Sample records for xii motor nucleus

  1. REM Sleep–like Atonia of Hypoglossal (XII) Motoneurons Is Caused by Loss of Noradrenergic and Serotonergic Inputs

    PubMed Central

    Fenik, Victor B.; Davies, Richard O.; Kubin, Leszek

    2017-01-01

    Rationale Studies of hypoglossal (XII) motoneurons that innervate the genioglossus muscle, an upper airway dilator, suggested that the suppression of upper airway motor tone during REM sleep is caused by withdrawal of excitation mediated by norepinephrine and serotonin. Objectives Our objectives were to determine whether antagonism of aminergic receptors located in the XII nucleus region can abolish the REM sleep–like atonia of XII motoneurons, and whether both serotonergic and noradrenergic antagonists are required to achieve this effect. Methods REM sleep–like episodes were elicited in anesthetized rats by pontine carbachol injections before and at various times after microinjection of prazosin and methysergide combined, or of only one of the drugs, into the XII nucleus. Measurements and Main Results Spontaneous XII nerve activity was significantly reduced, by 35 to 81%, by each antagonist alone and in combination, indicating that XII motoneurons were under both noradrenergic and serotonergic endogenous excitatory drives. During the 32 to 81 min after microinjections of both antagonists, pontine carbachol caused no depression of XII nerve activity, whereas other characteristic effects (activation of the hippocampal and cortical EEG, and slowing of the respiratory rate) remained intact. A partial recovery of the depressant effect of carbachol then occurred parallel to the recovery of spontaneous XII nerve activity from the depressant effect of the antagonists. Microinjections of either antagonist alone did not eliminate the depressant effect of carbachol. Conclusions The REM sleep–like depression of XII motoneuronal activity induced by pontine carbachol can be fully accounted for by the combined withdrawal of noradrenergic and serotonergic effects on XII motoneurons. PMID:16100007

  2. Topographical organization of the facial motor nucleus in Florida manatees (Trichechus manatus latirostris).

    PubMed

    Marshall, Christopher D; Vaughn, Susan D; Sarko, Diana K; Reep, Roger L

    2007-01-01

    Florida manatees (Trichechus manatus latirostris) possess modified vibrissae that are used in conjunction with specialized perioral musculature to manipulate vegetation for ingestion, and aid in the tactile exploration of their environment. Therefore it is expected that manatees possess a large facial motor nucleus that exhibits a complex organization relative to other taxa. The topographical organization of the facial motor nucleus of five adult Florida manatees was analyzed using neuroanatomical methods. Cresyl violet and hematoxylin staining were used to localize the rostrocaudal extent of the facial motor nucleus as well as the organization and location of subdivisions within this nucleus. Differences in size, length, and organization of the facial motor nucleus among mammals correspond to the functional importance of the superficial facial muscles, including perioral musculature involved in the movement of mystacial vibrissae. The facial motor nucleus of Florida manatees was divided into seven subnuclei. The mean rostrocaudal length, width, and height of the entire Florida manatee facial motor nucleus was 6.6 mm (SD 8 0.51; range: 6.2-7.5 mm), 4.7 mm (SD 8 0.65; range: 4.0-5.6 mm), and 3.9 mm (SD 8 0.26; range: 3.5-4.2 mm), respectively. It is speculated that manatees could possess direct descending corticomotorneuron projections to the facial motornucleus. This conjecture is based on recent data for rodents, similiarities in the rodent and sirenian muscular-vibrissal complex, and the analogous nature of the sirenian cortical Rindenkerne system with the rodent barrel system. Copyright (c) 2007 S. Karger AG, Basel.

  3. The MDS-UPDRS tracks motor and non-motor improvement due to subthalamic nucleus deep brain stimulation in Parkinson disease.

    PubMed

    Chou, Kelvin L; Taylor, Jennifer L; Patil, Parag G

    2013-11-01

    The Movement Disorders Society revision of the Unified Parkinson Disease Rating Scale (MDS-UPDRS) improves upon the original UPDRS by adding more non-motor items, making it a more robust tool to evaluate the severity of motor and non-motor symptoms of Parkinson disease. Previous studies on deep brain stimulation have not used the MDS-UPDRS. To determine if the MDS-UPDRS could detect improvement in both motor and non-motor symptoms after bilateral subthalamic nucleus deep brain stimulation for Parkinson disease. We compared scores on the entire MDS-UPDRS prior to surgery (baseline) and approximately six months following the initial programming visit in twenty subjects (12M/8F) with Parkinson disease undergoing bilateral subthalamic nucleus deep brain stimulation. STN DBS significantly improved the scores for every section of the MDS-UPDRS at the 6 month follow-up. Part I improved by 3.1 points (22%), Part II by 5.3 points (29%), Part III by 13.1 points (29%) with stimulation alone, and Part IV by 7.1 points (74%). Individual non-motor items in Part I that improved significantly were constipation, light-headedness, and fatigue. Both motor and non-motor symptoms, as assessed by the MDS-UPDRS, improve with bilateral subthalamic nucleus stimulation six months after the stimulator is turned on. We recommend that the MDS-UPDRS be utilized in future deep brain stimulation studies because of the advantage of detecting change in non-motor symptoms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Subthalamic nucleus phase–amplitude coupling correlates with motor impairment in Parkinson’s disease

    PubMed Central

    van Wijk, Bernadette C.M.; Beudel, Martijn; Jha, Ashwani; Oswal, Ashwini; Foltynie, Tom; Hariz, Marwan I.; Limousin, Patricia; Zrinzo, Ludvic; Aziz, Tipu Z.; Green, Alexander L.; Brown, Peter; Litvak, Vladimir

    2016-01-01

    Objective High-amplitude beta band oscillations within the subthalamic nucleus are frequently associated with Parkinson’s disease but it is unclear how they might lead to motor impairments. Here we investigate a likely pathological coupling between the phase of beta band oscillations and the amplitude of high-frequency oscillations around 300 Hz. Methods We analysed an extensive data set comprising resting-state recordings obtained from deep brain stimulation electrodes in 33 patients before and/or after taking dopaminergic medication. We correlated mean values of spectral power and phase–amplitude coupling with severity of hemibody bradykinesia/rigidity. In addition, we used simultaneously recorded magnetoencephalography to look at functional interactions between the subthalamic nucleus and ipsilateral motor cortex. Results Beta band power and phase–amplitude coupling within the subthalamic nucleus correlated positively with severity of motor impairment. This effect was more pronounced within the low-beta range, whilst coherence between subthalamic nucleus and motor cortex was dominant in the high-beta range. Conclusions We speculate that the beta band might impede pro-kinetic high-frequency activity patterns when phase–amplitude coupling is prominent. Furthermore, results provide evidence for a functional subdivision of the beta band into low and high frequencies. Significance Our findings contribute to the interpretation of oscillatory activity within the cortico-basal ganglia circuit. PMID:26971483

  5. Nucleus prepositus hypoglossi lesions produce a unique ocular motor syndrome

    PubMed Central

    Kim, Sung-Hee; Zee, David S.; du Lac, Sascha; Kim, Hyo Jung

    2016-01-01

    Objective: To describe the ocular motor abnormalities in 9 patients with a lesion involving the nucleus prepositus hypoglossi (NPH), a key constituent of a vestibular-cerebellar-brainstem neural network that ensures that the eyes are held steady in all positions of gaze. Methods: We recorded eye movements, including the vestibulo-ocular reflex during head impulses, in patients with vertigo and a lesion involving the NPH. Results: Our patients showed an ipsilesional-beating spontaneous nystagmus, horizontal gaze-evoked nystagmus more intense on looking toward the ipsilesional side, impaired pursuit more to the ipsilesional side, central patterns of head-shaking nystagmus, contralateral eye deviation, and decreased vestibulo-ocular reflex gain during contralesionally directed head impulses. Conclusions: We attribute these findings to an imbalance in the NPH–inferior olive–flocculus–vestibular nucleus loop, and the ocular motor abnormalities provide a new brainstem localization for patients with acute vertigo. PMID:27733568

  6. Subthalamic nucleus activity optimizes maximal effort motor responses in Parkinson's disease.

    PubMed

    Anzak, Anam; Tan, Huiling; Pogosyan, Alek; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Ashkan, Keyoumars; Bogdanovic, Marko; Green, Alexander L; Aziz, Tipu; Brown, Peter

    2012-09-01

    The neural substrates that enable individuals to achieve their fastest and strongest motor responses have long been enigmatic. Importantly, characterization of such activities may inform novel therapeutic strategies for patients with hypokinetic disorders, such as Parkinson's disease. Here, we ask whether the basal ganglia may play an important role, not only in the attainment of maximal motor responses under standard conditions but also in the setting of the performance enhancements known to be engendered by delivery of intense stimuli. To this end, we recorded local field potentials from deep brain stimulation electrodes implanted bilaterally in the subthalamic nuclei of 10 patients with Parkinson's disease, as they executed their fastest and strongest handgrips in response to a visual cue, which was accompanied by a brief 96-dB auditory tone on random trials. We identified a striking correlation between both theta/alpha (5-12 Hz) and high-gamma/high-frequency (55-375 Hz) subthalamic nucleus activity and force measures, which explained close to 70% of interindividual variance in maximal motor responses to the visual cue alone, when patients were ON their usual dopaminergic medication. Loud auditory stimuli were found to enhance reaction time and peak rate of development of force still further, independent of whether patients were ON or OFF l-DOPA, and were associated with increases in subthalamic nucleus power over a broad gamma range. However, the contribution of this broad gamma activity to the performance enhancements observed was only modest (≤13%). The results implicate frequency-specific subthalamic nucleus activities as substantial factors in optimizing an individual's peak motor responses at maximal effort of will, but much less so in the performance increments engendered by intense auditory stimuli.

  7. Normalizing motor-related brain activity: subthalamic nucleus stimulation in Parkinson disease.

    PubMed

    Grafton, S T; Turner, R S; Desmurget, M; Bakay, R; Delong, M; Vitek, J; Crutcher, M

    2006-04-25

    To test whether therapeutic unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson disease (PD) leads to normalization in the pattern of brain activation during movement execution and control of movement extent. Six patients with PD were imaged off medication by PET during performance of a visually guided tracking task with the DBS voltage programmed for therapeutic (effective) or subtherapeutic (ineffective) stimulation. Data from patients with PD during ineffective stimulation were compared with a group of 13 age-matched control subjects to identify sites with abnormal patterns of activation. Conjunction analysis was used to identify those areas in patients with PD where activity normalized when they were treated with effective stimulation. For movement execution, effective DBS caused an increase of activation in the supplementary motor area (SMA), superior parietal cortex, and cerebellum toward a more normal pattern. At rest, effective stimulation reduced overactivity of SMA. Therapeutic stimulation also induced reductions of movement related "overactivity" compared with healthy subjects in prefrontal, temporal lobe, and basal ganglia circuits, consistent with the notion that many areas are recruited to compensate for ineffective motor initiation. Normalization of activity related to the control of movement extent was associated with reductions of activity in primary motor cortex, SMA, and basal ganglia. Effective subthalamic nucleus stimulation leads to task-specific modifications with appropriate recruitment of motor areas as well as widespread, nonspecific reductions of compensatory or competing cortical activity.

  8. A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds

    PubMed Central

    Goldberg, Jesse H.

    2012-01-01

    The pallido-recipient thalamus transmits information from the basal ganglia (BG) to the cortex and plays a critical role motor initiation and learning. Thalamic activity is strongly inhibited by pallidal inputs from the BG, but the role of non-pallidal inputs, such as excitatory inputs from cortex, is unclear. We have recorded simultaneously from presynaptic pallidal axon terminals and postsynaptic thalamocortical neurons in a BG-recipient thalamic nucleus necessary for vocal variability and learning in zebra finches. We found that song-locked rate modulations in the thalamus could not be explained by pallidal inputs alone, and persisted following pallidal lesion. Instead, thalamic activity was likely driven by inputs from a motor ‘cortical’ nucleus also necessary for singing. These findings suggest a role for cortical inputs to the pallido-recipient thalamus in driving premotor signals important for exploratory behavior and learning. PMID:22327474

  9. Postnatal Maturation of the Red Nucleus Motor Map Depends on Rubrospinal Connections with Forelimb Motor Pools

    PubMed Central

    Williams, Preston T. J. A.; Kim, Sangsoo

    2014-01-01

    The red nucleus (RN) and rubrospinal tract (RST) are important for forelimb motor control. Although the RST is present postnatally in cats, nothing is known about when rubrospinal projections could support motor functions or the relation between the development of the motor functions of the rubrospinal system and the corticospinal system, the other major system for limb control. Our hypothesis is that the RN motor map is present earlier in development than the motor cortex (M1) map, to support early forelimb control. We investigated RN motor map maturation with microstimulation and RST cervical enlargement projections using anterograde tracers between postnatal week 3 (PW3) and PW16. Microstimulation and tracer injection sites were verified histologically to be located within the RN. Microstimulation at PW4 evoked contralateral wrist, elbow, and shoulder movements. The number of sites producing limb movement increased and response thresholds decreased progressively through PW16. From the outset, all forelimb joints were represented. At PW3, RST projections were present within the cervical intermediate zone, with a mature density of putative synapses. In contrast, beginning at PW5 there was delayed and age-dependent development of forelimb motor pool projections and putative rubromotoneuronal synapses. The RN has a more complete forelimb map early in development than previous studies showed for M1, supporting our hypothesis of preferential rubrospinal rather than corticospinal control for early movements. Remarkably, development of the motor pool, not intermediate zone, RST projections paralleled RN motor map development. The RST may be critical for establishing the rudiments of motor skills that subsequently become refined with further CST development. PMID:24647962

  10. [The pedunculopontine nucleus. A structure involved in motor and emotional processing].

    PubMed

    Blanco-Lezcano, L; Pavón-Fuentes, N; Serrano-Sánchez, T; Blanco-Lezcano, V; Coro-Grave de Peralta, Y; Joseph-Bouza, Y

    There is currently a growing interest for conducting studies into the electrical and neurochemical activity of the pedunculopontine nucleus (PPN) due to the privileged position occupied by this structure in the flow of information to and from the cortex. This nucleus acts as a relay, not only for the motor information that is processed in the basal ganglia but also for information of an emotional type, whose main centre is the nucleus accumbens. It is also strongly linked with the aspects that determine the mechanisms governing addiction to certain drugs. We conduct a detailed analysis of the main findings from studies of the role played by the PPN in the physiopathology of Parkinsonism, namely the study of metabolic activity, immunohistochemical studies with different tracers, electrophysiological studies that have confirmed the immunohistochemical observations, as well as deep electrical stimulation carried out in non human primates. Furthermore, we also examine the part played by this structure in the processing of emotional information associated with different learning tasks. Overall, the authors grant the PPN a privileged position in the physiopathology of the axial disorders related to Parkinson s disease; its most important afference, stemming from the subthalamic nucleus, appears to play a key role in the understanding of the part played by the PPN in Parkinsonism.

  11. Repetitive acute intermittent hypoxia increases expression of proteins associated with plasticity in the phrenic motor nucleus

    PubMed Central

    Satriotomo, Irawan; Dale, Erica A.; Dahlberg, Jenny M.; Mitchell, Gordon S.

    2015-01-01

    Acute intermittent hypoxia (AIH) initiates plasticity in respiratory motor control, including phrenic long term facilitation (pLTF). Since pLTF is enhanced by preconditioning with repetitive exposure to AIH (rAIH), we hypothesized that a rAIH protocol consisting of 3 AIH exposures per week for 10 weeks (3×wAIH; AIH: 10, 5-min episodes of 10.5% O2; 5-min normoxic intervals) would enhance expression of molecules that play key roles in pLTF within the phrenic motor nucleus. Immunohistochemical analyses revealed that 3×wAIH for 10 weeks increased serotonin terminal density in the C4 phrenic motor nucleus and serotonin 2A (5-HT2A) receptor expression in presumptive phrenic motor neurons. Immunoreactive brain derived neurotrophic factor (BDNF) and its high affinity receptor (TrkB) also increased following 3×wAIH. 3×wAIH also increased expression of another hypoxia-sensitive growth factor known to elicit phrenic motor facilitation, vascular endothelial growth factor (VEGF), and its receptor (VEGFR-2). Kinases “downstream” from TrkB and VEGFR-2 were up-regulated in or near presumptive phrenic motor neurons, including phosphorylated extracellular-signal regulated kinase (p-ERK) and protein kinase B (p-AKT). Thus, 3×wAIH up-regulates neurochemicals known to be associated with phrenic motor plasticity. Since 3×wAIH upregulates pro-plasticity molecules without evidence for CNS pathology, it may be a useful therapeutic tool in treating disorders that cause respiratory insufficiency, such as spinal injury or motor neuron disease. PMID:22704858

  12. Motor and non-motor circuitry activation induced by subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson’s disease patients: Intraoperative fMRI for DBS

    PubMed Central

    Knight, Emily J.; Testini, Paola; Min, Hoon-Ki; Gibson, William S.; Gorny, Krzysztof R.; Favazza, Christopher P.; Felmlee, Joel P.; Kim, Inyong; Welker, Kirk M.; Clayton, Daniel A.; Klassen, Bryan T.; Chang, Su-youne; Lee, Kendall H.

    2015-01-01

    Objective To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with PD would affect the activity of both motor and non-motor networks, we applied intraoperative fMRI to patients receiving DBS. Patients and Methods Ten patients receiving STN DBS for PD underwent intraoperative 1.5T fMRI during high frequency stimulation delivered via an external pulse generator. The study was conducted between the dates of January 1, 2013 and September 30, 2014. Results We observed blood oxygen level dependent (BOLD) signal changes (FDR<.001) in the motor circuitry, including primary motor, premotor, and supplementary motor cortices, thalamus, pedunculopontine nucleus (PPN), and cerebellum, as well as in the limbic circuitry, including cingulate and insular cortices. Activation of the motor network was observed also after applying a Bonferroni correction (p<.001) to our dataset, suggesting that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. Conclusions These findings support the modulatory role of STN DBS on the activity of motor and non-motor networks, and suggest complex mechanisms at the basis of the efficacy of this treatment modality. Furthermore, these results suggest that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. With further studies combining the use of real time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning, but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. PMID:26046412

  13. Ramsay Hunt syndrome with unilateral polyneuropathy involving cranial nerves V, VII, VIII, and XII in a diabetic patient.

    PubMed

    Sun, Wei-Lian; Yan, Jian-Liang; Chen, Li-Li

    2011-01-01

    Ramsay Hunt syndrome is a rare complication of the varicella zoster virus, defined as a peripheral facial palsy that typically results from involvement of the facial and auditory nerves. Ramsay Hunt syndrome can be associated with cranial nerves V, VI, IX, and X but rarely with XII. We describe an atypical case of Ramsay Hunt syndrome with multiple cranial nerve involvement of nerves V, VII, VIII, and XII. Antiviral drugs, antibiotics, insulin, and traditional Chinese drugs were administered immediately after admission. After 3 months of combination therapy, the patient had recovered satisfactorily. Herpes zoster can cause severe infections in diabetic patients and should be treated as soon after detection as possible. Ramsay Hunt syndrome should be recognized as a polycranial neuritis characterized by damage to sensory and motor nerves. In addition to facial and vestibular nerve paralysis, Ramsay Hunt syndrome may also involve cranial nerves V and XII.

  14. Population calcium imaging of spontaneous respiratory and novel motor activity in the facial nucleus and ventral brainstem in newborn mice

    PubMed Central

    Persson, Karin; Rekling, Jens C

    2011-01-01

    Abstract The brainstem contains rhythm and pattern forming circuits, which drive cranial and spinal motor pools to produce respiratory and other motor patterns. Here we used calcium imaging combined with nerve recordings in newborn mice to reveal spontaneous population activity in the ventral brainstem and in the facial nucleus. In Fluo-8 AM loaded brainstem–spinal cord preparations, respiratory activity on cervical nerves was synchronized with calcium signals at the ventrolateral brainstem surface. Individual ventrolateral neurons at the level of the parafacial respiratory group showed perfect or partial synchrony with respiratory nerve bursts. In brainstem–spinal cord preparations, cut at the level of the mid-facial nucleus, calcium signals were recorded in the dorsal, lateral and medial facial subnuclei during respiratory activity. Strong activity initiated in the dorsal subnucleus, followed by activity in lateral and medial subnuclei. Whole-cell recordings from facial motoneurons showed weak respiratory drives, and electrical field potential recordings confirmed respiratory drive to particularly the dorsal and lateral subnuclei. Putative facial premotoneurons showed respiratory-related calcium signals, and were predominantly located dorsomedial to the facial nucleus. A novel motor activity on facial, cervical and thoracic nerves was synchronized with calcium signals at the ventromedial brainstem extending from the level of the facial nucleus to the medulla–spinal cord border. Cervical dorsal root stimulation induced similar ventromedial activity. The medial facial subnucleus showed calcium signals synchronized with this novel motor activity on cervical nerves, and cervical dorsal root stimulation induced similar medial facial subnucleus activity. In conclusion, the dorsal and lateral facial subnuclei are strongly respiratory-modulated, and the brainstem contains a novel pattern forming circuit that drives the medial facial subnucleus and cervical motor

  15. The Striatum and Subthalamic Nucleus as Independent and Collaborative Structures in Motor Control

    PubMed Central

    Tewari, Alia; Jog, Rachna; Jog, Mandar S.

    2016-01-01

    The striatum and the subthalamic nucleus (STN) are two separate input structures into the basal ganglia (BG). Accordingly, research to date has primarily focused on the distinct roles of these structures in motor control and cognition, often through investigation of Parkinson’s disease (PD). Both structures are divided into sensorimotor, associative, and limbic subdivisions based on cortical connectivity. The more recent discovery of the STN as an input structure into the BG drives comparison of these two structures and their respective roles in cognition and motor control. This review compares the role of the striatum and STN in motor response inhibition and execution, competing motor programs, feedback based learning, and response planning. Through comparison, it is found that the striatum and STN have highly independent roles in motor control but also collaborate in order to execute desired actions. There is also the possibility that inhibition or activation of one of these structures indirectly contributes to the function of other connected anatomical structures. Both structures contribute to selective motor response inhibition, which forms the basis of many tasks, but the STN additionally contributes to global inhibition through the hyperdirect pathway. Research is warranted on the functional connectivity of the network for inhibition involving the rIFG, preSMA, striatum, and STN. PMID:26973474

  16. Platelet Surface-Associated Activation and Secretion-Mediated Inhibition of Coagulation Factor XII

    PubMed Central

    Zakharova, Natalia V.; Artemenko, Elena O.; Podoplelova, Nadezhda A.; Sveshnikova, Anastasia N.; Demina, Irina A.; Ataullakhanov, Fazly I.; Panteleev, Mikhail A.

    2015-01-01

    Coagulation factor XII (fXII) is important for arterial thrombosis, but its physiological activation mechanisms are unclear. In this study, we elucidated the role of platelets and platelet-derived material in fXII activation. FXII activation was only observed upon potent platelet stimulation (with thrombin, collagen-related peptide, or calcium ionophore, but not ADP) accompanied by phosphatidylserine exposure and was localised to the platelet surface. Platelets from three patients with grey platelet syndrome did not activate fXII, which suggests that platelet-associated fXII-activating material might be released from α-granules. FXII was preferentially bound by phosphotidylserine-positive platelets and annexin V abrogated platelet-dependent fXII activation; however, artificial phosphotidylserine/phosphatidylcholine microvesicles did not support fXII activation under the conditions herein. Confocal microscopy using DAPI as a poly-phosphate marker did not reveal poly-phosphates associated with an activated platelet surface. Experimental data for fXII activation indicates an auto-inhibition mechanism (k i/k a = 180 molecules/platelet). Unlike surface-associated fXII activation, platelet secretion inhibited activated fXII (fXIIa), particularly due to a released C1-inhibitor. Platelet surface-associated fXIIa formation triggered contact pathway-dependent clotting in recalcified plasma. Computer modelling suggests that fXIIa inactivation was greatly decreased in thrombi under high blood flow due to inhibitor washout. Combined, the surface-associated fXII activation and its inhibition in solution herein may be regarded as a flow-sensitive regulator that can shift the balance between surface-associated clotting and plasma-dependent inhibition, which may explain the role of fXII at high shear and why fXII is important for thrombosis but negligible in haemostasis. PMID:25688860

  17. [The relationships among raphe magnus nucleus, locus coeruleus and dorsal motor nucleus of vagus in the descending regulation of gastric motility].

    PubMed

    Qiao, Hui; An, Shu-Cheng; Xu, Chang

    2011-02-01

    To explore the interrelationship among dorsal motor nucleus of the vagus (DMV), locus coeruleus (LC) and raphe magnus nucleus (NRM) in the mechanism of the descending regulation on gastric motility, which may constitute a parasympathetic local circuit, work as a neural center of gastric modulation in brainstem. Using nucleus location, electric stimulation and lesion, together with microinjection, and recording the inter-gastric pressure. (1) LC stimulation could inhibit the gastric motility significantly (P < 0.01), DMV lesion weaken this effect, while blocking the a receptor on DMV could reverse the effect. (2) NRM stimulation reduced the amplitude of gastric constriction (P < 0.01), DMV lesion could abolish the effect, but blocking the 5-HT2A receptor on DMV depressed the gastric motility heavily (P < 0.01) like NRM stimulation. While LC lesion could abolish the effect of NRM stimulation, and microinjection of ritanserin into LC could likewise abolish it. (1) LC inhibit the gastric motility via a receptor in DMV, and meanwhile may excite it through 5-HT2A receptor in DMV, these two ways work together to keeping the gastric motility amplitude normally. (2) NRM inhibit the gastric motility via 5-HT2A receptor in LC.

  18. Dorsal motor nucleus of the vagus neurons: a multivariate taxonomy.

    PubMed

    Jarvinen, M K; Powley, T L

    1999-01-18

    The dorsal motor nucleus of the vagus (DMNX) contains neurons with different projections and discrete functions, but little success has been achieved in distinguishing the cells cytoarchitectonically. The present experiment employed multivariate analytical techniques to evaluate DMNX neuronal morphology. Male Sprague-Dawley rats (n = 77) were perfused, and the brainstems were stained en bloc with a Golgi-Cox protocol. DMNX neurons in each of three planes (coronal, sagittal, and horizontal; total sample = 607) were digitized. Three-dimensional features quantified included dendritic length, number of segments, spine density, number of primary dendrites, dendritic orientation, and soma form factor. Cluster analyses of six independent samples of 100+ neurons and of three composite replicate pools of 200+ neurons consistently identified similar sets of four distinct neuronal profiles. One profile (spinous, limited dendrites, small somata) appears to correspond to the interneuron population of the DMNX. In contrast, the other three distinctive profiles (e.g., one is multipolar, with large dendritic fields and large somata) are different types of preganglionic neurons. Each of the four types of neurons is found throughout the DMNX, suggesting that the individual columnar subnuclei and other postulated vagal motorneuron pools are composed of all types of neurons. Within individual motor pools, ensembles of the different neuronal types must cooperatively organize different functions and project to different effectors within a target organ. By extension, specializations of the preganglionic motor pools are more likely to result from their afferent inputs, peripheral target tissues, neurochemistry, or physiological features rather than from any unique morphological profiles.

  19. The polyphosphate–factor XII pathway drives coagulation in prostate cancer-associated thrombosis

    PubMed Central

    Nickel, Katrin F.; Ronquist, Göran; Langer, Florian; Labberton, Linda; Fuchs, Tobias A.; Bokemeyer, Carsten; Sauter, Guido; Graefen, Markus; Mackman, Nigel; Stavrou, Evi X.; Ronquist, Gunnar

    2015-01-01

    Cancer is a leading cause of thrombosis. We identify a new procoagulant mechanism that contributes to thromboembolism in prostate cancer and allows for safe anticoagulation therapy development. Prostate cancer-mediated procoagulant activity was reduced in plasma in the absence of factor XII or its substrate of the intrinsic coagulation pathway factor XI. Prostate cancer cells and secreted prostasomes expose long chain polyphosphate on their surface that colocalized with active factor XII and initiated coagulation in a factor XII-dependent manner. Polyphosphate content correlated with the procoagulant activity of prostasomes. Inherited deficiency in factor XI or XII or high-molecular-weight kininogen, but not plasma kallikrein, protected mice from prostasome-induced lethal pulmonary embolism. Targeting polyphosphate or factor XII conferred resistance to prostate cancer-driven thrombosis in mice, without increasing bleeding. Inhibition of factor XII with recombinant 3F7 antibody reduced the increased prostasome-mediated procoagulant activity in patient plasma. The data illustrate a critical role for polyphosphate/factor XII-triggered coagulation in prostate cancer-associated thrombosis with implications for anticoagulation without therapy-associated bleeding in malignancies. PMID:26153520

  20. Pius XII and the Jews: A Bibliographical Review.

    ERIC Educational Resources Information Center

    Byers, Catherine

    1978-01-01

    Presents a brief biographical sketch of Pope Pius XII and samples literary treatment of Pius's actions with respect to Nazi atrocities against the Jewish people during World War II. Concludes that Pope Pius XII failed to show moral leadership. Materials reviewed include historical texts, studies of the Vatican, documents related to the war period,…

  1. Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease.

    PubMed

    Karimi, M; Golchin, N; Tabbal, S D; Hershey, T; Videen, T O; Wu, J; Usche, J W M; Revilla, F J; Hartlein, J M; Wernle, A R; Mink, J W; Perlmutter, J S

    2008-10-01

    Deep brain stimulation of the subthalamic nucleus (STN DBS) improves motor symptoms in idiopathic Parkinson's disease, yet the mechanism of action remains unclear. Previous studies indicate that STN DBS increases regional cerebral blood flow (rCBF) in immediate downstream targets but does not reveal which brain regions may have functional changes associated with improved motor manifestations. We studied 48 patients with STN DBS who withheld medication overnight and underwent PET scans to measure rCBF responses to bilateral STN DBS. PET scans were performed with bilateral DBS OFF and ON in a counterbalanced order followed by clinical ratings of motor manifestations using Unified Parkinson Disease Rating Scale 3 (UPDRS 3). We investigated whether improvement in UPDRS 3 scores in rigidity, bradykinesia, postural stability and gait correlate with rCBF responses in a priori determined regions. These regions were selected based on a previous study showing significant STN DBS-induced rCBF change in the thalamus, midbrain and supplementary motor area (SMA). We also chose the pedunculopontine nucleus region (PPN) due to mounting evidence of its involvement in locomotion. In the current study, bilateral STN DBS improved rigidity (62%), bradykinesia (44%), gait (49%) and postural stability (56%) (paired t-tests: P < 0.001). As expected, bilateral STN DBS also increased rCBF in the bilateral thalami, right midbrain, and decreased rCBF in the right premotor cortex (P < 0.05, corrected). There were significant correlations between improvement of rigidity and decreased rCBF in the SMA (r(s) = -0.4, P < 0.02) and between improvement in bradykinesia and increased rCBF in the thalamus (r(s) = 0.31, P < 0.05). In addition, improved postural reflexes correlated with decreased rCBF in the PPN (r(s) = -0.38, P < 0.03). These modest correlations between selective motor manifestations and rCBF in specific regions suggest possible regional selectivity for improvement of different motor

  2. Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease

    PubMed Central

    Karimi, M.; Golchin, N.; Tabbal, S. D.; Hershey, T.; Videen, T. O.; Wu, J.; Usche, J. W. M.; Revilla, F. J.; Hartlein, J. M.; Wernle, A. R.; Mink, J. W.

    2008-01-01

    Deep brain stimulation of the subthalamic nucleus (STN DBS) improves motor symptoms in idiopathic Parkinson's disease, yet the mechanism of action remains unclear. Previous studies indicate that STN DBS increases regional cerebral blood flow (rCBF) in immediate downstream targets but does not reveal which brain regions may have functional changes associated with improved motor manifestations. We studied 48 patients with STN DBS who withheld medication overnight and underwent PET scans to measure rCBF responses to bilateral STN DBS. PET scans were performed with bilateral DBS OFF and ON in a counterbalanced order followed by clinical ratings of motor manifestations using Unified Parkinson Disease Rating Scale 3 (UPDRS 3). We investigated whether improvement in UPDRS 3 scores in rigidity, bradykinesia, postural stability and gait correlate with rCBF responses in a priori determined regions. These regions were selected based on a previous study showing significant STN DBS-induced rCBF change in the thalamus, midbrain and supplementary motor area (SMA). We also chose the pedunculopontine nucleus region (PPN) due to mounting evidence of its involvement in locomotion. In the current study, bilateral STN DBS improved rigidity (62%), bradykinesia (44%), gait (49%) and postural stability (56%) (paired t-tests: P < 0.001). As expected, bilateral STN DBS also increased rCBF in the bilateral thalami, right midbrain, and decreased rCBF in the right premotor cortex (P < 0.05, corrected). There were significant correlations between improvement of rigidity and decreased rCBF in the SMA (rs = –0.4, P < 0.02) and between improvement in bradykinesia and increased rCBF in the thalamus (rs = 0.31, P < 0.05). In addition, improved postural reflexes correlated with decreased rCBF in the PPN (rs = –0.38, P < 0.03). These modest correlations between selective motor manifestations and rCBF in specific regions suggest possible regional selectivity for improvement of different motor signs

  3. Effects of subthalamic nucleus stimulation on motor cortex plasticity in Parkinson disease

    PubMed Central

    Kim, Sang Jin; Udupa, Kaviraja; Ni, Zhen; Moro, Elena; Gunraj, Carolyn; Mazzella, Filomena; Lozano, Andres M.; Hodaie, Mojgan; Lang, Anthony E.

    2015-01-01

    Objective: We hypothesized that subthalamic nucleus (STN) deep brain stimulation (DBS) will improve long-term potentiation (LTP)-like plasticity in motor cortex in Parkinson disease (PD). Methods: We studied 8 patients with PD treated with STN-DBS and 9 age-matched healthy controls. Patients with PD were studied in 4 sessions in medication (Med) OFF/stimulator (Stim) OFF, Med-OFF/Stim-ON, Med-ON/Stim-OFF, and Med-ON/Stim-ON states in random order. Motor evoked potential amplitude and cortical silent period duration were measured at baseline before paired associated stimulation (PAS) and at 3 different time intervals (T0, T30, T60) up to 60 minutes after PAS in the abductor pollicis brevis and abductor digiti minimi muscles. Results: Motor evoked potential size significantly increased after PAS in controls (+67.7% of baseline at T30) and in patients in the Med-ON/Stim-ON condition (+55.8% of baseline at T30), but not in patients in the Med-OFF/Stim-OFF (−0.4% of baseline at T30), Med-OFF/Stim-ON (+10.3% of baseline at T30), and Med-ON/Stim-OFF conditions (+17.3% of baseline at T30). Cortical silent period duration increased after PAS in controls but not in patients in all test conditions. Conclusions: Our findings suggest that STN-DBS together with dopaminergic medications restore LTP-like plasticity in motor cortex in PD. Restoration of cortical plasticity may be one of the mechanisms of how STN-DBS produces clinical benefit. PMID:26156511

  4. Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior

    PubMed Central

    Mallet, Luc; Schüpbach, Michael; N'Diaye, Karim; Remy, Philippe; Bardinet, Eric; Czernecki, Virginie; Welter, Marie-Laure; Pelissolo, Antoine; Ruberg, Merle; Agid, Yves; Yelnik, Jérôme

    2007-01-01

    Two parkinsonian patients who experienced transient hypomanic states when the subthalamic nucleus (STN) was stimulated during postoperative adjustment of the electrical parameters for antiparkinsonian therapy agreed to have the mood disorder reproduced, in conjunction with motor, cognitive, and behavioral evaluations and concomitant functional neuroimaging. During the experiment, STN stimulation again induced a hypomanic state concomitant with activation of cortical and thalamic regions known to process limbic and associative information. This observation suggests that the STN plays a role in the control of a complex behavior that includes emotional as well as cognitive and motor components. The localization of the four contacts of the quadripolar electrode was determined precisely with an interactive brain atlas. The results showed that (i) the hypomanic state was caused only by stimulation through one contact localized in the anteromedial STN; (ii) both this contact and the contact immediately dorsal to it improved the parkinsonian motor state; (iii) the most dorsal and ventral contacts, located at the boundaries of the STN, neither induced the behavioral disorder nor improved motor performance. Detailed analysis of these data led us to consider a model in which the three functional modalities, emotional, cognitive, and motor, are not processed in a segregated manner but can be subtly combined in the small volume of the STN. This nucleus would thus serve as a nexus that integrates the motor, cognitive, and emotional components of behavior and might consequently be an effective target for the treatment of behavioral disorders that combine emotional, cognitive, and motor impairment. PMID:17556546

  5. Immunohistochemical localization of c-fos in the nuclei of the medulla oblongata in relation to asphyxia.

    PubMed

    Nogami, M; Takatsu, A; Endo, N; Ishiyama, I

    1999-01-01

    The immediately early gene product c-fos is known to be induced in neurons under noxious stimuli. Therefore, the immunohistochemistry of c-fos expression in human brains might offer information on the localization of stimulated neurons. In this study, the immunohistochemical localization of c-fos was studied in the neurons of the hypoglossal nucleus (XII), the dorsal motor nucleus of the vagal nerve (X), the nucleus solitarius (Sol), the accessory cuneate nucleus (Cun), the spinal trigeminal nucleus (V) and the inferior olive (Oli) of the human medulla oblongata from forensic autopsy cases. The neurons in the X nucleus showed the highest percentage of positive reactions for c-fos, followed in descending order by the Cun, V, Oli, XII and Sol. The c-fos immunoreactivity in the Cun and X was statistically significantly higher than in the Sol, XII and Oli. Although neurons in the Sol are known to be involved in respiration, there was no statistically significant difference in the c-fos immunoreactivity in the neurons in the Sol between asphyxia and non-asphyxia cases. On the other hand, the percentage of neurons positive for the c-fos immunoreactivity was statistically significantly higher in the Oli of asphyxia cases than of non-asphyxia cases. Our results indicate the difference in the immunoreactivity of c-fos among the nuclei of the human medulla oblongata and that the c-fos immunoreactivity in the Oli might assist the diagnosis of asphyxia.

  6. Activity Parameters of Subthalamic Nucleus Neurons Selectively Predict Motor Symptom Severity in Parkinson's Disease

    PubMed Central

    Gulberti, Alessandro; Zittel, Simone; Tudor Jones, Adam A.; Fickel, Ulrich; Münchau, Alexander; Köppen, Johannes A.; Gerloff, Christian; Westphal, Manfred; Buhmann, Carsten; Hamel, Wolfgang; Engel, Andreas K.

    2014-01-01

    Parkinson's disease (PD) is a heterogeneous disorder that leads to variable expression of several different motor symptoms. While changes in firing rate, pattern, and oscillation of basal ganglia neurons have been observed in PD patients and experimental animals, there is limited evidence linking them to specific motor symptoms. Here we examined this relationship using extracellular recordings of subthalamic nucleus neurons from 19 PD patients undergoing surgery for deep brain stimulation. For each patient, ≥10 single units and/or multi-units were recorded in the OFF medication state. We correlated the proportion of neurons displaying different activities with preoperative Unified Parkinson's Disease Rating Scale subscores (OFF medication). The mean spectral power at sub-beta frequencies and percentage of units oscillating at beta frequencies were positively correlated with the axial and limb rigidity scores, respectively. The percentage of units oscillating at gamma frequency was negatively correlated with the bradykinesia scores. The mean intraburst rate was positively correlated with both bradykinesia and axial scores, while the related ratio of interspike intervals below/above 10 ms was positively correlated with these symptoms and limb rigidity. None of the activity parameters correlated with tremor. The grand average of all the significantly correlated subthalamic nucleus activities accounted for >60% of the variance of the combined bradykinetic-rigid and axial scores. Our results demonstrate that the occurrence of alterations in the rate and pattern of basal ganglia neurons could partly underlie the variability in parkinsonian phenotype. PMID:24790198

  7. Brain networks modulated by subthalamic nucleus deep brain stimulation.

    PubMed

    Accolla, Ettore A; Herrojo Ruiz, Maria; Horn, Andreas; Schneider, Gerd-Helge; Schmitz-Hübsch, Tanja; Draganski, Bogdan; Kühn, Andrea A

    2016-09-01

    Deep brain stimulation of the subthalamic nucleus is an established treatment for the motor symptoms of Parkinson's disease. Given the frequent occurrence of stimulation-induced affective and cognitive adverse effects, a better understanding about the role of the subthalamic nucleus in non-motor functions is needed. The main goal of this study is to characterize anatomical circuits modulated by subthalamic deep brain stimulation, and infer about the inner organization of the nucleus in terms of motor and non-motor areas. Given its small size and anatomical intersubject variability, functional organization of the subthalamic nucleus is difficult to investigate in vivo with current methods. Here, we used local field potential recordings obtained from 10 patients with Parkinson's disease to identify a subthalamic area with an analogous electrophysiological signature, namely a predominant beta oscillatory activity. The spatial accuracy was improved by identifying a single contact per macroelectrode for its vicinity to the electrophysiological source of the beta oscillation. We then conducted whole brain probabilistic tractography seeding from the previously identified contacts, and further described connectivity modifications along the macroelectrode's main axis. The designated subthalamic 'beta' area projected predominantly to motor and premotor cortical regions additional to connections to limbic and associative areas. More ventral subthalamic areas showed predominant connectivity to medial temporal regions including amygdala and hippocampus. We interpret our findings as evidence for the convergence of different functional circuits within subthalamic nucleus' portions deemed to be appropriate as deep brain stimulation target to treat motor symptoms in Parkinson's disease. Potential clinical implications of our study are illustrated by an index case where deep brain stimulation of estimated predominant non-motor subthalamic nucleus induced hypomanic behaviour. © The

  8. Motor behaviors in the sheep evoked by electrical stimulation of the subthalamic nucleus.

    PubMed

    Lentz, Linnea; Zhao, Yan; Kelly, Matthew T; Schindeldecker, William; Goetz, Steven; Nelson, Dwight E; Raike, Robert S

    2015-11-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is used to treat movement disorders, including advanced Parkinson's disease (PD). The pathogenesis of PD and the therapeutic mechanisms of DBS are not well understood. Large animal models are essential for investigating the mechanisms of PD and DBS. The purpose of this study was to develop a novel sheep model of STN DBS and quantify the stimulation-evoked motor behaviors. To do so, a large sample of animals was chronically-implanted with commercial DBS systems. Neuroimaging and histology revealed that the DBS leads were implanted accurately relative to the neurosurgical plan and also precisely relative to the STN. It was also possible to repeatedly conduct controlled evaluations of stimulation-evoked motor behavior in the awake-state. The evoked motor responses depended on the neuroanatomical location of the electrode contact selected for stimulation, as contacts proximal to the STN evoked movements at significantly lower voltages. Tissue stimulation modeling demonstrated that selecting any of the contacts stimulated the STN, whereas selecting the relatively distal contacts often also stimulated thalamus but only the distal-most contact stimulated internal capsule. The types of evoked motor behaviors were specific to the stimulation frequency, as low but not high frequencies consistently evoked movements resembling human tremor or dyskinesia. Electromyography confirmed that the muscle activity underlying the tremor-like movements in the sheep was consistent with human tremor. Overall, this work establishes that the sheep is a viable a large-animal platform for controlled testing of STN DBS with objective motor outcomes. Moreover, the results support the hypothesis that exaggerated low-frequency activity within individual nodes of the motor network can drive symptoms of human movement disorders, including tremor and dyskinesia. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Sensorimotor nucleus NIf is necessary for auditory processing but not vocal motor output in the avian song system.

    PubMed

    Cardin, Jessica A; Raksin, Jonathan N; Schmidt, Marc F

    2005-04-01

    Sensorimotor integration in the avian song system is crucial for both learning and maintenance of song, a vocal motor behavior. Although a number of song system areas demonstrate both sensory and motor characteristics, their exact roles in auditory and premotor processing are unclear. In particular, it is unknown whether input from the forebrain nucleus interface of the nidopallium (NIf), which exhibits both sensory and premotor activity, is necessary for both auditory and premotor processing in its target, HVC. Here we show that bilateral NIf lesions result in long-term loss of HVC auditory activity but do not impair song production. NIf is thus a major source of auditory input to HVC, but an intact NIf is not necessary for motor output in adult zebra finches.

  10. Dense TRPV2 immunoreactivity defines a subset of motoneurons in the dorsal lateral nucleus of the spinal cord, the nucleus ambiguus and the trigeminal motor nucleus in rat

    PubMed Central

    LeWinter, Robin D.; Scherrer, Grégory; Basbaum, Allan I.

    2008-01-01

    The transient receptor potential cation channel TRPV2 is a member of the TRPV family of proteins and is a homologue of the capsaicin/vanilloid receptor (TRPV1). Like TRPV1, TRPV2 is expressed in a subset of dorsal root ganglia (DRG) neurons that project to superficial laminae of the spinal cord dorsal horn. Because noxious heat (>52°C) activates TRPV2 in transfected cells this channel has been implicated in the processing of high intensity thermal pain messages in vivo. In contrast to TRPV1, however, which is restricted to small diameter DRG neurons, there is significant TRPV2 immunoreactivity in a variety of CNS regions. The present report focuses on a subset of neurons in the brainstem and spinal cord of the rat including the dorsal lateral nucleus (DLN) of the spinal cord, the nucleus ambiguus, and the motor trigeminal nucleus. Double label immunocytochemistry with markers of motoneurons, combined with retrograde labeling, established that these cells are, in fact, motoneurons. With the exception of their smaller diameter, these cells did not differ from other motoneurons, which are only lightly TRPV2-immunoreactive. As for the majority of DLN neurons, the densely-labeled populations co-express androgen receptor and follow normal DLN ontogeny. The functional significance of the very intense TRPV2 expression in these three distinct spinal cord and brainstem motoneurons groups remains to be determined. PMID:18063314

  11. Reduction of factor XII in antiphospholipid antibody-positive patients with thrombotic events in the rheumatology clinic.

    PubMed

    Takeishi, M; Mimori, A; Nakajima, K; Mimura, T; Suzuki, T

    2003-02-01

    Although rheumatological diagnosis often includes an assessment of antiphospholipid (aPL) antibodies, the significance of other prothrombotic factors has not been established in thrombotic patients who are not afflicted with either arteriosclerosis or vasculitis syndrome. We have observed both the presence of antiphospholipid antibodies and a reduction of factor XII in such patients. Our results identified both lupus anticoagulant-positive (50%) and anticardiolipin antibody-positive (58%) patients. In addition, 83% of patients showed factor XII antigen level reduction. Furthermore, 70% of aPL-positive thrombotic patients showed factor XII antigen level reduction. Only two cases had antiphospholipid antibody alone, and 4/12 showed just factor XII antigen reduction. Recently, it has been reported that the presence of antiphospholipid antibodies induces factor XII reduction, and that anti-factor XII autoantibody can be detected in thrombotic patients. However, our results indicate that there are smaller factor XII reductions in non-thrombotic controls who are positive for antiphospholipid antibodies. Furthermore, anti-factor XII autoantibody was not detected in patients with decreased factor XII levels. Kindred research suggested that in two patients there was a genetic component to factor XII reduction. We concluded that the presence of both antiphospholipid antibodies and reduced serum factor XII was observed in most thrombotic patients from our rheumatology clinic. It is therefore possible to consider that the coexistence of these prothrombotic factors can contribute to the onset of thrombosis.

  12. Distinctive features of Phox2b-expressing neurons in the rat reticular formation dorsal to the trigeminal motor nucleus.

    PubMed

    Nagoya, Kouta; Nakamura, Shiro; Ikeda, Keiko; Onimaru, Hiroshi; Yoshida, Atsushi; Nakayama, Kiyomi; Mochizuki, Ayako; Kiyomoto, Masaaki; Sato, Fumihiko; Kawakami, Kiyoshi; Takahashi, Koji; Inoue, Tomio

    2017-09-01

    Phox2b encodes a paired-like homeodomain-containing transcription factor essential for development of the autonomic nervous system. Phox2b-expressing (Phox2b + ) neurons are present in the reticular formation dorsal to the trigeminal motor nucleus (RdV) as well as the nucleus of the solitary tract and parafacial respiratory group. However, the nature of Phox2b + RdV neurons is still unclear. We investigated the physiological and morphological properties of Phox2b + RdV neurons using postnatal day 2-7 transgenic rats expressing yellow fluorescent protein under the control of Phox2b. Almost all of Phox2b + RdV neurons were glutamatergic, whereas Phox2b-negative (Phox2b - ) RdV neurons consisted of a few glutamatergic, many GABAergic, and many glycinergic neurons. The majority (48/56) of Phox2b + neurons showed low-frequency firing (LF), while most of Phox2b - neurons (35/42) exhibited high-frequency firing (HF) in response to intracellularly injected currents. All, but one, Phox2b + neurons (55/56) did not fire spontaneously, whereas three-fourths of the Phox2b - neurons (31/42) were spontaneously active. K + channel and persistent Na + current blockers affected the firing of LF and HF neurons. The majority of Phox2b + (35/46) and half of the Phox2b - neurons (19/40) did not respond to stimulations of the mesencephalic trigeminal nucleus, the trigeminal tract, and the principal sensory trigeminal nucleus. Biocytin labeling revealed that about half of the Phox2b + (5/12) and Phox2b - RdV neurons (5/10) send their axons to the trigeminal motor nucleus. These results suggest that Phox2b + RdV neurons have distinct neurotransmitter phenotypes and firing properties from Phox2b - RdV neurons and might play important roles in feeding-related functions including suckling and possibly mastication. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Carbocyanine dye labeling reveals a new motor nucleus in octopus brain.

    PubMed

    Robertson, J D; Schwartz, O M; Lee, P

    1993-02-22

    This work aims at a better understanding of the organization of the brain of Octopus vulgaris, emphasizing the touch and visual learning centers. We injected the carbocyanine dye, DiI, into the cerebrobrachial connectives and, separately, into the brachial nerves of living octopuses. In both experiments, retrogradely transported granules of DiI appeared in motor neurons in the superior buccal, posterior buccal and subvertical lobes and in a hitherto unsuspected motor nucleus of several hundred neurons in the posterior dorsal basal and median basal lobes. In addition we labeled afferent fibers by injecting DiI into the caudal (sensory) division of the cerebrobrachial connective on one side; the label spread throughout the superior buccal, posterior buccal and the lateral and median inferior frontal lobes mainly on the injected side. It extended through the cerebral tract into the subvertical lobe, into the superior frontal lobe through the interfrontal tract, through the posterior buccal commissure into the opposite posterior buccal lobe and into the median inferior frontal lobe. The work suggests a new function for the posterior dorsal and median basal lobes, which are shown for the first time to project through the inferior frontal lobe system into the brachial nerves. In addition it represents the first full report of the successful use of the carbocyanine dyes DiI and DiO for labeling nerve tissue in a live invertebrate animal.

  14. Collateral projections of nucleus raphe dorsalis neurones to the caudate-putamen and region around the nucleus raphe magnus and nucleus reticularis gigantocellularis pars alpha in the rat.

    PubMed

    Li, Y Q; Kaneko, T; Mizuno, N

    2001-02-16

    It was examined whether or not the nucleus raphe dorsalis (RD) neurons projecting to the caudate-putamen (CPu) might also project to the motor-controlling region around the nucleus raphe magnus (NRM) and nucleus reticularis gigantocellularis pars alpha (Gia) in the rat. Single RD neurons projecting to the CPu and NRM/Gia by way of axon collaterals were identified by the retrograde double-labeling method with fluorescent dyes, Fast Blue and Diamidino Yellow, which were injected respectively into the CPu and NRM/Gia. Then, serotonin (5-HT)-like immunoreactivity of the double-labeled RD neurons was examined immunohistochemically; approximately 60% of the double-labeled RD neurons showed 5-HT-like immunoreactivity. The results indicated that some of serotonergic and non-serotonergic RD neurons might control motor functions simultaneously at the levels of the CPu and NRM/Gia by way of axon collaterals.

  15. Induction of apoptosis by thrombin in the cultured neurons of dorsal motor nucleus of the vagus.

    PubMed

    Wu, X; Zhang, W; Li, J-Y; Chai, B-X; Peng, J; Wang, H; Mulholland, M W

    2011-03-01

    A previous study demonstrated the presence of protease-activated receptor (PAR) 1 and 2 in the dorsal motor nucleus of vagus (DMV). The aim of this study is to characterize the effect of thrombin on the apoptosis of DMV neurons. The dorsal motor nucleus of vagus neurons were isolated from neonatal rat brainstems using micro-dissection and enzymatic digestion and cultured. Apoptosis of DMV neurons were examined in cultured neurons. Apoptotic neuron was examined by TUNEL and ELISA. Data were analyzed using anova and Student's t-test. Exposure of cultured DMV neurons to thrombin (0.1 to 10 U mL(-1)) for 24 h significantly increased apoptosis. Pretreatment of DMV neurons with hirudin attenuated the apoptotic effect of thrombin. Similar induction of apoptosis was observed for the PAR1 receptor agonist SFLLR, but not for the PAR3 agonist TFRGAP, nor for the PAR4 agonist YAPGKF. Protease-activated receptors 1 receptor antagonist Mpr(Cha) abolished the apoptotic effect of thrombin, while YPGKF, a specific antagonist for PAR4, demonstrated no effect. After administration of thrombin, phosphorylation of JNK and P38 occurred as early as 15 min, and remained elevated for up to 45 min. Pretreatment of DMV neurons with SP600125, a specific inhibitor for JNK, or SB203580, a specific inhibitor for P38, significantly inhibited apoptosis induced by thrombin. Thrombin induces apoptosis in DMV neurons through a mechanism involving the JNK and P38 signaling pathways. © 2010 Blackwell Publishing Ltd.

  16. Distribution and ultrastructure of dopaminergic neurons in the dorsal motor nucleus of the vagus projecting to the stomach of the rat.

    PubMed

    Hayakawa, Tetsu; Takanaga, Akinori; Tanaka, Koichi; Maeda, Seishi; Seki, Makoto

    2004-04-23

    Almost all parasympathetic preganglionic motor neurons contain acetylcholine, whereas quite a few motor neurons in the dorsal motor nucleus of the vagus (DMV) contain dopamine. We determined the distribution and ultrastructure of these dopaminergic neurons with double-labeling immunohistochemistry for tyrosine hydroxylase (TH) and the retrograde tracer cholera toxin subunit b (CTb) following its injection into the stomach. A few TH-immunoreactive (TH-ir) neurons were found in the rostral half of the DMV, while a moderate number of these neurons were found in the caudal half. Most of the TH-ir neurons (78.4%) were double-labeled for CTb in the half of the DMV caudal to the area postrema, but only a few TH-ir neurons (5.5%) were double-labeled in the rostral half. About 20% of gastric motor neurons showed TH-immunoreactivity in the caudal half of the DMV, but only 0.3% were TH-ir in the rostral half. In all gastric motor neurons, 8.1% were double-labeled for TH. The ultrastructure of the TH-ir neurons in the caudal DMV was determined with immuno-gold-silver labeling. The TH-ir neurons were small (20.4 x 12.4 microm), round or oval, and contained numerous mitochondria, many free ribosomes, several Golgi apparatuses, a round nucleus and a few Nissl bodies. The average number of axosomatic terminals per section was 4.0. More than half of them contained round synaptic vesicles and made asymmetric synaptic contacts (Gray's type I). Most of the axodendritic terminals contacting TH-ir dendrites were Gray's type I (90%), but a few contained pleomorphic vesicles and made symmetric synaptic contacts (Gray's type II).

  17. Tio2-dopamine complex implanted unilaterally in the caudate nucleus improves motor activity and behavior function of rats with induced hemiparkinsonism.

    PubMed

    Vergara-Aragón, Patricia; Domínguez-Marrufo, Leonardo Eduardo; Ibarra-Guerrero, Patricia; Hernandez-Ramírez, Heidi; Hernández-Téllez, Beatriz; López-Martínez, Irma Elena; Sánchez-Cervantes, Ivonne; Santiago-Jacinto, Patricia; García-Macedo, Jorge Alberto; Valverde-Aguilar, Guadalupe; Santiago, Julio

    2011-01-01

    Parkinson's disease (PD) is characterized by malfunction of dopaminergic systems, and the current symptomatic treatment is to replace lost dopamine. For investigating mechanisms of pathogenesis and alternative treatments to compensate lack of dopamine (DA) activity in PD, the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD has been useful, these animals display apomorphine-induced contralateral rotational behavior, when they are examined after lesion. The purpose of this study was to assess Titania-dopamine (TiO2-DA) complexes implanted on the caudate nucleus for diminishing motor behavior alterations of the 6-OHDA rat model. Rats with 6-OHDA unilateral lesions received TiO2 alone or TiO2-DA implants, and were tested for open field (OF) gross motor crossing and rearing behaviors, and apomorphine-induced rotation (G) behavior. TiO2 complex have no effects on rearing OF and G behaviors, and a significant reducing effect on crossing motor behavior of normal rats compared to control non-treated rats throughout 56 days of observation. Interestingly, TiO2-DA treatment significant recovered motor crossing and rearing behaviors in 6-OHDA-lesioned rats, and diminished the G behaviors during 56 days of examination. Additionally, in the 6-OHDA-lesioned rats TiO2 treatment had a moderate recovering effect only on crossing behavior compared to lesioned non treated rats. Our results suggest that continuous release of dopamine in the caudate nucleus from TiO2-DA complex is capable of reversing gross motor deficits observed in the 6-OHDA-lesioned rat model of PD. Thistype of delivery system of DA represents a promising therapy for PD in humans.

  18. Non-stationary discharge patterns in motor cortex under subthalamic nucleus deep brain stimulation.

    PubMed

    Santaniello, Sabato; Montgomery, Erwin B; Gale, John T; Sarma, Sridevi V

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) directly modulates the basal ganglia (BG), but how such stimulation impacts the cortex upstream is largely unknown. There is evidence of cortical activation in 6-hydroxydopamine (OHDA)-lesioned rodents and facilitation of motor evoked potentials in Parkinson's disease (PD) patients, but the impact of the DBS settings on the cortical activity in normal vs. Parkinsonian conditions is still debated. We use point process models to analyze non-stationary activation patterns and inter-neuronal dependencies in the motor and sensory cortices of two non-human primates during STN DBS. These features are enhanced after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes a consistent PD-like motor impairment, while high-frequency (HF) DBS (i.e., ≥100 Hz) strongly reduces the short-term patterns (period: 3-7 ms) both before and after MPTP treatment, and elicits a short-latency post-stimulus activation. Low-frequency DBS (i.e., ≤50 Hz), instead, has negligible effects on the non-stationary features. Finally, by using tools from the information theory [i.e., receiver operating characteristic (ROC) curve and information rate (IR)], we show that the predictive power of these models is dependent on the DBS settings, i.e., the probability of spiking of the cortical neurons (which is captured by the point process models) is significantly conditioned on the timely delivery of the DBS input. This dependency increases with the DBS frequency and is significantly larger for high- vs. low-frequency DBS. Overall, the selective suppression of non-stationary features and the increased modulation of the spike probability suggest that HF STN DBS enhances the neuronal activation in motor and sensory cortices, presumably because of reinforcement mechanisms, which perhaps involve the overlap between feedback antidromic and feed-forward orthodromic responses along the BG-thalamo-cortical loop.

  19. The Pedunculopontine Tegmental Nucleus as a Motor and Cognitive Interface between the Cerebellum and Basal Ganglia.

    PubMed

    Mori, Fumika; Okada, Ken-Ichi; Nomura, Taishin; Kobayashi, Yasushi

    2016-01-01

    As an important component of ascending activating systems, brainstem cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg) are involved in the regulation of motor control (locomotion, posture and gaze) and cognitive processes (attention, learning and memory). The PPTg is highly interconnected with several regions of the basal ganglia, and one of its key functions is to regulate and relay activity from the basal ganglia. Together, they have been implicated in the motor control system (such as voluntary movement initiation or inhibition), and modulate aspects of executive function (such as motivation). In addition to its intimate connection with the basal ganglia, projections from the PPTg to the cerebellum have been recently reported to synaptically activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were regarded as forming separated anatomical loops that play a distinct functional role in motor and cognitive behavioral control. Here, we suggest that the PPTg may also act as an interface device between the basal ganglia and cerebellum. As such, part of the therapeutic effect of PPTg deep brain stimulation (DBS) to relieve gait freezing and postural instability in advanced Parkinson's disease (PD) patients might also involve modulation of the cerebellum. We review the anatomical position and role of the PPTg in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive function and PD.

  20. Selective depletion of plasma prekallikrein or coagulation factor XII inhibits thrombosis in mice without increased risk of bleeding.

    PubMed

    Revenko, Alexey S; Gao, Dacao; Crosby, Jeff R; Bhattacharjee, Gourab; Zhao, Chenguang; May, Chris; Gailani, David; Monia, Brett P; MacLeod, A Robert

    2011-11-10

    Recent studies indicate that the plasma contact system plays an important role in thrombosis, despite being dispensable for hemostasis. For example, mice deficient in coagulation factor XII (fXII) are protected from arterial thrombosis and cerebral ischemia-reperfusion injury. We demonstrate that selective reduction of prekallikrein (PKK), another member of the contact system, using antisense oligonucleotide (ASO) technology results in an antithrombotic phenotype in mice. The effects of PKK deficiency were compared with those of fXII deficiency produced by specific ASO-mediated reduction of fXII. Mice with reduced PKK had ∼ 3-fold higher plasma levels of fXII, and reduced levels of fXIIa-serpin complexes, consistent with fXII being a substrate for activated PKK in vivo. PKK or fXII deficiency reduced thrombus formation in both arterial and venous thrombosis models, without an apparent effect on hemostasis. The amount of reduction of PKK and fXII required to produce an antithrombotic effect differed between venous and arterial models, suggesting that these factors may regulate thrombus formation by distinct mechanisms. Our results support the concept that fXII and PKK play important and perhaps nonredundant roles in pathogenic thrombus propagation, and highlight a novel, specific and safe pharmaceutical approach to target these contact system proteases.

  1. Selective depletion of plasma prekallikrein or coagulation factor XII inhibits thrombosis in mice without increased risk of bleeding

    PubMed Central

    Revenko, Alexey S.; Gao, Dacao; Crosby, Jeff R.; Bhattacharjee, Gourab; Zhao, Chenguang; May, Chris; Gailani, David; Monia, Brett P.

    2011-01-01

    Recent studies indicate that the plasma contact system plays an important role in thrombosis, despite being dispensable for hemostasis. For example, mice deficient in coagulation factor XII (fXII) are protected from arterial thrombosis and cerebral ischemia-reperfusion injury. We demonstrate that selective reduction of prekallikrein (PKK), another member of the contact system, using antisense oligonucleotide (ASO) technology results in an antithrombotic phenotype in mice. The effects of PKK deficiency were compared with those of fXII deficiency produced by specific ASO-mediated reduction of fXII. Mice with reduced PKK had ∼ 3-fold higher plasma levels of fXII, and reduced levels of fXIIa-serpin complexes, consistent with fXII being a substrate for activated PKK in vivo. PKK or fXII deficiency reduced thrombus formation in both arterial and venous thrombosis models, without an apparent effect on hemostasis. The amount of reduction of PKK and fXII required to produce an antithrombotic effect differed between venous and arterial models, suggesting that these factors may regulate thrombus formation by distinct mechanisms. Our results support the concept that fXII and PKK play important and perhaps nonredundant roles in pathogenic thrombus propagation, and highlight a novel, specific and safe pharmaceutical approach to target these contact system proteases. PMID:21821705

  2. Morphine-induced changes in acetylcholine release in the interpeduncular nucleus and relationship to changes in motor behavior in rats

    PubMed Central

    Taraschenko, Olga D.; Rubbinaccio, Heather Y.; Shulan, Joseph M.; Glick, Stanley D.; Maisonneuve, Isabelle M.

    2007-01-01

    Owing to multiple anatomical connections and functional interactions between the habenulo-interpeduncular and the mesolimbic pathways, it has been proposed that these systems could together mediate the reinforcing properties of addictive drugs. 18-Methoxycoronaridine, an agent that reduces morphine self-administration and attenuates dopamine sensitization in the nucleus accumbens in response to repeated morphine, has been shown to produce these effects by acting in the medial habenula and interpeduncular nucleus. Acetylcholine, one of the predominant neurotransmitters in the interpeduncular nucleus, may be a major determinant of these interactions. To determine if and how morphine acts in the interpeduncular nucleus, the effects of acute and repeated administration of morphine on extracellular acetylcholine levels in this brain area were assessed. In addition, the motor behavior of rats receiving repeated morphine administration was monitored during microdialysis sessions. Acutely, morphine produced a biphasic effect on extracellular acetylcholine levels in the interpeduncular nucleus such that low and high doses of morphine (i.e., 5 and 20 mg/kg i.p.) significantly increased and decreased acetylcholine levels, respectively. Repeated administration of the same doses of morphine resulted in tolerance to the inhibitory but not to the stimulatory effects; tolerance was accompanied by sensitization to morphine-induced changes in locomotor activity and stereotypic behavior. The latter results suggest that tolerance to morphine's effect on the cholinergic habenulo-interpeduncular pathway is related to its sensitizing effects on the mesostriatal dopaminergic pathways. PMID:17544456

  3. Posterior Thalamic Nucleus Modulation of Tactile Stimuli Processing in Rat Motor and Primary Somatosensory Cortices

    PubMed Central

    Casas-Torremocha, Diana; Clascá, Francisco; Núñez, Ángel

    2017-01-01

    Rodents move rhythmically their facial whiskers and compute differences between signals predicted and those resulting from the movement to infer information about objects near their head. These computations are carried out by a large network of forebrain structures that includes the thalamus and the primary somatosensory (S1BF) and motor (M1wk) cortices. Spatially and temporally precise mechanorreceptive whisker information reaches the S1BF cortex via the ventroposterior medial thalamic nucleus (VPM). Other whisker-related information may reach both M1wk and S1BF via the axons from the posterior thalamic nucleus (Po). However, Po axons may convey, in addition to direct sensory signals, the dynamic output of computations between whisker signals and descending motor commands. It has been proposed that this input may be relevant for adjusting cortical responses to predicted vs. unpredicted whisker signals, but the effects of Po input on M1wk and S1BF function have not been directly tested or compared in vivo. Here, using electrophysiology, optogenetics and pharmacological tools, we compared in adult rats M1wk and S1BF in vivo responses in the whisker areas of the motor and primary somatosensory cortices to passive multi-whisker deflection, their dependence on Po activity, and their changes after a brief intense activation of Po axons. We report that the latencies of the first component of tactile-evoked local field potentials in M1wk and S1BF are similar. The evoked potentials decrease markedly in M1wk, but not in S1BF, by injection in Po of the GABAA agonist muscimol. A brief high-frequency electrical stimulation of Po decreases the responsivity of M1wk and S1BF cells to subsequent whisker stimulation. This effect is prevented by the local application of omega-agatoxin, suggesting that it may in part depend on GABA release by fast-spiking parvalbumin (PV)-expressing cortical interneurons. Local optogenetic activation of Po synapses in different cortical layers also

  4. Chronic intermittent hypoxia affects endogenous serotonergic inputs and expression of synaptic proteins in rat hypoglossal nucleus

    PubMed Central

    Wu, Xu; Lu, Huan; Hu, Lijuan; Gong, Wankun; Wang, Juan; Fu, Cuiping; Liu, Zilong; Li, Shanqun

    2017-01-01

    Evidence has shown that hypoxic episodes elicit hypoglossal neuroplasticity which depends on elevated serotonin (5-HT), in contrast to the rationale of obstructive sleep apnea (OSA) that deficient serotonergic input to HMs fails to keep airway patency. Therefore, understanding of the 5-HT dynamic changes at hypoglossal nucleus (HN) during chronic intermittent hypoxia (CIH) will be essential to central pathogenic mechanism and pharmacological therapy of OSA. Moreover, the effect of CIH on BDNF-TrkB signaling proteins was quantified in an attempt to elucidate cellular cascades/synaptic mechanisms following 5-HT alteration. Male rats were randomly exposed to normal air (control), intermittent hypoxia of 3 weeks (IH3) and 5 weeks (IH5) groups. Through electrical stimulation of dorsal raphe nuclei (DRN), we conducted amperometric technique with carbon fiber electrode in vivo to measure the real time release of 5-HT at XII nucleus. 5-HT2A receptors immunostaining measured by intensity and c-Fos quantified visually were both determined by immunohistochemistry. CIH significantly reduced endogenous serotonergic inputs from DRN to XII nucleus, shown as decreased peak value of 5-HT signals both in IH3 and IH5groups, whereas time to peak and half-life period of 5-HT were unaffected. Neither 5-HT2A receptors nor c-Fos expression in HN were significantly altered by CIH. Except for marked increase in phosphorylation of ERK in IH5 rats, BDNF-TrkB signaling and synaptophys consistently demonstrated downregulated levels. These results suggest that the deficiency of 5-HT and BDNF-dependent synaptic proteins in our CIH protocol contribute to the decompensated mechanism of OSA. PMID:28337282

  5. Chronic intermittent hypoxia affects endogenous serotonergic inputs and expression of synaptic proteins in rat hypoglossal nucleus.

    PubMed

    Wu, Xu; Lu, Huan; Hu, Lijuan; Gong, Wankun; Wang, Juan; Fu, Cuiping; Liu, Zilong; Li, Shanqun

    2017-01-01

    Evidence has shown that hypoxic episodes elicit hypoglossal neuroplasticity which depends on elevated serotonin (5-HT), in contrast to the rationale of obstructive sleep apnea (OSA) that deficient serotonergic input to HMs fails to keep airway patency. Therefore, understanding of the 5-HT dynamic changes at hypoglossal nucleus (HN) during chronic intermittent hypoxia (CIH) will be essential to central pathogenic mechanism and pharmacological therapy of OSA. Moreover, the effect of CIH on BDNF-TrkB signaling proteins was quantified in an attempt to elucidate cellular cascades/synaptic mechanisms following 5-HT alteration. Male rats were randomly exposed to normal air (control), intermittent hypoxia of 3 weeks (IH3) and 5 weeks (IH5) groups. Through electrical stimulation of dorsal raphe nuclei (DRN), we conducted amperometric technique with carbon fiber electrode in vivo to measure the real time release of 5-HT at XII nucleus. 5-HT 2A receptors immunostaining measured by intensity and c-Fos quantified visually were both determined by immunohistochemistry. CIH significantly reduced endogenous serotonergic inputs from DRN to XII nucleus, shown as decreased peak value of 5-HT signals both in IH3 and IH5groups, whereas time to peak and half-life period of 5-HT were unaffected. Neither 5-HT 2A receptors nor c-Fos expression in HN were significantly altered by CIH. Except for marked increase in phosphorylation of ERK in IH5 rats, BDNF-TrkB signaling and synaptophys consistently demonstrated downregulated levels. These results suggest that the deficiency of 5-HT and BDNF-dependent synaptic proteins in our CIH protocol contribute to the decompensated mechanism of OSA.

  6. Nucleus Ruber of Actinopterygians.

    PubMed

    Nakayama, Tomoya; Miyajima, Satoshi; Nishino, Hirotaka; Narita, Junya; Abe, Hideki; Yamamoto, Naoyuki

    2016-01-01

    Nucleus ruber is known as an important supraspinal center that controls forelimb movements in tetrapods, and the rubral homologue may serve similar functions in fishes (motor control of pectoral fin). However, two apparently different structures have been identified as 'nucleus ruber' in actinopterygians. One is nucleus ruber of Goldstein (1905) (NRg), and the other nucleus ruber of Nieuwenhuys and Pouwels (1983) (NRnp). It remains unclear whether one of these nuclei (or perhaps both) is homologous to tetrapod nucleus ruber. To resolve this issue from a phylogenetic point of view, we have investigated the distribution of tegmental neurons retrogradely labeled from the spinal cord in eight actinopterygian species. We also investigated the presence/absence of the two nuclei with Nissl- or Bodian-stained brain section series of an additional 28 actinopterygian species by comparing the morphological features of candidate rubral neurons with those of neurons revealed by the tracer studies. Based on these analyses, the NRg was identified in all actinopterygians investigated in the present study, while the NRnp appears to be absent in basal actinopterygians. The phylogenetic distribution pattern indicates that the NRg is the more likely homologue of nucleus ruber, and the NRnp may be a derived nucleus that emerged during the course of actinopterygian evolution. © 2016 S. Karger AG, Basel.

  7. Factor XI and XII as antithrombotic targets.

    PubMed

    Müller, Felicitas; Gailani, David; Renné, Thomas

    2011-09-01

    Arterial and venous thrombosis are major causes of morbidity and mortality, and the incidence of thromboembolic diseases increases as a population ages. Thrombi are formed by activated platelets and fibrin. The latter is a product of the plasma coagulation system. Currently available anticoagulants such as heparins, vitamin K antagonists and inhibitors of thrombin or factor Xa target enzymes of the coagulation cascade that are critical for fibrin formation. However, fibrin is also necessary for terminating blood loss at sites of vascular injury. As a result, anticoagulants currently in clinical use increase the risk of bleeding, partially offsetting the benefits of reduced thrombosis. This review focuses on new targets for anticoagulation that are associated with minimal or no therapy-associated increased bleeding. Data from experimental models using mice and clinical studies of patients with hereditary deficiencies of coagulation factors XI or XII have shown that both of these clotting factors are important for thrombosis, while having minor or no apparent roles in processes that terminate blood loss (hemostasis). Hereditary deficiency of factor XII (Hageman factor) or factor XI, plasma proteases that initiate the intrinsic pathway of coagulation, impairs thrombus formation and provides protection from vascular occlusive events, while having a minimal impact on hemostasis. As the factor XII-factor XI pathway contributes to thrombus formation to a greater extent than to normal hemostasis, pharmacological inhibition of these coagulation factors may offer the exciting possibility of anticoagulation therapies with minimal or no bleeding risk.

  8. Expression of cancer-related carbonic anhydrases IX and XII in normal skin and skin neoplasms.

    PubMed

    Syrjänen, Leo; Luukkaala, Tiina; Leppilampi, Mari; Kallioinen, Matti; Pastorekova, Silvia; Pastorek, Jaromir; Waheed, Abdul; Sly, William S; Parkkila, Seppo; Karttunen, Tuomo

    2014-09-01

    Purpose of the study was to evaluate the presence of hypoxia-inducible, tumour-associated carbonic anhydrases IX and XII in normal skin and a series of cutaneous tumours. Human tumour samples were taken during surgical operations performed on 245 patients and were immunohistochemically stained. A histological score value was calculated for statistical analyses which were performed using SPSS for Windows, versions 17.0 and 20.0. In normal skin, the highest expression of CA IX was detected in hair follicles, sebaceous glands, and basal parts of epidermis. CA XII was detected in all epithelial components of skin. Both CA IX and CA XII expression levels were significantly different in epidermal, appendigeal, and melanocytic tumour categories. Both CA IX and XII showed the most intense immunostaining in epidermal tumours, whereas virtually all melanocytic tumours were devoid of CA IX and XII immunostaining. In premalignant lesions, CA IX expression significantly increased when the tumours progressed to more severe dysplasia forms. Both CA IX and XII are highly expressed in different epithelial components of skin. They are also highly expressed in epidermal tumours, in which CA IX expression levels also correlate with the dysplasia grade. Interestingly, both isozymes are absent in melanocytic tumours. © 2014 APMIS. Published by John Wiley & Sons Ltd.

  9. Kinesin-8 Motors Improve Nuclear Centering by Promoting Microtubule Catastrophe

    NASA Astrophysics Data System (ADS)

    Glunčić, Matko; Maghelli, Nicola; Krull, Alexander; Krstić, Vladimir; Ramunno-Johnson, Damien; Pavin, Nenad; Tolić, Iva M.

    2015-02-01

    In fission yeast, microtubules push against the cell edge, thereby positioning the nucleus in the cell center. Kinesin-8 motors regulate microtubule catastrophe; however, their role in nuclear positioning is not known. Here we develop a physical model that describes how kinesin-8 motors affect nuclear centering by promoting a microtubule catastrophe. Our model predicts the improved centering of the nucleus in the presence of motors, which we confirmed experimentally in living cells. The model also predicts a characteristic time for the recentering of a displaced nucleus, which is supported by our experiments where we displaced the nucleus using optical tweezers.

  10. Zebrafish collagen XII is present in embryonic connective tissue sheaths (fascia) and basement membranes.

    PubMed

    Bader, Hannah L; Keene, Douglas R; Charvet, Benjamin; Veit, Guido; Driever, Wolfgang; Koch, Manuel; Ruggiero, Florence

    2009-01-01

    Connective tissues ensure the cohesion of the tissues of the body, but also form specialized structures such as tendon and bone. Collagen XII may enhance the stability of connective tissues by bridging collagen fibrils, but its function is still unclear. Here, we used the zebrafish model to visualize its expression pattern in the whole organism. The zebrafish col12a1 gene is homologous to the small isoform of the tetrapod col12a1 gene. In agreement with the biochemical data reported for the small isoform, the zebrafish collagen XII alpha1 chain was characterized as a collagenase sensitive band migrating at approximately 200 kDa. Using newly generated polyclonal antibodies and anti-sense probes, we performed a comprehensive analysis of its expression in developing zebrafish. Collagen XII exhibited a much broader expression pattern than previously thought: it was ubiquitously expressed in the connective tissue sheaths (fascia) that encase the tissues and organs of the body. For example, it was found in sclera, meninges, epimysia and horizontal and vertical myosepta. Collagen XII was also detected in head mesenchyme, pharyngeal arches and within the spinal cord, where it was first expressed within and then at the lateral borders of the floor plate and at the dorsal midline. Furthermore, double immunofluorescence staining with laminin and immunogold electron microscopy revealed that collagen XII is associated with basement membranes. These data suggest that collagen XII is implicated in tissue cohesion by stabilizing fascia and by linking fascia to basement membranes.

  11. Motor and Nonmotor Circuitry Activation Induced by Subthalamic Nucleus Deep Brain Stimulation in Patients With Parkinson Disease: Intraoperative Functional Magnetic Resonance Imaging for Deep Brain Stimulation.

