Sample records for xerophytes

  1. Throughfall and its spatial variability beneath xerophytic shrub canopies within water-limited arid desert ecosystems

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia

    2016-08-01

    Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.

  2. Effects of elevated root zone CO2 on xerophytic shrubs in re-vegetated sandy dunes at smaller spatial and temporal scales.

    PubMed

    Lei, Huang; Zhishan, Zhang

    2015-01-01

    The below-ground CO2 concentration in some crusted soils or flooded fields is usually ten or hundred times larger than the normal levels. Recently, a large number of studies have focused on elevated CO2 in the atmosphere; however, only few have examined the influence of elevated root zone CO2 on plant growth and vegetation succession. In the present study, a closed-air CO2 enrichment (CACE) system was designed to simulate elevated CO2 concentrations in the root zones. The physio-ecological characteristics of two typical xerophytic shrubs C. korshinskii and A. ordosica in re-vegetated desert areas were investigated at different soil CO2 concentrations from March 2011 to October 2013. Results showed that plant growth, phenophase, photosynthetic rate, stomatal conductance, transpiration rate, and water use efficiency for the two xerophytic shrubs were all increased at first and then decreased with increasing soil CO2 concentrations, and the optimal soil CO2 concentration thresholds for C. korshinskii and A. ordosica were 0.554 and 0.317%, respectively. And A. ordosica was more tolerate to root zone CO2 variation when compared with C. korshinskii, possible reasons and vegetation succession were also discussed.

  3. Programmed proteome response for drought avoidance/tolerance in the root of a C(3) xerophyte (wild watermelon) under water deficits.

    PubMed

    Yoshimura, Kazuya; Masuda, Akiko; Kuwano, Masayoshi; Yokota, Akiho; Akashi, Kinya

    2008-02-01

    Water availability is a critical determinant for the growth and ecological distribution of terrestrial plants. Although some xerophytes are unique regarding their highly developed root architecture and the successful adaptation to arid environments, virtually nothing is known about the molecular mechanisms underlying this adaptation. Here, we report physiological and molecular responses of wild watermelon (Citrullus lanatus sp.), which exhibits extraordinarily high drought resistance. At the early stage of drought stress, root development of wild watermelon was significantly enhanced compared with that of the irrigated plants, indicating the activation of a drought avoidance mechanism for absorbing water from deep soil layers. Consistent with this observation, comparative proteome analysis revealed that many proteins induced in the early stage of drought stress are involved in root morphogenesis and carbon/nitrogen metabolism, which may contribute to the drought avoidance via the enhancement of root growth. On the other hand, lignin synthesis-related proteins and molecular chaperones, which may function in the enhancement of physical desiccation tolerance and maintenance of protein integrity, respectively, were induced mostly at the later stage of drought stress. Our findings suggest that this xerophyte switches survival strategies from drought avoidance to drought tolerance during the progression of drought stress, by regulating its root proteome in a temporally programmed manner. This study provides new insights into the complex molecular networks within plant roots involved in the adaptation to adverse environments.

  4. [Rainfall and soil moisture redistribution induced by xerophytic shrubs in an arid desert ecosystem].

    PubMed

    Wang, Zheng Ning; Wang, Xin Ping; Liu, Bo

    2016-03-01

    Rainfall partitioning by desert shrub canopy modifies the redistribution of incident rainfall under the canopy, and may affect the distribution pattern of soil moisture around the plant. This study examined the distribution of rainfall and the response of soil moisture beneath the canopy of two dominant desert shrubs, Caragana korshinskii and Artemisia ordosica, in the revegetation area at the southeastern edge of the Tengger Desert. The results showed that throughfall and stemflow ave-ragely occupied 74.4%, 11.3% and 61.8%, 5.5% of the gross precipitation for C. korshinskii and A. ordosica, respectively. The mean coefficients of variation (CV) of throughfall were 0.25 and 0.30, respectively. C. korshinski were more efficient than A. ordosica on stemflow generation. The depth of soil wetting front around the stem area was greater than other areas under shrub canopy for C. korshinski, and it was only significantly greater under bigger rain events for A. ordosica. The shrub canopy could cause the unevenness of soil wetting front under the canopy in consequence of rainfall redistribution induced by xerophytic shrub.

  5. Silicon improves photosynthesis and strengthens enzyme activities in the C3 succulent xerophyte Zygophyllum xanthoxylum under drought stress.

    PubMed

    Kang, Jianjun; Zhao, Wenzhi; Zhu, Xi

    2016-07-20

    One main strategic adaptive mechanism adopted by succulent xerophyte species, resistance to drought stress is absorbing and accumulating large amounts of sodium (Na + ) from poor and dry soil which was stored in photosynthesizing branches as well as leaves as major osmoregulators, while still accumulating and storing a great deal of silicon (Si) in roots to resist to arid environments. To understand the possible adaptive strategies underlying how Si accumulation stimulates growth and ameliorates the adverse environmental impacts of drought stress on the C 3 succulent xerophyte Zygophyllum xanthoxylum, plants grown for 3 weeks were suffered different K 2 SiO 3 concentrations (1.5-7.5mM) (3-15mM KCl as control) treatments in sand culture experiments. Plants were also treated with different osmotic stresses caused by polyethylene glycol (PEG 6000) and drought stress (maintain water content about 30% of field water capacity) (30% of FWC) with or without additional 2.5mMK 2 SiO 3 (5mMKCl as control) treatment in sand culture and pot experiments, respectively. We found that 2.5mMK 2 SiO 3 (5mMKCl as control) resulted in optimal plant growth and alleviated adverse influences of drought stress on Z. xanthoxylum, by strengthening the activities of superoxide dismutase, peroxidase and catalase, reducing membrane lipid peroxidation and decreasing soluble sugar and free proline concentrations, concomitantly, increasing tissue water content, leaf area and chlorophyll a concentration. The result of ion analysis indicated that the Si absorption of Z. xanthoxylum was markedly induced by drought stress and that the 2.5mMK 2 SiO 3 (5mMKCl as control) treatment significantly increased the aboveground and root Si concentration under different osmotic stresses and 30% of field water capacity compared with the drought and drought with 5mMKCl treatments. Although the K + concentration in root in the drought with 2.5mMK 2 SiO 3 treatment was no significant changes compared with the

  6. Canopy storage capacity of xerophytic shrubs in Northwestern China

    NASA Astrophysics Data System (ADS)

    Wang, Xin-ping; Zhang, Ya-feng; Hu, Rui; Pan, Yan-xia; Berndtsson, Ronny

    2012-08-01

    SummaryThe capacity of shrub canopy water storage is a key factor in controlling the rainfall interception. Thus, it affects a variety of hydrological processes in water-limited arid desert ecosystems. Vast areas of revegetated desert ecosystems in Northwestern China are occupied by shrub and dwarf shrub communities. Yet, data are still scarce regarding their rainwater storage capacity. In this study, simulated rainfall tests were conducted in controlled conditions for three dominant xerophytic shrub types in the arid Tengger Desert. Eight rainfall intensities varying from 1.15 to 11.53 mm h-1 were used to determine the canopy water storage capacity. The simulated rainfall intensities were selected according to the long-term rainfall records in the study area. The results indicate that canopy storage capacity (expressed in water storage per leaf area, canopy projection area, biomass, and volume of shrub respectively) increased exponentially with increase in rainfall intensity for the selected shrubs. Linear relationships were found between canopy storage capacity and leaf area (LA) or leaf area index (LAI), although there was a striking difference in correlation between storage capacity and LA or LAI of Artemisia ordosica compared to Caragana korshinskii and Hedysarum scoparium. This is a result of differences in biometric characteristics, especially canopy morphology between the shrub species. Pearson correlation coefficient indicated that LA and dry biomass are better predictors as compared to canopy projection area and volume of samples for precise estimation of canopy water storage capacity. In terms of unit leaf area, mean storage capacity was 0.39 mm (range of 0.24-0.53 mm), 0.43 mm (range of 0.28-0.60 mm), and 0.61 mm (range of 0.29-0.89 mm) for C. korshinskii, H. scoparium, and A. ordosica, respectively. Correspondingly, divided per unit dry biomass, mean storage capacity was 0.51 g g-1 (range of 0.30-0.70 g g-1), 0.41 g g-1 (range of 0.26-0.57 g g-1), and

  7. Measuring and modeling stemflow by two xerophytic shrubs in the Loess Plateau: The role of dynamic canopy structure

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, X.; Li, W.; Shi, F.; Wu, H.; WU, X.; Pei, T.

    2016-12-01

    Stemflow plays an important role in hydrological processes in dryland shrubs, but it still remains poorly understood, especially regarding the effects of dynamic canopy structure on stemflow. This study aimed to measure and model the stemflow of two dominant xerophytic shrub (Hippophae rhamnoides and Spiraea pubescens) communities and to identify the key controlling factors of stemflow yield. We quantified and scaled-up stemflow from branches and leaves to stand levels. Correlations and stepwise regression analysis between stemflow and meteorological and biological factors indicated that at branch level, the rainfall amount and the branch diameter were the best variables for modelling and predicting stemflow for Hippophae rhamnoides, while the rainfall amount and the aboveground biomass were the best variables for modelling and predicting stemflow for Spiraea pubescens. At stand level, the stemflow yield is mostly affected by rainfall amount and leaf area index for both shrubs. The stemflow fluxes account for 3.5±0.9% of incident rainfall for H. rhamnoides community and 9.4±2.1% for S. pubescens community, respectively. The differences in percentages of stemflow between the two shrub communities was attributed to differences in canopy structures and water storage capacities. This evaluation of the effects of canopy structure dynamics on stemflow, and of the developed model, provided a better understanding of the effect of the canopy structure on the water cycles in dryland shrub ecosystems.

  8. Growth, hydrolases and ultrastructure of Fusarium oxysporum as affected by phenolic rich extracts from several xerophytic plants.

    PubMed

    Mohamed, Mahmoud S M; Saleh, Ahmed M; Abdel-Farid, Ibrahim B; El-Naggar, Sabry A

    2017-09-01

    Fusarium oxysporum, the causal agent of rot and wilt diseases, is one of the most detrimental phytopathogens for the productivity of many economic crops. The present study was conducted to evaluate the potentiality of some xerophytic plants as eco-friendly approach for management of F. oxysporum. Phenolic rich extracts from five plants namely: Horwoodia dicksoniae, Citrullus colocynthis, Gypsophila capillaris, Pulicaria incisa and Rhanterium epapposum were examined in vitro. The different extracts showed high variability in their phenolic and flavonoid contents as well as total antioxidant capacity. A strong positive correlation existed between the antifungal activity of the tested extracts and their contents of both total phenolics and flavonoids (r values are 0.91 and 0.82, respectively). Extract of P. incisa was the most effective in reducing the mycelial growth (IC 50 =0.92mg/ml) and inhibiting the activities of CMCase, pectinase, amylase and protease by 36, 42, 58 and 55%, respectively. The high performance liquid chromatography analysis of P. incisa extract revealed the presence of eight phenolic acids along with five polyphenolic compounds. The flavonol, quercetin and its glycosides rutin and quercetrin were the most abundant followed by the phenolic acids, t-cinnamic, caffeic, ferulic and vanillic. P. incisa extract not only affects the growth and hydrolases of F. oxysporum but also induces ultrastructure changes in the mycelium, as revealed by transmission electron microscopy. To our knowledge, this is the first study to investigate the mechanisms underlying the antifungal activity of P. incisa. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Isolation, purification, and characterization of thermophilic T80 isoenzyme of xylose isomerase from the xerophyte Cereus pterogonus.

    PubMed

    Ravikumar, Sambandam; Shyamala, Sivalingam; Muthuraman, Pandurangan; Srikumar, Kotteazeth

    2011-01-01

    A thermostable isoenzyme (T(80)) of xylose isomerase from the eukaryote xerophyte Cereus pterogonus was purified to homogeneity by precipitation with ammonium sulfate and column chromatography on Dowex-1 ion exchange, with Sephadex G-100 gel filtration, resulting in an approximately 25.55-fold increase in specific activity and a final yield of approximately 17.9%. Certain physiochemical and kinetic properties (K(m) and V(max)) of the T(80) xylose isomerase isoenzyme were investigated. The molecular mass of the purified T(80) isoenzyme was 68 kD determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Polyclonal antibodies against the purified T(80) isoenzyme recognized a single polypeptide band on Western blots. The activation energy required for the thermal denaturation of the isoenzyme was determined to be 61.84 KJ mol(-1). The use of differential scanning calorimetry established the melting temperature of the CPXI isoenzyme to be 80°C, but when studied with added metal ions, melting temperature increases to more than the normal. Fluorescence spectroscopy of T(80) isoenzymes yielded an emission peak with λ(em) at 320 nm and 340 nm, respectively, confirming the presence of Trp residue in these proteins. Electron paramagnetic resonance (EPR) analysis at liquid nitrogen temperature established the presence of Mn(2+) and Co(2+) associated with each isoenzyme. These enzyme species exhibited different thermal and pH stabilities compared to their mesophilic counterparts and offered greater efficiency in functioning as a potential alternate catalytic converter of glucose in the production of high-fructose corn syrup (HFCS) for the sweetener industry and for ethanol production.

  10. Long-Term Effects of Xerophytic Shrub Haloxylon ammodendron Plantations on Soil Properties and Vegetation Dynamics in Northwest China

    PubMed Central

    Fan, Baoli; Zhang, Aiping; Yang, Yi; Ma, Quanlin; Li, Xuemin; Zhao, Changming

    2016-01-01

    The xerophytic desert shrub Haloxylon ammodendron (C. A. Mey.) Bunge. is distributed naturally in Asian and African deserts, and is widely used for vegetation restoration in the desert regions of Northern China. However, there are limited long-term chrono-sequence studies on the impact of changed soil properties and vegetation dynamics following establishment of this shrub on mobile sand dunes. In Minqin County, Gansu Province, we investigated soil properties and herbaceous vegetation development of 10, 20, 30, 40, 50-year-old H. ammodendron plantations on mobile sand dunes. Soil sampling at two depths (0–5 and 5–20 cm) under the shrubs determined SOC, nutrition and soil physical characteristics. The results showed that: establishment of H. ammodendron had improved soil physio-chemical properties, increased thickness of soil crusts and coverage of biological soil crusts (BSCs), and promoted development of topsoil over an extended period of 5 decades. Soil texture and soil nutrition improved along the chrono-sequence according to three distinct phases: i) an initial fast development from 0 to 10 years, ii) a stabilizing phase from 10 to 30 years followed by iii) a relatively marked restoration development in 40 and 50-year-old plantations. Meanwhile, herbaceous community coverage also markedly increased in 30-year-old plantations. However, both soil and vegetation restoration were very slow due to low annual precipitation in Minqin county compared to other Northern China sand afforestation sites. Canonical Correspondence Analysis results demonstrated that herbaceous plant development was closely associated with changes in soil texture (increased clay and silt percentage) and availability of soil nutrients. Thus our results indicated that selection of the long-lived shrub H. ammodendron is an essential and effective tool in arid desert re-vegetation. PMID:27992458

  11. Dynamic changes in the leaf proteome of a C3 xerophyte, Citrullus lanatus (wild watermelon), in response to water deficit.

    PubMed

    Akashi, Kinya; Yoshida, Kazuo; Kuwano, Masayoshi; Kajikawa, Masataka; Yoshimura, Kazuya; Hoshiyasu, Saki; Inagaki, Naoyuki; Yokota, Akiho

    2011-05-01

    Wild watermelon (Citrullus lanatus) is a xerophyte native to the Kalahari Desert, Africa. To better understand the molecular mechanisms of drought resistance in this plant, we examined changes in the proteome in response to water deficit. Wild watermelon leaves showed decreased transpiration and a concomitant increase in leaf temperature under water deficit conditions. Comparison of the proteome of stressed plants with that of unstressed plants by two-dimensional gel electrophoresis revealed that the intensity of 40 spots increased in response to the stress, and the intensity of 11 spots decreased. We positively identified 23 stress-induced and 6 stress-repressed proteins by mass spectrometry and database analyses. Interestingly, 15 out of the 23 up-regulated proteins (65% of annotated up-regulated proteins) were heat shock proteins (HSPs). Especially, 10 out of the 15 up-regulated HSPs belonged to the small heat shock protein (sHSP) family. Other stress-induced proteins included those related to antioxidative defense and carbohydrate metabolism. Fifteen distinct cDNA sequences encoding the sHSP were characterized from wild watermelon. Quantitative real-time PCR analysis of the representative sHSP genes revealed strong transcriptional up-regulation in the leaves under water deficit. Moreover, immunoblot analysis confirmed that protein abundance of sHSPs was massively increased under water deficit. Overall, these observations suggest that the defense response of wild watermelon may involve orchestrated regulation of a diverse array of functional proteins related to cellular defense and metabolism, of which HSPs may play a pivotal role on the protection of the plant under water deficit in the presence of strong light.

  12. Young dispersal of xerophil Nitraria lineages in intercontinental disjunctions of the Old World

    Treesearch

    Ming-Li Zhang; Kamshat Temirbayeva; Stewart C. Sanderson; X. Chen

    2015-01-01

    Many cases of intercontinental disjunct distributions of seed plants have been investigated, however few have concerned the continents of Eurasia (mainly Central Asia), Africa, and Australia, especially the xerophytic lineages are lacking. Nitraria (Nitrariaceae) is just one of these xerophytic lineages. Previous Nitraria studies have hypothesized either Africa as the...

  13. Incised channel fills containing conifers indicate that seasonally dry vegetation dominated Pennsylvanian tropical lowlands

    USGS Publications Warehouse

    Falcon-Lang, H. J.; Nelson, W.J.; Elrick, S.; Looy, C.V.; Ames, P.R.; DiMichele, W.A.

    2009-01-01

    The idea that the Pennsylvanian tropical lowlands were temporally dominated by rainforest (i.e., the Coal Forest) is deeply ingrained in the literature. Here we challenge two centuries of research by suggesting that this concept is based on a taphonomic artifact, and that seasonally dry vegetation dominated instead. This controversial finding arises from the discovery of a new middle Pennsylvanian (Moscovian) fossil plant assemblage in southeast Illinois, United States. The assemblage, which contains xerophytic walchian conifers, occurs in channels incised into a calcic Vertisol below the Baker Coal. These plants grew on seasonally dry tropical lowlands inferred to have developed during a glacial phase. This xerophytic flora differs markedly from that of the typical clubmoss-dominated Coal Forest developed during deglaciation events. Although preserved only very rarely, we argue that such xerophytic floras were temporally as dominant, and perhaps more dominant, than the iconic Coal Forests, which are overrepresented in the fossil record due to taphonomic megabias. These findings require the iconography of Pennsylvanian tropical lowlands to be redrawn. ?? 2009 Geological Society of America.

  14. The Spatial Pattern and Interactions of Woody Plants on the Temperate Savanna of Inner Mongolia, China: The Effects of Alternating Seasonal Grazing-Mowing Regimes

    PubMed Central

    2015-01-01

    Ulmus pumila tree-dominated temperate savanna, which is distributed widely throughout the forest-steppe ecotone on the Mongolian Plateau, is a relatively stable woody-herbaceous complex ecosystem in northern China. Relatively more attention has been paid to the degradation of typical steppe areas, whereas less focus has been placed on the succession of this typical temperate savanna under the present management regime. In this study, we established 3 sample plots 100 m×100 m in size along a gradient of fixed distances from one herder’s stationary site and then surveyed all the woody plants in these plots. A spatial point pattern analysis was employed to clarify the spatial distribution and interaction of these woody plants. The results indicated that old U. pumila trees (DBH ≥ 20 cm) showed a random distribution and that medium U. pumila trees (5 cm ≤ DBH < 20 cm) showed an aggregated distribution at a smaller scale and a random distribution at a larger scale; few or no juvenile trees (DBH < 5 cm) were present, and seedlings (without DBH) formed aggregations in all 3 plots. These findings can be explained by an alternate seasonal grazing-mowing regime (exclosure in summer, mowing in autumn and grazing in winter and spring); the shrubs in all 3 plots exist along a grazing gradient that harbors xerophytic and mesophytic shrubs. Of these shrubs, xerophytic shrubs show significant aggregation at a smaller scale (0-5.5 m), whereas mesophytic shrubs show significant aggregation at a larger scale (0-25 m), which may be the result of the dual effects of grazing pressure and climate change. Medium trees and seedlings significantly facilitate the distributions of xerophytic shrubs and compete significantly with mesophytic shrubs due to differences in water use strategies. We conclude that the implementation of an alternative grazing-mowing regime results in xerophytic shrub encroachment or existence, breaking the chain of normal succession in a U. pumila tree

  15. Shrub expansion in northern Chihuahuan Desert grasslands: Spatial patterns of transition and biophysical constraints

    USDA-ARS?s Scientific Manuscript database

    Among the greatest contemporary threats to the structure, function and biological diversity of desert grassland and shrub savanna ecosystems of the southwestern United States is the displacement of mesophytic grasses by xerophytic woody plants. Through a combination of field sampling and spatial mod...

