Sample records for xenopus tropicalis early

  1. Global gene expression during early differentiation of Xenopus (Silurana) tropicalis gonad tissues

    EPA Science Inventory

    African clawed frog Xenopus sp. has been used extensively for developmental biology and toxicology research. Xenopus (Silurana) tropicalis has been coveted more recently for genomics research because its diploid genome has been sequenced. Amid concerns of environmental pollutants...

  2. Dynamic expression of the LAP family of genes during early development of Xenopus tropicalis.

    PubMed

    Yang, Qiutan; Lv, Xiaoyan; Kong, Qinghua; Li, Chaocui; Zhou, Qin; Mao, Bingyu

    2011-10-01

    The leucine-rich repeats and PDZ (LAP) family of genes are crucial for the maintenance of cell polarity as well as for epithelial homeostasis and tumor suppression in both vertebrates and invertebrates. Four members of this gene family are known: densin, erbin, scribble and lano. Here, we identified the four members of the LAP gene family in Xenopus tropicalis and studied their expression patterns during embryonic development. The Xenopus LAP proteins show a conserved domain structure that is similar to their homologs in other vertebrates. In Xenopus embryos, these genes were detected in animal cap cells at the early gastrula stage. At later stages of development, they were widely expressed in epithelial tissues that are highly polar in nature, including the neural epithelia, optic and otic vesicles, and in the pronephros. These data suggest that the roles of the Xenopus LAP genes in the control of cell polarity and morphogenesis are conserved during early development. Erbin and lano show similar expression patterns in the developing head, suggesting potential functional interactions between the two molecules in vivo.

  3. Tol2 transposon-mediated transgenesis in Xenopus tropicalis.

    PubMed

    Hamlet, Michelle R Johnson; Yergeau, Donald A; Kuliyev, Emin; Takeda, Masatoshi; Taira, Masanori; Kawakami, Koichi; Mead, Paul E

    2006-09-01

    The diploid frog Xenopus tropicalis is becoming a powerful developmental genetic model system. Sequencing of the X. tropicalis genome is nearing completion and several labs are embarking on mutagenesis screens. We are interested in developing insertional mutagenesis strategies in X. tropicalis. Transposon-mediated insertional mutagenesis, once used exclusively in plants and invertebrate systems, is now more widely applicable to vertebrates. The first step in developing transposons as tools for mutagenesis is to demonstrate that these mobile elements function efficiently in the target organism. Here, we show that the Medaka fish transposon, Tol2, is able to stably integrate into the X. tropicalis genome and will serve as a powerful tool for insertional mutagenesis strategies in the frog.

  4. Sequencing and analysis of 10967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morin, R D; Chang, E; Petrescu, A

    2005-10-31

    Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection initiative. Here we present an analysis of 10967 clones (8049 from X. laevis and 2918 from X. tropicalis). The clone set contains 2013 orthologs between X. laevis and X. tropicalis as well as 1795 paralog pairs within X. laevis. 1199 are in-paralogs, believed to have resulted from an allotetraploidization event approximately 30 million years ago, and the remaining 546 are likely out-paralogs that have resulted from more ancient gene duplications, prior to the divergence betweenmore » the two species. We do not detect any evidence for positive selection by the Yang and Nielsen maximum likelihood method of approximating d{sub N}/d{sub S}. However, d{sub N}/d{sub S} for X. laevis in-paralogs is elevated relative to X. tropicalis orthologs. This difference is highly significant, and indicates an overall relaxation of selective pressures on duplicated gene pairs. Within both groups of paralogs, we found evidence of subfunctionalization, manifested as differential expression of paralogous genes among tissues, as measured by EST information from public resources. We have observed, as expected, a higher instance of subfunctionalization in out-paralogs relative to in-paralogs.« less

  5. The Genome of the Western Clawed Frog Xenopus tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellsten, Uffe; Harland, Richard M.; Gilchrist, Michael J.

    2009-10-01

    The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes over 20,000 protein-coding genes, including orthologs of at least 1,700 human disease genes. Over a million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like other tetrapods, the genome contains gene deserts enriched for conserved non-coding elements. The genome exhibits remarkable shared synteny with humanmore » and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage.« less

  6. Reproductive Maturation of the Tropical Clawed Frog, Xenopus tropicalis

    EPA Science Inventory

    The model species Xenopus tropicalis is being widely used in developmental biology and amphibian toxicology studies. In order to increase our understanding of the role of steroid hormones in maturation in this species, we collected baseline reproductive data from metamorphosis t...

  7. Sequencing and analysis of 10,967 full-length cDNA clones from Xenopus laevis and Xenopus tropicalis reveals post-tetraploidization transcriptome remodeling

    PubMed Central

    Morin, Ryan D.; Chang, Elbert; Petrescu, Anca; Liao, Nancy; Griffith, Malachi; Kirkpatrick, Robert; Butterfield, Yaron S.; Young, Alice C.; Stott, Jeffrey; Barber, Sarah; Babakaiff, Ryan; Dickson, Mark C.; Matsuo, Corey; Wong, David; Yang, George S.; Smailus, Duane E.; Wetherby, Keith D.; Kwong, Peggy N.; Grimwood, Jane; Brinkley, Charles P.; Brown-John, Mabel; Reddix-Dugue, Natalie D.; Mayo, Michael; Schmutz, Jeremy; Beland, Jaclyn; Park, Morgan; Gibson, Susan; Olson, Teika; Bouffard, Gerard G.; Tsai, Miranda; Featherstone, Ruth; Chand, Steve; Siddiqui, Asim S.; Jang, Wonhee; Lee, Ed; Klein, Steven L.; Blakesley, Robert W.; Zeeberg, Barry R.; Narasimhan, Sudarshan; Weinstein, John N.; Pennacchio, Christa Prange; Myers, Richard M.; Green, Eric D.; Wagner, Lukas; Gerhard, Daniela S.; Marra, Marco A.; Jones, Steven J.M.; Holt, Robert A.

    2006-01-01

    Sequencing of full-insert clones from full-length cDNA libraries from both Xenopus laevis and Xenopus tropicalis has been ongoing as part of the Xenopus Gene Collection Initiative. Here we present 10,967 full ORF verified cDNA clones (8049 from X. laevis and 2918 from X. tropicalis) as a community resource. Because the genome of X. laevis, but not X. tropicalis, has undergone allotetraploidization, comparison of coding sequences from these two clawed (pipid) frogs provides a unique angle for exploring the molecular evolution of duplicate genes. Within our clone set, we have identified 445 gene trios, each comprised of an allotetraploidization-derived X. laevis gene pair and their shared X. tropicalis ortholog. Pairwise dN/dS, comparisons within trios show strong evidence for purifying selection acting on all three members. However, dN/dS ratios between X. laevis gene pairs are elevated relative to their X. tropicalis ortholog. This difference is highly significant and indicates an overall relaxation of selective pressures on duplicated gene pairs. We have found that the paralogs that have been lost since the tetraploidization event are enriched for several molecular functions, but have found no such enrichment in the extant paralogs. Approximately 14% of the paralogous pairs analyzed here also show differential expression indicative of subfunctionalization. PMID:16672307

  8. TALENs and CRISPR/Cas9 fuel genetically engineered clinically relevant Xenopus tropicalis tumor models.

    PubMed

    Naert, Thomas; Van Nieuwenhuysen, Tom; Vleminckx, Kris

    2017-01-01

    The targeted nuclease revolution (TALENs, CRISPR/Cas9) now allows Xenopus researchers to rapidly generate custom on-demand genetic knockout models. These novel methods to perform reverse genetics are unprecedented and are fueling a wide array of human disease models within the aquatic diploid model organism Xenopus tropicalis (X. tropicalis). This emerging technology review focuses on the tools to rapidly generate genetically engineered X. tropicalis models (GEXM), with a focus on establishment of genuine genetic and clinically relevant cancer models. We believe that due to particular advantageous characteristics, outlined within this review, GEXM will become a valuable alternative animal model for modeling human cancer. Furthermore, we provide perspectives of how GEXM will be used as a platform for elucidation of novel therapeutic targets and for preclinical drug validation. Finally, we also discuss some future prospects on how the recent expansions and adaptations of the CRISPR/Cas9 toolbox might influence and push forward X. tropicalis cancer research. © 2017 Wiley Periodicals, Inc.

  9. Rapid Gynogenetic Mapping of Xenopus tropicalis Mutations to Chromosomes

    PubMed Central

    Khokha, Mustafa K.; Krylov, Vladimir; Reilly, Michael J.; Gall, Joseph G.; Bhattacharya, Dipankan; Cheung, Chung Yan J.; Kaufman, Sarah; Lam, Dang Khoa; Macha, Jaroslav; Ngo, Catherine; Prakash, Neha; Schmidt, Philip; Tlapakova, Tereza; Trivedi, Toral; Tumova, Lucie; Abu-Daya, Anita; Geach, Timothy; Vendrell, Elisenda; Ironfield, Holly; Sinzelle, Ludivine; Sater, Amy K.; Wells, Dan E.; Harland, Richard M.; Zimmerman, Lyle B.

    2010-01-01

    Pilot forward genetic screens in Xenopus tropicalis have isolated over 60 recessive mutations (Grammer et al., 2005; Noramly et al., 2005; Goda et al., 2006). Here we present a simple method for mapping mutations to chromosomes using gynogenesis and centromeric markers. When coupled with available genomic resources, gross mapping facilitates evaluation of candidate genes as well as higher resolution linkage studies. Using gynogenesis, we have mapped the genetic locations of the 10 X. tropicalis centromeres, and performed Fluorescence In Situ Hybridization to validate these locations cytologically. We demonstrate the use of this very small set of centromeric markers to map mutations efficiently to specific chromosomes. PMID:19441086

  10. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis

    PubMed Central

    Roco, Álvaro S.; Olmstead, Allen W.; Degitz, Sigmund J.; Amano, Tosikazu; Zimmerman, Lyle B.; Bullejos, Mónica

    2015-01-01

    Homomorphic sex chromosomes and rapid turnover of sex-determining genes can complicate establishing the sex chromosome system operating in a given species. This difficulty exists in Xenopus tropicalis, an anuran quickly becoming a relevant model for genetic, genomic, biochemical, and ecotoxicological research. Despite the recent interest attracted by this species, little is known about its sex chromosome system. Direct evidence that females are the heterogametic sex, as in the related species Xenopus laevis, has yet to be presented. Furthermore, X. laevis’ sex-determining gene, DM-W, does not exist in X. tropicalis, and the sex chromosomes in the two species are not homologous. Here we identify X. tropicalis’ sex chromosome system by integrating data from (i) breeding sex-reversed individuals, (ii) gynogenesis, (iii) triploids, and (iv) crosses among several strains. Our results indicate that at least three different types of sex chromosomes exist: Y, W, and Z, observed in YZ, YW, and ZZ males and in ZW and WW females. Because some combinations of parental sex chromosomes produce unisex offspring and other distorted sex ratios, understanding the sex-determination systems in X. tropicalis is critical for developing this flexible animal model for genetics and ecotoxicology. PMID:26216983

  11. The unexpected teratogenicity of RXR antagonist UVI3003 via activation of PPARγ in Xenopus tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jingmin

    2017-01-01

    The RXR agonist (triphenyltin, TPT) and the RXR antagonist (UVI3003) both show teratogenicity and, unexpectedly, induce similar malformations in Xenopus tropicalis embryos. In the present study, we exposed X. tropicalis embryos to UVI3003 in seven specific developmental windows and identified changes in gene expression. We further measured the ability of UVI3003 to activate Xenopus RXRα (xRXRα) and PPARγ (xPPARγ) in vitro and in vivo. We found that UVI3003 activated xPPARγ either in Cos7 cells (in vitro) or Xenopus embryos (in vivo). UVI3003 did not significantly activate human or mouse PPARγ in vitro; therefore, the activation of Xenopus PPARγ by UVI3003more » is novel. The ability of UVI3003 to activate xPPARγ explains why UVI3003 and TPT yield similar phenotypes in Xenopus embryos. Our results indicate that activating PPARγ leads to teratogenic effects in Xenopus embryos. More generally, we infer that chemicals known to specifically modulate mammalian nuclear hormone receptors cannot be assumed to have the same activity in non-mammalian species, such as Xenopus. Rather they must be tested for activity and specificity on receptors of the species in question to avoid making inappropriate conclusions. - Highlights: • UVI3003 is a RXRs antagonist and shows teratogenicity to Xenopus embryos. • UVI3003 activated xPPARγ either in Cos7 cells or Xenopus embryos. • UVI3003 did not activate human or mouse PPARγ in Cos7 cells. • Activating PPARγ leads to teratogenic effects in Xenopus embryos.« less

  12. Effects of 4-tert-octylphenol on Xenopus tropicalis in a Long Term Exposure

    EPA Science Inventory

    Endocrine disrupting chemicals that activate the estrogen receptor are routinely detected in the environment and are a concern for the health of both exposed humans and indigenous wildlife. We exposed the western clawed frog (Xenopus tropicalis) to the weak estrogen octylphenol f...

  13. Genetic screens for mutations affecting development of Xenopus tropicalis.

    PubMed

    Goda, Tadahiro; Abu-Daya, Anita; Carruthers, Samantha; Clark, Matthew D; Stemple, Derek L; Zimmerman, Lyle B

    2006-06-01

    We present here the results of forward and reverse genetic screens for chemically-induced mutations in Xenopus tropicalis. In our forward genetic screen, we have uncovered 77 candidate phenotypes in diverse organogenesis and differentiation processes. Using a gynogenetic screen design, which minimizes time and husbandry space expenditures, we find that if a phenotype is detected in the gynogenetic F2 of a given F1 female twice, it is highly likely to be a heritable abnormality (29/29 cases). We have also demonstrated the feasibility of reverse genetic approaches for obtaining carriers of mutations in specific genes, and have directly determined an induced mutation rate by sequencing specific exons from a mutagenized population. The Xenopus system, with its well-understood embryology, fate map, and gain-of-function approaches, can now be coupled with efficient loss-of-function genetic strategies for vertebrate functional genomics and developmental genetics.

  14. Tips and tricks for preparing lampbrush chromosome spreads from Xenopus tropicalis oocytes.

    PubMed

    Penrad-Mobayed, May; Kanhoush, Rasha; Perrin, Caroline

    2010-05-01

    Due to their large size and fine organization, lampbrush chromosomes (LBCs) of amphibian oocytes have been for decades one of the favorite tools of biologists for the analysis of transcriptional and post-transcriptional processes at the cytological level. The emergence of the diploid Xenopus tropicalis amphibian as a model organism for vertebrate developmental genetics and the accumulation of sequence data made available by its recent genomic sequencing, strongly revive the interest of LBCs as a powerful tool to study genes expressed during oogenesis. We describe here a detailed protocol for preparing LBCs from X. tropicalis oocyte and give practical advice to encourage a large number of researchers to become familiar with these chromosomes.

  15. Xenopus tropicalis transgenic lines and their use in the study of embryonic induction.

    PubMed

    Hirsch, Nicolas; Zimmerman, Lyle B; Gray, Jessica; Chae, Jeiwook; Curran, Kristen L; Fisher, Marilyn; Ogino, Hajime; Grainger, Robert M

    2002-12-01

    For over a century, amphibian embryos have been a source of significant insight into developmental mechanisms, including fundamental discoveries about the process of induction. The recently developed transgenesis for Xenopus offers new approaches to these poorly understood processes, particularly when undertaken in the quickly maturing species Xenopus tropicalis, which greatly facilitates establishment of permanent transgenic lines. Several X. tropicalis transgenic lines have now been generated, and experiments demonstrating the value of these lines to study induction in embryonic tissue recombinants and explants are presented here. A revised protocol for transgenesis in X. tropicalis resulting in a significant increase in the percentage of transgenic animals that reach adulthood is presented, as well as improvements in tadpole and froglet husbandry, which have facilitated the raising of large numbers of adults. Working transgenic populations have been rapidly expanded, and some transgenes have been bred to homozygosity. Established lines include those bearing the promoter regions of Pax-6, Otx-2, Rx, and EF1alpha coupled to fluorescent reporter genes. Multireporter lines combining, in a single animal, up to three gene promoters coupled to different fluorescent reporters have also been established. The value of X. tropicalis transgenic lines for the study of induction is demonstrated by showing activation of Pax-6 by noggin treatment of Pax-6/GFP transgenic animal caps, illustrating how reporter lines allow a rapid, in vivo assay for an inductive response. An experiment showing lens induction in gamma-crystallin/GFP transgenic lens ectoderm when it is recombined with mouse optic vesicle demonstrates conservation of inducing signals from amphibians and mammals. It also shows how the warmer culture temperatures tolerated by X. tropicalis embryos can be used in assays of factors produced by mammalian cells and tissues. The many applications of transgenic reporter

  16. Identification of Gender-specific Transcripts by Microarray in Gonad Tissue of Larval and Juvenile Xenopus tropicalis

    EPA Science Inventory

    Amphibian model species Xenopus tropicalis is currently being utilized by EPA in the development of a standardized in vivo reproductive toxicity assay. Perturbations to the hypothalamic-pituitary-gonadal axis from exposure to endocrine disrupting compounds during larval develop...

  17. Breeding based remobilization of Tol2 transposon in Xenopus tropicalis.

    PubMed

    Lane, Maura A; Kimber, Megan; Khokha, Mustafa K

    2013-01-01

    Xenopus is a powerful model for studying a diverse array of biological processes. However, despite multiple methods for transgenesis, relatively few transgenic reporter lines are available and commonly used. Previous work has demonstrated that transposon based strategies are effective for generating transgenic lines in both invertebrate and vertebrate systems. Here we show that the Tol2 transposon can be remobilized in the genome of X. tropicalis and passed through the germline via a simple breeding strategy of crossing transposase expressing and transposon lines. This remobilization system provides another tool to exploit transgenesis and opens new opportunities for gene trap and enhancer trap strategies.

  18. Behavioral Repertoire of Xenopus tropicalis: Baseline Female-male Interactions during Spawning Events and Male Vocal Communication

    EPA Science Inventory

    The aquatic frog, Xenopus tropicalis, is being developed for use as a model amphibian species for inclusion in the EPA’s Endocrine Disruptor Screening Program. Current toxicity test designs do not incorporate measures of fecundity due to high variability in the responses of frog...

  19. Histone methyltransferase Dot1L plays a role in postembryonic development in Xenopus tropicalis

    PubMed Central

    Wen, Luan; Fu, Liezhen; Guo, Xiaogang; Chen, Yonglong; Shi, Yun-Bo

    2015-01-01

    Histone methylations have been implicated to play important roles in diverse cellular processes. Of particular interest is the methylation of histone H3K79, which is catalyzed by an evolutionarily conserved methyltransferase, disruptor of telomeric silencing (Dot1)-like (Dot1L). To investigate the role of Dot1L during vertebrate development, we have generated a Dot1L-specific transcription activator-like effector nuclease (TALEN) nuclease to knockdown endogenous Dot1L in Xenopus tropicalis, a diploid species highly related to the well-known developmental model Xenopus laevis, a pseudotetraploid amphibian. We show that the TALEN was extremely efficient in mutating Dot1L when expressed in fertilized eggs, creating essentially Dot1L knockout embryos with little H3K79 methylation. Importantly, we observed that Dot1L knockdown had no apparent effect on embryogenesis because normally feeding tadpoles were formed, consistent with the lack of maternal Dot1L expression. On the other hand, Dot1L knockdown severely retarded the growth of the tadpoles and led to tadpole lethality prior to metamorphosis. These findings suggest that Dot1L and H3K79 methylation play an important role for tadpole growth and development prior to metamorphosis into a frog. Our findings further reveal interesting similarities and differences between Xenopus and mouse development and suggest the existence of 2 separate phases of vertebrate development with distinct requirements for epigenetic modifications.—Wen, L., Fu, L., Guo, X., Chen, Y., Shi, Y.-B. Histone methyltransferase Dot1L plays a role in postembryonic development in Xenopus tropicalis. PMID:25366346

  20. Effects of 4-ter-Octylphenol on Xenopus tropicalis in a Long Term Exposure

    DTIC Science & Technology

    2011-03-17

    Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per...subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1 . REPORT DATE 17...STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT We exposed Xenopus tropicalis to 1 , 3.3, 11 and 36 ug/L

  1. Deep ancestry of mammalian X chromosome revealed by comparison with the basal tetrapod Xenopus tropicalis.

    PubMed

    Mácha, Jaroslav; Teichmanová, Radka; Sater, Amy K; Wells, Dan E; Tlapáková, Tereza; Zimmerman, Lyle B; Krylov, Vladimír

    2012-07-16

    The X and Y sex chromosomes are conspicuous features of placental mammal genomes. Mammalian sex chromosomes arose from an ordinary pair of autosomes after the proto-Y acquired a male-determining gene and degenerated due to suppression of X-Y recombination. Analysis of earlier steps in X chromosome evolution has been hampered by the long interval between the origins of teleost and amniote lineages as well as scarcity of X chromosome orthologs in incomplete avian genome assemblies. This study clarifies the genesis and remodelling of the Eutherian X chromosome by using a combination of sequence analysis, meiotic map information, and cytogenetic localization to compare amniote genome organization with that of the amphibian Xenopus tropicalis. Nearly all orthologs of human X genes localize to X. tropicalis chromosomes 2 and 8, consistent with an ancestral X-conserved region and a single X-added region precursor. This finding contradicts a previous hypothesis of three evolutionary strata in this region. Homologies between human, opossum, chicken and frog chromosomes suggest a single X-added region predecessor in therian mammals, corresponding to opossum chromosomes 4 and 7. A more ancient X-added ancestral region, currently extant as a major part of chicken chromosome 1, is likely to have been present in the progenitor of synapsids and sauropsids. Analysis of X chromosome gene content emphasizes conservation of single protein coding genes and the role of tandem arrays in formation of novel genes. Chromosomal regions orthologous to Therian X chromosomes have been located in the genome of the frog X. tropicalis. These X chromosome ancestral components experienced a series of fusion and breakage events to give rise to avian autosomes and mammalian sex chromosomes. The early branching tetrapod X. tropicalis' simple diploid genome and robust synteny to amniotes greatly enhances studies of vertebrate chromosome evolution.

  2. Insertional Mutagenesis for Genes involved in Otic/Vestibular Development and Function in Xenopus Tropicalis

    NASA Technical Reports Server (NTRS)

    Torrejon, Marcela; Li, Erica; Nguyen, Minh; Winfree, Seth; Wang, Esther; Reinsch, Sigrid; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    Sensitivity to gravity is essential for spatial orientation. Consequently, the gravity receptor system is one of the phylogenetically oldest sensory systems, and the special adaptations that enhance sensitivity to gravity are highly conserved. The main goal of this project is to use Xenopus (frog) to identify genes expressed during vestibular and auditory development. These studies will lead a better understanding of the molecular mechanisms involved in vestibular and auditory development and function. We are using a gene-trap approach in Xenopus tropicalis with the green fluorescent protein (GFP) gene as the transgene reporter. GFP expression occurs only when the GFP gene is correctly integrated in actively transcribed genes. Using the GFP as a tag we can easily identify and clone the mutated gene. In addition, we can study the function of the mutated gene by analyzing the defects generated by insertion of the GFP transgene. To date we have tissue specific GFP expression in X. tropicalis including expression in ear, neural tube, kidney, muscle, eyes and nose. Our transgenic animals will soon reach maturity so that we can outcross them and analyze their progeny. Our next goal is to isolate RNA from our transgenics and clone the tagged genes using RACE-PCR. Currently we are optimizing the RACE-PCR method using transgenics with crystallin GFP expression.

  3. Effects of tributyltin (TBT) on Xenopus tropicalis embryos at environmentally relevant concentrations.

    PubMed

    Guo, Suzhen; Qian, Lijuan; Shi, Huahong; Barry, Terence; Cao, Qinzhen; Liu, Junqi

    2010-04-01

    Tributyltin (TBT) has been widely used as a biocide in antifouling paints and is a known endocrine disrupting chemical. In this paper, we exposed embryos of Xenopus tropicalis to 50-400ngL(-1) tributyltin chloride. TBT significantly decreased the survival rate, reduced the body length and retarded the development of embryos after 24, 36 and 48h of exposure. These effects of TBT were concentration- and time-dependent. Embryos treated with TBT showed multiple malformations. The most obvious alterations were abnormal eyes, enlarged proctodaeum, narrow fins, and skin hypopigmentation. Enlarged proctodaeum and narrow fins were mainly observed after 36 and 48h of exposure. The loss of eye pigmentation or the absence of external eyes occurred after 24 and 36h of exposure, while extended lenses or edemas of eyes were more commonly observed after 48h of exposure. Additional malformations included: small anterior region of heads, pericardial edemas, enlarged trunks, and bent tails. These results suggested that TBT is very toxic to X. tropicalis embryos at environmentally relevant concentrations.

  4. Conservation and divergence of ADAM family proteins in the Xenopus genome

    PubMed Central

    2010-01-01

    Background Members of the disintegrin metalloproteinase (ADAM) family play important roles in cellular and developmental processes through their functions as proteases and/or binding partners for other proteins. The amphibian Xenopus has long been used as a model for early vertebrate development, but genome-wide analyses for large gene families were not possible until the recent completion of the X. tropicalis genome sequence and the availability of large scale expression sequence tag (EST) databases. In this study we carried out a systematic analysis of the X. tropicalis genome and uncovered several interesting features of ADAM genes in this species. Results Based on the X. tropicalis genome sequence and EST databases, we identified Xenopus orthologues of mammalian ADAMs and obtained full-length cDNA clones for these genes. The deduced protein sequences, synteny and exon-intron boundaries are conserved between most human and X. tropicalis orthologues. The alternative splicing patterns of certain Xenopus ADAM genes, such as adams 22 and 28, are similar to those of their mammalian orthologues. However, we were unable to identify an orthologue for ADAM7 or 8. The Xenopus orthologue of ADAM15, an active metalloproteinase in mammals, does not contain the conserved zinc-binding motif and is hence considered proteolytically inactive. We also found evidence for gain of ADAM genes in Xenopus as compared to other species. There is a homologue of ADAM10 in Xenopus that is missing in most mammals. Furthermore, a single scaffold of X. tropicalis genome contains four genes encoding ADAM28 homologues, suggesting genome duplication in this region. Conclusions Our genome-wide analysis of ADAM genes in X. tropicalis revealed both conservation and evolutionary divergence of these genes in this amphibian species. On the one hand, all ADAMs implicated in normal development and health in other species are conserved in X. tropicalis. On the other hand, some ADAM genes and ADAM protease

  5. Cytological and Morphological Analyses Reveal Distinct Features of Intestinal Development during Xenopus tropicalis Metamorphosis

    PubMed Central

    Matsuura, Kazuo; Shi, Yun-Bo

    2012-01-01

    Background The formation and/or maturation of adult organs in vertebrates often takes place during postembryonic development, a period around birth in mammals when thyroid hormone (T3) levels are high. The T3-dependent anuran metamorphosis serves as a model to study postembryonic development. Studies on the remodeling of the intestine during Xenopus (X.) laevis metamorphosis have shown that the development of the adult intestine involves de novo formation of adult stem cells in a process controlled by T3. On the other hand, X. tropicalis, highly related to X. laevis, offers a number of advantages for studying developmental mechanisms, especially at genome-wide level, over X. laevis, largely due to its shorter life cycle and sequenced genome. To establish X. tropicalis intestinal metamorphosis as a model for adult organogenesis, we analyzed the morphological and cytological changes in X. tropicalis intestine during metamorphosis. Methodology/Principal Findings We observed that in X. tropicalis, the premetamorphic intestine was made of mainly a monolayer of larval epithelial cells surrounded by little connective tissue except in the single epithelial fold, the typhlosole. During metamorphosis, the larval epithelium degenerates and adult epithelium develops to form a multi-folded structure with elaborate connective tissue and muscles. Interestingly, typhlosole, which is likely critical for adult epithelial development, is present along the entire length of the small intestine in premetamorphic tadpoles, in contrast to X. laevis, where it is present only in the anterior 1/3. T3-treatment induces intestinal remodeling, including the shortening of the intestine and the typhlosole, just like in X. laevis. Conclusions/Significance Our observations indicate that the intestine undergoes similar metamorphic changes in X. laevis and X. tropicalis, making it possible to use the large amount of information available on X. laevis intestinal metamorphosis and the genome sequence

  6. Expression profiles of the Gα subunits during Xenopus tropicalis embryonic development.

    PubMed

    Fuentealba, Jaime; Toro-Tapia, Gabriela; Rodriguez, Marion; Arriagada, Cecilia; Maureira, Alejandro; Beyer, Andrea; Villaseca, Soraya; Leal, Juan I; Hinrichs, Maria V; Olate, Juan; Caprile, Teresa; Torrejón, Marcela

    2016-09-01

    Heterotrimeric G protein signaling plays major roles during different cellular events. However, there is a limited understanding of the molecular mechanisms underlying G protein control during embryogenesis. G proteins are highly conserved and can be grouped into four subfamilies according to sequence homology and function. To further studies on G protein function during embryogenesis, the present analysis identified four Gα subunits representative of the different subfamilies and determined their spatiotemporal expression patterns during Xenopus tropicalis embryogenesis. Each of the Gα subunit transcripts was maternally and zygotically expressed, and, as development progressed, dynamic expression patterns were observed. In the early developmental stages, the Gα subunits were expressed in the animal hemisphere and dorsal marginal zone. While expression was observed at the somite boundaries, in vascular structures, in the eye, and in the otic vesicle during the later stages, expression was mainly found in neural tissues, such as the neural tube and, especially, in the cephalic vesicles, neural crest region, and neural crest-derived structures. Together, these results support the pleiotropism and complexity of G protein subfamily functions in different cellular events. The present study constitutes the most comprehensive description to date of the spatiotemporal expression patterns of Gα subunits during vertebrate development. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Deep ancestry of mammalian X chromosome revealed by comparison with the basal tetrapod Xenopus tropicalis

    PubMed Central

    2012-01-01

    Background The X and Y sex chromosomes are conspicuous features of placental mammal genomes. Mammalian sex chromosomes arose from an ordinary pair of autosomes after the proto-Y acquired a male-determining gene and degenerated due to suppression of X-Y recombination. Analysis of earlier steps in X chromosome evolution has been hampered by the long interval between the origins of teleost and amniote lineages as well as scarcity of X chromosome orthologs in incomplete avian genome assemblies. Results This study clarifies the genesis and remodelling of the Eutherian X chromosome by using a combination of sequence analysis, meiotic map information, and cytogenetic localization to compare amniote genome organization with that of the amphibian Xenopus tropicalis. Nearly all orthologs of human X genes localize to X. tropicalis chromosomes 2 and 8, consistent with an ancestral X-conserved region and a single X-added region precursor. This finding contradicts a previous hypothesis of three evolutionary strata in this region. Homologies between human, opossum, chicken and frog chromosomes suggest a single X-added region predecessor in therian mammals, corresponding to opossum chromosomes 4 and 7. A more ancient X-added ancestral region, currently extant as a major part of chicken chromosome 1, is likely to have been present in the progenitor of synapsids and sauropsids. Analysis of X chromosome gene content emphasizes conservation of single protein coding genes and the role of tandem arrays in formation of novel genes. Conclusions Chromosomal regions orthologous to Therian X chromosomes have been located in the genome of the frog X. tropicalis. These X chromosome ancestral components experienced a series of fusion and breakage events to give rise to avian autosomes and mammalian sex chromosomes. The early branching tetrapod X. tropicalis’ simple diploid genome and robust synteny to amniotes greatly enhances studies of vertebrate chromosome evolution. PMID:22800176

  8. Expression of ribosomopathy genes during Xenopus tropicalis embryogenesis.

    PubMed

    Robson, Andrew; Owens, Nick D L; Baserga, Susan J; Khokha, Mustafa K; Griffin, John N

    2016-10-26

    Because ribosomes are ubiquitously required for protein production, it was long assumed that any inherited defect in ribosome manufacture would be embryonically lethal. However, several human congenital diseases have been found to be associated with mutations in ribosome biogenesis factors. Surprisingly, despite the global requirement for ribosomes, these "ribosomopathies" are characterized by distinct and tissue specific phenotypes. The reasons for such tissue proclivity in ribosomopathies remain mysterious but may include differential expression of ribosome biogenesis factors in distinct tissues. Here we use in situ hybridization of labeled antisense mRNA probes and ultra high temporal resolution RNA-Seq data to examine and compare expression of 13 disease associated ribosome biogenesis factors at six key stages in Xenopus tropicalis development. Rather than being ubiquitously expressed during development, mRNAs of all examined ribosome biogenesis factors were highly enriched in specific tissues, including the cranial neural crest and ventral blood islands. Interestingly, expression of ribosome biogenesis factors demonstrates clear differences in timing, transcript number and tissue localization. Ribosome biogenesis factor expression is more spatiotemporally regulated during embryonic development than previously expected and correlates closely with many of the common ribosomopathy phenotypes. Our findings provide information on the dynamic use of ribosome production machinery components during development and advance our understanding of their roles in disease.

  9. Inbreeding Ratio and Genetic Relationships among Strains of the Western Clawed Frog, Xenopus tropicalis

    PubMed Central

    Igawa, Takeshi; Watanabe, Ai; Suzuki, Atsushi; Kashiwagi, Akihiko; Kashiwagi, Keiko; Noble, Anna; Guille, Matt; Simpson, David E.; Horb, Marko E.; Fujii, Tamotsu; Sumida, Masayuki

    2015-01-01

    The Western clawed frog, Xenopus tropicalis, is a highly promising model amphibian, especially in developmental and physiological research, and as a tool for understanding disease. It was originally found in the West African rainforest belt, and was introduced to the research community in the 1990s. The major strains thus far known include the Nigerian and Ivory Coast strains. However, due to its short history as an experimental animal, the genetic relationship among the various strains has not yet been clarified, and establishment of inbred strains has not yet been achieved. Since 2003 the Institute for Amphibian Biology (IAB), Hiroshima University has maintained stocks of multiple X. tropicalis strains and conducted consecutive breeding as part of the National BioResource Project. In the present study we investigated the inbreeding ratio and genetic relationship of four inbred strains at IAB, as well as stocks from other institutions, using highly polymorphic microsatellite markers and mitochondrial haplotypes. Our results show successive reduction of heterozygosity in the genome of the IAB inbred strains. The Ivory Coast strains clearly differed from the Nigerian strains genetically, and three subgroups were identified within both the Nigerian and Ivory Coast strains. It is noteworthy that the Ivory Coast strains have an evolutionary divergent genetic background. Our results serve as a guide for the most effective use of X. tropicalis strains, and the long-term maintenance of multiple strains will contribute to further research efforts. PMID:26222540

  10. Anxa4 Genes are Expressed in Distinct Organ Systems in Xenopus laevis and tropicalis But are Functionally Conserved

    PubMed Central

    Massé, Karine L; Collins, Robert J; Bhamra, Surinder; Seville, Rachel A

    2007-01-01

    Anxa4 belongs to the multigenic annexin family of proteins which are characterized by their ability to interact with membranes in a calcium-dependent manner. Defined as a marker for polarized epithelial cells, Anxa4 is believed to be involved in many cellular processes but its functions in vivo are still poorly understood. Previously, we cloned Xanx4 in Xenopus laevis (now referred to as anxa4a) and demonstrated its role during organogenesis of the pronephros, providing the first evidence of a specific function for this protein during the development of a vertebrate. Here, we describe the strict conservation of protein sequence and functional domains of anxa4 during vertebrate evolution. We also identify the paralog of anxa4a, anxa4b and show its specific temporal and spatial expression pattern is different from anxa4a. We show that anxa4 orthologs in X. laevis and tropicalis display expression domains in different organ systems. Whilst the anxa4a gene is mainly expressed in the kidney, Xt anxa4 is expressed in the liver. Finally, we demonstrate Xt anxa4 and anxa4a can display conserved function during kidney organogenesis, despite the fact that Xt anxa4 transcripts are not expressed in this domain. This study highlights the divergence of expression of homologous genes during Xenopus evolution and raises the potential problems of using X. tropicalis promoters in X. laevis. PMID:19279706

  11. Histological observation on unique phenotypes of malformation induced in Xenopus tropicalis larvae by tributyltin.

    PubMed

    Liu, Junqi; Cao, Qinzhen; Yuan, Jing; Zhang, Xiaoli; Yu, Lin; Shi, Huahong

    2012-01-01

    Tributyltin (TBT), a biocide used in antifouling paints, has shown strong teratogenic effects on Xenopus tropicalis embryos at environmentally relevant concentrations. X. tropicalis embryos were exposed to 50, 100 and 200 ng/L tributyltin chloride for 72 hr. The histological changes were further observed on abnormal eyes, enlarged trunks, enlarged proctodaeums and absence of fins induced by TBT. The lens and the retinal layers of abnormal eyes were slightly or barely differentiated, and that the pigment epithelium was neither continuous nor smooth. The abdomens were full of undifferentiated gut tissue with yolk-rich inclusions in the tadpoles with enlarged trunks. The proctodaeums formed a bump-like or columnar structure. The mass of yolk-rich cells occupied the lumen, blocked the opening and even turned inside out of the proctodaeum. Both the ventral and dorsal fins in trunks and tails became narrow or even disappeared totally. Our results suggest that great changes of histology took place corresponding to the unique phenotypes. The gut tissue was poorly differentiated, which led to the failed elongation of the guts and subsequently the enlarged trunks. The enlarged proctodaeums were due to the undifferentiation of inner layer, the expansion of outer epidermal part and the absence of fins around them. In brief, the histological observations provided insights into the reason of the unique external malformations in some degree.

  12. Molecular Cloning and Functional Characterization of Xenopus tropicalis Frog Transient Receptor Potential Vanilloid 1 Reveal Its Functional Evolution for Heat, Acid, and Capsaicin Sensitivities in Terrestrial Vertebrates*

    PubMed Central

    Ohkita, Masashi; Saito, Shigeru; Imagawa, Toshiaki; Takahashi, Kenji; Tominaga, Makoto; Ohta, Toshio

    2012-01-01

    The functional difference of thermosensitive transient receptor potential (TRP) channels in the evolutionary context has attracted attention, but thus far little information is available on the TRP vanilloid 1 (TRPV1) function of amphibians, which diverged earliest from terrestrial vertebrate lineages. In this study we cloned Xenopus tropicalis frog TRPV1 (xtTRPV1), and functional characterization was performed using HeLa cells heterologously expressing xtTRPV1 (xtTRPV1-HeLa) and dorsal root ganglion neurons isolated from X. tropicalis (xtDRG neurons) by measuring changes in the intracellular calcium concentration ([Ca2+]i). The channel activity was also observed in xtTRPV1-expressing Xenopus oocytes. Furthermore, we tested capsaicin- and heat-induced nocifensive behaviors of the frog X. tropicalis in vivo. At the amino acid level, xtTRPV1 displays ∼60% sequence identity to other terrestrial vertebrate TRPV1 orthologues. Capsaicin induced [Ca2+]i increases in xtTRPV1-HeLa and xtDRG neurons and evoked nocifensive behavior in X. tropicalis. However, its sensitivity was extremely low compared with mammalian orthologues. Low extracellular pH and heat activated xtTRPV1-HeLa and xtDRG neurons. Heat also evoked nocifensive behavior. In oocytes expressing xtTRPV1, inward currents were elicited by heat and low extracellular pH. Mutagenesis analysis revealed that two amino acids (tyrosine 523 and alanine 561) were responsible for the low sensitivity to capsaicin. Taken together, our results indicate that xtTRPV1 functions as a polymodal receptor similar to its mammalian orthologues. The present study demonstrates that TRPV1 functions as a heat- and acid-sensitive channel in the ancestor of terrestrial vertebrates. Because it is possible to examine vanilloid and heat sensitivities in vitro and in vivo, X. tropicalis could be the ideal experimental lower vertebrate animal for the study of TRPV1 function. PMID:22130664

  13. Unexpected metabolic disorders induced by endocrine disruptors in Xenopus tropicalis provide new lead for understanding amphibian decline.

    PubMed

    Regnault, Christophe; Usal, Marie; Veyrenc, Sylvie; Couturier, Karine; Batandier, Cécile; Bulteau, Anne-Laure; Lejon, David; Sapin, Alexandre; Combourieu, Bruno; Chetiveaux, Maud; Le May, Cédric; Lafond, Thomas; Raveton, Muriel; Reynaud, Stéphane

    2018-05-08

    Despite numerous studies suggesting that amphibians are highly sensitive to endocrine disruptors (EDs), both their role in the decline of populations and the underlying mechanisms remain unclear. This study showed that frogs exposed throughout their life cycle to ED concentrations low enough to be considered safe for drinking water, developed a prediabetes phenotype and, more commonly, a metabolic syndrome. Female Xenopus tropicalis exposed from tadpole stage to benzo( a )pyrene or triclosan at concentrations of 50 ng⋅L -1 displayed glucose intolerance syndrome, liver steatosis, liver mitochondrial dysfunction, liver transcriptomic signature, and pancreatic insulin hypersecretion, all typical of a prediabetes state. This metabolic syndrome led to progeny whose metamorphosis was delayed and occurred while the individuals were both smaller and lighter, all factors that have been linked to reduced adult recruitment and likelihood of reproduction. We found that F 1 animals did indeed have reduced reproductive success, demonstrating a lower fitness in ED-exposed Xenopus Moreover, after 1 year of depuration, Xenopus that had been exposed to benzo( a )pyrene still displayed hepatic disorders and a marked insulin secretory defect resulting in glucose intolerance. Our results demonstrate that amphibians are highly sensitive to EDs at concentrations well below the thresholds reported to induce stress in other vertebrates. This study introduces EDs as a possible key contributing factor to amphibian population decline through metabolism disruption. Overall, our results show that EDs cause metabolic disorders, which is in agreement with epidemiological studies suggesting that environmental EDs might be one of the principal causes of metabolic disease in humans.

  14. ZWY Sex Determination in Xenopus tropicalis

    EPA Science Inventory

    Most vertebrate species with described genetic sex determination are either male (XY) or female (ZW) heterogametic. To date, studies with Xenopus species indicate that members of this genus operate under a ZW sex determination system. We used two different approaches and demonst...

  15. Roles of ADAM13-regulated Wnt activity in early Xenopus eye development

    PubMed Central

    Wei, Shuo; Xu, Guofeng; Bridges, Lance C.; Williams, Phoebe; Nakayama, Takuya; Shah, Anoop; Grainger, Robert M.; White, Judith M.; DeSimone, Douglas W.

    2012-01-01

    Pericellular proteolysis by ADAM family metalloproteinases has been widely implicated in cell signaling and development. We recently found that Xenopus ADAM13, an ADAM metalloproteinase, is required for activation of canonical Wnt signaling during cranial neural crest (CNC) induction by regulating a novel crosstalk between Wnt and ephrin B (EfnB) signaling pathways (Wei et al., 2010b). In the present study we show that the metalloproteinase activity of ADAM13 also plays important roles in eye development in X. tropicalis. Knockdown of ADAM13 results in reduced expression of eye field markers pax6 and rx1, as well as that of the pan-neural marker sox2. Activation of canonical Wnt signaling or inhibition of forward EfnB signaling rescues the eye defects caused by loss of ADAM13, suggesting that ADAM13 functions through regulation of the EfnB-Wnt pathway interaction. Downstream of Wnt, the head inducer Cerberus was identified as an effector that mediates ADAM13 function in early eye field formation. Furthermore, ectopic expression of the Wnt target gene snail2 restores cerberus expression and rescues the eye defects caused by ADAM13 knockdown. Together these data suggest an important role of ADAM13-regulated Wnt activity in eye development in Xenopus. PMID:22227340

  16. no privacy, a Xenopus tropicalis mutant, is a model of human Hermansky-Pudlak Syndrome and allows visualization of internal organogenesis during tadpole development.

    PubMed

    Nakayama, Takuya; Nakajima, Keisuke; Cox, Amanda; Fisher, Marilyn; Howell, Mary; Fish, Margaret B; Yaoita, Yoshio; Grainger, Robert M

    2017-06-15

    We describe a novel recessive and nonlethal pigmentation mutant in Xenopus tropicalis. The mutant phenotype can be initially observed in tadpoles after stage 39/40, when mutant embryos display markedly reduced pigmentation in the retina and the trunk. By tadpole stage 50 almost all pigmented melanophores have disappeared. Most interestingly, those embryos fail entirely to make pigmented iridophores. The combined reduction/absence of both pigmented iridophores and melanophores renders these embryos virtually transparent, permitting one to easily observe both the developing internal organs and nervous system; accordingly, we named this mutant no privacy (nop). We identified the causative genetic lesion as occurring in the Xenopus homolog of the human Hermansky-Pudlak Syndrome 6 (HPS6) gene, combining several approaches that utilized conventional gene mapping and classical and modern genetic tools available in Xenopus (gynogenesis, BAC transgenesis and TALEN-mediated mutagenesis). The nop allele contains a 10-base deletion that results in truncation of the Hps6 protein. In humans, HPS6 is one of the genes responsible for the congenital disease HPS, pathological symptoms of which include oculocutaneous albinism caused by defects in lysosome-related organelles required for pigment formation. Markers for melanin-producing neural crest cells show that the cells that would give rise to melanocytes are present in nop, though unpigmented. Abnormalities develop at tadpole stages in the pigmented retina when overall pigmentation becomes reduced and large multi-melanosomes are first formed. Ear development is also affected in nop embryos when both zygotic and maternal hsp6 is mutated: otoliths are often reduced or abnormal in morphology, as seen in some mouse HPS mutations, but to our knowledge not described in the BLOC-2 subset of HPS mutations nor described in non-mammalian systems previously. The transparency of the nop line suggests that these animals will aid studies of

  17. Evolution of Heat Sensors Drove Shifts in Thermosensation between Xenopus Species Adapted to Different Thermal Niches*

    PubMed Central

    Saito, Shigeru; Ohkita, Masashi; Saito, Claire T.; Takahashi, Kenji; Tominaga, Makoto; Ohta, Toshio

    2016-01-01

    Temperature is one of the most critical environmental factors affecting survival, and thus species that inhabit different thermal niches have evolved thermal sensitivities suitable for their respective habitats. During the process of shifting thermal niches, various types of genes expressed in diverse tissues, including those of the peripheral to central nervous systems, are potentially involved in the evolutionary changes in thermosensation. To elucidate the molecular mechanisms behind the evolution of thermosensation, thermal responses were compared between two species of clawed frogs (Xenopus laevis and Xenopus tropicalis) adapted to different thermal environments. X. laevis was much more sensitive to heat stimulation than X. tropicalis at the behavioral and neural levels. The activity and sensitivity of the heat-sensing TRPA1 channel were higher in X. laevis compared with those of X. tropicalis. The thermal responses of another heat-sensing channel, TRPV1, also differed between the two Xenopus species. The species differences in Xenopus TRPV1 heat responses were largely determined by three amino acid substitutions located in the first three ankyrin repeat domains, known to be involved in the regulation of rat TRPV1 activity. In addition, Xenopus TRPV1 exhibited drastic species differences in sensitivity to capsaicin, contained in chili peppers, between the two Xenopus species. Another single amino acid substitution within Xenopus TRPV1 is responsible for this species difference, which likely alters the neural and behavioral responses to capsaicin. These combined subtle amino acid substitutions in peripheral thermal sensors potentially serve as a driving force for the evolution of thermal and chemical sensation. PMID:27022021

  18. Xenopus microRNA genes are predominantly located within introns and are differentially expressed in adult frog tissues via post-transcriptional regulation

    PubMed Central

    Tang, Guo-Qing; Maxwell, E. Stuart

    2008-01-01

    The amphibian Xenopus provides a model organism for investigating microRNA expression during vertebrate embryogenesis and development. Searching available Xenopus genome databases using known human pre-miRNAs as query sequences, more than 300 genes encoding 142 Xenopus tropicalis miRNAs were identified. Analysis of Xenopus tropicalis miRNA genes revealed a predominate positioning within introns of protein-coding and nonprotein-coding RNA Pol II-transcribed genes. MiRNA genes were also located in pre-mRNA exons and positioned intergenically between known protein-coding genes. Many miRNA species were found in multiple locations and in more than one genomic context. MiRNA genes were also clustered throughout the genome, indicating the potential for the cotranscription and coordinate expression of miRNAs located in a given cluster. Northern blot analysis confirmed the expression of many identified miRNAs in both X. tropicalis and X. laevis. Comparison of X. tropicalis and X. laevis blots revealed comparable expression profiles, although several miRNAs exhibited species-specific expression in different tissues. More detailed analysis revealed that for some miRNAs, the tissue-specific expression profile of the pri-miRNA precursor was distinctly different from that of the mature miRNA profile. Differential miRNA precursor processing in both the nucleus and cytoplasm was implicated in the observed tissue-specific differences. These observations indicated that post-transcriptional processing plays an important role in regulating miRNA expression in the amphibian Xenopus. PMID:18032731

  19. Thyroid Hormone Receptor α- and β-Knockout Xenopus tropicalis Tadpoles Reveal Subtype-Specific Roles During Development.

    PubMed

    Nakajima, Keisuke; Tazawa, Ichiro; Yaoita, Yoshio

    2018-02-01

    Thyroid hormone (TH) binds TH receptor α (TRα) and β (TRβ) to induce amphibian metamorphosis. Whereas TH signaling has been well studied, functional differences between TRα and TRβ during this process have not been characterized. To understand how each TR contributes to metamorphosis, we generated TRα- and TRβ-knockout tadpoles of Xenopus tropicalis and examined developmental abnormalities, histology of the tail and intestine, and messenger RNA expression of genes encoding extracellular matrix-degrading enzymes. In TRβ-knockout tadpoles, tail regression was delayed significantly and a healthy notochord was observed even 5 days after the initiation of tail shortening (stage 62), whereas in the tails of wild-type and TRα-knockout tadpoles, the notochord disappeared after ∼1 day. The messenger RNA expression levels of genes encoding extracellular matrix-degrading enzymes (MMP2, MMP9TH, MMP13, MMP14, and FAPα) were obviously reduced in the tail tip of TRβ-knockout tadpoles, with the shortening tail. The reduction in olfactory nerve length and head narrowing by gill absorption were also affected. Hind limb growth and intestinal shortening were not compromised in TRβ-knockout tadpoles, whereas tail regression and olfactory nerve shortening appeared to proceed normally in TRα-knockout tadpoles, except for the precocious development of hind limbs. Our results demonstrated the distinct roles of TRα and TRβ in hind limb growth and tail regression, respectively. Copyright © 2018 Endocrine Society.

  20. Accelerated Gene Evolution and Subfunctionalization in thePseudotetraploid Frog Xenopus Laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellsten, Uffe; Khokha, Mustafa K.; Grammar, Timothy C.

    2007-03-01

    Ancient whole genome duplications have been implicated in the vertebrate and teleost radiations, and in the emergence of diverse angiosperm lineages, but the evolutionary response to such a perturbation is still poorly understood. The African clawed frog Xenopus laevis experienced a relatively recent tetraploidization {approx} 40 million years ago. Analysis of the considerable amount of EST sequence available for this species together with the genome sequence of the related diploid Xenopus tropicalis provides a unique opportunity to study the genomic response to whole genome duplication.

  1. Genome-Wide Identification and Expression of Xenopus F-Box Family of Proteins.

    PubMed

    Saritas-Yildirim, Banu; Pliner, Hannah A; Ochoa, Angelica; Silva, Elena M

    2015-01-01

    Protein degradation via the multistep ubiquitin/26S proteasome pathway is a rapid way to alter the protein profile and drive cell processes and developmental changes. Many key regulators of embryonic development are targeted for degradation by E3 ubiquitin ligases. The most studied family of E3 ubiquitin ligases is the SCF ubiquitin ligases, which use F-box adaptor proteins to recognize and recruit target proteins. Here, we used a bioinformatics screen and phylogenetic analysis to identify and annotate the family of F-box proteins in the Xenopus tropicalis genome. To shed light on the function of the F-box proteins, we analyzed expression of F-box genes during early stages of Xenopus development. Many F-box genes are broadly expressed with expression domains localized to diverse tissues including brain, spinal cord, eye, neural crest derivatives, somites, kidneys, and heart. All together, our genome-wide identification and expression profiling of the Xenopus F-box family of proteins provide a foundation for future research aimed to identify the precise role of F-box dependent E3 ubiquitin ligases and their targets in the regulatory circuits of development.

  2. Utilizing mass spectrometry imaging to map the thyroid hormones triiodothyronine and thyroxine in Xenopus tropicalis tadpoles.

    PubMed

    Goto-Inoue, Naoko; Sato, Tomohiko; Morisasa, Mizuki; Kashiwagi, Akihiko; Kashiwagi, Keiko; Sugiura, Yuki; Sugiyama, Eiji; Suematsu, Makoto; Mori, Tsukasa

    2018-02-01

    Thyroid hormones are not only responsible for thermogenesis and energy metabolism in animals, but also have an important role in cell differentiation and development. Amphibian metamorphosis provides an excellent model for studying the remodeling of the body. This metamorphic organ remodeling is induced by thyroid hormones, and a larval body is thus converted into an adult one. The matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS) imaging technology is expected to be a suitable tool for investigating small bioreactive molecules. The present study describes the distribution of the thyroid hormones, i.e., triiodothyronine (T3) and thyroxine (T4) and their inactive form reverse T3 (rT3) in Xenopus tropicalis tadpoles using two different types of imaging techniques, MS/MS and Fourier transform (FT)-MS imaging. As a result of MS/MS imaging, we demonstrated that T3 was mainly distributed in the gills. T4 was faintly localized in the eyes, inner gills, and intestine during metamorphosis. The intensity of T3 in the gills and the intensity of T4 in the body fluids were increased during metamorphosis. Moreover, the localization of the inactive form rT3 was demonstrated to be separate from T3, namely in the intestine and muscles. In addition, FT-MS imaging could utilize simultaneous imaging including thyroid hormone. This is the first report to demonstrate the molecular distribution of thyroid hormones themselves and to discriminate T3, T4, and rT3 in animal tissues.

  3. New CYP1 genes in the frog Xenopus (Silurana) tropicalis: Induction patterns and effects of AHR agonists during development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joensson, Maria E., E-mail: maria.jonsson@ebc.uu.se; Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543; Berg, Cecilia

    2011-01-15

    The Xenopus tropicalis genome shows a single gene in each of the four cytochrome P450 1 (CYP1) subfamilies that occur in vertebrates, designated as CYP1A, CYP1B1, CYP1C1, and CYP1D1. We cloned the cDNAs of these genes and examined their expression in untreated tadpoles and in tadpoles exposed to waterborne aryl hydrocarbon receptor agonists, 3,3',4,4',5-pentachlorobiphenyl (PCB126), {beta}-naphthoflavone ({beta}NF), or indigo. We also examined the effects of PCB126 on expression of genes involved in stress response, cell proliferation, thyroid homeostasis, and prostaglandin synthesis. PCB126 induced CYP1A, CYP1B1, and CYP1C1 but had little effect on CYP1D1 (77-, 1.7-, 4.6- and 1.4-fold induction versusmore » the control, respectively). {beta}NF induced CYP1A and CYP1C1 (26- and 2.5-fold), while, under conditions used, indigo tended to induce only CYP1A (1.9-fold). The extent of CYP1 induction by PCB126 and {beta}NF was positively correlated to the number of putative dioxin response elements 0-20 kb upstream of the start codons. No morphological effect was observed in tadpoles exposed to 1 nM-10 {mu}M PCB126 at two days post-fertilization (dpf) and screened 20 days later. However, in 14-dpf tadpoles a slight up-regulation of the genes for PCNA, transthyretin, HSC70, Cu-Zn SOD, and Cox-2 was observed two days after exposure to 1 {mu}M PCB126. This study of the full suite of CYP1 genes in an amphibian species reveals gene- and AHR agonist-specific differences in response, as well as a much lower sensitivity to CYP1 induction and short-term toxicity by PCB126 compared with in fish larvae. The single genes in each CYP1 subfamily may make X. tropicalis a useful model for mechanistic studies of CYP1 functions.« less

  4. Genetics, Morphology, Advertisement Calls, and Historical Records Distinguish Six New Polyploid Species of African Clawed Frog (Xenopus, Pipidae) from West and Central Africa

    PubMed Central

    Evans, Ben J.; Carter, Timothy F.; Greenbaum, Eli; Gvoždík, Václav; Kelley, Darcy B.; McLaughlin, Patrick J.; Pauwels, Olivier S. G.; Portik, Daniel M.; Stanley, Edward L.; Tinsley, Richard C.; Tobias, Martha L.; Blackburn, David C.

    2015-01-01

    African clawed frogs, genus Xenopus, are extraordinary among vertebrates in the diversity of their polyploid species and the high number of independent polyploidization events that occurred during their diversification. Here we update current understanding of the evolutionary history of this group and describe six new species from west and central sub-Saharan Africa, including four tetraploids and two dodecaploids. We provide information on molecular variation, morphology, karyotypes, vocalizations, and estimated geographic ranges, which support the distinctiveness of these new species. We resurrect Xenopus calcaratus from synonymy of Xenopus tropicalis and refer populations from Bioko Island and coastal Cameroon (near Mt. Cameroon) to this species. To facilitate comparisons to the new species, we also provide comments on the type specimens, morphology, and distributions of X. epitropicalis, X. tropicalis, and X. fraseri. This includes significantly restricted application of the names X. fraseri and X. epitropicalis, the first of which we argue is known definitively only from type specimens and possibly one other specimen. Inferring the evolutionary histories of these new species allows refinement of species groups within Xenopus and leads to our recognition of two subgenera (Xenopus and Silurana) and three species groups within the subgenus Xenopus (amieti, laevis, and muelleri species groups). PMID:26672747

  5. Confocal Imaging of Early Heart Development in Xenopus laevis

    PubMed Central

    Kolker, Sandra J.; Tajchman, Urszula; Weeks, Daniel L.

    2013-01-01

    Xenopus laevis provides a number of advantages for studies on cardiovascular development. The embryos are fairly large, easy to obtain, and can develop at ambient temperature in simple buffer solutions. Although classic descriptions of heart development exist, the ability to use whole mount immunohistochemical methods and confocal microscopy may enhance the ability to understand both normal and experimentally perturbed cardiovascular development. We have started to examine the early stages of cardiac development in Xenopus, seeking to identify antibodies and fixatives that allow easy examination of the developing heart. We have used monoclonal antibodies (mAbs) raised against bovine cardiac troponin T and chicken tropomyosin to visualize cardiac muscle, a goat antibody recognizing bovine type VI collagen to stain the lining of vessels, and the JB3 mAb raised against chicken fibrillin which allows the visualization of a variety of cardiovascular tissues during early development. Results from embryonic stages 24–46 are presented. PMID:10644411

  6. A Large Pseudoautosomal Region on the Sex Chromosomes of the Frog Silurana tropicalis

    PubMed Central

    Bewick, Adam J.; Chain, Frédéric J.J.; Zimmerman, Lyle B.; Sesay, Abdul; Gilchrist, Michael J.; Owens, Nick D.L.; Seifertova, Eva; Krylov, Vladimir; Macha, Jaroslav; Tlapakova, Tereza; Kubickova, Svatava; Cernohorska, Halina; Zarsky, Vojtech; Evans, Ben J.

    2013-01-01

    Sex chromosome divergence has been documented across phylogenetically diverse species, with amphibians typically having cytologically nondiverged (“homomorphic”) sex chromosomes. With an aim of further characterizing sex chromosome divergence of an amphibian, we used “RAD-tags” and Sanger sequencing to examine sex specificity and heterozygosity in the Western clawed frog Silurana tropicalis (also known as Xenopus tropicalis). Our findings based on approximately 20 million genotype calls and approximately 200 polymerase chain reaction-amplified regions across multiple male and female genomes failed to identify a substantially sized genomic region with genotypic hallmarks of sex chromosome divergence, including in regions known to be tightly linked to the sex-determining region. We also found that expression and molecular evolution of genes linked to the sex-determining region did not differ substantially from genes in other parts of the genome. This suggests that the pseudoautosomal region, where recombination occurs, comprises a large portion of the sex chromosomes of S. tropicalis. These results may in part explain why African clawed frogs have such a high incidence of polyploidization, shed light on why amphibians have a high rate of sex chromosome turnover, and raise questions about why homomorphic sex chromosomes are so prevalent in amphibians. PMID:23666865

  7. Gene expression and localization of two types of AQP5 in Xenopus tropicalis under hydration and dehydration.

    PubMed

    Shibata, Yuki; Sano, Takahiro; Tsuchiya, Nobuhito; Okada, Reiko; Mochida, Hiroshi; Tanaka, Shigeyasu; Suzuki, Masakazu

    2014-07-01

    Two types of aquaporin 5 (AQP5) genes (aqp-xt5a and aqp-xt5b) were identified in the genome of Xenopus tropicalis by synteny comparison and molecular phylogenetic analysis. When the frogs were in water, AQP-xt5a mRNA was expressed in the skin and urinary bladder. The expression of AQP-xt5a mRNA was significantly increased in dehydrated frogs. AQP-xt5b mRNA was also detected in the skin and increased in response to dehydration. Additionally, AQP-xt5b mRNA began to be slightly expressed in the lung and stomach after dehydration. For the pelvic skin of hydrated frogs, immunofluorescence staining localized AQP-xt5a and AQP-xt5b to the cytoplasm of secretory cells of the granular glands and the apical plasma membrane of secretory cells of the small granular glands, respectively. After dehydration, the locations of both AQPs in their respective glands did not change, but AQP-xt5a was visualized in the cytoplasm of secretory cells of the small granular glands. For the urinary bladder, AQP-xt5a was observed in the apical plasma membrane and cytoplasm of a number of granular cells under normal hydration. After dehydration, AQP-xt5a was found in the apical membrane and cytoplasm of most granular cells. Injection of vasotocin into hydrated frogs did not induce these changes in the localization of AQP-xt5a in the small granular glands and urinary bladder, however. The results suggest that AQP-xt5a might be involved in water reabsorption from the urinary bladder during dehydration, whereas AQP-xt5b might play a role in water secretion from the small granular gland. Copyright © 2014 the American Physiological Society.

  8. Clustered Xenopus keratin genes: A genomic, transcriptomic, and proteomic analysis.

    PubMed

    Suzuki, Ken-Ichi T; Suzuki, Miyuki; Shigeta, Mitsuki; Fortriede, Joshua D; Takahashi, Shuji; Mawaribuchi, Shuuji; Yamamoto, Takashi; Taira, Masanori; Fukui, Akimasa

    2017-06-15

    Keratin genes belong to the intermediate filament superfamily and their expression is altered following morphological and physiological changes in vertebrate epithelial cells. Keratin genes are divided into two groups, type I and II, and are clustered on vertebrate genomes, including those of Xenopus species. Various keratin genes have been identified and characterized by their unique expression patterns throughout ontogeny in Xenopus laevis; however, compilation of previously reported and newly identified keratin genes in two Xenopus species is required for our further understanding of keratin gene evolution, not only in amphibians but also in all terrestrial vertebrates. In this study, 120 putative type I and II keratin genes in total were identified based on the genome data from two Xenopus species. We revealed that most of these genes are highly clustered on two homeologous chromosomes, XLA9_10 and XLA2 in X. laevis, and XTR10 and XTR2 in X. tropicalis, which are orthologous to those of human, showing conserved synteny among tetrapods. RNA-Seq data from various embryonic stages and adult tissues highlighted the unique expression profiles of orthologous and homeologous keratin genes in developmental stage- and tissue-specific manners. Moreover, we identified dozens of epidermal keratin proteins from the whole embryo, larval skin, tail, and adult skin using shotgun proteomics. In light of our results, we discuss the radiation, diversification, and unique expression of the clustered keratin genes, which are closely related to epidermal development and terrestrial adaptation during amphibian evolution, including Xenopus speciation. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. XBtg2 is required for notochord differentiation during early Xenopus development.

    PubMed

    Sugimoto, Kaoru; Hayata, Tadayoshi; Asashima, Makoto

    2005-09-01

    The notochord is essential for normal vertebrate development, serving as both a structural support for the embryo and a signaling source for the patterning of adjacent tissues. Previous studies on the notochord have mostly focused on its formation and function in early organogenesis but gene regulation in the differentiation of notochord cells itself remains poorly defined. In the course of screening for genes expressed in developing notochord, we have isolated Xenopus homolog of Btg2 (XBtg2). The mammalian Btg2 genes, Btg2/PC3/TIS21, have been reported to have multiple functions in the regulation of cell proliferation and differentiation but their roles in early development are still unclear. Here we characterized XBtg2 in early Xenopus laevis embryogenesis with focus on notochord development. Translational inhibition of XBtg2 resulted in a shortened and bent axis phenotype and the abnormal structures in the notochord tissue, which did not undergo vacuolation. The XBtg2-depleted notochord cells expressed early notochord markers such as chordin and Xnot at the early tailbud stage, but failed to express differentiation markers of notochord such as Tor70 and 5-D-4 antigens in the later stages. These results suggest that XBtg2 is required for the differentiation of notochord cells such as the process of vacuolar formation after determination of notochord cell fate.

  10. Early development of Xenopus embryos is affected by simulated gravity

    NASA Technical Reports Server (NTRS)

    Yokota, Hiroki; Neff, Anton W.; Malacinski, George M.

    1994-01-01

    Early amphibian (Xenopus laevis) development under clinostat-simulated weightlessness and centrifuge-simulated hypergravity was studied. The results revealed significant effects on (i) 'morphological patterning' such as the cleavage furrow pattern in the vegetal hemisphere at the eight-cell stage and the shape of the dorsal lip in early gastrulae and (ii) 'the timing of embryonic events' such as the third cleavage furrow completion and the dorsal lip appearance. Substantial variations in sensitivity to simulated force fields were observed, which should be considered in interpreting spaceflight data.

  11. Xenbase, the Xenopus model organism database; new virtualized system, data types and genomes

    PubMed Central

    Karpinka, J. Brad; Fortriede, Joshua D.; Burns, Kevin A.; James-Zorn, Christina; Ponferrada, Virgilio G.; Lee, Jacqueline; Karimi, Kamran; Zorn, Aaron M.; Vize, Peter D.

    2015-01-01

    Xenbase (http://www.xenbase.org), the Xenopus frog model organism database, integrates a wide variety of data from this biomedical model genus. Two closely related species are represented: the allotetraploid Xenopus laevis that is widely used for microinjection and tissue explant-based protocols, and the diploid Xenopus tropicalis which is used for genetics and gene targeting. The two species are extremely similar and protocols, reagents and results from each species are often interchangeable. Xenbase imports, indexes, curates and manages data from both species; all of which are mapped via unique IDs and can be queried in either a species-specific or species agnostic manner. All our services have now migrated to a private cloud to achieve better performance and reliability. We have added new content, including providing full support for morpholino reagents, used to inhibit mRNA translation or splicing and binding to regulatory microRNAs. New genomes assembled by the JGI for both species and are displayed in Gbrowse and are also available for searches using BLAST. Researchers can easily navigate from genome content to gene page reports, literature, experimental reagents and many other features using hyperlinks. Xenbase has also greatly expanded image content for figures published in papers describing Xenopus research via PubMedCentral. PMID:25313157

  12. A Molecular atlas of Xenopus respiratory system development.

    PubMed

    Rankin, Scott A; Thi Tran, Hong; Wlizla, Marcin; Mancini, Pamela; Shifley, Emily T; Bloor, Sean D; Han, Lu; Vleminckx, Kris; Wert, Susan E; Zorn, Aaron M

    2015-01-01

    Respiratory system development is regulated by a complex series of endoderm-mesoderm interactions that are not fully understood. Recently Xenopus has emerged as an alternative model to investigate early respiratory system development, but the extent to which the morphogenesis and molecular pathways involved are conserved between Xenopus and mammals has not been systematically documented. In this study, we provide a histological and molecular atlas of Xenopus respiratory system development, focusing on Nkx2.1+ respiratory cell fate specification in the developing foregut. We document the expression patterns of Wnt/β-catenin, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling components in the foregut and show that the molecular mechanisms of respiratory lineage induction are remarkably conserved between Xenopus and mice. Finally, using several functional experiments we refine the epistatic relationships among FGF, Wnt, and BMP signaling in early Xenopus respiratory system development. We demonstrate that Xenopus trachea and lung development, before metamorphosis, is comparable at the cellular and molecular levels to embryonic stages of mouse respiratory system development between embryonic days 8.5 and 10.5. This molecular atlas provides a fundamental starting point for further studies using Xenopus as a model to define the conserved genetic programs controlling early respiratory system development. © 2014 Wiley Periodicals, Inc.

  13. Transcriptomic Responses During Early Development Following Arsenic Exposure in Western Clawed Frogs, Silurana tropicalis.

    PubMed

    Zhang, Jing; Koch, Iris; Gibson, Laura A; Loughery, Jennifer R; Martyniuk, Christopher J; Button, Mark; Caumette, Guilhem; Reimer, Kenneth J; Cullen, William R; Langlois, Valerie S

    2015-12-01

    Arsenic compounds are widespread environmental contaminants and exposure elicits serious health issues, including early developmental anomalies. Depending on the oxidation state, the intermediates of arsenic metabolism interfere with a range of subcellular events, but the fundamental molecular events that lead to speciation-dependent arsenic toxicity are not fully elucidated. This study therefore assesses the impact of arsenic exposure on early development by measuring speciation and gene expression profiles in the developing Western clawed frog (Silurana tropicalis) larvae following the environmental relevant 0.5 and 1 ppm arsenate exposure. Using HPLC-ICP-MS, arsenate, dimethylarsenic acid, arsenobetaine, arsenocholine, and tetramethylarsonium ion were detected. Microarray and pathway analyses were utilized to characterize the comprehensive transcriptomic responses to arsenic exposure. Clustering analysis of expression data showed distinct gene expression patterns in arsenate treated groups when compared with the control. Pathway enrichment revealed common biological themes enriched in both treatments, including cell signal transduction, cell survival, and developmental pathways. Moreover, the 0.5 ppm exposure led to the enrichment of pathways and biological processes involved in arsenic intake or efflux, as well as histone remodeling. These compensatory responses are hypothesized to be responsible for maintaining an in-body arsenic level comparable to control animals. With no appreciable changes observed in malformation and mortality between control and exposed larvae, this is the first study to suggest that the underlying transcriptomic regulations related to signal transduction, cell survival, developmental pathways, and histone remodeling may contribute to maintaining ongoing development while coping with the potential arsenic toxicity in S. tropicalis during early development. © The Author 2015. Published by Oxford University Press on behalf of the

  14. Xenbase, the Xenopus model organism database; new virtualized system, data types and genomes.

    PubMed

    Karpinka, J Brad; Fortriede, Joshua D; Burns, Kevin A; James-Zorn, Christina; Ponferrada, Virgilio G; Lee, Jacqueline; Karimi, Kamran; Zorn, Aaron M; Vize, Peter D

    2015-01-01

    Xenbase (http://www.xenbase.org), the Xenopus frog model organism database, integrates a wide variety of data from this biomedical model genus. Two closely related species are represented: the allotetraploid Xenopus laevis that is widely used for microinjection and tissue explant-based protocols, and the diploid Xenopus tropicalis which is used for genetics and gene targeting. The two species are extremely similar and protocols, reagents and results from each species are often interchangeable. Xenbase imports, indexes, curates and manages data from both species; all of which are mapped via unique IDs and can be queried in either a species-specific or species agnostic manner. All our services have now migrated to a private cloud to achieve better performance and reliability. We have added new content, including providing full support for morpholino reagents, used to inhibit mRNA translation or splicing and binding to regulatory microRNAs. New genomes assembled by the JGI for both species and are displayed in Gbrowse and are also available for searches using BLAST. Researchers can easily navigate from genome content to gene page reports, literature, experimental reagents and many other features using hyperlinks. Xenbase has also greatly expanded image content for figures published in papers describing Xenopus research via PubMedCentral. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Regulation of early Xenopus development by ErbB signaling

    PubMed Central

    Nie, Shuyi; Chang, Chenbei

    2008-01-01

    ErbB signaling has long been implicated in cancer formation and progression and is shown to regulate cell division, migration and death during tumorigenesis. The functions of the ErbB pathway during early vertebrate embryogenesis, however, are not well understood. Here we report characterization of ErbB activities during early frog development. Gain-of-function analyses show that EGFR, ErbB2 and ErbB4 induce ectopic tumor-like cell mass that contains increased numbers of mitotic cells. Both the muscle and the neural markers are expressed in these ectopic protrusions. ErbBs also induce mesodermal markers in ectodermal explants. Loss-of-function studies using carboxyl terminal-truncated dominant-negative ErbB receptors demonstrate that blocking ErbB signals leads to defective gastrulation movements and malformation of the embryonic axis with a reduction in the head structures in early frog embryos. These data, together with the observation that ErbBs are expressed early during frog embryogenesis, suggest that ErbBs regulate cell proliferation, movements and embryonic patterning during early Xenopus development. PMID:16258939

  16. A genome-wide survey of maternal and embryonic transcripts during Xenopus tropicalis development.

    PubMed

    Paranjpe, Sarita S; Jacobi, Ulrike G; van Heeringen, Simon J; Veenstra, Gert Jan C

    2013-11-06

    Dynamics of polyadenylation vs. deadenylation determine the fate of several developmentally regulated genes. Decay of a subset of maternal mRNAs and new transcription define the maternal-to-zygotic transition, but the full complement of polyadenylated and deadenylated coding and non-coding transcripts has not yet been assessed in Xenopus embryos. To analyze the dynamics and diversity of coding and non-coding transcripts during development, both polyadenylated mRNA and ribosomal RNA-depleted total RNA were harvested across six developmental stages and subjected to high throughput sequencing. The maternally loaded transcriptome is highly diverse and consists of both polyadenylated and deadenylated transcripts. Many maternal genes show peak expression in the oocyte and include genes which are known to be the key regulators of events like oocyte maturation and fertilization. Of all the transcripts that increase in abundance between early blastula and larval stages, about 30% of the embryonic genes are induced by fourfold or more by the late blastula stage and another 35% by late gastrulation. Using a gene model validation and discovery pipeline, we identified novel transcripts and putative long non-coding RNAs (lncRNA). These lncRNA transcripts were stringently selected as spliced transcripts generated from independent promoters, with limited coding potential and a codon bias characteristic of noncoding sequences. Many lncRNAs are conserved and expressed in a developmental stage-specific fashion. These data reveal dynamics of transcriptome polyadenylation and abundance and provides a high-confidence catalogue of novel and long non-coding RNAs.

  17. CRISPR/Cas9: An inexpensive, efficient loss of function tool to screen human disease genes in Xenopus.

    PubMed

    Bhattacharya, Dipankan; Marfo, Chris A; Li, Davis; Lane, Maura; Khokha, Mustafa K

    2015-12-15

    Congenital malformations are the major cause of infant mortality in the US and Europe. Due to rapid advances in human genomics, we can now efficiently identify sequence variants that may cause disease in these patients. However, establishing disease causality remains a challenge. Additionally, in the case of congenital heart disease, many of the identified candidate genes are either novel to embryonic development or have no known function. Therefore, there is a pressing need to develop inexpensive and efficient technologies to screen these candidate genes for disease phenocopy in model systems and to perform functional studies to uncover their role in development. For this purpose, we sought to test F0 CRISPR based gene editing as a loss of function strategy for disease phenocopy in the frog model organism, Xenopus tropicalis. We demonstrate that the CRISPR/Cas9 system can efficiently modify both alleles in the F0 generation within a few hours post fertilization, recapitulating even early disease phenotypes that are highly similar to knockdowns from morpholino oligos (MOs) in nearly all cases tested. We find that injecting Cas9 protein is dramatically more efficacious and less toxic than cas9 mRNA. We conclude that CRISPR based F0 gene modification in X. tropicalis is efficient and cost effective and readily recapitulates disease and MO phenotypes. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Maternal program of apoptosis activated shortly after midblastula transition by overexpression of S-adenosylmethionine decarboxylase in Xenopus early embryos.

    PubMed

    Shiokawa, K; Kai, M; Higo, T; Kaito, C; Yokoska, J; Yasuhiko, Y; Kajita, E; Nagano, M; Yamada, Y; Shibata, M; Muto, T; Shinga, J; Hara, H; Takayama, E; Fukamachi, H; Yaoita, Y; Igarashi, K

    2000-06-01

    When we studied polyamine metabolism in Xenopus embryos, we cloned the cDNA for Xenopus S-adenosylmethionine decarboxylase (SAMDC), which converts SAM (S-adenosylmethionine), the methyl donor, into decarboxylated SAM (dcSAM), the aminopropyl donor, and microinjected its in vitro transcribed mRNA into Xenopus fertilized eggs. We found here that the mRNA injection induces a SAM deficient state in early embryos due to over-function of the overexpressed SAMDC, which in turn induces inhibition of protein synthesis. Such embryos developed quite normally until blastula stage, but stopped development at the early gastrula stage, due to induction of massive cell dissociation and cell autolysis, irrespective of the dosage and stage of the mRNA injection. We found that the dissociated cells were TUNEL-positive, contained fragmented nuclei with ladder-forming DNA, and furthermore, rescued completely by coinjection of Bcl-2 mRNA. Thus, overexpression of SAMDC in Xenopus embryos appeared to switch on apoptotic program, probably via inhibition of protein synthesis. Here, we briefly review our results together with those reported from other laboratories. After discussing the general importance of this newly discovered apoptotic program, we propose that the maternal program of apoptosis serves as a surveillance mechanism to eliminate metabolically severely-damaged cells and functions as a 'fail-safe' mechanism for normal development in Xenopus embryos.

  19. Chromosome Banding in Amphibia. XXXII. The Genus Xenopus (Anura, Pipidae).

    PubMed

    Schmid, Michael; Steinlein, Claus

    2015-01-01

    Mitotic chromosomes of 16 species of the frog genus Xenopus were prepared from kidney and lung cell cultures. In the chromosomes of 7 species, high-resolution replication banding patterns could be induced by treating the cultures with 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT) in succession, and in 6 of these species the BrdU/dT-banded chromosomes could be arranged into karyotypes. In the 3 species of the clade with 2n = 20 and 4n = 40 chromosomes (X. tropicalis, X. epitropicalis, X. new tetraploid 1), as well as in the 3 species with 4n = 36 chromosomes (X. laevis, X. borealis, X. muelleri), the BrdU/dT-banded karyotypes show a high degree of homoeology, though differences were detected between these groups. Translocations, inversions, insertions or sex-specific replication bands were not observed. Minor replication asynchronies found between chromosomes probably involve heterochromatic regions. BrdU/dT replication banding of Xenopus chromosomes provides the landmarks necessary for the exact physical mapping of genes and repetitive sequences. FISH with an X. laevis 5S rDNA probe detected multiple hybridization sites at or near the long-arm telomeric regions in most chromosomes of X. laevis and X. borealis, whereas in X. muelleri, the 5S rDNA sequences are located exclusively at the long-arm telomeres of a single chromosome pair. Staining with the AT base pair-specific fluorochrome quinacrine mustard revealed brightly fluorescing heterochromatic regions in the majority of X. borealis chromosomes which are absent in other Xenopus species.

  20. Xenopus egg cytoplasm with intact actin.

    PubMed

    Field, Christine M; Nguyen, Phuong A; Ishihara, Keisuke; Groen, Aaron C; Mitchison, Timothy J

    2014-01-01

    We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts. © 2014 Elsevier Inc. All rights reserved.

  1. Analysis of Craniocardiac Malformations in Xenopus using Optical Coherence Tomography

    PubMed Central

    Deniz, Engin; Jonas, Stephan; Hooper, Michael; N. Griffin, John; Choma, Michael A.; Khokha, Mustafa K.

    2017-01-01

    Birth defects affect 3% of children in the United States. Among the birth defects, congenital heart disease and craniofacial malformations are major causes of mortality and morbidity. Unfortunately, the genetic mechanisms underlying craniocardiac malformations remain largely uncharacterized. To address this, human genomic studies are identifying sequence variations in patients, resulting in numerous candidate genes. However, the molecular mechanisms of pathogenesis for most candidate genes are unknown. Therefore, there is a need for functional analyses in rapid and efficient animal models of human disease. Here, we coupled the frog Xenopus tropicalis with Optical Coherence Tomography (OCT) to create a fast and efficient system for testing craniocardiac candidate genes. OCT can image cross-sections of microscopic structures in vivo at resolutions approaching histology. Here, we identify optimal OCT imaging planes to visualize and quantitate Xenopus heart and facial structures establishing normative data. Next we evaluate known human congenital heart diseases: cardiomyopathy and heterotaxy. Finally, we examine craniofacial defects by a known human teratogen, cyclopamine. We recapitulate human phenotypes readily and quantify the functional and structural defects. Using this approach, we can quickly test human craniocardiac candidate genes for phenocopy as a critical first step towards understanding disease mechanisms of the candidate genes. PMID:28195132

  2. Host-defense peptides from skin secretions of Fraser's clawed frog Xenopus fraseri (Pipidae): Further insight into the evolutionary history of the Xenopodinae.

    PubMed

    Conlon, J Michael; Mechkarska, Milena; Kolodziejek, Jolanta; Nowotny, Norbert; Coquet, Laurent; Leprince, Jérôme; Jouenne, Thierry; Vaudry, Hubert

    2014-12-01

    Peptidomic analysis of norepinephrine-stimulated skin secretions of the tetraploid frog Xenopus fraseri Boulenger, 1905 (Pipidae) led to identification of 13 host-defense peptides. The primary structures of the peptides demonstrate that they belong to the magainin (3 peptides), peptide glycine-leucine-amide, PGLa (4 peptides), and xenopsin-precursor fragment, XPF (2 peptides) families, first identified in Xenopus laevis, together with caerulein precursor fragment-related peptides, CPF-RP (4 peptides), first identified in Silurana tropicalis. In addition, the secretions contain a molecular variant of xenopsin displaying the substitution Arg(4)→Lys compared with X. laevis xenopsin and peptide glycine-tyrosine-amide (PGYa) (GRIIPIYPEFERVFA KKVYPLY.NH2) whose function is unknown. The most potent antimicrobial peptide identified is CPF-RP-F1 (GFGSVLGKALKFGANLL.NH2) with MIC=12.5μM against Staphylococcus aureus and 50μM against Escherichia coli. On the basis of similarities in morphology and advertisement calls, X. fraseri has been placed in a species group that includes the octoploids Xenopus amieti and Xenopus andrei, and the tetraploid Xenopus pygmaeus. Cladistic analyses based upon the primary structures of magainin, PGLa, and CPF-RP peptides support a close evolutionary relationship between X. fraseri, X. amieti and X. andrei but suggest a more distant relationship with X. pygmaeus. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Embryonic exposure to propylthiouracil disrupts left-right patterning in Xenopus embryos.