    PubMed

    Knight, Emily J; Testini, Paola; Min, Hoon-Ki; Gibson, William S; Gorny, Krzysztof R; Favazza, Christopher P; Felmlee, Joel P; Kim, Inyong; Welker, Kirk M; Clayton, Daniel A; Klassen, Bryan T; Chang, Su-youne; Lee, Kendall H

    2015-06-01

    To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with Parkinson disease would affect the activity of motor and nonmotor networks, we applied intraoperative functional magnetic resonance imaging (fMRI) to patients receiving DBS. Ten patients receiving STN DBS for Parkinson disease underwent intraoperative 1.5-T fMRI during high-frequency stimulation delivered via an external pulse generator. The study was conducted between January 1, 2013, and September 30, 2014. We observed blood oxygen level-dependent (BOLD) signal changes (false discovery rate <0.001) in the motor circuitry (including the primary motor, premotor, and supplementary motor cortices; thalamus; pedunculopontine nucleus; and cerebellum) and in the limbic circuitry (including the cingulate and insular cortices). Activation of the motor network was observed also after applying a Bonferroni correction (P<.001) to the data set, suggesting that across patients, BOLD changes in the motor circuitry are more consistent compared with those occurring in the nonmotor network. These findings support the modulatory role of STN DBS on the activity of motor and nonmotor networks and suggest complex mechanisms as the basis of the efficacy of this treatment modality. Furthermore, these results suggest that across patients, BOLD changes in the motor circuitry are more consistent than those in the nonmotor network. With further studies combining the use of real-time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. clinicaltrials.gov Identifier: NCT01809613. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  12. Cannabinoids suppress synaptic input to neurones of the rat dorsal motor nucleus of the vagus nerve

    PubMed Central

    Derbenev, Andrei V; Stuart, Thomas C; Smith, Bret N

    2004-01-01

    Cannabinoids bind central type 1 receptors (CB1R) and modify autonomic functions, including feeding and anti-emetic behaviours, when administered peripherally or into the dorsal vagal complex. Western blots and immunohistochemistry indicated the expression of CB1R in the rat dorsal vagal complex, and tissue polymerase chain reaction confirmed that CB1R message was made within the region. To identify a cellular substrate for the central autonomic effects of cannabinoids, whole-cell patch-clamp recordings were made in brainstem slices to determine the effects of CB1R activation on synaptic transmission to neurones of the dorsal motor nucleus of the vagus (DMV). A subset of these neurones was identified as gastric related after being labelled retrogradely from the stomach. The CB1R agonists WIN55,212-2 and anandamide decreased the frequency of spontaneous excitatory or inhibitory postsynaptic currents in a concentration-related fashion, an effect that persisted in the presence of tetrodotoxin. Paired pulse ratios of electrically evoked postsynaptic currents were also increased by WIN55,212-2. The effects of WIN55,212-2 were sensitive to the selective CB1R antagonist AM251. Cannabinoid agonist effects on synaptic input originating from neurones in the nucleus tractus solitarius (NTS) were determined by evoking activity in the NTS with local glutamate application. Excitatory and inhibitory synaptic inputs arising from the NTS were attenuated by WIN55,212-2. Our results indicate that cannabinoids inhibit transfer of synaptic information to the DMV, including that arising from the NTS, in part by acting at receptors located on presynaptic terminals contacting DMV neurones. Inhibition of synaptic input to DMV neurones is likely to contribute to the suppression of visceral motor responses by cannabinoids. PMID:15272041

  13. Interactive Effects of Dorsomedial Hypothalamic Nucleus and Time-Restricted Feeding on Fractal Motor Activity Regulation.

    PubMed

    Lo, Men-Tzung; Chiang, Wei-Yin; Hsieh, Wan-Hsin; Escobar, Carolina; Buijs, Ruud M; Hu, Kun

    2016-01-01

    One evolutionary adaptation in motor activity control of animals is the anticipation of food that drives foraging under natural conditions and is mimicked in laboratory with daily scheduled food availability. Food anticipation is characterized by increased activity a few hours before the feeding period. Here we report that 2-h food availability during the normal inactive phase of rats not only increases activity levels before the feeding period but also alters the temporal organization of motor activity fluctuations over a wide range of time scales from minutes up to 24 h. We demonstrate this multiscale alteration by assessing fractal patterns in motor activity fluctuations-similar fluctuation structure at different time scales-that are robust in intact animals with ad libitum food access but are disrupted under food restriction. In addition, we show that fractal activity patterns in rats with ad libitum food access are also perturbed by lesion of the dorsomedial hypothalamic (DMH)-a neural node that is involved in food anticipatory behavior. Instead of further disrupting fractal regulation, food restriction restores the disrupted fractal patterns in these animals after the DMH lesion despite the persistence of the 24-h rhythms. This compensatory effect of food restriction is more clearly pronounced in the same animals after the additional lesion of the suprachiasmatic nucleus (SCN)-the central master clock in the circadian system that generates and orchestrates circadian rhythms in behavior and physiological functions in synchrony with day-night cycles. Moreover, all observed influences of food restriction persist even when data during the food anticipatory and feeding period are excluded. These results indicate that food restriction impacts dynamics of motor activity at different time scales across the entire circadian/daily cycle, which is likely caused by the competition between the food-induced time cue and the light-entrained circadian rhythm of the SCN. The

  14. Temperature manipulation of neuronal dynamics in a forebrain motor control nucleus

    PubMed Central

    Mindlin, Gabriel B.

    2017-01-01

    Different neuronal types within brain motor areas contribute to the generation of complex motor behaviors. A widely studied songbird forebrain nucleus (HVC) has been recognized as fundamental in shaping the precise timing characteristics of birdsong. This is based, among other evidence, on the stretching and the “breaking” of song structure when HVC is cooled. However, little is known about the temperature effects that take place in its neurons. To address this, we investigated the dynamics of HVC both experimentally and computationally. We developed a technique where simultaneous electrophysiological recordings were performed during temperature manipulation of HVC. We recorded spontaneous activity and found three effects: widening of the spike shape, decrease of the firing rate and change in the interspike interval distribution. All these effects could be explained with a detailed conductance based model of all the neurons present in HVC. Temperature dependence of the ionic channel time constants explained the first effect, while the second was based in the changes of the maximal conductance using single synaptic excitatory inputs. The last phenomenon, only emerged after introducing a more realistic synaptic input to the inhibitory interneurons. Two timescales were present in the interspike distributions. The behavior of one timescale was reproduced with different input balances received form the excitatory neurons, whereas the other, which disappears with cooling, could not be found assuming poissonian synaptic inputs. Furthermore, the computational model shows that the bursting of the excitatory neurons arises naturally at normal brain temperature and that they have an intrinsic delay at low temperatures. The same effect occurs at single synapses, which may explain song stretching. These findings shed light on the temperature dependence of neuronal dynamics and present a comprehensive framework to study neuronal connectivity. This study, which is based on

  15. 77 FR 13317 - Lock+ Hydro Friends Fund XII, BOST2, LLC, et al.; Notice Announcing Filing Priority for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... al.] Lock+ Hydro Friends Fund XII, BOST2, LLC, et al.; Notice Announcing Filing Priority for Preliminary Permit Applications Project No. Lock+ Hydro Friends Fund XII 14260-000 BOST2, LLC 14264-000.... 2. BOST2, LLC: Project No. 14264-000. 3. Lock+ Hydro Friends Fund XII: Project No. 14260-000. 4...

  16. Computational investigation of the selectivity of salen and tetrahydrosalen compounds towards the tumor-associated hCA XII isozyme.

    PubMed

    Akdemir, Atilla; De Monte, Celeste; Carradori, Simone; Supuran, Claudiu T

    2015-02-01

    In previous work, 14 salen and tetrahydrosalen compounds have been synthesized and tested in enzyme inhibition assays against cytosolic human carbonic anhydrase isozymes I and II (hCA I and II) and tumor-associated isozymes IX and XII (hCA IX and XII). These compounds show selectivity against hCA XII over hCA I, II and IX. In this study, molecular modeling and docking studies were applied to understand this preference of the compounds for hCA XII. Most likely, the compounds can displace the zinc-bound water molecule of hCA XII to form a direct interaction with the Zn(2+) ion. In the other isozymes, the compounds might not be able to displace the water molecule nor are they expected to interact with the Zn(2+) ion.

  17. 77 FR 59669 - Comment Request for Information Collection; Unemployment Insurance (UI) Title XII Advances and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... Collection; Unemployment Insurance (UI) Title XII Advances and Voluntary Repayment Process; Extension Without... assessed. Currently, ETA is soliciting comments concerning the collection process for data on UI Title XII... request (ICR) can be obtained by contacting Mr. Gibbons. SUPPLEMENTARY INFORMATION: I. Background Title...

  18. Dense transient receptor potential cation channel, vanilloid family, type 2 (TRPV2) immunoreactivity defines a subset of motoneurons in the dorsal lateral nucleus of the spinal cord, the nucleus ambiguus and the trigeminal motor nucleus in rat.

    PubMed

    Lewinter, R D; Scherrer, G; Basbaum, A I

    2008-01-02

    The transient receptor potential cation channel, vanilloid family, type 2 (TRPV2) is a member of the TRPV family of proteins and is a homologue of the capsaicin/vanilloid receptor (transient receptor potential cation channel, vanilloid family, type 1, TRPV1). Like TRPV1, TRPV2 is expressed in a subset of dorsal root ganglia (DRG) neurons that project to superficial laminae of the spinal cord dorsal horn. Because noxious heat (>52 degrees C) activates TRPV2 in transfected cells this channel has been implicated in the processing of high intensity thermal pain messages in vivo. In contrast to TRPV1, however, which is restricted to small diameter DRG neurons, there is significant TRPV2 immunoreactivity in a variety of CNS regions. The present report focuses on a subset of neurons in the brainstem and spinal cord of the rat including the dorsal lateral nucleus (DLN) of the spinal cord, the nucleus ambiguus, and the motor trigeminal nucleus. Double label immunocytochemistry with markers of motoneurons, combined with retrograde labeling, established that these cells are, in fact, motoneurons. With the exception of their smaller diameter, these cells did not differ from other motoneurons, which are only lightly TRPV2-immunoreactive. As for the majority of DLN neurons, the densely-labeled populations co-express androgen receptor and follow normal DLN ontogeny. The functional significance of the very intense TRPV2 expression in these three distinct spinal cord and brainstem motoneurons groups remains to be determined.

  19. Complex motor-cognitive factors processed in the anterior nucleus of the thalamus: an intracerebral recording study.

    PubMed

    Bočková, Martina; Chládek, Jan; Jurák, Pavel; Halámek, Josef; Štillová, Klára; Baláž, Marek; Chrastina, Jan; Rektor, Ivan

    2015-03-01

    Cognitive adverse effects were reported after the deep brain stimulation (DBS) of the anterior nucleus of the thalamus (AN) in epilepsy. As the AN may have an influence on widespread neocortical networks, we hypothesized that the AN, in addition to its participation in memory processing, may also participate in cognitive activities linked with the frontal neocortical structures. The aim of this study was to investigate whether the AN might participate in complex motor-cognitive activities. Three pharmacoresistant epilepsy patients implanted with AN-DBS electrodes performed two tasks involving the writing of single letters: (1) copying letters from a monitor; and (2) writing of any letter other than that appearing on the monitor. The cognitive load of the second task was increased. The task-related oscillatory changes and evoked potentials were assessed. Local event-related alpha and beta desynchronization were more expressed during the second task while the lower gamma synchronization decreased. The local field event-related potentials were elicited by the two tasks without any specific differences. The AN participates in cognitive networks processing complex motor-cognitive tasks. Attention should be paid to executive functions in subjects undergoing AN-DBS.

  20. Functional Interactions between Mammalian Respiratory Rhythmogenic and Premotor Circuitry

    PubMed Central

    Song, Hanbing; Hayes, John A.; Vann, Nikolas C.; Wang, Xueying; LaMar, M. Drew

    2016-01-01

    Breathing in mammals depends on rhythms that originate from the preBötzinger complex (preBötC) of the ventral medulla and a network of brainstem and spinal premotor neurons. The rhythm-generating core of the preBötC, as well as some premotor circuits, consist of interneurons derived from Dbx1-expressing precursors (Dbx1 neurons), but the structure and function of these networks remain incompletely understood. We previously developed a cell-specific detection and laser ablation system to interrogate respiratory network structure and function in a slice model of breathing that retains the preBötC, the respiratory-related hypoglossal (XII) motor nucleus and XII premotor circuits. In spontaneously rhythmic slices, cumulative ablation of Dbx1 preBötC neurons decreased XII motor output by ∼50% after ∼15 cell deletions, and then decelerated and terminated rhythmic function altogether as the tally increased to ∼85 neurons. In contrast, cumulatively deleting Dbx1 XII premotor neurons decreased motor output monotonically but did not affect frequency nor stop XII output regardless of the ablation tally. Here, we couple an existing preBötC model with a premotor population in several topological configurations to investigate which one may replicate the laser ablation experiments best. If the XII premotor population is a “small-world” network (rich in local connections with sparse long-range connections among constituent premotor neurons) and connected with the preBötC such that the total number of incoming synapses remains fixed, then the in silico system successfully replicates the in vitro laser ablation experiments. This study proposes a feasible configuration for circuits consisting of Dbx1-derived interneurons that generate inspiratory rhythm and motor pattern. SIGNIFICANCE STATEMENT To produce a breathing-related motor pattern, a brainstem core oscillator circuit projects to a population of premotor interneurons, but the assemblage of this network remains

  1. 76 FR 75563 - Notice for Delay of Payment of Title XII Interest for Three States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... DEPARTMENT OF LABOR Employment and Training Administration Notice for Delay of Payment of Title.... SUMMARY: This notice announces the approval for delay of Title XII interest payment for three states... Title XII advances made during the last five months of the Federal fiscal year (FY) (May, June, July...

  2. Genetic identification of a hindbrain nucleus essential for innate vocalization.

    PubMed

    Hernandez-Miranda, Luis Rodrigo; Ruffault, Pierre-Louis; Bouvier, Julien C; Murray, Andrew J; Morin-Surun, Marie-Pierre; Zampieri, Niccolò; Cholewa-Waclaw, Justyna B; Ey, Elodie; Brunet, Jean-Francois; Champagnat, Jean; Fortin, Gilles; Birchmeier, Carmen

    2017-07-25

    Vocalization in young mice is an innate response to isolation or mechanical stimulation. Neuronal circuits that control vocalization and breathing overlap and rely on motor neurons that innervate laryngeal and expiratory muscles, but the brain center that coordinates these motor neurons has not been identified. Here, we show that the hindbrain nucleus tractus solitarius (NTS) is essential for vocalization in mice. By generating genetically modified newborn mice that specifically lack excitatory NTS neurons, we show that they are both mute and unable to produce the expiratory drive required for vocalization. Furthermore, the muteness of these newborns results in maternal neglect. We also show that neurons of the NTS directly connect to and entrain the activity of spinal (L1) and nucleus ambiguus motor pools located at positions where expiratory and laryngeal motor neurons reside. These motor neurons control expiratory pressure and laryngeal tension, respectively, thereby establishing the essential biomechanical parameters used for vocalization. In summary, our work demonstrates that the NTS is an obligatory component of the neuronal circuitry that transforms breaths into calls.

  3. 40 CFR Appendix Xii to Part 86 - Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks XII Appendix XII to... Appendix XII to Part 86—Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty...

  4. The network of causal interactions for beta oscillations in the pedunculopontine nucleus, primary motor cortex, and subthalamic nucleus of walking parkinsonian rats.

    PubMed

    Li, Min; Zhou, Ming; Wen, Peng; Wang, Qiang; Yang, Yong; Xiao, Hu; Xie, Zhengyuan; Li, Xing; Wang, Ning; Wang, Jinyan; Luo, Fei; Chang, Jingyu; Zhang, Wangming

    2016-08-01

    Oscillatory activity has been well-studied in many structures within cortico-basal ganglia circuits, but it is not well understood within the pedunculopontine nucleus (PPN), which was recently introduced as a potential target for the treatment of gait and postural impairments in advanced stages of Parkinson's disease (PD). To investigate oscillatory activity in the PPN and its relationship with oscillatory activity in cortico-basal ganglia circuits, we simultaneously recorded local field potentials in the PPN, primary motor cortex (M1), and subthalamic nucleus (STN) of 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats during resting and walking. After analysis of power spectral density, coherence, and partial Granger causality, three major findings emerged: 1) after 6-OHDA lesions, beta band oscillations were enhanced in all three regions during walking; 2) the direction of information flow for beta oscillations among the three structures was STN→M1, STN→PPN, and PPN→M1; 3) after the treatment of levodopa, beta activity in the three regions was reduced significantly and the flow of beta band was also abrogated. Our results suggest that beta activity in the PPN is transmitted from the basal ganglia and probably comes from the STN, and the STN plays a dominant role in the network of causal interactions for beta activity. Thus, the STN may be a potential source of aberrant beta band oscillations in PD. Levodopa can inhibit beta activity in the PPN of parkinsonian rats but cannot relieve parkinsonian patients' axial symptoms clinically. Therefore, beta oscillations may not be the major cause of axial symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effect of subthalamic nucleus deep brain stimulation on dual-task cognitive and motor performance in isolated dystonia

    PubMed Central

    Mills, Kelly A; Markun, Leslie C; Luciano, Marta San; Rizk, Rami; Allen, I Elaine; Racine, Caroline A; Starr, Philip A; Alberts, Jay L; Ostrem, Jill L

    2015-01-01

    Objective Subthalamic nucleus (STN) deep brain stimulation (DBS) can improve motor complications of Parkinson's disease (PD) but may worsen specific cognitive functions. The effect of STN DBS on cognitive function in dystonia patients is less clear. Previous reports indicate that bilateral STN stimulation in patients with PD amplifies the decrement in cognitive-motor dual-task performance seen when moving from a single-task to dual-task paradigm. We aimed to determine if the effect of bilateral STN DBS on dual-task performance in isolated patients with dystonia, who have less cognitive impairment and no dementia, is similar to that seen in PD. Methods Eight isolated predominantly cervical patients with dystonia treated with bilateral STN DBS, with average dystonia duration of 10.5 years and Montreal Cognitive Assessment score of 26.5, completed working memory (n-back) and motor (forced-maintenance) tests under single-task and dual-task conditions while on and off DBS. Results A multivariate, repeated-measures analysis of variance showed no effect of stimulation status (On vs Off) on working memory (F=0.75, p=0.39) or motor function (F=0.22, p=0.69) when performed under single-task conditions, though as working memory task difficulty increased, stimulation disrupted the accuracy of force-tracking. There was a very small worsening in working memory performance (F=9.14, p=0.019) when moving from single-task to dual-tasks when using the ‘dual-task loss’ analysis. Conclusions This study suggests the effect of STN DBS on working memory and attention may be much less consequential in patients with dystonia than has been reported in PD. PMID:25012202

  6. Direct and indirect nigrofugal projections to the nucleus reticularis pontis caudalis mediate in the motor execution of the acoustic startle reflex.

    PubMed

    Hormigo, Sebastian; López, Dolores E; Cardoso, Antonio; Zapata, Gladys; Sepúlveda, Jacqueline; Castellano, Orlando

    2018-07-01

    The acoustic startle reflex (ASR) is a short and intense defensive reaction in response to a loud and unexpected acoustic stimulus. In the rat, a primary startle pathway encompasses three serially connected central structures: the cochlear root neurons, the giant neurons of the nucleus reticularis pontis caudalis (PnC), and the spinal motoneurons. As a sensorimotor interface, the PnC has a central role in the ASR circuitry, especially the integration of different sensory stimuli and brain states into initiation of motor responses. Since the basal ganglia circuits control movement and action selection, we hypothesize that their output via the substantia nigra (SN) may interplay with the ASR primary circuit by providing inputs to PnC. Moreover, the pedunculopontine tegmental nucleus (PPTg) has been proposed as a functional and neural extension of the SN, so it is another goal of this study to describe possible anatomical connections from the PPTg to PnC. Here, we made 6-OHDA neurotoxic lesions of the SN pars compacta (SNc) and submitted the rats to a custom-built ASR measurement session to assess amplitude and latency of motor responses. We found that following lesion of the SNc, ASR amplitude decreased and latency increased compared to those values from the sham-surgery and control groups. The number of dopamine neurons remaining in the SNc after lesion was also estimated using a stereological approach, and it correlated with our behavioral results. Moreover, we employed neural tract-tracing techniques to highlight direct projections from the SN to PnC, and indirect projections through the PPTg. Finally, we also measured levels of excitatory amino acid neurotransmitters in the PnC following lesion of the SN, and found that they change following an ipsi/contralateral pattern. Taken together, our results identify nigrofugal efferents onto the primary ASR circuit that may modulate motor responses.

  7. Posterolateral Trajectories Favor a Longer Motor Domain in Subthalamic Nucleus Deep Brain Stimulation for Parkinson Disease.

    PubMed

    Tamir, Idit; Marmor-Levin, Odeya; Eitan, Renana; Bergman, Hagai; Israel, Zvi

    2017-10-01

    The clinical outcome of patients with Parkinson disease (PD) who undergo subthalamic nucleus (STN) deep brain stimulation (DBS) is, in part, determined by the length of the electrode trajectory through the motor STN domain, the dorsolateral oscillatory region (DLOR). Trajectory length has been found to correlate with the stimulation-related improvement in patients' motor function (estimated by part III of the United Parkinson's Disease Rating Scale [UPDRS]). Therefore, it seems that ideally trajectories should have maximal DLOR length. We retrospectively studied the influence of various anatomic aspects of the brains of patients with PD and the geometry of trajectories planned on the length of the DLOR and STN recorded during DBS surgery. We examined 212 trajectories and 424 microelectrode recording tracks in 115 patients operated on in our center between 2010 and 2015. We found a strong correlation between the length of the recorded DLOR and STN. Trajectories that were more lateral and/or posterior in orientation had a longer STN and DLOR pass, although the DLOR/STN fraction length remained constant. The STN target was more lateral when the third ventricle was wider, and the latter correlated with older age and male gender. Trajectory angles correlate with the recorded STN and DLOR lengths, and should be altered toward a more posterolateral angle in older patients and atrophied brains to compensate for the changes in STN location and geometry. These fine adjustments should yield a longer motor domain pass, thereby improving the patient's predicted outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Structure and function of transmembrane segment XII in osmosensor and osmoprotectant transporter ProP of Escherichia coli.

    PubMed

    Liu, Feng; Culham, Doreen E; Vernikovska, Yaroslava I; Keates, Robert A B; Boggs, Joan M; Wood, Janet M

    2007-05-15

    Escherichia coli transporter ProP acts as both an osmosensor and an osmoregulator. As medium osmolality rises, ProP is activated and mediates H+-coupled uptake of osmolytes like proline. A homology model of ProP with 12-transmembrane (TM) helices and cytoplasmic termini was created, and the protein's topology was substantiated experimentally. Residues 468-497, at the end of the C-terminal domain and linked to TM XII, form an intermolecular, homodimeric alpha-helical coiled-coil that tunes the transporter's response to osmolality. We aim to further define the structure and function of ProP residues Q415-E440, predicted to include TM XII. Each residue was replaced with cysteine (Cys) in a histidine-tagged, Cys-less ProP variant (ProP*). Cys at positions 415-418 and 438-440 were most reactive with Oregon Green Maleimide (OGM), suggesting that residues 419 through 437 are in the membrane. Except for V429-I433, reactivity of those Cys varied with helical periodicity. Cys predicted to face the interior of ProP were more reactive than Cys predicted to face the lipid. The former may be exposed to hydrated polar residues in the protein interior, particularly on the periplasmic side. Intermolecular cross-links formed when ProP* variants with Cys at positions 419, 420, 422, and 439 were treated with DTME. Thus TM XII can participate, along its entire length, in the dimer interface of ProP. Cys substitution E440C rendered ProP* inactive. All other variants retained more than 30% of the proline uptake activity of ProP* at high osmolality. Most variants with Cys substitutions in the periplasmic half of TM XII activated at lower osmolalities than ProP*. Variants with Cys substitutions on one face of the cytoplasmic half of TM XII required a higher osmolality to activate. They included elements of a GXXXG motif that are predicted to form the interface of TM XII with TM VII. These studies define the position of ProP TM XII within the membrane, further support the predicted

  9. Characterization of the interactions of type XII collagen with two small proteoglycans from fetal bovine tendon, decorin and fibromodulin.

    PubMed

    Font, B; Eichenberger, D; Rosenberg, L M; van der Rest, M

    1996-11-01

    In addition to the major collagens, such as type I or type II, connective tissues contain a number of less abundant collagens and proteoglycans, whose association contributes to the different properties of the tissues. Type XII and type XIV collagens have been described in soft connective tissues, and type XIV collagen has been shown to interact specifically with decorin through its glycosaminoglycan chain (Font et al., J. Biol. Chem. 268, 25015-25018, 1993). Interactions between these collagens and the small proteoglycans have been characterized further by studying the binding of type XII collagen to decorin by solid phase assays. Our results show a saturable binding of the proteoglycan through its glycosaminoglycan chain to type XII collagen, which does not seem to involve the large non-collagenous NC3 domain of the molecule. This interaction is strongly inhibited by heparin. Furthermore, we report that another small proteoglycan, fibromodulin, isolated from tendon under non-denaturing conditions, is able to bind to type XII collagen. This interaction has been characterized and, unlike that observed with decorin, type XII collagen-fibromodulin interaction seems to take place with the core protein of the proteoglycan. In addition, we report that type XII-type I collagen interactions are not necessarily mediated by decorin as previously suggested.

  10. Effect of subthalamic nucleus deep brain stimulation on dual-task cognitive and motor performance in isolated dystonia.

    PubMed

    Mills, Kelly A; Markun, Leslie C; San Luciano, Marta; Rizk, Rami; Allen, I Elaine; Racine, Caroline A; Starr, Philip A; Alberts, Jay L; Ostrem, Jill L

    2015-04-01

    Subthalamic nucleus (STN) deep brain stimulation (DBS) can improve motor complications of Parkinson's disease (PD) but may worsen specific cognitive functions. The effect of STN DBS on cognitive function in dystonia patients is less clear. Previous reports indicate that bilateral STN stimulation in patients with PD amplifies the decrement in cognitive-motor dual-task performance seen when moving from a single-task to dual-task paradigm. We aimed to determine if the effect of bilateral STN DBS on dual-task performance in isolated patients with dystonia, who have less cognitive impairment and no dementia, is similar to that seen in PD. Eight isolated predominantly cervical patients with dystonia treated with bilateral STN DBS, with average dystonia duration of 10.5 years and Montreal Cognitive Assessment score of 26.5, completed working memory (n-back) and motor (forced-maintenance) tests under single-task and dual-task conditions while on and off DBS. A multivariate, repeated-measures analysis of variance showed no effect of stimulation status (On vs Off) on working memory (F=0.75, p=0.39) or motor function (F=0.22, p=0.69) when performed under single-task conditions, though as working memory task difficulty increased, stimulation disrupted the accuracy of force-tracking. There was a very small worsening in working memory performance (F=9.14, p=0.019) when moving from single-task to dual-tasks when using the 'dual-task loss' analysis. This study suggests the effect of STN DBS on working memory and attention may be much less consequential in patients with dystonia than has been reported in PD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Anatomic and physiological characteristics of the ferret lateral rectus muscle and abducens nucleus.

    PubMed

    Bishop, Keith N; McClung, J Ross; Goldberg, Stephen J; Shall, Mary S

    2007-11-01

    The ferret has become a popular model for physiological and neurodevelopmental research in the visual system. We believed it important, therefore, to study extraocular whole muscle as well as single motor unit physiology in the ferret. Using extracellular stimulation, 62 individual motor units in the ferret abducens nucleus were evaluated for their contractile characteristics. Of these motor units, 56 innervated the lateral rectus (LR) muscle alone, while 6 were split between the LR and retractor bulbi (RB) muscle slips. In addition to individual motor units, the whole LR muscle was evaluated for twitch, tetanic peak force, and fatigue. The abducens nucleus motor units showed a twitch contraction time of 15.4 ms, a mean twitch tension of 30.2 mg, and an average fusion frequency of 154 Hz. Single-unit fatigue index averaged 0.634. Whole muscle twitch contraction time was 16.7 ms with a mean twitch tension of 3.32 g. The average fatigue index of whole muscle was 0.408. The abducens nucleus was examined with horseradish peroxidase conjugated with the subunit B of cholera toxin histochemistry and found to contain an average of 183 motoneurons. Samples of LR were found to contain an average of 4,687 fibers, indicating an LR innervation ratio of 25.6:1. Compared with cat and squirrel monkeys, the ferret LR motor units contract more slowly yet more powerfully. The functional visual requirements of the ferret may explain these fundamental differences.

  12. Effect of substance P injection into the nucleus tractus solitarius of rats on cricothyroid and thyroarytenoid motor activity and cardiovascular and respiratory systems.

    PubMed

    Bauman, Nancy M; Wang, DeQiang; Luschei, Erich S; Talman, William T

    2002-10-01

    Identification of central neurotransmitters that mediate laryngeal adductor and/or tensor activity may prove useful in managing pathological laryngeal adduction as occurs in laryngospasm or apparent life-threatening events. The putative transmitter substance P (SP) is found in the nucleus tractus solitarius (NTS), in which laryngeal afferents terminate. Therefore, we studied the laryngeal, cardiovascular, and respiratory effects of SP injected into the NTS of rats. We completed bilateral stereotactic injections of 20 nL of SP (15 micromol) or control solution into the region of the NTS, the dorsal motor nucleus (DMN), or the nucleus gracilis (GR) in 30 anesthetized rats. Changes in diaphragm, cricothyroid (CT), and thyroarytenoid (TA) electromyography (EMG), as well as blood pressure (BP), were compared. The injection sites were verified histologically. Injection of SP into the NTS altered CT and/or TA EMG activity in all animals. The change ranged from complete inhibition, to a phasic increase, to a tonic increase. No change in laryngeal adductor EMG activity was seen in 8 of 9 animals after SP injections into the DMN (4/5) or GR (4/4), but 1 animal demonstrated brief inhibition of CT and TA EMG activity after SP injection into the DMN. Injection of SP into the NTS induced central apnea and a significant decrease in BP in all animals. The duration of apnea tended to be longer after NTS injections than after DMN or GR injections (p < .10 and p < .05, respectively). We conclude that stereotactic injections of putative neurotransmitters in rats may be accomplished to identify effects on laryngeal motor activity. Direct application of SP into the NTS consistently elicits a change in CT and/or TA EMG activity, ranging from inhibition to excitation. This model may prove useful in evaluating pharmacological targets of central reflex activity to manage life-threatening laryngeal reflex activity.

  13. Altered cortico-basal ganglia motor pathways reflect reduced volitional motor activity in schizophrenia.

    PubMed

    Bracht, Tobias; Schnell, Susanne; Federspiel, Andrea; Razavi, Nadja; Horn, Helge; Strik, Werner; Wiest, Roland; Dierks, Thomas; Müller, Thomas J; Walther, Sebastian

    2013-02-01

    Little is known about the neurobiology of hypokinesia in schizophrenia. Therefore, the aim of this study was to investigate alterations of white matter motor pathways in schizophrenia and to relate our findings to objectively measured motor activity. We examined 21 schizophrenia patients and 21 healthy controls using diffusion tensor imaging and actigraphy. We applied a probabilistic fibre tracking approach to investigate pathways connecting the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the supplementary motor area proper (SMA-proper), the primary motor cortex (M1), the caudate nucleus, the striatum, the pallidum and the thalamus. Schizophrenia patients had lower activity levels than controls. In schizophrenia we found higher probability indices forming part of a bundle of interest (PIBI) in pathways connecting rACC, pre-SMA and SMA-proper as well as in pathways connecting M1 and pre-SMA with caudate nucleus, putamen, pallidum and thalamus and a reduced spatial extension of motor pathways in schizophrenia. There was a positive correlation between PIBI and activity level in the right pre-SMA-pallidum and the left M1-thalamus connection in healthy controls, and in the left pre-SMA-SMA-proper pathway in schizophrenia. Our results point to reduced volitional motor activity and altered motor pathway organisation in schizophrenia. The identified associations between the amount of movement and structural connectivity of motor pathways suggest dysfunction of cortico-basal ganglia pathways in the pathophysiology of hypokinesia in schizophrenia. Schizophrenia patients may use cortical pathways involving the supplementary motor area to compensate for basal ganglia dysfunction. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Subthalamic Nucleus Local Field Potential Activity Helps Encode Motor Effort Rather Than Force in Parkinsonism

    PubMed Central

    Pogosyan, Alek; Ashkan, Keyoumars; Cheeran, Binith; FitzGerald, James J.; Green, Alexander L.; Aziz, Tipu; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter

    2015-01-01

    Local field potential (LFP) recordings from patients with deep brain stimulation electrodes in the basal ganglia have suggested that frequency-specific activities correlate with force or effort, but previous studies have not been able to disambiguate the two. Here, we dissociated effort from actual force generated by contrasting the force generation of different fingers while recording LFP activity from the subthalamic nucleus (STN) in patients with Parkinson's disease who had undergone functional surgery. Patients were studied while on their normal dopaminergic medication. We investigated the relationship between frequency-specific oscillatory activity in the STN and voluntary flexion of either the index or little finger at different effort levels. At each tested effort level (10%, 25%, and 40% of the maximal voluntary contraction force of each individual finger), the index finger generated larger force than the little finger. Movement-related suppression of beta-band power in the STN LFP was significantly modulated by effort, but not by which finger was used, suggesting that the beta suppression in the STN LFP during sustained contraction serves as a proxy for effort. The absolute force scaled with beta power suppression, but with the scaling determined by the maximal voluntary contraction force of the motor effector. Our results argue against the hypothesis that the basal ganglia are directly involved in the parameterization of force during movement and support a role of the STN in the control of motor effort to be attributed to a response. PMID:25878267

  15. Cortical Plasticity Induction by Pairing Subthalamic Nucleus Deep-Brain Stimulation and Primary Motor Cortical Transcranial Magnetic Stimulation in Parkinson's Disease.

    PubMed

    Udupa, Kaviraja; Bahl, Nina; Ni, Zhen; Gunraj, Carolyn; Mazzella, Filomena; Moro, Elena; Hodaie, Mojgan; Lozano, Andres M; Lang, Anthony E; Chen, Robert

    2016-01-13

    Noninvasive brain stimulation studies have shown abnormal motor cortical plasticity in Parkinson's disease (PD). These studies used peripheral nerve stimulation paired with transcranial magnetic stimulation (TMS) to primary motor cortex (M1) at specific intervals to induce plasticity. Induction of cortical plasticity through stimulation of the basal ganglia (BG)-M1 connections has not been studied. In the present study, we used a novel technique of plasticity induction by repeated pairing of deep-brain stimulation (DBS) of the BG with M1 stimulation using TMS. We hypothesize that repeated pairing of subthalamic nucleus (STN)-DBS and M1-TMS at specific time intervals will lead to plasticity in the M1. Ten PD human patients with STN-DBS were studied in the on-medication state with DBS set to 3 Hz. The interstimulus intervals (ISIs) between STN-DBS and TMS that produced cortical facilitation were determined individually for each patient. Three plasticity induction conditions with repeated pairings (180 times) at specific ISIs (∼ 3 and ∼ 23 ms) that produced cortical facilitation and a control ISI of 167 ms were tested in random order. Repeated pairing of STN-DBS and M1-TMS at short (∼ 3 ms) and medium (∼ 23 ms) latencies increased M1 excitability that lasted for at least 45 min, whereas the control condition (fixed ISI of 167 ms) had no effect. There were no specific changes in motor thresholds, intracortical circuits, or recruitment curves. Our results indicate that paired-associative cortical plasticity can be induced by repeated STN and M1 stimulation at specific intervals. These results show that STN-DBS can modulate cortical plasticity. We introduced a new experimental paradigm to test the hypothesis that pairing subthalamic nucleus deep-brain stimulation (STN-DBS) with motor cortical transcranial magnetic stimulation (M1-TMS) at specific times can induce cortical plasticity in patients with Parkinson's disease (PD). We found that repeated pairing of STN

  16. Organization of projections from the anterior pole of the nucleus reticularis thalami (NRT) to subdivisions of the motor thalamus: light and electron microscopic studies in the rhesus monkey.

    PubMed

    Ilinsky, I A; Ambardekar, A V; Kultas-Ilinsky, K

    1999-07-05

    Projections to the motor-related thalamic nuclei from the anterior pole of the reticular thalamic nucleus (NRT) were studied after injections of biotinylated dextran amine and wheat germ agglutinin conjugated horseradish peroxidase at light and electron microscopic levels, respectively. Each injection resulted in anterograde labeling in the three subdivisions of the ventral anterior nucleus (pars parvicellularis, VApc; pars densicellularis, VAdc; and pars magnocellularis, VAmc) and in the ventral lateral nucleus (VL). NRT fibers had beaded shapes and coursed in a posterior direction giving rise to relatively diffuse terminal plexuses. The average size of the beads (0.7 microm2) and their density per 100 microm of fiber length (23.7-25.7) were similar between the nuclei studied. At the electron microscopic level, anterogradely labeled boutons displayed positive immunoreactivity for gamma-aminobutyric acid (GABA), contained pleomorphic synaptic vesicles, and formed relatively long (approximately 0.4 microm) symmetric synaptic contacts. Usually, a single terminal formed synapses on more than one postsynaptic structure. Synaptic contacts were on projection and local circuit neurons and targeted mainly their distal dendrites. In the VAmc, synapses on local circuit neurons composed 48% of the total sample, in the VAdc/VApc and in the VL the proportion was higher, 65% and 62%, respectively. The results suggest that the input from the anterior pole of the monkey reticular nucleus to the motor-related thalamic nuclei is organized differently from what is known on the organization of connections of NRT with sensory thalamic nuclei in other species in that the terminal fields of individual fibers are diffuse rather than focal and that at least 50% of synapses are established on GABAergic local circuit neurons.

  17. Pedunculopontine nucleus electric stimulation alleviates akinesia independently of dopaminergic mechanisms.

    PubMed

    Jenkinson, Ned; Nandi, Dipankar; Oram, Rebecca; Stein, John F; Aziz, Tipu Z

    2006-04-24

    The symptom of Parkinson's disease that is most disabling and difficult to treat is akinesia. We have previously shown that low-frequency stimulation of the pedunculopontine nucleus can alleviate such akinesia in a macaque rendered Parkinsonian using 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine. Here, we have extended that study to show that adding stimulation of the pedunculopontine nucleus to levodopa treatment in this Parkinsonian monkey increased its motor activity significantly more than levodopa alone. This additivity suggests that pedunculopontine nucleus stimulation may improve movement by acting at a site downstream from where levodopa therapy affects the basal ganglia.

  18. Actomyosin Pulls to Advance the Nucleus in a Migrating Tissue Cell

    PubMed Central

    Wu, Jun; Kent, Ian A.; Shekhar, Nandini; Chancellor, T.J.; Mendonca, Agnes; Dickinson, Richard B.; Lele, Tanmay P.

    2014-01-01

    The cytoskeletal forces involved in translocating the nucleus in a migrating tissue cell remain unresolved. Previous studies have variously implicated actomyosin-generated pushing or pulling forces on the nucleus, as well as pulling by nucleus-bound microtubule motors. We found that the nucleus in an isolated migrating cell can move forward without any trailing-edge detachment. When a new lamellipodium was triggered with photoactivation of Rac1, the nucleus moved toward the new lamellipodium. This forward motion required both nuclear-cytoskeletal linkages and myosin activity. Apical or basal actomyosin bundles were found not to translate with the nucleus. Although microtubules dampen fluctuations in nuclear position, they are not required for forward translocation of the nucleus during cell migration. Trailing-edge detachment and pulling with a microneedle produced motion and deformation of the nucleus suggestive of a mechanical coupling between the nucleus and the trailing edge. Significantly, decoupling the nucleus from the cytoskeleton with KASH overexpression greatly decreased the frequency of trailing-edge detachment. Collectively, these results explain how the nucleus is moved in a crawling fibroblast and raise the possibility that forces could be transmitted from the front to the back of the cell through the nucleus. PMID:24411232

  19. 75 FR 37456 - Green Retrofit Program of Title XII of the American Recovery and Reinvestment Act of 2009

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5376-N-55] Green Retrofit Program of Title XII of the American Recovery and Reinvestment Act of 2009 AGENCY: Office of the Chief Information... Title of Proposal: Green Retrofit Program of Title XII of the American Recovery and Reinvestment Act of...

  20. The central nucleus of the amygdala modulates gut-related neurons in the dorsal vagal complex in rats

    PubMed Central

    Zhang, Xueguo; Cui, Jinjuan; Tan, Zhenjun; Jiang, Chunhui; Fogel, Ronald

    2003-01-01

    Using retrograde tract-tracing and electrophysiological methods, we characterized the anatomical and functional relationship between the central nucleus of the amygdala and the dorsal vagal complex. Retrograde tract-tracing techniques revealed that the central nucleus of the amygdala projects to the dorsal vagal complex with a topographic distribution. Following injection of retrograde tracer into the vagal complex, retrogradely labelled neurons in the central nucleus of the amygdala were clustered in the central portion at the rostral level and in the medial part at the middle level of the nucleus. Few labelled neurons were seen at the caudal level. Electrical stimulation of the central nucleus of the amygdala altered the basal firing rates of 65 % of gut-related neurons in the nucleus of the solitary tract and in the dorsal motor nucleus of the vagus. Eighty-one percent of the neurons in the nucleus of the solitary tract and 47 % of the neurons in the dorsal motor nucleus were inhibited. Electrical stimulation of the central nucleus of the amygdala also modulated the response of neurons in the dorsal vagal complex to gastrointestinal stimuli. The predominant effect on the neurons of the nucleus of the solitary tract was inhibition. These results suggest that the central nucleus of the amygdala influences gut-related neurons in the dorsal vagal complex and provides a neuronal circuitry that explains the regulation of gastrointestinal activity by the amygdala. PMID:14555729

  1. Red nucleus and rubrospinal tract disorganization in the absence of Pou4f1

    PubMed Central

    Martinez-Lopez, Jesus E.; Moreno-Bravo, Juan A.; Madrigal, M. Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    The red nucleus (RN) is a neuronal population that plays an important role in forelimb motor control and locomotion. Histologically it is subdivided into two subpopulations, the parvocellular RN (pRN) located in the diencephalon and the magnocellular RN (mRN) in the mesencephalon. The RN integrates signals from motor cortex and cerebellum and projects to spinal cord interneurons and motor neurons through the rubrospinal tract (RST). Pou4f1 is a transcription factor highly expressed in this nucleus that has been related to its specification. Here we profoundly analyzed consequences of Pou4f1 loss-of-function in development, maturation and axonal projection of the RN. Surprisingly, RN neurons are specified and maintained in the mutant, no cell death was detected. Nevertheless, the nucleus appeared disorganized with a strong delay in radial migration and with a wider neuronal distribution; the neurons did not form a compacted population as they do in controls, Robo1 and Slit2 were miss-expressed. Cplx1 and Npas1, expressed in the RN, are transcription factors involved in neurotransmitter release, neuronal maturation and motor function processes among others. In our mutant mice, both transcription factors are lost, suggesting an abnormal maturation of the RN. The resulting altered nucleus occupied a wider territory. Finally, we examined RST development and found that the RN neurons were able to project to the spinal cord but their axons appeared defasciculated. These data suggest that Pou4f1 is necessary for the maturation of RN neurons but not for their specification and maintenance. PMID:25698939

  2. Postnatal development of Na+-K+-2Cl− co-transporter 1 (NKCC1) and K+-Cl−co-transporter 2 (KCC2) immunoreactivity in multiple brain stem respiratory nuclei of the rat

    PubMed Central

    Liu, Qiuli; Wong-Riley, Margaret T.T.

    2012-01-01

    Previously, we reported that in rats, GABAA and glycine receptor immunoreactivity increased markedly in multiple brain stem respiratory nuclei around postnatal days (P) 12–13, a critical period when abrupt neurochemical, metabolic, ventilatory, and electrophysiological changes occur in the respiratory network and when the system is under greater inhibition than excitation. Since Na+-K+-2Cl− co-transporter 1 (NKCC1) and K+-Cl− co-transporter 2 (KCC2) play pivotal roles in determining the responses of GABAA and glycine receptors, we hypothesized that NKCC1 and KCC2 undergo significant changes during the critical period. An in-depth immunohistochemical and single neuron optical densitometric study of neurons in seven respiratory-related nuclei (the pre-Bötzinger complex [PBC], nucleus ambiguus [Amb], hypoglossal nucleus [XII], ventrolateral subnucleus of solitary tract nucleus [NTSVL], retrotrapezoid nucleus/parafacial respiratory group [RTN/pFRG], dorsal motor nucleus of the vagus nerve [DMNX], and inferior olivary nucleus [IO]) and a non-respiratory cuneate nucleus (CN, an internal control) was undertaken in P0–21 rats. Our data revealed that: (1) NKCC1 immunoreactivity exhibited a developmental decrease from P0 to P21 in all eight nuclei examined, being relatively high during the first 1½ postnatal weeks and decreased thereafter. The decrease was abrupt and statistically significant at P12 in the PBC, Amb, and XII; (2) KCC2 immunoreactivity in these eight nuclei showed a developmental increase from P0 to P21; and (3) the significant reduction in NKCC1 and the greater dominance of KCC2 around P12 in multiple respiratory nuclei of the brain stem may form the basis of an enhanced inhibition in the respiratory network during the critical period before the system stabilizes to a more mature state. PMID:22441038

  3. Nociceptive Afferents to the Premotor Neurons That Send Axons Simultaneously to the Facial and Hypoglossal Motoneurons by Means of Axon Collaterals

    PubMed Central

    Dong, Yulin; Li, Jinlian; Zhang, Fuxing; Li, Yunqing

    2011-01-01

    It is well known that the brainstem premotor neurons of the facial nucleus and hypoglossal nucleus coordinate orofacial nociceptive reflex (ONR) responses. However, whether the brainstem PNs receive the nociceptive projection directly from the caudal spinal trigeminal nucleus is still kept unclear. Our present study focuses on the distribution of premotor neurons in the ONR pathways of rats and the collateral projection of the premotor neurons which are involved in the brainstem local pathways of the orofacial nociceptive reflexes of rat. Retrograde tracer Fluoro-gold (FG) or FG/tetramethylrhodamine-dextran amine (TMR-DA) were injected into the VII or/and XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the caudal spinal trigeminal nucleus (Vc). The tracing studies indicated that FG-labeled neurons receiving BDA-labeled fibers from the Vc were mainly distributed bilaterally in the parvicellular reticular formation (PCRt), dorsal and ventral medullary reticular formation (MdD, MdV), supratrigeminal nucleus (Vsup) and parabrachial nucleus (PBN) with an ipsilateral dominance. Some FG/TMR-DA double-labeled premotor neurons, which were observed bilaterally in the PCRt, MdD, dorsal part of the MdV, peri-motor nucleus regions, contacted with BDA-labeled axonal terminals and expressed c-fos protein-like immunoreactivity which induced by subcutaneous injection of formalin into the lip. After retrograde tracer wheat germ agglutinated horseradish peroxidase (WGA-HRP) was injected into VII or XII and BDA into Vc, electron microscopic study revealed that some BDA-labeled axonal terminals made mainly asymmetric synapses on the dendritic and somatic profiles of WGA-HRP-labeled premotor neurons. These data indicate that some premotor neurons could integrate the orofacial nociceptive input from the Vc and transfer these signals simultaneously to different brainstem motonuclei by axonal collaterals. PMID:21980505

  4. [XII National Forum on Health Education].

    PubMed

    Ramiro-H, Manuel

    2015-01-01

    In Guadalajara, on August 19, 20 and 21 was held the XII Foro Nacional de Educación en Salud, in line with the interest that both, the Dirección General and the Dirección de Prestaciones Médicas of the IMSS, have in training and updating the human resources for the care of the beneficiaries. The Unidad de Educación, Investigación y Políticas de Salud organized a meeting in which the actors of these tasks, the institutional staff and authorities from various universities worked together with the IMSS.

  5. The lower cranial nerves: IX, X, XI, XII.

    PubMed

    Sarrazin, J-L; Toulgoat, F; Benoudiba, F

    2013-10-01

    The lower cranial nerves innervate the pharynx and larynx by the glossopharyngeal (CN IX) and vagus (CN X) (mixed) nerves, and provide motor innervation of the muscles of the neck by the accessory nerve (CN XI) and the tongue by the hypoglossal nerve (CN XII). The symptomatology provoked by an anomaly is often discrete and rarely in the forefront. As with all cranial nerves, the context and clinical examinations, in case of suspicion of impairment of the lower cranial nerves, are determinant in guiding the imaging. In fact, the impairment may be located in the brain stem, in the peribulbar cisterns, in the foramens or even in the deep spaces of the face. The clinical localization of the probable seat of the lesion helps in choosing the adapted protocol in MRI and eventually completes it with a CT-scan. In the bulb, the intra-axial pathology is dominated by brain ischemia (in particular, with Wallenberg syndrome) and multiple sclerosis. Cisternal pathology is tumoral with two tumors, schwannoma and meningioma. The occurrence is much lower than in the cochleovestibular nerves as well as the leptomeningeal nerves (infectious, inflammatory or tumoral). Finally, foramen pathology is tumoral with, outside of the usual schwannomas and meningiomas, paragangliomas. For radiologists, fairly hesitant to explore these lower cranial pairs, it is necessary to be familiar with (or relearn) the anatomy, master the exploratory technique and be aware of the diagnostic possibilities. Copyright © 2013 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  6. The role of the medial caudate nucleus, but not the hippocampus, in a matching-to sample task for a motor response.

    PubMed

    Kesner, Raymond P; Gilbert, Paul E

    2006-04-01

    A delayed-match-to-sample task was used to assess memory for motor responses in rats with control, hippocampus, or medial caudate nucleus (MCN) lesions. All testing was conducted on a cheeseboard maze in complete darkness using an infrared camera. A start box was positioned in the centre of the maze facing a randomly determined direction on each trial. On the sample phase, a phosphorescent object was randomly positioned to cover a baited food well in one of five equally spaced positions around the circumference of the maze forming a 180-degree arc 60 cm from the box. The rat had to displace the object to receive food and return to the start box. The box was then rotated to face a different direction. An identical baited phosphorescent object was placed in the same position relative to the start box. A second identical object was positioned to cover a different unbaited well. On the choice phase, the rat must remember the motor response made on the sample phase and make the same motor response on the choice phase to receive a reward. Hippocampus lesioned and control rats improved as a function of increased angle separation used to separate the correct object from the foil (45, 90, 135, and 180 degrees) and matched the performance of controls. However, rats with MCN lesions were impaired across all separations. Results suggest that the MCN, but not the hippocampus, supports working memory and/or a process aimed at reducing interference for motor response selection based on vector angle information.

  7. Grey matter volume loss is associated with specific clinical motor signs in Huntington's disease.

    PubMed

    Coppen, Emma M; Jacobs, Milou; van den Berg-Huysmans, Annette A; van der Grond, Jeroen; Roos, Raymund A C

    2018-01-01

    Motor disturbances are clinical hallmarks of Huntington's disease (HD) and involve chorea, dystonia, hypokinesia and visuomotor dysfunction. Investigating the association between specific motor signs and different regional volumes is important to understand the heterogeneity of HD. To investigate the motor phenotype of HD and associations with subcortical and cortical grey matter volume loss. Structural T1-weighted MRI scans of 79 HD patients and 30 healthy controls were used to calculate volumes of seven subcortical structures including the nucleus accumbens, hippocampus, thalamus, caudate nucleus, putamen, pallidum and amygdala. Multiple linear regression analyses, corrected for age, gender, CAG, MRI scan protocol and normalized brain volume, were performed to assess the relationship between subcortical volumes and different motor subdomains (i.e. eye movements, chorea, dystonia, hypokinesia/rigidity and gait/balance). Voxel-based morphometry analysis was used to investigate the relationship between cortical volume changes and motor signs. Subcortical volume loss of the accumbens nucleus, caudate nucleus, putamen, and pallidum were associated with higher chorea scores. No other subcortical region was significantly associated with motor symptoms after correction for multiple comparisons. Voxel-based cortical grey matter volume reductions in occipital regions were related with an increase in eye movement scores. In HD, chorea is mainly associated with subcortical volume loss, while eye movements are more related to cortical volume loss. Both subcortical and cortical degeneration has an impact on motor impairment in HD. This implies that there is a widespread contribution of different brain regions resulting in the clinical motor presentation seen in HD patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Impaired glutamatergic projection from the motor cortex to the subthalamic nucleus in 6-hydroxydopamine-lesioned hemi-parkinsonian rats.

    PubMed

    Wang, Yan-Yan; Wang, Yong; Jiang, Hai-Fei; Liu, Jun-Hua; Jia, Jun; Wang, Ke; Zhao, Fei; Luo, Min-Hua; Luo, Min-Min; Wang, Xiao-Min

    2018-02-01

    The glutamatergic projection from the motor cortex to the subthalamic nucleus (STN) constitutes the cortico-basal ganglia circuit and plays a critical role in the control of movement. Emerging evidence shows that the cortico-STN pathway is susceptible to dopamine depletion. Specifically in Parkinson's disease (PD), abnormal electrophysiological activities were observed in the motor cortex and STN, while the STN serves as a key target of deep brain stimulation for PD therapy. However, direct morphological changes in the cortico-STN connectivity in response to PD progress are poorly understood at present. In the present study, we used a trans-synaptic anterograde tracing method with herpes simplex virus-green fluorescent protein (HSV-GFP) to monitor the cortico-STN connectivity in a rat model of PD. We found that the connectivity from the primary motor cortex (M1) to the STN was impaired in parkinsonian rats as manifested by a marked decrease in trans-synaptic infection of HSV-GFP from M1 neurons to STN neurons in unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats. Ultrastructural analysis with electron microscopy revealed that excitatory synapses in the STN were also impaired in parkinsonian rats. Glutamatergic terminals identified by a specific marker (vesicular glutamate transporter 1) were reduced in the STN, while glutamatergic neurons showed an insignificant change in their total number in both the M1 and STN regions. These results indicate that the M1-STN glutamatergic connectivity is downregulated in parkinsonian rats. This downregulation is mediated probably via a mechanism involving the impairments of excitatory terminals and synapses in the STN. Copyright © 2017. Published by Elsevier Inc.

  9. Lead intoxication induces noradrenaline depletion, motor nonmotor disabilities, and changes in the firing pattern of subthalamic nucleus neurons.

    PubMed

    Sabbar, M; Delaville, C; De Deurwaerdère, P; Benazzouz, A; Lakhdar-Ghazal, N

    2012-05-17

    Lead intoxication has been suggested as a high risk factor for the development of Parkinson disease. However, its impact on motor and nonmotor functions and the mechanism by which it can be involved in the disease are still unclear. In the present study, we studied the effects of lead intoxication on the following: (1) locomotor activity using an open field actimeter and motor coordination using the rotarod test, (2) anxiety behavior using the elevated plus maze, (3) "depression-like" behavior using sucrose preference test, and (4) subthalamic nucleus (STN) neuronal activity using extracellular single unit recordings. Male Sprague-Dawley rats were treated once a day with lead acetate or sodium acetate (20 mg/kg/d i.p.) during 3 weeks. The tissue content of monoamines was used to determine alteration of these systems at the end of experiments. Results show that lead significantly reduced exploratory activity, locomotor activity and the time spent on the rotarod bar. Furthermore, lead induced anxiety but not "depressive-like" behavior. The electrophysiological results show that lead altered the discharge pattern of STN neurons with an increase in the number of bursting and irregular cells without affecting the firing rate. Moreover, lead intoxication resulted in a decrease of tissue noradrenaline content without any change in the levels of dopamine and serotonin. Together, these results show for the first time that lead intoxication resulted in motor and nonmotor behavioral changes paralleled by noradrenaline depletion and changes in the firing activity of STN neurons, providing evidence consistent with the induction of atypical parkinsonian-like deficits. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Khan, Ferdous; Townsend, Lawrence W.

    1993-01-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies.

  11. Activation of the cerebellar cortex and the dentate nucleus in a prism adaptation fMRI study.

    PubMed

    Küper, Michael; Wünnemann, Meret J S; Thürling, Markus; Stefanescu, Roxana M; Maderwald, Stefan; Elles, Hans G; Göricke, Sophia; Ladd, Mark E; Timmann, Dagmar

    2014-04-01

    During prism adaptation two types of learning processes can be distinguished. First, fast strategic motor control responses are predominant in the early course of prism adaptation to achieve rapid error correction within few trials. Second, slower spatial realignment occurs among the misaligned visual and proprioceptive sensorimotor coordinate system. The aim of the present ultra-highfield (7T) functional magnetic resonance imaging (fMRI) study was to explore cerebellar cortical and dentate nucleus activation during the course of prism adaptation in relation to a similar visuomotor task without prism exposure. Nineteen young healthy participants were included into the study. Recently developed normalization procedures were applied for the cerebellar cortex and the dentate nucleus. By means of subtraction analysis (early prism adaptation > visuomotor, early prism adaptation > late prism adaptation) we identified ipsilateral activation associated with strategic motor control responses within the posterior cerebellar cortex (lobules VIII and IX) and the ventro-caudal dentate nucleus. During the late phase of adaptation we observed pronounced activation of posterior parts of lobule VI, although subtraction analyses (late prism adaptation > visuomotor) remained negative. These results are in good accordance with the concept of a representation of non-motor functions, here strategic control, within the ventro-caudal dentate nucleus. Copyright © 2013 Wiley Periodicals, Inc.

  12. 77 FR 10741 - Lock+ Hydro Friends Fund XII, BOST2, LLC, Riverbank Hydro No. 21, LLC, FFP Project 96, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14260-000, 14264-000, 14267-000, 14273-000] Lock+ Hydro Friends Fund XII, BOST2, LLC, Riverbank Hydro No. 21, LLC, FFP Project... Greene and Hale counties, Alabama. The applications were filed by Lock+ Hydro Friends Fund XII for...

  13. Changes in the neural control of a complex motor sequence during learning

    PubMed Central

    Otchy, Timothy M.; Goldberg, Jesse H.; Aronov, Dmitriy; Fee, Michale S.

    2011-01-01

    The acquisition of complex motor sequences often proceeds through trial-and-error learning, requiring the deliberate exploration of motor actions and the concomitant evaluation of the resulting performance. Songbirds learn their song in this manner, producing highly variable vocalizations as juveniles. As the song improves, vocal variability is gradually reduced until it is all but eliminated in adult birds. In the present study we examine how the motor program underlying such a complex motor behavior evolves during learning by recording from the robust nucleus of the arcopallium (RA), a motor cortex analog brain region. In young birds, neurons in RA exhibited highly variable firing patterns that throughout development became more precise, sparse, and bursty. We further explored how the developing motor program in RA is shaped by its two main inputs: LMAN, the output nucleus of a basal ganglia-forebrain circuit, and HVC, a premotor nucleus. Pharmacological inactivation of LMAN during singing made the song-aligned firing patterns of RA neurons adultlike in their stereotypy without dramatically affecting the spike statistics or the overall firing patterns. Removing the input from HVC, on the other hand, resulted in a complete loss of stereotypy of both the song and the underlying motor program. Thus our results show that a basal ganglia-forebrain circuit drives motor exploration required for trial-and-error learning by adding variability to the developing motor program. As learning proceeds and the motor circuits mature, the relative contribution of LMAN is reduced, allowing the premotor input from HVC to drive an increasingly stereotyped song. PMID:21543758

  14. Pyrazolylbenzo[d]imidazoles as new potent and selective inhibitors of carbonic anhydrase isoforms hCA IX and XII.

    PubMed

    Kumar, Satish; Ceruso, Mariangela; Tuccinardi, Tiziano; Supuran, Claudiu T; Sharma, Pawan K

    2016-07-01

    Novel pyrazolylbenzo[d]imidazole derivatives (2a-2f) were designed, synthesized and evaluated against four human carbonic anhydrase isoforms belonging to α family comprising of two cytosolic isoforms hCA I and II as well as two transmembrane tumor associated isoforms hCA IX and XII. Starting from these derivatives that showed high potency but low selectivity in favor of tumor associated isoforms hCA IX and XII, we investigated the impact of removing the sulfonamide group. Thus, analogs 3a-3f without sulfonamide moiety were synthesized and biological assay revealed a good activity as well as an excellent selectivity as inhibitors for tumor associated hCA IX and hCA XII and the same was analyzed by molecular docking studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Multimodal sensory responses of nucleus reticularis gigantocellularis and the responses' relation to cortical and motor activation.

    PubMed

    Martin, Eugene M; Pavlides, Constantine; Pfaff, Donald

    2010-05-01

    The connectivity of large neurons of the nucleus reticularis gigantocellularis (NRGc) in the medullary reticular formation potentially allows both for the integration of stimuli, in several modalities, that would demand immediate action, and for coordinated activation of cortical and motoric activity. We have simultaneously recorded cortical local field potentials, neck muscle electromyograph (EMG), and the neural activity of medullary NRGc neurons in unrestrained, unanesthetized rats to determine whether the activity of the NRGc is consistent with the modulation of general arousal. We observed excitatory responses of individual NRGc neurons to all modalities tested: tactile, visual, auditory, vestibular, and olfactory. Excitation was directly linked to increases in neck muscle EMG amplitude and corresponded with increases in the power of fast oscillations (30 to 80 Hz) of cortical activity and decreases in the power of slow oscillations (2 to 8 Hz). Because these reticular formation neurons can respond to broad ranges of stimuli with increased firing rates associated with the initiation of behavioral responses, we infer that they are part of an elementary "first responder" CNS arousal mechanism.

  16. Multimodal Sensory Responses of Nucleus Reticularis Gigantocellularis and the Responses' Relation to Cortical and Motor Activation

    PubMed Central

    Pavlides, Constantine; Pfaff, Donald

    2010-01-01

    The connectivity of large neurons of the nucleus reticularis gigantocellularis (NRGc) in the medullary reticular formation potentially allows both for the integration of stimuli, in several modalities, that would demand immediate action, and for coordinated activation of cortical and motoric activity. We have simultaneously recorded cortical local field potentials, neck muscle electromyograph (EMG), and the neural activity of medullary NRGc neurons in unrestrained, unanesthetized rats to determine whether the activity of the NRGc is consistent with the modulation of general arousal. We observed excitatory responses of individual NRGc neurons to all modalities tested: tactile, visual, auditory, vestibular, and olfactory. Excitation was directly linked to increases in neck muscle EMG amplitude and corresponded with increases in the power of fast oscillations (30 to 80 Hz) of cortical activity and decreases in the power of slow oscillations (2 to 8 Hz). Because these reticular formation neurons can respond to broad ranges of stimuli with increased firing rates associated with the initiation of behavioral responses, we infer that they are part of an elementary “first responder” CNS arousal mechanism. PMID:20181730

  17. Loss of carbonic anhydrase XII function in individuals with elevated sweat chloride concentration and pulmonary airway disease.

    PubMed

    Lee, Melissa; Vecchio-Pagán, Briana; Sharma, Neeraj; Waheed, Abdul; Li, Xiaopeng; Raraigh, Karen S; Robbins, Sarah; Han, Sangwoo T; Franca, Arianna L; Pellicore, Matthew J; Evans, Taylor A; Arcara, Kristin M; Nguyen, Hien; Luan, Shan; Belchis, Deborah; Hertecant, Jozef; Zabner, Joseph; Sly, William S; Cutting, Garry R

    2016-05-15

    Elevated sweat chloride levels, failure to thrive (FTT), and lung disease are characteristic features of cystic fibrosis (CF, OMIM #219700). Here we describe variants in CA12 encoding carbonic anhydrase XII in two pedigrees exhibiting CF-like phenotypes. Exome sequencing of a white American adult diagnosed with CF due to elevated sweat chloride, recurrent hyponatremia, infantile FTT and lung disease identified deleterious variants in each CA12 gene: c.908-1 G>A in a splice acceptor and a novel frameshift insertion c.859_860insACCT. In an unrelated consanguineous Omani family, two children with elevated sweat chloride, infantile FTT, and recurrent hyponatremia were homozygous for a novel missense variant (p.His121Gln). Deleterious CFTR variants were absent in both pedigrees. CA XII protein was localized apically in human bronchiolar epithelia and basolaterally in the reabsorptive duct of human sweat glands. Respiratory epithelial cell RNA from the adult proband revealed only aberrant CA12 transcripts and in vitro analysis showed greatly reduced CA XII protein. Studies of ion transport across respiratory epithelial cells in vivo and in culture revealed intact CFTR-mediated chloride transport in the adult proband. CA XII protein bearing either p.His121Gln or a previously identified p.Glu143Lys missense variant localized to the basolateral membranes of polarized Madin-Darby canine kidney (MDCK) cells, but enzyme activity was severely diminished when assayed at physiologic concentrations of extracellular chloride. Our findings indicate that loss of CA XII function should be considered in individuals without CFTR mutations who exhibit CF-like features in the sweat gland and lung. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. SUBTHALAMIC NUCLEUS NEURONS DIFFERENTIALLY ENCODE EARLY AND LATE ASPECTS OF SPEECH PRODUCTION.

    PubMed

    Lipski, W J; Alhourani, A; Pirnia, T; Jones, P W; Dastolfo-Hromack, C; Helou, L B; Crammond, D J; Shaiman, S; Dickey, M W; Holt, L L; Turner, R S; Fiez, J A; Richardson, R M

    2018-05-22

    Basal ganglia-thalamocortical loops mediate all motor behavior, yet little detail is known about the role of basal ganglia nuclei in speech production. Using intracranial recording during deep brain stimulation surgery in humans with Parkinson's disease, we tested the hypothesis that the firing rate of subthalamic nucleus neurons is modulated in sync with motor execution aspects of speech. Nearly half of seventy-nine unit recordings exhibited firing rate modulation, during a syllable reading task across twelve subjects (male and female). Trial-to-trial timing of changes in subthalamic neuronal activity, relative to cue onset versus production onset, revealed that locking to cue presentation was associated more with units that decreased firing rate, while locking to speech onset was associated more with units that increased firing rate. These unique data indicate that subthalamic activity is dynamic during the production of speech, reflecting temporally-dependent inhibition and excitation of separate populations of subthalamic neurons. SIGNIFICANCE STATEMENT The basal ganglia are widely assumed to participate in speech production, yet no prior studies have reported detailed examination of speech-related activity in basal ganglia nuclei. Using microelectrode recordings from the subthalamic nucleus during a single syllable reading task, in awake humans undergoing deep brain stimulation implantation surgery, we show that the firing rate of subthalamic nucleus neurons is modulated in response to motor execution aspects of speech. These results are the first to establish a role for subthalamic nucleus neurons in encoding of aspects of speech production, and they lay the groundwork for launching a modern subfield to explore basal ganglia function in human speech. Copyright © 2018 the authors.

  19. Deep brain stimulation of the subthalamic nucleus enhances emotional processing in Parkinson disease.

    PubMed

    Schneider, Frank; Habel, Ute; Volkmann, Jens; Regel, Sabine; Kornischka, Jürgen; Sturm, Volker; Freund, Hans-Joachim

    2003-03-01

    High-frequency electrical stimulation of the subthalamic nucleus is a new and highly effective therapy for complications of long-term levodopa therapy and motor symptoms in advanced Parkinson disease (PD). Clinical observations indicate additional influence on emotional behavior. Electrical stimulation of deep brain nuclei with pulse rates above 100 Hz provokes a reversible, lesioning-like effect. Here, the effect of deep brain stimulation of the subthalamic nucleus on emotional, cognitive, and motor performance in patients with PD (n = 12) was examined. The results were compared with the effects of a suprathreshold dose of levodopa intended to transiently restore striatal dopamine deficiency. Patients were tested during medication off/stimulation off (STIM OFF), medication off/stimulation on (STIM ON), and during the best motor state after taking levodopa without deep brain stimulation (MED). More positive self-reported mood and an enhanced mood induction effect as well as improvement in emotional memory during STIM ON were observed, while during STIM OFF, patients revealed reduced emotional performance. Comparable effects were revealed by STIM ON and MED. Cognitive performance was not affected by the different conditions and treatments. Deep brain stimulation of the subthalamic nucleus selectively enhanced affective processing and subjective well-being and seemed to be antidepressive. Levodopa and deep brain stimulation had similar effects on emotion. This finding may provide new clues about the neurobiologic bases of emotion and mood disorders, and it illustrates the important role of the basal ganglia and the dopaminergic system in emotional processing in addition to the well-known motor and cognitive functions.

  20. Raclopride or high-frequency stimulation of the subthalamic nucleus stops cocaine-induced motor stereotypy and restores related alterations in prefrontal basal ganglia circuits.

    PubMed

    Aliane, Verena; Pérez, Sylvie; Deniau, Jean-Michel; Kemel, Marie-Louise

    2012-11-01

    Motor stereotypy is a key symptom of various neurological or neuropsychiatric disorders. Neuroleptics or the promising treatment using deep brain stimulation stops stereotypies but the mechanisms underlying their actions are unclear. In rat, motor stereotypies are linked to an imbalance between prefrontal and sensorimotor cortico-basal ganglia circuits. Indeed, cortico-nigral transmission was reduced in the prefrontal but not sensorimotor basal ganglia circuits and dopamine and acetylcholine release was altered in the prefrontal but not sensorimotor territory of the dorsal striatum. Furthermore, cholinergic transmission in the prefrontal territory of the dorsal striatum plays a crucial role in the arrest of motor stereotypy. Here we found that, as previously observed for raclopride, high-frequency stimulation of the subthalamic nucleus (HFS STN) rapidly stopped cocaine-induced motor stereotypies in rat. Importantly, raclopride and HFS STN exerted a strong effect on cocaine-induced alterations in prefrontal basal ganglia circuits. Raclopride restored the cholinergic transmission in the prefrontal territory of the dorsal striatum and the cortico-nigral information transmissions in the prefrontal basal ganglia circuits. HFS STN also restored the N-methyl-d-aspartic-acid-evoked release of acetylcholine and dopamine in the prefrontal territory of the dorsal striatum. However, in contrast to raclopride, HFS STN did not restore the cortico-substantia nigra pars reticulata transmissions but exerted strong inhibitory and excitatory effects on neuronal activity in the prefrontal subdivision of the substantia nigra pars reticulata. Thus, both raclopride and HFS STN stop cocaine-induced motor stereotypy, but exert different effects on the related alterations in the prefrontal basal ganglia circuits. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  1. cAMP-dependent insulin modulation of synaptic inhibition in neurons of the dorsal motor nucleus of the vagus is altered in diabetic mice

    PubMed Central

    Blake, Camille B.

    2014-01-01

    Pathologies in which insulin is dysregulated, including diabetes, can disrupt central vagal circuitry, leading to gastrointestinal and other autonomic dysfunction. Insulin affects whole body metabolism through central mechanisms and is transported into the brain stem dorsal motor nucleus of the vagus (DMV) and nucleus tractus solitarius (NTS), which mediate parasympathetic visceral regulation. The NTS receives viscerosensory vagal input and projects heavily to the DMV, which supplies parasympathetic vagal motor output. Normally, insulin inhibits synaptic excitation of DMV neurons, with no effect on synaptic inhibition. Modulation of synaptic inhibition in DMV, however, is often sensitive to cAMP-dependent mechanisms. We hypothesized that an effect of insulin on GABAergic synaptic transmission may be uncovered by elevating resting cAMP levels in GABAergic terminals. We used whole cell patch-clamp recordings in brain stem slices from control and diabetic mice to identify insulin effects on inhibitory neurotransmission in the DMV in the presence of forskolin to elevate cAMP levels. In the presence of forskolin, insulin decreased the frequency of inhibitory postsynaptic currents (IPSCs) and the paired-pulse ratio of evoked IPSCs in DMV neurons from control mice. This effect was blocked by brefeldin-A, a Golgi-disrupting agent, or indinavir, a GLUT4 blocker, indicating that protein trafficking and glucose transport were involved. In streptozotocin-treated, diabetic mice, insulin did not affect IPSCs in DMV neurons in the presence of forskolin. Results suggest an impairment of cAMP-induced insulin effects on GABA release in the DMV, which likely involves disrupted protein trafficking in diabetic mice. These findings provide insight into mechanisms underlying vagal dysregulation associated with diabetes. PMID:24990858

  2. Axon terminals expressing vesicular glutamate transporter VGLUT1 or VGLUT2 within the trigeminal motor nucleus of the rat: origins and distribution patterns.

    PubMed

    Pang, You-Wang; Ge, Shun-Nan; Nakamura, Kouichi C; Li, Jin-Lian; Xiong, Kang-Hui; Kaneko, Takeshi; Mizuno, Noboru

    2009-02-10

    Little is known about the significance of the two types of glutamatergic neurons (those expressing vesicular glutamate transporter VGLUT1 or VGLUT2) in the control of jaw movements. We thus examined the origin and distribution of axon terminals with VGLUT1 or VGLUT2 immunoreactivity within the trigeminal motor nucleus (Vm) in the rat. The Vm was divided into the dorsolateral division (Vm.dl; jaw-closing motoneuron pool) and the ventromedial division (Vm.vm; jaw-opening motoneuron pool). VGLUT1-immunopositive terminals were seen within the Vm.dl only, whereas VGLUT2-immunopositive ones were distributed to both the Vm.dl and the Vm.vm. Transection of the motor root eliminated almost all VGLUT1-immunopositive axons in the Vm.dl, with no changes of VGLUT2 immunoreactivity in the two divisions, indicating that the VGLUT1- and VGLUT2-immunopositive axons came from primary afferents in the mesencephalic trigeminal nucleus and premotor neurons for the Vm, respectively. In situ hybridization histochemistry revealed that VGLUT2 neurons were much more numerous than VGLUT1 neurons in the regions corresponding to the reported premotoneuron pool for the Vm. The results of immunofluorescence labeling combined with anterograde tract tracing further indicated that premotor neurons with VGLUT2 in the trigeminal sensory nuclei, the supratrigeminal region, and the reticular region ventral to the Vm sent axon terminals contacting trigeminal motoneurons and that some of the VGLUT1-expressing premotor neurons in the reticular region ventral to the Vm sent axon terminals to jaw-closing motoneurons. The present results suggested that the roles played by glutamatergic neurons in controlling jaw movements might be different between VGLUT1- and VGLUT2-expressing neurons.

  3. Retinal venous thrombosis in a young patient with coagulation factor XII deficiency.

    PubMed

    Borrego-Sanz, L; Santos-Bueso, E; Sáenz-Francés, F; Martínez-de-la-Casa, J M; García-Feijoo, J; Gegúndez-Fernández, J A; García-Sánchez, J

    2014-08-01

    A 35-year-old woman, with no relevant medical history, was referred for sudden vision loss in the left eye. Ophthalmological examination showed best corrected visual acuity of 1.0 in the right eye and 0.3 in left eye, with normal anterior pole and intraocular pressure. Fundus examination of the left eye revealed a venous thrombosis in the superior temporal branch, with dilated and tortuous retinal veins. The patient was referred to the hematology unit for thrombophilia study, and was diagnosed with a coagulation XII or Hageman factor deficiency. The development of retinal vessel occlusions, in patients under 50 years of age, is frequently associated with thrombophilia or hypercoagulability disorders. Factor XII deficiency is a rare condition, and its presence could contribute to a higher risk of thromboembolic events. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  4. Noradrenergic modulation of masseter muscle activity during natural rapid eye movement sleep requires glutamatergic signalling at the trigeminal motor nucleus

    PubMed Central

    Schwarz, Peter B; Mir, Saba; Peever, John H

    2014-01-01

    Noradrenergic neurotransmission in the brainstem is closely coupled to changes in muscle activity across the sleep–wake cycle, and noradrenaline is considered to be a key excitatory neuromodulator that reinforces the arousal-related stimulus on motoneurons to drive movement. However, it is unknown if α-1 noradrenoceptor activation increases motoneuron responsiveness to excitatory glutamate (AMPA) receptor-mediated inputs during natural behaviour. We studied the effects of noradrenaline on AMPA receptor-mediated motor activity at the motoneuron level in freely behaving rats, particularly during rapid eye movement (REM) sleep, a period during which both AMPA receptor-triggered muscle twitches and periods of muscle quiescence in which AMPA drive is silent are exhibited. Male rats were subjected to electromyography and electroencephalography recording to monitor sleep and waking behaviour. The implantation of a cannula into the trigeminal motor nucleus of the brainstem allowed us to perfuse noradrenergic and glutamatergic drugs by reverse microdialysis, and thus to use masseter muscle activity as an index of motoneuronal output. We found that endogenous excitation of both α-1 noradrenoceptor and AMPA receptors during waking are coupled to motor activity; however, REM sleep exhibits an absence of endogenous α-1 noradrenoceptor activity. Importantly, exogenous α-1 noradrenoceptor stimulation cannot reverse the muscle twitch suppression induced by AMPA receptor blockade and nor can it elevate muscle activity during quiet REM, a phase when endogenous AMPA receptor activity is subthreshold. We conclude that the presence of an endogenous glutamatergic drive is necessary for noradrenaline to trigger muscle activity at the level of the motoneuron in an animal behaving naturally. PMID:24860176

  5. Cerebellum tunes the excitability of the motor system: evidence from peripheral motor axons.

    PubMed

    Nodera, Hiroyuki; Manto, Mario

    2014-12-01

    Cerebellum is highly connected with the contralateral cerebral cortex. So far, the motor deficits observed in acute focal cerebellar lesions in human have been mainly explained on the basis of a disruption of the cerebello-thalamo-cortical projections. Cerebellar circuits have also numerous anatomical and functional interactions with brainstem nuclei and projects also directly to the spinal cord. Cerebellar lesions alter the excitability of peripheral motor axons as demonstrated by peripheral motor threshold-tracking techniques in cerebellar stroke. The biophysical changes are correlated with the functional scores. Nerve excitability measurements represent an attractive tool to extract the rules underlying the tuning of excitability of the motor pathways by the cerebellum and to discover the contributions of each cerebellar nucleus in this key function, contributing to early plasticity and sensorimotor learning.

  6. Role of inhibitory amino acids in control of hypoglossal motor outflow to genioglossus muscle in naturally sleeping rats.