  16. Protection from livestock fails to deter shrub proliferation in a desert landscape with a history of heavy grazing

    USDA-ARS?s Scientific Manuscript database

    Desertification is often characterized by the replacement of mesophytic grasses with xerophytic shrubs. Livestock grazing is considered a key driver of shrub encroachment, although most evidence is anecdotal or confounded by other factors. Mapping of velvet mesquite (Prosopis velutina) shrubs in and...

  17. Young dispersal of xerophil Nitraria lineages in intercontinental disjunctions of the Old World

    PubMed Central

    Zhang, Ming-Li; Temirbayeva, Kamshat; Sanderson, Stewart C.; Chen, Xi

    2015-01-01

    Many cases of intercontinental disjunct distributions of seed plants have been investigated, however few have concerned the continents of Eurasia (mainly Central Asia), Africa, and Australia, especially the xerophytic lineages are lacking. Nitraria (Nitrariaceae) is just one of these xerophytic lineages. Previous Nitraria studies have hypothesized either Africa as the ancient center, with dispersals to Australia and Eurasia, or alternatively Central Asia, due to a concentration of endemism and diversity there. Our findings show eastern Central Asia, i.e. the eastern Tethys, to be the correct place of origin. Dispersal westward to Africa occurred during the late Oligocene to Pliocene, whereas dispersal to Australia from western Central Asia was young since Pliocene 2.61 Ma. Two related tetraploids are indicated to have diversified in eastern Central Asia at approximately 5.89 Ma, while the Australian tetraploid N. billardieri, is an independently derived, recent dispersal from western Central Asia. PMID:26343223

  18. Desertification of Rangelands

    USDA-ARS?s Scientific Manuscript database

    Desertification, the broad-scale conversion of perennial grasslands to dominance by xerophytic shrubs, and the attendant consequences to ecosystem services has affected arid and semiarid regions globally over the past several centuries. This state change is expected to continue in the future as envi...

  19. A preliminary test of estimating forest site quality using species composition in a southern Appalachian watershed

    Treesearch

    W. Henry McNab; David L. Loftis

    2013-01-01

    Characteristic arborescent communities of mesophytic or xerophytic species have long been recognized as indicative of forest site quality in the Southern Appalachians, where soil moisture availability is the primary environmental variable affecting productivity. But, a workable quantitative system of site classification based on species composition is not available. We...

  20. Paleoclimate effects and geographic barriers shape regional population genetic structure of blackbrush (Coleogyne ramosissima: Rosaceae)

    Treesearch

    Bryce A. Richardson; Susan E. Meyer

    2012-01-01

    Coleogyne ramosissima Torr. (blackbrush) is a dominant xerophytic shrub species in the ecotone between the warm and cold deserts of interior western North America. Amplified fragment length polymorphisms (AFLPs) were used to survey genetic diversity and population genetic structure at 14 collection sites across the species range. Analysis revealed significant...

  1. The narrow-leaf syndrome: a functional and evolutionary approach to the form of fog-harvesting rosette plants.

    PubMed

    Martorell, Carlos; Ezcurra, Exequiel

    2007-04-01

    Plants that use fog as an important water-source frequently have a rosette growth habit. The performance of this morphology in relation to fog interception has not been studied. Some first-principles from physics predict that narrow leaves, together with other ancillary traits (large number and high flexibility of leaves, caudices, and/or epiphytism) which constitute the "narrow-leaf syndrome" should increase fog-interception efficiency. This was tested using aluminum models of rosettes that differed in leaf length, width and number and were exposed to artificial fog. The results were validated using seven species of Tillandsia and four species of xerophytic rosettes. The total amount of fog intercepted in rosette plants increased with total leaf area, while narrow leaves maximized interception efficiency (measured as interception per unit area). The number of leaves in the rosettes is physically constrained because wide-leafed plants can only have a few blades. At the limits of this constraint, net fog interception was independent of leaf form, but interception efficiency was maximized by large numbers of narrow leaves. Atmospheric Tillandsia species show the narrow-leaf syndrome. Their fog interception efficiencies were correlated to the ones predicted from aluminum-model data. In the larger xerophytic rosette species, the interception efficiency was greatest in plants showing the narrow-leaf syndrome. The adaptation to fog-harvesting in several narrow-leaved rosettes was tested for evolutionary convergence in 30 xerophytic rosette species using a comparative method. There was a significant evolutionary tendency towards the development of the narrow-leaf syndrome the closer the species grew to areas where fog is frequently available. This study establishes convergence in a very wide group of plants encompassing genera as contrasting as Tillandsia and Agave as a result of their dependence on fog.

  2. 77 FR 47011 - Endangered and Threatened Wildlife and Plants; Reclassifying the Straight-Horned Markhor With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    .... They are a reddish-grey color, with more buff tones in the summer and grey in the winter. The legs and... drainage lines where water is available. Overgrazing has resulted in xerophytic scrub vegetation consisting... they are known to feed on grasses and leaves, and twigs of bushes. Markhor seek water in the late...

  3. Identification of QTLs for resistance to fire blight (Erwinia amylovora) in Malus sieversii

    USDA-ARS?s Scientific Manuscript database

    Malus sieversii (Ms) is the progenitor of the domestic apple. Ms PI613981 is elite scion material collected at a xerophytic site in Kazakhstan from a tree free of disease and insect damage. The F1 family GMAL4593 (‘Royal Gala’ X PI631981) is segregating for resistance to both apple scab and fire bl...

  4. Is climate change mitigation the best use of desert shrublands?

    Treesearch

    Susan E. Meyer

    2011-01-01

    In a world where the metrics of the carbon economy have become a major issue, it may come as a surprise that intact cold desert shrublands can sequester significant amounts of carbon, both as biomass and in the form of SOC (soil organic carbon). Xerophytic shrubs invest heavily in belowground biomass, placing fixed carbon in an environment where it turns over only very...

  5. Evolutionary and domestication history of Cucurbita (pumpkin and squash) species inferred from 44 nuclear loci.

    PubMed

    Kates, Heather R; Soltis, Pamela S; Soltis, Douglas E

    2017-06-01

    Phylogenetics can facilitate the study of plant domestication by resolving sister relationships between crops and their wild relatives, thereby identifying the ancestors of cultivated plants. Previous phylogenetic studies of the six Cucurbita crop lineages (pumpkins and squashes) and their wild relatives suggest histories of deep coalescence that complicate uncovering the genetic origins of the six crop taxa. We investigated the evolution of wild and domesticated Cucurbita using the most comprehensive and robust molecular-based phylogeny for Cucurbita to date based on 44 loci derived from introns of single-copy nuclear genes. We discovered novel relationships among Cucurbita species and recovered the first Cucurbita tree with well-supported resolution within species. Cucurbita comprises a clade of mesophytic annual species that includes all six crop taxa and a grade of xerophytic perennial species that represent the ancestral xerophytic habit of the genus. Based on phylogenetic resolution within-species we hypothesize that the magnitude of domestication bottlenecks varies among Cucurbita crop lineages. Our phylogeny clarifies how wild Cucurbita species are related to the domesticated taxa. We find close relationships between two wild species and crop lineages not previously identified. Expanded geographic sampling of key wild species is needed for improved understanding of the evolution of domesticated Cucurbita. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Vegetation, fire, climate and human disturbance history in the southwestern Mediterranean area during the late Holocene

    NASA Astrophysics Data System (ADS)

    Jiménez-Moreno, Gonzalo; García-Alix, Antonio; Hernández-Corbalán, María Dolores; Anderson, R. Scott; Delgado-Huertas, Antonio

    2013-03-01

    Detailed pollen, charcoal, isotope and magnetic susceptibility data from an alpine lake sediment core from Sierra Nevada, southern Spain record changes in vegetation, fire history and lake sedimentation since ca. 4100 cal yr BP. The proxies studied record an arid period from ca. 3800 to 3100 cal yr BP characterized by more xerophytic vegetation and lower lake levels. A humid period is recorded between ca. 3100 and 1850 cal yr BP, which occurred in two steps: (1) an increase in evergreen Quercus between 3100 and 2500 cal yr BP, indicating milder conditions than previously and (2) an increase in deciduous Quercus and higher lake levels, between ca. 2500 and 1850 cal yr BP, indicating a further increase in humidity and reduction in seasonal contrast. Humid maxima occurred during the Roman Humid Period, previously identified in other studies in the Mediterranean region. Intensified fire activity at this time could be related to an increase in fuel load and/or in human disturbance. An arid period subsequently occurred between 1850 and 650 cal yr BP, though a decrease in Quercus and an increase in xerophytes. The alternation of persistent North Atlantic Oscillation modes probably played an important role in controlling these humid-arid cycles.

  7. Sensitivity of the xerophytic moss Syntrichia caninervis to prolonged simulated nitrogen deposition.

    PubMed

    Zhang, Yuanming; Zhou, Xiaobing; Yin, Benfeng; Downing, Alison

    2016-06-01

    Biological soil crusts, comprising assemblages of cyanobacteria, fungi, lichens and mosses, are common in dryland areas and are important elements in these ecosystems. Increasing N deposition has led to great changes in community structure and function in desert ecosystems worldwide. However, it is unclear how moss crusts respond to increased atmospheric N deposition, especially in terms of growth and physiological parameters. The aim of this study was to understand how Syntrichia caninervis, a dominant species in moss crusts in many northern hemisphere desert ecosystems, responds to added N. The population and shoot growth, and physiological responses of S. caninervis to six different doses of simulated N deposition (0, 0·3, 0·5, 1·0, 1·5 and 3·0 g N m(-2) year(-1)) were studied over a 3 year period. Low amounts of added N increased shoot length and leaf size, whereas high doses reduced almost all growth parameters. Moss shoot density increased, but population biomass decreased with high N. Low N augmented chlorophyll b, total chlorophyll content and soluble protein concentrations, but not chlorophyll a or chlorophyll fluorescence. High N was detrimental to all these indices. Soluble sugar concentration declined with increased N, but proline concentration was not affected significantly. Antioxidant enzyme activities generally decreased with low N additions and increased with high doses of simulated N deposition. Low amounts of added N (0-0·5 g N m(-2) year(-1)) may enhance moss growth and vitality, while higher amounts have detrimental effects. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. A possible link between life and death of a xeric tree in desert.

    PubMed

    Xu, Gui-Qing; McDowell, Nate G; Li, Yan

    2016-05-01

    Understanding the interactions between drought and tree ontogeny or size remains an essential research priority because size-specific mortality patterns have large impacts on ecosystem structure and function, determine forest carbon storage capacity, and are sensitive to climatic change. Here we investigate a xerophytic tree species (Haloxylon ammodendron (C.A. Mey.)) with which the changes in biomass allocation with tree size may play an important role in size-specific mortality patterns. Size-related changes in biomass allocation, root distribution, plant water status, gas exchange, hydraulic architecture and non-structural carbohydrate reserves of this xerophytic tree species were investigated to assess their potential role in the observed U-shaped mortality pattern. We found that excessively negative water potentials (<-4.7MPa, beyond the P50leaf of -4.1MPa) during prolonged drought in young trees lead to hydraulic failure; while the imbalance of photoassimilate allocation between leaf and root system in larger trees, accompanied with declining C reserves (<2% dry matter across four tissues), might have led to carbon starvation. The drought-resistance strategy of this species is preferential biomass allocation to the roots to improve water capture. In young trees, the drought-resistance strategy is not well developed, and hydraulic failure appears to be the dominant driver of mortality during drought. With old trees, excess root growth at the expense of leaf area may lead to carbon starvation during prolonged drought. Our results suggest that the drought-resistance strategy of this xeric tree is closely linked to its life and death: well-developed drought-resistance strategy means life, while underdeveloped or overdeveloped drought-resistance strategy means death. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Strategies for adaptation of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum to a saline environment during seed-germination stage.

    PubMed

    Song, Jie; Feng, Gu; Tian, Changyan; Zhang, Fusuo

    2005-09-01

    Germination is very important for plant establishment in arid regions. The strategies taken by halophytes during the seed germination stage to adapt to saline environments in an arid zone were investigated in Suaeda physophora (euhalophyte), Haloxylon ammodendron (xero-halophyte) and Haloxylon persicum (xerophyte). Seeds of S. physophora, H. ammodendron and H. persicum were exposed to a range of iso-osmotic NaCl and PEG solutions. Seed germination in, and recovery germination from, high NaCl were recorded. The effects of iso-osmotic NaCl and PEG on seed water uptake and changes in ion content were measured. In addition, the structure of seeds and Na+ distribution in the seed coat and embryos of dry seeds were investigated. The relative increase in fresh weight of germinating seeds was markedly reduced in -2.24 MPa PEG compared with that in -2.24 MPa NaCl, while the opposite trend was found in concentration of K+ during the initial 9 h for all species. Haloxylon ammodendron and S. physophora had a higher recovery germination from -3.13 MPa NaCl compared with H. persicum. Seeds of all species had no endosperm. More Na+ was compartmentalized in the seed coats of the two halophytic species compared with that in the xerophyte H. persicum. The effect of NaCl on seed germination was due to both osmotic stress and ion toxicity for the three species. High soil salinity and a high content of Na+ in seeds may induce more seeds to remain ungerminated in S. physophora and H. ammodendron. Morphological structure and adaptation to salinity during seed germination may determine the geographical distribution of H. ammodendron and S. physophora in certain saline regions.

  10. Verification of Geometric Model-Based Plant Phenotyping Methods for Studies of Xerophytic Plants

    PubMed Central

    Drapikowski, Paweł; Kazimierczak-Grygiel, Ewa; Korecki, Dominik; Wiland-Szymańska, Justyna

    2016-01-01

    This paper presents the results of verification of certain non-contact measurement methods of plant scanning to estimate morphological parameters such as length, width, area, volume of leaves and/or stems on the basis of computer models. The best results in reproducing the shape of scanned objects up to 50 cm in height were obtained with the structured-light DAVID Laserscanner. The optimal triangle mesh resolution for scanned surfaces was determined with the measurement error taken into account. The research suggests that measuring morphological parameters from computer models can supplement or even replace phenotyping with classic methods. Calculating precise values of area and volume makes determination of the S/V (surface/volume) ratio for cacti and other succulents possible, whereas for classic methods the result is an approximation only. In addition, the possibility of scanning and measuring plant species which differ in morphology was investigated. PMID:27355949

  11. Verification of Geometric Model-Based Plant Phenotyping Methods for Studies of Xerophytic Plants.

    PubMed

    Drapikowski, Paweł; Kazimierczak-Grygiel, Ewa; Korecki, Dominik; Wiland-Szymańska, Justyna

    2016-06-27

    This paper presents the results of verification of certain non-contact measurement methods of plant scanning to estimate morphological parameters such as length, width, area, volume of leaves and/or stems on the basis of computer models. The best results in reproducing the shape of scanned objects up to 50 cm in height were obtained with the structured-light DAVID Laserscanner. The optimal triangle mesh resolution for scanned surfaces was determined with the measurement error taken into account. The research suggests that measuring morphological parameters from computer models can supplement or even replace phenotyping with classic methods. Calculating precise values of area and volume makes determination of the S/V (surface/volume) ratio for cacti and other succulents possible, whereas for classic methods the result is an approximation only. In addition, the possibility of scanning and measuring plant species which differ in morphology was investigated.

  12. Stable sulfur isotope hydrogeochemical studies using desert shrubs and tree rings, Death Valley, California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wenbo; Spencer, R.J.; Krouse, H.R.

    1996-08-01

    The {delta}{sup 34}S values of two dominant xerophytes, Atriplex hymenehytra and Larrea tridentata, in Death Valley, California, vary similarly from +7 to +18{per_thousand}, corresponding isotopically to sulfate in the water supplies at a given location. Going radially outwards, tree ring data from a phreatophyte tree, Tamarix aphylla, show a distinct time dependence, with {delta}{sup 34}S values increasing from +13.5 to +18{per_thousand} for soluble sulfate and from +12 to +17% for total sulfur. These data are interpreted in terms of sulfur sources, water sources and flow paths, and tree root growth. 32 refs., 3 figs., 3 tabs.

  13. Comparisons of stemflow and its bio-/abiotic influential factors between two xerophytic shrub species

    NASA Astrophysics Data System (ADS)

    Yuan, Chuan; Gao, Guangyao; Fu, Bojie

    2017-03-01

    Stemflow transports nutrient-enriched precipitation to the rhizosphere and functions as an efficient terrestrial flux in water-stressed ecosystems. However, its ecological significance has generally been underestimated because it is relatively limited in amount, and the biotic mechanisms that affect it have not been thoroughly studied at the leaf scale. This study was conducted during the 2014 and 2015 rainy seasons at the northern Loess Plateau of China. We measured the branch stemflow volume (SFb), shrub stemflow equivalent water depth (SFd), stemflow percentage of incident precipitation (SF %), stemflow productivity (SFP), funnelling ratio (FR), the meteorological characteristics and the plant traits of branches and leaves of C. korshinskii and S. psammophila. This study evaluated stemflow efficiency for the first time with the combined results of SFP and FR, and sought to determine the inter- and intra-specific differences of stemflow yield and efficiency between the two species, as well as the specific bio-/abiotic mechanisms that affected stemflow. The results indicated that C. korshinskii had a greater stemflow yield and efficiency at all precipitation levels than that of S. psammophila. The largest inter-specific difference generally occurred at the 5-10 mm branches during rains of ≤ 2 mm. Precipitation amount was the most influential meteorological characteristic that affected stemflow yield and efficiency in these two endemic shrub species. Branch angle was the most influential plant trait on FR. For SFb, stem biomass and leaf biomass were the most influential plant traits for C. korshinskii and S. psammophila, respectively. For SFP of these two shrub species, leaf traits (the individual leaf area) and branch traits (branch size and biomass allocation pattern) had a great influence during lighter rains ≤ 10 mm and heavier rains > 15 mm, respectively. The lower precipitation threshold to start stemflow allowed C. korshinskii (0.9 mm vs. 2.1 mm for S. psammophila) to employ more rains to harvest water via stemflow. The beneficial leaf traits (e.g., leaf shape, arrangement, area, amount) might partly explain the greater stemflow production of C. korshinskii. Comparison of SFb between the foliated and manually defoliated shrubs during the 2015 rainy season indicated that the newly exposed branch surface at the defoliated period and the resulting rainfall intercepting effects might be an important mechanism affecting stemflow in the dormant season.

  14. [Pollen dispersion and reproductive success of four tree species of a xerophytic forest from Argentina].

    PubMed

    Torretta, Juan Pablo; Basilio, Alicia M

    2009-01-01

    The "talares" in eastern Buenos Aires province, Argentina, are coastal xerophitic forests structured by few arboreal species surrounded by a lower and moister soil matrix. We studied the reproductive parameters of the most representative arboreal species (Celtis tala, Scutia buxifolia, Jodina rhombifolia, and Schinus longifolia). Pollen dispersion was studied through floral visitor traps (biotic dispersion) and using gravimetric pollen collectors (abiotic dispersion). The reproductive success (fruit formation rate) of the focal species was studied by enclosing flowers with different mesh bags. The reproductive system varied among the different species. C. tala was anemophilous and selfcompatible. S. buxifolia was entomophilous and floral visitors dependant. J. rhombifolia was entomophylous, although spontaneous autogamy could favor reproduction in the absence of pollinators. Lastly, S. longifolia could be an ambophilous species (pollinated by insects and by the wind). This dual system may be the result of system flexibility mechanism or an evolutionary transition.

  15. Excessive sulphur accumulation and ionic storage behaviour identified in species of Acacia (Leguminosae: Mimosoideae)

    PubMed Central

    Reid, N.; Robson, T. C.; Radcliffe, B.; Verrall, M.

    2016-01-01

    Background and Aims Thiophores, which are typically desert gypsophytes, accumulate high (2–6 % S dry weight) sulphur concentrations and may possess unique tolerance to environmental stress factors, e.g. sulphate/metal toxicity, drought and salinity. Little is known of the prevalence of the behaviour or the associated physiological aspects. The aim of this study was to (a) determine the prevalence of thiophore behaviour in a group of Australian xerophytes; (b) identify elemental uptake/storage characteristics of these thiophores; and (c) determine whether the behaviour is constitutive or environmental. Methods The elemental composition of soils and the foliage of 11 species (seven genera) at a site in the Tanami Desert (NT, Australia) was compared and 13 additional Acacia species from other locations were examined for elevated calcium and sulphur concentrations and calcium–sulphur mineralization, thought to be particular to thiophores. Key Results Acacia bivenosa DC. and 11 closely related species were identified as thiophores that can accumulate high levels of sulphur (up to 3·2 %) and calcium (up to 6.8 %), but no thiophores were identified in other genera occupying the same habitat. This behaviour was observed in several populations from diverse habitats, from samples collected over three decades. It was also observed that these thiophores featured gypsum (CaSO4·2H2O) crystal druses that completely filled cells and vascular systems in their dried phyllode tissues. Conclusions The thiophores studied exhibit a tight coupling between sulphur and calcium uptake and storage, and apparently store these elements as inorganic salts within the cells of their foliage. Thiophore behaviour is a constitutive trait shared by closely related Acacia but is not highly prevalent within, nor exclusive to, xerophytes. Several of the newly identified thiophores occupy coastal or riparian habitats, suggesting that the evolutionary and ecophysiological explanations for this trait

  16. Subdecadal phytolith and charcoal records from Lake Malawi, East Africa imply minimal effects on human evolution from the ∼74 ka Toba supereruption.