    PubMed

    van Veenendaal, Nicole R; Ulmer, Bärbel; Boskovski, Marko T; Fang, Xiefan; Khokha, Mustafa K; Wendler, Christopher C; Blum, Martin; Rivkees, Scott A

    2013-02-01

    Antithyroid medications are the preferred therapy for the treatment of Graves' disease during pregnancy. Propylthiouracil (PTU) is favored over methimazole (MMI) due to potential teratogenic concerns with MMI. This study was to determine the teratogenic potential of MMI and PTU using a validated Xenopus tropicalis embryo model. Embryos were exposed to 1 mM PTU (EC(50)=0.88 mM), 1 mM MMI, or vehicle control (water) from stages 2 to 45. Treated embryos were examined for gross morphological defects, ciliary function, and gene expression by in situ hybridization. Exposure to PTU, but not MMI, led to cardiac and gut looping defects and shortening along the anterior-posterior axis. PTU exposure during gastrulation (stage 8-12.5) was identified as the critical period of exposure leading to left-right (LR) patterning defects. Abnormal cilia polarization, abnormal cilia-driven leftward flow at the gastrocoel roof plate (GRP), and aberrant expression of both Coco and Pitx2c were associated with abnormal LR symmetry observed following PTU exposure. PTU is teratogenic during late blastula, gastrulation, and neurulation; whereas MMI is not. PTU alters ciliary-driven flow and disrupts the normal genetic program involved in LR axis determination. These studies have important implications for women taking PTU during early pregnancy.

  4. Furfural tolerance and detoxification mechanism in Candida tropicalis.

    PubMed

    Wang, Shizeng; Cheng, Gang; Joshua, Chijioke; He, Zijun; Sun, Xinxiao; Li, Ruimin; Liu, Lexuan; Yuan, Qipeng

    2016-01-01

    Current biomass pretreatment by hydrothermal treatment (including acid hydrolysis, steam explosion, and high-temperature steaming) and ionic liquids generally generate inhibitors to the following fermentation process. Furfural is one of the typical inhibitors generated in hydrothermal treatment of biomass. Furfural could inhibit cell growth rate and decrease biofuel productivity of microbes. Candida tropicalis is a promising microbe for the production of biofuels and value-added chemicals using hemicellulose hydrolysate as carbon source. In this study, C. tropicalis showed a comparable ability of furfural tolerance during fermentation. We investigated the mechanism of C. tropicalis 's robust tolerance to furfural and relevant metabolic responses to obtain more information for metabolic engineering of microbes for efficient lignocellulose fermentation. Candida tropicalis showed comparable intrinsic tolerance to furfural and a fast rate of furfural detoxification. C. tropicalis 's half maximal inhibitory concentration for furfural with xylose as the sole carbon source was 3.69 g/L, which was higher than that of most wild-type microbes reported in the literature to our knowledge. Even though furfural prolonged the lag phase of C. tropicalis , the final biomass in the groups treated with 1 g/L furfural was slightly greater than that in the control groups. By real-time PCR analysis, we found that the expression of ADH1 in C. tropicalis ( ctADH1 ) was induced by furfural and repressed by ethanol after furfural depletion. The expression of ctADH1 could be regulated by both furfural and ethanol. After the disruption of gene ctADH1 , we found that C. tropicalis 's furfural tolerance was weakened. To further confirm the function of ctADH1 and enhance Escherichia coli 's furfural tolerance, ctADH1 was overexpressed in E. coli BL21 (DE3). The rate of furfural degradation in E. coli BL21 (DE3) with pET-ADH1 (high-copy plasmid) and pCS-ADH1 (medium-copy plasmid) was increased

  5. Amphibian (Xenopus sp.) iodothyronine deiodinase ...

    EPA Pesticide Factsheets

    The U.S. EPA-MED amphibian thyroid group is currently screening chemicals for inhibition of human iodothyronine deiodinase activity as components of the thyroid system important in human development. Amphibians are a bellwether taxonomic group to gauge toxicity of chemicals in the environment. Amphibian thyroid function is not only important in development but also metamorphosis. Xenopus sp. have been used extensively as model organisms and are well characterized genetically. We propose to screen a list of chemicals (selected from the human DIO screening results) to test for inhibition of Xenopus deiodinases. Large quantities of the enzymes will be produced using an adenovirus system. Our preliminary results show that there may be catalytic differences between human and Xenopus deiodinases. The Twin Ports Early Career Scientists is a new group formed within the Duluth-Superior scientific community. This presentation will provide a basic introduction to my research and our mission at EPA, and help to establish networking and collaboration relationships across disciplines and institutions.

  6. Pattern formation in early embryogenesis of Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mglinets, V.A.

    1995-07-01

    Establishment of egg polarity, separation of germ layers, and the appearance of animal-vegetal, dorsoventral, and anteroposterior axes in Xenopus laevis embryos are considered. The control of these processes by gene coding for growth factors, protooncogens, and homeobox-containing genes is also been reviewed.

  7. Candida tropicalis biofilm inhibition by ZnO nanoparticles and EDTA.

    PubMed

    Jothiprakasam, Vinoth; Sambantham, Murugan; Chinnathambi, Stalin; Vijayaboopathi, Singaravel

    2017-01-01

    Biofilm of Candida tropicalis denote as a complex cellular congregation with major implication in pathogenesis. This lifestyle of fungus as a biofilm can inhibit immune system and antifungal therapy in treatment of infectious disease especially medical device associated chronic disease. In this study effects of Zinc Oxide (ZnO) nanoparticles and EDTA were evaluated on C. tropicalis biofilm by using different techniques. ZnO nanoparticles were synthesized from Egg albumin. To assay the formation of biofilm of yeast cells like Fluconazole-susceptible C. tropicalis (ATCC 13,803) and fluconazole-resistant standard strains of C. tropicalis (ATCC 750) were grown in 24 well plates and antifungal effect of ZnO and EDTA were evaluated on C. tropicalis biofilm using ATP bioluminescence and tetrasodium salt (XTT) reduction assays. Synthesized ZnO NPs and EDTA had effective antifungal properties at the concentration of 5.2, 8.6μg/ml for Fluconazole susceptible strain and 5.42, 10.8μg/ml Fluconazole resistant strains of C. tropicalis biofilms compared to fluconazole drug. In present study we conclude, ZnO considered as a new agent in field of prevention C. tropicalis biofilms especially biofilms formed surface of medical device. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Calcineurin controls hyphal growth, virulence, and drug tolerance of Candida tropicalis.

    PubMed

    Chen, Ying-Lien; Yu, Shang-Jie; Huang, Hsin-Yu; Chang, Ya-Lin; Lehman, Virginia N; Silao, Fitz Gerald S; Bigol, Ursela G; Bungay, Alice Alma C; Averette, Anna; Heitman, Joseph

    2014-07-01

    Candida tropicalis, a species closely related to Candida albicans, is an emerging fungal pathogen associated with high mortality rates of 40 to 70%. Like C. albicans and Candida dubliniensis, C. tropicalis is able to form germ tubes, pseudohyphae, and hyphae, but the genes involved in hyphal growth machinery and virulence remain unclear in C. tropicalis. Recently, echinocandin- and azole-resistant C. tropicalis isolates have frequently been isolated from various patients around the world, making treatment difficult. However, studies of the C. tropicalis genes involved in drug tolerance are limited. Here, we investigated the roles of calcineurin and its potential target, Crz1, for core stress responses and pathogenesis in C. tropicalis. We demonstrate that calcineurin and Crz1 are required for hyphal growth, micafungin tolerance, and virulence in a murine systemic infection model, while calcineurin but not Crz1 is essential for tolerance of azoles, caspofungin, anidulafungin, and cell wall-perturbing agents, suggesting that calcineurin has both Crz1-dependent and -independent functions in C. tropicalis. In addition, we found that calcineurin and Crz1 have opposite roles in controlling calcium tolerance. Calcineurin serves as a negative regulator, while Crz1 plays a positive role for calcium tolerance in C. tropicalis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Calcineurin Controls Hyphal Growth, Virulence, and Drug Tolerance of Candida tropicalis

    PubMed Central

    Yu, Shang-Jie; Huang, Hsin-Yu; Chang, Ya-Lin; Lehman, Virginia N.; Silao, Fitz Gerald S.; Bigol, Ursela G.; Bungay, Alice Alma C.; Averette, Anna

    2014-01-01

    Candida tropicalis, a species closely related to Candida albicans, is an emerging fungal pathogen associated with high mortality rates of 40 to 70%. Like C. albicans and Candida dubliniensis, C. tropicalis is able to form germ tubes, pseudohyphae, and hyphae, but the genes involved in hyphal growth machinery and virulence remain unclear in C. tropicalis. Recently, echinocandin- and azole-resistant C. tropicalis isolates have frequently been isolated from various patients around the world, making treatment difficult. However, studies of the C. tropicalis genes involved in drug tolerance are limited. Here, we investigated the roles of calcineurin and its potential target, Crz1, for core stress responses and pathogenesis in C. tropicalis. We demonstrate that calcineurin and Crz1 are required for hyphal growth, micafungin tolerance, and virulence in a murine systemic infection model, while calcineurin but not Crz1 is essential for tolerance of azoles, caspofungin, anidulafungin, and cell wall-perturbing agents, suggesting that calcineurin has both Crz1-dependent and -independent functions in C. tropicalis. In addition, we found that calcineurin and Crz1 have opposite roles in controlling calcium tolerance. Calcineurin serves as a negative regulator, while Crz1 plays a positive role for calcium tolerance in C. tropicalis. PMID:24442892

  10. Sexual Biofilm Formation in Candida tropicalis Opaque Cells

    PubMed Central

    Jones, Stephen K.; Hirakawa, Matthew P.; Bennett, Richard J.

    2014-01-01

    Summary Candida albicans and Candida tropicalis are opportunistic fungal pathogens that can transition between white and opaque phenotypic states. White and opaque cells differ both morphologically and in their responses to environmental signals. In C. albicans, opaque cells respond to sexual pheromones by undergoing conjugation, while white cells are induced by pheromones to form sexual biofilms. Here, we show that sexual biofilm formation also occurs in C. tropicalis but, unlike C. albicans, biofilms are formed exclusively by opaque cells. C. tropicalis biofilm formation was dependent on the pheromone receptors Ste2 and Ste3, confirming the role of pheromone signaling in sexual biofilm development. Structural analysis of C. tropicalis sexual biofilms revealed stratified communities consisting of a basal layer of yeast cells and an upper layer of filamentous cells, together with an extracellular matrix. Transcriptional profiling showed that genes involved in pheromone signaling and conjugation were upregulated in sexual biofilms. Furthermore, FGR23, which encodes an agglutinin-like protein, was found to enhance both mating and sexual biofilm formation. Together, these studies reveal that C. tropicalis opaque cells form sexual biofilms with a complex architecture, and suggest a conserved role for sexual agglutinins in mediating mating, cell cohesion and biofilm formation. PMID:24612417

  11. Effect of Voriconazole on Candida tropicalis Biofilms: Relation with ERG Genes Expression.

    PubMed

    Fernandes, Tânia; Silva, Sónia; Henriques, Mariana

    2016-10-01

    Candida tropicalis has emerged as the third most prevalent fungal pathogens and its ability to form biofilms has been considered one of the most important virulence factors, since biofilms represent high tolerance to antifungal agents. However, the mechanisms of C. tropicalis biofilm resistance to antifungals remain poorly understood. Thus, the main aim of this work was to infer about the effect of voriconazole on the formation and control of C. tropicalis biofilms and disclose its relationship with ERG genes' expression. Planktonic cells tolerance of several C. tropicalis clinical isolates to voriconazole was determined through of antifungal susceptibility test, and the effect of this azole against C. tropicalis biofilm formation and pre-formed biofilms was evaluated by cultivable cells determination and total biomass quantification. ERG genes expression was analyzed by quantitative real-time polymerase chain reaction. This work showed that C. tropicalis resistance to voriconazole is strain dependent and that voriconazole was able to partially control biofilm formation, but was unable to eradicate C. tropicalis pre-formed biofilms. Moreover, C. tropicalis biofilms resistance to voriconazole seems to be associated with alterations of sterol content in the cell membrane, resulting in ERG genes overexpression. Voriconazole is unable to control C. tropicalis biofilms, and the overexpression of ERG genes is a possible mechanism of biofilm resistance.

  12. Environmental estrogens alter early development in Xenopus laevis.

    PubMed

    Bevan, Cassandra L; Porter, Donna M; Prasad, Anita; Howard, Marthe J; Henderson, Leslie P

    2003-04-01

    A growing number of environmental toxicants found in pesticides, herbicides, and industrial solvents are believed to have deleterious effects on development by disrupting hormone-sensitive processes. We exposed Xenopus laevis embryos at early gastrula to the commonly encountered environmental estrogens nonylphenol, octylphenol, and methoxychlor, the antiandrogen, p,p-DDE, or the synthetic androgen, 17 alpha-methyltestosterone at concentrations ranging from 10 nM to 10 microM and examined them at tailbud stages (approximately 48 hr of treatment). Exposure to the three environmental estrogens, as well as to the natural estrogen 17 beta-estradiol, increased mortality, induced morphologic deformations, increased apoptosis, and altered the deposition and differentiation of neural crest-derived melanocytes in tailbud stage embryos. Although neural crest-derived melanocytes were markedly altered in embryos treated with estrogenic toxicants, expression of the early neural crest maker Xslug, a factor that regulates both the induction and subsequent migration of neural crest cells, was not affected, suggesting that the disruption induced by these compounds with respect to melanocyte development may occur at later stages of their differentiation. Co-incubation of embryos with the pure antiestrogen ICI 182,780 blocked the ability of nonylphenol to induce abnormalities in body shape and in melanocyte differentiation but did not block the effects of methoxychlor. Our data indicate not only that acute exposure to these environmental estrogens induces deleterious effects on early vertebrate development but also that different environmental estrogens may alter the fate of a specific cell type via different mechanisms. Finally, our data suggest that the differentiation of neural crest-derived melanocytes may be particularly sensitive to the disruptive actions of these ubiquitous chemical contaminants.

  13. Effect of chronic copper and pentachlorophenol exposure to early life stages of Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, D.J.; Stover, E.L.

    1995-12-31

    An evaluation of the effects of low-level copper and pentachlorophenol exposure on various early life stages of the South African clawed frog, Xenopus laevis was performed using stage-specific and long-term continuous exposures. Stage-specific exposure experiments were conducted such that separate subsets of embryos and larvae from the same clutch were exposed to two toxicants, copper and pentachlorophenol, from 0 d to 4 d (standard Frog Embryo Teratagenesis Assay Xenopus [FETAX]), 4 d to 8 d, 8 d to 12 d, and 12 d to 16 d. Results from two separate concentration-response experiments indicated that sensitivity to either toxicant increased inmore » each successive time period. Continuous exposure studies conducted for 60 to 75 days indicated that copper, but not pentachlorophenol induced reduction deficiency malformations of the hind limb at concentrations as low as 0.05 mg/L. Pentachlorophenol concentrations as low as 0.5/{micro}g/L inhibited tail resorption. However, copper did not adversely affect the process of tail resorption. These results indicated that studies evaluating longer-term developmental processes are important in ecological hazard evaluation.« less

  14. Role of protein phosphomannosylation in the Candida tropicalis-macrophage interaction.

    PubMed

    Hernández-Chávez, Marco J; Franco, Bernardo; Clavijo-Giraldo, Diana M; Hernández, Nahúm V; Estrada-Mata, Eine; Mora-Montes, Héctor Manuel

    2018-04-27

    Candida tropicalis is an opportunistic fungal pathogen responsible for mucosal and systemic infections. The cell wall is the initial contact point between a fungal cell and the host immune system, and mannoproteins are important components that play key roles when interacting with host cells. In C. albicans, mannans are modified by mannosyl-phosphate moieties, named phosphomannans, which can work as molecular scaffolds to synthesize β1,2-mannooligosaccharides, and MNN4 is a positive regulator of the phosphomannosylation pathway. Here, we showed that C. tropicalis also displays phosphomannans on the cell surface, but the amount of this cell wall component varies depending on the fungal strain. We also identified a functional ortholog of CaMNN4 in C. tropicalis. Disruption of this gene caused depletion of phosphomannan content. The C. tropicalis mnn4Δ did not show defects in the ability to stimulate cytokine production by human mononuclear cells but displayed virulence attenuation in an insect model of candidiasis. When the mnn4Δ-macrophage interaction was analyzed, results showed that presence of cell wall phosphomannan was critical for C. tropicalis phagocytosis. Finally, our results strongly suggest a differential role for phosphomannans during phagocytosis of C. albicans and C. tropicalis.

  15. Characterization of Pax3 and Sox10 transgenic Xenopus laevis embryos as tools to study neural crest development.

    PubMed

    Alkobtawi, Mansour; Ray, Heather; Barriga, Elias H; Moreno, Mauricio; Kerney, Ryan; Monsoro-Burq, Anne-Helene; Saint-Jeannet, Jean-Pierre; Mayor, Roberto

    2018-03-06

    The neural crest is a multipotent population of cells that originates a variety of cell types. Many animal models are used to study neural crest induction, migration and differentiation, with amphibians and birds being the most widely used systems. A major technological advance to study neural crest development in mouse, chick and zebrafish has been the generation of transgenic animals in which neural crest specific enhancers/promoters drive the expression of either fluorescent proteins for use as lineage tracers, or modified genes for use in functional studies. Unfortunately, no such transgenic animals currently exist for the amphibians Xenopus laevis and tropicalis, key model systems for studying neural crest development. Here we describe the generation and characterization of two transgenic Xenopus laevis lines, Pax3-GFP and Sox10-GFP, in which GFP is expressed in the pre-migratory and migratory neural crest, respectively. We show that Pax3-GFP could be a powerful tool to study neural crest induction, whereas Sox10-GFP could be used in the study of neural crest migration in living embryos. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Expression patterns of Xenopus FGF receptor-like 1/nou-darake in early Xenopus development resemble those of planarian nou-darake and Xenopus FGF8.

    PubMed

    Hayashi, Shuichi; Itoh, Mari; Taira, Sumiko; Agata, Kiyokazu; Taira, Masanori

    2004-08-01

    Fibroblast growth factors (FGFs) mediate many cell-to-cell signaling events during early development. Nou-darake (ndk), a gene encoding an FGF receptor (FGFR)-like molecule, was found to be highly and specifically expressed in the head region of the planarian Dugesia japonica, and its functional analyses provided strong molecular evidence for the existence of a brain-inducing circuit based on the FGF signaling pathway. To analyze the role of ndk during vertebrate development, we isolated the Xenopus ortholog of ndk, the vertebrate FGFR-like 1 gene (XFGFRL1). Expression of XFGFRL1/Xndk was first detected in the anterior region at the late gastrula stage and dramatically increased at the early neurula stage in an overall anterior mesendodermal region, including the prechordal plate, paraxial mesoderm, anterior endoderm, and archenteron roof. This anterior expression pattern resembles that of ndk in planarians, suggesting that the expression of FGFRL1/ndk is conserved in evolution between these two distantly diverged organisms. During the tail bud stages, XFGFRL1/Xndk expression was detected in multiple regions, including the forebrain, eyes, midbrain-hindbrain boundary, otic vesicles, visceral arches, and somites. In many of these regions, XFGFRL1/Xndk was coexpressed with XFGF8, indicating that XFGFRL1/Xndk is a member of the XFGF8 synexpression group, which includes sprouty, sef, and isthmin. Copyright 2004 Wiley-Liss, Inc.

  17. Homologs of the Xenopus developmental gene DG42 are present in zebrafish and mouse and are involved in the synthesis of Nod-like chitin oligosaccharides during early embryogenesis.

    PubMed

    Semino, C E; Specht, C A; Raimondi, A; Robbins, P W

    1996-05-14

    The Xenopus developmental gene DG42 is expressed during early embryonic development, between the midblastula and neurulation stages. The deduced protein sequence of Xenopus DG42 shows similarity to Rhizobium Nod C, Streptococcus Has A, and fungal chitin synthases. Previously, we found that the DG42 protein made in an in vitro transcription/translation system catalyzed synthesis of an array of chitin oligosaccharides. Here we show that cell extracts from early Xenopus and zebrafish embryos also synthesize chitooligosaccharides. cDNA fragments homologous to DG42 from zebrafish and mouse were also cloned and sequenced. Expression of these homologs was similar to that described for Xenopus based on Northern and Western blot analysis. The Xenopus anti-DG42 antibody recognized a 63-kDa protein in extracts from zebrafish embryos that followed a similar developmental expression pattern to that previously described for Xenopus. The chitin oligosaccharide synthase activity found in extracts was inactivated by a specific DG42 antibody; synthesis of hyaluronic acid (HA) was not affected under the conditions tested. Other experiments demonstrate that expression of DG42 under plasmid control in mouse 3T3 cells gives rise to chitooligosaccharide synthase activity without an increase in HA synthase level. A possible relationship between our results and those of other investigators, which show stimulation of HA synthesis by DG42 in mammalian cell culture systems, is provided by structural analyses to be published elsewhere that suggest that chitin oligosaccharides are present at the reducing ends of HA chains. Since in at least one vertebrate system hyaluronic acid formation can be inhibited by a pure chitinase, it seems possible that chitin oligosaccharides serve as primers for hyaluronic acid synthesis.

  18. Characterization of Cer-1 cis-regulatory region during early Xenopus development.

    PubMed

    Silva, Ana Cristina; Filipe, Mário; Steinbeisser, Herbert; Belo, José António

    2011-05-01

    Cerberus-related molecules are well-known Wnt, Nodal, and BMP inhibitors that have been implicated in different processes including anterior–posterior patterning and left–right asymmetry. In both mouse and frog, two Cerberus-related genes have been isolated, mCer-1 and mCer-2, and Xcer and Xcoco, respectively. Until now, little is known about the mechanisms involved in their transcriptional regulation. Here, we report a heterologous analysis of the mouse Cerberus-1 gene upstream regulatory regions, responsible for its expression in the visceral endodermal cells. Our analysis showed that the consensus sequences for a TATA, CAAT, or GC boxes were absent but a TGTGG sequence was present at position -172 to -168 bp, relative to the ATG. Using a series of deletion constructs and transient expression in Xenopus embryos, we found that a fragment of 1.4 kb of Cer-1 promoter sequence could reproduce the endogenous expression pattern of Xenopus cerberus. A 0.7-kb mcer-1 upstream region was able to drive reporter expression to the involuting mesendodermal cells, while further deletions abolished reporter gene expression. Our results suggest that although no sequence similarity was found between mouse and Xenopus cerberus cis-regulatory regions, the signaling cascades regulating cerberus expression, during gastrulation, is conserved.

  19. Significance of hyphae formation in virulence of Candida tropicalis and transcriptomic analysis of hyphal cells.

    PubMed

    Jiang, Cen; Li, Zhen; Zhang, Lihua; Tian, Yuan; Dong, Danfeng; Peng, Yibing

    2016-11-01

    Recently, the proportion of Candida tropicalis in clinical isolates has significantly increased. Some C. tropicalis strains colonize the skin or mucosal surfaces as commensals; others trigger invasive infection. To date, the pathogenicity of C. tropicalis has not been thoroughly researched. This study reports several virulence factors, including biofilm and hyphae formation, proteinase, phospholipase, lipase and hemolytic activity, in 52 clinical isolates of C. tropicalis collected from five hospitals in four provinces of China. Some C. tropicalis tended to produce more hyphae than others in the same circumstance. Six C. tropicalis strains with different morphologies were injected into mice via the tail vein, and the survival proportions and fungal burdens of the strains were evaluated. Hyphal production by C. tropicalis was associated with stronger virulence. RNA sequencing revealed that C. tropicalis with more hyphae up-regulated several genes involved in morphological differentiation and oxidative response, including IF2, Atx1, and Sod2. It appears that hyphal formation plays a vital role in the pathogenicity of C. tropicalis, and interacts with the oxidative stress response to strengthen the organism's virulence. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Effect of low-level copper and pentachlorophenol exposure on various early life stages of Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fort, D.J.; Stover, E.L.

    1996-12-31

    An evaluation of the effects of low-level copper and pentachlorophenol exposure on various early life stages of the South African clawed frog, Xenopus laevis, was performed using stage-specific and long-term continuous exposures. Stage-specific exposure experiments were conducted such that separate subsets of embryos and larvae from the same clutch were exposed to two toxicants, copper and pentachlorphenol, from 0 d to 4 d (standard Frog Embryo Teratogenesis Assay--Xenopus [FETAX]), 4 d to 8 d, 8 d to 12 d, and 12 d to 16 d. Results from two separate concentration-response experiments indicated that sensitivity to either toxicant increased in eachmore » successive time period. Longer-term exposure studies conducted for 60 to 75 days indicated that copper, but not pentachlorophenol induced reduction deficiency malformations of the hind limb at concentrations as low as 0.05 mg/L. Pentachlorophenol concentrations as low as 0.5 {micro}g/L inhibited tail resorption. However, copper did not adversely affect the process of tail resorption. These results indicated that studies evaluating longer-term developmental processes are important in ecological hazard evaluation.« less

  1. Susceptibility of early life stages of Xenopus laevis to cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herkovits, J.; Perez-Coll, C.S.; Cardellini, P.

    1997-02-01

    The susceptibility of Xenopus laevis to cadmium during different stages of development was evaluated by exposing embryos to cadmium concentrations ranging from 0.1 to 10 mg Cd{sup 2+}/L for 24, 48, and 72 h and assessing lethality and malformations. Susceptibility increased from the two blastomeres stage (stage 2) to stage 40, in which the 24-h LC100 was 1.13 mg Cd{sup 2+}/L, and resistance increased from this stage onward. Malformations occurred at all developmental stages evaluated, the most common being reduced size, incurvated axis, underdeveloped or abnormally developed fin, microcephaly, and microphtalmy. Scanning electron microscopy revealed changes in the ectodermal surfacemore » ranging from slightly vaulted cells to a severe reduction in the number of ciliated cells as the concentration of cadmium increased. The intraspecific variation evaluated in embryos (from four sets of parents) at seven developmental stages, expressed as the coefficient of variation of the LC100, ranged from 10 to 112% and reflects the capacity of Xenopus laevis to adapt to changing environmental conditions at different embryonic stages.« less

  2. Candida tropicalis biofilms: artificial urine, urinary catheters and flow model.

    PubMed

    Negri, Melyssa; Silva, Sónia; Henriques, Mariana; Azeredo, Joana; Svidzinski, Terezinha; Oliveira, Rosário

    2011-10-01

    Adhesion to medical devices and biofilm formation are considered important virulence factors of Candida tropicalis. This work aimed to use artificial urine (AU) and urinary catheters, under flow conditions, for studying C. tropicalis biofilms. Adhesion and biofilm formation on silicone and latex urinary catheters were quantified by crystal violet staining and determination of colony forming units. Candida surface hydrophobicity was also evaluated, as well as the biofilms' matrix content in terms of proteins and carbohydrates. Candida tropicalis was able to adhere and to form biofilms along the entire length of the catheters under flow conditions. It was found that the isolate U69 adhered significantly more to both types of catheters than did the reference strain. However, U69 biofilms contained significantly less cultivable cells and higher biofilm biomass than those of the reference strain. Detachment of cells from biofilms on latex catheter was lower compared to silicone catheter. This model using AU appeared to be suitable for studies mimicking the real body conditions. Additionally, C. tropicalis was in fact able to colonize urinary catheters in the presence of AU and to detach from these catheters, demonstrating their capacity to colonize distal sites.

  3. Effects of tributyltin on metamorphosis and gonadal differentiation of Xenopus laevis at environmentally relevant concentrations.

    PubMed

    Shi, Huahong; Zhu, Pan; Guo, Suzhen

    2014-05-01

    Tributyltin (TBT), a well known endocrine disruptor, has high teratogenicity to embryos of amphibian (Xenopus tropicalis). An amphibian metamorphosis assay (AMA) and a complete AMA (CAMA) were conducted for TBT. In AMA, the body weight, the snout-to-vent length and the hind limb length of X. laevis tadpoles were decreased in tributyltin chloride (TBTCl; 12.5-200 ng/L) treatment groups after 7 days exposure. TBT greatly retarded the development of tadpoles, decreased the number of follicle and induced thyroid follicle cell hyperplasia after 19 days exposure. In CAMA, 10 and 100 ng/L TBTCl led to various malformations of gonad, including intersex, segmental aplasia and multiple ovary cavities of X. laevis following exposure from stages 46 to stage 66. The sex ratio was male-biased in TBT treatment groups. These results suggest that TBT delayed the metamorphosis, inhibited the growth of tadpoles and disrupted the gonadal differentiation of X. laevis at environmentally relevant concentrations.

  4. Expression of the adhesion G protein-coupled receptor A2 (adgra2) during Xenopus laevis development.

    PubMed

    Seigfried, Franziska A; Dietmann, Petra; Kühl, Michael; Kühl, Susanne J

    2018-06-01

    The adhesion G protein-coupled receptor A2 (Adgra2) is a seven transmembrane receptor that has been described to be a regulator for angiogenesis in mice. Furthermore, the zebrafish ouchless mutant is unable to develop dorsal root ganglia through a disrupted trafficking of Adgra2. Besides RNA sequencing data, nothing is reported about Adgra2 in the south African crawled frog Xenopus laevis. In this study, we investigated for the first time the spatio-temporal expression of adgra2 during early Xenopus embryogenesis in detail. In silico approaches showed that the genomic adgra2 region as well as the Adgra2 protein sequence is highly conserved among different species including Xenopus. RT-PCR experiments confirmed that embryonic adgra2 expression is primarily detected at the beginning of neurulation and is then present throughout the whole Xenopus embryogenesis until stage 42. Whole mount in situ hybridization approaches visualized adgra2 expression in many tissues during Xenopus embryogenesis such as the cardiovascular system including the heart, the migrating neural crest cells and the developing eye including the periocular mesenchyme. Our results indicate a role of Adgra2 for embryogenesis and are a good starting point for further functional studies during early vertebrate development. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrup, Olga, E-mail: osvarcova@gmail.com; Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo; Norwegian Center for Stem Cell Research, Oslo

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression.more » This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.« less

  6. Fermentation Methods for Protein Enrichment of Cassava and Corn with Candida tropicalis

    PubMed Central

    Azoulay, Edgard; Jouanneau, Françoise; Bertrand, Jean-Claude; Raphael, Alain; Janssens, Jacques; Lebeault, Jean Michel

    1980-01-01

    Candida tropicalis grows on soluble starch, corn, and cassava powders without requiring that these substrates be previously hydrolyzed. C. tropicalis possesses the enzyme needed to hydrolyze starch, namely, an α-amylase. That property has been used to develop a fermentation process whereby C. tropicalis can be grown directly on corn or cassava powders so that the resultant mixture of biomass and residual corn or cassava contains about 20% protein, which represents a balanced diet for either animal fodder or human food. The fact that no extra enzymes are required to hydrolyze starch results in a particularly efficient way of improving the nutritional value of amylaceous products, through a single-step fermentation process. PMID:16345495

  7. Cloning of noggin gene from hydra and analysis of its functional conservation using Xenopus laevis embryos.

    PubMed

    Chandramore, Kalpana; Ito, Yuzuro; Takahashi, Shuji; Asashima, Makoto; Ghaskadbi, Surendra

    2010-01-01

    Hydra, a member of phylum Cnidaria that arose early in evolution, is endowed with a defined axis, organized nervous system, and active behavior. It is a powerful model system for the elucidation of evolution of developmental mechanisms in animals. Here, we describe the identification and cloning of noggin-like gene from hydra. Noggin is a secreted protein involved at multiple stages of vertebrate embryonic development including neural induction and is known to exert its effects by inhibiting the bone morphogenetic protein (BMP)-signaling pathway. Sequence analysis revealed that hydra Noggin shows considerable similarity with its orthologs at the amino acid level. When microinjected in the early Xenopus embryos, hydra noggin mRNA induced a secondary axis in 100% of the injected embryos, demonstrating functional conservation of hydra noggin in vertebrates. This was further confirmed by the partial rescue of Xenopus embryos by hydra noggin mRNA from UV-induced ventralization. By using animal cap assay in Xenopus embryos, we demonstrate that these effects of hydra noggin in Xenopus embryos are because of inhibition of BMP signaling by Noggin. Our data indicate that BMP/Noggin antagonism predates the bilaterian divergence and is conserved during the evolution.

  8. Analysis of a developmentally regulated nuclear localization signal in Xenopus

    PubMed Central

    1992-01-01

    The 289 residue nuclear oncoprotein encoded by the adenovirus 5 Ela gene contains two peptide sequences that behave as nuclear localization signals (NLS). One signal, located at the carboxy terminus, is like many other known NLSs in that it consists of a short stretch of basic residues (KRPRP) and is constitutively active in cells. The second signal resides within an internal 45 residue region of E1a that contains few basic residues or sequences that resemble other known NLSs. Moreover, this internal signal functions in injected Xenopus oocytes, but not in transfected Xenopus A6 cells, suggesting that it could be regulated developmentally (Slavicek et al. 1989. J. Virol. 63:4047). In this study, we show that the activity of this signal is sensitive to ATP depletion in vivo, efficiently directs the import of a 50 kD fusion protein and can compete with the E1a carboxy-terminal NLS for nuclear import. In addition, we have delineated the precise amino acid residues that comprise the second E1a NLS, and have assessed its utilization during Xenopus embryogenesis. Using amino acid deletion and substitution analyses, we show that the signal consists of the sequence FV(X)7-20MXSLXYM(X)4MF. By expressing in Xenopus embryos a truncated E1a protein that contains only the second NLS and by monitoring its cytoplasmic/nuclear distribution during development with indirect immunofluorescence, we find that the second NLS is utilized up to the early neurula stage. In addition, there appears to be a hierarchy among the embryonic germ layers as to when the second NLS becomes nonfunctional. For this reason, we refer to this NLS as the developmentally regulated nuclear localization signal (drNLS). The implications of these findings for early development are discussed. PMID:1387407

  9. Calcium Signaling and Meiotic Exit at Fertilization in Xenopus Egg

    PubMed Central

    Tokmakov, Alexander A.; Stefanov, Vasily E.; Iwasaki, Tetsushi; Sato, Ken-Ichi; Fukami, Yasuo

    2014-01-01

    Calcium is a universal messenger that mediates egg activation at fertilization in all sexually reproducing species studied. However, signaling pathways leading to calcium generation and the mechanisms of calcium-induced exit from meiotic arrest vary substantially among species. Here, we review the pathways of calcium signaling and the mechanisms of meiotic exit at fertilization in the eggs of the established developmental model, African clawed frog, Xenopus laevis. We also discuss calcium involvement in the early fertilization-induced events in Xenopus egg, such as membrane depolarization, the increase in intracellular pH, cortical granule exocytosis, cortical contraction, contraction wave, cortical rotation, reformation of the nuclear envelope, sperm chromatin decondensation and sister chromatid segregation. PMID:25322156

  10. Importance of including Blomia tropicalis in the routine diagnosis of Venezuelan patients with persistent allergic symptoms.

    PubMed

    Puccio, F A; Lynch, N R; Noya, O; Noga, O; Noda, A; Hagel, I; López, E; López, R; Caraballo, L; Mercado, D; DiPrisco, M C

    2004-07-01

    Blomia tropicalis is a common mite found in the house dust of many tropical countries including Venezuela. The prevalence of skin test and specific serum immunoglobulin (Ig)E reactivity to B. tropicalis in Venezuela has not been previously evaluated. In the present study we evaluated the skin reactivity by skin prick test and specific IgE by a multiple antigen blot assay, against B. tropicalis and Dermatophagoides pteronyssinus, in a group of 115 subjects who attended the Allergy Clinic of the Institute of Biomedicine, Caracas, Venezuela, and we studied possible cross reactions between similar proteins of these two mites. One hundred and six patients with persistent allergic respiratory symptoms showed a positive skin prick test to at least one of the mite extracts, with the frequency of positive reactions to B. tropicalis being as high as to D. pteronyssinus. Twelve patients reacted only to D. pteronyssinus and 13 different patients only to B. tropicalis. Specific IgE to each of the mite extracts was found with similar frequency, and the results coincided with the skin test reactivity. The study indicated the importance of including B. tropicalis in routine diagnostic testing in tropical and sub-tropical situations.

  11. Three-dimensional reconstruction of the cranial and anterior spinal nerves in early tadpoles of Xenopus laevis (Pipidae, Anura).

    PubMed

    Naumann, Benjamin; Olsson, Lennart

    2018-04-01

    Xenopus laevis is one of the most widely used model organism in neurobiology. It is therefore surprising, that no detailed and complete description of the cranial nerves exists for this species. Using classical histological sectioning in combination with fluorescent whole mount antibody staining and micro-computed tomography we prepared a detailed innervation map and a freely-rotatable three-dimensional (3D) model of the cranial nerves and anterior-most spinal nerves of early X. laevis tadpoles. Our results confirm earlier descriptions of the pre-otic cranial nerves and present the first detailed description of the post-otic cranial nerves. Tracing the innervation, we found two previously undescribed head muscles (the processo-articularis and diaphragmatico-branchialis muscles) in X. laevis. Data on the cranial nerve morphology of tadpoles are scarce, and only one other species (Discoglossus pictus) has been described in great detail. A comparison of Xenopus and Discoglossus reveals a relatively conserved pattern of the post-otic and a more variable morphology of the pre-otic cranial nerves. Furthermore, the innervation map and the 3D models presented here can serve as an easily accessible basis to identify alterations of the innervation produced by experimental studies such as genetic gain- and loss of function experiments. © 2017 Wiley Periodicals, Inc.

  12. Regulative development of Xenopus laevis in microgravity

    NASA Technical Reports Server (NTRS)

    Black, S.; Larkin, K.; Jacqmotte, N.; Wassersug, R.; Pronych, S.; Souza, K.

    1996-01-01

    To test whether gravity is required for normal amphibian development, Xenopus leavis females were induced to ovulate aboard the orbiting Space Shuttle. Eggs were fertilized in vitro, and although early embryonic stages showed some abnormalities, the embryos were able to regulate and produce nearly normal larvae. These results demonstrate for the first time that a vertebrate can ovulate in the virtual absence of gravity, and that the eggs can develop to a free-living stage.

  13. The role of Mixer in patterning the early Xenopus embryo.

    PubMed

    Kofron, Matt; Wylie, Chris; Heasman, Janet

    2004-05-01

    The transcription factor VegT, is required in early Xenopus embryos for the formation of both the mesoderm and endoderm germ layers. Inherited as a maternal mRNA localized only in vegetal cells, VegT activates the transcription of a large number of transcription factors, as well as signaling ligands that induce cells in the vegetal mass to form endoderm, and the marginal zone to form mesoderm. It is important now to understand the extent to which transcription factors downstream of VegT play individual, or overlapping, roles in the specification and patterning of the endoderm and mesoderm. In addition, it is important to understand the mechanism that specifies the boundary between endoderm and mesoderm. One of the downstream targets of VegT, the homeodomain protein Mixer, is expressed at high levels at the mesoderm/endoderm boundary at the late blastula stage. We therefore examined its functions by blocking its translation using morpholino oligos. In Mixer-depleted embryos, the expression of many signaling ligands and transcription factors was affected. In particular, we found that the expression of several genes, including several normally expressed in mesoderm, was upregulated. Functional assays of Mixer-depleted vegetal cells showed that they have increased mesoderm-inducing activity. This demonstrates that Mixer plays an essential role in controlling the amount of mesoderm induction by the vegetal cells.

  14. Candida tropicalis biofilm and human epithelium invasion is highly influenced by environmental pH.

    PubMed

    Ferreira, Carina; Gonçalves, Bruna; Vilas Boas, Diana; Oliveira, Hugo; Henriques, Mariana; Azeredo, Joana; Silva, Sónia

    2016-11-01

    The main goal of this study was to investigate the role of pH on Candida tropicalis virulence determinants, namely the ability to form biofilms and to colonize/invade reconstituted human vaginal epithelia. Biofilm formation was evaluated by enumeration of cultivable cells, total biomass quantification and structural analysis by scanning electron microscopy and confocal laser scanning microscopy. Candida tropicalis human vaginal epithelium colonization and invasiveness were examined qualitatively by epifluorescence microscopy and quantitatively by a novel quantitative real-time PCR protocol for Candida quantification in tissues. The results revealed that environmental pH influences C. tropicalis biofilm formation as well as the colonization and potential to invade human epithelium with intensification at neutral and alkaline conditions compared to acidic conditions. For the first time, we have demonstrated that C. tropicalis biofilm formation and invasion is highly influenced by environmental pH. © Crown copyright 2016.

  15. An Update on Candida tropicalis Based on Basic and Clinical Approaches

    PubMed Central

    Zuza-Alves, Diana L.; Silva-Rocha, Walicyranison P.; Chaves, Guilherme M.

    2017-01-01

    Candida tropicalis has emerged as one of the most important Candida species. It has been widely considered the second most virulent Candida species, only preceded by C. albicans. Besides, this species has been recognized as a very strong biofilm producer, surpassing C. albicans in most of the studies. In addition, it produces a wide range of other virulence factors, including: adhesion to buccal epithelial and endothelial cells; the secretion of lytic enzymes, such as proteinases, phospholipases, and hemolysins, bud-to-hyphae transition (also called morphogenesis) and the phenomenon called phenotypic switching. This is a species very closely related to C. albicans and has been easily identified with both phenotypic and molecular methods. In addition, no cryptic sibling species were yet described in the literature, what is contradictory to some other medically important Candida species. C. tropicalis is a clinically relevant species and may be the second or third etiological agent of candidemia, specifically in Latin American countries and Asia. Antifungal resistance to the azoles, polyenes, and echinocandins has already been described. Apart from all these characteristics, C. tropicalis has been considered an osmotolerant microorganism and this ability to survive to high salt concentration may be important for fungal persistence in saline environments. This physiological characteristic makes this species suitable for use in biotechnology processes. Here we describe an update of C. tropicalis, focusing on all these previously mentioned subjects. PMID:29081766

  16. Culture media profoundly affect Candida albicans and Candida tropicalis growth, adhesion and biofilm development.

    PubMed

    Weerasekera, Manjula M; Wijesinghe, Gayan K; Jayarathna, Thilini A; Gunasekara, Chinthika P; Fernando, Neluka; Kottegoda, Nilwala; Samaranayake, Lakshman P

    2016-11-01

    As there are sparse data on the impact of growth media on the phenomenon of biofilm development for Candida we evaluated the efficacy of three culture media on growth, adhesion and biofilm formation of two pathogenic yeasts, Candida albicans and Candida tropicalis. The planktonic phase yeast growth, either as monocultures or mixed cultures, in sabouraud dextrose broth (SDB), yeast nitrogen base (YNB), and RPMI 1640 was compared, and adhesion as well as biofilm formation were monitored using MTT and crystal violet (CV) assays and scanning electron microscopy. Planktonic cells of C. albicans, C. tropicalis and their 1:1 co-culture showed maximal growth in SDB. C. albicans/C. tropicalis adhesion was significantly facilitated in RPMI 1640 although the YNB elicited the maximum growth for C. tropicalis. Similarly, the biofilm growth was uniformly higher for both species in RPMI 1640, and C. tropicalis was the slower biofilm former in all three media. Scanning electron microscopy images tended to confirm the results of MTT and CV assay. Taken together, our data indicate that researchers should pay heed to the choice of laboratory culture media when comparing relative planktonic/biofilm growth of Candida. There is also a need for standardisation of biofilm development media so as to facilitate cross comparisons between laboratories.

  17. Mirror-image duplication of the primary axis and heart in Xenopus embryos by the overexpression of Msx-1 gene.

    PubMed

    Chen, Y; Solursh, M

    1995-10-01

    The Msx-1 gene (formerly known as Hox-7) is a member of a discrete subclass of homeobox-containing genes. Examination of the expression pattern of Msx-1 in murine and avian embryos suggests that this gene may be involved in the regionalization of the medio-lateral axis during earlier development. We have examined the possible functions of Xenopus Msx-1 during early Xenopus embryonic development by overexpression of the Msx-1 gene. Overexpression of Msx-1 causes a left-right mirror-image duplication of primary axial structures, including notochord, neural tube, somites, suckers, and foregut. The embryonic developing heart is also mirror-image duplicated, including looping directions and polarity. These results indicate that Msx-1 may be involved in the mesoderm formation as well as left-right patterning in the early Xenopus embryonic development.

  18. The nervus terminalis in larval and adult Xenopus laevis.

    PubMed

    Hofmann, M H; Meyer, D L

    1989-09-25

    Nervus terminalis (nt) projections were studied by HRP injections into one nostril in adult Xenopus and in Xenopus tadpoles. Central nt targets are: medial septum, preoptic nucleus, nucleus of the anterior commissure, and hypothalamus (mainly ipsilaterally). In Xenopus tadpoles, additional fibers reach the ipsilateral dorsal thalamus and the mesencephalic tegmentum, bilaterally; furthermore, hypothalamic projections are bilateral. Xenopus tadpole nt connections resemble those of adult urodeles more closely than the projections of frogs. However, Xenopus tadpoles lack nt innervation of the medial septum.

  19. Xenopus Bicaudal-C Is Required for the Differentiation of the Amphibian Pronephros

    PubMed Central

    Tran, Uyen; Mary Pickney, L.; Duygu Özpolat, B.; Wessely, Oliver

    2007-01-01

    The RNA-binding molecule Bicaudal-C regulates embryonic development in Drosophila and Xenopus. Interestingly, mouse mutants of Bicaudal-C do not show early patterning defects, but instead develop polycystic kidney disease (PKD). To further investigate the molecular mechanism of Bicaudal-C in kidney development, we analyzed its function in the developing amphibian pronephros. Bicaudal-C mRNA was present in the epithelial structures of the Xenopus pronephros, the tubules and the duct, but not the glomus. Inhibition of the translation of endogenous Bicaudal-C with antisense morpholino oligomers (xBic-C-MO) led to a PKD-like phenotype in Xenopus. Embryos lacking Bicaudal-C developed generalized edemas and dilated pronephric tubules and ducts. This phenotype was caused by impaired differentiation of the pronephros. Molecular markers specifically expressed in the late distal tubule were absent in xBic-C-MO-injected embryos. Furthermore, Bicaudal-C was not required for primary cilia formation, an important organelle affected in PKD. These data support the idea that Bicaudal-C functions downstream or parallel of a cilia-regulated signaling pathway. This pathway is required for terminal differentiation of the late distal tubule of the Xenopus pronephros and regulates renal epithelial cell differentiation, which - when disrupted - results in PKD. PMID:17521625

  20. Function of the two Xenopus smad4s in early frog development.

    PubMed

    Chang, Chenbei; Brivanlou, Ali H; Harland, Richard M

    2006-10-13

    Signals from the transforming growth factor beta family members are transmitted in the cell through specific receptor-activated Smads and a common partner Smad4. Two Smad4 genes (alpha and beta/10, or smad4 and smad4.2) have been isolated from Xenopus, and conflicting data are reported for Smad4beta/10 actions in mesodermal and neural induction. To further understand the functions of the Smad4s in early frog development, we analyzed their activities in detail. We report that Smad10 is a mutant form of Smad4beta that harbors a missense mutation of a conserved arginine to histidine in the MH1 domain. The mutation results in enhanced association of Smad10 with the nuclear transcription corepressor Ski and leads to its neural inducing activity through inhibition of bone morphogenetic protein (BMP) signaling. In contrast to Smad10, both Smad4alpha and Smad4beta enhanced BMP signals in ectodermal explants. Using antisense morpholino oligonucleotides (MOs) to knockdown endogenous Smad4 protein levels, we discovered that Smad4beta was required for both activin- and BMP-mediated mesodermal induction in animal caps, whereas Smad4alpha affected only the BMP signals. Neither Smad4 was involved directly in neural induction. Expression of Smad4beta-MO in early frog embryos resulted in reduction of mesodermal markers and defects in axial structures, which were rescued by either Smad4alpha or Smad4beta. Smad4alpha-MO induced only minor deficiency at late stages. As Smad4beta, but not Smad4alpha, is expressed at high levels maternally and during early gastrulation, our data suggest that although Smad4alpha and Smad4beta may have similar activities, they are differentially utilized during frog embryogenesis, with only Smad4beta being essential for mesoderm induction.

  1. Species-specific loss of sexual dimorphism in vocal effectors accompanies vocal simplification in African clawed frogs (Xenopus)

    PubMed Central

    Leininger, Elizabeth C.; Kitayama, Ken; Kelley, Darcy B.

    2015-01-01

    ABSTRACT Phylogenetic studies can reveal patterns of evolutionary change, including the gain or loss of elaborate courtship traits in males. Male African clawed frogs generally produce complex and rapid courtship vocalizations, whereas female calls are simple and slow. In a few species, however, male vocalizations are also simple and slow, suggesting loss of male-typical traits. Here, we explore features of the male vocal organ that could contribute to loss in two species with simple, slow male calls. In Xenopus boumbaensis, laryngeal morphology is more robust in males than in females. Larynges are larger, have a more complex cartilaginous morphology and contain more muscle fibers. Laryngeal muscle fibers are exclusively fast-twitch in males but are both fast- and slow-twitch in females. The laryngeal electromyogram, a measure of neuromuscular synaptic strength, shows greater potentiation in males than in females. Male-specific physiological features are shared with X. laevis, as well as with a species of the sister clade, Silurana tropicalis, and thus are likely ancestral. In X. borealis, certain aspects of laryngeal morphology and physiology are sexually monomorphic rather than dimorphic. In both sexes, laryngeal muscle fibers are of mixed-twitch type, which limits the production of muscle contractions at rapid intervals. Muscle activity potentiation and discrete tension transients resemble female rather than male X. boumbaensis. The de-masculinization of these laryngeal features suggests an alteration in sensitivity to the gonadal hormones that are known to control the sexual differentiation of the larynx in other Xenopus and Silurana species. PMID:25788725

  2. Polystyrene nanoparticles affect Xenopus laevis development

    NASA Astrophysics Data System (ADS)

    Tussellino, Margherita; Ronca, Raffaele; Formiggini, Fabio; Marco, Nadia De; Fusco, Sabato; Netti, Paolo Antonio; Carotenuto, Rosa

    2015-02-01

    Exposing living organisms to nanoparticulates is potentially hazardous, in particular when it takes place during embryogenesis. In this investigation, we have studied the effects of 50-nm-uncoated polystyrene nanoparticles (PSNPs) as a model to investigate the suitability of their possible future employments. We have used the standardized Frog Embryo Teratogenesis Assay- Xenopus test during the early stages of larval development of Xenopus laevis, and we have employed either contact exposure or microinjections. We found that the embryos mortality rate is dose dependent and that the survived embryos showed high percentage of malformations. They display disorders in pigmentation distribution, malformations of the head, gut and tail, edema in the anterior ventral region, and a shorter body length compared with sibling untreated embryos. Moreover, these embryos grow more slowly than the untreated embryos. Expressions of the mesoderm markers, bra (T-box Brachyury gene), myod1 (myogenic differentiation1), and of neural crest marker sox9 (sex SRY (determining region Y-box 9) transcription factor sox9), are modified. Confocal microscopy showed that the nanoparticles are localized in the cytoplasm, in the nucleus, and in the periphery of the digestive gut cells. Our data suggest that PSNPs are toxic and show a potential teratogenic effect for Xenopus larvae. We hypothesize that these effects may be due either to the amount of NPs that penetrate into the cells and/or to the "corona" effect caused by the interaction of PSNPs with cytoplasm components. The three endpoints of our study, i.e., mortality, malformations, and growth inhibition, suggest that the tests we used may be a powerful and flexible bioassay in evaluating pollutants in aquatic embryos.

  3. Maternal xNorrin, a Canonical Wnt Signaling Agonist and TGF-β Antagonist, Controls Early Neuroectoderm Specification in Xenopus

    PubMed Central

    Xu, Suhong; Cheng, Feng; Liang, Juan; Wu, Wei; Zhang, Jian

    2012-01-01

    Dorsal–ventral specification in the amphibian embryo is controlled by β-catenin, whose activation in all dorsal cells is dependent on maternal Wnt11. However, it remains unknown whether other maternally secreted factors contribute to β-catenin activation in the dorsal ectoderm. Here, we show that maternal Xenopus Norrin (xNorrin) promotes anterior neural tissue formation in ventralized embryos. Conversely, when xNorrin function is inhibited, early canonical Wnt signaling in the dorsal ectoderm and the early expression of the zygotic neural inducers Chordin, Noggin, and Xnr3 are severely suppressed, causing the loss of anterior structures. In addition, xNorrin potently inhibits BMP- and Nodal/Activin-related functions through direct binding to the ligands. Moreover, a subset of Norrin mutants identified in humans with Norrie disease retain Wnt activation but show defective inhibition of Nodal/Activin-related signaling in mesoderm induction, suggesting that this disinhibition causes Norrie disease. Thus, xNorrin is an unusual molecule that acts on two major signaling pathways, Wnt and TGF-β, in opposite ways and is essential for early neuroectoderm specification. PMID:22448144

  4. Developmental profiles of progesterone receptor transcripts and molecular responses to gestagen exposure during Silurana tropicalis early development.

    PubMed

    Thomson, Paisley; Langlois, Valerie S

    2018-05-18

    Environmental gestagens are an emerging class of contaminants that have been recently measured in surface water and can interfere with reproduction in aquatic vertebrates. Gestagens include endogenous progestogens, such as progesterone (P4), which bind P4-receptors and have critically important roles in vertebrate physiology and reproduction. Gestagens also include synthetic progestins, which are components of human and veterinary drugs, such as melengestrol acetate (MGA). Endogenous progestogens are essential in the regulation of reproduction in mammalian species, but the role of P4 in amphibian larval development remains unclear. This project aims to understand the roles and the regulatory mechanisms of P4 in amphibians and to assess the consequences of exposures to environmental gestagens on the P4-receptor signaling pathways in frogs. Here, we established the developmental profiles of the P4 receptors: the intracellular progesterone receptor (ipgr), the membrane progesterone receptor β (mpgrβ), and the progesterone receptor membrane component 1 (pgrmc1) in Western clawed frog (Silurana tropicalis) embryos using real-time qPCR. P4-receptor mRNAs were detected throughout embryogenesis. Transcripts for ipgr and pgrmc1 were detected in embryos at Nieuwkoop and Faber (NF) stage 2 and 7, indicative of maternal transfer of mRNA. We also assessed the effects of P4 and MGA exposure in embryonic and early larval development. Endocrine responses were evaluated through transcript analysis of a suite of gene targets of interest, including: ipgr, mpgrβ, pgrmc1, androgen receptor (ar), estrogen receptor α (erα), follicle stimulating hormone β (fshβ), prolactin (prl), and the steroid 5-alpha reductase family (srd5α1, 2, and 3). Acute exposure (NF 12-46) to P4 caused a 2- to 5-fold change increase of ipgr, mpgrβ, pgrmc1, and ar mRNA levels at the environmentally relevant concentration of 195 ng/L P4. Acute exposure to MGA induced a 56% decrease of srd5α3 at 1140

  5. Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus.

    PubMed

    Gentsch, George E; Spruce, Thomas; Monteiro, Rita S; Owens, Nick D L; Martin, Stephen R; Smith, James C

    2018-03-12

    Antisense morpholino oligomers (MOs) have been indispensable tools for developmental biologists to transiently knock down (KD) genes rather than to knock them out (KO). Here we report on the implications of genetic KO versus MO-mediated KD of the mesoderm-specifying Brachyury paralogs in the frog Xenopus tropicalis. While both KO and KD embryos fail to activate the same core gene regulatory network, resulting in virtually identical morphological defects, embryos injected with control or target MOs also show a systemic GC content-dependent immune response and many off-target splicing defects. Optimization of MO dosage and increasing incubation temperatures can mitigate, but not eliminate, these MO side effects, which are consistent with the high affinity measured between MO and off-target sequence in vitro. We conclude that while MOs can be useful to profile loss-of-function phenotypes at a molecular level, careful attention must be paid to their immunogenic and off-target side effects. Copyright © 2018 The Francis Crick Institute. Published by Elsevier Inc. All rights reserved.

  6. Isolation and characterization of Xenopus laevis homologs of the mouse inv gene and functional analysis of the conserved calmodulin binding sites.

    PubMed

    Yasuhiko, Yukuto; Shiokawa, Koichiro; Mochizuki, Toshio; Asashima, Makoto; Yokoyama, Takahiko

    2006-04-01

    The homozygous inv (inversion of embryonic turning) mouse mutant shows situs inversus and polycystic kidney disease, both of which result from the lack of the inv gene. Previously, we suggested that inv may be important for the left-right axis formation, not only in mice but also in Xenopus, and that calmodulin regulates this inv protein function. Here, we isolated and characterized two Xenopus laevis homologs (Xinv-1 and Xinv-2) of the mouse inv gene, and performed functional analysis of the conserved IQ motifs that interact with calmodulin. Xinv-1 expresses early in development in the same manner as mouse inv does. Unexpectedly, a full-length Xenopus inv mRNA did not randomize cardiac orientation when injected into Xenopus embryos, which is different from mouse inv mRNA. Contrary to mouse inv mRNA, Xenopus inv mRNA with mutated IQ randomized cardiac orientation. The present study indicates that calmodulin binding sites (IQ motifs) are crucial in controlling the biological activity of both mouse and Xenopus inv proteins. Although mouse and Xenopus inv genes have a quite similar structure, the interaction with calmodulin and IQ motifs of Xenopus inv and mouse inv proteins may regulate their function in different ways.

  7. Changes in Oscillatory Dynamics in the Cell Cycle of Early Xenopus laevis Embryos

    PubMed Central

    Tsai, Tony Y.-C.; Theriot, Julie A.; Ferrell, James E.

    2014-01-01

    During the early development of Xenopus laevis embryos, the first mitotic cell cycle is long (∼85 min) and the subsequent 11 cycles are short (∼30 min) and clock-like. Here we address the question of how the Cdk1 cell cycle oscillator changes between these two modes of operation. We found that the change can be attributed to an alteration in the balance between Wee1/Myt1 and Cdc25. The change in balance converts a circuit that acts like a positive-plus-negative feedback oscillator, with spikes of Cdk1 activation, to one that acts like a negative-feedback-only oscillator, with a shorter period and smoothly varying Cdk1 activity. Shortening the first cycle, by treating embryos with the Wee1A/Myt1 inhibitor PD0166285, resulted in a dramatic reduction in embryo viability, and restoring the length of the first cycle in inhibitor-treated embryos with low doses of cycloheximide partially rescued viability. Computations with an experimentally parameterized mathematical model show that modest changes in the Wee1/Cdc25 ratio can account for the observed qualitative changes in the cell cycle. The high ratio in the first cycle allows the period to be long and tunable, and decreasing the ratio in the subsequent cycles allows the oscillator to run at a maximal speed. Thus, the embryo rewires its feedback regulation to meet two different developmental requirements during early development. PMID:24523664

  8. A mutated hygromycin resistance gene is functional in the n-alkane-assimilating yeast Candida tropicalis.

    PubMed

    Hara, A; Ueda, M; Misawa, S; Matsui, T; Furuhashi, K; Tanaka, A

    2000-03-01

    Development of a transformation system in the n-alkane-assimilating diploid yeast Candida tropicalis requires an antibiotic resistance gene in order to establish a selectable marker. The resistance gene for hygromycin B has often been used as a selectable marker in yeast transformation. However, C. tropicalis harboring the hygromycin resistance gene (HYG) was as sensitive to hygromycin B as the wild-type strain. Nine CTG codons were found in the ORF of the HYG gene. This codon has been reported to be translated as serine rather than leucine in Candida species. Analysis of the tRNA gene in C. tropicalis with the anticodon CAG [tRNA(CAG) gene], which is complementary to the codon CTG, showed that the sequence was highly similar to that of the C. maltosa tRNA(CAG) gene. In C. maltosa, the codon CTG is read as serine and not leucine. These results suggested that the HYG gene was not functional due to the nonuniversal usage of the CTG codon. Each of the nine CTG codons in the ORF of the HYG gene was changed to a CTC codon, which is read as leucine, by site-directed mutagenesis. When a plasmid containing the mutated HYG gene (HYG#) was constructed and introduced into C. tropicalis, hygromycin-resistant transformants were successfully obtained. This mutated hygromycin resistance gene may be useful for direct selection of C. tropicalis transformants.

  9. Identification of new regulators of embryonic patterning and morphogenesis in Xenopus gastrulae by RNA sequencing.

    PubMed

    Popov, Ivan K; Kwon, Taejoon; Crossman, David K; Crowley, Michael R; Wallingford, John B; Chang, Chenbei

    2017-06-15

    During early vertebrate embryogenesis, cell fate specification is often coupled with cell acquisition of specific adhesive, polar and/or motile behaviors. In Xenopus gastrulae, tissues fated to form different axial structures display distinct motility. The cells in the early organizer move collectively and directionally toward the animal pole and contribute to anterior mesendoderm, whereas the dorsal and the ventral-posterior trunk tissues surrounding the blastopore of mid-gastrula embryos undergo convergent extension and convergent thickening movements, respectively. While factors regulating cell lineage specification have been described in some detail, the molecular machinery that controls cell motility is not understood in depth. To gain insight into the gene battery that regulates both cell fates and motility in particular embryonic tissues, we performed RNA sequencing (RNA-seq) to investigate differentially expressed genes in the early organizer, the dorsal and the ventral marginal zone of Xenopus gastrulae. We uncovered many known signaling and transcription factors that have been reported to play roles in embryonic patterning during gastrulation. We also identified many uncharacterized genes as well as genes that encoded extracellular matrix (ECM) proteins or potential regulators of actin cytoskeleton. Co-expression of a selected subset of the differentially expressed genes with activin in animal caps revealed that they had distinct ability to block activin-induced animal cap elongation. Most of these factors did not interfere with mesodermal induction by activin, but an ECM protein, EFEMP2, inhibited activin signaling and acted downstream of the activated type I receptor. By focusing on a secreted protein kinase PKDCC1, we showed with overexpression and knockdown experiments that PKDCC1 regulated gastrulation movements as well as anterior neural patterning during early Xenopus development. Overall, our studies identify many differentially expressed

  10. Ca2+ signaling and early embryonic patterning during the blastula and gastrula periods of zebrafish and Xenopus development.

    PubMed

    Webb, Sarah E; Miller, Andrew L

    2006-11-01

    It has been proposed that Ca(2+) signaling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern forming events during early vertebrate development [L.F. Jaffe, Organization of early development by calcium patterns, BioEssays 21 (1999) 657-667; M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium signaling, Nat. Rev. Mol. Cell Biol. 1 (2000) 11-21; S.E. Webb, A.L. Miller, Calcium signalling during embryonic development, Nat. Rev. Mol. Cell Biol. 4 (2003) 539-551]. With reference to the embryos of zebrafish (Danio rerio) and the frog, Xenopus laevis, we review the Ca(2+) signals reported during the Blastula and Gastrula Periods. This developmental window encompasses the major pattern forming events of epiboly, involution, and convergent extension, which result in the establishment of the basic germ layers and body axes [C.B. Kimmel, W.W. Ballard, S.R. Kimmel, B. Ullmann, T.F. Schilling, Stages of embryonic development of the zebrafish, Dev. Dyn. 203 (1995) 253-310]. Data will be presented to support the suggestion that propagating waves (both long and short range) of Ca(2+) release, followed by sequestration, may play a crucial role in: (1) Coordinating cell movements during these pattern forming events and (2) Contributing to the establishment of the basic embryonic axes, as well as (3) Helping to define the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen [E. Gilland, A.L. Miller, E. Karplus, R. Baker, S.E. Webb, Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation, Proc. Natl. Acad. Sci. USA 96 (1999) 157-161; J.B. Wallingford, A.J. Ewald, R.M. Harland, S.E. Fraser, Calcium signaling during convergent extension in Xenopus, Curr. Biol. 11 (2001) 652-661]. The various potential targets of these Ca(2+) transients will also be discussed, as well as how they might integrate with other known pattern forming

  11. Developmental and Thyroid Hormone Regulation of the DNA Methyltransferase 3a Gene in Xenopus Tadpoles

    PubMed Central

    Kyono, Yasuhiro; Sachs, Laurent M.; Bilesimo, Patrice; Wen, Luan

    2016-01-01

    Thyroid hormone is essential for normal development in vertebrates. In amphibians, T3 controls metamorphosis by inducing tissue-specific gene regulation programs. A hallmark of T3 action is the modification of chromatin structure, which underlies changes in gene transcription. We found that mRNA for the de novo DNA methyltransferase (DNMT) dnmt3a, but not dnmt1, increased in the brain of Xenopus tadpoles during metamorphosis in parallel with plasma [T3]. Addition of T3 to the rearing water caused a time-dependent increase in dnmt3a mRNA in tadpole brain, tail, and hind limb. By analyzing data from a genome-wide analysis of T3 receptor (TR) binding in tadpole tail, we identified several putative T3 response elements (TREs) within the dnmt3a locus. Using in vitro DNA binding, transient transfection-reporter, and chromatin immunoprecipitation assays for TRs, we identified two functional TREs at −7.1 kb and +5.1 kb relative to the dnmt3a transcription start site. Sequence alignment showed that these TREs are conserved between two related frog species, X. laevis and X. tropicalis, but not with amniotes. Our previous findings showed that this gene is directly regulated by liganded TRs in mouse brain, and whereas the two mouse TREs are conserved among Eutherian mammals, they are not conserved in Xenopus species. Thus, although T3 regulation of dnmt3a may be an ancient pathway in vertebrates, the genomic sites responsible for hormone regulation may have diverged or arisen by convergent evolution. We hypothesize that direct T3 regulation of dnmt3a may be an important mechanism for modulating global changes in DNA methylation. PMID:27779916

  12. Host-defense peptides from skin secretions of the octoploid frogs Xenopus vestitus and Xenopus wittei (Pipidae): insights into evolutionary relationships.

    PubMed

    Mechkarska, Milena; Coquet, Laurent; Leprince, Jérôme; Jouenne, Thierry; Vaudry, Hubert; Michalak, Katarzyna; Michalak, Pawel; Conlon, J Michael

    2014-09-01

    The primary structures of host-defense peptides have proved useful in elucidating the evolution history of frogs. Peptidomic analysis was used to compare the diversity of host-defense peptides in norepinephrine-stimulated skin secretions from the octoploid frogs, Xenopus vestitus (Kivu clawed frog) and Xenopus wittei (De Witte's clawed frog) in the family Pipidae. Structural characterization demonstrated that the X. vestitus peptides belong to the magainin (3 peptides), peptide glycine-leucine-amide (PGLa; 4 peptides), xenopsin-precursor fragment (XPF; 1 peptide), and caerulein-precursor fragment (CPF; 5 peptides) families. The X. wittei peptides comprise magainin (4 peptides), PGLa (1 peptide), XPF (2 peptides), and CPF (7 peptides). In addition, secretions from both species contain caerulein, identical to the peptide from Xenopus laevis, but X. wittei secretions contains the novel peptide [R4K]xenopsin. The variability in the numbers of paralogs in each peptide family indicates a selective silencing of the host-defense peptide genes following the polyploidization events. The primary structures of the peptides provide insight into phylogenetic relationships among the octoploid Xenopus frogs. The data support a sister-group relationship between X. vestitus and Xenopus lenduensis, suggestive of bifurcating speciation after allopolyploidization, whereas X. wittei is more closely related to the Xenopus amieti-Xenopus andrei group suggesting a common tetraploid ancestor. Consistent with previous data, the CPF peptides showed the highest growth inhibitory activity against bacteria with CPF-W6 (GIGSLLAKAAKLAAGLV.NH2) combining high antimicrobial potency against Staphylococcus aureus (MIC=4 μM) with relatively low hemolytic activity (LC50=190 μM). Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Effects of S-adenosylmethionine decarboxylase, polyamines, amino acids, and weak bases (amines and ammonia) on development and ribosomal RNA synthesis in Xenopus embryos.

    PubMed

    Shiokawa, Koichiro; Aso, Mai; Kondo, Takeshi; Takai, Jun-Ichi; Yoshida, Junki; Mishina, Takamichi; Fuchimukai, Kota; Ogasawara, Tsukasa; Kariya, Taro; Tashiro, Kosuke; Igarashi, Kazuei

    2010-02-01

    We have been studying control mechanisms of gene expression in early embryogenesis in a South African clawed toad Xenopus laevis, especially during the period of midblastula transition (MBT), or the transition from the phase of active cell division (cleavage stage) to the phase of extensive morphogenesis (post-blastular stages). We first found that ribosomal RNA synthesis is initiated shortly after MBT in Xenopus embryos and those weak bases, such as amines and ammonium ion, selectively inhibit the initiation and subsequent activation of rRNA synthesis. We then found that rapidly labeled heterogeneous mRNA-like RNA is synthesized in embryos at pre-MBT stage. We then performed cloning and expression studies of several genes, such as those for activin receptors, follistatin and aldolases, and then reached the studies of S-adenosylmethionine decarboxylase (SAMDC), a key enzyme in polyamine metabolism. Here, we cloned a Xenopus SAMDC cDNA and performed experiments to overexpress the in vitro-synthesized SAMDC mRNA in Xenopus early embryos, and found that the maternally preset program of apoptosis occurs in cleavage stage embryos, which is executed when embryos reach the stage of MBT. In the present article, we first summarize results on SAMDC and the maternal program of apoptosis, and then describe our studies on small-molecular-weight substances like polyamines, amino acids, and amines in Xenopus embryos. Finally, we summarize our studies on weak bases, especially on ammonium ion, as the specific inhibitor of ribosomal RNA synthesis in Xenopus embryonic cells.

  14. Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis

    PubMed Central

    Bandín, Sandra; Morona, Ruth; González, Agustín

    2015-01-01

    Previous developmental studies of the thalamus (alar part of the diencephalic prosomere p2) have defined the molecular basis for the acquisition of the thalamic competence (preparttening), the subsequent formation of the secondary organizer in the zona limitans intrathalamica, and the early specification of two anteroposterior domains (rostral and caudal progenitor domains) in response to inducing activities and that are shared in birds and mammals. In the present study we have analyzed the embryonic development of the thalamus in the anuran Xenopus laevis to determine conserved or specific features in the amphibian diencephalon. From early embryonic stages to the beginning of the larval period, the expression patterns of 22 markers were analyzed by means of combined In situ hybridization (ISH) and immunohistochemical techniques. The early genoarchitecture observed in the diencephalon allowed us to discern the boundaries of the thalamus with the prethalamus, pretectum, and epithalamus. Common molecular features were observed in the thalamic prepatterning among vertebrates in which Wnt3a, Fez, Pax6 and Xiro1 expression were of particular importance in Xenopus. The formation of the zona limitans intrathalamica was observed, as in other vertebrates, by the progressive expression of Shh. The largely conserved expressions of Nkx2.2 in the rostral thalamic domain vs. Gbx2 and Ngn2 (among others) in the caudal domain strongly suggest the role of Shh as morphogen in the amphibian thalamus. All these data showed that the molecular characteristics observed during preparttening and patterning in the thalamus of the anuran Xenopus (anamniote) share many features with those described during thalamic development in amniotes (common patterns in tetrapods) but also with zebrafish, strengthening the idea of a basic organization of this diencephalic region across vertebrates. PMID:26321920

  15. Xenopus in Space and Time: Fossils, Node Calibrations, Tip-Dating, and Paleobiogeography.

    PubMed

    Cannatella, David

    2015-01-01

    Published data from DNA sequences, morphology of 11 extant and 15 extinct frog taxa, and stratigraphic ranges of fossils were integrated to open a window into the deep-time evolution of Xenopus. The ages and morphological characters of fossils were used as independent datasets to calibrate a chronogram. We found that DNA sequences, either alone or in combination with morphological data and fossils, tended to support a close relationship between Xenopus and Hymenochirus, although in some analyses this topology was not significantly better than the Pipa + Hymenochirus topology. Analyses that excluded DNA data found strong support for the Pipa + Hymenochirus tree. The criterion for selecting the maximum age of the calibration prior influenced the age estimates, and our age estimates of early divergences in the tree of frogs are substantially younger than those of published studies. Node-dating and tip-dating calibrations, either alone or in combination, yielded older dates for nodes than did a root calibration alone. Our estimates of divergence times indicate that overwater dispersal, rather than vicariance due to the splitting of Africa and South America, may explain the presence of Xenopus in Africa and its closest fossil relatives in South America.

  16. Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in early Xenopus embryos induces cell dissociation and inhibits transition from the blastula to gastrula stage.

    PubMed

    Shibata, M; Shinga, J; Yasuhiko, Y; Kai, M; Miura, K; Shimogori, T; Kashiwagi, K; Igarashi, K; Shiokawa, K

    1998-07-01

    Xenopus early embryos contain relatively low levels of S-adenosyl-methionine decarboxylase (SAMDC) and its mRNA. When SAMDC mRNA was injected into Xenopus embryos, it was preserved until the blastula stage and induced a large increase in SAMDC activity. The SAMDC-overexpressed embryos developed normally until the blastula stage but at the early gastrula stage cells which received the mRNA, dissociated autonomously and stopped synthesizing protein. In a hypotonic medium, the dissociated cells, and hence whole embryos, autolyzed. However, in isotonic media dissociated cells did not autolyze, although they did not divide and their DNA and RNA synthesis activity was greatly inhibited. The effects of SAMDC overexpression were abolished by coinjection of ethylglyoxal-bis(guanylhydrazone) (EGBG), a specific inhibitor of SAMDC. In SAMDC-overexpressed embryos the level of putrescine decreased and that of spermidine increased, though to limited extents, resulting in a considerable decrease in the putrescine/spermidine ratio. However, direct injection of spermidine did not mimic the effect of SAMDC overexpression, and putrescine coinjected with SAMDC mRNA to maintain the normal putrescine/spermidine ratio did not rescue the embryos. Conversely, the level of S-adenosylmethionine (SAM) greatly decreased and coinjection of SAM, which restored the level of SAM, rescued the embryos. We concluded that in SAMDC-overexpressed embryos a SAM-deficient state was induced and this caused cell dissociation and inhibition of transition from the blastula to gastrula stage. We suggest that the SAM-deficient embryos obtained in the present study provide a unique system for studying the cellular control mechanism underlying the blastula-gastrula transition.

  17. Association phenothiazine and laser on growth of C. tropicalis fluconazole-resistant

    NASA Astrophysics Data System (ADS)

    Gomes Júnior, Rafael Araújo; de Oliveira, Susana C. P. S.; Monteiro, Juliana S. C.; Santos, Gustavo M. P.; Sampaio, Fernando J. P.; Gesteira, Maria F. M.; Zanin, Fátima A. A.; Brugnera, Aldo; Pinheiro, Antônio Luiz B.; Vannier-Santos, Marcos A.

    2014-02-01

    Candidiasis is caused by Candida species found on the skin, gastrointestinal tract and mucous cavities of the humans and may be acute, chronic, localized or systemic. Alhough C. albicans is the species most often identified as responsible for this type of infection C. Tropicalis has been considered an emerging cause. The effect of the association of phenothiazine - PTZ and laser on fluconazole-resistant C.tropicalis growth was tested. 2.5 x 106 CFU/mL 100mg/mL of phenothiazine with the pre-irradiation time of 10 min were irradiated with laser light (660 nm; 4.8 and 12 J/cm2 (L1 and L2 respectively) 40 mW) followed by incubation in RPMI for 24h. The following conditions were tested: control (control), laser (L1 and L2), phenothiazine (F1 and F2), and PACT (F1L1 and F2L2). Statistically significant diferences were seen between groups (L-F +) and (F + L +) for both conditions of the laser, with a growth inhibition of the yeast around 67 and 51%, respectively, however, when using only the laser there was an increase of 18% in the survival of these cells. PACT's efficacy on fluconazole-resistant C. tropicalis depended on both the time of pre-irradiation and concentration of the PTZ.

  18. A Fatal Case of Candida auris and Candida tropicalis Candidemia in Neutropenic Patient.

    PubMed

    Mohd Tap, Ratna; Lim, Teck Choon; Kamarudin, Nur Amalina; Ginsapu, Stephanie Jane; Abd Razak, Mohd Fuat; Ahmad, Norazah; Amran, Fairuz

    2018-06-01

    We report a fatal case of Candida auris that was involved in mixed candidemia with Candida tropicalis, isolated from the blood of a neutropenic patient. Identification of both isolates was confirmed by amplification and sequencing of internal transcribed spacer and D1/D2 domain of large subunit in rRNA gene. Antifungal susceptibility test by E-test method revealed that C. auris was resistant to amphotericin B, anidulafungin, caspofungin, fluconazole, itraconazole and voriconazole. On the other hand, C. tropicalis was sensitive to all antifungal tested. The use of chromogenic agar as isolation media is vital in detecting mixed candidemia.

  19. Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution of tetrapod trunk myogenesis.

    PubMed

    Grimaldi, Annalisa; Tettamanti, Gianluca; Martin, Benjamin L; Gaffield, William; Pownall, Mary E; Hughes, Simon M

    2004-07-01

    In tetrapod phylogeny, the dramatic modifications of the trunk have received less attention than the more obvious evolution of limbs. In somites, several waves of muscle precursors are induced by signals from nearby tissues. In both amniotes and fish, the earliest myogenesis requires secreted signals from the ventral midline carried by Hedgehog (Hh) proteins. To determine if this similarity represents evolutionary homology, we have examined myogenesis in Xenopus laevis, the major species from which insight into vertebrate mesoderm patterning has been derived. Xenopus embryos form two distinct kinds of muscle cells analogous to the superficial slow and medial fast muscle fibres of zebrafish. As in zebrafish, Hh signalling is required for XMyf5 expression and generation of a first wave of early superficial slow muscle fibres in tail somites. Thus, Hh-dependent adaxial myogenesis is the likely ancestral condition of teleosts, amphibia and amniotes. Our evidence suggests that midline-derived cells migrate to the lateral somite surface and generate superficial slow muscle. This cell re-orientation contributes to the apparent rotation of Xenopus somites. Xenopus myogenesis in the trunk differs from that in the tail. In the trunk, the first wave of superficial slow fibres is missing, suggesting that significant adaptation of the ancestral myogenic programme occurred during tetrapod trunk evolution. Although notochord is required for early medial XMyf5 expression, Hh signalling fails to drive these cells to slow myogenesis. Later, both trunk and tail somites develop a second wave of Hh-independent slow fibres. These fibres probably derive from an outer cell layer expressing the myogenic determination genes XMyf5, XMyoD and Pax3 in a pattern reminiscent of amniote dermomyotome. Thus, Xenopus somites have characteristics in common with both fish and amniotes that shed light on the evolution of somite differentiation. We propose a model for the evolutionary adaptation of

  20. Absence of Photoreactivating Enzyme in Candida albicans, Candida stellatoidea, and Candida tropicalis

    PubMed Central

    Miller, Glendon R.; Sarachek, Alvin

    1974-01-01

    In vitro assays demonstrate photoreactivating enzyme activity in extracts of Candida pseudotropicalis but not in extracts of Candida albicans, Candida stellatoidea, or Candida tropicalis. PMID:4604052

  1. Gene Expression in Pre-MBT Embryos and Activation of Maternally-Inherited Program of Apoptosis to be Executed at around MBT as a Fail-Safe Mechanism in Xenopus Early Embryogenesis

    PubMed Central

    Shiokawa, Koichiro; Aso, Mai; Kondo, Takeshi; Uchiyama, Hiroaki; Kuroyanagi, Shinsaku; Takai, Jun-Ichi; Takahashi, Senji; Kajitani, Masayuki; Kaito, Chikara; Sekimizu, Kazuhisa; Takayama, Eiji; Igarashi, Kazuei; Hara, Hiroshi

    2008-01-01

    S-adenosylmethionine decarboxylase (SAMDC) is an enzyme which converts S-adenosylmethione (SAM), a methyl donor, to decarboxylated SAM (dcSAM), an aminopropyl donor for polyamine biosynthesis. In our studies on gene expression control in Xenopus early embryogenesis, we cloned the mRNA for Xenopus SAMDC, and overexpressed the enzyme by microinjecting its mRNA into Xenopus fertilized eggs. In the mRNA-injected embryos, the level of SAMDC was enormously increased, the SAM was exhausted, and protein synthesis was greatly inhibited, but cellular polyamine content did not change appreciably. SAMDC-overexpressed embryos cleaved and developed normally up to the early blastula stage, but at the midblastula stage, or the stage of midblastula transition (MBT), all the embryos were dissociated into cells, and destroyed due to execution of apoptosis. During cleavage SAMDC-overexpressed embryos transcribed caspase-8 gene, and this was followed by activation of caspase-9. When we overexpressed p53 mRNA in fertilized eggs, similar apoptosis took place at MBT, but in this case, transcription of caspase-8 did not occur, however activation of caspase-9 took place. Apoptosis induced by SAMDC-overexpression was completely suppressed by Bcl-2, whereas apoptosis induced by p53 overexpression or treatments with other toxic agents was only partially rescued. When we injected SAMDC mRNA into only one blastomere of 8- to 32-celled embryos, descendant cells of the mRNA-injected blastomere were segregated into the blastocoel and underwent apoptosis within the blastocoel, although such embryos continued to develop and became tadpoles with various extents of anomaly, reflecting the developmental fate of the eliminated cells. Thus, embryonic cells appear to check themselves at MBT and if physiologically severely-damaged cells occur, they are eliminated from the embryo by activation and execution of the maternally-inherited program of apoptosis. We assume that the apoptosis executed at MBT is a

  2. Determination of notochord cells of Xenopus laevis.

    PubMed

    Zeng, M B

    1993-12-01

    In amphibians, numerous works of influences of the notochord on neighbouring tissues have been accumulated. However, on the contrary, scarcely any work is known about how the notochord is influenced by its neighbouring tissues and how it is determined. By using the experimental method of explantation and culturing in vitro, how the notochord is determined in the early development and whether the neighbouring tissues exert influences on it have been investigated. The results showed that the determination of notochord is a progressive process and the presumptive notochord of Xenopus appears to be a very good material to study influences of neighbouring tissues on the determination of the notochord.