    PubMed

    Morrison, Janna L; Sood, Sandeep; Liu, Hattie; Park, Eileen; Liu, Xia; Nolan, Philip; Horner, Richard L

    2003-11-01

    The hypoglossal motor nucleus innervates the genioglossus (GG) muscle of the tongue, a muscle that helps maintain an open airway for effective breathing. Rapid-eye-movement (REM) sleep, however, recruits powerful neural mechanisms that can abolish GG activity even during strong reflex stimulation such as by hypercapnia, effects that can predispose to sleep-related breathing problems in humans. We have developed an animal model to chronically manipulate neurotransmission at the hypoglossal motor nucleus using in vivo microdialysis in freely behaving rats. This study tests the hypothesis that glycine receptor antagonism at the hypoglossal motor nucleus, either alone or in combination with GABAA receptor antagonism, will prevent suppression of GG activity in natural REM sleep during room air and CO2-stimulated breathing. Rats were implanted with electroencephalogram and neck muscle electrodes to record sleep-wake states, and GG and diaphragm electrodes for respiratory muscle recording. Microdialysis probes were implanted into the hypoglossal motor nucleus for perfusion of artificial cerebrospinal fluid (ACSF) and strychnine (glycine receptor antagonist, 0.1 mM) either alone or combined with bicuculline (GABAA antagonist, 0.1 mM) during room air and CO2-stimulated breathing. Compared to ACSF controls, glycine receptor antagonism at the hypoglossal motor nucleus increased respiratory-related GG activity in room air (P = 0.010) but not hypercapnia (P = 0.221). This stimulating effect of strychnine in room air did not depend on the prevailing sleep-wake state (P = 0.625) indicating removal of a non-specific background inhibitory glycinergic tone. Nevertheless, GG activity remained minimal in those REM sleep periods without phasic twitches in GG muscle, with GG suppression from non-REM (NREM) sleep being > 85 % whether ACSF or strychnine was at the hypoglossal motor nucleus or the inspired gas was room air or 7 % CO2. While GG activity was minimal in these REM sleep

  7. Corticobasal degeneration initially developing motor versus non-motor symptoms: a comparative clinicopathological study.

    PubMed

    Ikeda, Chikako; Yokota, Osamu; Nagao, Shigeto; Ishizu, Hideki; Morisada, Yumi; Terada, Seishi; Nakashima, Yoshihiko; Akiyama, Haruhiko; Uchitomi, Yosuke

    2014-09-01

    Clinical presentations of pathologically confirmed corticobasal degeneration (CBD) vary, and the heterogeneity makes its clinical diagnosis difficult, especially when a patient lacks any motor disturbance in the early stage. We compared clinical and pathological features of four pathologically confirmed CBD cases that initially developed non-motor symptoms, including behavioural and psychiatric symptoms but without motor disturbance (CBD-NM), and five CBD cases that initially developed parkinsonism and/or falls (CBD-M). The age range at death for the CBD-NM and CBD-M subjects (58-85 years vs 45-67 years) and the range of disease duration (2-18 years vs 2-6 years) did not significantly differ between the groups. Prominent symptoms in the early stage of CBD-NM cases included self-centred behaviours such as frontotemporal dementia (n = 1), apathy with and without auditory hallucination (n = 2), and aggressive behaviours with delusion and visual hallucination (n = 1). Among the four CBD-NM cases, only one developed asymmetric motor disturbance, and two could walk without support throughout the course. Final clinical diagnoses of the CBD-NM cases were frontotemporal dementia (n = 2), senile psychosis with delirium (n = 1), and schizophrenia (n = 1). Neuronal loss was significantly less severe in the subthalamic nucleus and substantia nigra in the CBD-NM cases than in the CBD-M cases. The severity of tau pathology in all regions examined was comparable in the two groups. CBD cases that initially develop psychiatric and behavioural changes without motor symptoms may have less severe degenerative changes in the subthalamic nucleus and substantia nigra, and some CBD cases can lack motor disturbance not only in the early stage but also in the last stage of the course. © 2014 The Authors. Psychogeriatrics © 2014 Japanese Psychogeriatric Society.

  8. OATYC Journal, Vol. XII, Nos. 1-2, Fall 1986-Spring 1987.

    ERIC Educational Resources Information Center

    Fullen, James, Ed.

    1987-01-01

    "OATYC Journal," published by the the Ohio Association of Two-Year Colleges, is designed as a forum for the exchange of concepts, methods, and findings relevant to the two-year college classroom. Along with commentaries and letters of reaction from the readership, the two issues of Volume XII present the following: (1) "Focus:…

  9. 76 FR 73614 - Lock Hydro Friends Fund XII; BOST2 LLC; Riverbank Hydro No. 21 LLC; FFP Project 96 LLC; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project Nos. 14260-000; 14264-000; 14267-000; 14273-000] Lock Hydro Friends Fund XII; BOST2 LLC; Riverbank Hydro No. 21 LLC; FFP Project 96..., Motions To Intervene, and Competing Applications On September 1, 2011, Lock Hydro Friends Fund XII (Lock...

  10. Complementary roles of different oscillatory activities in the subthalamic nucleus in coding motor effort in Parkinsonism.

    PubMed

    Tan, Huiling; Pogosyan, Alek; Anzak, Anam; Ashkan, Keyoumars; Bogdanovic, Marko; Green, Alexander L; Aziz, Tipu; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter

    2013-10-01

    The basal ganglia may play an important role in the control of motor scaling or effort. Recently local field potential (LFP) recordings from patients with deep brain stimulation electrodes in the basal ganglia have suggested that local increases in the synchronisation of neurons in the gamma frequency band may correlate with force or effort. Whether this feature uniquely codes for effort and whether such a coding mechanism holds true over a range of efforts is unclear. Here we investigated the relationship between frequency-specific oscillatory activities in the subthalamic nucleus (STN) and manual grips made with different efforts. The latter were self-rated using the 10 level Borg scale ranging from 0 (no effort) to 10 (maximal effort). STN LFP activities were recorded in patients with Parkinson's Disease (PD) who had undergone functional surgery. Patients were studied while motor performance was improved by dopaminergic medication. In line with previous studies we observed power increase in the theta/alpha band (4-12 Hz), power suppression in the beta band (13-30 Hz) and power increase in the gamma band (55-90 Hz) and high frequency band (101-375 Hz) during voluntary grips. Beta suppression deepened, and then reached a floor level as effort increased. Conversely, gamma and high frequency power increases were enhanced during grips made with greater effort. Multiple regression models incorporating the four different spectral changes confirmed that the modulation of power in the beta band was the only independent predictor of effort during grips made with efforts rated <5. In contrast, increases in gamma band activity were the only independent predictor of effort during grips made with efforts ≥5. Accordingly, the difference between power changes in the gamma and beta bands correlated with effort across all effort levels. These findings suggest complementary roles for changes in beta and gamma band activities in the STN in motor effort coding. The latter function

  11. Motor Neurons Tune Premotor Activity in a Vertebrate Central Pattern Generator

    PubMed Central

    2017-01-01

    Central patterns generators (CPGs) are neural circuits that drive rhythmic motor output without sensory feedback. Vertebrate CPGs are generally believed to operate in a top-down manner in which premotor interneurons activate motor neurons that in turn drive muscles. In contrast, the frog (Xenopus laevis) vocal CPG contains a functionally unexplored neuronal projection from the motor nucleus to the premotor nucleus, indicating a recurrent pathway that may contribute to rhythm generation. In this study, we characterized the function of this bottom-up connection. The X. laevis vocal CPG produces a 50–60 Hz “fast trill” song used by males during courtship. We recorded “fictive vocalizations” in the in vitro CPG from the laryngeal nerve while simultaneously recording premotor activity at the population and single-cell level. We show that transecting the motor-to-premotor projection eliminated the characteristic firing rate of premotor neurons. Silencing motor neurons with the intracellular sodium channel blocker QX-314 also disrupted premotor rhythms, as did blockade of nicotinic synapses in the motor nucleus (the putative location of motor neuron-to-interneuron connections). Electrically stimulating the laryngeal nerve elicited primarily IPSPs in premotor neurons that could be blocked by a nicotinic receptor antagonist. Our results indicate that an inhibitory signal, activated by motor neurons, is required for proper CPG function. To our knowledge, these findings represent the first example of a CPG in which precise premotor rhythms are tuned by motor neuron activity. SIGNIFICANCE STATEMENT Central pattern generators (CPGs) are neural circuits that produce rhythmic behaviors. In vertebrates, motor neurons are not commonly known to contribute to CPG function, with the exception of a few spinal circuits where the functional significance of motor neuron feedback is still poorly understood. The frog hindbrain vocal circuit contains a previously unexplored

  12. Natural history and clinical manifestations of hyponatremia and hyperchlorhidrosis due to carbonic anhydrase XII deficiency.

    PubMed

    Feinstein, Yael; Yerushalmi, Baruch; Loewenthal, Neta; Alkrinawi, Soliman; Birk, Ohad S; Parvari, Ruti; Hershkovitz, Eli

    2014-01-01

    We identified patients of Bedouin origin with a mutation in carbonic anhydrase XII (CA XII) leading to hyponatremia due to excessive salt loss via sweat. The medical records of patients were reviewed for clinical and laboratory data. A total of 11 subjects were identified; 7 symptomatic patients presented with hyponatremic dehydration in infancy. Screening of the entire kindred identified 4 asymptomatic individuals with elevated sweat chloride. All symptomatic patients had failure to thrive and moderate-severe hyponatremia (106-124 mmol·l(-1)); 6 had hypochloremia (79-94 mmol·l(-1)). All asymptomatic subjects had normal or near-normal serum sodium and chloride concentrations. Both symptomatic and asymptomatic subjects had normal renal functions and normal cortisol response on low-dose ACTH test. All symptomatic patients were treated by dietary salt, which prevents episodes of hyponatremic dehydration and promotes growth. At follow-up, the chief complaints remained heat intolerance, accumulation of salt precipitates on the face and hyperhidrosis. No evidence for chronic renal, respiratory, gastrointestinal or fertility abnormalities was found. Recognizing this newly described entity and differentiating it from cystic fibrosis and pseudohypoaldosteronism are important. Patients with CA XII mutations should be followed even after early childhood, especially in hot temperatures and intense physical activity. © 2014 S. Karger AG, Basel.

  13. Demonstration of resonant photopumping of Mo VII by Mo XII for a VUV laser near 600 {Angstrom}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilcisin, K.J.; Aumayr, F.; Schwob, J.L.

    1993-09-01

    We present data of experiments on the resonant photopumping of Mo VII by Mo XII as a method of generating a coherent VUV source near 600 {angstrom}. The experiment is based on a scheme proposed by Feldman and Reader in which the 4p{sup 6} -- 4p{sup 5}6s transition in Mo VII in resonantly photopumped by the 5s {sup 2}S{sub 1/2} -- 4p {sup 2}P{sub 1/2} transition in Mo XII. Results of the laser produced plasma experiments show the successful enhancement of the population of the Mo VII 4p{sup 5}6s upper lasing level when pumped by an adjacent Mo VII plasma.more » No enhancement was seen in a control experiment where the Mo VII plasma was pumped by a Zr X plasma. Improvements of the intensity of the Mo XII pump source, achieved using an additional pump laser, lead to the generation of a population inversion for the VUV transition.« less

  14. Gastrointestinal-projecting neurones in the dorsal motor nucleus of the vagus exhibit direct and viscerotopically organized sensitivity to orexin.

    PubMed

    Grabauskas, Gintautas; Moises, Hylan C

    2003-05-15

    Orexin (hypocretin)-containing projections from lateral hypothalamus (LH) are thought to play an important role in the regulation of feeding behaviour and energy balance. In rodent studies, central administration of orexin peptides increases food intake, and orexin neurones in the LH are activated by hypoglycaemia during fasting. In addition, administration of orexins into the fourth ventricle or the dorsal motor nucleus of the vagus (DMV) has been shown to stimulate gastric acid secretion and motility, respectively, via vagal efferent pathways. In this study, whole-cell recordings were obtained from DMV neurones in rat brainstem slices to investigate the cellular mechanism(s) by which orexins produce their gastrostimulatory effects. To determine whether responsiveness to orexins might be differentially expressed among distinct populations of preganglionic vagal motor neurones, recordings were made from neurones whose projections to the gastrointestinal tract had been identified by retrograde labelling following apposition of the fluorescent tracer DiI to the gastric fundus, corpus or antrum/pylorus, the duodenum or caecum. Additionally, the responses of neurones to orexins were compared with those produced by oxytocin, which acts within the DMV to stimulate gastric acid secretion, but inhibits gastric motor function. Bath application of orexin-A or orexin-B (30-300 nM) produced a slow depolarization, accompanied by increased firing in 47 of 102 DMV neurones tested, including 70 % (30/43) of those that projected to the gastric fundus or corpus. In contrast, few DMV neurones that supplied the antrum/pylorus (3/13), duodenum (4/18) or caecum (1/13) were responsive to these peptides. The depolarizing responses were concentration dependent and persisted during synaptic isolation of neurones with TTX or Cd2+, indicating they resulted from activation of postsynaptic orexin receptors. They were also associated with a small increase in membrane resistance, and in voltage

  15. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    PubMed Central

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  16. Differential suppression of upper airway motor activity during carbachol-induced, REM sleep-like atonia.

    PubMed

    Fenik, V; Davies, R O; Pack, A I; Kubin, L

    1998-10-01

    Microinjections of carbachol into the pontine tegmentum of decerebrate cats have been used to study the mechanisms underlying the suppression of postural and respiratory motoneuronal activity during the resulting rapid eye movement (REM) sleep-like atonia. During REM sleep, distinct respiratory muscles are differentially affected; e.g., the activity of the diaphragm shows little suppression, whereas the activity of some upper airway muscles is quite strong. To determine the pattern of the carbachol-induced changes in the activity of different groups of upper airway motoneurons, we simultaneously recorded the efferent activity of the recurrent laryngeal nerve (RL), pharyngeal branch of the vagus nerve (Phar), and genioglossal branch of the hypoglossal (XII) and phrenic (Phr) nerves in 12 decerebrate, paralyzed, vagotomized, and artificially ventilated cats. Pontine carbachol caused a stereotyped suppression of the spontaneous activity that was significantly larger in Phar expiratory (to 8.3% of control) and XII inspiratory motoneurons (to 15%) than in Phr inspiratory (to 87%), RL inspiratory (to 79%), or RL expiratory motoneurons (to 72%). The suppression in upper airway motor output was significantly greater than the depression caused by a level of hypocapnia that reduced Phr activity as much as carbachol. We conclude that pontine carbachol evokes a stereotyped pattern of suppression of upper airway motor activity. Because carbachol evokes a state having many neurophysiological characteristics similar to those of REM sleep, it is likely that pontine cholinoceptive neurons have similar effects on the activity of upper airway motoneurons during both states.

  17. Evaluation of 177Lu[Lu]-CHX-A″-DTPA-6A10 Fab as a radioimmunotherapy agent targeting carbonic anhydrase XII.

    PubMed

    Fiedler, L; Kellner, M; Gosewisch, A; Oos, R; Böning, G; Lindner, S; Albert, N; Bartenstein, P; Reulen, H-J; Zeidler, R; Gildehaus, F J

    2018-05-01

    Due to their infiltrative growth behavior, gliomas have, even after surgical resection, a high recurrence tendency. The approach of intracavitary radioimmunotherapy (RIT) is aimed at inhibiting tumor re-growth by directly administering drugs into the resection cavity (RC). Direct application of the radioconjugate into the RC has the advantage of bypassing the blood-brain barrier, which allows the administration of higher radiation doses than systemic application. Carbonic anhydrase XII (CA XII) is highly expressed on glioma cells while being absent from normal brain and thus an attractive target molecule for RIT. We evaluated a CA XII-specific 6A10 Fab (fragment antigen binding) labelled with 177 Lu as an agent for RIT. 6A10 Fab fragment was modified and radiolabelled with 177 Lu and characterized by MALDI-TOF, flow cytometry and radio-TLC. In vitro stability was determined under physiological conditions. Biodistribution studies, autoradiography tumor examinations and planar scintigraphy imaging were performed on SCID-mice bearing human glioma xenografts. The in vitro CA XII binding capacity of the modified Fab was confirmed. Radiochemical purity was determined to be >90% after 72 h of incubation under physiological conditions. Autoradiography experiments proved the specific binding of the Fab to CA XII on tumor cells. Biodistribution studies revealed a tumor uptake of 3.0%ID/g after 6 h and no detectable brain uptake. The tumor-to-contralateral ratio of 10/1 was confirmed by quantitative planar scintigraphy. The radiochemical stability in combination with a successful in vivo tumor uptake shows the potential suitability for future RIT applications with the 6A10 Fab. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Lesion of the Centromedian Thalamic Nucleus in MPTP-Treated Monkeys

    PubMed Central

    Lanciego, Jose L.; Rodríguez-Oroz, Maria C.; Blesa, Francisco J.; Alvarez-Erviti, Lydia; Guridi, Jorge; Barroso-Chinea, Pedro; Smith, Yoland; Obeso, Jose A.

    2015-01-01

    The caudal intralaminar nuclei are a major source of glutamatergic afferents to the basal ganglia. Experiments in the 6-hydroxydopamine rat model have shown that the parafascicular nucleus is overactive and its lesion alleviates basal ganglia neurochemical abnormalities associated with dopamine depletion. Accordingly, removal of this excitatory innervation of the basal ganglia could have a beneficial value in the parkinsonian state. To test this hypothesis, unilateral kainate-induced chemical ablation of the centromedian thalamic nucleus (CM) has been performed in MPTP-treated monkeys. Successful lesions restricted to the CM boundaries (n = 2) without spreading over other neighboring thalamic nuclei showed an initial, short-lasting, and mild change in the parkinsonian motor scale but no effect against levodopa-induced dyskinesias. The lack of significant and persistent motor improvement leads us to conclude that unilateral selective lesion of the CM alone cannot be considered as a suitable surgical approach for the treatment of PD or levo-dopa-induced dyskinesias. The role of the caudal intralaminar nuclei in the pathophysiology of movement disorders of basal ganglia origin remains to be clarified. PMID:18175345

  19. A novel slice preparation to study medullary oromotor and autonomic circuits in vitro

    PubMed Central

    Nasse, Jason S.

    2014-01-01

    Background The medulla is capable of controlling and modulating ingestive behavior and gastrointestinal function. These two functions, which are critical to maintaining homeostasis, are governed by an interconnected group of nuclei dispersed throughout the medulla. As such, in vitro experiments to study the neurophysiologic details of these connections have been limited by spatial constraints of conventional slice preparations. New method This study demonstrates a novel method of sectioning the medulla so that sensory, integrative, and motor nuclei that innervate the gastrointestinal tract and the oral cavity remain intact. Results: Immunohistochemical staining against choline-acetyl-transferase and dopamine-β-hydroxylase demonstrated that within a 450 μm block of tissue we are able to capture sensory, integrative and motor nuclei that are critical to oromotor and gastrointestinal function. Within slice tracing shows that axonal projections from the NST to the reticular formation and from the reticular formation to the hypoglossal motor nucleus (mXII) persist. Live-cell calcium imaging of the slice demonstrates that stimulation of either the rostral or caudal NST activates neurons throughout the NST, as well as the reticular formation and mXII. Comparison with existing methods This new method of sectioning captures a majority of the nuclei that are active when ingesting a meal. Tradition planes of section, i.e. coronal, horizontal or sagittal, contain only a limited portion of the substrate. Conclusions Our results demonstrate that both anatomical and physiologic connections of oral and visceral sensory nuclei that project to integrative and motor nuclei remain intact with this new plane of section. PMID:25196216

  20. A novel slice preparation to study medullary oromotor and autonomic circuits in vitro.

    PubMed

    Nasse, Jason S

    2014-11-30

    The medulla is capable of controlling and modulating ingestive behavior and gastrointestinal function. These two functions, which are critical to maintaining homeostasis, are governed by an interconnected group of nuclei dispersed throughout the medulla. As such, in vitro experiments to study the neurophysiologic details of these connections have been limited by spatial constraints of conventional slice preparations. This study demonstrates a novel method of sectioning the medulla so that sensory, integrative, and motor nuclei that innervate the gastrointestinal tract and the oral cavity remain intact. Immunohistochemical staining against choline-acetyl-transferase and dopamine-β-hydroxylase demonstrated that within a 450 μm block of tissue we are able to capture sensory, integrative and motor nuclei that are critical to oromotor and gastrointestinal function. Within slice tracing shows that axonal projections from the NST to the reticular formation and from the reticular formation to the hypoglossal motor nucleus (mXII) persist. Live-cell calcium imaging of the slice demonstrates that stimulation of either the rostral or caudal NST activates neurons throughout the NST, as well as the reticular formation and mXII. This new method of sectioning captures a majority of the nuclei that are active when ingesting a meal. Tradition planes of section, i.e. coronal, horizontal or sagittal, contain only a limited portion of the substrate. Our results demonstrate that both anatomical and physiologic connections of oral and visceral sensory nuclei that project to integrative and motor nuclei remain intact with this new plane of section. Published by Elsevier B.V.

  1. Subthalamic Nucleus Stimulation and Dysarthria in Parkinson's Disease: A PET Study

    ERIC Educational Resources Information Center

    Pinto, Serge; Thobois, Stephane; Costes, Nicolas; Le Bars, Didier; Benabid, Alim-Louis; Broussolle, Emmanuel; Pollak, Pierre; Gentil, Michele

    2004-01-01

    In Parkinson's disease, functional imaging studies during limb motor tasks reveal cerebral activation abnormalities that can be reversed by subthalamic nucleus (STN) stimulation. The effect of STN stimulation on parkinsonian dysarthria has not, however, been investigated using PET. The aim of the present study was to evaluate the effect of STN…

  2. Multiple forebrain systems converge on motor neurons innervating the thyroarytenoid muscle

    PubMed Central

    Van Daele, Douglas J.; Cassell, Martin D.

    2009-01-01

    The present study investigated the central connections of motor neurons innervating the thyroarytenoid laryngeal muscle that is active in swallowing, respiration and vocalization. In both intact and sympathectomized rats, the pseudorabies virus (PRV) was inoculated into the muscle. After initial infection of laryngomotor neurons in the ipsilateral loose division of the nucleus ambiguous (NA) by 3 days post-inoculation., PRV spread to the ipsilateral compact portion of the NA, the central and intermediate divisions of the nucleus tractus solitarii (NTS), the Botzinger complex, and the parvocellular reticular formation by 4 days. Infection was subsequently expanded to include the ipsilateral granular and dysgranular parietal insular cortex, the ipsilateral medial division of the central nucleus of the amygdala, the lateral, paraventricular, ventrolateral and medial preoptic nuclei of the hypothalamus (generally bilaterally), the lateral periaqueductal gray, the A7 and oral and caudal pontine nuclei. At the latest time points sampled post-inoculation (5 days), infected neurons were identified in the ipsilateral agranular insular cortex, the caudal parietal insular cortex, the anterior cingulate cortex, and the contralateral motor cortex. In the amygdala, infection had spread to the lateral central nucleus and the parvocellular portion of the basolateral nucleus. Hypothalamic infection was largely characterized by an increase in the number of infected cells in earlier infected regions though the posterior, dorsomedial, tuberomammillary and mammillary nuclei contained infected cells. Comparison with previous connectional data suggest PRV followed three interconnected systems originating in the forebrain; a bilateral system including the ventral anterior cingulate cortex, periaqueductal gray and ventral respiratory group; an ipsilateral system involving the parietal insular cortex, central nucleus of the amygdala and parvicellular reticular formation, and a minor

  3. Afferent projections to the deep mesencephalic nucleus in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veazey, R.B.; Severin, C.M.

    1982-01-10

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medialmore » and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist.« less

  4. Modulation of genioglossus muscle activity across sleep-wake states by histamine at the hypoglossal motor pool.

    PubMed

    Bastedo, Timothy; Chan, Erin; Park, Eileen; Liu, Hattie; Horner, Richard L

    2009-10-01

    Histamine neurons comprise a major component of the aminergic arousal system and significantly influence sleep-wake states, with antihistamines widely used as sedative hypnotics. Unlike the serotonergic and noradrenergic components of this arousal system, however, the role of histamine in the central control of respiratory motor activity has not been determined. The aims of this study were to characterize the effects of histamine receptor agonists and antagonists at the hypoglossal motor pool on genioglossus muscle activity across sleep and awake states, and also determine if histamine contributes an endogenous excitatory drive to modulate hypoglossal motor outflow to genioglossus muscle. Thirty-three rats were implanted with electroencephalogram and neck electrodes to record sleep-wake states, and genioglossus and diaphragm electrodes for respiratory muscle recordings. Microdialysis probes were inserted into the hypoglossal motor nucleus. Histamine at the hypoglossal motor nucleus significantly increased tonic genioglossus muscle activity in wakefulness, non-REM sleep and REM sleep. The activating effects of histamine on genioglossus muscle activity also occurred with a histamine type-1 (H1) but not H2 receptor agonist. However, H1 receptor antagonism at the hypoglossal motor nucleus did not decrease genioglossus muscle activity in wakefulness or sleep. The results suggest that histamine at the hypoglossal motor pool increases genioglossus muscle activity in freely behaving rats in wakefulness, non-REM, and REM sleep via an H1 receptor mechanism.

  5. Subthalamic nucleus stimulation selectively improves motor and visual memory performance in Parkinson's disease.

    PubMed

    Mollion, Hélène; Dominey, Peter Ford; Broussolle, Emmanuel; Ventre-Dominey, Jocelyne

    2011-09-01

    Although the treatment of Parkinson's disease via subthalamic stimulation yields remarkable improvements in motor symptoms, its effects on memory function are less clear. In this context, we previously demonstrated dissociable effects of levodopa therapy on parkinsonian performance in spatial and nonspatial visual working memory. Here we used the same protocol with an additional, purely motor task to investigate visual memory and motor performance in 2 groups of patients with Parkinson's disease with or without subthalamic stimulation. In each stimulation condition, subjects performed a simple motor task and 3 successive cognitive tasks: 1 conditional color-response association task and 2 visual (spatial and nonspatial) working memory tasks. The Parkinson's groups were compared with a control group of age-matched healthy subjects. Our principal results demonstrated that (1) in the motor task, stimulated patients were significantly improved with respect to nonstimulated patients and did not differ significantly from healthy controls, and (2) in the cognitive tasks, stimulated patients were significantly improved with respect to nonstimulated patients, but both remained significantly impaired when compared with healthy controls. These results demonstrate selective effects of subthalamic stimulation on parkinsonian disorders of motor and visual memory functions, with clear motor improvement for stimulated patients and a partial improvement for their visual memory processing. Copyright © 2011 Movement Disorder Society.

  6. Forces necessary for the disruption of the cisternal segments of cranial nerves II through XII.

    PubMed

    Tubbs, R Shane; Wellons, John C; Blount, Jeffrey P; Salter, E George; Oakes, W Jerry

    2007-04-01

    Manipulation of the cisternal segment of cranial nerves is often performed by the neurosurgeon. To date, attempts at quantifying the forces necessary to disrupt these nerves in situ, to our knowledge, has not been performed. The present study seeks to further elucidate the forces necessary to disrupt the cranial nerves while within the subarachnoid space. The cisternal segments of cranial nerves II through XII were exposed in six unfixed cadavers, all less than 6 hr postmortem. Forces to failure were then measured. Mean forces necessary to disrupt nerves for left sides in increasing order were found for cranial nerves IX, VII, IV, X, XII, III, VIII, XI, VI, V, and II, respectively. Mean forces for right-sided cranial nerves in increasing order were found for cranial nerves IX, VII, IV, X, XII, VIII, V, VI, XI, III, and II, respectively. Overall, cranial nerves requiring the least amount of force prior to failure included cranial nerves IV, VII, and IX. Those requiring the highest amount of force included cranial nerves II, V, VI, and XI. There was an approximately ten-fold difference between the least and greatest forces required to failure. Cranial nerve III was found to require significantly (P < 0.05) greater forces to failure for right versus left sides. To date, the neurosurgeon has had no experimentally derived data from humans for the in situ forces necessary to disrupt the cisternal segment of cranial nerves II through XII. We found that cranial nerve IX consistently took the least amount of force until its failure and cranial nerve II took the greatest. Other cranial nerves that took relatively small amount of force prior to failure included cranial nerves IV and VII. Although in vivo damage can occur prior to failure of a cranial nerve, our data may serve to provide a rough estimation for the maximal amount of tension that can be applied to a cranial nerve that is manipulated while within its cistern.

  7. Gastrointestinal-projecting neurones in the dorsal motor nucleus of the vagus exhibit direct and viscerotopically organized sensitivity to orexin

    PubMed Central

    Grabauskas, Gintautas; Moises, Hylan C

    2003-01-01

    Orexin (hypocretin)-containing projections from lateral hypothalamus (LH) are thought to play an important role in the regulation of feeding behaviour and energy balance. In rodent studies, central administration of orexin peptides increases food intake, and orexin neurones in the LH are activated by hypoglycaemia during fasting. In addition, administration of orexins into the fourth ventricle or the dorsal motor nucleus of the vagus (DMV) has been shown to stimulate gastric acid secretion and motility, respectively, via vagal efferent pathways. In this study, whole-cell recordings were obtained from DMV neurones in rat brainstem slices to investigate the cellular mechanism(s) by which orexins produce their gastrostimulatory effects. To determine whether responsiveness to orexins might be differentially expressed among distinct populations of preganglionic vagal motor neurones, recordings were made from neurones whose projections to the gastrointestinal tract had been identified by retrograde labelling following apposition of the fluorescent tracer DiI to the gastric fundus, corpus or antrum/pylorus, the duodenum or caecum. Additionally, the responses of neurones to orexins were compared with those produced by oxytocin, which acts within the DMV to stimulate gastric acid secretion, but inhibits gastric motor function. Bath application of orexin-A or orexin-B (30–300 nm) produced a slow depolarization, accompanied by increased firing in 47 of 102 DMV neurones tested, including 70 % (30/43) of those that projected to the gastric fundus or corpus. In contrast, few DMV neurones that supplied the antrum/pylorus (3/13), duodenum (4/18) or caecum (1/13) were responsive to these peptides. The depolarizing responses were concentration dependent and persisted during synaptic isolation of neurones with TTX or Cd2+, indicating they resulted from activation of postsynaptic orexin receptors. They were also associated with a small increase in membrane resistance, and in voltage

  8. High-Frequency Stimulation of the Subthalamic Nucleus Activates Motor Cortex Pyramidal Tract Neurons by a Process Involving Local Glutamate, GABA and Dopamine Receptors in Hemi-Parkinsonian Rats.

    PubMed

    Chuang, Chi-Fen; Wu, Chen-Wei; Weng, Ying; Hu, Pei-San; Yeh, Shin-Rung; Chang, Yen-Chung

    2018-04-30

    Deep brain stimulation (DBS) is widely used to treat advanced Parkinson’s disease (PD). Here, we investigated how DBS applied on the subthalamic nucleus (STN) influenced the neural activity in the motor cortex. Rats, which had the midbrain dopaminergic neurons partially depleted unilaterally, called the hemi-Parkinsonian rats, were used as a study model. c-Fos expression in the neurons was used as an indicator of neural activity. Application of high-frequency stimulation (HFS) upon the STN was used to mimic the DBS treatment. The motor cortices in the two hemispheres of hemi-Parkinsonian rats were found to contain unequal densities of c-Fos-positive (Fos+) cells, and STN-HFS rectified this bilateral imbalance. In addition, STN-HFS led to the intense c-Fos expression in a group of motor cortical neurons which exhibited biochemical and anatomical characteristics resembling those of the pyramidal tract (PT) neurons sending efferent projections to the STN. The number of PT neurons expressing high levels of c-Fos was significantly reduced by local application of the antagonists of non-N-methyl-D-aspartate (non-NMDA) glutamate receptors, gammaaminobutyric acid A (GABAA) receptors and dopamine receptors in the upper layers of the motor cortex. The results indicate that the coincident activations of synapses and dopamine receptors in the motor cortex during STN-HFS trigger the intense expression of c-Fos of the PT neurons. The implications of the results on the cellular mechanism underlying the therapeutic effects of STN-DBS on the movement disorders of PD are also discussed.

  9. Opisthorchiasis in infant remains from the medieval Zeleniy Yar burial ground of XII-XIII centuries AD

    PubMed Central

    Slepchenko, Sergey Mikhailovich; Gusev, Alexander Vasilevich; Ivanov, Sergey Nikolaevich; Svyatova, Evgenia Olegovna

    2015-01-01

    We present a paleoparasitological analysis of the medieval Zeleniy Yar burial ground of the XII-XII centuries AD located in the northern part of Western Siberia. Parasite eggs, identified as eggs of Opisthorchis felineus, were found in the samples from the pelvic area of a one year old infant buried at the site. Presence of these eggs in the soil samples from the infant’s abdomen suggests that he/she was infected with opisthorchiasis and imply consumption of undercooked fish. Ethnographic records collected among the population of the northern part of Western Siberia reveal numerous cases of feeding raw fish to their children. Zeleniy Yar case of opisthorchiasis suggests that this dietary custom has persisted from at least medieval times. PMID:26602874

  10. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation

    PubMed Central

    Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger

    2015-01-01

    Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease. PMID:25938462

  11. Photoproduction of lepton pairs in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, B. D.; Goncalves, V. P.; De Santana Amaral, J. T.

    2013-03-25

    In this contribution we study coherent interactions as a probe of the nonlinear effects in the Quantum Electrodynamics (QED). In particular, we study the multiphoton effects in the production of leptons pairs for proton-nucleus and nucleus-nucleus collisions for heavy nuclei. In the proton-nucleus we assume the ultrarelativistic proton as a source of photons and estimate the photoproduction of lepton pairs on nuclei at RHIC and LHC energies considering the multiphoton effects associated to multiple rescattering of the projectile photon on the proton of the nucleus. In nucleus - nucleus colllisions we consider the two nuclei as a source of photons.more » As each scattering contributes with a factor {alpha}Z to the cross section, this contribution must be taken into account for heavy nuclei. We consider the Coulomb corrections to calculate themultiple scatterings and estimate the total cross section for muon and tau pair production in proton-nucleus and nucleus-nucleus collisions at RHIC and LHC energies.« less

  12. Open saccharin-based secondary sulfonamides as potent and selective inhibitors of cancer-related carbonic anhydrase IX and XII isoforms.

    PubMed

    D'Ascenzio, Melissa; Guglielmi, Paolo; Carradori, Simone; Secci, Daniela; Florio, Rosalba; Mollica, Adriano; Ceruso, Mariangela; Akdemir, Atilla; Sobolev, Anatoly P; Supuran, Claudiu T

    2017-12-01

    A large number of novel secondary sulfonamides based on the open saccharin scaffold were synthesized and evaluated as selective inhibitors of four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). They were obtained by reductive ring opening of the newly synthesized N-alkylated saccharin derivatives and were shown to be inactive against the two cytosolic off-target hCA I and II (K i s > 10 µM). Interestingly, these compounds inhibited hCA IX in the low nanomolar range with K i s ranging between 20 and 298 nM and were extremely potent inhibitors of hCA XII isoenzyme (K i s ranging between 4.3 and 432 nM). Since hCA IX and XII are the cancer-related isoforms recently validated as drug targets, these results represent an important goal in the development of new anticancer candidates. Finally, a computational approach has been performed to better correlate the biological data to the binding mode of these inhibitors.

  13. Higgs-boson production in nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  14. Higgs-Boson Production in Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  15. Neuronal Entropy-Rate Feature of Entopeduncular Nucleus in Rat Model of Parkinson's Disease.

    PubMed

    Darbin, Olivier; Jin, Xingxing; Von Wrangel, Christof; Schwabe, Kerstin; Nambu, Atsushi; Naritoku, Dean K; Krauss, Joachim K; Alam, Mesbah

    2016-03-01

    The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus, i.e. the entopeduncular nucleus (EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD). In both control subjects and subjects with 6-OHDA lesion of dopamine (DA) the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15 and 25 Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25 Hz. Our data establishes that the nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions such as movement disorders.

  16. Expression of Sex Steroid Hormone Receptors in Vagal Motor Neurons Innervating the Trachea and Esophagus in Mouse

    PubMed Central

    Mukudai, Shigeyuki; Ichi Matsuda, Ken; Bando, Hideki; Takanami, Keiko; Nishio, Takeshi; Sugiyama, Yoichiro; Hisa, Yasuo; Kawata, Mitsuhiro

    2016-01-01

    The medullary vagal motor nuclei, the nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMV), innervate the respiratory and gastrointestinal tracts. We conducted immunohistochemical analysis of expression of the androgen receptor (AR) and estrogen receptor α (ERα), in relation to innervation of the trachea and esophagus via vagal motor nuclei in mice. AR and ERα were expressed in the rostral NA and in part of the DMV. Tracing experiments using cholera toxin B subunit demonstrated that neurons of vagal motor nuclei that innervate the trachea and esophagus express AR and ERα. There was no difference in expression of sex steroid hormone receptors between trachea- and esophagus-innervating neurons. These results suggest that sex steroid hormones may act on vagal motor nuclei via their receptors, thereby regulating functions of the trachea and esophagus. PMID:27006520

  17. Investigation of a central nucleus of the amygdala/dorsal raphe nucleus serotonergic circuit implicated in fear-potentiated startle.

    PubMed

    Spannuth, B M; Hale, M W; Evans, A K; Lukkes, J L; Campeau, S; Lowry, C A

    2011-04-14

    Serotonergic systems are thought to play an important role in control of motor activity and emotional states. We used a fear-potentiated startle paradigm to investigate the effects of a motor-eliciting stimulus in the presence or absence of induction of an acute fear state on serotonergic neurons in the dorsal raphe nucleus (DR) and cells in subdivisions of the central amygdaloid nucleus (CE), a structure that plays an important role in fear responses, using induction of the protein product of the immediate-early gene, c-Fos. In Experiment 1 we investigated the effects of fear conditioning training, by training rats to associate a light cue (conditioned stimulus, CS; 1000 lx, 2 s) with foot shock (0.5 s, 0.5 mA) in a single session. In Experiment 2 rats were given two training sessions identical to Experiment 1 on days 1 and 2, then tested in one of four conditions on day 3: (1) placement in the training context without exposure to either the CS or acoustic startle (AS), (2) exposure to 10 trials of the 2 s CS, (3) exposure to 40 110 dB AS trials, or (4) exposure to 40 110 dB AS trials with 10 of the trials preceded by and co-terminating with the CS. All treatments were conducted during a 20 min session. Fear conditioning training, by itself, increased c-Fos expression in multiple subdivisions of the CE and throughout the DR. In contrast, fear-potentiated startle selectively increased c-Fos expression in the medial subdivision of the CE and in serotonergic neurons in the dorsal part of the dorsal raphe nucleus (DRD). These data are consistent with previous studies demonstrating that fear-related stimuli selectively activate DRD serotonergic neurons. Further studies of this mesolimbocortical serotonergic system could have important implications for understanding mechanisms underlying vulnerability to stress-related psychiatric disorders, including anxiety and affective disorders. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Investigation of a central nucleus of the amygdala/dorsal raphe nucleus serotonergic circuit implicated in fear-potentiated startle

    PubMed Central

    Spannuth, Benjamin M.; Hale, Matthew W.; Evans, Andrew K.; Lukkes, Jodi L.; Campeau, Serge; Lowry, Christopher A.

    2011-01-01

    Serotonergic systems are thought to play an important role in control of motor activity and emotional states. We used a fear-potentiated startle paradigm to investigate the effects of a motor-eliciting stimulus in the presence or absence of induction of an acute fear state on serotonergic neurons in the dorsal raphe nucleus (DR) and cells in subdivisions of the central amygdaloid nucleus (CE), a structure that plays an important role in fear responses, using induction of the protein product of the immediate-early gene, c-fos. In Experiment 1 we investigated the effects of fear conditioning training, by training rats to associate a light cue (conditioned stimulus, CS; 1000 lx, 2 sec) with foot shock (0.5 s, 0.5 mA) in a single session. In Experiment 2 rats were given two training sessions identical to Experiment 1 on days 1 and 2, then tested in one of four conditions on day 3: 1) placement in the training context without exposure to either the CS or acoustic startle (AS), 2) exposure to 10 trials of the 2 s CS, 3) exposure to 40 110 dB AS trials, or 4) exposure to 40 110 dB AS trials with 10 of the trials preceded by and co-terminating with the CS. All treatments were conducted during a 20 min session. Fear conditioning training, by itself, increased c-Fos expression in multiple subdivisions of the CE and throughout the DR. In contrast, fear-potentiated startle selectively increased c-Fos expression in the medial subdivision of the CE and in serotonergic neurons in the dorsal part of the dorsal raphe nucleus (DRD). These data are consistent with previous studies demonstrating that fear-related stimuli selectively activate DRD serotonergic neurons. Further studies of this mesolimbocortical serotonergic system could have important implications for understanding mechanisms underlying vulnerability to stress-related psychiatric disorders, including anxiety and affective disorders. PMID:21277950

  19. High energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Wosiek, B.

    1986-01-01

    Experimental results on high energy nucleus-nucleus interactions are presented. The data are discussed within the framework of standard super-position models and from the point-of-view of the possible formation of new states of matter in heavy ion collisions.

  20. Stimulation of D2 receptors in the prefrontal cortex reduces PCP-induced hyperactivity, acetylcholine release and dopamine metabolism in the nucleus accumbens.

    PubMed

    Del Arco, A; Mora, F; Mohammed, A H; Fuxe, K

    2007-02-01

    The aim of the present study was to investigate the effects of stimulation of D2 receptors in the prefrontal cortex (PFC) on spontaneous motor activity and the hyperactivity induced by the psychomimetic phencyclidine (PCP). In addition, the effects of prefrontal D2 stimulation under PCP treatment on dialysate concentrations of acetylcholine, choline, dopamine, DOPAC and HVA in the nucleus accumbens were also investigated. Sprague-Dawley male rats were implanted with guide cannulae to perform bilateral injections into the medial PFC of the D2 agonist quinpirole (1.5 and 5 microg/side). Horizontal and vertical spontaneous motor activity and the motor activity induced by systemic injections of the PCP (5 mg/kg i.p.) were monitored in the open field. PFC injections of quinpirole (1.5 and 5 microg/side) significantly decreased horizontal and vertical spontaneous motor activity in a dose-related manner. These effects were blocked by the D2 antagonist raclopride (5 microg/side). Microinjections of quinpirole (1.5 and 5 microg/side) into the PFC also significantly attenuated the hyperactivity produced by PCP (5 mg/kg i.p.). PCP also increased dialysate concentrations of acetylcholine, and dopamine metabolites in the nucleus accumbens. These increases were also reduced by injections of quinpirole (5 microg/side) into the PFC. These results suggest that the stimulation of prefrontal D2 receptors plays an inhibitory role in regulating spontaneous and PCP-induced motor activity and also in the neurochemical changes produced by PCP in the nucleus accumbens.

  1. Projections from Bed Nuclei of the Stria Terminalis, Magnocellular Nucleus: Implications for Cerebral Hemisphere Regulation of Micturition, Defecation, and Penile Erection

    PubMed Central

    DONG, HONG-WEI; SWANSON, LARRY W.

    2008-01-01

    The basic structural organization of axonal projections from the small but distinct magnocellular and ventral nuclei (of the bed nuclei of the stria terminalis) were analyzed with the PHAL anterograde tract tracing method in adult male rats. The former's overall projection pattern is complex, with over 80 distinct terminal fields ipsilateral to injection sites. Innervated regions in the cerebral hemisphere and brainstem fall into 9 general functional categories: cerebral nuclei, behavior control column, orofacial motor-related, humorosensory/thirst-related, brainstem autonomic control network, neuroendocrine, hypothalamic visceromotor pattern generator network, thalamocortical feedback loops, and behavioral state control. The most novel findings indicate that the magnocellular nucleus projects to virtually all known major parts of the brain network that controls pelvic functions including micturition, defecation, and penile erection—as well as to brain networks controlling nutrient and body water homeostasis. This and other evidence suggests that the magnocellular nucleus is part of a cortico-striatopallidal differentiation modulating and coordinating pelvic functions with the maintenance of nutrient and body water homeostasis. Projections of the ventral nucleus are a subset of those generated by the magnocellular nucleus, with the obvious difference that the ventral nucleus does not project detectably to Barrington's nucleus, the subfornical organ, the median preoptic and parastrial nuclei, the neuroendocrine system, and midbrain orofacial motor-related regions. PMID:16304682

  2. Effect of subthalamic nucleus stimulation during exercise on the mesolimbocortical dopaminergic region in Parkinson's disease: a positron emission tomography study.

    PubMed

    Nozaki, Takao; Sugiyama, Kenji; Yagi, Shunsuke; Yoshikawa, Etsuji; Kanno, Toshihiko; Asakawa, Tetsuya; Ito, Tae; Terada, Tatsuhiro; Namba, Hiroki; Ouchi, Yasuomi

    2013-03-01

    To elucidate the dynamic effects of deep brain stimulation (DBS) in the subthalamic nucleus (STN) during activity on the dopaminergic system, 12 PD patients who had STN-DBS operations at least 1 month prior, underwent two positron emission tomography scans during right-foot movement in DBS-off and DBS-on conditions. To quantify motor performance changes, the motion speed and mobility angle of the foot at the ankle were measured twice. Estimations of the binding potential of [(11)C]raclopride (BP(ND)) were based on the Logan plot method. Significant motor recovery was found in the DBS-on condition. The STN-DBS during exercise significantly reduced the [(11)C]raclopride BP(ND) in the caudate and the nucleus accumbens (NA), but not in the dorsal or ventral putamen. The magnitude of dopamine release in the NA correlated negatively with the magnitude of motor load, indicating that STN-DBS facilitated motor behavior more smoothly and at less expense to dopamine neurons in the region. The lack of dopamine release in the putamen and the significant dopamine release in the ventromedial striatum by STN-DBS during exercise indicated dopaminergic activation occurring in the motivational circuit during action, suggesting a compensatory functional activation of the motor loop from the nonmotor to the motor loop system.

  3. The Subthalamic Nucleus, Limbic Function, and Impulse Control.

    PubMed

    Rossi, P Justin; Gunduz, Aysegul; Okun, Michael S

    2015-12-01

    It has been well documented that deep brain stimulation (DBS) of the subthalamic nucleus (STN) to address some of the disabling motor symptoms of Parkinson's disease (PD) can evoke unintended effects, especially on non-motor behavior. This observation has catalyzed more than a decade of research concentrated on establishing trends and identifying potential mechanisms for these non-motor effects. While many issues remain unresolved, the collective result of many research studies and clinical observations has been a general recognition of the role of the STN in mediating limbic function. In particular, the STN has been implicated in impulse control and the related construct of valence processing. A better understanding of STN involvement in these phenomena could have important implications for treating impulse control disorders (ICDs). ICDs affect up to 40% of PD patients on dopamine agonist therapy and approximately 15% of PD patients overall. ICDs have been reported to be associated with STN DBS. In this paper we will focus on impulse control and review pre-clinical, clinical, behavioral, imaging, and electrophysiological studies pertaining to the limbic function of the STN.

  4. Collagen XII and XIV, new partners of cartilage oligomeric matrix protein in the skin extracellular matrix suprastructure.

    PubMed

    Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate

    2012-06-29

    The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone.

  5. Collagen XII and XIV, New Partners of Cartilage Oligomeric Matrix Protein in the Skin Extracellular Matrix Suprastructure*

    PubMed Central

    Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R.; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate

    2012-01-01

    The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone. PMID:22573329

  6. Dorsal raphe nucleus projecting retinal ganglion cells: Why Y cells?

    PubMed Central

    Pickard, Gary E.; So, Kwok-Fai; Pu, Mingliang

    2015-01-01

    Retinal ganglion Y (alpha) cells are found in retinas ranging from frogs to mice to primates. The highly conserved nature of the large, fast conducting retinal Y cell is a testament to its fundamental task, although precisely what this task is remained ill-defined. The recent discovery that Y-alpha retinal ganglion cells send axon collaterals to the serotonergic dorsal raphe nucleus (DRN) in addition to the lateral geniculate nucleus (LGN), medial interlaminar nucleus (MIN), pretectum and the superior colliculus (SC) has offered new insights into the important survival tasks performed by these cells with highly branched axons. We propose that in addition to its role in visual perception, the Y-alpha retinal ganglion cell provides concurrent signals via axon collaterals to the DRN, the major source of serotonergic afferents to the forebrain, to dramatically inhibit 5-HT activity during orientation or alerting/escape responses, which dis-facilitates ongoing tonic motor activity while dis-inhibiting sensory information processing throughout the visual system. The new data provide a fresh view of these evolutionarily old retinal ganglion cells. PMID:26363667

  7. An autoradiographic analysis of the cortical connections of the pallidal and cerebellar zones within the feline motor thalamus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wensel, J.P.

    1989-01-01

    The feline motor thalamus relays both basal ganglia and cerebellar inputs to the motor cortex. This complex is classically subdivided into three nuclei: the ventroanterior nucleus (VA), the ventrolateral nucleus (VL), and the ventromedial nucleus (VM). Poor correlation between recognized patterns of cortical and subcortical connectivity and traditional boundaries used to distinguish these nuclei complicate the elucidation of the role they play in the elaboration of motor behavior. The recent demonstration of complementarity for the pallidothalamic and dentatothalamic projections to the motor thalamus of the cat provided the foundation for a revision of these nuclear borders to reflect differences inmore » subcortical connectivity. Using a revised topography, this study analyzed the afferent and efferent connections of the feline VA and VL through the application of both anterograde and retrograde tracing techniques. The extent of the cerebellothalamic projection, as revealed by the bidirectional transport of WGA-HRP, was used to demarcate the boundary between VA and VL. Injections of tritiated amino acids into VA and VL allowed for the autoradiographic tracing of their cortical projections. Autoradiography was also used to demonstrate the distributions of corticothalamic projections from selected pericruciate and posterior parietal subfields to the motor thalamus.« less

  8. Deep brain stimulation for Parkinson's disease: defining the optimal location within the subthalamic nucleus.

    PubMed

    Bot, Maarten; Schuurman, P Richard; Odekerken, Vincent J J; Verhagen, Rens; Contarino, Fiorella Maria; De Bie, Rob M A; van den Munckhof, Pepijn

    2018-05-01

    Individual motor improvement after deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease (PD) varies considerably. Stereotactic targeting of the dorsolateral sensorimotor part of the STN is considered paramount for maximising effectiveness, but studies employing the midcommissural point (MCP) as anatomical reference failed to show correlation between DBS location and motor improvement. The medial border of the STN as reference may provide better insight in the relationship between DBS location and clinical outcome. Motor improvement after 12 months of 65 STN DBS electrodes was categorised into non-responding, responding and optimally responding body-sides. Stereotactic coordinates of optimal electrode contacts relative to both medial STN border and MCP served to define theoretic DBS 'hotspots'. Using the medial STN border as reference, significant negative correlation (Pearson's correlation -0.52, P<0.01) was found between the Euclidean distance from the centre of stimulation to this DBS hotspot and motor improvement. This hotspot was located at 2.8 mm lateral, 1.7 mm anterior and 2.5 mm superior relative to the medial STN border. Using MCP as reference, no correlation was found. The medial STN border proved superior compared with MCP as anatomical reference for correlation of DBS location and motor improvement, and enabled defining an optimal DBS location within the nucleus. We therefore propose the medial STN border as a better individual reference point than the currently used MCP on preoperative stereotactic imaging, in order to obtain optimal and thus less variable motor improvement for individual patients with PD following STN DBS. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Neuropeptide Y and peptide YY inhibit excitatory synaptic transmission in the rat dorsal motor nucleus of the vagus

    PubMed Central

    Browning, Kirsteen N; Travagli, R Alberto

    2003-01-01

    Pancreatic polypeptides (PPs) such as neuropeptide Y (NPY) and peptide YY (PYY) exert profound, vagally mediated effects on gastrointestinal (GI) motility and secretion. Whole-cell patch clamp recordings were made from brainstem slices containing identified GI-projecting rat dorsal motor nucleus of the vagus (DMV) neurons to determine the mechanism of action of PPs. Electrical stimulation of nucleus tractus solitarii (NTS) induced excitatory postsynaptic currents (EPSCs) that were reduced in a concentration-dependent manner by NPY and PYY (both at 0.1–300 nm) in 65 % of the neurons. An increase in the paired-pulse ratio without changes in the postsynaptic membrane input resistance or EPSC rise and decay time suggested that the effects of PPs on EPSCs were due to actions at presynaptic receptors. The Y1 and Y2 receptor selective agonists [Leu31,Pro34]NPY and NPY(3–36) (both at 100 nm) mimicked the inhibition of NPY and PYY on the EPSC amplitude. The effects of 100 nm NPY, but not PYY, were antagonized partially by the Y1 receptor selective antagonist BIBP3226 (0.1 μm). In addition, the inhibition of the EPSC amplitude induced by NPY, but not PYY, was attenuated partially by pretreatment with the α2 adrenoceptor antagonist yohimbine (10 μm), and occluded partially by the α2 adrenoceptor agonist UK14,304 (10 μm) as well as by pretreatment with reserpine. Pretreatment with a combination of BIBP3226 and yohimbine almost completely antagonized the NPY-mediated effects on EPSCs. Contrary to the inhibition of EPSCs, perfusion with PPs had no effect on the amplitude of inhibitory postsynaptic currents (IPSCs) and a minimal effect on a minority of DMV neurons. Differences in the receptor subtypes utilized and in the mechanism of action of NPY and PYY may indicate functional differences in their roles within the circuitry of the dorsal vagal complex (DVC). PMID:12730340

  10. GFAP immunoreactivity within the rat nucleus ambiguus after laryngeal nerve injury

    PubMed Central

    Berdugo-Vega, G; Arias-Gil, G; Rodriguez-Niedenführ, M; Davies, D C; Vázquez, T; Pascual-Font, A

    2014-01-01

    Changes that occur in astroglial populations of the nucleus ambiguus after recurrent (RLN) or superior (SLN) laryngeal nerve injury have hitherto not been fully characterised. In the present study, rat RLN and SLN were lesioned. After 3, 7, 14, 28 or 56 days of survival, the nucleus ambiguus was investigated by means of glial fibrillary acidic protein (GFAP) immunofluorescence or a combination of GFAP immunofluorescence and the application of retrograde tracers. GFAP immunoreactivity was significantly increased 3 days after RLN resection and it remained significantly elevated until after 28 days post injury (dpi). By 56 dpi it had returned to basal levels. In contrast, following RLN transection with repair, GFAP immunoreactivity was significantly elevated at 7 dpi and remained significantly elevated until 14 dpi. It had returned to basal levels by 28 dpi. Topographical analysis of the distribution of GFAP immunoreactivity revealed that after RLN injury, GFAP immunoreactivity was increased beyond the area of the nucleus ambiguus within which RLN motor neuron somata were located. GFAP immunoreactivity was also observed in the vicinity of neuronal somata that project into the uninjured SLN. Similarly, lesion of the SLN resulted in increased GFAP immunoreactivity around the neuronal somata projecting into it and also in the vicinity of the motor neuron somata projecting into the RLN. The increase in GFAP immunoreactivity outside of the region containing the motor neurons projecting into the injured nerve, may reflect the onset of a regenerative process attempting to compensate for impairment of one of the laryngeal nerves and may occur because of the dual innervation of the posterior cricoarytenoid muscle. This dual innervation of a very specialised muscle could provide a useful model system for studying the molecular mechanisms underlying axonal regeneration process and the results of the current study could provide the basis for studies into functional regeneration

  11. Central Topography of Cranial Motor Nuclei Controlled by Differential Cadherin Expression

    PubMed Central

    Astick, Marc; Tubby, Kristina; Mubarak, Waleed M.; Guthrie, Sarah; Price, Stephen R.

    2014-01-01

    Summary Neuronal nuclei are prominent, evolutionarily conserved features of vertebrate central nervous system (CNS) organization [1]. Nuclei are clusters of soma of functionally related neurons and are located in highly stereotyped positions. Establishment of this CNS topography is critical to neural circuit assembly. However, little is known of either the cellular or molecular mechanisms that drive nucleus formation during development, a process termed nucleogenesis [2–5]. Brainstem motor neurons, which contribute axons to distinct cranial nerves and whose functions are essential to vertebrate survival, are organized exclusively as nuclei. Cranial motor nuclei are composed of two main classes, termed branchiomotor/visceromotor and somatomotor [6]. Each of these classes innervates evolutionarily distinct structures, for example, the branchial arches and eyes, respectively. Additionally, each class is generated by distinct progenitor cell populations and is defined by differential transcription factor expression [7, 8]; for example, Hb9 distinguishes somatomotor from branchiomotor neurons. We characterized the time course of cranial motornucleogenesis, finding that despite differences in cellular origin, segregation of branchiomotor and somatomotor nuclei occurs actively, passing through a phase of each being intermingled. We also found that differential expression of cadherin cell adhesion family members uniquely defines each motor nucleus. We show that cadherin expression is critical to nucleogenesis as its perturbation degrades nucleus topography predictably. PMID:25308074

  12. The basilar pontine nuclei and the nucleus reticularis tegmenti pontis subserve distinct cerebrocerebellar pathways.

    PubMed

    Cicirata, Federico; Serapide, Maria Francesca; Parenti, Rosalba; Pantò, Maria Rosita; Zappalà, Agata; Nicotra, Annalisa; Cicero, Deborah

    2005-01-01

    Previous studies often considered the basilar pontine nuclei (BPN) and the nucleus reticularis tegmenti pontis (NRTP) as relays of a single cerebro-(ponto)-cerebellar pathway. Conversely, the different cortical afferences to the BPN and the NRTP, as well as the anatomical and functional features of the cerebellopetal projections from these pontine nuclei, support the different, and for some aspect, complementary arrangement of the cerebrocerebellar pathways relayed by the BPN or NRTP. Both the BPN and the NRTP are innervated from the cerebral cortex, but with regional prevalence. The NRTP is principally innervated from motor or sensori-motor areas while the BPN are principally innervated from sensory, mainly teloceptive, and associative area. Projections from sensory-motor areas were also traced to the BPN. The BPN and NRTP project to all parts of the cerebellar cortex with a similar pattern. In fact, from single areas of them projections were traced to set of sagittal stripes of the cerebellar cortex. In variance to such analogies, the projections to the cerebellar nuclei differed between those traced from the NRTP and from BPN. In fact, BPN and NRTP have private terminal areas in the cerebellar nuclei with relatively little overlaps. The BPN innervated the lateroventral part of the nucleus lateralis and the caudoventral aspect of the nucleus interpositalis posterioris. The NRTP principally innervated the mediodorsal part of the nucleus lateralis, the nucleus interpositalis anterioris, the nucleus medialis. Since the single cerebellar nuclei have their specific targets in the extracerebellar brain areas, it follows that the BPN and the NRTP, passing through their cerebellar nuclei relays, are devoted to control different brain areas and thus likely to play different functional roles. From single pontine regions (of both BPN and NRTP) projections were traced to the cerebellar cortex and to the cerebellar nuclei. In some cases these projections reached areas which

  13. Projections of the optic tectum and the mesencephalic nucleus of the trigeminal nerve in the tegu lizard (Tupinambis nigropunctatus).

    PubMed

    Ebbesson, S O

    1981-01-01

    Fibers undergoing Wallerian degeneration following tectal lesions were demonstrated with the Nauta and Fink-Heimer methods and traced to their termination. Four of the five distinct fiber paths originating in the optic tectum appear related to vision, while one is related to the mesencephalic nucleus of the trigeminus. The latter component of the tectal efferents distributes fibers to 1) the main sensory nucleus of the trigeminus, 2) the motor nucleus of the trigeminus, 3) the nucleus of tractus solitarius, and 4) the intermediate gray of the cervical spinal cord. The principal ascending bundle projects to the nucleus rotundus, three components of the ventral geniculate nucleus and the nucleus ventromedialis anterior ipsilaterally, before it crosses in the supraoptic commissure and terminates in the contralateral nucleus rotundus, ventral geniculate nucleus and a hitherto unnamed region dorsal to the nucleus of the posterior accessory optic tract. Fibers leaving the tectum dorso-medially terminate in the posterodorsal nucleus ipsilaterally and the stratum griseum periventriculare of the contralateral tectum. The descending fiber paths terminate in medial reticular cell groups and the rostral spinal cord contralaterally and in the torus and the lateral reticular regions ipsilaterally. The ipsilateral fascicle also issues fibers to the magnocellular nucleus isthmi.

  14. Structural and functional abnormalities of the motor system in developmental stuttering

    PubMed Central

    Watkins, Kate E.; Smith, Stephen M.; Davis, Steve; Howell, Peter

    2007-01-01

    Summary Though stuttering is manifest in its motor characteristics, the cause of stuttering may not relate purely to impairments in the motor system as stuttering frequency is increased by linguistic factors, such as syntactic complexity and length of utterance, and decreased by changes in perception, such as masking or altering auditory feedback. Using functional and diffusion imaging, we examined brain structure and function in the motor and language areas in a group of young people who stutter. During speech production, irrespective of fluency or auditory feedback, the people who stuttered showed overactivity relative to controls in the anterior insula, cerebellum and midbrain bilaterally and underactivity in the ventral premotor, Rolandic opercular and sensorimotor cortex bilaterally and Heschl’s gyrus on the left. These results are consistent with a recent meta-analysis of functional imaging studies in developmental stuttering. Two additional findings emerged from our study. First, we found overactivity in the midbrain, which was at the level of the substantia nigra and extended to the pedunculopontine nucleus, red nucleus and subthalamic nucleus. This overactivity is consistent with suggestions in previous studies of abnormal function of the basal ganglia or excessive dopamine in people who stutter. Second, we found underactivity of the cortical motor and premotor areas associated with articulation and speech production. Analysis of the diffusion data revealed that the integrity of the white matter underlying the underactive areas in ventral premotor cortex was reduced in people who stutter. The white matter tracts in this area via connections with posterior superior temporal and inferior parietal cortex provide a substrate for the integration of articulatory planning and sensory feedback, and via connections with primary motor cortex, a substrate for execution of articulatory movements. Our data support the conclusion that stuttering is a disorder related

  15. Structural and functional abnormalities of the motor system in developmental stuttering.

    PubMed

    Watkins, Kate E; Smith, Stephen M; Davis, Steve; Howell, Peter

    2008-01-01

    Though stuttering is manifest in its motor characteristics, the cause of stuttering may not relate purely to impairments in the motor system as stuttering frequency is increased by linguistic factors, such as syntactic complexity and length of utterance, and decreased by changes in perception, such as masking or altering auditory feedback. Using functional and diffusion imaging, we examined brain structure and function in the motor and language areas in a group of young people who stutter. During speech production, irrespective of fluency or auditory feedback, the people who stuttered showed overactivity relative to controls in the anterior insula, cerebellum and midbrain bilaterally and underactivity in the ventral premotor, Rolandic opercular and sensorimotor cortex bilaterally and Heschl's gyrus on the left. These results are consistent with a recent meta-analysis of functional imaging studies in developmental stuttering. Two additional findings emerged from our study. First, we found overactivity in the midbrain, which was at the level of the substantia nigra and extended to the pedunculopontine nucleus, red nucleus and subthalamic nucleus. This overactivity is consistent with suggestions in previous studies of abnormal function of the basal ganglia or excessive dopamine in people who stutter. Second, we found underactivity of the cortical motor and premotor areas associated with articulation and speech production. Analysis of the diffusion data revealed that the integrity of the white matter underlying the underactive areas in ventral premotor cortex was reduced in people who stutter. The white matter tracts in this area via connections with posterior superior temporal and inferior parietal cortex provide a substrate for the integration of articulatory planning and sensory feedback, and via connections with primary motor cortex, a substrate for execution of articulatory movements. Our data support the conclusion that stuttering is a disorder related primarily

  16. FOREWORD: The 12th International Workshop on Desorption Induced by Electronic Transitions (DIET XII) (Pine Mountain, Georgia, USA, 19-23 April 2009) The 12th International Workshop on Desorption Induced by Electronic Transitions (DIET XII) (Pine Mountain, Georgia, USA, 19-23 April 2009)

    NASA Astrophysics Data System (ADS)

    Orlando, Thomas M.; Diebold, Ulrike

    2010-03-01

    The 12th International Workshop on Desorption Induced by Electronic Transitions (DIET XII) took place from 19-23 April 2009 in Pine Mountain, Georgia, USA. This was the 12th conference in a strong and vibrant series, which dates back to the early 1980s. DIET XII continued the tradition of exceptional interdisciplinary science and focused on the study of desorption and dynamics induced by electronic excitations of surfaces and interfaces. The format involved invited lectures, contributed talks and a poster session on the most recent developments and advances in this area of surface physics. The Workshop International Steering Committee and attendees wish to dedicate DIET XII to the memory of the late Professor Theodore (Ted) Madey. Ted was one of the main pioneers of this field and was one of the primary individuals working to keep this area of science exciting and adventurous. His overall contributions to surface science were countless and his contributions to the DIET field and community were enormous. He is missed and remembered by many friends and colleagues throughout the world. The papers collected in this issue cover many of the highlights of DIET XII. Topics include ultrafast electron transfer at surfaces and interfaces, quantum and spatially resolved mapping of surface dynamics and desorption, photon-, electron- and ion-beam induced processes at complex interfaces, the role of non-thermal desorption in astrochemistry and astrophysics and laser-/ion-based methods of examining soft matter and biological media. Although the workshop attracted many scientists active in the general area of non-thermal surface processes, DIET XII also attracted many younger scientists (i.e., postdoctoral fellows, advanced graduate students, and a select number of advanced undergraduate students). This field has had an impact in a number of areas including nanoscience, device physics, astrophysics, and now biophysics. We believe that this special issue of Journal of Physics

  17. Coalescence Effects on Neutron Production in High Energy Nucleus-Nucleus Collisions

    DTIC Science & Technology

    2001-08-01

    25/Jun/2001 THESIS 1 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER COALESCENCE EFFECTS ON NEUTRON PRODUCTION IN HIGH- ENERGY NUCLEUS-NUCLEUS COLLISIONS 5b... Energy Nucleus-Nucleus Collisions." I have examined the final copy of this thesis for form and content and recommend that it be accepted in partial...School COALESCENCE EFFECTS ON NEUTRON PRODUCTION IN HIGH ENERGY NUCLEUS-NUCLEUS COLLISIONS A Thesis Presented for the Master of Science Degree The

  18. Aberrant Hyperconnectivity in the Motor System at Rest Is Linked to Motor Abnormalities in Schizophrenia Spectrum Disorders.

    PubMed

    Walther, Sebastian; Stegmayer, Katharina; Federspiel, Andrea; Bohlhalter, Stephan; Wiest, Roland; Viher, Petra V

    2017-09-01

    Motor abnormalities are frequently observed in schizophrenia and structural alterations of the motor system have been reported. The association of aberrant motor network function, however, has not been tested. We hypothesized that abnormal functional connectivity would be related to the degree of motor abnormalities in schizophrenia. In 90 subjects (46 patients) we obtained resting stated functional magnetic resonance imaging (fMRI) for 8 minutes 40 seconds at 3T. Participants further completed a motor battery on the scanning day. Regions of interest (ROI) were cortical motor areas, basal ganglia, thalamus and motor cerebellum. We computed ROI-to-ROI functional connectivity. Principal component analyses of motor behavioral data produced 4 factors (primary motor, catatonia and dyskinesia, coordination, and spontaneous motor activity). Motor factors were correlated with connectivity values. Schizophrenia was characterized by hyperconnectivity in 3 main areas: motor cortices to thalamus, motor cortices to cerebellum, and prefrontal cortex to the subthalamic nucleus. In patients, thalamocortical hyperconnectivity was linked to catatonia and dyskinesia, whereas aberrant connectivity between rostral anterior cingulate and caudate was linked to the primary motor factor. Likewise, connectivity between motor cortex and cerebellum correlated with spontaneous motor activity. Therefore, altered functional connectivity suggests a specific intrinsic and tonic neural abnormality in the motor system in schizophrenia. Furthermore, altered neural activity at rest was linked to motor abnormalities on the behavioral level. Thus, aberrant resting state connectivity may indicate a system out of balance, which produces characteristic behavioral alterations. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Cerebellum and Ocular Motor Control

    PubMed Central

    Kheradmand, Amir; Zee, David S.

    2011-01-01

    An intact cerebellum is a prerequisite for optimal ocular motor performance. The cerebellum fine-tunes each of the subtypes of eye movements so they work together to bring and maintain images of objects of interest on the fovea. Here we review the major aspects of the contribution of the cerebellum to ocular motor control. The approach will be based on structural–functional correlation, combining the effects of lesions and the results from physiologic studies, with the emphasis on the cerebellar regions known to be most closely related to ocular motor function: (1) the flocculus/paraflocculus for high-frequency (brief) vestibular responses, sustained pursuit eye movements, and gaze holding, (2) the nodulus/ventral uvula for low-frequency (sustained) vestibular responses, and (3) the dorsal oculomotor vermis and its target in the posterior portion of the fastigial nucleus (the fastigial oculomotor region) for saccades and pursuit initiation. PMID:21909334

  20. Nigral stimulation for resistant axial motor impairment in Parkinson's disease? A randomized controlled trial.

    PubMed

    Weiss, Daniel; Walach, Margarete; Meisner, Christoph; Fritz, Melanie; Scholten, Marlieke; Breit, Sorin; Plewnia, Christian; Bender, Benjamin; Gharabaghi, Alireza; Wächter, Tobias; Krüger, Rejko

    2013-07-01

    Gait and balance disturbances typically emerge in advanced Parkinson's disease with generally limited response to dopaminergic medication and subthalamic nucleus deep brain stimulation. Therefore, advanced programming with interleaved pulses was put forward to introduce concomittant nigral stimulation on caudal contacts of a subthalamic lead. Here, we hypothesized that the combined stimulation of subthalamic nucleus and substantia nigra pars reticulata improves axial symptoms compared with standard subthalamic nucleus stimulation. Twelve patients were enrolled in this 2 × 2 cross-over double-blind randomized controlled clinical trial and both the safety and efficacy of combined subthalamic nucleus and substantia nigra pars reticulata stimulation were evaluated compared with standard subthalamic nucleus stimulation. The primary outcome measure was the change of a broad-scaled cumulative axial Unified Parkinson's Disease Rating Scale score (Scale II items 13-15, Scale III items 27-31) at '3-week follow-up'. Secondary outcome measures specifically addressed freezing of gait, balance, quality of life, non-motor symptoms and neuropsychiatric symptoms. For the primary outcome measure no statistically significant improvement was observed for combined subthalamic nucleus and substantia nigra pars reticulata stimulation at the '3-week follow-up'. The secondary endpoints, however, revealed that the combined stimulation of subthalamic nucleus and substantia nigra pars reticulata might specifically improve freezing of gait, whereas balance impairment remained unchanged. The combined stimulation of subthalamic nucleus and substantia nigra pars reticulata was safe, and of note, no clinically relevant neuropsychiatric adverse effect was observed. Patients treated with subthalamic nucleus and substantia nigra pars reticulata stimulation revealed no 'global' effect on axial motor domains. However, this study opens the perspective that concomittant stimulation of the substantia

  1. Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System

    PubMed Central

    Gennaro, Mariangela; Mattiello, Alessandro; Mazziotti, Raffaele; Antonelli, Camilla; Gherardini, Lisa; Guzzetta, Andrea; Berardi, Nicoletta; Cioni, Giovanni; Pizzorusso, Tommaso

    2017-01-01

    Motor system development is characterized by an activity-dependent competition between ipsilateral and contralateral corticospinal tracts (CST). Clinical evidence suggests that age is crucial for developmental stroke outcome, with early lesions inducing a “maladaptive” strengthening of ipsilateral projections from the healthy hemisphere and worse motor impairment. Here, we investigated in developing rats the relation between lesion timing, motor outcome and CST remodeling pattern. We induced a focal ischemia into forelimb motor cortex (fM1) at two distinct pre-weaning ages: P14 and P21. We compared long-term motor outcome with changes in axonal sprouting of contralesional CST at red nucleus and spinal cord level using anterograde tracing. We found that P14 stroke caused a more severe long-term motor impairment than at P21, and induced a strong and aberrant contralesional CST sprouting onto denervated spinal cord and red nucleus. The mistargeted sprouting of CST, and the worse motor outcome of the P14 stroke rats were reversed by an early skilled motor training, underscoring the potential of early activity-dependent plasticity in modulating lesion outcome. Thus, changes in the mechanisms controlling CST plasticity occurring during the third postnatal week are associated with age-dependent regulation of the motor outcome after stroke. PMID:28706475

  2. Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System.

    PubMed

    Gennaro, Mariangela; Mattiello, Alessandro; Mazziotti, Raffaele; Antonelli, Camilla; Gherardini, Lisa; Guzzetta, Andrea; Berardi, Nicoletta; Cioni, Giovanni; Pizzorusso, Tommaso

    2017-01-01

    Motor system development is characterized by an activity-dependent competition between ipsilateral and contralateral corticospinal tracts (CST). Clinical evidence suggests that age is crucial for developmental stroke outcome, with early lesions inducing a "maladaptive" strengthening of ipsilateral projections from the healthy hemisphere and worse motor impairment. Here, we investigated in developing rats the relation between lesion timing, motor outcome and CST remodeling pattern. We induced a focal ischemia into forelimb motor cortex (fM1) at two distinct pre-weaning ages: P14 and P21. We compared long-term motor outcome with changes in axonal sprouting of contralesional CST at red nucleus and spinal cord level using anterograde tracing. We found that P14 stroke caused a more severe long-term motor impairment than at P21, and induced a strong and aberrant contralesional CST sprouting onto denervated spinal cord and red nucleus. The mistargeted sprouting of CST, and the worse motor outcome of the P14 stroke rats were reversed by an early skilled motor training, underscoring the potential of early activity-dependent plasticity in modulating lesion outcome. Thus, changes in the mechanisms controlling CST plasticity occurring during the third postnatal week are associated with age-dependent regulation of the motor outcome after stroke.

  3. Subthalamic nucleus gamma activity increases not only during movement but also during movement inhibition

    PubMed Central

    Fischer, Petra; Pogosyan, Alek; Herz, Damian M; Cheeran, Binith; Green, Alexander L; Fitzgerald, James; Aziz, Tipu Z; Hyam, Jonathan; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter; Tan, Huiling

    2017-01-01

    Gamma activity in the subthalamic nucleus (STN) is widely viewed as a pro-kinetic rhythm. Here we test the hypothesis that rather than being specifically linked to movement execution, gamma activity reflects dynamic processing in this nucleus. We investigated the role of gamma during fast stopping and recorded scalp electroencephalogram and local field potentials from deep brain stimulation electrodes in 9 Parkinson’s disease patients. Patients interrupted finger tapping (paced by a metronome) in response to a stop-signal sound, which was timed such that successful stopping would occur only in ~50% of all trials. STN gamma (60–90 Hz) increased most strongly when the tap was successfully stopped, whereas phase-based connectivity between the contralateral STN and motor cortex decreased. Beta or theta power seemed less directly related to stopping. In summary, STN gamma activity may support flexible motor control as it did not only increase during movement execution but also during rapid action-stopping. DOI: http://dx.doi.org/10.7554/eLife.23947.001 PMID:28742498

  4. Benzenesulfonamide bearing 1,2,4-triazole scaffolds as potent inhibitors of tumor associated carbonic anhydrase isoforms hCA IX and hCA XII.

    PubMed

    SitaRam; Celik, Gulsah; Khloya, Poonam; Vullo, Daniela; Supuran, Claudiu T; Sharma, Pawan K

    2014-03-15

    Three series of novel heterocyclic compounds (3a-3g, 4a-4g and 5a-5g) containing benzenesulfonamide moiety and incorporating a 1,2,4-triazole ring, have been synthesized and investigated as inhibitors against four isomers of the α-class carbonic anhydrases (CAs, EC 4.2.1.1), comprising hCAs I and II (cytosolic, ubiquitous isozymes) and hCAs IX and XII (transmembrane, tumor associated isozymes). Against the human isozymes hCA I and II, compounds of two series (3a-3g and 4a-4g) showed Ki values in the range of 84-868 nM and 5.6-390 nM, respectively whereas compounds of series 5a-5g were found to be poor inhibitors (Ki values exceeding 10,000 nM in some cases). Against hCA IX and XII, all the tested compounds exhibited excellent to moderate inhibitory potential with Ki values in the range of 2.8-431 nM and 1.3-63 nM, respectively. Compounds 3d, 3f and 4f exhibited excellent inhibitory potential against all of the four isozymes hCA I, II, IX and XII, even better than the standard drug acetazolamide (AZA) whereas compound of the series 5a-5g were comparatively less potent but more selective towards hCA IX and XII. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons

    PubMed Central

    Machado, Carolina Barcellos; Kanning, Kevin C.; Kreis, Patricia; Stevenson, Danielle; Crossley, Martin; Nowak, Magdalena; Iacovino, Michelina; Kyba, Michael; Chambers, David; Blanc, Eric; Lieberam, Ivo

    2014-01-01

    Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations. PMID:24496616

  6. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.

    PubMed

    Machado, Carolina Barcellos; Kanning, Kevin C; Kreis, Patricia; Stevenson, Danielle; Crossley, Martin; Nowak, Magdalena; Iacovino, Michelina; Kyba, Michael; Chambers, David; Blanc, Eric; Lieberam, Ivo

    2014-02-01

    Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations.

  7. A Primary Role for Nucleus Accumbens and Related Limbic Network in Vocal Tics.

    PubMed

    McCairn, Kevin W; Nagai, Yuji; Hori, Yukiko; Ninomiya, Taihei; Kikuchi, Erika; Lee, Ju-Young; Suhara, Tetsuya; Iriki, Atsushi; Minamimoto, Takafumi; Takada, Masahiko; Isoda, Masaki; Matsumoto, Masayuki

    2016-01-20

    Inappropriate vocal expressions, e.g., vocal tics in Tourette syndrome, severely impact quality of life. Neural mechanisms underlying vocal tics remain unexplored because no established animal model representing the condition exists. We report that unilateral disinhibition of the nucleus accumbens (NAc) generates vocal tics in monkeys. Whole-brain PET imaging identified prominent, bilateral limbic cortico-subcortical activation. Local field potentials (LFPs) developed abnormal spikes in the NAc and the anterior cingulate cortex (ACC). Vocalization could occur without obvious LFP spikes, however, when phase-phase coupling of alpha oscillations were accentuated between the NAc, ACC, and the primary motor cortex. These findings contrasted with myoclonic motor tics induced by disinhibition of the dorsolateral putamen, where PET activity was confined to the ipsilateral sensorimotor system and LFP spikes always preceded motor tics. We propose that vocal tics emerge as a consequence of dysrhythmic alpha coupling between critical nodes in the limbic and motor networks. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial

    PubMed Central

    Walach, Margarete; Meisner, Christoph; Fritz, Melanie; Scholten, Marlieke; Breit, Sorin; Plewnia, Christian; Bender, Benjamin; Gharabaghi, Alireza; Wächter, Tobias

    2013-01-01

    Gait and balance disturbances typically emerge in advanced Parkinson’s disease with generally limited response to dopaminergic medication and subthalamic nucleus deep brain stimulation. Therefore, advanced programming with interleaved pulses was put forward to introduce concomittant nigral stimulation on caudal contacts of a subthalamic lead. Here, we hypothesized that the combined stimulation of subthalamic nucleus and substantia nigra pars reticulata improves axial symptoms compared with standard subthalamic nucleus stimulation. Twelve patients were enrolled in this 2 × 2 cross-over double-blind randomized controlled clinical trial and both the safety and efficacy of combined subthalamic nucleus and substantia nigra pars reticulata stimulation were evaluated compared with standard subthalamic nucleus stimulation. The primary outcome measure was the change of a broad-scaled cumulative axial Unified Parkinson’s Disease Rating Scale score (Scale II items 13–15, Scale III items 27–31) at ‘3-week follow-up’. Secondary outcome measures specifically addressed freezing of gait, balance, quality of life, non-motor symptoms and neuropsychiatric symptoms. For the primary outcome measure no statistically significant improvement was observed for combined subthalamic nucleus and substantia nigra pars reticulata stimulation at the ‘3-week follow-up’. The secondary endpoints, however, revealed that the combined stimulation of subthalamic nucleus and substantia nigra pars reticulata might specifically improve freezing of gait, whereas balance impairment remained unchanged. The combined stimulation of subthalamic nucleus and substantia nigra pars reticulata was safe, and of note, no clinically relevant neuropsychiatric adverse effect was observed. Patients treated with subthalamic nucleus and substantia nigra pars reticulata stimulation revealed no ‘global’ effect on axial motor domains. However, this study opens the perspective that concomittant stimulation

  9. Specific nuclear localizing sequence directs two myosin isoforms to the cell nucleus in calmodulin-sensitive manner.

    PubMed

    Dzijak, Rastislav; Yildirim, Sukriye; Kahle, Michal; Novák, Petr; Hnilicová, Jarmila; Venit, Tomáš; Hozák, Pavel

    2012-01-01

    Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the "cytoplasmic" myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. We have shown that the novel specific NLS brings to the cell nucleus not only the "nuclear" isoform of myosin I (NM1 protein) but also its "cytoplasmic" isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus.