    PubMed

    Yost, Chad L; Jackson, Lily J; Stone, Jeffery R; Cohen, Andrew S

    2018-03-01

    The temporal proximity of the ∼74 ka Toba supereruption to a putative 100-50 ka human population bottleneck is the basis for the volcanic winter/weak Garden of Eden hypothesis, which states that the eruption caused a 6-year-long global volcanic winter and reduced the effective population of anatomically modern humans (AMH) to fewer than 10,000 individuals. To test this hypothesis, we sampled two cores collected from Lake Malawi with cryptotephra previously fingerprinted to the Toba supereruption. Phytolith and charcoal samples were continuously collected at ∼3-4 mm (∼8-9 yr) intervals above and below the Toba cryptotephra position, with no stratigraphic breaks. For samples synchronous or proximal to the Toba interval, we found no change in low elevation tree cover, or in cool climate C 3 and warm season C 4 xerophytic and mesophytic grass abundance that is outside of normal variability. A spike in locally derived charcoal and xerophytic C 4 grasses immediately after the Toba eruption indicates reduced precipitation and die-off of at least some afromontane vegetation, but does not signal volcanic winter conditions. A review of Toba tuff petrological and melt inclusion studies suggest a Tambora-like 50 to 100 Mt SO 2 atmospheric injection. However, most Toba climate models use SO 2 values that are one to two orders of magnitude higher, thereby significantly overestimating the amount of cooling. A review of recent genetic studies finds no support for a genetic bottleneck at or near ∼74 ka. Based on these previous studies and our new paleoenvironmental data, we find no support for the Toba catastrophe hypothesis and conclude that the Toba supereruption did not 1) produce a 6-year-long volcanic winter in eastern Africa, 2) cause a genetic bottleneck among African AMH populations, or 3) bring humanity to the brink of extinction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Excessive sulphur accumulation and ionic storage behaviour identified in species of Acacia (Leguminosae: Mimosoideae).

    PubMed

    Reid, N; Robson, T C; Radcliffe, B; Verrall, M

    2016-04-01

    Thiophores, which are typically desert gypsophytes, accumulate high (2-6 % S dry weight) sulphur concentrations and may possess unique tolerance to environmental stress factors, e.g. sulphate/metal toxicity, drought and salinity. Little is known of the prevalence of the behaviour or the associated physiological aspects. The aim of this study was to (a) determine the prevalence of thiophore behaviour in a group of Australian xerophytes; (b) identify elemental uptake/storage characteristics of these thiophores; and (c) determine whether the behaviour is constitutive or environmental. The elemental composition of soils and the foliage of 11 species (seven genera) at a site in the Tanami Desert (NT, Australia) was compared and 13 additional Acacia species from other locations were examined for elevated calcium and sulphur concentrations and calcium-sulphur mineralization, thought to be particular to thiophores. Acacia bivenosa DC. and 11 closely related species were identified as thiophores that can accumulate high levels of sulphur (up to 3·2 %) and calcium (up to 6.8 %), but no thiophores were identified in other genera occupying the same habitat. This behaviour was observed in several populations from diverse habitats, from samples collected over three decades. It was also observed that these thiophores featured gypsum (CaSO4·2H2O) crystal druses that completely filled cells and vascular systems in their dried phyllode tissues. The thiophores studied exhibit a tight coupling between sulphur and calcium uptake and storage, and apparently store these elements as inorganic salts within the cells of their foliage. Thiophore behaviour is a constitutive trait shared by closely related Acacia but is not highly prevalent within, nor exclusive to, xerophytes. Several of the newly identified thiophores occupy coastal or riparian habitats, suggesting that the evolutionary and ecophysiological explanations for this trait do not lie solely in adaptation to arid conditions or

  18. Desertification of rangelands: 4.20

    USGS Publications Warehouse

    Peters, D. P. C.; Bestelmeyer, B. T.; Havstad, K. M.; Rango, A.; Archer, S. R.; Comrie, A. C.; Gimblett, H. R.; López-Hoffman, L.; Sala, O. E.; Vivoni, E. R.; Brooks, M. L.; Brown, J.; Monger, H. C.; Goldstein, J. H.

    2013-01-01

    Desertification, the broad-scale conversion of perennial grasslands to dominance by annuals or xerophytic shrubs, has affected drylands globally over the past several centuries. Desertification is a cumulative threat that includes both climatic (e.g., drought) and land-use drivers (e.g., livestock overgrazing, fire). In this chapter, we determine the vulnerability of different ecosystem services to changes in drivers and ecosystem states, with a focus on the American Southwest. We have four objectives: (1) to describe key services in drylands, (2) to identify consequences of desertification to each service, (3) to explore the vulnerability of each service to future state-changes if existing threats intensify and new threats emerge, and (4) to determine threats expected to have the greatest future impact, and to provide potential actions for mitigation. We conclude with recommendations.

  19. Heterogeneity of soil surface temperature induced by xerophytic shrub in a revegetated desert ecosystem, northwestern China

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-Feng; Wang, Xin-Ping; Pan, Yan-Xia; Hu, Rui; Zhang, Hao

    2013-06-01

    Variation characteristics of the soil surface temperature induced by shrub canopy greatly affects the near-surface biological and biochemical processes in desert ecosystems. However, information regarding the effects of shrub upon the heterogeneity of soil surface temperature is scarce. Here we aimed to characterize the effects of shrub ( Caragana korshinskii) canopy on the soil surface temperature heterogeneity at areas under shrub canopy and the neighbouring bare ground. Diurnal variations of soil surface temperature were measured at areas adjacent to the shrub base (ASB), beneath the midcanopy (BMC), and in the bare intershrub spaces (BIS) at the eastern, southern, western and northern aspects of shrub, respectively. Results indicated that diurnal mean soil surface temperature under the C. korshinskii canopy (ASB and BMC) was significantly lower than in the BIS, with the highest in the BIS, followed by the BMC and ASB. The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different aspects of shrub with the diurnal variation in solar altitude, which could be used as cues to detect safe sites for under-canopy biota. A significant empirical linear relationship was found between soil surface temperature and solar altitude, suggesting an empirical predicator that solar altitude can serve for soil surface temperature. Lower soil surface temperatures under the canopy than in the bare intershrub spaces imply that shrubs canopy play a role of `cool islands' in the daytime in terms of soil surface temperature during hot summer months in the desert ecosystems characterized by a mosaic of sparse vegetation and bare ground.

  20. Purification and characterization of cinnamyl alcohol-NADPH-dehydrogenase from the leaf tissues of a basin mangrove Lumnitzera racemosa Willd.

    PubMed

    Murugan, K; Arunkumar, N S; Mohankumar, C

    2004-01-01

    Cinnamyl alcohol-NADPH-dehydrogenase (CAD), the marker enzyme of lignin biosynthesis was purified from the leaf tissues of a basin mangrove Lumnitzera racemosa by ammonium sulphate precipitation, followed by anion-exchange, gel filtration and affinity chromatography. The molecular mass of the CAD enzyme was determined as 89 kDa, by size elution chromatography. SDS-PAGE of CAD revealed two closely associated bands of 45 kDa and 42 kDa as heterogenous subunits. The optimum pH of CAD was found to be 4.0. Km for the substrates cinnamaldehyde, coniferaldehyde and sinapaldehyde was determined. Cinnamaldehyde showed higher Km value than sinapaldehyde and coniferaldehyde. The correlation of activity of CAD with the amount of lignin was found less significant in L. racemosa, compared to plant species of other habitats viz., mesophytes, xerophytes and hydrophytes, suggesting that CAD possibly exhibits physiological suppression due to the saline habitat of the plant.

  1. Fire as a control agent of demographic structure and plant performance of a rare Mediterranean endemic geophyte.

    PubMed

    Diadema, Katia; Médail, Frédéric; Bretagnolle, François

    2007-09-01

    We examine the effects of fire and/or surrounding vegetation cover on demographic stage densities and plant performance for a rare endemic geophyte, Acis nicaeensis (Alliaceae), in Mediterranean xerophytic grasslands of the 'Alpes-Maritimes' French 'département', through sampling plots in unburned and burned treatments. Fire increases density of flowering individuals and seedling emergence, as well as clump densities and number of individuals per clump, per limiting vegetation height and cover, and increasing bare soil cover. In contrast, fire has no effect on reproductive success. Nevertheless, two growing seasons after fire, all parameters of demographic stages and plant performance do not significantly differ between the two treatments. Small-scale fire is beneficial for the regeneration of this threatened geophyte at a short-time scale. In this context, a conservation planning with small and controlled fires could maintain the regeneration window for populations of rare Mediterranean geophytes.

  2. Culturable Facultative Methylotrophic Bacteria from the Cactus Neobuxbaumia macrocephala Possess the Locus xoxF and Consume Methanol in the Presence of Ce3+ and Ca2+

    PubMed Central

    del Rocío Bustillos-Cristales, María; Corona-Gutierrez, Ivan; Castañeda-Lucio, Miguel; Águila-Zempoaltécatl, Carolina; Seynos-García, Eduardo; Hernández-Lucas, Ismael; Muñoz-Rojas, Jesús; Medina-Aparicio, Liliana; Fuentes-Ramírez, Luis Ernesto

    2017-01-01

    Methanol-consuming culturable bacteria were isolated from the plant surface, rhizosphere, and inside the stem of Neobuxbaumia macrocephala. All 38 isolates were facultative methylotrophic microorganisms. Their classification included the Classes Actinobacteria, Sphingobacteriia, Alpha-, Beta-, and Gammaproteobacteria. The deduced amino acid sequences of methanol dehydrogenase obtained by PCR belonging to Actinobacteria, Alpha-, Beta-, and Gammaproteobacteria showed high similarity to rare-earth element (REE)-dependent XoxF methanol dehydrogenases, particularly the group XoxF5. The sequences included Asp301, the REE-coordinating amino acid, present in all known XoxF dehydrogenases and absent in MxaF methanol dehydrogenases. The quantity of the isolates showed positive hybridization with a xoxF probe, but not with a mxaF probe. Isolates of all taxonomic groups showed methylotrophic growth in the presence of Ce3+ or Ca2+. The presence of xoxF-like sequences in methylotrophic bacteria from N. macrocephala and its potential relationship with their adaptability to xerophytic plants are discussed. PMID:28855445

  3. Potential involvement of drought-induced Ran GTPase CLRan1 in root growth enhancement in a xerophyte wild watermelon.

    PubMed

    Akashi, Kinya; Yoshimura, Kazuya; Kajikawa, Masataka; Hanada, Kouhei; Kosaka, Rina; Kato, Atsushi; Katoh, Akira; Nanasato, Yoshihiko; Tsujimoto, Hisashi; Yokota, Akiho

    2016-10-01

    Enhanced root growth is known as the survival strategy of plants under drought. Previous proteome analysis in drought-resistant wild watermelon has shown that Ran GTPase, an essential regulator of cell division and proliferation, was induced in the roots under drought. In this study, two cDNAs were isolated from wild watermelon, CLRan1 and CLRan2, which showed a high degree of structural similarity with those of other plant Ran GTPases. Quantitative RT-PCR and promoter-GUS assays suggested that CLRan1 was expressed mainly in the root apex and lateral root primordia, whereas CLRan2 was more broadly expressed in other part of the roots. Immunoblotting analysis confirmed that the abundance of CLRan proteins was elevated in the root apex region under drought stress. Transgenic Arabidopsis overexpressing CLRan1 showed enhanced primary root growth, and the growth was maintained under osmotic stress, indicating that CLRan1 functions as a positive factor for maintaining root growth under stress conditions.

  4. Delta 13C predicts water deficit sensitivity in Malus sieversii (Ledeb.) M. Roem. from a xerophytic site in Kazakhstan

    USDA-ARS?s Scientific Manuscript database

    Modern apples [Malus x domestica (Borkh.)] are thought to have originated in western China from the progenitor species, Malus sieversii (Ledeb.) M. Roem. Due to many generations of selection for traits associated with high fruit quality, our current breeding germplasm has become dangerously narrow....

  5. [Water parameters of desert xeric shrubs in west Erdos region].

    PubMed

    Li, Xiao; Wang, Ying-chun; Zheng, Rong

    2007-05-01

    By using PV technique, this paper studied the turgor pressure (psi P), cell elastic modulus (epsilon), and relative cell volume (RCV) of super xerophytes Potaninia mongolica, Reaumuria soongorica, Tetraena mongolica and Zygophyllum xanthoxylon in west Alashan, with the relationships among the parameters analyzed. The results showed that R. soongorica had the strongest ability to maintain maximum turgor pressure (a = 2.4593). The four plants maintained their turgor pressure by different ways, i.e., P. mongolica maintained it by elastic adjustment (epsilon max = 8.4005 MPa), R. soongorica by osmotic adjustment (psi pi100 = -3.1302 MPa; psi0 = -3.5074 MPa), T. mongolica by both osmotic and elastic adjustment, and Z. xanthoxylon by osmotic adjustment, which had weak adjustment ability. The cell wall of P. mongolica was soft and highly elastic, benefiting to the water absorption by root and stem and to the fast water transmission. T. mongolica also had relatively soft and high elastic cell wall, and its psi P, and epsilon changed slowly with decreasing RCV, suggesting that this plant had strong ability of holding water and resisting dehydration.

  6. Early Pliocene vegetation distribution in Europe

    NASA Astrophysics Data System (ADS)

    Popescu, S.; Warny, S.; Suc, J.

    2010-12-01

    The Early Pliocene corresponds to a global warm climate documented by marine & terrestrial records. Reconstruction of climatic parameters, based on terrestrial proxies, indicate at European mid-latitudes a MAT higher of about 1-5°C than today and MAP higher of about 400-1000 mm. This global warm situation was interrupted between 4.7 - 4.5 Ma by a cooling event related to small fluctuations of the Antarctic ice-sheet that modify the floristic assemblages. according to pollen recors, the Northern Mediterranean area is characterized by dominance of arboreal pollen, suggesting a dense forest cover, on contrary to the Southern Mediterranean where herbs were prevalent, signifying a widespread development of open vegetation during the early Pliocene. Such a contrast in landscape between the North and the South of the Mediterranean is to be related to the latitudinal gradient in humidity. In the North Mediterranean area, the vegetation organization was also closely linked to the relief. Coastal plains were inhabited by Taxodiaceae swamps replaced in some places by marshes. With respect to the geographic position, several plant ecosystems can distinguished: (1) salt marshes, along the Atlantic coastline (zone A); (2) marshes mostly made of Cyperaceae evidenced on the Mediterranean coastline. Such juxtaposed assemblages resemble the modern vegetation of the Mississippi Delta and Florida. Peculiar vegetation assemblages characterize the Mediterranean coastal plains. In the southeastern Mediterranean region (Zone B), the open vegetation was composed by herbs including subdesertic elements. Mediterranean xerophytes are only numerically represented in the area of Tarragona and Sicily, their assemblage resemble the modern thermo-mediterranean formation. Close to the mountains (Zone C) vegetation is organized according to an altitudinal gradient. The low altitude vegetation was composed by Taxodiaceae (Sequoia) while Cathaya and Cedrus dominated the mid-altitude belt. Abies and

  7. Biological soil crust as a bio-mediator alters hydrological processes in stabilized dune system of the Tengger Desert, China

    NASA Astrophysics Data System (ADS)

    Li, Xinrong

    2016-04-01

    Biological soil crust (BSC) is a vital component in the stabilized sand dunes with a living cover up to more than 70% of the total, which has been considered as a bio-mediator that directly influences and regulates the sand dune ecosystem processes. However, its influences on soil hydrological processes have been long neglected in Chinese deserts. In this study, BSCs of different successional stages were chose to test their influence on the hydrological processes of stabilized dune, where the groundwater deep exceeds 30m, further to explore why occur the sand-binding vegetation replacement between shrubs and herbs. Our long-term observation (60 years) shows that cyanobacteria crust has been colonized and developed after 3 years since the sand-binding vegetation has been established and dune fixation using planted xerophytic shrubs and made sand barrier (straw-checkerboard) on shifting dune surface, lichen and moss crust occurred after 20 years, and the cover of moss dominated crust could reach 70 % after 50 years. The colonization and development of BSC altered the initial soil water balance of revegetated areas by influencing rainfall infiltration, soil evaporation and dew water entrapment. The results show that BSC obviously reduced the infiltration that occurred during most rainfall events (80%), when rainfall was greater than 5 mm or less than 20 mm. The presence of BSC reduced evaporation of topsoil after small rainfall (<5 mm) because its high proportion of finer particles slowed the evaporation rate, thus keeping the water in the soil surface longer, and crust facilitated topsoil evaporation when rainfall reached 10 mm. The amount of dew entrapment increases with the succession of BSC. Moreover, the effect of the later successional BSC to dew entrapment, rainfall infiltration and evaporation was more obvious than the early successional BSC on stabilized dunes. In general, BSC reduced the amount of rainfall water that reached deeper soil (0.4-3m), which is

  8. Simulating the impacts of southern pine beetle and fire on the dynamics of xerophytic pine landscapes in the southern Appalachians

    Treesearch

    J.D. Waldron; C.W. Lafon; R.N. Coulson; D.M. Cairns; M.D. Tchakerian; A. Birt; K.D. Klepzig

    2007-01-01

    Question: Can fire be used to maintain Yellow pine (Pinus subgenus Diploxylon) stands disturbed by periodic outbreaks of southern pine beetle?Location: Southern Appalachian Mountains, USA.Methods: We used LANDIS to model vegetation disturbance and succession...

  9. Epidermal Micromorphology and Mesophyll Structure of Populus euphratica Heteromorphic Leaves at Different Development Stages

    PubMed Central

    Liu, Yubing; Li, Xinrong; Chen, Guoxiong; Li, Mengmeng; Liu, Meiling; Liu, Dan

    2015-01-01

    Leaf epidermal micromorphology and mesophyll structure during the development of Populus euphratica heteromorphic leaves, including linear, lanceolate, ovate, dentate ovate, dentate rhombic, dentate broad-ovate and dentate fan-shaped leaves, were studied by using electron and light microscopy. During development of heteromorphic leaves, epidermal appendages (wax crystals and trichomes) and special cells (mucilage cells and crystal idioblasts) increased in all leaf types while chloroplast ultrastructure and stomatal characters show maximum photosynthetic activity in dentate ovate and rhombic leaves. Also, functional analysis by subordinate function values shows that the maximum adaptability to adverse stress was exhibited in the broad type of mature leaves. The 12 heteromorphic leaf types are classified into three major groups by hierarchical cluster analysis: young, developing and mature leaves. Mature leaves can effectively obtain the highest stress resistance by combining the protection of xerophytic anatomy from drought stress, regulation of water uptake in micro-environment by mucilage and crystal idioblasts, and assistant defense of transpiration reduction through leaf epidermal appendages, which improves photosynthetic activity under arid desert conditions. Our data confirms that the main leaf function is differentiated during the developing process of heteromorphic leaves. PMID:26356300

  10. Climate remains an important driver of post-European vegetation change in the eastern United States

    USGS Publications Warehouse

    Neil Pederson,; Anthony W. D’Amato,; James M. Dyer,; Foster, David R.; Goldblum, David; Hart, Justin L.; Hessl, Amy E.; Iverson, Louis R.; Jackson, Stephen T.; Martin-Benito, Dario; McCarthy, Brian C.; McEwan, Ryan W.; Mladenoff, David J.; Parker, Albert J.; Shuman, Bryan; Williams, John W.

    2014-01-01

    The influence of climate on forest change during the past century in the eastern United States was evaluated in a recent paper (Nowacki & Abrams, 2014) that centers on an increase in ‘highly competitive mesophytic hardwoods’ (Nowacki & Abrams, 2008) and a concomitant decrease in the more xerophytic Quercus species. Nowacki & Abrams (2014) concluded that climate change has not contributed significantly to observed changes in forest composition. However, the authors restrict their focus to a single element of climate: increasing temperature since the end of the Little Ice Age ca. 150 years ago. In their study, species were binned into four classifications (e.g., Acer saccharum – ‘cool-adapted’, Acer rubrum – ‘warm-adapted’) based on average annual temperature within each species range in the United States, reducing the multifaceted character of climate into a single, categorical measure. The broad temperature classes not only veil the many biologically relevant aspects of temperature (e.g., seasonal and extreme temperatures) but they may also mask other influences, both climatic (e.g., moisture sensitivity) and nonclimatic (e.g., competition).

  11. Best of both worlds: simultaneous high-light and shade-tolerance adaptations within individual leaves of the living stone Lithops aucampiae.