  3. Evolution of Courtship Songs in Xenopus : Vocal Pattern Generation and Sound Production.

    PubMed

    Leininger, Elizabeth C; Kelley, Darcy B

    2015-01-01

    The extant species of African clawed frogs (Xenopus and Silurana) provide an opportunity to link the evolution of vocal characters to changes in the responsible cellular and molecular mechanisms. In this review, we integrate several robust lines of research: evolutionary trajectories of Xenopus vocalizations, cellular and circuit-level mechanisms of vocalization in selected Xenopus model species, and Xenopus evolutionary history and speciation mechanisms. Integrating recent findings allows us to generate and test specific hypotheses about the evolution of Xenopus vocal circuits. We propose that reduced vocal sex differences in some Xenopus species result from species-specific losses of sexually differentiated neural and neuromuscular features. Modification of sex-hormone-regulated developmental mechanisms is a strong candidate mechanism for reduced vocal sex differences.

  4. Hyperinnervation improves Xenopus laevis limb regeneration.

    PubMed

    Mitogawa, Kazumasa; Makanae, Aki; Satoh, Akira

    2018-01-15

    Xenopus laevis (an anuran amphibian) shows limb regeneration ability between that of urodele amphibians and that of amniotes. Xenopus frogs can initiate limb regeneration but fail to form patterned limbs. Regenerated limbs mainly consist of cone-shaped cartilage without any joints or branches. These pattern defects are thought to be caused by loss of proper expressions of patterning-related genes. This study shows that hyperinnervation surgery resulted in the induction of a branching regenerate. The hyperinnervated blastema allows the identification and functional analysis of the molecules controlling this patterning of limb regeneration. This paper focuses on the nerve affects to improve Xenopus limb patterning ability during regeneration. The nerve molecules, which regulate limb patterning, were also investigated. Blastemas grown in a hyperinnervated forelimb upregulate limb patterning-related genes (shh, lmx1b, and hoxa13). Nerves projecting their axons to limbs express some growth factors (bmp7, fgf2, fgf8, and shh). Inputs of these factors to a blastema upregulated some limb patterning-related genes and resulted in changes in the cartilage patterns in the regenerates. These results indicate that additional nerve factors enhance Xenopus limb patterning-related gene expressions and limb regeneration ability, and that bmp, fgf, and shh are candidate nerve substitute factors. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Candida tropicalis in a Neonatal Intensive Care Unit: Epidemiologic and Molecular Analysis of an Outbreak of Infection with an Uncommon Neonatal Pathogen

    PubMed Central

    Roilides, Emmanuel; Farmaki, Evangelia; Evdoridou, Joanna; Francesconi, Andrea; Kasai, Miki; Filioti, Joanna; Tsivitanidou, Maria; Sofianou, Danai; Kremenopoulos, George; Walsh, Thomas J.

    2003-01-01

    From June to July 1998, two episodes of Candida tropicalis fungemia occurred in the Aristotle University neonatal intensive care unit (ICU). To investigate this uncommon event, a prospective study of fungal colonization and infection was conducted. From December 1998 to December 1999, surveillance cultures of the oral cavities and perinea of the 593 of the 781 neonates admitted to the neonatal ICU who were expected to stay for >7 days were performed. Potential environmental reservoirs and possible risk factors for acquisition of C. tropicalis were searched for. Molecular epidemiologic studies by two methods of restriction fragment length polymorphism analysis and two methods of random amplified polymorphic DNA analysis were performed. Seventy-two neonates were colonized by yeasts (12.1%), of which 30 were colonized by Candida albicans, 17 were colonized by C. tropicalis, and 5 were colonized by Candida parapsilosis. From December 1998 to December 1999, 10 cases of fungemia occurred; 6 were due to C. parapsilosis, 2 were due to C. tropicalis, 1 was due to Candida glabrata, and 1 was due to Trichosporon asahii (12.8/1,000 admissions). Fungemia occurred more frequently in colonized than in noncolonized neonates (P < 0.0001). Genetic analysis of 11 colonization isolates and the two late blood isolates of C. tropicalis demonstrated two genotypes. One blood isolate and nine colonization isolates belonged to a single type. The fungemia/colonization ratio of C. parapsilosis (3/5) was greater than that of C. tropicalis (2/17, P = 0.05), other non-C. albicans Candida spp. (1/11, P = 0.02), or C. albicans (0/27, P = 0.05). Extensive environmental cultures revealed no common source of C. tropicalis or C. parapsilosis. There was neither prophylactic use of azoles nor other risk factors found for acquisition of C. tropicalis except for total parenteral nutrition. A substantial risk of colonization by non-C. albicans Candida spp. in the neonatal ICU may lead to a preponderance of

  6. Propagation method of saving valuable strains from a Mycobacterium liflandii infection in Western clawed frogs (Silurana tropicalis).

    PubMed

    Chai, Norin; Bronchain, Odile; Panteix, Gilles; Godreuil, Sylvain; de Medeiros, Christophe; Saunders, Richard; Bouts, Tim; de Luze, Amaury

    2012-03-01

    Mycobacterium liflandii has been responsible for an emerging infection reported in the international trade of Western clawed frogs (Silurana tropicalis). This study shows that this mycolactone-producing Mycobacterium (MPM) has expanded its distribution range to France. The results of this study suggest that the use of in vitro fertilization to maintain genetic lines could be a temporary solution for valuable S. tropicalis propagation.

  7. Temperature-independent energy expenditure in early development of the African clawed frog Xenopus laevis.

    PubMed

    Nagano, Yatsuhisa; Ode, Koji L

    2014-08-01

    The thermal dissipation of activated eggs and embryos undergoing development from cleavage to the tailbud stage of the African clawed frog Xenopus laevis was measured as a function of incubation time at temperatures ranging from T = 288.2 K to 295.2 K, using a high-precision isothermal calorimeter. A23187-mediated activation of mature eggs induced stable periodic thermal oscillations lasting for 8-34 h. The frequency agreed well with the cell cycle frequency of initial cleavages at the identical temperature. In the developing embryo, energy metabolism switches from embryonic to adult features during gastrulation. The thermal dissipation after gastrulation fit well with a single modified Avrami equation, which has been used for modeling crystal-growth. Both the oscillation frequency of the activated egg and the growth rate of the embryo strongly depend on temperature with the same apparent activation energy of approximately 87 kJ mole(-1). This result suggests that early development proceeds as a single biological time, attributable to a single metabolic rate. A temperature-independent growth curve was derived by scaling the thermogram to the biological time, indicating that the amount of energy expenditure during each developmental stage is constant over the optimal temperature range.

  8. Repeat-Associated Fission Yeast-Like Regional Centromeres in the Ascomycetous Budding Yeast Candida tropicalis

    PubMed Central

    Chatterjee, Gautam; Sankaranarayanan, Sundar Ram; Guin, Krishnendu; Thattikota, Yogitha; Padmanabhan, Sreedevi; Siddharthan, Rahul; Sanyal, Kaustuv

    2016-01-01

    The centromere, on which kinetochore proteins assemble, ensures precise chromosome segregation. Centromeres are largely specified by the histone H3 variant CENP-A (also known as Cse4 in yeasts). Structurally, centromere DNA sequences are highly diverse in nature. However, the evolutionary consequence of these structural diversities on de novo CENP-A chromatin formation remains elusive. Here, we report the identification of centromeres, as the binding sites of four evolutionarily conserved kinetochore proteins, in the human pathogenic budding yeast Candida tropicalis. Each of the seven centromeres comprises a 2 to 5 kb non-repetitive mid core flanked by 2 to 5 kb inverted repeats. The repeat-associated centromeres of C. tropicalis all share a high degree of sequence conservation with each other and are strikingly diverged from the unique and mostly non-repetitive centromeres of related Candida species—Candida albicans, Candida dubliniensis, and Candida lusitaniae. Using a plasmid-based assay, we further demonstrate that pericentric inverted repeats and the underlying DNA sequence provide a structural determinant in CENP-A recruitment in C. tropicalis, as opposed to epigenetically regulated CENP-A loading at centromeres in C. albicans. Thus, the centromere structure and its influence on de novo CENP-A recruitment has been significantly rewired in closely related Candida species. Strikingly, the centromere structural properties along with role of pericentric repeats in de novo CENP-A loading in C. tropicalis are more reminiscent to those of the distantly related fission yeast Schizosaccharomyces pombe. Taken together, we demonstrate, for the first time, fission yeast-like repeat-associated centromeres in an ascomycetous budding yeast. PMID:26845548

  9. Candida tropicalis from veterinary and human sources shows similar in vitro hemolytic activity, antifungal biofilm susceptibility and pathogenesis against Caenorhabditis elegans.

    PubMed

    Brilhante, Raimunda Sâmia Nogueira; Oliveira, Jonathas Sales de; Evangelista, Antônio José de Jesus; Serpa, Rosana; Silva, Aline Lobão da; Aguiar, Felipe Rodrigues Magalhães de; Pereira, Vandbergue Santos; Castelo-Branco, Débora de Souza Collares Maia; Pereira-Neto, Waldemiro Aquino; Cordeiro, Rossana de Aguiar; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha

    2016-08-30

    The aim of this study was to evaluate the in vitro hemolytic activity and biofilm antifungal susceptibility of veterinary and human Candida tropicalis strains, as well as their pathogenesis against Caenorhabditis elegans. Twenty veterinary isolates and 20 human clinical isolates of C. tropicalis were used. The strains were evaluated for their hemolytic activity and biofilm production. Biofilm susceptibility to itraconazole, fluconazole, voriconazole, amphotericin B and caspofungin was assessed using broth microdilution assay. The in vivo evaluation of strain pathogenicity was investigated using the nematode C. elegans. Hemolytic factor was observed in 95% of the strains and 97.5% of the isolates showed ability to form biofilm. Caspofungin and amphotericin B showed better results than azole antifungals against mature biofilms. Paradoxical effect on mature biofilm metabolic activity was observed at elevated concentrations of caspofungin (8-64μg/mL). Azole antifungals were not able to inhibit mature C. tropicalis biofilms, even at the higher tested concentrations. High mortality rates of C. elegans were observed when the worms were exposed to with C. tropicalis strains, reaching up to 96%, 96h after exposure of the worms to C. tropicalis strains. These results reinforce the high pathogenicity of C. tropicalis from veterinary and human sources and show the effectiveness of caspofungin and amphotericin B against mature biofilms of this species. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Slowed Relaxation in Fatigued Skeletal Muscle Fibers of Xenopus and Mouse

    PubMed Central

    Westerblad, Håkan; Lännergren, Jan; Allen, David G.

    1997-01-01

    Slowing of relaxation is an important characteristic of skeletal muscle fatigue. The aim of the present study was to quantify the relative contribution of altered Ca2+ handling (calcium component) and factors down-stream to Ca2+ (cross-bridge component) to the slowing of relaxation in fatigued fibers of Xenopus and mouse. Two types of Xenopus fibers were used: easily fatigued, type 1 fibers and fatigue resistant, type 2 fibers. In these Xenopus fibers the free myoplasmic [Ca2+] ([Ca2+]i) was measured with indo-1, and the relaxation of Ca2+-derived force, constructed from tetanic [Ca2+]i records and in vivo [Ca2+]i-force curves, was analyzed. An alternative method was used in both Xenopus and mouse fibers: fibers were rapidly shortened during the initial phase of relaxation, and the time to the peak of force redevelopment was measured. These two methods gave similar results and showed proportional slowing of the calcium and cross-bridge components of relaxation in both fatigued type 1 and type 2 Xenopus fibers, whereas only the cross-bridge component was slowed in fatigued mouse fibers. Ca2+ removal from the myoplasm during relaxation was markedly less effective in Xenopus fibers as compared to mouse fibers. Fatigued Xenopus fibers displayed a reduced rate of sarcoplasmic reticulum Ca2+ uptake and increased sarcoplasmic reticulum Ca2+ leak. Some fibers were stretched at various times during relaxation. The resistance to these stretches was increased during fatigue, especially in Xenopus fibers, which indicates that longitudinal movements during relaxation had become less pronounced and this might contribute to the increased cross-bridge component of relaxation in fatigue. In conclusion, slowing of relaxation in fatigued Xenopus fibers is caused by impaired Ca2+ handling and altered cross-bridge kinetics, whereas the slowing in mouse fibers is only due to altered cross-bridge kinetics. PMID:9089444

  11. RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development.

    PubMed

    Pfirrmann, Thorsten; Villavicencio-Lorini, Pablo; Subudhi, Abinash K; Menssen, Ruth; Wolf, Dieter H; Hollemann, Thomas

    2015-01-01

    In Saccharomyces cerevisiae the Gid-complex functions as an ubiquitin-ligase complex that regulates the metabolic switch between glycolysis and gluconeogenesis. In higher organisms six conserved Gid proteins form the CTLH protein-complex with unknown function. Here we show that Rmnd5, the Gid2 orthologue from Xenopus laevis, is an ubiquitin-ligase embedded in a high molecular weight complex. Expression of rmnd5 is strongest in neuronal ectoderm, prospective brain, eyes and ciliated cells of the skin and its suppression results in malformations of the fore- and midbrain. We therefore suggest that Xenopus laevis Rmnd5, as a subunit of the CTLH complex, is a ubiquitin-ligase targeting an unknown factor for polyubiquitination and subsequent proteasomal degradation for proper fore- and midbrain development.

  12. Multilocus Sequence Typing Reveals a New Cluster of Closely Related Candida tropicalis Genotypes in Italian Patients With Neurological Disorders.

    PubMed

    Scordino, Fabio; Giuffrè, Letterio; Barberi, Giuseppina; Marino Merlo, Francesca; Orlando, Maria Grazia; Giosa, Domenico; Romeo, Orazio

    2018-01-01

    Candida tropicalis is a pathogenic yeast that has emerged as an important cause of candidemia especially in elderly patients with hematological malignancies. Infections caused by this species are mainly reported from Latin America and Asian-Pacific countries although recent epidemiological data revealed that C. tropicalis accounts for 6-16.4% of the Candida bloodstream infections (BSIs) in Italy by representing a relevant issue especially for patients receiving long-term hospital care. The aim of this study was to describe the genetic diversity of C. tropicalis isolates contaminating the hands of healthcare workers (HCWs) and hospital environments and/or associated with BSIs occurring in patients with different neurological disorders and without hematological disease. A total of 28 C. tropicalis isolates were genotyped using multilocus sequence typing analysis of six housekeeping ( ICL1, MDR1, SAPT2, SAPT4, XYR1 , and ZWF1 ) genes and data revealed the presence of only eight diploid sequence types (DSTs) of which 6 (75%) were completely new. Four eBURST clonal complexes (CC2, CC10, CC11, and CC33) contained all DSTs found in this study and the CC33 resulted in an exclusive, well-defined, clonal cluster from Italy. In conclusion, C. tropicalis could represent an important cause of BSIs in long-term hospitalized patients with no underlying hematological disease. The findings of this study also suggest a potential horizontal transmission of a specific C. tropicalis clone through hands of HCWs and expand our understanding of the molecular epidemiology of this pathogen whose population structure is still far from being fully elucidated as its complexity increases as different categories of patients and geographic areas are examined.

  13. Anosmin-1 is essential for neural crest and cranial placodes formation in Xenopus.

    PubMed

    Bae, Chang-Joon; Hong, Chang-Soo; Saint-Jeannet, Jean-Pierre

    2018-01-15

    During embryogenesis vertebrates develop a complex craniofacial skeleton associated with sensory organs. These structures are primarily derived from two embryonic cell populations the neural crest and cranial placodes, respectively. Neural crest cells and cranial placodes are specified through the integrated action of several families of signaling molecules, and the subsequent activation of a complex network of transcription factors. Here we describe the expression and function of Anosmin-1 (Anos1), an extracellular matrix protein, during neural crest and cranial placodes development in Xenopus laevis. Anos1 was identified as a target of Pax3 and Zic1, two transcription factors necessary and sufficient to generate neural crest and cranial placodes. Anos1 is expressed in cranial neural crest progenitors at early neurula stage and in cranial placode derivatives later in development. We show that Anos1 function is required for neural crest and sensory organs development in Xenopus, consistent with the defects observed in Kallmann syndrome patients carrying a mutation in ANOS1. These findings indicate that anos1 has a conserved function in the development of craniofacial structures, and indicate that anos1-depleted Xenopus embryos represent a useful model to analyze the pathogenesis of Kallmann syndrome. Copyright © 2017. Published by Elsevier Inc.

  14. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis.

    PubMed

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-08-19

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60-80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h(-1)). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions.

  15. Conversion of xylose to ethanol under aerobic conditions by Candida tropicalis

    Treesearch

    T. W. Jeffries

    1981-01-01

    Candida tropicalis converts xylose to ethanol under aerobic, but not anaerobic, conditions. Ethanol production lags behind growth and is accelerated by increased aeration. Adding xylose to active cultures stimulates ethanol production as does serial subculture in a medium containing xylose as a sole carbon source.

  16. Protoplasts Obtained from Candida tropicalis Grown on Alkanes

    PubMed Central

    Lebeault, J. M.; Roche, B.; Duvnjak, Z.; Azoulay, E.

    1969-01-01

    A method for the preparation of protoplasts from Candida tropicalis cultivated on n-tetradecane is described. This essentially consists of replacing the mannitol-sorbitol solution of the classical helicase technique by 1 m magnesium sulfate and lowering the pH to 4.1 during incubation in the presence of helicase. The protoplasts thus prepared behave like intact cells and are capable of consuming oxygen in the presence of n-tetradecane, n-decane, 1-decanol, and glucose. Images PMID:5361212

  17. Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development

    PubMed Central

    Fox, Catherine A.; Dowdle, Megan E.; Blaser, Susanne Imboden; Chung, Andy; Park, Sookhee

    2017-01-01

    The selective translation of maternal mRNAs encoding cell-fate determinants drives the earliest decisions of embryogenesis that establish the vertebrate body plan. This chapter will discuss studies in Xenopus laevis that provide insights into mechanisms underlying this translational control. Xenopus has been a powerful model organism for many discoveries relevant to the translational control of maternal mRNAs because of the large size of its oocytes and eggs that allow for microinjection of molecules and the relative ease of manipulating the oocyte to egg transition (maturation) and fertilization in culture. Consequently, many key studies have focused on the expression of maternal mRNAs during the oocyte to egg transition (the meiotic cell cycle) and the rapid cell divisions immediately following fertilization. This research has made seminal contributions to our understanding of translational regulatory mechanisms, but while some of the mRNAs under consideration at these stages encode cell-fate determinants, many encode cell cycle regulatory proteins that drive these early cell cycles. In contrast, while maternal mRNAs encoding key developmental (i.e., cell-fate) regulators that function after the first cleavage stages may exploit aspects of these foundational mechanisms, studies reveal that these mRNAs must also rely on distinct and, as of yet, incompletely understood mechanisms. These findings are logical because the functions of such developmental regulatory proteins have requirements distinct from cell cycle regulators, including becoming relevant only after fertilization and then only in specific cells of the embryo. Indeed, key maternal cell-fate determinants must be made available in exquisitely precise amounts (usually low), only at specific times and in specific cells during embryogenesis. To provide an appreciation for the regulation of maternal cell-fate determinant expression, an overview of the maternal phase of Xenopus embryogenesis will be presented

  18. Seeing the future: using Xenopus to understand eye regeneration.

    PubMed

    Tseng, Ai-Sun

    2017-01-01

    Studies of Xenopus eye development have contributed considerably to the understanding of vertebrate neurogenesis, including eye field specification, cell fate determination and identification of genes critical for eye formation. This knowledge has served as a solid foundation for cellular and molecular examinations of the robust regenerative capacity of the Xenopus eye. The retina, lens, and the optic nerve are capable of regeneration after injury in both larval and adult stages. Here, we discuss the current models for studying eye regeneration in Xenopus and their potential applications for providing insights into human eye diseases. As Xenopus has many of the same tools that are available for other regeneration models, we thus highlight the distinct strengths and versatility of this organism that make it especially suited for extrapolating and testing strategies aimed at promoting regeneration and repair in eye tissues. Furthermore, we outline a promising future for the use of new techniques and approaches to address outstanding questions in understanding eye regeneration. © 2017 Wiley Periodicals, Inc.

  19. The Nedd4 binding protein 3 is required for anterior neural development in Xenopus laevis.

    PubMed

    Kiem, Lena-Maria; Dietmann, Petra; Linnemann, Alexander; Schmeisser, Michael J; Kühl, Susanne J

    2017-03-01

    The Fezzin family member Nedd4-binding protein 3 (N4BP3) is known to regulate axonal and dendritic branching. Here, we show that n4bp3 is expressed in the neural tissue of the early Xenopus laevis embryo including the eye, the brain and neural crest cells. Knockdown of N4bp3 in the Xenopus anterior neural tissue results in severe developmental impairment of the eye, the brain and neural crest derived cranial cartilage structures. Moreover, we demonstrate that N4bp3 depletion leads to a significant reduction of both eye and brain specific marker genes and reduced neural crest cell migration. Finally, we demonstrate an impact of N4bp3 deficiency on cell apoptosis and proliferation. Our studies indicate that N4bp3 is required for early anterior neural development of vertebrates. This is in line with a study implicating that genetic disruption of N4BP3 in humans might be related to neurodevelopmental disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. DNA transformations of Candida tropicalis with replicating and integrative vectors.

    PubMed

    Sanglard, D; Fiechter, A

    1992-12-01

    The alkane-assimilating yeast Candida tropicalis was used as a host for DNA transformations. A stable ade2 mutant (Ha900) obtained by UV-mutagenesis was used as a recipient for different vectors carrying selectable markers. A first vector, pMK16, that was developed for the transformation of C. albicans and carries an ADE2 gene marker and a Candida autonomously replicating sequence (CARS) element promoting autonomous replication, was compatible for transforming Ha900. Two transformant types were observed: (i) pink transformants which easily lose pMK16 under non-selective growth conditions; (ii) white transformants, in which the same plasmid exhibited a higher mitotic stability. In both cases pMK16 could be rescued from these cells in Escherichia coli. A second vector, pADE2, containing the isolated C. tropicalis ADE2, gene, was used to transform Ha900. This vector integrated in the yeast genome at homologous sites of the ade2 locus. Different integration types were observed at one or both ade2 alleles in single or in tandem repeats.

  1. Dynamic Properties of Electrotonic Coupling between Cells of Early Xenopus Embryos

    PubMed Central

    DiCaprio, R. A.; French, A. S.; Sanders, E. J.

    1974-01-01

    Frequency response functions were measured between the cells of Xenopus laevis embryos during the first two cleavage stages. Linear systems theory was then used to produce electronic models which account for the electrical behavior of the systems. Coupling between the cells may be explained by models which have simple resistive elements joining each cell to its neighbors. The vitelline, or fertilization, membrane which surrounds the embryos has no detectable resistance to the passage of electric current. The electrical properties of the four-cell embryo can only be explained by the existence of individual junctions linking each pair of cells. This arrangement suggests that electrotonic coupling is important in the development of the embryos, at least until the four-cell stage. ImagesFIGURE 5FIGURE 14FIGURE 15 PMID:19431351

  2. ADAM13 Induces Cranial Neural Crest by Cleaving Class B Ephrins and Regulating Wnt Signaling

    PubMed Central

    Wei, Shuo; Xu, Guofeng; Bridges, Lance C.; Williams, Phoebe; White, Judith M.; DeSimone, Douglas W.

    2010-01-01

    SUMMARY The cranial neural crest (CNC) are multipotent embryonic cells that contribute to craniofacial structures and other cells and tissues of the vertebrate head. During embryogenesis, CNC is induced at the neural plate boundary through the interplay of several major signaling pathways. Here we report that the metalloproteinase activity of ADAM13 is required for early induction of CNC in Xenopus. In both cultured cells and X. tropicalis embryos, membrane-bound Ephrins (Efns) B1 and B2 were identified as substrates for ADAM13. ADAM13 upregulates canonical Wnt signaling and early expression of the transcription factor snail2, whereas EfnB1 inhibits the canonical Wnt pathway and snail2 expression. We propose that by cleaving class B Efns, ADAM13 promotes canonical Wnt signaling and early CNC induction. PMID:20708595

  3. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis

    PubMed Central

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-01-01

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60–80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h−1). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions. PMID:26295411

  4. Developing Xenopus Laevis as a Model to Screen Drugs for Fragile X Syndrome

    DTIC Science & Technology

    2014-06-01

    demonstrated the capacity to rescue the decreased FMRP expression by gene delivery. We characterized an innate visually-guided avoidance behavior in tadpoles ... tadpole is a unique model system that allows easy access to the nervous system at early stages of development, is amenable to in vivo gene...established quantitative in vivo imaging methods to knockdown and assay synthesis of FMRP in Xenopus tadpole brains. We also established 2 behavioral

  5. Identification of embryonic pancreatic genes using Xenopus DNA microarrays.

    PubMed

    Hayata, Tadayoshi; Blitz, Ira L; Iwata, Nahoko; Cho, Ken W Y

    2009-06-01

    The pancreas is both an exocrine and endocrine endodermal organ involved in digestion and glucose homeostasis. During embryogenesis, the anlagen of the pancreas arise from dorsal and ventral evaginations of the foregut that later fuse to form a single organ. To better understand the molecular genetics of early pancreas development, we sought to isolate markers that are uniquely expressed in this tissue. Microarray analysis was performed comparing dissected pancreatic buds, liver buds, and the stomach region of tadpole stage Xenopus embryos. A total of 912 genes were found to be differentially expressed between these organs during early stages of organogenesis. K-means clustering analysis predicted 120 of these genes to be specifically enriched in the pancreas. Of these, we report on the novel expression patterns of 24 genes. Our analyses implicate the involvement of previously unsuspected signaling pathways during early pancreas development. Developmental Dynamics 238:1455-1466, 2009. (c) 2009 Wiley-Liss, Inc.

  6. Asymmetries in Cell Division, Cell Size, and Furrowing in the Xenopus laevis Embryo.

    PubMed

    Tassan, Jean-Pierre; Wühr, Martin; Hatte, Guillaume; Kubiak, Jacek

    2017-01-01

    Asymmetric cell divisions produce two daughter cells with distinct fate. During embryogenesis, this mechanism is fundamental to build tissues and organs because it generates cell diversity. In adults, it remains crucial to maintain stem cells. The enthusiasm for asymmetric cell division is not only motivated by the beauty of the mechanism and the fundamental questions it raises, but has also very pragmatic reasons. Indeed, misregulation of asymmetric cell divisions is believed to have dramatic consequences potentially leading to pathogenesis such as cancers. In diverse model organisms, asymmetric cell divisions result in two daughter cells, which differ not only by their fate but also in size. This is the case for the early Xenopus laevis embryo, in which the two first embryonic divisions are perpendicular to each other and generate two pairs of blastomeres, which usually differ in size: one pair of blastomeres is smaller than the other. Small blastomeres will produce embryonic dorsal structures, whereas the larger pair will evolve into ventral structures. Here, we present a speculative model on the origin of the asymmetry of this cell division in the Xenopus embryo. We also discuss the apparently coincident asymmetric distribution of cell fate determinants and cell-size asymmetry of the 4-cell stage embryo. Finally, we discuss the asymmetric furrowing during epithelial cell cytokinesis occurring later during Xenopus laevis embryo development.

  7. Regulation of Thyroid Hormone-, Oestrogen- and Androgen-Related Genes by Triiodothyronine in the Brain of Silurana tropicalis

    PubMed Central

    Duarte-Guterman, Paula; Trudeau, Vance L

    2010-01-01

    Amphibian metamorphosis is an excellent example of hormone-dependent control of development. Thyroid hormones (THs) regulate almost all aspects of metamorphosis, including brain development and larval neuroendocrine function. Sex steroids are also important for early brain function, although little is known about interactions between the two hormonal systems. In the present study, we established brain developmental profiles for thyroid hormone receptors (tralpha and trbeta), deiodinases (dio1, dio2 and dio3), aromatase (cyp19) mRNA and activity, oestrogen receptors (eralpha and erbeta), androgen receptor (ar) and 5α-reductases (srd5alpha1 and srd5alpha2) mRNA during Silurana (Xenopus) tropicalis metamorphosis. Real-time reverse transcriptase-polymerase chain reaction analyses revealed that all of the genes were expressed in the brain and for most of the genes expression increased during development, with the exception of dio2, srd5alpha1 and srd5alpha2. The ability of premetamorphic tadpoles to respond to exogenous THs was used to investigate the regulation of TH- and sex steroid-related genes in the brain during development. Exposure of premetamorphic tadpoles to triiodothyronine (T3; 0, 0.5, 5 and 50 nm) for 48 h resulted in concentration-dependent increases in trbeta, dio2, dio3, eralpha and erbeta. Expression of srd5alpha2 showed large increases (six- to 7.5-fold) for all three concentrations of T3. No changes were detected in dio1, ar and cyp19 transcript levels; however, cyp19 activity increased significantly at 50 nm T3. The results obtained suggest that expression of TH-related genes and er during development could be regulated by rising levels of THs, as previously documented in Lithobates (Rana) pipiens. The positive regulation of srd5alpha by T3 in the brain suggests that endogenous TH levels help maintain or control the rate at which srd5alpha mRNA levels decrease as metamorphosis progresses. Finally, we have identified sex steroid-related genes that

  8. Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

    PubMed Central

    Deng, Li-Hong; Tang, Yong; Liu, Yun

    2014-01-01

    Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA) pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretreatment showed high delignification and efficient removal of acetyl group compounds without effect on cellulose and xylan content. Acetic acid was completely removed, and the content of phenolic compounds was reduced by 80%. Furthermore, kinetic behaviors of xylitol production by immobilized C. tropicalis cell were elucidated from corncob acid hydrolysate detoxified with SAA pretreatment and two-step adsorption method, respectively. The immobilized C. tropicalis cell showed higher productivity efficiency using the corncob acid hydrolysate as fermentation substrate after detoxification with SAA pretreatment than by two-step adsorption method in the five successive batch fermentation rounds. After the fifth round fermentation, about 60 g xylitol/L fermentation substrate was obtained for SAA pretreatment detoxification, while about 30 g xylitol/L fermentation substrate was obtained for two-step adsorption detoxification. PMID:25133211

  9. Xenopus: An Emerging Model for Studying Congenital Heart Disease

    PubMed Central

    Kaltenbrun, Erin; Tandon, Panna; Amin, Nirav M.; Waldron, Lauren; Showell, Chris; Conlon, Frank L.

    2011-01-01

    Congenital heart defects affect nearly 1% of all newborns and are a significant cause of infant death. Clinical studies have identified a number of congenital heart syndromes associated with mutations in genes that are involved in the complex process of cardiogenesis. The African clawed frog, Xenopus, has been instrumental in studies of vertebrate heart development and provides a valuable tool to investigate the molecular mechanisms underlying human congenital heart diseases. In this review, we discuss the methodologies that make Xenopus an ideal model system to investigate heart development and disease. We also outline congenital heart conditions linked to cardiac genes that have been well-studied in Xenopus and describe some emerging technologies that will further aid in the study of these complex syndromes. PMID:21538812

  10. Role of maternal Xenopus syntabulin in germ plasm aggregation and primordial germ cell specification.

    PubMed

    Oh, Denise; Houston, Douglas W

    2017-12-15

    The localization and organization of mitochondria- and ribonucleoprotein granule-rich germ plasm is essential for many aspects of germ cell development. In Xenopus, germ plasm is maternally inherited and is required for the specification of primordial germ cells (PGCs). Germ plasm is aggregated into larger patches during egg activation and cleavage and is ultimately translocated perinuclearly during gastrulation. Although microtubule dynamics and a kinesin (Kif4a) have been implicated in Xenopus germ plasm localization, little is known about how germ plasm distribution is regulated. Here, we identify a role for maternal Xenopus Syntabulin in the aggregation of germ plasm following fertilization. We show that depletion of sybu mRNA using antisense oligonucleotides injected into oocytes results in defects in the aggregation and perinuclear transport of germ plasm and subsequently in reduced PGC numbers. Using live imaging analysis, we also characterize a novel role for Sybu in the collection of germ plasm in vegetal cleavage furrows by surface contraction waves. Additionally, we show that a localized kinesin-like protein, Kif3b, is also required for germ plasm aggregation and that Sybu functionally interacts with Kif3b and Kif4a in germ plasm aggregation. Overall, these data suggest multiple coordinate roles for kinesins and adaptor proteins in controlling the localization and distribution of a cytoplasmic determinant in early development. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Passage through Tetrahymena tropicalis enhances the resistance to stress and the infectivity of Legionella pneumophila.

    PubMed

    Koubar, Mohamad; Rodier, Marie-Hélène; Garduño, Rafael A; Frère, Jacques

    2011-12-01

    Legionella pneumophila is a gram-negative bacterium prevalent in fresh water which accidentally infects humans and is responsible for the disease called legionellosis. Intracellular growth of L. pneumophila in Tetrahymena is inconsistent; in the species Tetrahymena tropicalis stationary-phase forms (SPFs) of L. pneumophila differentiate into mature intracellular forms (MIFs) without apparent bacterial replication and are expelled from the ciliate as pellets containing numerous MIFS. In the present work, we tested the impact of L. pneumophila passage through T. tropicalis. We observed that MIFs released from T. tropicalis are more resistant to various stresses than SPFs. Under our conditions, MIFs harboured a higher gentamicin resistance, maintained even after 3 months as pellets. Long-term survival essays revealed that MIFs survived better in a nutrient-poor environment than SFPs, as a reduction of only about 3 logs was observed after 4 months in the MIF population, whereas no cultivable SPFs were detected after 3 months in the same medium, corresponding to a loss of about 7 logs. We have also observed that MIFs are significantly more infectious in human pneumocyte cells compared with SPFs. These results strongly suggest a potential role of ciliates in increasing the risk of legionellosis. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, K.R.; Elinson, R.P.

    1988-05-01

    The body plan of Xenopus laevis can be respecified by briefly exposing early cleavage stage embryos to lithium. Such embryos develop exaggerated dorsoanterior structures such as a radial eye and cement gland. In this paper, we demonstrate that the enhanced dorsoanterior phenotype results from an overcommitment of mesoderm to dorsoanterior mesoderm. Histological and immunohistochemical observations reveal that the embryos have a greatly enlarged notochord with very little muscle tissue. In addition, they develop a radial, beating heart, suggesting that lithium also specifies anterior mesoderm and pharyngeal endoderm. Randomly oriented diametrically opposed marginal zone grafts from lithium-treated embryos, when transplanted intomore » ultraviolet (uv)-irradiated axis-deficient hosts, rescue dorsal axial structures. These transplantation experiments demonstrate that the entire marginal zone of the early gastrula consists of presumptive dorsal mesoderm. Vital dye marking experiments also indicate that the entire marginal zone maps to the prominent proboscis that is composed of chordamesoderm and represents the long axis of the embryo. These results suggest that lithium respecifies the mesoderm of Xenopus laevis embryos so that it differentiates into the Spemann organizer. We suggest that the origin of the dorsoanterior enhanced phenotypes generated by lithium and the dorsoanterior deficient phenotypes generated by uv irradiation are due to relative quantities of organizer. Our evidence demonstrates the existence of a continuum of body plan phenotypes based on this premise.« less

  13. Building the Future: Post-transcriptional Regulation of Cell Fate Decisions Prior to the Xenopus Midblastula Transition.

    PubMed

    Sheets, Michael D

    2015-01-01

    In all animals, a critical period in early development is when embryonic cells switch from relying solely upon maternally deposited RNAs and proteins to relying upon molecules encoded by the zygotic genome. Xenopus embryos have served as a model for examining this switch, as well as the maternally controlled stages that prepare for it. In Xenopus, the robust activation of zygotic transcription occurs at the 12th cleavage division and is referred to as the midblastula transition (MBT). Prior to MBT, gene expression is regulated by post-transcriptional events including mRNA and protein localization, protein post-translational modification, and mRNA translation. After the MBT, appropriate transcriptional regulation of the zygotic genome becomes critical and predominates. However, it is important to realize that the first key cell fate decisions that have profound impacts on development occur prior to the MBT and these are governed by regulating the expression of maternally deposited regulatory mRNAs and proteins. In this chapter, I will discuss post-transcriptional mechanisms that function during the maternal stages of Xenopus development with an emphasis on mechanisms known to directly modulate cell fate decisions. Emerging approaches and technologies that will help better understand this phase of development will also be discussed. © 2015 Elsevier Inc. All rights reserved.

  14. Light responses in rods of vitamin A-deprived Xenopus.

    PubMed

    Solessio, Eduardo; Umino, Yumiko; Cameron, David A; Loew, Ellis; Engbretson, Gustav A; Knox, Barry E; Barlow, Robert B

    2009-09-01

    Accumulation of free opsin by mutations in rhodopsin or insufficiencies in the visual cycle can lead to retinal degeneration. Free opsin activates phototransduction; however, the link between constitutive activation and retinal degeneration is unclear. In this study, the photoresponses of Xenopus rods rendered constitutively active by vitamin A deprivation were examined. Unlike their mammalian counterparts, Xenopus rods do not degenerate. Contrasting phototransduction in vitamin A-deprived Xenopus rods with phototransduction in constitutively active mammalian rods may provide new understanding of the mechanisms that lead to retinal degeneration. The photocurrents of Xenopus tadpole rods were measured with suction electrode recordings, and guanylate cyclase activity was measured with the IBMX (3-isobutyl-1-methylxanthine) jump technique. The amount of rhodopsin in rods was determined by microspectrophotometry. The vitamin A-deprived rod outer segments were 60% to 70% the length and diameter of the rods in age-matched animals. Approximately 90% of its opsin content was in the free or unbound form. Analogous to bleaching adaptation, the photoresponses were desensitized (10- to 20-fold) and faster. Unlike bleaching adaptation, the vitamin A-deprived rods maintained near normal saturating (dark) current densities by developing abnormally high rates of cGMP synthesis. Their rate of cGMP synthesis in the dark (15 seconds(-1)) was twofold greater than the maximum levels attainable by control rods ( approximately 7 seconds(-1)). Preserving circulating current density and response range appears to be an important goal for rod homeostasis. However, the compensatory changes associated with vitamin A deprivation in Xenopus rods come at the high metabolic cost of a 15-fold increase in basal ATP consumption.

  15. Both cyclin A and cyclin E have S-phase promoting (SPF) activity in Xenopus egg extracts.

    PubMed

    Strausfeld, U P; Howell, M; Descombes, P; Chevalier, S; Rempel, R E; Adamczewski, J; Maller, J L; Hunt, T; Blow, J J

    1996-06-01

    Extracts of activated Xenopus eggs in which protein synthesis has been inhibited support a single round of chromosomal DNA replication. Affinity-depletion of cyclin dependent kinases (Cdks) from these extracts blocks the initiation of DNA replication. We define 'S-phase promoting factor' (SPF) as the Cdk activity required for DNA replication in these Cdk-depleted extracts. Recombinant cyclins A and E, but not cyclin B, showed significant SPF activity. High concentrations of cyclin A promoted entry into mitosis, which inhibited DNA replication. In contrast, high concentrations of cyclin E1 promoted neither nuclear envelope disassembly nor full chromosome condensation. In the early embryo cyclin E1 complexes exclusively with Cdk2 and cyclin A is complexed predominantly with Cdc2; only later in development does cyclin A associate with Cdk2. We show that baculovirus-produced complexes of cyclin A-Cd2, cyclin A-Cdk2 and cyclin E-Cdk2 could each provide SPF activity. These results suggest that although in the early Xenopus embryo cyclin E1-Cdk2 is sufficient to support entry into S-phase, cyclin A-Cdc2 provides a significant additional quantity of SPF as its levels rise during S phase.

  16. Changes in Acetyl CoA Levels during the Early Embryonic Development of Xenopus laevis

    PubMed Central

    Tsuchiya, Yugo; Pham, Uyen; Hu, Wanzhou; Ohnuma, Shin-ichi; Gout, Ivan

    2014-01-01

    Coenzyme A (CoA) is a ubiquitous and fundamental intracellular cofactor. CoA acts as a carrier of metabolically important carboxylic acids in the form of CoA thioesters and is an obligatory component of a multitude of catabolic and anabolic reactions. Acetyl CoA is a CoA thioester derived from catabolism of all major carbon fuels. This metabolite is at a metabolic crossroads, either being further metabolised as an energy source or used as a building block for biosynthesis of lipids and cholesterol. In addition, acetyl CoA serves as the acetyl donor in protein acetylation reactions, linking metabolism to protein post-translational modifications. Recent studies in yeast and cultured mammalian cells have suggested that the intracellular level of acetyl CoA may play a role in the regulation of cell growth, proliferation and apoptosis, by affecting protein acetylation reactions. Yet, how the levels of this metabolite change in vivo during the development of a vertebrate is not known. We measured levels of acetyl CoA, free CoA and total short chain CoA esters during the early embryonic development of Xenopus laevis using HPLC. Acetyl CoA and total short chain CoA esters start to increase around midblastula transition (MBT) and continue to increase through stages of gastrulation, neurulation and early organogenesis. Pre-MBT embryos contain more free CoA relative to acetyl CoA but there is a shift in the ratio of acetyl CoA to CoA after MBT, suggesting a metabolic transition that results in net accumulation of acetyl CoA. At the whole-embryo level, there is an apparent correlation between the levels of acetyl CoA and levels of acetylation of a number of proteins including histones H3 and H2B. This suggests the level of acetyl CoA may be a factor, which determines the degree of acetylation of these proteins, hence may play a role in the regulation of embryogenesis. PMID:24831956

  17. Intracellular pH in early Xenopus embryos: its effect on current flow between blastomeres.

    PubMed Central

    Turin, L; Warner, A E

    1980-01-01

    1. Electrophysiological techniques were used to monitor the flow of electric current from one cell to the next in Xenopus laevis embryos between the 4-cell and early blastula stages of development. Intracellular pH and blastocoel pH were determined using pH-sensitive micro-electrodes. 2. The resting intracellular pH was 7.74+/-0.02 (S.E. of mean, n = 29); there were no systematic differences between developmental stages. Blastocoel cavity pH was 8.4+/-0.06 (S.E. of mean, n = 10). The intracellular buffer value was 18 m-equiv. H+/pH unit per litre. 3. In embryos treated with bicarbonate buffered Holtfreter solution equilibrated with 100% CO2 the intracellular pH fell to 6.3+/-0.17 (S.D., n = 8). The membrane potential fell and the input resistance increased. The size of the effect on membrane potential and input resistance varied. 4. From the 32-cell stage onwards current flow from one cell to the next was abolished when the intracellular pH fell to below 6.5; the effect was rapid in onset and completely reversible. At cleavage stages of development lowering intracellular pH with CO2 had no effect on current flow from cell to cell. 5. The relationship between intracellular pH and current flow from cell to cell was sigmoid and covered between 0.2 and 0.4 pH units. The pH at which current flow was completely abolished ranged from 6.85 to 6.4. 6. Alterations in extraembryonic pH over the range 5.8-7.5 had no effect on any parameter measured. 7. We conclude that lowering the intracellular pH increases the resistance of both non-junctional junctional membranes. The data do not allow us to extract the pH junctional conductance relationship. 8. Variations in intracellular pH may provide a useful tool for the study of the functional role of direct cell to cell communication in both adult organs and early embryos. PMID:6770084

  18. Dual-species relations between Candida tropicalis isolated from apple juice ultrafiltration membranes, with Escherichia coli O157:H7 and Salmonella sp.

    PubMed

    Tarifa, M C; Lozano, J E; Brugnoni, L I

    2015-02-01

    The objective of this study was to determine the interactions between common spoilage yeast, Candida tropicalis, isolated from ultrafiltration membranes, and Escherichia coli O157:H7 and Salmonella sp. on stainless steel surfaces. Single and dual-species attachment assays were performed on stainless steel at 25°C using apple juice as culture medium. The growth of Salmonella sp. rose when it was co-cultivated with C. tropicalis in dual biofilms at 16 and 24 h; the same effect was observed for E. coli O157:H7 at 24 h. The colonization of C. tropicalis on stainless steel surfaces was reduced when it was co-cultivated with both pathogenic bacteria, reducing C. tropicalis population by at least 1.0 log unit. Visualization by SEM demonstrated that E. coli O157:H7 and Salmonella sp. adhere closely to hyphal elements using anchorage structures to attach to the surface and other cells. These results suggest a route for potential increased survival of pathogens in juice processing environments. These support the notion that the species involved interact in mixed yeast-bacteria communities favouring the development of bacteria over yeast. This study support the plausibility that pathogen interactions with strong biofilm forming members of spoilage microbiota, such as C. tropicalis, might play an important role for the survival and dissemination of E. coli O157:H7 and Salmonella sp. in food-processing environments. © 2014 The Society for Applied Microbiology.

  19. Inference of genetic network of Xenopus frog egg: improved genetic algorithm.

    PubMed

    Wu, Shinq-Jen; Chou, Chia-Hsien; Wu, Cheng-Tao; Lee, Tsu-Tian

    2006-01-01

    An improved genetic algorithm (IGA) is proposed to achieve S-system gene network modeling of Xenopus frog egg. Via the time-courses training datasets from Michaelis-Menten model, the optimal parameters are learned. The S-system can clearly describe activative and inhibitory interaction between genes as generating and consuming process. We concern the mitotic control in cell-cycle of Xenopus frog egg to realize cyclin-Cdc2 and Cdc25 for MPF activity. The proposed IGA can achieve global search with migration and keep the best chromosome with elitism operation. The generated gene regulatory networks can provide biological researchers for further experiments in Xenopus frog egg cell cycle control.

  20. Transforming Growth Factor Beta (TGFβ) Is Produced by and Influences the Proliferative Response of Xenopus laevis Lymphocytes

    PubMed Central

    Haynes, Laura

    1993-01-01

    Both TGF/β2 and 5 have been described in the South African clawed frog Xenopus laevis and have been cloned from the tadpole-derived fibroblast cell line, XTC. Because TGFβ has such a profound inhibitory effect on the mammalian immune system, this study was performed to determine whether TGFβ: (a) has any in vitro effects on the growth of Xenopus lymphoblasts, and (b) is produced by mitogen-activated Xenopus lymphocytes. Following stimulation with mitogen or alloantigen, T lymphocytes from Xenopus secrete a T-cell growth factor (TCGF) that is functionally homologous to mammalian interleukin-2 (IL-2). Both recombinant human TGFβ1 and Xenopus TGFβ5 inhibit TCGF-induced proliferation of Xenopus splenic blasts and this inhibition can be reversed with anti-pan TGFβ antiserum. The Xenopus mitogen-induced saturated ammonium sulfate precipitated TCGF-containing supernatant (SAS TCGF SN) also contains latent TGFβ as assayed on mink lung fibroblasts and Xenopus splenic blasts, and experiments utilizing anti-TGFβ antiserum showed that only TGFβ5 is present in this supernatant. PMID:8281035

  1. HNF1(beta) is required for mesoderm induction in the Xenopus embryo.

    PubMed

    Vignali, R; Poggi, L; Madeddu, F; Barsacchi, G

    2000-04-01

    XHNF1(&bgr;) is a homeobox-containing gene initially expressed at the blastula stage in the vegetal part of the Xenopus embryo. We investigated its early role by functional ablation, through mRNA injection of an XHNF1(beta)/engrailed repressor fusion construct (XHNF1(beta)/EngR). Dorsal injections of XHNF1(beta)/EngR mRNA abolish dorsal mesoderm formation, leading to axial deficiencies; ventral injections disrupt ventral mesoderm formation without affecting axial development. XHNF1(beta)/EngR phenotypic effects specifically depend on the DNA-binding activity of its homeodomain and are fully rescued by coinjection of XHNF1(beta) mRNA. Vegetal injection of XHNF1(beta)/EngR mRNA blocks the mesoderm-inducing ability of vegetal explants. Both B-Vg1 and VegT maternal determinants trigger XHNF1(beta) expression in animal caps. XHNF1(beta)/EngR mRNA blocks B-Vg1-mediated, but not by eFGF-mediated, mesoderm induction in animals caps. However, wild-type XHNF1(beta) mRNA does not trigger Xbra expression in animal caps. We conclude that XHNF1(beta) function is essential, though not sufficient, for mesoderm induction in the Xenopus embryo.

  2. Probing the Xenopus laevis inner ear transcriptome for biological function

    PubMed Central

    2012-01-01

    Background The senses of hearing and balance depend upon mechanoreception, a process that originates in the inner ear and shares features across species. Amphibians have been widely used for physiological studies of mechanotransduction by sensory hair cells. In contrast, much less is known of the genetic basis of auditory and vestibular function in this class of animals. Among amphibians, the genus Xenopus is a well-characterized genetic and developmental model that offers unique opportunities for inner ear research because of the amphibian capacity for tissue and organ regeneration. For these reasons, we implemented a functional genomics approach as a means to undertake a large-scale analysis of the Xenopus laevis inner ear transcriptome through microarray analysis. Results Microarray analysis uncovered genes within the X. laevis inner ear transcriptome associated with inner ear function and impairment in other organisms, thereby supporting the inclusion of Xenopus in cross-species genetic studies of the inner ear. The use of gene categories (inner ear tissue; deafness; ion channels; ion transporters; transcription factors) facilitated the assignment of functional significance to probe set identifiers. We enhanced the biological relevance of our microarray data by using a variety of curation approaches to increase the annotation of the Affymetrix GeneChip® Xenopus laevis Genome array. In addition, annotation analysis revealed the prevalence of inner ear transcripts represented by probe set identifiers that lack functional characterization. Conclusions We identified an abundance of targets for genetic analysis of auditory and vestibular function. The orthologues to human genes with known inner ear function and the highly expressed transcripts that lack annotation are particularly interesting candidates for future analyses. We used informatics approaches to impart biologically relevant information to the Xenopus inner ear transcriptome, thereby addressing the

  3. An actidione resistant Candida tropicalis from custard apple juice.

    PubMed

    Onkarayya, H; Suresh, E R; Ethiraj, S

    1981-01-01

    An actidione resistant yeast, Candida tropicalis, was isolated from fermenting custard apple juice. Though a slight inhibition of growth was observed on the first day with 5000 ppm of actidione, growth was equal to control after one week. Sorbic acid at 500 ppm and above inhibited the growth of this yeast while sodium benzoate and potassium metabisulphite were unable to suppress the growth even at 1000 ppm. Fermentation and assimilation of different carbon sources were delayed in the presence of 1000 ppm of actidione suggesting the disruption of protein synthesis by actidione.

  4. Xenopus extract approaches to studying microtubule organization and signaling in cytokinesis

    PubMed Central

    Field, Christine M.; Pelletier, James F.; Mitchison, Timothy J.

    2017-01-01

    We report optimized methods for preparing actin-intact Xenopus egg extract. This extract is minimally perturbed, undiluted egg cytoplasm where the cell cycle can be experimentally controlled. It contains abundant organelles and glycogen, and supports active metabolism and cytoskeletal dynamics that closely mimic egg physiology. The concentration of the most abundant ~11,000 proteins is known from mass spectrometry. Actin-intact egg extract can be used for analysis of actin dynamics and interaction of actin with other cytoplasmic systems, as well as microtubule organization. It can be spread as thin layers, and naturally depletes oxygen though mitochondrial metabolism, which makes it ideal for fluorescence imaging. When combined with artificial lipid bilayers, it allows reconstitution and analysis of the spatially controlled signaling that positions the cleavage furrow during early cytokinesis. Actin-intact extract is generally useful for probing the biochemistry and biophysics of the large Xenopus egg. Protocols are provided for preparation of actin-intact egg extract, control of the cell cycle, fluorescent probes for cytoskeleton and cytoskeleton-dependent signaling, preparation of glass surfaces for imaging experiments, and immunodepletion to probe the role of specific proteins and protein complexes. We also describe methods for adding supported lipid bilayers to mimic the plasma membrane and for confining in microfluidic droplets to explore size scaling issues. PMID:28065319

  5. Efficient high-throughput sequencing of a laser microdissected chromosome arm

    PubMed Central

    2013-01-01

    Background Genomic sequence assemblies are key tools for a broad range of gene function and evolutionary studies. The diploid amphibian Xenopus tropicalis plays a pivotal role in these fields due to its combination of experimental flexibility, diploid genome, and early-branching tetrapod taxonomic position, having diverged from the amniote lineage ~360 million years ago. A genome assembly and a genetic linkage map have recently been made available. Unfortunately, large gaps in the linkage map attenuate long-range integrity of the genome assembly. Results We laser dissected the short arm of X. tropicalis chromosome 7 for next generation sequencing and computational mapping to the reference genome. This arm is of particular interest as it encodes the sex determination locus, but its genetic map contains large gaps which undermine available genome assemblies. Whole genome amplification of 15 laser-microdissected 7p arms followed by next generation sequencing yielded ~35 million reads, over four million of which uniquely mapped to the X. tropicalis genome. Our analysis placed more than 200 previously unmapped scaffolds on the analyzed chromosome arm, providing valuable low-resolution physical map information for de novo genome assembly. Conclusion We present a new approach for improving and validating genetic maps and sequence assemblies. Whole genome amplification of 15 microdissected chromosome arms provided sufficient high-quality material for localizing previously unmapped scaffolds and genes as well as recognizing mislocalized scaffolds. PMID:23714049

  6. Calculating the Degradation Rate of Individual Proteins Using Xenopus Extract Systems.

    PubMed

    McDowell, Gary S; Philpott, Anna

    2018-05-16

    The Xenopus extract system has been used extensively as a simple, quick, and robust method for assessing the stability of proteins against proteasomal degradation. In this protocol, methods are provided for assessing the half-life of in vitro translated radiolabeled proteins using Xenopus egg or embryo extracts. © 2019 Cold Spring Harbor Laboratory Press.

  7. Maternal syntabulin is required for dorsal axis formation and is a germ plasm component in Xenopus.

    PubMed

    Colozza, Gabriele; De Robertis, Edward M

    2014-07-01

    In amphibians and teleosts, early embryonic axial development is driven by maternally deposited mRNAs and proteins, called dorsal determinants, which migrate to the presumptive dorsal side of the embryo in a microtubule-dependent manner after fertilization. Syntabulin is an adapter protein that binds to kinesin KIF5B and to the transmembrane protein Syntaxin1. In zebrafish, a mutation in Syntabulin causes complete embryo ventralization. It is unknown whether Syntabulin plays an analogous role during early development of other species, a question addressed here in Xenopus laevis. in situ hybridization of syntabulin mRNA was carried out at different stages of Xenopus development. In oocytes, syntabulin transcripts were localized to the vegetal cortex of large oocytes and the mitochondrial cloud of very young oocytes. We extended the zebrafish data by finding that during cleavage Xenopus syntabulin mRNA localized to the germ plasm and was later expressed in primordial germ cells (PGCs). This new finding suggested a role for Syntabulin during germ cell differentiation. The functional role of maternal syntabulin mRNA was investigated by knock-down with phosphorothioate DNA antisense oligos followed by oocyte transfer. The results showed that syntabulin mRNA depletion caused the complete loss of dorso-anterior axis formation in frog embryos. Consistent with the ventralized phenotype, syntabulin-depleted embryos displayed severe reduction of dorsal markers and ubiquitous transcription of the ventral marker sizzled. Syntabulin was required for the maternal Wnt/β-Catenin signal, since ventralization could be completely rescued by injection of β-catenin (or syntabulin) mRNA. The data suggest an evolutionarily conserved role for Syntabulin, a protein that bridges microtubule motors and membrane vesicles, during dorso-ventral axis formation in the vertebrates. Copyright © 2013 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  8. Participation of Xenopus Elr-type Proteins in Vegetal mRNA Localization during Oogenesis*

    PubMed Central

    Arthur, Patrick K.; Claussen, Maike; Koch, Susanne; Tarbashevich, Katsiaryna; Jahn, Olaf; Pieler, Tomas

    2009-01-01

    Directional transport of specific mRNAs is of primary biological relevance. In Xenopus oocytes, mRNA localization to the vegetal pole is important for germ layer formation and germ cell development. Using a biochemical approach, we identified Xenopus Elr-type proteins, homologs of the Hu/ELAV proteins, as novel components of the vegetal mRNA localization machinery. They bind specifically to the localization elements of several different vegetally localizing Xenopus mRNAs, and they are part of one RNP together with other localization proteins, such as Vg1RBP and XStaufen 1. Blocking Elr-type protein binding by either localization element mutagenesis or antisense morpholino oligonucleotide-mediated masking of their target RNA structures, as well as overexpression of wild type and mutant ElrB proteins, interferes with vegetal localization in Xenopus oocytes. PMID:19458392

  9. Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells

    PubMed Central

    Chernoff, Ellen A. G.; Sato, Kazuna; Salfity, Hai V. N.; Sarria, Deborah A.; Belecky-Adams, Teri

    2018-01-01

    The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog Xenopus laevis, and a quiescent, activatable state in a slowly growing adult salamander Ambystoma mexicanum, the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebrates. After transection, body region ependymal epithelium in both Xenopus and the Axolotl disorganizes for regenerative outgrowth (gap replacement). Injury-reactive ependymal cells serve as a stem/progenitor cell population in regeneration and reconstruct the central canal. Expression patterns of mRNA and protein for the stem/progenitor cell-maintenance Notch signaling pathway mRNA-binding protein Musashi (msi) change with life stage and regeneration competence. Msi-1 is missing (immunohistochemistry), or at very low levels (polymerase chain reaction, PCR), in both intact regeneration-competent adult Axolotl cord and intact non-regeneration-competent Xenopus tadpole (Nieuwkoop and Faber stage 62+, NF 62+). The critical correlation for successful regeneration is msi-1 expression/upregulation after injury in the ependymal outgrowth and stump-region ependymal cells. msi-1 and msi-2 isoforms were cloned for the Axolotl as well as previously unknown isoforms of Xenopus msi-2. Intact Xenopus spinal cord ependymal cells show a loss of msi-1 expression between regeneration-competent (NF 50–53) and non-regenerating stages (NF 62+) and in post-metamorphosis froglets, while msi-2 displays a lower molecular weight isoform in non-regenerating cord. In the Axolotl, embryos and juveniles maintain Msi-1 expression in the intact cord. In the adult Axolotl, Msi-1 is absent, but upregulates after injury. Msi-2 levels are more variable among Axolotl life stages: rising between late tailbud embryos and juveniles and decreasing in adult cord. Cultures of regeneration-competent Xenopus tadpole

  10. Three new members of the RNP protein family in Xenopus.

    PubMed Central

    Good, P J; Rebbert, M L; Dawid, I B

    1993-01-01

    Many RNP proteins contain one or more copies of the RNA recognition motif (RRM) and are thought to be involved in cellular RNA metabolism. We have previously characterized in Xenopus a nervous system specific gene, nrp1, that is more similar to the hnRNP A/B proteins than to other known proteins (K. Richter, P. J. Good, and I. B. Dawid (1990), New Biol. 2, 556-565). PCR amplification with degenerate primers was used to identify additional cDNAs encoding two RRMs in Xenopus. Three previously uncharacterized genes were identified. Two genes encode hnRNP A/B proteins with two RRMs and a glycine-rich domain. One of these is the Xenopus homolog of the human A2/B1 gene; the other, named hnRNP A3, is similar to both the A1 and A2 hnRNP genes. The Xenopus hnRNP A1, A2 and A3 genes are expressed throughout development and in all adult tissues. Multiple protein isoforms for the hnRNP A2 gene are predicted that differ by the insertion of short peptide sequences in the glycine-rich domain. The third newly isolated gene, named xrp1, encodes a protein that is related by sequence to the nrp1 protein but is expressed ubiquitously. Despite the similarity to nuclear RNP proteins, both the nrp1 and xrp1 proteins are localized to the cytoplasm in the Xenopus oocyte. The xrp1 gene may have a function in all cells that is similar to that executed by nrp1 specifically within the nervous system. Images PMID:8451200

  11. Gene engineering in yeast for biodegradation: Immunological cross-reactivity among cytochrome p-450 system proteins of saccharomyces cerevisiae and candida tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loper, J.C.; Chen, C.; Dey, C.R.

    1993-01-01

    Yeasts are eukaryotic microorganisms whose cytochrome P-450 monooxygenase systems may be amenable to genetic engineering for the hydroxylation and detoxication of polychlorinated aromatic hydrocarbons. The molecular genetic properties of strains of bakers yeast, Saccharomyces cerevisiae, and an n-alkane utilizing yeast, Candida tropicalis ATCC750 are examined. Standard methods were used to purify cytochrome P-450 and NADPH-cytochrome c (P-450) reductase proteins from cells cultured by semi-anaerobic glucose fermentation (S. cerevisiae, C. tropicalis) and by growth on tetradecane (C. tropicalis). Polyvalent antisera prepared in rabbits to some of these proteins were used in tests of immunological relatedness among the purified proteins using sodiummore » dodecyl sulfate-polyacrylamide gel electrophoresis and nitrocellulose filter immunoblots. The results provide evidence for gene relationships which should prove useful in gene isolation and subsequent engineering of P-450 enzyme systems in yeast.« less

  12. Cell lineage tracing during Xenopus tail regeneration.

    PubMed

    Gargioli, Cesare; Slack, Jonathan M W

    2004-06-01

    The tail of the Xenopus tadpole will regenerate following amputation, and all three of the main axial structures - the spinal cord, the notochord and the segmented myotomes - are found in the regenerated tail. We have investigated the cellular origin of each of these three tissue types during regeneration. We produced Xenopus laevis embryos transgenic for the CMV (Simian Cytomegalovirus) promoter driving GFP (Green Fluorescent Protein) ubiquitously throughout the embryo. Single tissues were then specifically labelled by making grafts at the neurula stage from transgenic donors to unlabelled hosts. When the hosts have developed to tadpoles, they carry a region of the appropriate tissue labelled with GFP. These tails were amputated through the labelled region and the distribution of labelled cells in the regenerate was followed. We also labelled myofibres using the Cre-lox method. The results show that the spinal cord and the notochord regenerate from the same tissue type in the stump, with no labelling of other tissues. In the case of the muscle, we show that the myofibres of the regenerate arise from satellite cells and not from the pre-existing myofibres. This shows that metaplasia between differentiated cell types does not occur, and that the process of Xenopus tail regeneration is more akin to tissue renewal in mammals than to urodele tail regeneration.

  13. [Activity of amphotericin B and anidulafungin, alone and combined, against Candida tropicalis biofilms developed on Teflon® and titanium].

    PubMed

    Fernández-Rivero, Marcelo Ernesto; Del Pozo, José L; Valentín, Amparo; Fornes, Victoria; Molina de Diego, Araceli; Pemán, Javier; Cantón, Emilia

    Current therapeutic strategies have a limited efficacy against Candida biofilms that form on the surfaces of biomedical devices. Few studies have evaluated the activity of antifungal agents against Candida tropicalis biofilms. To evaluate the activity of amphotericin B (AMB) and anidulafungin (AND), alone and in combination, against C. tropicalis biofilms developed on polytetrafluoroethylene (teflon -PTFE) and titanium surfaces using time-kill assays. Assays were performed using the CDC Biofilm Reactor equipped with PTFE and titanium disks with C. tropicalis biofilms after 24h of maturation. The concentrations assayed were 40mg/l for AMB and 8mg/l for AND, both alone and combined. After 24, 48 and 72h of exposure to the antifungals, the cfu/cm 2 was determined by a vortexing-sonication procedure. AMB reduced biofilm viable cells attached to PTFE and titanium by ≥99% and AND by 89.3% on PTFE and 96.8% on titanium. The AMB+AND combination was less active than AMB alone, both on PTFE (decrease of cfu/cm 2 3.09 Log 10 vs. 1.08 when combined) and titanium (4.51 vs. 1.53 when combined), being the interaction irrelevant on both surfaces. AMB is more active than AND against C. tropicalis biofilms. Yeast killing rates are higher on titanium than on PTFE surfaces. The combination of AMB plus AND is less effective than AMB alone on both surfaces. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Ski represses BMP signaling in Xenopus and mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    kluo@lbl.gov

    2001-05-16

    The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells bymore » directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-{beta} family members.« less

  15. OCT imaging of craniofacial anatomy in xenopus embryos (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Deniz, Engin; Jonas, Stephan M.; Griffin, John; Hooper, Michael C.; Choma, Michael A.; Khokha, Mustafa K.

    2016-03-01

    The etiology of craniofacial defects is incompletely understood. The ability to obtain large amounts of gene sequence data from families affected by craniofacial defects is opening up new ways to understand molecular genetic etiological factors. One important link between gene sequence data and clinical relevance is biological research into candidate genes and molecular pathways. We present our recent research using OCT as a nondestructive phenotyping modality of craniofacial morphology in Xenopus embryos, an important animal model for biological research in gene and pathway discovery. We define 2D and 3D scanning protocols for a standardized approach to craniofacial imaging in Xenopus embryos. We define standard views and planar reconstructions for visualizing normal anatomy and landmarks. We compare these views and reconstructions to traditional histopathology using alcian blue staining. In addition to being 3D, nondestructive, and having much faster throughout, OCT can identify craniofacial features that are lost during traditional histopathological preparation. We also identify quantitative morphometric parameters to define normative craniofacial anatomy. We also note that craniofacial and cardiac defects are not infrequently present in the same patient (e.g velocardiofacial syndrome). Given that OCT excels at certain aspects of cardiac imaging in Xenopus embryos, our work highlights the potential of using OCT and Xenopus to study molecular genetic factors that impact both cardiac and craniofacial development.

  16. Rapamycin treatment causes developmental delay, pigmentation defects, and gastrointestinal malformation on Xenopus embryogenesis.

    PubMed

    Moriyama, Yuki; Ohata, Yoshihisa; Mori, Shoko; Matsukawa, Shinya; Michiue, Tatsuo; Asashima, Makoto; Kuroda, Hiroki

    2011-01-28

    Rapamycin is a drug working as an inhibitor of the TOR (target of rapamycin) signaling pathway and influences various life phenomena such as cell growth, proliferation, and life span extension in eukaryote. However, the extent to which rapamycin controls early developmental events of amphibians remains to be understood. Here we report an examination of rapamycin effects during Xenopus early development, followed by a confirmation of suppression of TOR downstream kinase S6K by rapamycin treatment. First, we found that developmental speed was declined in dose-dependent manner of rapamycin. Second, black pigment spots located at dorsal and lateral skin in tadpoles were reduced by rapamycin treatment. Moreover, in tadpole stages severe gastrointestinal malformations were observed in rapamycin-treated embryos. Taken together with these results, we conclude that treatment of the drug rapamycin causes enormous influences on early developmental period. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Establishment and characterization of Xenopus oviduct cells in primary culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, J.; Tata, J.R.

    1987-11-01

    Based on previously established procedure of Xenopus hepatocytes, the authors describe tubular oviduct cells in primary culture which continue to secrete substantial quantities of egg jelly for several days, as can be visualized microscopically. Freshly isolated cells exhibited a culture shock response, from which they recovered by the third day in culture. This recovery was characterized by (a) the diminished synthesis of heat shock proteins hsp 70 and hsp 85, (b) the cessation of the drop in number of estrogen receptor, and (c) the enhanced rate of synthesis of cellular and secreted proteins. The oviduct estrogen receptor had the samemore » characteristics as those in other estrogen target tissues and was present in the same amount as in adult female Xenopus hepatocytes. The successful establishment and characterization of primary cultures of both liver and oviduct cells now fulfill the conditions required for investigating the basis for tissue specificity of regulation by estrogen of Xenopus egg protein gene expression in primary cell culture.« less

  18. Expression of XNOA 36 in the mitochondrial cloud of Xenopus laevis oocytes.

    PubMed

    Vaccaro, M C; Wilding, M; Dale, B; Campanella, C; Carotenuto, R

    2012-08-01

    In Xenopus laevis oocytes a mitochondrial cloud (MC) is found between the nucleus and the plasma membrane at stages I-II of oogenesis. The MC contains RNAs that are transported to the future vegetal pole at stage II of oogenesis. In particular, germinal plasm mRNAs are found in the Message Transport Organiser (METRO) region, the MC region opposite to the nucleus. At stages II-III, a second pathway transports Vg1 and VegT mRNAs to the area where the MC content merges with the vegetal cortex. Microtubules become polarized at the sites of migration of Vg1 and VegT mRNAs through an unknown signalling mechanism. In early meiotic stages, the centrioles are almost completely lost with their remnants being dispersed into the cytoplasm and the MC, which may contain a MTOC to be used in the later localization pathway of the mRNAs. In mammals, XNOA 36 encodes a member of a highly conserved protein family and localises to the nucleolus or in the centromeres. In the Xenopus late stage I oocyte, XNOA 36 mRNA is transiently segregated in one half of the oocyte, anchored by a cytoskeletal network that contains spectrin. Here we found that XNOA 36 transcript also localises to the nucleoli and in the METRO region. XNOA 36 protein immunolocalization, using an antibody employed for the library immunoscreening that depicted XNOA 36 expression colonies, labels the migrating MC, the cytoplasm of stage I oocytes and in particular the vegetal cortex facing the MC. The possible role of XNOA 36 in mRNA anchoring to the vegetal cortex or in participating in early microtubule reorganization is discussed.

  19. Shorter Exposures to Harder X-Rays Trigger Early Apoptotic Events in Xenopus laevis Embryos

    PubMed Central

    Dong, JiaJia; Mury, Sean P.; Drahos, Karen E.; Moscovitch, Marko

    2010-01-01

    Background A long-standing conventional view of radiation-induced apoptosis is that increased exposure results in augmented apoptosis in a biological system, with a threshold below which radiation doses do not cause any significant increase in cell death. The consequences of this belief impact the extent to which malignant diseases and non-malignant conditions are therapeutically treated and how radiation is used in combination with other therapies. Our research challenges the current dogma of dose-dependent induction of apoptosis and establishes a new parallel paradigm to the photoelectric effect in biological systems. Methodology/Principal Findings We explored how the energy of individual X-ray photons and exposure time, both factors that determine the total dose, influence the occurrence of cell death in early Xenopus embryo. Three different experimental scenarios were analyzed and morphological and biochemical hallmarks of apoptosis were evaluated. Initially, we examined cell death events in embryos exposed to increasing incident energies when the exposure time was preset. Then, we evaluated the embryo's response when the exposure time was augmented while the energy value remained constant. Lastly, we studied the incidence of apoptosis in embryos exposed to an equal total dose of radiation that resulted from increasing the incoming energy while lowering the exposure time. Conclusions/Significance Overall, our data establish that the energy of the incident photon is a major contributor to the outcome of the biological system. In particular, for embryos exposed under identical conditions and delivered the same absorbed dose of radiation, the response is significantly increased when shorter bursts of more energetic photons are used. These results suggest that biological organisms display properties similar to the photoelectric effect in physical systems and provide new insights into how radiation-mediated apoptosis should be understood and utilized for therapeutic

  20. EBF proteins participate in transcriptional regulation of Xenopus muscle development.

    PubMed

    Green, Yangsook Song; Vetter, Monica L

    2011-10-01

    EBF proteins have diverse functions in the development of multiple lineages, including neurons, B cells and adipocytes. During Drosophila muscle development EBF proteins are expressed in muscle progenitors and are required for muscle cell differentiation, but there is no known function of EBF proteins in vertebrate muscle development. In this study, we examine the expression of ebf genes in Xenopus muscle tissue and show that EBF activity is necessary for aspects of Xenopus skeletal muscle development, including somite organization, migration of hypaxial muscle anlagen toward the ventral abdomen, and development of jaw muscle. From a microarray screen, we have identified multiple candidate targets of EBF activity with known roles in muscle development. The candidate targets we have verified are MYOD, MYF5, M-Cadherin and SEB-4. In vivo overexpression of the ebf2 and ebf3 genes leads to ectopic expression of these candidate targets, and knockdown of EBF activity causes downregulation of the endogenous expression of the candidate targets. Furthermore, we found that MYOD and MYF5 are likely to be direct targets. Finally we show that MYOD can upregulate the expression of ebf genes, indicating the presence of a positive feedback loop between EBF and MYOD that we find to be important for maintenance of MYOD expression in Xenopus. These results suggest that EBF activity is important for both stabilizing commitment and driving aspects of differentiation in Xenopus muscle cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Synergistic Effects of Amiodarone and Fluconazole on Candida tropicalis Resistant to Fluconazole

    PubMed Central

    da Silva, Cecília Rocha; de Andrade Neto, João Batista; Sidrim, José Júlio Costa; Ângelo, Maria Rozzelê Ferreira; Magalhães, Hemerson Iury Ferreira; Cavalcanti, Bruno Coêlho; Brilhante, Raimunda Sâmia Nogueira; Macedo, Danielle Silveira; de Moraes, Manoel Odorico; Lobo, Marina Duarte Pinto; Grangeiro, Thalles Barbosa

    2013-01-01

    There have recently been significant increases in the prevalence of systemic invasive fungal infections. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of cross-resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapies have become one of the most widely used and effective strategies to alleviate this problem. Amiodarone (AMD) is classically used for the treatment of atrial fibrillation and is the drug of choice for patients with arrhythmia. Recent studies have shown broad antifungal activity of the drug when administered in combination with fluconazole (FLC). In the present study, we induced resistance to fluconazole in six strains of Candida tropicalis and evaluated potential synergism between fluconazole and amiodarone. The evaluation of drug interaction was determined by calculating the fractional inhibitory concentration and by performing flow cytometry. We conclude that amiodarone, when administered in combination with fluconazole, exhibits activity against strains of C. tropicalis that are resistant to fluconazole, which most likely occurs via changes in the integrity of the yeast cell membrane and the generation of oxidative stress, mitochondrial dysfunction, and DNA damage that could lead to cell death by apoptosis. PMID:23357774

  2. Degradation of diesel oil by immobilized Candida tropicalis and biofilm formed on gravels.

    PubMed

    Chandran, Preethy; Das, Nilanjana

    2011-11-01

    The performance of diesel oil degradation by Candida tropicalis immobilized on various conventional matrices (sodium alginate, carboxyl methyl cellulose, chitosan) and biowaste materials (wheat bran, sawdust, peanut hull powder) was investigated using the method of entrapment and physical adsorption. The yeast species immobilized in wheat bran showed enhanced efficiency in degrading diesel oil (98%) compared to free cells culture (80%) over a period of 7 days. Copious amount of exopolysaccharides were also produced in the presence of diesel oil. The biofilm forming ability of C. tropicalis on PVC strips was evaluated using XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay and monitored by scanning electron microscopy and atomic force microscopy. Yeast biofilm formed on gravels showed 97% degradation of diesel oil over a period of 10 days. The potential use of the biofilms for preparing trickling filters (gravel particles), for attenuating hydrocarbons in oily liquid wastes before their disposal in the open environment is suggested and discussed. This is the first successful attempt for 'artificially' establishing hydrocarbon degrading yeast biofilm on solid substrates.

  3. Morphology of the caudal spinal cord in Rana (Ranidae) and Xenopus (Pipidae) tadpoles.

    PubMed

    Nishikawa, K; Wassersug, R

    1988-03-08

    Using a variety of neuroanatomical and histological techniques, we compare the spinal cord and peripheral nerve distribution in the tails of larvae from Xenopus laevis and three species of Rana. The relatively large, postsacral spinal cord of Xenopus contains abundant motoneurons and their axons. Spinal nerves exit from the spinal cord in a regular array, one nerve per myotome, from the cervical region to near the end of the tail. Somata of motoneurons innervating caudal myotomes are found along the entire length of the tail. In contrast, the caudal cord of Rana is reduced to a filum terminale consisting of little more than an ependymal tube; spinal nerves to all caudal myotomes leave the cord in the sacral region and reach their motor targets via a cauda equina and caudal plexus. Motoneuron cell bodies innervating caudal myotomes are found only in the sacral region. The Rana larval pattern is similar to that of adult frogs and mammals, whereas the Xenopus larval pattern is more like that of salamanders and reptiles. These gross neuroanatomical differences are not due to differences in the size or developmental stage of the tadpoles, but instead are associated with differences in the swimming behavior of the larvae. The presence of motoneurons in the caudal spinal cord of Xenopus may provide local intermyotomal control within the tail; the elongated topography of the cord appears to permit finer, rostral-to-caudal regulation of neuromuscular activity. The Rana spinal cord, on the other hand--with motoneurons clustered anteriorly--may produce concurrent firing of adjacent ipsilateral myotomes, but at the expense of fine intermyotomal regulation. The fact that nerves in the tail of Xenopus enter and exit from the spinal cord locally, as opposed to far anteriorly as in Rana, means that for tadpoles of the same size, reflex arc lengths are many times shorter in Xenopus.

  4. Biochemical study of prolactin binding sites in Xenopus laevis brain and choroid plexus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muccioli, G.; Guardabassi, A.; Pattono, P.

    1990-03-01

    The occurrence of prolactin binding sites in some brain structures (telencephalon, ventral hypothalamus, myelencephalon, hypophysis, and choroid plexus) from Xenopus laevis (anuran amphibian) was studied by the in vitro biochemical technique. The higher binding values were obtained at the level of the choroid plexus and above all of the hypothalamus. On the bases of hormonal specificity and high affinity, these binding sites are very similar to those of prolactin receptors of classical target tissues as well as of those described by us in other structures from Xenopus. To our knowledge, the present results provide the first demonstration of the occurrencemore » of prolactin specific binding sites in Xenopus laevis choroid plexus cells.« less

  5. Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes.

    PubMed

    Sun, Yan-Bo; Xiong, Zi-Jun; Xiang, Xue-Yan; Liu, Shi-Ping; Zhou, Wei-Wei; Tu, Xiao-Long; Zhong, Li; Wang, Lu; Wu, Dong-Dong; Zhang, Bao-Lin; Zhu, Chun-Ling; Yang, Min-Min; Chen, Hong-Man; Li, Fang; Zhou, Long; Feng, Shao-Hong; Huang, Chao; Zhang, Guo-Jie; Irwin, David; Hillis, David M; Murphy, Robert W; Yang, Huan-Ming; Che, Jing; Wang, Jun; Zhang, Ya-Ping

    2015-03-17

    The development of efficient sequencing techniques has resulted in large numbers of genomes being available for evolutionary studies. However, only one genome is available for all amphibians, that of Xenopus tropicalis, which is distantly related from the majority of frogs. More than 96% of frogs belong to the Neobatrachia, and no genome exists for this group. This dearth of amphibian genomes greatly restricts genomic studies of amphibians and, more generally, our understanding of tetrapod genome evolution. To fill this gap, we provide the de novo genome of a Tibetan Plateau frog, Nanorana parkeri, and compare it to that of X. tropicalis and other vertebrates. This genome encodes more than 20,000 protein-coding genes, a number similar to that of Xenopus. Although the genome size of Nanorana is considerably larger than that of Xenopus (2.3 vs. 1.5 Gb), most of the difference is due to the respective number of transposable elements in the two genomes. The two frogs exhibit considerable conserved whole-genome synteny despite having diverged approximately 266 Ma, indicating a slow rate of DNA structural evolution in anurans. Multigenome synteny blocks further show that amphibians have fewer interchromosomal rearrangements than mammals but have a comparable rate of intrachromosomal rearrangements. Our analysis also identifies 11 Mb of anuran-specific highly conserved elements that will be useful for comparative genomic analyses of frogs. The Nanorana genome offers an improved understanding of evolution of tetrapod genomes and also provides a genomic reference for other evolutionary studies.

  6. Xylitol dehydrogenase from Candida tropicalis: molecular cloning of the gene and structural analysis of the protein.

    PubMed

    Lima, Luanne Helena Augusto; Pinheiro, Cristiano Guimarães do Amaral; de Moraes, Lídia Maria Pepe; de Freitas, Sonia Maria; Torres, Fernando Araripe Gonçalves

    2006-12-01

    Yeasts can metabolize xylose by the action of two key enzymes: xylose reductase and xylitol dehydrogenase. In this work, we present data concerning the cloning of the XYL2 gene encoding xylitol dehydrogenase from the yeast Candida tropicalis. The gene is present as a single copy in the genome and is controlled at the transcriptional level by the presence of the inducer xylose. XYL2 was functionally tested by heterologous expression in Saccharomyces cerevisiae to develop a yeast strain capable of producing ethanol from xylose. Structural analysis of C. tropicalis xylitol dehydrogenase, Xyl2, suggests that it is a member of the medium-chain dehydrogenase (MDR) family. This is supported by the presence of the amino acid signature [GHE]xx[G]xxxxx[G]xx[V] in its primary sequence and a typical alcohol dehydrogenase Rossmann fold pattern composed by NAD(+) and zinc ion binding domains.

  7. XENOPUS LAEVIS: A CULTURING AND REARING PROTOCOL

    EPA Science Inventory

    Xenopus laevis are used extensively here at MED-Duluth as a model for assessing development toxicity to xenobiotics. As a result, a culturing system has been developed that provides eggs and tadpoles of consistent high quality for use by researchers at the facility. The methods ...