  10. Specific Nuclear Localizing Sequence Directs Two Myosin Isoforms to the Cell Nucleus in Calmodulin-Sensitive Manner

    PubMed Central

    Dzijak, Rastislav; Yildirim, Sukriye; Kahle, Michal; Novák, Petr; Hnilicová, Jarmila; Venit, Tomáš; Hozák, Pavel

    2012-01-01

    Background Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the “cytoplasmic” myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. Methodology/Principal Findings We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. Conclusions/Significance We have shown that the novel specific NLS brings to the cell nucleus not only the “nuclear” isoform of myosin I (NM1 protein) but also its “cytoplasmic” isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus. PMID:22295092

  11. Heavy metals in locus ceruleus and motor neurons in motor neuron disease.

    PubMed

    Pamphlett, Roger; Kum Jew, Stephen

    2013-12-12

    The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons.

  12. Heavy metals in locus ceruleus and motor neurons in motor neuron disease

    PubMed Central

    2013-01-01

    Background The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Results Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Conclusions Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons. PMID:24330485

  13. Subthalamic Nucleus Stimulation Modulates Motor Cortex Oscillatory Activity in Parkinson's Disease

    ERIC Educational Resources Information Center

    Devos, D.; Labyt, E.; Derambure, P.; Bourriez, J. L.; Cassim, F.; Reyns, N.; Blond, S.; Guieu, J. D.; Destee, A.; Defebvre, L.

    2004-01-01

    In Parkinson's disease, impaired motor preparation has been related to an increased latency in the appearance of movement-related desynchronization (MRD) throughout the contralateral primary sensorimotor (PSM) cortex. Internal globus pallidus (GPi) stimulation improved movement desynchronization over the PSM cortex during movement execution but…

  14. The effect of dopamine receptor blockade in the rodent nucleus accumbens on local field potential oscillations and motor activity in response to ketamine.

    PubMed

    Matulewicz, Pawel; Kasicki, Stefan; Hunt, Mark Jeremy

    2010-12-17

    Altered functioning of the nucleus accumbens (NAc) has been implicated in the psychotomimetic actions of NMDA receptor (NMDAR) antagonists and the pathophysiology of schizophrenia. We have shown previously that NMDAR antagonists enhance the power of high-frequency oscillations (HFO) in the NAc in a dose-dependent manner, as well as increase locomotor activity. Systemic administration of NMDAR antagonists is known to increase the release of dopamine in the NAc and dopamine antagonists can reduce ketamine-induced hyperactivity. In this study, we examined the effect of 0.5 μl intra-NAc infusion of 3.2 μg SCH23390 (D1 antagonist), 10 μg raclopride (D2 antagonist) and saline on ketamine-induced changes in motor and oscillatory activity. We found that local blockade of D1 receptors attenuated ketamine-induced increases in motor activity and blockade of D2 receptors produced a much weaker effect, with respect to saline-infused control groups. In contrast, none of the antagonists, infused separately or together, significantly modified the power or dominant frequency of ketamine-induced increases in HFO, but changes in delta and theta frequency bands were observed. Together, these findings suggest, that, in contrast to delta and theta frequency bands, the generation of ketamine enhanced-HFO in the NAc is not causally related to locomotor activation and occurs largely independently of local changes in dopamine receptor activation. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Specific induction of PAG608 in cranial and spinal motor neurons of L-DOPA-treated parkinsonian rats.

    PubMed

    Shimizu, Masako; Miyazaki, Ikuko; Higashi, Youichirou; Eslava-Alva, Maria J; Diaz-Corrales, Francisco J; Asanuma, Masato; Ogawa, Norio

    2008-04-01

    We identified p53-activated gene 608 (PAG608) as a specifically induced gene in striatal tissue of L-DOPA (100mg/kg)-injected hemi-parkinsonian rats using differential display assay. In the present study, we further examined morphological distribution of PAG608 in the central nervous system of L-DOPA-treated hemi-parkinsonian rats. PAG608 expression was markedly induced in fibers and neuronal cells of the lateral globus pallidus and reticular thalamic nucleus adjacent to internal capsule, specifically in the parkinsonian side of L-DOPA-treated models. The protein was also constitutively expressed in motor neurons specifically in either side of the pontine nucleus and motor nuclei of trigeminal and facial nerves. Furthermore, L-DOPA-induced PAG608 expression on motor neurons in the contralateral side of the ventral horn of the spinal cord and the lateral corticospinal tract without cell loss. The specific induction of PAG608 6-48h after L-DOPA injection in the extrapyramidal tracts, pyramidal tracts and corresponding lower motor neurons of the spinal cords suggests its involvement in molecular events in stimulated motor neurons. Taken together with the constitutive expression of PAG608 in the motor nuclei of cranial nerves, PAG608 may be a useful marker of stressed or activated lower motor neurons.

  16. Sonographic alteration of lenticular nucleus in focal task-specific dystonia of musicians.

    PubMed

    Walter, Uwe; Buttkus, Franziska; Benecke, Reiner; Grossmann, Annette; Dressler, Dirk; Altenmüller, Eckart

    2012-01-01

    In distinct movement disorders, transcranial sonography detects alterations of deep brain structures with higher sensitivity than other neuroimaging methods. Lenticular nucleus hyperechogenicity on transcranial sonography, thought to be caused by increased local copper content, has been reported as a characteristic finding in primary spontaneous dystonia. Here, we wanted to find out whether deep brain structures are altered in task-specific dystonia. The frequency of sonographic brainstem and basal ganglia changes was studied in an investigator-blinded setting in 15 musicians with focal task-specific hand dystonia, 15 musicians without dystonia, and 15 age- and sex-matched nonmusicians without dystonia. Lenticular nucleus hyperechogenicity was found in 12 musicians with task-specific dystonia, but only in 3 nondystonic musicians (Fisher's exact test, p = 0.001) and 2 nonmusicians (p < 0.001). The degree of lenticular nucleus hyperechogenicity in affected musicians correlated with age, but not with duration of music practice or duration of dystonia. In 2 of 3 affected musicians with normal echogenic lenticular nucleus, substantia nigra hyperechogenicity was found. Our findings support the idea of a pathogenetic link between primary spontaneous and task-specific dystonia. Sonographic basal ganglia alteration might indicate a risk factor that in combination with extensive fine motor training promotes the manifestation of task-specific dystonia. Copyright © 2011 S. Karger AG, Basel.

  17. Acute infarction limited to the lenticular nucleus: clinical, etiologic, and topographic features.

    PubMed

    Russmann, Heike; Vingerhoets, François; Ghika, Joseph; Maeder, Philippe; Bogousslavsky, Julien

    2003-03-01

    Chronic diseases involving the putamen and globus pallidus induce parkinsonism and other movement disorders. Sensory and motor dysfunction from deep middle cerebral artery infarction is usually due to an involvement of the internal capsule. The clinical picture associated with isolated infarction of the lenticular nucleus is less well established. To analyze clinical features, topographic correlations, and cause of purely lenticular ischemic infarction. We reviewed 820 consecutive patients with deep hemispheral infarct included in the Lausanne Stroke Registry between 1986 and 1998 and selected those with isolated lenticular involvement on computed tomography or magnetic resonance imaging. Thirteen patients had pure lenticular infarction. All had faciobrachiocrural hemisyndrome, while none showed acute or delayed parkinsonism or abnormal movement. Nine patients had a lesion restricted to the putamen. Two of them had ataxic motor hemisyndrome and 7 had sensorimotor hemisyndrome (with ataxia in 4, left hemineglect in 1, and deep pain in the arm and leg in 1). Four patients had a lesion of putamen and globus pallidus externus. Three of them had motor hemisyndrome (with nonfluent aphasia in 2 and ataxia in 1) and 1 had ataxic sensorimotor hemisyndrome. All infarcts were in the territory of the medial perforating branches of the medial cerebral artery. Presumed cause of stroke was small-artery disease in 5, artery-to-artery embolism in 4, cardioembolism in 3 and undetermined in 1. Acute lenticular infarction induces mainly hemiparesis but no movement disorder. Associated sensory deficits, aphasia, and hemineglect underline clinically the function of the lenticular nucleus in connection with the prefrontal, temporal, and parietal cortices.

  18. Subthalamic nucleus deep brain stimulation impacts language in early Parkinson's disease.

    PubMed

    Phillips, Lara; Litcofsky, Kaitlyn A; Pelster, Michael; Gelfand, Matthew; Ullman, Michael T; Charles, P David

    2012-01-01

    Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated.

  19. Subthalamic Nucleus Deep Brain Stimulation Impacts Language in Early Parkinson's Disease

    PubMed Central

    Phillips, Lara; Litcofsky, Kaitlyn A.; Pelster, Michael; Gelfand, Matthew

    2012-01-01

    Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated. PMID:22880117

  20. The Possible Role of TASK Channels in Rank-Ordered Recruitment of Motoneurons in the Dorsolateral Part of the Trigeminal Motor Nucleus.

    PubMed

    Okamoto, Keiko; Emura, Norihito; Sato, Hajime; Fukatsu, Yuki; Saito, Mitsuru; Tanaka, Chie; Morita, Yukako; Nishimura, Kayo; Kuramoto, Eriko; Xu Yin, Dong; Furutani, Kazuharu; Okazawa, Makoto; Kurachi, Yoshihisa; Kaneko, Takeshi; Maeda, Yoshinobu; Yamashiro, Takashi; Takada, Kenji; Toyoda, Hiroki; Kang, Youngnam

    2016-01-01

    Because a rank-ordered recruitment of motor units occurs during isometric contraction of jaw-closing muscles, jaw-closing motoneurons (MNs) may be recruited in a manner dependent on their soma sizes or input resistances (IRs). In the dorsolateral part of the trigeminal motor nucleus (dl-TMN) in rats, MNs abundantly express TWIK (two-pore domain weak inwardly rectifying K channel)-related acid-sensitive-K(+) channel (TASK)-1 and TASK3 channels, which determine the IR and resting membrane potential. Here we examined how TASK channels are involved in IR-dependent activation/recruitment of MNs in the rat dl-TMN by using multiple methods. The real-time PCR study revealed that single large MNs (>35 μm) expressed TASK1 and TASK3 mRNAs more abundantly compared with single small MNs (15-20 μm). The immunohistochemistry revealed that TASK1 and TASK3 channels were complementarily distributed in somata and dendrites of MNs, respectively. The density of TASK1 channels seemed to increase with a decrease in soma diameter while there were inverse relationships between the soma size of MNs and IR, resting membrane potential, or spike threshold. Dual whole-cell recordings obtained from smaller and larger MNs revealed that the recruitment of MNs depends on their IRs in response to repetitive stimulation of the presumed Ia afferents. 8-Bromoguanosine-cGMP decreased IRs in small MNs, while it hardly changed those in large MNs, and subsequently decreased the difference in spike-onset latency between the smaller and larger MNs, causing a synchronous activation of MNs. These results suggest that TASK channels play critical roles in rank-ordered recruitment of MNs in the dl-TMN.

  1. Sensitivity analysis of discharge patterns of subthalamic nucleus in the model of basal ganglia in Parkinson disease.

    PubMed

    Singh, Jyotsna; Singh, Phool; Malik, Vikas

    2017-01-01

    Parkinson disease alters the information patterns in movement related pathways in brain. Experimental results performed on rats show that the activity patterns changes from single spike activity to mixed burst mode in Parkinson disease. However the cause of this change in activity pattern is not yet completely understood. Subthalamic nucleus is one of the main nuclei involved in the origin of motor dysfunction in Parkinson disease. In this paper, a single compartment conductance based model is considered which focuses on subthalamic nucleus and synaptic input from globus pallidus (external). This model shows highly nonlinear behavior with respect to various intrinsic parameters. Behavior of model has been presented with the help of activity patterns generated in healthy and Parkinson condition. These patterns have been compared by calculating their correlation coefficient for different values of intrinsic parameters. Results display that the activity patterns are very sensitive to various intrinsic parameters and calcium shows some promising results which provide insights into the motor dysfunction.

  2. Transforming growth factor-β1 induces expression of human coagulation factor XII via Smad3 and JNK signaling pathways in human lung fibroblasts.

    PubMed

    Jablonska, Ewa; Markart, Philipp; Zakrzewicz, Dariusz; Preissner, Klaus T; Wygrecka, Malgorzata

    2010-04-09

    Coagulation factor XII (FXII) is a liver-derived serine protease involved in fibrinolysis, coagulation, and inflammation. The regulation of FXII expression is largely unknown. Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine that has been linked to several pathological processes, including tissue fibrosis by modulating procoagulant and fibrinolytic activities. This study investigated whether TGF-beta1 may regulate FXII expression in human lung fibroblasts. Treatment of human lung fibroblasts with TGF-beta1 resulted in a time-dependent increase in FXII production, activation of p44/42, p38, JNK, and Akt, and phosphorylation and translocation into the nucleus of Smad3. However, TGF-beta1-induced FXII expression was repressed only by the JNK inhibitor and JNK and Smad3 antisense oligonucleotides but not by MEK, p38, or phosphoinositide 3-kinase blockers. JNK inhibition had no effect on TGF-beta1-induced Smad3 phosphorylation, association with Smad4, and its translocation into the nucleus but strongly suppressed Smad3-DNA complex formation. FXII promoter analysis revealed that the -299/+1 region was sufficient for TGF-beta1 to induce FXII expression. Sequence analysis of this region detected a potential Smad-binding element at position -272/-269 (SBE-(-272/-269)). Chromatin immunoprecipitation and streptavidin pulldown assays demonstrated TGF-beta1-dependent Smad3 binding to SBE-(-272/-269). Mutation or deletion of SBE-(-272/-269) substantially reduced TGF-beta1-mediated activation of the FXII promoter. Clinical relevance was demonstrated by elevated FXII levels and its co-localization with fibroblasts in the lungs of patients with acute respiratory distress syndrome. Our results show that JNK/Smad3 pathway plays a critical role in TGF-beta1-induced FXII expression in human lung fibroblasts and implicate its possible involvement in pathological conditions characterized by elevated TGF-beta1 levels.

  3. Response inhibition rapidly increases single-neuron responses in the subthalamic nucleus of patients with Parkinson's disease.

    PubMed

    Benis, Damien; David, Olivier; Piallat, Brigitte; Kibleur, Astrid; Goetz, Laurent; Bhattacharjee, Manik; Fraix, Valérie; Seigneuret, Eric; Krack, Paul; Chabardès, Stéphan; Bastin, Julien

    2016-11-01

    The subthalamic nucleus (STN) plays a critical role during action inhibition, perhaps by acting like a fast brake on the motor system when inappropriate responses have to be rapidly suppressed. However, the mechanisms involving the STN during motor inhibition are still unclear, particularly because of a relative lack of single-cell responses reported in this structure in humans. In this study, we used extracellular microelectrode recordings during deep brain stimulation surgery in patients with Parkinson's disease (PD) to study STN neurophysiological correlates of inhibitory control during a stop signal task. We found two neuronal subpopulations responding either during motor execution (GO units) or during motor inhibition (STOP units). GO units fired selectively before patients' motor responses whereas STOP units fired selectively when patients successfully withheld their move at a latency preceding the duration of the inhibition process. These results provide electrophysiological evidence for the hypothesized role of the STN in current models of response inhibition. Copyright © 2016. Published by Elsevier Ltd.

  4. Implosion and heating experiments of fast ignition targets by Gekko-XII and LFEX lasers

    NASA Astrophysics Data System (ADS)

    Shiraga, H.; Fujioka, S.; Nakai, M.; Watari, T.; Nakamura, H.; Arikawa, Y.; Hosoda, H.; Nagai, T.; Koga, M.; Kikuchi, H.; Ishii, Y.; Sogo, T.; Shigemori, K.; Nishimura, H.; Zhang, Z.; Tanabe, M.; Ohira, S.; Fujii, Y.; Namimoto, T.; Sakawa, Y.; Maegawa, O.; Ozaki, T.; Tanaka, K. A.; Habara, H.; Iwawaki, T.; Shimada, K.; Key, M.; Norreys, P.; Pasley, J.; Nagatomo, H.; Johzaki, T.; Sunahara, A.; Murakami, M.; Sakagami, H.; Taguchi, T.; Norimatsu, T.; Homma, H.; Fujimoto, Y.; Iwamoto, A.; Miyanaga, N.; Kawanaka, J.; Kanabe, T.; Jitsuno, T.; Nakata, Y.; Tsubakimoto, K.; Sueda, K.; Kodama, R.; Kondo, K.; Morio, N.; Matsuo, S.; Kawasaki, T.; Sawai, K.; Tsuji, K.; Murakami, H.; Sarukura, N.; Shimizu, T.; Mima, K.; Azechi, H.

    2013-11-01

    The FIREX-1 project, the goal of which is to demonstrate fuel heating up to 5 keV by fast ignition scheme, has been carried out since 2003 including construction and tuning of LFEX laser and integrated experiments. Implosion and heating experiment of Fast Ignition targets have been performed since 2009 with Gekko-XII and LFEX lasers. A deuterated polystyrene shell target was imploded with the 0.53- μm Gekko-XII, and the 1.053- μm beam of the LFEX laser was injected through a gold cone attached to the shell to generate hot electrons to heat the imploded fuel plasma. Pulse contrast ratio of the LFEX beam was significantly improved. Also a variety of plasma diagnostic instruments were developed to be compatible with harsh environment of intense hard x-rays (γ rays) and electromagnetic pulses due to the intense LFEX beam on the target. Large background signals around the DD neutron signal in time-of-flight record of neutron detector were found to consist of neutrons via (γ,n) reactions and scattered gamma rays. Enhanced neutron yield was confirmed by carefully eliminating such backgrounds. Neutron enhancement up to 3.5 × 107 was observed. Heating efficiency was estimated to be 10-20% assuming a uniform temperature rise model.

  5. Dentate nucleus iron deposition is a potential biomarker for tremor-dominant Parkinson’s disease

    PubMed Central

    He, Naying; Huang, Pei; Ling, Huawei; Langley, Jason; Liu, Chunlei; Ding, Bei; Huang, Juan; Xu, Hongmin; Zhang, Yong; Zhang, Zhongping; Hu, Xiaoping; Chen, Shengdi; Yan, Fuhua

    2016-01-01

    Parkinson disease (PD) is a heterogeneous neurodegenerative disorder with variable clinicopathologic phenotypes and underlying neuropathologic mechanisms. Each clinical phenotype has a unique set of motor symptoms. Tremor is the most frequent initial motor symptom of PD and is the most difficult symptom to treat. The dentate nucleus (DN) is a deep iron rich nucleus in the cerebellum and may be involved in PD tremor. In this study, we test the hypothesis that DN iron may be elevated in tremor dominant PD patients using quantitative susceptibility mapping. Forty-three patients with PD [19 tremor dominant (TD)/24 akinetic-rigid dominant (AR)] and 48 healthy gender- and age-matched controls were recruited. Multi-echo gradient echo data were collected for each subject on a 3.0 T MR system. Inter-group susceptibility differences in bilateral DN were investigated and correlations of clinical features with susceptibility were also examined. In contrast to the AR group, the TD group was found to have increased susceptibility in the bilateral DN, when compared to healthy controls. In addition, susceptibility was positively correlated with tremor score in drug naive PD patients. These findings indicate that iron load within DN may make an important contribution to motor phenotypes in PD. Moreover, our results suggest that TD and AR phenotypes of PD can be differentiated on the basis of the susceptibility of the DN at least on the group level. PMID:27192177

  6. Microtubules and motor proteins: Mechanically regulated self-organization in vivo

    NASA Astrophysics Data System (ADS)

    Vogel, S. K.; Pavin, N.; Maghelli, N.; Jülicher, F.; Tolić-Nørrelykke, I. M.

    2009-11-01

    A key aspect of life is sexual reproduction, which requires concerted movement. For successful mixing of the genetic material, molecular motors move the nucleus back and forth inside the cell. How motors work together to produce these large-scale movements, however, remains a mystery. To answer this question, we studied nuclear movement in fission yeast, which is driven by motor proteins pulling on microtubules. We show that motor proteins dynamically redistribute from one part of the cell to the other, generating asymmetric patterns of motors and, consequently, of forces that generate movement. By combining quantitative live cell imaging and laser ablation with a theoretical model, we find that this dynamic motor redistribution occurs purely as a result of changes in the mechanical strain sensed by the motor proteins. Our work therefore demonstrates that spatio-temporal pattern formation within a cell can occur as a result of mechanical cues (Vogel et al., 2009), which differs from conventional molecular signaling, as well as from self-organization based on a combination of biochemical reactions and diffusion.

  7. Song Decrystallization in Adult Zebra Finches Does Not Require the Song Nucleus NIf

    PubMed Central

    Roy, Arani; Mooney, Richard

    2009-01-01

    In adult male zebra finches, transecting the vocal nerve causes previously stable (i.e., crystallized) song to slowly degrade, presumably because of the resulting distortion in auditory feedback. How and where distorted feedback interacts with song motor networks to induce this process of song decrystallization remains unknown. The song premotor nucleus HVC is a potential site where auditory feedback signals could interact with song motor commands. Although the forebrain nucleus interface of the nidopallium (NIf) appears to be the primary auditory input to HVC, NIf lesions made in adult zebra finches do not trigger song decrystallization. One possibility is that NIf lesions do not interfere with song maintenance, but do compromise the adult zebra finch's ability to express renewed vocal plasticity in response to feedback perturbations. To test this idea, we bilaterally lesioned NIf and then transected the vocal nerve in adult male zebra finches. We found that bilateral NIf lesions did not prevent nerve section–induced song decrystallization. To test the extent to which the NIf lesions disrupted auditory processing in the song system, we made in vivo extracellular recordings in HVC and a downstream anterior forebrain pathway (AFP) in NIf-lesioned birds. We found strong and selective auditory responses to the playback of the birds' own song persisted in HVC and the AFP following NIf lesions. These findings suggest that auditory inputs to the song system other than NIf, such as the caudal mesopallium, could act as a source of auditory feedback signals to the song motor network. PMID:19515953

  8. Song decrystallization in adult zebra finches does not require the song nucleus NIf.

    PubMed

    Roy, Arani; Mooney, Richard

    2009-08-01

    In adult male zebra finches, transecting the vocal nerve causes previously stable (i.e., crystallized) song to slowly degrade, presumably because of the resulting distortion in auditory feedback. How and where distorted feedback interacts with song motor networks to induce this process of song decrystallization remains unknown. The song premotor nucleus HVC is a potential site where auditory feedback signals could interact with song motor commands. Although the forebrain nucleus interface of the nidopallium (NIf) appears to be the primary auditory input to HVC, NIf lesions made in adult zebra finches do not trigger song decrystallization. One possibility is that NIf lesions do not interfere with song maintenance, but do compromise the adult zebra finch's ability to express renewed vocal plasticity in response to feedback perturbations. To test this idea, we bilaterally lesioned NIf and then transected the vocal nerve in adult male zebra finches. We found that bilateral NIf lesions did not prevent nerve section-induced song decrystallization. To test the extent to which the NIf lesions disrupted auditory processing in the song system, we made in vivo extracellular recordings in HVC and a downstream anterior forebrain pathway (AFP) in NIf-lesioned birds. We found strong and selective auditory responses to the playback of the birds' own song persisted in HVC and the AFP following NIf lesions. These findings suggest that auditory inputs to the song system other than NIf, such as the caudal mesopallium, could act as a source of auditory feedback signals to the song motor network.

  9. Dentate nucleus iron deposition is a potential biomarker for tremor-dominant Parkinson's disease.

    PubMed

    He, Naying; Huang, Pei; Ling, Huawei; Langley, Jason; Liu, Chunlei; Ding, Bei; Huang, Juan; Xu, Hongmin; Zhang, Yong; Zhang, Zhongping; Hu, Xiaoping; Chen, Shengdi; Yan, Fuhua

    2017-04-01

    Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder with variable clinicopathologic phenotypes and underlying neuropathologic mechanisms. Each clinical phenotype has a unique set of motor symptoms. Tremor is the most frequent initial motor symptom of PD and is the most difficult symptom to treat. The dentate nucleus (DN) is a deep iron-rich nucleus in the cerebellum and may be involved in PD tremor. In this study, we test the hypothesis that DN iron may be elevated in tremor-dominant PD patients using quantitative susceptibility mapping. Forty-three patients with PD [19 tremor dominant (TD)/24 akinetic rigidity (AR) dominant] and 48 healthy gender- and age-matched controls were recruited. Multi-echo gradient echo data were collected for each subject on a 3.0-T MR system. Inter-group susceptibility differences in the bilateral DN were investigated and correlations of clinical features with susceptibility were also examined. In contrast with the AR-dominant group, the TD group was found to have increased susceptibility in the bilateral DN when compared with healthy controls. In addition, susceptibility was positively correlated with tremor score in drug-naive PD patients. These findings indicate that iron load within the DN may make an important contribution to motor phenotypes in PD. Moreover, our results suggest that TD and AR-dominant phenotypes of PD can be differentiated on the basis of the susceptibility of the DN, at least at the group level. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation

    PubMed Central

    Streeter, K.A.; Baker-Herman, T.L.

    2014-01-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30 min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life. PMID:24681155

  11. Distributed Cerebellar Motor Learning: A Spike-Timing-Dependent Plasticity Model

    PubMed Central

    Luque, Niceto R.; Garrido, Jesús A.; Naveros, Francisco; Carrillo, Richard R.; D'Angelo, Egidio; Ros, Eduardo

    2016-01-01

    Deep cerebellar nuclei neurons receive both inhibitory (GABAergic) synaptic currents from Purkinje cells (within the cerebellar cortex) and excitatory (glutamatergic) synaptic currents from mossy fibers. Those two deep cerebellar nucleus inputs are thought to be also adaptive, embedding interesting properties in the framework of accurate movements. We show that distributed spike-timing-dependent plasticity mechanisms (STDP) located at different cerebellar sites (parallel fibers to Purkinje cells, mossy fibers to deep cerebellar nucleus cells, and Purkinje cells to deep cerebellar nucleus cells) in close-loop simulations provide an explanation for the complex learning properties of the cerebellum in motor learning. Concretely, we propose a new mechanistic cerebellar spiking model. In this new model, deep cerebellar nuclei embed a dual functionality: deep cerebellar nuclei acting as a gain adaptation mechanism and as a facilitator for the slow memory consolidation at mossy fibers to deep cerebellar nucleus synapses. Equipping the cerebellum with excitatory (e-STDP) and inhibitory (i-STDP) mechanisms at deep cerebellar nuclei afferents allows the accommodation of synaptic memories that were formed at parallel fibers to Purkinje cells synapses and then transferred to mossy fibers to deep cerebellar nucleus synapses. These adaptive mechanisms also contribute to modulate the deep-cerebellar-nucleus-output firing rate (output gain modulation toward optimizing its working range). PMID:26973504

  12. The anterior and posterior pedunculopontine tegmental nucleus are involved in behavior and neuronal activity of the cuneiform and entopeduncular nuclei.

    PubMed

    Jin, X; Schwabe, K; Krauss, J K; Alam, M

    2016-05-13

    Loss of cholinergic neurons in the mesencephalic locomotor region, comprising the pedunculopontine nucleus (PPN) and the cuneiform nucleus (CnF), is related to gait disturbances in late stage Parkinson's disease (PD). We investigate the effect of anterior or posterior cholinergic lesions of the PPN on gait-related motor behavior, and on neuronal network activity of the PPN area and basal ganglia (BG) motor loop in rats. Anterior PPN lesions, posterior PPN lesions or sham lesions were induced by stereotaxic microinjection of the cholinergic toxin AF64-A or vehicle in male Sprague-Dawley rats. First, locomotor activity (open field), postural disturbances (Rotarod) and gait asymmetry (treadmill test) were assessed. Thereafter, single-unit and oscillatory activities were measured in the non-lesioned area of the PPN, the CnF and the entopeduncular nucleus (EPN), the BG output region, with microelectrodes under urethane anesthesia. Additionally, ECoG was recorded in the motor cortex. Injection of AF64-A into the anterior and posterior PPN decreased cholinergic cell counts as compared to naive controls (P<0.001) but also destroyed non-cholinergic cells. Only anterior PPN lesions decreased the front limb swing time of gait in the treadmill test, while not affecting other gait-related parameters tested. Main electrophysiological findings were that anterior PPN lesions increased the firing activity in the CnF (P<0.001). Further, lesions of either PPN region decreased the coherence of alpha (8-12 Hz) band between CnF and motor cortex (MCx), and increased the beta (12-30 Hz) oscillatory synchronization between EPN and the MCx. Lesions of the PPN in rats had complex effects on oscillatory neuronal activity of the CnF and the BG network, which may contribute to the understanding of the pathophysiology of gait disturbance in PD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Simulating Univariate and Multivariate Burr Type IIII and Type XII Distributions through the Method of L-Moments

    ERIC Educational Resources Information Center

    Pant, Mohan Dev

    2011-01-01

    The Burr families (Type III and Type XII) of distributions are traditionally used in the context of statistical modeling and for simulating non-normal distributions with moment-based parameters (e.g., Skew and Kurtosis). In educational and psychological studies, the Burr families of distributions can be used to simulate extremely asymmetrical and…

  14. Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex.

    PubMed

    Li, Qian; Ke, Ya; Chan, Danny C W; Qian, Zhong-Ming; Yung, Ken K L; Ko, Ho; Arbuthnott, Gordon W; Yung, Wing-Ho

    2012-12-06

    Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Developmental regulation of inhibitory synaptic currents in the dorsal motor nucleus of the vagus in the rat

    PubMed Central

    Anselmi, Laura; Travagli, R. Alberto

    2016-01-01

    Prior immunohistochemical studies have demonstrated that at early postnatal time points, central vagal neurons receive both glycinergic and GABAergic inhibitory inputs. Functional studies have demonstrated, however, that adult vagal efferent motoneurons receive only inhibitory GABAergic synaptic inputs, suggesting loss of glycinergic inhibitory neurotransmission during postnatal development. The purpose of the present study was to test the hypothesis that the loss of glycinergic inhibitory synapses occurs in the immediate postnatal period. Whole cell patch-clamp recordings were made from dorsal motor nucleus of the vagus (DMV) neurons from postnatal days 1–30, and the effects of the GABAA receptor antagonist bicuculline (1–10 μM) and the glycine receptor antagonist strychnine (1 μM) on miniature inhibitory postsynaptic current (mIPSC) properties were examined. While the baseline frequency of mIPSCs was not altered by maturation, perfusion with bicuculline either abolished mIPSCs altogether or decreased mIPSC frequency and decay constant in the majority of neurons at all time points. In contrast, while strychnine had no effect on mIPSC frequency, its actions to increase current decay time declined during postnatal maturation. These data suggest that in early postnatal development, DMV neurons receive both GABAergic and glycinergic synaptic inputs. Glycinergic neurotransmission appears to decline by the second postnatal week, and adult neurons receive principally GABAergic inhibitory inputs. Disruption of this developmental switch from GABA-glycine to purely GABAergic transmission in response to early life events may, therefore, lead to adverse consequences in vagal efferent control of visceral functions. PMID:27440241

  16. Topography and collateralization of dopaminergic projections to primary motor cortex in rats.

    PubMed

    Hosp, Jonas A; Nolan, Helen E; Luft, Andreas R

    2015-05-01

    Dopaminergic signaling within the primary motor cortex (M1) is necessary for successful motor skill learning. Dopaminergic neurons projecting to M1 are located in the ventral tegmental area (VTA, nucleus A10) of the midbrain. It is unknown which behavioral correlates are encoded by these neurons. The objective here is to investigate whether VTA-M1 fibers are collaterals of projections to prefrontal cortex (PFC) or nucleus accumbens (NAc) or if they form a distinct pathway. In rats, multiple-site retrograde fluorescent tracers were injected into M1, PFC and the core region of the NAc and VTA sections investigated for concomitant labeling of different tracers. Dopaminergic neurons projecting to M1, PFC and NAc were found in nucleus A10 and to a lesser degree in the medial nucleus A9. Neurons show high target specificity, minimal collateral branching to other than their target area and hardly cross the midline. Whereas PFC- and NAc-projecting neurons are indistinguishably intermingled within the ventral portion of dopaminergic nuclei in middle and caudal midbrain, M1-projecting neurons are only located within the dorsal part of the rostral midbrain. Within M1, the forelimb representation receives sevenfold more dopaminergic projections than the hindlimb representation. This strong rostro-caudal gradient as well as the topographical preference to dorsal structures suggest that projections to M1 emerged late in the development of the dopaminergic systems in and form a functionally distinct system.

  17. Altered functional connectivity of the subthalamus and the bed nucleus of the stria terminalis in obsessive-compulsive disorder.

    PubMed

    Cano, M; Alonso, P; Martínez-Zalacaín, I; Subirà, M; Real, E; Segalàs, C; Pujol, J; Cardoner, N; Menchón, J M; Soriano-Mas, C

    2018-04-01

    The assessment of inter-regional functional connectivity (FC) has allowed for the description of the putative mechanism of action of treatments such as deep brain stimulation (DBS) of the nucleus accumbens in patients with obsessive-compulsive disorder (OCD). Nevertheless, the possible FC alterations of other clinically-effective DBS targets have not been explored. Here we evaluated the FC patterns of the subthalamic nucleus (STN) and the bed nucleus of the stria terminalis (BNST) in patients with OCD, as well as their association with symptom severity. Eighty-six patients with OCD and 104 healthy participants were recruited. A resting-state image was acquired for each participant and a seed-based analysis focused on our two regions of interest was performed using statistical parametric mapping software (SPM8). Between-group differences in FC patterns were assessed with two-sample t test models, while the association between symptom severity and FC patterns was assessed with multiple regression analyses. In comparison with controls, patients with OCD showed: (1) increased FC between the left STN and the right pre-motor cortex, (2) decreased FC between the right STN and the lenticular nuclei, and (3) increased FC between the left BNST and the right frontopolar cortex. Multiple regression analyses revealed a negative association between clinical severity and FC between the right STN and lenticular nucleus. This study provides a neurobiological framework to understand the mechanism of action of DBS on the STN and the BNST, which seems to involve brain circuits related with motor response inhibition and anxiety control, respectively.

  18. Ketamine-Induced Oscillations in the Motor Circuit of the Rat Basal Ganglia

    PubMed Central

    Alegre, Manuel; Pérez-Alcázar, Marta; Iriarte, Jorge; Artieda, Julio

    2011-01-01

    Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together with hyperlocomotion. We recorded local field potentials from motor cortex, caudate-putamen (CPU), substantia nigra pars reticulata (SNr) and subthalamic nucleus (STN) in 20 awake rats before and after the administration of ketamine at three different subanesthetic doses (10, 25 and 50 mg/Kg), and saline as control condition. Motor behavior was semiautomatically quantified by custom-made software specifically developed for this setting. Ketamine induced coherent oscillations in low gamma (50 Hz), high gamma (80 Hz) and high frequency (HFO, 150 Hz) bands, with different behavior in the four structures studied. While oscillatory activity at these three peaks was widespread across all structures, interactions showed a different pattern for each frequency band. Imaginary coherence at 150 Hz was maximum between motor cortex and the different basal ganglia nuclei, while low gamma coherence connected motor cortex with CPU and high gamma coherence was more constrained to the basal ganglia nuclei. Power at three bands correlated with the motor activity of the animal, but only coherence values in the HFO and high gamma range correlated with movement. Interactions in the low gamma band did not show a direct relationship to movement. These results suggest that the motor effects of ketamine administration may be primarily mediated by the induction of coherent widespread high-frequency activity in the motor circuit of the basal ganglia, together with a frequency-specific pattern of

  19. The Origin of Time in the Songbird Motor Pathway

    NASA Astrophysics Data System (ADS)

    Long, Michael

    2010-03-01

    Many complex behaviors, like speech or music, have a hierarchical organization with structure on many timescales. How does the brain control the timing and ordering of behavioral sequences? Do different circuits control different timescales of the behavior? To begin answering these questions, we use temperature to manipulate the biophysical dynamics in different regions of the songbird forebrain involved in song production. We found that cooling premotor nucleus HVC (high vocal center) uniformly slows song speed by up to 40% while only slightly altering the acoustic structure, whereas cooling downstream motor nucleus RA (robust nucleus of the arcopallium) has no observable effect on song timing, despite a marked affect of RA spiking activity. To better understand the circuit mechanisms of precise premotor timing, we perform intracellular recordings in RA-projecting HVC neurons during singing. Our observations suggest highly ordered dynamics within HVC which are consistent with a synfire-like neuronal architecture.

  20. Deep brain stimulation of the pedunculopontine nucleus for treatment of gait and balance disorder in progressive supranuclear palsy: Effects of frequency modulations and clinical outcome.

    PubMed

    Galazky, Imke; Kaufmann, Jörn; Lorenzl, Stefan; Ebersbach, Georg; Gandor, Florin; Zaehle, Tino; Specht, Sylke; Stallforth, Sabine; Sobieray, Uwe; Wirkus, Edyta; Casjens, Franziska; Heinze, Hans-Jochen; Kupsch, Andreas; Voges, Jürgen

    2018-05-01

    The pedunculopontine nucleus has been suggested as a potential deep brain stimulation target for axial symptoms such as gait and balance impairment in idiopathic Parkinson's disease as well as atypical Parkinsonian disorders. Seven consecutive patients with progressive supranuclear palsy received bilateral pedunculopontine nucleus deep brain stimulation. Inclusion criteria comprised of the clinical diagnosis of progressive supranuclear palsy, a levodopa-resistant gait and balance disorder, age <75 years, and absence of dementia or major psychiatric co-morbidities. Effects of stimulation frequencies at 8, 20, 60 and 130 Hz on motor scores and gait were assessed. Motor scores were followed up for two years postoperatively. Activities of daily living, frequency of falls, health-related quality of life, cognition and mood at 12 months were compared to baseline parameters. Surgical and stimulation related adverse events were assessed. Bilateral pedunculopontine nucleus deep brain stimulation at 8 Hz significantly improved axial motor symptoms and cyclic gait parameters, while high frequency stimulation did not ameliorate gait and balance but improved hypokinesia. This improvement however did not translate into clinically relevant benefits. Frequency of falls was not reduced. Activities of daily living, quality of life and frontal cognitive functions declined, while mood remained unchanged. Bilateral pedunculopontine nucleus deep brain stimulation in progressive supranuclear palsy generates frequency-dependent effects with improvement of cyclic gait parameters at low frequency and amelioration of hypokinesia at high frequency stimulation. However, these effects do not translate into a clinically important improvement. Copyright © 2018. Published by Elsevier Ltd.

  1. Excessive motor overflow reveals abnormal inter-hemispheric connectivity in Friedreich ataxia.

    PubMed

    Low, Sze-Cheen; Corben, Louise A; Delatycki, Martin B; Ternes, Anne-Marie; Addamo, Patricia K; Georgiou-Karistianis, Nellie

    2013-07-01

    This study sought to characterise force variability and motor overflow in 12 individuals with Friedreich ataxia (FRDA) and 12 age- and gender-matched controls. Participants performed a finger-pressing task by exerting 30 and 70 % of their maximum finger force using the index finger of the right and left hand. Control of force production was measured as force variability, while any involuntary movements occurring on the finger of the other, passive hand, was measured as motor overflow. Significantly greater force variability in individuals with FRDA compared with controls is indicative of cortico-cerebellar disruption affecting motor control. Meanwhile, significantly greater motor overflow in this group provides the first evidence of possible abnormal inter-hemispheric activity that may be attributable to asymmetrical neuronal loss in the dentate nucleus. Overall, this study demonstrated a differential engagement in the underlying default processes of the motor system in FRDA.

  2. [Ultrasonic measurements of fetal thalamus, caudate nucleus and lenticular nucleus in prenatal diagnosis].

    PubMed

    Yang, Ruiqi; Wang, Fei; Zhang, Jialing; Zhu, Chonglei; Fan, Limei

    2015-05-19

    To establish the reference values of thalamus, caudate nucleus and lenticular nucleus diameters through fetal thalamic transverse section. A total of 265 fetuses at our hospital were randomly selected from November 2012 to August 2014. And the transverse and length diameters of thalamus, caudate nucleus and lenticular nucleus were measured. SPSS 19.0 statistical software was used to calculate the regression curve of fetal diameter changes and gestational weeks of pregnancy. P < 0.05 was considered as having statistical significance. The linear regression equation of fetal thalamic length diameter and gestational week was: Y = 0.051X+0.201, R = 0.876, linear regression equation of thalamic transverse diameter and fetal gestational week was: Y = 0.031X+0.229, R = 0.817, linear regression equation of fetal head of caudate nucleus length diameter and gestational age was: Y = 0.033X+0.101, R = 0.722, linear regression equation of fetal head of caudate nucleus transverse diameter and gestational week was: R = 0.025 - 0.046, R = 0.711, linear regression equation of fetal lentiform nucleus length diameter and gestational week was: Y = 0.046+0.229, R = 0.765, linear regression equation of fetal lentiform nucleus diameter and gestational week was: Y = 0.025 - 0.05, R = 0.772. Ultrasonic measurement of diameter of fetal thalamus caudate nucleus, and lenticular nucleus through thalamic transverse section is simple and convenient. And measurements increase with fetal gestational weeks and there is linear regression relationship between them.

  3. Ambulatory monitoring of activities and motor symptoms in Parkinson's disease.

    PubMed

    Zwartjes, Daphne G M; Heida, Tjitske; van Vugt, Jeroen P P; Geelen, Jan A G; Veltink, Peter H

    2010-11-01

    Ambulatory monitoring of motor symptoms in Parkinsons disease (PD) can improve our therapeutic strategies, especially in patients with motor fluctuations. Previously published monitors usually assess only one or a few basic aspects of the cardinal motor symptoms in a laboratory setting. We developed a novel ambulatory monitoring system that provides a complete motor assessment by simultaneously analyzing current motor activity of the patient (e.g. sitting, walking) and the severity of many aspects related to tremor, bradykinesia, and hypokinesia. The monitor consists of a set of four inertial sensors. Validity of our monitor was established in seven healthy controls and six PD patients treated with deep brain stimulation (DBS) of the subthalamic nucleus. Patients were tested at three different levels of DBS treatment. Subjects were monitored while performing different tasks, including motor tests of the Unified Parkinsons Disease Rating Scale (UPDRS). Output of the monitor was compared to simultaneously recorded videos. The monitor proved very accurate in discriminating between several motor activities. Monitor output correlated well with blinded UPDRS ratings during different DBS levels. The combined analysis of motor activity and symptom severity by our PD monitor brings true ambulatory monitoring of a wide variety of motor symptoms one step closer..

  4. Functionalized active-nucleus complex sensor

    DOEpatents

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  5. Effect of l-DOPA on local field potential relationship between the pedunculopontine nucleus and primary motor cortex in a rat model of Parkinson's disease.

    PubMed

    Geng, Xiwen; Wang, Xuenan; Xie, Jinlu; Zhang, Xiao; Wang, Xiusong; Hou, Yabing; Lei, Chengdong; Li, Min; Han, Hongyu; Yao, Xiaomeng; Zhang, Qun; Wang, Min

    2016-12-15

    Levodopa (l-DOPA) has been proved to reverse the pathologic neuron activities in many brain regions related to Parkinson's disease (PD). But little is known about the effect of l-DOPA on the altered electrophysiological coherent activities between pedunculopontine nucleus (PPN) and motor cortex. To investigate this, local field potentials (LFPs) of PPN and primary motor cortex (M1) were recorded simultaneously in control, 6-hydroxydopamine lesioned and lesioned rats with l-DOPA chronic treatment. The results revealed that in resting state, chronic l-DOPA treatment could correct the suppressed power of LFPs in PPN and M1 in low-frequency band (1-7Hz) and the enhanced power in high-frequency band (7-70Hz in PPN and 12-70Hz in M1) of lesioned rats. In locomotor state, l-DOPA treatment could correct the alterations in most of frequency bands except the δ band in PPN and α band in M1. Moreover, l-DOPA could also reverse the altered coherent relationships caused by dopamine depletion in resting state between PPN and M1 in β band. And in locomotor state, l-DOPA had therapeutic effect on the alterations in δ and β bands but not in the α band. These findings provide evidence that l-DOPA can reverse the altered LFP activities in PPN and M1 and their relationships in a rat model of PD, which contributes to better understanding the electrophysiological mechanisms of the pathophysiology and therapy of PD. Copyright © 2016. Published by Elsevier B.V.

  6. From synapse to nucleus and back again--communication over distance within neurons.

    PubMed

    Fainzilber, Mike; Budnik, Vivian; Segal, Rosalind A; Kreutz, Michael R

    2011-11-09

    How do neurons integrate intracellular communication from synapse to nucleus and back? Here we briefly summarize aspects of this topic covered by a symposium at Neuroscience 2011. A rich repertoire of signaling mechanisms link both dendritic terminals and axon tips with neuronal soma and nucleus, using motor-dependent transport machineries to traverse the long intracellular distances along neuronal processes. Activation mechanisms at terminals include localized translation of dendritic or axonal RNA, proteolytic cleavage of receptors or second messengers, and differential phosphorylation of signaling moieties. Signaling complexes may be transported in endosomes, or as non-endosomal complexes associated with importins and dynein. Anterograde transport of RNA granules from the soma to neuronal processes, coupled with retrograde transport of proteins translated locally at terminals or within processes, may fuel ongoing bidirectional communication between soma and synapse to modulate synaptic plasticity as well as neuronal growth and survival decisions.

  7. Inhibition of carbonic anhydrase isoforms I, II, IX and XII with novel Schiff bases: identification of selective inhibitors for the tumor-associated isoforms over the cytosolic ones.

    PubMed

    Sarikaya, Busra; Ceruso, Mariangela; Carta, Fabrizio; Supuran, Claudiu T

    2014-11-01

    A series of new Schiff bases was obtained from sulfanilamide, 3-fluorosulfanilamide or 4-(2-aminoethyl)-benzenesulfonamide and aromatic/heterocyclic aldehydes incorporating both hydrophobic and hydrophilic moieties. The obtained sulfonamides were investigated as inhibitors of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic CA I and II, as well as the transmembrane, tumor-associated CA IX and XII. Most derivatives were medium potency or weak hCA I/II inhibitors, but several of them showed nanomolar affinity for CA IX and/or XII, making them an interesting example of isoform-selective compounds. The nature of the aryl/hetaryl moiety present in the initial aldehyde was the main factor influencing potency and isoform selectivity. The best and most CA IX-selective compounds incorporated moieties such as 4-methylthiophenyl, 4-cyanophenyl-, 4-(2-pyridyl)-phenyl and the 4-aminoethylbenzenesulfonamide scaffold. The best hCA XII inhibitors, also showing selectivity for this isoform, incorporated 2-methoxy-4-nitrophenyl-, 2,3,5,6-tetrafluorophenyl and 4-(2-pyridyl)-phenyl functionalities and were also derivatives of 4-aminoethylbenzenesulfonamide. The sulfanilamide and 3-fluorosulfanilamide derived Schiff bases were less active compared to the corresponding 4-aminoethyl-benzenesulfonamide derivatives. As hCA IX/XII selective inhibition is attractive for obtaining antitumor agents/diagnostic tools with a new mechanism of action, compounds of the type described here may be considered interesting preclinical candidates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Self-regulation of primary motor cortex activity with motor imagery induces functional connectivity modulation: A real-time fMRI neurofeedback study.

    PubMed

    Makary, Meena M; Seulgi, Eun; Kyungmo Park

    2017-07-01

    Recent developments in data acquisition of functional magnetic resonance imaging (fMRI) have led to rapid preprocessing and analysis of brain activity in a quasireal-time basis, what so called real-time fMRI neurofeedback (rtfMRI-NFB). This information is fed back to subjects allowing them to gain a voluntary control over their own region-specific brain activity. Forty-one healthy participants were randomized into an experimental (NFB) group, who received a feedback directly proportional to their brain activity from the primary motor cortex (M1), and a control (CTRL) group who received a sham feedback. The M1 ROI was functionally localized during motor execution and imagery tasks. A resting-state functional run was performed before and after the neurofeedback training to investigate the default mode network (DMN) modulation after training. The NFB group revealed increased DMN functional connectivity after training to the cortical and subcortical sensory/motor areas (M1/S1 and caudate nucleus, respectively), which may be associated with sensorimotor processing of learning in the resting state. These results show that motor imagery training through rtfMRI-NFB could modulate the DMN functional connectivity to motor-related areas, suggesting that this modulation potentially subserved the establishment of motor learning in the NFB group.

  9. Temperature Induced Syllable Breaking Unveils Nonlinearly Interacting Timescales in Birdsong Motor Pathway

    PubMed Central

    Goldin, Matías A.; Alonso, Leandro M.; Alliende, Jorge A.; Goller, Franz; Mindlin, Gabriel B.

    2013-01-01

    The nature of telencephalic control over premotor and motor circuits is debated. Hypotheses range from complete usurping of downstream circuitry to highly interactive mechanisms of control. We show theoretically and experimentally, that telencephalic song motor control in canaries is consistent with a highly interactive strategy. As predicted from a theoretical model of respiratory control, mild cooling of a forebrain nucleus (HVC) led to song stretching, but further cooling caused progressive restructuring of song, consistent with the hypothesis that respiratory gestures are subharmonic responses to a timescale present in the output of HVC. This interaction between a life-sustaining motor function (respiration) and telencephalic song motor control suggests a more general mechanism of how nonlinear integration of evolutionarily new brain structures into existing circuitry gives rise to diverse, new behavior. PMID:23818988

  10. Temperature induced syllable breaking unveils nonlinearly interacting timescales in birdsong motor pathway.

    PubMed

    Goldin, Matías A; Alonso, Leandro M; Alliende, Jorge A; Goller, Franz; Mindlin, Gabriel B

    2013-01-01

    The nature of telencephalic control over premotor and motor circuits is debated. Hypotheses range from complete usurping of downstream circuitry to highly interactive mechanisms of control. We show theoretically and experimentally, that telencephalic song motor control in canaries is consistent with a highly interactive strategy. As predicted from a theoretical model of respiratory control, mild cooling of a forebrain nucleus (HVC) led to song stretching, but further cooling caused progressive restructuring of song, consistent with the hypothesis that respiratory gestures are subharmonic responses to a timescale present in the output of HVC. This interaction between a life-sustaining motor function (respiration) and telencephalic song motor control suggests a more general mechanism of how nonlinear integration of evolutionarily new brain structures into existing circuitry gives rise to diverse, new behavior.

  11. Pathotyping and Phylogenetic Characterization of Newcastle Disease Viruses Isolated in Peru: Defining Two Novel Subgenotypes Within Genotype XII.

    PubMed

    Chumbe, Ana; Izquierdo-Lara, Ray; Tataje, Luis; Gonzalez, Rosa; Cribillero, Giovana; González, Armando E; Fernández-Díaz, Manolo; Icochea, Eliana

    2017-03-01

    Infections of poultry with virulent strains of avian paramyxovirus 1 (APMV-1), also known as Newcastle disease viruses (NDVs), cause Newcastle disease (ND). This highly contagious disease affects poultry and many other species of birds worldwide. In countries where the disease is prevalent, constant monitoring and characterization of isolates causing outbreaks are necessary. In this study, we report the results of pathogenicity testing and phylogenetic analyses of seven NDVs isolated from several regions of Peru between 2004 and 2015. Six viruses had intracerebral pathogenicity indices (ICPIs) of between 1.75 and 1.88, corresponding to a velogenic pathotype. The remaining virus had an ICPI of 0.00, corresponding to a lentogenic pathotype. These results were consistent with amino acid sequences at the fusion protein (F) cleavage site. All velogenic isolates had the polybasic amino acid sequence 112 RRQKR↓F 117 at the F cleavage site. Phylogenetic analyses of complete F gene sequences showed that all isolates are classified in class II of APMV-1. The velogenic viruses are classified in genotype XII, while the lentogenic virus is classified in genotype II, closely related to the LaSota vaccine strain. Moreover, tree topology, bootstrap values, and genetic distances observed within genotype XII resulted in the identification of novel subgenotypes XIIa (in South America) and XIIb (in China) and possibly two clades within genotype XIIa. All velogenic Peruvian viruses belonged to subgenotype XIIa. Overall, our results confirm the presence of genotype XII in Peru and suggest that it is the prevalent genotype currently circulating in our country. The phylogenetic characterization of these isolates helps to characterize the evolution of NDV and may help with the development of vaccines specific to our regional necessities.

  12. The subthalamic microlesion story in Parkinson's disease: electrode insertion-related motor improvement with relative cortico-subcortical hypoactivation in fMRI.

    PubMed

    Jech, Robert; Mueller, Karsten; Urgošík, Dušan; Sieger, Tomáš; Holiga, Štefan; Růžička, Filip; Dušek, Petr; Havránková, Petra; Vymazal, Josef; Růžička, Evžen

    2012-01-01

    Electrode implantation into the subthalamic nucleus for deep brain stimulation in Parkinson's disease (PD) is associated with a temporary motor improvement occurring prior to neurostimulation. We studied this phenomenon by functional magnetic resonance imaging (fMRI) when considering the Unified Parkinson's Disease Rating Scale (UPDRS-III) and collateral oedema. Twelve patients with PD (age 55.9± (SD)6.8 years, PD duration 9-15 years) underwent bilateral electrode implantation into the subthalamic nucleus. The fMRI was carried out after an overnight withdrawal of levodopa (OFF condition): (i) before and (ii) within three days after surgery in absence of neurostimulation. The motor task involved visually triggered finger tapping. The OFF/UPDRS-III score dropped from 33.8±8.7 before to 23.3±4.8 after the surgery (p<0.001), correlating with the postoperative oedema score (p<0.05). During the motor task, bilateral activation of the thalamus and basal ganglia, motor cortex and insula were preoperatively higher than after surgery (p<0.001). The results became more enhanced after compensation for the oedema and UPDRS-III scores. In addition, the rigidity and axial symptoms score correlated inversely with activation of the putamen and globus pallidus (p<0.0001). One month later, the OFF/UPDRS-III score had returned to the preoperative level (35.8±7.0, p = 0.4).In conclusion, motor improvement induced by insertion of an inactive electrode into the subthalamic nucleus caused an acute microlesion which was at least partially related to the collateral oedema and associated with extensive impact on the motor network. This was postoperatively manifested as lowered movement-related activation at the cortical and subcortical levels and differed from the known effects of neurostimulation or levodopa. The motor system finally adapted to the microlesion within one month as suggested by loss of motor improvement and good efficacy of deep brain stimulation.

  13. The Subthalamic Microlesion Story in Parkinson's Disease: Electrode Insertion-Related Motor Improvement with Relative Cortico-Subcortical Hypoactivation in fMRI

    PubMed Central

    Urgošík, Dušan; Sieger, Tomáš; Holiga, Štefan; Růžička, Filip; Dušek, Petr; Havránková, Petra; Vymazal, Josef; Růžička, Evžen

    2012-01-01

    Electrode implantation into the subthalamic nucleus for deep brain stimulation in Parkinson's disease (PD) is associated with a temporary motor improvement occurring prior to neurostimulation. We studied this phenomenon by functional magnetic resonance imaging (fMRI) when considering the Unified Parkinson's Disease Rating Scale (UPDRS-III) and collateral oedema. Twelve patients with PD (age 55.9± (SD)6.8 years, PD duration 9–15 years) underwent bilateral electrode implantation into the subthalamic nucleus. The fMRI was carried out after an overnight withdrawal of levodopa (OFF condition): (i) before and (ii) within three days after surgery in absence of neurostimulation. The motor task involved visually triggered finger tapping. The OFF/UPDRS-III score dropped from 33.8±8.7 before to 23.3±4.8 after the surgery (p<0.001), correlating with the postoperative oedema score (p<0.05). During the motor task, bilateral activation of the thalamus and basal ganglia, motor cortex and insula were preoperatively higher than after surgery (p<0.001). The results became more enhanced after compensation for the oedema and UPDRS-III scores. In addition, the rigidity and axial symptoms score correlated inversely with activation of the putamen and globus pallidus (p<0.0001). One month later, the OFF/UPDRS-III score had returned to the preoperative level (35.8±7.0, p = 0.4). In conclusion, motor improvement induced by insertion of an inactive electrode into the subthalamic nucleus caused an acute microlesion which was at least partially related to the collateral oedema and associated with extensive impact on the motor network. This was postoperatively manifested as lowered movement-related activation at the cortical and subcortical levels and differed from the known effects of neurostimulation or levodopa. The motor system finally adapted to the microlesion within one month as suggested by loss of motor improvement and good efficacy of deep brain stimulation. PMID:23145068

  14. Excitatory innervation of caudal hypoglossal nucleus from nucleus reticularis gigantocellularis in the rat.

    PubMed

    Yang, C C; Chan, J Y; Chan, S H

    1995-03-01

    We examined the possible innervation of the caudal hypoglossal nucleus by the nucleus reticularis gigantocellularis of the medulla oblongata, based on single-neuron recording and retrograde tracing experiments in Sprague-Dawley rats. Under pentobarbital sodium (50 mg/kg, i.p.) anesthesia, electrical stimulation of the caudal portion of the nucleus reticularis gigantocellularis with repetitive 0.5-ms rectangular pulses increased (46 of 51 neurons) the basal discharge frequency of spontaneously active cells, or evoked spike activity in silent, hypoglossal neurons located at the level of the obex. This excitatory effect was related to the intensity (25-100 microA) and/or frequency (0.5-20 Hz) of the stimulating pulses to the nucleus reticularis gigantocellularis. Perikaryal activation of neurons by microinjection of L-glutamate (0.5 nmol, 25 nl) into the caudal portion of the nucleus reticularis gigantocellularis similarly produced an excitatory action on eight of 14 hypoglossal neurons. Retrogradely labeled neurons were found bilaterally within the confines of the nucleus reticularis gigantocellularis following unilateral microinjection of wheatgerm agglutinin-conjugated horseradish peroxidase or Fast Blue into the corresponding hypoglossal recording sites. Furthermore, the distribution of labeled neurons in the nucleus reticularis gigantocellularis substantially overlapped with the loci of electrical or chemical stimulation. These complementary electrophysiological and neuroanatomical results support the conclusion that an excitatory link exists between the nucleus reticularis gigantocellularis and at least the caudal portion of the hypoglossal nucleus in the rat.

  15. IGF-1 delivery to CNS attenuates motor neuron cell death but does not improve motor function in type III SMA mice.

    PubMed

    Tsai, Li-Kai; Chen, Yi-Chun; Cheng, Wei-Cheng; Ting, Chen-Hung; Dodge, James C; Hwu, Wuh-Liang; Cheng, Seng H; Passini, Marco A

    2012-01-01

    The efficacy of administering a recombinant adeno-associated virus (AAV) vector encoding human IGF-1 (AAV2/1-hIGF-1) into the deep cerebellar nucleus (DCN) of a type III SMA mouse model was evaluated. High levels of IGF-1 transcripts and protein were detected in the spinal cord at 2 months post-injection demonstrating that axonal connections between the cerebellum and spinal cord were able to act as conduits for the viral vector and protein to the spinal cord. Mice treated with AAV2/1-hIGF-1 and analyzed 8 months later showed changes in endogenous Bax and Bcl-xl levels in spinal cord motor neurons that were consistent with IGF-1-mediated anti-apoptotic effects on motor neurons. However, although AAV2/1-hIGF-1 treatment reduced the extent of motor neuron cell death, the majority of rescued motor neurons were non-functional, as they lacked axons that innervated the muscles. Furthermore, treated SMA mice exhibited abnormal muscle fibers, aberrant neuromuscular junction structure, and impaired performance on motor function tests. These data indicate that although CNS-directed expression of IGF-1 could reduce motor neuron cell death, this did not translate to improvements in motor function in an adult mouse model of type III SMA. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Deep brain stimulation of the subthalamic nucleus improves pain in Parkinson's disease.

    PubMed

    Pellaprat, Jean; Ory-Magne, Fabienne; Canivet, Cindy; Simonetta-Moreau, Marion; Lotterie, Jean-Albert; Radji, Fatai; Arbus, Christophe; Gerdelat, Angélique; Chaynes, Patrick; Brefel-Courbon, Christine

    2014-06-01

    In Parkinson's disease (PD), chronic pain is a common symptom which markedly affects the quality of life. Some physiological arguments proposed that Deep Brain Stimulation of the Subthalamic Nucleus (STN-DBS) could improve pain in PD. We investigated in 58 PD patients the effect of STN-DBS on pain using the short McGill Pain Questionnaire and other pain parameters such as the Bodily discomfort subscore of the Parkinson's disease Questionnaire 39 and the Unified Parkinson's Disease Rating Scale section II (UPDRS II) item 17. All pain scores were significantly improved 12 months after STN-DBS. This improvement was not correlated with motor improvement, depression scores or L-Dopa reduction. STN-DBS induced a substantial beneficial effect on pain in PD, independently of its motor effects and mood status of patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Coherence of neuronal firing of the entopeduncular nucleus with motor cortex oscillatory activity in the 6-OHDA rat model of Parkinson's disease with levodopa-induced dyskinesias.

    PubMed

    Jin, Xingxing; Schwabe, Kerstin; Krauss, Joachim K; Alam, Mesbah

    2016-04-01

    The pathophysiological mechanisms leading to dyskinesias in Parkinson's disease (PD) after long-term treatment with levodopa remain unclear. This study investigates the neuronal firing characteristics of the entopeduncular nucleus (EPN), the rat equivalent of the human globus pallidus internus and output nucleus of the basal ganglia, and its coherence with the motor cortex (MCx) field potentials in the unilateral 6-OHDA rat model of PD with and without levodopa-induced dyskinesias (LID). 6-hydroxydopamine-lesioned hemiparkinsonian (HP) rats, 6-OHDA-lesioned HP rats with LID (HP-LID) rats, and naïve controls were used for recording of single-unit activity under urethane (1.4 g/kg, i.p) anesthesia in the EPN "on" and "off" levodopa. Over the MCx, the electrocorticogram output was recorded. Analysis of single-unit activity in the EPN showed enhanced firing rates, burst activity, and irregularity compared to naïve controls, which did not differ between drug-naïve HP and HP-LID rats. Analysis of EPN spike coherence and phase-locked ratio with MCx field potentials showed a shift of low (12-19 Hz) and high (19-30 Hz) beta oscillatory activity between HP and HP-LID groups. EPN theta phase-locked ratio was only enhanced in HP-LID compared to HP rats. Overall, levodopa injection had no stronger effect in HP-LID rats than in HP rats. Altered coherence and changes in the phase lock ratio of spike and local field potentials in the beta range may play a role for the development of LID.

  18. Division XII: Commission 46: Education & Development of Astronomy

    NASA Astrophysics Data System (ADS)

    Ros, Rosa M.; Hearnshaw, John; Stavinschi, Magda; Garcia, Beatriz; Gerbaldi, Michele; de Greve, Jean-Pierre; Guinan, Edward; Haubold, Hans; Jones, Barrie; Marshall, Laurence A.; Pasachoff, Jay

    2015-08-01

    C46 is a Commission of the Executive Committee of the IAU under Division XII Union-Wide Activities. Aiming at improvement of astronomy education and research at all levels worldwide (through the various projects it initiates),maintains, develops, as well as through the dissemination of information. C46 has 332 members and it was managed by the Organizing Committee, formed by the Commission President (Rosa M. Ros, from Spain), the Vice-Presiden (John Hearnshaw, from New Zealand), the Retiring President (Magda Stavinschi, from Romania), the Vice-President of the IAU (George Miley, from Netherland) and the PG chairs: • Worldwide Development of Astronomy WWDA: John Hearnshaw • Teaching Astronomy for Development TAD: Edward Guinan and Laurence A. Marshall • International Schools for Young Astronomers ISYA; chair: Jean-Pierre de Greve • Network for Astronomy School Education NASE: Rosa M. Ros and Beatriz Garcia • Public Understanding at the times of Solar Eclipses and transit Phenomena PUTSE: Jay Pasachoff • National Liaison and Newsletter: Barrie Jones • Collaborative Programs: Hans Haubold

  19. [Emotion and basal ganglia (II): what can we learn from subthalamic nucleus deep brain stimulation in Parkinson's disease?].

    PubMed

    Péron, J; Dondaine, T

    2012-01-01

    The subthalamic nucleus deep-brain stimulation Parkinson's disease patient model seems to represent a unique opportunity for studying the functional role of the basal ganglia and notably the subthalamic nucleus in human emotional processing. Indeed, in addition to constituting a therapeutic advance for severely disabled Parkinson's disease patients, deep brain stimulation is a technique, which selectively modulates the activity of focal structures targeted by surgery. There is growing evidence of a link between emotional impairments and deep-brain stimulation of the subthalamic nucleus. In this context, according to the definition of emotional processing exposed in the companion paper available in this issue, the aim of the present review will consist in providing a synopsis of the studies that investigated the emotional disturbances observed in subthalamic nucleus deep brain stimulation Parkinson's disease patients. This review leads to the conclusion that several emotional components would be disrupted after subthalamic nucleus deep brain stimulation in Parkinson's disease: subjective feeling, neurophysiological activation, and motor expression. Finally, after a description of the limitations of this study model, we discuss the functional role of the subthalamic nucleus (and the striato-thalamo-cortical circuits in which it is involved) in emotional processing. It seems reasonable to conclude that the striato-thalamo-cortical circuits are indeed involved in emotional processing and that the subthalamic nucleus plays a central in role the human emotional architecture. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Processing of emotional information in the human subthalamic nucleus.

    PubMed

    Buot, Anne; Welter, Marie-Laure; Karachi, Carine; Pochon, Jean-Baptiste; Bardinet, Eric; Yelnik, Jérôme; Mallet, Luc

    2013-12-01

    The subthalamic nucleus (STN) is an efficient target for treating patients with Parkinson's disease as well as patients with obsessive-compulsive disorder (OCD) using high frequency stimulation (HFS). In both Parkinson's disease and OCD patients, STN-HFS can trigger abnormal behaviours, such as hypomania and impulsivity. To investigate if this structure processes emotional information, and whether it depends on motor demands, we recorded subthalamic local field potentials in 16 patients with Parkinson's disease using deep brain stimulation electrodes. Recordings were made with and without dopaminergic treatment while patients performed an emotional categorisation paradigm in which the response varied according to stimulus valence (pleasant, unpleasant and neutral) and to the instruction given (motor, non-motor and passive). Pleasant, unpleasant and neutral stimuli evoked an event related potential (ERP). Without dopamine medication, ERP amplitudes were significantly larger for unpleasant compared with neutral pictures, whatever the response triggered by the stimuli; and the magnitude of this effect was maximal in the ventral part of the STN. No significant difference in ERP amplitude was observed for pleasant pictures. With dopamine medication, ERP amplitudes were significantly increased for pleasant compared with neutral pictures whatever the response triggered by the stimuli, while ERP amplitudes to unpleasant pictures were not modified. These results demonstrate that the ventral part of the STN processes the emotional valence of stimuli independently of the motor context and that dopamine enhances processing of pleasant information. These findings confirm the specific involvement of the STN in emotional processes in human, which may underlie the behavioural changes observed in patients with deep brain stimulation.

  1. Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.

    PubMed

    Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R

    2012-01-11

    Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.

  2. Organization of cerebellar and area "y" projections to the nucleus reticularis tegmenti pontis in macaque monkeys.

    PubMed

    Stanton, G B

    2001-04-02

    Axonal projections to the nucleus reticularis tegmenti pontis (RTP) were studied in 11 macaque monkeys by mapping axonal degeneration from lesions centered in the dentate and interpositus anterior (IA) nuclei and by mapping anterograde transport of tritiated amino acid precursors injected into the dentate nucleus. Projections from the dentate and IA nuclei overlap in central parts of the body of RTP, but the terminal field of dentate axons extends dorsomedial and rostral to the terminal field of IA axons, and IA terminal fields extend more ventrolaterally. A caudal to rostral topography of projections from each nucleus onto dorsal to ventral parts of RTP was seen. Projections from rostral parts of both nuclei terminate in a sublemniscal part of the nucleus. The topography of dentate and IA projections onto central to ventrolateral RTP appears to match somatotopic maps of these cerebellar nuclei with the somatotopic map of projections to RTP from primary motor cortex. Projections from caudal and ventral parts of the dentate nucleus appear to overlap oculomotor inputs to rostral, dorsal, and medial RTP from the frontal and supplementary eye fields, the superior colliculus, and the oculomotor region of the caudal fastigial nucleus. Projections to the paramedian part of RTP from vestibular area "y" were also found in two cases that correlated with projections to vertical oculomotor motoneurons. The maps of dentate and IA projections onto RTP correlate predictably with maps of dentate and IA projections to the ventrolateral thalamus and subnuclei of the red nucleus that were made from these same cases (Stanton [1980b] J. Comp. Neurol. 192:377-385). Copyright 2001 Wiley-Liss, Inc.

  3. Bayesian Estimation of Reliability Burr Type XII Under Al-Bayyatis’ Suggest Loss Function with Numerical Solution

    NASA Astrophysics Data System (ADS)

    Mohammed, Amal A.; Abraheem, Sudad K.; Fezaa Al-Obedy, Nadia J.

    2018-05-01

    In this paper is considered with Burr type XII distribution. The maximum likelihood, Bayes methods of estimation are used for estimating the unknown scale parameter (α). Al-Bayyatis’ loss function and suggest loss function are used to find the reliability with the least loss. So the reliability function is expanded in terms of a set of power function. For this performance, the Matlab (ver.9) is used in computations and some examples are given.

  4. Relationship of ocular accommodation and motor skills performance in developmental coordination disorder.

    PubMed

    Rafique, Sara A; Northway, Nadia

    2015-08-01

    Ocular accommodation provides a well-focussed image, feedback for accurate eye movement control, and cues for depth perception. To accurately perform visually guided motor tasks, integration of ocular motor systems is essential. Children with motor coordination impairment are established to be at higher risk of accommodation anomalies. The aim of the present study was to examine the relationship between ocular accommodation and motor tasks, which are often overlooked, in order to better understand the problems experienced by children with motor coordination impairment. Visual function, gross and fine motor skills were assessed in children with developmental coordination disorder (DCD) and typically developing control children. Children with DCD had significantly poorer accommodation facility and amplitude dynamics compared to controls. Results indicate a relationship between impaired accommodation and motor skills. Specifically, accommodation anomalies correlated with visual motor, upper limb and fine dexterity task performance. Consequently, we argue accommodation anomalies influence the ineffective coordination of action and perception in DCD. Furthermore, reading disabilities were related to poorer motor performance. We postulate the role of the fastigial nucleus as a common pathway for accommodation and motor deficits. Implications of the findings and recommended visual screening protocols are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Mechanical and SEM analysis of artificial comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Thiel, K.; Kochan, H.; Roessler, K.; Gruen, E.; Schwehm, G.; Hellmann, H.; Hsiung, P.; Koelzer, G.

    1989-01-01

    Since 1987 experiments dealing with comet nucleus phenomena have been carried out in the DFVLR space simulation chambers. The main objective of these experiments is a better understanding of thermal behavior, surface phenomena and especially the gas dust interaction. As a function of different sample compositions and exposure to solar irradiation (xenon-bulbs) crusts of different hardness and thickness were measured. The measuring device consists of a motor driven pressure foot (5 mm diameter), which is pressed into the sample. The applied compressive force is electronically monitored. The microstructure of the crust and dust residuals is investigated by scanning electron microscopy (SEM) techniques. Stress-depth profiles of an unirradiated and an irradiated model comet are given.

  6. An agonist–antagonist cerebellar nuclear system controlling eyelid kinematics during motor learning

    PubMed Central

    Sánchez-Campusano, Raudel; Gruart, Agnès; Fernández-Mas, Rodrigo; Delgado-García, José M.

    2012-01-01

    The presence of two antagonistic groups of deep cerebellar nuclei neurons has been reported as necessary for a proper dynamic control of learned motor responses. Most models of cerebellar function seem to ignore the biomechanical need for a double activation–deactivation system controlling eyelid kinematics, since most of them accept that, for closing the eyelid, only the activation of the orbicularis oculi (OO) muscle (via the red nucleus to the facial motor nucleus) is necessary, without a simultaneous deactivation of levator palpebrae motoneurons (via unknown pathways projecting to the perioculomotor area). We have analyzed the kinetic neural commands of two antagonistic types of cerebellar posterior interpositus neuron (IPn) (types A and B), the electromyographic (EMG) activity of the OO muscle, and eyelid kinematic variables in alert behaving cats during classical eyeblink conditioning, using a delay paradigm. We addressed the hypothesis that the interpositus nucleus can be considered an agonist–antagonist system controlling eyelid kinematics during motor learning. To carry out a comparative study of the kinetic–kinematic relationships, we applied timing and dispersion pattern analyses. We concluded that, in accordance with a dominant role of cerebellar circuits for the facilitation of flexor responses, type A neurons fire during active eyelid downward displacements—i.e., during the active contraction of the OO muscle. In contrast, type B neurons present a high tonic rate when the eyelids are wide open, and stop firing during any active downward displacement of the upper eyelid. From a functional point of view, it could be suggested that type B neurons play a facilitative role for the antagonistic action of the levator palpebrae muscle. From an anatomical point of view, the possibility that cerebellar nuclear type B neurons project to the perioculomotor area—i.e., more or less directly onto levator palpebrae motoneurons—is highly appealing. PMID

  7. RELATIONSHIP BETWEEN ENTROPY OF SPIKE TIMING AND FIRING RATE IN ENTOPEDUNCULAR NUCLEUS NEURONS IN ANESTHETIZED RATS: FUNCTION OF THE NIGRO-STRIATAL PATHWAY

    PubMed Central

    Darbin, Olivier; Jin, Xingxing; von Wrangel, Christof; Schwabe, Kerstin; Nambu, Atsushi; Naritoku, Dean K; Krauss, Joachim K.; Alam, Mesbah

    2016-01-01

    The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus (entopeduncular nucleus, EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson’s disease (PD). In both control subjects and subjects with 6-OHDA lesion of the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15Hz and 25 Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25Hz. Our data establishes that nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions with movement disorders. PMID:26711712

  8. Anatomical evidence for brainstem circuits mediating feeding motor programs in the leopard frog, Rana pipiens.

    PubMed

    Anderson, C W

    2001-09-01

    Using injections of small molecular weight fluorescein dextran amines, combined with activity-dependent uptake of sulforhodamine 101 (SR101), brainstem circuits presumed to be involved in feeding motor output were investigated. As has been shown previously in other studies, projections to the cerebellar nuclei were identified from the cerebellar cortex, the trigeminal motor nucleus, and the vestibular nuclei. Results presented here suggest an additional pathway from the hypoglossal motor nuclei to the cerebellar nucleus as well as an afferent projection from the peripheral hypoglossal nerve to the Purkinje cell layer of the cerebellar cortex. Injections in the cerebellar cortex combined with retrograde labeling of the peripheral hypoglossal nerve demonstrate anatomical convergence at the level of the medial reticular formation. This suggests a possible integrative region for afferent feedback from the hypoglossal nerve and information through the Purkinje cell layer of the cerebellar cortex. The activity-dependent uptake of SR101 additionally suggests a reciprocal, polysynaptic pathway between this same area of the medial reticular formation and the trigeminal motor nuclei. The trigeminal motor neurons innervate the m adductor mandibulae, the primary mouth-closing muscle. The SR101 uptake clearly labeled the ventrolateral hypoglossal nuclei, the medial reticular formation, and the Purkinje cell layer of the cerebellar cortex. Unlike retrograde labeling of the peripheral hypoglossal nerve, stimulating the hypoglossal nerve while SR101 was bath-applied labeled trigeminal motor neurons. This, combined with the dextran labeling, suggests a reciprocal connection between the trigeminal motor nuclei and the cerebellar nuclei, as well as the medulla. Taken together, these data are important for understanding the neurophysiological pathways used to coordinate the proper timing of an extremely rapid, goal-directed movement and may prove useful for elucidating some of the

  9. Nucleus and nucleus-cytoskeleton connections in 3D cell migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lingling, E-mail: liulingling2012@163.com; Luo, Qing, E-mail: qing.luo@cqu.edu.cn; Sun, Jinghui, E-mail: sunjhemail@163.com

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and reviewmore » how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from

  10. The activation of plasminogen by Hageman factor (Factor XII) and Hageman factor fragments.

    PubMed Central

    Goldsmith, G H; Saito, H; Ratnoff, O S

    1978-01-01

    Activation of plasminogen through surface-mediated reactions is well recognized. In the presence of kaolin, purified Hageman factor (Factor XII) changed plasminogen to plasmin, as assayed upon a synthetic amide substrate and by fibrinolysis. Kinetic studies suggested an enzymatic action of Hageman factor upon its substrate, plasminogen. Hageman factor fragments, at a protein concentration equivalent to whole Hageman factor, activated plasminogen to a lesser extent. These protein preparations were not contaminated with other agents implicated in surface-mediated fibrinolysis. Diisopropyl fluorophosphate treatment of plasminogen did not inhibit its activation by Hageman factor. These studies indicate that Hageman factor has a hitherto unsuspected function, the direct activation of plasminogen. PMID:659637

  11. Lyman-alpha observations of Comet Kohoutek 1973 XII with Copernicus

    NASA Technical Reports Server (NTRS)

    Drake, J. F.; Jenkins, E. B.; Bertaux, J. L.; Festou, M.; Keller, H. U.