    PubMed

    Field, Katie J; George, Rachel; Fearn, Brian; Quick, W Paul; Davey, Matthew P

    2013-01-01

    "Living stones" (Lithops spp.) display some of the most extreme morphological and physiological adaptations in the plant kingdom to tolerate the xeric environments in which they grow. The physiological mechanisms that optimise the photosynthetic processes of Lithops spp. while minimising transpirational water loss in both above- and below-ground tissues remain unclear. Our experiments have shown unique simultaneous high-light and shade-tolerant adaptations within individual leaves of Lithops aucampiae. Leaf windows on the upper surfaces of the plant allow sunlight to penetrate to photosynthetic tissues within while sunlight-blocking flavonoid accumulation limits incoming solar radiation and aids screening of harmful UV radiation. Increased concentration of chlorophyll a and greater chlorophyll a:b in above-ground regions of leaves enable maximum photosynthetic use of incoming light, while inverted conical epidermal cells, increased chlorophyll b, and reduced chlorophyll a:b ensure maximum absorption and use of low light levels within the below-ground region of the leaf. High NPQ capacity affords physiological flexibility under variable natural light conditions. Our findings demonstrate unprecedented physiological flexibility in a xerophyte and further our understanding of plant responses and adaptations to extreme environments.

  12. First record of a Late Holocene fauna associated with an ephemeral fluvial sequence in La Pampa Province, Argentina. Taphonomy and paleoenvironment

    NASA Astrophysics Data System (ADS)

    Montalvo, Claudia I.; Fernández, Fernando J.; Bargo, M. Susana; Tomassini, Rodrigo L.; Mehl, Adriana

    2017-07-01

    The first Late Holocene mammal assemblage (mainly micromammals) of La Pampa Province was found in Quehué paleontological site, associated with an ephemeral fluvial sequence. Taphonomical features of the collected materials were evaluated in order to increase the knowledge of the ancient vertebrate communities of this area and to interpret the origin of the assemblages. Field data and taphonomic analysis of the specimens, suggested the recognition of three assemblages with different taphonomic histories: 1) large to medium sized mammals; 2) micromammals found inside burrows or associated with them; and 3) discrete accumulations of micromammals and other microvertebrates (amphibians, reptiles and birds). Additionally, the paleoenvironmental analysis based mainly on the record of small mammals reflected the predominance of semi-arid conditions associated with a mosaic of open shrub steppe, grasslands and xerophytic forests of Espinal, similar to the present one in the Quehué valley area. However, the presence of Lestodelphys halli in the Quehué site during the Late Holocene (∼1.2 ky BP), suggests a more heterogeneous environment and perhaps relative colder and drier than current times, which are featured by more mesic conditions and anthropic activities, mainly agriculture and livestock during the last centuries.

  13. Epidermal Micromorphology and Mesophyll Structure of Populus euphratica Heteromorphic Leaves at Different Development Stages.

    PubMed

    Liu, Yubing; Li, Xinrong; Chen, Guoxiong; Li, Mengmeng; Liu, Meiling; Liu, Dan

    2015-01-01

    Leaf epidermal micromorphology and mesophyll structure during the development of Populus euphratica heteromorphic leaves, including linear, lanceolate, ovate, dentate ovate, dentate rhombic, dentate broad-ovate and dentate fan-shaped leaves, were studied by using electron and light microscopy. During development of heteromorphic leaves, epidermal appendages (wax crystals and trichomes) and special cells (mucilage cells and crystal idioblasts) increased in all leaf types while chloroplast ultrastructure and stomatal characters show maximum photosynthetic activity in dentate ovate and rhombic leaves. Also, functional analysis by subordinate function values shows that the maximum adaptability to adverse stress was exhibited in the broad type of mature leaves. The 12 heteromorphic leaf types are classified into three major groups by hierarchical cluster analysis: young, developing and mature leaves. Mature leaves can effectively obtain the highest stress resistance by combining the protection of xerophytic anatomy from drought stress, regulation of water uptake in micro-environment by mucilage and crystal idioblasts, and assistant defense of transpiration reduction through leaf epidermal appendages, which improves photosynthetic activity under arid desert conditions. Our data confirms that the main leaf function is differentiated during the developing process of heteromorphic leaves.

  14. The tadpole of Scinax melanodactylus (Lourenço, Luna & Pombal Jr, 2014) (Amphibia, Anura, Hylidae).

    PubMed

    Abreu, Rafael Oliveira De; Napoli, Marcelo Felgueiras; Trevisan, Camila Costa; Camardelli, Milena; Dória, Thais Andrade Ferreira; Silva, Lucas Menezes

    2015-07-06

    Scinax melanodactylus is a small treefrog distributed within the Tropical Atlantic morphoclimatic domain (see Ab'Sáber 1977 for South American morphoclimatic domains), from northern Espírito Santo state to Sergipe state in Brazil (Lourenço et al. 2014). The species is usually found inhabiting herbaceous and shrubby xerophytic vegetation (e.g. terrestrial tank-bromeliads) from sandy plains of beach ridges known in Brazil as Restingas (see Rocha et al. 2007 for a Restinga definition), and also the edge of forest areas with temporary ponds and/or permanent lakes and streams near these environments (Bastazini et al. 2007, as Scinax agilis; Lourenço et al. 2014). Scinax melanodactylus is currently placed in the S. catharinae species group (Lourenço et al. 2014), which in turn is included in the S. catharinae clade (sensu Faivovich et al. 2005). The S. catharinae clade is currently comprised of 46 species, 33 placed in the catharinae group and 13 in the perpusillus group (Faivovich et al. 2010, Silva & Alves-da-Silva 2011, Lourenço et al. 2014, Frost 2015). From these, 32 species have tadpoles with external morphology and oral disc formerly described. Here, we describe the external morphology, oral disc and color patterns of the previously unknown tadpole of S. melanodactylus.

  15. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus

    PubMed Central

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-01-01

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops. PMID:27491393

  16. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus.

    PubMed

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-08-05

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops.

  17. Responses of the photosynthetic electron transport system to excess light energy caused by water deficit in wild watermelon.

    PubMed

    Sanda, Satoko; Yoshida, Kazuo; Kuwano, Masayoshi; Kawamura, Tadayuki; Munekage, Yuri Nakajima; Akashi, Kinya; Yokota, Akiho

    2011-07-01

    In plants, drought stress coupled with high levels of illumination causes not only dehydration of tissues, but also oxidative damage resulting from excess absorbed light energy. In this study, we analyzed the regulation of electron transport under drought/high-light stress conditions in wild watermelon, a xerophyte that shows strong resistance to this type of stress. Under drought/high-light conditions that completely suppressed CO(2) fixation, the linear electron flow was diminished between photosystem (PS) II and PS I, there was no photoinhibitory damage to PS II and PS I and no decrease in the abundance of the two PSs. Proteome analyses revealed changes in the abundance of protein spots representing the Rieske-type iron-sulfur protein (ISP) and I and K subunits of NAD(P)H dehydrogenase in response to drought stress. Two-dimensional electrophoresis and immunoblot analyses revealed new ISP protein spots with more acidic isoelectric points in plants under drought stress. Our findings suggest that the modified ISPs depress the linear electron transport activity under stress conditions to protect PS I from photoinhibition. The qualitative changes in photosynthetic proteins may switch the photosynthetic electron transport from normal photosynthesis mode to stress-tolerance mode. Copyright © Physiologia Plantarum 2011.

  18. Delineation and hydrologic effects of a gasoline leak at Stovepipe Wells Hotel, Death Valley National Monument, California

    USGS Publications Warehouse

    Buono, A.; Packard, Elaine M.

    1982-01-01

    Ground water is the only local source of water available to the Stovepipe Wells Hotel facilities of the Death Valley National Monument, California. A leak in a service station storage tank caused the formation of a gasoline layer overlying the water table, creating the potential for contamination of the water supply. The maximum horizontal extent of the gasoline layer was mathematically estimated to be 1,300 feet downgradient from the leaky gasoline tank. Exploratory drilling detected the gasoline layer between 900 and 1,400 feet downgradient and between 50 and 150 feet upgradient from the source. Traces of the soluble components of gasoline were also found in the aquifer 150 feet upgradient, and 250 feet distant from the source perpendicular to the direction of ground-water movement. The gasoline spill is not likely to have an effect on the supply wells located 0.4 mile south of the leak source, which is nearly perpendicular to the direction of ground-water movement and the primary direction of gasoline movement in the area. No effect on phreatophytes 2 miles downgradient from the layer is likely, but the potential effects of gasoline vapors within the unsaturated zone on local xerophytes are not known. (USGS)

  19. Reconstruction of postglacial landscape evolution within the eastern periphery of Chuya depression on the basis of multidisciplinary analysis of peats in Boguty river basin, SE Altai, Russia

    NASA Astrophysics Data System (ADS)

    Agatova, A. R.; Khazina, I. V.; Bronnikova, M. A.; Uspenskaya, O. N.; Nepop, R. K.

    2018-03-01

    This paper presents the results of multidisciplinary investigations of the peat-bed under hummocky permafrosted boggy meadow within the Boguty basin. For the last 7600 years 4 evolutionary phases of peatbog formation within the drained part of Low Boguty Lake bottom were established and corresponding 4 pollen complexes were described. 18 radiocarbon dates suggest some chronological bench marks of postglacial landscape evolution in the region. After degradation of Sartan glaciation about 14000 BP, trees grew in now forestless areas at 11000 BP and 8500-7800 BP. The climate in the first half of the Holocene was warmer and more humid. Accumulation of lacustrine loams within the studied peatbog occurred before 7600 BP with predominated algae Pediastrum, Zygnemataceae and Botryococcus. After the lake level lowered in the result of destructing moraine dam, two lower peat horizons were developed about 7600 – 7200 BP. An episode of significant lake desiccation (later than 7200 BP) was recorded in all proxy archives. Further rise of water supply led to increasing the number of water-bog plants, diatomaceous, euglenic and green algae. At the same time, the pollen of xerophytes began to predominate in the pollen complexes, indicating aridization. The final stage reflects stable peatbog drying and its transformation into boggy meadow, decomposition and mineralization of peat.

  20. The Relationship between Diaspore Characteristics with Phylogeny, Life History Traits, and Their Ecological Adaptation of 150 Species from the Cold Desert of Northwest China

    PubMed Central

    Liu, Hui-Liang; Zhang, Dao-Yuan; Duan, Shi-Min; Wang, Xi-Yong; Song, Ming-Fang

    2014-01-01

    Diaspore characteristics of 22 families, including 102 genera and 150 species (55 represented by seeds and 95 by fruits) from the Gurbantunggut Desert were analyzed for diaspore biological characteristics (mass, shape, color, and appendage type). The diaspore mass and shape were significantly different in phylogeny group (APG) and dispersal syndromes; vegetative periods significantly affected diaspore mass, but not diaspore shape; and ecotypes did not significantly affect diaspore mass and shape, but xerophyte species had larger diaspore mass than mesophyte species. Unique stepwise ANOVA results showed that variance in diaspore mass and shape among these 150 species was largely dependent upon phylogeny and dispersal syndromes. Therefore, it was suggested that phylogeny may constrain diaspore mass, and as dispersal syndromes may be related to phylogeny, they also constrained diaspore mass and shape. Diaspores of 85 species (56.67%) had appendages, including 26 with wings/bracts, 18 with pappus/hair, 14 with hooks/spines, 10 with awns, and 17 with other types of appendages. Different traits (mass, shape, color, appendage, and dispersal syndromes) of diaspore decided plants forming different adapted strategies in the desert. In summary, the diaspore characteristics were closely related with phylogeny, vegetative periods, dispersal syndromes, and ecotype, and these characteristics allowed the plants to adapt to extreme desert environments. PMID:24605054

  1. Physiological responses of Tillandsia albida (Bromeliaceae) to long-term foliar metal application.

    PubMed

    Kováčik, Jozef; Klejdus, Bořivoj; Stork, František; Hedbavny, Josef

    2012-11-15

    The impact of 2-month foliar application of cadmium, nickel and their combination (10 μM) on Tillandsia albida was studied. Cadmium caused damage of tissue but assimilation pigments were depressed in Cd+Ni variant only. Stress-related parameters (ROS and peroxidase activities) were elevated by Cd and Cd+Ni while MDA content remained unaffected. Free amino acids accumulated the most in Ni alone but soluble proteins were not influenced. Among phenolic acids, mainly vanillin contributed to increase of their sum in all variants while soluble phenols even decreased in Cd+Ni and flavonols slightly increased in Cd variants. Phenolic enzymes showed negligible responses to almost all treatments. Mineral nutrients (K, Ca, Na, Mg, Fe, and Zn) were not affected by metal application but N content increased. Total Cd or Ni amounts reached over 400 μg g(-1) DW and were not affected if metal alone and combined treatment is compared while absorbed content differed (ca. 50% of total Cd was absorbed while almost all Ni was absorbed). These data indicate tolerance of T. albida to foliar metal application and together with strong xerophytic morphology, use for environmental studies is recommended. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Diversity and distribution of entomopathogenic nematodes (Nematoda: Steinernematidae, Heterorhabditidae) and their bacterial symbionts (gamma-Proteobacteria: Enterobacteriaceae) in Jordan.

    PubMed

    Stock, S Patricia; Al Banna, Luma; Darwish, Rula; Katbeh, Ahmad

    2008-06-01

    Until now, only a few systematic surveys of entomopathogenic nematodes (EPN) have been conducted in Middle Eastern countries. Many of the recovered EPN species in this region have shown to own distinctive qualities that enable their survival in unique environments, such as high temperatures and low moisture levels tolerance. These new species and strains, with unique environmental tolerances, are more suitable for their consideration in pest management programs in xerophytic regions. With this background in mind, we recently conducted a survey of EPN in Jordan. This study records for the first time the diversity and distribution of these nematodes and their bacterial symbionts in this country. Jordan's three geographic regions: (1) the highlands, (2) Jordan valley and (3) the desert region were sampled. Within each region, natural habitats and agricultural regions characteristic to each region were considered for sampling purposes. Four EPN species including three Steinernema and one Heterorhabditis were recovered. Nematodes were identified using a combination of molecular markers and classic morphological diagnostic tools. Bacterial symbionts were identified by analysis of 16S rRNA sequences. Abiotic characteristics such as soil type, soil pH, and elevation were also recorded. We herein report the diversity of EPN species in Jordan and discuss their potential in Biocontrol and IPM programs for this country.

  3. Geographical isolation caused the diversification of the Mediterranean thorny cushion-like Astragalus L. sect. Tragacantha DC. (Fabaceae).

    PubMed

    Hardion, Laurent; Dumas, Pierre-Jean; Abdel-Samad, Farah; Bou Dagher Kharrat, Magda; Surina, Bostjan; Affre, Laurence; Médail, Frédéric; Bacchetta, Gianluigi; Baumel, Alex

    2016-04-01

    Understanding the origin and evolution of Mediterranean vascular flora within the long-term context of climate change requires a continuous study of historical biogeography supported by molecular phylogenetic approaches. Here we provide new insights into the fascinating but often overlooked diversification of Mediterranean xerophytic plants. Growing in some of the most stressing Mediterranean environments, i.e. coastal and mountainous opened habitats, the circum-Mediterranean Astragalus L. sect. Tragacantha DC. (Fabaceae) gathers several thorny cushion-like taxa. These have been the subjects of recent taxonomical studies, but they have not yet been investigated within a comprehensive molecular framework. Bayesian phylogenetics applied to rDNA ITS sequences reveal that the diversification of A. sect. Tragacantha has roots dating back to the Pliocene, and the same data also indicate an eastern-western split giving rise to the five main lineages that exist today. In addition, AFLP fingerprinting supports an old east-west pattern of vicariance that completely rules out the possibility of a recent eastern origin for western taxa. The observed network of genetic relationships implies that contrary to what is widely claimed in the taxonomic literature, it is range fragmentation, as opposed to a coastal-to-mountain ecological shift, that is likely the main driver of diversification. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Patterns and Processes in Nocturnal and Crepuscular Pollination Services.

    PubMed

    Borges, Renee M; Somanathan, Hema; Kelber, Almut

    2016-12-01

    Night, dawn, and dusk have abiotic features that differ from the day. Illumination, wind speeds, turbulence, and temperatures are lower while humidity may be higher at night. Nocturnal pollination occurred in 30% of angiosperm families across 68% of orders, 97% of families with C3, two-thirds of families with crassulacean acid metabolism (CAM), and 71% dicot families with C4 photosynthesis. Despite its widespread occurence, nocturnal pollination occurs in more families with xerophytic adaptations than helophytes or mesophytes, suggesting that nocturnal flowering is primarily an adaptation to water stress since flowering is a water-intensive process. We propose the arid or water stress hypothesis for nocturnal flowering suggesting that plants facing water stress in a habitat (e.g., deserts) or a habitat stratum (e.g., upper canopy for epiphytes) gain a selective advantage by nocturnal flowering by reducing water loss through evapotranspiration, leading to larger flowers that provide more nectar or other resources, to support pollinators with higher rewards. Contrary to the wide taxonomic occurrence of nocturnal flowering, few animal taxa serve as nocturnal pollinators. We discuss the sensory and physiological abilities that enable pollinator movement, navigation, and detection of flowers within the nocturnal temporal niche and present a unified framework for investigation of nocturnal flowering and pollination.

  5. Postglacial vegetation history of Orcas Island, northwestern Washington

    NASA Astrophysics Data System (ADS)

    Leopold, Estella B.; Dunwiddie, Peter W.; Whitlock, Cathy; Nickmann, Rudy; Watts, William A.

    2016-05-01

    The revegetation of islands following retreat of Pleistocene glaciers is of great biogeographical interest. The San Juan Islands, Washington, feature regionally distinctive xerophytic plant communities, yet their vegetation history, as it relates to past climate and sea level, is poorly known. We describe a 13,700-year-old pollen record from Killebrew Lake Fen and compare the vegetation reconstruction with others from the region. The data suggest that the narrow channels surrounding Orcas Island were not a barrier to early postglacial immigration of plants. Between 13,700 and 12,000 cal yr BP, Pinus, Tsuga, Picea, Alnus viridis, and possibly Juniperus maritima were present in a mosaic that supported Bison antiquus and Megalonyx. The rise of Alnus rubra-type pollen and Pteridium spores at ca. 12,000 cal yr BP suggests a warming trend and probably more fires. Temperate conifer taxa, including Cupressaceae, Pseudotsuga, Tsuga heterophylla, and Abies, increased after 11,000 cal yr BP and especially in the last 7000 cal yr BP. After 6000 cal yr BP, Pseudotsuga and Cupressaceae dominated the vegetation. The last 1500 yr were the wettest period of the record. Due to its rain shadow location, Orcas Island experienced drier conditions than on the mainland during most of the postglacial period.

  6. Alteration of Neutrophil Reactive Oxygen Species Production by Extracts of Devil's Claw (Harpagophytum).

    PubMed

    Muzila, Mbaki; Rumpunen, Kimmo; Wright, Helen; Roberts, Helen; Grant, Melissa; Nybom, Hilde; Sehic, Jasna; Ekholm, Anders; Widén, Cecilia

    2016-01-01

    Harpagophytum, Devil's Claw, is a genus of tuberiferous xerophytic plants native to southern Africa. Some of the taxa are appreciated for their medicinal effects and have been traditionally used to relieve symptoms of inflammation. The objectives of this pilot study were to investigate the antioxidant capacity and the content of total phenols, verbascoside, isoverbascoside, and selected iridoids, as well as to investigate the capacity of various Harpagophytum taxa in suppressing respiratory burst in terms of reactive oxygen species produced by human neutrophils challenged with phorbol myristate acetate (PMA), opsonised Staphylococcus aureus, and Fusobacterium nucleatum. Harpagophytum plants were classified into different taxa according to morphology, and DNA analysis was used to confirm the classification. A putative new variety of H. procumbens showed the highest degree of antioxidative capacity. Using PMA, three Harpagophytum taxa showed anti-inflammatory effects with regard to the PBS control. A putative hybrid between H. procumbens and H. zeyheri in contrast showed proinflammatory effect on the response of neutrophils to F. nucleatum in comparison with treatment with vehicle control. Harpagophytum taxa were biochemically very variable and the response in suppressing respiratory burst differed. Further studies with larger number of subjects are needed to corroborate anti-inflammatory effects of different taxa of Harpagophytum.

  7. Alteration of Neutrophil Reactive Oxygen Species Production by Extracts of Devil's Claw (Harpagophytum)

    PubMed Central

    Muzila, Mbaki; Wright, Helen; Roberts, Helen; Grant, Melissa; Nybom, Hilde; Sehic, Jasna; Ekholm, Anders

    2016-01-01

    Harpagophytum, Devil's Claw, is a genus of tuberiferous xerophytic plants native to southern Africa. Some of the taxa are appreciated for their medicinal effects and have been traditionally used to relieve symptoms of inflammation. The objectives of this pilot study were to investigate the antioxidant capacity and the content of total phenols, verbascoside, isoverbascoside, and selected iridoids, as well as to investigate the capacity of various Harpagophytum taxa in suppressing respiratory burst in terms of reactive oxygen species produced by human neutrophils challenged with phorbol myristate acetate (PMA), opsonised Staphylococcus aureus, and Fusobacterium nucleatum. Harpagophytum plants were classified into different taxa according to morphology, and DNA analysis was used to confirm the classification. A putative new variety of H. procumbens showed the highest degree of antioxidative capacity. Using PMA, three Harpagophytum taxa showed anti-inflammatory effects with regard to the PBS control. A putative hybrid between H. procumbens and H. zeyheri in contrast showed proinflammatory effect on the response of neutrophils to F. nucleatum in comparison with treatment with vehicle control. Harpagophytum taxa were biochemically very variable and the response in suppressing respiratory burst differed. Further studies with larger number of subjects are needed to corroborate anti-inflammatory effects of different taxa of Harpagophytum. PMID:27429708

  8. Late Quaternary environmental change in the Bonneville basin, western USA

    USGS Publications Warehouse

    Madsen, D.B.; Rhode, D.; Grayson, D.K.; Broughton, J.M.; Livingston, S.D.; Hunt, J.; Quade, Jay; Schmitt, D.N.; Shaver, M. W.