  8. PRIMARY STRUCTURE OF THE CYTOCHROME P450 LANOSTEROL 14A-DEMETHYLASE GENE FROM CANDIDA TROPICALIS

    EPA Science Inventory

    We report the nucleotide sequence of the gene and flanking DNA for the cytochrome P450 lanosterol 14 alpha-demethylase (14DM) from the yeast Candida tropicalis ATCC750. An open reading frame (ORF) of 528 codons encoding a 60.9-kD protein is identified. This ORF includes a charact...

  9. Effects of cadmium on growth, metamorphosis and gonadal sex differentiation in tadpoles of the African clawed frog, Xenopus laevis

    USGS Publications Warehouse

    Sharma, Bibek; Patino, R.

    2009-01-01

    Xenopus laevis larvae were exposed to cadmium (Cd) at 0, 1, 8, 85 or 860 ??g L-1 in FETAX medium from 0 to 86 d postfertilization. Premetamorphic tadpoles were sampled on day 31; pre and prometamorphic tadpoles on day 49; and frogs (NF stage 66) between days 50 and 86. Survival, snout-vent length (SVL), tail length, total length, hindlimb length (HLL), initiation of metamorphic climax, size at and completion of metamorphosis, and gonadal condition and sex ratio (assessed histologically) were determined. Survival was unaffected by Cd until day 49, but increased mortality was observed after day 49 at 860 ??g Cd L-1. On day 31, when tadpoles were in early premetamorphosis, inhibitory effects on tadpole growth were observed only at 860 ??g Cd L-1. On day 49, when most tadpoles where in late premetamorphosis/early prometamorphosis, reductions in SVL, HLL and total length were observed at 8 and 860 but not 85 ??g L-1, thus creating a U-shaped size distribution at 0-85 ??g Cd L-1. However, this U-shaped size pattern was not evident in postmetamorphic individuals. In fact, frog size at completion of metamorphosis was slightly smaller at 85 ??g Cd L-1relative to control animals. These observations confirmed a recent report of a Cd concentration-dependent bimodal growth pattern in late-premetamorphic Xenopus tadpoles, but also showed that growth responses to varying Cd concentrations change with development. The fraction of animals initiating or completing metamorphosis during days 50-86 was reduced in a Cd concentration-dependent manner. Testicular histology and population sex ratios were unaffected by Cd suggesting that, unlike mammals, Cd is not strongly estrogenic in Xenopus tadpoles. ?? 2009 Elsevier Ltd.

  10. Effects of cadmium on growth, metamorphosis and gonadal sex differentiation in tadpoles of the African clawed frog, Xenopus laevis

    USGS Publications Warehouse

    Sharma, Bibek; Patino, Reynaldo

    2009-01-01

    Xenopus laevis larvae were exposed to cadmium (Cd) at 0, 1, 8. 85 or 860 mu g L(-1) in FETAX medium from 0 to 86 d postfertilization. Premetamorphic tadpoles were sampled on day 3 1; pre and prometamorphic tadpoles on day 49; and frogs (NF stage 66) between days 50 and 86. Survival, snout-vent length (SVL), tail length, total length, hindlimb length (HLL), initiation of metamorphic climax, size at and completion of metamorphosis, and gonadal condition and sex ratio (assessed histologically) were determined. Survival was unaffected by Cd until day 49, but increased mortality was observed after day 49 at 860 mu g Cd L(-1). On day 31, when tadpoles were in early premetamorphosis, inhibitory effects on tadpole growth were observed only at 860 mu g Cd L(-1). On day 49, when most tadpoles where in late premetamorphosis/early prometamorphosis, reductions in SVL, HLL and total length were observed at 8 and 860 but not 85 mu g L(-1), thus creating a U-shaped size distribution at 0-85 mu g Cd L(-1). However, this U-shaped size pattern was not evident in postmetamorphic individuals. In fact, frog size at completion of metamorphosis was slightly smaller at 85 mu g Cd L(-1) relative to control animals. These observations confirmed a recent report of a Cd concentration-dependent bimodal growth pattern in late-premetamorphic Xenopus tadpoles, but also showed that growth responses to varying Cd concentrations change with development. The fraction of animals initiating or completing metamorphosis during days 50-86 was reduced in a Cd concentration-dependent manner. Testicular histology and population sex ratios were unaffected by Cd suggesting that, unlike mammals, Cd is not strongly estrogenic in Xenopus tadpoles.

  11. Apoptosis regulates notochord development in Xenopus.

    PubMed

    Malikova, Marina A; Van Stry, Melanie; Symes, Karen

    2007-11-15

    The notochord is the defining characteristic of the chordate embryo and plays critical roles as a signaling center and as the primitive skeleton. In this study we show that early notochord development in Xenopus embryos is regulated by apoptosis. We find apoptotic cells in the notochord beginning at the neural groove stage and increasing in number as the embryo develops. These dying cells are distributed in an anterior to posterior pattern that is correlated with notochord extension through vacuolization. In axial mesoderm explants, inhibition of this apoptosis causes the length of the notochord to approximately double compared to controls. In embryos, however, inhibition of apoptosis decreases the length of the notochord and it is severely kinked. This kinking also spreads from the anterior with developmental stage such that, by the tadpole stage, the notochord lacks any recognizable structure, although notochord markers are expressed in a normal temporal pattern. Extension of the somites and neural plate mirrors that of the notochord in these embryos, and the somites are severely disorganized. These data indicate that apoptosis is required for normal notochord development during the formation of the anterior-posterior axis, and its role in this process is discussed.

  12. Xenopus laevis in Developmental and Molecular Biology.

    ERIC Educational Resources Information Center

    Dawid, Igor B.; Sargent, Thomas D.

    1988-01-01

    Discusses the advantages of Xenopus laevis as an experimental animal in the study of embryogenesis in vertebrates. Summarizes the contributions of this system to the analysis of ribosomal and 5S RNA genes, and the diverse and highly productive applications of the oocyte injection technology. (RT)

  13. Lectins and substitution for helper function in anti-hapten responses in Xenopus laevis.

    PubMed

    Clothier, R H; James, H S; Ruben, L N; Balls, M

    1984-08-01

    Substitution by lectins for the carrier-priming requirement in thymus-dependent, antigen-binding responses in Xenopus laevis has been examined. Concanavalin A (Con A) was found to substitute for carrier priming in control, early-thymectomized and adult-thymectomized animals, but not in animals given a single, high dose of N-methyl-N-nitrosourea, which has a permanent effect on certain thymus-dependent functions in this species. Lipopolysaccharide and other lectins, such as peanut agglutinin and wheat germ agglutinin, were unable to substitute for carrier priming. These effects of Con A are discussed in terms of substitution via amplifier T cells or a helper T cell subset.

  14. Transient Early Embryonic Expression of Nkx2-5 Mutations Linked to Congenital Heart Defects in Human Causes Heart Defects in Xenopus laevis

    PubMed Central

    Bartlett, Heather L.; Sutherland, Lillian; Kolker, Sandra J.; Welp, Chelsea; Tajchman, Urszula; Desmarais, Vera; Weeks, Daniel L.

    2007-01-01

    Nkx2-5 is a homeobox containing transcription factor that is conserved and expressed in organisms that form hearts. Fruit flies lacking the gene (tinman) fail to form a dorsal vessel, mice that are homozygous null for Nkx2-5 form small, deformed hearts, and several human cardiac defects have been linked to dominant mutations in the Nkx2-5 gene. The Xenopus homologs (XNkx2-5) of two truncated forms of Nkx2-5 that have been identified in humans with congenital heart defects were used in the studies reported here. mRNAs encoding these mutations were injected into single cell Xenopus embryos, and heart development was monitored. Our results indicate that the introduction of truncated XNkx2-5 variants leads to three principle developmental defects. The atrial septum and the valve of the atrioventricular canal were both abnormal. In addition, video microscopic timing of heart contraction indicated that embryos injected with either mutant form of XNkx2-5 have conduction defects. PMID:17685485

  15. Evaluation of Virulence Factors In vitro, Resistance to Osmotic Stress and Antifungal Susceptibility of Candida tropicalis Isolated from the Coastal Environment of Northeast Brazil

    PubMed Central

    Zuza-Alves, Diana L.; de Medeiros, Sayama S. T. Q.; de Souza, Luanda B. F. C.; Silva-Rocha, Walicyranison P.; Francisco, Elaine C.; de Araújo, Maria C. B.; Lima-Neto, Reginaldo G.; Neves, Rejane P.; Melo, Analy S. de Azevedo; Chaves, Guilherme M.

    2016-01-01

    Several studies have been developed regarding human health risks associated with the recreational use of beaches contaminated with domestic sewage. These wastes contain various micro-organisms, including Candida tropicalis. In this context, the objective of this study was to characterize C. tropicalis isolates from the sandy beach of Ponta Negra, Natal, Rio Grande do Norte, Brazil, regarding the expression of in vitro virulence factors, adaptation to osmotic stress and susceptibility to antifungal drugs. We analyzed 62 environmental isolates and observed a great variation among them for the various virulence factors evaluated. In general, environmental isolates were more adherent to human buccal epithelial cells (HBEC) than C. tropicalis ATCC13803 reference strain, and they also showed increased biofilm production. Most of the isolates presented wrinkled phenotypes on Spider medium (34 isolates, 54.8%). The majority of the isolates also showed higher proteinase production than control strains, but low phospholipase activity. In addition, 35 isolates (56.4%) had high hemolytic activity (hemolysis index > 0.55). With regard to C. tropicalis resistance to osmotic stress, 85.4% of the isolates were able to grow in a liquid medium containing 15% sodium chloride. The strains were highly resistant to the azoles tested (fluconazole, voriconazole and itraconazole). Fifteen strains were resistant to the three azoles tested (24.2%). Some strains were also resistant to amphotericin B (14 isolates; 22.6%), while all of them were susceptible for the echinocandins tested, except for a single strain of intermediate susceptibility to micafungin. Our results demonstrate that C. tropicalis isolated from the sand can fully express virulence attributes and showed a high persistence capacity on the coastal environment; in addition of showing high minimal inhibitory concentrations to several antifungal drugs used in current clinical practice, demonstrating that environmental isolates may

  16. Evaluation of Virulence Factors In vitro, Resistance to Osmotic Stress and Antifungal Susceptibility of Candida tropicalis Isolated from the Coastal Environment of Northeast Brazil.

    PubMed

    Zuza-Alves, Diana L; de Medeiros, Sayama S T Q; de Souza, Luanda B F C; Silva-Rocha, Walicyranison P; Francisco, Elaine C; de Araújo, Maria C B; Lima-Neto, Reginaldo G; Neves, Rejane P; Melo, Analy S de Azevedo; Chaves, Guilherme M

    2016-01-01

    Several studies have been developed regarding human health risks associated with the recreational use of beaches contaminated with domestic sewage. These wastes contain various micro-organisms, including Candida tropicalis . In this context, the objective of this study was to characterize C. tropicalis isolates from the sandy beach of Ponta Negra, Natal, Rio Grande do Norte, Brazil, regarding the expression of in vitro virulence factors, adaptation to osmotic stress and susceptibility to antifungal drugs. We analyzed 62 environmental isolates and observed a great variation among them for the various virulence factors evaluated. In general, environmental isolates were more adherent to human buccal epithelial cells (HBEC) than C. tropicalis ATCC13803 reference strain, and they also showed increased biofilm production. Most of the isolates presented wrinkled phenotypes on Spider medium (34 isolates, 54.8%). The majority of the isolates also showed higher proteinase production than control strains, but low phospholipase activity. In addition, 35 isolates (56.4%) had high hemolytic activity (hemolysis index > 0.55). With regard to C. tropicalis resistance to osmotic stress, 85.4% of the isolates were able to grow in a liquid medium containing 15% sodium chloride. The strains were highly resistant to the azoles tested (fluconazole, voriconazole and itraconazole). Fifteen strains were resistant to the three azoles tested (24.2%). Some strains were also resistant to amphotericin B (14 isolates; 22.6%), while all of them were susceptible for the echinocandins tested, except for a single strain of intermediate susceptibility to micafungin. Our results demonstrate that C. tropicalis isolated from the sand can fully express virulence attributes and showed a high persistence capacity on the coastal environment; in addition of showing high minimal inhibitory concentrations to several antifungal drugs used in current clinical practice, demonstrating that environmental isolates

  17. Development of an efficient genetic manipulation strategy for sequential gene disruption and expression of different heterologous GFP genes in Candida tropicalis.

    PubMed

    Zhang, Lihua; Chen, Xianzhong; Chen, Zhen; Wang, Zezheng; Jiang, Shan; Li, Li; Pötter, Markus; Shen, Wei; Fan, You

    2016-11-01

    The diploid yeast Candida tropicalis, which can utilize n-alkane as a carbon and energy source, is an attractive strain for both physiological studies and practical applications. However, it presents some characteristics, such as rare codon usage, difficulty in sequential gene disruption, and inefficiency in foreign gene expression, that hamper strain improvement through genetic engineering. In this work, we present a simple and effective method for sequential gene disruption in C. tropicalis based on the use of an auxotrophic mutant host defective in orotidine monophosphate decarboxylase (URA3). The disruption cassette, which consists of a functional yeast URA3 gene flanked by a 0.3 kb gene disruption auxiliary sequence (gda) direct repeat derived from downstream or upstream of the URA3 gene and of homologous arms of the target gene, was constructed and introduced into the yeast genome by integrative transformation. Stable integrants were isolated by selection for Ura + and identified by PCR and sequencing. The important feature of this construct, which makes it very attractive, is that recombination between the flanking direct gda repeats occurs at a high frequency (10 -8 ) during mitosis. After excision of the URA3 marker, only one copy of the gda sequence remains at the recombinant locus. Thus, the resulting ura3 strain can be used again to disrupt a second allelic gene in a similar manner. In addition to this effective sequential gene disruption method, a codon-optimized green fluorescent protein-encoding gene (GFP) was functionally expressed in C. tropicalis. Thus, we propose a simple and reliable method to improve C. tropicalis by genetic manipulation.

  18. Antifungal Activity of Condensed Tannins from Stryphnodendron adstringens: Effect on Candida tropicalis Growth and Adhesion Properties.

    PubMed

    Morey, Alexandre T; de Souza, Felipe C; Santos, Jussevania P; Pereira, Caibe A; Cardoso, Juscelio D; de Almeida, Ricardo S C; Costa, Marco A; de Mello, João C P; Nakamura, Celso V; Pinge-Filho, Phileno; Yamauchi, Lucy M; Yamada-Ogatta, Sueli F

    2016-01-01

    Candida species are some of the most common causes of fungal infection worldwide. The limited efficacy of clinically available antifungals warrants the search for new compounds for treating candidiasis. This study evaluated the effect of condensed tannin-rich fraction (F2 fraction) of Stryphnodendron adstringens on in vitro and in vivo growth of Candida tropicalis, and on yeast adhesion properties. F2 exhibited a fungistatic effect with the minimum inhibitory concentration ranging from 0.5 to 8.0 μg/mL. A significant reduction in biofilm mass was observed after either pretreatment of planktonic cells for 2 h (mean reduction of 46.31±8.17%) or incubation during biofilm formation (mean reduction of 28.44±13.38%) with 4x MIC of F2. Prior exposure of planktonic cells to this F2 concentration also significantly decreased yeast adherence on HEp-2 cells (mean reduction of 43.13±14.29%), cell surface hydrophobicity (mean reduction of 25.89±10.49%) and mRNA levels of the genes ALST1-3 (2.9-, 1.8- and 1.8-fold decrease, respectively). Tenebrio molitor larvae, which are susceptible to C. tropicalis infection, were used for in vivo testing. Treatment with 128 and 256 μg/mL F2 significantly increased the survival of infected larvae. These results indicate a combined effect of F2 on inhibition of yeast growth and interference in yeast adhesion, which may contribute to the suppression of infection caused by C. tropicalis, thus reinforcing the potential of the condensed tannins from S. adstringens for the development of novel antifungal agents.

  19. Long-term effect on in vitro cloning efficiency after treatment of somatic cells with Xenopus egg extract in the pig.

    PubMed

    Liu, Ying; Ostrup, Olga; Li, Rong; Li, Juan; Vajta, Gábor; Kragh, Peter M; Schmidt, Mette; Purup, Stig; Hyttel, Poul; Klærke, Dan; Callesen, Henrik

    2014-08-01

    In somatic cell nuclear transfer (SCNT), donor cell reprogramming is considered as a biologically important and vulnerable event. Various donor cell pre-treatments with Xenopus egg extracts can promote reprogramming. Here we investigated if the reprogramming effect of one treatment with Xenopus egg extract on donor cells was maintained for several cell passages. The extract treatment resulted in increased cell-colony formation from early passages in treated porcine fibroblasts (ExTES), and increased development of cloned embryos. Partial dedifferentiation was observed in ExTES cells, shown as a tendency towards upregulation of NANOG, c-MYC and KLF-4 and downregulation of DESMIM compared with ExTES at Passage 2. Compared with our routine SCNT, continuously increased development of cloned embryos was observed in the ExTES group, and ExTES cloned blastocysts displayed hypermethylated DNA patterns and hypermethylation of H3K4me3 and H3K27me3 in ICM compared with TE. All seven recipients became pregnant after transferral of ExTES cloned embryos and gave birth to 7-22 piglets per litter (average 12). In conclusion, our results demonstrate that one treatment of porcine fibroblasts with Xenopus egg extract can result in long-term increased ability of the cells to promote their in vitro function in subsequent SCNT. Finally these cells can also result in successful development of cloned embryos to term.

  20. Mechanisms of azole resistance in a clinical isolate of Candida tropicalis.

    PubMed

    Vandeputte, Patrick; Larcher, Gérald; Bergès, Thierry; Renier, Gilles; Chabasse, Dominique; Bouchara, Jean-Philippe

    2005-11-01

    Azole resistance has been insufficiently investigated in the yeast Candida tropicalis. Here we determined the molecular mechanisms responsible for azole resistance in a clinical isolate of this pathogenic yeast. Antifungal susceptibility testing performed by a disk diffusion method showed resistance or markedly decreased susceptibility to azoles, which was confirmed by determination of MICs. Considering the relationship between azole susceptibility and the respiration reported for other yeast species, the respiratory activity of this isolate was investigated. Flow cytometry using rhodamine 123 and oxygraphy demonstrated an increased respiratory activity, which was not linked to an overexpression or increased number of copies of the mitochondrial genome. Among previously described resistance mechanisms, an increased activity of efflux pumps was investigated by flow cytometry using rhodamine 6G. However, the efflux of rhodamine 6G was lower in the resistant isolate than in susceptible ones. Likewise, real-time reverse transcription-PCR quantification of the expression of C. tropicalis MDR1 (CtMDR1), which encodes an efflux protein belonging to the major facilitator superfamily, did not show overexpression of this gene. In contrast, the resistant isolate overexpressed the CtERG11 gene coding for lanosterol 14alpha-demethylase. This was in agreement with the larger amount of ergosterol found in this isolate. Moreover, sequencing of CtERG11 showed a point mutation leading to a tyrosine substitution in the protein sequence, which might lead to decreased binding affinity for azoles. In conclusion, overexpression of CtERG11 associated with a missense mutation in this gene seemed to be responsible for the acquired azole resistance of this clinical isolate.

  1. Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells

    PubMed Central

    Wang, Wei; Mariani, Francesca V.; Harland, Richard M.; Luo, Kunxin

    2000-01-01

    The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-β family members. PMID:11121043

  2. Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells.

    PubMed

    Wang, W; Mariani, F V; Harland, R M; Luo, K

    2000-12-19

    The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-beta family members.

  3. Xenopus egg extract: A powerful tool to study genome maintenance mechanisms.

    PubMed

    Hoogenboom, Wouter S; Klein Douwel, Daisy; Knipscheer, Puck

    2017-08-15

    DNA repair pathways are crucial to maintain the integrity of our genome and prevent genetic diseases such as cancer. There are many different types of DNA damage and specific DNA repair mechanisms have evolved to deal with these lesions. In addition to these repair pathways there is an extensive signaling network that regulates processes important for repair, such as cell cycle control and transcription. Despite extensive research, DNA damage repair and signaling are not fully understood. In vitro systems such as the Xenopus egg extract system, have played, and still play, an important role in deciphering the molecular details of these processes. Xenopus laevis egg extracts contain all factors required to efficiently perform DNA repair outside a cell, using mechanisms conserved in humans. These extracts have been used to study several genome maintenance pathways, including mismatch repair, non-homologous end joining, ICL repair, DNA damage checkpoint activation, and replication fork stability. Here we describe how the Xenopus egg extract system, in combination with specifically designed DNA templates, contributed to our detailed understanding of these pathways. Copyright © 2017. Published by Elsevier Inc.

  4. Xenopus laevis - A success story in biological research in Space

    NASA Astrophysics Data System (ADS)

    Horn, E.

    A feature of sensory, neuronal and motor systems is the existence of a critical period during their development. Environmental modifications, in particular stimulus depri-vation, during this period of life affects development in a long-term manner. For gravity sensory systems, space flights offer the only opportunity for deprivation conditions. Studies in the amphibian Xenopus laevis presented the most complete picture. The presentation demonstrates the importance of Xenopus laevis as an ex-perimental model animal in the past and even for future research in Space. Studies are presented which range from fertilization in Space and anatomical studies during early development under weightlessness up to post-flight studies on the anatomy of the peripheral sense organ, the spinal motor activity and behavior. Gravity depriva-tion induces anatomical as well as behavioral and neurophysiological modifications, which are normalized either during flight (thickening of the blastocoel roof) or after reentry in 1g-conditions (swimming and reflex behavior, spinal motor activity). The physiological changes can be explained by mechanisms of physiological adaptation. However, the studies also revealed stages which were insensitive to gravity depriva-tion; they point to the existence of a critical period. Observations on morphological mal-formations are described which are reversible after termination of microgravity and which are linked to a depression of vestibular reflex behavior. They might be caused by a competition between dorsalization and ventralization inducing growth factors. This observation offers the possibility for a genetic approach in finding ba-sics for microgravity effects on the development of Xenopus, and in a general frame, on the development of vertebrates including men. At the present stage of research, it remains open whether adaptive processes during exposure to altered gravity or the existence of a critical period in vestibular development are responsible for

  5. Planar induction of anteroposterior pattern in the developing central nervous system of Xenopus laevis

    NASA Technical Reports Server (NTRS)

    Doniach, T.; Phillips, C. R.; Gerhart, J. C.

    1992-01-01

    It has long been thought that anteroposterior (A-P) pattern in the vertebrate central nervous system is induced in the embryo's dorsal ectoderm exclusively by signals passing vertically from underlying, patterned dorsal mesoderm. Explants from early gastrulae of the frog Xenopus laevis were prepared in which vertical contact between dorsal ectoderm and mesoderm was prevented but planar contact was maintained. In these, four position-specific neural markers (engrailed-2, Krox-20, XlHbox 1, and XlHbox 6) were expressed in the ectoderm in the same A-P order as in the embryo. Thus, planar signals alone, following a path available in the normal embryo, can induce A-P neural pattern.

  6. ISOLATION OF THE CANDIDA TROPICALIS GENE FOR P450 LANOSTEROL DEMETHYLASE AND ITS EXPRESSION IN SACCAROMYCES CEREVISIAE

    EPA Science Inventory

    We have isolated the gene for cytochrome P450 lanosterol 14-demethylase (14DM) from the yeast Candida tropicalis. This was accomplished by screening genomic libraries of strain ATCC750 in E. coli using a DNA fragment containing the yeast Saccharomyces cerevisiae 14DM gene. Identi...

  7. Optimization of gene delivery methods in Xenopus laevis kidney (A6) and Chinese hamster ovary (CHO) cell lines for heterologous expression of Xenopus inner ear genes

    PubMed Central

    Ramirez-Gordillo, Daniel; Trujillo-Provencio, Casilda; Knight, V. Bleu; Serrano, Elba E.

    2014-01-01

    The Xenopus inner ear provides a useful model for studies of hearing and balance because it shares features with the mammalian inner ear, and because amphibians are capable of regenerating damaged mechanosensory hair cells. The structure and function of many proteins necessary for inner ear function have yet to be elucidated and require methods for analysis. To this end, we seek to characterize Xenopus inner ear genes outside of the animal model through heterologous expression in cell lines. As part of this effort, we aimed to optimize physical (electroporation), chemical (lipid-mediated; Lipofectamine™ 2000, Metafectene® Pro), and biological (viral-mediated; BacMam virus Cellular Lights™ Tubulin-RFP) gene delivery methods in amphibian (Xenopus; A6) cells and mammalian (Chinese hamster ovary (CHO)) cells. We successfully introduced the commercially available pEGFP-N3, pmCherry-N1, pEYFP-Tubulin, and Cellular Lights™ Tubulin-RFP fluorescent constructs to cells and evaluated their transfection or transduction efficiencies using the three gene delivery methods. In addition, we analyzed the transfection efficiency of a novel construct synthesized in our laboratory by cloning the Xenopus inner ear calcium-activated potassium channel β1 subunit, then subcloning the subunit into the pmCherry-N1 vector. Every gene delivery method was significantly more effective in CHO cells. Although results for the A6 cell line were not statistically significant, both cell lines illustrate a trend towards more efficient gene delivery using viral-mediated methods; however the cost of viral transduction is also much higher. Our findings demonstrate the need to improve gene delivery methods for amphibian cells and underscore the necessity for a greater understanding of amphibian cell biology. PMID:21959846

  8. Synergistic Effect of the Flavonoid Catechin, Quercetin, or Epigallocatechin Gallate with Fluconazole Induces Apoptosis in Candida tropicalis Resistant to Fluconazole

    PubMed Central

    da Silva, Cecília Rocha; de Andrade Neto, João Batista; de Sousa Campos, Rosana; Figueiredo, Narjara Silvestre; Sampaio, Letícia Serpa; Magalhães, Hemerson Iury Ferreira; Cavalcanti, Bruno Coêlho; Gaspar, Danielle Macêdo; de Andrade, Geanne Matos; Lima, Iri Sandro Pampolha; de Barros Viana, Glauce Socorro; de Moraes, Manoel Odorico; Lobo, Marina Duarte Pinto; Grangeiro, Thalles Barbosa

    2014-01-01

    Flavonoids are a class of phenolic compounds commonly found in fruits, vegetables, grains, flowers, tea, and wine. They differ in their chemical structures and characteristics. Such compounds show various biological functions and have antioxidant, antimicrobial, anti-inflammatory, and antiapoptotic properties. The aim of this study was to evaluate the in vitro interactions of flavonoids with fluconazole against Candida tropicalis strains resistant to fluconazole, investigating the mechanism of synergism. Three combinations formed by the flavonoids (+)-catechin hydrated, hydrated quercetin, and (−)-epigallocatechin gallate at a fixed concentration with fluconazole were tested. Flavonoids alone had no antifungal activity within the concentration range tested, but when they were used as a cotreatment with fluconazole, there was significant synergistic activity. From this result, we set out to evaluate the possible mechanisms of cell death involved in this synergism. Isolated flavonoids did not induce morphological changes or changes in membrane integrity in the strains tested, but when they were used as a cotreatment with fluconazole, these changes were quite significant. When evaluating mitochondrial damage and the production of reactive oxygen species (ROS) only in the cotreatment, changes were observed. Flavonoids combined with fluconazole were shown to cause a significant increase in the rate of damage and the frequency of DNA damage in the tested strains. The cotreatment also induced an increase in the externalization of phosphatidylserine, an important marker of early apoptosis. It is concluded that flavonoids, when combined with fluconazole, show activity against strains of C. tropicalis resistant to fluconazole, promoting apoptosis by exposure of phosphatidylserine in the plasma membrane and morphological changes, mitochondrial depolarization, intracellular accumulation of ROS, condensation, and DNA fragmentation. PMID:24366745

  9. Planar induction of convergence and extension of the neural plate by the organizer of Xenopus.

    PubMed

    Keller, R; Shih, J; Sater, A K; Moreno, C

    1992-03-01

    This paper demonstrates that convergence and extension within the neural plate of Xenopus laevis are regulated by planar inductive interactions with the adjacent Spemann organizer. The companion article (Keller et al.: Developmental Dynamics 193:199-217, 1992) showed that the prospective hindbrain and spinal cord occupy a very short and very wide area just above the Spemann organizer in the early gastrula and that these regions converge and extend greatly during gastrulation and neurulation, using a sequence of radial and mediolateral cell intercalations. In this article, we show that "planar" contact of these regions with the organizer at their vegetal edge until stage 11 is sufficient to induce convergence and extension, after which their convergence and extension become autonomous. Grafts of the organizer in planar contact with uninduced ectodermal tissues induce these ectodermal tissues to converge and extend by a planar inductive signal from the organizer. Labeling of the inducing or responding tissues confirms that only planar interactions occur. Neural convergence and extension are actually hindered in explants deliberately constructed so that vertical interactions occur. These results show unambiguously that the Spemann organizer induces the extraordinary and precocious convergence and extension movements of the Xenopus neural plate by planar interactions acting over short distances.

  10. CELL SEGREGATION, MIXING, AND TISSUE PATTERN IN THE SPINAL CORD OF THE XENOPUS LAEVIS NEURULA

    PubMed Central

    Davidson, Lance A.; Keller, Raymond E.

    2014-01-01

    Background During Xenopus laevis neurulation, neural ectodermal cells of the spinal cord are patterned at the same time that they intercalate mediolaterally and radially, moving within and between two cell layers. Curious if these rearrangements disrupt early cell identities, we lineage-traced cells in each layer from neural plate stages to the closed neural tube, and used in situ hybridization to assay gene expression in the moving cells. Results Our biotin- and fluorescent labeling of deep and superficial cells reveals that mediolateral intercalation does not disrupt cell cohorts, in other words it is conservative. However, outside the midline notoplate, later radial intercalation does displace superficial cells dorsoventrally, radically disrupting cell cohorts. The tube roof is composed almost exclusively of superficial cells, including some displaced from ventral positions; gene expression in these displaced cells must now be surveyed further. Superficial cells also flank the tube’s floor, which is, itself, almost exclusively composed of deep cells. Conclusions Our data provide: 1) a fate map of superficial- and deep-cell positions within the Xenopus neural tube, 2) the paths taken to these positions, and 3) preliminary evidence of re-patterning in cells carried out of one environment and into another, during neural morphogenesis. PMID:23813905

  11. A glyphosate micro-emulsion formulation displays teratogenicity in Xenopus laevis.

    PubMed

    Bonfanti, Patrizia; Saibene, M; Bacchetta, R; Mantecca, P; Colombo, A

    2018-02-01

    Glyphosate is the active ingredient in broad-spectrum herbicide formulations used in agriculture, domestic area and aquatic weed control worldwide. Its market is growing steadily concurrently with the cultivation of glyphosate-tolerant transgenic crops and emergence of weeds less sensitive to glyphosate. Ephemeral and lentic waters near to agricultural lands, representing favorite habitats for amphibian reproduction and early life-stage development, may thus be contaminated by glyphosate based herbicides (GBHs) residues. Previous studies on larval anuran species highlighted increased mortality and growth effects after exposure to different GBHs in comparison to glyphosate itself, mainly because of the surfactants such as polyethoxylated tallow amine present in the formulations. Nevertheless, these conclusions are not completely fulfilled when the early development, characterized by primary organogenesis events, is considered. In this study, we compare the embryotoxicity of Roundup ® Power 2.0, a new GBH formulation currently authorized in Italy, with that of technical grade glyphosate using the Frog Embryo Teratogenesis Assay-Xenopus (FETAX). Our results evidenced that glyphosate was not embryolethal and only at the highest concentration (50 mg a.e./L) caused edemas. Conversely, Roundup ® Power 2.0 exhibited a 96 h LC50 of 24.78 mg a.e./L and a 96 h EC50 of 7.8 mg a.e./L. A Teratogenic Index of 3.4 was derived, pointing out the high teratogenic potential of the Roundup ® Power 2.0. Specific concentration-dependent abnormal phenotypes, such as craniofacial alterations, microphthalmia, narrow eyes and forebrain regionalization defects were evidenced by gross malformation screening and histopathological analysis. These phenotypes are coherent with those evidenced in Xenopus laevis embryos injected with glyphosate, allowing us to hypothesize that the teratogenicity observed for Roundup ® Power 2.0 may be related to the improved efficacy in delivering

  12. Construction of genetically engineered Candida tropicalis for conversion of l-arabinose to l-ribulose.

    PubMed

    Yeo, In-Seok; Shim, Woo-Yong; Kim, Jung Hoe

    2018-05-20

    For the biological production of l-ribulose, conversion by enzymes or resting cells has been investigated. However, expensive or concentrated substrates, an additional purification step to remove borate and the requirement for cell cultivation and harvest steps before utilization of resting cells make the production process complex and unfavorable. Microbial fermentation may help overcome these limitations. In this study, we constructed a genetically engineered Candida tropicalis strain to produce l-ribulose by fermentation with a glucose/l-arabinose mixture. For the uptake of l-arabinose as a substrate and conversion of l-arabinose to l-ribulose, two heterologous genes coding for l-arabinose transporter and l-arabinose isomerase, were constitutively expressed in C. tropicalis under the GAPDH promoter. The Arabidopsis thaliana-originated l-arabinose transporter gene (STP2)-expressing strain exhibited a high l-arabinose uptake rate of 0.103 g/g cell/h and the expression of l-arabinose isomerase from Lactobacillus sakei 23 K showed 30% of conversion (9 g/L) from 30 g/L of l-arabinose. This genetically engineered strain can be used for l-ribulose production by fermentation using mixed sugars of glucose and l-arabinose. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. [Subtractive gene cloning and gene-disruption for elucidation of pseudohyphal formation in Candida tropicalis].

    PubMed

    Suzuki, Takahito

    2003-01-01

    The dimorphic transition from yeast to pseudohyphae in the petroleum-assimilating yeast Candida tropicalis occurs following the addition of ethanol to glucose semi-defined medium. Subtractive gene cloning was performed on the cDNA from the yeast-growing control culture and on that from the ethanol-supplemented one (the ethanol culture). A homologue of Schizosaccharomyces pombe nmt1+ or Saccharomyces cerevisiae THI5 was isolated from the cDNA fraction as a preferentially expressed gene for the ethanol culture. This homologue was tentatively called Ctnmt1+, since exogenous thiamine repressed its expression in C. tropicalis growth media. The ethanol culture showed a biphasic pattern of growth phases and the expression of Ctnmt1+ occurred at the first growth phase. The supplementation of thiamine to the ethanol culture at the first phase was followed by repression of Ctnmt1+ expression and also delay of pseudohyphal growth: filamentous growth was inhibited and chains of yeast cells were formed. A Ctnmt1+ disruptant of this organism did not show thiamine auxotrophy and produced pseudohyphal filaments even in the control culture. The supplementation of oxythiamine, an analog of thiamine, to the control culture was followed by the appearance of pseudohyphal filaments, indicating the participation of thiamine during the process of pseudohyphal growth in this organism.

  14. Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion.

    PubMed

    Wang, Shizeng; Li, Hao; Fan, Xiaoguang; Zhang, Jingkun; Tang, Pingwah; Yuan, Qipeng

    2015-09-01

    During xylitol fermentation, Candida tropicalis is often inhibited by inhibitors in hemicellulose hydrolysate. The mechanisms involved in the metabolic responses to inhibitor stress and the resistances to inhibitors are still not clear. To understand the inhibition mechanisms and the metabolic responses to inhibitors, a GC/MS-based metabolomics approach was performed on C. tropicalis treated with and without complex inhibitors (CI, including furfural, phenol and acetic acid). Partial least squares discriminant analysis was used to determine the metabolic variability between CI-treated groups and control groups, and 25 metabolites were identified as possible entities responsible for the discrimination caused by inhibitors. We found that xylose uptake rate and xylitol oxidation rate were promoted by CI treatment. Metabolomics analysis showed that the flux from xylulose to pentose phosphate pathway increased, and tricarboxylic acid cycle was disturbed by CI. Moreover, the changes in levels of 1,3-propanediol, trehalose, saturated fatty acids and amino acids showed different mechanisms involved in metabolic responses to inhibitor stress. The increase of 1,3-propanediol was considered to be correlated with regulating redox balance and osmoregulation. The increase of trehalose might play a role in protein stabilization and cellular membranes protection. Saturated fatty acids could cause the decrease of membrane fluidity and make the plasma membrane rigid to maintain the integrity of plasma membrane. The deeper understanding of the inhibition mechanisms and the metabolic responses to inhibitors will provide us with more information on the metabolism regulation during xylitol bioconversion and the construction of industrial strains with inhibitor tolerance for better utilization of bioresource. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A Matter of the Heart: The African Clawed Frog Xenopus as a Model for Studying Vertebrate Cardiogenesis and Congenital Heart Defects

    PubMed Central

    Hempel, Annemarie; Kühl, Michael

    2016-01-01

    The African clawed frog, Xenopus, is a valuable non-mammalian model organism to investigate vertebrate heart development and to explore the underlying molecular mechanisms of human congenital heart defects (CHDs). In this review, we outline the similarities between Xenopus and mammalian cardiogenesis, and provide an overview of well-studied cardiac genes in Xenopus, which have been associated with congenital heart conditions. Additionally, we highlight advantages of modeling candidate genes derived from genome wide association studies (GWAS) in Xenopus and discuss commonly used techniques. PMID:29367567

  16. Two squalene synthase inhibitors, E5700 and ER-119884, interfere with cellular proliferation and induce ultrastructural and lipid profile alterations in a Candida tropicalis strain resistant to fluconazole, itraconazole, and amphotericin B.

    PubMed

    Ishida, Kelly; Visbal, Gonzalo; Rodrigues, Juliany Cola Fernandes; Urbina, Julio A; de Souza, Wanderley; Rozental, Sonia

    2011-08-01

    Three quinuclidine-based squalene synthase (SQS) inhibitors (BPQ-OH, E5700, and ER-119884) were evaluated against five Candida tropicalis strains with different susceptibility profiles to fluconazole (FLC), itraconazole (ITC), terbinafine (TRB), and amphotericin B (AMB). Although the quinuclidine derivatives were inactive against most C. tropicalis strains tested at concentrations up to 16 μg/ml, E5700 and ER-119884 showed antifungal activity against C. tropicalis ATCC 28707, a strain resistant to FLC, ITC, and AMB, with IC(50) and IC(90) values (i.e., the minimum inhibitory concentrations of the drugs determined as the lowest drug concentrations leading to a 50 and 90% of reduction in turbidity at 492 nm, respectively, after 48 h of incubation) of 1 and 4 μg/ml, respectively. Analysis of free sterols showed that non-treated C. tropicalis ATCC 28707 cells contained only 14-methylated sterols and that treatment with E5700 or ER-119884 led to a marked reduction of squalene content and the complete disappearance of the endogenous sterols. The fatty acid and phospholipid profiles in C. tropicalis ATCC 28707 cells grown in the presence of E5700 and ER-119884 were also markedly altered, with a large increase in the content of linolenic acid (C18:3), associated with a reduction in the content of linoleic (C18:2) and oleic (C18:1) acids. Treatment of C. tropicalis ATCC 28707 with E5700 or ER-119884 IC(50) values induced several ultrastructural alterations, including a marked increase in the thickness of the cell wall and the appearance of a large number of electron-dense vacuoles. In conclusion, our results indicated that E5700 and ER-119884 inhibited the growth and altered the lipid prolife and the ultrastructure of a multiple drug-resistant C. tropicalis strain. Therefore, such compounds could act as leads for the development of new treatment options against multidrug resistant Candida species.

  17. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    EPA Science Inventory

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  18. Endocrine Toxicity of Trenbolone During Larval Development of Xenopus tropicalis

    EPA Science Inventory

    Trenbolone is a non-aromatizeable androgen agonist used extensively in the beef industry. It can be excreted from cattle in an active form and has been measured in aquatic systems associated with or near concentrated animal feeding operations. We characterized the effects of aque...

  19. A Voltage Dependent Non-Inactivating Na+ Channel Activated during Apoptosis in Xenopus Oocytes

    PubMed Central

    Englund, Ulrika H.; Gertow, Jens; Kågedal, Katarina; Elinder, Fredrik

    2014-01-01

    Ion channels in the plasma membrane are important for the apoptotic process. Different types of voltage-gated ion channels are up-regulated early in the apoptotic process and block of these channels prevents or delays apoptosis. In the present investigation we examined whether ion channels are up-regulated in oocytes from the frog Xenopus laevis during apoptosis. The two-electrode voltage-clamp technique was used to record endogenous ion currents in the oocytes. During staurosporine-induced apoptosis a voltage-dependent Na+ current increased three-fold. This current was activated at voltages more positive than 0 mV (midpoint of the open-probability curve was +55 mV) and showed almost no sign of inactivation during a 1-s pulse. The current was resistant to the Na+-channel blockers tetrodotoxin (1 µM) and amiloride (10 µM), while the Ca2+-channel blocker verapamil (50 µM) in the bath solution completely blocked the current. The intracellular Na+ concentration increased in staurosporine-treated oocytes, but could be prevented by replacing extracellular Na+ whith either K+ or Choline+. Prevention of this influx of Na+ also prevented the STS-induced up-regulation of the caspase-3 activity, suggesting that the intracellular Na+ increase is required to induce apoptosis. Taken together, we have found that a voltage dependent Na+ channel is up-regulated during apoptosis and that influx of Na+ is a crucial step in the apoptotic process in Xenopus oocytes. PMID:24586320

  20. Determination of biofilm production by Candida tropicalis isolated from hospitalized patients and its relation to cellular surface hydrophobicity, plastic adherence and filamentation ability.

    PubMed

    Galán-Ladero, M A; Blanco-Blanco, M T; Hurtado, C; Pérez-Giraldo, C; Blanco, M T; Gómez-García, A C

    2013-09-01

    Candida tropicalis is an emerging virulent species. The aim of this study is to determine the biofilm-forming ability of 29 strains of C. tropicalis isolated from inpatients, and to examine its relation with other virulence factors such as cellular surface hydrophobicity (CSH), immediate (15 min, IA) and late (24 h, LA) plastic adherence and filamentation ability. The study was performed in parallel using two incubation temperatures - 37 and 22 °C - to determine the effect of growth temperature variations on these pathogenic attributes of C. tropicalis. Biofilm formation (BF) was measured by optical density (OD) and by XTT reduction (XTT); Slime index (SI), which includes growth as a correction factor in BF, was calculated in both methods. All strains were hydrophobic and adherent - at 15 min and 24 h - at both temperatures, with higher values for 22 °C; the adhered basal yeast layer appears to be necessary to achieve subsequent development of biofilm. Filamentation ability varied from 76.2% of strains at 37 °C to 26.6% at 22 °C. All C. tropicalis strains were biofilm producers, with similar results obtained using OD determination and XTT measurement to evaluation methods; SI is useful when good growth is not presented. BF at 37 °C was similar at 24 h and 96 h incubation; conversely, at 22 °C, the highest number of biofilm-producing strains was detected at 96 h. CSH is an important pathogenic factor which is involved in adherence, is influenced by the filamentation of yeast, and plays a critical role in BF. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Developing Xenopus Embryos Recover by Compacting and Expelling Single-Wall Carbon Nanotubes

    PubMed Central

    Holt, Brian D.; Shawky, Joseph H.; Dahl, Kris Noel; Davidson, Lance A.; Islam, Mohammad F.

    2015-01-01

    Single-wall carbon nanotubes are high aspect ratio nanomaterials that are being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties, and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single-wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 μm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one-to-two cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call “boluses”. Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. PMID:26153061

  2. Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.

    PubMed

    Holt, Brian D; Shawky, Joseph H; Dahl, Kris Noel; Davidson, Lance A; Islam, Mohammad F

    2016-04-01

    Single wall carbon nanotubes are high aspect ratio nanomaterials being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 µm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one- to two-cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call "boluses." Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Prolonged in vivo imaging of Xenopus laevis.

    PubMed

    Hamilton, Paul W; Henry, Jonathan J

    2014-08-01

    While live imaging of embryonic development over long periods of time is a well established method for embryos of the frog Xenopus laevis, once development has progressed to the swimming stages, continuous live imaging becomes more challenging because the tadpoles must be immobilized. Current imaging techniques for these advanced stages generally require bringing the tadpoles in and out of anesthesia for short imaging sessions at selected time points, severely limiting the resolution of the data. Here we demonstrate that creating a constant flow of diluted tricaine methanesulfonate (MS-222) over a tadpole greatly improves their survival under anesthesia. Based on this result, we describe a new method for imaging stage 48 to 65 X. laevis, by circulating the anesthetic using a peristaltic pump. This supports the animal during continuous live imaging sessions for at least 48 hr. The addition of a stable optical window allows for high quality imaging through the anesthetic solution. This automated imaging system provides for the first time a method for continuous observations of developmental and regenerative processes in advanced stages of Xenopus over 2 days. Developmental Dynamics 243:1011-1019, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  4. Rapamycin treatment causes developmental delay, pigmentation defects, and gastrointestinal malformation on Xenopus embryogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriyama, Yuki; Ohata, Yoshihisa; Mori, Shoko

    Research highlights: {yields} Does famous anti-aging drug rapamycin work from the beginning of life? The answer is yes. {yields} This study shows that developmental speed of frog embryo was dose-dependently decreased by rapamycin treatment. {yields} In additions, morphogenetic effects such as less pigmentations and gut malformation are occurred by rapamycin. -- Abstract: Rapamycin is a drug working as an inhibitor of the TOR (target of rapamycin) signaling pathway and influences various life phenomena such as cell growth, proliferation, and life span extension in eukaryote. However, the extent to which rapamycin controls early developmental events of amphibians remains to be understood.more » Here we report an examination of rapamycin effects during Xenopus early development, followed by a confirmation of suppression of TOR downstream kinase S6K by rapamycin treatment. First, we found that developmental speed was declined in dose-dependent manner of rapamycin. Second, black pigment spots located at dorsal and lateral skin in tadpoles were reduced by rapamycin treatment. Moreover, in tadpole stages severe gastrointestinal malformations were observed in rapamycin-treated embryos. Taken together with these results, we conclude that treatment of the drug rapamycin causes enormous influences on early developmental period.« less

  5. The Midblastula Transition Defines the Onset of Y RNA-Dependent DNA Replication in Xenopus laevis ▿

    PubMed Central

    Collart, Clara; Christov, Christo P.; Smith, James C.; Krude, Torsten

    2011-01-01

    Noncoding Y RNAs are essential for the initiation of chromosomal DNA replication in mammalian cell extracts, but their role in this process during early vertebrate development is unknown. Here, we use antisense morpholino nucleotides (MOs) to investigate Y RNA function in Xenopus laevis and zebrafish embryos. We show that embryos in which Y RNA function is inhibited by MOs develop normally until the midblastula transition (MBT) but then fail to replicate their DNA and die before gastrulation. Consistent with this observation, Y RNA function is not required for DNA replication in Xenopus egg extracts but is required for replication in a post-MBT cell line. Y RNAs do not bind chromatin in karyomeres before MBT, but they associate with interphase nuclei after MBT in an origin recognition complex (ORC)-dependent manner. Y RNA-specific MOs inhibit the association of Y RNAs with ORC, Cdt1, and HMGA1a proteins, suggesting that these molecular associations are essential for Y RNA function in DNA replication. The MBT is thus a transition point between Y RNA-independent and Y RNA-dependent control of vertebrate DNA replication. Our data suggest that in vertebrates Y RNAs function as a developmentally regulated layer of control over the evolutionarily conserved eukaryotic DNA replication machinery. PMID:21791613

  6. In vitro activity of Schinus terebinthifolius (Brazilian pepper tree) on Candida tropicalis growth and cell wall formation.

    PubMed

    Alves, Lívia A; Freires, Irlan de A; de Souza, Tricia M P A; de Castro, Ricardo D

    2012-01-01

    The aim of this study was to evaluate the in vitro antifungal activity of Schinus terebinthifolius (Brazilian pepper tree) tincture on planktonic Candida tropicalis (ATCC 40042), which is a microorganism associated to oral cavity infections. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) were determined through the microdilution technique. Possible action of the tincture on fungal cell wall formation was also studied by adding an osmotic protector (0.8M sorbitol) to the microplates. Nystatin was used as standard control and tests were performed in triplicate. S. terebinthifolius was found to have MIC and MFC values of 625 microg/mL on the strain assayed, whereas nystatin showed MIC and MFC of 6.25 microg/mL. Results suggest that S. terebinthifolius tincture acts on fungal cell walls, since the sorbitol test indicated a MIC of 1.250 microg/mL. It may be concluded that S. terebinthifolius has potential in vitro antifungal activity against C. tropicalis strains, and probably acts by inhibiting fungal cell wall formation.

  7. Analysis of molecular chaperones using a Xenopus oocyte protein refolding assay.

    PubMed

    Heikkila, John J; Kaldis, Angelo; Abdulle, Rashid

    2006-01-01

    Heat shock proteins (Hsps) are molecular chaperones that aid in the folding and translocation of protein under normal conditions and protect cellular proteins during stressful situations. A family of Hsps, the small Hsps, can maintain denatured target proteins in a folding-competent state such that they can be refolded and regain biological activity in the presence of other molecular chaperones. Previous assays have employed cellular lysates as a source of molecular chaperones involved in folding. In this chapter, we describe the production and purification of a Xenopus laevis recombinant small Hsp, Hsp30C, and an in vivo luciferase (LUC) refolding assay employing microinjected Xenopus oocytes. This assay tests whether LUC can be maintained in a folding-competent state when heat denatured in the presence of a small Hsp or other molecular chaperone. For example, micro-injection of heat-denatured LUC alone into oocytes resulted in minimal reactivation of enzyme activity. However, LUC heat denatured in the presence of Hsp30C resulted in 100% recovery of enzyme activity after microinjection. The in vivo oocyte refolding system is more sensitive and requires less molecular chaperone than in vitro refolding assays. Also, this protocol is not limited to testing Xenopus molecular chaperones because small Hsps from other organisms have been used successfully.

  8. Cytochrome b5 gene and protein of Candida tropicalis and methods relating thereto

    DOEpatents

    Craft, David L.; Madduri, Krishna M.; Loper, John C.

    2003-01-01

    A novel gene has been isolated which encodes cytochrome b5 (CYTb5) protein of the .omega.-hydroxylase complex of C. tropicalis 20336. Vectors including this gene, and transformed host cells are provided. Methods of increasing the production of a CYTb5 protein are also provided which involve transforming a host cell with a gene encoding this protein and culturing the cells. Methods of increasing the production of a dicarboxylic acid are also provided which involve increasing in the host cell the number of genes encoding this protein.

  9. Comparative toxicity of methidathion and glyphosate on early life stages of three amphibian species: Pelophylax ridibundus, Pseudepidalea viridis, and Xenopus laevis.

    PubMed

    Güngördü, Abbas

    2013-09-15

    The assessments of pesticide toxicity on nontarget organisms have largely been focused on the determination of median lethal concentration (LC50) values using single/laboratory species. Although useful, these studies cannot describe the biochemical mechanisms of toxicity and also cannot explain the effects of pesticides on natural species. In this study, the toxic effects of glyphosate and methidathion were evaluated comparatively on early developmental stages of 3 anurans-2 natural (Pelophylax ridibundus, Pseudepidalea viridis) and 1 laboratory species (Xenopus laevis). The 96-h LC50 values for methidathion and glyphosate were determined as 25.7-19.6 mg active ingredient (AI)/L for P. viridis, 27.4-22.7 mg AI/L for P. ridibundus, and 15.3-5.05 mg AI/L for X. laevis tadpoles. Furthermore, as early signs of intoxication, glutathione S-transferase (GST), acetylcholinesterase (AChE), carboxylesterase (CaE), glutathione reductase, lactate dehydrogenase, and aspartate aminotrasferase were assayed in 4-day-old tadpoles after 96-h pesticide exposure. The GST induction after 3.2mg AI/L methidathion exposure was determined to be 173%, 83%, and 38% of control, and the AChE inhibition for the same dose was determined to be 86%, 96%, and 30% of control for P. ridibundus, P. viridis, and X. laevis, respectively. Unlike the application of methidathion, all enzyme activities showed statistically significant increases on glyphosate exposure compared to controls. However, these increases in enzyme activities were not shown to be parallel with the increase of concentration. The levels of increases of GST and AChE were determined to be 111% and 31% for P. ridibundus, 13% and 51% for P. viridis, and 15% and 36% for X. laevis after 3.2mg AI/L glyphosate exposure, respectively. The findings of the study suggest that the most sensitive species to pesticide exposure is X. laevis. The selected biomarker enzymes AChE, CaE, and GST are useful in understanding the toxic mechanisms of these

  10. Signal recognition particle assembly in relation to the function of amplified nucleoli of Xenopus oocytes.

    PubMed

    Sommerville, John; Brumwell, Craig L; Politz, Joan C Ritland; Pederson, Thoru

    2005-03-15

    The signal recognition particle (SRP) is a ribonucleoprotein machine that controls the translation and intracellular sorting of membrane and secreted proteins. The SRP contains a core RNA subunit with which six proteins are assembled. Recent work in both yeast and mammalian cells has identified the nucleolus as a possible initial site of SRP assembly. In the present study, SRP RNA and protein components were identified in the extrachromosomal, amplified nucleoli of Xenopus laevis oocytes. Fluorescent SRP RNA microinjected into the oocyte nucleus became specifically localized in the nucleoli, and endogenous SRP RNA was also detected in oocyte nucleoli by RNA in situ hybridization. An initial step in the assembly of SRP involves the binding of the SRP19 protein to SRP RNA. When green fluorescent protein (GFP)-tagged SRP19 protein was injected into the oocyte cytoplasm it was imported into the nucleus and became concentrated in the amplified nucleoli. After visiting the amplified nucleoli, GFP-tagged SRP19 protein was detected in the cytoplasm in a ribonucleoprotein complex, having a sedimentation coefficient characteristic of the SRP. These results suggest that the amplified nucleoli of Xenopus oocytes produce maternal stores not only of ribosomes, the classical product of nucleoli, but also of SRP, presumably as a global developmental strategy for stockpiling translational machinery for early embryogenesis.

  11. Inversion of left-right asymmetry alters performance of Xenopus tadpoles in nonlateralized cognitive tasks.

    PubMed

    Blackiston, Douglas J; Levin, Michael

    2013-08-01

    Left-right behavioural biases are well documented across the animal kingdom, and handedness has long been associated with cognitive performance. However, the relationship between body laterality and cognitive ability is poorly understood. The embryonic pathways dictating normal left-right patterning have been molecularly dissected in model vertebrates, and numerous genetic and pharmacological treatments now facilitate experimental randomization or reversal of the left-right axis in these animals. Several recent studies showed a link between brain asymmetry and strongly lateralized behaviours such as eye use preference. However, links between laterality of the body and performance on cognitive tasks utilizing nonlateralized cues remain unknown. Xenopus tadpoles are an established model for the study of early left-right patterning, and protocols were recently developed to quantitatively evaluate learning and memory in these animals. Using an automated testing and training platform, we tested wild-type, left-right-randomized and left-right-reversed tadpoles for their ability to learn colour cues in an automated assay. Our results indicate that animals with either randomization or reversal of somatic left-right patterning learned more slowly than wild-type siblings, although all groups were able to reach the same performance optimum given enough training sessions. These results are the first analysis of the link between body laterality and learning of nonlateralized cues, and they position the Xenopus tadpole as an attractive and tractable model for future studies of the links between asymmetry of the body, lateralization of the brain and behaviour.

  12. Persistent fibrosis, hypertrophy and sarcomere disorganisation after endoscopy-guided heart resection in adult Xenopus

    PubMed Central

    Girardot, Fabrice; Péricard, Louise; Demeneix, Barbara A.; Coen, Laurent; Chai, Norin

    2017-01-01

    Models of cardiac repair are needed to understand mechanisms underlying failure to regenerate in human cardiac tissue. Such studies are currently dominated by the use of zebrafish and mice. Remarkably, it is between these two evolutionary separated species that the adult cardiac regenerative capacity is thought to be lost, but causes of this difference remain largely unknown. Amphibians, evolutionary positioned between these two models, are of particular interest to help fill this lack of knowledge. We thus developed an endoscopy-based resection method to explore the consequences of cardiac injury in adult Xenopus laevis. This method allowed in situ live heart observation, standardised tissue amputation size and reproducibility. During the first week following amputation, gene expression of cell proliferation markers remained unchanged, whereas those relating to sarcomere organisation decreased and markers of inflammation, fibrosis and hypertrophy increased. One-month post-amputation, fibrosis and hypertrophy were evident at the injury site, persisting through 11 months. Moreover, cardiomyocyte sarcomere organisation deteriorated early following amputation, and was not completely recovered as far as 11 months later. We conclude that the adult Xenopus heart is unable to regenerate, displaying cellular and molecular marks of scarring. Our work suggests that, contrary to urodeles and teleosts, with the exception of medaka, adult anurans share a cardiac injury outcome similar to adult mammals. This observation is at odds with current hypotheses that link loss of cardiac regenerative capacity with acquisition of homeothermy. PMID:28278282

  13. Further Characterization of an Interleukin-2-1Ike Cytokine Produced by Xenopus Laevis T Lymphocytes

    PubMed Central

    Haynes, Laura

    1993-01-01

    A T-cell growth factor (TCGF) is produced by antigen- or mitogen-stimulated T lymphocytes from the South African clawed frog Xenopus laevis. This study further defines the physical and biological properties of this cytokine and demonstrates that TCGF is biochemically similar to mammalian interleukin-2 (IL-2). Biologically active TCGF eluted from SDS-PAGE displays a Mr of 16 kD and lectin-affinity chromatography indicates that the three-dimensionmal configuration of carbohydrates on TCGF and human IL-2 is similar. Secretion of TCGF is detectable 1 day after stimulation of splenocytes with the T-cell mitogen phytohemagglutinin (PHA) and peaks following 2 to 3 days of stimulation. Finally, despite the biological and physical similarities between Xenopus TCGF and mammalian IL-2, anti-human IL-2 monoclonal antibodies do not recognize Xenopus TCGF. PMID:8281036

  14. Embryonic wound healing by apical contraction and ingression in Xenopus laevis.

    PubMed

    Davidson, Lance A; Ezin, Akouavi M; Keller, Ray

    2002-11-01

    We have characterized excisional wounds in the animal cap of early embryos of the frog Xenopus laevis and found that these wounds close accompanied by three distinct processes: (1) the assembly of an actin purse-string in the epithelial cells at the wound margin, (2) contraction and ingression of exposed deep cells, and (3) protrusive activity of epithelial cells at the margin. Microsurgical manipulation allowing fine control over the area and depth of the wound combined with videomicroscopy and confocal analysis enabled us to describe the kinematics and challenge the mechanics of the closing wound. Full closure typically occurs only when the deep, mesenchymal cell-layer of the ectoderm is left intact; in contrast, when deep cells are removed along with the superficial, epithelial cell-layer of the ectoderm, wounds do not close. Actin localizes to the superficial epithelial cell-layer at the wound margin immediately after wounding and forms a contiguous "purse-string" in those cells within 15 min. However, manipulation and closure kinematics of shaped wounds and microsurgical cuts made through the purse-string rule out a major force-generating role for the purse-string. Further analysis of the cell behaviors within the wound show that deep, mesenchymal cells contract their apical surfaces and ingress from the exposed surface. High resolution time-lapse sequences of cells at the leading edge of the wound show that these cells undergo protrusive activity only during the final phases of wound closure as the ectoderm reseals. We propose that assembly of the actin purse-string works to organize and maintain the epithelial sheet at the wound margin, that contraction and ingression of deep cells pulls the wound margins together, and that protrusive activity of epithelial cells at the wound margin reseals the ectoderm and re-establishes tissue integrity during wound healing in the Xenopus embryonic ectoderm. Copyright 2002 Wiley-Liss, Inc.

  15. G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/β-catenin signaling and are essential for head formation in Xenopus.

    PubMed

    Miyagi, Asuka; Negishi, Takefumi; Yamamoto, Takamasa S; Ueno, Naoto

    2015-11-01

    Patterning of the vertebrate anterior-posterior axis is regulated by the coordinated action of growth factors whose effects can be further modulated by upstream and downstream mediators and the cross-talk of different intracellular pathways. In particular, the inhibition of the Wnt/β-catenin signaling pathway by various factors is critically required for anterior specification. Here, we report that Flop1 and Flop2 (Flop1/2), G protein-coupled receptors related to Gpr4, contribute to the regulation of head formation by inhibiting Wnt/β-catenin signaling in Xenopus embryos. Using whole-mount in situ hybridization, we showed that flop1 and flop2 mRNAs were expressed in the neural ectoderm during early gastrulation. Both the overexpression and knockdown of Flop1/2 resulted in altered embryonic head phenotypes, while the overexpression of either Flop1/2 or the small GTPase RhoA in the absence of bone morphogenetic protein (BMP) signaling resulted in ectopic head induction. Examination of the Flops' function in Xenopus embryo animal cap cells showed that they inhibited Wnt/β-catenin signaling by promoting β-catenin degradation through both RhoA-dependent and -independent pathways in a cell-autonomous manner. These results suggest that Flop1 and Flop2 are essential regulators of Xenopus head formation that act as novel inhibitory components of the Wnt/β-catenin signaling pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Host-defense and trefoil factor family peptides in skin secretions of the Mawa clawed frog Xenopus boumbaensis (Pipidae).

    PubMed

    Conlon, J Michael; Mechkarska, Milena; Kolodziejek, Jolanta; Leprince, Jérôme; Coquet, Laurent; Jouenne, Thierry; Vaudry, Hubert; Nowotny, Norbert; King, Jay D

    2015-10-01

    Peptidomic analysis of norepinephrine-stimulated skin secretions from the octoploid Mawa clawed frog Xenopus boumbaensis Loumont, 1983 led to the identification and characterization of 15 host-defense peptides belonging to the magainin (two peptides), peptide glycine-leucine-amide (PGLa; three peptides), xenopsin precursor fragment (XPF; three peptides), caerulein precursor fragment (CPF; two peptides), and caerulein precursor fragment-related peptide (CPF-RP; five peptides) families. In addition, caerulein and three peptides with structural similarity to the trefoil factor family (TFF) peptides, xP2 and xP4 from Xenopus laevis were also present in the secretions. Consistent with data from comparisons of the nucleotides sequence of mitochondrial and nuclear genes, the primary structures of the peptides suggest a close phylogenetic relationship between X. boumbaensis and the octoploid frogs Xenopus amieti and Xenopus andrei. As the three species occupy disjunct ranges within Cameroon, it is suggested that they diverged from a common ancestor by allopatric speciation. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Oxygen requirements of yeasts. [Saccharomyces cerevisiae; Candida tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, W.; Scheffers, W.A.; Batenburg-Van Der Vegte, W.H.

    1990-12-01

    Type species of 75 yeast genera were examined for their ability to grow anaerobically in complex and mineral media. To define anaerobic conditions, we added a redox indicator, resazurin, to the media to determine low redox potentials. All strains tested were capable of fermenting glucose to ethanol in oxygen-limited shake-flask cultures, even those of species generally regarded as nonfermentative. However, only 23% of the yeast species tested grew under anaerobic conditions. A comparative study with a number of selected strains revealed that Saccharomyces cerevisiae stands out as a yeast capable of rapid growth at low redox potentials. Other yeasts, suchmore » as Torulaspora delbrueckii and Candida tropicalis, grew poorly ({mu}{sub max}, 0.03 and 0.05 h{sup {minus}1}, respectively) under anaerobic conditions in mineral medium supplemented with Tween 80 and ergosterol. The latter organisms grew rapidly under oxygen limitation and then displayed a high rate of alcoholic fermentation. It can be concluded that these yeasts have hitherto-unidentified oxygen requirements for growth.« less

  18. Identification and first report of Inonotus (Phellinus) tropicalis as an etiologic agent in a patient with chronic granulomatous disease

    Treesearch

    D.A. Sutton; E.H. Thompson; M.G. Rinaldi; P.C. Iwen; K.K. Nakasone; H.S. Jung; H.M. Rosenblatt; M.E. Paul

    2005-01-01

    Although isolates of filamentous basidiomycetes can usually be recognized in a clinical laboratory setting, identification is problematic, as they seldom exhibit diagnostic morphological features formed in nature. This paper is the first report of Inonotus (Phellinus ) tropicalis inciting human disease and describes the methods used to support the identification.

  19. Population structure of the African Clawed Frog (Xenopus laevis) in maize-growing areas with atrazine application versus non-maize-growing areas in South Africa

    USGS Publications Warehouse

    Du Preez, L.H.; Solomon, K.R.; Carr, J.A.; Giesy, J.P.; Gross, T.S.; Kendall, R.J.; Smith, E.E.; Van Der Kraak, G. L.; Weldon, C.

    2005-01-01

    The herbicide atrazine has been suggested to cause gonadal deformities in frogs and could possibly impact on reproduction. Since the early 1960s, atrazine has been used in large amounts in maize production areas of South Africa. These areas overlap with populations of the African Clawed Frog (Xenopus laevis) that has a wide distribution in southern Africa and is found in most water-bodies including those where atrazine residues are detected. The aim of this study was to compare various attributes of individual- and population-level responses of X. laevis from maize-growing and non-maize-growing areas. Xenopus laevis were studied in three reference and five maize-growing sites. Sex ratio, snout-vent length, body-mass and age profiles were found to be similar for populations in maize-growing and non-maize-growing areas. Our mark-recapture data indicated that all sites had robust populations. There were no significant relationships between exposure to atrazine and any of the parameters investigated in populations of X. laevis.

  20. Subcellular Metabolite and Lipid Analysis of Xenopus laevis Eggs by LAESI Mass Spectrometry

    PubMed Central

    Reschke, Brent R.; Henderson, Holly D.; Powell, Matthew J.; Moody, Sally A.; Vertes, Akos

    2014-01-01

    Xenopus laevis eggs are used as a biological model system for studying fertilization and early embryonic development in vertebrates. Most methods used for their molecular analysis require elaborate sample preparation including separate protocols for the water soluble and lipid components. In this study, laser ablation electrospray ionization (LAESI), an ambient ionization technique, was used for direct mass spectrometric analysis of X. laevis eggs and early stage embryos up to five cleavage cycles. Single unfertilized and fertilized eggs, their animal and vegetal poles, and embryos through the 32-cell stage were analyzed. Fifty two small metabolite ions, including glutathione, GABA and amino acids, as well as numerous lipids including 14 fatty acids, 13 lysophosphatidylcholines, 36 phosphatidylcholines and 29 triacylglycerols were putatively identified. Additionally, some proteins, for example thymosin β4 (Xen), were also detected. On the subcellular level, the lipid profiles were found to differ between the animal and vegetal poles of the eggs. Radial profiling revealed profound compositional differences between the jelly coat vitelline/plasma membrane and egg cytoplasm. Changes in the metabolic profile of the egg following fertilization, e.g., the decline of polyamine content with the development of the embryo were observed using LAESI-MS. This approach enables the exploration of metabolic and lipid changes during the early stages of embryogenesis. PMID:25506922

  1. Subcellular metabolite and lipid analysis of Xenopus laevis eggs by LAESI mass spectrometry.

    PubMed

    Shrestha, Bindesh; Sripadi, Prabhakar; Reschke, Brent R; Henderson, Holly D; Powell, Matthew J; Moody, Sally A; Vertes, Akos

    2014-01-01

    Xenopus laevis eggs are used as a biological model system for studying fertilization and early embryonic development in vertebrates. Most methods used for their molecular analysis require elaborate sample preparation including separate protocols for the water soluble and lipid components. In this study, laser ablation electrospray ionization (LAESI), an ambient ionization technique, was used for direct mass spectrometric analysis of X. laevis eggs and early stage embryos up to five cleavage cycles. Single unfertilized and fertilized eggs, their animal and vegetal poles, and embryos through the 32-cell stage were analyzed. Fifty two small metabolite ions, including glutathione, GABA and amino acids, as well as numerous lipids including 14 fatty acids, 13 lysophosphatidylcholines, 36 phosphatidylcholines and 29 triacylglycerols were putatively identified. Additionally, some proteins, for example thymosin β4 (Xen), were also detected. On the subcellular level, the lipid profiles were found to differ between the animal and vegetal poles of the eggs. Radial profiling revealed profound compositional differences between the jelly coat vitelline/plasma membrane and egg cytoplasm. Changes in the metabolic profile of the egg following fertilization, e.g., the decline of polyamine content with the development of the embryo were observed using LAESI-MS. This approach enables the exploration of metabolic and lipid changes during the early stages of embryogenesis.

  2. Tumor immunology viewed from alternative animal models—the Xenopus story

    PubMed Central

    Banach, Maureen; Robert, Jacques

    2017-01-01

    a) Purpose of review Nonmammalian comparative animal models are important not only to gain fundamental evolutionary understanding of the complex interactions of tumors with the immune system, but also to better predict the applicability of novel immunotherapeutic approaches to humans. After reviewing recent advances in developing alternative models, we focus on the amphibian Xenopus laevis and its usefulness in deciphering the perplexing roles of MHC class I-like molecules and innate (i)T cells in tumor immunity. b) Recent findings Experiments using MHC-defined inbred and cloned animals, tumor cell lines, effective reagents, sequenced genomes, and adapted gene editing techniques in Xenopus, have revealed that the critical involvement of class I-like molecules and iT cells in tumor immunity has been conserved during evolution. c) Summary Comparative studies with the X. laevis tumor immunity model can contribute to the development of better and more efficient cancer immunotherapies. PMID:28944105

  3. Low Frequency Vibrations Disrupt Left-Right Patterning in the Xenopus Embryo

    PubMed Central

    Vandenberg, Laura N.; Pennarola, Brian W.; Levin, Michael

    2011-01-01

    The development of consistent left-right (LR) asymmetry across phyla is a fascinating question in biology. While many pharmacological and molecular approaches have been used to explore molecular mechanisms, it has proven difficult to exert precise temporal control over functional perturbations. Here, we took advantage of acoustical vibration to disrupt LR patterning in Xenopus embryos during tightly-circumscribed periods of development. Exposure to several low frequencies induced specific randomization of three internal organs (heterotaxia). Investigating one frequency (7 Hz), we found two discrete periods of sensitivity to vibration; during the first period, vibration affected the same LR pathway as nocodazole, while during the second period, vibration affected the integrity of the epithelial barrier; both are required for normal LR patterning. Our results indicate that low frequency vibrations disrupt two steps in the early LR pathway: the orientation of the LR axis with the other two axes, and the amplification/restriction of downstream LR signals to asymmetric organs. PMID:21826245

  4. Survey of O-GlcNAc level variations in Xenopus laevis from oogenesis to early development.

    PubMed

    Dehennaut, Vanessa; Lefebvre, Tony; Leroy, Yves; Vilain, Jean-Pierre; Michalski, Jean-Claude; Bodart, Jean-François

    2009-04-01

    Little is known about the impact of O-linked-N-acetylglucosaminylation (O-GlcNAc) in gametes production and developmental processes. Here we investigated changes in O-GlcNAc, UDP-GlcNAc and O-GlcNAc transferase (OGT) levels in Xenopus laevis from oogenesis to embryo hatching. We showed that in comparison to stage VI, stages I-V oocytes expressed higher levels of O-GlcNAc correlating changes in OGT expression, but not in UDP-GlcNAc pools. Upon progesterone stimulation, an O-GlcNAc level burst occurred during meiotic resumption long before MPF and Mos-Erk2 pathways activations. Finally, we observed high levels of O-GlcNAc, UDP-GlcNAc and OGT during segmentation that decreased concomitantly at the onset of gastrulation. Nevertheless, no correlation between the glycosylation, the nucleotide-sugar and the glycosyltransferase was observed after neurulation. Our results show that O-GlcNAc is regulated throughout oogenesis and development within a complex pattern and suggest that dysfunctions in the dynamics of this glycosylation could lead to developmental abnormalities.

  5. It’s never too early to get it Right

    PubMed Central

    Vandenberg, Laura N; Lemire, Joan M; Levin, Michael

    2013-01-01

    For centuries, scientists and physicians have been captivated by the consistent left-right (LR) asymmetry of the heart, viscera, and brain. A recent study implicated tubulin proteins in establishing laterality in several experimental models, including asymmetric chemosensory receptor expression in C. elegans neurons, polarization of HL-60 human neutrophil-like cells in culture, and asymmetric organ placement in Xenopus. The same mutations that randomized asymmetry in these diverse systems also affect chirality in Arabidopsis, revealing a remarkable conservation of symmetry-breaking mechanisms among kingdoms. In Xenopus, tubulin mutants only affected LR patterning very early, suggesting that this axis is established shortly after fertilization. This addendum summarizes and extends the knowledge of the cytoskeleton’s role in the patterning of the LR axis. Results from many species suggest a conserved role for the cytoskeleton as the initiator of asymmetry, and indicate that symmetry is first broken during early embryogenesis by an intracellular process. PMID:24505508

  6. C8orf46 homolog encodes a novel protein Vexin that is required for neurogenesis in Xenopus laevis.

    PubMed

    Moore, Kathryn B; Logan, Mary A; Aldiri, Issam; Roberts, Jacqueline M; Steele, Michael; Vetter, Monica L

    2018-05-01

    Neural basic helix-loop helix (bHLH) transcription factors promote progenitor cell differentiation by activation of downstream target genes that coordinate neuronal differentiation. Here we characterize a neural bHLH target gene in Xenopus laevis, vexin (vxn; previously sbt1), that is homologous to human c8orf46 and is conserved across vertebrate species. C8orf46 has been implicated in cancer progression, but its function is unknown. Vxn is transiently expressed in differentiating progenitors in the developing central nervous system (CNS), and is required for neurogenesis in the neural plate and retina. Its function is conserved, since overexpression of either Xenopus or mouse vxn expands primary neurogenesis and promotes early retinal cell differentiation in cooperation with neural bHLH factors. Vxn protein is localized to the cell membrane and the nucleus, but functions in the nucleus to promote neural differentiation. Vxn inhibits cell proliferation, and works with the cyclin-dependent kinase inhibitor p27Xic1 (cdkn1b) to enhance neurogenesis and increase levels of the proneural protein Neurog2. We propose that vxn provides a key link between neural bHLH activity and execution of the neurogenic program. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Designation of the anterior/posterior axis in pregastrula Xenopus laevis.

    PubMed

    Lane, M C; Sheets, M D

    2000-09-01

    A new fate map for mesodermal tissues in Xenopus laevis predicted that the prime meridian, which runs from the animal pole to the vegetal pole through the center of Spemann's organizer, is the embryo's anterior midline, not its dorsal midline (M. C. Lane and W. C. Smith, 1999, Development 126, 423-434). In this report, we demonstrate by lineage labeling that the column 1 blastomeres at st. 6, which populate the prime meridian, give rise to the anterior end of the embryo. In addition, we surgically isolate and culture tissue centered on this meridian from early gastrulae. This tissue forms a patterned head with morphologically distinct ventral and dorsal structures. In situ hybridization and immunostaining reveal that the cultured heads contain the anterior tissues of all three germ layers, correctly patterned. Regardless of how we dissect early gastrulae along meridians running from the animal to the vegetal pole, both the formation of head structures and the expression of anterior marker genes always segregate with the prime meridian passing through Spemann's organizer. The prime meridian also gives rise to dorsal, axial mesoderm, but not uniquely, as specification tests show that dorsal mesoderm arises in fragments of the embryo which exclude the prime meridian. These results support the hypothesis that the midline that bisects Spemann's organizer is the embryo's anterior midline. Copyright 2000 Academic Press.

  8. Hybridization between the African clawed frogs Xenopus laevis and Xenopus muelleri (Pipidae) increases the multiplicity of antimicrobial peptides in skin secretions of female offspring.

    PubMed

    Mechkarska, Milena; Meetani, Mohammed; Michalak, Pawel; Vaksman, Zalman; Takada, Koji; Conlon, J Michael

    2012-09-01

    Peptidomic analysis was used to compare the distribution of host-defense peptides in norepinephrine-stimulated skin secretions from laboratory-generated female F1 hybrids of the common clawed frog Xenopus laevis (Daudin, 1802) and Mueller's clawed frog Xenopus muelleri (Peters, 1844) with the corresponding distribution in skin secretions from the parent species. A total of 18 peptides were identified in secretions from the hybrid frogs. Eleven peptides (magainin-1, magainin-2, CPF-1, CPF-3, CPF-4, CPF-5, CPF-6, CPF-7, XPF-1, XPF-2, and PGLa) were identified in secretions of both the hybrids and X. laevis. Four peptides (magainin-M1, XPF-M1, CPF-M1, and tigerinin-M1) were previously found in skin secretions of X. muelleri but magainin-M2 and CPF-M2 from X. muelleri were not detected. Three previously undescribed peptides (magainin-LM1, PGLa-LM1, and CPF-LM1) were purified from the secretions of the hybrid frogs that were not detected in secretions from either X. laevis or X. muelleri. Magainin-LM1 differs from magainin-2 from X. laevis by a single amino acid substitution (Gly(13)→Ala) but PGLa-LM1 and CPF-LM1 differ appreciably in structure from orthologs in the parent species. CPF-LM1 shows potent, broad-spectrum antimicrobial activity and is hemolytic. The data indicate that hybridization increases the multiplicity of skin host-defense peptides in skin secretions. As the female F1 hybrids are fertile, hybridization may represent an adaptive strategy among Xenopus species to increase protection against pathogenic microorganisms in the environment. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alberio, Ramiro; Johnson, Andrew D.; Stick, Reimer

    2005-07-01

    The mechanisms governing nuclear reprogramming have not been fully elucidated yet; however, recent studies show a universally conserved ability of both oocyte and egg components to reprogram gene expression in somatic cells. The activation of genes associated with pluripotency by oocyte/egg components may require the remodeling of nuclear structures, such that they can acquire the features of early embryos and pluripotent cells. Here, we report on the remodeling of the nuclear lamina of mammalian cells by Xenopus oocyte and egg extracts. Lamin A/C is removed from somatic cells incubated in oocyte and egg extracts in an active process that requiresmore » permeable nuclear pores. Removal of lamin A/C is specific, since B-type lamins are not changed, and it is not dependent on the incorporation Xenopus egg specific lamin III. Moreover, transcriptional activity is differentially regulated in somatic cells incubated in the extracts. Pol I and II transcriptions are maintained in cells in oocyte extracts; however, both activities are abolished in egg extracts. Our study shows that components of oocyte and egg extracts can modify the nuclear lamina of somatic cells and that this nuclear remodeling induces a structural change in the nucleus which may have implications for transcriptional activity. These experiments suggest that modifications in the nuclear lamina structure by the removal of somatic proteins and the incorporation of oocyte/egg components may contribute to the reprogramming of somatic cell nuclei and may define a characteristic configuration of pluripotent cells.« less

  10. Dissecting and Culturing Animal Cap Explants.

    PubMed

    Dingwell, Kevin S; Smith, James C

    2018-05-16

    The animal cap explant is a simple but adaptable tool available to developmental biologists. The use of animal cap explants in demonstrating the presence of mesoderm-inducting activity in the Xenopus embryo vegetal pole is one of many elegant examples of their worth. Animal caps respond to a range of growth factors (e.g., Wnts, FGF, TGF-β), making them especially useful for studying signal transduction pathways and gene regulatory networks. Explants are also suitable for examining cell behavior and have provided key insights into the molecular mechanisms controlling vertebrate morphogenesis. In this protocol, we outline two methods to isolate animal cap explants from Xenopus laevis , both of which can be applied easily to Xenopus tropicalis The first method is a standard manual method that can be used in any laboratory equipped with a standard dissecting microscope. For labs planning on dissecting large numbers of explants on a regular basis, a second, high throughput method is described that uses a specialized microcautery surgical instrument. © 2018 Cold Spring Harbor Laboratory Press.

  11. The Metamorphosis of Amphibian Toxicogenomics

    PubMed Central

    Helbing, Caren C.

    2012-01-01

    Amphibians are important vertebrates in toxicology often representing both aquatic and terrestrial forms within the life history of the same species. Of the thousands of species, only two have substantial genomics resources: the recently published genome of the Pipid, Xenopus (Silurana) tropicalis, and transcript information (and ongoing genome sequencing project) of Xenopus laevis. However, many more species representative of regional ecological niches and life strategies are used in toxicology worldwide. Since Xenopus species diverged from the most populous frog family, the Ranidae, ~200 million years ago, there are notable differences between them and the even more distant Caudates (salamanders) and Caecilians. These differences include genome size, gene composition, and extent of polyploidization. Application of toxicogenomics to amphibians requires the mobilization of resources and expertise to develop de novo sequence assemblies and analysis strategies for a broader range of amphibian species. The present mini-review will present the advances in toxicogenomics as pertains to amphibians with particular emphasis upon the development and use of genomic techniques (inclusive of transcriptomics, proteomics, and metabolomics) and the challenges inherent therein. PMID:22435070

  12. Xenopus-FV3 host-pathogen interactions and immune evasion.

    PubMed

    Jacques, Robert; Edholm, Eva-Stina; Jazz, Sanchez; Odalys, Torres-Luquis; Francisco, De Jesús Andino

    2017-11-01

    We first review fundamental insights into anti-ranavirus immunity learned with the Xenopus laevis/ranavirus FV3 model that are generally applicable to ectothermic vertebrates. We then further investigate FV3 genes involved in immune evasion. Focusing on FV3 knockout (KO) mutants defective for a putative viral caspase activation and recruitment domain-containing (CARD)-like protein (Δ64R-FV3), a β-hydroxysteroid dehydrogenase homolog (Δ52L-FV3), and an immediate-early18kDa protein (FV3-Δ18K), we assessed the involvement of these viral genes in replication, dissemination and interaction with peritoneal macrophages in tadpole and adult frogs. Our results substantiate the role of 64R and 52L as critical immune evasion genes, promoting persistence and dissemination in the host by counteracting type III IFN in tadpoles and type I IFN in adult frogs. Comparably, the substantial accumulation of genome copy numbers and exacerbation of type I and III IFN gene expression responses but deficient release of infectious virus suggests that 18K is a viral regulatory gene. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Sex Amphibian, Xenopus tropicalis, following Larval Exposure to an Aromatase Inhibitor

    EPA Science Inventory

    Aromatase is a steroidogenic enzyme that catalyzes the conversion of androgens to estrogens in vertebrates. Modulation of this enzyme’s activity by xenobiotic exposure has been shown to adversely affect gonadal differentiation in a number of diverse species. We hypothesized tha...