    1976-01-01

    Comet Kohoutek 1973 XII was observed with a telescope-spectrometer on the Copernicus satellite on six occasions over a 1-month period starting on January 29, 1974. Positive detection of the cometary Ly-alpha emission profile was obtained on January 29 and February 2. Earlier observations of the geocoronal Ly-alpha emission profile allowed an instrumental intensity calibration and confirmation of the computed instrumental profile for an extended source at the Ly-alpha wavelength. After allowing for broadening by the instrument, a hydrogen-outflow velocity of about 10.6 km/s is derived from the width of the Ly-alpha emission on January 29. The intensity calibration combined with an appropriate cometary model led to cometary water-production rates for January 29 and February 2. Only upper limits were obtained for Ly-alpha on and after February 14. Searches for OH and D led to negative results.

  12. Anatomical evidence for red nucleus projections to motoneuronal cell groups in the spinal cord of the monkey

    NASA Technical Reports Server (NTRS)

    Holstege, Gert; Blok, Bertil F.; Ralston, Diane Daly

    1988-01-01

    In four rhesus monkeys wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injections were made in the mesencephalic tegmentum. In three cases with injections involving the red nucleus (RN), rubrospinal fibers descended mainly contralaterally to terminate in laminae V, VI and dorsal VII of the spinal cord and in the lateral motoneuronal cell groups at the level of the cervical and lumbosacral enlargements. In all four cases the area of the interstitial nucleus of Cajal (INC) was injected, which resulted in labeled interstitiospinal fibers in the medial part of the ipsilateral ventral funiculus of the spinal cord. The results indicate that there is no major qualitative difference between the mesencephalic (RN and INC) and motor cortical projections to the spinal cord.

  13. Fusion cross sections for reactions involving medium and heavy nucleus-nucleus systems

    NASA Astrophysics Data System (ADS)

    Atta, Debasis; Basu, D. N.

    2014-12-01

    Existing data on near-barrier fusion excitation functions of medium and heavy nucleus-nucleus systems have been analyzed by using a simple diffused-barrier formula derived assuming the Gaussian shape of the barrier-height distributions. The fusion cross section is obtained by folding the Gaussian barrier distribution with the classical expression for the fusion cross section for a fixed barrier. The energy dependence of the fusion cross section, thus obtained, provides good description to the existing data on near-barrier fusion and capture excitation functions for medium and heavy nucleus-nucleus systems. The theoretical values for the parameters of the barrier distribution are estimated which can be used for fusion or capture cross-section predictions that are especially important for planning experiments for synthesizing new superheavy elements.

  14. Electromagnetic Nucleus - Nucleus Cross Sections Using Energy Dependent Branching Ratios

    NASA Astrophysics Data System (ADS)

    Adamczyk, Anne; Norbury, John

    2009-11-01

    Energy dependent branching ratios, derived from Weisskopf-Ewing theory, are presented and compared to an energy independent formalism, developed by Norbury, Townsend, and Westfall. The energy dependent branching ratio formalism is more versatile since it allows for not only neutron and proton emission, but also alpha particle, deuteron, helion, and triton emission. A new theoretical method for calculating electromagnetic dissociation (EMD) nucleus - nucleus cross sections, with energy dependent branching ratios, is introduced. Comparisons of photonuclear and nucleus - nucleus cross sections, using energy dependent and independent branching ratios, to experiment are presented. Experimental efforts, by various groups, have focused on measuring cross sections for proton and neutron emission, because proton and neutron emission is generally more probable than heavier particle emission. Consequently, comparisons of energy dependent and independent branching ratios to experiment are made for photoneutron and photoproton cross sections. EMD cross sections for single neutron, proton, and alpha particle removal are calculated and compared to experimental data for a variety of projectile, target, and energy combinations. Results indicate that using energy dependent branching ratios yields better estimates.

  15. Role of hydrogen sulfide within the dorsal motor nucleus of the vagus in the control of gastric function in rats.

    PubMed

    Sun, H-Z; Yu, K-H; Ai, H-B

    2015-05-01

    Hydrogen sulfide (H2 S) is a gaseous messenger and serves as an important neuromodulator in the central nervous system. This study aimed to clarify the role of H2 S within the dorsal motor nucleus of the vagus (DMV) in the control of gastric function in rats. Cystathionine β-synthetase (CBS) is an important generator of endogenous H2 S in the brain. We investigated the distribution of CBS in the DMV using immunohistochemical method, and the effects of H2 S on gastric motility and on gastric acid secretion. CBS-immunoreactive (IR) neurons were detected in the rostral, intermediate and caudal DMV, with the highest number of CBS-IR neurons in the caudal DMV, and the lowest in the intermediate DMV. We also found that microinjection of the exogenous H2 S donor NaHS (0.04 and 0.08 mol/L; 0.1 μL; n = 6; p < 0.05) into the DMV significantly inhibited gastric motility with a dose-dependent trend, and promoted gastric acid secretion in Wistar rats. Microinjection of the same volume of physiological saline (PS; 0.1 μL, n = 6, p > 0.05) at the same location did not noticeably change gastric motility and acid secretion. The data from these experiments suggest that the CBS that produces H2 S is present in the DMV, and microinjection of NaHS into the DMV inhibited gastric motility and enhanced gastric acid secretion in rats. © 2015 John Wiley & Sons Ltd.

  16. Rubrocerebellar Feedback Loop Isolates the Interposed Nucleus as an Independent Processor of Corollary Discharge Information in Mice

    PubMed Central

    Beitzel, Christy S.; Houck, Brenda D.; Lewis, Samantha M.

    2017-01-01

    Understanding cerebellar contributions to motor coordination requires deeper insight into how the output structures of the cerebellum, the cerebellar nuclei, integrate their inputs and influence downstream motor pathways. The magnocellular red nucleus (RNm), a brainstem premotor structure, is a major target of the interposed nucleus (IN), and has also been described in previous studies to send feedback collaterals to the cerebellum. Because such a pathway is in a key position to provide motor efferent information to the cerebellum, satisfying predictions about the use of corollary discharge in cerebellar computations, we studied it in mice of both sexes. Using anterograde viral tracing, we show that innervation of cerebellum by rubrospinal neuron collaterals is remarkably selective for the IN compared with the cerebellar cortex. Optogenetic activation of the pathway in acute mouse brain slices drove IN activity despite small amplitude synaptic currents, suggesting an active role in IN information processing. Monosynaptic transsynaptic rabies tracing indicated the pathway contacts multiple cell types within the IN. By contrast, IN inputs to the RNm targeted a region that lacked inhibitory neurons. Optogenetic drive of IN inputs to the RNm revealed strong, direct excitation but no inhibition of RNm neurons. Together, these data indicate that the cerebellar nuclei are under afferent control independent of the cerebellar cortex, potentially diversifying its roles in motor control. SIGNIFICANCE STATEMENT The common assumption that all cerebellar mossy fibers uniformly collateralize to the cerebellar nuclei and cortex underlies classic models of convergent Purkinje influence on cerebellar output. Specifically, mossy fibers are thought to both directly excite nuclear neurons and drive polysynaptic feedforward inhibition via Purkinje neurons, setting up a fundamental computational unit. Here we present data that challenge this rule. A dedicated cerebellar nuclear afferent

  17. Rubrocerebellar Feedback Loop Isolates the Interposed Nucleus as an Independent Processor of Corollary Discharge Information in Mice.

    PubMed

    Beitzel, Christy S; Houck, Brenda D; Lewis, Samantha M; Person, Abigail L

    2017-10-18

    Understanding cerebellar contributions to motor coordination requires deeper insight into how the output structures of the cerebellum, the cerebellar nuclei, integrate their inputs and influence downstream motor pathways. The magnocellular red nucleus (RNm), a brainstem premotor structure, is a major target of the interposed nucleus (IN), and has also been described in previous studies to send feedback collaterals to the cerebellum. Because such a pathway is in a key position to provide motor efferent information to the cerebellum, satisfying predictions about the use of corollary discharge in cerebellar computations, we studied it in mice of both sexes. Using anterograde viral tracing, we show that innervation of cerebellum by rubrospinal neuron collaterals is remarkably selective for the IN compared with the cerebellar cortex. Optogenetic activation of the pathway in acute mouse brain slices drove IN activity despite small amplitude synaptic currents, suggesting an active role in IN information processing. Monosynaptic transsynaptic rabies tracing indicated the pathway contacts multiple cell types within the IN. By contrast, IN inputs to the RNm targeted a region that lacked inhibitory neurons. Optogenetic drive of IN inputs to the RNm revealed strong, direct excitation but no inhibition of RNm neurons. Together, these data indicate that the cerebellar nuclei are under afferent control independent of the cerebellar cortex, potentially diversifying its roles in motor control. SIGNIFICANCE STATEMENT The common assumption that all cerebellar mossy fibers uniformly collateralize to the cerebellar nuclei and cortex underlies classic models of convergent Purkinje influence on cerebellar output. Specifically, mossy fibers are thought to both directly excite nuclear neurons and drive polysynaptic feedforward inhibition via Purkinje neurons, setting up a fundamental computational unit. Here we present data that challenge this rule. A dedicated cerebellar nuclear afferent

  18. Meson-nucleus potentials and the search for meson-nucleus bound states

    NASA Astrophysics Data System (ADS)

    Metag, V.; Nanova, M.; Paryev, E. Ya.

    2017-11-01

    Recent experiments studying the meson-nucleus interaction to extract meson-nucleus potentials are reviewed. The real part of the potentials quantifies whether the interaction is attractive or repulsive while the imaginary part describes the meson absorption in nuclei. The review is focused on mesons which are sufficiently long-lived to potentially form meson-nucleus quasi-bound states. The presentation is confined to meson production off nuclei in photon-, pion-, proton-, and light-ion induced reactions and heavy-ion collisions at energies near the production threshold. Tools to extract the potential parameters are presented. In most cases, the real part of the potential is determined by comparing measured meson momentum distributions or excitation functions with collision model or transport model calculations. The imaginary part is extracted from transparency ratio measurements. Results on K+ ,K0 ,K- , η ,η‧ , ω, and ϕ mesons are presented and compared with theoretical predictions. The interaction of K+ and K0 mesons with nuclei is found to be weakly repulsive, while the K- , η ,η‧ , ω and ϕ meson-nucleus potentials are attractive, however, with widely different strengths. Because of meson absorption in the nuclear medium the imaginary parts of the meson-nucleus potentials are all negative, again with a large spread. An outlook on planned experiments in the charm sector is given. In view of the determined potential parameters, the criteria and chances for experimentally observing meson-nucleus quasi-bound states are discussed. The most promising candidates appear to be the η and η‧ mesons.

  19. Cortical disconnection of the ipsilesional primary motor cortex is associated with gait speed and upper extremity motor impairment in chronic left hemispheric stroke.

    PubMed

    Peters, Denise M; Fridriksson, Julius; Stewart, Jill C; Richardson, Jessica D; Rorden, Chris; Bonilha, Leonardo; Middleton, Addie; Gleichgerrcht, Ezequiel; Fritz, Stacy L

    2018-01-01

    Advances in neuroimaging have enabled the mapping of white matter connections across the entire brain, allowing for a more thorough examination of the extent of white matter disconnection after stroke. To assess how cortical disconnection contributes to motor impairments, we examined the relationship between structural brain connectivity and upper and lower extremity motor function in individuals with chronic stroke. Forty-three participants [mean age: 59.7 (±11.2) years; time poststroke: 64.4 (±58.8) months] underwent clinical motor assessments and MRI scanning. Nonparametric correlation analyses were performed to examine the relationship between structural connectivity amid a subsection of the motor network and upper/lower extremity motor function. Standard multiple linear regression analyses were performed to examine the relationship between cortical necrosis and disconnection of three main cortical areas of motor control [primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA)] and motor function. Anatomical connectivity between ipsilesional M1/SMA and the (1) cerebral peduncle, (2) thalamus, and (3) red nucleus were significantly correlated with upper and lower extremity motor performance (P ≤ 0.003). M1-M1 interhemispheric connectivity was also significantly correlated with gross manual dexterity of the affected upper extremity (P = 0.001). Regression models with M1 lesion load and M1 disconnection (adjusted for time poststroke) explained a significant amount of variance in upper extremity motor performance (R 2  = 0.36-0.46) and gait speed (R 2  = 0.46), with M1 disconnection an independent predictor of motor performance. Cortical disconnection, especially of ipsilesional M1, could significantly contribute to variability seen in locomotor and upper extremity motor function and recovery in chronic stroke. Hum Brain Mapp 39:120-132, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Carbonic anhydrase inhibitors: guaiacol and catechol derivatives effectively inhibit certain human carbonic anhydrase isoenzymes (hCA I, II, IX and XII).

    PubMed

    Scozzafava, Andrea; Passaponti, Maurizio; Supuran, Claudiu T; Gülçin, İlhami

    2015-01-01

    Carbonic anhydrases (CAs) are widespread metalloenzymes in higher vertebrates including humans. A series of phenolic compounds, including guaiacol, 4-methylguaiacol, 4-propylguaiacol, eugenol, isoeugenol, vanillin, syringaldehyde, catechol, 3-methyl catechol, 4-methyl catechol and 3-methoxy catechol were investigated for their inhibition of all the catalytically active mammalian isozymes of the Zn(2+)-containing CA (EC 4.2.1.1). All the phenolic compounds effectively inhibited human carbonic anhydrase isoenzymes (hCA I, II, IX and XII), with Kis in the range of 2.20-515.98 μM. The various isozymes showed diverse inhibition profiles. Among the tested phenolic derivatives, compounds 4-methyl catechol and 3-methoxy catechol showed potent activity as inhibitors of the tumour-associated transmembrane isoforms (hCA IX and XII) in the submicromolar range, with high selectivity. The results obtained from this research may lead to the design of more effective carbonic anhydrase isoenzyme inhibitors (CAIs) based on such phenolic compound scaffolds.

  1. Spinal TNFα is necessary for inactivity-induced phrenic motor facilitation

    PubMed Central

    Broytman, Oleg; Baertsch, Nathan A; Baker-Herman, Tracy L

    2013-01-01

    A prolonged reduction in central neural respiratory activity elicits a form of plasticity known as inactivity-induced phrenic motor facilitation (iPMF), a ‘rebound’ increase in phrenic burst amplitude apparent once respiratory neural activity is restored. iPMF requires atypical protein kinase C (aPKC) activity within spinal segments containing the phrenic motor nucleus to stabilize an early transient increase in phrenic burst amplitude and to form long-lasting iPMF following reduced respiratory neural activity. Upstream signal(s) leading to spinal aPKC activation are unknown. We tested the hypothesis that spinal tumour necrosis factor-α (TNFα) is necessary for iPMF via an aPKC-dependent mechanism. Anaesthetized, ventilated rats were exposed to a 30 min neural apnoea; upon resumption of respiratory neural activity, a prolonged increase in phrenic burst amplitude (42 ± 9% baseline; P < 0.05) was apparent, indicating long-lasting iPMF. Pretreatment with recombinant human soluble TNF receptor 1 (sTNFR1) in the intrathecal space at the level of the phrenic motor nucleus prior to neural apnoea blocked long-lasting iPMF (2 ± 8% baseline; P > 0.05). Intrathecal TNFα without neural apnoea was sufficient to elicit long-lasting phrenic motor facilitation (pMF; 62 ± 7% baseline; P < 0.05). Similar to iPMF, TNFα-induced pMF required spinal aPKC activity, as intrathecal delivery of a ζ-pseudosubstrate inhibitory peptide (PKCζ-PS) 35 min following intrathecal TNFα arrested TNFα-induced pMF (28 ± 8% baseline; P < 0.05). These data demonstrate that: (1) spinal TNFα is necessary for iPMF; and (2) spinal TNFα is sufficient to elicit pMF via a similar aPKC-dependent mechanism. These data are consistent with the hypothesis that reduced respiratory neural activity elicits iPMF via a TNFα-dependent increase in spinal aPKC activity. PMID:23878370

  2. Computer program for parameterization of nucleus-nucleus electromagnetic dissociation cross sections

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.; Badavi, Forooz F.

    1988-01-01

    A computer subroutine parameterization of electromagnetic dissociation cross sections for nucleus-nucleus collisions is presented that is suitable for implementation in a heavy ion transport code. The only inputs required are the projectile kinetic energy and the projectile and target charge and mass numbers.

  3. Nucleus-nucleus interactions between 20 and 65 GeV per nucleon

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Derrickson, J. H.; Fountain, W. F.; Meegan, C. A.; Parnell, T. A.; Roberts, F. E.; Watts, J. W.; Oda, H.; Takahashi, Y.; Jones, W. V.

    1987-01-01

    A hybrid electronic-counter/emulsion-chamber instrument was exposed to high-energy cosmic rays on a balloon. The data on 105 nucleus-nucleus collisions in the energy range 20-65 GeV/nucleon and for incident nuclear charges Zp in the range of 22 to 28 are presented. Inclusive characteristics of particle production on different targets (plastic, emulsion, and lead) are shown and compared with models based on the superposition of nucleon-nucleus interactions. Features of a subset of the more central collisions with a plastic target and some characteristics of individual events with the highest multiplicity of produced particles are described.

  4. Decisional impulsivity and the associative-limbic subthalamic nucleus in obsessive-compulsive disorder: stimulation and connectivity

    PubMed Central

    Voon, Valerie; Droux, Fabien; Morris, Laurel; Chabardes, Stephan; Bougerol, Thierry; David, Olivier; Krack, Paul; Polosan, Mircea

    2017-01-01

    Abstract Why do we make hasty decisions for short-term gain? Rapid decision-making with limited accumulation of evidence and delay discounting are forms of decisional impulsivity. The subthalamic nucleus is implicated in inhibitory function but its role in decisional impulsivity is less well-understood. Here we assess decisional impulsivity in subjects with obsessive compulsive disorder who have undergone deep brain stimulation of the limbic and associative subthalamic nucleus. We show that stimulation of the subthalamic nucleus is causally implicated in increasing decisional impulsivity with less accumulation of evidence during probabilistic uncertainty and in enhancing delay discounting. Subthalamic stimulation shifts evidence accumulation in subjects with obsessive-compulsive disorder towards a functional less cautious style closer to that of healthy controls emphasizing its adaptive nature. Thus, subjects with obsessive compulsive disorder on subthalamic stimulation may be less likely to check for evidence (e.g. checking that the stove is on) with no difference in subjective confidence (or doubt). In a separate study, we replicate in humans (154 healthy controls) using resting state functional connectivity, tracing studies conducted in non-human primates dissociating limbic, associative and motor frontal hyper-direct connectivity with anterior and posterior subregions of the subthalamic nucleus. We show lateralization of functional connectivity of bilateral ventral striatum to right anterior ventromedial subthalamic nucleus consistent with previous observations of lateralization of emotionally evoked activity to right ventral subthalamic nucleus. We use a multi-echo sequence with independent components analysis, which has been shown to have enhanced signal-to-noise ratio, thus optimizing visualization of small subcortical structures. These findings in healthy controls converge with the effective contacts in obsessive compulsive disorder patients localized

  5. Acute pancreatitis decreases the sensitivity of pancreas-projecting dorsal motor nucleus of the vagus neurones to group II metabotropic glutamate receptor agonists in rats

    PubMed Central

    Babic, Tanja; Travagli, R Alberto

    2014-01-01

    Recent studies have shown that pancreatic exocrine secretions (PES) are modulated by dorsal motor nucleus of the vagus (DMV) neurones, whose activity is finely tuned by GABAergic and glutamatergic synaptic inputs. Group II metabotropic glutamate receptors (mGluR) decrease synaptic transmission to pancreas-projecting DMV neurones and increase PES. In the present study, we used a combination of in vivo and in vitro approaches aimed at characterising the effects of caerulein-induced acute pancreatitis (AP) on the vagal neurocircuitry modulating pancreatic functions. In control rats, microinjection of bicuculline into the DMV increased PES, whereas microinjections of kynurenic acid had no effect. Conversely, in AP rats, microinjection of bicuculline had no effect, whereas kynurenic acid decreased PES. DMV microinjections of the group II mGluR agonist APDC and whole cell recordings of excitatory currents in identified pancreas-projecting DMV neurones showed a reduced functional response in AP rats compared to controls. Moreover, these changes persisted up to 3 weeks following the induction of AP. These data demonstrate that AP increases the excitatory input to pancreas-projecting DMV neurones by decreasing the response of excitatory synaptic terminals to group II mGluR agonist. PMID:24445314

  6. Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder.

    PubMed

    Hassa, Thomas; Sebastian, Alexandra; Liepert, Joachim; Weiller, Cornelius; Schmidt, Roger; Tüscher, Oliver

    2017-01-01

    Initial historical accounts as well as recent data suggest that emotion processing is dysfunctional in conversion disorder patients and that this alteration may be the pathomechanistic neurocognitive basis for symptoms in conversion disorder. However, to date evidence of direct interaction of altered negative emotion processing with motor control networks in conversion disorder is still lacking. To specifically study the neural correlates of emotion processing interacting with motor networks we used a task combining emotional and sensorimotor stimuli both separately as well as simultaneously during functional magnetic resonance imaging in a well characterized group of 13 conversion disorder patients with functional hemiparesis and 19 demographically matched healthy controls. We performed voxelwise statistical parametrical mapping for a priori regions of interest within emotion processing and motor control networks. Psychophysiological interaction (PPI) was used to test altered functional connectivity of emotion and motor control networks. Only during simultaneous emotional stimulation and passive movement of the affected hand patients displayed left amygdala hyperactivity. PPI revealed increased functional connectivity in patients between the left amygdala and the (pre-)supplemental motor area and the subthalamic nucleus, key regions within the motor control network. These findings suggest a novel mechanistic direct link between dysregulated emotion processing and motor control circuitry in conversion disorder.

  7. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats

    PubMed Central

    Wen, Tong-Chun; Lall, Sophia; Pagnotta, Corey; Markward, James; Gupta, Disha; Ratnadurai-Giridharan, Shivakeshavan; Bucci, Jacqueline; Greenwald, Lucy; Klugman, Madelyne; Hill, N. Jeremy; Carmel, Jason B.

    2018-01-01

    After injury to the corticospinal tract (CST) in early development there is large-scale adaptation of descending motor pathways. Some studies suggest the uninjured hemisphere controls the impaired forelimb, while others suggest that the injured hemisphere does; these pathways have never been compared directly. We tested the contribution of each motor cortex to the recovery forelimb function after neonatal injury of the CST. We cut the left pyramid (pyramidotomy) of postnatal day 7 rats, which caused a measurable impairment of the right forelimb. We used pharmacological inactivation of each motor cortex to test its contribution to a skilled reach and supination task. Rats with neonatal pyramidotomy were further impaired by inactivation of motor cortex in both the injured and the uninjured hemispheres, while the forelimb of uninjured rats was impaired only from the contralateral motor cortex. Thus, inactivation demonstrated motor control from each motor cortex. In contrast, physiological and anatomical interrogation of these pathways support adaptations only in the uninjured hemisphere. Intracortical microstimulation of motor cortex in the uninjured hemisphere of rats with neonatal pyramidotomy produced responses from both forelimbs, while stimulation of the injured hemisphere did not elicit responses from either forelimb. Both anterograde and retrograde tracers were used to label corticofugal pathways. There was no increased plasticity from the injured hemisphere, either from cortex to the red nucleus or the red nucleus to the spinal cord. In contrast, there were very strong CST connections to both halves of the spinal cord from the uninjured motor cortex. Retrograde tracing produced maps of each forelimb within the uninjured hemisphere, and these were partly segregated. This suggests that the uninjured hemisphere may encode separate control of the unimpaired and the impaired forelimbs of rats with neonatal pyramidotomy. PMID:29706871

  8. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats.

    PubMed

    Wen, Tong-Chun; Lall, Sophia; Pagnotta, Corey; Markward, James; Gupta, Disha; Ratnadurai-Giridharan, Shivakeshavan; Bucci, Jacqueline; Greenwald, Lucy; Klugman, Madelyne; Hill, N Jeremy; Carmel, Jason B

    2018-01-01

    After injury to the corticospinal tract (CST) in early development there is large-scale adaptation of descending motor pathways. Some studies suggest the uninjured hemisphere controls the impaired forelimb, while others suggest that the injured hemisphere does; these pathways have never been compared directly. We tested the contribution of each motor cortex to the recovery forelimb function after neonatal injury of the CST. We cut the left pyramid (pyramidotomy) of postnatal day 7 rats, which caused a measurable impairment of the right forelimb. We used pharmacological inactivation of each motor cortex to test its contribution to a skilled reach and supination task. Rats with neonatal pyramidotomy were further impaired by inactivation of motor cortex in both the injured and the uninjured hemispheres, while the forelimb of uninjured rats was impaired only from the contralateral motor cortex. Thus, inactivation demonstrated motor control from each motor cortex. In contrast, physiological and anatomical interrogation of these pathways support adaptations only in the uninjured hemisphere. Intracortical microstimulation of motor cortex in the uninjured hemisphere of rats with neonatal pyramidotomy produced responses from both forelimbs, while stimulation of the injured hemisphere did not elicit responses from either forelimb. Both anterograde and retrograde tracers were used to label corticofugal pathways. There was no increased plasticity from the injured hemisphere, either from cortex to the red nucleus or the red nucleus to the spinal cord. In contrast, there were very strong CST connections to both halves of the spinal cord from the uninjured motor cortex. Retrograde tracing produced maps of each forelimb within the uninjured hemisphere, and these were partly segregated. This suggests that the uninjured hemisphere may encode separate control of the unimpaired and the impaired forelimbs of rats with neonatal pyramidotomy.

  9. Magnetic reconnection driven by Gekko XII lasers with a Helmholtz capacitor-coil target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, X. X.; University of Chinese Academy of Sciences, Beijing 100049; Zhong, J. Y., E-mail: jyzhong@bnu.edu.cn, E-mail: gzhao@bao.ac.cn

    2016-03-15

    We demonstrate a novel plasma device for magnetic reconnection, driven by Gekko XII lasers irradiating a double-turn Helmholtz capacitor-coil target. Optical probing revealed an accumulated plasma plume near the magnetic reconnection outflow. The background electron density and magnetic field were measured to be approximately 10{sup 18 }cm{sup −3} and 60 T by using Nomarski interferometry and the Faraday effect, respectively. In contrast with experiments on magnetic reconnection constructed by the Biermann battery effect, which produced high beta values, our beta value was much lower than one, which greatly extends the parameter regime of laser-driven magnetic reconnection and reveals its potential in astrophysicalmore » plasma applications.« less

  10. An Adapting Auditory-motor Feedback Loop Can Contribute to Generating Vocal Repetition

    PubMed Central

    Brainard, Michael S.; Jin, Dezhe Z.

    2015-01-01

    Consecutive repetition of actions is common in behavioral sequences. Although integration of sensory feedback with internal motor programs is important for sequence generation, if and how feedback contributes to repetitive actions is poorly understood. Here we study how auditory feedback contributes to generating repetitive syllable sequences in songbirds. We propose that auditory signals provide positive feedback to ongoing motor commands, but this influence decays as feedback weakens from response adaptation during syllable repetitions. Computational models show that this mechanism explains repeat distributions observed in Bengalese finch song. We experimentally confirmed two predictions of this mechanism in Bengalese finches: removal of auditory feedback by deafening reduces syllable repetitions; and neural responses to auditory playback of repeated syllable sequences gradually adapt in sensory-motor nucleus HVC. Together, our results implicate a positive auditory-feedback loop with adaptation in generating repetitive vocalizations, and suggest sensory adaptation is important for feedback control of motor sequences. PMID:26448054

  11. Factor XII (Hageman factor) is a missing link between stress and hypercoagulability and plays an important role in the pathophysiology of ischemic stroke.

    PubMed

    Eggers, Arnold E

    2006-01-01

    A new hypothesis is presented on the function of factor XII, which is postulated to be a "missing link" between acute stress and transient hypercoagulability. The implications of this idea are developed to show how chronic stress, which involves activation of hypertension and migraine as well as hypercoagulability, can cause of cerebrovascular disease. "Acute stress" is defined as "the normal short-term physiological response to the perception of major threats or demands". "Chronic stress" is "the abnormal ongoing physiological response to the continuing perception of unresolvable major threats or demands". The factor XII hypothesis is as follows: Acute stress includes release of epinephrine by the adrenal medulla. Epinephrine activates platelets by binding to alpha-2A adrenergic receptors. Activated platelets convert pre-bound factor XII to its active form, which then initiates the intrinsic coagulation cascade. This can be called the "activated platelet initiation pathway" for coagulation. Neither tissue factor nor pre-formed thrombin is required. Thrombosis proceeds to completion, but only a minute amount of thrombin is formed, and the process normally stops at this point. In people who lapse into a state of chronic stress, essential hypertension, which is also a manifestation of stress, synergizes with hypercoagulability: there is both a baseline rise in blood pressure and systemic platelet activation as well as superimposed labile rises of both. Upregulation of these two stress parameters is atherogenic: epinephrine-activated platelets stimulating thrombin formation interact with endothelial cells activated by angiotensin II to cause, first, smooth muscle cell proliferation, which is a histological hallmark of atherosclerosis, and, lastly, a symptomatic thrombotic occlusion-the stroke. The migraine symptoms which often accompany this process are a marker of chronic stress and ongoing pathophysiologic damage. Therapeutic predictions are made regarding novel

  12. Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin.

    PubMed

    Pivetta, Chiara; Esposito, Maria Soledad; Sigrist, Markus; Arber, Silvia

    2014-01-30

    Accurate motor-task execution relies on continuous comparison of planned and performed actions. Motor-output pathways establish internal circuit collaterals for this purpose. Here we focus on motor collateral organization between spinal cord and upstream neurons in the brainstem. We used a newly developed mouse genetic tool intersectionally with viruses to uncover the connectivity rules of these ascending pathways by capturing the transient expression of neuronal subpopulation determinants. We reveal a widespread and diverse network of spinal dual-axon neurons, with coincident input to forelimb motor neurons and the lateral reticular nucleus (LRN) in the brainstem. Spinal information to the LRN is not segregated by motor pool or neurotransmitter identity. Instead, it is organized according to the developmental domain origin of the progenitor cells. Thus, excerpts of most spinal information destined for action are relayed to supraspinal centers through exquisitely organized ascending connectivity modules, enabling precise communication between command and execution centers of movement. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. 4-Functionalized 1,3-diarylpyrazoles bearing 6-aminosulfonylbenzothiazole moiety as potent inhibitors of carbonic anhydrase isoforms hCA I, II, IX and XII.

    PubMed

    SitaRam; Ceruso, Mariangela; Khloya, Poonam; Supuran, Claudiu T; Sharma, Pawan K

    2014-12-15

    A series of 24 novel heterocyclic compounds-functionalized at position 4 with aldehyde (5a-5f), carboxylic acid (6a-6f), nitrile (7a-7f) and oxime (8a-8f) functional groups-bearing 6-aminosulfonybenzothiazole moiety at position 1 of pyrazole has been synthesized and investigated for the inhibition of four isoforms of the α-class carbonic anhydrases (CAs, EC 4.2.1.1), comprising hCAs I and II (cytosolic, ubiquitous isozymes) and hCAs IX and XII (transmembrane, tumor associated isozymes). Against the human isozyme hCA I, compounds 6a-6f showed medium-weak inhibitory potential with Ki values in the range of 157-690nM with 6a showing better potential than the standard drug acetazolamide (AZA). Against hCA II, all the compounds showed excellent to moderate inhibition with Ki values of compounds 5a, 5d, 5f, 6a-6f, 8d and 8f lower than 12nM (Ki of AZA). Against hCA IX, all the compounds showed moderate inhibition with the exception of 6e which showed nearly 9 fold a better profile compared to AZA, whereas against hCA XII, four compounds 6e, 7a, 7b and 7d showed Ki in the same order as that of AZA. Carboxylic acid 6e was found to be an excellent inhibitor of both hCA IX and XII, with Ki values of 2.8nM and 5.5nM, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Theta burst magnetic stimulation over the pre-supplementary motor area improves motor inhibition.

    PubMed

    Obeso, Ignacio; Wilkinson, Leonora; Teo, James T; Talelli, Penelope; Rothwell, John C; Jahanshahi, Marjan

    Stopping an ongoing motor response or resolving conflict induced by conflicting stimuli are associated with activation of a right-lateralized network of inferior frontal gyrus (IFG), pre-supplementary motor area (pre-SMA) and subthalamic nucleus (STN). However, the roles of the right IFG and pre-SMA in stopping a movement and in conflict resolution remain unclear. We used continuous theta burst stimulation (cTBS) to examine the involvement of the right IFG and pre-SMA in inhibition and conflict resolution using the conditional stop signal task. We measured stop signal reaction time (SSRT, measure of reactive inhibition), response delay effect (RDE, measure of proactive action restraint) and conflict induced slowing (CIS, measure of conflict resolution). Stimulation over the pre-SMA resulted in significantly shorter SSRTs (improved inhibition) compared to sham cTBS. This effect was not observed for CIS, RDE, or any other measures. cTBS over the right IFG had no effect on SSRT, CIS, RDE or on any other measure. The improvement of SSRT with cTBS over the pre-SMA suggests its critical contribution to stopping ongoing movements. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Expression of the transcription factor FOXP2 in brainstem respiratory circuits of adult rat is restricted to upper-airway pre-motor areas.

    PubMed

    Stanić, Davor; Dhingra, Rishi R; Dutschmann, Mathias

    2018-04-01

    Expression of the transcription factor FOXP2 is linked to brain circuits that control motor function and speech. Investigation of FOXP2 protein expression in respiratory areas of the ponto-medullary brainstem of adult rat revealed distinct rostro-caudal expression gradients. A high density of FOXP2 immunoreactive nuclei was observed within the rostral pontine Kölliker-Fuse nucleus, compared to low densities in caudal pontine and rostral medullary respiratory nuclei, including the: (i) noradrenergic A5 and parafacial respiratory groups; (ii) Bötzinger and pre-Bötzinger complex and; (iii) rostral ventral respiratory group. Moderate densities of FOXP2 immunoreactive nuclei were observed in the caudal ventral respiratory group and the nucleus retroambiguus, with significant density levels found in the caudal half of the dorsal respiratory group and the hypoglossal pre-motor area lateral around calamus scriptorius. FOXP2 immunoreactivity was absent in all cranial nerve motor nuclei. We conclude that FOXP2 expression in respiratory brainstem areas selectively delineates laryngeal and hypoglossal pre-motor neuron populations essential for the generation of sound and voice. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. The intercalatus nucleus of Staderini.

    PubMed

    Cascella, Marco

    2016-01-01

    Rutilio Staderini was one of the leading Italian anatomists of the twentieth century, together with some scientists, such as Giulio Chiarugi, Giovanni Vitali, and others. He was also a member of a new generation of anatomists. They had continued the tradition of the most famous Italian scientists, which started from the Renaissance up until the nineteenth century. Although he carried out important studies of neuroanatomy and comparative anatomy, as well as embryology, his name is rarely remembered by most medical historians. His name is linked to the nucleus he discovered: the Staderini nucleus or intercalated nucleus, a collection of nerve cells in the medulla oblongata located lateral to the hypoglossal nucleus. This article focuses on the biography of the neuroanatomist as well as the nucleus that carries his name and his other research, especially on comparative anatomy and embryology.

  17. The oculomotor role of the pontine nuclei and the nucleus reticularis tegmenti pontis.

    PubMed

    Thier, Peter; Möck, Martin

    2006-01-01

    Cerebral cortex and the cerebellum interact closely in order to facilitate spatial orientation and the generation of motor behavior, including eye movements. This interaction is based on a massive projection system that allows the exchange of signals between the two cortices. This cerebro-cerebellar communication system includes several intercalated brain stem nuclei, whose eminent role in the organization of oculomotor behavior has only recently become apparent. This review focuses on the two major nuclei of this group taking a precerebellar position, the pontine nuclei and the nucleus reticularis tegmenti pontis, both intimately involved in the visual guidance of eye movements.

  18. Decisional impulsivity and the associative-limbic subthalamic nucleus in obsessive-compulsive disorder: stimulation and connectivity.

    PubMed

    Voon, Valerie; Droux, Fabien; Morris, Laurel; Chabardes, Stephan; Bougerol, Thierry; David, Olivier; Krack, Paul; Polosan, Mircea

    2017-02-01

    Why do we make hasty decisions for short-term gain? Rapid decision-making with limited accumulation of evidence and delay discounting are forms of decisional impulsivity. The subthalamic nucleus is implicated in inhibitory function but its role in decisional impulsivity is less well-understood. Here we assess decisional impulsivity in subjects with obsessive compulsive disorder who have undergone deep brain stimulation of the limbic and associative subthalamic nucleus. We show that stimulation of the subthalamic nucleus is causally implicated in increasing decisional impulsivity with less accumulation of evidence during probabilistic uncertainty and in enhancing delay discounting. Subthalamic stimulation shifts evidence accumulation in subjects with obsessive-compulsive disorder towards a functional less cautious style closer to that of healthy controls emphasizing its adaptive nature. Thus, subjects with obsessive compulsive disorder on subthalamic stimulation may be less likely to check for evidence (e.g. checking that the stove is on) with no difference in subjective confidence (or doubt). In a separate study, we replicate in humans (154 healthy controls) using resting state functional connectivity, tracing studies conducted in non-human primates dissociating limbic, associative and motor frontal hyper-direct connectivity with anterior and posterior subregions of the subthalamic nucleus. We show lateralization of functional connectivity of bilateral ventral striatum to right anterior ventromedial subthalamic nucleus consistent with previous observations of lateralization of emotionally evoked activity to right ventral subthalamic nucleus. We use a multi-echo sequence with independent components analysis, which has been shown to have enhanced signal-to-noise ratio, thus optimizing visualization of small subcortical structures. These findings in healthy controls converge with the effective contacts in obsessive compulsive disorder patients localized within the

  19. Remodeling of Dendritic Spines in the Avian Vocal Motor Cortex Following Deafening Depends on the Basal Ganglia Circuit.

    PubMed

    Zhou, Xin; Fu, Xin; Lin, Chun; Zhou, Xiaojuan; Liu, Jin; Wang, Li; Zhang, Xinwen; Zuo, Mingxue; Fan, Xiaolong; Li, Dapeng; Sun, Yingyu

    2017-05-01

    Deafening elicits a deterioration of learned vocalization, in both humans and songbirds. In songbirds, learned vocal plasticity has been shown to depend on the basal ganglia-cortical circuit, but the underlying cellular basis remains to be clarified. Using confocal imaging and electron microscopy, we examined the effect of deafening on dendritic spines in avian vocal motor cortex, the robust nucleus of the arcopallium (RA), and investigated the role of the basal ganglia circuit in motor cortex plasticity. We found rapid structural changes to RA dendritic spines in response to hearing loss, accompanied by learned song degradation. In particular, the morphological characters of RA spine synaptic contacts between 2 major pathways were altered differently. However, experimental disruption of the basal ganglia circuit, through lesions in song-specialized basal ganglia nucleus Area X, largely prevented both the observed changes to RA dendritic spines and the song deterioration after hearing loss. Our results provide cellular evidence to highlight a key role of the basal ganglia circuit in the motor cortical plasticity that underlies learned vocal plasticity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Mechanics of mouse ocular motor plant quantified by optogenetic techniques.

    PubMed

    Stahl, John S; Thumser, Zachary C; May, Paul J; Andrade, Francisco H; Anderson, Sean R; Dean, Paul

    2015-09-01

    Rigorous descriptions of ocular motor mechanics are often needed for models of ocular motor circuits. The mouse has become an important tool for ocular motor studies, yet most mechanical data come from larger species. Recordings of mouse abducens neurons indicate the mouse mechanics share basic viscoelastic properties with larger species but have considerably longer time constants. Time constants can also be extracted from the rate at which the eye re-centers when released from an eccentric position. The displacement can be accomplished by electrically stimulating ocular motor nuclei, but electrical stimulation may also activate nearby ocular motor circuitry. We achieved specific activation of abducens motoneurons through photostimulation in transgenic mice expressing channelrhodopsin in cholinergic neurons. Histology confirmed strong channelrhodopsin expression in the abducens nucleus with relatively little expression in nearby ocular motor structures. Stimulation was delivered as 20- to 1,000-ms pulses and 40-Hz trains. Relaxations were modeled best by a two-element viscoelastic system. Time constants were sensitive to stimulus duration. Analysis of isometric relaxation of isolated mouse extraocular muscles suggest the dependence is attributable to noninstantaneous decay of active forces in non-twitch fibers following stimulus offset. Time constants were several times longer than those obtained in primates, confirming that the mouse ocular motor mechanics are relatively sluggish. Finally, we explored the effects of 0.1- to 20-Hz sinusoidal photostimuli and demonstrated their potential usefulness in characterizing ocular motor mechanics, although this application will require further data on the temporal relationship between photostimulation and neuronal firing in extraocular motoneurons.

  1. Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats.

    PubMed

    Ishiwari, Keita; Madson, Lisa J; Farrar, Andrew M; Mingote, Susana M; Valenta, John P; DiGianvittorio, Michael D; Frank, Lauren E; Correa, Merce; Hockemeyer, Jörg; Müller, Christa; Salamone, John D

    2007-03-28

    There is considerable evidence of interactions between adenosine A2A receptors and dopamine D2 receptors in striatal areas, and antagonists of the A2A receptor have been shown to reverse the motor effects of DA antagonists in animal models. The D2 antagonist haloperidol produces parkinsonism in humans, and also induces motor effects in rats, such as suppression of locomotion. The present experiments were conducted to study the ability of the adenosine A2A antagonist MSX-3 to reverse the locomotor effects of acute or subchronic administration of haloperidol in rats. Systemic (i.p.) injections of MSX-3 (2.5-10.0 mg/kg) were capable of attenuating the suppression of locomotion induced by either acute or repeated (i.e., 14 day) administration of 0.5 mg/kg haloperidol. Bilateral infusions of MSX-3 directly into the nucleus accumbens core (2.5 microg or 5.0 microg in 0.5 microl per side) produced a dose-related increase in locomotor activity in rats treated with 0.5 mg/kg haloperidol either acutely or repeatedly. There were no overall significant effects of MSX-3 infused directly into the dorsomedial nucleus accumbens shell or the ventrolateral neostriatum. These results indicate that antagonism of adenosine A2A receptors can attenuate the locomotor suppression produced by DA antagonism, and that this effect may be at least partially mediated by A2A receptors in the nucleus accumbens core. These studies suggest that adenosine and dopamine systems interact to modulate the locomotor and behavioral activation functions of nucleus accumbens core.

  2. Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats

    PubMed Central

    Ishiwari, Keita; Madson, Lisa J.; Farrar, Andrew M.; Mingote, Susana M.; Valenta, John P.; DiGianvittorio, Michael D.; Frank, Lauren E.; Correa, Merce; Hockemeyer, Jörg; Müller, Christa; Salamone, John D.

    2009-01-01

    There is considerable evidence of interactions between adenosine A2A receptors and dopamine D2 receptors in striatal areas, and antagonists of the A2A receptor have been shown to reverse the motor effects of DA antagonists in animal models. The D2 antagonist haloperidol produces parkinsonism in humans, and also induces motor effects in rats, such as suppression of locomotion. The present experiments were conducted to study the ability of the adenosine A2A antagonist MSX-3 to reverse the locomotor effects of acute or subchronic administration of haloperidol in rats. Systemic (i.p.) injections of MSX-3 (2.5–10.0 mg/kg) were capable of attenuating the suppression of locomotion induced by either acute or repeated (i.e., 14 day) administration of 0.5 mg/kg haloperidol. Bilateral infusions of MSX-3 directly into the nucleus accumbens core (2.5 µg or 5.0 µg in 0.5 µl per side) produced a dose-related increase in locomotor activity in rats treated with 0.5 mg/kg haloperidol either acutely or repeatedly. There were no overall significant effects of MSX-3 infused directly into the dorsomedial nucleus accumbens shell or the ventrolateral neostriatum. These results indicate that antagonism of adenosine A2A receptors can attenuate the locomotor suppression produced by DA antagonism, and that this effect may be at least partially mediated by A2A receptors in the nucleus accumbens core. These studies suggest that adenosine and dopamine systems interact to modulate the locomotor and behavioral activation functions of nucleus accumbens core. PMID:17223207

  3. Ventrolateral Motor Thalamus Abnormal Connectivity in Essential Tremor Before and After Thalamotomy: A Resting-State Functional Magnetic Resonance Imaging Study.

    PubMed

    Tuleasca, Constantin; Najdenovska, Elena; Régis, Jean; Witjas, Tatiana; Girard, Nadine; Champoudry, Jérôme; Faouzi, Mohamed; Thiran, Jean-Philippe; Cuadra, Meritxell Bach; Levivier, Marc; Van De Ville, Dimitri

    2018-05-01

    To evaluate functional connectivity (FC) of the ventrolateral thalamus, a common target for drug-resistant essential tremor (ET), resting-state data were analyzed before and 1 year after stereotactic radiosurgical thalamotomy and compared against healthy controls (HCs). In total, 17 consecutive patients with ET and 10 HCs were enrolled. Tremor network was investigated using the ventrolateral ventral (VLV) thalamic nucleus as the region of interest, extracted with automated segmentation from pretherapeutic diffusion magnetic resonance imaging. Temporal correlations of VLV at whole brain level were evaluated by comparing drug-naïve patients with ET with HCs, and longitudinally, 1 year after stereotactic radiosurgical thalamotomy. 1 year thalamotomy MR signature was always located inside VLV and did not correlate with any of FC measures (P > 0.05). This suggested presence of longitudinal changes in VLV FC independently of the MR signature volume. Pretherapeutic ET displayed altered VLV FC with left primary sensory-motor cortex, pedunculopontine nucleus, dorsal anterior cingulate, left visual association, and left superior parietal areas. Pretherapeutic negative FC with primary somatosensory cortex and pedunculopontine nucleus correlated with poorer baseline tremor scores (Spearman = 0.04 and 0.01). Longitudinal study displayed changes within right dorsal attention (frontal eye-fields and posterior parietal) and salience (anterior insula) networks, as well as areas involved in hand movement planning or language production. Our results demonstrated that patients with ET and HCs differ in their left VLV FC to primary somatosensory and supplementary motor, visual association, or brainstem areas (pedunculopontine nucleus). Longitudinal changes display reorganization of dorsal attention and salience networks after thalamotomy. Beside attentional gateway, they are also known for their major role in facilitating a rapid access to the motor system. Copyright © 2018 Elsevier

  4. Neurons of human nucleus accumbens.

    PubMed

    Sazdanović, Maja; Sazdanović, Predrag; Zivanović-Macuzić, Ivana; Jakovljević, Vladimir; Jeremić, Dejan; Peljto, Amir; Tosevski, Jovo

    2011-08-01

    Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I--fusiform neurons; type II--fusiform neurons with lateral dendrite, arising from a part of the cell body; type III--pyramidal-like neuron; type IV--multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV--multipolar neurons. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV--multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.

  5. Role of the pedunculopontine nucleus in controlling gait and sleep in normal and parkinsonian monkeys.

    PubMed

    Karachi, C; Francois, Chantal

    2018-03-01

    Patients with Parkinson's disease (PD) develop cardinal motor symptoms, including akinesia, rigidity, and tremor, that are alleviated by dopaminergic medication and/or subthalamic deep brain stimulation. Over the time course of the disease, gait and balance disorders worsen and become resistant to pharmacological and surgical treatments. These disorders generate debilitating motor symptoms leading to increased dependency, morbidity, and mortality. PD patients also experience sleep disturbance that raise the question of a common physiological basis. An extensive experimental and clinical body of work has highlighted the crucial role of the pedunculopontine nucleus (PPN) in the control of gait and sleep, and its potential major role in PD. Here, we summarise our investigations in the monkey PPN in the normal and parkinsonian states. We first examined the anatomy and connectivity of the PPN and the cuneiform nucleus which both belong to the mesencephalic locomotor region. Second, we conducted experiments to demonstrate the specific effects of PPN cholinergic lesions on locomotion in the normal and parkinsonian monkey. Third, we aimed to understand how PPN cholinergic lesions impair sleep in parkinsonian monkeys. Our final goal was to develop a novel model of advanced PD with gait and sleep disorders. We believe that this monkey model, even if it does not attempt to reproduce the exact human disease with all its complexities, represents a good biomedical model to characterise locomotion and sleep in the context of PD.

  6. Airborne copper exposure in school environments associated with poorer motor performance and altered basal ganglia.

    PubMed

    Pujol, Jesus; Fenoll, Raquel; Macià, Dídac; Martínez-Vilavella, Gerard; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Deus, Joan; Blanco-Hinojo, Laura; Querol, Xavier; Sunyer, Jordi

    2016-06-01

    Children are more vulnerable to the effects of environmental elements. A variety of air pollutants are among the identified factors causing neural damage at toxic concentrations. It is not obvious, however, to what extent the tolerated high levels of air pollutants are able to alter brain development. We have specifically investigated the neurotoxic effects of airborne copper exposure in school environments. Speed and consistency of motor response were assessed in 2836 children aged from 8 to 12 years. Anatomical MRI, diffusion tensor imaging, and functional MRI were used to directly test the brain repercussions in a subgroup of 263 children. Higher copper exposure was associated with poorer motor performance and altered structure of the basal ganglia. Specifically, the architecture of the caudate nucleus region was less complete in terms of both tissue composition and neural track water diffusion. Functional MRI consistently showed a reciprocal connectivity reduction between the caudate nucleus and the frontal cortex. The results establish an association between environmental copper exposure in children and alterations of basal ganglia structure and function.

  7. The Nucleus Introduced

    PubMed Central

    Pederson, Thoru

    2011-01-01

    Now is an opportune moment to address the confluence of cell biological form and function that is the nucleus. Its arrival is especially timely because the recognition that the nucleus is extremely dynamic has now been solidly established as a paradigm shift over the past two decades, and also because we now see on the horizon numerous ways in which organization itself, including gene location and possibly self-organizing bodies, underlies nuclear functions. PMID:20660024

  8. Subthalamic nucleus deep brain stimulation improves somatosensory function in Parkinson's disease.

    PubMed

    Aman, Joshua E; Abosch, Aviva; Bebler, Maggie; Lu, Chia-Hao; Konczak, Jürgen

    2014-02-01

    An established treatment for the motor symptoms of Parkinson's disease (PD) is deep brain stimulation (DBS) of the subthalamic nucleus (STN). Mounting evidence suggests that PD is also associated with somatosensory deficits, yet the effect of STN-DBS on somatosensory processing is largely unknown. This study investigated whether STN-DBS affects somatosensory processing, specifically the processing of tactile and proprioceptive cues, by systematically examining the accuracy of haptic perception of object size. (Haptic perception refers to one's ability to extract object features such as shape and size by active touch.) Without vision, 13 PD patients with implanted STN-DBS and 13 healthy controls haptically explored the heights of 2 successively presented 3-dimensional (3D) blocks using a precision grip. Participants verbally indicated which block was taller and then used their nonprobing hand to motorically match the perceived size of the comparison block. Patients were tested during ON and OFF stimulation, following a 12-hour medication washout period. First, when compared to controls, the PD group's haptic discrimination threshold during OFF stimulation was elevated by 192% and mean hand aperture error was increased by 105%. Second, DBS lowered the haptic discrimination threshold by 26% and aperture error decreased by 20%. Third, during DBS ON, probing with the motorically more affected hand decreased haptic precision compared to probing with the less affected hand. This study offers the first evidence that STN-DBS improves haptic precision, further indicating that somatosensory function is improved by STN-DBS. We conclude that DBS-related improvements are not explained by improvements in motor function alone, but rather by enhanced somatosensory processing. © 2013 Movement Disorder Society.

  9. Effect of repulsive and attractive three-body forces on nucleus-nucleus elastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furumoto, T.; Sakuragi, Y.; Yamamoto, Y.

    2009-10-15

    The effect of the three-body force (TBF) is studied in nucleus-nucleus elastic scattering on the basis of Brueckner theory for nucleon-nucleon (NN) effective interaction (complex G matrix) in the nuclear matter. A new G matrix called CEG07 proposed recently by the present authors includes the TBF effect and reproduces a realistic saturation curve in the nuclear matter, and it is shown to well reproduce proton-nucleus elastic scattering. The microscopic optical potential for the nucleus-nucleus system is obtained by folding the G matrix with nucleon density distributions in colliding nuclei. We first analyze in detail the {sup 16}O+{sup 16}O elastic scatteringmore » at E/A=70 MeV. The observed cross sections are nicely reproduced up to the most backward scattering angles only when the TBF effect is included. The use of the frozen-density approximation (FDA) is essentially important to properly estimate the effect of the TBF in nucleus-nucleus scattering. Other prescriptions for defining the local density have also been tested, but only the FDA prescription gives a proper description of the experimental cross sections as well as the effect of the TBF. The effects of the three-body attraction and the {omega}-rearrangement term are also analyzed. The CEG07 interaction is compared with CDM3Y6, which is a reliable and successful effective density-dependent NN interaction used in the double-folding model. The CEG07 G matrix is also tested in the elastic scattering of {sup 16}O by the {sup 12}C, {sup 28}Si, and {sup 40}Ca targets at E/A=93.9 MeV, and in the elastic scattering of {sup 12}C by the {sup 12}C target at E/A=135 MeV with great success. The decisive effect of the TBF is clearly seen also in those systems. Finally, we have tested CEG07a, CEG07b, and CEG07c for the {sup 16}O+{sup 16}O system at various energies.« less

  10. Anomalous Putamen Volume in Children with Complex Motor Stereotypies

    PubMed Central

    Mahone, E. Mark; Crocetti, Deana; Tochen, Laura; Kline, Tina; Mostofsky, Stewart H.; Singer, Harvey S.

    2016-01-01

    Introduction Complex motor stereotypies in children are repetitive, rhythmic movements that have a predictable pattern and location, seem purposeful, but serve no obvious function, tend to be prolonged, and stop with distraction, e.g., arm/hand flapping, waving. They occur in both “primary” (otherwise typically developing) and secondary conditions. These movements are best defined as habitual behaviors and therefore pathophysiologically hypothesized to reside in premotor to posterior putamen circuits. This study sought to clarify the underlying neurobiological abnormality in children with primary complex motor stereotypies using structural neuroimaging, emphasizing brain regions hypothesized to underlie these atypical behaviors. Methods High-resolution anatomical MRI images, acquired at 3.0T, were analyzed in children ages 8–12 years (20 with primary complex motor stereotypies, 20 typically developing). Frontal lobe sub-regions and striatal structures were delineated for analysis. Results Significant reductions (p=0.045) in the stereotypies group were identified in total putamen volume, but not caudate, nucleus accumbens or frontal sub-regions. There were no group differences in total cerebral volume. Conclusion Findings of a smaller putamen provide preliminary evidence suggesting the potential involvement of the habitual pathway as the underlying anatomical site in primary complex motor stereotypies. PMID:27751663

  11. Anomalous Putamen Volume in Children With Complex Motor Stereotypies.

    PubMed

    Mahone, E Mark; Crocetti, Deana; Tochen, Laura; Kline, Tina; Mostofsky, Stewart H; Singer, Harvey S

    2016-12-01

    Complex motor stereotypies in children are repetitive rhythmic movements that have a predictable pattern and location, seem purposeful, but serve no obvious function, tend to be prolonged, and stop with distraction, e.g., arm or hand flapping, waving. They occur in both "primary" (otherwise typically developing) and secondary conditions. These movements are best defined as habitual behaviors and therefore pathophysiologically hypothesized to reside in premotor to posterior putamen circuits. This study sought to clarify the underlying neurobiologic abnormality in children with primary complex motor stereotypies using structural neuroimaging, emphasizing brain regions hypothesized to underlie these atypical behaviors. High-resolution anatomic magnetic resonance images, acquired at 3.0 T, were analyzed in children aged eight to twelve years (20 with primary complex motor stereotypies and 20 typically developing). Frontal lobe subregions and striatal structures were delineated for analysis. Significant reductions (P = 0.045) in the stereotypies group were identified in total putamen volume but not in caudate, nucleus accumbens, or frontal subregions. There were no group differences in total cerebral volume. Findings of a smaller putamen provide preliminary evidence suggesting the potential involvement of the habitual pathway as the underlying anatomic site in primary complex motor stereotypies. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Dynamics of human subthalamic neuron phase-locking to motor and sensory cortical oscillations during movement.

    PubMed

    Lipski, Witold J; Wozny, Thomas A; Alhourani, Ahmad; Kondylis, Efstathios D; Turner, Robert S; Crammond, Donald J; Richardson, Robert Mark

    2017-09-01

    Coupled oscillatory activity recorded between sensorimotor regions of the basal ganglia-thalamocortical loop is thought to reflect information transfer relevant to movement. A neuronal firing-rate model of basal ganglia-thalamocortical circuitry, however, has dominated thinking about basal ganglia function for the past three decades, without knowledge of the relationship between basal ganglia single neuron firing and cortical population activity during movement itself. We recorded activity from 34 subthalamic nucleus (STN) neurons, simultaneously with cortical local field potentials and motor output, in 11 subjects with Parkinson's disease (PD) undergoing awake deep brain stimulator lead placement. STN firing demonstrated phase synchronization to both low- and high-beta-frequency cortical oscillations, and to the amplitude envelope of gamma oscillations, in motor cortex. We found that during movement, the magnitude of this synchronization was dynamically modulated in a phase-frequency-specific manner. Importantly, we found that phase synchronization was not correlated with changes in neuronal firing rate. Furthermore, we found that these relationships were not exclusive to motor cortex, because STN firing also demonstrated phase synchronization to both premotor and sensory cortex. The data indicate that models of basal ganglia function ultimately will need to account for the activity of populations of STN neurons that are bound in distinct functional networks with both motor and sensory cortices and code for movement parameters independent of changes in firing rate. NEW & NOTEWORTHY Current models of basal ganglia-thalamocortical networks do not adequately explain simple motor functions, let alone dysfunction in movement disorders. Our findings provide data that inform models of human basal ganglia function by demonstrating how movement is encoded by networks of subthalamic nucleus (STN) neurons via dynamic phase synchronization with cortex. The data also

  13. KIFC1-Like Motor Protein Associates with the Cephalopod Manchette and Participates in Sperm Nuclear Morphogenesis in Octopus tankahkeei

    PubMed Central

    Tan, Fu-Qing; Yang, Wan-Xi

    2010-01-01

    Background Nuclear morphogenesis is one of the most fundamental cellular transformations taking place during spermatogenesis. In rodents, a microtubule-based perinuclear structure, the manchette, and a C-terminal kinesin motor KIFC1 are believed to play crucial roles in this process. Spermatogenesis in Octopus tankahkeei is a good model system to explore whether evolution has created a cephalopod prototype of mammalian manchette-based and KIFC1-dependent sperm nuclear shaping machinery. Methodology/Principal Findings We detected the presence of a KIFC1-like protein in the testis, muscle, and liver of O. tankahkeei by Western Blot. Then we tracked its dynamic localization in spermatic cells at various stages using Immunofluorescence and Immunogold Electron Microscopy. The KIFC1-like protein was not expressed at early stages of spermatogenesis when no significant morphological changes occur, began to be present in early spermatid, localized around and in the nucleus of intermediate and late spermatids where the nucleus was dramatically elongated and compressed, and concentrated at one end of final spermatid. Furthermore, distribution of the motor protein during nuclear elongation and condensation overlapped with that of the cephalopod counterpart of manchette at a significant level. Conclusions/Significance The results support the assumption that the protein is actively involved in sperm nuclear morphogenesis in O. tankahkeei possibly through bridging the manchette-like perinuclear microtubules to the nucleus and assisting in the nucleocytoplasmic trafficking of specific cargoes. This study represents the first description of the role of a motor protein in sperm nuclear shaping in cephalopod. PMID:21187923

  14. Single nucleon emission in relativistic nucleus-nucleus reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors.

  15. Hadron-nucleus interactions at high energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, C.B.; He, Z.; Tow, D.M.

    1982-06-01

    A simple space-time description of high-energy hadron-nucleus interactions is presented. The model is based on the DTU (dual topologial unitarization)-parton-model description of soft multiparticle production in hadron-hadron interactions. The essentially parameter-free model agrees well with the general features of high-energy data for hadron-nucleus interactions; in particular, this DTU-parton model has a natural explanation for an approximate nu-bar universality. The expansion to high-energy nucleus-nucleus interactions is presented. We also compare and contrast this model with several previously proposed models.

  16. Hadron-nucleus interactions at high energies

    NASA Astrophysics Data System (ADS)

    Chiu, Charles B.; He, Zuoxiu; Tow, Don M.

    1982-06-01

    A simple space-time description of high-energy hadron-nucleus interactions is presented. The model is based on the DTU (dual topological unitarization) -parton-model description of soft multiparticle production in hadron-hadron interactions. The essentially parameter-free model agrees well with the general features of high-energy data for hadron-nucleus interactions; in particular, this DTU-parton model has a natural explanation for an approximate ν¯ universality. The extension to high-energy nucleus-nucleus interactions is presented. We also compare and contrast this model with several previously proposed models.

  17. 77 FR 29633 - Alta Wind VII, LLC, Alta Wind IX, LLC, Alta Wind X, LLC, Alta Wind XI, LLC, Alta Wind XII, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL12-68-000] Alta Wind VII, LLC, Alta Wind IX, LLC, Alta Wind X, LLC, Alta Wind XI, LLC, Alta Wind XII, LLC, Alta Wind XIII, LLC, Alta Wind XIV, LLC, Alta Wind XV, LLC, Alta Windpower Development, LLC, TGP Development Company, LLC...

  18. The pathways connecting the hippocampal formation, the thalamic reuniens nucleus and the thalamic reticular nucleus in the rat.

    PubMed

    Cavdar, Safiye; Onat, Filiz Y; Cakmak, Yusuf Ozgür; Yananli, Hasan R; Gülçebi, Medine; Aker, Rezzan

    2008-03-01

    Most dorsal thalamic nuclei send axons to specific areas of the neocortex and to specific sectors of the thalamic reticular nucleus; the neocortex then sends reciprocal connections back to the same thalamic nucleus, directly as well indirectly through a relay in the thalamic reticular nucleus. This can be regarded as a 'canonical' circuit of the sensory thalamus. For the pathways that link the thalamus and the hippocampal formation, only a few comparable connections have been described. The reuniens nucleus of the thalamus sends some of its major cortical efferents to the hippocampal formation. The present study shows that cells of the hippocampal formation as well as cells in the reuniens nucleus are retrogradely labelled following injections of horseradish peroxidase or fluoro-gold into the rostral part of the thalamic reticular nucleus in the rat. Within the hippocampal formation, labelled neurons were localized in the subiculum, predominantly on the ipsilateral side, with fewer neurons labelled contralaterally. Labelled neurons were seen in the hippocampal formation and nucleus reuniens only after injections made in the rostral thalamic reticular nucleus (1.6-1.8 mm caudal to bregma). In addition, the present study confirmed the presence of afferent connections to the rostral thalamic reticular nucleus from cortical (cingulate, orbital and infralimbic, retrosplenial and frontal), midline thalamic (paraventricular, anteromedial, centromedial and mediodorsal thalamic nuclei) and brainstem structures (substantia nigra pars reticularis, ventral tegmental area, periaqueductal grey, superior vestibular and pontine reticular nuclei). These results demonstrate a potential for the thalamo-hippocampal circuitry to influence the functional roles of the thalamic reticular nucleus, and show that thalamo-hippocampal connections resemble the circuitry that links the sensory thalamus and neocortex.

  19. The pathways connecting the hippocampal formation, the thalamic reuniens nucleus and the thalamic reticular nucleus in the rat

    PubMed Central

    Çavdar, Safiye; Onat, Filiz Y; Çakmak, Yusuf Özgür; Yananli, Hasan R; Gülçebi, Medine; Aker, Rezzan

    2008-01-01

    Most dorsal thalamic nuclei send axons to specific areas of the neocortex and to specific sectors of the thalamic reticular nucleus; the neocortex then sends reciprocal connections back to the same thalamic nucleus, directly as well indirectly through a relay in the thalamic reticular nucleus. This can be regarded as a ‘canonical’ circuit of the sensory thalamus. For the pathways that link the thalamus and the hippocampal formation, only a few comparable connections have been described. The reuniens nucleus of the thalamus sends some of its major cortical efferents to the hippocampal formation. The present study shows that cells of the hippocampal formation as well as cells in the reuniens nucleus are retrogradely labelled following injections of horseradish peroxidase or fluoro-gold into the rostral part of the thalamic reticular nucleus in the rat. Within the hippocampal formation, labelled neurons were localized in the subiculum, predominantly on the ipsilateral side, with fewer neurons labelled contralaterally. Labelled neurons were seen in the hippocampal formation and nucleus reuniens only after injections made in the rostral thalamic reticular nucleus (1.6–1.8 mm caudal to bregma). In addition, the present study confirmed the presence of afferent connections to the rostral thalamic reticular nucleus from cortical (cingulate, orbital and infralimbic, retrosplenial and frontal), midline thalamic (paraventricular, anteromedial, centromedial and mediodorsal thalamic nuclei) and brainstem structures (substantia nigra pars reticularis, ventral tegmental area, periaqueductal grey, superior vestibular and pontine reticular nuclei). These results demonstrate a potential for the thalamo-hippocampal circuitry to influence the functional roles of the thalamic reticular nucleus, and show that thalamo-hippocampal connections resemble the circuitry that links the sensory thalamus and neocortex. PMID:18221482

  20. [Effects of bilateral deep brain stimulation in the subthalamic nucleus using two methods of target structure verification].

    PubMed

    Goubareva, N N; Fedorova, N V; Bril', E V; Tomskiy, A A; Gamaleya, A A; Poddubskaya, A A; Shabalov, V A; Omarova, S M

    To evaluate the efficacy of deep brain stimulation in the subthalamic nucleus (DBS STN) in patients with Parkinson's disease (PD) using different methods of targeting according to the dynamics of motor symptoms of PD. The study involved 90 patients treated with DBS STN. In 30 cases intraoperative microelectrode recording (MER) was used. MER was not performed in 30 patients of the comparison group. The control group consisted of 30 patients with PD who received conservative treatment. Hoehn and Yahr scale, Tinetti Balance and Mobility Scale (TBMS), Unified Parkinson's Disease Rating Scale (UPDRS), Parkinson's Disease Quality of Life-39 Scoring System (РDQ-39), Schwab & England ADL Scale were used. Levodopa equivalent daily dose (LEDD, 2010) was calculated for each patient. The effect of DBS STN using intraoperative microelectrode recording on the main motor symptoms, motor complications, walking as well as indicators of quality of life and daily activities was shown. In both DBS STN groups, there was a significant reduction in the LEDD and marked improvement of the control of motor symptoms of PD. A significant reduction in the severity of motor fluctuations (50%) and drug-induced dyskinesia (51%) was observed. Quality of life and daily activity in off-medication condition were significantly improved in both DBS STN groups of patients, irrespective of the method of target planning (75-100%), compared with the control group.

  1. The Gemin associates of survival motor neuron are required for motor function in Drosophila.

    PubMed

    Borg, Rebecca; Cauchi, Ruben J

    2013-01-01

    Membership of the survival motor neuron (SMN) complex extends to nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2-8 and Unrip. The best-characterised function of this macromolecular machine is the assembly of the Sm-class of uridine-rich small nuclear ribonucleoprotein (snRNP) particles and each SMN complex member has a key role during this process. So far, however, only little is known about the function of the individual Gemin components in vivo. Here, we make use of the Drosophila model organism to uncover loss-of-function phenotypes of Gemin2, Gemin3 and Gemin5, which together with SMN form the minimalistic fly SMN complex. We show that ectopic overexpression of the dead helicase Gem3(ΔN) mutant or knockdown of Gemin3 result in similar motor phenotypes, when restricted to muscle, and in combination cause lethality, hence suggesting that Gem3(ΔN) overexpression mimics a loss-of-function. Based on the localisation pattern of Gem3(ΔN), we predict that the nucleus is the primary site of the antimorphic or dominant-negative mechanism of Gem3(ΔN)-mediated interference. Interestingly, phenotypes induced by human SMN overexpression in Drosophila exhibit similarities to those induced by overexpression of Gem3(ΔN). Through enhanced knockdown we also uncover a requirement of Gemin2, Gemin3 and Gemin5 for viability and motor behaviour, including locomotion as well as flight, in muscle. Notably, in the case of Gemin3 and Gemin5, such function also depends on adequate levels of the respective protein in neurons. Overall, these findings lead us to speculate that absence of any one member is sufficient to arrest the SMN-Gemins complex function in a nucleocentric pathway, which is critical for motor function in vivo.

  2. Stimulation of the subthalamic nucleus and impulsivity: release your horses.

    PubMed

    Ballanger, Benedicte; van Eimeren, Thilo; Moro, Elena; Lozano, Andres M; Hamani, Clement; Boulinguez, Philippe; Pellecchia, Giovanna; Houle, Sylvain; Poon, Yu Yan; Lang, Anthony E; Strafella, Antonio P

    2009-12-01

    In Parkinson disease (PD) patients, deep brain stimulation (DBS) of the subthalamic nucleus (STN) may contribute to certain impulsive behavior during high-conflict decisions. A neurocomputational model of the basal ganglia has recently been proposed that suggests this behavioral aspect may be related to the role played by the STN in relaying a "hold your horses" signal intended to allow more time to settle on the best option. The aim of the present study was 2-fold: 1) to extend these observations by providing evidence that the STN may influence and prevent the execution of any response even during low-conflict decisions; and 2) to identify the neural correlates of this effect. We measured regional cerebral blood flow during a Go/NoGo and a control (Go) task to study the motor improvement and response inhibition deficits associated with STN-DBS in patients with PD. Although it improved Unified Parkinson Disease Rating Scale motor ratings and induced a global decrease in reaction time during task performance, STN-DBS impaired response inhibition, as revealed by an increase in commission errors in NoGo trials. These behavioral effects were accompanied by changes in synaptic activity consisting of a reduced activation in the cortical networks responsible for reactive and proactive response inhibition. The present results suggest that although it improves motor functions in PD patients, modulation of STN hyperactivity with DBS may tend at the same time to favor the appearance of impulsive behavior by acting on the gating mechanism involved in response initiation.

  3. Evaluation of the Predictive Value of Intraoperative Changes in Motor-Evoked Potentials of Caudal Cranial Nerves for the Postoperative Functional Outcome.

    PubMed

    Kullmann, Marcel; Tatagiba, Marcos; Liebsch, Marina; Feigl, Guenther C

    2016-11-01

    The predictive value of changes in intraoperatively acquired motor-evoked potentials (MEPs) of the lower cranial nerves (LCN) IX-X (glossopharyngeal-vagus nerve) and CN XII (hypoglossal nerve) on operative outcomes was investigated. MEPs of CN IX-X and CN XII were recorded intraoperatively in 63 patients undergoing surgery of the posterior cranial fossa. We correlated the changes of the MEPs with postoperative nerve function. For CN IX-X, we found a correlation between the amplitude of the MEP ratio and uvula deviation (P = 0.028) and the amplitude duration of the MEP and gag reflex function (P = 0.027). Patients with an MEP ratio of the glossopharyngeal-vagus amplitude ≤1.47 μV had a 3.4 times increased risk of developing a uvula deviation. Patients with a final MEP duration of the CN IX-X ≤11.6 milliseconds had a 3.6 times increased risk for their gag reflex to become extinct. Our study greatly contributes to the current knowledge of intraoperative MEPs as a predictor for postoperative cranial nerve function. We were able to extent previous findings on MEP values of the facial nerve on postoperative nerve function to 3 additional cranial nerves. Finding reliable predictors for postoperative nerve function is of great importance to the overall quality of life for a patient undergoing surgery of the posterior cranial fossa. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Interleaving subthalamic nucleus deep brain stimulation to avoid side effects while achieving satisfactory motor benefits in Parkinson disease

    PubMed Central

    Zhang, Shizhen; Zhou, Peizhi; Jiang, Shu; Wang, Wei; Li, Peng

    2016-01-01

    Abstract Background: Deep brain stimulation (DBS) of the subthalamic nucleus is an effective treatment for advanced Parkinson disease (PD). However, achieving ideal outcomes by conventional programming can be difficult in some patients, resulting in suboptimal control of PD symptoms and stimulation-induced adverse effects. Interleaving stimulation (ILS) is a newer programming technique that can individually optimize the stimulation area, thereby improving control of PD symptoms while alleviating stimulation-induced side effects after conventional programming fails to achieve the desired results. Methods: We retrospectively reviewed PD patients who received DBS programming during the previous 4 years in our hospital. We collected clinical and demographic data from 12 patients who received ILS because of incomplete alleviation of PD symptoms or stimulation-induced adverse effects after conventional programming had proven ineffective or intolerable. Appropriate lead location was confirmed with postoperative reconstruction images. The rationale and clinical efficacy of ILS was analyzed. Results: We divided our patients into 4 groups based on the following symptoms: stimulation-induced dysarthria and choreoathetoid dyskinesias, gait disturbance, and incomplete control of parkinsonism. After treatment with ILS, patients showed satisfactory improvement in PD symptoms and alleviation of stimulation-induced side effects, with a mean improvement in Unified PD Rating Scale motor scores of 26.9%. Conclusions: ILS is a newer choice and effective programming strategy to maximize symptom control in PD while decreasing stimulation-induced adverse effects when conventional programming fails to achieve satisfactory outcome. However, we should keep in mind that most DBS patients are routinely treated with conventional stimulation and that not all patients benefit from ILS. ILS is not recommended as the first choice of programming, and it is recommended only when patients have

  5. Serotonin projection patterns to the cochlear nucleus.

    PubMed

    Thompson, A M; Thompson, G C

    2001-07-13

    The cochlear nucleus is well known as an obligatory relay center for primary auditory nerve fibers. Perhaps not so well known is the neural input to the cochlear nucleus from cells containing serotonin that reside near the midline in the midbrain raphe region. Although the specific locations of the main, if not sole, sources of serotonin within the dorsal cochlear nucleus subdivision are known to be the dorsal and median raphe nuclei, sources of serotonin located within other cochlear nucleus subdivisions are not currently known. Anterograde tract tracing was used to label fibers originating from the dorsal and median raphe nuclei while fluorescence immunohistochemistry was used to simultaneously label specific serotonin fibers in cat. Biotinylated dextran amine was injected into the dorsal and median raphe nuclei and was visualized with Texas Red, while serotonin was visualized with fluorescein. Thus, double-labeled fibers were unequivocally identified as serotoninergic and originating from one of the labeled neurons within the dorsal and median raphe nuclei. Double-labeled fiber segments, typically of fine caliber with oval varicosities, were observed in many areas of the cochlear nucleus. They were found in the molecular layer of the dorsal cochlear nucleus, in the small cell cap region, and in the granule cell and external regions of the cochlear nuclei, bilaterally, of all cats. However, the density of these double-labeled fiber segments varied considerably depending upon the exact region in which they were found. Fiber segments were most dense in the dorsal cochlear nucleus (especially in the molecular layer) and the large spherical cell area of the anteroventral cochlear nucleus; they were moderately dense in the small cell cap region; and fiber segments were least dense in the octopus and multipolar cell regions of the posteroventral cochlear nucleus. Because of the presence of labeled fiber segments in subdivisions of the cochlear nucleus other than the

  6. Actomyosin contractility rotates the cell nucleus.

    PubMed

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2014-01-21

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

  7. Results on ultra-relativistic nucleus-nucleus interactions from balloon-borne emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W.; Meegan, C. A.; Takahashi, Y.; Watts, J. W.; Fuki, M.; Gregory, J. C.; Hayashi, T.

    1985-01-01

    The results of balloon-borne emulsion-chamber measurements on high-energy cosmic-ray nuclei (Burnett et al., 1983) are summarized in tables and graphs and briefly characterized. Special consideration is given to seven nucleus-nucleus interaction events at energy in excess of 1 TeV/A with multiplicity greater than 400, and to Fe interactions (53 with CHO, 10 with emulsion, and 14 with Pb) at 20-60 GeV/A.

  8. More a finger than a nose: the trigeminal motor and sensory innervation of the Schnauzenorgan in the elephant-nose fish Gnathonemus petersii.

    PubMed

    Amey-Özel, Monique; von der Emde, Gerhard; Engelmann, Jacob; Grant, Kirsty

    2015-04-01

    The weakly electric fish Gnathonemus petersii uses its electric sense to actively probe the environment. Its highly mobile chin appendage, the Schnauzenorgan, is rich in electroreceptors. Physical measurements have demonstrated the importance of the position of the Schnauzenorgan in funneling the fish's self-generated electric field. The present study focuses on the trigeminal motor pathway that controls Schnauzenorgan movement and on its trigeminal sensory innervation and central representation. The nerves entering the Schnauzenorgan are very large and contain both motor and sensory trigeminal components as well as an electrosensory pathway. With the use of neurotracer techniques, labeled Schnauzenorgan motoneurons were found throughout the ventral main body of the trigeminal motor nucleus but not among the population of larger motoneurons in its rostrodorsal region. The Schnauzenorgan receives no motor or sensory innervation from the facial nerve. There are many anastomoses between the peripheral electrosensory and trigeminal nerves, but these senses remain separate in the sensory ganglia and in their first central relays. Schnauzenorgan trigeminal primary afferent projections extend throughout the descending trigeminal sensory nuclei, and a few fibers enter the facial lobe. Although no labeled neurons could be identified in the brain as the trigeminal mesencephalic root, some Schnauzenorgan trigeminal afferents terminated in the trigeminal motor nucleus, suggesting a monosynaptic, possibly proprioceptive, pathway. In this first step toward understanding multimodal central representation of the Schnauzenorgan, no direct interconnections were found between the trigeminal sensory and electromotor command system, or the electrosensory and trigeminal motor command. The pathways linking perception to action remain to be studied. © 2014 Wiley Periodicals, Inc.

  9. Architecture of Vagal Motor Units Controlling Striated Muscle of Esophagus: Peripheral Elements Patterning Peristalsis?

    PubMed Central

    Powley, Terry L.; Mittal, Ravinder K.; Baronowsky, Elizabeth A.; Hudson, Cherie N.; Martin, Felecia N.; McAdams, Jennifer L.; Mason, Jacqueline K.; Phillips, Robert J.