    2001-01-01

    Excavation and analyses of small animal remains from stratified raptor deposits spanning the last 11.5 ka, together with collection and analysis of over 60 dated fossil woodrat midden samples spanning the last 50 ka, provide a detailed record of changing climate in the eastern Great Basin during the late Pleistocene and Holocene. Sagebrush steppe dominated the northern Bonneville basin during the Full Glacial, suggesting that conditions were cold and relatively dry, in contrast to the southern basin, which was also cold but moister. Limber pine woodlands dominated ???13-11.5 ka, indicating increased dryness and summer temperatures ???6-7??C cooler than present. This drying trend accelerated after ???11.5 ka causing Lake Bonneville to drop rapidly, eliminating 11 species of fish from the lake. From ???11.5-8.2 ka xerophytic sagebrush and shadscale scrub replaced more mesophilic shrubs in a step-wise fashion. A variety of small mammals and plants indicate the early Holocene was ???3??C cooler and moister than at present, not warmer as suggested by a number of climatic models. The diversity of plants and animals changed dramatically after 8.2 ka as many species disappeared from the record. Some of the upland species returned after ???4 ka and Great Salt Lake became fresh enough at ???3.4 and ???1.2 ka to support populations of Utah chub. ?? 2001 Elsevier Science B.V.

  9. Human used upper montane ecosystem in the Horton Plains, central Sri Lanka - a link to Lateglacial and early Holocene climate and environmental changes

    NASA Astrophysics Data System (ADS)

    Premathilake, Rathnasiri

    2012-09-01

    This study utilizes radiocarbon-dated pollen, spores, Sphagnum spp. macrofossils and total organic carbon proxies to examine variability of past climate, environment and human activity in montane rainforest, grassland and wetland of the Horton Plains (HP), central Sri Lanka since the Last Glacial Maximum (LGM). The LGM is largely characterized by grasslands and xerophytic herbs dominated open habitats. Arid-LGM punctuated climatic ameliorations, which took place in short episodes. Humans appear to have reached the HP ecosystem after 18,000 cal yrs BP occasionally. The first Intertropical Convergence Zone (ITCZ) induced changes in South West Monsoon (SWM) rains occurred at low latitudes between 16,200 and 15,900 cal yrs BP suggesting an onset of monsoon rains. After this event, monsoon rains weakened for several millennia except the period 13,700-13,000 cal yrs BP, but human activity seems to have continued with biomass burning and clearances by slash and burn. Very large size grass pollen grains, which are morphologically similar to pollen from closer forms of Oryza nivara, were found after 13,800 cal yrs BP. Early Holocene extreme and abrupt climate changes seem to have promoted the forms of O. nivara populations in association with humans. New data from the HP would therefore be most interesting to investigate the dispersal and use of domesticated rice in South Asia.

  10. Mineralogical and Geochemical Discrimination of the Occurrence and Genesis of Palygorskite in Eocene Sediments on the Northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ye, Chengcheng; Yang, Yibo; Fang, Xiaomin; Hong, Hanlie; Zhang, Weilin; Yang, Rongsheng; Song, Bowen; Zhang, Zhiguo

    2018-03-01

    Palygorskite is a widely used indicator of semiarid to arid environments in paleoclimate studies. In this study, we present detailed mineralogical and geochemical investigations exploring the genesis of palygorskite found in Eocene fluvial sediment in the northern Qaidam Basin on the northeastern Tibetan Plateau. The presence of two types of palygorskite is revealed, based on their crystallinity characteristics and distinctive rare earth element (REE) patterns in the coexisting clay fraction. Well-crystallized palygorskite samples are characterized by remarkably negative Ce anomalies and obvious middle rare earth element enrichment. Poorly crystallized palygorskite samples generally exhibit positive Ce anomalies and less pronounced middle rare earth element enrichment, which resemble those of nonpalygorskite-bearing clay samples. Given the presence of an overall oxidized fluvial sedimentary environment, we attribute the well-crystallized palygorskite (which has textures comprising long, interwoven fibers) to direct precipitation (i.e., neoformation) occurring within a reducing environment during early/postdepositional processes while the poorly crystallized palygorskite (which is characterized by short, club-shaped single crystals) originates as catchment-delivered detritus. These poorly crystallized palygorskites occur mostly in 49.5-47.0 Ma and are accompanied by decreasing kaolinite content, increasing chlorite content, and abundant xerophytic spore-pollen from the Qaidam Basin, and its neighboring Xining Basin. Collectively, these evidences suggest that a less humid climate followed after the Early Eocene Climate Optimum.

  11. Evolution of leaf anatomy in arid environments - A case study in southern African Tetraena and Roepera (Zygophyllaceae).

    PubMed

    Lauterbach, Maximilian; van der Merwe, Pieter de Wet; Keßler, Lisa; Pirie, Michael D; Bellstedt, Dirk U; Kadereit, Gudrun

    2016-04-01

    The dry biomes of southern Africa (Desert, Nama Karoo and Succulent Karoo) are home to a rich and diverse xerophytic flora. This flora includes two morphologically diverse clades of Zygophyllaceae, Tetraena and Roepera (Zygophylloideae), which inhabit some of the most arid habitats in the region. Using a plastid phylogeny of Zygophylloideae we assess whether the evolution of putatively adaptive traits (leaf shape, vasculature, mode of water storage and photosynthetic type: C3 versus C4) coincides with the successful colonisation of environments with different drought regimes within southern Africa. Our results show general niche conservatism within arid habitats in Tetraena, but niche shifts from arid to more mesic biomes with longer and/or cooler growing season (Fynbos and Thicket) in Roepera. However, these distinct broad-scale biogeographical patterns are not reflected in leaf anatomy, which seems to vary at more local scales. We observed considerable variability and multiple convergences to similar leaf anatomies in both genera, including shifts between "all cell succulence" leaf types and leaf types with distinct chlorenchyma and hydrenchyma. Our survey of C4 photosynthesis in the Zygophylloideae showed that the C4 pathway is restricted to Tetraena simplex, which also having an annual life history and a widespread distribution, is rather atypical for this group. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The phytogeography and ecotourism potential of the eastern province of lower part of the "Köprü river" basin.

    PubMed

    Kaya, Bastürk; Akis, Ayhan

    2012-04-01

    Köprü River Basin is located in the western Taurus mountains in south-western Turkey. The area is in the Mediterranean phytogeographical region. The climate in the area is typically Mediterranean: mild and rainy in winter, hot and dry in summer. Xerophytic plants can easily grow in this climate. Pinus brutia forests are common in the study area. Maquis and garique elements with sclerophyll character also occur in the region. The study aims to determine the distribution of the vegetation in the eastern province of lower part of the "Köprü River" Basin. The factors which affect the distribution of vegetation are climate, landforms and soils. In order to determine the plant growth and climate relationship, the climatic data were analyzed. As well as the geological and geomorphological conditions, the soils were investigated and the effects of these factors on vegetation cover were analyzed. The region also has various attributes for the development of ecotourism, including canyons, forests and historical places. The region has a great potential for many different social, cultural, and scientific activities related to ecotourism. These are highland tourism, rafting, botanic tourism, trekking, and climbing. In order to make ecotourism available for local people to benefit, ecotourism should be developed and introduced to the world. Moreover, plans for the sustainability of the resources should be made. The study highlights the ecotourism potential of the area which is of social, economic, and ecological importance for the region.

  13. [Interrelations between plant communities and environmental factors of wetlands and surrounding lands in mid- and lower reaches of Tarim River].

    PubMed

    Zhao, Ruifeng; Zhou, Huarong; Qian, Yibing; Zhang, Jianjun

    2006-06-01

    A total of 16 quadrants of wetlands and surrounding lands in the mid- and lower reaches of Tarim River were surveyed, and the data about the characteristics of plant communities and environmental factors were collected and counted. By using PCA (principal component analysis) ordination and regression procedure, the distribution patterns of plant communities and the relationships between the characteristics of plant community structure and environmental factors were analyzed. The results showed that the distribution of the plant communities was closely related to soil moisture, salt, and nutrient contents. The accumulative contribution rate of soil moisture and salt contents in the first principal component accounted for 35.70%, and that of soil nutrient content in the second principal component reached 25.97%. There were 4 types of habitats for the plant community distribution, i. e., fenny--light salt--medium nutrient, moist--medium salt--medium nutrient, mesophytic--medium salt--low nutrient, and medium xerophytic-heavy salt--low nutrient. Along these habitats, swamp vegetation, meadow vegetation, riparian sparse forest, halophytic desert, and salinized shrub were distributed. In the wetlands and surrounding lands of mid- and lower reaches of Tarim River, the ecological dominance of the plant communities was markedly and unitary-linearly correlated with the compound gradient of soil moisture and salt contents. The relationships between species diversity, ecological dominance, and compound gradient of soil moisture and salt contents were significantly accorded to binary-linear regression model.

  14. A biological quality index for volcanic Andisols and Aridisols (Canary Islands, Spain): variations related to the ecosystem degradation.

    PubMed

    Armas, Cecilia María; Santana, Bayanor; Mora, Juan Luis; Notario, Jesús Santiago; Arbelo, Carmen Dolores; Rodríguez-Rodríguez, Antonio

    2007-05-25

    The aim of this work is to identify indicators of biological activity in soils from the Canary Islands, by studying the variation of selected biological parameters related to the processes of deforestation and accelerated soil degradation affecting the Canarian natural ecosystems. Ten plots with different degrees of maturity/degradation have been selected in three typical habitats in the Canary Islands: laurel forest, pine forest and xerophytic scrub with Andisols and Aridisols as the most common soils. The studied characteristics in each case include total organic carbon, field soil respiration, mineralized carbon after laboratory incubation, microbial biomass carbon, hot water-extractable carbon and carboxymethylcellulase, beta-d-glucosidase and dehydrogenase activities. A Biological Quality Index (BQI) has been designed on the basis of a regression model using these variables, assuming that the total soil organic carbon content is quite stable in nearly mature ecosystems. Total carbon in mature ecosystems has been related to significant biological variables (hot water-extractable carbon, soil respiration and carboxymethylcellulase, beta-d-glucosidase and dehydrogenase activities), accounting for nearly 100% of the total variance by a multiple regression analysis. The index has been calculated as the ratio of the value calculated from the regression model and the actual measured value. The obtained results show that soils in nearly mature ecosystems have BQI values close to unit, whereas those in degraded ecosystems range between 0.24 and 0.97, depending on the degradation degree.

  15. Middle East coastal ecosystem response to middle-to-late Holocene abrupt climate changes.

    PubMed

    Kaniewski, D; Paulissen, E; Van Campo, E; Al-Maqdissi, M; Bretschneider, J; Van Lerberghe, K

    2008-09-16

    The Holocene vegetation history of the northern coastal Arabian Peninsula is of long-standing interest, as this Mediterranean/semiarid/arid region is known to be particularly sensitive to climatic changes. Detailed palynological data from an 800-cm alluvial sequence cored in the Jableh plain in northwest Syria have been used to reconstruct the vegetation dynamics in the coastal lowlands and the nearby Jabal an Nuşayriyah mountains for the period 2150 to 550 B.C. Corresponding with the 4.2 to 3.9 and 3.5 to 2.5 cal kyr BP abrupt climate changes (ACCs), two large-scale shifts to a more arid climate have been recorded. These two ACCs had different impacts on the vegetation assemblages in coastal Syria. The 3.5 to 2.5 cal kyr BP ACC is drier and lasted longer than the 4.2 to 3.9 cal kyr BP ACC, and is characterized by the development of a warm steppe pollen-derived biome (1100-800 B.C.) and a peak of hot desert pollen-derived biome at 900 B.C. The 4.2 to 3.9 cal kyr BP ACC is characterized by a xerophytic woods and shrubs pollen-derived biome ca. 2050 B.C. The impact of the 3.5 to 2.5 cal kyr BP ACC on human occupation and cultural development is important along the Syrian coast with the destruction of Ugarit and the collapse of the Ugarit kingdom at ca. 1190 to 1185 B.C.

  16. Ecological Speciation in Nolina parviflora (Asparagaceae): Lacking Spatial Connectivity along of the Trans-Mexican Volcanic Belt

    PubMed Central

    Ruiz-Sanchez, Eduardo; Specht, Chelsea D.

    2014-01-01

    The hypothesis of ecological speciation states that as populations diverge in different niches, reproductive isolation evolves as a by-product of adaptation to these different environments. In this context, we used Nolina parviflora as a model to test if this species evolved via ecological speciation and to explore current and historical gene flow among its populations. Nolina parviflora is a montane species endemic to Mexico with its geographical distribution restricted largely to the Trans-Mexican Volcanic Belt. This mountain range is one of the most complex geological regions in Mexico, having undergone volcanism from the mid-Miocene to the present. Ecologically, the Trans-Mexican Volcanic Belt possesses different types of vegetation, including tropical dry forest; oak, pine, pine-oak, and pine-juniper forests; and xerophytic scrub - all of which maintain populations of N. parviflora. Using species distribution models, climatic analyses, spatial connectivity and morphological comparisons, we found significant differences in climatic and morphological variables between populations of N. parviflora in two distinct Trans-Mexican Volcanic Belt regions (east vs. west). This could mean that the geographically isolated populations diverged from one another via niche divergence, indicating ecological speciation. Spatial connectivity analysis revealed no connectivity between these regions under the present or last glacial maximum climate models, indicating a lack of gene flow between the populations of the two regions. The results imply that these populations may encompass more than a single species. PMID:24905911

  17. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level

    PubMed Central

    Einzmann, Helena J. R.; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard

    2015-01-01

    The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ13C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests. PMID:25392188

  18. Capparis spinosa L. in A Systematic Review: A Xerophilous Species of Multi Values and Promising Potentialities for Agrosystems under the Threat of Global Warming.

    PubMed

    Chedraoui, Stephanie; Abi-Rizk, Alain; El-Beyrouthy, Marc; Chalak, Lamis; Ouaini, Naim; Rajjou, Loïc

    2017-01-01

    Caper ( Capparis spinosa L.) is a xerophytic shrub with a remarkable adaptability to harsh environments. This plant species is of great interest for its medicinal/pharmacological properties and its culinary uses. Its phytochemical importance relies on many bioactive components present in different organs and its cultivation can be of considerable economic value. Moreover, taxonomic identification of C. spinosa L. has been difficult due to its wide heterogeneity, and many authors fell into confusion due to the scarcity of genetic studies. The present review summarizes information concerning C. spinosa L. including agronomic performance, botanical description, taxonomical approaches, traditional pharmacological uses, phytochemical evaluation and genetic studies. This knowledge represents an important tool for further research studies and agronomic development on this indigenous species with respect to the emerging climatic change in the Eastern Mediterranean countries. Indeed, this world region is particularly under the threat of global warming and it appears necessary to rethink agricultural systems to adapt them to current and futures challenging environmental conditions. Capparis spinosa L. could be a part of this approach. So, this review presents a state of the art considering caper as a potential interesting crop under arid or semi-arid regions (such as Eastern Mediterranean countries) within the climate change context. The aim is to raise awareness in the scientific community (geneticists, physiologists, ecophysiologists, agronomists, …) about the caper strengths and interest to the development of this shrub as a crop.

  19. Capparis spinosa L. in A Systematic Review: A Xerophilous Species of Multi Values and Promising Potentialities for Agrosystems under the Threat of Global Warming

    PubMed Central

    Chedraoui, Stephanie; Abi-Rizk, Alain; El-Beyrouthy, Marc; Chalak, Lamis; Ouaini, Naim; Rajjou, Loïc

    2017-01-01

    Caper (Capparis spinosa L.) is a xerophytic shrub with a remarkable adaptability to harsh environments. This plant species is of great interest for its medicinal/pharmacological properties and its culinary uses. Its phytochemical importance relies on many bioactive components present in different organs and its cultivation can be of considerable economic value. Moreover, taxonomic identification of C. spinosa L. has been difficult due to its wide heterogeneity, and many authors fell into confusion due to the scarcity of genetic studies. The present review summarizes information concerning C. spinosa L. including agronomic performance, botanical description, taxonomical approaches, traditional pharmacological uses, phytochemical evaluation and genetic studies. This knowledge represents an important tool for further research studies and agronomic development on this indigenous species with respect to the emerging climatic change in the Eastern Mediterranean countries. Indeed, this world region is particularly under the threat of global warming and it appears necessary to rethink agricultural systems to adapt them to current and futures challenging environmental conditions. Capparis spinosa L. could be a part of this approach. So, this review presents a state of the art considering caper as a potential interesting crop under arid or semi-arid regions (such as Eastern Mediterranean countries) within the climate change context. The aim is to raise awareness in the scientific community (geneticists, physiologists, ecophysiologists, agronomists, …) about the caper strengths and interest to the development of this shrub as a crop. PMID:29118777

  20. Reconstruction of climate, soil, and vegetation conditions of the Srubnaya cultural epoch on the basis of kurgan studies in the Cis-Ural forest-steppe of the Republic of Bashkortostan

    NASA Astrophysics Data System (ADS)

    Prikhod'ko, V. E.; Rohozin, Ye. P.; Chaplygin, M. S.

    2016-09-01

    The reconstruction of soil, vegetation, and climatic conditions for the Srubnaya cultural epoch (3660 ± 40 (date wood), 3860 ± 120 (bones date) was performed on the basis of palynological and paleosol studies with radiocarbon dating of bones and wood fragments from two kurgans in the Cis-Ural forest-steppe of the Republic of Bashkortostan. Morphological features and chemical properties of the modern background soils, the soils formed on the surface of burial mounds (kurgans), and the soils buried under them were characterized. According to palynological data, the climate of this territory in the period of construction of these kurgans was more humid than the modern climate. The paleovegetation of the Srubnaya epoch was represented by mesophilic herbaceous steppes with a lower participation of xerophytic species as compared to the modern steppe and by small forest groves composed of birch and pine trees with some admixture of lime trees. The temperature conditions were close to those at present, or somewhat cooler, which is evidenced by the lower content of pollen of the broadleaved trees. The modern background soils and the soils buried under the kurgans are classified as thin light loamy typical calcareous chernozems; they have similar morphologies and physicochemical properties. However, the reconstructed organic matter content in the upper 50 cm of the buried paleosols is higher than that in the modern soils. This attests to more favorable climatic conditions during the Srubnaya epoch and is in agreement with palynological data.

  1. Ecological speciation in Nolina parviflora (Asparagaceae): lacking spatial connectivity along of the Trans-Mexican Volcanic Belt.

    PubMed

    Ruiz-Sanchez, Eduardo; Specht, Chelsea D

    2014-01-01

    The hypothesis of ecological speciation states that as populations diverge in different niches, reproductive isolation evolves as a by-product of adaptation to these different environments. In this context, we used Nolina parviflora as a model to test if this species evolved via ecological speciation and to explore current and historical gene flow among its populations. Nolina parviflora is a montane species endemic to Mexico with its geographical distribution restricted largely to the Trans-Mexican Volcanic Belt. This mountain range is one of the most complex geological regions in Mexico, having undergone volcanism from the mid-Miocene to the present. Ecologically, the Trans-Mexican Volcanic Belt possesses different types of vegetation, including tropical dry forest; oak, pine, pine-oak, and pine-juniper forests; and xerophytic scrub--all of which maintain populations of N. parviflora. Using species distribution models, climatic analyses, spatial connectivity and morphological comparisons, we found significant differences in climatic and morphological variables between populations of N. parviflora in two distinct Trans-Mexican Volcanic Belt regions (east vs. west). This could mean that the geographically isolated populations diverged from one another via niche divergence, indicating ecological speciation. Spatial connectivity analysis revealed no connectivity between these regions under the present or last glacial maximum climate models, indicating a lack of gene flow between the populations of the two regions. The results imply that these populations may encompass more than a single species.

  2. Abscisic acid metabolite profiling as indicators of plastic responses to drought in grasses from arid Patagonian Monte (Argentina).