  14. [The effect of Bacillus intermedius RNAse on the multiplication of Candida tropicalis yeasts].

    PubMed

    Kupriianova-Ashina, F G; Kolpakov, A I; Egorov, S Iu

    1992-01-01

    The effect of Bacillus intermedius RNAse on the reproduction of Candida tropicalis and synthesis of the main biopolymers in the yeast cells. It has been found that stimulating action of the enzyme appears at the concentration of 10(-5)-10(-6) mg/ml and does not depend on the physiological state of the sowing culture. The connection between the increase of the ionic penetration and stimulation of the RNA and proteins synthesis in the yeast cells subjected to the RNAse action is shown. The mechanism of chromatine-associated RNA-polymerase activation is suggested to include the alteration of the ionic penetration of cells under the RNAse action.

  15. CONCENTRATION DEPENDENT ACCUMULATION OF [3H]-DELTAMETHRIN IN XENOPUS LAEVIS OOCYTES.

    EPA Science Inventory

    Pyrethroid insecticides such as deltamethrin have been demonstrated to target and disrupt voltage-sensitive sodium channels (VSSCs). VSSCs were expressed in Xenopus laevis oocytes and used to study the effects of deltamethrin on VSSCs. This study evaluated the amount of deltameth...

  16. High diadenosine tetraphosphate (Ap4A) level in germ cells and embryos of sea urchin and Xenopus and its effect on DNA synthesis.

    PubMed

    Weinmann-Dorsch, C; Grummt, F

    1985-09-01

    Ap4A levels in sperms, eggs and different developmental stages of sea urchin (Psammechinus miliaris) and (Xenopus laevis) were determined by a method based on ATP measurement with luciferin/luciferase after splitting diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) into ATP and AMP. Appreciable storage pools of Ap4A were found in unfertilized eggs of Psammechinus and Xenopus as well as in sea urchin sperms. The actual Ap4A concentration of 28 microM in sperm represents the highest Ap4A level so far observed in eukaryotic cells. Upon fertilization an instant onset of de novo synthesis of Ap4A was demonstrated. Ap4A levels during early embryogenesis of P. miliaris and X. laevis (2.5-4 microM) are higher than those in exponentially growing mammalian culture cells and mammalian fetuses. Microinjection of Ap4A into unfertilized eggs of Psammechinus miliaris caused a 3-7 fold increase of DNA synthesis in comparison with mock-injected eggs.

  17. Thyroid-stimulating Hormone (TSH): Measurement of Intracellular, Secreted, and Circulating Hormone in Xenopus laevis and Xenopus tropicalis.

    EPA Science Inventory

    Thyroid Stimulating Hormone (TSH) is a hormone produced in the pituitary that stimulates the thyroid gland to grow and produce thyroid hormone (TH). The concentration of TH controls developmental changes that take place in a wide variety of organisms. Many use the metaphoric ch...

  18. AmphiBase: A new genomic resource for non-model amphibian species.

    PubMed

    Kwon, Taejoon

    2017-01-01

    More than five thousand genes annotated in the recently published Xenopus laevis and Xenopus tropicalis genomes do not have a candidate orthologous counterpart in other vertebrate species. To determine whether these sequences represent genuine amphibian-specific genes or annotation errors, it is necessary to analyze them alongside sequences from other amphibian species. However, due to large genome sizes and an abundance of repeat sequences, there are limited numbers of gene sequences available from amphibian species other than Xenopus. AmphiBase is a new genomic resource covering non-model amphibian species, based on public domain transcriptome data and computational methods developed during the X. laevis genome project. Here, I review the current status of AmphiBase, including amphibian species with available transcriptome data or biological samples, and describe the challenges of building a comprehensive amphibian genomic resource in the absence of genomes. This mini-review will be informative for researchers interested in functional genomic experiments using amphibian model organisms, such as Xenopus and axolotl, and will assist in interpretation of results implicating "orphan genes." Additionally, this study highlights an opportunity for researchers working on non-model amphibian species to collaborate in their future efforts and develop amphibian genomic resources as a community. © 2017 Wiley Periodicals, Inc.

  19. What we can learn from a tadpole about ciliopathies and airway diseases: Using systems biology in Xenopus to study cilia and mucociliary epithelia.

    PubMed

    Walentek, Peter; Quigley, Ian K

    2017-01-01

    Over the past years, the Xenopus embryo has emerged as an incredibly useful model organism for studying the formation and function of cilia and ciliated epithelia in vivo. This has led to a variety of findings elucidating the molecular mechanisms of ciliated cell specification, basal body biogenesis, cilia assembly, and ciliary motility. These findings also revealed the deep functional conservation of signaling, transcriptional, post-transcriptional, and protein networks employed in the formation and function of vertebrate ciliated cells. Therefore, Xenopus research can contribute crucial insights not only into developmental and cell biology, but also into the molecular mechanisms underlying cilia related diseases (ciliopathies) as well as diseases affecting the ciliated epithelium of the respiratory tract in humans (e.g., chronic lung diseases). Additionally, systems biology approaches including transcriptomics, genomics, and proteomics have been rapidly adapted for use in Xenopus, and broaden the applications for current and future translational biomedical research. This review aims to present the advantages of using Xenopus for cilia research, highlight some of the evolutionarily conserved key concepts and mechanisms of ciliated cell biology that were elucidated using the Xenopus model, and describe the potential for Xenopus research to address unresolved questions regarding the molecular mechanisms of ciliopathies and airway diseases. © 2017 Wiley Periodicals, Inc.

  20. Znf703, a novel target of Pax3 and Zic1, regulates hindbrain and neural crest development in Xenopus.

    PubMed

    Hong, Chang-Soo; Saint-Jeannet, Jean-Pierre

    2017-12-01

    The transcription factors Pax3 and Zic1 are critical to specify the neural plate border and to promote neural crest formation. In a microarray screen designed to identify genes regulated by Pax3 and Zic1 in Xenopus we isolated Znf703/Nlz1 a transcriptional repressor member of the NET (NocA/Nlz, Elbow, and TLP-1) protein family. At early neurula stage znf703 is expressed in the dorsal ectoderm, spanning the neural plate and neural plate border, with an anterior boundary of expression corresponding to rhombomeres 3 and 4 (r3/r4) in the prospective hindbrain. As a bonafide target of Pax3 and Zic1, znf703 is activated by neural plate border inducing signals, and its expression depends on Pax3 and Zic1 function in the embryo. Znf703 morpholino-mediated knockdown expanded several posterior hindbrain genes, while Znf703 overexpression completely obliterated the expression of these segmental genes, signifying that the transcriptional repressor activity of Znf703 is critical to pattern the hindbrain. Furthermore, snai2 and sox10 expression was severely impaired upon manipulation of Znf703 expression levels in the embryo suggesting that Znf703 participates in neural crest formation downstream of Pax3 and Zic1 in Xenopus. © 2017 Wiley Periodicals, Inc.

  1. Characterization of X-OCRL, a Xenopus laevis homologue of OCRL-1, the Lowe oculocerebrorenal syndrome candidate gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, D.S.; Nussbaum, R.L.

    1994-09-01

    The Lowe oculocerebrorenal syndrome (OCRL) is an X-linked disease characterized by congenital cataract, mental retardation, and renal tubular dysfunction. A candidate cDNA, OCRL-1, was identified by positional cloning and mutations in OCRL-1 have been detected in patients with Lowe syndrome. The OCRL-1 nucleotide sequence encodes a predicted protein of 968 amino acids and shares 51% amino acid identity with a human inositol polyphosphate-5-phosphatase. This suggests that the underlying defect in OCRL may be due to a defect in inositol phosphate metabolism. The isolation of OCRL-1 provides the opportunity to investigate its function through the use of animal model systems. Wemore » have isolated a partial cDNA clone encoding an OCRL-1 homologue, X-OCRL, from the South African clawed frog, Xenopus laevis. We used a portion of the human cDNA to screen a Xenopus laevis embryo cDNA library and isolated four positive clones. One clone, 42-5A, is a 650 bp insert with over 75% amino acid identity to the corresponding region of the human OCRL-1 sequence. 42-5A detects messenger RNA in adult Xenopus brain, stomach, small intestine, skin, muscle, lung, blood, and oviduct. X-OCRL messenger RNA is first detected during late gastrula and continues to be expressed throughout Xenopus development. In situ hybridization studies are underway to identify the cellular localization of X-OCRL expression in Xenopus embryos and adult tissues. We are especially interested in characterizing X-OCRL expression during formation of the amphibian lens since congenital cataracts are a constant feature of the human disease.« less

  2. Cortical Isolation from Xenopus laevis Oocytes and Eggs.

    PubMed

    Sive, Hazel L; Grainger, Robert M; Harland, Richard M

    2007-06-01

    INTRODUCTIONIn Xenopus laevis, the cortex is the layer of gelatinous cytoplasm that lies just below the plasma membrane of the egg. Rotation of the cortex relative to the deeper cytoplasm soon after fertilization is intimately linked to normal dorsal axis specification. The cortex can be dissected from the egg to analyze its composition and activity or to clone associated RNAs. This protocol describes a procedure for isolating the vegetal cortex of the fertilized egg.

  3. Different signaling pathway between sphingosine-1-phosphate and lysophosphatidic acid in Xenopus oocytes: functional coupling of the sphingosine-1-phosphate receptor to PLC-xbeta in Xenopus oocytes.

    PubMed

    Noh, S J; Kim, M J; Shim, S; Han, J K

    1998-08-01

    In Xenopus oocytes, both sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) activate Ca2+-dependent oscillatory Cl- currents by acting through membrane-bound receptors. External application of 50 microM S1P elicited a long-lasting oscillatory current that continued over 30 min from the beginning of oscillation, with 300 nA (n = 11) as a usual maximum peak of current, whereas 1-microM LPA treatment showed only transiently oscillating but more vigorous current responses, with 2,800 nA (n = 18) as a maximum peak amplitude. Both phospholipid-induced Ca2+-dependent Cl- currents were observed in the absence of extracellular Ca2+, were blocked by intracellular injection of the Ca2+ chelator, EGTA, and could not be elicited by treatment with thapsigargin, an inhibitor of endoplasmic reticulum (ER) Ca2+ ATPase. Intracellular Ca2+ release appeared to be from inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store, because Cl- currents were blocked by heparin injection. Pretreatment with the aminosteroid, U-73122, an inhibitor of G protein-mediated phospholipase C (PLC) activation, to oocytes inhibited the current responses evoked both by S1P and LPA. However, when they were injected with 10 ng of antisense oligonucleotide (AS-ODN) against Xenopus phospholipase C (PLC-xbeta), oocytes could not respond to S1P application, whereas they responded normally to LPA, indicating that the S1P signaling pathway goes through PLC-xbeta, whereas LPA signaling goes through another unknown PLC. To determine the types of G proteins involved, we introduced AS-ODNs against four types of G-protein alpha subunits that were identified in Xenopus laevis; G(q)alpha, G11alpha, G0alpha, and G(i1)alpha. Among AS-ODNs against the G alphas tested, AS-G(q)alpha and AS-G(i1)alpha to S1P and AS-G(q)alpha and AS-G11alpha to LPA specifically reduced current responses, respectively, to about 20-30% of controls. These results demonstrate that LPA and S1P, although they have similar structural

  4. Hoxa2 knockdown in Xenopus results in hyoid to mandibular homeosis.

    PubMed

    Baltzinger, Mireille; Ori, Michela; Pasqualetti, Massimo; Nardi, Irma; Rijli, Filippo M

    2005-12-01

    The skeletal structures of the face and throat are derived from cranial neural crest cells (NCCs) that migrate from the embryonic neural tube into a series of branchial arches (BAs). The first arch (BA1) gives rise to the upper and lower jaw cartilages, whereas hyoid structures are generated from the second arch (BA2). The Hox paralogue group 2 (PG2) genes, Hoxa2 and Hoxb2, show distinct roles for hyoid patterning in tetrapods and fishes. In the mouse, Hoxa2 acts as a selector of hyoid identity, while its paralogue Hoxb2 is not required. On the contrary, in zebrafish Hoxa2 and Hoxb2 are functionally redundant for hyoid arch patterning. Here, we show that in Xenopus embryos morpholino-induced functional knockdown of Hoxa2 is sufficient to induce homeotic changes of the second arch cartilage. Moreover, Hoxb2 is downregulated in the BA2 of Xenopus embryos, even though initially expressed in second arch NCCs, similar to mouse and unlike in zebrafish. Finally, Xbap, a gene involved in jaw joint formation, is selectively upregulated in the BA2 of Hoxa2 knocked-down frog embryos, supporting a hyoid to mandibular change of NCC identity. Thus, in Xenopus Hoxa2 does not act redundantly with Hoxb2 for BA2 patterning, similar to mouse and unlike in fish. These data bring novel insights into the regulation of Hox PG2 genes and hyoid patterning in vertebrate evolution and suggest that Hoxa2 function is required at late stages of BA2 development. Copyright 2005 Wiley-Liss, Inc.

  5. The function of Xenopus Bloom's syndrome protein homolog (xBLM) in DNA replication

    PubMed Central

    Liao, Shuren; Graham, Jeanine; Yan, Hong

    2000-01-01

    The Bloom's syndrome gene (BLM) plays a pivotal role in the maintenance of genomic stability in somatic cells. It encodes a DNA helicase (BLM) of the RecQ family, but the exact function of BLM remains elusive. To study this question, we have cloned the BLM homolog of the frog Xenopus laevis (xBLM) and have raised antibodies to it. Immunodepletion of xBLM from a Xenopus egg extract severely inhibits the replication of DNA in reconstituted nuclei. Moreover, the inhibition can be rescued by the addition of the recombinant xBLM protein. These results provide the first direct evidence that BLM plays an important role in DNA replication, suggesting that Bloom's syndrome may be the consequence of defective DNA replication. PMID:11040210

  6. Islet-1 is required for ventral neuron survival in Xenopus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yu; Zhao, Shuhua; Li, Jiejing

    Islet-1 is a LIM domain transcription factor involved in several processes of embryonic development. Xenopus Islet-1 (Xisl-1) has been shown to be crucial for proper heart development. Here we show that Xisl-1 and Xisl-2 are differentially expressed in the nervous system in Xenopus embryos. Knock-down of Xisl-1 by specific morpholino leads to severe developmental defects, including eye and heart failure. Staining with the neuronal markers N-tubulin and Xisl-1 itself reveals that the motor neurons and a group of ventral interneurons are lost in the Xisl-1 morphants. Terminal dUTP nick-end labeling (TUNEL) analysis shows that Xisl-1 morpholino injection induces extensive apoptosismore » in the ventral neural plate, which can be largely inhibited by the apoptosis inhibitor M50054. We also find that over-expression of Xisl-1 is able to promote cell proliferation and induce Xstat3 expression in the injected side, suggesting a potential role for Xisl-1 in the regulation of cell proliferation in co-operation with the Jak-Stat pathway.« less

  7. Vision Drives Correlated Activity without Patterned Spontaneous Activity in Developing Xenopus Retina

    PubMed Central

    Demas, James A.; Payne, Hannah; Cline, Hollis T.

    2011-01-01

    Developing amphibians need vision to avoid predators and locate food before visual system circuits fully mature. Xenopus tadpoles can respond to visual stimuli as soon as retinal ganglion cells (RGCs) innervate the brain, however, in mammals, chicks and turtles, RGCs reach their central targets many days, or even weeks, before their retinas are capable of vision. In the absence of vision, activity-dependent refinement in these amniote species is mediated by waves of spontaneous activity that periodically spread across the retina, correlating the firing of action potentials in neighboring RGCs. Theory suggests that retinorecipient neurons in the brain use patterned RGC activity to sharpen the retinotopy first established by genetic cues. We find that in both wild type and albino Xenopus tadpoles, RGCs are spontaneously active at all stages of tadpole development studied, but their population activity never coalesces into waves. Even at the earliest stages recorded, visual stimulation dominates over spontaneous activity and can generate patterns of RGC activity similar to the locally correlated spontaneous activity observed in amniotes. In addition, we show that blocking AMPA and NMDA type glutamate receptors significantly decreases spontaneous activity in young Xenopus retina, but that blocking GABAA receptor blockers does not. Our findings indicate that vision drives correlated activity required for topographic map formation. They further suggest that developing retinal circuits in the two major subdivisions of tetrapods, amphibians and amniotes, evolved different strategies to supply appropriately patterned RGC activity to drive visual circuit refinement. PMID:21312343

  8. How does the Xenopus laevis embryonic cell cycle avoid spatial chaos?

    PubMed Central

    Gelens, Lendert; Huang, Kerwyn Casey; Ferrell, James E.

    2015-01-01

    Summary Theoretical studies have shown that a deterministic biochemical oscillator can become chaotic when operating over a sufficiently large volume, and have suggested that the Xenopus laevis cell cycle oscillator operates close to such a chaotic regime. To experimentally test this hypothesis, we decreased the speed of the post-fertilization calcium wave, which had been predicted to generate chaos. However, cell divisions were found to develop normally and eggs developed into normal tadpoles. Motivated by these experiments, we carried out modeling studies to understand the prerequisites for the predicted spatial chaos. We showed that this type of spatial chaos requires oscillatory reaction dynamics with short pulse duration, and postulated that the mitotic exit in Xenopus laevis is likely slow enough to avoid chaos. In systems with shorter pulses, chaos may be an important hazard, as in cardiac arrhythmias, or a useful feature, as in the pigmentation of certain mollusk shells. PMID:26212326

  9. Nondestructive Imaging of Internal Structures of Frog (Xenopus laevis) Embryos by Shadow-Projection X-Ray Microtomography

    NASA Astrophysics Data System (ADS)

    Aoki, Sadao; Yoneda, Ikuo; Nagai, Takeharu; Ueno, Naoto; Murakami, Kazuo

    1994-04-01

    Nondestructive high-resolution imaging of frog ( Xenopus laevis) embryos has been developed by X-ray microtomography. Shadow-projection X-ray microtomography with a brilliant fine focus laboratory X-ray source could image fine structures of Xenopus embryos which were embedded in paraffin wax. The imaging system enabled us to not only distinguish endoderm from ectoderm at the gastrula stage, but also to obtain a cross-section view of the tail bud embryo showing muscle, notochord and neural tube without staining. Furthermore, the distribution of myosin was also imaged in combination with whole-mount immunohistochemistry.

  10. Proteomic analysis of fibroblastema formation in regenerating hind limbs of Xenopus laevis froglets and comparison to axolotl

    PubMed Central

    2014-01-01

    Background To gain insight into what differences might restrict the capacity for limb regeneration in Xenopus froglets, we used High Performance Liquid Chromatography (HPLC)/double mass spectrometry to characterize protein expression during fibroblastema formation in the amputated froglet hindlimb, and compared the results to those obtained previously for blastema formation in the axolotl limb. Results Comparison of the Xenopus fibroblastema and axolotl blastema revealed several similarities and significant differences in proteomic profiles. The most significant similarity was the strong parallel down regulation of muscle proteins and enzymes involved in carbohydrate metabolism. Regenerating Xenopus limbs differed significantly from axolotl regenerating limbs in several ways: deficiency in the inositol phosphate/diacylglycerol signaling pathway, down regulation of Wnt signaling, up regulation of extracellular matrix (ECM) proteins and proteins involved in chondrocyte differentiation, lack of expression of a key cell cycle protein, ecotropic viral integration site 5 (EVI5), that blocks mitosis in the axolotl, and the expression of several patterning proteins not seen in the axolotl that may dorsalize the fibroblastema. Conclusions We have characterized global protein expression during fibroblastema formation after amputation of the Xenopus froglet hindlimb and identified several differences that lead to signaling deficiency, failure to retard mitosis, premature chondrocyte differentiation, and failure of dorsoventral axial asymmetry. These differences point to possible interventions to improve blastema formation and pattern formation in the froglet limb. PMID:25063185

  11. Antifungal susceptibilities of Candida glabrata species complex, Candida krusei, Candida parapsilosis species complex and Candida tropicalis causing invasive candidiasis in China: 3 year national surveillance.

    PubMed

    Xiao, Meng; Fan, Xin; Chen, Sharon C-A; Wang, He; Sun, Zi-Yong; Liao, Kang; Chen, Shu-Lan; Yan, Yan; Kang, Mei; Hu, Zhi-Dong; Chu, Yun-Zhuo; Hu, Tie-Shi; Ni, Yu-Xing; Zou, Gui-Ling; Kong, Fanrong; Xu, Ying-Chun

    2015-03-01

    To define the antifungal susceptibility patterns of the most common non-albicans Candida spp. in China. We evaluated the susceptibilities to nine antifungal drugs of Candida parapsilosis species complex, Candida tropicalis, Candida glabrata species complex and Candida krusei isolates from patients with invasive candidiasis at 11 hospitals over 3 years. Isolates were identified by MALDI-TOF MS supplemented by DNA sequencing. MICs were determined by Sensititre YeastOne(TM) using current clinical breakpoints/epidemiological cut-off values to assign susceptibility (or WT), and by CLSI M44-A2 disc diffusion for fluconazole and voriconazole. Of 1072 isolates, 392 (36.6%) were C. parapsilosis species complex. C. tropicalis, C. glabrata species complex and C. krusei comprised 35.4%, 24.3% and 3.7% of the isolates, respectively. Over 99.3% of the isolates were of WT phenotype to amphotericin B and 5-flucytosine. Susceptibility/WT rates to azoles among C. parapsilosis species complex were ≥97.5%. However, 11.6% and 9.5% of C. tropicalis isolates were non-susceptible to fluconazole and voriconazole, respectively (7.1% were resistant to both). Approximately 14.3% of C. glabrata sensu stricto isolates (n = 258) were fluconazole resistant, and 11.6% of C. glabrata sensu stricto isolates were cross-resistant to fluconazole and voriconazole. All C. krusei isolates were susceptible/WT to voriconazole, posaconazole and itraconazole. Overall, 97.7%-100% of isolates were susceptible to caspofungin, micafungin and anidulafungin, but 2.3% of C. glabrata were non-susceptible to anidulafungin. There was no azole/echinocandin co-resistance. Disc diffusion and Sensititre YeastOne(TM) methods showed >95% categorical agreement for fluconazole and voriconazole. In summary, reduced azole susceptibility was seen among C. tropicalis. Resistance to echinocandins was uncommon. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial

  12. Structure and expression of the Xenopus retinoblastoma gene.

    PubMed

    Destrée, O H; Lam, K T; Peterson-Maduro, L J; Eizema, K; Diller, L; Gryka, M A; Frebourg, T; Shibuya, E; Friend, S H

    1992-09-01

    We have cloned a Xenopus homology (XRb1) of the human retinoblastoma susceptibility gene. DNA sequence analysis shows that the XRb1 gene product is highly conserved in many regions. The leucine repeat motif and many of the potential cdc2 phosphorylation sites, as well as potential sites for other kinases, are retained. The region of the protein homologous to the SV40 T antigen binding site and the basic region directly C-terminal to the E1A binding site are all conserved. XRb1 gene expression at the RNA level was studied by Northern blot analysis. Transcripts of 4.2 and 10-kb are present as maternal RNA stores in the oocyte. While the 4.2-kb product is stable until at least the mid-blastula stage, the 10-kb transcript is selectively degraded. Between stages 11 and 13 the 10-kb transcript reappears and also a minor product of approximately 11 kb becomes apparent. Both the 4.2- and the 10-kb transcripts remain present until later stages of development and are also present in all adult tissues examined, although at differing levels. Antibodies raised against human p105Rb which recognize the protein product of the XRb1 gene, pXRb1, detect the Xenopus 99-kDa protein prior to the mid-blastula stage, but at lower levels than at later stages in development.

  13. cis- and trans-acting elements of the estrogen-regulated vitellogenin gene B1 of Xenopus laevis.

    PubMed

    Wahli, W; Martinez, E; Corthésy, B; Cardinaux, J R

    1989-01-01

    Vitellogenin genes are expressed under strict estrogen control in the liver of female oviparous vertebrates. Gene transfer experiments using estrogen-responsive cells have shown that the 13 bp perfect palindromic element GGTCACTGTGACC found upstream of the Xenopus laevis vitellogenin gene A2 promoter mediates hormonal stimulation and thus, was called the estrogen-responsive element (ERE). In the Xenopus vitellogenin genes B1 and B2 there are two closely adjacent EREs with one or more base substitutions when compared to the consensus ERE GGTCANNNTGACC. On their own, these degenerated elements have only a low or no regulatory capacity at all but act together synergistically to form an estrogen-responsive unit (ERU) with the same strength as the perfect palindromic 13 bp element. Analysis of estrogen receptor binding to the gene B1 ERU revealed a cooperative interaction of receptor dimers to the two adjacent imperfect EREs which most likely explains the synergistic stimulation observed in vivo. Furthermore, a promoter activator element located between positions --113 and --42 of the gene B1 and functional in the human MCF-7 and the Xenopus B3.2 cells has been identified and shown to be involved in the high level of induced transcription activity when the ERE is placed at a distance from the promoter. Finally, a hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to characterize two additional novel cis-acting elements within the vitellogenin gene B1 promoter. One of them, a negative regulatory element (NRE), is responsible for repression of promoter activity in the absence of hormone. The second is related to the NF-I binding site and is required, together with the ERE, to mediate hormonal induction. Moreover, we detected three trans-acting activities in Xenopus liver nuclear extracts that interact with these regions and demonstrated that they participate in the regulation of the expression of the vitellogenin

  14. Detoxification of Eucheuma spinosum Hydrolysates with Activated Carbon for Ethanol Production by the Salt-Tolerant Yeast Candida tropicalis.

    PubMed

    Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Young; Kang, Chang Han; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-06-01

    The objective of this study was to optimize the slurry contents and salt concentrations for ethanol production from hydrolysates of the seaweed Eucheuma spinosum. A monosaccharide concentration of 44.2 g/l as 49.6% conversion of total carbohydrate of 89.1 g/l was obtained from 120 g dw/l seaweed slurry. Monosaccharides from E. spinosum slurry were obtained by thermal acid hydrolysis and enzymatic hydrolysis. Addition of activated carbon at 2.5% (w/v) and the adsorption time of 2 min were used in subsequent adsorption treatments to prevent the inhibitory effect of HMF. The adsorption surface area of the activated carbon powder was 1,400-1,600 m(2)/g and showed selectivity to 5-hydroxymethyl furfural (HMF) from monosaccharides. Candida tropicalis KCTC 7212 was cultured in yeast extract, peptone, glucose, and high-salt medium, and exposed to 80, 90, 100, and 110 practical salinity unit (psu) salt concentrations in the lysates. The 100 psu salt concentration showed maximum cell growth and ethanol production. The ethanol fermentations with activated carbon treatment and use of C. tropicalis acclimated to a high salt concentration of 100 psu produced 17.9 g/l of ethanol with a yield (YEtOH) of 0.40 from E. spinosum seaweed.

  15. Pitx2c attenuation results in cardiac defects and abnormalities of intestinal orientation in developing Xenopus laevis.

    PubMed

    Dagle, John M; Sabel, Jaime L; Littig, Jennifer L; Sutherland, Lillian B; Kolker, Sandra J; Weeks, Daniel L

    2003-10-15

    The experimental manipulation of early embryologic events, resulting in the misexpression of the homeobox transcription factor pitx2, is associated with subsequent defects of laterality in a number of vertebrate systems. To clarify the role of one pitx2 isoform, pitx2c, in determining the left-right axis of amphibian embryos, we examined the heart and gut morphology of Xenopus laevis embryos after attenuating pitx2c mRNA levels using chemically modified antisense oligonucleotides. We demonstrate that the partial depletion of pitx2c mRNA in these embryos results in alteration of both cardiac morphology and intestinal coiling. The most common cardiac abnormality seen was a failure of rightward migration of the outflow tract, while the most common intestinal laterality phenotype seen was a full reversal in the direction of coiling, each present in 23% of embryos injected with the pitx2c antisense oligonucleotide. An abnormality in either the heart or gut further predisposed to a malformation in the other. In addition, a number of other cardiac anomalies were observed after pitx2c mRNA attenuation, including abnormalities of atrial septation, extracellular matrix restriction, relative atrial-ventricular chamber positioning, and restriction of ventricular development. Many of these findings correlate with cardiac defects previously reported in pitx2 null and hypomorphic mice, but can now be assigned specifically to attenuation of the pitx2c isoform in Xenopus.

  16. Competition and feeding ecology in two sympatric Xenopus species (Anura: Pipidae)

    PubMed Central

    Vogt, Solveig; de Villiers, F. André; Ihlow, Flora; Rödder, Dennis

    2017-01-01

    The widespread African clawed frog (Xenopus laevis) occurs in sympatry with the IUCN Endangered Cape platanna (Xenopus gilli) throughout its entire range in the south-western Cape, South Africa. In order to investigate aspects of the interspecific competition between populations of X. laevis and X. gilli, an assessment of their niche differentiation was conducted through a comprehensive study on food composition and trophic niche structure at two study sites: the Cape of Good Hope (CoGH) and Kleinmond. A total of 399 stomach contents of X. laevis (n = 183) and X. gilli (n = 216) were obtained together with samples of available prey to determine food preferences using the Electivity index (E*), the Simpson’s index of diversity (1 − D), the Shannon index (H′), and the Pianka index (Ojk). Xenopus gilli diet was more diverse than X. laevis, particularly in Kleimond where the Shannon index was nearly double. Both species were found to consume large amounts of tadpoles belonging to different amphibian species, including congeners, with an overall higher incidence of anurophagy than previously recorded. However, X. laevis also feeds on adult X. gilli, thus representing a direct threat for the latter. While trophic niche overlap was 0.5 for the CoGH, it was almost 1 in Kleinmond, suggesting both species utilise highly congruent trophic niches. Further, subdividing the dataset into three size classes revealed overlap to be higher in small frogs in both study sites. Our study underlines the importance of actively controlling X. laevis at sites with X. gilli in order to limit competition and predation, which is vital for conservation of the south-western Cape endemic. PMID:28439453

  17. Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification.

    PubMed

    Yasuoka, Yuuri; Suzuki, Yutaka; Takahashi, Shuji; Someya, Haruka; Sudou, Norihiro; Haramoto, Yoshikazu; Cho, Ken W; Asashima, Makoto; Sugano, Sumio; Taira, Masanori

    2014-07-09

    Head specification by the head-selector gene, orthodenticle (otx), is highly conserved among bilaterian lineages. However, the molecular mechanisms by which Otx and other transcription factors (TFs) interact with the genome to direct head formation are largely unknown. Here we employ ChIP-seq and RNA-seq approaches in Xenopus tropicalis gastrulae and find that occupancy of the corepressor, TLE/Groucho, is a better indicator of tissue-specific cis-regulatory modules (CRMs) than the coactivator p300, during early embryonic stages. On the basis of TLE binding and comprehensive CRM profiling, we define two distinct types of Otx2- and TLE-occupied CRMs. Using these devices, Otx2 and other head organizer TFs (for example, Lim1/Lhx1 (activator) or Goosecoid (repressor)) are able to upregulate or downregulate a large battery of target genes in the head organizer. An underlying principle is that Otx marks target genes for head specification to be regulated positively or negatively by partner TFs through specific types of CRMs.

  18. Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes

    NASA Astrophysics Data System (ADS)

    Miledi, Ricardo; Eusebi, Fabrizio; Martínez-Torres, Ataúlfo; Palma, Eleonora; Trettel, Flavia

    2002-10-01

    The Xenopus oocyte is a very powerful tool for studies of the structure and function of membrane proteins, e.g., messenger RNA extracted from the brain and injected into oocytes leads to the synthesis and membrane incorporation of many types of functional receptors and ion channels, and membrane vesicles from Torpedo electroplaques injected into oocytes fuse with the oocyte membrane and cause the appearance of functional Torpedo acetylcholine receptors and Cl channels. This approach was developed further to transplant already assembled neurotransmitter receptors from human brain cells to the plasma membrane of Xenopus oocytes. Membranes isolated from the temporal neocortex of a patient, operated for intractable epilepsy, were injected into oocytes and, within a few hours, the oocyte membrane acquired functional neurotransmitter receptors to -aminobutyric acid, -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, and glycine. These receptors were also expressed in the plasma membrane of oocytes injected with mRNA extracted from the temporal neocortex of the same patient. All of this makes the Xenopus oocyte a more useful model than it already is for studies of the structure and function of many human membrane proteins and opens the way to novel pathophysiological investigations of some human brain disorders.

  19. Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins

    PubMed Central

    Gillespie, Peter J.; Gambus, Agnieszka; Blow, J. Julian

    2012-01-01

    The use of cell-free extracts prepared from eggs of the South African clawed toad, Xenopus laevis, has led to many important discoveries in cell cycle research. These egg extracts recapitulate the key nuclear transitions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. DNA added to the extract is first assembled into a nucleus and is then efficiently replicated. Progression of the extract into mitosis then allows the separation of paired sister chromatids. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. In this article we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei for the study of DNA replication in vitro. We also detail how DNA replication can be quantified in this system. In addition, we describe methods for isolating chromatin and chromatin-bound protein complexes from egg extracts. These recently developed and revised techniques provide a practical starting point for investigating the function of proteins involved in DNA replication. PMID:22521908

  20. Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition

    PubMed Central

    Amodeo, Amanda A.; Jukam, David; Straight, Aaron F.; Skotheim, Jan M.

    2015-01-01

    During early development, animal embryos depend on maternally deposited RNA until zygotic genes become transcriptionally active. Before this maternal-to-zygotic transition, many species execute rapid and synchronous cell divisions without growth phases or cell cycle checkpoints. The coordinated onset of transcription, cell cycle lengthening, and cell cycle checkpoints comprise the midblastula transition (MBT). A long-standing model in the frog, Xenopus laevis, posits that MBT timing is controlled by a maternally loaded inhibitory factor that is titrated against the exponentially increasing amount of DNA. To identify MBT regulators, we developed an assay using Xenopus egg extract that recapitulates the activation of transcription only above the DNA-to-cytoplasm ratio found in embryos at the MBT. We used this system to biochemically purify factors responsible for inhibiting transcription below the threshold DNA-to-cytoplasm ratio. This unbiased approach identified histones H3 and H4 as concentration-dependent inhibitory factors. Addition or depletion of H3/H4 from the extract quantitatively shifted the amount of DNA required for transcriptional activation in vitro. Moreover, reduction of H3 protein in embryos induced premature transcriptional activation and cell cycle lengthening, and the addition of H3/H4 shortened post-MBT cell cycles. Our observations support a model for MBT regulation by DNA-based titration and suggest that depletion of free histones regulates the MBT. More broadly, our work shows how a constant concentration DNA binding molecule can effectively measure the amount of cytoplasm per genome to coordinate division, growth, and development. PMID:25713373

  1. Mammalian nuclear transplantation to Germinal Vesicle stage Xenopus oocytes – A method for quantitative transcriptional reprogramming

    PubMed Central

    Halley-Stott, R.P.; Pasque, V.; Astrand, C.; Miyamoto, K.; Simeoni, I.; Jullien, J.; Gurdon, J.B.

    2010-01-01

    Full-grown Xenopus oocytes in first meiotic prophase contain an immensely enlarged nucleus, the Germinal Vesicle (GV), that can be injected with several hundred somatic cell nuclei. When the nuclei of mammalian somatic cells or cultured cell lines are injected into a GV, a wide range of genes that are not transcribed in the donor cells, including pluripotency genes, start to be transcriptionally activated, and synthesize primary transcripts continuously for several days. Because of the large size and abundance of Xenopus laevis oocytes, this experimental system offers an opportunity to understand the mechanisms by which somatic cell nuclei can be reprogrammed to transcribe genes characteristic of oocytes and early embryos. The use of mammalian nuclei ensures that there is no background of endogenous maternal transcripts of the kind that are induced. The induced gene transcription takes place in the absence of cell division or DNA synthesis and does not require protein synthesis. Here we summarize new as well as established results that characterize this experimental system. In particular, we describe optimal conditions for transplanting somatic nuclei to oocytes and for the efficient activation of transcription by transplanted nuclei. We make a quantitative determination of transcript numbers for pluripotency and housekeeping genes, comparing cultured somatic cell nuclei with those of embryonic stem cells. Surprisingly we find that the transcriptional activation of somatic nuclei differs substantially from one donor cell-type to another and in respect of different pluripotency genes. We also determine the efficiency of an injected mRNA translation into protein. PMID:20123126

  2. Early life IgE responses in children living in the tropics: a prospective analysis.

    PubMed

    Zakzuk, Josefina; Acevedo, Nathalie; Cifuentes, Liliana; Bornacelly, Adriana; Sánchez, Jorge; Ahumada, Velky; Ring, Johannes; Ollert, Markus; Caraballo, Luis

    2013-12-01

    There are few birth cohort studies analyzing IgE sensitization in the tropics. We aimed to describe the evolution of total IgE and specific IgE responses to house-dust mite (HDM) allergens and Ascaris in a birth cohort (Risk Factors for Asthma and Allergy in the Tropics, FRAAT), analyzing their relationships with wheezing. Total and specific IgE were measured by ImmunoCap in mothers and children at four different time points (S1-S4) between 0 and 42 months. Parasite infection was evaluated by stool examination. Maternal total IgE (aOR: 2.43, 95% CI: 1.09-5.43; p = 0.03) and socio-demographic factors were associated with high cord blood (CB) total IgE. High CB total IgE was positively associated with higher Blomia tropicalis and Ascaris-specific IgE values during lifetime, but protected from recurrent wheezing (aOR: 0.26, 95% CI: 0.08-0.88, p = 0.03). Prevalence rates of IgE sensitization were high; at around 3 yr old, they were 33.3, 18.6, and 26.5% for B. tropicalis, Dermatophagoides pteronyssinus, and Ascaris, respectively. Indicators of unhygienic conditions were risk factors for HDM and Ascaris sensitization in children. A weak statistical association between B. tropicalis-specific IgE and ever wheezing was found (aOR: 1.47 95% CI: 1.00-2.28, p = 0.05). In a socioeconomically deprived community from the tropics, sensitization to HDM allergens was very frequent at early life, especially to B. tropicalis. In contrast to expected according to the hygiene hypothesis, unhygienic/poverty conditions were risk factors for allergen sensitization. High CB total IgE levels were a risk factor for allergen sensitization but protected from recurrent wheezing. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Transcription factor COUP-TFII is indispensable for venous and lymphatic development in zebrafish and Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aranguren, Xabier L., E-mail: xabier.lopezaranguren@med.kuleuven.be; Beerens, Manu, E-mail: manu.beerens@med.kuleuven.be; Vandevelde, Wouter, E-mail: woutervandevelde@gmail.com

    Highlights: {yields} COUP-TFII deficiency in zebrafish affects arterio-venous EC specification. {yields} COUP-TFII is indispensable for lymphatic development in zebrafish. {yields} COUP-TFII knockdown in Xenopus disrupts lymphatic EC differentiation and migration. {yields} COUP-TFII's role in EC fate decisions is evolutionary conserved. -- Abstract: Transcription factors play a central role in cell fate determination. Gene targeting in mice revealed that Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII, also known as Nuclear Receptor 2F2 or NR2F2) induces a venous phenotype in endothelial cells (ECs). More recently, NR2F2 was shown to be required for initiating the expression of Prox1, responsible for lymphatic commitment ofmore » venous ECs. Small animal models like zebrafish embryos and Xenopus laevis tadpoles have been very useful to elucidate mechanisms of (lymph) vascular development. Therefore, the role of NR2F2 in (lymph) vascular development was studied by eliminating its expression in these models. Like in mice, absence of NR2F2 in zebrafish resulted in distinct vascular defects including loss of venous marker expression, major trunk vessel fusion and vascular leakage. Both in zebrafish and Xenopus the development of the main lymphatic structures was severely hampered. NR2F2 knockdown significantly decreased prox1 expression in zebrafish ECs and the same manipulation affected lymphatic (L)EC commitment, migration and function in Xenopus tadpoles. Therefore, the role of NR2F2 in EC fate determination is evolutionary conserved.« less

  4. XMAP310: A Xenopus Rescue-promoting Factor Localized to the Mitotic Spindle

    PubMed Central

    Andersen, Søren S.L.; Karsenti, Eric

    1997-01-01

    To understand the role of microtubule-associated proteins (MAPs) in the regulation of microtubule (MT) dynamics we have characterized MAPs prepared from Xenopus laevis eggs (Andersen, S.S.L., B. Buendia, J.E. Domínguez, A. Sawyer, and E. Karsenti. 1994. J. Cell Biol. 127:1289–1299). Here we report on the purification and characterization of a 310-kD MAP (XMAP310) that localizes to the nucleus in interphase and to mitotic spindle MTs in mitosis. XMAP310 is present in eggs, oocytes, a Xenopus tissue culture cell line, testis, and brain. We have purified XMAP310 to homogeneity from egg extracts. The purified protein cross-links pure MTs. Analysis of the effect of this protein on MT dynamics by time-lapse video microscopy has shown that it increases the rescue frequency 5–10-fold and decreases the shrinkage rate twofold. It has no effect on the growth rate or the catastrophe frequency. Microsequencing data suggest that XMAP230 and XMAP310 are novel MAPs. Although the three Xenopus MAPs characterized so far, XMAP215 (Vasquez, R.J., D.L. Gard, and L. Cassimeris. 1994. J. Cell Biol. 127:985–993), XMAP230, and XMAP310 are localized to the mitotic spindle, they have distinct effects on MT dynamics. While XMAP215 promotes rapid MT growth, XMAP230 decreases the catastrophe frequency and XMAP310 increases the rescue frequency. This may have important implications for the regulation of MT dynamics during spindle morphogenesis and chromosome segregation. PMID:9362515

  5. Deep cytoplasmic rearrangements in ventralized Xenopus embryos

    NASA Technical Reports Server (NTRS)

    Brown, E. E.; Denegre, J. M.; Danilchik, M. V.

    1993-01-01

    Following fertilization in Xenopus, dramatic rearrangements of the egg cytoplasm relocalize maternally synthesized egg components. During the first cell cycle the vegetal yolk mass rotates relative to the egg surface, toward the sperm entry point (SEP) (J. P. Vincent, G. F. Oster, and J. C. Gerhart, 1986, Dev. Biol. 113, 484-500), while concomitant deep cytoplasmic rearrangements occur in the animal hemisphere (M. V. Danilchik and J. M. Denegre, 1991, Development 111, 845-856). In this paper we examine the role of vegetal yolk mass rotation in producing the animal cytoplasmic rearrangements. We inhibited rotation by uv-irradiating embryos during the first cell cycle, a treatment that yields an extremely ventralized phenotype. Both uv-irradiated embryos and unirradiated control embryos show cytoplasmic rearrangements in the animal hemisphere during the first cell cycle. Cytoplasmic rearrangements on the SEP side of the embryo associated with the path of the sperm pronucleus, plus a swirl on the anti-SEP (dorsal) side, are seen, whether or not yolk mass rotation has occurred. This result suggests a role for the expanding sperm aster in directing animal hemisphere cytoplasmic movements. In unirradiated control embryos the anti-SEP (dorsal) swirl is larger than that in uv-irradiated embryos and often extends into the vegetal hemisphere, consistent with the animal cytoplasm having been pulled dorsally and vegetally by the sliding vegetal yolk mass. Thus the yolk mass rotation may normally enhance the dorsalward cytoplasmic movement, begun by the sperm aster, enough to induce normal axis formation. We extended our observations of unirradiated control and uv-irradiated embryos through early cleavages. The vegetal extent of the anti-SEP (dorsal) swirl pattern seen in control embryos persists through the early cleavage period, such that labeled animal cytoplasm extends deep into dorsal third-tier blastomeres at the 32-cell stage. Significantly, in uv-irradiated embryos

  6. Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, Candida tropicalis and Candida parapsilopsis.

    PubMed

    Ishida, Kelly; Fernandes Rodrigues, Juliany Cola; Cammerer, Simon; Urbina, Julio A; Gilbert, Ian; de Souza, Wanderley; Rozental, Sonia

    2011-01-21

    Sterol biosynthesis is an essential pathway for fungal survival, and is the biochemical target of many antifungal agents. The antifungal drugs most widely used to treated fungal infections are compounds that inhibit cytochrome P450-dependent C14α-demethylase (CYP51), but other enzymes of this pathway, such as squalene synthase (SQS) which catalyses the first committed step in sterol biosynthesis, could be viable targets. The aim of this study was to evaluate the antifungal activity of SQS inhibitors on Candida albicans, Candida tropicalis and Candida parapsilopsis strains. Ten arylquinuclidines that act as SQS inhibitors were tested as antiproliferative agents against three ATCC strains and 54 clinical isolates of Candida albicans, Candida tropicalis and Candida parapsilopsis. Also, the morphological alterations induced in the yeasts by the experimental compounds were evaluated by fluorescence and transmission electron microscopy. The most potent arylquinuclidine derivative (3-[1'-{4'-(benzyloxy)-phenyl}]-quinuclidine-2-ene) (WSP1267) had a MIC50 of 2 μg/ml for all species tested and MIC90 varying from 4 μg/ml to 8 μg/ml. Ultrathin sections of C. albicans treated with 1 μg/ml of WSP1267 showed several ultrastructural alterations, including (a) loss of cell wall integrity, (b) detachment of the plasma membrane from the fungal cell wall, (c) accumulation of small vesicles in the periplasmic region, (d) presence of large electron-dense vacuoles and (e) significantly increased cell size and cell wall thickness. In addition, fluorescence microscopy of cells labelled with Nile Red showed an accumulation of lipid droplets in the cytoplasm of treated yeasts. Nuclear staining with DAPI revealed the appearance of uncommon yeast buds without a nucleus or with two nuclei. Taken together, our data demonstrate that arylquinuclidine derivatives could be useful as lead compounds for the rational synthesis of new antifungal drugs.

  7. Membrane junctions in Xenopus eggs: their distribution suggests a role in calcium regulation.

    PubMed

    Gardiner, D M; Grey, R D

    1983-04-01

    We have observed the presence of membrane junctions formed between the plasma membrane and cortical endoplasmic reticulum of mature, unactivated eggs of xenopus laevis. The parallel, paired membranes of the junction are separated by a 10-mn gap within which electron-dense material is present. This material occurs in patches with an average center-to-center distance of approximately 30 nm. These junctions are rare in immature (but fully grown) oocytes (approximately 2 percent of the plasma membrane is associated with junctions) and increase dramatically during progesterone-induced maturation. Junctions in the mature, unactivated egg are two to three times more abundant in the animal hemisphere (25-30 percent of the plasma membrane associated with junction) as compared with the vegetal hemisphere (10-15 percent). Junction density decreases rapidly to values characteristic of immature oocytes in response to egg activation. The plasma membrane-ER junctions of xenopus eggs are strikingly similar in structure to membrane junctions in muscle cells thought to be essential in the triggering of intracellular calcium release from the sarcoplasmic reticulum. In addition, the junctions' distinctive, animal-vegetal polarity of distribution, their dramatic appearance during maturation, and their disapperance during activation are correlated with previously documented patterns of calcium-mediated events in anuran eggs. We discuss several lines of evidence supporting the hypothesis that these junctions in xenopus eggs are sites that transduce extracellular events into intracellular calcium release during fertilization and activation of development.

  8. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole.

    PubMed

    Taniguchi, Yuka; Watanabe, Kenji; Mochii, Makoto

    2014-06-18

    Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans.

  9. Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole

    PubMed Central

    2014-01-01

    Background Appendage regeneration in amphibians is regulated by the combinatorial actions of signaling molecules. The requirement of molecules secreted from specific tissues is reflected by the observation that the whole process of regeneration can be inhibited if a certain tissue is removed from the amputated stump. Interestingly, urodeles and anurans show different tissue dependencies during tail regeneration. The spinal cord is essential for tail regeneration in urodele but not in anuran larva, whereas the notochord but not the spinal cord is essential for tail regeneration in anuran tadpoles. Sonic hedgehog is one of the signaling molecules responsible for such phenomenon in axolotl, as hedgehog signaling is essential for overall tail regeneration and sonic hedgehog is exclusively expressed in the spinal cord. In order to know whether hedgehog signaling is involved in the molecular mechanism underlying the inconsistent tissue dependency for tail regeneration between anurans and urodeles, we investigated expression of hedgehog signal-related genes in the regenerating tail of Xenopus tadpole and examined the effect of the hedgehog signal inhibitor, cyclopamine, on the tail regeneration. Results In Xenopus, sonic hedgehog is expressed exclusively in the notochord but not in the spinal cord of the regenerate. Overall regeneration was severely impaired in cyclopamine-treated tadpoles. Notochord maturation in the regenerate, including cell alignment and vacuolation, and myofiber formation were inhibited. Proliferation of spinal cord cells in the neural ampulla and of mesenchymal cells was also impaired. Conclusion As in the axolotl, hedgehog signaling is required for multiple steps in tail regeneration in the Xenopus tadpole, although the location of the Shh source is quite different between the two species. This difference in Shh localization is the likely basis for the differing tissue requirement for tail regeneration between urodeles and anurans. PMID:24941877

  10. Requirement of Xmsx-1 in the BMP-triggered ventralization of Xenopus embryos.

    PubMed

    Yamamoto, T S; Takagi, C; Ueno, N

    2000-03-01

    Signaling triggered by polypeptide growth factors leads to the activation of their target genes. Several homeobox genes are known to be induced in response to polypeptide growth factors in early Xenopus development. In particular, Xmsx-1, an amphibian homologue of vertebrate Msx-1, is well characterized as a target gene of bone morphogenetic protein (BMP). Here, using a dominant-negative form of Xmsx-1 (VP-Xmsx-1), which is a fusion protein made with the virus-derived VP16 activation domain, we have examined whether Xmsx-1 activity is required in the endogenous ventralizing pathway. VP-Xmsx-1 induced a secondary body axis, complete with muscle and neural tissues, when overexpressed in ventral blastomeres, suggesting that Xmsx-1 activity is necessary for both mesoderm and ectoderm to be ventralized. We have also examined the epistatic relationship between Xmsx-1 and another ventralizing homeobox protein, Xvent-1, and show that Xmsx-1 is likely to be acting upstream of Xvent-1. We propose that Xmsx-1 is required in the BMP-stimulated ventralization pathway that involves the downstream activation of Xvent-1.

  11. The Xenopus Maternal-to-Zygotic Transition from the Perspective of the Germline.

    PubMed

    Yang, Jing; Aguero, Tristan; King, Mary Lou

    2015-01-01

    In Xenopus, the germline is specified by the inheritance of germ-plasm components synthesized at the beginning of oogenesis. Only the cells in the early embryo that receive germ plasm, the primordial germ cells (PGCs), are competent to give rise to the gametes. Thus, germ-plasm components continue the totipotent potential exhibited by the oocyte into the developing embryo at a time when most cells are preprogrammed for somatic differentiation as dictated by localized maternal determinants. When zygotic transcription begins at the mid-blastula transition, the maternally set program for somatic differentiation is realized. At this time, genetic control is ceded to the zygotic genome, and developmental potential gradually becomes more restricted within the primary germ layers. PGCs are a notable exception to this paradigm and remain transcriptionally silent until the late gastrula. How the germ-cell lineage retains full potential while somatic cells become fate restricted is a tale of translational repression, selective degradation of somatic maternal determinants, and delayed activation of zygotic transcription. © 2015 Elsevier Inc. All rights reserved.

  12. Functional joint regeneration is achieved using reintegration mechanism in Xenopus laevis

    PubMed Central

    Yamada, Shigehito

    2016-01-01

    Abstract A functional joint requires integration of multiple tissues: the apposing skeletal elements should form an interlocking structure, and muscles should insert into skeletal tissues via tendons across the joint. Whereas newts can regenerate functional joints after amputation, Xenopus laevis regenerates a cartilaginous rod without joints, a “spike.” Previously we reported that the reintegration mechanism between the remaining and regenerated tissues has a significant effect on regenerating joint morphogenesis during elbow joint regeneration in newt. Based on this insight into the importance of reintegration, we amputated frogs’ limbs at the elbow joint and found that frogs could regenerate a functional elbow joint between the remaining tissues and regenerated spike. During regeneration, the regenerating cartilage was partially connected to the remaining articular cartilage to reform the interlocking structure of the elbow joint at the proximal end of the spike. Furthermore, the muscles of the remaining part inserted into the regenerated spike cartilage via tendons. This study might open up an avenue for analyzing molecular and cellular mechanisms of joint regeneration using Xenopus. PMID:27499877

  13. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 FAMILY

    EPA Science Inventory

    The P450alk gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. Structural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures ...

  14. Xenopus as a Model Organism for Birth Defects – Congenital Heart Disease and Heterotaxy

    PubMed Central

    Duncan, Anna R.; Khokha, Mustafa K.

    2016-01-01

    Congenital heart disease is the leading cause of birth defects, affecting 9 out of 1000 newborns each year. A particularly severe form of congenital heart disease is heterotaxy, a disorder of left-right development. Despite aggressive surgical management, patients with heterotaxy have poor survival rates and severe morbidity due to their complex congenital heart disease. Recent genetic analysis of affected patients has found novel candidate genes for heterotaxy although their underlying mechanisms remain unknown. In this review, we discuss the importance and challenges of birth defects research including high locus heterogeneity and few second alleles that make defining disease causality difficult. A powerful strategy moving forward is to analyze these candidate genes in a high-throughput human disease model. Xenopus is ideal for these studies. We present multiple examples demonstrating the power of Xenopus in discovery new biology from the analysis of candidate heterotaxy genes such as GALNT11, NEK2 and BCOR. These genes have diverse roles in embryos and have led to a greater understanding of complex signaling pathways and basic developmental biology. It is our hope that the mechanistic analysis of these candidate genes in Xenopus enabled by next generation sequencing of patients will provide clinicians with a greater understanding of patient pathophysiology allowing more precise and personalized medicine, to help them more effectively in the future. PMID:26910255

  15. The anthraquinones rubiadin and its 1-methyl ether isolated from Heterophyllaea pustulata reduces Candida tropicalis biofilms formation.

    PubMed

    Marioni, Juliana; da Silva, María Angel; Cabrera, José Luis; Montoya, Susana C Núñez; Paraje, María Gabriela

    2016-11-15

    Candida tropicalis is increasingly becoming among the most commonly isolated pathogens causing fungal infections with an important biofilm-forming capacity. This study addresses the antifungal effect of rubiadin (AQ1) and rubiadin 1-methyl ether (AQ2), two photosensitizing anthraquinones (AQs) isolated from Heterophyllaea pustulata, against C. tropicalis biofilms, by studying the cellular stress and antioxidant response in two experimental conditions: darkness and irradiation. The combination with Amphotericin B (AmB) was assayed to evaluate the synergic effect. Biofilms of clinical isolates and reference strain of Candida tropicalis were treated with AQs (AQ1 or AQ2) and/or AmB, and the biofilms depletion was studied by crystal violet and confocal scanning laser microscopy (CSLM). The oxidant metabolites production and the response of antioxidant defense system were also evaluated under dark and irradiation conditions, being the light a trigger for photo-activation of the AQs. The Reactive Oxygen Species (ROS) were detected by the reduction of Nitro Blue Tetrazolium test, and Reactive Nitrogen Intermediates (RNI) by the Griess assay. ROS accumulation was also detected inside biofilms by using 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) probe, which was visualized by CSLM. Superoxide dismutase (SOD) activity and the total antioxidant capacity of biofilms were measured by spectrophotometric methods. The minimun inhibitory concentration for sessile cells (SMIC) was determined for each AQs and AmB. The fractional inhibitory concentration index (FICI) was calculated for the combinations of each AQ with AmB by the checkerboard microdilution method. Biofilm reduction of both strains was more effective with AQ1 than with AQ2. The antifungal effect was mediated by an oxidative and nitrosative stress under irradiation, with a significant accumulation of endogenous ROS detected by CSLM and an increase in the SOD activity. Thus, the prooxidant-antioxidant balance was

  16. THYROID AXIS INHIBITION IN XENOPUS LAEVIS: DEVELOPMENT OF AN AMPHIBIAN-BASED SCREENING ASSAY

    EPA Science Inventory

    In response to the initial EDSTAC recommendations, research was conducted on the development of a Xenopus laevis based tail resorption assay for evaluating thyroid axis disruption. These experiments highlighted key limitations associated with relying on tail resorption as a measu...

  17. Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development.

    PubMed

    Morona, Ruth; González, Agustín

    2013-01-01

    The present study represents a detailed spatiotemporal analysis of the localization of calbindin-D28k (CB) and calretinin (CR) immunoreactive structures in the brain of Xenopus laevis throughout development, conducted with the aim to correlate the onset of the immunoreactivity with the development of compartmentalization of distinct subdivisions recently identified in the brain of adult amphibians and primarily highlighted when analyzed within a segmental paradigm. CR and CB are expressed early in the brain and showed a progressively increasing expression throughout development, although transient expression in some neuronal subpopulations was also noted. Common and distinct characteristics in Xenopus, as compared with reported features during development in the brain of mammals, were observed. The development of specific regions in the forebrain such as the olfactory bulbs, the components of the basal ganglia and the amygdaloid complex, the alar and basal hypothalamic regions, and the distinct diencephalic neuromeres could be analyzed on the basis of the distinct expression of CB and CR in subregions. Similarly, the compartments of the mesencephalon and the main rhombencephalic regions, including the cerebellum, were differently highlighted by their specific content in CB and CR throughout development. Our results show the usefulness of the analysis of the distribution of these proteins as a tool in neuroanatomy to interpret developmental aspects of many brain regions. Copyright © 2012 Wiley Periodicals, Inc.

  18. Scythe regulates apoptosis through modulating ubiquitin-mediated proteolysis of the Xenopus elongation factor XEF1AO

    PubMed Central

    Minami, Ryosuke; Shimada, Masumi; Yokosawa, Hideyoshi; Kawahara, Hiroyuki

    2007-01-01

    Scythe was originally identified as a novel Reaper-binding anti-apoptotic protein, although the mechanisms of its functions remain largely obscure. Our previous analysis revealed that Scythe can bind to a proteasomal subunit via N-terminal domains and that the domains are required for appropriate development of Xenopus embryos. In the present study, we show evidence that the N-terminus of Scythe interacts with XEF1AO, a maternal form of Xenopus laevis EF1A that was suggested to be a potential inducer of apoptosis in vertebrates, and that the binding enhances the poly-ubiquitin modification and subsequent degradation of XEF1AO. Scythe is required for degradation of XEF1AO, since immunodepletion of Scythe from embryonic extracts stabilized XEF1AO significantly. Furthermore, we show that apoptosis induced by accumulation of XEF1AO can be suppressed by co-expression of the full-length form of Scythe. These observations indicate that the proteolytic regulation of XEF1AO, mediated through Scythe, is essential to prevent inappropriate accumulation of XEF1AO and resulting apoptotic events during the course of Xenopus development. PMID:17428197

  19. Sequential Turnovers of Sex Chromosomes in African Clawed Frogs (Xenopus) Suggest Some Genomic Regions Are Good at Sex Determination

    PubMed Central

    Furman, Benjamin L. S.; Evans, Ben J.

    2016-01-01

    Sexual differentiation is fundamentally important for reproduction, yet the genetic triggers of this developmental process can vary, even between closely related species. Recent studies have uncovered, for example, variation in the genetic triggers for sexual differentiation within and between species of African clawed frogs (genus Xenopus). Here, we extend these discoveries by demonstrating that yet another sex determination system exists in Xenopus, specifically in the species Xenopus borealis. This system evolved recently in an ancestor of X. borealis that had the same sex determination system as X. laevis, a system which itself is newly evolved. Strikingly, the genomic region carrying the sex determination factor in X. borealis is homologous to that of therian mammals, including humans. Our results offer insights into how the genetic underpinnings of conserved phenotypes evolve, and suggest an important role for cooption of genetic building blocks with conserved developmental roles. PMID:27605520

  20. Identification of Germ Plasm-Associated Transcripts by Microarray Analysis of Xenopus Vegetal Cortex RNA

    PubMed Central

    Cuykendall, Tawny N.; Houston, Douglas W.

    2011-01-01

    RNA localization is a common mechanism for regulating cell structure and function. Localized RNAs in Xenopus oocytes are critical for early development, including germline specification by the germ plasm. Despite the importance of these localized RNAs, only approximately 25 have been identified and fewer are functionally characterized. Using microarrays, we identified a large set of localized RNAs from the vegetal cortex. Overall, our results indicate a minimum of 275 localized RNAs in oocytes, or 2–3% of maternal transcripts, which are in general agreement with previous findings. We further validated vegetal localization for 24 candidates and further characterized three genes expressed in the germ plasm. We identified novel germ plasm expression for reticulon 3.1, exd2 (a novel exonuclease-domain encoding gene), and a putative noncoding RNA. Further analysis of these and other localized RNAs will likely identify new functions of germ plasm and facilitate the identification of cis-acting RNA localization elements. PMID:20503379

  1. Developmental changes in drug-metabolizing enzyme expression during metamorphosis of Xenopus tropicalis.

    PubMed

    Mori, Junpei; Sanoh, Seigo; Kashiwagi, Keiko; Hanada, Hideki; Shigeta, Mitsuki; Suzuki, Ken-Ichi T; Yamamoto, Takashi; Kotake, Yaichiro; Sugihara, Kazumi; Kitamura, Shigeyuki; Kashiwagi, Akihiko; Ohta, Shigeru

    2017-01-01

    A large number of chemicals are routinely detected in aquatic environments, and these chemicals may adversely affect aquatic organisms. Accurate risk assessment requires understanding drug-metabolizing systems in aquatic organisms because metabolism of these chemicals is a critical determinant of chemical bioaccumulation and related toxicity. In this study, we evaluated mRNA expression levels of nuclear receptors and drug-metabolizing enzymes as well as cytochrome P450 (CYP) activities in pro-metamorphic tadpoles, froglets, and adult frogs to determine how drug-metabolizing systems are altered at different life stages. We found that drug-metabolizing systems in tadpoles were entirely immature, and therefore, tadpoles appeared to be more susceptible to chemicals compared with metamorphosed frogs. On the other hand, cyp1a mRNA expression and CYP1A-like activity were higher in tadpoles. We found that thyroid hormone (TH), which increases during metamorphosis, induced CYP1A-like activity. Because endogenous TH concentration is significantly increased during metamorphosis, endogenous TH would induce CYP1A-like activity in tadpoles.

  2. Endocrine Toxicity of Trenbolone in the Western Clawed Frog, Xenopus (Silurana) tropicalis

    EPA Science Inventory

    Trenbolone is a veterinarian pharmaceutical that acts as an androgen agonist and is used extensively in the beef industry. It is excreted from cattle is an active form and has been measured in aquatic systems associated with or near concentrated animal feeding operations. In an...

  3. XCTK1: A Xenopus C-terminal Kinesin-like Protein

    NASA Technical Reports Server (NTRS)

    Winfree, Seth; Wilhelm, Heike; Sawyer, Alan; Karsenti, Eric; Mitchison, Tim; Walczak, Claire; Reinsch, Sigrid; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    XCTK1 is 97kDa kinesin-like protein homologous to FKIF2 and KIFC3. XCTK1 is present at picomolar levels in eggs, embryos and cultured cells in a soluble high-molecular weight complex that is not associated with membranes. XCKT1 localizes to centrosomes in Xenopus A6 cells. Anti-XCTK1 antibodies also localize to spindle poles when injected into A6 cells or when added to extracts during in vitro spindle assembly reactions. XCTK1 is associated with the center of taxol-induced microtubule asters in extracts. Therefore its localization to poles is dependent on microtubule minus-ends and not on centrosomes per se. Overexpression of XCTK1 leads to centrosome destruction in cultured cells. XCTK1 was tagged at either the N- or C-terminus and transfected into Xenopus A6 cells At low expression levels, XCTK1 associated with centrosomes. At higher levels, the protein localized to insoluble cytoplasmic structures. Gamma-tubulin staining was dramatically decreased from centrosomes or altogether absent. The centrosomal SPJ antigen colocalized with XCTK1-containing structures. Upon nocodozole treatment, microtubules failed to regrow from the centrosomes indicating that overexpression of XCTK1 severely compromises centrosomal function. Current studies are aimed at determining whether XCTK1 interacts directly with centrosomal proteins and to determine the effects of XCTK1 depletion on oocyte maturation and embryogenesis.

  4. Peptidomic analysis of the extensive array of host-defense peptides in skin secretions of the dodecaploid frog Xenopus ruwenzoriensis (Pipidae).

    PubMed

    Coquet, Laurent; Kolodziejek, Jolanta; Jouenne, Thierry; Nowotny, Norbert; King, Jay D; Conlon, J Michael

    2016-09-01

    The Uganda clawed frog Xenopus ruwenzoriensis with a karyotype of 2n=108 is one of the very few vertebrates with dodecaploid status. Peptidomic analysis of norepinephrine-stimulated skin secretions from this species led to the isolation and structural characterization of 23 host-defense peptides belonging to the following families: magainin (3 peptides), peptide glycine-leucine-amide (PGLa; 6 peptides), xenopsin precursor fragment (XPF; 3 peptides), caerulein precursor fragment (CPF; 8 peptides), and caerulein precursor fragment-related peptide (CPF-RP; 3 peptides). In addition, the secretions contained caerulein, identical to the peptide from Xenopus laevis, and two peptides that were identified as members of the trefoil factor family (TFF). The data indicate that silencing of the host-defense peptide genes following polyploidization has been appreciable and non-uniform. Consistent with data derived from comparison of nucleotide sequences of mitochrondrial and nuclear genes, cladistic analyses based upon the primary structures of the host-defense peptides provide support for an evolutionary scenario in which X. ruwenzoriensis arose from an allopolyploidization event involving an octoploid ancestor of the present-day frogs belonging to the Xenopus amieti species group and a tetraploid ancestor of Xenopus pygmaeus. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Ovarian hyperstimulation syndrome in gonadotropin-treated laboratory South African clawed frogs (Xenopus laevis).

    PubMed

    Green, Sherril L; Parker, John; Davis, Corrine; Bouley, Donna M

    2007-05-01

    Ovarian hyperstimulation syndrome (OHS) is a rare but sometimes fatal iatrogenic complication of ovarian stimulation associated with the administration of exogenous gonadotropins to women undergoing treatment for infertility. Laboratory Xenopus spp are commonly treated with human chorionic gonadotropin (hCG) to stimulate ovulation and optimize the number of oocytes harvested for use in biomedical research. Here we report cases of OHS in 2 gonadotropin-treated laboratory Xenopus laevis. After receiving hCG, the frogs developed severe subcutaneous accumulation of fluid, coelomic distention, and whole-body edema and were unable to dive, although they continued to eat and swim. At postmortem examination, extensive subcutaneous edema was present; ascites and massive numbers of free-floating eggs were found in the coelomic cavity and in aberrant locations: around the heart-sac and adhered to the liver capsule. Whole-body edema, gross enlargement of the ovaries, ascites, and abdominal distention are findings comparable to those observed in women with OHS. The pathophysiology of OHS is thought to be related to hormonally induced disturbances of vasoactive mediators, one of which may be vascular endothelial growth factor secreted by theca and granulosa cells. We know of no other report describing OHSlike symptoms in gonadotropin-treated frogs, and the cases described here are 2 of the 3 we have observed at our respective institutions over the last 6 y. According to these results, OHS appears to be rare in gonadotropin-treated laboratory Xenopus. However, the condition should be included in the differential diagnosis for the bloated frog.

  6. Cloning of an origin of DNA replication of Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, S.; Taylor, J.H.

    1980-09-01

    DNA fragments of Xenopus laevis, the African frog, were cloned in the EcoRI site of the Eschrichia coli plasmid pACYC189 and tested for ability to initiate and complete replication of the recombinant plasmid when injected into unfertilized eggs of X. laevis. After measurement of the (/sup 3/H)-thymidine incorporation per egg for a number of recombinant plasmids, pSW14 and pSW9, which respectively contain a small segment (550 base pairs) and several kilobases of frog DNA, were selected for more extensive analysis. In spite of the small size of th segment in pSW14, it incorporates in 2 hr at least 3 timesmore » as much labeled thymidine as either pSW9 or the vector alone. To determine the number of replications of pSW14, a novel method was employed. The results showed that about 50% of the labeled, supercoiled DNA recovered from eggs after 4 hr was sensitive to EcoRI digestion, which indicates that most of the DNA that incorporated (/sup 3/H)thymidine had replicated twice during the 4 hr in the unfertilized eggs of X. laevis. We conclude the pSW14 has a functional origin in the Xenopus DNA segment.« less

  7. Lateral mobility of plasma membrane lipids in dividing Xenopus eggs.

    PubMed

    Tetteroo, P A; Bluemink, J G; Dictus, W J; van Zoelen, E J; de Laat, S W

    1984-07-01

    The lateral mobility of plasma membrane lipids was analyzed during first cleavage of Xenopus laevis eggs by fluorescence photobleaching recovery (FPR) measurements, using the lipid analogs 5-(N-hexadecanoyl)aminofluorescein ("HEDAF") and 5-(N-tetradecanoyl)aminofluorescein ("TEDAF") as probes. The preexisting plasma membrane of the animal side showed an inhomogeneous, dotted fluorescence pattern after labeling and the lateral mobility of both probes used was below the detection limits of the FPR method (D much less than 10(-10) cm2/sec). In contrast, the preexisting plasma membrane of the vegetal side exhibited homogeneous fluorescence and the lateral diffusion coefficient of both probes used was relatively high (HEDAF, D = 2.8 X 10(-8) cm2/sec; TEDAF, D = 2.4 X 10(-8) cm2/sec). In the cleaving egg visible transfer of HEDAF or TEDAF from prelabeled plasma membrane to the new membrane in the furrow did not occur, even on the vegetal side. Upon labeling during cleavage, however, the new membrane was uniformly labeled and both probes were mobile, as in the vegetal preexisting plasma membrane. These data show that the membrane of the dividing Xenopus egg comprises three macrodomains: (i) the animal preexisting plasma membrane; (ii) the vegetal preexisting plasma membrane; (iii) the new furrow membrane.

  8. PHENOBARBITAL AFFECTS THYROID HISTOLOGY AND LARVAL DEVELOPMENT IN THE AFRICAN CLAWED FROG XENOPUS LAEVIS

    EPA Science Inventory

    The abstract highlights our recent study to explore endocrine disrupting effects of phenobarbital in the African clawed frog, Xenopus laevis. In mammals, this chemical is known to induce the biotransforming enzyme UDP-glucuronosyltransferase (UDPGT) resulting in increased thyroid...

  9. Examining the contents of isolated Xenopus germinal vesicles.

    PubMed

    Gall, Joseph G; Wu, Zheng'an

    2010-05-01

    One can manually isolate the giant oocyte nucleus or germinal vesicle (GV) of Xenopus from a living oocyte with nothing more complicated than jewelers' forceps and a dissecting microscope. Similarly, one can remove the nuclear envelope by hand and allow the lampbrush chromosomes and other nuclear organelles to spread on a microscope slide. After centrifugation, the nuclear contents adhere tightly to the slide, where they can be subjected to immunostaining or fluorescent in situ hybridization for visualization by conventional or confocal microscopy. Preparations of isolated GV contents reveal details of nuclear structure that are almost impossible to attain by more conventional techniques.

  10. The human estrogen receptor can regulate exogenous but not endogenous vitellogenin gene promoters in a Xenopus cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiler-Tuyns, A.; Merillat, A.M.; Haefliger, D.N.

    Transfection of a human estrogen receptor cDNA expression vector (HEO) into cultured Xenopus kidney cells confers estrogen responsiveness to the recipient cells as demonstrated by the hormone dependent expression of co-transfected Xenopus vitellogenin-CAT chimeric genes. The estrogen stimulation of these vit-CAT genes is dependent upon the presence of the vitellogenin estrogen responsive element (ERE) in their 5{prime} flanking region. Thus, functional human estrogen receptor (hER) can be synthesized in heterologous lower vertebrate cells and can act as a trans-acting regulatory factor that is necessary, together with estradiol, for the induction of the vit-CAT constructs in these cells. In addition, vitellogeninmore » minigenes co-transfected with the HEO expression vector also respond to hormonal stimulation. Their induction is not higher than that of the vit-CAT chimeric genes. It suggests that in the Xenopus kidney cell line B 3.2, the structural parts of the vitellogenin minigenes do not play a role in the induction process. Furthermore, no stabilizing effect of estrogen on vitellogenin mRNA is observed in these cells.« less

  11. Heterotrimeric Kinesin II Is the Microtubule Motor Protein Responsible for Pigment Dispersion in Xenopus Melanophores

    PubMed Central

    Tuma, M. Carolina; Zill, Andrew; Le Bot, Nathalie; Vernos, Isabelle; Gelfand, Vladimir

    1998-01-01

    Melanophores move pigment organelles (melanosomes) from the cell center to the periphery and vice-versa. These bidirectional movements require cytoplasmic microtubules and microfilaments and depend on the function of microtubule motors and a myosin. Earlier we found that melanosomes purified from Xenopus melanophores contain the plus end microtubule motor kinesin II, indicating that it may be involved in dispersion (Rogers, S.L., I.S. Tint, P.C. Fanapour, and V.I. Gelfand. 1997. Proc. Natl. Acad. Sci. USA. 94: 3720–3725). Here, we generated a dominant-negative construct encoding green fluorescent protein fused to the stalk-tail region of Xenopus kinesin-like protein 3 (Xklp3), the 95-kD motor subunit of Xenopus kinesin II, and introduced it into melanophores. Overexpression of the fusion protein inhibited pigment dispersion but had no effect on aggregation. To control for the specificity of this effect, we studied the kinesin-dependent movement of lysosomes. Neither dispersion of lysosomes in acidic conditions nor their clustering under alkaline conditions was affected by the mutant Xklp3. Furthermore, microinjection of melanophores with SUK4, a function-blocking kinesin antibody, inhibited dispersion of lysosomes but had no effect on melanosome transport. We conclude that melanosome dispersion is powered by kinesin II and not by conventional kinesin. This paper demonstrates that kinesin II moves membrane-bound organelles. PMID:9852150

  12. The repetitive portion of the Xenopus IgH Mu switch region mediates orientation-dependent class switch recombination.

    PubMed

    Zhang, Zheng Z; Pannunzio, Nicholas R; Lu, Zhengfei; Hsu, Ellen; Yu, Kefei; Lieber, Michael R

    2015-10-01

    Vertebrates developed immunoglobulin heavy chain (IgH) class switch recombination (CSR) to express different IgH constant regions. Most double-strand breaks for Ig CSR occur within the repetitive portion of the switch regions located upstream of each set of constant domain exons for the Igγ, Igα or Igϵ heavy chain. Unlike mammalian switch regions, Xenopus switch regions do not have a high G-density on the non-template DNA strand. In previous studies, when Xenopus Sμ DNA was moved to the genome of mice, it is able to support substantial CSR when it is used to replace the murine Sγ1 region. Here, we tested both the 2kb repetitive portion and the 4.6 kb full-length portions of the Xenopus Sμ in both their natural (forward) orientation relative to the constant domain exons, as well as the opposite (reverse) orientation. Consistent with previous work, we find that the 4.6 kb full-length Sμ mediates similar levels of CSR in both the forward and reverse orientations. Whereas, the forward orientation of the 2kb portion can restore the majority of the CSR level of the 4.6 kb full-length Sμ, the reverse orientation poorly supports R-looping and no CSR. The forward orientation of the 2kb repetitive portion has more GG dinucleotides on the non-template strand than the reverse orientation. The correlation of R-loop formation with CSR efficiency, as demonstrated in the 2kb repetitive fragment of the Xenopus switch region, confirms a role played by R-looping in CSR that appears to be conserved through evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Adrenocorticotropin receptors: Functional expression from rat adrenal mRNA in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertz, L.M.; Catt, K.J.

    1991-10-01

    The adrenocorticotropin (ACTH) receptor, which binds corticotropin and stimulates adenylate cyclase and steroidogenesis in adrenocortical cells, was expressed in Xenopus laevis oocytes microinjected with rat adrenal poly(A){sup +} RNA. Expression of the ACTH receptor in individual stage 5 and 6 oocytes was monitored by radioimmunoassay of ligand-stimulated cAMP production. Injection of 5-40 ng of adrenal mRNA caused dose-dependent increases in ACTH-responsive cAMP production. Size fractionation of rat adrenal poly(A){sup +}RNA by sucrose density-gradient centrifugation revealed that mRNA encoding the ACTH receptor was present in the 1.1-to 2.0-kilobase fraction. These data indicate that ACTH receptors can be expressed from adrenal mRNAmore » in Xenopus oocytes and are fully functional in terms of ligand specificity and signal generation. The extracellular cAMP response to ACTH is a sensitive and convenient index of receptor expression. This system should permit more complete characterization and expression cloning of the ACTH receptor.« less

  14. The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling.

    PubMed

    Wang, Feng; Hu, Wanzhou; Xian, Jian; Ohnuma, Shin-ichi; Brenton, James D

    2013-07-01

    Tgfbi, a fasciclin family extracellular matrix protein, has various roles in human diseases from corneal dystrophies to cancer. However, the molecular mechanisms that underlie its functions are poorly understood. Here, we studied the role of Tgfbi during Xenopus embryogenesis. During gastrulation and immediately after, Xtgfbi is expressed at developmentally important signaling centers including the dorsal marginal zone, notochord and floorplate. Xtgfbi knockdown by anti-sense morpholinos causes defective organizer induction, patterning and differentiation of muscle, neuron and neural crests, similar to suppression of canonical Wnt signaling. In Xenopus embryos and animal caps as well as DLD-1 cells, we show that Tgfbi is strongly required for the full activation of the canonical Wnt pathway by promoting phosphorylation of GSK3β and consequently enhancing the stabilization and nuclear localization of β-catenin. Further analysis shows that Tgfbi is likely to promote GSK3β phosphorylation through integrin-linked kinase. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Prx-1 expression in Xenopus laevis scarless skin-wound healing and its resemblance to epimorphic regeneration.

    PubMed

    Yokoyama, Hitoshi; Maruoka, Tamae; Aruga, Akio; Amano, Takanori; Ohgo, Shiro; Shiroishi, Toshihiko; Tamura, Koji

    2011-12-01

    Despite a strong clinical need for inducing scarless wound healing, the molecular factors required to accomplish it are unknown. Although skin-wound healing in adult mammals often results in scarring, some amphibians can regenerate injured body parts, even an amputated limb, without it. To understand the mechanisms of perfect skin-wound healing in regenerative tetrapods, we studied the healing process in young adult Xenopus "froglets" after experimental skin excision. We found that the excision wound healed completely in Xenopus froglets, without scarring. Mononuclear cells expressing a homeobox gene, prx1, accumulated under the new epidermis of skin wounds on the limb and trunk and at the regenerating limb. In transgenic Xenopus froglets expressing a reporter for the mouse prx1 limb-specific enhancer, activity was seen in the healing skin and in the regenerating limb. Comparable activity did not accompany skin-wound healing in adult mice. Our results suggest that scarless skin-wound healing may require activation of the prx1 limb enhancer, and competence to activate the enhancer is probably a prerequisite for epimorphic regeneration, such as limb regeneration. Finally, the induction of this prx1 enhancer activity may be useful as a reliable marker for therapeutically induced scarless wound healing in mammals.

  16. Glider and Vision: two new families of miniature inverted-repeat transposable elements in Xenopus laevis genome.

    PubMed

    Lepetit, D; Pasquet, S; Olive, M; Thézé, N; Thiébaud, P

    2000-01-01

    We have characterised from Xenopus laevis two new short interspersed repetitive elements, we have named Glider and Vision, that belong to the family of miniature inverted-repeat transposable elements (MITEs). Glider was first characterised in an intronic region of the alpha-tropomyosin (alpha-TM) gene and database search has revealed the presence of this element in 10 other Xenopus laevis genes. Glider elements are about 150 bp long and for some of them, their terminal inverted repeats are flanked by potential target-site duplications. Evidence for the mobility of Glider element has been provided by the presence/absence of one element at corresponding location in duplicated alpha-TM genes. Vision element has been identified in the promoter region of the cyclin dependant kinase 2 gene (cdk2) where it is boxed in a Glider element. Vision is 284bp long and is framed by 14-bp terminal inverted repeats that are flanked by 7-bp direct repeats. We have estimated that there are about 20,000 and 300 copies of Glider and Vision respectively scattered throughout the Xenopus laevis genome. Every MITEs elements but two described in our study are found either in 5' or in 3' regulatory regions of genes suggesting a potential role in gene regulation.

  17. Electron microscopy of the amphibian model systems Xenopus laevis and Ambystoma mexicanum.

    PubMed

    Kurth, Thomas; Berger, Jürgen; Wilsch-Bräuninger, Michaela; Kretschmar, Susanne; Cerny, Robert; Schwarz, Heinz; Löfberg, Jan; Piendl, Thomas; Epperlein, Hans H

    2010-01-01

    In this chapter we provide a set of different protocols for the ultrastructural analysis of amphibian (Xenopus, axolotl) tissues, mostly of embryonic origin. For Xenopus these methods include: (1) embedding gastrulae and tailbud embryos into Spurr's resin for TEM, (2) post-embedding labeling of methacrylate (K4M) and cryosections through adult and embryonic epithelia for correlative LM and TEM, and (3) pre-embedding labeling of embryonic tissues with silver-enhanced nanogold. For the axolotl (Ambystoma mexicanum) we present the following methods: (1) SEM of migrating neural crest (NC) cells; (2) SEM and TEM of extracellular matrix (ECM) material; (3) Cryo-SEM of extracellular matrix (ECM) material after cryoimmobilization; and (4) TEM analysis of hyaluronan using high-pressure freezing and HABP labeling. These methods provide exemplary approaches for a variety of questions in the field of amphibian development and regeneration, and focus on cell biological issues that can only be answered with fine structural imaging methods, such as electron microscopy. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle.