    2013-01-01

    Little is known about the architecture of the vagal motor units that control esophageal striated muscle, in spite of the fact that these units are necessary, and responsible, for peristalsis. The present experiment was designed to characterize the motor neuron projection fields and terminal arbors forming esophageal motor units. Nucleus ambiguus compact formation neurons of the rat were labeled by bilateral intracranial injections of the anterograde tracer dextran biotin. After tracer transport, thoracic and abdominal esophagi were removed and prepared as whole mounts of muscle wall without mucosa or submucosa. Labeled terminal arbors of individual vagal motor neurons (n = 78) in the esophageal wall were inventoried, digitized and analyzed morphometrically. The size of individual vagal motor units innervating striated muscle, throughout thoracic and abdominal esophagus, averaged 52 endplates per motor neuron, a value indicative of fine motor control. A majority (77%) of the motor terminal arbors also issued one or more collateral branches that contacted neurons, including nitric oxide synthase-positive neurons, of local myenteric ganglia. Individual motor neuron terminal arbors co-innervated, or supplied endplates in tandem to, both longitudinal and circular muscle fibers in roughly similar proportions (i.e., two endplates to longitudinal for every three endplates to circular fibers). Both the observation that vagal motor unit collaterals project to myenteric ganglia and the fact that individual motor units co-innervate longitudinal and circular muscle layers are consistent with the hypothesis that elements contributing to peristaltic programming inhere, or are “hardwired,” in the peripheral architecture of esophageal motor units. PMID:24044976

  10. Architecture of vagal motor units controlling striated muscle of esophagus: peripheral elements patterning peristalsis?

    PubMed

    Powley, Terry L; Mittal, Ravinder K; Baronowsky, Elizabeth A; Hudson, Cherie N; Martin, Felecia N; McAdams, Jennifer L; Mason, Jacqueline K; Phillips, Robert J

    2013-12-01

    Little is known about the architecture of the vagal motor units that control esophageal striated muscle, in spite of the fact that these units are necessary, and responsible, for peristalsis. The present experiment was designed to characterize the motor neuron projection fields and terminal arbors forming esophageal motor units. Nucleus ambiguus compact formation neurons of the rat were labeled by bilateral intracranial injections of the anterograde tracer dextran biotin. After tracer transport, thoracic and abdominal esophagi were removed and prepared as whole mounts of muscle wall without mucosa or submucosa. Labeled terminal arbors of individual vagal motor neurons (n=78) in the esophageal wall were inventoried, digitized and analyzed morphometrically. The size of individual vagal motor units innervating striated muscle, throughout thoracic and abdominal esophagus, averaged 52 endplates per motor neuron, a value indicative of fine motor control. A majority (77%) of the motor terminal arbors also issued one or more collateral branches that contacted neurons, including nitric oxide synthase-positive neurons, of local myenteric ganglia. Individual motor neuron terminal arbors co-innervated, or supplied endplates in tandem to, both longitudinal and circular muscle fibers in roughly similar proportions (i.e., two endplates to longitudinal for every three endplates to circular fibers). Both the observation that vagal motor unit collaterals project to myenteric ganglia and the fact that individual motor units co-innervate longitudinal and circular muscle layers are consistent with the hypothesis that elements contributing to peristaltic programming inhere, or are "hardwired," in the peripheral architecture of esophageal motor units. © 2013.

  11. Virtual photon polarization and dilepton anisotropy in relativistic nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Speranza, Enrico; Jaiswal, Amaresh; Friman, Bengt

    2018-07-01

    The polarization of virtual photons produced in relativistic nucleus-nucleus collisions provides information on the conditions in the emitting medium. In a hydrodynamic framework, the resulting angular anisotropy of the dilepton final state depends on the flow as well as on the transverse momentum and invariant mass of the photon. We illustrate these effects in dilepton production from quark-antiquark annihilation in the QGP phase and π+π- annihilation in the hadronic phase for a static medium in global equilibrium and for a longitudinally expanding system.

  12. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Buck, Warren W.; Maung, Khin M.

    1989-01-01

    Two kinds of number density distributions of the nucleus, harmonic well and Woods-Saxon models, are used with the t-matrix that is taken from the scattering experiments to find a simple optical potential. The parameterized two body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to imaginary part of the forward elastic scattering amplitude, are shown. The eikonal approximation was chosen as the solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  13. Respiratory function after selective respiratory motor neuron death from intrapleural CTB–saporin injections

    PubMed Central

    Nichols, Nicole L.; Vinit, Stéphane; Bauernschmidt, Lorene; Mitchell, Gordon S.

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) causes progressive motor neuron degeneration, paralysis and death by ventilatory failure. In rodent ALS models: 1) breathing capacity is preserved until late in disease progression despite major respiratory motor neuron death, suggesting unknown forms of compensatory respiratory plasticity; and 2) spinal microglia become activated in association with motor neuron cell death. Here, we report a novel experimental model to study the impact of respiratory motor neuron death on compensatory responses without many complications attendant to spontaneous motor neuron disease. In specific, we used intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB–SAP) to selectively kill motor neurons with access to the pleural space. Motor neuron survival, CD11b labeling (microglia), ventilatory capacity and phrenic motor output were assessed in rats 3–28 days after intrapleural injections of: 1) CTB–SAP (25 and 50 μg), or 2) unconjugated CTB and SAP (i.e. control; (CTB + SAP). CTB–SAP elicited dose-dependent phrenic and intercostal motor neuron death; 7 days post-25 μg CTB–SAP, motor neuron survival approximated that in end-stage ALS rats (phrenic: 36 ± 7%; intercostal: 56 ± 10% of controls; n = 9; p < 0.05). CTB–SAP caused minimal cell death in other brainstem or spinal cord regions. CTB–SAP: 1) increased CD11b fractional area in the phrenic motor nucleus, indicating microglial activation; 2) decreased breathing during maximal chemoreceptor stimulation; and 3) diminished phrenic motor output in anesthetized rats (7 days post-25 μg, CTB–SAP: 0.3 ± 0.07 V; CTB + SAP: 1.5 ± 0.3; n = 9; p < 0.05). Intrapleural CTB–SAP represents a novel, inducible model of respiratory motor neuron death and provides an opportunity to study compensation for respiratory motor neuron loss. PMID:25476493

  14. Respiratory function after selective respiratory motor neuron death from intrapleural CTB-saporin injections.

    PubMed

    Nichols, Nicole L; Vinit, Stéphane; Bauernschmidt, Lorene; Mitchell, Gordon S

    2015-05-01

    Amyotrophic lateral sclerosis (ALS) causes progressive motor neuron degeneration, paralysis and death by ventilatory failure. In rodent ALS models: 1) breathing capacity is preserved until late in disease progression despite major respiratory motor neuron death, suggesting unknown forms of compensatory respiratory plasticity; and 2) spinal microglia become activated in association with motor neuron cell death. Here, we report a novel experimental model to study the impact of respiratory motor neuron death on compensatory responses without many complications attendant to spontaneous motor neuron disease. In specific, we used intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB-SAP) to selectively kill motor neurons with access to the pleural space. Motor neuron survival, CD11b labeling (microglia), ventilatory capacity and phrenic motor output were assessed in rats 3-28days after intrapleural injections of: 1) CTB-SAP (25 and 50μg), or 2) unconjugated CTB and SAP (i.e. control; (CTB+SAP). CTB-SAP elicited dose-dependent phrenic and intercostal motor neuron death; 7days post-25μg CTB-SAP, motor neuron survival approximated that in end-stage ALS rats (phrenic: 36±7%; intercostal: 56±10% of controls; n=9; p<0.05). CTB-SAP caused minimal cell death in other brainstem or spinal cord regions. 1) increased CD11b fractional area in the phrenic motor nucleus, indicating microglial activation; 2) decreased breathing during maximal chemoreceptor stimulation; and 3) diminished phrenic motor output in anesthetized rats (7days post-25μg, 0.3±0.07V; CTB+SAP: 1.5±0.3; n=9; p<0.05). Intrapleural CTB-SAP represents a novel, inducible model of respiratory motor neuron death and provides an opportunity to study compensation for respiratory motor neuron loss. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Actomyosin contractility rotates the cell nucleus

    PubMed Central

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G. V.

    2014-01-01

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells. PMID:24445418

  16. Brain changes following four weeks of unimanual motor training: Evidence from fMRI-guided diffusion MRI tractography.

    PubMed

    Reid, Lee B; Sale, Martin V; Cunnington, Ross; Mattingley, Jason B; Rose, Stephen E

    2017-09-01

    We have reported reliable changes in behavior, brain structure, and function in 24 healthy right-handed adults who practiced a finger-thumb opposition sequence task with their left hand for 10 min daily, over 4 weeks. Here, we extend these findings by using diffusion MRI to investigate white-matter changes in the corticospinal tract, basal-ganglia, and connections of the dorsolateral prefrontal cortex. Twenty-three participant datasets were available with pre-training and post-training scans. Task performance improved in all participants (mean: 52.8%, SD: 20.0%; group P < 0.01 FWE) and widespread microstructural changes were detected across the motor system of the "trained" hemisphere. Specifically, region-of-interest-based analyses of diffusion MRI (n = 22) revealed significantly increased fractional anisotropy (FA) in the right caudate nucleus (4.9%; P < 0.05 FWE), and decreased mean diffusivity in the left nucleus accumbens (-1.3%; P < 0.05 FWE). Diffusion MRI tractography (n = 22), seeded by sensorimotor cortex fMRI activation, also revealed increased FA in the right corticospinal tract (mean 3.28%; P < 0.05 FWE) predominantly reflecting decreased radial diffusivity. These changes were consistent throughout the entire length of the tract. The left corticospinal tract did not show any changes. FA also increased in white matter connections between the right middle frontal gyrus and both right caudate nucleus (17/22 participants; P < 0.05 FWE) and right supplementary motor area (18/22 participants; P < 0.05 FWE). Equivalent changes in FA were not seen in the left (non-trained) hemisphere. In combination with our functional and structural findings, this study provides detailed, multifocal evidence for widespread neuroplastic changes in the human brain resulting from motor training. Hum Brain Mapp 38:4302-4312, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Low P sub T hadron-nucleus interactions

    NASA Technical Reports Server (NTRS)

    Holynski, R.; Wozniak, K.

    1985-01-01

    The possibility of describing hadron-nucleus (hA) interactions is discussed in terms of a number of independent collisions of the projectile inside the target nucleus. This multiple rescattering may occur on a particle or quark parton level. To investigate the characteristics of hA interactions as a function of antineutrinos advantage is taken of the correlation between the average number antineutrinos of collisions of the projectile inside the nucleus and the number Ng of fast protons ejected from the struck nucleus. The relation antineutrinos vs Ng obtained in antineutrinos was used. For a given target nucleus this allows the selection of interactions occurring at different impact parameters.

  18. Cortical and subcortical afferents to the nucleus reticularis tegmenti pontis and basal pontine nuclei in the macaque monkey.

    PubMed

    Giolli, R A; Gregory, K M; Suzuki, D A; Blanks, R H; Lui, F; Betelak, K F

    2001-01-01

    Anatomical findings are presented that identify cortical and subcortical sources of afferents to the nucleus reticularis tegmenti pontis (NRTP) and basal pontine nuclei. Projections from the middle temporal visual area (MT), medial superior temporal visual area (MST), lateral intraparietal area (LIP), and areas 7a and 7b to the basal pontine nuclei were studied using 3H-leucine autoradiography. The results complemented a parallel study of retrograde neuronal labeling attributable to injecting WGA-HRP into NRTP and neighboring pontine nuclei. Small 3H-leucine injections confined to MT, MST, LIP, area 7a, or area 7b, produced multiple patches of pontine terminal label distributed as follows: (1) An injection within MT produced terminal label limited to the dorsolateral and lateral pontine nuclei. (2) Injections restricted to MST or LIP showed patches of terminal label in the dorsal, dorsolateral, lateral, and peduncular pontine nuclei. (3) Area 7a targets the dorsal, dorsolateral, lateral, peduncular, and ventral pontine nuclei, whereas area 7b projects, additionally, to the dorsomedial and paramedian pontine nuclei. Notably, no projections were seen to NRTP from any of these cortical areas. In contrast, injections made by other investigators into cortical areas anterior to the central sulcus revealed cerebrocortical afferents to NRTP, in addition to nuclei of the basal pontine gray. With our pontine WGA-HRP injections, retrograde neuronal labeling was observed over a large extent of the frontal cortex continuing onto the medial surface which included the lining of the cingulate sulcus and cingulate gyrus. Significant subcortical sources for afferents to the NRTP and basal pontine nuclei were the zona incerta, ventral mesencephalic tegmentum, dorsomedial hypothalamic area, rostral interstitial nucleus of the medial longitudinal fasciculus, red nucleus, and subthalamic nucleus. The combined anterograde and retrograde labeling data indicated that visuo-motor cortico

  19. Rapid feedback processing in human nucleus accumbens and motor thalamus.

    PubMed

    Schüller, Thomas; Gruendler, Theo O J; Jocham, Gerhard; Klein, Tilmann A; Timmermann, Lars; Visser-Vandewalle, Veerle; Kuhn, Jens; Ullsperger, Markus

    2015-04-01

    The nucleus accumbens (NAcc) and thalamus are integral parts in models of feedback processing. Deep brain stimulation (DBS) has been successfully employed to alleviate symptoms of psychiatric conditions including obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS). Common target structures are the NAcc and the ventral anterior and ventro-lateral nuclei (VA/VL) of the thalamus, for OCD and TS, respectively. The feedback related negativity (FRN) is an event-related potential associated with feedback processing reflecting posterior medial frontal cortex (pMFC) activity. Here we report on three cases where we recorded scalp EEG and local field potentials (LFP) from externalized electrodes located in the NAcc or thalamus (VA/VL) while patients engaged in a modified time estimation task, known to engage feedback processing and elicit the FRN. Additionally, scalp EEG were recorded from 29 healthy participants (HP) engaged in the same task. The signal in all structures (pMFC, NAcc, and thalamus) was differently modulated by positive and negative feedback. LFP activity in the NAcc showed a biphasic time course after positive feedback during the FRN time interval. Negative feedback elicited a much weaker and later response. In the thalamus a monophasic modulation was recorded during the FRN time interval. Again, this modulation was more pronounced after positive performance feedback compared to negative feedback. In channels outside the target area no modulation was observed. The surface-FRN was reliably elicited on a group level in HP and showed no significant difference following negative feedback between patients and HP. German Clinical Trial Register: Neurocognitive specification of dysfunctions within basal ganglia-cortex loops and their therapeutic modulation by deep brain stimulation in patients with obsessive compulsive disorder and Tourette syndrome, http://www.drks.de/DRKS00005316. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. On the functional anatomy of the nucleus of the optic tract-dorsal terminal nucleus commissural connection in the opossum (Didelphis marsupialis aurita).

    PubMed

    Vargas, C D; Volchan, E; Hokoç, J N; Pereira, A; Bernardes, R F; Rocha-Miranda, C E

    1997-01-01

    Immunocytochemical methods revealed the presence of GABA in cell bodies and terminals in the nucleus of the optic tract-dorsal terminal nucleus, the medial terminal nucleus, the lateral terminal nucleus and the interstitial nucleus of the superior fasciculus of the opossum (Didelphis marsupialis aurita). Moreover, after unilateral injections of rhodamine beads in the nucleus of the optic tract-dorsal terminal nucleus complex and processing for GABA, double-labelled cells were detected in the ipsilateral complex, up to 400 microns from the injected site, but not in the opposite. Analysis of the distributions of GABAergic and retrogradely-labelled cells throughout the contralateral nucleus of the optic tract-dorsal terminal nucleus showed that the highest density of GABAergic and rhodamine-labelled cells overlapped at the middle third of the complex. Previous electrophysiological data obtained in the opossum had suggested the existence, under certain conditions, of an inhibitory action between the nucleus of the optic tract-dorsal terminal nucleus of one side over the other. The absence of GABAergic commissural neurons may imply that this inhibition is mediated by an excitatory commissural pathway that activates GABAergic interneurons.

  1. Lyman-alpha observations of comet Kohoutek 1973 XII with Copernicus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, J.F.; Jenkins, E.B.; Bertaux, J.L.

    1976-10-01

    Comet Kohoutek 1973 XII was observed with the Princeton telescope-spectrometer on the Copernicus satellite on six occasions over a 1-month period starting on 1974 January 29. Positive detection of the cometary L..cap alpha.. emission profile was obtained on January 29 and February 2. Earlier observations of the geocoronal L..cap alpha.. emission profile allowed an instrumental intensity calibration and confirmation of the computed instrumental profile for an extended source at the L..cap alpha.. wavelength.After allowing for broadening by the instrument, we derived from the width of the L..cap alpha.. emission on January 29 a hydrogen-outflow velocity of 10.6 +- 1.8 kmmore » s/sup -1/. The intensity calibration combined with an appropriate cometary model led to cometary water-production rates with average values of 1.3 +- 0.4 x 10/sup 28/ molecules sr/sup -1/ s/sup -1/ for January 29 and 6.0 +- 2.5 x 10/sup 27/ molecules sr/sup -1/ s/sup -1/ for February 2. Only upper limits were obtained for L..cap alpha.. on and after February 14. Searches for OH and D led to negative results. (AIP)« less

  2. Reorganization of Motor Cortex by Vagus Nerve Stimulation Requires Cholinergic Innervation.

    PubMed

    Hulsey, Daniel R; Hays, Seth A; Khodaparast, Navid; Ruiz, Andrea; Das, Priyanka; Rennaker, Robert L; Kilgard, Michael P

    2016-01-01

    Vagus nerve stimulation (VNS) paired with forelimb training drives robust, specific reorganization of movement representations in the motor cortex. The mechanisms that underlie VNS-dependent enhancement of map plasticity are largely unknown. The cholinergic nucleus basalis (NB) is a critical substrate in cortical plasticity, and several studies suggest that VNS activates cholinergic circuitry. We examined whether the NB is required for VNS-dependent enhancement of map plasticity in the motor cortex. Rats were trained to perform a lever pressing task and then received injections of the immunotoxin 192-IgG-saporin to selectively lesion cholinergic neurons of the NB. After lesion, rats underwent five days of motor training during which VNS was paired with successful trials. At the conclusion of behavioral training, intracortical microstimulation was used to document movement representations in motor cortex. VNS paired with forelimb training resulted in a substantial increase in the representation of proximal forelimb in rats with an intact NB compared to untrained controls. NB lesions prevent this VNS-dependent increase in proximal forelimb area and result in representations similar to untrained controls. Motor performance was similar between groups, suggesting that differences in forelimb function cannot account for the difference in proximal forelimb representation. Together, these findings indicate that the NB is required for VNS-dependent enhancement of plasticity in the motor cortex and may provide insight into the mechanisms that underlie the benefits of VNS therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behaviour disorder.

    PubMed

    Valencia Garcia, Sara; Libourel, Paul-Antoine; Lazarus, Michael; Grassi, Daniela; Luppi, Pierre-Hervé; Fort, Patrice

    2017-02-01

    SEE SCHENCK AND MAHOWALD DOI101093/AWW329 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Idiopathic REM sleep behaviour disorder is characterized by the enactment of violent dreams during paradoxical (REM) sleep in the absence of normal muscle atonia. Accumulating clinical and experimental data suggest that REM sleep behaviour disorder might be due to the neurodegeneration of glutamate neurons involved in paradoxical sleep and located within the pontine sublaterodorsal tegmental nucleus. The purpose of the present work was thus to functionally determine first, the role of glutamate sublaterodorsal tegmental nucleus neurons in paradoxical sleep and second, whether their genetic inactivation is sufficient for recapitulating REM sleep behaviour disorder in rats. For this goal, we first injected two retrograde tracers in the intralaminar thalamus and ventral medulla to disentangle neuronal circuits in which sublaterodorsal tegmental nucleus is involved; second we infused bilaterally in sublaterodorsal tegmental nucleus adeno-associated viruses carrying short hairpin RNAs targeting Slc17a6 mRNA [which encodes vesicular glutamate transporter 2 (vGluT2)] to chronically impair glutamate synaptic transmission in sublaterodorsal tegmental nucleus neurons. At the neuroanatomical level, sublaterodorsal tegmental nucleus neurons specifically activated during paradoxical sleep hypersomnia send descending efferents to glycine/GABA neurons within the ventral medulla, but not ascending projections to the intralaminar thalamus. These data suggest a crucial role of sublaterodorsal tegmental nucleus neurons rather in muscle atonia than in paradoxical sleep generation. In line with this hypothesis, 30 days after adeno-associated virus injections into sublaterodorsal tegmental nucleus rats display a decrease of 30% of paradoxical sleep daily quantities, and a significant increase of muscle tone during paradoxical sleep concomitant to a tremendous increase of abnormal motor dream

  4. Radioimmunoassay of human Hageman factor (factor XII). [/sup 125/I tracer technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, H.; Ratnoff, O.D.; Pensky, J.

    A specific, sensitive, and reproducible radioimmunoassay for human Hageman factor (HF, factor XII) has been developed with purified human HF and monospecific rabbit antibody. Precise measurements of HF antigen were possible for concentrations as low as 0.1 percent of that in normal pooled plasma. A good correlation (correlation coefficient = 0.82) existed between the titers of HF measured by clot-promoting assays and radioimmunoassays among 42 normal adults. Confirming earlier studies, HF antigen was absent in Hageman trait plasma, but other congenital deficient plasmas, including those of individuals with Fletcher trait and Fitzgerald trait, contained normal amounts of HF antigen. HFmore » antigen was reduced in the plasmas of patients with disseminated intravascular coagulation or advanced liver cirrhosis, but it was normal in those of patients with chronic renal failure or patients under treatment with warfarin. HF antigen was detected by this assay in plasmas of primates, but not detectable in plasmas of 11 nonprimate mammalian and one avian species.« less

  5. Transverse limited phase space model with Glauber geometry for high-energy nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Huang, Ding Wei; Yen, Edward

    1989-08-01

    We propose a detailed model, combining the concepts from a partition temperature model and wounded nucleon model, to describe high-energy nucleus-nucleus collisions. One partition temperature is associated with collisions at a fixed wounded nucleon number. The (pseudo-) rapidity distributions are calculated and compared with experimental data. Predictions at higher energy are also presented.

  6. Evidence that the extraocular motor nuclei innervate monkey palisade endings

    PubMed Central

    Zimmermann, Lars; May, Paul J.; Pastor, Ángel M.; Streicher, Johannes; Blumer, Roland

    2011-01-01

    Palisade endings are found in the extraocular muscles (EOMs) of almost every mammalian species, including primates. These nerve specializations surrounding the muscle fiber insertion have been postulated to be the proprioceptors of the EOMs. However, it was recently demonstrated that palisade endings have a cholinergic nature, which reopened the question of whether palisade endings are motor or sensory structures. In this work, we examined whether the cell bodies of palisade endings lie in EOM motor nuclei by injecting an anterograde tracer, biotinylated dextran amine, into the abducens nucleus of a macaque monkey. Tracer visualization in the lateral rectus muscle was combined with choline acetyltransferase (ChAT) and α-bungarotoxin staining. Analysis of the samples was performed by conventional light microscopy and confocal laser scanning microscopy. About 30% of the nerve fibers innervating the muscle were tracer positive. These were ChAT positive as well. Tracer positive nerve fibers established motor contacts on singly and multiply innervated muscle fibers, which were confirmed by α-bungarotoxin staining. At the transition between muscle and distal tendon, we found palisade endings that contained tracer. Palisade endings exhibited the classic morphology: axons arising from the muscle extend onto the tendon, then turn back 180° and terminate in a cuff of terminals around an individual muscle fiber tip. This finding suggests that the cell bodies of palisade endings lie in the EOM motor nuclei, which complements prior studies demonstrating a cholinergic, and possibly motor, phenotype for palisade endings. PMID:21138754

  7. Head Direction Cell Instability in the Anterior Dorsal Thalamus after Lesions of the Interpeduncular Nucleus

    PubMed Central

    Clark, Benjamin J.; Sarma, Asha; Taube, Jeffrey S.

    2009-01-01

    Previous research has identified a population of cells throughout the limbic system that discharge as a function of the animals head direction (HD). Altering normal motor cues can alter the HD cell responses and disrupt the updating of their preferred firing directions, thus suggesting that motor cues contribute to processing the HD signal. A pathway that conveys motor information may stem from the interpeduncular nucleus (IPN), a brain region that has reciprocal connections with HD cell circuitry. To test this hypothesis, we produced electrolytic or neurotoxic lesions of the IPN and recorded HD cells in the anterior dorsal thalamus (ADN) of rats. Direction-specific firing remained present in the ADN after lesions of the IPN, but measures of HD cell properties showed that cells had reduced peak firing rates, large directional firing ranges, and firing that predicted the animal’s future heading more than in intact controls. Furthermore, preferred firing directions were moderately less influenced by rotation of a salient visual landmark. Finally, the preferred directions of cells in lesioned rats exhibited large shifts when the animals foraged for scattered food-pellets in a darkened environment and when locomoting from a familiar environment to a novel one. We propose that the IPN contributes motor information about the animal’s movements to the HD cell circuitry. Further, these results suggest that the IPN plays a broad role in the discharge properties and stability of direction-specific activity in the HD cell circuit. PMID:19144850

  8. Comet encke: radar detection of nucleus.

    PubMed

    Kamoun, P G; Campbell, D B; Ostro, S J; Pettengill, G H; Shapiro, I I

    1982-04-16

    The nucleus of the periodic comet Encke was detected in November 1980 with the Arecibo Observatory's radar system (wavelength, 12.6 centimeters). The echoes in the one sense of circular polarization received imply a radar cross section of 1.1 +/- 0.7 square kilometers. The estimated bandwidth of these echoes combined with an estimate of the rotation vector of Encke yields a radius for the nucleus of l.5(+2.3)(-1.0) kilometers. The uncertainties given are dependent primarily on the range of models considered for the comet and for the manner in which its nucleus backscatters radio waves. Should this range prove inadequate, the true value of the radius of the nucleus might lie outside the limits given.

  9. A search for ϕ meson nucleus bound state using antiproton annihilation on nucleus

    NASA Astrophysics Data System (ADS)

    Ohnishi, H.; Bühler, P.; Cargnelli, M.; Curceanu, C.; Guaraldo, C.; Hartmann, O.; Hicks, K.; Iwasaki, M.; Ishiwatari, T.; Kienle, P.; Marton, J.; Muto, R.; Naruki, M.; Niiyama, M.; Noumi, H.; Okada, S.; Vidal, A. Romero; Sakaguchi, A.; Sakuma, F.; Sawada, S.; Sirghi, D.; Sirghi, F.; Suzuki, K.; Tsukada, K.; Doce, O. Vazquez; Widmann, E.; Yokkaichi, S.; Zmeskal, J.

    2012-12-01

    The mass shift of the vector mesons in nuclei is known to be a powerful tool for investigating the mechanism of generating hadron mass from the QCD vacuum. The mechanism is known to be the spontaneous breaking of chiral symmetry. In 2007, KEK-PS E325 experiment reported about 3.4 % mass reduction of the ϕ meson in medium-heavy nuclei (Cu). This result is possibly one of the indications of the partial restoration of chiral symmetry in nuclei, however, unfortunately it is hard to make strong conclusions from the data. One of the ways to conclude the strength of the ϕ meson mass shift in nuclei will be by trying to produce only slowly moving ϕ mesons where the maximum nuclear matter effect can be probed. The observed mass reduction of the ϕ meson in the nucleus can be translated as the existence of an attractive force between ϕ meson and nucleus. Thus, one of the extreme conditions that can be achieved in the laboratory is indeed the formation of a ϕ-nucleus bound state, where the ϕ meson is "trapped" in the nucleus. The purpose of the experiment is to search for a ϕ-nucleus bound state and measure the binding energy of the system. We will demonstrate that a completely background-free missing-mass spectrum can be obtained efficiently by (bar{p}, φ) spectroscopy together with K + Λ tagging, using the primary reaction channel bar{p} p rightarrow φ φ. This paper gives an overview of the physics motivation and the detector concept, and explains the direction of the initial research and development effort.

  10. A search for ϕ meson nucleus bound state using antiproton annihilation on nucleus

    NASA Astrophysics Data System (ADS)

    Ohnishi, H.; Bühler, P.; Cargnelli, M.; Curceanu, C.; Guaraldo, C.; Hartmann, O.; Hicks, K.; Iwasaki, M.; Ishiwatari, T.; Kienle, P.; Marton, J.; Muto, R.; Naruki, M.; Niiyama, M.; Noumi, H.; Okada, S.; Vidal, A. Romero; Sakaguchi, A.; Sakuma, F.; Sawada, S.; Sirghi, D.; Sirghi, F.; Suzuki, K.; Tsukada, K.; Doce, O. Vazquez; Widmann, E.; Yokkaichi, S.; Zmeskal, J.

    The mass shift of the vector mesons in nuclei is known to be a powerful tool for investigating the mechanism of generating hadron mass from the QCD vacuum. The mechanism is known to be the spontaneous breaking of chiral symmetry. In 2007, KEK-PS E325 experiment reported about 3.4 % mass reduction of the ϕ meson in medium-heavy nuclei (Cu). This result is possibly one of the indications of the partial restoration of chiral symmetry in nuclei, however, unfortunately it is hard to make strong conclusions from the data. One of the ways to conclude the strength of the ϕ meson mass shift in nuclei will be by trying to produce only slowly moving ϕ mesons where the maximum nuclear matter effect can be probed. The observed mass reduction of the ϕ meson in the nucleus can be translated as the existence of an attractive force between ϕ meson and nucleus. Thus, one of the extreme conditions that can be achieved in the laboratory is indeed the formation of a ϕ-nucleus bound state, where the ϕ meson is "trapped" in the nucleus. The purpose of the experiment is to search for a ϕ-nucleus bound state and measure the binding energy of the system. We will demonstrate that a completely background-free missing-mass spectrum can be obtained efficiently by (bar{p}, φ) spectroscopy together with K + Λ tagging, using the primary reaction channel bar{p} p rightarrow φ φ. This paper gives an overview of the physics motivation and the detector concept, and explains the direction of the initial research and development effort.

  11. Inhibition of the amygdala central nucleus by stimulation of cerebellar output in rats: a putative mechanism for extinction of the conditioned fear response.

    PubMed

    Magal, Ari; Mintz, Matti

    2014-11-01

    The amygdala and the cerebellum serve two distinctively different functions. The amygdala plays a role in the expression of emotional information, whereas the cerebellum is involved in the timing of discrete motor responses. Interaction between these two systems is the basis of the two-stage theory of learning, according to which an encounter with a challenging event triggers fast classical conditioning of fear-conditioned responses in the amygdala and slow conditioning of motor-conditioned responses in the cerebellum. A third stage was hypothesised when an apparent interaction between amygdala and cerebellar associative plasticity was observed: an adaptive rate of cerebellum-dependent motor-conditioned responses was associated with a decrease in amygdala-dependent fear-conditioned responses, and was interpreted as extinction of amygdala-related fear-conditioned responses by the cerebellar output. To explore this hypothesis, we mimicked some components of classical eyeblink conditioning in anesthetised rats by applying an aversive periorbital pulse as an unconditioned stimulus and a train of pulses to the cerebellar output nuclei as a cerebellar neuronal-conditioned response. The central amygdala multiple unit response to the periorbital pulse was measured with or without a preceding train to the cerebellar output nuclei. The results showed that activation of the cerebellar output nuclei prior to periorbital stimulation produced diverse patterns of inhibition of the amygdala response to the periorbital aversive stimulus, depending upon the nucleus stimulated, the laterality of the nucleus stimulated, and the stimulus interval used. These results provide a putative extinction mechanism of learned fear behavior, and could have implications for the treatment of pathologies involving abnormal fear responses by using motor training as therapy. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. rTMS with Motor Training Modulates Cortico-Basal Ganglia-Thalamocortical Circuits in Stroke Patients

    PubMed Central

    Chang, Won Hyuk; Kim, Yun-Hee; Yoo, Woo-Kyoung; Goo, Kyoung-Hyup; Park, Chang-hyun; Kim, Sung Tae; Pascual-Leone, Alvaro

    2013-01-01

    Background and Purpose Repetitive transcranial magnetic stimulation (rTMS) may enhance plastic changes in the human cortex and modulation of behavior. However, the underlying neural mechanisms have not been sufficiently investigated. We examined the clinical effects and neural correlates of high-frequency rTMS coupled with motor training in patients with hemiparesis after stroke. Methods Twenty-one patients were randomly divided into two groups, and received either real or sham rTMS. Ten daily sessions of 1,000 pulses of real or sham rTMS were applied at 10 Hz over the primary motor cortex of the affected hemisphere, coupled with sequential finger motor training of the paretic hand. Functional MRIs were obtained before and after training using sequential finger motor tasks, and performances were assessed. Results Following rTMS intervention, movement accuracy of sequential finger motor tasks showed significantly greater improvement in the real group than in the sham group (p<0.05). Real rTMS modulated areas of brain activation during performance of motor tasks with a significant interaction effect in the sensorimotor cortex, thalamus, and caudate nucleus. Patients in the real rTMS group also showed significantly enhanced activation in the affected hemisphere compared to the sham rTMS group. Conclusion According to these results, a 10 day course of high-frequency rTMS coupled with motor training improved motor performance through modulation of activities in the cortico-basal ganglia-thalamocortical circuits. PMID:22555430

  13. PREFACE: 12th Conference on Recent Developments in Gravity (NEB XII)

    NASA Astrophysics Data System (ADS)

    Christodoulakis, Theodosios; Vagenas, Elias C.

    2007-06-01

    Continuing the 24 year old tradition, one of the Greek relativistic groups, this time the Relativity Group of the Physics Department of the University of Athens, organized the 12th Conference of the series "Recent Developments in Gravity" (NEB XII). This time NEB took place at Nafplio, Greece, from Thursday 29 June to Sunday 2 July, 2006. The Conference was attended by more than 100 participants, more than 50% of whom were relativists from abroad (both Greek and other nationalities). This signifies a tendency of the last few Conferences to open up the Greek Relativity Conference to the international scientific community. Actually, many notable members of the relativistic community all over the globe showed particular interest in coming to Nafplio, and spend four relaxed days in a nice sunny and historical place, presenting the results of their more recent work and discussing it with colleagues and students from Greece. The NEB XII Conference covered various aspects of gravitational physics: Relativistic Astrophysics, Mathematical Relativity, Quantum Gravity, and Cosmology. Although the program was rather heavy and for the first time we had parallel sessions running in the afternoons, the wonderful weather (apart from the last afternoon when it rained heavily) and the beauty of Nafplio helped the organizers offer the participants a warm, pleasant, and creative time. According to most attendees, their impression was more than good, not only with respect to the hospitable environment, but with respect to the high level of talks as well. We hope the next Conference, which will be organized by the Relativity Group of the Aristotle University of Thessaloniki in the summer of 2008, will raise the standards of the Conference even higher, thus further establishing our Conference as a notable Conference in the Relativistic community all over the world. Finally, we would like to thank the Gravitational Physics Section of the European Physical Society (GPS/EPS), ILIAS

  14. Evaluation of thromboelastography in two factor XII-deficient cats.

    PubMed

    Blois, Shauna L; Holowaychuk, Marie K; Wood, R Darren

    2015-01-01

    The current report describes thromboelastography (TEG) findings in two cats with factor XII (FXII) deficiency. The first cat was diagnosed with bilateral perinephric pseudocysts; hemostatic testing was performed prior to performing renal aspirates. The second cat was healthy; hemostatic testing was performed prior to inclusion into a research project. Both cats had markedly prolonged partial thromboplastin times and hypocoagulable TEG tracings when samples were activated with kaolin. However, when tissue factor (TF) was used to activate the sample, both cats had normal-to-hypercoagulable TEG tracings. The cats each had a subnormal FXII level. TEG is becoming widely used to investigate hemostasis in veterinary patients, and TEG results in cats with FXII deficiency have not been previously reported. FXII deficiency is the most common hereditary hemostatic defect in cats. While FXII deficiency does not lead to in vivo hemorrhagic tendencies, it can lead to marked prolongation in activated partial thromboplastin and activated clotting times, and cannot be differentiated from true hemorrhagic diatheses without measuring individual factor activity. With the increased use of TEG to evaluate hemostasis in veterinary patients, it is important to recognize the effects of FXII deficiency on this testing modality. The finding of a hypocoagulable kaolin-activated TEG tracing and a concurrent normal TF-activated TEG tracing in samples should prompt clinicians to consider ruling out FXII deficiency.

  15. Evaluation of thromboelastography in two factor XII-deficient cats

    PubMed Central

    Holowaychuk, Marie K; Wood, R Darren

    2015-01-01

    Case summary The current report describes thromboelastography (TEG) findings in two cats with factor XII (FXII) deficiency. The first cat was diagnosed with bilateral perinephric pseudocysts; hemostatic testing was performed prior to performing renal aspirates. The second cat was healthy; hemostatic testing was performed prior to inclusion into a research project. Both cats had markedly prolonged partial thromboplastin times and hypocoagulable TEG tracings when samples were activated with kaolin. However, when tissue factor (TF) was used to activate the sample, both cats had normal-to-hypercoagulable TEG tracings. The cats each had a subnormal FXII level. Relevance and novel information TEG is becoming widely used to investigate hemostasis in veterinary patients, and TEG results in cats with FXII deficiency have not been previously reported. FXII deficiency is the most common hereditary hemostatic defect in cats. While FXII deficiency does not lead to in vivo hemorrhagic tendencies, it can lead to marked prolongation in activated partial thromboplastin and activated clotting times, and cannot be differentiated from true hemorrhagic diatheses without measuring individual factor activity. With the increased use of TEG to evaluate hemostasis in veterinary patients, it is important to recognize the effects of FXII deficiency on this testing modality. The finding of a hypocoagulable kaolin-activated TEG tracing and a concurrent normal TF-activated TEG tracing in samples should prompt clinicians to consider ruling out FXII deficiency. PMID:28491358

  16. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.

    1989-01-01

    The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  17. Nucleus accumbens opioid, GABaergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat.

    PubMed

    Zhang, Min; Balmadrid, Christian; Kelley, Ann E

    2003-04-01

    The current studies were designed to evaluate whether incentive motivation for palatable food is altered after manipulations of opioid, GABAergic, and dopaminergic transmission within the nucleus accumbens. A progressive ratio schedule was used to measure lever-pressing for sugar pellets after microinfusion of drugs into the nucleus accumbens in non-food-deprived rats. The mu opioid agonist D-Ala2, NMe-Phe4, Glyo15-enkephalin and the indirect dopamine agonist amphetamine induced a marked increase in break point and correct lever-presses; the GABA(A) agonist muscimol did not affect breakpoint or lever-presses. The data suggest that opioid, dopaminergic, and GABAergic systems within the accumbens differentially modulate food-seeking behavior through mechanisms related to hedonic evaluation of food, incentive salience, and control of motor feeding circuits, respectively.

  18. The many facets of motor learning and their relevance for Parkinson's disease.

    PubMed

    Marinelli, Lucio; Quartarone, Angelo; Hallett, Mark; Frazzitta, Giuseppe; Ghilardi, Maria Felice

    2017-07-01

    The final goal of motor learning, a complex process that includes both implicit and explicit (or declarative) components, is the optimization and automatization of motor skills. Motor learning involves different neural networks and neurotransmitters systems depending on the type of task and on the stage of learning. After the first phase of acquisition, a motor skill goes through consolidation (i.e., becoming resistant to interference) and retention, processes in which sleep and long-term potentiation seem to play important roles. The studies of motor learning in Parkinson's disease have yielded controversial results that likely stem from the use of different experimental paradigms. When a task's characteristics, instructions, context, learning phase and type of measures are taken into consideration, it is apparent that, in general, only learning that relies on attentional resources and cognitive strategies is affected by PD, in agreement with the finding of a fronto-striatal deficit in this disease. Levodopa administration does not seem to reverse the learning deficits in PD, while deep brain stimulation of either globus pallidus or subthalamic nucleus appears to be beneficial. Finally and most importantly, patients with PD often show a decrease in retention of newly learned skill, a problem that is present even in the early stages of the disease. A thorough dissection and understanding of the processes involved in motor learning is warranted to provide solid bases for effective medical, surgical and rehabilitative approaches in PD. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.

  19. Cognition following bilateral deep brain stimulation surgery of the subthalamic nucleus for Parkinson's disease.

    PubMed

    Halpern, Casey H; Rick, Jacqueline H; Danish, Shabbar F; Grossman, Murray; Baltuch, Gordon H

    2009-05-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by significant motor dysfunction and various non-motor disturbances, including cognitive alterations. Deep brain stimulation (DBS) is an increasingly utilized therapeutic option for patients with PD that yields remarkable success in alleviating disabling motor symptoms. DBS has additionally been associated with changes in cognition, yet the evidence is not consistent across studies. The following review sought to provide a clearer understanding of the various cognitive sequelae of bilateral subthalamic nucleus (STN) DBS while taking into account corresponding neuroanatomy and potential confounding variables. A literature search was performed using the following inclusion criteria: (1) at least five subjects followed for a mean of at least 3 months after surgery; (2) pre- and postoperative cognitive data using at least one standardized measure; (3) adequate report of study results using means and standard deviations. Two recent meta-analyses found mild post-operative impairments in verbal learning and executive function in patients who underwent DBS surgery. However, studies have revealed improved working memory and psychomotor speed in the 'on' vs 'off' stimulation state. A deficit in language may be a consequence of the surgical procedure. While cognitive decline has been observed in some domains, our review of the data suggests that STN DBS is a worthwhile and safe method to treat PD. (c) 2008 John Wiley & Sons, Ltd.

  20. Electromagnetic processes in nucleus-nucleus collisions relating to space radiation research

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Most of the papers within this report deal with electromagnetic processes in nucleus-nucleus collisions which are of concern in the space radiation program. In particular, the removal of one and two nucleons via both electromagnetic and strong interaction processes has been extensively investigated. The theory of relativistic Coulomb fission has also been developed. Several papers on quark models also appear. Finally, note that the theoretical methods developed in this work have been directly applied to the task of radiation protection of astronauts. This has been done by parameterizing the theoretical formalism in such a fashion that it can be used in cosmic ray transport codes.

  1. Is {sup 276}U a doubly magic nucleus?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liliani, N., E-mail: netta.liliani@gmail.com; Sulaksono, A.

    2016-04-19

    We investigate a possible new doubly magic heavy nucleus by using a relativistic mean-field (RMF) model with the addition of a cross interaction term of omega-rho mesons and an electromagnetic exchange term. We propose that {sup 276}U is a doubly magic nucleus. The evidence for {sup 276}U being a doubly magic nucleus is shown through the two-nucleon gaps, the single-particle energies, and the neutron skin thickness of the nucleus. We have also found that the prediction of {sup 276}U as a doubly magic nucleus by the RMF model is not affected by the inclusion of isoscalar-isovector and electromagnetic exchange couplings.

  2. Observation of direct hadronic pairs in nucleus-nucleus collisions in JACEE emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.

    1985-01-01

    In a number of high energy ( or = 1 TeV/amu) nucleus-nucleus collisions observed in Japanese-American Cooperative Emulsion Experiment (JACEE) emulsion chambers, nonrandom spatial association of produced charged particles, mostly hadronic pairs, are observed. Similar narrow pairs are observed in about 100 events at much low energy (20 to 60 GeV/amu). Analysis shows that 30 to 50% of Pair abundances are understood by the Hambury-Brown-Twiss effect, and the remainder seems to require other explanations.

  3. Common Features of Neural Activity during Singing and Sleep Periods in a Basal Ganglia Nucleus Critical for Vocal Learning in a Juvenile Songbird

    PubMed Central

    Yanagihara, Shin; Hessler, Neal A.

    2011-01-01

    Reactivations of waking experiences during sleep have been considered fundamental neural processes for memory consolidation. In songbirds, evidence suggests the importance of sleep-related neuronal activity in song system motor pathway nuclei for both juvenile vocal learning and maintenance of adult song. Like those in singing motor nuclei, neurons in the basal ganglia nucleus Area X, part of the basal ganglia-thalamocortical circuit essential for vocal plasticity, exhibit singing-related activity. It is unclear, however, whether Area X neurons show any distinctive spiking activity during sleep similar to that during singing. Here we demonstrate that, during sleep, Area X pallidal neurons exhibit phasic spiking activity, which shares some firing properties with activity during singing. Shorter interspike intervals that almost exclusively occurred during singing in awake periods were also observed during sleep. The level of firing variability was consistently higher during singing and sleep than during awake non-singing states. Moreover, deceleration of firing rate, which is considered to be an important firing property for transmitting signals from Area X to the thalamic nucleus DLM, was observed mainly during sleep as well as during singing. These results suggest that songbird basal ganglia circuitry may be involved in the off-line processing potentially critical for vocal learning during sensorimotor learning phase. PMID:21991379

  4. Do palisade endings in extraocular muscles arise from neurons in the motor nuclei?

    PubMed

    Lienbacher, Karoline; Mustari, Michael; Ying, Howard S; Büttner-Ennever, Jean A; Horn, Anja K E

    2011-04-01

    The purpose of this study was to localize the cell bodies of palisade endings that are associated with the myotendinous junctions of the extraocular muscles. Rhesus monkeys received tract-tracer injections (tetramethylrhodamine dextran [TMR-DA] or choleratoxin subunit B [CTB]) into the oculomotor and trochlear nuclei, which contain the motoneurons of extraocular muscles. All extraocular muscles were processed for the combined immunocytochemical detection of the tracer and SNAP-25 or synaptophysin for the visualization of the complete muscle innervation. In all muscles--except the lateral rectus--en plaque and en grappe motor endings, but also palisade endings, were anterogradely labeled. In addition a few tracer-labeled tendon organs were found. One group of tracer-negative nerve fibers was identified as thin tyrosine hydroxylase-positive sympathetic fibers, and a second less numerous group of tracer-negative fibers may originate from the trigeminal ganglia. No cellular or terminal tracer labeling was present within the mesencephalic trigeminal nucleus or the trigeminal ganglia. These results confirm those of earlier studies and furthermore suggest that the somata of palisade endings are located close to the extraocular motor nuclei--in this case, probably within the C and S groups around the periphery of the oculomotor nucleus. The multiple en grappe endings have also been shown to arise from these cells groups, but it is not possible to distinguish different populations in these experiments.

  5. Analysis of relativistic nucleus-nucleus interactions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The development of a computer-assisted method is reported for the determination of the angular distribution data for secondary particles produced in relativistic nucleus-nucleus collisions in emulsions. The method is applied to emulsion detectors that were placed in a constant, uniform magnetic field and exposed to beams of 60 and 200 GeV/nucleon O-16 ions at the Super Proton Synchrotron (SPS) of the European Center for Nuclear Research (CERN). Linear regression analysis is used to determine the azimuthal and polar emission angles from measured track coordinate data. The software, written in BASIC, is designed to be machine independent, and adaptable to an automated system for acquiring the track coordinates. The fitting algorithm is deterministic, and takes into account the experimental uncertainty in the measured points. Further, a procedure for using the track data to estimate the linear momenta of the charged particles observed in the detectors is included.

  6. Evidence that the extraocular motor nuclei innervate monkey palisade endings.

    PubMed

    Zimmermann, Lars; May, Paul J; Pastor, Angel M; Streicher, Johannes; Blumer, Roland

    2011-02-04

    Palisade endings are found in the extraocular muscles (EOMs) of almost every mammalian species, including primates. These nerve specializations surrounding the muscle fiber insertion have been postulated to be the proprioceptors of the EOMs. However, it was recently demonstrated that palisade endings have a cholinergic nature, which reopened the question of whether palisade endings are motor or sensory structures. In this work, we examined whether the cell bodies of palisade endings lie in EOM motor nuclei by injecting an anterograde tracer, biotinylated dextran amine, into the abducens nucleus of a macaque monkey. Tracer visualization in the lateral rectus muscle was combined with choline acetyltransferase (ChAT) and α-bungarotoxin staining. Analysis of the samples was performed by conventional light microscopy and confocal laser scanning microscopy. About 30% of the nerve fibers innervating the muscle were tracer positive. These were ChAT positive as well. Tracer positive nerve fibers established motor contacts on singly and multiply innervated muscle fibers, which were confirmed by α-bungarotoxin staining. At the transition between muscle and distal tendon, we found palisade endings that contained tracer. Palisade endings exhibited the classic morphology: axons arising from the muscle extend onto the tendon, then turn back 180° and terminate in a cuff of terminals around an individual muscle fiber tip. This finding suggests that the cell bodies of palisade endings lie in the EOM motor nuclei, which complements prior studies demonstrating a cholinergic, and possibly motor, phenotype for palisade endings. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Nucleus accumbens carbachol disrupts olfactory and contextual fear-potentiated startle and attenuates baseline startle reactivity.

    PubMed

    Cousens, Graham A; Skrobacz, Cheryl G; Blumenthal, Anna

    2011-01-20

    Although the nucleus accumbens (NAc) typically is not considered a primary component of the circuitry underlying either the acquisition or retrieval of conditioned fear, evidence suggests that this region may play some role in modulating fear-related behaviors. The goal of the present study was to explore a potential role for NAc cholinergic receptors in the expression of fear-potentiated startle (FPS) and baseline startle reactivity. Intra-NAc infusion of the broad-acting cholinergic receptor agonist, carbachol, suppressed FPS elicited by re-exposure to both a discrete odor previously paired with footshock and the conditioning context. Although carbachol elevated spontaneous motor activity, activity bouts did not account for startle suppression in carbachol-treated Ss. In addition, intra-NAc carbachol suppressed baseline startle over a range of acoustic pulse intensities in the absence of explicit fear conditioning. Collectively, these findings suggest that NAc cholinergic receptors play a role in the modulation of baseline startle reactivity, rather than in the retrieval of learned fear, and that this role is independent of overt motor activity. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Neurophysiology of the pedunculopontine tegmental nucleus.

    PubMed

    Vitale, F; Capozzo, A; Mazzone, P; Scarnati, E

    2018-03-07

    The interest in the pedunculopontine tegmental nucleus (PPTg), a structure located in the brainstem at the level of the pontomesencephalic junction, has greatly increased in recent years because it is involved in the regulation of physiological functions that fail in Parkinson's disease and because it is a promising target for deep brain stimulation in movement disorders. The PPTg is highly interconnected with the main basal ganglia nuclei and relays basal ganglia activity to thalamic and brainstem nuclei and to spinal effectors. In this review, we address the functional role of the main PPTg outputs directed to the basal ganglia, thalamus, cerebellum and spinal cord. Together, the data that we discuss show that the PPTg may influence thalamocortical activity and spinal motoneuron excitability through its ascending and descending output fibers, respectively. Cerebellar nuclei may also relay signals from the PPTg to thalamic and brainstem nuclei. In addition to participating in motor functions, the PPTg participates in arousal, attention, action selection and reward mechanisms. Finally, we discuss the possibility that the PPTg may be involved in excitotoxic degeneration of the dopaminergic neurons of the substantia nigra through the glutamatergic monosynaptic input that it provides to these neurons. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Microtubules move the nucleus to quiescence.

    PubMed

    Laporte, Damien; Sagot, Isabelle

    2014-01-01

    The nucleus is a cellular compartment that hosts several macro-molecular machines displaying a highly complex spatial organization. This tight architectural orchestration determines not only DNA replication and repair but also regulates gene expression. In budding yeast microtubules play a key role in structuring the nucleus since they condition the Rabl arrangement in G1 and chromosome partitioning during mitosis through their attachment to centromeres via the kinetochore proteins. Recently, we have shown that upon quiescence entry, intranuclear microtubules emanating from the spindle pole body elongate to form a highly stable bundle that spans the entire nucleus. Here, we examine some molecular mechanisms that may underlie the formation of this structure. As the intranuclear microtubule bundle causes a profound re-organization of the yeast nucleus and is required for cell survival during quiescence, we discuss the possibility that the assembly of such a structure participates in quiescence establishment.

  10. Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Cheung, Wang K.; Norbury, John W.

    1994-01-01

    The effects of electromagnetic-production processes due to two-photon exchange in nucleus-nucleus collisions are discussed. Feynman diagrams for two-photon exchange are evaluated using quantum electrodynamics. The total cross section and stopping power for projectile and target nuclei of identical charge are found to be significant for heavy nuclei above a few GeV per nucleon-incident energy.

  11. Subthalamic nucleus deep brain stimulation for Parkinson's disease: evidence for effectiveness and limitations from 12 years' experience.

    PubMed

    Chan, Anne Y Y; Yeung, Jonas H M; Mok, Vincent C T; Ip, Vincent H L; Wong, Adrian; Kuo, S H; Chan, Danny T M; Zhu, X L; Wong, Edith; Lau, Claire K Y; Wong, Rosanna K M; Tang, Venus; Lau, Christine; Poon, W S

    2014-12-01

    To present the result and experience of subthalamic nucleus deep brain stimulation for Parkinson's disease. Case series. Prince of Wales Hospital, Hong Kong. A cohort of patients with Parkinson's disease received subthalamic nucleus deep brain stimulation from September 1998 to January 2010. Patient assessment data before and after the operation were collected prospectively. Forty-one patients (21 male and 20 female) with Parkinson's disease underwent bilateral subthalamic nucleus deep brain stimulation and were followed up for a median interval of 12 months. For the whole group, the mean improvements of Unified Parkinson's Disease Rating Scale (UPDRS) parts II and III were 32.5% and 31.5%, respectively (P<0.001). Throughout the years, a multidisciplinary team was gradually built. The deep brain stimulation protocol evolved and was substantiated by updated patient selection criteria and outcome assessment, integrated imaging and neurophysiological targeting, refinement of surgical technique as well as the accumulation of experience in deep brain stimulation programming. Most of the structural improvement occurred before mid-2005. Patients receiving the operation before June 2005 (19 cases) and after (22 cases) were compared; the improvements in UPDRS part III were 13.2% and 55.2%, respectively (P<0.001). There were three operative complications (one lead migration, one cerebral haematoma, and one infection) in the group operated on before 2005. There was no operative mortality. The functional state of Parkinson's disease patients with motor disabilities refractory to best medical treatment improved significantly after subthalamic nucleus deep brain stimulation. A dedicated multidisciplinary team building, refined protocol for patient selection and assessment, improvement of targeting methods, meticulous surgical technique, and experience in programming are the key factors contributing to the improved outcome.

  12. Formation, structure, and evolution of boiling nucleus and interfacial tension between bulk liquid phase and nucleus

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Dong; Peng, Xiao-Feng; Tian, Yong; Wang, Bu-Xuan

    2005-05-01

    In this paper, the concept of the molecular free path is introduced to derive a criterion distinguishing active molecules from inactive molecules in liquid phase. A concept of the critical aggregation concentration (CAC) of active molecules is proposed to describe the physical configuration before the formation of a nucleus during vapor-liquid phase transition. All active molecules exist as monomers when the concentration of active molecules is lower than CAC, while the active molecules will generate aggregation once the concentration of the active molecules reaches CAC. However, these aggregates with aggregation number, N, smaller than five can steadily exist in bulk phase. The other excess active molecules can only produce infinite aggregation and form a critical nucleus of vapor-liquid phase transition. Without any outer perturbation the state point of CAC corresponds to the critical superheated or supercooled state. Meanwhile, a model of two-region structure of a nucleus is proposed to describe nucleus evolution. The interfacial tension between bulk liquid phase and nucleus is dependent of the density gradient in the transition region and varies with the structure change of the transition region. With the interfacial tension calculated using this model, the predicted nucleation rate is very close to the experimental measurement. Furthermore, this model and associated analysis provides solid theoretical evidences to clarify the definition of nucleation rate and understand nucleation phenomenon with the insight into the physical nature.

  13. The mediodorsal thalamic nucleus and schizophrenia

    PubMed Central

    Alelú-Paz, Raúl; Giménez-Amaya, José Manuel

    2008-01-01

    The mediodorsal nucleus of the human thalamus is in a crucial position that allows it to establish connections with diverse cerebral structures, particularly the prefrontal cortex. The present review examines existing neurobiologic studies of the brains of people with and without schizophrenia that indicate a possible involvement of the mediodorsal nucleus in this psychiatric disorder. Studies at synaptic and cellular levels of the neurobiology of the mediodorsal nucleus, together with a better anatomic understanding of this diencephalic structure owing to neuroimaging studies, should help to establish a more deep and solid pathophysiologic model of schizophrenia. PMID:18982171

  14. The nucleus of the optic tract (NOT) and the dorsal terminal nucleus (DTN) of opossums (Didelphis marsupialis aurita).

    PubMed

    Vargas, C D; Volchan, E; Nasi, J P; Bernardes, R F; Rocha-Miranda, C E

    1996-01-01

    Wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) was injected unilaterally into the pretectocollicular region of opossums (Didelphis marsupialis aurita), primarily to investigate the existence of a commissural subcortical pathway but also to reveal afferents and efferents of the nucleus of the optic tract (NOT) and dorsal terminal nucleus (DTN) in this species. Labelled cells and terminals were observed in the contralateral NOT-DTN. Furthermore, HRP was injected bilaterally in the region of the inferior olive (IO) to verify if the distribution of labelled cells in the NOT-DTN overlapped the region of commissural labelled cells. The two subpopulations of retrogradely labelled cells coincided, being distributed within the retinal terminal field attributed to the NOT-DTN, as revealed by contralateral eye injections of HRP. The commissural cells were located slightly more ventral than the olivary cells in the optic tract. The pretectocollicular WGA-HRP injections also labelled cells and terminals bilaterally in the lateral terminal nucleus (LTN), interstitial nucleus of the superior fasciculus, posterior fibers (INSFp), ventral lateral geniculate nucleus (vLGN), and superior colliculus (SC) and ipsilaterally in the medial terminal nucleus (MTN). In addition, further caudally, labelled cells and terminals were observed bilaterally in the nuclei prepositus hypoglossi (PH) and in the medial (MVN) and lateral (LVN) vestibular nuclei. Labelled terminals were found in the ipsilateral nucleus reticularis tegmenti pontis (NRTP) and in the IO with ipsilateral predominance. This study allowed an anatomical delimitation of the NOT-DTN in this opossum species, as defined by the olivary and commissural subpopulations, as well as a hodological evaluation of this region. The existence of some common anatomical aspects with other mammalian species is discussed.

  15. Deep brain stimulation of the rostromedial tegmental nucleus: An unanticipated, selective effect on food intake.

    PubMed

    Melse, Maartje; Temel, Yasin; Tan, Sonny K; Jahanshahi, Ali

    2016-10-01

    The rostromedial tegmental nucleus (RMTg) is a relatively newly described brainstem structure. The RMTg is extensively connected to both dopaminergic (DA) and serotoninergic key areas and it fulfills a pivotal role in the regulation of mesolimbic and nigrostriatal DA release. The RMTg may directly influence DA- and 5-HT associated motor and possibly also mood related behavior, the latter of which has not yet been well described. The current study explored the consequences of RMTg manipulation on DA- and 5-HT related behavior through the application of RMTg deep brain stimulation (DBS) with both high and low frequency stimulation (LFS and HFS). We used a wide array of motor and mood tests to assess changes in behavior. RMTg DBS did not change behavioral outcomes in the Skinner box task, nor in the Catwalk, the sucrose intake test, the open field test, the elevated zero maze, or the place preference test, but LFS did induce a significant decrease in food intake. This seems to be a selective effect as no motor or anxiety changes were observed that could lead to attenuated food intake. This finding not only underlines the RMTg's braking effect on the VTA, but possibly also on the forebrain, where GABA-ergic RMTg efferent may cause suppression of feeding in the lateral hypothalamus. Copyright © 2016. Published by Elsevier Inc.

  16. Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice

    PubMed Central

    Sreenivasan, Varun; Karmakar, Kajari; Rijli, Filippo M; Petersen, Carl C H

    2015-01-01

    Mice can gather tactile sensory information by actively moving their whiskers to palpate objects in their immediate surroundings. Whisker sensory perception therefore requires integration of sensory and motor information, which occurs prominently in the neocortex. The signalling pathways from the neocortex for controlling whisker movements are currently poorly understood in mice. Here, we delineate two pathways, one originating from primary whisker somatosensory cortex (wS1) and the other from whisker motor cortex (wM1), that control qualitatively distinct movements of contralateral whiskers. Optogenetic stimulation of wS1 drove retraction of contralateral whiskers while stimulation of wM1 drove rhythmic whisker protraction. To map brainstem pathways connecting these cortical areas to whisker motor neurons, we used a combination of anterograde tracing using adenoassociated virus injected into neocortex and retrograde tracing using monosynaptic rabies virus injected into whisker muscles. Our data are consistent with wS1 driving whisker retraction by exciting glutamatergic premotor neurons in the rostral spinal trigeminal interpolaris nucleus, which in turn activate the motor neurons innervating the extrinsic retractor muscle nasolabialis. The rhythmic whisker protraction evoked by wM1 stimulation might be driven by excitation of excitatory and inhibitory premotor neurons in the brainstem reticular formation innervating both intrinsic and extrinsic muscles. Our data therefore begin to unravel the neuronal circuits linking the neocortex to whisker motor neurons. PMID:25476605

  17. Azimuthal correlation and collective behavior in nucleus-nucleus collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mali, P.; Mukhopadhyay, A., E-mail: amitabha-62@rediffmail.com; Sarkar, S.

    2015-03-15

    Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from {sup 84}Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from {sup 28}Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see amore » direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured.« less

  18. Practice Parameter: treatment of Parkinson disease with motor fluctuations and dyskinesia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology.

    PubMed

    Pahwa, R; Factor, S A; Lyons, K E; Ondo, W G; Gronseth, G; Bronte-Stewart, H; Hallett, M; Miyasaki, J; Stevens, J; Weiner, W J

    2006-04-11

    To make evidence-based treatment recommendations for the medical and surgical treatment of patients with Parkinson disease (PD) with levodopa-induced motor fluctuations and dyskinesia. To that end, five questions were addressed. 1. Which medications reduce off time? 2. What is the relative efficacy of medications in reducing off time? 3. Which medications reduce dyskinesia? 4. Does deep brain stimulation (DBS) of the subthalamic nucleus (STN), globus pallidus interna (GPi), or ventral intermediate (VIM) nucleus of the thalamus reduce off time, dyskinesia, and antiparkinsonian medication usage and improve motor function? 5. Which factors predict improvement after DBS? A 10-member committee including movement disorder specialists and general neurologists evaluated the available evidence based on a structured literature review including MEDLINE, EMBASE, and Ovid databases from 1965 through June 2004. 1. Entacapone and rasagiline should be offered to reduce off time (Level A). Pergolide, pramipexole, ropinirole, and tolcapone should be considered to reduce off time (Level B). Apomorphine, cabergoline, and selegiline may be considered to reduce off time (Level C). 2. The available evidence does not establish superiority of one medicine over another in reducing off time (Level B). Sustained release carbidopa/levodopa and bromocriptine may be disregarded to reduce off time (Level C). 3. Amantadine may be considered to reduce dyskinesia (Level C). 4. Deep brain stimulation of the STN may be considered to improve motor function and reduce off time, dyskinesia, and medication usage (Level C). There is insufficient evidence to support or refute the efficacy of DBS of the GPi or VIM nucleus of the thalamus in reducing off time, dyskinesia, or medication usage, or to improve motor function. 5. Preoperative response to levodopa predicts better outcome after DBS of the STN (Level B).

  19. Fluctuation analysis of relativistic nucleus-nucleus collisions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1988-01-01

    An analytical technique was developed for identifying enhanced fluctuations in the angular distributions of secondary particles produced from relativistic nucleus-nucleus collisions. The method is applied under the assumption that the masses of the produced particles are small compared to their linear momenta. The importance of particles rests in the fact that enhanced fluctuations in the rapidity distributions is considered to be an experimental signal for the creation of the quark-gluon-plasma (QGP), a state of nuclear matter predicted from the quantum chromodynamics theory (QCD). In the approach, Monte Carlo simulations are employed that make use of a portable random member generator that allow the calculations to be performed on a desk-top computer. The method is illustrated with data taken from high altitude emulsion exposures and is immediately applicable to similar data from accelerator-based emulsion exposures.

  20. Zolpidem improves neuropsychiatric symptoms and motor dysfunction in a patient with Parkinson's disease after deep brain stimulation.

    PubMed

    Huang, Hung-Yu; Hsu, Yi-Ting; Wu, Yu-Chin; Chiou, Shang-Ming; Kao, Chia-Hung; Tsai, Mu-Chieh; Tsai, Chon-Haw

    2012-06-01

    To illustrate the beneficial effect of zolpidem on the neuropsychiatric and motor symptoms in a patient with Parkinson disease (PD) after bilateral subthalamic nucleus deep brain stimulation. The 61-year-old housewife was diagnosed to have PD for 12 years with initial presentation of clumsiness and rest tremor of right limbs. She was referred to our hospital in March 2009 due to shortening of drug beneficial period since 3 years ago and on-phase dyskinesia in recent 2 years. Bilateral STN DBS was conducted on 18 June, 2009. Fluctuating spells of mental confusion were developed on the next day after surgery. Electric stimuli via DBS electrodes were delivered with parameters of 2 volts, 60 μs, 130 Hz on bilateral STN 32 days after DBS. The incoherent behaviors and motor fluctuation remained to occur. The beneficial effect of zolpidem on her neuropsychiatric and motor symptoms was detected incidentally in early July 2009. She could chat normally with her caregiver and walk with assistance after taking zolpidem. The beneficial period may last for 2 hours. Zolpidem was then given in dosage of 10 mg three times per day. The neuropsychiatric inventory was scored 56 during zolpidem 'off' and 30 during zolpidem 'on'. To understand the intriguing feature, we conducted FDG-PET during 'off' and 'on' zolpidem conditions. The results revealed that the metabolism was decreased in the right frontal, parietal cortex and caudate nucleus during zolpidem 'off'. These cool spots can be partially restored by zolpidem. Zolpidem ameliorated the neuropsychiatric and parkinsonian motor symptom in the PD patient. Since GABAA benzodiazepine receptors are widely distributed throughout the central nervous system, zolpidem probably acts via modulating structures lying within the cortico-subcortical loop or by direct effect on these cortical regions.

  1. Possibility of synthesizing a doubly magic superheavy nucleus

    NASA Astrophysics Data System (ADS)

    Aritomo, Y.

    2007-02-01

    The possibility of synthesizing a doubly magic superheavy nucleus, 298114184, is investigated on the basis of fluctuation-dissipation dynamics. In order to synthesize this nucleus, we must generate more neutron-rich compound nuclei because of the neutron emissions from excited compound nuclei. The compound nucleus 304114 has two advantages to achieving a high survival probability. First, because of low neutron separation energy and rapid cooling, the shell correction energy recovers quickly. Secondly, owing to neutron emissions, the neutron number in the nucleus approaches that of the double closed shell and the nucleus attains a large fission barrier. Because of these two effects, the survival probability of 304114 does not decrease until the excitation energy E*=50 MeV. These properties lead to a rather high evaporation residue cross section.

  2. Cell Biology of the Caenorhabditis elegans Nucleus

    PubMed Central

    Cohen-Fix, Orna; Askjaer, Peter

    2017-01-01

    Studies on the Caenorhabditis elegans nucleus have provided fascinating insight to the organization and activities of eukaryotic cells. Being the organelle that holds the genetic blueprint of the cell, the nucleus is critical for basically every aspect of cell biology. The stereotypical development of C. elegans from a one cell-stage embryo to a fertile hermaphrodite with 959 somatic nuclei has allowed the identification of mutants with specific alterations in gene expression programs, nuclear morphology, or nuclear positioning. Moreover, the early C. elegans embryo is an excellent model to dissect the mitotic processes of nuclear disassembly and reformation with high spatiotemporal resolution. We review here several features of the C. elegans nucleus, including its composition, structure, and dynamics. We also discuss the spatial organization of chromatin and regulation of gene expression and how this depends on tight control of nucleocytoplasmic transport. Finally, the extensive connections of the nucleus with the cytoskeleton and their implications during development are described. Most processes of the C. elegans nucleus are evolutionarily conserved, highlighting the relevance of this powerful and versatile model organism to human biology. PMID:28049702

  3. Carbachol excites sublaterodorsal nucleus neurons projecting to the spinal cord

    PubMed Central

    Weng, F J; Williams, R H; Hawryluk, J M; Lu, J; Scammell, T E; Saper, C B; Arrigoni, E

    2014-01-01

    Considerable electrophysiological and pharmacological evidence has long suggested an important role for acetylcholine in the regulation of rapid-eye-movement (REM) sleep. For example, injection of the cholinergic agonist carbachol into the dorsomedial pons produces an REM sleep-like state with muscle atonia and cortical activation, both of which are cardinal features of REM sleep. Located within this region of the pons is the sublaterodorsal nucleus (SLD), a structure thought to be both necessary and sufficient for generating REM sleep muscle atonia. Subsets of glutamatergic SLD neurons potently contribute to motor inhibition during REM sleep through descending projections to motor-related glycinergic/GABAergic neurons in the spinal cord and ventromedial medulla. Prior electrophysiological and pharmacological studies examining the effects of acetylcholine on SLD neurons have, however, produced conflicting results. In the present study, we sought to clarify how acetylcholine influences the activity of spinally projecting SLD (SLDsp) neurons. We used retrograde tracing in combination with patch-clamp recordings and recorded pre-and postsynaptic effects of carbachol on SLDsp neurons. Carbachol acted presynaptically by increasing the frequency of glutamatergic miniature excitatory postsynaptic currents. We also found that carbachol directly excited SLDsp neurons by activating an Na+–Ca2+ exchanger. Both pre-and postsynaptic effects were mediated by co-activation of M1 and M3 muscarinic receptors. These observations suggest that acetylcholine produces synergistic, excitatory pre-and postsynaptic responses on SLDsp neurons that, in turn, probably serve to promote muscle atonia during REM sleep. PMID:24344163

  4. Carbachol excites sublaterodorsal nucleus neurons projecting to the spinal cord.

    PubMed

    Weng, F J; Williams, R H; Hawryluk, J M; Lu, J; Scammell, T E; Saper, C B; Arrigoni, E

    2014-04-01

    Considerable electrophysiological and pharmacological evidence has long suggested an important role for acetylcholine in the regulation of rapid-eye-movement (REM) sleep. For example, injection of the cholinergic agonist carbachol into the dorsomedial pons produces an REM sleep-like state with muscle atonia and cortical activation, both of which are cardinal features of REM sleep. Located within this region of the pons is the sublaterodorsal nucleus (SLD), a structure thought to be both necessary and sufficient for generating REM sleep muscle atonia. Subsets of glutamatergic SLD neurons potently contribute to motor inhibition during REM sleep through descending projections to motor-related glycinergic/GABAergic neurons in the spinal cord and ventromedial medulla. Prior electrophysiological and pharmacological studies examining the effects of acetylcholine on SLD neurons have, however, produced conflicting results. In the present study, we sought to clarify how acetylcholine influences the activity of spinally projecting SLD (SLDsp) neurons. We used retrograde tracing in combination with patch-clamp recordings and recorded pre- and postsynaptic effects of carbachol on SLDsp neurons. Carbachol acted presynaptically by increasing the frequency of glutamatergic miniature excitatory postsynaptic currents. We also found that carbachol directly excited SLDsp neurons by activating an Na(+)-Ca(2+) exchanger. Both pre- and postsynaptic effects were mediated by co-activation of M1 and M3 muscarinic receptors. These observations suggest that acetylcholine produces synergistic, excitatory pre- and postsynaptic responses on SLDsp neurons that, in turn, probably serve to promote muscle atonia during REM sleep.

  5. Chloroplast-to-nucleus communication

    PubMed Central

    Chan, Kai Xun; Crisp, Peter Alexander; Estavillo, Gonzalo Martin

    2010-01-01

    In order for plant cells to function efficiently under different environmental conditions, chloroplastic processes have to be tightly regulated by the nucleus. It is widely believed that there is inter-organelle communication from the chloroplast to the nucleus, called retrograde signaling. Although some pathways of communication have been identified, the actual signals that move between the two cellular compartments are largely unknown. This review provides an overview of retrograde signaling including its importance to the cell, candidate signals, recent advances and current experimental systems. In addition, we highlight the potential of using drought stress as a model for studying retrograde signaling. PMID:21512326

  6. Neuron-Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region.

    PubMed

    Hossain, Mohammad Zakir; Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi

    2017-09-26

    Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate-glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron-glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP.

  7. Neuron–Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region

    PubMed Central

    Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi

    2017-01-01

    Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate–glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron–glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP. PMID:28954391

  8. Universal functions of nuclear proximity potential for Skyrme nucleus-nucleus interaction in a semiclassical approach

    NASA Astrophysics Data System (ADS)

    Gupta, Raj K.; Singh, Dalip; Kumar, Raj; Greiner, Walter

    2009-07-01

    The universal function of the nuclear proximity potential is obtained for the Skyrme nucleus-nucleus interaction in the semiclassical extended Thomas-Fermi (ETF) approach. This is obtained as a sum of the spin-orbit-density-independent and spin-orbit-density-dependent parts of the Hamiltonian density, since the two terms behave differently, the spin-orbit-density-independent part mainly attractive and the spin-orbit-density-dependent part mainly repulsive. The semiclassical expansions of kinetic energy density and spin-orbit density are allowed up to second order, and the two-parameter Fermi density, with its parameters fitted to experiments, is used for the nuclear density. The universal functions or the resulting nuclear proximity potential reproduce the 'exact' Skyrme nucleus-nucleus interaction potential in the semiclassical approach, within less than ~1 MeV of difference, both at the maximum attraction and in the surface region. An application of the resulting interaction potential to fusion excitation functions shows clearly that the parameterized universal functions of nuclear proximity potential substitute completely the 'exact' potential in the Skyrme energy density formalism based on the semiclassical ETF method, including also the modifications of interaction barriers at sub-barrier energies in terms of modifying the constants of the universal functions.

  9. Synthesis and Biological Evaluation of 4-Sulfamoylphenyl/Sulfocoumarin Carboxamides as Selective Inhibitors of Carbonic Anhydrase Isoforms hCA II, IX, and XII.

    PubMed

    Angapelly, Srinivas; Angeli, Andrea; Khan, Arbaj Jabbar; Sri Ramya, P V; Supuran, Claudiu T; Arifuddin, Mohammed

    2018-04-19

    With the aim to develop potent and selective human carbonic anhydrase inhibitors (hCAIs), we synthesized 4-sulfamoylphenyl/sulfocoumarin benzamides (series 5 a-r and series 7 a-q) and evaluated their inhibition profiles against five isoforms of the zinc-containing human carbonic anhydrase (hCA, EC 4.2.1.1): cytosolic hCA I and II, and the transmembrane isozymes hCA IV, IX, and XII. Compounds 5 a-r were found to selectively inhibit hCA II in the nanomolar range, while being less effective against the other hCA isoforms. As noted from the literature, sulfocoumarin (1,2-benzoxathiine 2,2-dioxide) acts as a "prodrug" inhibitor and is hydrolyzed by the esterase activity of hCA to form 2-hydroxyphenylvinylsulfonic acid, which thereafter binds to the enzyme in a manner similar to that of coumarins and sulfoxocoumarins. All these sulfocoumarins (compounds 7 a-q) were found to be very weak or ineffective as inhibitors of the housekeeping off-target hCA isoforms I and II, and effectively inhibited the transmembrane tumor-associated isoforms IX and XII in the high nanomolar to micromolar ranges. Further structural modifications of these molecules could be useful for the development of effective hCA inhibitors used for the treatment of glaucoma, epilepsy, and cancer. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Unmelted Meteoritic Debris Collected from Eltanin Ejecta in Polarstern Cores from Expedition ANT XII/4

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2002-01-01

    A total of 1.7g of unmelted meteorite particles have been recovered from FS Polarstern piston cores collected on expedition ANT XII/4 that contain ejecta from the Eltanin impact event. Most of the mass (1.2 g) is a large, single specimen that is a polymict breccia, similar in mineralogy and chemistry to howardites or the silicate fraction of mesosiderites. Most of the remaining mass is in several large individual pieces (20-75mg each) that are polymict breccias, fragments dominated by pyroxene, and an igneous rock fragment. The latter has highly fractionated REE, similar to those reported in mafic clasts from mesosiderites. Other types of specimens identified include fragments dominated by maskelynite or olivine. These pieces of the projectile probably survived impact by being blown off the back surface of the Eltanin asteroid during its impact into the Bellingshausen Sea.