    PubMed

    Cenzano, Ana M; Masciarelli, O; Luna, M Virginia

    2014-10-01

    The identification of hormonal and biochemical traits that play functional roles in the adaptation to drought is necessary for the conservation and planning of rangeland management. The aim of this study was to evaluate the effects of drought on i) the water content (WC) of different plant organs, ii) the endogenous level of abscisic acid (ABA) and metabolites (phaseic acid-PA, dihydrophaseic acid-DPA and abscisic acid conjugated with glucose ester-ABA-GE), iii) the total carotenoid concentration and iv) to compare the traits of two desert perennial grasses (Pappostipa speciosa and Poa ligularis) with contrasting morphological and functional drought resistance traits and life-history strategies. Both species were subjected to two levels of gravimetric soil moisture (the highest near field capacity during autumn-winter and the lowest corresponding to summer drought). Drought significantly increased the ABA and DPA levels in the green leaves of P. speciosa and P. ligularis. Drought decreased ABA in the roots of P. speciosa while it increased ABA in the roots of P. ligularis. P. ligularis had the highest ABA level and WC in green leaves. While P. speciosa had the highest DPA levels in leaves. In conclusion, we found the highest ABA level in the mesophytic species P. ligularis and the lowest ABA level in the xerophytic species P. speciosa, revealing that the ABA metabolite profile in each grass species is a plastic response to drought resistance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. [Rainfall effects on the sap flow of Hedysarum scoparium.

    PubMed

    Yang, Qiang; Zha, Than Shan; Jia, Xin; Qin, Shu Gao; Qian, Duo; Guo, Xiao Nan; Chen, Guo Peng

    2016-03-01

    In arid and semi-arid areas, plant physiological responses to water availability depend largely on the intensity and frequency of rain events. Knowledge on the responses of xerophytic plants to rain events is important for predicting the structure and functioning of dryland ecosystems under changing climate. The sap flow of Hedysarum scoparium in the Mu Us Sand Land was continuously measured during the growing season of 2012 and 2013. The objectives were to quantify the dynamics of sap flow under different weather conditions, and to examine the responses of sap flow to rain events of different sizes. The results showed that the daily sap flow rates of H. scoparium were lower on rainy days than on clear days. On clear days, the sap flow of H. scoparium showed a midday plateau, and was positively correlated with solar radiation and relative humidity. On rainy days, the sap flow fluctuated at low levels, and was positively correlated with solar radiation and air temperature. Rain events not only affected the sap flow on rainy days through variations in climatic factors (e.g., solar radiation and air temperature), but also affected post-rainfall sap flow velocities though changes in soil moisture. Small rain events (<20 mm) did not change the sap flow, whereas large rain events (>20 mm) significantly increased the sap flow on days following rainfall. Rain-wetted soil conditions not only resulted in higher sap flow velocities, but also enhanced the sensitivity of sap flow to solar radiation, vapor pressure deficit and air temperature.

  4. Vegetation change and terrestrial carbon storage in eastern Asia during the Last Glacial Maximum as indicated by a new pollen record from central Taiwan

    NASA Astrophysics Data System (ADS)

    Liew, P. M.; Kuo, C. M.; Huang, S. Y.; Tseng, M. H.

    1998-05-01

    Last Glacial Maximum (LGM) carbon storage in eastern Asia is a key issue for understanding the sinks and sources of paleocarbon. Palynological data with good time constraint for the LGM in a peat bog from a site at 650 m above mean sea level in central Taiwan, together with data from low-lying deltaic and basin deposits of Taiwan and South China, increase our understanding about vegetational evolution and possible terrestrial carbon storage in this area and probably eastern Asia. Contrasting to today's Machilus-Castanopsis forest zone around the peat bog, the vegetation before the LGM was dominated by Alnus, a relatively xerophytic element in Taiwan. An increase in herbs and decrease in spores during the LGM is recognized when compared with Holocene and modern assemblages. A less humid interval dominated by herbs (>50%) occurred between 21 and 15.8 ka. Basin deposits in northern Taiwan and deltaic deposits in central Taiwan show that during the LGM Artemisia, Umbelliferae and Gramineae were the main components contrasting with the Pinus or Cyclobalanopsis-dominant assemblages in the rest of the last glacial. Thus, less humid conditions lasted about 5000 to 6000 years in the LGM even on this very humid island. This may also be true in eastern Asia where a large area of the widely exposed continental shelf may have been occupied by grasslands and the uplands of South China were occupied by less dense coniferous or temperate forests during the LGM in contrast to the modern subtropical forest. This scenario improves our understanding of the terrestrial paleocarbon storage.

  5. Model-based analysis supports interglacial refugia over long-dispersal events in the diversification of two South American cactus species

    PubMed Central

    Perez, M F; Bonatelli, I A S; Moraes, E M; Carstens, B C

    2016-01-01

    Pilosocereus machrisii and P. aurisetus are cactus species within the P. aurisetus complex, a group of eight cacti that are restricted to rocky habitats within the Neotropical savannas of eastern South America. Previous studies have suggested that diversification within this complex was driven by distributional fragmentation, isolation leading to allopatric differentiation, and secondary contact among divergent lineages. These events have been associated with Quaternary climatic cycles, leading to the hypothesis that the xerophytic vegetation patches which presently harbor these populations operate as refugia during the current interglacial. However, owing to limitations of the standard phylogeographic approaches used in these studies, this hypothesis was not explicitly tested. Here we use Approximate Bayesian Computation to refine the previous inferences and test the role of different events in the diversification of two species within P. aurisetus group. We used molecular data from chloroplast DNA and simple sequence repeats loci of P. machrisii and P. aurisetus, the two species with broadest distribution in the complex, in order to test if the diversification in each species was driven mostly by vicariance or by long-dispersal events. We found that both species were affected primarily by vicariance, with a refuge model as the most likely scenario for P. aurisetus and a soft vicariance scenario most probable for P. machrisii. These results emphasize the importance of distributional fragmentation in these species, and add support to the hypothesis of long-term isolation in interglacial refugia previously proposed for the P. aurisetus species complex diversification. PMID:27071846

  6. Middle East coastal ecosystem response to middle-to-late Holocene abrupt climate changes

    PubMed Central

    Kaniewski, D.; Paulissen, E.; Van Campo, E.; Al-Maqdissi, M.; Bretschneider, J.; Van Lerberghe, K.

    2008-01-01

    The Holocene vegetation history of the northern coastal Arabian Peninsula is of long-standing interest, as this Mediterranean/semiarid/arid region is known to be particularly sensitive to climatic changes. Detailed palynological data from an 800-cm alluvial sequence cored in the Jableh plain in northwest Syria have been used to reconstruct the vegetation dynamics in the coastal lowlands and the nearby Jabal an Nuşayriyah mountains for the period 2150 to 550 B.C. Corresponding with the 4.2 to 3.9 and 3.5 to 2.5 cal kyr BP abrupt climate changes (ACCs), two large-scale shifts to a more arid climate have been recorded. These two ACCs had different impacts on the vegetation assemblages in coastal Syria. The 3.5 to 2.5 cal kyr BP ACC is drier and lasted longer than the 4.2 to 3.9 cal kyr BP ACC, and is characterized by the development of a warm steppe pollen-derived biome (1100–800 B.C.) and a peak of hot desert pollen-derived biome at 900 B.C. The 4.2 to 3.9 cal kyr BP ACC is characterized by a xerophytic woods and shrubs pollen-derived biome ca. 2050 B.C. The impact of the 3.5 to 2.5 cal kyr BP ACC on human occupation and cultural development is important along the Syrian coast with the destruction of Ugarit and the collapse of the Ugarit kingdom at ca. 1190 to 1185 B.C. PMID:18772385

  7. Human-environment interaction during the Mesolithic- Neolithic transition in the NE Iberian Peninsula. Vegetation history, climate change and human impact during the Early-Middle Holocene in the Eastern Pre-Pyrenees

    NASA Astrophysics Data System (ADS)

    Revelles, J.; Burjachs, F.; Palomo, A.; Piqué, R.; Iriarte, E.; Pérez-Obiol, R.; Terradas, X.

    2018-03-01

    The synthetic analysis of several pollen records from sub-Mediterranean lowland Pre-Pyrenean regions evidences expansion of forests during the Early Holocene in Northeastern Iberia and the establishment of dense deciduous broadleaf forests during the Holocene Climate Optimum. Pollen records show the broadleaf deciduous forests resilience against cooling phases during the Mid-Holocene period, with slight regressions of oak woodlands and expansion of conifers or xerophytic taxa contemporary to some cooling episodes (i.e. 8.2 and 7.2 kyr cal. BP). Major vegetation changes influenced by climate change occurred in the transition to the Late Holocene, in terms of the start of a succession from broadleaf deciduous forests to evergreen sclerophyllous woodlands. The lack of evidence of previous occupation seems to support the Neolithisation of the NE Iberian Peninsula as a result of a process of migration of farming populations to uninhabited or sparsely inhabited territories. In that context, remarkable changes in vegetation were recorded from 7.3 kyr cal. BP onwards in the Lake Banyoles area, where the establishment of permanent farming settlements caused the deforestation of oak woodlands. In La Garrotxa region, short deforestation episodes affecting broadleaf deciduous forests, together with expansion of grasslands and presence of Cerealia-t were documented in the period 7.4-6.0 kyr cal. BP. Finally, in the coastal area, where less evidence of Early Neolithic occupations is recorded, evidence of Neolithic impact is reflected in the presence of Cerealia-t in 6.5-6.2 kyr cal. BP, but no strong human transformation of landscape was carried out until more recent chronologies.

  8. Comparative anatomy, morphology, and molecular phylogenetics of the African genus Satanocrater (Acanthaceae).

    PubMed

    Tripp, Erin A; Fatimah, Siti

    2012-06-01

    Anatomical and morphological features of Satanocrater were studied to test hypotheses of xeric adaptations in the genus, which is endemic to arid tropical Africa. These features, together with molecular data, were used to test the phylogenetic placement of Satanocrater within the large plant family Acanthaceae. We undertook a comparative study of four species of Satanocrater. Carbon isotope ratios were generated to test a hypothesis of C(4) photosynthesis. Molecular data from chloroplast (trnG-trnS, trnG-trnR, psbA-trnH) and nuclear (Eif3E) loci were used to test the placement of Satanocrater within Acanthaceae. Anatomical features reflecting xeric adaptations of species of Satanocrater included a thick-walled epidermis, thick cuticle, abundant trichomes and glandular scales, stomata overarched by subsidiary cells, tightly packed mesophyll cells, and well-developed palisade parenchyma on both leaf surfaces. Although two species had enlarged bundle sheath cells, a feature often implicated in C(4) photosynthesis, isotope ratios indicated all species of Satanocrater use the C(3) pathway. Molecular data resolved Satanocrater within tribe Ruellieae with strong support. Within Ruellieae, our data suggest that pollen morphology of Satanocrater may represent an intermediate stage in a transition series. Anatomical and morphological features of Satanocrater reflect adaptation to xeric environments and add new information about the biology of xerophytes. Morphological and molecular data place Satanocrater in the tribe Ruellieae with confidence. This study adds to our capacity to test hypotheses of broad evolutionary and ecological interest in a diverse and important family of flowering plants.

  9. Common Distribution Patterns of Marsupials Related to Physiographical Diversity in Venezuela

    PubMed Central

    Ventura, Jacint; Bagaria, Guillem; Sans-Fuentes, Maria Assumpció; Pérez-Hernández, Roger

    2014-01-01

    The aim of this study is to identify significant biotic regions (groups of areas with similar biotas) and biotic elements (groups of taxa with similar distributions) for the marsupial fauna in a part of northern South America using physiographical areas as Operational Geographical Units (OGUs). We considered Venezuela a good model to elucidate this issue because of its high diversity in landscapes and the relatively vast amount of information available on the geographical distribution of marsupial species. Based on the presence-absence of 33 species in 15 physiographical sub-regions (OGUs) we identified Operational Biogeographical Units (OBUs) and chorotypes using a quantitative analysis that tested statistical significance of the resulting groups. Altitudinal and/or climatic trends in the OBUs and chorotypes were studied using a redundancy analysis. The classification method revealed four OBUs. Strong biotic boundaries separated: i) the xerophytic zone of the Continental coast (OBU I); ii) the sub-regions north of the Orinoco River (OBU III and IV); and those south to the river (OBU II). Eleven chorotypes were identified, four of which included a single species with a restricted geographic distribution. As for the other chorotypes, three main common distribution patterns have been inferred: i) species from the Llanos and/or distributed south of the Orinoco River; ii) species exclusively from the Andes; and iii) species that either occur exclusively north of the Orinoco River or that show a wide distribution throughout Venezuela. Mean altitude, evapotranspiration and precipitation of the driest month, and temperature range allowed us to characterize environmentally most of the OBUs and chorotypes obtained. PMID:24806452

  10. Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe

    NASA Astrophysics Data System (ADS)

    Carrión, José S.

    2002-10-01

    This paper examines the Late Quaternary (c. 20,300-<505 cal yr BP) environmental history of Siles, a lake situated at 1320 m in the Segura mountains of southern Spain, with the goal of establishing the mechanisms exerting control on vegetation change. Palaeoecological indicators include pollen, microcharcoal, spores of terrestrial plants, fungi, and non-siliceous algae, and other microfossils. The Siles sequence is shown to be sensitive to climatic change, although the control exerted by climate on vegetation is ultimately shaped by disturbances and species interactions, determining the occurrence of century-scale lags and threshold responses. Biotically induced changes of vegetation are also shown at the intrazonal level of variation. The new sequence is placed in the context of two previous records to postulate a picture of Holocene environmental change for the Segura region. The existence of mid-elevation glacial refugia for a number of temperate and Mediterranean trees is shown. A mid-Holocene phase (c. 7500-5200 cal yr BP) emerges regionally as the time of maximum forest development and highest lake levels. The early Holocene occurs as a generally dry, pyrophytic period of pine forests, with grassland scrub in high altitudes, and the late Holocene as a period of protracted vegetation sensitivity, with return to development of pine forests, spread of xerophytic communities, and increased fire activity, under the context of dry spells, localized anthropogenic disturbance, and shallowing and desiccation of lakes. Several events described here correlate with established times of abrupt transitions in the climates of northern Europe, the Mediterranean basin, north Africa, and the Sahel.

  11. Climate and vegetation change during the Holocene in southern Iberia

    NASA Astrophysics Data System (ADS)

    Jimenez-Moreno, G.; Anderson, R. S.; Ramos Román, M. J.; García-Alix, A.; Jiménez-Espejo, F. J. J.; Hernández-Corbalán, M. D.; Toney, J. L.; Mesa-Fernández, J. M.; Camuera-Bidaurreta, J.; Carrión, J. S.

    2015-12-01

    Detailed pollen analysis has been carried out on several sediment cores taken from high-elevation alpine lakes and bog areas located in Sierra Nevada and coastal and offshore environments from southern Spain. The earliest part of the record, from 8200 to about 7000 cal yr BP, is characterized by the highest abundance of arboreal pollen and Pediastrum, indicating the warmest and wettest conditions in the area at that time. The pollen records show a progressive aridification trend since 7000 cal yr BP through a decrease in forest species and the increase in xerophytes. The progressive aridification is punctuated by millennial-scale periodically enhanced droughts that coincide in timing and duration with well-known arid events in the Mediterranean and other areas. A relatively humid period occurred during the Roman Humid Period. The Medieval Climate Anomaly (900-1300 AD) was characterized by a wet phase at first, coinciding with a solar minimum, and a later arid phase, coinciding with the Medieval solar Maximum and a positive NAO. The Little Ice Age (1300-1850 AD) was markedly wetter than earlier, as shown by the increase in tree pollen, coinciding with a phase of negative NAO and the Maunder solar minimum. This study shows that vegetation and climate in Western Mediterranean are modulated by solar and atmospheric factors. Several vegetation changes are observed in the last centuries, which probably indicate the high-impact of humans in the Sierra Nevada, with pasturing leading to nutrient enrichment and eutrophication of the wetlands, Olea cultivation at lower elevations and Pinus reforestation.

  12. Climate and vegetation change during the Holocene in southern Iberia

    NASA Astrophysics Data System (ADS)

    Jiménez Moreno, Gonzalo; Anderson, R. Scott; Ramos-Roman, María J.; Camuera, Jon; Garcia-Alix, Antonio; Jimenez-Espejo, FranciscoJ.; Toney, Jaime L.; Mesa-Fernandez, Jose Manuel; Manzano, Saul; Carrion, Jose S.

    2017-04-01

    Detailed pollen analysis has been carried out on several sediment cores taken from high-elevation alpine lakes and bog areas located in Sierra Nevada and coastal and offshore environments from southern Spain. The early Holocene is characterized in these records by the highest abundance of arboreal pollen, indicating the warmest and wettest conditions in the area at that time. The pollen records show a progressive aridification trend since the beginning of the middle Holocene through a decrease in forest species and the increase in xerophytes. The progressive aridification is punctuated by millennial-scale periodically enhanced droughts that coincide in timing and duration with well-known arid events in the Mediterranean and other areas. A relatively humid period occurred during the Iberian-Roman Humid Period. The Medieval Climate Anomaly (900-1300 AD) was characterized by a wet phase at first, coinciding with a solar minimum, and a later arid phase, coinciding with the Medieval solar Maximum and a positive NAO. The Little Ice Age (1300-1850 AD) was markedly wetter than earlier, as shown by the increase in tree pollen, coinciding with a phase of negative NAO and the Maunder solar minimum. This study shows that vegetation and climate in the Western Mediterranean are modulated by solar and atmospheric factors. Out-of-trend vegetation changes are observed in the last centuries, which probably indicate the high-impact of humans in the Sierra Nevada, with pasturing leading to nutrient enrichment and eutrophication of the wetlands, Olea cultivation at lower elevations and Pinus reforestation.

  13. Sea-level changes in the Lopingian (late Permian) of the northwestern Tethys and their effects on the terrestrial palaeoenvironments, biota and fossil preservation

    NASA Astrophysics Data System (ADS)

    Kustatscher, Evelyn; Bernardi, Massimo; Petti, Fabio Massimo; Franz, Matthias; van Konijnenburg-van Cittert, Johanna H. A.; Kerp, Hans

    2017-01-01

    The Lopingian is characterised by an aridisation trend and substantial sea-level changes. Hence, the fossil record of this time interval is strongly affected by ecological and taphonomic factors inherent to these long-term processes. Integrated sedimentological and palaeontological studies in the Bletterbach Gorge (Dolomites, N-Italy) allow discrimination between biological signals and preservational bias, shedding light on the effect of sea-level changes on the preservation potential of terrestrial associations of plant remains and tetrapod footprints. Flora A, composed of more humid elements with larger leaf/shoot fragments, appears close to a sea-level highstand and is interpreted as a (par-)autochthonous assemblage of an intrazonal riparian vegetation. Flora B, dominated by xerophytic elements documented by smaller fragments, corresponds to an allochthonous assemblage of an azonal vegetation preserved in floodplain fines of a progradational fluvial plain associated with a sea-level lowstand. The distribution of vertebrate footprints mirrors that of the plant-bearing horizons and their abundance and morphological diversity strongly increases in correspondence with marine transgressions. This could be related to a more diverse fauna (more complex food-web related to more humid conditions) or more favourable taphonomic conditions. However, the most diversified fauna, recorded during the early phases of the regressive phase, is in our interpretation best explained by the rapid burial of footprints due to the increasing energy. Our study provides an explanation for the change in distribution and preservation of plant and animal fossils in the Bletterbach section and shows how the fossil content of continental successions is deeply influenced by sea-level changes.

  14. Declining water yield from forested mountain watersheds in response to climate change and forest mesophication.

    PubMed

    Caldwell, Peter V; Miniat, Chelcy F; Elliott, Katherine J; Swank, Wayne T; Brantley, Steven T; Laseter, Stephanie H

    2016-09-01

    Climate change and forest disturbances are threatening the ability of forested mountain watersheds to provide the clean, reliable, and abundant fresh water necessary to support aquatic ecosystems and a growing human population. Here, we used 76 years of water yield, climate, and field plot vegetation measurements in six unmanaged, reference watersheds in the southern Appalachian Mountains of North Carolina, USA to determine whether water yield has changed over time, and to examine and attribute the causal mechanisms of change. We found that annual water yield increased in some watersheds from 1938 to the mid-1970s by as much as 55%, but this was followed by decreases up to 22% by 2013. Changes in forest evapotranspiration were consistent with, but opposite in direction to the changes in water yield, with decreases in evapotranspiration up to 31% by the mid-1970s followed by increases up to 29% until 2013. Vegetation survey data showed commensurate reductions in forest basal area until the mid-1970s and increases since that time accompanied by a shift in dominance from xerophytic oak and hickory species to several mesophytic species (i.e., mesophication) that use relatively more water. These changes in forest structure and species composition may have decreased water yield by as much as 18% in a given year since the mid-1970s after accounting for climate. Our results suggest that changes in climate and forest structure and species composition in unmanaged forests brought about by disturbance and natural community dynamics over time can result in large changes in water supply. © 2016 John Wiley & Sons Ltd.

