used in this trial is feasible and apparently safe, but is unlikely to enhance the neuroprotective effect of cooling after birth asphyxia. UK Medical Research Council. Copyright © 2016 Azzopardi et al. Open Access article distributed under the terms of CC BY. Published by Elsevier Ltd.. All rights reserved.

  17. Predictors for postoperative nausea and vomiting after xenon-based anaesthesia.

    PubMed

    Schaefer, M S; Apfel, C C; Sachs, H-J; Stuttmann, R; Bein, B; Tonner, P H; Hein, M; Neukirchen, M; Reyle-Hahn, M; Kienbaum, P

    2015-07-01

    In contrast to volatile anaesthetics, xenon acts by antagonism at N-methyl-d-aspartate receptors and antagonizes 5-hydroxytryptamine type 3 receptors that mediate nausea and vomiting. Therefore, it is unknown whether the same risk factors for postoperative nausea and vomiting (PONV) after volatile anaesthetics apply to xenon-based anaesthesia. With ethics committee approval and written informed consent, 502 consecutive patients undergoing xenon-based anaesthesia were included in a multicentre prospective observational study. Antiemetic prophylaxis was administered at the discretion of the attending anaesthetists. Postoperative nausea and vomiting and need for antiemetic rescue medication were assessed for 24 h after anaesthesia. Multivariate logistic regression analysis was performed to quantify risk factors for PONV and need for rescue medication. Four hundred and eighty-eight subjects were available for the final analysis. The incidence of PONV in subjects without prophylaxis was lower than expected according to the Apfel Score (28% observed; 42% expected, P<0.001). Independent predictors for PONV were (adjusted odds ratio; 95% confidence interval) female sex (1.76; 1.08-2.89), younger patient age (0.82 per 10 yr; 0.69-0.97), and longer duration of anaesthesia (1.36 per hour; 1.17-1.59). The incidence of PONV was significantly lower than predicted by the Apfel Score. Female sex, younger age, and longer duration of anaesthesia are risk factors for PONV after xenon-based anaesthesia. German Federal Institute for Drugs and Medical Devices number AL-PMS-01/07GER. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Laser induced fluorescence spectroscopy of the Ca dimer deposited on helium and mixed helium/xenon clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaveau, Marc-André; Pothier, Christophe; Briant, Marc

    2014-12-09

    We study how the laser induced fluorescence spectroscopy of the calcium dimer deposited on pure helium clusters is modified by the addition of xenon atoms. In the wavelength range between 365 and 385 nm, the Ca dimer is excited from its ground state up to two excited electronic states leading to its photodissociation in Ca({sup 1}P)+Ca({sup 1}S): this process is monitored by recording the Ca({sup 1}P) fluorescence at 422.7nm. One of these electronic states of Ca{sub 2} is a diexcited one correlating to the Ca(4s4p{sup 3}P(+Ca(4s3d{sup 3}D), the other one is a repulsive state correlating to the Ca(4s4p1P)+Ca(4s21S) asymptote, accountingmore » for the dissociation of Ca{sub 2} and the observation of the subsequent Ca({sup 1}P) emission. On pure helium clusters, the fluorescence exhibits the calcium atomic resonance line Ca({sup 1}S←{sup 1}P) at 422.7 nm (23652 cm{sup −1}) assigned to ejected calcium, and a narrow red sided band corresponding to calcium that remains solvated on the helium cluster. When adding xenon atoms to the helium clusters, the intensity of these two features decreases and a new spectral band appears on the red side of calcium resonance line; the intensity and the red shift of this component increase along with the xenon quantity deposited on the helium cluster: it is assigned to the emission of Ca({sup 1}P) associated with the small xenon aggregate embedded inside the helium cluster.« less

  19. Neutrino physics with multi-ton scale liquid xenon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baudis, L.; Ferella, A.; Kish, A.

    2014-01-01

    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and {sup 7}Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon,more » after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ∼ 2 × 10{sup −48} cm{sup 2} and WIMP masses around 50 GeV⋅c{sup −2}, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ∼ 6 GeV⋅c{sup −2} to cross sections above ∼ 4 × 10{sup −45}cm{sup 2}. DARWIN could reach a competitive half-life sensitivity of 5.6 × 10{sup 26} y to the neutrinoless double beta decay of {sup 136}Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.« less

  20. Redesigned β γ radioxenon detector

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew W.; McIntyre, Justin I.; Bowyer, Ted W.; Carman, April J.; Hayes, James C.; Heimbigner, Tom R.; Hubbard, Charles W.; Lidey, Lance; Litke, Kevin E.; Morris, Scott J.; Ripplinger, Michael D.; Suarez, Reynold; Thompson, Robert

    2007-08-01

    The Automated Radio-xenon Sampler/Analyzer (ARSA), designed by Pacific Northwest National Laboratory (PNNL) collects and detects several radioxenon isotopes, and is used to monitor underground nuclear explosions. The ARSA is very sensitive to 133Xe, 131mXe, 133mXe, and 135Xe (<1 mBq/SCM) [M. Auera et al., Wernspergera, Appl. Radiat. 6 (2004) 60] through use of its compact high efficiency β-γ coincidence detector. For this reason, it is an excellent treaty monitoring system and it can be used as an environmental sampling device as well. Field testing of the ARSA has shown it to be both robust and reliable, but the nuclear detector requires a detailed photomultiplier tube (PMT) gain matching regime difficult to implement in a field environment. Complexity is a problem from a maintenance and quality assurance/quality control (QA/QC) standpoint, and efforts to reduce these issues have led to development of a simplified β-γ coincident detector. The new design reduces the number of PMT's and the complexity of the calibration needed in comparison to the old design. New scintillation materials (NaI(Tl), CsI(Na), and CsI(Tl)) were investigated and a comparison of three different gamma sensitive well detectors has been completed. A new plastic-scintillator gas cell was constructed and a new method of forming the scintillator gas cell was developed. The simplified detector system compares favorably with the original ARSA design in spectral resolution and efficiency and is significantly easier to set up and calibrate. The new materials and configuration allow the resulting β-γ coincidence detector to maintain the overall performance of the ARSA type β-γ detector while simplifying the design.

Top