  11. Human Subthalamic Nucleus in Movement Error Detection and Its Evaluation during Visuomotor Adaptation

    PubMed Central

    Zavala, Baltazar; Pogosyan, Alek; Ashkan, Keyoumars; Zrinzo, Ludvic; Foltynie, Thomas; Limousin, Patricia; Brown, Peter

    2014-01-01

    Monitoring and evaluating movement errors to guide subsequent movements is a critical feature of normal motor control. Previously, we showed that the postmovement increase in electroencephalographic (EEG) beta power over the sensorimotor cortex reflects neural processes that evaluate motor errors consistent with Bayesian inference (Tan et al., 2014). Whether such neural processes are limited to this cortical region or involve the basal ganglia is unclear. Here, we recorded EEG over the cortex and local field potential (LFP) activity in the subthalamic nucleus (STN) from electrodes implanted in patients with Parkinson's disease, while they moved a joystick-controlled cursor to visual targets displayed on a computer screen. After movement offsets, we found increased beta activity in both local STN LFP and sensorimotor cortical EEG and in the coupling between the two, which was affected by both error magnitude and its contextual saliency. The postmovement increase in the coupling between STN and cortex was dominated by information flow from sensorimotor cortex to STN. However, an information drive appeared from STN to sensorimotor cortex in the first phase of the adaptation, when a constant rotation was applied between joystick inputs and cursor outputs. The strength of the STN to cortex drive correlated with the degree of adaption achieved across subjects. These results suggest that oscillatory activity in the beta band may dynamically couple the sensorimotor cortex and basal ganglia after movements. In particular, beta activity driven from the STN to cortex indicates task-relevant movement errors, information that may be important in modifying subsequent motor responses. PMID:25505327

  12. Asymmetric right/left encoding of emotions in the human subthalamic nucleus

    PubMed Central

    Eitan, Renana; Shamir, Reuben R.; Linetsky, Eduard; Rosenbluh, Ovadya; Moshel, Shay; Ben-Hur, Tamir; Bergman, Hagai; Israel, Zvi

    2013-01-01

    Emotional processing is lateralized to the non-dominant brain hemisphere. However, there is no clear spatial model for lateralization of emotional domains in the basal ganglia. The subthalamic nucleus (STN), an input structure in the basal ganglia network, plays a major role in the pathophysiology of Parkinson's disease (PD). This role is probably not limited only to the motor deficits of PD, but may also span the emotional and cognitive deficits commonly observed in PD patients. Beta oscillations (12–30 Hz), the electrophysiological signature of PD, are restricted to the dorsolateral part of the STN that corresponds to the anatomically defined sensorimotor STN. The more medial, more anterior and more ventral parts of the STN are thought to correspond to the anatomically defined limbic and associative territories of the STN. Surprisingly, little is known about the electrophysiological properties of the non-motor domains of the STN, nor about electrophysiological differences between right and left STNs. In this study, microelectrodes were utilized to record the STN spontaneous spiking activity and responses to vocal non-verbal emotional stimuli during deep brain stimulation (DBS) surgeries in human PD patients. The oscillation properties of the STN neurons were used to map the dorsal oscillatory and the ventral non-oscillatory regions of the STN. Emotive auditory stimulation evoked activity in the ventral non-oscillatory region of the right STN. These responses were not observed in the left ventral STN or in the dorsal regions of either the right or left STN. Therefore, our results suggest that the ventral non-oscillatory regions are asymmetrically associated with non-motor functions, with the right ventral STN associated with emotional processing. These results suggest that DBS of the right ventral STN may be associated with beneficial or adverse emotional effects observed in PD patients and may relieve mental symptoms in other neurological and psychiatric

  13. In vitro and in silico investigations of disc nucleus replacement

    PubMed Central

    Reitmaier, Sandra; Shirazi-Adl, Aboulfazl; Bashkuev, Maxim; Wilke, Hans-Joachim; Gloria, Antonio; Schmidt, Hendrik

    2012-01-01

    Currently, numerous hydrogels are under examination as potential nucleus replacements. The clinical success, however, depends on how well the mechanical function of the host structure is restored. This study aimed to evaluate the extent to and mechanisms by which surgery for nucleus replacements influence the mechanical behaviour of the disc. The effects of an annulus defect with and without nucleus replacement on disc height and nucleus pressure were measured using 24 ovine motion segments. The following cases were considered: intact; annulus incision repaired by suture and glue; annulus incision with removal and re-implantation of nucleus tissue repaired by suture and glue or plug. To identify the likely mechanisms observed in vitro, a finite-element model of a human disc (L4–L5) was employed. Both studies were subjected to physiological cycles of compression and recovery. A repaired annulus defect did not influence the disc behaviour in vitro, whereas additional nucleus removal and replacement substantially decreased disc stiffness and nucleus pressure. Model predictions demonstrated the substantial effects of reductions in replaced nucleus water content, bulk modulus and osmotic potential on disc height loss and pressure, similar to measurements. In these events, the compression load transfer in the disc markedly altered by substantially increasing the load on the annulus when compared with the nucleus. The success of hydrogels for nucleus replacements is not only dependent on the implant material itself but also on the restoration of the environment perturbed during surgery. The substantial effects on the disc response of disruptions owing to nucleus replacements can be simulated by reduced nucleus water content, elastic modulus and osmotic potential. PMID:22337630

  14. Plastid-Nucleus Distance Alters the Behavior of Stromules

    PubMed Central

    Erickson, Jessica L.; Kantek, Matthias; Schattat, Martin H.

    2017-01-01

    Plastids send “retrograde” signals to the nucleus to deliver information regarding their physiological status. One open question concerning this signal transfer is how the signal bridges the cytoplasm. Based on individual reports of plastid derived tubular membrane extensions connecting to nuclei, these so-called stromules have been suggested to function as communication routes between plastids and nuclei in response to biotic stress. However, based on the data currently available it is unclear whether interactions between stromules and nuclei are truly intentional or observed as a result of an inflated stromule frequency throughout the cell, and are thus a random event. The source of this uncertainty stems from missing information regarding the relative distribution of all plastids and stromules within a given cell. A comprehensive analysis of the upper epidermis of Arabidopsis thaliana rosette leaves was performed via a combination of still images and time-lapse movies of stromule formation in the context of the whole cell. This analysis could definitively confirm that stromule formation is not evenly distributed. Stromules are significantly more frequent within 8 μm of the nucleus, and approximately 90% of said stromules formed facing the nucleus. Time-lapse movies revealed that this enrichment of stromules is achieved via a 10-fold higher frequency of stromule initiation events within this 8 μm zone compared to the cell periphery. Following the movement of plastids and nuclei it became evident that movement and formation of stromules is correlated to nucleus movement. Observations suggest that stromules “connecting” to the nucleus are not necessarily the result of plastids sensing the nucleus and reaching out toward it, but are rather pulled out of the surface of nucleus associated plastids during opposing movement of these two organelles. This finding does not exclude the possibility that stromules could be transferring signals to the nucleus

  15. Stopped in its tracks: negative regulation of the dynein motor by the yeast protein She1

    PubMed Central

    Moore, Jeffrey K.

    2013-01-01

    Summary How do cells direct the microtubule motor protein dynein to move cellular components to the right place at the right time? Recent studies in budding yeast shed light on a new mechanism for directing dynein, involving the protein She1. She1 restricts where and when dynein moves the nucleus and mitotic spindle. Experiments with purified proteins show that She1 binds to microtubules and inhibits dynein by stalling the motor on its track. Here I describe what we have learned so far about She1, based on a combination of genetic, cell biology, and biophysical approaches. These findings set the stage for further interrogation of the She1 mechanism, and raise the question of whether similar mechanisms exist in other species. PMID:23666903

  16. Selective left, right and bilateral stimulation of subthalamic nuclei in Parkinson's disease: differential effects on motor, speech and language function.

    PubMed

    Schulz, Geralyn M; Hosey, Lara A; Bradberry, Trent J; Stager, Sheila V; Lee, Li-Ching; Pawha, Rajesh; Lyons, Kelly E; Metman, Leo Verhagen; Braun, Allen R

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus improves the motor symptoms of Parkinson's disease, but may produce a worsening of speech and language performance at rates and amplitudes typically selected in clinical practice. The possibility that these dissociated effects might be modulated by selective stimulation of left and right STN has never been systematically investigated. To address this issue, we analyzed motor, speech and language functions of 12 patients implanted with bilateral stimulators configured for optimal motor responses. Behavioral responses were quantified under four stimulator conditions: bilateral DBS, right-only DBS, left-only DBS and no DBS. Under bilateral and left-only DBS conditions, our results exhibited a significant improvement in motor symptoms but worsening of speech and language. These findings contribute to the growing body of literature demonstrating that bilateral STN DBS compromises speech and language function and suggests that these negative effects may be principally due to left-sided stimulation. These findings may have practical clinical consequences, suggesting that clinicians might optimize motor, speech and language functions by carefully adjusting left- and right-sided stimulation parameters.

  17. A thalamic input to the nucleus accumbens mediates opiate dependence.

    PubMed

    Zhu, Yingjie; Wienecke, Carl F R; Nachtrab, Gregory; Chen, Xiaoke

    2016-02-11

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both the rewarding effects of a drug and the desire to avoid withdrawal symptoms motivate continued drug use, and the nucleus accumbens is important for orchestrating both processes. While multiple inputs to the nucleus accumbens regulate reward, little is known about the nucleus accumbens circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus as a prominent input to the nucleus accumbens mediating the expression of opiate-withdrawal-induced physical signs and aversive memory. Activity in the paraventricular nucleus of the thalamus to nucleus accumbens pathway is necessary and sufficient to mediate behavioural aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the paraventricular nucleus of the thalamus and D2-receptor-expressing medium spiny neurons via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at these synapses and robustly suppresses morphine withdrawal symptoms. This links morphine-evoked pathway- and cell-type-specific plasticity in the paraventricular nucleus of the thalamus to nucleus accumbens circuit to opiate dependence, and suggests that reprogramming this circuit holds promise for treating opiate addiction.

  18. Do Palisade Endings in Extraocular Muscles Arise from Neurons in the Motor Nuclei?

    PubMed Central

    Lienbacher, Karoline; Mustari, Michael; Ying, Howard S.; Büttner-Ennever, Jean A.

    2011-01-01

    Purpose. The purpose of this study was to localize the cell bodies of palisade endings that are associated with the myotendinous junctions of the extraocular muscles. Methods. Rhesus monkeys received tract-tracer injections (tetramethylrhodamine dextran [TMR-DA] or choleratoxin subunit B [CTB]) into the oculomotor and trochlear nuclei, which contain the motoneurons of extraocular muscles. All extraocular muscles were processed for the combined immunocytochemical detection of the tracer and SNAP-25 or synaptophysin for the visualization of the complete muscle innervation. Results. In all muscles—except the lateral rectus—en plaque and en grappe motor endings, but also palisade endings, were anterogradely labeled. In addition a few tracer-labeled tendon organs were found. One group of tracer-negative nerve fibers was identified as thin tyrosine hydroxylase-positive sympathetic fibers, and a second less numerous group of tracer-negative fibers may originate from the trigeminal ganglia. No cellular or terminal tracer labeling was present within the mesencephalic trigeminal nucleus or the trigeminal ganglia. Conclusions. These results confirm those of earlier studies and furthermore suggest that the somata of palisade endings are located close to the extraocular motor nuclei—in this case, probably within the C and S groups around the periphery of the oculomotor nucleus. The multiple en grappe endings have also been shown to arise from these cells groups, but it is not possible to distinguish different populations in these experiments. PMID:21228383

  19. Dynamic risk control by human nucleus accumbens

    PubMed Central

    Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio

    2015-01-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667

  20. Physiological characterization, localization and synaptic inputs of bursting and nonbursting neurons in the trigeminal principal sensory nucleus of the rat.

    PubMed

    Athanassiadis, T; Westberg, K-G; Olsson, K A; Kolta, A

    2005-12-01

    A population of neurons in the trigeminal principal sensory nucleus (NVsnpr) fire rhythmically during fictive mastication induced in the in vivo rabbit. To elucidate whether these neurons form part of the central pattern generator (CPG) for mastication, we performed intracellular recordings in brainstem slices taken from young rats. Two cell types were defined, nonbursting (63%) and bursting (37%). In response to membrane depolarization, bursting cells, which dominated in the dorsal part of the NVsnpr, fired an initial burst followed by single spikes or recurring bursts. Non-bursting neurons, scattered throughout the nucleus, fired single action potentials. Microstimulation applied to the trigeminal motor nucleus (NVmt), the reticular border zone surrounding the NVmt, the parvocellular reticular formation or the nucleus reticularis pontis caudalis (NPontc) elicited a postsynaptic potential in 81% of the neurons tested for synaptic inputs. Responses obtained were predominately excitatory and sensitive to glutamatergic antagonists DNQX and/or APV. Some inhibitory and biphasic responses were also evoked. Bicuculline methiodide or strychnine blocked the IPSPs indicating that they were mediated by GABA(A) or glycinergic receptors. About one-third of the stimulations activated both types of neurons antidromically, mostly from the masseteric motoneuron pool of NVmt and dorsal part of NPontc. In conclusion, our new findings show that some neurons in the dorsal NVsnpr display both firing properties and axonal connections which support the hypothesis that they may participate in masticatory pattern generation. Thus, the present data provide an extended basis for further studies on the organization of the masticatory CPG network.

  1. A common optimization principle for motor execution in healthy subjects and parkinsonian patients.

    PubMed

    Baraduc, Pierre; Thobois, Stéphane; Gan, Jing; Broussolle, Emmanuel; Desmurget, Michel

    2013-01-09

    Recent research on Parkinson's disease (PD) has emphasized that parkinsonian movement, although bradykinetic, shares many attributes with healthy behavior. This observation led to the suggestion that bradykinesia in PD could be due to a reduction in motor motivation. This hypothesis can be tested in the framework of optimal control theory, which accounts for many characteristics of healthy human movement while providing a link between the motor behavior and a cost/benefit trade-off. This approach offers the opportunity to interpret movement deficits of PD patients in the light of a computational theory of normal motor control. We studied 14 PD patients with bilateral subthalamic nucleus (STN) stimulation and 16 age-matched healthy controls, and tested whether reaching movements were governed by similar rules in these two groups. A single optimal control model accounted for the reaching movements of healthy subjects and PD patients, whatever the condition of STN stimulation (on or off). The choice of movement speed was explained in all subjects by the existence of a preset dynamic range for the motor signals. This range was idiosyncratic and applied to all movements regardless of their amplitude. In PD patients this dynamic range was abnormally narrow and correlated with bradykinesia. STN stimulation reduced bradykinesia and widened this range in all patients, but did not restore it to a normal value. These results, consistent with the motor motivation hypothesis, suggest that constrained optimization of motor effort is the main determinant of movement planning (choice of speed) and movement production, in both healthy and PD subjects.

  2. Structural dynamics of the cell nucleus

    PubMed Central

    Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons. PMID:21738832

  3. Involvement of catecholaminergic neurons in motor innervation of striated muscle in the mouse esophagus.

    PubMed

    van der Keylen, Piet; Garreis, Fabian; Steigleder, Ruth; Sommer, Daniel; Neuhuber, Winfried L; Wörl, Jürgen

    2016-05-01

    Enteric co-innervation is a peculiar innervation pattern of striated esophageal musculature. Both anatomical and functional data on enteric co-innervation related to various transmitters have been collected in different species, although its function remains enigmatic. However, it is unclear whether catecholaminergic components are involved in such a co-innervation. Thus, we examined to identify catecholaminergic neuronal elements and clarify their relationship to other innervation components in the esophagus, using immunohistochemistry with antibodies against tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT), choline acetyltransferase (ChAT) and protein gene product 9.5 (PGP 9.5), α-bungarotoxin (α-BT) and PCR with primers for amplification of cDNA encoding TH and dopamine-β-hydroxylase (DBH). TH-positive nerve fibers were abundant throughout the myenteric plexus and localized on about 14% of α-BT-labelled motor endplates differing from VAChT-positive vagal nerve terminals. TH-positive perikarya represented a subpopulation of only about 2.8% of all PGP 9.5-positive myenteric neurons. Analysis of mRNA showed both TH and DBH transcripts in the mouse esophagus. As ChAT-positive neurons in the compact formation of the nucleus ambiguus were negative for TH, the TH-positive nerve varicosities on motor endplates are presumably of enteric origin, although a sympathetic origin cannot be excluded. In the medulla oblongata, the cholinergic ambiguus neurons were densely supplied with TH-positive varicosities. Thus, catecholamines may modulate vagal motor innervation of esophageal-striated muscles not only at the peripheral level via enteric co-innervation but also at the central level via projections to the nucleus ambiguus. As Parkinson's disease, with a loss of central dopaminergic neurons, also affects the enteric nervous system and dysphagia is prevalent in patients with this disease, investigation of intrinsic catecholamines in the esophagus may

  4. Nucleus-size pinning for determination of nucleation free-energy barriers and nucleus geometry

    NASA Astrophysics Data System (ADS)

    Sharma, Abhishek K.; Escobedo, Fernando A.

    2018-05-01

    Classical Nucleation Theory (CNT) has recently been used in conjunction with a seeding approach to simulate nucleation phenomena at small-to-moderate supersaturation conditions when large free-energy barriers ensue. In this study, the conventional seeding approach [J. R. Espinosa et al., J. Chem. Phys. 144, 034501 (2016)] is improved by a novel, more robust method to estimate nucleation barriers. Inspired by the interfacial pinning approach [U. R. Pedersen, J. Chem. Phys. 139, 104102 (2013)] used before to determine conditions where two phases coexist, the seed of the incipient phase is pinned to a preselected size to iteratively drive the system toward the conditions where the seed becomes a critical nucleus. The proposed technique is first validated by estimating the critical nucleation conditions for the disorder-to-order transition in hard spheres and then applied to simulate and characterize the highly non-trivial (prolate) morphology of the critical crystal nucleus in hard gyrobifastigia. A generalization of CNT is used to account for nucleus asphericity and predict nucleation free-energy barriers for gyrobifastigia. These predictions of nuclei shape and barriers are validated by independent umbrella sampling calculations.

  5. Choreatic Side Effects of Deep Brain Stimulation of the Anteromedial Subthalamic Nucleus for Treatment-Resistant Obsessive-Compulsive disorder.

    PubMed

    Mulders, Anne E P; Leentjens, Albert F G; Schruers, Koen; Duits, Annelien; Ackermans, Linda; Temel, Yasin

    2017-08-01

    Patients with treatment-resistant obsessive-compulsive disorder (OCD) are potential candidates for deep brain stimulation (DBS). The anteromedial subthalamic nucleus (STN) is among the most commonly used targets for DBS in OCD. We present a patient with a 30-year history of treatment-resistant OCD who underwent anteromedial STN-DBS. Despite a clear mood-enhancing effect, stimulation caused motor side effects, including bilateral hyperkinesia, dyskinesias, and sudden large amplitude choreatic movements of arms and legs when stimulating at voltages greater than approximately 1.5 V. DBS at lower amplitudes and at other contact points failed to result in a significant reduction of obsessions and compulsions without inducing motor side effects. Because of this limitation in programming options, we decided to reoperate and target the ventral capsule/ventral striatum (VC/VS), which resulted in a substantial reduction in key obsessive and compulsive symptoms without serious side effects. Choreatic movements and hemiballismus have previously been linked to STN dysfunction and have been incidentally reported as side effects of DBS of the dorsolateral STN in Parkinson disease (PD). However, in PD, these side effects were usually transient, and they rarely interfered with DBS programming. In our patient, the motor side effects were persistent, and they made optimal DBS programming impossible. To our knowledge, such severe and persistent motor side effects have not been described previously for anteromedial STN-DBS. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Spinodal assisted growing dynamics of critical nucleus in polymer blends

    NASA Astrophysics Data System (ADS)

    Zhang, Xinghua; Qi, Shuanhu; Yan, Dadong

    2012-11-01

    In metastable polymer blends, nonclassical critical nucleus is not a drop of stable phase in core wrapped with a sharp interface, but a diffuse structure depending on the metastability. Thus, forming a critical nucleus does not mean the birth of a new phase. In the present work, the nonclassical growing dynamics of the critical nucleus is addressed in the metastable polymer blends by incorporating self-consistent field theory and external potential dynamics theory, which leads to an intuitionistic description for the scattering experiments. The results suggest that the growth of nonclassical critical nucleus is controlled by the spinodal-decomposition which happens in the region surrounding the nucleus. This leads to forming the shell structures around the nucleus.

  7. UNCOVERING THE NUCLEUS CANDIDATE FOR NGC 253

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Günthardt, G. I.; Camperi, J. A.; Agüero, M. P.

    2015-11-15

    NGC 253 is the nearest spiral galaxy with a nuclear starburst that becomes the best candidate for studying the relationship between starburst and active galactic nucleus activity. However, this central region is veiled by large amounts of dust, and it has been so far unclear which is the true dynamical nucleus to the point that there is no strong evidence that the galaxy harbors a supermassive black hole co-evolving with the starburst as was supposed earlier. Near-infrared (NIR) spectroscopy, especially NIR emission line analysis, could be advantageous in shedding light on the true nucleus identity. Using Flamingos-2 at Gemini Southmore » we have taken deep K-band spectra along the major axis of the central structure and through the brightest infrared source. In this work, we present evidence showing that the brightest NIR and mid-infrared source in the central region, already known as radio source TH7 and so far considered just a large stellar supercluster, in fact presents various symptoms of a genuine galactic nucleus. Therefore, it should be considered a valid nucleus candidate. Mentioning some distinctive aspects, it is the most massive compact infrared object in the central region, located at 2.″0 of the symmetry center of the galactic bar, as measured in the K-band emission. Moreover, our data indicate that this object is surrounded by a large circumnuclear stellar disk and it is also located at the rotation center of the large molecular gas disk of NGC 253. Furthermore, a kinematic residual appears in the H{sub 2} rotation curve with a sinusoidal shape consistent with an outflow centered in the candidate nucleus position. The maximum outflow velocity is located about 14 pc from TH7, which is consistent with the radius of a shell detected around the nucleus candidate, observed at 18.3 μm (Qa) and 12.8 μm ([Ne ii]) with T-ReCS. Also, the Brγ emission line profile shows a pronounced blueshift and this emission line also has the highest equivalent width

  8. Study of multiplicity correlations in nucleus-nucleus interactions at high energy

    NASA Astrophysics Data System (ADS)

    Mohery, M.; Sultan, E. M.; Baz, Shadiah S.

    2015-06-01

    In the present paper, some results on the correlations of the nucleus-nucleus interactions, at high energy, between different particle multiplicities are reported. The correlations between the multiplicities of the different charged particles emitted in the interactions of 22Ne and 28Si nuclei with emulsion at (4.1-4.5)A GeV/c have been studied. The correlations of the compound multiplicity nc, defined as the sum of both numbers of the shower particles ns and grey particles ng, have been investigated. The experimental data have been compared with the corresponding theoretical ones, calculated according to the modified cascade evaporation model (MCEM). An agreement has already been fairly obtained between the experimental values and the calculated ones. The dependence of the average compound multiplicity, on the numbers of shower, grey, black and heavy particles is obvious and the values of the slope have been found to be independent of the projectile nucleus. On the other hand, the variation of the average shower, grey, black and heavy particles is found to increase linearly with the compound particles. A strong correlation has been observed between the number of produced shower particles and the number of compound particles. Moreover, the value of the average compound multiplicity is found to increase with the increase of the projectile mass. Finally, an attempt has also been made to study the scaling of the compound multiplicity distribution showing that the compound multiplicity distribution is nearly consistent with the KNO scaling behavior.

  9. International Halley Watch: Discipline specialists for near-nucleus studies

    NASA Technical Reports Server (NTRS)

    Larson, S.; Sekanina, Z.; Rahe, J.

    1986-01-01

    The purpose of the Near-Nucleus Studies Net is to study the processes taking place in the near-nucleus environment as they relate to the nature of nucleus. This is accomplisghed by measuring the spatial and temporal distribution of dust, gases and ions in the coma on high resolution images taken from many observatories around the world. By modeling the motions of discrete dust features in Comet Halley, it is often possible to determine the locations of the emission sources on the surface and learn about the nucleus structure. In addition to the general goals shared by all IHW nets, the scientific goals of the net has been to determine (1)the gross surface structure of the nucleus, (2)the nucleus spin vector, (3)the distribution and evolution of jet sources and (4)the interrelationships between the gas, dust and ion components of the coma. An additional Comet Giacobini-Zinner watch was carried out by the NNSN in support of the NASA International Cometary Explorer flyby.

  10. Energy Levels and Radiative Rates for Transitions in F-like Sc XIII and Ne-like Sc XII and Y XXX

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti

    2018-05-01

    Energy levels, radiative rates and lifetimes are reported for F-like Sc~XIII and Ne-like Sc~XII and Y~XXX for which the general-purpose relativistic atomic structure package ({\\sc grasp}) has been adopted. For all three ions limited data exist in the literature but comparisons have been made wherever possible to assess the accuracy of the calculations. In the present work the lowest 102, 125 and 139 levels have been considered for the respective ions. Additionally, calculations have also been performed with the flexible atomic code ({\\sc fac}) to (particularly) confirm the accuracy of energy levels.

  11. Pharmacogenetic stimulation of cholinergic pedunculopontine neurons reverses motor deficits in a rat model of Parkinson's disease.

    PubMed

    Pienaar, Ilse S; Gartside, Sarah E; Sharma, Puneet; De Paola, Vincenzo; Gretenkord, Sabine; Withers, Dominic; Elson, Joanna L; Dexter, David T

    2015-09-23

    Patients with advanced Parkinson's disease (PD) often present with axial symptoms, including postural- and gait difficulties that respond poorly to dopaminergic agents. Although deep brain stimulation (DBS) of a highly heterogeneous brain structure, the pedunculopontine nucleus (PPN), improves such symptoms, the underlying neuronal substrate responsible for the clinical benefits remains largely unknown, thus hampering optimization of DBS interventions. Choline acetyltransferase (ChAT)::Cre(+) transgenic rats were sham-lesioned or rendered parkinsonian through intranigral, unihemispheric stereotaxic administration of the ubiquitin-proteasomal system inhibitor, lactacystin, combined with designer receptors exclusively activated by designer drugs (DREADD), to activate the cholinergic neurons of the nucleus tegmenti pedunculopontine (PPTg), the rat equivalent of the human PPN. We have previously shown that the lactacystin rat model accurately reflects aspects of PD, including a partial loss of PPTg cholinergic neurons, similar to what is seen in the post-mortem brains of advanced PD patients. In this manuscript, we show that transient activation of the remaining PPTg cholinergic neurons in the lactacystin rat model of PD, via peripheral administration of the cognate DREADD ligand, clozapine-N-oxide (CNO), dramatically improved motor symptoms, as was assessed by behavioral tests that measured postural instability, gait, sensorimotor integration, forelimb akinesia and general motor activity. In vivo electrophysiological recordings revealed increased spiking activity of PPTg putative cholinergic neurons during CNO-induced activation. c-Fos expression in DREADD overexpressed ChAT-immunopositive (ChAT+) neurons of the PPTg was also increased by CNO administration, consistent with upregulated neuronal activation in this defined neuronal population. Overall, these findings provide evidence that functional modulation of PPN cholinergic neurons alleviates parkinsonian motor

  12. Fractal Patterns of Neural Activity Exist within the Suprachiasmatic Nucleus and Require Extrinsic Network Interactions

    PubMed Central

    Hu, Kun; Meijer, Johanna H.; Shea, Steven A.; vanderLeest, Henk Tjebbe; Pittman-Polletta, Benjamin; Houben, Thijs; van Oosterhout, Floor; Deboer, Tom; Scheer, Frank A. J. L.

    2012-01-01

    The mammalian central circadian pacemaker (the suprachiasmatic nucleus, SCN) contains thousands of neurons that are coupled through a complex network of interactions. In addition to the established role of the SCN in generating rhythms of ∼24 hours in many physiological functions, the SCN was recently shown to be necessary for normal self-similar/fractal organization of motor activity and heart rate over a wide range of time scales—from minutes to 24 hours. To test whether the neural network within the SCN is sufficient to generate such fractal patterns, we studied multi-unit neural activity of in vivo and in vitro SCNs in rodents. In vivo SCN-neural activity exhibited fractal patterns that are virtually identical in mice and rats and are similar to those in motor activity at time scales from minutes up to 10 hours. In addition, these patterns remained unchanged when the main afferent signal to the SCN, namely light, was removed. However, the fractal patterns of SCN-neural activity are not autonomous within the SCN as these patterns completely broke down in the isolated in vitro SCN despite persistence of circadian rhythmicity. Thus, SCN-neural activity is fractal in the intact organism and these fractal patterns require network interactions between the SCN and extra-SCN nodes. Such a fractal control network could underlie the fractal regulation observed in many physiological functions that involve the SCN, including motor control and heart rate regulation. PMID:23185285

  13. Commissural axons of the mouse cochlear nucleus.

    PubMed

    Brown, M Christian; Drottar, Marie; Benson, Thane E; Darrow, Keith

    2013-05-01

    The axons of commissural neurons that project from one cochlear nucleus to the other were studied after labeling with anterograde tracer. Injections were made into the dorsal subdivision of the cochlear nucleus in order to restrict labeling only to the group of commissural neurons that gave off collaterals to, or were located in, this subdivision. The number of labeled commissural axons in each injection was correlated with the number of labeled radiate multipolar neurons, suggesting radiate neurons as the predominant origin of the axons. The radiate commissural axons are thick and myelinated, and they exit the dorsal acoustic stria of the injected cochlear nucleus to cross the brainstem in the dorsal half, near the crossing position of the olivocochlear bundle. They enter the opposite cochlear nucleus via the dorsal and ventral acoustic stria and at its medial border. Reconstructions of single axons demonstrate that terminations are mostly in the core and typically within a single subdivision of the cochlear nucleus. Extents of termination range from narrow to broad along both the dorsoventral (i.e., tonotopic) and the rostrocaudal dimensions. In the electron microscope, labeled swellings form synapses that are symmetric (in that there is little postsynaptic density), a characteristic of inhibitory synapses. Our labeled axons do not appear to include excitatory commissural axons that end in edge regions of the nucleus. Radiate commissural axons could mediate the broadband inhibition observed in responses to contralateral sound, and they may balance input from the two ears with a quick time course. Copyright © 2012 Wiley Periodicals, Inc.

  14. Commissural Axons of the Mouse Cochlear Nucleus

    PubMed Central

    Brown, M. Christian; Drottar, Marie; Benson, Thane E.; Darrow, Keith

    2012-01-01

    The axons of commissural neurons that project from one cochlear nucleus to the other were studied after labeling with anterograde tracer. Injections were made into the dorsal subdivision of the cochlear nucleus in order to restrict labeling only to the group of commissural neurons that gave off collaterals to, or were located in, this subdivision. The number of labeled commissural axons in each injection was correlated with the number of labeled radiate multipolar neurons, suggesting radiate neurons as the predominant origin of the axons. The radiate commissural axons are thick and myelinated, and they exit the dorsal acoustic stria of the injected cochlear nucleus to cross the brainstem in the dorsal half, near the crossing position of the olivocochlear bundle. They enter the opposite cochlear nucleus via the dorsal and ventral acoustic stria and at its medial border. Reconstructions of single axons demonstrate that terminations are mostly in the core and typically within a single subdivision of the cochlear nucleus. Extents of termination range from narrow to broad along both the dorso-ventral (i.e. tonotopic) and rostro-caudal dimensions. In the electron microscope, labeled swellings form synapses that are symmetric (in that there is little postsynaptic density), a characteristic of inhibitory synapses. Our labeled axons do not appear to include excitatory commissural axons that end in edge regions of the nucleus. Radiate commissural axons could mediate the broad-band inhibition observed in responses to contralateral sound, and they may balance input from the two ears on a quick time course. PMID:23124982

  15. Apathy following Bilateral Deep Brain Stimulation of Subthalamic Nucleus in Parkinson's Disease: A Meta-Analysis

    PubMed Central

    Zhang, Xiaona

    2018-01-01

    Bilateral deep brain stimulation of subthalamic nucleus (STN-DBS) has proven effective in improving motor symptoms in Parkinson's disease (PD) patients. However, psychiatric changes after surgery are controversial. In this study, we specifically analyzed apathy following bilateral STN-DBS in PD patients using a meta-analysis. Relevant articles utilized for this study were obtained through literature search on PubMed, ScienceDirect, and Embase databases. The articles included were those contained both pre- and postsurgery apathy data acquired using the Starkstein Apathy Scale or Apathy Evaluation Scale with patient follow-up of at least three months. A total of 9 out of 86 articles were included in our study through this strict screening process. Standardized mean difference (SMD), that is, Cohen's d, with a 95% confidence interval (CI) was calculated to show the change. We found a significant difference between the presurgery stage and the postsurgery stage scores (SMD = 0.35, 95% CI: 0.17∼0.52, P < 0.001). STN-DBS seems to relatively worsen the condition of apathy, which may result from both the surgery target (subthalamic nucleus) and the reduction of dopaminergic medication. Further studies should focus on the exact mechanisms of possible postoperative apathy in the future.

  16. Nucleon emission via electromagnetic excitation in relativistic nucleus-nucleus collisions: Re-analysis of the Weizsacker-Williams method

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Previous analyses of the comparison of Weizsacker-Williams (WW) theory to experiment for nucleon emission via electromagnetic (EM) excitations in nucleus-nucleus collisions were not definitive because of different assumptions concerning the value of the minimum impact parameter. This situation is corrected by providing criteria that allows definitive statements to be made concerning agreement or disagreement between WW theory and experiment.

  17. Medicinal Flowers. XXXII. Structures of oleanane-type triterpene saponins, perennisosides VIII, IX, X, XI, and XII, from the flowers of Bellis perennis.

    PubMed

    Morikawa, Toshio; Li, Xuezheng; Nishida, Eriko; Nakamura, Seikou; Ninomiya, Kiyofumi; Matsuda, Hisashi; Hamao, Makoto; Muraoka, Osamu; Hayakawa, Takao; Yoshikawa, Masayuki

    2011-01-01

    Five new triterpene saponins perennisosides VIII (1), IX (2), X (3), XI (4), and XII (5) were isolated from the MeOH-eluated fraction of the methanolic extract from the flowers of Bellis perennis. The MeOH-eluted fraction of the methanolic extract from the flowers of B. perennis was found to inhibit gastric emptying in olive oil-loaded mice at a dose of 200 mg/kg, per os (p.o.). The stereostructures of 1-5 were elucidated on the basis of chemical and spectroscopic evidence.

  18. A Nuclear Attack on Traumatic Brain Injury: Sequestration of Cell Death in the Nucleus.

    PubMed

    Tajiri, Naoki; De La Peña, Ike; Acosta, Sandra A; Kaneko, Yuji; Tamir, Sharon; Landesman, Yosef; Carlson, Robert; Shacham, Sharon; Borlongan, Cesar V

    2016-04-01

    Exportin 1 (XPO1/CRM1) plays prominent roles in the regulation of nuclear protein export. Selective inhibitors of nuclear export (SINE) are small orally bioavailable molecules that serve as drug-like inhibitors of XPO1, with potent anti-cancer properties. Traumatic brain injury (TBI) presents with a secondary cell death characterized by neuroinflammation that is putatively regulated by nuclear receptors. Here, we report that the SINE compounds (KPT-350 or KPT-335) sequestered TBI-induced neuroinflammation-related proteins (NF-(k)B, AKT, FOXP1) within the nucleus of cultured primary rat cortical neurons, which coincided with protection against TNF-α (20 ng/mL)-induced neurotoxicity as shown by at least 50% and 100% increments in preservation of cell viability and cellular enzymatic activity, respectively, compared to non-treated neuronal cells (P's < 0.05). In parallel, using an in vivo controlled cortical impact (CCI) model of TBI, we demonstrate that adult Sprague-Dawley rats treated post-injury with SINE compounds exhibited significant reductions in TBI-induced behavioral and histological deficits. Animals that received KPT-350 orally starting at 2 h post-TBI and once a day thereafter over the next 4 days exhibited significantly better motor coordination, and balance in the rotorod test and motor asymmetry test by 100-200% improvements, as early as 4 h after initial SINE compound injection that was sustained during subsequent KPT-350 dosing, and throughout the 18-day post-TBI study period compared to vehicle treatment (P's < 0.05). Moreover, KPT-350 reduced cortical core impact area and peri-impact cell death compared to vehicle treatment (P's < 0.05). Both in vitro and in vivo experiments revealed that KPT-350 increased XPO1, AKT, and FOXP1 nuclear expression and relegated NF-(k)B expression within the neuronal nuclei. Altogether, these findings advance the utility of SINE compounds to stop trafficking of cell death proteins within the nucleus as an efficacious

  19. Quarkonium-nucleus bound states from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beane, S.  R.; Chang, E.; Cohen, S.  D.

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  20. Methylxanthines do not affect rhythmogenic preBötC inspiratory network activity but impair bursting of preBötC-driven motoneurons.

    PubMed

    Panaitescu, B; Kuribayashi, J; Ruangkittisakul, A; Leung, V; Iizuka, M; Ballanyi, K

    2013-01-01

    Clinical stimulation of preterm infant breathing with methylxanthines like caffeine and theophylline can evoke seizures. It is unknown whether underlying neuronal hyperexcitability involves the rhythmogenic inspiratory active pre-Bötzinger complex (preBötC) in the brainstem or preBötC-driven motor networks. Inspiratory-related preBötC interneuronal plus spinal (cervical/phrenic) or cranial hypoglossal (XII) motoneuronal bursting was studied in newborn rat en bloc brainstem-spinal cords and brainstem slices, respectively. Non-respiratory bursting perturbed inspiratory cervical nerve activity in en bloc models at >0.25mM theophylline or caffeine. Rhythm in the exposed preBötC of transected en bloc preparations was less perturbed by 10mM theophylline than cervical root bursting which was more affected than phrenic nerve activity. In the preBötC of slices, even 10mM methylxanthine did not evoke seizure-like bursting whereas >1mM masked XII rhythm via large amplitude 1-10Hz oscillations. Blocking A-type γ-aminobutyric (GABAA) receptors evoked seizure-like cervical activity whereas in slices neither XII nor preBötC rhythm was disrupted. Methylxanthines (2.5-10mM), but not blockade of adenosine receptors, phosphodiesterase-4 or the sarcoplasmatic/endoplasmatic reticulum ATPase countered inspiratory depression by muscimol-evoked GABAA receptor activation that was associated with a hyperpolarization and input resistance decrease silencing preBötC neurons in slices. The latter blockers did neither affect preBötC or cranial/spinal motor network bursting nor evoke seizure-like activity or mask corresponding methylxanthine-evoked discharges. Our findings show that methylxanthine-evoked hyperexcitability originates from motor networks, leaving preBötC activity largely unaffected, and suggest that GABAA receptors contribute to methylxanthine-evoked seizure-like perturbation of spinal motoneurons whereas non-respiratory XII motoneuron oscillations are of different

  1. Critical role of cerebellar fastigial nucleus in programming sequences of saccades

    PubMed Central

    King, Susan A.; Schneider, Rosalyn M.; Serra, Alessandro; Leigh, R. John

    2011-01-01

    The cerebellum plays an important role in programming accurate saccades. Cerebellar lesions affecting the ocular motor region of the fastigial nucleus (FOR) cause saccadic hypermetria; however, if a second target is presented before a saccade can be initiated (double-step paradigm), saccade hypermetria may be decreased. We tested the hypothesis that the cerebellum, especially FOR, plays a pivotal role in programming sequences of saccades. We studied patients with saccadic hypermetria due either to genetic cerebellar ataxia or surgical lesions affecting FOR and confirmed that the gain of initial saccades made to double-step stimuli was reduced compared with the gain of saccades to single target jumps. Based on measurements of the intersaccadic interval, we found that the ability to perform parallel processing of saccades was reduced or absent in all of our patients with cerebellar disease. Our results support the crucial role of the cerebellum, especially FOR, in programming sequences of saccades. PMID:21950988

  2. Critical role of cerebellar fastigial nucleus in programming sequences of saccades.

    PubMed

    King, Susan A; Schneider, Rosalyn M; Serra, Alessandro; Leigh, R John

    2011-09-01

    The cerebellum plays an important role in programming accurate saccades. Cerebellar lesions affecting the ocular motor region of the fastigial nucleus (FOR) cause saccadic hypermetria; however, if a second target is presented before a saccade can be initiated (double-step paradigm), saccade hypermetria may be decreased. We tested the hypothesis that the cerebellum, especially FOR, plays a pivotal role in programming sequences of saccades. We studied patients with saccadic hypermetria because of either genetic cerebellar ataxia or surgical lesions affecting FOR and confirmed that the gain of initial saccades made to double-step stimuli was reduced compared with the gain of saccades to single target jumps. Based on measurements of the intersaccadic interval, we found that the ability to perform parallel processing of saccades was reduced or absent in all of our patients with cerebellar disease. Our results support the crucial role of the cerebellum, especially FOR, in programming sequences of saccades. © 2011 New York Academy of Sciences.

  3. Rhythmic syllable-related activity in a songbird motor thalamic nucleus necessary for learned vocalizations

    PubMed Central

    Danish, Husain H.; Aronov, Dmitriy; Fee, Michale S.

    2017-01-01

    Birdsong is a complex behavior that exhibits hierarchical organization. While the representation of singing behavior and its hierarchical organization has been studied in some detail in avian cortical premotor circuits, our understanding of the role of the thalamus in adult birdsong is incomplete. Using a combination of behavioral and electrophysiological studies, we seek to expand on earlier work showing that the thalamic nucleus Uvaeformis (Uva) is necessary for the production of stereotyped, adult song in zebra finch (Taeniopygia guttata). We confirm that complete bilateral lesions of Uva abolish singing in the ‘directed’ social context, but find that in the ‘undirected’ social context, such lesions result in highly variable vocalizations similar to early babbling song in juvenile birds. Recordings of neural activity in Uva reveal strong syllable-related modulation, maximally active prior to syllable onsets and minimally active prior to syllable offsets. Furthermore, both song and Uva activity exhibit a pronounced coherent modulation at 10Hz—a pattern observed in downstream premotor areas in adult and, even more prominently, in juvenile birds. These findings are broadly consistent with the idea that Uva is critical in the sequential activation of behavioral modules in HVC. PMID:28617829

  4. [Neuronal organization of thalamic nucleus reticularis in adult man].

    PubMed

    Berezhnaia, L A

    2005-01-01

    The neuronal content of human thalamic nucleus reticularis was studied in serial sections cut in sagittal and frontal projections and impregnated with silver nitrate using Golgi method. The neuronal content of human thalamic nucleus reticularis was found to be more diverse than previously reported in animals and man. Besides two types of sparsely-branched long-dendritic spineless R1 and R2 neurons, this nucleus contained spiny cells. Medium and small-sized sparsely-branched short-dendritic neurons and densely-branched spiny cells were demonstrated. The principle of organization of human thalamic nucleus reticularis is described.

  5. Pion and Kaon Lab Frame Differential Cross Sections for Intermediate Energy Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.

    2008-01-01

    Space radiation transport codes require accurate models for hadron production in intermediate energy nucleus-nucleus collisions. Codes require cross sections to be written in terms of lab frame variables and it is important to be able to verify models against experimental data in the lab frame. Several models are compared to lab frame data. It is found that models based on algebraic parameterizations are unable to describe intermediate energy differential cross section data. However, simple thermal model parameterizations, when appropriately transformed from the center of momentum to the lab frame, are able to account for the data.

  6. Interleaving subthalamic nucleus deep brain stimulation to avoid side effects while achieving satisfactory motor benefits in Parkinson disease: A report of 12 cases.

    PubMed

    Zhang, Shizhen; Zhou, Peizhi; Jiang, Shu; Wang, Wei; Li, Peng

    2016-12-01

    Deep brain stimulation (DBS) of the subthalamic nucleus is an effective treatment for advanced Parkinson disease (PD). However, achieving ideal outcomes by conventional programming can be difficult in some patients, resulting in suboptimal control of PD symptoms and stimulation-induced adverse effects. Interleaving stimulation (ILS) is a newer programming technique that can individually optimize the stimulation area, thereby improving control of PD symptoms while alleviating stimulation-induced side effects after conventional programming fails to achieve the desired results. We retrospectively reviewed PD patients who received DBS programming during the previous 4 years in our hospital. We collected clinical and demographic data from 12 patients who received ILS because of incomplete alleviation of PD symptoms or stimulation-induced adverse effects after conventional programming had proven ineffective or intolerable. Appropriate lead location was confirmed with postoperative reconstruction images. The rationale and clinical efficacy of ILS was analyzed. We divided our patients into 4 groups based on the following symptoms: stimulation-induced dysarthria and choreoathetoid dyskinesias, gait disturbance, and incomplete control of parkinsonism. After treatment with ILS, patients showed satisfactory improvement in PD symptoms and alleviation of stimulation-induced side effects, with a mean improvement in Unified PD Rating Scale motor scores of 26.9%. ILS is a newer choice and effective programming strategy to maximize symptom control in PD while decreasing stimulation-induced adverse effects when conventional programming fails to achieve satisfactory outcome. However, we should keep in mind that most DBS patients are routinely treated with conventional stimulation and that not all patients benefit from ILS. ILS is not recommended as the first choice of programming, and it is recommended only when patients have unsatisfactory control of PD symptoms or stimulation

  7. Variation in motor output and motor performance in a centrally generated motor pattern

    PubMed Central

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  8. To move or not to move: subthalamic deep brain stimulation effects on implicit motor simulation.

    PubMed

    Tomasino, Barbara; Marin, Dario; Eleopra, Roberto; Rinaldo, Sara; Cristian, Lettieri; Marco, Mucchiut; Enrico, Belgrado; Zanier, Monica; Budai, Riccardo; Mondani, Massimo; D'Auria, Stanislao; Skrap, Miran; Fabbro, Franco

    2014-07-29

    We explored implicit motor simulation processes in Parkinson's Disease (PD) patients with ON-OFF subthalamic deep brain stimulation (DBS) of the sub-thalamic nucleus (STN). Participants made lexical decisions about hand action-related verbs, abstract verbs, and pseudowords presented either within a positive (e.g., "Do …") or a negative (e.g., "Don't …") sentence context. Healthy controls showed significantly slower responses for hand-action verbs (vs. abstract verbs) in the negative (vs. positive) context, which suggests that negative contexts may suppress motor simulation or preparation processes. The STN-DBS improves cortical motor functions, thus patients are expected to perform at the same level as unimpaired subjects in the ON condition. By contrast, the 50% reduced DBS is expected to result in a reduced activation for motor information, which in turn might cause a reduced, if not absent, context modulation. PD patients exhibited the same pattern as controls when their DBS was at 100% ON; however, reducing the DBS to 50% had a deleterious outcome on the positive faster than negative context effect, suggesting that the altered inhibition mechanism in PD could be responsible for the missed effect. In addition, our results confirm the view that implicit motor simulation mechanisms behind action-related verb processing are flexible and context-dependent. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Motor control for a brushless DC motor

    NASA Technical Reports Server (NTRS)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  10. Deep brain stimulation of pedunculopontine tegmental nucleus: role in sleep modulation in advanced Parkinson disease patients: one-year follow-up.

    PubMed

    Peppe, Antonella; Pierantozzi, Mariangela; Baiamonte, Valentina; Moschella, Vincenzo; Caltagirone, Carlo; Stanzione, Paolo; Stefani, Alessandro

    2012-12-01

    Sleep disorders are frequent non-motor symptoms in Parkinson disease (PD), probably due to multifactorial pathogeneses including disease progression, dopaminergic drugs, or concomitant illness. In recent years, the pedunculopontine tegmental (PPTg) nucleus has been considered a surgical target for deep brain stimulation (DBS) in advanced PD patients. As it is involved in controlling the sleep-wake cycle, we investigated the long-lasting effects of PPTg-DBS on the sleep of five PD patients implanted in both the PPTg and the subthalamic nucleus (STN) by rating two subjective clinical scales for sleep: the Parkinson's Disease Sleep Scale (PDSS), and the Epworth Sleepiness Scale (ESS). Sleep scales were administered a week before surgery (T0), three months after DBS (T1), and one year later (T2). In this study, STN-DBS was kept constantly in ON, and three different patterns of PPTg-DBS were investigated: STN-ON (PPTg switched off); PPTg-ON (PPTg stimulated 24 h/day); PPTg-cycle (PPTg stimulated only at night). In post-surgery follow-up, PD patients reported a marked improvement of sleep quality in all DBS conditions. In particular, stimulation of the PPTg nucleus produced not only a remarkable long-term improvement of nighttime sleep, but unlike STN-DBS, also produced significant amelioration of daytime sleepiness. Our study suggests that PPTg-DBS plays an important role in reorganizing regular sleep in PD patients.

  11. Does a continuous solid nucleus exist in comets.

    NASA Technical Reports Server (NTRS)

    Lyttleton, R. A.

    1972-01-01

    The implication of actual cometary observations for the physical nature of comets is briefly reviewed, bringing out the complete conflict with observation of the ice-dust solid nucleus model put forward in recent years as representing the fundamental structure of comets. That under increasing solar heat the nucleus develops an expanding atmosphere is inconsistent with the well-established phenomenon that the coma contracts with decreasing distance from the sun. Several comets remaining always beyond Mars have nevertheless been strongly active and produced fine tails. That some comets show at times a star-like point of light is readily explicable on the dust-cloud structure and by no means establishes that a solid nucleus exists. With the nucleus-area corresponding not to a small solid mass but to an optical phenomenon, there would be no reason to expect that it would describe a precise dynamical orbit. On the hypothesis of a nucleus, it is necessary to postulate further some internal jet-propulsion mechanism to account for the orbital deviations.

  12. Differential effects of deep brain stimulation target on motor subtypes in Parkinson's disease.

    PubMed

    Katz, Maya; Luciano, Marta San; Carlson, Kimberly; Luo, Ping; Marks, William J; Larson, Paul S; Starr, Philip A; Follett, Kenneth A; Weaver, Frances M; Stern, Matthew B; Reda, Domenic J; Ostrem, Jill L

    2015-04-01

    The Veterans Administration Cooperative Studies Program #468, a multicenter study that randomized Parkinson's disease (PD) patients to either subthalamic nucleus (STN) or globus pallidus internus (GPi) deep brain stimulation (DBS), found that stimulation at either target provided similar overall motoric benefits. We conducted an additional analysis of this data set to evaluate whether PD motor subtypes responded differently to the 2 stimulation targets. We classified 235 subjects by motor subtype: tremor dominant (TD), intermediate (I), or postural instability gait difficulty (PIGD), based on pre-DBS baseline Unified Parkinson's Disease Rating Scale (UPDRS) scores off-medication. The primary outcome was change in UPDRS part III (UPDRS-III) off-medication scores from baseline to 24 months post-DBS, compared among subjects with particular PD motor subtypes and by DBS target (STN vs GPi). Changes in tremor, rigidity, akinesia, and gait scores were also assessed using the UPDRS. TD patients had greater mean overall motor improvement, measured by UPDRS-III, after GPi DBS, compared to STN DBS (17.5 ± 13.0 vs 14.6 ± 14.9, p = 0.02), with improvement in gait accounting for this difference. Regardless of stimulation target, PIGD subjects had lower mean overall improvement in UPDRS-III scores compared with I or TD subjects (8.7 ± 12.2 vs 21.7 ± 11.2 vs 16.3 ± 13.8, p = 0.001). Our results suggest that responsiveness to both GPi and STN DBS is similar among different PD motor subtypes, although the TD motor subtype may have a greater response to GPi DBS with respect to gait. PIGD patients obtained less overall benefit from stimulation. © 2015 American Neurological Association.

  13. Thalamic reticular nucleus in Caiman crocodilus: Relationship with the dorsal thalamus.

    PubMed

    Pritz, M B

    2016-05-13

    The thalamic reticular nucleus was investigated in one group of crocodilians, Caiman crocodilus. This neuronal aggregate is composed of two parts: a compact portion and a diffuse region made up of scattered cells within the forebrain bundles. In Caiman, both the lateral and medial forebrain bundles project to the telencephalon and the thalamic reticular nucleus is associated with each fiber tract. In the lateral forebrain bundle, the compact area is termed the nucleus of the dorsal peduncle (dorsal peduncular nucleus) while the diffuse part is called the perireticular area. In the medial forebrain bundle, the interstitial nucleus comprises one part of the compact area while another region without a specific neuronal label is also present. Similar to the perireticular cells of the lateral forebrain bundle, scattered cells are also present in the medial forebrain bundle. Morphological features of the thalamic reticular nucleus are revealed with stains for the following: fibers; cells; succinic acid dehydrogenase; and acetylcholinesterase. Regardless of which dorsal thalamic nucleus was injected, a localized region of the thalamic reticular nucleus contained retrogradely labeled cells and anterogradely labeled axons and terminals. This grouping was termed clusters and was felt to represent the densest interconnection between the dorsal thalamus and the reticular nucleus. Using clusters as an index of interconnections, the reticular nucleus was divided into sectors, each of which was associated with a specific dorsal thalamic nucleus. An organization similar to that found in Caiman is present in other sauropsids as well as in mammals. These data suggest that a thalamic reticular nucleus is present in all amniotes and has morphological properties similar to those described in this analysis. Lastly, a hypothesis is presented to explain how the external shape of the reticular nucleus in Caiman might be transformed into the homologous area in a representative bird and

  14. Long-term increase in coherence between the basal ganglia and motor cortex after asphyxial cardiac arrest and resuscitation in developing rats.

    PubMed

    Aravamuthan, Bhooma R; Shoykhet, Michael

    2015-10-01

    The basal ganglia are vulnerable to injury during cardiac arrest. Movement disorders are a common morbidity in survivors. Yet, neuronal motor network changes post-arrest remain poorly understood. We compared function of the motor network in adult rats that, during postnatal week 3, underwent 9.5 min of asphyxial cardiac arrest (n = 9) or sham intervention (n = 8). Six months after injury, we simultaneously recorded local field potentials (LFP) from the primary motor cortex (MCx) and single neuron firing and LFP from the rat entopeduncular nucleus (EPN), which corresponds to the primate globus pallidus pars interna. Data were analyzed for firing rates, power, and coherence between MCx and EPN spike and LFP activity. Cardiac arrest survivors display chronic motor deficits. EPN firing rate is lower in cardiac arrest survivors (19.5 ± 2.4 Hz) compared with controls (27.4 ± 2.7 Hz; P < 0.05). Cardiac arrest survivors also demonstrate greater coherence between EPN single neurons and MCx LFP (3-100 Hz; P < 0.001). This increased coherence indicates abnormal synchrony in the neuronal motor network after cardiac arrest. Increased motor network synchrony is thought to be antikinetic in primary movement disorders. Characterization of motor network synchrony after cardiac arrest may help guide management of post-hypoxic movement disorders.

  15. Glutamatergic projection from the nucleus incertus to the septohippocampal system.

    PubMed

    Cervera-Ferri, Ana; Rahmani, Yasamin; Martínez-Bellver, Sergio; Teruel-Martí, Vicent; Martínez-Ricós, Joana

    2012-05-31

    Recent findings support a relevant role of the nucleus incertus in the control of the hippocampal activity through the modulation of theta rhythm. Previous studies from our group have shown that this nucleus is a critical relay between reticularis pontis oralis and the medial septum/diagonal band, regarded as the main activator and the pacemaker of the hippocampal oscillations, respectively. Besides, the nucleus incertus is highly linked to activated states related to the arousal response. The neurotransmission of the nucleus incertus, however, remains uncertain. Only GABA and the neuromodulator relaxin 3 are usually considered to be involved in its contribution to the septohippocampal system. In this work, we have analyzed the existence of an excitatory projection from the nucleus incertus to the medial septum. We have found a group of glutamatergic neurons in the nucleus incertus projecting to the medial septum. Moreover, we were able to describe a segregated distribution of calbindin and calretinin neurons. While calretinin expression was restricted to the nucleus incertus pars compacta, calbindin positive neurons where observed both in the pars dissipata and the pars compacta of the nucleus. The present work provides innovative data supporting an excitatory component in the pontoseptal pathway. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. New quasibound states of the compound nucleus in α -particle capture by the nucleus

    NASA Astrophysics Data System (ADS)

    Maydanyuk, Sergei P.; Zhang, Peng-Ming; Zou, Li-Ping

    2017-07-01

    We generalize the theory of nuclear decay and capture of Gamow that is based on tunneling through the barrier and internal oscillations inside the nucleus. In our formalism an additional factor is obtained, which describes distribution of the wave function of the the α particle inside the nuclear region. We discover new most stable states (called quasibound states) of the compound nucleus (CN) formed during the capture of α particle by the nucleus. With a simple example, we explain why these states cannot appear in traditional calculations of the α capture cross sections based on monotonic penetrabilities of a barrier, but they appear in a complete description of the evolution of the CN. Our result is obtained by a complete description of the CN evolution, which has the advantages of (1) a clear picture of the formation of the CN and its disintegration, (2) a detailed quantum description of the CN, (3) tests of the calculated amplitudes based on quantum mechanics (not realized in other approaches), and (4) high accuracy of calculations (not achieved in other approaches). These peculiarities are shown with the capture reaction of α +44Ca . We predict quasibound energy levels and determine fusion probabilities for this reaction. The difference between our approach and theory of quasistationary states with complex energies applied for the α capture is also discussed. We show (1) that theory does not provide calculations for the cross section of α capture (according to modern models of the α capture), in contrast with our formalism, and (2) these two approaches describe different states of the α capture (for the same α -nucleus potential).

  17. The Checkerboard Model of the Nucleus

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2015-04-01

    The Checker Board Model (CBM) of the nucleus and the associated extended standard model predicts that nature has 5 generations of quarks not 3 and that Nucleus is 2 dimensional. The CBM theory began with an insight into the structure of the He nucleus around the year 1989. Details of how this theory evolved which took many years, and is found on my web site (http://checkerboard.dnsalias.net) or in the following references One independent check of this model is that the wavelength of the ``up'' quark orbiting inside the proton at 84.8123% the speed of light (around the ``dn'' quark in the center of the proton) turns out to be exactly one de Broglie wavelength something determined after the mass and speed of the up quark were determined by other means. This theory explains the mass of the proton and neutron and their magnetic moments and this along with the beautiful symmetric 2D structure of the He nucleus led to the evolution of this theory. When this theory was first presented at Argonne in 1996, it was the first time that anyone had predicted the quarks orbited inside the proton at relativistic speeds and it was met with skepticism.

  18. Nucleus-associated actin in Amoeba proteus.

    PubMed

    Berdieva, Mariia; Bogolyubov, Dmitry; Podlipaeva, Yuliya; Goodkov, Andrew

    2016-10-01

    The presence, spatial distribution and forms of intranuclear and nucleus-associated cytoplasmic actin were studied in Amoeba proteus with immunocytochemical approaches. Labeling with different anti-actin antibodies and staining with TRITC-phalloidin and fluorescent deoxyribonuclease I were used. We showed that actin is abundant within the nucleus as well as in the cytoplasm of A. proteus cells. According to DNase I experiments, the predominant form of intranuclear actin is G-actin which is associated with chromatin strands. Besides, unpolymerized actin was shown to participate in organization of a prominent actin layer adjacent to the outer surface of nuclear envelope. No significant amount of F-actin was found in the nucleus. At the same time, the amoeba nucleus is enclosed in a basket-like structure formed by circumnuclear actin filaments and bundles connected with global cytoplasmic actin cytoskeleton. A supposed architectural function of actin filaments was studied by treatment with actin-depolymerizing agent latrunculin A. It disassembled the circumnuclear actin system, but did not affect the intranuclear chromatin structure. The results obtained for amoeba cells support the modern concept that actin is involved in fundamental nuclear processes that have evolved in the cells of multicellular organisms. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Spindle pole body-anchored Kar3 drives the nucleus along microtubules from another nucleus in preparation for nuclear fusion during yeast karyogamy.

    PubMed

    Gibeaux, Romain; Politi, Antonio Z; Nédélec, François; Antony, Claude; Knop, Michael

    2013-02-01

    Nuclear migration during yeast karyogamy, termed nuclear congression, is required to initiate nuclear fusion. Congression involves a specific regulation of the microtubule minus end-directed kinesin-14 motor Kar3 and a rearrangement of the cytoplasmic microtubule attachment sites at the spindle pole bodies (SPBs). However, how these elements interact to produce the forces necessary for nuclear migration is less clear. We used electron tomography, molecular genetics, quantitative imaging, and first principles modeling to investigate how cytoplasmic microtubules are organized during nuclear congression. We found that Kar3, with the help of its light chain, Cik1, is anchored during mating to the SPB component Spc72 that also serves as a nucleator and anchor for microtubules via their minus ends. Moreover, we show that no direct microtubule-microtubule interactions are required for nuclear migration. Instead, SPB-anchored Kar3 exerts the necessary pulling forces laterally on microtubules emanating from the SPB of the mating partner nucleus. Therefore, a twofold symmetrical application of the core principle that drives nuclear migration in higher cells is used in yeast to drive nuclei toward each other before nuclear fusion.

  20. Spindle pole body-anchored Kar3 drives the nucleus along microtubules from another nucleus in preparation for nuclear fusion during yeast karyogamy

    PubMed Central

    Gibeaux, Romain; Politi, Antonio Z.; Nédélec, François; Antony, Claude; Knop, Michael

    2013-01-01

    Nuclear migration during yeast karyogamy, termed nuclear congression, is required to initiate nuclear fusion. Congression involves a specific regulation of the microtubule minus end-directed kinesin-14 motor Kar3 and a rearrangement of the cytoplasmic microtubule attachment sites at the spindle pole bodies (SPBs). However, how these elements interact to produce the forces necessary for nuclear migration is less clear. We used electron tomography, molecular genetics, quantitative imaging, and first principles modeling to investigate how cytoplasmic microtubules are organized during nuclear congression. We found that Kar3, with the help of its light chain, Cik1, is anchored during mating to the SPB component Spc72 that also serves as a nucleator and anchor for microtubules via their minus ends. Moreover, we show that no direct microtubule–microtubule interactions are required for nuclear migration. Instead, SPB-anchored Kar3 exerts the necessary pulling forces laterally on microtubules emanating from the SPB of the mating partner nucleus. Therefore, a twofold symmetrical application of the core principle that drives nuclear migration in higher cells is used in yeast to drive nuclei toward each other before nuclear fusion. PMID:23388829

  1. MRI directed bilateral stimulation of the subthalamic nucleus in patients with Parkinson's disease

    PubMed Central

    Patel, N; Plaha, P; O'Sullivan, K; McCarter, R; Heywood, P; Gill, S

    2003-01-01

    Objective: Bilateral chronic high frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) has emerged as an appropriate therapy for patients with advanced Parkinson's disease refractory to medical therapy. Advances in neuroimaging and neurophysiology have led to the development of varied targeting methods for the delivery of this treatment. Intraoperative neurophysiological and clinical monitoring is regarded by many to be mandatory for accurate STN localisation. We have examined efficacy of bilateral STN stimulation using a predominantly magnetic resonance imaging (MRI)-directed technique. Methods: DBS leads were stereotactically implanted into the STN using an MRI directed method, with intraoperative macrostimulation used purely for adjustment. The effects of DBS were evaluated in 16 patients followed up to 12 months, and compared with baseline assessments. Assessments were performed in both off and on medication states, and were based on the Unified Parkinson's Disease Rating Scale (UPDRS) and timed motor tests. Functional status outcomes were examined using the PDQ-39 quality of life questionnaire. A battery of psychometric tests was used to assess cognition. Results: After 12 months, stimulation in the off medication state resulted in significant improvements in Activities of Daily Living and Motor scores (UPDRS parts II and III) by 62% and 61% respectively. Timed motor tests were significantly improved in the off medication state. Motor scores (UPDRS part III) were significantly improved by 40% in the on medication state. Dyskinesias and off duration were significantly reduced and the mean dose of L-dopa equivalents was reduced by half. Psychometric test scores were mostly unchanged or improved. Adverse events were few. Conclusions: An MRI directed targeting method for implantation of DBS leads into the STN can be used safely and effectively, and results are comparable with studies using intraoperative microelectrode neurophysiological

  2. Extrusion without a motor: a new take on the loop extrusion model of genome organization

    PubMed Central

    Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.

    2018-01-01

    ABSTRACT Chromatin loop extrusion is a popular model for the formation of CTCF loops and topological domains. Recent HiC data have revealed a strong bias in favour of a particular arrangement of the CTCF binding motifs that stabilize loops, and extrusion is the only model to date which can explain this. However, the model requires a motor to generate the loops, and although cohesin is a strong candidate for the extruding factor, a suitable motor protein (or a motor activity in cohesin itself) has yet to be found. Here we explore a new hypothesis: that there is no motor, and thermal motion within the nucleus drives extrusion. Using theoretical modelling and computer simulations we ask whether such diffusive extrusion could feasibly generate loops. Our simulations uncover an interesting ratchet effect (where an osmotic pressure promotes loop growth), and suggest, by comparison to recent in vitro and in vivo measurements, that diffusive extrusion can in principle generate loops of the size observed in the data. Extra View on : C. A. Brackley, J. Johnson, D. Michieletto, A. N. Morozov, M. Nicodemi, P. R. Cook, and D. Marenduzzo “Non-equilibrium chromosome looping via molecular slip-links”, Physical Review Letters 119 138101 (2017) PMID:29300120

  3. Inhibitory effects and structural insights for a novel series of coumarin-based compounds that selectively target human CA IX and CA XII carbonic anhydrases.

    PubMed

    De Luca, Laura; Mancuso, Francesca; Ferro, Stefania; Buemi, Maria Rosa; Angeli, Andrea; Del Prete, Sonia; Capasso, Clemente; Supuran, Claudiu T; Gitto, Rosaria

    2018-01-01

    Coumarin derivatives are a peculiar class of inhibitors of the family of metalloenzymes carbonic anhydrases (CA, EC 4.2.1.1). Several coumarins display higher affinity and selectivity toward most relevant and druggable CA isoforms. By decorating the natural compound umbelliferone (1) we have identified a new series of coumarin-based compounds demonstrating high CA inhibitory effects with nanomolar affinity for hCA IX and hCA XII isoforms that were considered a target amenable to develop antitumor agents. The most active tested compounds proved to be potent inhibitors with K i values equal to that of the well-known inhibitor acetazolamide (AAZ), that lacks selectivity over ubiquitous hCA I and hCA II. As suggested by docking studies the coumarins, that are lacking of the canonical metal binding groups, do not interact with Zinc ion within the catalytic site as found for classical sulfonamide type inhibitors of CAs. Thus, the studied inhibitors might possess a non-classical inhibitory mode of action preventing the carbon dioxide to entry into catalytic cavity and its conversion into bicarbonate ion. Specifically, the most active inhibitor of hCA XII compound 18i (K i value of 5.5 nM) and its supposed hydrolytic products could establish a web of H-bond interactions within the enzymatic cavity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Cortico-Cortical White Matter Motor Pathway Microstructure Is Related to Psychomotor Retardation in Major Depressive Disorder

    PubMed Central

    Bracht, Tobias; Federspiel, Andrea; Schnell, Susanne; Horn, Helge; Höfle, Oliver; Wiest, Roland; Dierks, Thomas; Strik, Werner; Müller, Thomas J.; Walther, Sebastian

    2012-01-01

    Alterations of brain structure and function have been associated with psychomotor retardation in major depressive disorder (MDD). However, the association of motor behaviour and white matter integrity of motor pathways in MDD is unclear. The aim of the present study was to first investigate structural connectivity of white matter motor pathways in MDD. Second, we explore the relation of objectively measured motor activity and white matter integrity of motor pathways in MDD. Therefore, 21 patients with MDD and 21 healthy controls matched for age, gender, education and body mass index underwent diffusion tensor imaging and 24 hour actigraphy (measure of the activity level) the same day. Applying a probabilistic fibre tracking approach we extracted connection pathways between the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the SMA-proper, the primary motor cortex (M1), the caudate nucleus, the putamen, the pallidum and the thalamus. Patients had lower activity levels and demonstrated increased mean diffusivity (MD) in pathways linking left pre-SMA and SMA-proper, and right SMA-proper and M1. Exploratory analyses point to a positive association of activity level and mean-fractional anisotropy in the right rACC-pre-SMA connection in MDD. Only MDD patients with low activity levels had a negative linear association of activity level and mean-MD in the left dlPFC-pre-SMA connection. Our results point to structural alterations of cortico-cortical white matter motor pathways in MDD. Altered white matter organisation of rACC-pre-SMA and dlPFC-pre-SMA pathways may contribute to movement initiation in MDD. PMID:23284950

  5. Cortico-cortical white matter motor pathway microstructure is related to psychomotor retardation in major depressive disorder.

    PubMed

    Bracht, Tobias; Federspiel, Andrea; Schnell, Susanne; Horn, Helge; Höfle, Oliver; Wiest, Roland; Dierks, Thomas; Strik, Werner; Müller, Thomas J; Walther, Sebastian

    2012-01-01

    Alterations of brain structure and function have been associated with psychomotor retardation in major depressive disorder (MDD). However, the association of motor behaviour and white matter integrity of motor pathways in MDD is unclear. The aim of the present study was to first investigate structural connectivity of white matter motor pathways in MDD. Second, we explore the relation of objectively measured motor activity and white matter integrity of motor pathways in MDD. Therefore, 21 patients with MDD and 21 healthy controls matched for age, gender, education and body mass index underwent diffusion tensor imaging and 24 hour actigraphy (measure of the activity level) the same day. Applying a probabilistic fibre tracking approach we extracted connection pathways between the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the SMA-proper, the primary motor cortex (M1), the caudate nucleus, the putamen, the pallidum and the thalamus. Patients had lower activity levels and demonstrated increased mean diffusivity (MD) in pathways linking left pre-SMA and SMA-proper, and right SMA-proper and M1. Exploratory analyses point to a positive association of activity level and mean-fractional anisotropy in the right rACC-pre-SMA connection in MDD. Only MDD patients with low activity levels had a negative linear association of activity level and mean-MD in the left dlPFC-pre-SMA connection. Our results point to structural alterations of cortico-cortical white matter motor pathways in MDD. Altered white matter organisation of rACC-pre-SMA and dlPFC-pre-SMA pathways may contribute to movement initiation in MDD.

  6. Depletion of coagulation factor XII ameliorates brain pathology and cognitive impairment in Alzheimer disease mice.

    PubMed

    Chen, Zu-Lin; Revenko, Alexey S; Singh, Pradeep; MacLeod, A Robert; Norris, Erin H; Strickland, Sidney

    2017-05-04

    Vascular abnormalities and inflammation are found in many Alzheimer disease (AD) patients, but whether these changes play a causative role in AD is not clear. The factor XII (FXII) -initiated contact system can trigger both vascular pathology and inflammation and is activated in AD patients and AD mice. We have investigated the role of the contact system in AD pathogenesis. Cleavage of high-molecular-weight kininogen (HK), a marker for activation of the inflammatory arm of the contact system, is increased in a mouse model of AD, and this cleavage is temporally correlated with the onset of brain inflammation. Depletion of FXII in AD mice inhibited HK cleavage in plasma and reduced neuroinflammation, fibrinogen deposition, and neurodegeneration in the brain. Moreover, FXII-depleted AD mice showed better cognitive function than untreated AD mice. These results indicate that FXII-mediated contact system activation contributes to AD pathogenesis, and therefore this system may offer novel targets for AD treatment. © 2017 by The American Society of Hematology.

  7. Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images.

    PubMed

    Arslan, Salim; Ersahin, Tulin; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem

    2013-06-01

    More rapid and accurate high-throughput screening in molecular cellular biology research has become possible with the development of automated microscopy imaging, for which cell nucleus segmentation commonly constitutes the core step. Although several promising methods exist for segmenting the nuclei of monolayer isolated and less-confluent cells, it still remains an open problem to segment the nuclei of more-confluent cells, which tend to grow in overlayers. To address this problem, we propose a new model-based nucleus segmentation algorithm. This algorithm models how a human locates a nucleus by identifying the nucleus boundaries and piecing them together. In this algorithm, we define four types of primitives to represent nucleus boundaries at different orientations and construct an attributed relational graph on the primitives to represent their spatial relations. Then, we reduce the nucleus identification problem to finding predefined structural patterns in the constructed graph and also use the primitives in region growing to delineate the nucleus borders. Working with fluorescence microscopy images, our experiments demonstrate that the proposed algorithm identifies nuclei better than previous nucleus segmentation algorithms.

  8. Atlas-Independent, Electrophysiological Mapping of the Optimal Locus of Subthalamic Deep Brain Stimulation for the Motor Symptoms of Parkinson Disease.

    PubMed

    Conrad, Erin C; Mossner, James M; Chou, Kelvin L; Patil, Parag G

    2018-05-23

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor symptoms of Parkinson disease (PD). However, motor outcomes can be variable, perhaps due to inconsistent positioning of the active contact relative to an unknown optimal locus of stimulation. Here, we determine the optimal locus of STN stimulation in a geometrically unconstrained, mathematically precise, and atlas-independent manner, using Unified Parkinson Disease Rating Scale (UPDRS) motor outcomes and an electrophysiological neuronal stimulation model. In 20 patients with PD, we mapped motor improvement to active electrode location, relative to the individual, directly MRI-visualized STN. Our analysis included a novel, unconstrained and computational electrical-field model of neuronal activation to estimate the optimal locus of DBS. We mapped the optimal locus to a tightly defined ovoid region 0.49 mm lateral, 0.88 mm posterior, and 2.63 mm dorsal to the anatomical midpoint of the STN. On average, this locus is 11.75 lateral, 1.84 mm posterior, and 1.08 mm ventral to the mid-commissural point. Our novel, atlas-independent method reveals a single, ovoid optimal locus of stimulation in STN DBS for PD. The methodology, here applied to UPDRS and PD, is generalizable to atlas-independent mapping of other motor and non-motor effects of DBS. © 2018 S. Karger AG, Basel.

  9. Terminal field specificity of forebrain efferent axons to the pontine parabrachial nucleus and medullary reticular formation

    PubMed Central

    Zhang, Chi; Kang, Yi; Lundy, Robert F.

    2010-01-01

    The pontine parabrachial nucleus (PBN) and medullary reticular formation (RF) are hindbrain regions that, respectively, process sensory input and coordinate motor output related to ingestive behavior. Neural processing in each hindbrain site is subject to modulation originating from several forebrain structures including the insular gustatory cortex (IC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH). The present study combined electrophysiology and retrograde tracing techniques to determine the extent of overlap between neurons within the IC, BNST, CeA and LH that target both the PBN and RF. One fluorescent retrograde tracer, red (RFB) or green (GFB) latex microbeads, was injected into the gustatory PBN under electrophysiological guidance and a different retrograde tracer, GFB or fluorogold (FG), into the ipsilateral RF using the location of gustatory NST as a point of reference. Brain tissue containing each forebrain region was sectioned, scanned using a confocal microscope, and scored for the number of single and double labeled neurons. Neurons innervating the RF only, the PBN only, or both the medullary RF and PBN were observed, largely intermingled, in each forebrain region. The CeA contained the largest number of cells retrogradely labeled after tracer injection into either hindbrain region. For each forebrain area except the IC, the origin of descending input to the RF and PBN was almost entirely ipsilateral. Axons from a small percentage of hindbrain projecting forebrain neurons targeted both the PBN and RF. Target specific and non specific inputs from a variety of forebrain nuclei to the hindbrain likely reflect functional specialization in the control of ingestive behaviors. PMID:21040715

  10. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Li; Wu, Zhou; Baba, Masashi

    Research highlights: {yields} Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. {yields} CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. {yields} CB-deficiency significantly increased the mean survival ratio of injured neurons. {yields} Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, themore » understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in

  11. Vestibular signals in the parasolitary nucleus.

    PubMed

    Barmack, N H; Yakhnitsa, V

    2000-06-01

    Vestibular primary afferents project to secondary vestibular neurons located in the vestibular complex. Vestibular primary afferents also project to the uvula-nodulus of the cerebellum where they terminate on granule cells. In this report we describe the physiological properties of neurons in a "new" vestibular nucleus, the parasolitary nucleus (Psol). This nucleus consists of 2,300 GABAergic neurons that project onto the ipsilateral inferior olive (beta-nucleus and dorsomedial cell column) as well as the nucleus reticularis gigantocellularis. These olivary neurons are the exclusive source of vestibularly modulated climbing fiber inputs to the cerebellum. We recorded the activity of Psol neurons during natural vestibular stimulation in anesthetized rabbits. The rabbits were placed in a three-axis rate table at the center of a large sphere, permitting vestibular and optokinetic stimulation. We recorded from 74 neurons in the Psol and from 23 neurons in the regions bordering Psol. The activity of 72/74 Psol neurons and 4/23 non-Psol neurons was modulated by vestibular stimulation in either the pitch or roll planes but not the horizontal plane. Psol neurons responded in phase with ipsilateral side-down head position or velocity during sinusoidal stimulation. Approximately 80% of the recorded Psol neurons responded to static roll-tilt. The optimal response planes of evoked vestibular responses were inferred from measurement of null planes. Optimal response planes usually were aligned with the anatomical orientation of one of the two ipsilateral vertical semicircular canals. The frequency dependence of null plane measurements indicated a convergence of vestibular information from otoliths and semicircular canals. None of the recorded neurons evinced optokinetic sensitivity. These results are consistent with the view that Psol neurons provide the vestibular signals to the inferior olive that eventually reached the cerebellum in the form of modulated climbing fiber

  12. Hyperchlorhidrosis caused by homozygous mutation in CA12, encoding carbonic anhydrase XII.

    PubMed

    Feldshtein, Maya; Elkrinawi, Suliman; Yerushalmi, Baruch; Marcus, Barak; Vullo, Daniela; Romi, Hila; Ofir, Rivka; Landau, Daniel; Sivan, Sara; Supuran, Claudiu T; Birk, Ohad S

    2010-11-12

    Excessive chloride secretion in sweat (hyperchlorhidrosis), leading to a positive sweat test, is most commonly indicative of cystic fibrosis yet is found also in conjunction with various metabolic, endocrine, and dermatological disorders. There is conflicting evidence regarding the existence of autosomal-recessive hyperchlorhidrosis. We now describe a consanguineous Israeli Bedouin kindred with autosomal-recessive hyperchlohidrosis whose sole symptoms are visible salt precipitates after sweating, a preponderance to hyponatremic dehydration, and poor feeding and slow weight gain at infancy. Through genome-wide linkage analysis, we demonstrate that the phenotype is due to a homozygous mutation in CA12, encoding carbonic anhydrase XII. The mutant (c.427G>A [p.Glu143Lys]) protein showed 71% activity of the wild-type enzyme for catalyzing the CO₂ hydration to bicarbonate and H(+), and it bound the clinically used sulfonamide inhibitor acetazolamide with high affinity (K(I) of 10 nM). Unlike the wild-type enzyme, which is not inhibited by chloride, bromide, or iodide (K(I)s of 73-215 mM), the mutant is inhibited in the submicromolar range by these anions (K(I)s of 0.37-0.73 mM). Copyright © 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  13. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep

    PubMed Central

    Chen, Michael C.