  15. Does seed size and surface anatomy play role in combating phytotoxicity of nanoparticles?

    PubMed

    Jain, Navin; Bhargava, Arpit; Pareek, Vikram; Sayeed Akhtar, Mohd; Panwar, Jitendra

    2017-03-01

    Rapid utilization of nano-based products will inevitably release nanoparticles into the environment with unidentified consequences. Plants, being an integral part of ecosystem play a vital role in the incorporation of nanoparticles in food chain and thus, need to be critically assessed. The present study assesses the comparative phytotoxicity of nanoparticle, bulk and ionic forms of zinc at different concentrations on selected plant species with varying seed size and surface anatomy. ZnO nanoparticles were chosen in view of their wide spread use in cosmetics and health care products, which allow their direct release in the environment. The impact on germination rate, shoot & root length and vigour index were evaluated. A concentration dependent inhibition of seed germination as well as seedling length was observed in all the tested plants. Due to the presence of thick cuticle on testa and root, pearl millet (xerophytic plant) was found to be relatively less sensitive to ZnO nanoparticles as compared to wheat and tomato (mesophytic plants) with normal cuticle layer. No correlation was observed between nanoparticles toxicity and seed size. The results indicated that variations in surface anatomy of seeds play a crucial role in determining the phytotoxicity of nanoparticles. The present findings significantly contribute to assess potential consequences of nanoparticle release in environment particularly with major emphasis on plant systems. It is the first report which suggests that variations observed in phytotoxicity of nanoparticles is mainly due to the predominant differences in size and surface anatomy of tested plant seeds and root architecture. Effect of various concentrations of nano ZnO, bulk ZnO and zinc sulphate on the growth of pearl millet (A), tomato (B) and wheat (C) seedlings.

  16. Effects of plant size and water relations on gas exchange and growth of the desert shrub Larrea tridentata.

    PubMed

    Franco, A C; de Soyza, A G; Virginia, R A; Reynolds, J F; Whitford, W G

    1994-03-01

    Larrea tridentata is a xerophytic evergreen shrub, dominant in the arid regions of the southwestern United States. We examined relationships between gasexchange characteristics, plant and soil water relations, and growth responses of large versus small shrubs of L. tridentata over the course of a summer growing season in the Chihuahuan Desert of southern New Mexico, USA. The soil wetting front did not reach 0.6 m, and soils at depths of 0.6 and 0.9 m remained dry throughout the summer, suggesting that L. tridentata extracts water largely from soil near the surface. Surface soil layers (<0.3 m) were drier under large plants, but predawn xylem water potentials were similar for both plant sizes suggesting some access to deeper soil moisture reserves by large plants. Stem elongation rates were about 40% less in large, reproductively active shrubs than in small, reproductively inactive shrubs. Maximal net photosynthetic rates (P max ) occurred in early summer (21.3 μ mol m -2 s -1 ), when pre-dawn xylem water potential (XWP) reached ca. -1 MPa. Although both shrub sizes exhibited similar responses to environmental factors, small shrubs recovered faster from short-term drought, when pre-dawn XWP reached about -4.5 MPa and P max decreased to only ca. 20% of unstressed levels. Gas exchange measurements yielded a strong relationship between stomatal conductance and photosynthesis, and the relationship between leaf-to-air vapor pressure deficit and stomatal conductance was found to be influenced by pre-dawn XWP. Our results indicate that stomatal responses to water stress and vapor pressure deficit are important in determining rates of carbon gain and water loss in L. tridentata.

  17. Comparative analysis of bacteria associated with different mosses by 16S rRNA and 16S rDNA sequencing.

    PubMed

    Tian, Yang; Li, Yan Hong

    2017-01-01

    To understand the differences of the bacteria associated with different mosses, a phylogenetic study of bacterial communities in three mosses was carried out based on 16S rDNA and 16S rRNA sequencing. The mosses used were Hygroamblystegium noterophilum, Entodon compressus and Grimmia montana, representing hygrophyte, shady plant and xerophyte, respectively. In total, the operational taxonomic units (OTUs), richness and diversity were different regardless of the moss species and the library level. All the examined 1183 clones were assigned to 248 OTUs, 56 genera were assigned in rDNA libraries and 23 genera were determined at the rRNA level. Proteobacteria and Bacteroidetes were considered as the most dominant phyla in all the libraries, whereas abundant Actinobacteria and Acidobacteria were detected in the rDNA library of Entodon compressus and approximately 24.7% clones were assigned to Candidate division TM7 in Grimmia montana at rRNA level. The heatmap showed the bacterial profiles derived from rRNA and rDNA were partly overlapping. However, the principle component analysis of all the profiles derived from rDNA showed sharper differences between the different mosses than that of rRNA-based profiles. This suggests that the metabolically active bacterial compositions in different mosses were more phylogenetically similar and the differences of the bacteria associated with different mosses were mainly detected at the rDNA level. Obtained results clearly demonstrate that combination of 16S rDNA and 16S rRNA sequencing is preferred approach to have a good understanding on the constitution of the microbial communities in mosses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model.

    PubMed

    Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A

    2017-09-15

    In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Secondary Metabolites Production and Plant Growth Promotion by Pseudomonas chlororaphis and P. aurantiaca Strains Isolated from Cactus, Cotton, and Para Grass.

    PubMed

    Shahid, Izzah; Rizwan, Muhammad; Baig, Deeba Noreen; Saleem, Rahman Shahzaib; Malik, Kauser A; Mehnaz, Samina

    2017-03-28

    Fluorescent pseudomonads have been isolated from halophytes, mesophytes, and xerophytes of Pakistan. Among these, eight isolates, GS-1, GS-3, GS-4, GS-6, GS-7, FS-2 (cactus), ARS-38 (cotton), and RP-4 (para grass), showed antifungal activity and were selected for detailed study. Based on biochemical tests and 16S rRNA gene sequences, these were identified as strains of P. chlororaphis subsp. chlororaphis and aurantiaca . Secondary metabolites of these strains were analyzed by LC-MS. Phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine, Cyclic Lipopeptide (white line-inducing principle (WLIP)), and lahorenoic acid A were detected in variable amounts in these strains. P. aurantiaca PB-St2 was used as a reference as it is known for the production of these compounds. The phzO and PCA genes were amplified to assure that production of these compounds is not an artifact. Indole acetic acid production was confirmed and quantified by HPLC. HCN and siderophore production by all strains was observed by plate assays. These strains did not solubilize phosphate, but five strains were positive for zinc solubilization. Wheat seedlings were inoculated with these strains to observe their effect on plant growth. P. aurantiaca strains PB-St2 and GS-6 and P. chlororaphis RP-4 significantly increased both root and shoot dry weights, as compared with uninoculated plants. However, P. aurantiaca strains FS-2 and ARS-38 significantly increased root and shoot dry weights, respectively. All strains except PB-St2 and ARS-38 significantly increased the root length. This is the first report of the isolation of P. aurantiaca from cotton and cactus, P. chlororaphis from para grass, WLIP and lahorenoic acid A production by P. chlororaphis , and zinc solubilization by P. chlororaphis and P. aurantiaca .

  20. Vegetation and environmental responses to climate forcing during the Last Glacial Maximum and deglaciation in the East Carpathians: attenuated response to maximum cooling and increased biomass burning

    NASA Astrophysics Data System (ADS)

    Magyari, E. K.; Veres, D.; Wennrich, V.; Wagner, B.; Braun, M.; Jakab, G.; Karátson, D.; Pál, Z.; Ferenczy, Gy; St-Onge, G.; Rethemeyer, J.; Francois, J.-P.; von Reumont, F.; Schäbitz, F.

    2014-12-01

    The Carpathian Mountains were one of the main mountain reserves of the boreal and cool temperate flora during the Last Glacial Maximum (LGM) in East-Central Europe. Previous studies demonstrated Lateglacial vegetation dynamics in this area; however, our knowledge on the LGM vegetation composition is very limited due to the scarcity of suitable sedimentary archives. Here we present a new record of vegetation, fire and lacustrine sedimentation from the youngest volcanic crater of the Carpathians (Lake St Anne, Lacul Sfânta Ana, Szent-Anna-tó) to examine environmental change in this region during the LGM and the subsequent deglaciation. Our record indicates the persistence of boreal forest steppe vegetation (with Pinus, Betula, Salix, Populus and Picea) in the foreland and low mountain zone of the East Carpathians and Juniperus shrubland at higher elevation. We demonstrate attenuated response of the regional vegetation to maximum global cooling. Between ˜22,870 and 19,150 cal yr BP we find increased regional biomass burning that is antagonistic with the global trend. Increased regional fire activity suggests extreme continentality likely with relatively warm and dry summers. We also demonstrate xerophytic steppe expansion directly after the LGM, from ˜19,150 cal yr BP, and regional increase in boreal woodland cover with Pinus and Betula from 16,300 cal yr BP. Plant macrofossils indicate local (950 m a.s.l.) establishment of Betula nana and Betula pubescens at 15,150 cal yr BP, Pinus sylvestris at 14,700 cal yr BP and Larix decidua at 12,870 cal yr BP. Pollen data furthermore support population genetic inferences regarding the regional presence of some temperate deciduous trees during the LGM (Fagus sylvatica, Corylus avellana, Fraxinus excelsior). Our sedimentological data also demonstrate intensified aeolian dust accumulation between 26,000 and 20,000 cal yr BP.

  1. Pollen-based evidence of extreme drought during the last Glacial (32.6-9.0 ka) in coastal southern California

    NASA Astrophysics Data System (ADS)

    Heusser, Linda E.; Kirby, Matthew E.; Nichols, Jonathan E.

    2015-10-01

    High resolution pollen analyses of sediment core LEDC10-1 from Lake Elsinore yield the first well-dated, terrestrial record of sub-centennial-scale ecologic change in coastal southern California between ˜32 and 9 ka. In the Lake Elsinore watershed, the initial, mesic montane conifer forests dominated by Pinus, and Cupressaceae with trace amounts of Abies and Picea were replaced by a sequence of multiple, extended severe mega-droughts between ˜27.5 and ˜25.5 ka, in which halophytic and xerophytic herbs and shrubs occupied an ephemeral lake. This prolonged and extended dry interval, which corresponds with warm waters offshore, imply strengthening of the North Pacific High and persistent below-average winter precipitation. The subsequent, contrasting monotonic occurrence of montane conifers reflects little variation in cold, mesic climate until ˜15 ka. Postglacial development of Quercus woodland and chaparral mark the return to more xeric, warmer conditions at this time. A brief reversal at ˜13.1-˜12.1 ka, as reflected by an expansion of Pinus, is correlative with the Younger Dryas and interrupts development of warm, postglacial climate. Subsequent gradual expansion of xeric vegetation post - Younger Dryas denotes the establishment of a winter hydroclimate regime in coastal southern California that is more similar to modern conditions. Pollen-based reconstructions of temperature and precipitation at Lake Elsinore are generally correlative with pollen-based paleoclimatic reconstructions and foraminifera-based sea surface temperatures from Santa Barbara Basin in marine core ODP 893. The conspicuous absence of the ˜27.5-˜25.5 ka glacial "mega-drought" in the Santa Barbara Basin pollen record highlights the sensitivity of Lake Elsinore to hydroclimate change, and thus, the importance of this new record that indicates that mega-drought can occur during the full glacial when climatic boundary conditions and forcings differed substantially from the present.

  2. Resistance of Terrestrial Microbial Communities to Impack of Physical Conditinos of Subsurface Layers of Martian Regolith

    NASA Astrophysics Data System (ADS)

    Cheptsov, V. S.; Vorobyova, E. A.

    2017-05-01

    Currently, astrobiology is focused on Mars as one of the most perspective objects in the Solar System to search for microbial life. It was assumed that the putative biosphere of Mars could be cryopreserved and had been stored for billions of years in anabiotic state like microbial communities of Arctic and Antarctic permafrost deposits have been preserved till now for millions of years. In this case microbial cells should be not able to repair the damages or these processes have to be significantly depressed, and the main factor causing cell's death should be ionizing radiation. In a series of experiments we simulated the effects of combination of physical factors known as characteristics of the Martian regolith (and close to the space environment) on the natural microbial communities inhabiting xerophytic harsh habitats with extreme temperature conditions: polar permafrost and desert soils. The aim of the study was to examine the cumulative effect of factors (gamma radiation, low temperature, low pressure) to assess the possibility of metabolic reactions, and to find limits of the viability of natural microbial communities after exposure to the given conditions. It was found that microbial biomarkers could be reliably detected in soil samples after radiation dose accumulation up to 1 MGy (not further investigated) in combination with exposure to low temperature and low pressure. Resistance to extremely high doses of radiation in simulated conditions proves that if there was an Earth-like biosphere on the early Mars microorganisms could survive in the surface or subsurface layers of the Martian regolith for more than tens of millions of years after climate change. The study gives also some new grounds for the approval of transfer of viable microorganisms in space.

  3. Long-term effect of carbohydrate reserves on growth and reproduction of Prosopis denudans (Fabaceae): implications for conservation of woody perennials

    PubMed Central

    Vilela, Alejandra E.; Agüero, Paola R.; Ravetta, Damián; González-Paleo, Luciana

    2016-01-01

    Prosopis denudans, an extreme xerophyte shrub, is consumed by ungulates and threatened by firewood gathering, because it is one of the preferred species used by Mapuche indigenous people of Patagonia. In a scenario of uncontrolled use of vegetation, it is very difficult to develop a conservation plan that jointly protects natural resources and its users. We performed a field experiment to assess the impact of defoliation on growth, reproduction and stores of a wild population of P. denudans. We imposed four levels of defoliation (removal of 100, 66, 33 and 0% of leaves) and evaluated the short- and long-term (3 years) effects of this disturbance. Seasonal changes in shoot carbohydrates suggested that they support leaf-flush and blooming. Severely defoliated individuals also used root reserves to support growth and leaf-flush after clipping. Vegetative growth was not affected by defoliation history. Leaf mass area increased after the initial clipping, suggesting the development of structural defenses. The depletion of root reserves at the end of the first year affected inflorescence production the following spring. We conclude that P. denudans shrubs could lose up to one-third of their green tissues without affecting growth or inflorescence production. The removal of a higher proportion of leaves will diminish stores, which in turn, will reduce or completely prevent blooming and, therefore, fruit production the following seasons. Very few studies integrate conservation and plant physiology, and we are not aware, so far, of any work dealing with long-term plant carbon economy of a long-lived perennial shrub as an applied tool in conservation. These results might help the development of management strategies that consider both the use and the conservation of wild populations of P. denudans. PMID:27293747

  4. Plant osmoregulation as an emergent water-saving adaptation under salt-stress conditions

    NASA Astrophysics Data System (ADS)

    Perri, S.; Entekhabi, D.; Molini, A.

    2017-12-01

    emerges as a water-saving behavior similar to the strategies that xerophytes use to cope with aridity. Possible anatomical and morphological adaptations to long-term salinity exposure are addressed through an analysis of transpiration patterns for different values of root and leaf density and for diverse levels of salt-tolerance.

  5. Seasonal changes in morphophysiological traits of two native Patagonian shrubs from Argentina with different drought resistance strategies.

    PubMed

    Varela, M Celeste; Reinoso, Herminda; Luna, Virginia; Cenzano, Ana M

    2018-06-01

    In semi-arid regions, plants develop various biochemical and physiological strategies to adapt to dry periods. Understanding the resistance mechanisms to dry periods under field conditions is an important topic in ecology. Larrea divaricata and Lycium chilense provide various ecological services. The aim of this work is to elucidate new morpho-histological, biochemical and hormonal traits that contribute to the drought resistance strategies of two native shrubs. Green leaves and fine roots from L. divaricata and L. chilense were collected in each season for one year, and various traits were measured. The hormone (abscisic acid, ABA-glucose ester, gibberellins A 1 and A 3 , and indole acetic acid) contents were determined by liquid chromatography coupled to mass spectrometry. Rainfall data and the soil water content were also measured. A multivariate analysis showed that green leaves from L. divaricata showed high values for the leaf dry weight, blade leaf thickness and ABA content in the summer compared with those from L. chilense. Fine roots from L. divaricata had high RWC and high IAA levels during the autumn-dry period compared with those from L. chilense, but both had similar levels during the winter and spring. Our results support the notion that species with different drought resistance mechanisms (avoidance or tolerance) display different responses to dry periods throughout the year. Larrea divaricata, which exhibits more xerophytic traits, modified its morphology and maintained its physiological parameters (high RWC in leaves and roots, high ABA levels in leaves during summer, high GA 3 in leaves and high IAA in roots during autumn) to tolerate dry periods, whereas Lycium chilense, which displays more mesophytic traits, uses strategies to avoid dry periods (loss of leaves during autumn and winter, high RWC in leaves, high ABA-GE and GA 3 in leaves during summer, high GA 1 and GA 3 in roots during summer, and high IAA in roots during autumn and summer) and

  6. Impact of longer-term modest climate shifts on architecture of high-frequency sequences (Cyclothems), Pennsylvanian of midcontinent U.S.A

    USGS Publications Warehouse

    Feldman, H.R.; Franseen, E.K.; Joeckel, R.M.; Heckel, P.H.

    2005-01-01

    Pennsylvanian glacioeustatic cyclothems exposed in Kansas and adjacent areas provide a unique opportunity to test models of the impact of relative sea level and climate on stratal architecture. A succession of eight of these high-frequency sequences, traced along dip for 500 km, reveal that modest climate shifts from relatively dry-seasonal to relatively wet-seasonal with a duration of several sequences (???600,000 to 1 million years) had a dominant impact on facies, sediment dispersal patterns, and sequence architecture. The climate shifts documented herein are intermediate, both in magnitude and duration, between previously documented longer-term climate shifts throughout much of the Pennsylvanian and shorter-term shifts described within individual sequences. Climate indicators are best preserved at sequence boundaries and in incised-valley fills of the lowstand systems tracts (LST). Relatively drier climate indicators include high-chroma paleosols, typically with pedogenic carbonates, and plant assemblages that are dominated by gymnosperms, mostly xerophytic walchian conifers. The associated valleys are small (4 km wide and >20 m deep), and dominated by quartz sandstones derived from distant source areas, reflecting large drainage networks. Transgressive systems tracts (TST) in all eight sequences gen erally are characterized by thin, extensive limestones and thin marine shales, suggesting that the dominant control on TST facies distribution was the sequestration of siliciclastic sediment in updip positions. Highstand systems tracts (HST) were significantly impacted by the intermediate-scale climate cycle in that HSTs from relatively drier climates consist of thin marine shales overlain by extensive, thick regressive limestones, whereas HSTs from relatively wetter climates are dominated by thick marine shales. Previously documented relative sea-level changes do not track the climate cycles, indicating that climate played a role distinct from that of relative sea

  7. Atriplex atacamensis and Atriplex halimus resist As contamination in Pre-Andean soils (northern Chile).

    PubMed

    Tapia, Y; Diaz, O; Pizarro, C; Segura, R; Vines, M; Zúñiga, G; Moreno-Jiménez, E

    2013-04-15

    The Pre-Andean area of Chile exhibits saline soils of volcanic origin naturally contaminated with arsenic (As), and we hypothesise that revegetation with resistant species may be a valid alternative for soil management in this area. Thus, the xerophytic and halophytic shrubs Atriplex halimus and Atriplex atacamensis were cultivated in containers for 90 days in Pre-Andean soil, As-soil, (111±19 mg As kg(-1), pH8.4±0.1) or control soil (12.7±1.1 mg As kg(-1), pH7.8±0.1) to evaluate As accumulation and resistance using stress bioindicators (chlorophylls, malondialdehyde (MDA) and total thiols). Sequential extraction of As-soil indicated that 52.3% of As was found in the most available fraction. The As distribution was significantly different between the species: A. halimus translocated the As to leaves, whilst A. atacamensis retained the As in roots. At 30 and 90 days, A. halimus showed similar As concentrations in the leaves (approximately 5.5 mg As kg(-1)), and As increased in stems and roots (up to 4.73 and 16.3 mg As kg(-1), respectively). In A. atacamensis, As concentration was lower (2.6 in leaves; 3.2 in stems and 6.9 in roots in mg As kg(-1)). Both species exhibited a high concentration of B in leaves (362-389 mg kg(-1)). If the plants are used for animal feed, it should be considered that A. halimus accumulates higher concentration of As and B in the leaves than A. atacamensis. Neither plant growth nor stress bioindicators were negatively affected by the high levels of available As, with the exception of MDA in the leaves of A. halimus. The results indicate that these plants resist contamination by arsenic, accumulating mainly the metalloid in the roots and can be recommended to generate plant cover in As-contaminated soils in the Pre-Andean region, under saline conditions controlled, preventing the dispersion of this metalloid via wind and leaching. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Detection and Analysis of Spatiotemporal Changes in Great Basin Groundwater Dependent Vegetation Vigor

    NASA Astrophysics Data System (ADS)

    Smith, Guy T.

    series' and trend analyses illustrate the existence of a strong and highly significant coupling between depth to groundwater (DTG) and GDE vegetation vigor. Further, it was found that the presence of groundwater-vegetation feedbacks renders these systems highly prone to irreversible transitions to alternative, often barren or xerophytic, ecohydrological states, should a given GDE become decoupled from shallow groundwater resources as a result of surpassing species and tissue specific soil moisture threshold values.

  9. Pollen stratigraphy, vegetation and climate history of the last 215 ka in the Azzano Decimo core (plain of Friuli, north-eastern Italy)

    NASA Astrophysics Data System (ADS)

    Pini, R.; Ravazzi, C.; Donegana, M.