    PubMed

    Chang, Jeremy B; Ferrell, James E

    2013-08-29

    Despite the large size of the Xenopus laevis egg (approximately 1.2 mm diameter), a fertilized egg rapidly proceeds through mitosis in a spatially coordinated fashion. Mitosis is initiated by a bistable system of regulatory proteins centred on Cdk1 (refs 1, 2), raising the possibility that this spatial coordination could be achieved through trigger waves of Cdk1 activity. Using an extract system that performs cell cycles in vitro, here we show that mitosis does spread through Xenopus cytoplasm via trigger waves, propagating at a linear speed of approximately 60 µm min(-1). Perturbing the feedback loops that give rise to the bistability of Cdk1 changes the speed and dynamics of the waves. Time-lapse imaging of intact eggs argues that trigger waves of Cdk1 activation are responsible for surface contraction waves, ripples in the cell cortex that precede cytokinesis. These findings indicate that Cdk1 trigger waves help ensure the spatiotemporal coordination of mitosis in large eggs. Trigger waves may be an important general mechanism for coordinating biochemical events over large distances.

  19. A quantitative adverse outcome pathway model for thyroid axis disruption in Xenopus laevis tadpoles

    EPA Science Inventory

    The development of Xenopus laevis tadpoles is tightly controlled by the thyroid hormones tetraiodothyronine (T4) and triiodothyronine (T3). Toxicity testing efforts have shown that several compounds interfere with development in X. laevis tadpoles by disrupting the thyroid axis a...

  20. Exploring the Underlying Mechanisms of the Xenopus laevis Embryonic Cell Cycle.

    PubMed

    Zhang, Kun; Wang, Jin

    2018-05-31

    The cell cycle is an indispensable process in proliferation and development. Despite significant efforts, global quantification and physical understanding are still challenging. In this study, we explored the mechanisms of the Xenopus laevis embryonic cell cycle by quantifying the underlying landscape and flux. We uncovered the Mexican hat landscape of the Xenopus laevis embryonic cell cycle with several local basins and barriers on the oscillation path. The local basins characterize the different phases of the Xenopus laevis embryonic cell cycle, and the local barriers represent the checkpoints. The checkpoint mechanism of the cell cycle is revealed by the landscape basins and barriers. While landscape shape determines the stabilities of the states on the oscillation path, the curl flux force determines the stability of the cell cycle flow. Replication is fundamental for biology of living cells. We quantify the input energy (through the entropy production) as the thermodynamic requirement for initiation and sustainability of single cell life (cell cycle). Furthermore, we also quantify curl flux originated from the input energy as the dynamical requirement for the emergence of a new stable phase (cell cycle). This can provide a new quantitative insight for the origin of single cell life. In fact, the curl flux originated from the energy input or nutrition supply determines the speed and guarantees the progression of the cell cycle. The speed of the cell cycle is a hallmark of cancer. We characterized the quality of the cell cycle by the coherence time and found it is supported by the flux and energy cost. We are also able to quantify the degree of time irreversibility by the cross correlation function forward and backward in time from the stochastic traces in the simulation or experiments, providing a way for the quantification of the time irreversibility and the flux. Through global sensitivity analysis upon landscape and flux, we can identify the key elements for

  1. Large, long range tensile forces drive convergence during Xenopus blastopore closure and body axis elongation

    PubMed Central

    Kasprowicz, Eric M; Davidson, Lance A; Keller, Raymond

    2018-01-01

    Indirect evidence suggests that blastopore closure during gastrulation of anamniotes, including amphibians such as Xenopus laevis, depends on circumblastoporal convergence forces generated by the marginal zone (MZ), but direct evidence is lacking. We show that explanted MZs generate tensile convergence forces up to 1.5 μN during gastrulation and over 4 μN thereafter. These forces are generated by convergent thickening (CT) until the midgastrula and increasingly by convergent extension (CE) thereafter. Explants from ventralized embryos, which lack tissues expressing CE but close their blastopores, produce up to 2 μN of tensile force, showing that CT alone generates forces sufficient to close the blastopore. Uniaxial tensile stress relaxation assays show stiffening of mesodermal and ectodermal tissues around the onset of neurulation, potentially enhancing long-range transmission of convergence forces. These results illuminate the mechanobiology of early vertebrate morphogenic mechanisms, aid interpretation of phenotypes, and give insight into the evolution of blastopore closure mechanisms. PMID:29533180

  2. Retention of duplicated ITAM-containing transmembrane signaling subunits in the tetraploid amphibian species Xenopus laevis

    PubMed Central

    Guselnikov, S.V.; Grayfer, L.; De Jesús Andino, F.; Rogozin, I.B.; Robert, J.; Taranin, A.V.

    2015-01-01

    The ITAM-bearing transmembrane signaling subunits (TSS) are indispensable components of activating leukocyte receptor complexes. The TSS-encoding genes map to paralogous chromosomal regions, which are thought to arise from ancient genome tetraploidization(s). To assess a possible role of tetraploidization in the TSS evolution, we studied TSS and other functionally linked genes in the amphibian species Xenopus laevis whose genome was duplicated about 40 MYR ago. We found that X. laevis has retained a duplicated set of sixteen TSS genes, all except one being transcribed. Furthermore, duplicated TCRα loci and genes encoding TSS-coupling protein kinases have also been retained. No clear evidence for functional divergence of the TSS paralogs was obtained from gene expression and sequence analyses. We suggest that the main factor of maintenance of duplicated TSS genes in X. laevis was a protein dosage effect and that this effect might have facilitated the TSS set expansion in early vertebrates. PMID:26170006

  3. Evolutionary relationships of lactate dehydrogenases (LDHs) from mammals, birds, an amphibian, fish, barley, and bacteria: LDH cDNA sequences from Xenopus, pig, and rat.

    PubMed Central

    Tsuji, S; Qureshi, M A; Hou, E W; Fitch, W M; Li, S S

    1994-01-01

    The nucleotide sequences of the cDNAs encoding LDH (EC 1.1.1.27) subunits LDH-A (muscle), LDH-B (liver), and LDH-C (oocyte) from Xenopus laevis, LDH-A (muscle) and LDH-B (heart) from pig, and LDH-B (heart) and LDH-C (testis) from rat were determined. These seven newly deduced amino acid sequences and 22 other published LDH sequences, and three unpublished fish LDH-A sequences kindly provided by G. N. Somero and D. A. Powers, were used to construct the most parsimonious phylogenetic tree of these 32 LDH subunits from mammals, birds, an amphibian, fish, barley, and bacteria. There have been at least six LDH gene duplications among the vertebrates. The Xenopus LDH-A, LDH-B, and LDH-C subunits are most closely related to each other and then are more closely related to vertebrate LDH-B than LDH-A. Three fish LDH-As, as well as a single LDH of lamprey, also seem to be more related to vertebrate LDH-B than to land vertebrate LDH-A. The mammalian LDH-C (testis) subunit appears to have diverged very early, prior to the divergence of vertebrate LDH-A and LDH-B subunits, as reported previously. Images PMID:7937776

  4. Modeling human craniofacial disorders in Xenopus

    PubMed Central

    Dubey, Aditi; Saint-Jeannet, Jean-Pierre

    2017-01-01

    Purpose of Review Craniofacial disorders are among the most common human birth defects and present an enormous health care and social burden. The development of animal models has been instrumental to investigate fundamental questions in craniofacial biology and this knowledge is critical to understand the etiology and pathogenesis of these disorders. Recent findings The vast majority of craniofacial disorders arise from abnormal development of the neural crest, a multipotent and migratory cell population. Therefore, defining the pathogenesis of these conditions starts with a deep understanding of the mechanisms that preside over neural crest formation and its role in craniofacial development. Summary This review discusses several studies using Xenopus embryos to model human craniofacial conditions, and emphasizes the strength of this system to inform important biological processes as they relate to human craniofacial development and disease. PMID:28255527

  5. It's never too early to get it Right: A conserved role for the cytoskeleton in left-right asymmetry.

    PubMed

    Vandenberg, Laura N; Lemire, Joan M; Levin, Michael

    2013-11-01

    For centuries, scientists and physicians have been captivated by the consistent left-right (LR) asymmetry of the heart, viscera, and brain. A recent study implicated tubulin proteins in establishing laterality in several experimental models, including asymmetric chemosensory receptor expression in C. elegans neurons, polarization of HL-60 human neutrophil-like cells in culture, and asymmetric organ placement in Xenopus. The same mutations that randomized asymmetry in these diverse systems also affect chirality in Arabidopsis, revealing a remarkable conservation of symmetry-breaking mechanisms among kingdoms. In Xenopus, tubulin mutants only affected LR patterning very early, suggesting that this axis is established shortly after fertilization. This addendum summarizes and extends the knowledge of the cytoskeleton's role in the patterning of the LR axis. Results from many species suggest a conserved role for the cytoskeleton as the initiator of asymmetry, and indicate that symmetry is first broken during early embryogenesis by an intracellular process.

  6. Developing Xenopus Laevis as a Model to Screen Drugs for Fragile X Syndrome

    DTIC Science & Technology

    2013-10-01

    several candidate treatments for Fragile X Syndrome have gone to clinical trials. Though promising, no treatment has yet been approved. This sad ...Xenopus laevis tadpoles. J Comp Neurol 520, 401-433. Dong, W., Lee, R.H., Xu, H., Yang, S., Pratt, K.G., Cao, V., Song , Y.K., Nurmikko, A., and

  7. METAMORPHIC INHIBITION OF XENOPUS LAEVIS BY SODIUM PERCHLORATE: EFFECTS ON DEVELOPMENT AND THYROID HISTOLOGY

    EPA Science Inventory

    The perchlorate anion inhibits thyroid hormone (TH) synthesis via inhibition of the sodium-iodide symporter. It is, therefore, a good model chemical to aid in the development of a bioassay to screen chemicals for effects on thyroid function. Xenopus laevis larvae were exposed to ...

  8. Development of a New Decision Tree to Rapidly Screen Chemical Estrogenic Activities of Xenopus laevis.

    PubMed

    Wang, Ting; Li, Weiying; Zheng, Xiaofeng; Lin, Zhifen; Kong, Deyang

    2014-02-01

    During the last past decades, there is an increasing number of studies about estrogenic activities of the environmental pollutants on amphibians and many determination methods have been proposed. However, these determination methods are time-consuming and expensive, and a rapid and simple method to screen and test the chemicals for estrogenic activities to amphibians is therefore imperative. Herein is proposed a new decision tree formulated not only with physicochemical parameters but also a biological parameter that was successfully used to screen estrogenic activities of the chemicals on amphibians. The biological parameter, CDOCKER interaction energy (Ebinding ) between chemicals and the target proteins was calculated based on the method of molecular docking, and it was used to revise the decision tree formulated by Hong only with physicochemical parameters for screening estrogenic activity of chemicals in rat. According to the correlation between Ebinding of rat and Xenopus laevis, a new decision tree for estrogenic activities in Xenopus laevis is finally proposed. Then it was validated by using the randomly 8 chemicals which can be frequently exposed to Xenopus laevis, and the agreement between the results from the new decision tree and the ones from experiments is generally satisfactory. Consequently, the new decision tree can be used to screen the estrogenic activities of the chemicals, and combinational use of the Ebinding and classical physicochemical parameters can greatly improves Hong's decision tree. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Development and aminergic neuromodulation of a spinal locomotor network controlling swimming in Xenopus larvae.

    PubMed

    Sillar, K T; Reith, C A; McDearmid, J R

    1998-11-16

    In this article we review our research on the development and intrinsic neuromodulation of a spinal network controlling locomotion in a simple vertebrate. Swimming in hatchling Xenopus embryos is generated by a restricted network of well-characterized spinal neurons. This network produces a stereotyped motor pattern which, like real swimming, involves rhythmic activity that alternates across the body and progresses rostrocaudally with a brief delay between muscle segments. The stereotypy results from motoneurons discharging a single impulse in each cycle; because all motoneurons appear to behave similarly there is little scope for altering the output to the myotomes from one cycle to the next. Just one day later, however, Xenopus larvae generate a more complex and flexible motor pattern in which motoneurons can discharge a variable number of impulses which contribute to ventral root bursts in each cycle. This maturation of swimming is due, in part, to the influence of serotonin released from brain-stem raphespinal interneurons whose axonal projections innervate the cord early in larval life. Larval swimming is differentially modulated by both serotonin and by noradrenaline: serotonin leads to relatively fast, intense swimming whereas noradrenaline favors slower, weaker activity. Thus, these two biogenic amines select opposite extremes from the spectrum of possible output patterns that the swimming network can produce. Our studies on the cellular and synaptic effects of the amines indicate that they can control the strength of reciprocal glycinergic inhibition in the spinal cord. Serotonin and noradrenaline act presynaptically on the terminals of glycinergic commissural interneurons to weaken and strengthen, respectively, crossed glycinergic inhibition during swimming. As a result, serotonin reduces and noradrenaline increases interburst intervals. The membrane properties of spinal neurons are also affected by the amines. In particular, serotonin can induce

  10. Further Development and Validation of the frog Embryo Teratogenesis Assay - Xenopus (FETAX)

    DTIC Science & Technology

    1991-02-28

    abnormalities.39 40 The teratogenic effects of serotonin in the laboratory rat include anophthalmia , hydrocephalus, exencephaly, omphalocoele and vacuolization...kinky tail. ZnSO4 in Xenopus, should be tested in parallel with hemangioma. anophthalmia and scoliosis). Skeletal a metabolic activation system to show...teratogenic effects of 0 serotonin in the laboratory rat include anophthalmia , hydrocephalus, exencephaly, omphalocele and vacuolization of myocardial cells.41

  11. Variants of the Xenopus laevis ribosomal transcription factor xUBF are developmentally regulated by differential splicing.

    PubMed

    Guimond, A; Moss, T

    1992-07-11

    XUBF is a Xenopus ribosomal transcription factor of the HMG-box family which contains five tandemly disposed homologies to the HMG1 & 2 DNA binding domains. XUBF has been isolated as a protein doublet and two cDNAs encoding the two molecular weight variants have been characterised. The major two forms of xUBF identified differ by the presence or absence of a 22 amino acid segment lying between HMG-boxes 3 and 4. Here we show that the mRNAs for these two forms of xUBF are regulated during development and differentiation over a range of nearly 20 fold. By isolating two of the xUBF genes, it was possible to show that both encoded the variable 22 amino acid segment in exon 12. Oocyte splicing assays and the sequencing of PCR-generated cDNA fragments, demonstrated that the transcripts from one of these genes were differentially spliced in a developmentally regulated manner. Transcripts from the second gene were found to be predominantly or exclusively spliced to produce the lower molecular weight form of xUBF. Expression of a high molecular weight form from yet a third gene was also detected. Although the intron-exon structures of the Xenopus and mouse UBF genes were found to be essentially identical, the differential splicing of exon 8 found in mammals, was not detected in Xenopus.

  12. Cellulolytic enzyme expression and simultaneous conversion of lignocellulosic sugars into ethanol and xylitol by a new Candida tropicalis strain.

    PubMed

    Mattam, Anu Jose; Kuila, Arindam; Suralikerimath, Niranjan; Choudary, Nettem; Rao, Peddy V C; Velankar, Harshad Ravindra

    2016-01-01

    Lignocellulosic ethanol production involves major steps such as thermochemical pretreatment of biomass, enzymatic hydrolysis of pre-treated biomass and the fermentation of released sugars into ethanol. At least two different organisms are conventionally utilized for producing cellulolytic enzymes and for ethanol production through fermentation, whereas in the present study a single yeast isolate with the capacity to simultaneously produce cellulases and xylanases and ferment the released sugars into ethanol and xylitol has been described. A yeast strain isolated from soil samples and identified as Candida tropicalis MTCC 25057 expressed cellulases and xylanases over a wide range of temperatures (32 and 42 °C) and in the presence of different cellulosic substrates [carboxymethylcellulose and wheat straw (WS)]. The studies indicated that the cultivation of yeast at 42 °C in pre-treated hydrolysate containing 0.5 % WS resulted in proportional expression of cellulases (exoglucanases and endoglucanases) at concentrations of 114.1 and 97.8 U g(-1) ds, respectively. A high xylanase activity (689.3 U g(-1) ds) was also exhibited by the yeast under similar growth conditions. Maximum expression of cellulolytic enzymes by the yeast occurred within 24 h of incubation. Of the sugars released from biomass after pretreatment, 49 g L(-1) xylose was aerobically converted into 15.8 g L(-1) of xylitol. In addition, 25.4 g L(-1) glucose released after the enzymatic hydrolysis of biomass was fermented by the same yeast to obtain an ethanol titer of 7.3 g L(-1). During the present study, a new strain of C. tropicalis was isolated and found to have potential for consolidated bioprocessing (CBP) applications. The strain could grow in a wide range of process conditions (temperature, pH) and in the presence of lignocellulosic inhibitors such as furfural, HMF and acetic acid. The new yeast produced cellulolytic enzymes over a wide temperature range and in the presence of

  13. A study on the immunological basis of the dissociation between type I-hypersensitivity skin reactions to Blomia tropicalis antigens and serum anti-B. tropicalis IgE antibodies

    PubMed Central

    2011-01-01

    Background Two conditions are used as markers of atopy: the presence of circulating anti-allergen IgE antibodies and the presence of positive skin prick test (SPT) reactions to allergenic extracts. The correlation between these conditions is not absolute. This study aimed at investigating immunological parameters that may mediate this lack of correlation. Individuals whose sera contained anti-B. tropicalis extract IgE antibodies (α-BtE IgE) were divided into two groups, according to the presence or absence of skin reactivity to B. tropicalis extract (BtE). The following parameters were investigated: total IgE levels; α-BtE IgE levels; an arbitrary α-BtE IgE/total IgE ratio; the proportion of carbohydrate-reactive α-BtE IgE; the proportion of α-BtE IgE that reacted with Ascaris lumbricoides extract (AlE); the production of IL-10 by BtE- and AlE-stimulated peripheral blood cells (PBMC). Results Total IgE levels were similar in the two groups, but α-BtE IgE was significantly higher in the SPT-positive group (SPT+). A large overlap of α-BtE IgE levels was found in individuals of both groups, indicating that these levels alone cannot account for the differences in SPT outcome. Individuals of the two groups did not differ, statistically, in the proportion of α-BtE IgE that reacted with carbohydrate and in the production of IL-10 by BtE- and AlE-stimulated PBMC. Both groups had part of α-BtE IgE activity absorbed out by AlE, indicating the existence of cross-reactive IgE antibodies. However, the α-BtE IgE from the SPT-negative individuals (SPT-) was more absorbed with AlE than the α-BtE IgE from the SPT+ individuals. This finding may be ascribed to avidity differences of the α-BtE IgE that is present in the two groups of individuals, and could occur if at least part of the α-BtE IgE from the SPT- individuals were elicited by A. lumbricoides infection. Conclusion The present results suggest that a low ratio of specific IgE to total IgE levels (in a minority of

  14. Expression of LRRC8/VRAC Currents in Xenopus Oocytes: Advantages and Caveats.

    PubMed

    Gaitán-Peñas, Héctor; Pusch, Michael; Estévez, Raúl

    2018-03-02

    Volume-regulated anion channels (VRACs) play a role in controlling cell volume by opening upon cell swelling. Apart from controlling cell volume, their function is important in many other physiological processes, such as transport of metabolites or drugs, and extracellular signal transduction. VRACs are formed by heteromers of the pannexin homologous protein LRRC8A (also named Swell1) with other LRRC8 members (B, C, D, and E). LRRC8 proteins are difficult to study, since they are expressed in all cells of our body, and the channel stoichiometry can be changed by overexpression, resulting in non-functional heteromers. Two different strategies have been developed to overcome this issue: complementation by transient transfection of LRRC8 genome-edited cell lines, and reconstitution in lipid bilayers. Alternatively, we have used Xenopus oocytes as a simple system to study LRRC8 proteins. Here, we have reviewed all previous experiments that have been performed with VRAC and LRRC8 proteins in Xenopus oocytes. We also discuss future strategies that may be used to perform structure-function analysis of the VRAC in oocytes and other systems, in order to understand its role in controlling multiple physiological functions.

  15. Paxillin and embryonic PolyAdenylation Binding Protein (ePABP) engage to regulate androgen-dependent Xenopus laevis oocyte maturation - A model of kinase-dependent regulation of protein expression.

    PubMed

    Miedlich, Susanne U; Taya, Manisha; Young, Melissa Rasar; Hammes, Stephen R

    2017-06-15

    Steroid-triggered Xenopus laevis oocyte maturation is an elegant physiologic model of nongenomic steroid signaling, as it proceeds completely independent of transcription. We previously demonstrated that androgens are the main physiologic stimulator of oocyte maturation in Xenopus oocytes, and that the adaptor protein paxillin plays a crucial role in mediating this process through a positive feedback loop in which paxillin first enhances Mos protein translation, ensued by Erk2 activation and Erk-dependent phosphorylation of paxillin on serine residues. Phosphoserine-paxillin then further augments Mos protein translation and downstream Erk2 activation, resulting in meiotic progression. We hypothesized that paxillin enhances Mos translation by interacting with embryonic PolyAdenylation Binding Protein (ePABP) on polyadenylated Mos mRNA. Knockdown of ePABP phenocopied paxillin knockdown, with reduced Mos protein expression, Erk2 and Cdk1 activation, as well as oocyte maturation. In both Xenopus oocytes and mammalian cells (HEK-293), paxillin and ePABP constitutively interacted. Testosterone (Xenopus) or EGF (HEK-293) augmented ePABP-paxillin binding, as well as ePABP binding to Mos mRNA (Xenopus), in an Erk-dependent fashion. Thus, ePABP and paxillin work together in an Erk-dependent fashion to enhance Mos protein translation and promote oocyte maturation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Respiratory allergy to Blomia tropicalis: Immune response in four syngeneic mouse strains and assessment of a low allergen-dose, short-term experimental model

    PubMed Central

    2010-01-01

    Background The dust mite Blomia tropicalis is an important source of aeroallergens in tropical areas. Although a mouse model for B. tropicalis extract (BtE)-induced asthma has been described, no study comparing different mouse strains in this asthma model has been reported. The relevance and reproducibility of experimental animal models of allergy depends on the genetic background of the animal, the molecular composition of the allergen and the experimental protocol. Objectives This work had two objectives. The first was to study the anti-B. tropicalis allergic responses in different mouse strains using a short-term model of respiratory allergy to BtE. This study included the comparison of the allergic responses elicited by BtE with those elicited by ovalbumin in mice of the strain that responded better to BtE sensitization. The second objective was to investigate whether the best responder mouse strain could be used in an experimental model of allergy employing relatively low BtE doses. Methods Groups of mice of four different syngeneic strains were sensitized subcutaneously with 100 μg of BtE on days 0 and 7 and challenged four times intranasally, at days 8, 10, 12, and 14, with 10 μg of BtE. A/J mice, that were the best responders to BtE sensitization, were used to compare the B. tropicalis-specific asthma experimental model with the conventional experimental model of ovalbumin (OVA)-specific asthma. A/J mice were also sensitized with a lower dose of BtE. Results Mice of all strains had lung inflammatory-cell infiltration and increased levels of anti-BtE IgE antibodies, but these responses were significantly more intense in A/J mice than in CBA/J, BALB/c or C57BL/6J mice. Immunization of A/J mice with BtE induced a more intense airway eosinophil influx, higher levels of total IgE, similar airway hyperreactivity to methacholine but less intense mucous production, and lower levels of specific IgE, IgG1 and IgG2 antibodies than sensitization with OVA. Finally

  17. EYA1 mutations associated with the branchio-oto-renal syndrome result in defective otic development in Xenopus laevis

    PubMed Central

    Li, Youe; Manaligod, Jose M.; Weeks, Daniel L.

    2009-01-01

    Background information. The BOR (branchio-oto-renal) syndrome is a dominant disorder most commonly caused by mutations in the EYA1 (Eyes Absent 1) gene. Symptoms commonly include deafness and renal anomalies. Results. We have used the embryos of the frog Xenopus laevis as an animal model for early ear development to examine the effects of different EYA1 mutations. Four eya1 mRNAs encoding proteins correlated with congenital anomalies in human were injected into early stage embryos. We show that the expression of mutations associated with BOR, even in the presence of normal levels of endogenous eya1 mRNA, leads to morphologically abnormal ear development as measured by overall otic vesicle size, establishment of sensory tissue and otic innervation. The molecular consequences of mutant eya1 expression were assessed by QPCR (quantitative PCR) analysis and in situ hybridization. Embryos expressing mutant eya1 showed altered levels of multiple genes (six1, dach, neuroD, ngnr-1 and nt3) important for normal ear development. Conclusions. These studies lend support to the hypothesis that dominant-negative effects of EYA1 mutations may have a role in the pathogenesis of BOR. PMID:19951260

  18. Expression of mammalian beta-adrenergic receptors in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahouth, S.W.; Malbon, C.C.

    1987-05-01

    Xenopus laevis oocytes are a useful transcription and expression system for DNA and RNA, respectively. Total cellular RNA was extracted from mouse lymphoma S49 cells and poly(A)/sup +/mRNA prepared by affinity chromatography of RNA on oligo(dT) cellulose. The membranes of S49 cells contain beta-adrenergic receptors that display pharmacological characteristics of beta/sub 2/-subtype. Xenopus laevis oocytes were injected with 50 ng of mRNA/oocyte. Expression of beta-adrenergic receptors in oocytes incubated for 30 hr after microinjection was assessed in membranes by radioligand binding using (/sup 3/H) dihydroalprenolol. The injected oocytes displayed 0.34 fmol receptor/oocyte as compared to 0.02 fmol receptor/oocyte in themore » control oocytes. The affinity of beta-adrenergic receptors in injected oocytes for this radioligand was 2 nM, a value similar to the affinity of beta-adrenergic receptors for DHA in S49 cell membranes. The potency of beta-adrenergic agonists in competing for DHA binding to oocytes membranes was isoproterenol > epinephrine > norepineprine, indicating that the expressed beta-adrenergic receptors were of the beta/sub 2/-subtype. The K/sub I/ of these agonists for the beta-adrenergic receptor in oocyte membranes was 0.03, 0.15 and 1.2 ..mu..M, respectively. The role of post-translational modification in dictating receptor subtype is analyzed using mRNA of beta/sub 1/- as well as beta/sub 2/-adrenergic receptors.« less

  19. Developmental Trenbolone Exposure Affects Adult Breeding Behavior, Fecundity and Morphology of Xenopus tropicalis

    EPA Science Inventory

    Trenbolone acetate is a synthetic androgen used as a growth promoter in the cattle industry. Its metabolite 17â-trenbolone (17â-T) has been detected downstream from cattle feedlots. It could be a concern to wildlife near these areas as previous studies show 17â-T exposure affects...

  20. Evaluation of Bruker Biotyper and Vitek MS for the identification of Candida tropicalis on different solid culture media.

    PubMed

    Wang, He; Li, Ying; Fan, Xin; Chiueh, Tzong-Shi; Xu, Ying-Chun; Hsueh, Po-Ren

    2017-11-11

    The aim of this study was to investigate the performance of the Bruker Biotyper matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and Vitek MS systems for identification of genetically-confirmed blood isolates of Candida tropicalis that had been grown on several types of culture media commonly used for primary fungal isolation. Isolates included 105 from the National China Hospital Invasive Fungal Surveillance Net program (CHIF-NET) and 120 from National Taiwan University Hospital (NTUH). Culture media tested for CHIF-NET isolates included trypticase soy agar supplemented with 5% sheep blood (BAP), Sabouraud dextrose agar (SDA-C), CHROMagar, China blue agar (CBA), chocolate agar supplemented with vancomycin (CAP-VA), and MacConkey agar (MAC). Culture media used for NTUH isolates included BAP, SDA, CHROMagar, eosin methylene blue (EMB), inhibitory mold agar (IMA), Mycosel agar, and cornmeal agar (CMA). The Bruker Biotyper correctly identified all CHIF-NET isolates to the species level on all six agar media tested and correctly identified the majority of NTUH isolates with the exception of isolates grown on SDA (85.8%) and CMA (52.5%). The Vitek MS system correctly identified all CHIF-NET isolates to the species level with the exception of isolates grown on CHROMagar (84.8%), and correctly identified the majority of NTUH isolates with the exception of isolates grown on SDA (51.7%), Mycosel agar (57.5%), and CMA (9.2%) for NTUH isolates. Clinical microbiologists should be aware that different culture media can affect the performance of the Bruker Biotyper MALDI-TOF MS and Vitek MS systems in identifying C. tropicalis. Copyright © 2017. Published by Elsevier B.V.

  1. DEVELOPMENT OF A GENE-EXPRESSION ARRAY FOCUSING ON THE HYPOTHALMUS-PITUARY-THYROID AXIS IN XENOPUS LAEVIS

    EPA Science Inventory

    As recommended by the Endocrine Disrupter Screening and Testing Program Advisory Committee (EDSTAC), the US EPA has been developing a screening test capable of detecting effects of Endocrine Disrupting Chemicals (EDCS) on the hypothalamus-pituatary-thyroid (HPT) axis in Xenopus l...

  2. THYROID AXIS INHIBITION IN XENOPUS LAEVIS: DEVELOPMENT OF AN AMPHIBIAN-BASED SCREENING ASSAY FOR THYROID DISRUPTION

    EPA Science Inventory

    In response to the initial EDSTAC recommendations, research was conducted on the development of a Xenopus laevis based tail resorption assay for evaluating thyroid axis disruption. These experiments highlighted key limitations associated with reliance on tail resorption as a meas...

  3. DEVELOPMENT OF A GENE-EXPRESSION ARRAY FOCUSING ON THE HYPOTHALAMUS-PITUITARY-THYROID AXIS IN XENOPUS LAEVIS

    EPA Science Inventory

    As recommended by the Endocrine Disruptor Screening and Testing Program Advisory Committee (EDSTAC), the USEPA has been developing a screening test capable of detecting effects of Endocrine Disrupting Chemicals (EDCs) on the hypothalamus-pituitary-thyroid (HPT) axis in Xenopus la...

  4. DEVELOPMENT OF A GENE-EXPRESSION ARRAY FOCUSING ON THE HYPOTHALAMUS-PITUATARY-THYROID AXIS IN XENOPUS LAEVIS

    EPA Science Inventory

    As recommended by the Endocrine Disruptor Screening and Testing Program Advisory Committee (EDSTAC), the USEPA has been developing a screening test capable of detecting effects of Endocrine Disrupting Chemicals (EDCs) on the hypothalamus-pituitary-thyroid (HPT) axis in Xenopus la...

  5. Probing the biology of cell boundary conditions through confinement of Xenopus cell-free cytoplasmic extracts.

    PubMed

    Bermudez, Jessica G; Chen, Hui; Einstein, Lily C; Good, Matthew C

    2017-01-01

    Cell-free cytoplasmic extracts prepared from Xenopus eggs and embryos have for decades provided a biochemical system with which to interrogate complex cell biological processes in vitro. Recently, the application of microfabrication and microfluidic strategies in biology has narrowed the gap between in vitro and in vivo studies by enabling formation of cell-size compartments containing functional cytoplasm. These approaches provide numerous advantages over traditional biochemical experiments performed in a test tube. Most notably, the cell-free cytoplasm is confined using a two- or three-dimensional boundary, which mimics the natural configuration of a cell. This strategy enables characterization of the spatial organization of a cell, and the role that boundaries play in regulating intracellular assembly and function. In this review, we describe the marriage of Xenopus cell-free cytoplasm and confinement technologies to generate synthetic cell-like systems, the recent biological insights they have enabled, and the promise they hold for future scientific discovery. © 2017 Wiley Periodicals, Inc.

  6. Identification of a candidate CD5 homologue in the amphibian Xenopus laevis.

    PubMed

    Jürgens, J B; Gartland, L A; Du Pasquier, L; Horton, J D; Göbel, T W; Cooper, M D

    1995-11-01

    We identified a novel T cell Ag in the South African clawed toad (Xenopus laevis) by a mAb designated 2B1. This Ag is present in relatively high levels on most thymocytes, approximately 65% of splenocytes, 55% of PBL, and 65% of intestinal lymphocytes, but is rarely seen on IgM+ B cells in any of these tissues. Lymphocytes bearing the 2B1 Ag proliferate in response to stimulation with Con A or PHA, whereas the 2B1- lymphocytes are reactive to LPS. Biochemical analysis indicates that this Ag is a differentially phosphorylated glycoprotein of 71 to 82 kDa. The protein core of 64 kDa bears both N- and O-linked carbohydrate side chains. The amino-terminal protein sequence of the 2B1 Ag shares significant homology with both the macrophage scavenger receptor type 1 motif and the mammalian CD5/CD6 family. The biochemical characteristics and cellular distribution of the 2B1 Ag suggest that it represents the CD5 homologue in X. laevis. While T cells constitutively express this highly conserved molecule, Xenopus B cells acquire the CD5 homologue only when they are stimulated in the presence of T cells.

  7. Fox (forkhead) genes are involved in the dorso-ventral patterning of the Xenopus mesoderm.

    PubMed

    El-Hodiri, H; Bhatia-Dey, N; Kenyon, K; Ault, K; Dirksen, M; Jamrich, M

    2001-01-01

    Fox (forkhead/winged helix) genes encode a family of transcription factors that are involved in embryonic pattern formation, regulation of tissue specific gene expression and tumorigenesis. Several of them are transcribed during Xenopus embryogenesis and are important for the patterning of ectoderm, mesoderm and endoderm. We have isolated three forkhead genes that are activated during gastrulation and play an important role in the dorso-ventral patterning of the mesoderm. XFKH1 (FoxA4b), the first vertebrate forkhead gene to be implicated in embryonic pattern formation, is expressed in the Spemann-Mangold organizer region and later in the embryonic notochord. XFKH7, the Xenopus orthologue of the murine Mfh1(Foxc2), is expressed in the presomitic mesoderm, but not in the notochord or lateral plate mesoderm. Finally, XFD-13'(FoxF1b)1 is expressed in the lateral plate mesoderm, but not in the notochord or presomitic mesoderm. Expression pattern and functional experiments indicate that these three forkhead genes are involved in the dorso-ventral patterning of the mesoderm.

  8. Psf2 plays important roles in normal eye development in Xenopus laevis

    PubMed Central

    Walter, Brian E.; Perry, Kimberly J.; Fukui, Lisa; Malloch, Erica L.; Wever, Jason

    2008-01-01

    Purpose Psf2 (partner of Sld5 2) represents a member of the GINS (go, ichi, ni, san) heterotetramer [1] and functions in DNA replication as a “sliding clamp.” Previous in situ hybridization analyses revealed that Psf2 is expressed during embryonic development in a tissue-specific manner, including the optic cup (retina) and the lens [2]. This article provides an analysis of Psf2 function during eye development in Xenopus laevis. Methods A morpholino targeted to Psf2 mRNA was designed to knockdown Psf2 translation and was injected into specific embryonic cells during early cleavage stages in the frog, Xenopus laevis. Injected embryos were assayed for specific defects in morphology, cell proliferation, and apoptosis. Synthetic Psf2 RNA was also co-injected with the morpholino to rescue morpholino-mediated developmental defects. It is well known that reciprocal inductive interactions control the development of the optic cup and lens. Therefore, control- and morpholino-injected embryos were used for reciprocal transplantation experiments to distinguish the intrinsic role of Psf2 in the development of the optic cup (retina) versus the lens. Results Morpholino-mediated knockdown of Psf2 expression resulted in dosage-dependent phenotypes, which included microphthalmia, incomplete closure of the ventral retinal fissure, and retinal and lens dysgenesis. Defects were also observed in other embryonic tissues that normally express Psf2 including the pharyngeal arches and the otic vesicle, although other tissues that express Psf2 were not found to be grossly defective. Eye defects could be rescued by co-injection of synthetic Psf2 RNA. Examination of cell proliferation via an antibody against phospho-histone H3 S10P revealed no significant differences in the retina and lens following Psf2 knockdown. However, there was a significant increase in the level of apoptosis in retinal as well as forebrain tissues, as revealed by TUNEL (terminal deoxynucleotide transferase dUTP nick

  9. The Pesticide Malathion Disrupts "Xenopus" and Zebrafish Embryogenesis: An Investigative Laboratory Exercise in Developmental Toxicology

    ERIC Educational Resources Information Center

    Chemotti, Diana C.; Davis, Sarah N.; Cook, Leslie W.; Willoughby, Ian R.; Paradise, Christopher J.; Lom, Barbara

    2006-01-01

    Malathion is an organophosphorus insecticide, which is often sprayed to control mosquitoes. When applied to aquatic habitats, malathion can also influence the embryogenesis of non-target organisms such as frogs and fish. We modified the frog embryo teratogen assay in "Xenopus" (FETAX), a standard toxicological assay, into an investigative…

  10. The Virtual Xenbase: transitioning an online bioinformatics resource to a private cloud

    PubMed Central

    Karimi, Kamran; Vize, Peter D.

    2014-01-01

    As a model organism database, Xenbase has been providing informatics and genomic data on Xenopus (Silurana) tropicalis and Xenopus laevis frogs for more than a decade. The Xenbase database contains curated, as well as community-contributed and automatically harvested literature, gene and genomic data. A GBrowse genome browser, a BLAST+ server and stock center support are available on the site. When this resource was first built, all software services and components in Xenbase ran on a single physical server, with inherent reliability, scalability and inter-dependence issues. Recent advances in networking and virtualization techniques allowed us to move Xenbase to a virtual environment, and more specifically to a private cloud. To do so we decoupled the different software services and components, such that each would run on a different virtual machine. In the process, we also upgraded many of the components. The resulting system is faster and more reliable. System maintenance is easier, as individual virtual machines can now be updated, backed up and changed independently. We are also experiencing more effective resource allocation and utilization. Database URL: www.xenbase.org PMID:25380782

  11. Survey of the vestibulum, and behavior of Xenopus laevis larvae developed during a 7-days space flight.

    PubMed

    Briegleb, W; Neubert, J; Schatz, A; Klein, T; Kruse, B

    1986-01-01

    Aquatic animals have almost no body weight related proprioception for spatial orientation. Xenopus larvae, like fish, maintain their attitude in water by continuous correction with their fin(s). For these reasons a special performance of the equilibrium system compared to terrestrial animals is necessary. Evidently fish therefore have more compact (dense) otoliths; Xenopus larvae have less dense otolith (membranes) similar to land vertebrates; but their sacculus-otoliths are vertically positioned, which also may lead to a higher g-sensitivity. For plausibility reasons gravity should influence the embryonic development of gravity receptors. Yet, evaluations of photographs taken from the surface of cut deep-frozen objects by incident light show no aberration of the shape of the whole vestibulum and of the shape, density, size and position of the otolith membrane in larvae developed under near-zero g (NEXPA-BW-STATEX in D-1-Mission). The further evaluation of the "weightless-larvae" revealed a probably not yet described statolith-like formation in the dorsal wall of the vestibulum. In the weightless larvae this formation outnumbers, also qualitatively, strongly the l-g controls. An extra result is the lack of striking effects of cosmic radiation on the embryonic development of the flown Xenopus eggs. The swimming behavior of the larvae which was observed about one hour after landing of the Space Shuttle showed a typical anomaly (loop swimming), which is known from larvae developed on the clinostat or from fish flown aboard Apollo capsules.

  12. Survey of the vestibulum, and behavior of xenopus laevis larvae developed during a 7-days space flight

    NASA Astrophysics Data System (ADS)

    Briegleb, W.; Neubert, J.; Schatz, A.; Klein, T.; Kruse, B.

    Aquatic animals have almost no body weight related proprioception for spatial orientation. Xenopus larvae, like fish, maintain their attitude in water by continuous correction with their fin(s). For these reasons a special performance of the equilibrium system compared to terrestrial animals is necessary. Evidently fish therefore have more compact (dense) otoliths; Xenopus larvae have less dense otolith (membranes) similar to land vertebrates; but their sacculus-otoliths are vertically positioned, which also may lead to a higher g-sensitivity. For plausibility reasons gravity should influence the embryonic development of gravity receptors. Yet, evaluations of photographs taken from the surface of cut deep-frozen objects by incident light show no aberration of the shape of the whole vestibulum and of the shape, density, size and position of the otolith membrane in larvae developed under near-zero g (NEXPA-BW-STATEX in D1-Mission). The further evaluation of the ``weightless-larvae'' revealed a probably not yet described statolith-like formation in the dorsal wall of the vestibulum. In the weightless larvae this formation outnumbers, also qualitatively, strongly the 1-g controls. An extra result is the lack of striking effects of cosmic radiation on the embryonic development of the flown Xenopus eggs. The swimming behavior of the larvae which was observed about one hour after landing of the Space Shuttle showed a typical anomaly (loop swimming), which is known from larvae developed on the clinostat or from fish flown aboard Apollo capsules.

  13. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.

    PubMed

    Kim, J-H; Han, K-C; Koh, Y-H; Ryu, Y-W; Seo, J-H

    2002-07-01

    Xylitol, a functional sweetener, was produced from xylose by biological conversion using Candida tropicalis ATCC 13803. Based on a two-substrate fermentation using glucose for cell growth and xylose for xylitol production, fed-batch fermentations were undertaken to increase the final xylitol concentration. The effects of xylose and xylitol on xylitol production rate were studied to determine the optimum concentrations for fed-batch fermentation. Xylose concentration in the medium (100 g l(-1)) and less than 200 g l(-1) total xylose plus xylitol concentration were determined as optimum for maximum xylitol production rate and xylitol yield. Increasing the concentrations of xylose and xylitol decreased the rate and yield of xylitol production and the specific cell growth rate, probably because of an increase in osmotic stress that would interfere with xylose transport, xylitol flux to secretion to cell metabolism. The feeding rate of xylose solution during the fed-batch mode of operation was determined by using the mass balance equations and kinetic parameters involved in the equations in order to increase final xylitol concentration without affecting xylitol and productivity. The optimized fed-batch fermentation resulted in 187 g l(-1) xylitol concentration, 0.75 g xylitol g xylose(-1) xylitol yield and 3.9 g xylitol l(-1) h(-1) volumetric productivity.

  14. The effects of aquatic oxygen concentration, body size and respiratory behaviour on the stamina of obligate aquatic (Bufo americanus) and facultative air-breathing (Xenopus laevis and Rana berlandieri) anuran larvae.

    PubMed

    Wassersug, R J; Feder, M E

    1983-07-01

    Larvae of the anurans Rana berlandieri and Xenopus laevis have lungs and can breathe air as well as irrigate buccal and pharyngeal surfaces for aquatic respiration. Larvae of Bufo americanus lack lungs until just before metamorphosis and are obligately aquatic. We examined the relationship between the locomotor stamina (time to fatigue), aquatic oxygen concentration, body size, and respiratory behaviour of swimming larvae of these species, with the following results: Stamina is size-dependent in all three species. Aquatic hypoxia reduces stamina in larvae of all three species, but most conspicuously in Bufo. Breathing air increases stamina in Rana larvae, especially in large animals and under aquatic hypoxia. In contrast to Rana larvae, Xenopus larvae swimming in normoxic water undergo a reduction in stamina when allowed to breathe air. In hypoxic water, aerial respiration moderates the reduction in stamina seen in Xenopus larvae. Branchial irrigation is associated with increased stamina in Xenopus, and is increased under hypoxia and at high swimming velocities. Respiratory demand, buoyancy and the drag associated with branchial irrigation all affect respiratory behaviour in Xenopus larvae. The great amount of interspecific variation in the relationship between respiratory behaviour and stamina reveals the importance of measuring performance directly when attempting to interpret the functional significance of respiratory structures and behaviour.

  15. Functional Characterization of Two Structurally Novel Diacylglycerol Acyltransferase2 Isozymes Responsible for the Enhanced Production of Stearate-Rich Storage Lipid in Candida tropicalis SY005

    PubMed Central

    Dey, Prabuddha; Chakraborty, Monami; Kamdar, Maulik R.; Maiti, Mrinal K.

    2014-01-01

    Diacylglycerol acyltransferase (DGAT) activity is an essential enzymatic step in the formation of neutral lipid i.e., triacylglycerol in all living cells capable of accumulating storage lipid. Previously, we characterized an oleaginous yeast Candida tropicalis SY005 that yields storage lipid up to 58% under a specific nitrogen-stress condition, when the DGAT-specific transcript is drastically up-regulated. Here we report the identification, differential expression and function of two DGAT2 gene homologues- CtDGAT2a and CtDGAT2b of this C. tropicalis. Two protein isoforms are unique with respect to the presence of five additional stretches of amino acids, besides possessing three highly conserved motifs known in other reported DGAT2 enzymes. Moreover, the CtDGAT2a and CtDGAT2b are characteristically different in amino acid sequences and predicted protein structures. The CtDGAT2b isozyme was found to be catalytically 12.5% more efficient than CtDGAT2a for triacylglycerol production in a heterologous yeast system i.e., Saccharomyces cerevisiae quadruple mutant strain H1246 that is inherently defective in neutral lipid biosynthesis. The CtDGAT2b activity rescued the growth of transformed S. cerevisiae mutant cells, which are usually non-viable in the medium containing free fatty acids by incorporating them into triacylglycerol, and displayed preferential specificity towards saturated acyl species as substrate. Furthermore, we document that the efficiency of triacylglycerol production by CtDGAT2b is differentially affected by deletion, insertion or replacement of amino acids in five regions exclusively present in two CtDGAT2 isozymes. Taken together, our study characterizes two structurally novel DGAT2 isozymes, which are accountable for the enhanced production of storage lipid enriched with saturated fatty acids inherently in C. tropicalis SY005 strain as well as in transformed S. cerevisiae neutral lipid-deficient mutant cells. These two genes certainly will be useful

  16. Survival fraction and phenotype alterations of Xenopus laevis embryos at 3 Gy, 150 kV X-ray irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carotenuto, Rosa; Tussellino, Margherita; Mettivier, Giovanni

    To determine the radiosensitivity of Xenopus laevis embryos, aquatic organism model, for toxicity studies utilizing X-rays at acute high dose levels, by analysing its survival fraction and phenotype alterations under one-exposure integral dose. We used the standard Frog Embryo Teratogenesis Assay Xenopus test during the early stages of X. laevis development. The embryos were harvested until st. 46 when they were irradiated. The radiation effects were checked daily for a week and the survival, malformations and growth inhibition were assessed. Sibling tadpoles as control organisms were used. Statistical analysis was performed to assess the extent of any damage. Irradiation was performedmore » with an X-ray tube operated at 150 kV. The tube containing the tadpoles was exposed to an air kerma of 3 Gy as measured in air with an in-beam ionization chamber. After one week, survival fraction of irradiated embryos was 58%, while for control embryos it was 81%. Hence, irradiation with 150 kV, 3 Gy X-rays produced a 23% decrease of survival in regard to unirradiated embryos. The 70% of the irradiated embryos showed an altered distribution of the skin pigmentation, in particular on the dorsal area and in the olfactory pits, where the pigment concentration increased by a factor 2. In conclusion exposure of X. laevis to 3 Gy, 150 kV X-rays induced a reduction of embryos survival and a significant modification of pigmentation. The authors think that X. laevis embryos, at st 46, is a suitable biological model for large scale investigations on the effects of ionizing radiation.« less

  17. Lateral mobility of plasma membrane lipids in Xenopus eggs: regional differences related to animal/vegetal polarity become extreme upon fertilization.

    PubMed

    Dictus, W J; van Zoelen, E J; Tetteroo, P A; Tertoolen, L G; de Laat, S W; Bluemink, J G

    1984-01-01

    Regional differences in the lateral mobility properties of plasma membrane lipids have been studied in unfertilized and fertilized Xenopus eggs by fluorescence photobleaching recovery (FPR) measurements. Out of a variety of commonly used lipid probes only the aminofluorescein-labeled fatty acids HEDAF (5-(N-hexadecanoyl)-aminofluorescein) and TEDAF (5-(N-tetradecanoyl)-aminofluorescein) appear to partition into the plasma membrane. Under all experimental conditions used these molecules show partial recovery upon photobleaching indicating the existence of lipidic microdomains. In the unfertilized egg the mobile fraction of plasma membrane lipids (approximately 50%) has a fivefold smaller lateral diffusion coefficient (D = 1.5 X 10(-8) cm2/sec) in the animal than in the vegetal plasma membrane (D = 7.6 X 10(-8) cm2/sec). This demonstrates the presence of an animal/vegetal polarity within the Xenopus egg plasma membrane. Upon fertilization this polarity is strongly (greater than 100X) enhanced leading to the formation of two distinct macrodomains within the plasma membrane. At the animal side of the egg lipids are completely immobilized on the time scale of FPR measurements (D less than 10(-10) cm2/sec), whereas at the vegetal side D is only slightly reduced (D = 4.4 X 10(-8) cm2/sec). The immobilization of animal plasma membrane lipids, which could play a role in the polyspermy block, probably arises by the fusion of cortical granules which are more numerous here. The transition between the animal and the vegetal domain is sharp and coincides with the boundary between the presumptive ecto- and endoderm. The role of regional differences in the plasma membrane is discussed in relation to cell diversification in early development.

  18. The Pharmacokinetics of Enrofloxacin in Adult African Clawed Frogs (Xenopus laevis)

    PubMed Central

    Howard, Antwain M; Papich, Mark G; Felt, Stephen A; Long, Charles T; McKeon, Gabriel P; Bond, Emmitt S; Torreilles, Stéphanie L; Luong, Richard H; Green, Sherril L

    2010-01-01

    Pharmacokinetics of enrofloxacin, a fluoroquinolone antibiotic, was determined in adult female Xenopus laevis after single-dose administration (10 mg/kg) by intramuscular or subcutaneous injection. Frogs were evaluated at various time points until 8 h after injection. Plasma was analyzed for antibiotic concentration levels by HPLC. We computed pharmacokinetic parameters by using noncompartmental analysis of the pooled concentrations (naive pooled samples). After intramuscular administration of enrofloxacin, the half-life was 5.32 h, concentration maximum was 10.85 µg/mL, distribution volume was 841.96 mL/kg, and area under the time–concentration curve was 57.59 µg×h/mL; after subcutaneous administration these parameters were 4.08 h, 9.76 µg/mL, 915.85 mL/kg, and 47.42 µg×h/mL, respectively. According to plasma pharmacokinetics, Xenopus seem to metabolize enrofloxacin in a manner similar to mammals: low levels of the enrofloxacin metabolite, ciprofloxacin, were detected in the frogs’ habitat water and plasma. At necropsy, there were no gross or histologic signs of toxicity after single-dose administration; toxicity was not evaluated for repeated dosing. The plasma concentrations reached levels considered effective against common aquatic pathogens and suggest that a single, once-daily dose would be a reasonable regimen to consider when treating sick frogs. The treatment of sick frogs should be based on specific microbiologic identification of the pathogen and on antibiotic susceptibility testing. PMID:21205443

  19. RNA localization in Xenopus oocytes uses a core group of trans-acting factors irrespective of destination.

    PubMed

    Snedden, Donald D; Bertke, Michelle M; Vernon, Dominic; Huber, Paul W

    2013-07-01

    The 3' untranslated region of mRNA encoding PHAX, a phosphoprotein required for nuclear export of U-type snRNAs, contains cis-acting sequence motifs E2 and VM1 that are required for localization of RNAs to the vegetal hemisphere of Xenopus oocytes. However, we have found that PHAX mRNA is transported to the opposite, animal, hemisphere. A set of proteins that cross-link to the localization elements of vegetally localized RNAs are also cross-linked to PHAX and An1 mRNAs, demonstrating that the composition of RNP complexes that form on these localization elements is highly conserved irrespective of the final destination of the RNA. The ability of RNAs to bind this core group of proteins is correlated with localization activity. Staufen1, which binds to Vg1 and VegT mRNAs, is not associated with RNAs localized to the animal hemisphere and may determine, at least in part, the direction of RNA movement in Xenopus oocytes.

  20. Simple and inexpensive hardware and software method to measure volume changes in Xenopus oocytes expressing aquaporins.

    PubMed

    Dorr, Ricardo; Ozu, Marcelo; Parisi, Mario

    2007-04-15

    Water channels (aquaporins) family members have been identified in central nervous system cells. A classic method to measure membrane water permeability and its regulation is to capture and analyse images of Xenopus laevis oocytes expressing them. Laboratories dedicated to the analysis of motion images usually have powerful equipment valued in thousands of dollars. However, some scientists consider that new approaches are needed to reduce costs in scientific labs, especially in developing countries. The objective of this work is to share a very low-cost hardware and software setup based on a well-selected webcam, a hand-made adapter to a microscope and the use of free software to measure membrane water permeability in Xenopus oocytes. One of the main purposes of this setup is to maintain a high level of quality in images obtained at brief intervals (shorter than 70 ms). The presented setup helps to economize without sacrificing image analysis requirements.

  1. Asymmetric Distribution of Metals in the Xenopus Laevis Oocyte: a Synchrotron X-Ray Fluorescence Microprobe Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, B.F.Gh.; Belak, Z.R.; Ignatyev, K.

    2009-06-04

    The asymmetric distribution of many components of the Xenopus oocyte, including RNA, proteins, and pigment, provides a framework for cellular specialization during development. During maturation, Xenopus oocytes also acquire metals needed for development, but apart from zinc, little is known about their distribution. Synchrotron X-ray fluorescence microprobe was used to map iron, copper, and zinc and the metalloid selenium in a whole oocyte. Iron, zinc, and copper were asymmetrically distributed in the cytoplasm, while selenium and copper were more abundant in the nucleus. A zone of high copper and zinc was seen in the animal pole cytoplasm. Iron was alsomore » concentrated in the animal pole but did not colocalize with zinc, copper, or pigment accumulations. This asymmetry of metal deposition may be important for normal development. Synchrotron X-ray fluorescence microprobe will be a useful tool to examine how metals accumulate and redistribute during fertilization and embryonic development.« less

  2. Asymmetri Distribution of Metals in the Xenopus Laevis Oocyte: a Synchrotron X-Ray Fluorescence Microprobe Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, B.F.G.; Belak, Z.R.; Ignatyev, K.

    2009-04-29

    The asymmetric distribution of many components of the Xenopus oocyte, including RNA, proteins, and pigment, provides a framework for cellular specialization during development. During maturation, Xenopus oocytes also acquire metals needed for development, but apart from zinc, little is known about their distribution. Synchrotron X-ray fluorescence microprobe was used to map iron, copper, and zinc and the metalloid selenium in a whole oocyte. Iron, zinc, and copper were asymmetrically distributed in the cytoplasm, while selenium and copper were more abundant in the nucleus. A zone of high copper and zinc was seen in the animal pole cytoplasm. Iron was alsomore » concentrated in the animal pole but did not colocalize with zinc, copper, or pigment accumulations. This asymmetry of metal deposition may be important for normal development. Synchrotron X-ray fluorescence microprobe will be a useful tool to examine how metals accumulate and redistribute during fertilization and embryonic development.« less

  3. Analysis of signal transduction in cell-free extracts and rafts of Xenopus eggs.

    PubMed

    Tokmakov, Alexander A; Iwasaki, Tetsushi; Sato, Ken-Ichi; Fukami, Yasuo

    2010-05-01

    Intracellular signaling during egg activation/fertilization has been extensively studied using intact eggs, which can be manipulated by microinjection of different mRNAs, proteins, or chemical drugs. Furthermore, egg extracts, which retain high CSF activity (CSF-arrested extracts), were developed for studying fertilization/activation signal transduction, which have significant advantages as a model system. The addition of calcium to CSF-arrested extracts initiates a plethora of signaling events that take place during egg activation. Hence, the signaling downstream of calcium mobilization has been successfully studied in the egg extracts. Moreover, despite disruption of membrane-associated signaling compartments and ordered compartmentalization during extract preparation, CSF-arrested extracts can be successfully used to study early signaling events, which occur upstream of calcium release during egg activation/fertilization. In combination with the CSF-arrested extracts, activated egg rafts can reproduce some events of egg activation, including PLCgamma activation, IP3 production, transient calcium release, MAPK inactivation, and meiotic exit. This becomes possible due to complementation of the sperm-induced egg activation signaling machinery present in the rafts with the components of signal transduction system localized in the extracts. Herein, we describe protocols for studying molecular mechanisms of egg fertilization/activation using cell-free extracts and membrane rafts prepared from metaphase-arrested Xenopus eggs.

  4. Phosphorylation by Cdk1 Increases the Binding of Eg5 to Microtubules In Vitro and in Xenopus Egg Extract Spindles

    PubMed Central

    Cahu, Julie; Olichon, Aurelien; Hentrich, Christian; Schek, Henry; Drinjakovic, Jovana; Zhang, Cunjie; Doherty-Kirby, Amanda; Lajoie, Gilles; Surrey, Thomas

    2008-01-01

    Background Motor proteins from the kinesin-5 subfamily play an essential role in spindle assembly during cell division of most organisms. These motors crosslink and slide microtubules in the spindle. Kinesin-5 motors are phosphorylated at a conserved site by Cyclin-dependent kinase 1 (Cdk1) during mitosis. Xenopus laevis kinesin-5 has also been reported to be phosphorylated by Aurora A in vitro. Methodology/Principal Findings We investigate here the effect of these phosphorylations on kinesin-5 from Xenopus laevis, called Eg5. We find that phosphorylation at threonine 937 in the C-terminal tail of Eg5 by Cdk1 does not affect the velocity of Eg5, but strongly increases its binding to microtubules assembled in buffer. Likewise, this phosphorylation promotes binding of Eg5 to microtubules in Xenopus egg extract spindles. This enhancement of binding elevates the amount of Eg5 in spindles above a critical level required for bipolar spindle formation. We find furthermore that phosphorylation of Xenopus laevis Eg5 by Aurora A at serine 543 in the stalk is not required for spindle formation. Conclusions/Significance These results show that phosphorylation of Eg5 by Cdk1 has a direct effect on the interaction of this motor with microtubules. In egg extract, phosphorylation of Eg5 by Cdk1 ensures that the amount of Eg5 in the spindle is above a level that is required for spindle formation. This enhanced targeting to the spindle appears therefore to be, at least in part, a direct consequence of the enhanced binding of Eg5 to microtubules upon phosphorylation by Cdk1. These findings advance our understanding of the regulation of this essential mitotic motor protein. PMID:19079595

  5. A ribosomal orphon sequence from Xenopus laevis flanked by novel low copy number repetitive elements.

    PubMed

    Guimond, A; Moss, T

    1999-02-01

    We have used a differential cloning approach to isolate ribosomal/non-ribosomal frontier sequences from Xenopus laevis. A ribosomal intergenic spacer sequence (IGS) was cloned and shown not to be physically linked with the ribosomal locus. This ribosomal orphon contained the IGS sequences found immediately downstream of the 28S gene and included an array of enhancer repetitions and a non-functional spacer promoter. The orphon sequence was flanked by a member of the novel 'Frt' low copy repetitive element family. Three individual Frt repeats were sequenced and all members of this family were shown to lie clustered at two chromosomal sites, one of which contained the ribosomal orphon. One of the Frt elements contained an insertion of 297 bp that showed extensive homology to sequences within at least three other Xenopus genes. Each homology region was flanked by members of the T2 family of short interspersed repetitive elements, (SINEs), and by its target insertion sequence, suggesting multiple translocation events. The data are discussed in terms of the evolution of the ribosomal gene locus.

  6. Gene structure, transcripts and calciotropic effects of the PTH family of peptides in Xenopus and chicken.

    PubMed

    Pinheiro, Pedro L C; Cardoso, João C R; Gomes, Ana S; Fuentes, Juan; Power, Deborah M; Canário, Adelino V M

    2010-12-01

    Parathyroid hormone (PTH) and PTH-related peptide (PTHrP) belong to a family of endocrine factors that share a highly conserved N-terminal region (amino acids 1-34) and play key roles in calcium homeostasis, bone formation and skeletal development. Recently, PTH-like peptide (PTH-L) was identified in teleost fish raising questions about the evolution of these proteins. Although PTH and PTHrP have been intensively studied in mammals their function in other vertebrates is poorly documented. Amphibians and birds occupy unique phylogenetic positions, the former at the transition of aquatic to terrestrial life and the latter at the transition to homeothermy. Moreover, both organisms have characteristics indicative of a complex system in calcium regulation. This study investigated PTH family evolution in vertebrates with special emphasis on Xenopus and chicken. The PTH-L gene is present throughout the vertebrates with the exception of placental mammals. Gene structure of PTH and PTH-L seems to be conserved in vertebrates while PTHrP gene structure is divergent and has acquired new exons and alternative promoters. Splice variants of PTHrP and PTH-L are common in Xenopus and chicken and transcripts of the former have a widespread tissue distribution, although PTH-L is more restricted. PTH is widely expressed in fish tissue but from Xenopus to mammals becomes largely restricted to the parathyroid gland. The N-terminal (1-34) region of PTH, PTHrP and PTH-L in Xenopus and chicken share high sequence conservation and the capacity to modify calcium fluxes across epithelia suggesting a conserved role in calcium metabolism possibly via similar receptors. The parathyroid hormone family contains 3 principal members, PTH, PTHrP and the recently identified PTH-L. In teleosts there are 5 genes which encode PTHrP (2), PTH (2) and PTH-L and in tetrapods there are 3 genes (PTHrP, PTH and PTH-L), the exception is placental mammals which have 2 genes and lack PTH-L. It is hypothesized that

  7. CONCENTRATION DEPENDENT ACCUMULATION OF [3H]-DELTAMETHRIN IN SODIUM CHANNEL N AV1.2 EXPRESSING XENOPUS LAEVIS OOCYTES.

    EPA Science Inventory

    Disruption of neuronal voltage-sensitive sodium channels (VSSCs) by pyrethroid insecticides such as deltamethrin (DLT) has been widely studied using Xenopus laevis oocytes transfected with VSSC. However, the extent of pyrethroid accumulation in VSSC-expressing oocytes is unknown....

  8. Direct Activation of Amidohydrolase Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis

    PubMed Central

    Okada, Morihiro; Miller, Thomas C.; Fu, Liezhen

    2015-01-01

    The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis. PMID:26086244

  9. Direct Activation of Amidohydrolase Domain-Containing 1 Gene by Thyroid Hormone Implicates a Role in the Formation of Adult Intestinal Stem Cells During Xenopus Metamorphosis.

    PubMed

    Okada, Morihiro; Miller, Thomas C; Fu, Liezhen; Shi, Yun-Bo

    2015-09-01

    The T3-dependent anuran metamorphosis resembles postembryonic development in mammals, the period around birth when plasma T3 levels peak. In particular, the remodeling of the intestine during metamorphosis mimics neonatal intestinal maturation in mammals when the adult intestinal epithelial self-renewing system is established. We have been using intestinal metamorphosis to investigate how the organ-specific adult stem cells are formed during vertebrate development. Early studies in Xenopus laevis have shown that this process involves complete degeneration of the larval epithelium and de novo formation of adult stem cells. A tissue-specific microarray analysis of intestinal gene expression during Xenopus laevis metamorphosis has identified a number of candidate stem cell genes. Here we have carried out detailed analyses of one such gene, amidohydrolase domain containing 1 (AMDHD1) gene, which encodes an enzyme in the histidine catabolic pathway. We show that AMDHD1 is exclusively expressed in the proliferating adult epithelial stem cells during metamorphosis with little expression in other intestinal tissues. We further provide evidence that T3 activates AMDHD1 gene expression directly at the transcription level through T3 receptor binding to the AMDHD1 gene in the intestine. In addition, we have reported earlier that histidine ammonia-lyase gene, another gene in histidine catabolic pathway, is similarly regulated by T3 in the intestine. These results together suggest that histidine catabolism plays a critical role in the formation and/or proliferation of adult intestinal stem cells during metamorphosis.

  10. The polarized distribution of poly(A+)-mRNA-induced functional ion channels in the Xenopus oocyte plasma membrane is prevented by anticytoskeletal drugs.

    PubMed

    Peter, A B; Schittny, J C; Niggli, V; Reuter, H; Sigel, E

    1991-08-01

    Foreign mRNA was expressed in Xenopus laevis oocytes. Newly expressed ion currents localized in defined plasma membrane areas were measured using the two-electrode voltage clamp technique in combination with a specially designed chamber, that exposed only part of the surface on the oocytes to channel agonists or inhibitors. Newly expressed currents were found to be unequally distributed in the surface membrane of the oocyte. This asymmetry was most pronounced during the early phase of expression, when channels could almost exclusively be detected in the animal hemisphere of the oocyte. 4 d after injection of the mRNA, or later, channels could be found at a threefold higher density at the animal than at the vegetal pole area. The pattern of distribution was observed to be similar with various ion channels expressed from crude tissue mRNA and from cRNAs coding for rat GABAA receptor channel subunits. Electron microscopical analysis revealed very similar microvilli patterns at both oocyte pole areas. Thus, the asymmetric current distribution is not due to asymmetric surface structure. Upon incubation during the expression period in either colchicine or cytochalasin D, the current density was found to be equal in both pole areas. The inactive control substance beta-lumicolchicine had no effect on the asymmetry of distribution. Colchicine was without effect on the amplitude of the expressed whole cell current. Our measurements reveal a pathway for plasma membrane protein expression endogenous to the Xenopus oocyte, that may contribute to the formation and maintenance of polarity of this highly organized cell.

  11. Cloning and functional characterization of the Xenopus orthologue of the Treacher Collins syndrome (TCOF1) gene product.

    PubMed

    Gonzales, Bianca; Yang, Hushan; Henning, Dale; Valdez, Benigno C

    2005-10-10

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development caused by mutations in the TCOF1 gene, which encodes the nucleolar phosphoprotein treacle. We previously reported a function for mammalian treacle in ribosomal DNA gene transcription by its interaction with upstream binding factor. As an initial step in the development of a TCS model for frog the cDNA that encodes the Xenopus laevis treacle was cloned. Although the derived amino acid sequence shows a poor homology with its mammalian orthologues, Xenopus treacle has 11 highly homologous direct repeats near the center of the protein molecule similar to those present in its human, dog and mouse orthologues. Comparison of their amino acid compositions indicates conservation of predominant specific amino acid residues. Antisense-mediated down-regulation of treacle expression in X. laevis oocytes resulted in inhibition of rDNA gene transcription. The results suggest evolutionary conservation of the function of treacle in ribosomal RNA biogenesis in higher eukaryotes.

  12. Assessment of Protocol Designed to Detect Endocine Disrupting Effects of Flutamide in Xenopus Tropicalis

    DTIC Science & Technology

    2006-01-01

    Environmental Protection Agency (USEPA) Endocrine Disruptor Screening and Testing Program. The frogs were exposed to the model anti- androgenic...the study were to develop a protocol that could be used for a standard U.S. EPA testing procedure in the Endocrine Disruptor Screening and Testing...compounds. As a consequence of this requirement, the USEPA established an Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC

  13. The fungicide benomyl inhibits differentiation of neural tissue in the Xenopus embryo and animal cap explants.

    PubMed

    Yoon, Chun-Sik; Jin, Jung-Hyo; Park, Joo-Hung; Youn, Hyun-Joo; Cheong, Seon-Woo

    2003-10-01

    The toxic effect of benomyl on the embryogenesis of Xenopus laevis was investigated, and the tissues most affected by benomyl were identified. The toxicity of benomyl at various concentrations (5-20 microM) was tested with the Xenopus frog embryo teratogenesis assay (FETAX), used with slight modification. All test embryos subjected to 20 microM of benomyl died, and exposure to 10 and 15 microM benomyl produced growth inhibition and 11 types of severe external malformations. Histological examination of the test embryos showed dysplasia of the brain, eyes, intestine, otic vesicle, and muscle and swelling of the pronephric ducts and integuments. Among the tissues and organs affected, malformation of neural tissue was the most severe. The presumptive ectoderm isolated from st. 9 embryo was cultured in 10 ng/mL of activin A to induce neural tissue and mesoderm. When it was cultured with 10 ng/mL of activin A in the presence of 1 and 10 microM of benomyl, neural tissue induction was inhibited more severely than that of any other tissue. The gene expression of cultivated explants was investigated by reverse transcription-polymerase chain reaction (RT-PCR) assay in order to study the inhibition of neural tissue by benomyl. The results showed that with increasing benomyl concentration, the expression of the neural-specific marker NCAM (neural cell adhesion molecule), was more strongly inhibited than the muscle-specific marker muscle actin. Electron micrographs of test explants showed many residual yolk platelets and mitochondrial degeneration. In the present investigation the most severe toxic effects of benomyl were seen in the nerve tissues of the Xenopus embryo. This inhibition of neural development may have been caused by the inhibition of the assembly of neural microtubules and by the effect of benomyl on neuronal proliferation and migration. Copyright 2003 Wiley Periodicals, Inc.

  14. Block by Extracellular Divalent Cations of Drosophila Big Brain Channels Expressed in Xenopus Oocytes

    PubMed Central

    Yanochko, Gina M.; Yool, Andrea J.

    2004-01-01

    Drosophila Big Brain (BIB) is a transmembrane protein encoded by the neurogenic gene big brain (bib), which is important for early development of the fly nervous system. BIB expressed in Xenopus oocytes is a monovalent cation channel modulated by tyrosine kinase signaling. Results here demonstrate that the BIB conductance shows voltage- and dose-dependent block by extracellular divalent cations Ca2+ and Ba2+ but not by Mg2+ in wild-type channels. Site-directed mutagenesis of negatively charged glutamate (Glu274) and aspartate (Asp253) residues had no effect on divalent cation block. However, mutation of a conserved glutamate at position 71 (Glu71) in the first transmembrane domain (M1) altered channel properties. Mutation of Glu71 to Asp introduced a new sensitivity to block by extracellular Mg2+; substitutions with asparagine or glutamine decreased whole-cell conductance; and substitution with lysine compromised plasma membrane expression. Block by divalent cations is important in other ion channels for voltage-dependent function, enhanced signal resolution, and feedback regulation. Our data show that the wild-type BIB conductance is attenuated by external Ca2+, suggesting that endogenous divalent cation block might be relevant for enhancing signal resolution or voltage dependence for the native signaling process in neuronal cell fate determination. PMID:14990474

  15. Induction of mortality and malformation in Xenopus laevis embryos by water sources associated with field frog deformities.

    PubMed

    Burkhart, J G; Helgen, J C; Fort, D J; Gallagher, K; Bowers, D; Propst, T L; Gernes, M; Magner, J; Shelby, M D; Lucier, G

    1998-12-01

    Water samples from several ponds in Minnesota were evaluated for their capacity to induce malformations in embryos of Xenopus laevis. The FETAX assay was used to assess the occurrence of malformations following a 96-hr period of exposure to water samples. These studies were conducted following reports of high incidences of malformation in natural populations of frogs in Minnesota wetlands. The purpose of these studies was to determine if a biologically active agent(s) was present in the waters and could be detected using the FETAX assay. Water samples from ponds with high incidences of frog malformations (affected sites), along with water samples from ponds with unaffected frog populations (reference sites), were studied. Initial experiments clearly showed that water from affected sites induced mortality and malformation in Xenopus embryos, while water from reference sites had little or no effect. Induction of malformation was dose dependent and highly reproducible, both with stored samples and with samples taken at different times throughout the summer. The biological activity of the samples was reduced or eliminated when samples were passed through activated carbon. Limited evidence from these samples indicates that the causal factor(s) is not an infectious organism nor are ion concentrations or metals responsible for the effects observed. Results do indicate that the water matrix has a significant effect on the severity of toxicity. Based on the FETAX results and the occurrence of frog malformations observed in the field, these studies suggest that water in the affected sites contains one or more unknown agents that induce developmental abnormalities in Xenopus. These same factors may contribute to the increased incidence of malformation in native species.

  16. Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/β-catenin signaling pathway.

    PubMed

    Fujimi, Takahiko J; Hatayama, Minoru; Aruga, Jun

    2012-01-15

    Zic3 controls neuroectodermal differentiation and left-right patterning in Xenopus laevis embryos. Here we demonstrate that Zic3 can suppress Wnt/β-catenin signaling and control development of the notochord and Spemann's organizer. When we overexpressed Zic3 by injecting its RNA into the dorsal marginal zone of 2-cell-stage embryos, the embryos lost mesodermal dorsal midline structures and showed reduced expression of organizer markers (Siamois and Goosecoid) and a notochord marker (Xnot). Co-injection of Siamois RNA partially rescued the reduction of Xnot expression caused by Zic3 overexpression. Because the expression of Siamois in the organizer region is controlled by Wnt/β-catenin signaling, we subsequently examined the functional interaction between Zic3 and Wnt signaling. Co-injection of Xenopus Zic RNAs and β-catenin RNA with a reporter responsive to the Wnt/β-catenin cascade indicated that Zic1, Zic2, Zic3, Zic4, and Zic5 can all suppress β-catenin-mediated transcriptional activation. In addition, co-injection of Zic3 RNA inhibited the secondary axis formation caused by ventral-side injection of β-catenin RNA in Xenopus embryos. Zic3-mediated Wnt/β-catenin signal suppression required the nuclear localization of Zic3, and involved the reduction of β-catenin nuclear transport and enhancement of β-catenin degradation. Furthermore, Zic3 co-precipitated with Tcf1 (a β-catenin co-factor) and XIC (I-mfa domain containing factor required for dorsoanterior development). The findings in this report produce a novel system for fine-tuning of Wnt/β-catenin signaling. Copyright © 2011. Published by Elsevier Inc.

  17. Relocation of mitochondria to the prospective dorsal marginal zone during Xenopus embryogenesis

    NASA Technical Reports Server (NTRS)

    Yost, H. J.; Phillips, C. R.; Boore, J. L.; Bertman, J.; Whalon, B.; Danilchik, M. V.

    1995-01-01

    Dorsal-ventral axis formation in Xenopus laevis begins with a cytoplasmic rotation during the first cell cycle and culminates in a series of cell interactions and movements during gastrulation and neurulation that lead to the formation of dorsal-anterior structures. Evidence reported here indicates that mitochondria are differentially redistributed along the prospective dorsal-ventral axis as a consequence of the cortical-cytoplasmic rotation during the first cell cycle. This finding reinvigorates a possibility that has been considered for many years: asymmetries in cytoplasmic components and metabolic activities contribute to the development of morphological asymmetries.

  18. The Sperm-surface glycoprotein, SGP, is necessary for fertilization in the frog, Xenopus laevis.

    PubMed

    Nagai, Keita; Ishida, Takuya; Hashimoto, Takafumi; Harada, Yuichirou; Ueno, Shuichi; Ueda, Yasushi; Kubo, Hideo; Iwao, Yasuhiro

    2009-06-01

    To identify a molecule involved in sperm-egg plasma membrane binding at fertilization, a monoclonal antibody against a sperm-surface glycoprotein (SGP) was obtained by immunizing mice with a sperm membrane fraction of the frog, Xenopus laevis, followed by screening of the culture supernatants based on their inhibitory activity against fertilization. The fertilization of both jellied and denuded eggs was effectively inhibited by pretreatment of sperm with intact anti-SGP antibody as well as its Fab fragment, indicating that the antibody recognizes a molecule on the sperm's surface that is necessary for fertilization. On Western blots, the anti-SGP antibody recognized large molecules, with molecular masses of 65-150 kDa and minor smaller molecules with masses of 20-28 kDa in the sperm membrane vesicles. SGP was distributed over nearly the entire surface of the sperm, probably as an integral membrane protein in close association with microfilaments. More membrane vesicles containing SGP bound to the surface were found in the animal hemisphere compared with the vegetal hemisphere in unfertilized eggs, but the vesicle-binding was not observed in fertilized eggs. These results indicate that SGP mediates sperm-egg membrane binding and is responsible for the establishment of fertilization in Xenopus.

  19. Coordinated activation of the secretory pathway during notochord formation in the Xenopus embryo.

    PubMed

    Tanegashima, Kosuke; Zhao, Hui; Rebbert, Martha L; Dawid, Igor B

    2009-11-01

    We compared the transcriptome in the developing notochord of Xenopus laevis embryos with that of other embryonic regions. A coordinated and intense activation of a large set of secretory pathway genes was observed in the notochord, but not in notochord precursors in the axial mesoderm at early gastrula stage. The genes encoding Xbp1 and Creb3l2 were also activated in the notochord. These two transcription factors are implicated in the activation of secretory pathway genes during the unfolded protein response, where cells react to the stress of a build-up of unfolded proteins in their endoplasmic reticulum. Xbp1 and Creb3l2 are differentially expressed but not differentially activated in the notochord. Reduction of expression of Xbp1 or Creb3l2 by injection of antisense morpholinos led to strong deficits in notochord but not somitic muscle development. In addition, the expression of some, but not all, genes encoding secretory proteins was inhibited by injection of xbp1 morpholinos. Furthermore, expression of activated forms of Xbp1 or Creb3l2 in animal explants could activate a similar subset of secretory pathway genes. We conclude that coordinated activation of a battery of secretory pathway genes mediated by Xbp1 and Creb/ATF factors is a characteristic and necessary feature of notochord formation.

  20. Inositol-requiring enzyme 1α is required for gut development in Xenopus lavies embryos

    PubMed Central

    Guo, Jing; Li, Xin-Xin; Feng, Jiao-Jiao; Yin, Chen-Yang; Wang, Xue-Jun; Wang, Ning; Yuan, Li

    2013-01-01

    AIM: To investigate the role of inositol-requiring enzyme 1α (IRE1α) in gut development of Xenopus lavies embryos. METHODS: Xenopus embryos were obtained with in vitro fertilization and cultured in 0.1 × MBSH. One and half nanogram of IRE1α, 1 ng of IRE1α-GR mRNA, 1 ng of IRE1αΔC-GR mRNA, and 50 ng of IRE1α morpholino oligonucleotide (MO) or XBP1(C)MO were injected into four blastomeres at 4-cell stage for scoring the phenotype and marker gene analysis. To rescue the effect of IRE1α MO, 1 ng of IRE1α-GR mRNA was co-injected with 50 ng of MO. For the activation of the GR-fusion proteins, dexamethasone was prepared as 5 mmol/L stock solutions in 100% ethanol and applied to the mRNA injected embryos at desired stages in a concentration of 10 μmol/L in 0.1 × MBSH. Embryos were kept in dexamethasone up to stage 41. Whole-mount in situ hybridization was used to determine specific gene expression, such as IRE1α, IRE1β, Xbra and Xsox17α. IRE1α protein expression during Xenopus embryogenesis was detected by Western blotting. RESULTS: In the whole-mount in situ hybridization analysis, xenopus IRE1α and IRE1β showed quite different expression pattern during tadpole stage. The relatively higher expression of IRE1α was observed in the pancreas, and significant transcription of IRE1β was found in the liver. IRE1α protein could be detected at all developmental stages analyzed, from stage 1 to stage 42. Gain-of-function assay showed that IRE1α mRNA injected embryos at tailbud stage were nearly normal and the expression of the pan-mesodermal marker gene Xbra and the endodermal gene Xsox17α at stage 10.5 was not significantly changed in embryos injected with IRE1α mRNA as compared to uninjected control embryos. And at tadpole stage, the embryos injected with IRE1α-GR mRNA did not display overt phenotype, such as gut-coiling defect. Loss-of-function assay demonstrated that the IRE1α MO injected embryos were morphologically normal before the tailbud stages

  1. Inositol-requiring enzyme 1α is required for gut development in Xenopus lavies embryos.

    PubMed

    Guo, Jing; Li, Xin-Xin; Feng, Jiao-Jiao; Yin, Chen-Yang; Wang, Xue-Jun; Wang, Ning; Yuan, Li

    2013-01-14

    To investigate the role of inositol-requiring enzyme 1α (IRE1α) in gut development of Xenopus lavies embryos. Xenopus embryos were obtained with in vitro fertilization and cultured in 0.1 × MBSH. One and half nanogram of IRE1α, 1 ng of IRE1α-GR mRNA, 1 ng of IRE1αΔC-GR mRNA, and 50 ng of IRE1α morpholino oligonucleotide (MO) or XBP1(C)MO were injected into four blastomeres at 4-cell stage for scoring the phenotype and marker gene analysis. To rescue the effect of IRE1α MO, 1 ng of IRE1α-GR mRNA was co-injected with 50 ng of MO. For the activation of the GR-fusion proteins, dexamethasone was prepared as 5 mmol/L stock solutions in 100% ethanol and applied to the mRNA injected embryos at desired stages in a concentration of 10 μmol/L in 0.1 × MBSH. Embryos were kept in dexamethasone up to stage 41. Whole-mount in situ hybridization was used to determine specific gene expression, such as IRE1α, IRE1β, Xbra and Xsox17α. IRE1α protein expression during Xenopus embryogenesis was detected by Western blotting. In the whole-mount in situ hybridization analysis, xenopus IRE1α and IRE1β showed quite different expression pattern during tadpole stage. The relatively higher expression of IRE1α was observed in the pancreas, and significant transcription of IRE1β was found in the liver. IRE1α protein could be detected at all developmental stages analyzed, from stage 1 to stage 42. Gain-of-function assay showed that IRE1α mRNA injected embryos at tailbud stage were nearly normal and the expression of the pan-mesodermal marker gene Xbra and the endodermal gene Xsox17α at stage 10.5 was not significantly changed in embryos injected with IRE1α mRNA as compared to uninjected control embryos. And at tadpole stage, the embryos injected with IRE1α-GR mRNA did not display overt phenotype, such as gut-coiling defect. Loss-of-function assay demonstrated that the IRE1α MO injected embryos were morphologically normal before the tailbud stages. We did not observe a

  2. The Virtual Xenbase: transitioning an online bioinformatics resource to a private cloud.

    PubMed

    Karimi, Kamran; Vize, Peter D

    2014-01-01

    As a model organism database, Xenbase has been providing informatics and genomic data on Xenopus (Silurana) tropicalis and Xenopus laevis frogs for more than a decade. The Xenbase database contains curated, as well as community-contributed and automatically harvested literature, gene and genomic data. A GBrowse genome browser, a BLAST+ server and stock center support are available on the site. When this resource was first built, all software services and components in Xenbase ran on a single physical server, with inherent reliability, scalability and inter-dependence issues. Recent advances in networking and virtualization techniques allowed us to move Xenbase to a virtual environment, and more specifically to a private cloud. To do so we decoupled the different software services and components, such that each would run on a different virtual machine. In the process, we also upgraded many of the components. The resulting system is faster and more reliable. System maintenance is easier, as individual virtual machines can now be updated, backed up and changed independently. We are also experiencing more effective resource allocation and utilization. Database URL: www.xenbase.org. © The Author(s) 2014. Published by Oxford University Press.