    2009-06-01

    The pollen record of the long succession of marine and continental deposits filling the subsident north-Adriatic foredeep basin (NE Italy) documents the history of vegetation, the landscape evolution and the climate forcing during the last 215 ka at the south-eastern Alpine foreland. The chronology relies on several 14C determinations as well as on estimated ages of pollen-stratigraphical and sea-level event tie-points derived from comparison with high-resolution marine records, speleothemes and ice cores. Mixed temperate rainforests persisted throughout MIS 7a-7c, being replaced by conifer forests after the local glacioeustatic regression during early MIS 6. The Alpine piedmont facing the Adriatic foredeeep was glaciated at the culmination of the penultimate glaciation, as directly testified by in situ fluvioglacial aggradation related to the building of a large morainic amphitheatre. The pollen record allows correlation with other European records and with the IRD from N-Atlantic and off Iberia, thus the duration of the penultimate glacial culmination at the southalpine fringe is estimated less than 13 ka between 148 ± 1 and >135 ka. The site was not reached by the Last Interglacial maximum sea transgression and enregistered a typical, though incomplete, Eemian forest record, lacking Mediterranean evergreen trees. A complex sequence of stadial-interstadial episodes is reconstructed during the Early and Middle Würm: major xerophyte peaks match IRD maxima occurred during Heinrich events in deep-sea cores offshore Iberia and in the N-Atlantic and allows to frame lumps of interstadial phases, marked by Picea peaks, each one including several DO warm events. Broad-leaved thermophilous forests disappeared from the north-eastern plain of Italy at the end of the Early Würm, whereas reduced populations of Abies and Fagus probably sheltered even during the Last Glacial Maximum. A renewed fluvioglacial in situ deposition between 30.4 ± 0.4 and 21.6 ± 0.5 ka cal BP sets

  10. Paleoenvironmental change as seen from a multiproxy perspective in the West Turkana Kaitio core (WTK13), Kenya

    NASA Astrophysics Data System (ADS)

    Beck, C. C.; Feibel, C. S.; Lupien, R.; Yost, C. L.; Rucina, S.; Russell, J. M.; Deino, A. L.; Sier, M.; Cohen, A. S.; Campisano, C. J.

    2017-12-01

    The Hominin Sites and Paleolakes Drilling Project's (HSPDP) primary goal is to provide high quality environmental records to test whether and how Earth system dynamics influenced the evolution of hominins in Africa. To this end, multiproxy records from individual basins are essential to understanding how paleoenvironments changed in relation to shifts in the climatic and/or tectonic regimes both locally on a basin-scale and regionally across East Africa. Because of its rich combination of paleoanthropologic and geologic data, the West Turkana Kaitio (WTK13) core is an important component of this synthesis. Using a combination of tephra chronology and paleomagnetic data, the core has been dated to 1.87-1.37 Ma. The sedimentology records deposition on a dynamic lacustrine margin becoming more influenced by channel and floodplain processes through time. Multiproxy records provide a window into paleoevironments of the Turkana Basin that operated on shorter time scales than this dominant first-order facies shift. Processional cycles (21 kyr) are picked up by indicator records where the preservation of the archive was good enough to allow for high-resolution analysis. However, interestingly, the biomarker record suggests that the hydroclimate of the Turkana Basin, while highly variable at the Milankovitch-scale, exhibits no directional trend in the mean values towards wetter or drier conditions. The combined phytolith and pollen records suggest that grasses, albeit with fluctuating abundances of C4 mesophytic and C4 xerophytic taxa, dominated the landscape throughout most of the core. This indicates that despite climatic variability, resource availability may have maintained some general consistency for hominins in the area. Ultimately, the time period spanned by the WTK13 record is significant for our understanding of hominin evolution as it covers an interval of increasing aridity on the African continent as observed in distal marine records. This synthesis

  11. Phylogeography of Sophora davidii (Leguminosae) across the 'Tanaka-Kaiyong Line', an important phytogeographic boundary in Southwest China.

    PubMed

    Fan, Deng Mei; Yue, Ji Pei; Nie, Ze Long; Li, Zhi Min; Comes, Hans Peter; Sun, Hang

    2013-08-01

    highlights changing temperatures and vegetation types during the last glacial period(s), along with aspects of regional topography, to be important determinants of the glacial eastward expansion of S. davidii. In consequence, our study lends support to a 'glacial out-of-Hengduan Mts'. hypothesis for the xerophytic-riparian flora of Southwest China, which in turn is inconsistent with the traditional view of the TKL as a 'classical' vicariant-biogeographic boundary. © 2013 John Wiley & Sons Ltd.

  12. Perchlorate in the Hydrologic Cycle - An Overview of Sources and Occurrence

    NASA Astrophysics Data System (ADS)

    Stonestrom, D. A.; Jackson, W.; Mayer, K.; Orris, G. J.

    2007-12-01

    Perchlorate (ClO4-) in water and food is of concern due to deleterious health affects associated with hypothyroidism. The presence of widespread perchlorate in 0-to-28 ka-old pristine ground water of the Middle Rio Grande Basin (Plummer et al., 2006, ES&T, DOI:10.1021/es051739h), in ground water >1 mile from agricultural activities in the Southern High Plains (Rajagapolan et al., 2006, ES&T, DOI:10.1021/es052155i), and in unsaturated zones throughout the arid and semiarid southwestern United States (Rao et al., 2007, ES&T, DOI:10.1021/es062853i) clearly indicates that perchlorate is a non-exotic component of the hydrologic cycle, at least in dry environments. The natural system has been greatly perturbed in places by human activities. Most anthropogenic inputs are associated with the manufacture and use of explosives and rocket fuel, providing concentrated sources of excess perchlorate to the hydrologic cycle. Perchlorate-containing fertilizers and irrigation provide dispersed sources within and down-gradient from agricultural areas. Natural sources include photochemically mediated reactions involving ozone at the land surface and in the lower atmosphere. A growing body of work indicates that a small, but persistent, meteoric source acting over thousands of years can explain observed accumulations of unsaturated-zone perchlorate in arid regions. In addition to meteoric sources, oxyanions produced during volcanogenic processes can include appreciable amounts of natural perchlorate. Terrestrial plants take up perchlorate in soil water, with some species of xerophytic succulents concentrating the anion to high levels. Similarly, perchlorate in marine plants indicates that perchlorate is part of marine biochemical cycles. Perchlorate-bearing marine sediments of late Tertiary age suggest that perchlorate has been part of global geochemical cycles for millions of years and, furthermore, can be preserved in the subsurface despite the nearly ubiquitous presence of

  13. Visions of the past and dreams of the future in the Orient: the Irano-Turanian region from classical botany to evolutionary studies.

    PubMed

    Manafzadeh, Sara; Staedler, Yannick M; Conti, Elena

    2017-08-01

    Ever since the 19th century, the immense arid lands of the Orient, now called the Irano-Turanian (IT) floristic region, attracted the interest of European naturalists with their tremendous plant biodiversity. Covering approximately 30% of the surface of Eurasia (16000000 km 2 ), the IT region is one of the largest floristic regions of the world. The IT region represents one of the hotspots of evolutionary and biological diversity in the Old World, and serves as a source of xerophytic taxa for neighbouring regions. Moreover, it is the cradle of the numerous species domesticated in the Fertile Crescent. Over the last 200 years, naturalists outlined different borders for the IT region. Yet, the delimitation and evolutionary history of this area remain one of the least well-understood fields of global biogeography, even though it is crucial to explaining the distribution of life in Eurasia. No comprehensive review of the biogeographical delimitations nor of the role of geological and climatic changes in the evolution of the IT region is currently available. After considering the key role of floristic regions in biogeography, we review the history of evolving concepts about the borders and composition of the IT region over the past 200 years and outline a tentative circumscription for it. We also summarise current knowledge on the geological and climatic history of the IT region. We then use this knowledge to generate specific evolutionary hypotheses to explain how different geological, palaeoclimatic, and ecological factors contributed to range expansion and contraction, thus shaping patterns of speciation in the IT region over time and space. Both historical and ecological biogeography should be applied to understand better the floristic diversification of the region. This will ultimately require evolutionary comparative analyses based on integrative phylogenetic, geological, climatic, ecological, and species distribution studies on the region. Furthermore, an

  14. Recognizing the Palynological Signal of Heinrich Event H1

    NASA Astrophysics Data System (ADS)

    Delusina, I.

    2017-12-01

    One of the most challenging intervals for paleo-vegetation reconstruction of the post-Glacial environment is the transition that occurred at the beginning and the end of Heinrich event H1 and that stretched up to the beginning of the Younger Dryas. The main ambiguity is related to the magnitude and timing of H1 and the non-linear response of the Earth system to the Heinrich event itself in different geographical locations. We consider the H1 event as the entire transition interval since 18 to 14.5 Kya. The main problem that arises is the uncertainty in the interpretation of the pollen assemblages due to their mixed nature, particularly the presence of both "warm" and "cold" pollen. We have compared the pollen signal from the beginning to the end of the H1 event along a tropic to subpolar transect, using data from our own studies and the published literature. We find that despite regional peculiarities, most of the pollen assemblages demonstrate a similar sequence of patterns. One of the most prominent common features, seen at the beginning and the end of H1, is the appearance of saw-tooth like shapes in the variables of the pollen diagram, independent of location, vegetation composition and other factors. The most noticeable "saw-tooth" occurs after H1, between about 14 and 12 Kya, the interval that roughly corresponds to the Bølling/Allerød. The common features of a "saw-tooth" for both the beginning and the end of the H1 event, appear in this order: 1) increase in ferns, usually coinciding with or followed by an increased percentage of conifer pollen. 2) The beginning of dominance of xerophyte assemblages, again as a "saw-tooth" which lasts for about 2 Kya. 3) Each "saw-tooth", no matter where it occurs, terminates with the beginning of an increase in arboreal (or steppe) vegetation. For all of the different sites, the isotopic evidence is that this was a period of warming, but the pollen records tell a more complex story. Despite the local individualities of

  15. An AFLP estimation of the outcrossing rate of Spondias tuberosa (Anacardiaceae), an endemic species to the Brazilian semiarid region.

    PubMed

    Fernandes Santos, Carlos Antonio; de Souza Gama, Renata Natália Cândido

    2013-06-01

    The umbu tree (Spondias tuberosa) is one of the most important endemic species to the Brazilian tropical semiarid region. The umbu tree has edible fruits with a peculiar flavor that are consumed in natura or in a semi-industrialized form, such as jams, candies and juices. The majority of endemic species to Brazilian semiarid region have not been studied or sampled to form germ-plasm collections, which increases the risk of losing genetic variability of the adapted species to xerophytic conditions. The aim of this study was to estimate outcrossing rates in S. tuberosa using a multilocus mixed model in order to guide genetic resources and breeding programs of this species. DNA samples were extracted from 92 progenies of umbu trees, which were distributed among 12 families. These trees were planted by seed in 1991 in Petrolina, PE, Brazil. The experimental design was a randomized block, with a total of 42 progenies sampled in three regions. The experimental units were composed by five plants and five replications. The outcrossing rate was estimated by the multilocus model, which is available in the MLTR software, and was based on 17 polymorphic AFLP bands obtained from AAA_CTG and AAA_CTC primer combinations. The observed heterozygotes ranged from 0.147 to 0.499, with a maximum frequency estimated for the AAA_CTC 10 amplicon. The multilocus outcrossing estimation (t(m)) was 0.804 +/- 0.072, while the single-locus (t(s)) was 0.841 +/- 0.079, which suggests that S. tuberosa is predominantly an outcrossing species. The difference between t(m) and t(s) was -0.037 +/- 0.029, which indicates that biparental inbreeding was nearly absent. The mean inbreeding coefficient or fixation index (F) among maternal plants was--0.103 +/- 0.045, and the expected F was 0.108, which indicates that there was no excess of heterozygotes in the maternal population. The outcrossing estimates obtained in the present study indicate that S. tuberosa is an open-pollinated species. Biometrical

  16. Determination of soil degradation in argentine semi-arid environments from remote sensors: case department of patagones, province of buenos aires

    NASA Astrophysics Data System (ADS)

    Pezzola, Alejandro; Cacella, Alejandra; Enrique, Mario; Winschel, Cristina

    2017-04-01

    The continental territory of the Argentine Republic owns 75% of its surface under arid and semiarid conditions to the west of the meridian of 64°. Wind erosion is the main physical cause of desertification. In the Pampena area, studies showed that the sandy loam soils were more pronounced than the sandy loam with significant losses of organic matter, decreases in the cation exchange capacity and modification of the mineral composition of the very fine sand fraction (From 73 to 100 μm), with increases in the proportion of heavy minerals (magnetite) relative to light (quartz). In the Patagones department, Buenos Aires province, the soils with a sandy-loamy texture, which are transported by wind and deposited on calcium carbonate (tosca), with little moisture retention and susceptible to wind erosion. In the 1980s and 1990s, increases in rainfall above the historical average led to a shift of the isohytes towards the southwest, leading to agricultural intensification that caused greater pressure on the soil and native vegetation. This advance on the native vegetation within the Patagones produced a reduction between 1975 and 2009 of 432,280 ha, leaving only 31% of the area covered by native forest - shrub xerophyte today. Between 2005-2009, the call "agricultural drought" caused losses in crops, wheat - oats and natural pastures associated with the native forest, causing a significant deterioration of the soil, exposing them to wind erosion. Remote sensors represent a very valuable technology for the mapping and evaluation of soil erosion. The availability of multispectral images allows the mapping and monitoring of changes in the dynamics of the erosion process. The objective of this work was to make an expeditious diagnosis of the surface affected by wind erosion and to evaluate the degree to which the soils destined for agriculture and livestock were affected. For this purpose, Terra's MODIS (Moderate-Resolution Imaging Spectroradiometer) sensor information was

  17. Vegetation Structure and Function along Ephemeral Streams in the Sonoran Desert

    NASA Astrophysics Data System (ADS)

    Stromberg, J. C.; Katz, G.

    2011-12-01

    Despite being the most prevalent stream type in the American Southwest, far less is known about riparian ecosystems associated with ephemeral streams than with perennial streams. Patterns of plant composition and structure reflect complex environmental gradients, including water availability and flood intensity, which in turn are related to position in the stream network. A survey of washes in the Sonoran Desert near Tucson, Arizona showed species composition of small ephemeral washes to be comprised largely of upland species, including large seeded shrubs such as Acacia spp. and Larrea tridentata. Small seeded disturbance adapted xerophytic shrubs, such as Baccharis sarothroides, Hymenoclea monogyra and Isocoma tenuisecta, were common lower in the stream network on the larger streams that have greater scouring forces. Because ephemeral streams have multiple water sources, including deep (sometimes perched) water tables and seasonally variable rain and flood pulses, multiple plant functional types co-exist within a stream segment. Deep-rooted phreatophytes, including Tamarix and nitrogen-fixing Prosopis, are common on many washes. Such plants are able to access not only water, but also pools of nutrients, several meters below ground thereby affecting nutrient levels and soil moisture content in various soil strata. In addition to the perennial plants, many opportunistic and shallow-rooted annual species establish during the bimodal wet seasons. Collectively, wash vegetation serves to stabilize channel substrates and promote accumulation of fine sediments and organic matter. In addition to the many streams that are ephemeral over their length, ephemeral reaches also occupy extensive sections of interrupted perennial rivers. The differences in hydrologic conditions that occur over the length of interrupted perennial rivers influence plant species diversity and variability through time. In one study of three interrupted perennial rivers, patterns of herbaceous species

  18. Cryptogamic communities in biological soil crusts in arid deserts of China: Diversity and their relationships to habitats in different scales

    NASA Astrophysics Data System (ADS)

    Li, X. R.; He, M. Z.; Li, X. J.; Jia, R. L.

    2012-04-01

    Biological soil crusts (BSCs) are widespread communities of various diminutive organisms, including cryptogams such as cyanobacteria, algae, lichens and mosses, and other invisible organisms that are closely integrated with particles of topsoil. Few studies have considered their diversity and distribution pattern as related to environmental and climatic factors at different scales - in particular, little is known concerning the factors inducing the differences in crustal floral diversity for arid deserts in China. We investigated the distribution and characteristics of crustal communities with a total of 350 soil samplings in the main desert regions of northern China: the Horqin Sandland, Mu Us Sandland-Ordos Plateau, Tengger-Alxa Plateau, Qaidam Desert and Guerbantunggut Desert, which present a precipitation gradient, reducing from 450 mm in eastern to 80-100 mm in western deserts. The maximum cryptogamic species richness in crustal communities was 66, 42, 56, 22 and 54, respectively, in the above deserts. In general, species richness and biomass of crustal mosses were positive related with precipitation, while that of cyanobacteria and algae, as well as lichens were negative at a landscape scale. The results indicated topsoil physiochemical properties largely influenced the distribution pattern of crustal communities at the regional scale. Fine-textured and gypsum soils and soils with higher pH were favorable for various lichens, which were restricted by soils with higher total salt content. Moss species and biomass were closely related with soil water content rather than other properties, whereas there was higher diversity in cyanobacteria and algae at the site with relatively dry topsoil. In addition, the cover and biomass of mosses was positive correlated with the cover of C3 plants such as xerophytic shrubs due to providing shade. However, cover and biomass of lichens, cyanobacteria and algae were closely correlated with C4 plants, especially annuals

  19. Lake-levels, vegetation and climate in Central Asia during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Amosov, Mikhail

    2014-05-01

    Central Asian region is bounded in the east corner of the Greater Khingan Range and the Loess Plateau, and to the west - the Caspian Sea. This representation of region boundaries is based on classical works of A.Humboldt and V.Obruchev. Three typical features of Central Asia nature are: climate aridity, extensive inland drainage basins with numerous lakes and mountain systems with developed glaciation. Nowadays the extensive data is accumulated about lake-levels during the Last Glacial Maximum (LGM) in Central Asia. Data compilation on 20 depressions, where lakes exist now or where they existed during LGM, shows that most of them had usually higher lake-level than at present time. This regularity could be mentioned for the biggest lakes (the Aral Sea, the Balkhash, the Ysyk-Kol etc.) and for small ones that located in the mountains (Tien Shan, Pamir and Tibet). All of these lake basins get the precipitation due to westerlies. On the other hand lakes, which are located in region's east rimland (Lake Qinghai and lakes in Inner Mongolia) and get the precipitation due to summer East Asian monsoons, do not comply with the proposed regularity. During LGM these lake-levels were lower than nowadays. Another exception is Lake Manas, its lake-level was also lowered. Lake Manas is situated at the bottom of Junggar Basin. There are many small rivers, which come from the ranges and suffer the violent fluctuation in the position of its lower channel. It is possible to assume that some of its runoff did not get to Lake Manas during LGM. Mentioned facts suggest that levels of the most Central Asian lakes were higher during LGM comparing to their current situation. However, at that period vegetation was more xerophytic than now. Pollen data confirm this information for Tibet, Pamir and Tien Shan. Climate aridization of Central Asia can be proved by data about the intensity of loess accumulation during LGM. This evidence received for the east part of region (the Loess Plateau) and

  20. Biological soil crusts are the main contributor to winter soil respiration in a temperate desert ecosystem of China

    NASA Astrophysics Data System (ADS)

    He, M. Z.

    2012-04-01

    distribute with cover about 1% of the entire study area. Prior to revegetation, straw-checkerboards approximately 1×1 m2 in area were constructed using wheat or rice straw to stabilize the dune surface and allow time for the planted xerophytic shrubs to adapt to the new environment. In 1956, the following 2-year-old xerophytic shrub seedlings were planted within the checkerboard at a density of 16 individuals per 100 m2 and grown without irrigation: Artemisia ordosica Krasch, H. scoparium Fisch, Calligonum mongolicum Turc'z, Caragana microphylla Lam., Caragana korshinskii Kom, Salix gordejevii and Atraphaxis bracteata A.Los. The stabilized area was then expanded to parallel areas in 1964 and 1982 using the same method and species. As a result, the initial stages of change that have occurred at these sites were similar. After more than fifties years succession, the predominant plants are semi-shrubs, shrubs, forbs, and grasses at present and BSCs formed. The common BSCs in the region may be dominated by cyanobacteria, algae, lichens and mosses, or any combination of these organisms. Cyanobacteria species include Microcolous vaginatus Gom., Hydrocoleus violacens Gom., Lyngbya crytoraginatus Schk., Phormidium amblgum Gom., P. autumnale (Ag.) Gom., P. foveolarum (Mont.) Gom. and Phormidium luridum (Kutz) Gom. etc; algal species mainly include Anabaena azotica Ley, Euglena sp., Hantzschia amphioxys var capitata Grum, Oscillatoria obscura Gom., O. pseudogeminate G. Schm. And Scytonema javanicum (Kutz) Bornet Flash etc; lichen species include Collema tenax (Sw.) Ach., Endocarpon pusillum Hedw.; and moss species are dominated by Bryum argenteum Hedw., Didymodon constrictus (Mitt.) Saito., Tortula bidentata Bai Xue Liang and T. desertorum Broth.. Experimental Design and Rs measurements On October 2010, We selected the moss-dominated BSCs at four revegetation sites and natural vegetation sites, in which 3 replicated plots were selected randomly. In each plot, olyvinyl chloride (PVC