  3. Possible role of the 38 kDa protein, lacking in the gastrula-arrested Xenopus mutant, in gastrulation.

    PubMed

    Tanaka, Tetsuya S; Ikenishi, Kohji

    2002-02-01

    An acidic, 38 kDa protein that is present in Xenopus wild-type embryos has been previously shown to be lacking in gastrula-arrested mutant embryos. To gain understanding of the role of this protein, its spatio-temporal distribution and involvement in gastrulation was investigated using the monoclonal antibody (9D10) against it. The protein was prominent in the cortical cytoplasm of cells facing the outside in the animal hemisphere of embryos until the gastrula stage, and in ciliated epithelial cells of embryos at stages later than the late neurula. When the 9D10 antibody was injected into fertilized wild-type eggs, they cleaved normally, but most of them had arrested development, always at the early stage of gastrulation, as in the mutant embryos. In contrast, the majority of the control antibody-injected eggs gastrulated normally and developed further. Cytoskeletal F-actin, which was mainly observed in the area beneath the plasma membrane facing the outside of the epithelial layer of not only the dorsal involuting marginal zone but also the dorsal, vegetal cell mass of the control antibody-injected embryos at the early gastrula stage, was scarcely recognized in the corresponding area of the 9D10 antibody-injected embryos. It is likely that the paucity of the F-actin caused by the 9D10 antibody inhibition of the 38 kDa protein might lead to a failure of cell movement in gastrulation, resulting in developmental arrest.

  4. Induction of mortality and malformation in Xenopus laevis embryos by water sources associated with field frog deformities.

    PubMed Central

    Burkhart, J G; Helgen, J C; Fort, D J; Gallagher, K; Bowers, D; Propst, T L; Gernes, M; Magner, J; Shelby, M D; Lucier, G

    1998-01-01

    Water samples from several ponds in Minnesota were evaluated for their capacity to induce malformations in embryos of Xenopus laevis. The FETAX assay was used to assess the occurrence of malformations following a 96-hr period of exposure to water samples. These studies were conducted following reports of high incidences of malformation in natural populations of frogs in Minnesota wetlands. The purpose of these studies was to determine if a biologically active agent(s) was present in the waters and could be detected using the FETAX assay. Water samples from ponds with high incidences of frog malformations (affected sites), along with water samples from ponds with unaffected frog populations (reference sites), were studied. Initial experiments clearly showed that water from affected sites induced mortality and malformation in Xenopus embryos, while water from reference sites had little or no effect. Induction of malformation was dose dependent and highly reproducible, both with stored samples and with samples taken at different times throughout the summer. The biological activity of the samples was reduced or eliminated when samples were passed through activated carbon. Limited evidence from these samples indicates that the causal factor(s) is not an infectious organism nor are ion concentrations or metals responsible for the effects observed. Results do indicate that the water matrix has a significant effect on the severity of toxicity. Based on the FETAX results and the occurrence of frog malformations observed in the field, these studies suggest that water in the affected sites contains one or more unknown agents that induce developmental abnormalities in Xenopus. These same factors may contribute to the increased incidence of malformation in native species. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:9831545

  5. The Expression of TALEN before Fertilization Provides a Rapid Knock-Out Phenotype in Xenopus laevis Founder Embryos.

    PubMed

    Miyamoto, Kei; Suzuki, Ken-Ichi T; Suzuki, Miyuki; Sakane, Yuto; Sakuma, Tetsushi; Herberg, Sarah; Simeone, Angela; Simpson, David; Jullien, Jerome; Yamamoto, Takashi; Gurdon, J B

    2015-01-01

    Recent advances in genome editing using programmable nucleases have revolutionized gene targeting in various organisms. Successful gene knock-out has been shown in Xenopus, a widely used model organism, although a system enabling less mosaic knock-out in founder embryos (F0) needs to be explored in order to judge phenotypes in the F0 generation. Here, we injected modified highly active transcription activator-like effector nuclease (TALEN) mRNA to oocytes at the germinal vesicle (GV) stage, followed by in vitro maturation and intracytoplasmic sperm injection, to achieve a full knock-out in F0 embryos. Unlike conventional injection methods to fertilized embryos, the injection of TALEN mRNA into GV oocytes allows expression of nucleases before fertilization, enabling them to work from an earlier stage. Using this procedure, most of developed embryos showed full knock-out phenotypes of the pigmentation gene tyrosinase and/or embryonic lethal gene pax6 in the founder generation. In addition, our method permitted a large 1 kb deletion. Thus, we describe nearly complete gene knock-out phenotypes in Xenopus laevis F0 embryos. The presented method will help to accelerate the production of knock-out frogs since we can bypass an extra generation of about 1 year in Xenopus laevis. Meantime, our method provides a unique opportunity to rapidly test the developmental effects of disrupting those genes that do not permit growth to an adult able to reproduce. In addition, the protocol shown here is considerably less invasive than the previously used host transfer since our protocol does not require surgery. The experimental scheme presented is potentially applicable to other organisms such as mammals and fish to resolve common issues of mosaicism in founders.

  6. Expression of pluripotency factors in larval epithelia of the frog Xenopus: Evidence for the presence of cornea epithelial stem cells

    PubMed Central

    Perry, Kimberly J.; Thomas, Alvin G.; Henry, Jonathan J.

    2013-01-01

    cornea. Using a thymidine analog (EdU), we were able to label mitotically active cells, which revealed that cell proliferation takes place throughout the cornea epithelium, predominantly in the basal epithelial layer. Species of Xenopus and one other amphibian are unique in their ability to replace a missing lens from cells derived from the basal cornea epithelium. Using EdU we show, as others have previously, that proliferating cells within the cornea epithelium do contribute to the formation of these regenerated lenses. Furthermore, using qPCR we determined that representatives of various pluripotency genes (i.e., sox2, p63 and oct60) are upregulated early during the process of lens regeneration. Antibody labeling showed that the number of sox2 expressing cells increased dramatically within 4 hours following lens removal and these cells were scattered throughout the basal layer of the cornea epithelium. Historically, the process of lens regeneration in Xenopus had been described as one involving transdifferentiation of cornea epithelial cells (i.e., one involving cellular dedifferentiation followed by redifferentiation). Our combined observations provide evidence that a population of stem cells exists within the Xenopus cornea. We hypothesize that the basal epithelium contains oligopotent epithelial stem cells that also represent the source of regenerated lenses in the frog. Future studies will be required to clearly identify the source of these lenses. PMID:23274420

  7. Modulation of K+ currents in Xenopus spinal neurons by p2y receptors: a role for ATP and ADP in motor pattern generation

    PubMed Central

    Brown, Paul; Dale, Nicholas

    2002-01-01

    We have investigated the pharmacological properties and targets of p2y purinoceptors in Xenopus embryo spinal neurons. ATP reversibly inhibited the voltage-gated K+ currents by 10 ± 3 %. UTP and the analogues α,β-methylene-ATP and 2-methylthio-ATP also inhibited K+ currents. This agonist profile is similar to that reported for a p2y receptor cloned from Xenopus embryos. Voltage-gated K+ currents could be inhibited by ADP (9 ± 0.8 %) suggesting that a further p2y1-like receptor is also present in the embryo spinal cord. Unexpectedly we found that α,β-methylene-ADP, often used to block the ecto-5′-nucleotidase, also inhibited voltage-gated K+ currents (7 ± 2.3 %). This inhibition was occluded by ADP, suggesting that α,β-methylene-ADP is an agonist at p2y1 receptors. We have directly studied the properties of the ecto-5′-nucleotidase in Xenopus embryo spinal cord. Although ADP inhibited this enzyme, α,β-methylene-ADP had no action. Caution therefore needs to be used when interpreting the actions of α,β-methylene-ADP as it has previously unreported agonist activity at P2 receptors. Xenopus spinal neurons possess fast and slow voltage-gated K+ currents. By using catechol to selectively block the fast current, we completely occluded the actions of ATP and ADP. Furthermore, the purines appeared to block only the fast relaxation component of the tail currents. We therefore conclude that the p2y receptors target only the fast component of the delayed rectifier. As ATP breakdown to ADP is rapid and ADP may accumulate at higher levels than ATP, the contribution of ADP acting through p2y1-like receptors may be an important additional mechanism for the control of spinal motor pattern generation. PMID:11986373

  8. Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface.

    PubMed

    Vincent, J P; Oster, G F; Gerhart, J C

    1986-02-01

    Specification of the amphibian dorso-ventral axis takes place in the period between fertilization and first cleavage when the gray crescent forms. In the course of gray crescent formation, the egg reorganizes its periphery by a movement for which two descriptions have been given. According to the "rotation hypothesis," which was originated and supported for Rana eggs, the entire egg cortex rotates by an arc of 30 degrees relative to the stationary subcortical cytoplasm, leaving the crescent as a zone of altered coloration. The "contraction hypothesis" on the other hand, which was proposed for Xenopus and Rana eggs, asserts that there is a cortical contraction focused at the sperm entry point that leads to stretching of the opposite equatorial zone at which the crescent appears. We have reinvestigated the case of Xenopus eggs by imprinting one kind of fluorescent dye pattern (Nile blue) onto the subcortical cytoplasm and another kind (fluorescein-lectin) onto the egg surface. When the egg surface is held fixed by embedding the egg in gelatin, two major movements of the subcortical cytoplasm are observable. First, starting at time 0.3 (30% of the time between fertilization and first cleavage), the animal hemisphere subcortical cytoplasm converges toward a point, while the vegetal hemisphere is quiescent. This convergence continues with decreasing strength until approximately 0.8 of the first cell cycle. Second, at 0.45, an overall rotation of the animal and vegetal subcortical cytoplasm commences, superimposed on the animal hemisphere convergence. By 0.8-0.9 the rotation is complete, having accomplished a 30 degrees displacement of the subcortical cytoplasm relative to the surface. This rotation reliably locates the future dorsal midline of the embryo at the meridian on which the displacement of the subcortical cytoplasm is greatest in a vegetal direction. In normal unembedded eggs, when the egg surface is free to move, it rotates 30 degrees relative to the

  9. Live imaging of targeted cell ablation in Xenopus: a new model to study demyelination and repair

    PubMed Central

    Kaya, F.; Mannioui, A.; Chesneau, A.; Sekizar, S.; Maillard, E.; Ballagny, C.; Houel-Renault, L.; Du Pasquier, D.; Bronchain, O.; Holtzmann, I.; Desmazieres, A.; Thomas, J.-L.; Demeneix, B. A.; Brophy, P. J.; Zalc, B.; Mazabraud, A.

    2012-01-01

    Live imaging studies of the processes of demyelination and remyelination have so far been technically limited in mammals. We have thus generated a Xenopus laevis transgenic line allowing live imaging and conditional ablation of myelinating oligodendrocytes throughout the central nervous system (CNS). In these transgenic pMBP-eGFP-NTR tadpoles the myelin basic protein (MBP) regulatory sequences, specific to mature oligodendrocytes, are used to drive expression of an eGFP (enhanced green fluorescent protein) reporter fused to the E. coli nitroreductase (NTR) selection enzyme. This enzyme converts the innocuous pro-drug metronidazole (MTZ) to a cytotoxin. Using two-photon imaging in vivo, we show that pMBP-eGFP-NTR tadpoles display a graded oligodendrocyte ablation in response to MTZ, which depends on the exposure time to MTZ. MTZ-induced cell death was restricted to oligodendrocytes, without detectable axonal damage. After cessation of MTZ treatment, remyelination proceeded spontaneously, but was strongly accelerated by retinoic acid. Altogether, these features establish the Xenopus pMBP-eGFP-NTR line as a novel in vivo model for the study of demyelination/remyelination processes and for large-scale screens of therapeutic agents promoting myelin repair. PMID:22973012

  10. Investigation of Blood Flow and the Effect of Vasoactive Substances in Cutaneous Blood Vessels of "Xenopus Laevis"

    ERIC Educational Resources Information Center

    Škorjanc, Aleš; Belušic, Gregor

    2015-01-01

    In the present study, a preparation of frog skin was presented, which can be used to demonstrate the basic concepts of blood flow regulation in a very clear and attractive way to high school and university students. In a freshly euthanized "Xenopus," a patch of abdominal skin was exposed from the internal side and viewed with a USB…

  11. Fishing on chips: up-and-coming technological advances in analysis of zebrafish and Xenopus embryos.

    PubMed

    Zhu, Feng; Skommer, Joanna; Huang, Yushi; Akagi, Jin; Adams, Dany; Levin, Michael; Hall, Chris J; Crosier, Philip S; Wlodkowic, Donald

    2014-11-01

    Biotests performed on small vertebrate model organisms provide significant investigative advantages as compared with bioassays that employ cell lines, isolated primary cells, or tissue samples. The main advantage offered by whole-organism approaches is that the effects under study occur in the context of intact physiological milieu, with all its intercellular and multisystem interactions. The gap between the high-throughput cell-based in vitro assays and low-throughput, disproportionally expensive and ethically controversial mammal in vivo tests can be closed by small model organisms such as zebrafish or Xenopus. The optical transparency of their tissues, the ease of genetic manipulation and straightforward husbandry, explain the growing popularity of these model organisms. Nevertheless, despite the potential for miniaturization, automation and subsequent increase in throughput of experimental setups, the manipulation, dispensing and analysis of living fish and frog embryos remain labor-intensive. Recently, a new generation of miniaturized chip-based devices have been developed for zebrafish and Xenopus embryo on-chip culture and experimentation. In this work, we review the critical developments in the field of Lab-on-a-Chip devices designed to alleviate the limits of traditional platforms for studies on zebrafish and clawed frog embryo and larvae. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  12. The cellular basis of the convergence and extension of the Xenopus neural plate.

    PubMed

    Keller, R; Shih, J; Sater, A

    1992-03-01

    There is great interest in the patterning and morphogenesis of the vertebrate nervous system, but the morphogenetic movements involved in early neural development and their underlying cellular mechanisms are poorly understood. This paper describes the cellular basis of the early neural morphogenesis of Xenopus laevis. The results have important implications for neural induction. Mapping the fate map of the midneurula (Eagleson and Harris: J. Neurobiol. 21:427-440, 1990) back to the early gastrula with time-lapse video recording demonstrates that the prospective hindbrain and spinal cord are initially very wide and very short, and thus at the beginning of gastrulation all their precursor cells lie within a few cell diameters of the inducing mesoderm. In the midgastrula, the prospective hindbrain and spinal cord undergo very strong convergence and extension movements in two phases: In the first phase they primarily undergo thinning in the radial direction and lengthening (extension) in the animal-vegetal direction, and the second phase is characterized primarily by mediolateral narrowing (convergence) and anterior-posterior lengthening (extension). These movements also occur in sandwich explants of the gastrula, thus demonstrating the local autonomy of the forces producing them. Tracing cell movements with fluorescein dextran-labeled cells in embryos or explants shows that the initial thinning and extension occurs by radial intercalation of deep cells to form fewer layers of greater area, all of which is expressed as increased length. The subsequent convergence and extension occurs by mediolateral intercalation of deep cells to form a longer, narrower array. These results establish that a similar if not identical sequence of radial and mediolateral cell intercalations underlie convergence and extension of the neural and the mesoderm tissues (Wilson and Keller: Development, 112:289-300, 1991). Moreover, these results establish that radial and mediolateral

  13. Genes encoding Xenopus laevis Ig L chains: Implications for the evolution of [kappa] and [lambda] chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zezza, D.J.; Stewart, S.E.; Steiner, L.A.

    1992-12-15

    Xenopus laevis Ig contain two distinct types of L chains, designated [rho] or L1 and [sigma] or L2. The authors have analyzed Xenopus genomic DNA by Southern blotting with cDNA probes specific for L1 V and C regions. Many fragments hybridized to the V probe, but only one or two fragments hybridized to the C probe. Corresponding C, J, and V gene segments were identified on clones isolated from a genomic library prepared from the same DNA. One clone contains a C gene segment separated from a J gene segment by an intron of 3.4 kb. The J and Cmore » gene segments are nearly identical in sequence to cDNA clones analyzed previously. The C segment is somewhat more similar and the J segment considerably more similar in sequence to the corresponding segments of mammalian [kappa] chains than to those of mammalian [lambda] chains. Upstream of the J segment is a typical recombination signal sequence with a spacer of 23 bp, as in J[kappa]. A second clone from the library contains four V gene segments, separated by 2.1 to 3.6 kb. Two of these, V1 and V3, have the expected structural and regulatory features of V genes, and are very similar in sequence to each other and to mammalian V[kappa]. A third gene segment, V2, resembles V1 and V3 in its coding region and nearby 5[prime]-flanking region, but diverges in sequence 5[prime] to position [minus]95 with loss of the octamer promoter element. The fourth V-like segment is similar to the others at the 3[prime]-end, but upstream of codon 64 bears no resemblance in sequence to any Ig V region. All four V segments have typical recombination signal sequences with 12-bp spacers at their 3[prime]-ends, as in V[kappa]. Taken together, the data suggest that Xenopus L1 L chain genes are members of the [kappa] gene family. 80 refs., 9 figs.« less

  14. Rotation in Xenopus laevis embryos during the second cell cycle.

    PubMed

    Starodubov, Sergey M; Golychenkov, Vladimir A

    2009-01-01

    Using time-lapse video recording and comparing successive digital images, we found that 38% of Xenopus laevis embryos (n=118) exhibited rotation during the second cell cycle. This rotation, which we term the second rotation, started approximately during the appearance of the first cleavage furrow and proceeded clockwise or counterclockwise around the vertical axis. Rotations lasted for 5-30 minutes, i.e. up to the beginning of the third cell cycle. The mean rotation angle was 36.4 degrees, with a maximum rotation of 77 degrees. No mortality was observed among the embryos exhibiting rotation. The second rotation was observed to be similar to the well-known fertilization rotation which takes place during the first cell cycle. The possible nature and significance of the second rotation are discussed.

  15. Inverse Effects on Growth and Development Rates by Means of Endocrine Disruptors in African Clawed Frog Tadpoles ("Xenopus Laevis")

    ERIC Educational Resources Information Center

    Hackney, Zachary Carl

    2007-01-01

    Previous work on fish, frogs, and salamanders, showed the ability for estrogen (EE2) and anthropogenic endocrine disruptors to skew sex ratios and cause hermaphrodism. This study addressed the effects of estrogens on growth and development rates of African clawed frog tadpoles ("Xenopus laevis") during their gender determination stages. The…

  16. Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618.

    PubMed

    Mateo, Soledad; Puentes, Juan G; Moya, Alberto J; Sánchez, Sebastián

    2015-08-01

    Olive tree pruning biomass has been pretreated with pressurized steam, hydrolysed with hydrochloric acid, conditioned and afterwards fermented using the non-traditional yeast Candida tropicalis NBRC 0618. The main aim of this study was to analyse the influence of acid concentration on the hydrolysis process and its effect on the subsequent fermentation to produce ethanol and xylitol. From the results, it could be deduced that both total sugars and d-glucose recovery were enhanced by increasing the acid concentration tested; almost the whole hemicellulose fraction was hydrolysed when 3.77% was used. It has been observed a sequential production first of ethanol, from d-glucose, and then xylitol from d-xylose. The overall ethanol and xylitol yields ranged from 0.27 to 0.38kgkg(-1), and 0.12 to 0.23kgkg(-1) respectively, reaching the highest values in the fermentation of the hydrolysates obtained with hydrochloric acid 2.61% and 1.11%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Characterization of Thyroid Hormone Transporter Protein Expression during Tissue-specific Metamorphic Events in Xenopus tropicalis

    EPA Science Inventory

    Thyroid hormone (TH) induces the dramatic morphological and physiological changes that together comprise amphibian metamorphosis. TH-responsive tissues vary widely with developmental timing of TH-induced changes. How larval tadpole tissues are able to employ distinct metamorphi...

  18. Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development.

    PubMed

    Tadjuidje, Emmanuel; Kofron, Matthew; Mir, Adnan; Wylie, Christopher; Heasman, Janet; Cha, Sang-Wook

    2016-08-01

    Nodal class TGF-β signalling molecules play essential roles in establishing the vertebrate body plan. In all vertebrates, nodal family members have specific waves of expression required for tissue specification and axis formation. In Xenopus laevis, six nodal genes are expressed before gastrulation, raising the question of whether they have specific roles or act redundantly with each other. Here, we examine the role of Xnr5. We find it acts at the late blastula stage as a mesoderm inducer and repressor of ectodermal gene expression, a role it shares with Vg1. However, unlike Vg1, Xnr5 depletion reduces the expression of the nodal family member xnr1 at the gastrula stage. It is also required for left/right laterality by controlling the expression of the laterality genes xnr1, antivin (lefty) and pitx2 at the tailbud stage. In Xnr5-depleted embryos, the heart field is established normally, but symmetrical reduction in Xnr5 levels causes a severely stunted midline heart, first evidenced by a reduction in cardiac troponin mRNA levels, while left-sided reduction leads to randomization of the left/right axis. This work identifies Xnr5 as the earliest step in the signalling pathway establishing normal heart laterality in Xenopus. © 2016 The Authors.

  19. Xenopus origin recognition complex (ORC) initiates DNA replication preferentially at sequences targeted by Schizosaccharomyces pombe ORC

    PubMed Central

    Kong, Daochun; Coleman, Thomas R.; DePamphilis, Melvin L.

    2003-01-01

    Budding yeast (Saccharomyces cerevisiae) origin recognition complex (ORC) requires ATP to bind specific DNA sequences, whereas fission yeast (Schizosaccharomyces pombe) ORC binds to specific, asymmetric A:T-rich sites within replication origins, independently of ATP, and frog (Xenopus laevis) ORC seems to bind DNA non-specifically. Here we show that despite these differences, ORCs are functionally conserved. Firstly, SpOrc1, SpOrc4 and SpOrc5, like those from other eukaryotes, bound ATP and exhibited ATPase activity, suggesting that ATP is required for pre-replication complex (pre-RC) assembly rather than origin specificity. Secondly, SpOrc4, which is solely responsible for binding SpORC to DNA, inhibited up to 70% of XlORC-dependent DNA replication in Xenopus egg extract by preventing XlORC from binding to chromatin and assembling pre-RCs. Chromatin-bound SpOrc4 was located at AT-rich sequences. XlORC in egg extract bound preferentially to asymmetric A:T-sequences in either bare DNA or in sperm chromatin, and it recruited XlCdc6 and XlMcm proteins to these sequences. These results reveal that XlORC initiates DNA replication preferentially at the same or similar sites to those targeted in S.pombe. PMID:12840006

  20. Cytoskeleton and gravity at work in the establishment of dorso-ventral polarity in the egg of Xenopus laevis

    NASA Astrophysics Data System (ADS)

    Ubbels, Geertje A.; Brom, Tim G.

    The establishment of polarities during early embryogenesis is essential for normal development. Amphibian eggs are appropriate models for studies on embryonic pattern formation. The animal-vegetal axis of the axially symmetrical amphibian egg originates during oogenesis and foreshadows the main body axis of the embryo. The dorso-ventral polarity is epigenetically established before first cleavage. Recent experiments strongly suggest that in the monospermic eggs of the anuran Xenopus laevis both the cytoskeleton and gravity act in the determination of the dorso-ventral polarity. In order to test the role of gravity in this process, eggs will be fertilized under microgravity conditions during the SL-D1 flight in 1985. In a fully automatic experiment container eggs will be kept under well-defined conditions and artificially fertilized as soon as microgravity is reached; eggs and embryos at different stages will then be fixed for later examination. Back on earth the material will be analysed and we will know whether fertilization under microgravity conditions is possible. If so, the relation of the dorso-ventral axis to the former sperm entry point will be determined on the whole embryos; in addition eggs and embryos will be analysed cytologically.

  1. Thyroglobulin Represents a Novel Molecular Architecture of Vertebrates.

    PubMed

    Holzer, Guillaume; Morishita, Yoshiaki; Fini, Jean-Baptiste; Lorin, Thibault; Gillet, Benjamin; Hughes, Sandrine; Tohmé, Marie; Deléage, Gilbert; Demeneix, Barbara; Arvan, Peter; Laudet, Vincent

    2016-08-05

    Thyroid hormones modulate not only multiple functions in vertebrates (energy metabolism, central nervous system function, seasonal changes in physiology, and behavior) but also in some non-vertebrates where they control critical post-embryonic developmental transitions such as metamorphosis. Despite their obvious biological importance, the thyroid hormone precursor protein, thyroglobulin (Tg), has been experimentally investigated only in mammals. This may bias our view of how thyroid hormones are produced in other organisms. In this study we searched genomic databases and found Tg orthologs in all vertebrates including the sea lamprey (Petromyzon marinus). We cloned a full-size Tg coding sequence from western clawed frog (Xenopus tropicalis) and zebrafish (Danio rerio). Comparisons between the representative mammal, amphibian, teleost fish, and basal vertebrate indicate that all of the different domains of Tg, as well as Tg regional structure, are conserved throughout the vertebrates. Indeed, in Xenopus, zebrafish, and lamprey Tgs, key residues, including the hormonogenic tyrosines and the disulfide bond-forming cysteines critical for Tg function, are well conserved despite overall divergence of amino acid sequences. We uncovered upstream sequences that include start codons of zebrafish and Xenopus Tgs and experimentally proved that these are full-length secreted proteins, which are specifically recognized by antibodies against rat Tg. By contrast, we have not been able to find any orthologs of Tg among non-vertebrate species. Thus, Tg appears to be a novel protein elaborated as a single event at the base of vertebrates and virtually unchanged thereafter. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Establishment of polarities in the oocyte of Xenopus laevis: the provisional axial symmetry of the full-grown oocyte of Xenopus laevis.

    PubMed

    Ubbels, G A

    1997-04-01

    We aimed at understanding of formation and function of the "Nieuwkoop Centre" in embryonic pattern formation. Discussed are data on genesis of cytoplasmic localizations in ovarian oocytes, transient modifications of cytoskeletal structures creating cytoplasmic asymmetries in fertilized eggs, the axis determining "vegetal cortical rotation" and fate of distinct cells, as shown by injection of specific molecular markers into particular blastomeres at specific times. Egg rotation and centrifugation suggested that sperm that gravity cooperate in symmetrization of the axially symmetrical anuran egg. After fertilization in space or in a fast rotating clinostate, axis formation and embryonic development were normal although the blastocoel was transiently abnormal. Normal tadpoles came back on Earth after ovulation, fertilization and culture in space. They metamorphosed normally and got healthy Earth-born F1 offspring. We conclude that neither sperm nor gravity are required for determination of the bilateral symmetry in the embryo of Xenopus laevis. In normal development sperm and gravity, either alone or in collaboration, may overrule an initial bilaterality inherent to, the full-grown oocyte, residing in some still unidentified component(s)/or mechanisms.

  3. A nuclear factor I-like activity and a liver-specific repressor govern estrogen-regulated in vitro transcription from the Xenopus laevis vitellogenin B1 promoter.

    PubMed

    Corthésy, B; Cardinaux, J R; Claret, F X; Wahli, W

    1989-12-01

    A hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to identify novel cis-acting elements within the vitellogenin gene B1 promoter region. In addition to the already well-documented estrogen-responsive element (ERE), two elements were found within the 140 base pairs upstream of the transcription initiation site. One of them, a negative regulatory element, is responsible for the lack of promoter activity in the absence of the hormone and, as demonstrated by DNA-binding assays, interacts with a liver-specific transcription factor. The second is required in association with the estrogen-responsive element to mediate hormonal induction and is recognized by the Xenopus liver homolog of nuclear factor I.

  4. Left-Right Asymmetric Morphogenesis in the Xenopus Digestive System

    USGS Publications Warehouse

    Muller, Jennifer K.; Prather, D.R.; Nascone-Yoder, N. M.

    2003-01-01

    The morphogenetic mechanisms by which developing organs become left-right asymmetric entities are unknown. To investigate this issue, we compared the roles of the left and right sides of the Xenopus embryo during the development of anatomic asymmetries in the digestive system. Although both sides contribute equivalently to each of the individual digestive organs, during the initial looping of the primitive gut tube, the left side assumes concave topologies where the right side becomes convex. Of interest, the concave surfaces of the gut tube correlate with expression of the LR gene, Pitx2, and ectopic Pitx2 mRNA induces ectopic concavities in a localized manner. A morphometric comparison of the prospective concave and convex surfaces of the gut tube reveals striking disparities in their rate of elongation but no significant differences in cell proliferation. These results provide insight into the nature of symmetry-breaking morphogenetic events during left-right asymmetric organ development. ?? 2003 Wiley-Liss, Inc.

  5. E-cadherin is required for cranial neural crest migration in Xenopus laevis.

    PubMed

    Huang, Chaolie; Kratzer, Marie-Claire; Wedlich, Doris; Kashef, Jubin

    2016-03-15

    The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo

  6. Full-grown oocytes from Xenopus laevis resume growth when placed in culture

    PubMed Central

    Wallace, Robin A.; Misulovin, Ziva; Etkin, Laurence D.

    1981-01-01

    When most full-grown, follicle cell-invested oocytes from Xenopus laevis are placed in an appropriate culture medium, they resume growth and remain physiologically healthy for at least 2-3 weeks. Rates of growth by full-grown oocytes in vitro generally approximate and can even exceed the most rapid growth rate achieved by vitellogenic oocytes in vivo. Resumption of oocyte growth can be correlated with the loss of investing follicle cells, which under normal conditions appear to interfere with vitellogenin and nutrient access to the oocyte. The final size reached by the oocyte within the ovary is thus not an intrinsic property of the oocyte but is extrinsically imposed by the somatic environment. Images PMID:16593019

  7. FoxG1 and TLE2 act cooperatively to regulate ventral telencephalon formation.

    PubMed

    Roth, Martin; Bonev, Boyan; Lindsay, Jennefer; Lea, Robert; Panagiotaki, Niki; Houart, Corinne; Papalopulu, Nancy

    2010-05-01

    FoxG1 is a conserved transcriptional repressor that plays a key role in the specification, proliferation and differentiation of the telencephalon, and is expressed from the earliest stages of telencephalic development through to the adult. How the interaction with co-factors might influence the multiplicity and diversity of FoxG1 function is not known. Here, we show that interaction of FoxG1 with TLE2, a Xenopus tropicalis co-repressor of the Groucho/TLE family, is crucial for regulating the early activity of FoxG1. We show that TLE2 is co-expressed with FoxG1 in the ventral telencephalon from the early neural plate stage and functionally cooperates with FoxG1 in an ectopic neurogenesis assay. FoxG1 has two potential TLE binding sites: an N-terminal eh1 motif and a C-terminal YWPMSPF motif. Although direct binding seems to be mediated by the N-terminal motif, both motifs appear important for functional synergism. In the neurogenesis assay, mutation of either motif abolishes functional cooperation of TLE2 with FoxG1, whereas in the forebrain deletion of both motifs renders FoxG1 unable to induce the ventral telencephalic marker Nkx2.1. Knocking down either FoxG1 or TLE2 disrupts the development of the ventral telencephalon, supporting the idea that endogenous TLE2 and FoxG1 work together to specify the ventral telencephalon.

  8. FoxG1 and TLE2 act cooperatively to regulate ventral telencephalon formation

    PubMed Central

    Roth, Martin; Bonev, Boyan; Lindsay, Jennefer; Lea, Robert; Panagiotaki, Niki; Houart, Corinne; Papalopulu, Nancy

    2010-01-01

    FoxG1 is a conserved transcriptional repressor that plays a key role in the specification, proliferation and differentiation of the telencephalon, and is expressed from the earliest stages of telencephalic development through to the adult. How the interaction with co-factors might influence the multiplicity and diversity of FoxG1 function is not known. Here, we show that interaction of FoxG1 with TLE2, a Xenopus tropicalis co-repressor of the Groucho/TLE family, is crucial for regulating the early activity of FoxG1. We show that TLE2 is co-expressed with FoxG1 in the ventral telencephalon from the early neural plate stage and functionally cooperates with FoxG1 in an ectopic neurogenesis assay. FoxG1 has two potential TLE binding sites: an N-terminal eh1 motif and a C-terminal YWPMSPF motif. Although direct binding seems to be mediated by the N-terminal motif, both motifs appear important for functional synergism. In the neurogenesis assay, mutation of either motif abolishes functional cooperation of TLE2 with FoxG1, whereas in the forebrain deletion of both motifs renders FoxG1 unable to induce the ventral telencephalic marker Nkx2.1. Knocking down either FoxG1 or TLE2 disrupts the development of the ventral telencephalon, supporting the idea that endogenous TLE2 and FoxG1 work together to specify the ventral telencephalon. PMID:20356955

  9. Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis.

    PubMed

    Beyeler, Anna; Rao, Guillaume; Ladepeche, Laurent; Jacques, André; Simmers, John; Le Ray, Didier

    2013-01-01

    During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance

  10. Molecular characterization of myelin protein zero in Xenopus laevis peripheral nerve

    NASA Astrophysics Data System (ADS)

    Xie, Bo; Luo, Xiaoyang; Zhao, Cheng; Priest, Christina Marie; Chan, Shiu-Yung; O'Connor, Peter B.; Kirschner, Daniel A.; Costello, Catherine E.

    2007-12-01

    Myelin protein zero (P0), a glycosylated single-pass transmembrane protein, is essential in the formation and maintenance of peripheral nervous system (PNS) compact myelin. P0 in Xenopus (xP0) exists primarily as a dimeric form that remains stable after various physical and chemical treatments. In exploring the nature of the interactions underlying the dimer stability, we found that xP0 dimer dissociated into monomer during continuous elution gel electrophoresis and conventional SDS-PAGE, indicating that the dimer is stabilized by non-covalent interactions. Furthermore, as some of the gel-purified monomer re-associated into dimer on SDS-PAGE gels, there is likely a dynamic equilibrium between xP0 dimer and monomer in vivo. Because the carbohydrate and fatty acyl moieties may be crucial for the adhesion role of P0, we used sensitive mass spectrometry approaches to elucidate the detailed N-glycosylation and S-acylation profiles of xP0. Asn92 was determined to be the single, fully-occupied glycosylation site of xP0, and a total of 12 glycans was detected that exhibited new structural features compared with those observed from P0 in other species: (1) the neutral glycans were composed mainly of high mannose and hybrid types; (2) 5 of 12 were acidic glycans, among which three were sialylated and the other two were sulfated; (3) none of the glycans had core fucosylation; and (4) no glucuronic acid, hence no HNK-1 epitope, was detected. The drastically different carbohydrate structures observed here support the concept of the species-specific variation in N-glycosylation of P0. Cys152 was found to be acylated with stearoyl (C18:0), whereas palmitoyl (C16:0) is the corresponding predominant fatty acyl group on P0 from higher vertebrates. We propose that the unique glycosylation and acylation patterns of Xenopus P0 may underlie its unusual dimerization behavior. Our results should shed light on the understanding of the phylogenetic development of P0's adhesion role in PNS

  11. Concentration-dependent Effects of Nuclear Lamins on Nuclear Size in Xenopus and Mammalian Cells*

    PubMed Central

    Jevtić, Predrag; Edens, Lisa J.; Li, Xiaoyang; Nguyen, Thang; Chen, Pan; Levy, Daniel L.

    2015-01-01

    A fundamental question in cell biology concerns the regulation of organelle size. While nuclear size is exquisitely controlled in different cell types, inappropriate nuclear enlargement is used to diagnose and stage cancer. Clarifying the functional significance of nuclear size necessitates an understanding of the mechanisms and proteins that control nuclear size. One structural component implicated in the regulation of nuclear morphology is the nuclear lamina, a meshwork of intermediate lamin filaments that lines the inner nuclear membrane. However, there has not been a systematic investigation of how the level and type of lamin expression influences nuclear size, in part due to difficulties in precisely controlling lamin expression levels in vivo. In this study, we circumvent this limitation by studying nuclei in Xenopus laevis egg and embryo extracts, open biochemical systems that allow for precise manipulation of lamin levels by the addition of recombinant proteins. We find that nuclear growth and size are sensitive to the levels of nuclear lamins, with low and high concentrations increasing and decreasing nuclear size, respectively. Interestingly, each type of lamin that we tested (lamins B1, B2, B3, and A) similarly affected nuclear size whether added alone or in combination, suggesting that total lamin concentration, and not lamin type, is more critical to determining nuclear size. Furthermore, we show that altering lamin levels in vivo, both in Xenopus embryos and mammalian tissue culture cells, also impacts nuclear size. These results have implications for normal development and carcinogenesis where both nuclear size and lamin expression levels change. PMID:26429910

  12. Tissue-Specific Upregulation of MDS/EVI Gene Transcripts in the Intestine by Thyroid Hormone during Xenopus Metamorphosis

    PubMed Central

    Hasebe, Takashi; Fu, Liezhen; Heimeier, Rachel A.; Das, Biswajit; Ishizuya-Oka, Atsuko; Shi, Yun-Bo

    2013-01-01

    Background Intestinal remodeling during amphibian metamorphosis resembles the maturation of the adult intestine during mammalian postembryonic development when the adult epithelial self-renewing system is established under the influence of high concentrations of plasma thyroid hormone (T3). This process involves de novo formation and subsequent proliferation and differentiation of the adult stem cells. Methodology/Principal Findings The T3-dependence of the formation of adult intestinal stem cell during Xenopus laevis metamorphosis offers a unique opportunity to identify genes likely important for adult organ-specific stem cell development. We have cloned and characterized the ectopic viral integration site 1 (EVI) and its variant myelodysplastic syndrome 1 (MDS)/EVI generated via transcription from the upstream MDS promoter and alternative splicing. EVI and MDS/EVI have been implicated in a number of cancers including breast, leukemia, ovarian, and intestinal cancers. We show that EVI and MDS/EVI transcripts are upregulated by T3 in the epithelium but not the rest of the intestine in Xenopus laevis when adult stem cells are forming in the epithelium. Conclusions/Significance Our results suggest that EVI and MDS/EVI are likely involved in the development and/or proliferation of newly forming adult intestinal epithelial cells. PMID:23383234

  13. Effects of depleted uranium on survival, growth, and metamorphosis in the african clawed frog (Xenopus laevis)

    USGS Publications Warehouse

    Mitchell, S.E.; Caldwell, C.A.; Gonzales, G.; Gould, W.R.; Arimoto, R.

    2005-01-01

    Embryos (stage 8-47, Nieuwkoop and Faber) of the African clawed frog (Xenopus laevis) were subjected to water-borne depleted uranium (DU) concentrations that ranged from 4.8 to 77.7 mg/Lusing an acute 96-h frog embryo teratogenesis assay-Xenopus (FETAX). In a chronic 64-d assay, X. laevis (from embryo through metamorphosis; stages 8-66) were subjected to concentrations of DU that ranged from 6.2 to 54.3 mg/L Our results indicate DU is a non teratogenic metal. No effects on mortality, malformations, or growth were observed in the 96-h FETAX with concentrations of DU that ranged from 4.8 to 77.7 mg/L From stage 8 to stage 47, X. laevis tadpoles do not actively feed and the gills are not well developed. Thus, uptake of DU was reduced despite exposure to elevated concentrations. The 64-d assay resulted in no concentration response for either mortality or malformations; however, a delay in metamorphosis was observed in tadpoles subjected to elevated DU concentrations (from 13.1 to 54.3 mg/L) compared to tadpoles in both the well-water control and reference. The delay in metamorphosis was likely due to increasing body burden of DU that ranged from 0.98 to 2.82 mg/kg. Copyright?? Taylor & Francis Inc.

  14. Differential recognition of ACE inhibitors in Xenopus laevis oocytes expressing rat PEPT1 and PEPT2.

    PubMed

    Zhu, T; Chen, X Z; Steel, A; Hediger, M A; Smith, D E

    2000-05-01

    To examine the mechanism of inhibition of glycylsarcosine (GlySar) transport by quinapril and enalapril, and whether or not angiotensin converting enzyme (ACE) inhibitors are transported by PEPT2 as well as by PEPT1. Xenopus laevis oocytes were cRNA-injected with rat PEPT1 or PEPT2 and the transport kinetics of radiolabeled GlySar were studied in the absence and presence of quinapril and enalapril. The two-microelectrode voltage-clamp technique was also performed to probe the electrogenic uptake of captopril, quinapril and enalapril. Kinetic analyses demonstrated that quinapril inhibited the uptake of GlySar in a noncompetitive manner in Xenopus oocytes injected with PEPT1 or PEPT2 (Ki = 0.8 or 0.4 mM, respectively). In contrast, a competitive interaction was observed between GlySar and enalapril (Ki = 10.8 mM for PEPT1 or 4.3 mM for PEPT2). Most significantly, captopril and enalapril, but not quinapril, induced inwardly-directed currents in both PEPT1- and PEPT2-expressed oocytes. These results are unique in providing direct evidence for the substrate recognition and transport of some ACE inhibitors by the high- and low-affinity oligopeptide transporters. Our findings point to differences between PEPT1 and PEPT2 in their affinity to, rather than in their specificity for, ACE inhibitors.

  15. Friend of GATA (FOG) Interacts with the Nucleosome Remodeling and Deacetylase Complex (NuRD) to Support Primitive Erythropoiesis in Xenopus laevis

    PubMed Central

    Mimoto, Mizuho S.; Christian, Jan L.

    2012-01-01

    Friend of GATA (FOG) plays many diverse roles in adult and embryonic hematopoiesis, however the mechanisms by which it functions and the roles of potential interaction partners are not completely understood. Previous work has shown that overexpression of FOG in Xenopus laevis causes loss of blood suggesting that in contrast to its role in mammals, FOG might normally function to repress erythropoiesis in this species. Using loss-of-function analysis, we demonstrate that FOG is essential to support primitive red blood cell (RBC) development in Xenopus. Moreover, we show that it is specifically required to prevent excess apoptosis of circulating primitive RBCs and that in the absence of FOG, the pro-apoptotic gene Bim-1 is strongly upregulated. To identify domains of FOG that are essential for blood development and, conversely, to begin to understand the mechanism by which overexpressed FOG represses primitive erythropoiesis, we asked whether FOG mutants that are unable to interact with known co-factors retain their ability to rescue blood formation in FOG morphants and whether they repress erythropoiesis when overexpressed in wild type embryos. We find that interaction of FOG with the Nucleosome Remodeling and Deacetylase complex (NuRD), but not with C-terminal Binding Protein, is essential for normal primitive RBC development. In contrast, overexpression of all mutant and wild type constructs causes a comparable repression of primitive erythropoiesis. Together, our data suggest that a requirement for FOG and its interaction with NuRD during primitive erythropoiesis are conserved in Xenopus and that loss of blood upon FOG overexpression is due to a dominant-interfering effect. PMID:22235346

  16. Overland movement in African clawed frogs (Xenopus laevis): empirical dispersal data from within their native range.

    PubMed

    De Villiers, F André; Measey, John

    2017-01-01

    Dispersal forms are an important component of the ecology of many animals, and reach particular importance for predicting ranges of invasive species. African clawed frogs ( Xenopus laevis ) move overland between water bodies, but all empirical studies are from invasive populations with none from their native southern Africa. Here we report on incidents of overland movement found through a capture-recapture study carried out over a three year period in Overstrand, South Africa. The maximum distance moved was 2.4 km with most of the 91 animals, representing 5% of the population, moving ∼150 m. We found no differences in distances moved by males and females, despite the former being smaller. Fewer males moved overland, but this was no different from the sex bias found in the population. In laboratory performance trials, we found that males outperformed females, in both distance moved and time to exhaustion, when corrected for size. Overland movement occurred throughout the year, but reached peaks in spring and early summer when temporary water bodies were drying. Despite permanent impoundments being located within the study area, we found no evidence for migrations of animals between temporary and permanent water bodies. Our study provides the first dispersal kernel for X. laevis and suggests that it is similar to many non-pipid anurans with respect to dispersal.

  17. Patterns of protein synthesis in oocytes and early embryos of Rana esculenta complex.

    PubMed

    Chen, P S; Stumm-Zollinger, E

    1986-01-01

    We have used isotopic labelling and both one-and two-dimensional electrophoretic procedures to analyse the protien synthesis patterns in oocytes and early embryos of three phenotypes of the European green frogs. The results demonstrated that protein patterns of Rana ridibunda and R. esculenta are identical, but that they differ from those of R. lessonae. Progeny of the lethal cross R. esculenta × R. esculenta showed a distinct delay in the appearance of stage-specific proteins during early embryogenesis. The heat-shock response of R. ridibunda and R. esculenta oocytes was found to be identical, but different from that of Xenopus laevis. The implications of these findings, with respect to hybridogenesis in R. esculenta complex and variations in the regulations of heat shock genes in different amphibian species, are discussed.

  18. A Homolog of Subtilisin-Like Proprotein Convertase 7 Is Essential to Anterior Neural Development in Xenopus

    PubMed Central

    Senturker, Sema; Thomas, John Terrig; Mateshaytis, Jennifer; Moos, Malcolm

    2012-01-01

    Background Subtilisin-like Proprotein Convertase 7 (SPC7) is a member of the subtilisin/kexin family of pro-protein convertases. It cleaves many pro-proteins to release their active proteins, including members of the bone morphogenetic protein (BMP) family of signaling molecules. Other SPCs are known to be required during embryonic development but corresponding data regarding SPC7 have not been reported previously. Methodology/Principal Findings We demonstrated that Xenopus SPC7 (SPC7) was expressed predominantly in the developing brain and eye, throughout the neural plate initially, then more specifically in the lens and retina primordia as development progressed. Since no prior functional information has been reported for SPC7, we used gain- and loss-of-function experiments to investigate the possibility that it may also convey patterning or tissue specification information similarly to Furin, SPC4, and SPC6. Overexpression of SPC7 was without effect. In contrast, injection of SPC7 antisense morpholino oligonucleotides (MO) into a single blastomere at the 2- or 4-cell stage produced marked disruption of head structures; anophthalmia was salient. Bilateral injections suppressed head and eye formation completely. In parallel with suppression of eye and brain development by SPC7 knockdown, expression of early anterior neural markers (Sox2, Otx2, Rx2, and Pax6) and late eye-specific markers (β-Crystallin and Opsin), and of BMP target genes such as Tbx2 and Tbx3, was reduced or eliminated. Taken together, these findings suggest a critical role for SPC7–perhaps, at least in part, due to activation of one or more BMPs–in early patterning of the anterior neural plate and its derivatives. Conclusion/Significance SPC7 is required for normal development of the eye and brain, possibly through processing BMPs, though other potential substrates cannot be excluded. PMID:22761776

  19. Establishment of substratum polarity in the blastocoel roof of the Xenopus embryo.

    PubMed

    Nagel, M; Winklbauer, R

    1999-05-01

    The fibronectin fibril matrix on the blastocoel roof of the Xenopus gastrula contains guidance cues that determine the direction of mesoderm cell migration. The underlying guidance-related polarity of the blastocoel roof is established in the late blastula under the influence of an instructive signal from the vegetal half of the embryo, in particular from the mesoderm. Formation of an oriented substratum depends on functional activin and FGF signaling pathways in the blastocoel roof. Besides being involved in tissue polarization, activin and FGF also affect fibronectin matrix assembly. Activin treatment of the blastocoel roof inhibits fibril formation, whereas FGF modulates the structure of the fibril network. The presence of intact fibronectin fibrils is permissive for directional mesoderm migration on the blastocoel roof extracellular matrix.

  20. An European pupil project linked to the scientific aims of the experiment AQUARIUS-XENOPUS on the taxi Soyuz flight Andromede to ISS.

    PubMed

    Dournon, Christian; Membre, Herve; Brohm, Pierre-Eric; Coince, Aurore; Cornu, Nathalie; Dreyer, Laura; Florentin, Jonathan; Jeanneau, Lydie; Henniquin, Camille; Houbre, Marie; Guerard, Marine; Lecomte, Nathalie; Maxant, Lorie; Schluraff, Marion; Venandet, Anne-Sophie; Jusyte, Aiste; Simmet, Dana; Bocking, Dominique; Flaig, Dorothee; Santak, Leo; Bolek, Steffen; Goppel, Verena; Rossignon, Jean-Paul; Trossat, Marie-Alice; Raux, Martine; Forster, Susanne; Staudenmaier, Gerd; Boser, Sybille; Horn, Eberhard

    2002-07-01

    The German-French biological experiment AQUARIUS-XENOPUS which flew on the Soyuz flight Andromede to the International Space Station ISS (launched October 21, 2001 in Baikonour/Kazakhstan) was extended by an outreach project. Pupils of class 10 to 12 from Ulm/D and Nancy-Tomblaine/F studied swimming behavior of Xenopus tadpoles on ground. They were instructed to perform all experimental steps following the protocol of similar video recordings on ISS. After the flight, they evaluated the kinetics of swimming of both ground controls and space animals. The pupil project included theoretical components to introduce them to the field of gravitational biology. One feature of the project was the exchange of ideas between pupils by meetings which took place in Ulm (June 2001), Nancy (February 2002) and Paris (May 2002). We consider our approach as a successful way to include young people in space experiments on a cheap cost level and to bring ideas of gravitational biology into the curricula of European schools.

  1. Essential roles of LEM-domain protein MAN1 during organogenesis in Xenopus laevis and overlapping functions of emerin.

    PubMed

    Reil, Michael; Dabauvalle, Marie-Christine

    2013-01-01

    Mutations in nuclear envelope proteins are linked to an increasing number of human diseases, called envelopathies. Mutations in the inner nuclear membrane protein emerin lead to X-linked Emery-Dreifuss muscular dystrophy, characterized by muscle weakness or wasting. Conversely, mutations in nuclear envelope protein MAN1 are linked to bone and skin disorders. Both proteins share a highly conserved domain, called LEM-domain. LEM proteins are known to interact with Barrier-to-autointegration factor and several transcription factors. Most envelopathies are tissue-specific, but knowledge on the physiological roles of related LEM proteins is still unclear. For this reason, we investigated the roles of MAN1 and emerin during Xenopus laevis organogenesis. Morpholino-mediated knockdown of MAN1 revealed that MAN1 is essential for the formation of eye, skeletal and cardiac muscle tissues. The MAN1 knockdown could be compensated by ectopic expression of emerin, leading to a proper organ development. Further investigations revealed that MAN1 is involved in regulation of genes essential for organ development and tissue homeostasis. Thereby our work supports that LEM proteins might be involved in signalling essential for organ development during early embryogenesis and suggests that loss of MAN1 may cause muscle and retina specific diseases. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Metal ions may suppress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms.

    PubMed

    Harrison, Joe J; Ceri, Howard; Yerly, Jerome; Rabiei, Maryam; Hu, Yaoping; Martinuzzi, Robert; Turner, Raymond J

    2007-08-01

    Candida albicans and Candida tropicalis are polymorphic fungi that develop antimicrobial-resistant biofilm communities that are characterized by multiple cell morphotypes. This study investigated cell type interconversion and drug and metal resistance as well as community organization in biofilms of these microorganisms that were exposed to metal ions. To study this, Candida biofilms were grown either in microtiter plates containing gradient arrays of metal ions or in the Calgary Biofilm Device for high-throughput susceptibility testing. Biofilm formation and antifungal resistance were evaluated by viable cell counts, tetrazolium salt reduction, light microscopy, and confocal laser scanning microscopy in conjunction with three-dimensional visualization. We discovered that subinhibitory concentrations of certain metal ions (CrO(4)(2-), Co(2+), Cu(2+), Ag(+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), AsO(2)(-), and SeO(3)(2-)) caused changes in biofilm structure by blocking or eliciting the transition between yeast and hyphal cell types. Four distinct biofilm community structure types were discerned from these data, which were designated "domed," "layer cake," "flat," and "mycelial." This study suggests that Candida biofilm populations may respond to metal ions to form cell-cell and solid-surface-attached assemblages with distinct patterns of cellular differentiation.

  3. FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos.

    PubMed

    Murgan, Sabrina; Castro Colabianchi, Aitana Manuela; Monti, Renato José; Boyadjián López, Laura Elena; Aguirre, Cecilia E; Stivala, Ernesto González; Carrasco, Andrés E; López, Silvia L

    2014-01-01

    In vertebrates, the embryonic dorsal midline is a crucial signalling centre that patterns the surrounding tissues during development. Members of the FoxA subfamily of transcription factors are expressed in the structures that compose this centre. Foxa2 is essential for dorsal midline development in mammals, since knock-out mouse embryos lack a definitive node, notochord and floor plate. The related gene foxA4 is only present in amphibians. Expression begins in the blastula -chordin and -noggin expressing centre (BCNE) and is later restricted to the dorsal midline derivatives of the Spemann's organiser. It was suggested that the early functions of mammalian foxa2 are carried out by foxA4 in frogs, but functional experiments were needed to test this hypothesis. Here, we show that some important dorsal midline functions of mammalian foxa2 are exerted by foxA4 in Xenopus. We provide new evidence that the latter prevents the respecification of dorsal midline precursors towards contiguous fates, inhibiting prechordal and paraxial mesoderm development in favour of the notochord. In addition, we show that foxA4 is required for the correct regionalisation and maintenance of the central nervous system. FoxA4 participates in constraining the prospective rostral forebrain territory during neural specification and is necessary for the correct segregation of the most anterior ectodermal derivatives, such as the cement gland and the pituitary anlagen. Moreover, the early expression of foxA4 in the BCNE (which contains precursors of the whole forebrain and most of the midbrain and hindbrain) is directly required to restrict anterior neural development.

  4. Conservation Biology of Xenopus Longipes

    NASA Astrophysics Data System (ADS)

    Quock, R.; Blackburn, D. C.; Ghose, S.

    2014-12-01

    For the past 9 months, we have been studying the presence of disease and genetic variation in the Cameroonian species Xenopus longipes, found only in a lake on Mount Oku. During research trips to this lake (Lake Oku) over the past decade, mortalities of this species have been observed, and in addition there may be evidence of declines in other frog species in these mountains. It is well understood that in many parts of the world, amphibians are currently declining due to disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), and possibly also by the iridovirus ranavirus. A previous study suggested that ranavirus could be found in Lake Oku, and also that Bd may be present. Using 25 X. longipes liver samples collected during the summer of 2013 and 10 samples collected during the summer of 2011, we screened for Ranavirus through PCR amplification and sequencing, and screened for Bd in our 25 samples from 2013 through quantitative PCR. We also PCR amplified and sequenced 1950bp of the X. longipes 16S gene to look for genetic variation. We did not find ranavirus present on these frogs, and we found low prevalence (4%) of Bd. Through our analysis of 16S data, we found low genetic variation among the X. longipes, with a maximum divergence of 0.37% observed between any two individuals. Time is of the essence and it is crucial that the causes of these die offs be identified. While there have been observed mortalities of X. longipes since 2006, and this species remains on the Critically Endangered List, the cause of these mortalities is still unknown. If and when a cause can be identified, it would be monumental for this species' population and can hopefully be used to preserve and save these frogs.

  5. Transdifferentiation from cornea to lens in Xenopus laevis depends on BMP signalling and involves upregulation of Wnt signalling

    PubMed Central

    2011-01-01

    Background Surgical removal of the lens from larval Xenopus laevis results in a rapid transdifferention of central corneal cells to form a new lens. The trigger for this process is understood to be an induction event arising from the unprecedented exposure of the cornea to the vitreous humour that occurs following lens removal. The molecular identity of this trigger is unknown. Results Here, we have used a functional transgenic approach to show that BMP signalling is required for lens regeneration and a microarray approach to identify genes that are upregulated specifically during this process. Analysis of the array data strongly implicates Wnt signalling and the Pitx family of transcription factors in the process of cornea to lens transdifferentiation. Our analysis also captured several genes associated with congenital cataract in humans. Pluripotency genes, in contrast, were not upregulated, supporting the idea that corneal cells transdifferentiate without returning to a stem cell state. Several genes from the array were expressed in the forming lens during embryogenesis. One of these, Nipsnap1, is a known direct target of BMP signalling. Conclusions Our results strongly implicate the developmental Wnt and BMP signalling pathways in the process of cornea to lens transdifferentiation (CLT) in Xenopus, and suggest direct transdifferentiation between these two anterior eye tissues. PMID:21896182

  6. Candida albicans and C. tropicalis Isolates from the Expired Breathes of Captive Dolphins and Their Environments in an Aquarium

    PubMed Central

    Takahashi, Hideo; Ueda, Keiichi; Itano, Eiko Nakagawa; Yanagisawa, Makio; Murata, Yoshiteru; Murata, Michiko; Yaguchi, Takashi; Murakami, Masaru; Kamei, Katsuhiko; Inomata, Tomo; Miyahara, Hirokazu; Sano, Ayako; Uchida, Senzo

    2010-01-01

    Genotypes of Candida spp. isolated from exhalation of 20 dolphins, 11 water samples from captive pools, and 24 oral cavities of staff members in an aquarium using a combination of multiple drug resistance 1 gene (MDR1) and the internal transcribed spacer (ITS) 1 5.8s-ITS 2 regions of ribosomal RNA gene (ITS rDNA) sequences were studied. The holding ratios of the dolphins, captive pools, and staff members were 70, 90, and 29%, respectively. Isolated pathogenic yeast species common to the dolphins and environments were Candida albicans and C. tropicalis. Identical genotypes in both Candida spp. based on the combination of MDR1 and ITSrDNA were found in some dolphins, between a dolphin and a staff, among dolphins and environments, and among environments. The results indicated the diffusion and exchange of pathogenic yeasts at the aquarium among dolphins and environments. The isolates at the aquarium showed higher rates of resistance to azole antifungals compared to reference isolates. PMID:21234394

  7. Effect of selected aldehydes found in the corncob hemicellulose hydrolysate on the growth and xylitol fermentation of Candida tropicalis.

    PubMed

    Wang, Le; Tang, Pingwah; Fan, Xiaoguang; Yuan, Qipeng

    2013-01-01

    The effects of four aldehydes (furfural, 5-hydroxymethylfurfural, vanillin and syringaldehyde), which were found in the corncob hemicellulose hydrolysate, on the growth and xylitol fermentation of Candida tropicalis were investigated. The results showed that vanillin was the most toxic aldehyde for the xylitol fermentation, followed by syringaldehyde, furfural and 5-hydroxymethylfurfural. Moreover, the binary combination tests revealed that furfural amplified the toxicity of other aldehydes and the toxicities of other binary combinations without furfural were simply additive. Based on the fermentation experiments, it was demonstrated that the inhibition of aldehydes could be alleviated by prolonging the fermentation incubation, increasing the initial cell concentration, enhancing the initial pH value and minimizing the furfural levels in the hydrolysate evaporation process. The strategies that we proposed to suppress the inhibitory effects of the aldehydes successfully avoided the complicated and costly detoxifications. Our findings could be potentially adopted for the industrial xylitol fermentation from hydrolysates. © 2013 American Institute of Chemical Engineers.

  8. Extracellular Ca2+ Is Required for Fertilization in the African Clawed Frog, Xenopus laevis

    PubMed Central

    Duray, Alexis M.; Tembo, Maiwase; Beleny, David O.; Napolitano, Marc A.; Sauer, Monica L.; Wisner, Bennett W.

    2017-01-01

    Background The necessity of extracellular Ca2+ for fertilization and early embryonic development in the African clawed frog, Xenopus laevis, is controversial. Ca2+ entry into X. laevis sperm is reportedly required for the acrosome reaction, yet fertilization and embryonic development have been documented to occur in high concentrations of the Ca2+ chelator BAPTA. Here we sought to resolve this controversy. Methodology/principal finding Using the appearance of cleavage furrows as an indicator of embryonic development, we found that X. laevis eggs inseminated in a solution lacking added divalent cations developed normally. By contrast, eggs inseminated in millimolar concentrations of BAPTA or EGTA failed to develop. Transferring embryos to varying solutions after sperm addition, we found that extracellular Ca2+ is specifically required for events occurring within the first 30 minutes after sperm addition, but not after. We found that the fluorescently stained sperm were not able to penetrate the envelope of eggs inseminated in high BAPTA, whereas several had penetrated the vitelline envelope of eggs inseminated without a Ca2+ chelator, or with BAPTA and saturating CaCl2. Together these results indicate that fertilization does not occur in high concentrations of Ca2+ chelators. Finally, we found that the jelly coat includes >5 mM of readily diffusible Ca2+. Conclusions/Significance Taken together, these data are consistent with requirement of extracellular Ca2+ for fertilization. Based on our findings, we hypothesize that the jelly coat surrounding the egg acts as a reserve of readily available Ca2+ ions to foster fertilization in changing extracellular milieu. PMID:28114360

  9. Caging, but not air deprivation, slows tadpole growth and development in the amphibian Xenopus laevis.

    PubMed

    Rose, Christopher S

    2014-08-01

    Xenopus laevis tadpoles raised in submerged cages in normoxic water develop more slowly than tadpoles raised with access to air. This study distinguishes between the effects of being caged and being deprived access to air on development and growth. Tadpoles were raised in high and low density control tanks and in cages in the same tank that were either completely submerged or with the top exposed to air. Experiments were repeated with the cages in different positions relative to the air stones and with and without the water flow from air stones supplemented with a pump. Whereas caging tadpoles has a large effect on their development and growth, additionally depriving them of air has a small effect and this effect can be removed by optimizing water flow through the cage. The effect of caging, though significant in this study, is small compared to the variation in growth and developmental rates that is commonly encountered within and among controls in lab studies. Caging effects can also be diminished by optimizing rearing conditions and/or having exceptionally vigorous tadpoles. The effects of air deprivation and caging thus pose less of a problem for experimenting on air-deprived (AD) and air-restored Xenopus tadpoles than their inherent variability in growth and developmental rates and their susceptibility to growth and developmental arrest. Further, the effect of air deprivation in this air-breathing amphibian does not pose a conflict with evolutionary hypotheses for lung loss involving lengthening of the larval period and delay in the onset of air breathing. © 2014 Wiley Periodicals, Inc.

  10. Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells

    PubMed Central

    Muñoz, Rosana; Edwards-Faret, Gabriela; Moreno, Mauricio; Zuñiga, Nikole; Cline, Hollis; Larraín, Juan

    2016-01-01

    Spinal cord regeneration is very inefficient in humans, causing paraplegia and quadriplegia. Studying model organisms that can regenerate the spinal cord in response to injury could be useful for understanding the cellular and molecular mechanisms that explain why this process fails in humans. Here, we use Xenopus laevis as a model organism to study spinal cord repair. Histological and functional analyses showed that larvae at pre-metamorphic stages restore anatomical continuity of the spinal cord and recover swimming after complete spinal cord transection. These regenerative capabilities decrease with onset of metamorphosis. The ability to study regenerative and non-regenerative stages in Xenopus laevis makes it a unique model system to study regeneration. We studied the response of Sox2/3 expressing cells to spinal cord injury and their function in the regenerative process. We found that cells expressing Sox2 and/or Sox3 are present in the ventricular zone of regenerative animals and decrease in non-regenerative froglets. Bromodeoxyuridine (BrdU) experiments and in vivo time-lapse imaging studies using green fluorescent protein (GFP) expression driven by the Sox3 promoter showed a rapid, transient and massive proliferation of Sox2/3+ cells in response to injury in the regenerative stages. The in vivo imaging also demonstrated that Sox2/3+ neural progenitor cells generate neurons in response to injury. In contrast, these cells showed a delayed and very limited response in non-regenerative froglets. Sox2 knockdown and overexpression of a dominant negative form of Sox2 disrupts locomotor and anatomical-histological recovery. We also found that neurogenesis markers increase in response to injury in regenerative but not in non-regenerative animals. We conclude that Sox2 is necessary for spinal cord regeneration and suggest a model whereby spinal cord injury activates proliferation of Sox2/3 expressing cells and their differentiation into neurons, a mechanism that is

  11. Parasites of the African clawed frog, Xenopus laevis, in southern California, U.S.A

    USGS Publications Warehouse

    Kuperman, Boris I.; Matey, Victoria E.; Fisher, Richard N.; Ervin, Edward L.; Warburton, Manna L.; Bakhireva, Ludmila; Lehman, Cynthia A.

    2004-01-01

    A total of 230 feral African clawed frogs, Xenopus laevis, from 3 localities in southern California were examined for parasites. The following species were found: 3 species of Protozoa, Nyctotherussp., Balantidium xenopodis, Protoopalina xenopodus; 2 species of Monogenea, Protopolystoma xenopodis, Gyrdicotylus gallieni; 1 species of Digenea, Clinostomum sp. (as metacercariae); 1 species of Cestoda, Cephalochlamys namaquensis; 2 species of Nematoda, Contracaecum sp. (as larvae), Eustrongylides sp. (as larvae); and 1 species of Acanthocephala, Acanthocephalus sp. (as cystacanth). Of these, the protozoans P. xenopodus and B. xenopodis, both monogeneans, and the cestode have an African origin. Contracaecum sp., Eustrongylides sp., and Acanthocephalus sp. have not been previously reported from X. laevis.

  12. Developing Laryngeal Muscle of Xenopus laevis as a Model System: Androgen-Driven Myogenesis Controls Fiber Type Transformation

    PubMed Central

    Nasipak, Brian; Kelley, Darcy B.

    2014-01-01

    The developmental programs that contribute to myogenic stem cell proliferation and muscle fiber differentiation control fiber numbers and twitch type. In this study, we describe the use of an experimental model system—androgen-regulated laryngeal muscle of juvenile clawed frogs, Xenopus laevis—to examine the contribution of proliferation by specific populations of myogenic stem cells to expression of the larynx-specific myosin heavy chain isoform, LM. Androgen treatment of juveniles (Stage PM0) resulted in up-regulation of an early (Myf-5) and a late (myogenin) myogenic regulatory factor; the time course of LM up-regulation tracked that of myogenin. Myogenic stem cells stimulated to proliferate by androgen include a population that expresses Pax-7, a marker for the satellite cell myogenic stem cell population. Since androgen can switch muscle fiber types from fast to slow even in denervated larynges, we developed an ex vivo culture system to explore the relation between proliferation and LM expression. Cultured whole larynges maintain sensitivity to androgen, increasing in size and LM expression. Blockade of cell proliferation with cis-platin prevents the switch from slow to fast twitch muscle fibers as assayed by ATPase activity. Blockade of cell proliferation in vivo also resulted in inhibition of LM expression. Thus, both in vivo and ex vivo, inhibition of myogenic stem cell proliferation blocks androgen-induced LM expression and fiber type switching in juveniles. PMID:21954146

  13. Xenopus LAP2β protein knockdown affects location of lamin B and nucleoporins and has effect on assembly of cell nucleus and cell viability.

    PubMed

    Dubińska-Magiera, Magda; Chmielewska, Magdalena; Kozioł, Katarzyna; Machowska, Magdalena; Hutchison, Christopher J; Goldberg, Martin W; Rzepecki, Ryszard

    2016-05-01

    Xenopus LAP2β protein is the single isoform expressed in XTC cells. The protein localizes on heterochromatin clusters both at the nuclear envelope and inside a cell nucleus. The majority of XLAP2β fraction neither colocalizes with TPX2 protein during interphase nor can be immunoprecipitated with XLAP2β antibody. Knockdown of the XLAP2β protein expression in XTC cells by synthetic siRNA and plasmid encoded siRNA resulted in nuclear abnormalities including changes in shape of nuclei, abnormal chromatin structure, loss of nuclear envelope, mislocalization of integral membrane proteins of INM such as lamin B2, mislocalization of nucleoporins, and cell death. Based on timing of cell death, we suggest mechanism associated with nucleus reassembly or with entry into mitosis. This confirms that Xenopus LAP2 protein is essential for the maintenance of cell nucleus integrity and the process of its reassembly after mitosis.

  14. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos

    NASA Astrophysics Data System (ADS)

    Fini, Jean-Baptiste; Mughal, Bilal B.; Le Mével, Sébastien; Leemans, Michelle; Lettmann, Mélodie; Spirhanzlova, Petra; Affaticati, Pierre; Jenett, Arnim; Demeneix, Barbara A.

    2017-03-01

    Thyroid hormones are essential for normal brain development in vertebrates. In humans, abnormal maternal thyroid hormone levels during early pregnancy are associated with decreased offspring IQ and modified brain structure. As numerous environmental chemicals disrupt thyroid hormone signalling, we questioned whether exposure to ubiquitous chemicals affects thyroid hormone responses during early neurogenesis. We established a mixture of 15 common chemicals at concentrations reported in human amniotic fluid. An in vivo larval reporter (GFP) assay served to determine integrated thyroid hormone transcriptional responses. Dose-dependent effects of short-term (72 h) exposure to single chemicals and the mixture were found. qPCR on dissected brains showed significant changes in thyroid hormone-related genes including receptors, deiodinases and neural differentiation markers. Further, exposure to mixture also modified neural proliferation as well as neuron and oligodendrocyte size. Finally, exposed tadpoles showed behavioural responses with dose-dependent reductions in mobility. In conclusion, exposure to a mixture of ubiquitous chemicals at concentrations found in human amniotic fluid affect thyroid hormone-dependent transcription, gene expression, brain development and behaviour in early embryogenesis. As thyroid hormone signalling is strongly conserved across vertebrates the results suggest that ubiquitous chemical mixtures could be exerting adverse effects on foetal human brain development.

  15. [Effects of the monosaccharide derivative 8RN-DAGal on the putative P-type calcium channel expressed in Xenopus oocytes].

    PubMed

    Fournier, F; Charpentier, G; Lahyani, A; Bruner, J; Czternasty, G; Marlot, D; Ronco, G; Villa, P; Brule, G

    1993-01-01

    P-type calcium channels are expressed in Xenopus oocytes after injection of rat cerebellar mRNA. The FTX and omega-Aga-IVa toxins extracted from Agelenopsis aperta venom are known to inhibit the activity of this channel. The present results demonstrate that 8RN-DAGal is also a antagonist of P-type calcium channels. The inhibition of the current, obtained with Ba2+, as charge carrier, is voltage dependent.

  16. Xenopus laevis and Emerging Amphibian Pathogens in Chile.

    PubMed

    Soto-Azat, Claudio; Peñafiel-Ricaurte, Alexandra; Price, Stephen J; Sallaberry-Pincheira, Nicole; García, María Pía; Alvarado-Rybak, Mario; Cunningham, Andrew A

    2016-12-01

    Amphibians face an extinction crisis with no precedence. Two emerging infectious diseases, ranaviral disease caused by viruses within the genus Ranavirus and chytridiomycosis due to Batrachochytrium dendrobatidis (Bd), have been linked with amphibian mass mortalities and population declines in many regions of the globe. The African clawed frog (Xenopus laevis) has been indicated as a vector for the spread of these pathogens. Since the 1970s, this species has been invasive in central Chile. We collected X. laevis and dead native amphibians in Chile between 2011 and 2013. We conducted post-mortem examinations and molecular tests for Ranavirus and Bd. Eight of 187 individuals (4.3 %) tested positive for Ranavirus: seven X. laevis and a giant Chilean frog (Calyptocephallela gayi). All positive cases were from the original area of X. laevis invasion. Bd was found to be more prevalent (14.4 %) and widespread than Ranavirus, and all X. laevis Bd-positive animals presented low to moderate levels of infection. Sequencing of a partial Ranavirus gene revealed 100 % sequence identity with Frog Virus 3. This is the first report of Ranavirus in Chile, and these preliminary results are consistent with a role for X. laevis as an infection reservoir for both Ranavirus and Bd.

  17. Characteristics of concatemeric GABAA receptors containing α4/δ subunits expressed in Xenopus oocytes

    PubMed Central

    Shu, Hong-Jin; Bracamontes, John; Taylor, Amanda; Wu, Kyle; Eaton, Megan M; Akk, Gustav; Manion, Brad; Evers, Alex S; Krishnan, Kathiresan; Covey, Douglas F; Zorumski, Charles F; Steinbach, Joe Henry; Mennerick, Steven

    2012-01-01

    BACKGROUND AND PURPOSE GABAA receptors mediate both synaptic and extrasynaptic actions of GABA. In several neuronal populations, α4 and δ subunits are key components of extrasynaptic GABAA receptors that strongly influence neuronal excitability and could mediate the effects of neuroactive agents including neurosteroids and ethanol. However, these receptors can be difficult to study in native cells and recombinant δ subunits can be difficult to express in heterologous systems. EXPERIMENTAL APPROACH We engineered concatemeric (fused) subunits to ensure δ and α4 subunit expression. We tested the pharmacology of the concatemeric receptors, compared with a common synaptic-like receptor subunit combination (α1 +β2 +γ2L), and with free-subunit α4/δ receptors, expressed in Xenopus oocytes. KEY RESULTS δ-β2 −α4 +β2-α4 cRNA co-injected into Xenopus oocytes resulted in GABA-gated currents with the expected pharmacological properties of α4/δ-containing receptors. Criteria included sensitivity to agonists of different efficacy, sensitivity to the allosteric activator pentobarbital, and modulation of agonist responses by DS2 (4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridine-3-yl benzamide; a δ-selective positive modulator), furosemide, and Zn2+. We used the concatemers to examine neurosteroid sensitivity of extrasynaptic-like, δ-containing receptors. We found no qualitative differences between extrasynaptic-like receptors and synaptic-like receptors in the actions of either negative or positive neurosteroid modulators of receptor function. Quantitative differences were explained by the partial agonist effects of the natural agonist GABA and by a mildly increased sensitivity to low steroid concentrations. CONCLUSIONS AND IMPLICATIONS The neurosteroid structure-activity profile for α4/δ-containing extrasynaptic receptors is unlikely to differ from that of synaptic-like receptors such as α1/β2/γ2-containing receptors. PMID:21950777

  18. Expression of the mammalian calcium signaling response to Trypanosoma cruzi in Xenopus laevis oocytes.

    PubMed

    Leite, M F; Moyer, M S; Andrews, N W

    1998-04-01

    Infective stages of the protozoan parasite Trypanosoma cruzi contain a soluble factor that induces elevation in the intracellular free Ca2+ concentration ([Ca2+]i) of mammalian cells. The process is pertussis toxin (PTx)-sensitive, and involves phospholipase C (PLC) activation, inositol 1,4,5-trisphosphate (IP3) formation and Ca2+ release from intracellular stores (Tardieux I, et al. J Exp Med 1994;179:1017-1022; Rodriguez A, et al. J Cell Biol 1995;129:1263-1273). We now report that a molecule exposed on the surface of the target cells is required to trigger the signaling cascade, and that a response with identical characteristics can be induced in Xenopus laevis oocytes injected with mRNA from normal rat kidney (NRK) fibroblasts. Xenopus oocytes do not show an endogenous response to the trypomastigote Ca2+ signaling factor, but a vigorous response in the form of a propagating Ca2+ wave is expressed after injection of NRK cell mRNA. As previously demonstrated for mammalian cells, the response is inhibited when injected oocytes are pretreated with PTx, implicating Galphai or Galphao trimeric G-proteins, and with thapsigargin, which depletes intracellular Ca2+ stores. Moreover, the [Ca2+]i transients triggered by the T. cruzi soluble factor in mRNA-injected oocytes are blocked by the same inhibitors of the parasite oligopeptidase B that abolish the [Ca2+]i response in NRK cells (Burleigh B, Andrews NW. J Biol Chem 1995;270:5172-5180; Burleigh BA et al. J Cell Biol 1997;136:609-620). The NRK mRNA fraction that induces expression of the [Ca2+]i response to the T. cruzi signaling factor contains messages from 1.5 to 2.0 kb, a size range consistent with the family of seven-transmembrane G-protein-coupled receptors.

  19. Protein 4.1 and its interaction with other cytoskeletal proteins in Xenopus laevis oogenesis.

    PubMed

    Carotenuto, Rosa; Petrucci, Tamara C; Correas, Isabel; Vaccaro, Maria C; De Marco, Nadia; Dale, Brian; Wilding, Martin

    2009-06-01

    In human red blood cells, protein 4.1 (4.1R) is an 80-kDa polypeptide that stabilizes the spectrin-actin network and anchors it to the plasma membrane. In non-erythroid cells there is a great variety of 4.1R isoforms, mainly generated by alternative pre-mRNA splicing, which localize at various intracellular sites, including the nucleus. We studied protein 4.1R distribution in relation to beta-spectrin, actin and cytokeratin during Xenopus oogenesis. Immunoprecipitation experiments indicate that at least two isoforms of protein 4.1R are present in Xenopus laevis oocytes: a 56-kDa form in the cytoplasm and a 37-kDa form in the germinal vesicle (GV). Antibodies to beta-spectrin reveal two bands of 239 and 100 kDa in the cytoplasm. Coimmunoprecipitation experiments indicate that both the 37- and 56-kDa isoforms of protein 4.1R associate with the 100-kDa isoform of beta-spectrin. Moreover, the 56-kDa form coimmunoprecipitates with a cytokeratin of the same molecular weight. Confocal immunolocalization shows that protein 4.1R distribution is in the peripheral cytoplasm, in the mitochondrial cloud (MC) and in the GV of previtellogenic oocytes. In the cytoplasm of vitellogenic oocytes, a loose network of fibers stained by the anti-protein 4.1R antibody spreads across the cytoplasm. beta-Spectrin has a similar distribution. Protein 4.1R was found to colocalize with actin in the cortex of oocytes in the form of fluorescent dots. Double immunolocalization of protein 4.1R and cytokeratin depicts two separate networks that overlap throughout the whole cytoplasm. Protein 4.1R filaments partially colocalize with cytokeratin in both the animal and vegetal hemispheres. We hypothesize that protein 4.1R could function as a linker protein between cytokeratin and the actin-based cytoskeleton.

  20. Mutant analysis of Cdt1's function in suppressing nascent strand elongation during DNA replication in Xenopus egg extracts.

    PubMed

    Nakazaki, Yuta; Tsuyama, Takashi; Azuma, Yutaro; Takahashi, Mikiko; Tada, Shusuke

    2017-09-02

    The initiation of DNA replication is strictly regulated by multiple mechanisms to ensure precise duplication of chromosomes. In higher eukaryotes, activity of the Cdt1 protein is temporally regulated during the cell cycle, and deregulation of Cdt1 induces DNA re-replication. In previous studies, we showed that excess Cdt1 inhibits DNA replication by suppressing progression of replication forks in Xenopus egg extracts. Here, we investigated the functional regions of Cdt1 that are required for the inhibition of DNA replication. We constructed a series of N-terminally or C-terminally deleted mutants of Cdt1 and examined their inhibitory effects on DNA replication in Xenopus egg extracts. Our results showed that the region spanning amino acids (a. a.) 255-620 is required for efficient inhibition of DNA replication, and that, within this region, a. a. 255-289 have a critical role in inhibition. Moreover, one of the Cdt1 mutants, Cdt1 R285A, was compromised with respect to the licensing activity but still inhibited DNA replication. This result suggests that Cdt1 has an unforeseen function in the negative regulation of DNA replication, and that this function is located within a molecular region that is distinct from those required for the licensing activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The constant threat from a non-native predator increases tail muscle and fast-start swimming performance in Xenopus tadpoles.

    PubMed

    Mori, Tsukasa; Yanagisawa, Yukio; Kitani, Yoichiro; Yamamoto, Goshi; Goto-Inoue, Naoko; Kimura, Tadashi; Kashiwagi, Keiko; Kashiwagi, Akihiko

    2017-11-15

    Predator-induced phenotypic plasticity is the ability of prey to adapt to their native predator. However, owing to environmental changes, encounters with unknown predators are inevitable. Therefore, study of prey and non-native predator interaction will reveal the primary stages of adaptive strategies in prey-predator interactions in the context of evolutionary processes. Here, Xenopus tadpoles exposed to a non-native predator, a larval salamander, showed a significant increase in body weight and tail length to body length ratio. The T max 2 test indicated a significant enhancement of the tail muscle and decrease in the relative ventral fin height in tadpoles exposed to predation risk, leading to significantly higher average swimming speeds. The analysis of muscle-related metabolites revealed that sarcosine increased significantly in tadpoles exposed to non-native predators. Multiple linear regression analysis of the fast-start swimming pattern showed that the fast-start swimming speed was determined by the time required for a tadpole to bend its body away from the threat (C-start) and the angle at which it was bent. In conclusion, morphological changes in tadpoles were functionally adaptive and induced by survival behaviors of Xenopus tadpoles against non-native predators. © 2017. Published by The Company of Biologists Ltd.

  2. Adenosine A1 receptors modulate high voltage-activated Ca2+ currents and motor pattern generation in the Xenopus embryo

    PubMed Central

    Brown, Paul; Dale, Nicholas

    2000-01-01

    Adenosine causes voltage- and non-voltage-dependent inhibition of high voltage-activated (HVA) Ca2+ currents in Xenopus laevis embryo spinal neurons. As this inhibition can be blocked by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and mimicked by N6-cyclopentyladenosine (CPA) it appears to be mediated by A1 receptors. Agents active at A2 receptors either were without effect or could be blocked by DPCPX. AMP had no agonist action on these receptors. By using ω-conotoxin GVIA we found that adenosine inhibited an N-type Ca2+ current as well as a further unidentified HVA current that was insensitive to dihydropyridines, ω-agatoxin TK and ω-conotoxin MVIIC. Both types of current were subject to voltage- and non-voltage-dependent inhibition. We used CPA and DPCPX to test whether A1 receptors regulated spinal motor pattern generation in spinalized Xenopus embryos. DPCPX caused a near doubling of, while CPA greatly shortened, the length of swimming episodes. In addition, DPCPX slowed, while CPA greatly speeded up, the rate of run-down of motor activity. Our results demonstrate a novel action of A1 receptors in modulating spinal motor activity. Furthermore they confirm that adenosine is produced continually throughout swimming episodes and acts to cause the eventual termination of activity. PMID:10856119

  3. Vocal communication between male Xenopus laevis.

    PubMed

    Tobias, Martha L; Barnard, Candace; O'Hagan, Robert; Horng, Sam H; Rand, Masha; Kelley, Darcy B

    2004-02-01

    This study focuses on the role of male-male vocal communication in the reproductive repertoire of the South African clawed frog, Xenopus laevis . Six male and two female call types were recorded from native ponds in the environs of Cape Town, South Africa. These include all call types previously recorded in the laboratory as well as one previously unidentified male call: chirping. The amount of calling and the number of call types increased as the breeding season progressed. Laboratory recordings indicated that all six male call types were directed to males; three of these were directed to both sexes and three were directed exclusively to males. Both female call types were directed exclusively to males. The predominant call type, in both field and laboratory recordings, was the male advertisement call. Sexual state affected male vocal behaviour. Male pairs in which at least one male was sexually active (gonadotropin injected) produced all call types, whereas pairs of uninjected males rarely called. Some call types were strongly associated with a specific behaviour and others were not. Clasped males always growled and clasping males typically produced amplectant calls or chirps; males not engaged in clasping most frequently advertised. The amount of advertising produced by one male was profoundly affected by the presence of another male. Pairing two sexually active males resulted in suppression of advertisement calling in one; suppression was released when males were isolated after pairing. Vocal dominance was achieved even in the absence of physical contact (clasping). We suggest that X. laevis males gain a reproductive advantage by competing for advertisement privileges and by vocally suppressing neighbouring males.

  4. Expression of membrane targeted aequorin in Xenopus laevis oocytes.

    PubMed

    Daguzan, C; Nicolas, M T; Mazars, C; Leclerc, C; Moreau, M

    1995-08-01

    We described here a system for high level of expression of the calcium activated photoprotein aequorin. This protein has been targeted to the plasma membrane of Xenopus oocyte by nuclear microinjection of a plasmid containing a construction of a chimeric cDNA encoding a fusion protein composed of the photoprotein aequorin and the 5-HT1A receptor. The expression of this fusion protein is placed under the control of RSV promoter. Functional photoprotein was reconstituted in the oocyte by incubation with coelenterazine. The amount of photoprotein 24 h after nuclear microinjection of the plasmid was sufficient to trigger a detectable light emission following calcium entry. The efficiency of the expression is correlated with the dose of plasmid injected. Intracytoplasmic injection of the plasmid always failed in photoprotein expression. Targeting of the apoprotein was demonstrated by immunolocalization under confocal microscopy. In our experimental conditions, the apoprotein was always localized at the animal pole above the nucleus. We never observed expression and targeting to the plasma membrane of the vegetal pole. WE suggest that such expression might be of great interest for the study of numerous problems of developmental biology, in which calcium-dependent pathways are involved.

  5. Single olfactory organ associated with prosencephalic malformation and cyclopia in a Xenopus laevis tadpole.

    PubMed

    Magrassi, L; Graziadei, P P

    1987-06-02

    A cyclops Xenopus laevis tadpole with a single olfactory organ is described. At a stage comparable to 48, the telencephalon was severely atrophic and only the region where the olfactory fibres terminated appeared to have the cytoarchitecture of the olfactory bulb. In this animal the central nervous system (CNS) appeared normally developed only posterior to the preoptic area. The hypothesis of a diencephalic origin of the region where the olfactory fibres terminated is discussed in the light of our previous results of olfactory placode transplantation. By analogy between this case and other malformations (cyclopia, holoprosencephaly) in higher vertebrates and humans, the need is emphasized for a more precise anatomical description of the olfactory input in related malformations.

  6. Effects of endocrine-disrupting contaminants on amphibian oogenesis: methoxychlor inhibits progesterone-induced maturation of Xenopus laevis oocytes in vitro.

    PubMed Central

    Pickford, D B; Morris, I D

    1999-01-01

    There is currently little evidence of pollution-induced endocrine dysfunction in amphibia, in spite of widespread concern over global declines in this ecologically diverse group. Data regarding the potential effects of endocrine-disrupting contaminants (EDCs) on reproductive function in amphibia are particularly lacking. We hypothesized that estrogenic EDCs may disrupt progesterone-induced oocyte maturation in the adult amphibian ovary, and tested this with an in vitro germinal vesicle breakdown assay using defolliculated oocytes from the African clawed frog, Xenopus laevis. While a variety of natural and synthetic estrogens and xenoestrogens were inactive in this system, the proestrogenic pesticide methoxychlor was a surprisingly potent inhibitor of progesterone-induced oocyte maturation (median inhibitive concentration, 72 nM). This inhibitory activity was specific to methoxychlor, rather than to its estrogenic contaminants or metabolites, and was not antagonized by the estrogen receptor antagonist ICI 182,780, suggesting that this activity is not estrogenic per se. The inhibitory activity of methoxychlor was dose dependent, reversible, and early acting. However, washout was unable to reverse the effect of short methoxychlor exposure, and methoxychlor did not competitively displace [3H]progesterone from a specific binding site in the oocyte plasma membrane. Therefore, methoxychlor may exert its action not directly at the site of progesterone action, but downstream on early events in maturational signaling, although the precise mechanism of action is unclear. The activity of methoxychlor in this system indicates that xenobiotics may exert endocrine-disrupting effects through interference with progestin-regulated processes and through mechanisms other than receptor antagonism. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:10090707

  7. Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization

    PubMed Central

    Bates, Ryan C.; Fees, Colby P.; Holland, William L.; Winger, Courtney C.; Batbayar, Khulan; Ancar, Rachel; Bergren, Todd; Petcoff, Douglas; Stith, Bradley J.

    2014-01-01

    We report a new step in the fertilization in Xenopus laevis which has been found to involve activation of Src tyrosine kinase to stimulate phospholipase C-γ (PLC- γ) which increases inositol 1,4,5-trisphosphate (IP3) to release intracellular calcium ([Ca]i). Molecular species analysis and mass measurements suggested that sperm activate phospholipase D (PLD) to elevate phosphatidic acid (PA). We now report that PA mass increased 2.7 fold by 1 minute after insemination and inhibition of PA production by two methods inhibited activation of Src and PLCγ, increased [Ca]i and other fertilization events. As compared to 14 other lipids, PA strongly bound Xenopus Src but not PLCγ. Addition of synthetic PA activated egg Src (an action requiring intact lipid rafts) and PLCγ as well as doubling the amount of PLCγ in rafts. In the absence of elevated [Ca]i, PA addition elevated IP3 mass to levels equivalent to that induced by sperm (but twice that achieved by calcium ionophore). Finally, PA induced [Ca]i release that was blocked by an IP3 receptor inhibitor. As only PLD1b message was detected, and Western blotting did not detect PLD2, we suggest that sperm activate PLD1b to elevate PA which then binds to and activates Src leading to PLCγ stimulation, IP3 elevation and [Ca]i release. Due to these and other studies, PA may also play a role in membrane fusion events such as sperm-egg fusion, cortical granule exocytosis, the elevation of phosphatidylinositol 4,5-bisphosphate and the large, late increase in sn 1,2-diacylglycerol in fertilization. PMID:24269904

  8. Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization.

    PubMed

    Bates, Ryan C; Fees, Colby P; Holland, William L; Winger, Courtney C; Batbayar, Khulan; Ancar, Rachel; Bergren, Todd; Petcoff, Douglas; Stith, Bradley J

    2014-02-01

    We report a new step in the fertilization in Xenopus laevis which has been found to involve activation of Src tyrosine kinase to stimulate phospholipase C-γ (PLC-γ) which increases inositol 1,4,5-trisphosphate (IP3) to release intracellular calcium ([Ca](i)). Molecular species analysis and mass measurements suggested that sperm activate phospholipase D (PLD) to elevate phosphatidic acid (PA). We now report that PA mass increased 2.7 fold by 1 min after insemination and inhibition of PA production by two methods inhibited activation of Src and PLCγ, increased [Ca](i) and other fertilization events. As compared to 14 other lipids, PA specifically bound Xenopus Src but not PLCγ. Addition of synthetic PA activated egg Src (an action requiring intact lipid rafts) and PLCγ as well as doubling the amount of PLCγ in rafts. In the absence of elevated [Ca](i), PA addition elevated IP3 mass to levels equivalent to that induced by sperm (but twice that achieved by calcium ionophore). Finally, PA induced [Ca](i) release that was blocked by an IP3 receptor inhibitor. As only PLD1b message was detected, and Western blotting did not detect PLD2, we suggest that sperm activate PLD1b to elevate PA which then binds to and activates Src leading to PLCγ stimulation, IP3 elevation and [Ca](i) release. Due to these and other studies, PA may also play a role in membrane fusion events such as sperm-egg fusion, cortical granule exocytosis, the elevation of phosphatidylinositol 4,5-bisphosphate and the large, late increase in sn 1,2-diacylglycerol in fertilization. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus.

    PubMed

    Inoue, Yasuhiro; Suzuki, Makoto; Watanabe, Tadashi; Yasue, Naoko; Tateo, Itsuki; Adachi, Taiji; Ueno, Naoto

    2016-12-01

    Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.

  10. Nucleotide sequence of the L1 ribosomal protein gene of Xenopus laevis: remarkable sequence homology among introns.

    PubMed Central

    Loreni, F; Ruberti, I; Bozzoni, I; Pierandrei-Amaldi, P; Amaldi, F

    1985-01-01

    Ribosomal protein L1 is encoded by two genes in Xenopus laevis. The comparison of two cDNA sequences shows that the two L1 gene copies (L1a and L1b) have diverged in many silent sites and very few substitution sites; moreover a small duplication occurred at the very end of the coding region of the L1b gene which thus codes for a product five amino acids longer than that coded by L1a. Quantitatively the divergence between the two L1 genes confirms that a whole genome duplication took place in Xenopus laevis approximately 30 million years ago. A genomic fragment containing one of the two L1 gene copies (L1a), with its nine introns and flanking regions, has been completely sequenced. The 5' end of this gene has been mapped within a 20-pyridimine stretch as already found for other vertebrate ribosomal protein genes. Four of the nine introns have a 60-nucleotide sequence with 80% homology; within this region some boxes, one of which is 16 nucleotides long, are 100% homologous among the four introns. This feature of L1a gene introns is interesting since we have previously shown that the activity of this gene is regulated at a post-transcriptional level and it involves the block of the normal splicing of some intron sequences. Images Fig. 3. Fig. 5. PMID:3841512

  11. Spatial distribution of the capacity to initiate a secondary embryo in the 32-cell embryo of Xenopus laevis.

    PubMed

    Kageura, H

    1990-12-01

    To examine the spatial distribution of dorsal determinants in the early embryos of Xenopus laevis, individual cells from the 32-cell embryo were transplanted into the same tier of the ventral side of a synchronous recipient. Their abilities to initiate a secondary embryo were measured by the incidence of secondary embryos and by the length of the secondary axis relative to the primary embryo. The ability was found to be localized in all cells (A1, B1, C1, and D1) of the dorsal most column and in the vegetal cells (C2 and D2) of the dorsolateral column. Transplanted C1 (subequatorial) cells caused the highest incidence of a secondary embryo and the average relative length of the secondary embryo was also greatest. Effectiveness decreased in the order: D1, B1, D2, C2, and A1. When these results were compared with Dale and Slack's fate map of the 32-cell embryo, it was concluded that the distribution of dorsal determinants is unique and does not coincide with the prospective regions for any tissues, though it is somewhat similar to the prospective region of dorsal endoderm or notochord. From these results it seems that dorsal determinants do not determine a particular tissue in an embryo but rather the "dorsal" region of an embryo.

  12. Xmsx-1 modifies mesodermal tissue pattern along dorsoventral axis in Xenopus laevis embryo.

    PubMed

    Maeda, R; Kobayashi, A; Sekine, R; Lin, J J; Kung, H; Maéno, M

    1997-07-01

    This study analyzes the expression and the function of Xenopus msx-1 (Xmsx-1) in embryos, in relation to the ventralizing activity of bone morphogenetic protein-4 (BMP-4). Expression of Xmsx-1 was increased in UV-treated ventralized embryos and decreased in LiCl-treated dorsalized embryos at the neurula stage (stage 14). Whole-mount in situ hybridization analysis showed that Xmsx-1 is expressed in marginal zone and animal pole areas, laterally and ventrally, but not dorsally, at mid-gastrula (stage 11) and late-gastrula (stage 13) stages. Injection of BMP-4 RNA, but not activin RNA, induced Xmsx-1 expression in the dorsal marginal zone at the early gastrula stage (stage 10+), and introduction of a dominant negative form of BMP-4 receptor RNA suppressed Xmsx-1 expression in animal cap and ventral marginal zone explants at stage 14. Thus, Xmsx-1 is a target gene specifically regulated by BMP-4 signaling. Embryos injected with Xmsx-1 RNA in dorsal blastomeres at the 4-cell stage exhibited a ventralized phenotype, with microcephaly and swollen abdomen. Histological observation and immunostaining revealed that these embryos had a large block of muscle tissue in the dorsal mesodermal area instead of notochord. On the basis of molecular marker analysis, however, the injection of Xmsx-1 RNA did not induce the expression of alpha-globin, nor reduce cardiac alpha-actin in dorsal marginal zone explants. Furthermore, a significant amount of alpha-actin was induced and alpha-globin was turned off in the ventral marginal zone explants injected with Xmsx-1. These results indicated that Xmsx-1 is a target gene of BMP-4 signaling, but possesses a distinct activity on dorsal-ventral patterning of mesodermal tissues.

  13. Sex chromosome differentiation and the W- and Z-specific loci in Xenopus laevis.

    PubMed

    Mawaribuchi, Shuuji; Takahashi, Shuji; Wada, Mikako; Uno, Yoshinobu; Matsuda, Yoichi; Kondo, Mariko; Fukui, Akimasa; Takamatsu, Nobuhiko; Taira, Masanori; Ito, Michihiko

    2017-06-15

    Genetic sex-determining systems in vertebrates include two basic types of heterogamety; XX (female)/XY (male) and ZZ (male)/ZW (female) types. The African clawed frog Xenopus laevis has a ZZ/ZW-type sex-determining system. In this species, we previously identified a W-specific sex (female)-determining gene dmw, and specified W and Z chromosomes, which could be morphologically indistinguishable (homomorphic). In addition to dmw, we most recently discovered two genes, named scanw and ccdc69w, and one gene, named capn5z in the W- and Z-specific regions, respectively. In this study, we revealed the detail structures of the W/Z-specific loci and genes. Sequence analysis indicated that there is almost no sequence similarity between 278kb W-specific and 83kb Z-specific sequences on chromosome 2Lq32-33, where both the transposable elements are abundant. Synteny and phylogenic analyses indicated that all the W/Z-specific genes might have emerged independently. Expression analysis demonstrated that scanw and ccdc69w or capn5z are expressed in early differentiating ZW gonads or testes, thereby suggesting possible roles in female or male development, respectively. Importantly, the sex-determining gene (SDG) dmw might have been generated after allotetraploidization, thereby indicating the construction of the new sex-determining system by dmw after species hybridization. Furthermore, by direct genotyping, we confirmed that diploid WW embryos developed into normal female frogs, which indicate that the Z-specific region is not essential for female development. Overall, these findings indicate that sex chromosome differentiation has started, although no heteromorphic sex chromosomes are evident yet, in X. laevis. Homologous recombination suppression might have promoted the accumulation of mutations and transposable elements, and enlarged the W/Z-specific regions, thereby resulting in differentiation of the W/Z chromosomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The cloning and characterization of a localized maternal transcript in Xenopus laevis whose zygotic counterpart is detected in the CNS.

    PubMed

    Reddy, B A; Kloc, M; Etkin, L D

    1992-12-01

    We have cloned a cDNA (xlan4) from a Xenopus laevis oocyte cDNA library whose cognate mRNA is localized in the animal pole region of full grown oocytes. The cDNA can be translated in vitro to produce a predicted size protein of 35 kDa and, is also expressed in E. coli as a fusion protein. The conceptual protein encoded by the xlan4 cDNA is 17.5% proline rich and possesses several PEST sequences found in proteins with short half-lives. The xlan4 mRNA is 2.6 kb and during early development its titer decreases until the neurula stage after which it begins to reaccumulate. Northern blots on dissected embryos and in situ hybridization revealed that the zygotic expression is limited to the dorsal axial structures consisting primarily of the CNS. UV irradiation of the vegetal pole region immediately following fertilization that produces ventralized embryos results in a loss of zygotic xlan4 expression. In the adult, xlan4 mRNA is limited primarily to the brain. The presence of this mRNA in animal pole region which contributes to the future neural cell lineages suggests that this gene product may function either in the specification of neural cell types or in a neural specific function.

  15. Staged Reimplantation of a Total Hip Prosthesis After Co-infection with Candida tropicalis and Staphylococcus haemolyticus: A Case Report.

    PubMed

    Sebastian, Sujeesh; Malhotra, Rajesh; Pande, Ashish; Gautam, Deepak; Xess, Immaculata; Dhawan, Benu

    2018-06-01

    Fungal prosthetic joint infection is a rare complication in total joint arthroplasty. There are no established guidelines for management of these infections. We present a case of a 53-year-old male with a hip joint prosthesis co-infected with Candida tropicalis and Staphylococcus haemolyticus. A two-stage exchange arthroplasty was performed. The patient underwent implant removal, debridement, irrigation with saline solution and application of cement spacer impregnated with vancomycin followed by aggressive antimicrobial treatment in first stage. Complete eradication of infection was demonstrated by negative culture of sonicated cement spacer fluid and negative 16S rRNA and 18S rRNA gene PCR of sonicate fluid, synovial fluid and periprosthetic tissue samples. He underwent second-stage revision hip arthroplasty after 9 months of the first stage. At the latest follow-up, there was no evidence of recurrence of infection. This case illustrates the utility of sonication of biomaterials and molecular techniques for microbiological confirmation of absence of infection in staged surgeries which is required for a successful outcome.

  16. On the mechanism of Candida tropicalis biofilm reduction by the combined action of naturally-occurring anthraquinones and blue light

    PubMed Central

    Agut, Montserrat; Comini, Laura R.; Cabrera, José L.; Paraje, María G.; Nonell, Santi

    2017-01-01

    The photoprocesses involved in the photo-induced Candida tropicalis biofilm reduction by two natural anthraquinones (AQs), rubiadin (1) and rubiadin-1-methyl ether (2), were examined. Production of singlet oxygen (1O2) and of superoxide radical anion (O2•−) was studied. Although it was not possible to detect the triplet state absorption of any AQs in biofilms, observation of 1O2 phosphorescence incubated with deuterated Phosphate Buffer Solution, indicated that this species is actually formed in biofilms. 2 was accumulated in the biofilm to a greater extent than 1 and produced measurable amounts of O2•− after 3h incubation in biofilms. The effect of reactive oxygen species scavengers on the photo-induced biofilm reduction showed that Tiron (a specific O2•− scavenger) is most effective than sodium azide (a specific 1O2 quencher). This suggests that O2•− formed by electron transfer quenching of the AQs excited states, is the main photosensitizing mechanism involved in the photo-induced antibiofilm activity, whereas 1O2 participation seems of lesser importance. PMID:28723923

  17. Assembly of viral particles in Xenopus oocytes: pre-surface-antigens regulate secretion of the hepatitis B viral surface envelope particle.

    PubMed Central

    Standring, D N; Ou, J H; Rutter, W J

    1986-01-01

    Infection with hepatitis B virus (HBV) is associated with the production of a viral envelope particle that contains membrane lipids, surface antigen (S), and two presurface-antigens (pre-S) comprised of the entire S moiety with approximately 55 (pre-S2) and 174 (pre-S1) additional NH2-terminal amino acids. We show here that Xenopus oocytes injected with synthetic S mRNA assemble and secrete characteristic 22-nm viral envelope particles. In contrast, pre-S1 and pre-S2 antigens are synthesized but not secreted. By coinjecting mRNAs, we found that synthesis of high levels of pre-S proteins specifically inhibits S antigen secretion. On the other hand, high levels of S synthesis can drive the secretion of small amounts of either pre-S antigen. These observations are consistent with a model for viral envelope assembly in which both S and pre-S proteins are incorporated into a multimeric particle, presumably via interactions between the S protein domains, while the pre-S amino-terminal moieties regulate the secretion of this structure. Our results indicate that Xenopus oocytes will provide a powerful system for studying the morphogenesis of simple structures of viral or cellular origin. Images PMID:3467308

  18. Urocortins of the South African clawed frog, Xenopus laevis: conservation of structure and function in tetrapod evolution.

    PubMed

    Boorse, Graham C; Crespi, Erica J; Dautzenberg, Frank M; Denver, Robert J

    2005-11-01

    Several corticotropin-releasing factor (CRF) family genes have been identified in vertebrates. Mammals have four paralogous genes that encode CRF or the urocortins 1, 2, and 3. In teleost fishes, a CRF, urotensin I (a fish ortholog of mammalian urocortin 1) and urocortin 3 have been identified, suggesting that at least three of the four mammalian lineages arose in a common ancestor of modern bony fishes and tetrapods. Here we report the isolation of genes orthologous to mammalian urocortin 1 and urocortin 3 from the South African clawed frog, Xenopus laevis. We characterize the pharmacology of the frog peptides and show that X. laevis urocortin 1 binds to and activates the frog CRF1 and CRF2 receptors at picomolar concentrations. Similar to mammals, frog urocortin 3 is selective for the CRF2 receptor. Only frog urocortin 1 binds to the CRF-binding protein, although with significantly lower affinity than frog CRF. Both urocortin genes are expressed in brain, pituitary, heart, and kidney of juvenile frogs; urocortin 1 is also expressed in skin. We also identified novel urocortin sequences in the genomes of pufferfish, zebrafish, chicken, and dog. Phylogenetic analysis supports the view that four paralogous lineages of CRF-like peptides arose before the divergence of the actinopterygian and sarcopterygian fishes. Our findings show that the functional relationships among CRF ligands and binding proteins, and their anorexigenic actions mediated by the CRF2 receptor, arose early in vertebrate evolution.

  19. A highly efficient, cell-free translation/translocation system prepared from Xenopus eggs.

    PubMed Central

    Matthews, G; Colman, A

    1991-01-01

    We describe the use of a Xenopus laevis egg extract for the in vitro translation and post translational modification of membrane and secretory proteins. This extract is capable of the translation and segregation into membranes of microgram per millilitre levels of protein from added mRNAs. Signal sequences of segregated proteins are efficiently cleaved and appropriate N-linked glycosylation patterns are produced. The extract also supports the quantitative assembly of murine immunoglobulin heavy and light chains into tetramers, and two events which take place beyond the endoplasmic reticulum, mannose 6 phosphorylation of murine cathepsin D and O-linked glycosylation of coronavirus E1 protein, also occur, but at reduced efficiency. The stability of the membranes allows protease protection studies and quantitative centrifugal fractionation of segregated and unsegregated proteins to be performed. Conditions for the use of stored extract have also been determined. Images PMID:1754376

  20. Conservation of a vitellogenin gene cluster in oviparous vertebrates and identification of its traces in the platypus genome.

    PubMed

    Babin, Patrick J

    2008-04-30

    Vitellogenin (Vtg) derivatives are the main egg-yolk proteins in most oviparous animal species, and are, therefore, key players in reproduction and embryo development. Conserved synteny and phylogeny were used to identify a Vtg gene cluster (VGC) that had been evolutionarily conserved in most oviparous vertebrates, encompassing the three linked Vtgs on chicken (Gallus gallus) chromosome 8. Tandem arranged homologs to chicken VtgII and VtgIII were retrieved in similar locations in Xenopus (Xenopus tropicalis) and homologous transcribed inverted genes were found in medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), pufferfish (Takifugu rubripes), and Tetrahodon (Tetraodon nigroviridis), while zebrafish (Danio rerio) Vtg3 may represent a residual trace of VGC in this genome. Vtgs were not conserved in the paralogous chromosomal segment attributed to a whole-genome duplication event in the ancestor of teleosts, while tandem duplicated forms have survived the recent African clawed frog (Xenopus laevis) tetraploidization. Orthologs to chicken VtgI were found in similar locations in teleost fish, as well as in the platypus (Ornithorhynchus anatinus). Additional Vtg fragments found suggested that VGC had been conserved in this egg-laying mammal. A low ratio of nonsynonymous-to-synonymous substitution values and the paucity of pseudogene features suggest functional platypus Vtg products. Genomic identification of Vtgs, Apob, and Mtp in this genome, together with maximum likelihood and Bayesian inference phylogenetic analyses, support the existence of these three large lipid transfer protein superfamily members at the base of the mammalian lineage. In conclusion, the establishment of a VGC in the vertebrate lineage predates the divergence of ray-finned fish and tetrapods and the shift in reproductive and developmental strategy observed between prototherians and therians may be associated with its loss, as shown by its absence from the genomic resources currently

  1. Translational control by cytoplasmic polyadenylation during Xenopus oocyte maturation: characterization of cis and trans elements and regulation by cyclin/MPF.

    PubMed

    McGrew, L L; Richter, J D

    1990-11-01

    The expression of certain maternal mRNAs during oocyte maturation is regulated by cytoplasmic polyadenylation. To understand this process, we have focused on a maternal mRNA from Xenopus termed G10. This mRNA is stored in the cytoplasm of stage 6 oocytes until maturation when the process of poly(A) elongation stimulates its translation. Deletion analysis of the 3' untranslated region of G10 RNA has revealed that two sequence elements, UUUUUUAU and AAUAAA were both necessary and sufficient for polyadenylation and polysomal recruitment. In this communication, we have defined the U-rich region that is optimal for polyadenylation as UUUUUUAUAAAG, henceforth referred to as the cytoplasmic polyadenylation element (CPE). We have also identified unique sequence requirements in the 3' terminus of the RNA that can modulate polyadenylation even in the presence of wild-type cis elements. A time course of cytoplasmic polyadenylation in vivo shows that it is an early event of maturation and that it requires protein synthesis within the first 15 min of exposure to progesterone. MPF and cyclin can both induce polyadenylation but, at least with respect to MPF, cannot obviate the requirement for protein synthesis. To identify factors that may be responsible for maturation-specific polyadenylation, we employed extracts from oocytes and unfertilized eggs, the latter of which correctly polyadenylates exogenously added RNA. UV crosslinking demonstrated that an 82 kd protein binds to the U-rich CPE in egg, but not oocyte, extracts. The data suggest that progesterone, either in addition to or through MPF/cyclin, induces the synthesis of a factor during very early maturation that stimulates polyadenylation.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Effects of 17α-trenbolone and melengestrol acetate on Xenopus laevis growth, development, and survival.

    PubMed

    Finch, Bryson E; Blackwell, Brett R; Faust, Derek R; Wooten, Kimberly J; Maul, Jonathan D; Cox, Stephen B; Smith, Philip N

    2013-02-01

    The synthetic growth-promoting hormones trenbolone and melengestrol acetate have been detected in the environment near beef cattle feedlots and are reportedly transported via wind-borne particulate matter. Therefore, movement of synthetic hormones from beef cattle feedlots to water bodies via particulate matter is possible. Our objective was to evaluate potential effects of 17α-trenbolone (17α-TB), melengestrol acetate (MGA), and combinations of both on growth, development, and survival of Xenopus laevis larvae. On post-hatch day 2 (stage 33/34), X. laevis larvae were exposed to three nominal concentrations of 17α-TB (10, 100, and 500 ng/L), MGA (1, 10, and 100 ng/L), a combination of both (1/10, 10/100, and 100/500 ng/L MGA/17α-TB), frog embryo teratogenesis assay-Xenopus medium, or a solvent control. Significant increases in all X. laevis growth metrics were observed among larvae in the 1 ng/L MGA + 10 ng/L 17α-TB and 10 ng/L MGA + 100 ng/L 17α-TB treatments. Stage of development was increased among larvae in the 1 ng/L MGA + 10 ng/L 17α-TB treatment group and significantly decreased among those in the 500 ng/L 17α-TB treatment. Total body mass and snout-vent length of X. laevis larvae were significantly reduced in the 100 ng/L MGA and 100 ng/L MGA + 500 ng/L 17α-TB treatment groups. Larvae exposed to 500 ng/L 17α-TB had decreased total body mass, snout-vent length, and total length. In general, growth measurements decreased with increasing concentration of MGA, 17α-TB, or a combination of both. Survival among all treatments was not significantly different from controls. Amphibians exposed to MGA and 17α-TB in the environment may experience alterations in growth and development.

  3. Polyunsaturated fatty acids are potent openers of human M-channels expressed in Xenopus laevis oocytes.

    PubMed

    Liin, S I; Karlsson, U; Bentzen, B H; Schmitt, N; Elinder, F

    2016-09-01

    Polyunsaturated fatty acids have been reported to reduce neuronal excitability, in part by promoting inactivation of voltage-gated sodium and calcium channels. Effects on neuronal potassium channels are less explored and experimental data ambiguous. The aim of this study was to investigate anti-excitable effects of polyunsaturated fatty acids on the neuronal M-channel, important for setting the resting membrane potential in hippocampal and dorsal root ganglion neurones. Effects of fatty acids and fatty acid analogues on mouse dorsal root ganglion neurones and on the human KV 7.2/3 channel expressed in Xenopus laevis oocytes were studied using electrophysiology. Extracellular application of physiologically relevant concentrations of the polyunsaturated fatty acid docosahexaenoic acid hyperpolarized the resting membrane potential (-2.4 mV by 30 μm) and increased the threshold current to evoke action potentials in dorsal root ganglion neurones. The polyunsaturated fatty acids docosahexaenoic acid, α-linolenic acid and eicosapentaenoic acid facilitated opening of the human M-channel, comprised of the heteromeric human KV 7.2/3 channel expressed in Xenopus oocytes, by shifting the conductance-vs.-voltage curve towards more negative voltages (by -7.4 to -11.3 mV by 70 μm). Uncharged docosahexaenoic acid methyl ester and monounsaturated oleic acid did not facilitate opening of the human KV 7.2/3 channel. These findings suggest that circulating polyunsaturated fatty acids, with a minimum requirement of multiple double bonds and a charged carboxyl group, dampen excitability by opening neuronal M-channels. Collectively, our data bring light to the molecular targets of polyunsaturated fatty acids and thus a possible mechanism by which polyunsaturated fatty acids reduce neuronal excitability. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  4. Differences in receptor-evoked membrane electrical responses in native and mRNA-injected Xenopus oocytes.

    PubMed

    Oron, Y; Gillo, B; Gershengorn, M C

    1988-06-01

    Xenopus laevis oocytes are giant cells suitable for studies of plasma membrane receptors and signal transduction pathways because of their capacity to express receptors after injection of heterologous mRNA. We studied depolarizing chloride currents evoked by acetylcholine (AcCho) in native oocytes ("intrinsic AcCho response"), by thyrotropin-releasing hormone (TRH) in oocytes injected with pituitary (GH3) cell RNA ("acquired TRH response"), and by AcCho in oocytes injected with rat brain RNA ("acquired AcCho response"). We found differences in the latencies and patterns of these responses and in the responsiveness to these agonists when applied to the animal or vegetal hemisphere, even though all of the responses are mediated by the same signal transduction pathway. The common intrinsic response to AcCho is characterized by minimal latency (0.86 +/- 0.05 sec), a rapid, transient depolarization followed by a distinct prolonged depolarization, and larger responses obtained after AcCho application at the vegetal rather than the animal hemisphere. By contrast, the acquired responses to TRH and AcCho are characterized by much longer latencies, 9.3 +/- 1.0 and 5.5 +/- 0.8 sec, respectively, and large rapid depolarizations followed by less distinct prolonged depolarizations. The responsiveness on the two hemispheres to TRH and AcCho in mRNA-injected oocytes is opposite to that for the common intrinsic AcCho response in that there is a much greater response when agonist is applied at the animal rather than the vegetal hemisphere. We suggest that the differences in these responses are caused by differences in the intrinsic properties of these receptors. Because different receptors appear to be segregated in the same oocyte in distinct localizations, Xenopus oocytes may be an important model system in which to study receptor sorting in polarized cells.

  5. In vivo Assessment and Potential Diagnosis of Xenobiotics that Perturb the Thyroid Pathway: Proteomic Analysis of Xenopus laevis Brain Tissue following Exposure to Model T4 Inhibitors

    EPA Science Inventory

    As part of a multi-endpoint systems approach to develop comprehensive methods for assessing endocrine stressors in vertebrates, differential protein profiling was used to investigate expression profiles in the brain of an amphibian model (Xenopus laevis) following in vivo exposur...

  6. Modulation of GABA receptors expressed in Xenopus oocytes by 13-L-hydroxylinoleic acid and food additives.

    PubMed

    Aoshima, H; Tenpaku, Y

    1997-12-01

    To study the effects of 13-L-hydroxylinoleic acid (LOH) and food additives on gamma-aminobutyric acid (GABA) receptors, ionotropic GABA receptors were expressed in Xenopus oocytes by injecting mRNAs prepared from rat whole brain. LOH, which was prepared by reduction of 13-L-hydroperoxylinoleic acid (LOOH), inhibited the response of GABA receptors in the presence of high concentrations of GABA. LOH also inhibited nicotinic acetylcholine, glycine, and kainate receptors, while it had little effect on NMDA receptors expressed in Xenopus oocytes. However, LOH potentiated the response of GABA receptors as well as LOOH in the presence of low concentrations of GABA, possibly increasing the affinity of GABA for the receptors, while linoleic acid did not. Since some modification of the compounds seemed to change their effects on GABA receptors, the responses of GABA receptors elicited by 10 microM GABA were measured in the presence of compounds with various kinds of functional groups or the structural isomers of pentanol. Potentiation of GABA receptors depended strongly on the species of functional groups and also depended on the structure of the isomers. Then effects of various kinds of food additives on GABA receptors were also examined; perfumes such as alcohols or esters potentiated the responses strongly, while hexylamine, nicotinamide, or caffeine inhibited the responses, mainly in a competitive manner, and vanillin inhibited the responses noncompetitively. These results suggest the possibility that production of LOOH and LOH, or intake of much of some food additives, modulates the neural transmission in the brain, especially through ionotropic GABA receptors and changes the frame of the human mind, as alcohol or tobacco does.

  7. Reactivation of larval keratin gene (krt62.L) in blastema epithelium during Xenopus froglet limb regeneration.

    PubMed

    Satoh, Akira; Mitogawa, Kazumasa; Saito, Nanami; Suzuki, Miyuki; Suzuki, Ken-Ichi T; Ochi, Haruki; Makanae, Aki

    2017-12-15

    Limb regeneration is considered a form of limb redevelopment because of the molecular and morphological similarities. Forming a regeneration blastema is, in essence, creating a developing limb bud in an adult body. This reactivation of a developmental process in a mature body is worth studying. Xenopus laevis has a biphasic life cycle that involves distinct larval and adult stages. These distinct developmental stages are useful for investigating the reactivation of developmental processes in post-metamorphic frogs (froglets). In this study, we focused on the re-expression of a larval gene (krt62.L) during Xenopus froglet limb regeneration. Recently renamed krt62.L, this gene was known as the larval keratin (xlk) gene, which is specific to larval-tadpole stages. During limb regeneration in a froglet, krt62.L was re-expressed in a basal layer of blastema epithelium, where adult-specific keratin (Krt12.6.S) expression was also observable. Nerves produce important regulatory factors for amphibian limb regeneration, and also play a role in blastema formation and maintenance. The effect of nerve function on krt62.L expression could be seen in the maintenance of krt62.L expression, but not in its induction. When an epidermis-stripped limb bud was grafted in a froglet blastema, the grafted limb bud could reach the digit-forming stage. This suggests that krt62.L-positive froglet blastema epithelium is able to support the limb development process. These findings imply that the developmental process is locally reactivated in an postmetamorphic body during limb regeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Flanking genes of an essential gene give information about the evolution of metazoa.

    PubMed

    Zimek, Alexander; Weber, Klaus

    2011-04-01

    We collected as much information as possible on new lamin genes and their flanking genes. The number of lamin genes varies from 1 to 4 depending more or less on the phylogenetic position of the species. Strong genome drift is recognised by fewer and unusually placed introns and a change in flanking genes. This applies to the nematode Caenorhabditis elegans, the insect Drosophila melanogaster, the urochordate Ciona intestinalis, the annelid Capitella teleta and the planaria Schmidtea mediterranea. In contrast stable genomes show astonishing conservation of the flanking genes. These are identical in the sea anemone Nematostella vectensis and the cephalochordate Branchiostoma floridae lamin B1 gene. Even in the lamin B1 genes from Xenopus tropicalis and man one of the flanking genes is conserved. Finally our analysis forms the basis for a molecular analysis of metazoan phylogeny. Copyright © 2010 Elsevier GmbH. All rights reserved.

  9. Cell-fate determination by ubiquitin-dependent regulation of translation.

    PubMed

    Werner, Achim; Iwasaki, Shintaro; McGourty, Colleen A; Medina-Ruiz, Sofia; Teerikorpi, Nia; Fedrigo, Indro; Ingolia, Nicholas T; Rape, Michael

    2015-09-24

    Metazoan development depends on the accurate execution of differentiation programs that allow pluripotent stem cells to adopt specific fates. Differentiation requires changes to chromatin architecture and transcriptional networks, yet whether other regulatory events support cell-fate determination is less well understood. Here we identify the ubiquitin ligase CUL3 in complex with its vertebrate-specific substrate adaptor KBTBD8 (CUL3(KBTBD8)) as an essential regulator of human and Xenopus tropicalis neural crest specification. CUL3(KBTBD8) monoubiquitylates NOLC1 and its paralogue TCOF1, the mutation of which underlies the neurocristopathy Treacher Collins syndrome. Ubiquitylation drives formation of a TCOF1-NOLC1 platform that connects RNA polymerase I with ribosome modification enzymes and remodels the translational program of differentiating cells in favour of neural crest specification. We conclude that ubiquitin-dependent regulation of translation is an important feature of cell-fate determination.

  10. Endotoxin Exposure during Sensitization to Blomia tropicalis Allergens Shifts TH2 Immunity Towards a TH17-Mediated Airway Neutrophilic Inflammation: Role of TLR4 and TLR2

    PubMed Central

    Barboza, Renato; Câmara, Niels Olsen Saraiva; Gomes, Eliane; Sá-Nunes, Anderson; Florsheim, Esther; Mirotti, Luciana; Labrada, Alexis; Alcântara-Neves, Neuza Maria; Russo, Momtchilo

    2013-01-01

    Experimental evidence and epidemiological studies indicate that exposure to endotoxin lipopolysaccharide (eLPS) or other TLR agonists prevent asthma. We have previously shown in the OVA-model of asthma that eLPS administration during alum-based allergen sensitization blocked the development of lung TH2 immune responses via MyD88 pathway and IL-12/IFN-γ axis. In the present work we determined the effect of eLPS exposure during sensitization to a natural airborne allergen extract derived from the house dust mite Blomia tropicalis (Bt). Mice were subcutaneously sensitized with Bt allergens co-adsorbed onto alum with or without eLPS and challenged twice intranasally with Bt. Cellular and molecular parameters of allergic lung inflammation were evaluated 24 h after the last Bt challenge. Exposure to eLPS but not to ultrapure LPS (upLPS) preparation during sensitization to Bt allergens decreased the influx of eosinophils and increased the influx of neutrophils to the airways. Inhibition of airway eosinophilia was not observed in IFN-γdeficient mice while airway neutrophilia was not observed in IL-17RA-deficient mice as well in mice lacking MyD88, CD14, TLR4 and, surprisingly, TLR2 molecules. Notably, exposure to a synthetic TLR2 agonist (PamCSK4) also induced airway neutrophilia that was dependent on TLR2 and TLR4 molecules. In the OVA model, exposure to eLPS or PamCSK4 suppressed OVA-induced airway inflammation. Our results suggest that B. tropicalis allergens engage TLR4 that potentiates TLR2 signaling. This dual TLR activation during sensitization results in airway neutrophilic inflammation associated with increased frequency of lung TH17 cells. Our work highlight the complex interplay between bacterial products, house dust mite allergens and TLR signaling in the induction of different phenotypes of airway inflammation. PMID:23805294

  11. Directional migration of leading-edge mesoderm generates physical forces: Implication in Xenopus notochord formation during gastrulation.

    PubMed

    Hara, Yusuke; Nagayama, Kazuaki; Yamamoto, Takamasa S; Matsumoto, Takeo; Suzuki, Makoto; Ueno, Naoto

    2013-10-15

    Gastrulation is a dynamic tissue-remodeling process occurring during early development and fundamental to the later organogenesis. It involves both chemical signals and physical factors. Although much is known about the molecular pathways involved, the roles of physical forces in regulating cellular behavior and tissue remodeling during gastrulation have just begun to be explored. Here, we characterized the force generated by the leading edge mesoderm (LEM) that migrates preceding axial mesoderm (AM), and investigated the contribution of LEM during Xenopus gastrulation. First, we constructed an assay system using micro-needle which could measure physical forces generated by the anterior migration of LEM, and estimated the absolute magnitude of the force to be 20-80nN. Second, laser ablation experiments showed that LEM could affect the force distribution in the AM (i.e. LEM adds stretch force on axial mesoderm along anterior-posterior axis). Third, migrating LEM was found to be necessary for the proper gastrulation cell movements and the establishment of organized notochord structure; a reduction of LEM migratory activity resulted in the disruption of mediolateral cell orientation and convergence in AM. Finally, we found that LEM migration cooperates with Wnt/PCP to form proper notochord. These results suggest that the force generated by the directional migration of LEM is transmitted to AM and assists the tissue organization of notochord in vivo independently of the regulation by Wnt/PCP. We propose that the LEM may have a mechanical role in aiding the AM elongation through the rearrangement of force distribution in the dorsal marginal zone. © 2013 Elsevier Inc. All rights reserved.

  12. Potential ecotoxic effects of polychlorinated biphenyls on Xenopus laevis.

    PubMed

    Qin, Zhan-Fen; Zhou, Jing-Ming; Cong, Lin; Xu, Xiao-Bai

    2005-10-01

    We examined potential ecotoxic effects of polychlorinated biphenyl (PCB)3, PCB5, Aroclor 1254, and Aroclor 1242 on Xenopus laevis. Tadpoles were exposed to PCBs from stage 46/47 (system of Nieuwkoop and Faber) to the completion of metamorphosis. We demonstrated, to our knowledge for the first time, forelimb malformations caused by PCBs (malformation rate, > 70%). The malformed forelimbs were fixed in the adduction-backward rotation position and could not move. Therefore, malformed male frogs were destined to have no offspring, because they could not grasp the females with their forelimbs to mate. Alcian blue-alizarin red double-staining indicated that the forelimb malformation resulted from the shoulder abnormality. Compared with the normal shoulder joint, the proximal humerus with the humerus inter-rotated 90 degrees in the abnormal shoulder joint. Moreover, testes from more than a third of male frogs with exposed to PCBs exhibited feminization to different degrees at gross morphology and histology, with fewer or abnormal spermatogonia and oocytes. Gonadal abnormalities would lead directly to reproductive dysfunction and population decline. These results suggest that PCBs have potentially ecotoxic effects on amphibian populations. We infer that PCBs could play roles in amphibian malformations and population declines, at least at sites that are polluted heavily with PCBs.

  13. Evaluation and Refinement of Euthanasia Methods for Xenopus laevis

    PubMed Central

    Torreilles, Stéphanie L; McClure, Diane E; Green, Sherril L

    2009-01-01

    The most common method of euthanasia for Xenopus species is by immersion in tricaine methane sulfonate solution (MS222). A wide range of doses of MS222 (0.5 to 5 g/L) have been recommended, but few reports describe dose–response testing, the time to loss of consciousness, or the reliability of euthanasia. The objective of this study is to evaluate the efficacy of immersing individual and groups of frogs in MS222 at concentrations ranging from 1 to 5 g/L for euthanasia and of 3 less-common methods: intracoelomic injection of MS222, intracoelomic injection of sodium pentobarbital with phenytoin, and ventral cutaneous application of benzocaine gel. Our results indicate that immersion for at least 1 h in a 5-g/L buffered solution of MS222, intracoelomic injection of 1100 mg/kg sodium pentobarbital with sodium phenytoin (equivalent to 0.3 mL solution per frog), or ventral cutaneous application of 182 mg/kg benzocaine (equivalent to a 2 cm × 1 mm of 20% benzocaine gel) is necessary to euthanize adult X. laevis and ensure complete cessation of the heartbeat without recovery. These doses are considerably higher than those previously recommended for this species. PMID:19807972

  14. Nucleosome Translational Position, Not Histone Acetylation, Determines TFIIIA Binding to Nucleosomal Xenopus laevis 5S rRNA Genes

    PubMed Central

    Howe, LeAnn; Ausió, Juan

    1998-01-01

    We sought to study the binding constraints placed on the nine-zinc-finger protein transcription factor IIIA (TFIIIA) by a histone octamer. To this end, five overlapping fragments of the Xenopus laevis oocyte and somatic 5S rRNA genes were reconstituted into nucleosomes, and it was subsequently shown that nucleosome translational positioning is a major determinant of the binding of TFIIIA to the 5S rRNA genes. Furthermore, it was found that histone acetylation cannot override the TFIIIA binding constraints imposed by unfavorable translational positions. PMID:9488430

  15. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2

    PubMed Central

    Petry, Sabine; Groen, Aaron C.; Ishihara, Keisuke; Mitchison, Timothy J.; Vale, Ronald D.

    2013-01-01

    Summary The microtubules that comprise mitotic spindles in animal cells are nucleated at centrosomes and by spindle assembly factors that are activated in the vicinity of chromatin. Indirect evidence also has suggested that microtubules might be nucleated from pre-existing microtubules throughout the spindle, but this process has not been observed directly. Here, we demonstrate microtubule nucleation from the sides of existing microtubules in meiotic Xenopus egg extracts. Daughter microtubules grow at a low branch angle and with the same polarity as mother filaments. Branching microtubule nucleation requires gamma-tubulin and augmin and is stimulated by GTP-bound Ran and its effector TPX2, factors previously implicated in chromatin-stimulated nucleation. Because of the rapid amplification of microtubule numbers and the preservation of microtubule polarity, microtubule-dependent microtubule nucleation is well suited for spindle assembly and maintenance. PMID:23415226

  16. NSF- and SNARE-mediated membrane fusion is required for nuclear envelope formation and completion of nuclear pore complex assembly in Xenopus laevis egg extracts.

    PubMed

    Baur, Tina; Ramadan, Kristijan; Schlundt, Andreas; Kartenbeck, Jürgen; Meyer, Hemmo H

    2007-08-15

    Despite the progress in understanding nuclear envelope (NE) reformation after mitosis, it has remained unclear what drives the required membrane fusion and how exactly this is coordinated with nuclear pore complex (NPC) assembly. Here, we show that, like other intracellular fusion reactions, NE fusion in Xenopus laevis egg extracts is mediated by SNARE proteins that require activation by NSF. Antibodies against Xenopus NSF, depletion of NSF or the dominant-negative NSF(E329Q) variant specifically inhibited NE formation. Staging experiments further revealed that NSF was required until sealing of the envelope was completed. Moreover, excess exogenous alpha-SNAP that blocks SNARE function prevented membrane fusion and caused accumulation of non-flattened vesicles on the chromatin surface. Under these conditions, the nucleoporins Nup107 and gp210 were fully recruited, whereas assembly of FxFG-repeat-containing nucleoporins was blocked. Together, we define NSF- and SNARE-mediated membrane fusion events as essential steps during NE formation downstream of Nup107 recruitment, and upstream of membrane flattening and completion of NPC assembly.

  17. Tissue-tissue interaction-triggered calcium elevation is required for cell polarization during Xenopus gastrulation.

    PubMed

    Shindo, Asako; Hara, Yusuke; Yamamoto, Takamasa S; Ohkura, Masamichi; Nakai, Junichi; Ueno, Naoto

    2010-02-02

    The establishment of cell polarity is crucial for embryonic cells to acquire their proper morphologies and functions, because cell alignment and intracellular events are coordinated in tissues during embryogenesis according to the cell polarity. Although much is known about the molecules involved in cell polarization, the direct trigger of the process remains largely obscure. We previously demonstrated that the tissue boundary between the chordamesoderm and lateral mesoderm of Xenopus laevis is important for chordamesodermal cell polarity. Here, we examined the intracellular calcium dynamics during boundary formation between two different tissues. In a combination culture of nodal-induced chordamesodermal explants and a heterogeneous tissue, such as ectoderm or lateral mesoderm, the chordamesodermal cells near the boundary frequently displayed intracellular calcium elevation; this frequency was significantly less when homogeneous explants were used. Inhibition of the intracellular calcium elevation blocked cell polarization in the chordamesodermal explants. We also observed frequent calcium waves near the boundary of the dorsal marginal zone (DMZ) dissected from an early gastrula-stage embryo. Optical sectioning revealed that where heterogeneous explants touched, the chordamesodermal surface formed a wedge with the narrow end tucked under the heterogeneous explant. No such configuration was seen between homogeneous explants. When physical force was exerted against a chordamesodermal explant with a glass needle at an angle similar to that created in the explant, or migrating chordamesodermal cells crawled beneath a silicone block, intracellular calcium elevation was frequent and cell polarization was induced. Finally, we demonstrated that a purinergic receptor, which is implicated in mechano-sensing, is required for such frequent calcium elevation in chordamesoderm and for cell polarization. This study raises the possibility that tissue-tissue interaction generates

  18. Atmospheric pressure plasma accelerates tail regeneration in tadpoles Xenopus laevis

    NASA Astrophysics Data System (ADS)

    Rivie, A.; Martus, K.; Menon, J.

    2017-08-01

    Atmospheric pressure plasma is a partially ionized gas composed of neutral and charged particles, including electrons and ions, as well as reactive oxygen species (ROS). Recently, it is utilized as possible therapy in oncology, sterilization, skin diseases, wound healing and tissue regeneration. In this study we focused on effect of plasma exposure on tail regeneration of tadpoles, Xenopus leavis with special emphasis on role of ROS, antioxidant defenses and morphological features of the regenerate. When amputated region of the tail was exposed to the helium plasma it resulted in a faster rate of growth, elevated ROS and increase in antioxidant enzymes in the regenerate compared to that of untreated control. An increase in nitric oxide (free radical) as well as activity of nitric oxide synthase(s) were observed once the cells of the regeneration blastema - a mass of proliferating cells are ready for differentiation. Microscopically the cells of the regenerate of plasma treated tadpoles show altered morphology and characteristics of cellular hypoxia and oxidative stress. We summarize that plasma exposure accelerates the dynamics of wound healing and tail regeneration through its effects on cell proliferation and differentiation as well as angiogenesis mediated through ROS signaling.

  19. Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis

    PubMed Central

    Pai, Vaibhav P.; Aw, Sherry; Shomrat, Tal; Lemire, Joan M.; Levin, Michael

    2012-01-01

    Uncovering the molecular mechanisms of eye development is crucial for understanding the embryonic morphogenesis of complex structures, as well as for the establishment of novel biomedical approaches to address birth defects and injuries of the visual system. Here, we characterize change in transmembrane voltage potential (Vmem) as a novel biophysical signal for eye induction in Xenopus laevis. During normal embryogenesis, a striking hyperpolarization demarcates a specific cluster of cells in the anterior neural field. Depolarizing the dorsal lineages in which these cells reside results in malformed eyes. Manipulating Vmem of non-eye cells induces well-formed ectopic eyes that are morphologically and histologically similar to endogenous eyes. Remarkably, such ectopic eyes can be induced far outside the anterior neural field. A Ca2+ channel-dependent pathway transduces the Vmem signal and regulates patterning of eye field transcription factors. These data reveal a new, instructive role for membrane voltage during embryogenesis and demonstrate that Vmem is a crucial upstream signal in eye development. Learning to control bioelectric initiators of organogenesis offers significant insight into birth defects that affect the eye and might have significant implications for regenerative approaches to ocular diseases. PMID:22159581

  20. Structure of the SANT domain from the Xenopus chromatin remodeling factor ISWI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horton, John R.; Elgar, Stuart J.; Khan, Seema I.

    2008-09-17

    The SANT (Swi3, Ada2, N-Cor, and TFIIIB) module was first described as a putative DNA-binding domain with strong similarity to the helix-turn-helix DNA binding domain of Myb-related proteins. The X-ray structure of the C-terminal one third portion of the ATPase ISWI of Drosophila melangoaster, containing both SANT and SLIDE (SANT-Like ISWI Domain), confirmed the overall helix-turn-helix structural architecture of SANT as well as SLIDE. However, the DNA-contacting residues in Myb are not conserved in SANT and the structurally corresponding residues in the ISWI SANT domain are acidic, and therefore incompatible with DNA interaction. Recent studies suggested that SANT domains mightmore » be a histone-tail-binding module, including the DNA binding SANT domain of c-Myb. Here they present the X-ray structure of Xenopus laevis ISWI SANT domain, derived from limited proteolysis of a C-terminal fragment of ISWI protein.« less

  1. Antioxidant metabolism in Xenopus laevis embryos is affected by stratospheric balloon flight.

    PubMed

    Rizzo, Angela M; Rossi, Federica; Zava, Stefania; Montorfano, Gigliola; Adorni, Laura; Cotronei, Vittorio; Zanini, Alba; Berra, Bruno

    2007-07-01

    To test the effects of low levels of radiation from space on living organisms, we flew Xenopus laevis embryos at different stages of development on a stratospheric balloon (BI.R.BA mission). After recovery, different parameters were analyzed to assess the effects of flight, with particular regard to oxidative stress damage. Because of failed temperature control during flight, the flight shielded embryos (FC) could not be used for biochemical or morphological comparisons. In contrast, the incubation conditions (i.e. temperature, containers, volumes) for the flight embryos (F) were parallel to those for the ground controls. Mortality data show that younger embryos (16 h) flown on the balloon (F) are more sensitive to radiation exposure than older ones (40 h and 6 days). Exposure during flight lowered the antioxidant potential in all embryos, particularly older ones. These preliminary data demonstrate that flight on a stratospheric balloon might affect antioxidant metabolism, though it is not yet possible to correlate these results with low radiation exposure during flight.

  2. Drosophila Shaking-B protein forms gap junctions in paired Xenopus oocytes.

    PubMed

    Phelan, P; Stebbings, L A; Baines, R A; Bacon, J P; Davies, J A; Ford, C

    1998-01-08

    In most multicellular organisms direct cell-cell communication is mediated by the intercellular channels of gap junctions. These channels allow the exchange of ions and molecules that are believed to be essential for cell signalling during development and in some differentiated tissues. Proteins called connexins, which are products of a multigene family, are the structural components of vertebrate gap junctions. Surprisingly, molecular homologues of the connexins have not been described in any invertebrate. A separate gene family, which includes the Drosophila genes shaking-B and l(1)ogre, and the Caenorhabditis elegans genes unc-7 and eat-5, encodes transmembrane proteins with a predicted structure similar to that of the connexins. shaking-B and eat-5 are required for the formation of functional gap junctions. To test directly whether Shaking-B is a channel protein, we expressed it in paired Xenopus oocytes. Here we show that Shaking-B localizes to the membrane, and that its presence induces the formation of functional intercellular channels. To our knowledge, this is the first structural component of an invertebrate gap junction to be characterized.

  3. Bipolarization and Poleward Flux Correlate during Xenopus Extract Spindle AssemblyV⃞

    PubMed Central

    Mitchison, T.J.; Maddox, P.; Groen, A.; Cameron, L.; Perlman, Z.; Ohi, R.; Desai, A.; Salmon, E.D.; Kapoor, T.M.

    2004-01-01

    We investigated the mechanism by which meiotic spindles become bipolar and the correlation between bipolarity and poleward flux, using Xenopus egg extracts. By speckle microscopy and computational alignment, we find that monopolar sperm asters do not show evidence for flux, partially contradicting previous work. We account for the discrepancy by describing spontaneous bipolarization of sperm asters that was missed previously. During spontaneous bipolarization, onset of flux correlated with onset of bipolarity, implying that antiparallel microtubule organization may be required for flux. Using a probe for TPX2 in addition to tubulin, we describe two pathways that lead to spontaneous bipolarization, new pole assembly near chromatin, and pole splitting. By inhibiting the Ran pathway with excess importin-alpha, we establish a role for chromatin-derived, antiparallel overlap bundles in generating the sliding force for flux, and we examine these bundles by electron microscopy. Our results highlight the importance of two processes, chromatin-initiated microtubule nucleation, and sliding forces generated between antiparallel microtubules, in self-organization of spindle bipolarity and poleward flux. PMID:15385629

  4. Isolation of Xenopus frizzled-10A and frizzled-10B genomic clones and their expression in adult tissues and embryos.

    PubMed

    Moriwaki, J; Kajita, E; Kirikoshi, H; Koike, J; Sagara, N; Yasuhiko, Y; Saitoh, T; Hirai, M; Katoh, M; Shiokawa, K

    2000-11-19

    Frizzled genes, encoding WNT receptors, play key roles in cell fate determination. Here, we isolated two Xenopus frizzled genes (Xfz10A and Xfz10B), probably reflecting pseudotetraploidy in Xenopus. Xfz10A (586 amino acids) and Xfz10B (580 amino acids) both encoded by a single exon, consisted of the N-terminal cysteine-rich domain, seven transmembrane domains, and the C-terminal Ser/Thr-X-Val motif. Xfz10A and Xfz10B were 97.0% identical at the amino acid level, and Xfz10B was 100% identical to previously reported Xfz9, yet Xfz10A was 85.3% and 62.4% identical to FZD10 and FZD9, respectively. Xfz10 mRNA appeared as 3.4 kb in adult tissues and embryos. RT-PCR analyses revealed the expression of more Xfz10A mRNA in stomach, kidney, eye, skeletal muscle, and skin, and more Xfz10B mRNA in heart and ovary, but in embryos, two mRNAs were equally expressed from the blastula stage with their peak expression at the late gastrula stage. The main site of Xfz10 mRNA expression was neural fold at the neurula stage and the dorsal region of midbrain, hindbrain, and spinal cord at the tadpole stage. These results suggest that Xfz10 has important roles in neural tissue formation. Copyright 2000 Academic Press.

  5. Evaluation of microtransplantation of rat brain neurolemma into Xenopus laevis oocytes as a technique to study the effect of neurotoxicants on endogenous voltage-sensitive ion channels.

    PubMed

    Murenzi, Edwin; Toltin, Abigail C; Symington, Steven B; Morgan, Molly M; Clark, John M

    2017-05-01

    Microtransplantation of mammalian brain neurolemma into the plasma membrane of Xenopus oocytes is used to study ion channels in their native form as they appear in the central nervous system. Use of microtransplanted neurolemma is advantageous for various reasons: tissue can be obtained from various sources and at different developmental stages; ion channels and receptors are present in their native configuration in their proper lipid environment along with appropriate auxiliary subunits; allowing the evaluation of numerous channelpathies caused by neurotoxicants in an ex vivo state. Here we show that Xenopus oocytes injected with post-natal day 90 (PND90) rat brain neurolemma fragments successfully express functional ion channels. Using a high throughput two electrode voltage clamp (TEVC) electrophysiological system, currents that were sensitive to tetrodotoxin, ω-conotoxin MVIIC, and tetraethylammonium were detected, indicating the presence of multiple voltage-sensitive ion channels (voltage-sensitive sodium (VSSC), calcium and potassium channels, respectively). The protein expression pattern for nine different VSSC isoforms (Na v 1.1-Na v 1.9) was determined in neurolemma using automated western blotting, with the predominant isoforms expressed being Na v 1.2 and Na v 1.6. VSSC were also successfully detected in the plasma membrane of Xenopus oocytes microtransplanted with neurolemma. Using this approach, a "proof-of-principle" experiment was conducted where a well-established structure-activity relationship between the neurotoxicant, 1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane (DDT) and its non-neurotoxic metabolite, 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (DDE) was examined. A differential sensitivity of DDT and DDE on neurolemma-injected oocytes was determined where DDT elicited a concentration-dependent increase in TTX-sensitive inward sodium current upon pulse-depolarization whereas DDE resulted in no significant effect. Additionally, DDT resulted in

  6. A transgenic reporter under control of an es1 promoter/enhancer marks wound epidermis and apical epithelial cap during tail regeneration in Xenopus laevis tadpole.

    PubMed

    Sato, Kentaro; Umesono, Yoshihiko; Mochii, Makoto

    2018-01-15

    Rapid wound healing and subsequent formation of the apical epithelial cap (AEC) are believed to be required for successful appendage regeneration in amphibians. Despite the significant role of AEC in limb regeneration, its role in tail regeneration and the mechanisms that regulate the wound healing and AEC formation are not well understood. We previously identified Xenopus laevis es1, which is preferentially expressed in wounded regions, including the AEC after tail regeneration. In this study we established and characterized transgenic Xenopus laevis lines harboring the enhanced green fluorescent protein (EGFP) gene under control of an es1 gene regulatory sequence (es1:egfp). The EGFP reporter expression was clearly seen in several regions of the embryo and then declined to an undetectable level in larvae, recapitulating the endogenous es1 expression. After amputation of the tadpole tail, EGFP expression was re-activated at the edge of the stump epidermis and then increased in the wound epidermis (WE) covering the amputation surface. As the stump started to regenerate, the EGFP expression became restricted to the most distal epidermal region, including the AEC. EGFP was preferentially expressed in the basal or deep cells but not in the superficial cells of the WE and AEC. We performed a small-scale pharmacological screening for chemicals that affected the expression of EGFP in the stump epidermis after tail amputation. The EGFP expression was attenuated by treatment with an inhibitor for ERK, TGF-β or reactive oxygen species (ROS) signaling. These treatments also impaired wound closure of the amputation surface, suggesting that the three signaling activities are required for es1 expression in the WE and successful wound healing after tail amputation. These findings showed that es1:egfp Xenopus laevis should be a useful tool to analyze molecular mechanisms regulating wound healing and appendage regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells.

    PubMed

    Reifenberger, Matthew S; Yu, Ling; Bao, Hui-Fang; Duke, Billie Jeanne; Liu, Bing-Chen; Ma, He-Ping; Alli, Ahmed A; Eaton, Douglas C; Alli, Abdel A

    2014-07-01

    Numerous reports have linked cytoskeleton-associated proteins with the regulation of epithelial Na(+) channel (ENaC) activity. The purpose of the present study was to determine the effect of actin cytoskeleton disruption by cytochalasin E on ENaC activity in Xenopus 2F3 cells. Here, we show that cytochalasin E treatment for 60 min can disrupt the integrity of the actin cytoskeleton in cultured Xenopus 2F3 cells. We show using single channel patch-clamp experiments and measurements of short-circuit current that ENaC activity, but not its density, is altered by cytochalasin E-induced disruption of the cytoskeleton. In nontreated cells, 8 of 33 patches (24%) had no measurable ENaC activity, whereas in cytochalasin E-treated cells, 17 of 32 patches (53%) had no activity. Analysis of those patches that did contain ENaC activity showed channel open probability significantly decreased from 0.081 ± 0.01 in nontreated cells to 0.043 ± 0.01 in cells treated with cytochalasin E. Transepithelial current from mpkCCD cells treated with cytochalasin E, cytochalasin D, or latrunculin B for 60 min was decreased compared with vehicle-treated cells. The subcellular expression of fodrin changed significantly, and several protein elements of the cytoskeleton decreased at least twofold after 60 min of cytochalasin E treatment. Cytochalasin E treatment disrupted the association between ENaC and myristoylated alanine-rich C-kinase substrate. The results presented here suggest disruption of the actin cytoskeleton by different compounds can attenuate ENaC activity through a mechanism involving changes in the subcellular expression of fodrin, several elements of the cytoskeleton, and destabilization of the ENaC-myristoylated alanine-rich C-kinase substrate complex. Copyright © 2014 the American Physiological Society.

  8. Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells

    PubMed Central

    Reifenberger, Matthew S.; Yu, Ling; Bao, Hui-Fang; Duke, Billie Jeanne; Liu, Bing-Chen; Ma, He-Ping; Eaton, Douglas C.; Alli, Abdel A.

    2014-01-01

    Numerous reports have linked cytoskeleton-associated proteins with the regulation of epithelial Na+ channel (ENaC) activity. The purpose of the present study was to determine the effect of actin cytoskeleton disruption by cytochalasin E on ENaC activity in Xenopus 2F3 cells. Here, we show that cytochalasin E treatment for 60 min can disrupt the integrity of the actin cytoskeleton in cultured Xenopus 2F3 cells. We show using single channel patch-clamp experiments and measurements of short-circuit current that ENaC activity, but not its density, is altered by cytochalasin E-induced disruption of the cytoskeleton. In nontreated cells, 8 of 33 patches (24%) had no measurable ENaC activity, whereas in cytochalasin E-treated cells, 17 of 32 patches (53%) had no activity. Analysis of those patches that did contain ENaC activity showed channel open probability significantly decreased from 0.081 ± 0.01 in nontreated cells to 0.043 ± 0.01 in cells treated with cytochalasin E. Transepithelial current from mpkCCD cells treated with cytochalasin E, cytochalasin D, or latrunculin B for 60 min was decreased compared with vehicle-treated cells. The subcellular expression of fodrin changed significantly, and several protein elements of the cytoskeleton decreased at least twofold after 60 min of cytochalasin E treatment. Cytochalasin E treatment disrupted the association between ENaC and myristoylated alanine-rich C-kinase substrate. The results presented here suggest disruption of the actin cytoskeleton by different compounds can attenuate ENaC activity through a mechanism involving changes in the subcellular expression of fodrin, several elements of the cytoskeleton, and destabilization of the ENaC-myristoylated alanine-rich C-kinase substrate complex. PMID:24829507

  9. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development

    PubMed Central

    Stith, Bradley J.

    2015-01-01

    This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG. PMID:25748412

  10. Localization, structure and polymorphism of two paralogous Xenopus laevis mitochondrial malate dehydrogenase genes.

    PubMed

    Tlapakova, Tereza; Krylov, Vladimir; Macha, Jaroslav

    2005-01-01

    Two paralogous mitochondrial malate dehydrogenase 2 (Mdh2) genes of Xenopus laevis have been cloned and sequenced, revealing 95% identity. Fluorescence in-situ hybridization (FISH) combined with tyramide amplification discriminates both genes; Mdh2a was localized into chromosome q3 and Mdh2b into chromosome q8. One kb cDNA probes detect both genes with 85% accuracy. The remaining signals were on the paralogous counterpart. Introns interrupt coding sequences at the same nucleotide as defined for mouse. Restriction polymorphism has been detected in the first intron of Mdh2a, while the individual variability in intron 6 of Mdh2b gene is represented by an insertion of incomplete retrotransposon L1Xl. Rates of nucleotide substitutions indicate that both genes are under similar evolutionary constraints. X. laevis Mdh2 genes can be used as markers for physical mapping and linkage analysis.

  11. Developmental disorders in embryos of the frog Xenopus laevis induced by chloroacetanilide herbicides and their degradation products.

    PubMed

    Osano, Odipo; Admiraal, Wim; Otieno, Dismas

    2002-02-01

    Pesticides are known to transform in the environment, but so far the study of their effects in the environment has concentrated on the parent compounds, thereby neglecting the effects of the degradation products. The embryotoxic, developmental, and teratogenic effects of chloroacetanilide herbicides and their environmentally stable aniline degradation products were investigated in this study in view of the massive application of alachlor and metolachlor. Embryos at midblastula to early gastrula stages of a locally abundant African clawed frog Xenopus laevis were used as test organisms. The embryos were exposed to the test chemicals for 96 h in each experiment. Alachlor is more embryotoxic (the concentration causing 50% embryo lethality, 96-h LC50 = 23 microM [6.1 mg/L]) and teratogenic (teratogenic index [TI] = 1.7) than metolachlor (96-h LC50 = 48 microM [13.6 mg/L], TI = 0.2). The degradation products of alachlor and metolachlor, respectively, 2,6-diethylaniline (96-h LC50 = 13 microM [19.4 mg/L], TI = 2.1) and 2-ethyl-6-methyaniline (96-h LC50 = 509 microM [68.8 mg/L], TI = 2.7), are less embryotoxic but more teratogenic than their parent compounds. The most common teratogenic effects observed were edema for alachlor as opposed to axial flexures and eye abnormalities for 2,6-diethylaniline and 2-ethyl-6-methylaniline. Metolachlor is found to be an example of a nonteratogenic herbicide that upon degradation loses toxicity but gains teratogenicity, and both the herbicides, metolachlor and alachlor, are potential sources of teratogenic transformation products.

  12. The cellular and molecular mechanisms of tissue repair and regeneration as revealed by studies in Xenopus

    PubMed Central

    Li, Jingjing; Zhang, Siwei

    2016-01-01

    Abstract Survival of any living organism critically depends on its ability to repair and regenerate damaged tissues and/or organs during its lifetime following injury, disease, or aging. Various animal models from invertebrates to vertebrates have been used to investigate the molecular and cellular mechanisms of wound healing and tissue regeneration. It is hoped that such studies will form the framework for identifying novel clinical treatments that will improve the healing and regenerative capacity of humans. Amongst these models, Xenopus stands out as a particularly versatile and powerful system. This review summarizes recent findings using this model, which have provided fundamental knowledge of the mechanisms responsible for efficient and perfect tissue repair and regeneration. PMID:27800170

  13. Synchronization modulation of Na/K pumps on Xenopus oocytes

    NASA Astrophysics Data System (ADS)

    Liang, Pengfei; Mast, Jason; Chen, Wei

    We developed a new technique named synchronization modulation to electrically synchronize and modulate the Na/K pump molecules by a specially designed oscillating electric field. This technique is based on the theory of energy-trap in quantum physics as well as the concept of electronic synchrotron accelerator. As a result, the Na-transports are all entrapped into the positive half-cycle of the applied electric field and consequently, all of the K-transports are entrapped into the negative half cycle of the field. To demonstrate the process of the pump synchronization and modulation, we use Xenopus oocytes as a platform and introduce two-electrode whole-cell voltage clamp in measurement of pump current. Practically, we first synchronize the pump molecules running at the same pace (rate and phase) by a specially designed oscillation electric field. Then, we carefully maintain the pump synchronization status and gradually change the field frequency (decrease and increase) to modulate the pump molecules to newer pumping rate. The result shows a separation of the inward K current from the outward Na current, and about 10 time increase of the total (inward plus outward) pump current from the net outward current from the random paced pump molecules. Also, the ratio of the modulated total pump current with synchronized total pump current is consistent with the ratio of their field frequencies.

  14. Xenopus laevis oocyte maturation is affected by metal chlorides.

    PubMed

    Marin, Matthieu; Slaby, Sylvain; Marchand, Guillaume; Demuynck, Sylvain; Friscourt, Noémie; Gelaude, Armance; Lemière, Sébastien; Bodart, Jean-François

    2015-08-01

    Few studies have been conducted using Xenopus laevis germ cells as oocytes, though these cells offer many advantages allowing both electrophysiological studies and morphological examination. Our aim was to investigate the effects of metal (cadmium, lead, cobalt and zinc) exposures using cell biology approaches. First, cell survival was evaluated with both phenotypical and electrophysiological approaches. Secondly, the effect of metals on oocyte maturation was assessed with morphological observations and electrophysiological recordings. From survival experiments, our results showed that metal chlorides did not affect cell morphology but strongly depolarized X. laevis oocyte resting potential. In addition, cadmium chloride was able to inhibit progesterone-induced oocyte maturation. By contrast, zinc, but also to a lesser extent cadmium, cobalt and lead, were able to enhance spontaneous oocyte maturation in the absence of progesterone stimulation. Finally, electrophysiological recordings revealed that some metal chlorides (lead, cadmium) exposures could disturb calcium signaling in X. laevis oocyte by modifying calcium-activated chloride currents. Our results demonstrated the high sensitivity of X. laevis oocytes toward exogenous metals such as lead and cadmium. In addition, the cellular events recorded might have a predictive value of effects occurring later on the ability of oocytes to be fertilized. Together, these results suggest a potential use of this cellular lab model as a tool for ecotoxicological assessment of contaminated fresh waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Response Surface Methodology for Optimizing the Production of Biosurfactant by Candida tropicalis on Industrial Waste Substrates

    PubMed Central

    Almeida, Darne G.; Soares da Silva, Rita de Cássia F.; Luna, Juliana M.; Rufino, Raquel D.; Santos, Valdemir A.; Sarubbo, Leonie A.

    2017-01-01

    Biosurfactant production optimization by Candida tropicalis UCP0996 was studied combining central composite rotational design (CCRD) and response surface methodology (RSM). The factors selected for optimization of the culture conditions were sugarcane molasses, corn steep liquor, waste frying oil concentrations and inoculum size. The response variables were surface tension and biosurfactant yield. All factors studied were important within the ranges investigated. The two empirical forecast models developed through RSM were found to be adequate for describing biosurfactant production with regard to surface tension (R2 = 0.99833) and biosurfactant yield (R2 = 0.98927) and a very strong, negative, linear correlation was found between the two response variables studied (r = −0.95). The maximum reduction in surface tension and the highest biosurfactant yield were 29.98 mNm−1 and 4.19 gL−1, respectively, which were simultaneously obtained under the optimum conditions of 2.5% waste frying oil, 2.5%, corn steep liquor, 2.5% molasses, and 2% inoculum size. To validate the efficiency of the statistically optimized variables, biosurfactant production was also carried out in 2 and 50 L bioreactors, with yields of 5.87 and 7.36 gL−1, respectively. Finally, the biosurfactant was applied in motor oil dispersion, reaching up to 75% dispersion. Results demonstrated that the CCRD was suitable for identifying the optimum production conditions and that the new biosurfactant is a promising dispersant for application in the oil industry. PMID:28223971

  16. Activin-like signal activates dorsal-specific maternal RNA between 8- and 16-cell stages of Xenopus.

    PubMed

    Hainski, A M; Moody, S A

    1996-01-01

    In many animals the dorsal-ventral axis forms by an initial localization of maternal molecules, which then regulate the spatial location of signals that directly influence the expression of axis-specific fates. Several recent studies have demonstrated that dorsal-animal blastomeres of the Xenopus morula (8-32 cells) are biased toward dorsal fates prior to mesoderm inductive signaling. In this study we ask whether the dorsal bias is the result of autonomous expression of maternal molecules specifically localized within dorsal cells or of early activating signals. It was found that although 16-cell dorsal-animal blastomeres (D1.1) can differentiate into dorsal tissues when cultured alone, the 8-cell mothers (D1) can not. Likewise, although RNA extracted from D1.1 can induce an extra dorsal axis when injected into vegetal blastomeres, RNA extracted from D1 can not. However, D1 does express dorsal tissues if co-cultured with dorsal-vegetal cells or with culture medium containing a mixture of activins (PIF-medium). Furthermore, short-term culture of D1 in PIF-medium enables the D1 RNA to induce an ectopic dorsal axis. Ventral-animal blastomeres also can express dorsal axial tissues when co-cultured with dorsal-vegetal blastomeres or in PIF-medium, but the RNA from the activin-treated ventral cells cannot induce ectopic dorsal axes. These studies demonstrate that there are maternal RNAs that, shortly after fertilization, are present only in the dorsal-animal region. They do not act cell autonomously, but require an activin-like signal. These RNAs may function by increasing the responsiveness of dorsal-animal blastomeres to the mesoderm inductive signals present in both the morula and the blastula.

  17. Isthmin is a novel secreted protein expressed as part of the Fgf-8 synexpression group in the Xenopus midbrain-hindbrain organizer.

    PubMed

    Pera, Edgar M; Kim, James I; Martinez, Sarah L; Brechner, Mariel; Li, Su Yu; Wessely, Oliver; De Robertis, E M

    2002-08-01

    Patterning of the central nervous system is regulated by a signaling center located at the midbrain-hindbrain boundary (MHB), or isthmus organizer. Fibroblast growth factors secreted from the MHB are required and sufficient to direct the ordered growth and regionalization of the midbrain and anterior hindbrain. In an unbiased secretion cloning screen of Xenopus gastrula embryos we identified a novel gene, which we designated as Isthmin (xIsm) due to its prominent expression at the MHB. xIsm encodes a secreted protein of 449 amino acids containing one copy of the thrombospondin type 1 repeat (TSR). We also found orthologous Isthmin genes in human (hIsm) and mouse (mIsm), as well as a gene encoding an Isthmin-like human unknown protein (hIsm-l). The conservation of a unique carboxy-terminal region between hIsm and hIsm-l suggests that Isthmin is the founding member of a new family of secreted proteins. xIsm was strongly expressed maternally in the Xenopus egg and showed zygotic expression in the ventral blastopore lip, notochord, and MHB. Additional expression domains were detected in neural crest, ear vesicle, and developing blood islands. Interestingly, xIsm was co-expressed with Fibroblast growth factor-8 (xFgf-8) at multiple sites including the MHB, indicating that these two genes are part of a synexpression group which also includes sprouty and sef homologs.

  18. MCM interference during licensing of DNA replication in Xenopus egg extracts-Possible Role of a C-terminal region of MCM3.

    PubMed

    Mimura, Satoru; Kubota, Yumiko; Takisawa, Haruhiko

    2018-01-01

    The minichromosome maintenance (MCM) complex, consisting of six subunits, Mcm2-7, is loaded onto replication origins through loading factors (origin recognition complex [ORC], Cdc6, and Cdt1) and forms an MCM double hexamer that licenses the initiation of DNA replication. Previous studies with Xenopus egg extracts showed that loading factors, especially Cdc6, dissociate from chromatin on MCM loading, but the molecular mechanism and physiological significance remain largely unknown. Using a cell-free system for MCM loading onto plasmid DNA in Xenopus egg extracts, we found that MCM loaded onto DNA prevents DNA binding of the loading factors ORC, Cdc6, and Cdt1. We further report that a peptide of the C-terminal region of MCM3 (MCM3-C), previously implicated in the initial association with ORC/Cdc6 in budding yeast, prevents ORC/Cdc6/Cdt1 binding to DNA in the absence of MCM loading. ATP-γ-S suppresses inhibitory activities of both the MCM loaded onto DNA and the MCM3-C peptide. Other soluble factors in the extract, but neither MCM nor Cdt1, are required for the activity. Conservation of the amino acid sequences of MCM3-C and its activity in vertebrates implies a novel negative autoregulatory mechanism that interferes with MCM loading in the vicinity of licensed origins to ensure proper origin licensing.

  19. Transcriptional regulators in the Hippo signaling pathway control organ growth in Xenopus tadpole tail regeneration.

    PubMed

    Hayashi, Shinichi; Ochi, Haruki; Ogino, Hajime; Kawasumi, Aiko; Kamei, Yasuhiro; Tamura, Koji; Yokoyama, Hitoshi

    2014-12-01

    The size and shape of tissues are tightly controlled by synchronized processes among cells and tissues to produce an integrated organ. The Hippo signaling pathway controls both cell proliferation and apoptosis by dual signal-transduction states regulated through a repressive kinase cascade. Yap1 and Tead, transcriptional regulators that act downstream of the Hippo signaling kinase cascade, have essential roles in regulating cell proliferation. In amphibian limb or tail regeneration, the local tissue outgrowth terminates when the correct size is reached, suggesting that organ size is strictly controlled during epimorphic organ-level regeneration. We recently demonstrated that Yap1 is required for the regeneration of Xenopus tadpole limb buds (Hayashi et al., 2014, Dev. Biol. 388, 57-67), but the molecular link between the Hippo pathway and organ size control in vertebrate epimorphic regeneration is not fully understood. To examine the requirement of Hippo pathway transcriptional regulators in epimorphic regeneration, including organ size control, we inhibited these regulators during Xenopus tadpole tail regeneration by overexpressing a dominant-negative form of Yap (dnYap) or Tead4 (dnTead4) under a heat-shock promoter in transgenic animal lines. Each inhibition resulted in regeneration defects accompanied by reduced cell mitosis and increased apoptosis. Single-cell gene manipulation experiments indicated that Tead4 cell-autonomously regulates the survival of neural progenitor cells in the regenerating tail. In amphibians, amputation at the proximal level of the tail (deep amputation) results in faster regeneration than that at the distal level (shallow amputation), to restore the original-sized tail with similar timing. However, dnTead4 overexpression abolished the position-dependent differential growth rate of tail regeneration. These results suggest that the transcriptional regulators in the Hippo pathway, Tead4 and Yap1, are required for general vertebrate

  20. Calcium dependent current recordings in Xenopus laevis oocytes in microgravity

    NASA Astrophysics Data System (ADS)

    Wuest, Simon L.; Roesch, Christian; Ille, Fabian; Egli, Marcel

    2017-12-01

    Mechanical unloading by microgravity (or weightlessness) conditions triggers profound adaptation processes at the cellular and organ levels. Among other mechanisms, mechanosensitive ion channels are thought to play a key role in allowing cells to transduce mechanical forces. Previous experiments performed under microgravity have shown that gravity affects the gating properties of ion channels. Here, a method is described to record a calcium-dependent current in native Xenopus laevis oocytes under microgravity conditions during a parabolic flight. A 3-voltage-step protocol was applied to provoke a calcium-dependent current. This current increased with extracellular calcium concentration and could be reduced by applying extracellular gadolinium. The custom-made ;OoClamp; hardware was validated by comparing the results of the 3-voltage-step protocol to results obtained with a well-established two-electrode voltage clamp (TEVC). In the context of the 2nd Swiss Parabolic Flight Campaign, we tested the OoClamp and the method. The setup and experiment protocol worked well in parabolic flight. A tendency that the calcium-dependent current was smaller under microgravity than under 1 g condition could be observed. However, a conclusive statement was not possible due to the small size of the data base that could be gathered.