    2016-01-01

    Abstract Rapid eye movement (REM) sleep is a recurring part of the sleep–wake cycle characterized by fast, desynchronized rhythms in the electroencephalogram (EEG), hippocampal theta activity, rapid eye movements, autonomic activation and loss of postural muscle tone (atonia). The brain circuitry governing REM sleep is located in the pontine and medullary brainstem and includes ascending and descending projections that regulate the EEG and motor components of REM sleep. The descending signal for postural muscle atonia during REM sleep is thought to originate from glutamatergic neurons of the sublaterodorsal nucleus (SLD), which in turn activate glycinergic pre‐motor neurons in the spinal cord and/or ventromedial medulla to inhibit motor neurons. Despite work over the past two decades on many neurotransmitter systems that regulate the SLD, gaps remain in our knowledge of the synaptic basis by which SLD REM neurons are regulated and in turn produce REM sleep atonia. Elucidating the anatomical, cellular and synaptic basis of REM sleep atonia control is a critical step for treating many sleep‐related disorders including obstructive sleep apnoea (apnea), REM sleep behaviour disorder (RBD) and narcolepsy with cataplexy. PMID:27060683

  14. Morphologic changes in the mesolimbic pathway in Parkinson's disease motor subtypes.

    PubMed

    Nyberg, Eric M; Tanabe, Jody; Honce, Justin M; Krmpotich, Theodore; Shelton, Erika; Hedeman, Jessica; Berman, Brian D

    2015-05-01

    Parkinson's disease (PD) is a common neurodegenerative disorder associated with gray matter atrophy. Cortical atrophy patterns may further help distinguish between PD motor subtypes. Comparable differences in subcortical volumes have not been found. Twenty-one cognitively intact and treated PD patients, including 12 tremor dominant (TD) subtype, Nine postural instability gait dominant (PIGD) subtype, and 20 matched healthy control subjects underwent 3.0 T high-resolution structural MRI scanning. Subcortical volumetric analysis was performed using FreeSurfer and shape analysis was performed with FIRST to assess for differences between PD patients and controls and between PD subtypes. No significant differences in subcortical volumes were found between motor PD subtypes, but comparing grouped PD patients with controls revealed a significant increase in hippocampal volume in PD patients (p = 0.03). A significant shape difference was detected in the right nucleus accumbens (NAcc) between PD and controls and between motor subtypes. Shape differences were driven by positive deviations in the TD subtype. Correlation analysis revealed a trend between hippocampal volume and decreasing MDS-UPDRS (p = 0.06). While no significant differences in subcortical volumes between PD motor subtypes were found, increased hippocampal volumes were observed in PD patients compared to controls. Right NAcc shape differences in PD patients were driven by changes in the TD subtype. These unexpected findings may be related to the effects of chronic dopaminergic replacement on the mesolimbic pathway. Further studies are needed to replicate and determine the clinical significance of such morphologic changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson’s disease

    PubMed Central

    Klotz, Rosa; Govindan, Rathinaswamy B.; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko

    2015-01-01

    Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson’s disease. Here, we set out to address the motor network activity and synchronization in Parkinson’s disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson’s disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with ‘stimulation on’ compared to ‘stimulation off’ on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With ‘stimulation on’, interhemispheric cortico

  16. The effect of deep brain stimulation on the speech motor system.

    PubMed

    Mücke, Doris; Becker, Johannes; Barbe, Michael T; Meister, Ingo; Liebhart, Lena; Roettger, Timo B; Dembek, Till; Timmermann, Lars; Grice, Martine

    2014-08-01

    Chronic deep brain stimulation of the nucleus ventralis intermedius is an effective treatment for individuals with medication-resistant essential tremor. However, these individuals report that stimulation has a deleterious effect on their speech. The present study investigates one important factor leading to these effects: the coordination of oral and glottal articulation. Sixteen native-speaking German adults with essential tremor, between 26 and 86 years old, with and without chronic deep brain stimulation of the nucleus ventralis intermedius and 12 healthy, age-matched subjects were recorded performing a fast syllable repetition task (/papapa/, /tatata/, /kakaka/). Syllable duration and voicing-to-syllable ratio as well as parameters related directly to consonant production, voicing during constriction, and frication during constriction were measured. Voicing during constriction was greater in subjects with essential tremor than in controls, indicating a perseveration of voicing into the voiceless consonant. Stimulation led to fewer voiceless intervals (voicing-to-syllable ratio), indicating a reduced degree of glottal abduction during the entire syllable cycle. Stimulation also induced incomplete oral closures (frication during constriction), indicating imprecise oral articulation. The detrimental effect of stimulation on the speech motor system can be quantified using acoustic measures at the subsyllabic level.

  17. 3D Protein Dynamics in the Cell Nucleus.

    PubMed

    Singh, Anand P; Galland, Rémi; Finch-Edmondson, Megan L; Grenci, Gianluca; Sibarita, Jean-Baptiste; Studer, Vincent; Viasnoff, Virgile; Saunders, Timothy E

    2017-01-10

    The three-dimensional (3D) architecture of the cell nucleus plays an important role in protein dynamics and in regulating gene expression. However, protein dynamics within the 3D nucleus are poorly understood. Here, we present, to our knowledge, a novel combination of 1) single-objective based light-sheet microscopy, 2) photoconvertible proteins, and 3) fluorescence correlation microscopy, to quantitatively measure 3D protein dynamics in the nucleus. We are able to acquire >3400 autocorrelation functions at multiple spatial positions within a nucleus, without significant photobleaching, allowing us to make reliable estimates of diffusion dynamics. Using this tool, we demonstrate spatial heterogeneity in Polymerase II dynamics in live U2OS cells. Further, we provide detailed measurements of human-Yes-associated protein diffusion dynamics in a human gastric cancer epithelial cell line. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Glucokinase activity in the arcuate nucleus regulates glucose intake

    PubMed Central

    Hussain, Syed; Richardson, Errol; Ma, Yue; Holton, Christopher; De Backer, Ivan; Buckley, Niki; Dhillo, Waljit; Bewick, Gavin; Zhang, Shuai; Carling, David; Bloom, Steve; Gardiner, James

    2014-01-01

    The brain relies on a constant supply of glucose, its primary fuel, for optimal function. A taste-independent mechanism within the CNS that promotes glucose delivery to the brain has been postulated to maintain glucose homeostasis; however, evidence for such a mechanism is lacking. Here, we determined that glucokinase activity within the hypothalamic arcuate nucleus is involved in regulation of dietary glucose intake. In fasted rats, glucokinase activity was specifically increased in the arcuate nucleus but not other regions of the hypothalamus. Moreover, pharmacologic and genetic activation of glucokinase in the arcuate nucleus of rodent models increased glucose ingestion, while decreased arcuate nucleus glucokinase activity reduced glucose intake. Pharmacologic targeting of potential downstream glucokinase effectors revealed that ATP-sensitive potassium channel and P/Q calcium channel activity are required for glucokinase-mediated glucose intake. Additionally, altered glucokinase activity affected release of the orexigenic neurotransmitter neuropeptide Y in response to glucose. Together, our results suggest that glucokinase activity in the arcuate nucleus specifically regulates glucose intake and that appetite for glucose is an important driver of overall food intake. Arcuate nucleus glucokinase activation may represent a CNS mechanism that underlies the oft-described phenomena of the “sweet tooth” and carbohydrate craving. PMID:25485685

  19. Formin' actin in the nucleus.

    PubMed

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.

  20. Mechano-adaptation of the stem cell nucleus.

    PubMed

    Heo, Su-Jin; Cosgrove, Brian D; Dai, Eric N; Mauck, Robert L

    2018-01-01

    Exogenous mechanical forces are transmitted through the cell and to the nucleus, initiating mechanotransductive signaling cascades with profound effects on cellular function and stem cell fate. A growing body of evidence has shown that the force sensing and force-responsive elements of the nucleus adapt to these mechanotransductive events, tuning their response to future mechanical input. The mechanisms underlying this "mechano-adaptation" are only just beginning to be elucidated, and it remains poorly understood how these components act and adapt in tandem to drive stem cell differentiation. Here, we review the evidence on how the stem cell nucleus responds and adapts to physical forces, and provide a perspective on how this mechano-adaptation may function to drive and enforce stem cell differentiation.

  1. Mechano-adaptation of the stem cell nucleus

    PubMed Central

    Heo, Su-Jin; Cosgrove, Brian D.; Dai, Eric N.; Mauck, Robert L.

    2018-01-01

    ABSTRACT Exogenous mechanical forces are transmitted through the cell and to the nucleus, initiating mechanotransductive signaling cascades with profound effects on cellular function and stem cell fate. A growing body of evidence has shown that the force sensing and force-responsive elements of the nucleus adapt to these mechanotransductive events, tuning their response to future mechanical input. The mechanisms underlying this “mechano-adaptation” are only just beginning to be elucidated, and it remains poorly understood how these components act and adapt in tandem to drive stem cell differentiation. Here, we review the evidence on how the stem cell nucleus responds and adapts to physical forces, and provide a perspective on how this mechano-adaptation may function to drive and enforce stem cell differentiation. PMID:29099288

  2. A New Type of Motor: Pneumatic Step Motor

    PubMed Central

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2011-01-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  3. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease

    PubMed Central

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir

    2016-01-01

    Abstract Chronic dopamine depletion in Parkinson’s disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus–cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These

  4. Parkinson's disease: increased motor network activity in the absence of movement.

    PubMed

    Ko, Ji Hyun; Mure, Hideo; Tang, Chris C; Ma, Yilong; Dhawan, Vijay; Spetsieris, Phoebe; Eidelberg, David

    2013-03-06

    We used a network approach to assess systems-level abnormalities in motor activation in humans with Parkinson's disease (PD). This was done by measuring the expression of the normal movement-related activation pattern (NMRP), a previously validated activation network deployed by healthy subjects during motor performance. In this study, NMRP expression was prospectively quantified in (15)O-water PET scans from a PD patient cohort comprised of a longitudinal early-stage group (n = 12) scanned at baseline and at two or three follow-up visits two years apart, and a moderately advanced group scanned on and off treatment with either subthalamic nucleus deep brain stimulation (n = 14) or intravenous levodopa infusion (n = 14). For each subject and condition, we measured NMRP expression during both movement and rest. Resting expression of the abnormal PD-related metabolic covariance pattern was likewise determined in the same subjects. NMRP expression was abnormally elevated (p < 0.001) in PD patients scanned in the nonmovement rest state. By contrast, network activity measured during movement did not differ from normal (p = 0.34). In the longitudinal cohort, abnormal increases in resting NMRP expression were evident at the earliest clinical stages (p < 0.05), which progressed significantly over time (p = 0.003). Analogous network changes were present at baseline in the treatment cohort (p = 0.001). These abnormalities improved with subthalamic nucleus stimulation (p < 0.005) but not levodopa (p = 0.25). In both cohorts, the changes in NMRP expression that were observed did not correlate with concurrent PD-related metabolic covariance pattern measurements (p > 0.22). Thus, the resting state in PD is characterized by changes in the activity of normal as well as pathological brain networks.

  5. Brainstem efferents from the interface between the nucleus medialis and the nucleus interpositus in the rat.

    PubMed

    Buisseret-Delmas, C; Angaut, P; Compoint, C; Diagne, M; Buisseret, P

    1998-12-14

    In a previous report (Buisseret-Delmas et al. [1993] Neurosci. Res. 16:195-207), the authors identified the interface between the cerebellar nuclei medialis and interpositus as the origin of the nuclear output from cortical zone X. They named this nuclear interface the interstitial cell group (icg). In this study, the authors analyzed the icg efferents to the brainstem by using the anterograde and retrograde tracer biotinylated dextran amine. The main targets of these efferents are from rostral to caudal: 1) the accessory oculomotor nuclear region, essentially, the interstitial nucleus of Cajal; 2) the caudoventral region of the red nucleus; 3) a dorsal zone of the nucleus reticularis tegmenti pontis; 4) restricted regions of the four main vestibular nuclei; and 5) three restricted areas in the inferior olive, one that is caudal in the medial accessory subnucleus and two others that are rostral and caudal in the dorsal accessory subnucleus, respectively. These data support the notion that the icg contributes to the control of gaze-orientation mechanisms, particularly those that are related to the vestibuloocular reflex.

  6. Prolactin-releasing peptide affects gastric motor function in rat by modulating synaptic transmission in the dorsal vagal complex.

    PubMed

    Grabauskas, Gintautas; Zhou, Shi-Yi; Das, Sudipto; Lu, Yuanxu; Owyang, Chung; Moises, Hylan C

    2004-12-15

    Prolactin-releasing peptide (PrRP) is a recently discovered neuropeptide implicated in the central control of feeding behaviour and autonomic homeostasis. PrRP-containing neurones and PrRP receptor mRNA are found in abundance in the caudal portion of the nucleus tractus solitarius (NTS), an area which together with the dorsal motor nucleus of the vagus (DMV) comprises an integrated structure, the dorsal vagal complex (DVC) that processes visceral afferent signals from and provides parasympathetic motor innervation to the gastrointestinal tract. In this study, microinjection experiments were conducted in vivo in combination with whole-cell recording from neurones in rat medullary slices to test the hypothesis that PrRP plays a role in the central control of gastric motor function, acting within the DVC to modulate the activity of preganglionic vagal motor neurones that supply the stomach. Microinjection of PrRP (0.2 pmol (20 nl)(-1)) into the DMV at the level of the area postrema (+0.2 to +0.6 mm from the calamus scriptorius, CS) markedly stimulated gastric contractions and increased intragastric pressure (IGP). Conversely, administration of peptide into the DMV at sites caudal to the obex (0.0 to -0.3 mm from the CS) decreased IGP and reduced phasic contractions. These effects occurred without change in mean arterial pressure and were abolished by ipsilateral vagotomy, indicating mediation via a vagal-dependent mechanism(s). The pattern of gastric motor responses evoked by PrRP mimicked that produced by administration of L-glutamate at the same sites, and both the effects of L-glutamate and PrRP were abolished following local administration of NMDA and non-NMDA-type glutamate receptor antagonists. On the other hand, microinjection of PrRP into the medial or comissural nucleus of the solitary tract (mNTS and comNTS, respectively) resulted in less robust changes in IGP in a smaller percentage of animals, accompanied by marked alterations in arterial pressure

  7. Prolactin-releasing peptide affects gastric motor function in rat by modulating synaptic transmission in the dorsal vagal complex

    PubMed Central

    Grabauskas, Gintautas; Zhou, Shi-Yi; Das, Sudipto; Lu, Yuanxu; Owyang, Chung; Moises, Hylan C

    2004-01-01

    Prolactin-releasing peptide (PrRP) is a recently discovered neuropeptide implicated in the central control of feeding behaviour and autonomic homeostasis. PrRP-containing neurones and PrRP receptor mRNA are found in abundance in the caudal portion of the nucleus tractus solitarius (NTS), an area which together with the dorsal motor nucleus of the vagus (DMV) comprises an integrated structure, the dorsal vagal complex (DVC) that processes visceral afferent signals from and provides parasympathetic motor innervation to the gastrointestinal tract. In this study, microinjection experiments were conducted in vivo in combination with whole-cell recording from neurones in rat medullary slices to test the hypothesis that PrRP plays a role in the central control of gastric motor function, acting within the DVC to modulate the activity of preganglionic vagal motor neurones that supply the stomach. Microinjection of PrRP (0.2 pmol (20 nl)−1) into the DMV at the level of the area postrema (+0.2 to +0.6 mm from the calamus scriptorius, CS) markedly stimulated gastric contractions and increased intragastric pressure (IGP). Conversely, administration of peptide into the DMV at sites caudal to the obex (0.0 to −0.3 mm from the CS) decreased IGP and reduced phasic contractions. These effects occurred without change in mean arterial pressure and were abolished by ipsilateral vagotomy, indicating mediation via a vagal-dependent mechanism(s). The pattern of gastric motor responses evoked by PrRP mimicked that produced by administration of l-glutamate at the same sites, and both the effects of l-glutamate and PrRP were abolished following local administration of NMDA and non-NMDA-type glutamate receptor antagonists. On the other hand, microinjection of PrRP into the medial or comissural nucleus of the solitary tract (mNTS and comNTS, respectively) resulted in less robust changes in IGP in a smaller percentage of animals, accompanied by marked alterations in arterial pressure

  8. Finding of increased caudate nucleus in patients with Alzheimer's disease.

    PubMed

    Persson, K; Bohbot, V D; Bogdanovic, N; Selbaek, G; Braekhus, A; Engedal, K

    2018-02-01

    A recently published study using an automated MRI volumetry method (NeuroQuant®) unexpectedly demonstrated larger caudate nucleus volume in patients with Alzheimer's disease dementia (AD) compared to patients with subjective and mild cognitive impairment (SCI and MCI). The aim of this study was to explore this finding. The caudate nucleus and the hippocampus volumes were measured (both expressed as ratios of intracranial volume) in a total of 257 patients with SCI and MCI according to the Winblad criteria and AD according to ICD-10 criteria. Demographic data, cognitive measures, and APOE-ɛ4 status were collected. Compared with non-dementia patients (SCI and MCI), AD patients were older, more of them were female, and they had a larger caudate nucleus volume and smaller hippocampus volume (P<.001). In multiple linear regression analysis, age and female sex were associated with larger caudate nucleus volume, but neither diagnosis nor memory function was. Age, gender, and memory function were associated with hippocampus volume, and age and memory function were associated with caudate nucleus/hippocampus ratio. A larger caudate nucleus volume in AD patients was partly explained by older age and being female. These results are further discussed in the context of (1) the caudate nucleus possibly serving as a mechanism for temporary compensation; (2) methodological properties of automated volumetry of this brain region; and (3) neuropathological alterations. Further studies are needed to fully understand the role of the caudate nucleus in AD. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Global dysrhythmia of cerebro-basal ganglia-cerebellar networks underlies motor tics following striatal disinhibition.

    PubMed

    McCairn, Kevin W; Iriki, Atsushi; Isoda, Masaki

    2013-01-09

    Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.

  10. [Pure trigeminal motor neuropathy presenting with temporo-mandibular joint dysfunction in a patient with HIV and HCV infections].

    PubMed

    Anheim, M; Echaniz-Laguna, A; Rey, D; Tranchant, C

    2006-01-01

    Pure trigeminal motor neuropathy (PTMN) is a rarely described condition. We report the case of a 41-year-old woman infected with the human immunodeficiency virus (HIV1) and hepatitis C virus who presented with weakness of left temporalis and masseter muscles and painful left temporomandibular joint dysfunction (TMD) a few months after cerebral toxoplasmosis revealing acquired immunodeficiency syndrome (AIDS). Magnetic resonance imaging revealed severe wasting and fat replacement of the left temporalis, pterygoid and masseter muscles and showed neither abnormalities in the left motor nucleus of the trigeminal nerve nor compression of the left trigeminal nerve. Electromyographic examination gave evidence of denervation in the left temporalis, masseter and pterygoid muscles and blink reflex studies were normal, confirming the diagnosis of PTMN which was probably secondary to HIV and HCV co-infection.

  11. In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience.

    PubMed

    Monfils, Marie-H; Plautz, Erik J; Kleim, Jeffrey A

    2005-10-01

    Motor skill acquisition occurs through modification and organization of muscle synergies into effective movement sequences. The learning process is reflected neurophysiologically as a reorganization of movement representations within the primary motor cortex, suggesting that the motor map is a motor engram. However, the specific neural mechanisms underlying map plasticity are unknown. Here the authors review evidence that 1) motor map topography reflects the capacity for skilled movement, 2) motor skill learning induces reorganization of motor maps in a manner that reflects the kinematics of acquired skilled movement, 3) map plasticity is supported by a reorganization of cortical microcircuitry involving changes in synaptic efficacy, and 4) motor map integrity and topography are influenced by various neurochemical signals that coordinate changes in cortical circuitry to encode motor experience. Finally, the role of motor map plasticity in recovery of motor function after brain damage is discussed.

  12. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson's disease.

    PubMed

    Weiss, Daniel; Klotz, Rosa; Govindan, Rathinaswamy B; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko; Gharabaghi, Alireza

    2015-03-01

    Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson's disease. Here, we set out to address the motor network activity and synchronization in Parkinson's disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson's disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with 'stimulation on' compared to 'stimulation off' on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With 'stimulation on', interhemispheric cortico

  13. Non-motor outcomes of subthalamic stimulation in Parkinson's disease depend on location of active contacts.

    PubMed

    Dafsari, Haidar Salimi; Petry-Schmelzer, Jan Niklas; Ray-Chaudhuri, K; Ashkan, Keyoumars; Weis, Luca; Dembek, Till A; Samuel, Michael; Rizos, Alexandra; Silverdale, Monty; Barbe, Michael T; Fink, Gereon R; Evans, Julian; Martinez-Martin, Pablo; Antonini, Angelo; Visser-Vandewalle, Veerle; Timmermann, Lars

    2018-03-16

    Subthalamic nucleus (STN) deep brain stimulation (DBS) improves quality of life (QoL), motor, and non-motor symptoms (NMS) in Parkinson's disease (PD). Few studies have investigated the influence of the location of neurostimulation on NMS. To investigate the impact of active contact location on NMS in STN-DBS in PD. In this prospective, open-label, multicenter study including 50 PD patients undergoing bilateral STN-DBS, we collected NMSScale (NMSS), NMSQuestionnaire (NMSQ), Hospital Anxiety and Depression Scale (anxiety/depression, HADS-A/-D), PDQuestionnaire-8 (PDQ-8), Scales for Outcomes in PD-motor examination, motor complications, activities of daily living (ADL), and levodopa equivalent daily dose (LEDD) preoperatively and at 6 months follow-up. Changes were analyzed with Wilcoxon signed-rank/t-test and Bonferroni-correction for multiple comparisons. Although the STN was targeted visually, we employed an atlas-based approach to explore the relationship between active contact locations and DBS outcomes. Based on fused MRI/CT-images, we identified Cartesian coordinates of active contacts with patient-specific Mai-atlas standardization. We computed linear mixed-effects models with x-/y-/z-coordinates as independent, hemispheres as within-subject, and test change scores as dependent variables. NMSS, NMSQ, PDQ-8, motor examination, complications, and LEDD significantly improved at follow-up. Linear mixed-effect models showed that NMS and QoL improvement significantly depended on more medial (HADS-D, NMSS), anterior (HADS-D, NMSQ, PDQ-8), and ventral (HADS-A/-D, NMSS, PDQ-8) neurostimulation. ADL improved more in posterior, LEDD in lateral neurostimulation locations. No relationship was observed for motor examination and complications scores. Our study provides evidence that more anterior, medial, and ventral STN-DBS is significantly related to more beneficial non-motor outcomes. Copyright © 2018. Published by Elsevier Inc.

  14. Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device.

    PubMed

    Coogan, Jessica S; Francis, W Loren; Eliason, Travis D; Bredbenner, Todd L; Stemper, Brian D; Yoganandan, Narayan; Pintar, Frank A; Nicolella, Daniel P

    2016-01-01

    Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3-L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3-L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the

  15. Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device

    PubMed Central

    Coogan, Jessica S.; Francis, W. Loren; Eliason, Travis D.; Bredbenner, Todd L.; Stemper, Brian D.; Yoganandan, Narayan; Pintar, Frank A.; Nicolella, Daniel P.

    2016-01-01

    Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3–L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3–L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with

  16. Outcomes from stimulation of the caudal zona incerta and pedunculopontine nucleus in patients with Parkinson's disease.

    PubMed

    Khan, Sadaquate; Mooney, Lucy; Plaha, Puneet; Javed, Shazia; White, Paul; Whone, Alan L; Gill, Steven S

    2011-04-01

    Axial symptoms including postural instability, falls and failure of gait initiation are some of the most disabling motor symptoms of Parkinson's disease (PD). We performed bilateral deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) in combination with the caudal zona incerta (cZi) in order to determine their efficacy in alleviating these symptoms. Seven patients with predominant axial symptoms in both the 'on' and 'off' medication states underwent bilateral cZi and PPN DBS. Motor outcomes were assessed using the motor component of the Unified Parkinson's Disease Rating Scale (UPDRS 3) and a composite axial subscore was derived from items 27, 28, 29 and 30 (arising from chair, posture, gait and postural stability). Quality of life was measured using the PDQ39. Comparisons were made between scores obtained at baseline and those at a mean follow-up of 12 months. In both the off and on medication states, a statistically significant improvement in the UPDRS part 3 score was achieved by stimulation of the PPN, cZi and both in combination. In the off medication state, our composite axial subscore of the UPDRS part 3 improved with stimulation of the PPN, cZi and both in combination. The composite axial subscore, in the 'on' medication state, however, only showed a statistically significant improvement when a combination of cZi and PPN stimulation was used. This study provides evidence that a combination of PPN and cZi stimulation can achieve a significant improvement in the hitherto untreatable 'on' medication axial symptoms of PD.

  17. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease.

    PubMed

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-05-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the

  18. The Nucleus Accumbens and Pavlovian Reward Learning

    PubMed Central

    Day, Jeremy J.

    2011-01-01

    The ability to form associations between predictive environmental events and rewarding outcomes is a fundamental aspect of learned behavior. This apparently simple ability likely requires complex neural processing evolved to identify, seek, and utilize natural rewards and redirect these activities based on updated sensory information. Emerging evidence from both animal and human research suggests that this type of processing is mediated in part by the nucleus accumbens and a closely associated network of brain structures. The nucleus accumbens is required for a number of reward-related behaviors, and processes specific information about reward availability, value, and context. Additionally, this structure is critical for the acquisition and expression of most Pavlovian stimulus-reward relationships, and cues that predict rewards produce robust changes in neural activity in the nucleus accumbens. While processing within the nucleus accumbens may enable or promote Pavlovian reward learning in natural situations, it has also been implicated in aspects of human drug addiction, including the ability of drug-paired cues to control behavior. This article will provide a critical review of the existing animal and human literature concerning the role of the NAc in Pavlovian learning with non-drug rewards and consider some clinical implications of these findings. PMID:17404375

  19. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution.

    PubMed

    Cavalier-Smith, Thomas

    2010-02-04

    The transition from prokaryotes to eukaryotes was the most radical change in cell organisation since life began, with the largest ever burst of gene duplication and novelty. According to the coevolutionary theory of eukaryote origins, the fundamental innovations were the concerted origins of the endomembrane system and cytoskeleton, subsequently recruited to form the cell nucleus and coevolving mitotic apparatus, with numerous genetic eukaryotic novelties inevitable consequences of this compartmentation and novel DNA segregation mechanism. Physical and mutational mechanisms of origin of the nucleus are seldom considered beyond the long-standing assumption that it involved wrapping pre-existing endomembranes around chromatin. Discussions on the origin of sex typically overlook its association with protozoan entry into dormant walled cysts and the likely simultaneous coevolutionary, not sequential, origin of mitosis and meiosis. I elucidate nuclear and mitotic coevolution, explaining the origins of dicer and small centromeric RNAs for positionally controlling centromeric heterochromatin, and how 27 major features of the cell nucleus evolved in four logical stages, making both mechanisms and selective advantages explicit: two initial stages (origin of 30 nm chromatin fibres, enabling DNA compaction; and firmer attachment of endomembranes to heterochromatin) protected DNA and nascent RNA from shearing by novel molecular motors mediating vesicle transport, division, and cytoplasmic motility. Then octagonal nuclear pore complexes (NPCs) arguably evolved from COPII coated vesicle proteins trapped in clumps by Ran GTPase-mediated cisternal fusion that generated the fenestrated nuclear envelope, preventing lethal complete cisternal fusion, and allowing passive protein and RNA exchange. Finally, plugging NPC lumens by an FG-nucleoporin meshwork and adopting karyopherins for nucleocytoplasmic exchange conferred compartmentation advantages. These successive changes took place

  20. Parabrachial origin of calcitonin gene-related peptide-immunoreactive axons innervating Meynert's basal nucleus.

    PubMed

    Knyihár-Csillik, E; Boncz, I; Sáry, G; Nemcsók, J; Csillik, B

    1999-06-01

    Meynert's basal nucleus is innervated by calcitonin gene-related peptide (CGRP)-immunoreactive axons synapsing with cholinergic principal cells. Origin of CGRP-immunopositive axons was studied in the albino rat. Since beaded axons containing the nicotinic acetylcholine receptor (nAChR) are also present in the basal nucleus, the microstructural arrangement raises the question whether or not an interaction between CGRP and nAChR exists like in the neuromuscular junction. We found that electrolytic lesion of the parabrachial nucleus results in degeneration of CGRP-immunoreactive axons in the ipsilateral nucleus basalis and induces shrinkage of principal cholinergic neurons while the contralateral nucleus basalis remains intact. Electrolytic lesions in the thalamus, caudate-putamen, and hippocampus did not induce alterations in Meynert's basal nucleus. Disappearance of CGRP after lesions of the parabrachial nucleus does not impair presynaptic nAChR in the basal nucleus, suggesting that, unlike in the neuromuscular junction, CGRP is not involved in the maintenance of nAChR in the basal forebrain. It is concluded that the parabrachial nucleus is involved in the activation of the nucleus basalis-prefrontal cortex system, essential in gnostic and mnemonic functions. Copyright 1999 Academic Press.

  1. What neurophysiological recordings tell us about cognitive and behavioral functions of the human subthalamic nucleus.

    PubMed

    Marceglia, Sara; Fumagalli, Manuela; Priori, Alberto

    2011-01-01

    The behavioral implications of deep brain stimulation (DBS) observed in Parkinson's disease patients provided evidence for a possible nonexclusively motor role of the subthalamic nucleus (STN) in basal ganglia circuitry. Basal ganglia pathophysiology can be studied directly by the analysis of neural rhythms measured in local field potentials recorded through DBS electrodes. Recent studies demonstrated that specific oscillations in the STN are involved in cognitive and behavioral information processing: action representation is mediated through β oscillations (13-35 Hz); cognitive information related to decision-making processes is mediated through the low-frequency oscillation (5-12 Hz); and limbic and emotional information is mediated through the α oscillation (8-12 Hz). These results revealed an important involvement of STN in decisional processes, cognitive functions, emotion control and conflict that could explain the post-DBS occurrence of behavioral disturbances.

  2. Management of non-motor complications in Parkinson's disease.

    PubMed

    Fujimoto, Ken-ichi

    2009-08-01

    This paper summarizes the methods we devised for the treatment of psychosis, orthostatic hypotension, and mood disorders among the various non-motor complications of Parkinson's disease. Psychosis may not manifest when a patient believes in his/her delusions. If left untreated over a prolonged period, however, the delusions progress to paranoia that is very difficult to cure. Accordingly, enquiries should be made during routine examinations to detect the presence of psychosis and facilitate early discovery. Atypical antipsychotics are used when psychosis does not improve after reducing the doses of antiparkinson drugs. We achieved favorable results by using mianserin hydrochloride prior to this step, with efficacy being observed for hallucinations and mild delusions that often manifested at night. This drug does not act as a dopamine receptor blocker, so it has the advantage of not aggravating motor symptoms. With this therapy, it is also possible to improve motor symptoms without inducing psychosis by reducing the doses of antiparkinson drugs and locally stimulating the motor loop by deep brain stimulation of the subthalamic nucleus. We previously introduced leg-holding exercises for the treatment of orthostatic hypotension, through which blood pooled in the veins is returned to the systemic circulation by holding the knees. This can be done easily and is free of adverse reactions. Mood disorders are difficult to cope with in patients with Parkinson's disease, but may be treated by selecting an appropriate dopamine agonist while giving consideration to affinity for the dopamine D3 receptor. However, treatment becomes complicated when the dopamine receptor is overstimulated. Here we report on cases of successfully treated pathological gambling and dopamine dysregulation syndrome, which are considered difficult to manage. The solution may differ depending on a patient's environment, and it is not easy to prescribe therapy based on evidence-based medicine. The best

  3. Dynamic, mechanical integration between nucleus and cell- where physics meets biology.

    PubMed

    Dickinson, Richard B; Neelam, Srujana; Lele, Tanmay P

    2015-01-01

    Nuclear motions like rotation, translation and deformation suggest that the nucleus is acted upon by mechanical forces. Molecular linkages with the cytoskeleton are thought to transfer forces to the nuclear surface. We developed an approach to apply reproducible, known mechanical forces to the nucleus in spread adherent cells and quantified the elastic response of the mechanically integrated nucleus-cell. The method is sensitive to molecular perturbations and revealed new insight into the function of the LINC complex. While these experiments revealed elastic behaviors, turnover of the cytoskeleton by assembly/disassembly and binding/unbinding of linkages are expected to dissipate any stored mechanical energy in the nucleus or the cytoskeleton. Experiments investigating nuclear forces over longer time scales demonstrated the mechanical principle that expansive/compressive stresses on the nuclear surface arise from the movement of the cell boundaries to shape and position the nucleus. Such forces can shape the nucleus to conform to cell shapes during cell movements with or without myosin activity.

  4. Dynamic, mechanical integration between nucleus and cell- where physics meets biology

    PubMed Central

    Dickinson, Richard B; Neelam, Srujana; Lele, Tanmay P

    2015-01-01

    Nuclear motions like rotation, translation and deformation suggest that the nucleus is acted upon by mechanical forces. Molecular linkages with the cytoskeleton are thought to transfer forces to the nuclear surface. We developed an approach to apply reproducible, known mechanical forces to the nucleus in spread adherent cells and quantified the elastic response of the mechanically integrated nucleus-cell. The method is sensitive to molecular perturbations and revealed new insight into the function of the LINC complex. While these experiments revealed elastic behaviors, turnover of the cytoskeleton by assembly/disassembly and binding/unbinding of linkages are expected to dissipate any stored mechanical energy in the nucleus or the cytoskeleton. Experiments investigating nuclear forces over longer time scales demonstrated the mechanical principle that expansive/compressive stresses on the nuclear surface arise from the movement of the cell boundaries to shape and position the nucleus. Such forces can shape the nucleus to conform to cell shapes during cell movements with or without myosin activity. PMID:26338356

  5. Restoring Segmental Biomechanics Through Nucleus Augmentation: An In Vitro Study.

    PubMed

    Pelletier, Matthew H; Cohen, Charles S; Ducheyne, Paul; Walsh, William R

    2016-12-01

    In vitro biomechanical laboratory study. The purpose of this study is to evaluate a mechanical treatment to create a degenerative motion segment and the ability of nucleus augmentation to restore biomechanics. In cases with an intact annulus fibrosus, the replacement or augmentation of the nucleus pulposus alone may provide a less invasive option to restore normal biomechanics and disk height when compared with spinal fusion or total disk replacement. Laboratory testing allows these changes to be fully characterized. However, without preexisting pathology, nucleus augmentation therapies are difficult to evaluate in vitro. The present study evaluated pure moment bending and compressive biomechanics in 3 states (n=6): (1) intact, (2) after creep loading and nucleus disruption to induce degenerative biomechanical changes, and (3) after nucleus augmentation through an injectable polymer (DiscCell). Neutral zone and ROM were increased in all modes of bending after the degenerative treatment. The most sensitive mode of bending was lateral bending, with intact ROM (20.0±2.9 degrees) increased to 22.3±2.6 degrees after degenerative treatment and reduced to 18.4±1.6 degrees after injection of the polymer. All bending ROM and NZ changes induced by the degenerative treatment were reversed by nucleus augmentation. This material was shown to be effective at altering motion segment biomechanics and restoring disk height during time zero tests. This technique may provide a model to examine the time zero performance of a nucleus augmentation device/material.

  6. Localization of beta and high-frequency oscillations within the subthalamic nucleus region.

    PubMed

    van Wijk, B C M; Pogosyan, A; Hariz, M I; Akram, H; Foltynie, T; Limousin, P; Horn, A; Ewert, S; Brown, P; Litvak, V

    2017-01-01

    Parkinsonian bradykinesia and rigidity are typically associated with excessive beta band oscillations in the subthalamic nucleus. Recently another spectral peak has been identified that might be implicated in the pathophysiology of the disease: high-frequency oscillations (HFO) within the 150-400 Hz range. Beta-HFO phase-amplitude coupling (PAC) has been found to correlate with severity of motor impairment. However, the neuronal origin of HFO and its usefulness as a potential target for deep brain stimulation remain to be established. For example, it is unclear whether HFO arise from the same neural populations as beta oscillations. We intraoperatively recorded local field potentials from the subthalamic nucleus while advancing DBS electrodes in 2 mm steps from 4 mm above the surgical target point until 2 mm below, resulting in 4 recording sites. Data from 26 nuclei from 14 patients were analysed. For each trajectory, we identified the recording site with the largest spectral peak in the beta range (13-30 Hz), and the largest peak in the HFO range separately. In addition, we identified the recording site with the largest beta-HFO PAC. Recording sites with largest beta power and largest HFO power coincided in 50% of cases. In the other 50%, HFO was more likely to be detected at a more superior recording site in the target area. PAC followed more closely the site with largest HFO (45%) than beta power (27%). HFO are likely to arise from spatially close, but slightly more superior neural populations than beta oscillations. Further work is necessary to determine whether the different activities can help fine-tune deep brain stimulation targeting.

  7. Constraining in-medium nucleon-nucleon interactions via nucleus-nucleus reactions

    NASA Astrophysics Data System (ADS)

    Sammarruca, Francesca; White, Larz

    2010-11-01

    The nuclear equation of state is a broadly useful tool. Besides being the main input of stellar structure calculations, it allows a direct connection to the physics of nuclei. For instance, an energy functional (such as a mass formula), together with the energy/particle in nuclear matter, can be used to predict nuclear energies and radii [1]. The single-particle properties are also a key point to link infinite nuclear matter and actual nuclei. The parameters of the single-particle potential, in particular the effective mass, enter the calculations of, for instance, in-medium effective cross sections. From the well-known Glauber reaction theory, the total nucleus-nucleus reaction cross section is expressed in terms of the nuclear transparency, which, in turn, depends on the overlap of the nuclear density distributions and the elementary nucleon-nucleon (NN) cross sections. We explore the sensitivity of the reaction calculation to medium modifications of the NN cross sections to estimate the likelihood of constraining the latter through nuclear reactions. Ultimately, we wish to incorporate isospin asymmetry in the reaction model, having in mind connections with rare isotopes. [1] F. Sammarruca, arXiv:1002.00146 [nucl-th]; International Journal of Modern Physics, in press.

  8. Subthalamic nucleus stimulation impairs emotional conflict adaptation in Parkinson's disease.

    PubMed

    Irmen, Friederike; Huebl, Julius; Schroll, Henning; Brücke, Christof; Schneider, Gerd-Helge; Hamker, Fred H; Kühn, Andrea A

    2017-10-01

    The subthalamic nucleus (STN) occupies a strategic position in the motor network, slowing down responses in situations with conflicting perceptual input. Recent evidence suggests a role of the STN in emotion processing through strong connections with emotion recognition structures. As deep brain stimulation (DBS) of the STN in patients with Parkinson's disease (PD) inhibits monitoring of perceptual and value-based conflict, STN DBS may also interfere with emotional conflict processing. To assess a possible interference of STN DBS with emotional conflict processing, we used an emotional Stroop paradigm. Subjects categorized face stimuli according to their emotional expression while ignoring emotionally congruent or incongruent superimposed word labels. Eleven PD patients ON and OFF STN DBS and eleven age-matched healthy subjects conducted the task. We found conflict-induced response slowing in healthy controls and PD patients OFF DBS, but not ON DBS, suggesting STN DBS to decrease adaptation to within-trial conflict. OFF DBS, patients showed more conflict-induced slowing for negative conflict stimuli, which was diminished by STN DBS. Computational modelling of STN influence on conflict adaptation disclosed DBS to interfere via increased baseline activity. © The Author (2017). Published by Oxford University Press.

  9. The Movement Disorder Society Evidence-Based Medicine Review Update: Treatments for the motor symptoms of Parkinson's disease.

    PubMed

    Fox, Susan H; Katzenschlager, Regina; Lim, Shen-Yang; Ravina, Bernard; Seppi, Klaus; Coelho, Miguel; Poewe, Werner; Rascol, Olivier; Goetz, Christopher G; Sampaio, Cristina

    2011-10-01

    The objective was to update previous evidence-based medicine reviews of treatments for motor symptoms of Parkinson's disease published between 2002 and 2005. Level I (randomized, controlled trial) reports of pharmacological, surgical, and nonpharmacological interventions for the motor symptoms of Parkinson's disease between January 2004 (2001 for nonpharmacological) and December 2010 were reviewed. Criteria for inclusion, clinical indications, ranking, efficacy conclusions, safety, and implications for clinical practice followed the original program outline and adhered to evidence-based medicine methodology. Sixty-eight new studies qualified for review. Piribedil, pramipexole, pramipexole extended release, ropinirole, rotigotine, cabergoline, and pergolide were all efficacious as symptomatic monotherapy; ropinirole prolonged release was likely efficacious. All were efficacious as a symptomatic adjunct except pramipexole extended release, for which there is insufficient evidence. For prevention/delay of motor fluctuations, pramipexole and cabergoline were efficacious, and for prevention/delay of dyskinesia, pramipexole, ropinirole, ropinirole prolonged release, and cabergoline were all efficacious, whereas pergolide was likely efficacious. Duodenal infusion of levodopa was likely efficacious in the treatment of motor complications, but the practice implication is investigational. Entacapone was nonefficacious as a symptomatic adjunct to levodopa in nonfluctuating patients and nonefficacious in the prevention/delay of motor complications. Rasagiline conclusions were revised to efficacious as a symptomatic adjunct, and as treatment for motor fluctuations. Clozapine was efficacious in dyskinesia, but because of safety issues, the practice implication is possibly useful. Bilateral subthalamic nucleus deep brain stimulation, bilateral globus pallidus stimulation, and unilateral pallidotomy were updated to efficacious for motor complications. Physical therapy was revised

  10. The Confined Hydrogen Atom with a Moving Nucleus

    ERIC Educational Resources Information Center

    Fernandez, Francisco M.

    2010-01-01

    We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first-order perturbation theory and show that it is greater than that for the case in which the nucleus is clamped…

  11. PREFACE: 11th International Conference on Nucleus-Nucleus Collisions (NN2012)

    NASA Astrophysics Data System (ADS)

    Li, Bao-An; Natowitz, Joseph B.

    2013-03-01

    The 11th International Conference on Nucleus-Nucleus Collisions (NN2012) was held from 27 May to 1 June 2012, in San Antonio, Texas, USA. It was jointly organized and hosted by The Cyclotron Institute at Texas A&M University, College Station and The Department of Physics and Astronomy at Texas A&M University-Commerce. Among the approximately 300 participants were a large number of graduate students and post-doctoral fellows. The Keynote Talk of the conference, 'The State of Affairs of Present and Future Nucleus-Nucleus Collision Science', was given by Dr Robert Tribble, University Distinguished Professor and Director of the TAMU Cyclotron Institute. During the conference a very well-received public lecture on neutrino astronomy, 'The ICEcube project', was given by Dr Francis Halzen, Hilldale and Gregory Breit Distinguished Professor at the University of Wisconsin, Madison. The Scientific program continued in the general spirit and intention of this conference series. As is typical of this conference a broad range of topics including fundamental areas of nuclear dynamics, structure, and applications were addressed in 42 plenary session talks, 150 parallel session talks, and 21 posters. The high quality of the work presented emphasized the vitality and relevance of the subject matter of this conference. Following the tradition, the NN2012 International Advisory Committee selected the host and site of the next conference in this series. The 12th International Conference on Nucleus-Nucleus Collisions (NN2015) will be held 21-26 June 2015 in Catania, Italy. It will be hosted by The INFN, Laboratori Nazionali del Sud, INFN, Catania and the Dipartimento di Fisica e Astronomia of the University of Catania. The NN2012 Proceedings contains the conference program and 165 articles organized into the following 10 sections 1. Heavy and Superheavy Elements 2. QCD and Hadron Physics 3. Relativistic Heavy-Ion Collisions 4. Nuclear Structure 5. Nuclear Energy and Applications of

  12. Study of the peculiarities of multiparticle production via event-by-event analysis in asymmetric nucleus-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Fedosimova, Anastasiya; Gaitinov, Adigam; Grushevskaya, Ekaterina; Lebedev, Igor

    2017-06-01

    In this work the study on the peculiarities of multiparticle production in interactions of asymmetric nuclei to search for unusual features of such interactions, is performed. A research of long-range and short-range multiparticle correlations in the pseudorapidity distribution of secondary particles on the basis of analysis of individual interactions of nuclei of 197 Au at energy 10.7 AGeV with photoemulsion nuclei, is carried out. Events with long-range multiparticle correlations (LC), short-range multiparticle correlations (SC) and mixed type (MT) in pseudorapidity distribution of secondary particles, are selected by the Hurst method in accordance with Hurst curve behavior. These types have significantly different characteristics. At first, they have different fragmentation parameters. Events of LC type are processes of full destruction of the projectile nucleus, in which multicharge fragments are absent. In events of mixed type several multicharge fragments of projectile nucleus are discovered. Secondly, these two types have significantly different multiplicity distribution. The mean multiplicity of LC type events is significantly more than in mixed type events. On the basis of research of the dependence of multiplicity versus target-nuclei fragments number for events of various types it is revealed, that the most considerable multiparticle correlations are observed in interactions of the mixed type, which correspond to the central collisions of gold nuclei and nuclei of CNO-group, i.e. nuclei with strongly asymmetric volume, nuclear mass, charge, etc. Such events are characterised by full destruction of the target-nucleus and the disintegration of the projectile-nucleus on several multi-charged fragments.

  13. Statistical analysis of secondary particle distributions in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The use is described of several statistical techniques to characterize structure in the angular distributions of secondary particles from nucleus-nucleus collisions in the energy range 24 to 61 GeV/nucleon. The objective of this work was to determine whether there are correlations between emitted particle intensity and angle that may be used to support the existence of the quark gluon plasma. The techniques include chi-square null hypothesis tests, the method of discrete Fourier transform analysis, and fluctuation analysis. We have also used the method of composite unit vectors to test for azimuthal asymmetry in a data set of 63 JACEE-3 events. Each method is presented in a manner that provides the reader with some practical detail regarding its application. Of those events with relatively high statistics, Fe approaches 0 at 55 GeV/nucleon was found to possess an azimuthal distribution with a highly non-random structure. No evidence of non-statistical fluctuations was found in the pseudo-rapidity distributions of the events studied. It is seen that the most effective application of these methods relies upon the availability of many events or single events that possess very high multiplicities.

  14. The dynamic landscape of the cell nucleus.

    PubMed

    Austin, Christopher M; Bellini, Michel

    2010-01-01

    While the cell nucleus was described for the first time almost two centuries ago, our modern view of the nuclear architecture is primarily based on studies from the last two decades. This surprising late start coincides with the development of new, powerful strategies to probe for the spatial organization of nuclear activities in both fixed and live cells. As a result, three major principles have emerged: first, the nucleus is not just a bag filled with nucleic acids and proteins. Rather, many distinct functional domains, including the chromosomes, resides within the confines of the nuclear envelope. Second, all these nuclear domains are highly dynamic, with molecules exchanging rapidly between them and the surrounding nucleoplasm. Finally, the motion of molecules within the nucleoplasm appears to be mostly driven by random diffusion. Here, the emerging roles of several subnuclear domains are discussed in the context of the dynamic functions of the cell nucleus.

  15. On the globality of motor suppression: unexpected events and their influence on behavior and cognition

    PubMed Central

    Wessel, Jan R.; Aron, Adam R.

    2016-01-01

    SUMMARY Unexpected events are part of everyday experience. They come in several varieties – action errors, unexpected action outcomes, and unexpected perceptual events – and they lead to motor slowing and cognitive distraction. While different varieties of unexpected events have been studied largely independently, and many different mechanisms are thought to explain their effects on action and cognition, we suggest a unifying theory. We propose that unexpected events recruit a fronto-basal-ganglia network for stopping. This network includes specific prefrontal cortical nodes and is posited to project to the subthalamic nucleus, with a putative global suppressive effect on basal-ganglia output. We argue that unexpected events interrupt action and impact cognition, partly at least, by recruiting this global suppressive network. This provides a common mechanistic basis for different types of unexpected events, links the literatures on motor inhibition, performance-monitoring, attention, and working memory, and is relevant for understanding clinical symptoms of distractibility and mental inflexibility. PMID:28103476

  16. On the Globality of Motor Suppression: Unexpected Events and Their Influence on Behavior and Cognition.

    PubMed

    Wessel, Jan R; Aron, Adam R

    2017-01-18

    Unexpected events are part of everyday experience. They come in several varieties-action errors, unexpected action outcomes, and unexpected perceptual events-and they lead to motor slowing and cognitive distraction. While different varieties of unexpected events have been studied largely independently, and many different mechanisms are thought to explain their effects on action and cognition, we suggest a unifying theory. We propose that unexpected events recruit a fronto-basal-ganglia network for stopping. This network includes specific prefrontal cortical nodes and is posited to project to the subthalamic nucleus, with a putative global suppressive effect on basal-ganglia output. We argue that unexpected events interrupt action and impact cognition, partly at least, by recruiting this global suppressive network. This provides a common mechanistic basis for different types of unexpected events; links the literatures on motor inhibition, performance monitoring, attention, and working memory; and is relevant for understanding clinical symptoms of distractibility and mental inflexibility. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?

    PubMed Central

    Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob

    2016-01-01

    Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery. PMID:28154614

  18. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?

    PubMed

    Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob

    2016-01-01

    Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery.

  19. At the interface of the auditory and vocal motor systems: NIf and its role in vocal processing, production and learning.

    PubMed

    Lewandowski, Brian; Vyssotski, Alexei; Hahnloser, Richard H R; Schmidt, Marc

    2013-06-01

    Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC's auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf's involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans. Copyright © 2013 Elsevier

  20. At the interface of the auditory and vocal motor systems: NIf and its role in vocal processing, production and learning

    PubMed Central

    Lewandowski, Brian; Vyssotski, Alexei; Hahnloser, Richard H.R.; Schmidt, Marc

    2015-01-01

    Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC’s auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf’s involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans. PMID:23603062

  1. The functional alterations associated with motor imagery training: a comparison between motor execution and motor imagery of sequential finger tapping

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Yao, Li; Long, Zhiying

    2011-03-01

    Motor imagery training, as an effective strategy, has been more and more applied to mental disorders rehabilitation and motor skill learning. Studies on the neural mechanism underlying motor imagery have suggested that such effectiveness may be related to the functional congruence between motor execution and motor imagery. However, as compared to the studies on motor imagery, the studies on motor imagery training are much fewer. The functional alterations associated with motor imagery training and the effectiveness of motor imagery training on motor performance improvement still needs further investigation. Using fMRI, we employed a sequential finger tapping paradigm to explore the functional alterations associated with motor imagery training in both motor execution and motor imagery task. We hypothesized through 14 consecutive days motor imagery training, the motor performance could be improved and the functional congruence between motor execution and motor imagery would be sustained form pre-training phase to post-training phase. Our results confirmed the effectiveness of motor imagery training in improving motor performance and demonstrated in both pre and post-training phases, motor imagery and motor execution consistently sustained the congruence in functional neuroanatomy, including SMA (supplementary motor cortex), PMA (premotor area); M1( primary motor cortex) and cerebellum. Moreover, for both execution and imagery tasks, a similar functional alteration was observed in fusiform through motor imagery training. These findings provided an insight into the effectiveness of motor imagery training and suggested its potential therapeutic value in motor rehabilitation.

  2. A latent low-dimensional common input drives a pool of motor neurons: a probabilistic latent state-space model.

    PubMed

    Feeney, Daniel F; Meyer, François G; Noone, Nicholas; Enoka, Roger M

    2017-10-01

    Motor neurons appear to be activated with a common input signal that modulates the discharge activity of all neurons in the motor nucleus. It has proven difficult for neurophysiologists to quantify the variability in a common input signal, but characterization of such a signal may improve our understanding of how the activation signal varies across motor tasks. Contemporary methods of quantifying the common input to motor neurons rely on compiling discrete action potentials into continuous time series, assuming the motor pool acts as a linear filter, and requiring signals to be of sufficient duration for frequency analysis. We introduce a space-state model in which the discharge activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method to quantify an abstract latent trajectory that represents the common input received by motor neurons. The approach also approximates the variation in synaptic noise in the common input signal. The model is validated with four data sets: a simulation of 120 motor units, a pair of integrate-and-fire neurons with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire neurons, and the discharge times of concurrently active motor units during an isometric voluntary contraction. The simulations revealed that a latent state-space model is able to quantify the trajectory and variability of the common input signal across all four conditions. When compared with the cumulative spike train method of characterizing common input, the state-space approach was more sensitive to the details of the common input current and was less influenced by the duration of the signal. The state-space approach appears to be capable of detecting rather modest changes in common input signals across conditions. NEW & NOTEWORTHY We propose a state-space model that explicitly delineates a common input signal sent to motor neurons and the physiological noise inherent in synaptic signal

  3. Cognitive outcome and reliable change indices two years following bilateral subthalamic nucleus deep brain stimulation.

    PubMed

    Williams, Amy E; Arzola, Gladys Marina; Strutt, Adriana M; Simpson, Richard; Jankovic, Joseph; York, Michele K

    2011-06-01

    Subthalamic nucleus deep brain stimulation (STN-DBS) is currently the treatment of choice for medication-resistant levodopa-related motor complications in patients with Parkinson's disease (PD). While STN-DBS often results in meaningful motor improvements, consensus regarding long-term neuropsychological outcome continues to be debated. We assessed the cognitive outcomes of 19 STN-DBS patients compared to a group of 18 medically-managed PD patients on a comprehensive neuropsychological battery at baseline and two years post-surgery. Patients did not demonstrate changes in global cognitive functioning on screening measures. However, neuropsychological results revealed impairments in nonverbal recall, oral information processing speed, and lexical and semantic fluency in STN-DBS patients compared to PD controls 2 years post-surgery in these preliminary analyses. Additionally, reliable change indices revealed that approximately 50% of STN-DBS patients demonstrated significant declines in nonverbal memory and oral information processing speed compared to 25-30% of PD controls, and 26% of STN-DBS patients declined on lexical fluency compared to 11% of PD patients. Approximately 30% of both groups declined on semantic fluency. The number of STN-DBS patients who converted to dementia 2 years following surgery was not significantly different from the PD participants (32% versus 16%, respectively). Our results suggest that neuropsychological evaluations may identify possible mild cognitive changes following surgery. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. The chemical composition of cosmic ray nuclei above 1.3 GeV per nucleus and 23 GeV per nucleus

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Osborn, R. W.

    1974-01-01

    Measurements made with a balloon-borne counter telescope are reported. The telescope was flown from Palestine, Tex., during the fall of 1971 for a total of 10 hours under an average residual atmospheric depth of 4.4 g per sq cm. The data analysis indicates that the integral flux ratios above 1.3 GeV per nucleus and 23 GeV per nucleus are consistent with energy independence.

  5. Satellite control system nucleus for the Brazilian complete space mission

    NASA Astrophysics Data System (ADS)

    Yamaguti, Wilson; Decarvalhovieira, Anastacio Emanuel; Deoliveira, Julia Leocadia; Cardoso, Paulo Eduardo; Dacosta, Petronio Osorio

    1990-10-01

    The nucleus of the satellite control system for the Brazilian data collecting and remote sensing satellites is described. The system is based on Digital Equipment Computers and the VAX/VMS operating system. The nucleus provides the access control, the system configuration, the event management, history files management, time synchronization, wall display control, and X25 data communication network access facilities. The architecture of the nucleus and its main implementation aspects are described. The implementation experience acquired is considered.

  6. A study of the nucleus-nucleus total reaction cross section of stable systems at intermediate energies: An application to 12C

    NASA Astrophysics Data System (ADS)

    Hu, Liyuan; Song, Yushou; Hou, Yingwei; Liu, Huilan; Li, Hui

    2018-07-01

    A semi-microscopic analytical expression of the nucleus-nucleus total reaction cross section (σR) was proposed based on the strong absorption model. It is suitable for stable nuclei at intermediate energies. The matter density distributions of nuclei and the nucleon-nucleon total cross section were both considered. Particularly, the Fermi motion effect of the nucleons in a nucleus was also taken into account. The parametrization of σR was applied to the colliding systems including 12C. The experimental data at energies from 30 to 1000 MeV/nucleon were well reproduced, according to which an approach of deriving σR without adjustable parameters was developed. The necessity of considering the Fermi motion effect in the parametrization was discussed.

  7. Neuronal plasticity in the hedgehog supraoptic nucleus during hibernation.

    PubMed

    Sanchez-Toscano, F; Caminero, A A; Machin, C; Abella, G

    1989-01-01

    The purpose of the present study was to identify processes of plasticity in the receptive field of neurosecretory neurons of the supraoptic nucleus during hibernation in the hedgehog, in order to correlate them with the increased neurosecretory activity observed in this nucleus during this annual period. Using the Rapid Golgi method, a quantitative study was conducted in the receptive field of bipolar and multipolar neurons (the main components of the nucleus). Results indicate a generalized increase in the following characteristics: (1) number of dendritic spines per millimeter along the dendritic shafts; (2) degree of branching in the dendritic field; and (3) dendritic density around the neuronal soma. These data demonstrate modification of the dendritic field in the supraoptic nucleus during hibernation, a change undoubtedly related to functional conditions. Since the observed changes affect structures such as dendritic spines which are directly related to the arrival of neural afferences, the discussion is centered on the types of stimuli which may be responsible for the observed processes.

  8. The Dependence of the Circumnuclear Coma Structure on the Properties of the Nucleus. IV. Structure of the Night-Side Gas Coma of a Strongly Sublimating Nucleus

    NASA Astrophysics Data System (ADS)

    Crifo, J. F.; Rodionov, A. V.

    2000-12-01

    The structure of the nightside coma in the vicinity of a strongly active comet nucleus of pure ice is investigated by solving gasdynamic equations for the flow of water vapour sublimated from—or condensed onto—the nucleus surface. To guarantee the physical validity of the solution, both Euler and Navier-Stokes Equations are solved, and the solutions are compared. A spherical nucleus is considered first and then a triaxial ellipsoidal nucleus. The results show that (1) a fluid coma of significant extent and very complicated physical structure is formed; (2) for low heat conduction transfer across the nucleus from the dayside to the nightside surface, a narrow conical weak shock appears near to the antisolar axis; the whole nightside surface acts as a cold trap for the vapor, part of which recondenses onto it; (3) for intermediate heat conduction, part of the nightside surface becomes weakly sublimating, and a different weak shock pattern is formed; and (4) at high heat conduction, the whole nightside surface is weakly sublimating, and the resulting flow pattern becomes similar to that existing in a coma formed by diffusion from the nucleus interior (see Crifo, Rodionov and Bockelée-Morvan, 1999, Icarus138, 83-106). The results are compared to related model results by other authors, and a discussion is made of their relevance to the 1996 observation of the near-nucleus nightside coma of Comet C/1996 B2 Hyakutake.

  9. An alarm pheromone reduces ventral tegmental area-nucleus accumbens shell responsivity.

    PubMed

    Gutiérrez-García, Ana G; Contreras, Carlos M; Saldivar-Lara, Mauricio

    2018-06-21

    2-Heptanone (methyl n-amyl ketone) is a ketone that produces alarm reactions in insects (e.g., bees and ants). As an olfactory stimulus, 2-heptanone produces anxiety reactions in the short term and despair in the long term in rodent models. Among the anatomical connections of the olfactory system that integrate behavioral responses, connections between the amygdala and nucleus accumbens are important, which in turn form a circuit with the ventral tegmental area (VTA). 2-Heptanone increases the firing rate of amygdala neurons without participation of the vomeronasal organ. The olfactory amygdala-VTA-nucleus accumbens circuit may integrate defensive behaviors, but the possible actions of 2-heptanone on the responsivity of VTA-nucleus accumbens connections have not yet been explored. In the present study, multiunit activity recordings were obtained in adult Wistar rats from the core and shell subregions of the nucleus accumbens during electrical stimulation of the VTA under basal conditions and later during simultaneous stimulation of the VTA and olfactory exposure to 2-heptanone. 2-Heptanone reduced the responsivity of the VTA-nucleus accumbens shell but did not influence the responsivity of the VTA-nucleus accumbens core. The lower VTA-nucleus accumbens shell excitability may be related to a primary defensive warning when exposed to an alarm pheromone. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Optogenetic Activation of the Sublaterodorsal (SLD) Nucleus Induces Rapid Muscle Inhibition

    DTIC Science & Technology

    2015-09-01

    ARL-CR-0783 ● SEP 2015 US Army Research Laboratory Optogenetic Activation of the Sublaterodorsal (SLD) Nucleus Induces Rapid...ARL-CR-0783 ● SEP 2015 US Army Research Laboratory Optogenetic Activation of the Sublaterodorsal (SLD) Nucleus Induces Rapid Muscle...Optogenetic Activation of the Sublaterodorsal (SLD) Nucleus Induces Rapid Muscle Inhibition 5a. CONTRACT NUMBER 1120-1120-99 5b. GRANT NUMBER 5c

  11. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells

    PubMed Central

    Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M.; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F.; Breuer, Johanna; Herold, Martin; Gross, Catharina C.; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K.; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W.; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F.; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G.

    2016-01-01

    Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843

  12. Neurons other than motor neurons in motor neuron disease.

    PubMed

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  13. Stimulation of the Rat Subthalamic Nucleus is Neuroprotective Following Significant Nigral Dopamine Neuron Loss

    PubMed Central

    Spieles-Engemann, A. L.; Behbehani, M. M.; Collier, T. J.; Wohlgenant, S. L.; Steece-Collier, K.; Paumier, K.; Daley, B. F.; Gombash, S.; Madhavan, L.; Mandybur, G. T.; Lipton, J.W.; Terpstra, B.T.; Sortwell, C.E.

    2010-01-01

    Deep brain stimulation of the subthalamic nucleus (STN-DBS) is efficacious in treating the motor symptoms of Parkinson’s disease (PD). However, the impact of STN-DBS on the progression of PD is unknown. Previous preclinical studies have demonstrated that STN-DBS can attenuate the degeneration of a relatively intact nigrostriatal system from dopamine (DA)-depleting neurotoxins. The present study examined whether STN-DBS can provide neuroprotection in the face of prior significant nigral DA neuron loss similar to PD patients at the time of diagnosis. STN-DBS between two and four weeks after intrastriatal 6-hydroxydopamine (6-OHDA) provided significant sparing of DA neurons in the SN of rats. This effect was not due to inadvertent lesioning of the STN and was dependent upon proper electrode placement. Since STN-DBS appears to have significant neuroprotective properties, initiation of STN-DBS earlier in the course of PD may provide added neuroprotective benefits in addition to its ability to provide symptomatic relief. PMID:20307668

  14. Subcortical neuronal ensembles: an analysis of motor task association, tremor, oscillations, and synchrony in human patients.

    PubMed

    Hanson, Timothy L; Fuller, Andrew M; Lebedev, Mikhail A; Turner, Dennis A; Nicolelis, Miguel A L

    2012-06-20

    Deep brain stimulation (DBS) has expanded as an effective treatment for motor disorders, providing a valuable opportunity for intraoperative recording of the spiking activity of subcortical neurons. The properties of these neurons and their potential utility in neuroprosthetic applications are not completely understood. During DBS surgeries in 25 human patients with either essential tremor or Parkinson's disease, we acutely recorded the single-unit activity of 274 ventral intermediate/ventral oralis posterior motor thalamus (Vim/Vop) neurons and 123 subthalamic nucleus (STN) neurons. These subcortical neuronal ensembles (up to 23 neurons sampled simultaneously) were recorded while the patients performed a target-tracking motor task using a cursor controlled by a haptic glove. We observed that modulations in firing rate of a substantial number of neurons in both Vim/Vop and STN represented target onset, movement onset/direction, and hand tremor. Neurons in both areas exhibited rhythmic oscillations and pairwise synchrony. Notably, all tremor-associated neurons exhibited synchrony within the ensemble. The data further indicate that oscillatory (likely pathological) neurons and behaviorally tuned neurons are not distinct but rather form overlapping sets. Whereas previous studies have reported a linear relationship between power spectra of neuronal oscillations and hand tremor, we report a nonlinear relationship suggestive of complex encoding schemes. Even in the presence of this pathological activity, linear models were able to extract motor parameters from ensemble discharges. Based on these findings, we propose that chronic multielectrode recordings from Vim/Vop and STN could prove useful for further studying, monitoring, and even treating motor disorders.

  15. The Nucleus of Comet 67P/Churyumov-Gerasimenko: Lots of Surprises

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Rosetta Science Working Team

    2016-10-01

    ESA's Rosetta mission has made many new and unexpected discoveries since its arrival at comet 67P/Churyumov-Gerasimenko in August 2014. The first of these was the unusual shape of the cometary nucleus. Although bilobate nuclei had been seen before, the extreme concavities on 67P were unexpected. Evidence gathered during the mission suggests that two independent bodies came together to form 67P, rather than the nucleus being a single body that was sculpted by sublimation and/or other processes. Although not a surprise, early observations showed that the nucleus rotation period had decreased by ~22 minutes since the previous aphelion passage. A similar rotation period decrease was seen post-perihelion during the encounter. These changes likely arise from asymmetric jetting forces from the irregular nucleus. Initially, Rosetta's instruments found little evidence for water ice on the surface; the presence of surface water ice increased substantially as the nucleus approached perihelion. The nucleus bulk density, 533 ± 6 kg/m3, was measured with Radio Science and OSIRIS imaging of the nucleus volume. This confirmed previous estimates based on indirect methods that the bulk density of cometary nuclei was on the order of 500-600 kg/m3 and on measurement of the density of 9P/Tempel 1's nucleus by Deep Impact. Nucleus topography proved to be highly varied, from smooth dust-covered plains to shallow circular basins, to the very rough terrain where the Philae lander came to rest. Evidence of thermal cracking is everywhere. The discovery of cylindrical pits on the surface, typically 100-200m in diameter with similar depths was a major surprise and has been interpreted as sinkholes. "Goose-bump" terrain consisting of apparently random piles of boulders 2-3 m in diameter was another unexpected discovery. Apparent layering with scales of meters to many tens of meters was seen but there was little or no evidence for impact features. Radar tomography of the interior of the "head

  16. Motor "dexterity"?: Evidence that left hemisphere lateralization of motor circuit connectivity is associated with better motor performance in children.

    PubMed

    Barber, Anita D; Srinivasan, Priti; Joel, Suresh E; Caffo, Brian S; Pekar, James J; Mostofsky, Stewart H

    2012-01-01

    Motor control relies on well-established motor circuits, which are critical for typical child development. Although many imaging studies have examined task activation during motor performance, none have examined the relationship between functional intrinsic connectivity and motor ability. The current study investigated the relationship between resting state functional connectivity within the motor network and motor performance assessment outside of the scanner in 40 typically developing right-handed children. Better motor performance correlated with greater left-lateralized (mean left hemisphere-mean right hemisphere) motor circuit connectivity. Speed, rhythmicity, and control of movements were associated with connectivity within different individual region pairs: faster speed was associated with more left-lateralized putamen-thalamus connectivity, less overflow with more left-lateralized supplementary motor-primary motor connectivity, and less dysrhythmia with more left-lateralized supplementary motor-anterior cerebellar connectivity. These findings suggest that for right-handed children, superior motor development depends on the establishment of left-hemisphere dominance in intrinsic motor network connectivity.

  17. Determination of electron-nucleus collisions geometry with forward neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, L.; Aschenauer, E.; Lee, J. H.

    2014-12-29

    There are a large number of physics programs one can explore in electron-nucleus collisions at a future electron-ion collider. Collision geometry is very important in these studies, while the measurement for an event-by-event geometric control is rarely discussed in the prior deep-inelastic scattering experiments off a nucleus. This paper seeks to provide some detailed studies on the potential of tagging collision geometries through forward neutron multiplicity measurements with a zero degree calorimeter. As a result, this type of geometry handle, if achieved, can be extremely beneficial in constraining nuclear effects for the electron-nucleus program at an electron-ion collider.

  18. Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding.

    PubMed

    Baldo, Brian A; Kelley, Ann E

    2007-04-01

    The idea that nucleus accumbens (Acb) dopamine transmission contributes to the neural mediation of reward, at least in a general sense, has achieved wide acceptance. Nevertheless, debate remains over the precise nature of dopamine's role in reward and even over the nature of reward itself. In the present article, evidence is reviewed from studies of food intake, feeding microstructure, instrumental responding for food reinforcement, and dopamine efflux associated with feeding, which suggests that reward processing in the Acb is best understood as an interaction among distinct processes coded by discrete neurotransmitter systems. In agreement with several theories of Acb dopamine function, it is proposed here that allocation of motor effort in seeking food or food-associated conditioned stimuli can be dissociated from computations relevant to the hedonic evaluation of food during the consummatory act. The former appears to depend upon Acb dopamine transmission and the latter upon striatal opioid peptide release. Moreover, dopamine transmission may play a role in 'stamping in' associations between motor acts and goal attainment and perhaps also neural representations corresponding to rewarding outcomes. Finally, evidence is reviewed that amino acid transmission specifically in the Acb shell acts as a central 'circuit breaker' to flexibly enable or terminate the consummatory act, via descending connections to hypothalamic feeding control systems. The heuristic framework outlined above may help explain why dopamine-compromising manipulations that strongly diminish instrumental goal-seeking behaviors leave consummatory activity relatively unaffected.

  19. Motor current signature analysis method for diagnosing motor operated devices

    DOEpatents

    Haynes, Howard D.; Eissenberg, David M.

    1990-01-01

    A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.

  20. Predicting explorative motor learning using decision-making and motor noise.

    PubMed

    Chen, Xiuli; Mohr, Kieran; Galea, Joseph M

    2017-04-01

    A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant's level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning.

  1. Predicting explorative motor learning using decision-making and motor noise

    PubMed Central

    Galea, Joseph M.

    2017-01-01

    A fundamental problem faced by humans is learning to select motor actions based on noisy sensory information and incomplete knowledge of the world. Recently, a number of authors have asked whether this type of motor learning problem might be very similar to a range of higher-level decision-making problems. If so, participant behaviour on a high-level decision-making task could be predictive of their performance during a motor learning task. To investigate this question, we studied performance during an explorative motor learning task and a decision-making task which had a similar underlying structure with the exception that it was not subject to motor (execution) noise. We also collected an independent measurement of each participant’s level of motor noise. Our analysis showed that explorative motor learning and decision-making could be modelled as the (approximately) optimal solution to a Partially Observable Markov Decision Process bounded by noisy neural information processing. The model was able to predict participant performance in motor learning by using parameters estimated from the decision-making task and the separate motor noise measurement. This suggests that explorative motor learning can be formalised as a sequential decision-making process that is adjusted for motor noise, and raises interesting questions regarding the neural origin of explorative motor learning. PMID:28437451

  2. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Overcurrent protection for motors and motor branch... motors and motor branch circuits. (a) Except as provided in paragraph (d) of this section, each motor... motor that is responsive to motor current or to both motor current and temperature may be used. (b) The...

  3. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder

    PubMed Central

    Voon, V; Brezing, C; Gallea, C; Hallett, M

    2014-01-01

    Background Conversion disorder is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that conversion disorder with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amgydala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Methods Subjects performed either an internally or externally generated two-button action selection task in a functional MRI study. Results Eleven conversion disorder patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. Conclusion We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system which is both hypoactive and functionally disconnected from prefrontal top-down regulation. PMID:21935985

  4. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    PubMed

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation. Copyright © 2011 Movement Disorder Society.

  5. Bilateral subthalamic deep brain stimulation initial impact on nonmotor and motor symptoms in Parkinson's disease

    PubMed Central

    Kurcova, Sandra; Bardon, Jan; Vastik, Miroslav; Vecerkova, Marketa; Frolova, Monika; Hvizdosova, Lenka; Nevrly, Martin; Mensikova, Katerina; Otruba, Pavel; Krahulik, David; Kurca, Egon; Sivak, Stefan; Zapletalova, Jana; Kanovsky, Petr

    2018-01-01

    Abstract Numerous studies document significant improvement in motor symptoms in patients with Parkinson's disease (PD) after deep brain stimulation of the subthalamic nucleus (STN-DBS). However, little is known about the initial effects of STN-DBS on nonmotor domains. Our objective was to elucidate the initial effects of STN-DBS on non-motor and motor symptoms in PD patients in a 4-month follow-up. This open prospective study followed 24 patients with PD who underwent STN-DBS. The patients were examined using dedicated rating scales preoperatively and at 1 and 4 months following STN-DBS to determine initial changes in motor and nonmotor symptoms. Patients at month 1 after STN-DBS had significantly reduced the Parkinson's disease Questionnaire scores (P = .018) and Scales for Outcomes in Parkinson's disease – Autonomic scores (P = .002); these scores had increased at Month 4 after DBS-STN. Nonmotor Symptoms Scale for Parkinson's Disease had improved significantly at Month 1 (P < .001); at Month 4, it remained significantly lower than before stimulation (P = .036). There was no significant difference in The Parkinson's Disease Sleep Scaleat Month 1 and significant improvement at Month 4 (P = .026). There were no significant changes in The Female Sexual Function Index or International Index of Erectile Function. Movement Disorder Society Unified Parkinson's Disease Rating Scale, Part III scores show significant improvements at Month 1 (P < .001) and at Month 4 (P < .001). STN-DBS in patients with advanced PD clearly improves not only motor symptoms, but also several domains of nonmotor functions, namely sleep, autonomic functions and quality of life quickly following the start of stimulation. PMID:29384860

  6. Local Fields in Human Subthalamic Nucleus Track the Lead-up to Impulsive Choices.

    PubMed

    Pearson, John M; Hickey, Patrick T; Lad, Shivanand P; Platt, Michael L; Turner, Dennis A

    2017-01-01

    The ability to adaptively minimize not only motor but cognitive symptoms of neurological diseases, such as Parkinson's Disease (PD) and obsessive-compulsive disorder (OCD), is a primary goal of next-generation deep brain stimulation (DBS) devices. On the basis of studies demonstrating a link between beta-band synchronization and severity of motor symptoms in PD, the minimization of beta band activity has been proposed as a potential training target for closed-loop DBS. At present, no comparable signal is known for the impulsive side effects of PD, though multiple studies have implicated theta band activity within the subthalamic nucleus (STN), the site of DBS treatment, in processes of conflict monitoring and countermanding. Here, we address this challenge by recording from multiple independent channels within the STN in a self-paced decision task to test whether these signals carry information sufficient to predict stopping behavior on a trial-by-trial basis. As in previous studies, we found that local field potentials (LFPs) exhibited modulations preceding self-initiated movements, with power ramping across multiple frequencies during the deliberation period. In addition, signals showed phasic changes in power around the time of decision. However, a prospective model that attempted to use these signals to predict decision times showed effects of risk level did not improve with the addition of LFPs as regressors. These findings suggest information tracking the lead-up to impulsive choices is distributed across multiple frequency scales in STN, though current techniques may not possess sufficient signal-to-noise ratios to predict-and thus curb-impulsive behavior on a moment-to-moment basis.

  7. Frequency specific activity in subthalamic nucleus correlates with hand bradykinesia in Parkinson's disease.

    PubMed

    Tan, Huiling; Pogosyan, Alek; Anzak, Anam; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Ashkan, Keyoumars; Bogdanovic, Marko; Green, Alexander L; Aziz, Tipu; Brown, Peter

    2013-02-01

    Local field potential recordings made from the basal ganglia of patients undergoing deep brain stimulation have suggested that frequency specific activity is involved in determining the rate of force development and the peak force at the outset of a movement. However, the extent to which the basal ganglia might be involved in motor performance later on in a sustained contraction is less clear. We therefore recorded from the subthalamic nucleus region (STNr) in patients with Parkinson's disease (PD) as they made maximal voluntary grips. Relative to age-matched controls they had more rapid force decrement when contraction was meant to be sustained and prolonged release reaction time and slower rate of force offset when they were supposed to release the grip. These impairments were independent from medication status. Increased STNr power over 5-12 Hz (in the theta/alpha band) independently predicted better performance-reduced force decrement, shortened release reaction time and faster rate of force offset. In contrast, lower mean levels and progressive reduction of STNr power over 55-375 Hz (high gamma/high frequency) over the period when contraction was meant to be sustained were both strongly associated with greater force decrement over time. Higher power over 13-23 Hz (low beta) was associated with more rapid force decrement during the period when grip should have been sustained, and with a paradoxical shortening of the release reaction time. These observations suggest that STNr activities at 5-12 Hz and 55-375 Hz are necessary for optimal grip performance and that deficiencies of such activities lead to motor impairments. In contrast, increased levels of 13-25 Hz activity both promote force decrement and shorten the release reaction time, consistent with a role in antagonising (and terminating) voluntary movement. Frequency specific oscillatory activities in the STNr impact on motor performance from the beginning to the end of a voluntary grip. Copyright © 2012

  8. Frequency specific activity in subthalamic nucleus correlates with hand bradykinesia in Parkinson's disease

    PubMed Central

    Tan, Huiling; Pogosyan, Alek; Anzak, Anam; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Ashkan, Keyoumars; Bogdanovic, Marko; Green, Alexander L.; Aziz, Tipu; Brown, Peter

    2013-01-01

    Local field potential recordings made from the basal ganglia of patients undergoing deep brain stimulation have suggested that frequency specific activity is involved in determining the rate of force development and the peak force at the outset of a movement. However, the extent to which the basal ganglia might be involved in motor performance later on in a sustained contraction is less clear. We therefore recorded from the subthalamic nucleus region (STNr) in patients with Parkinson's disease (PD) as they made maximal voluntary grips. Relative to age-matched controls they had more rapid force decrement when contraction was meant to be sustained and prolonged release reaction time and slower rate of force offset when they were supposed to release the grip. These impairments were independent from medication status. Increased STNr power over 5–12 Hz (in the theta/alpha band) independently predicted better performance—reduced force decrement, shortened release reaction time and faster rate of force offset. In contrast, lower mean levels and progressive reduction of STNr power over 55–375 Hz (high gamma/high frequency) over the period when contraction was meant to be sustained were both strongly associated with greater force decrement over time. Higher power over 13–23 Hz (low beta) was associated with more rapid force decrement during the period when grip should have been sustained, and with a paradoxical shortening of the release reaction time. These observations suggest that STNr activities at 5–12 Hz and 55–375 Hz are necessary for optimal grip performance and that deficiencies of such activities lead to motor impairments. In contrast, increased levels of 13–25 Hz activity both promote force decrement and shorten the release reaction time, consistent with a role in antagonising (and terminating) voluntary movement. Frequency specific oscillatory activities in the STNr impact on motor performance from the beginning to the end of a voluntary grip

  9. Topography of the 81/P Wild 2 Nucleus Derived from Stardust Stereoimages

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Duxbury, T. C.; Horz, F.; Brownlee, D. E.; Newburn, R. L.; Tsou, P.

    2005-01-01

    On 2 January, 2004, the Stardust spacecraft flew by the nucleus of comet 81P/Wild 2 with a closest approach distance of approx. 240 km. During the encounter, the Stardust Optical Navigation Camera (ONC) obtained 72 images of the nucleus with exposure times alternating between 10 ms (near-optimal for most of the nucleus surface) and 100 ms (used for navigation, and revealing additional details in the coma and dark portions of the surface. Phase angles varied from 72 deg. to near zero to 103 deg. during the encounter, allowing the entire sunlit portion of the surface to be imaged. As many as 20 of the images near closest approach are of sufficiently high resolution to be used in mapping the nucleus surface; of these, two pairs of short-exposure images were used to create the nucleus shape model and derived products reported here. The best image resolution obtained was approx. 14 m/pixel, resulting in approx. 300 pixels across the nucleus. The Stardust Wild 2 dataset is therefore markedly superior from a stereomapping perspective to the Deep Space 1 MICAS images of comet Borrelly. The key subset of the latter (3 images) covered only about a quarter of the surface at phase angles approx. 50 - 60 and less than 50 x 160 pixels across the nucleus, yet it sufficed for groups at the USGS and DLR to produce digital elevation models (DEMs) and study the morphology and photometry of the nucleus in detail.

  10. Motor/generator

    DOEpatents

    Hickam, Christopher Dale [Glasford, IL

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  11. Response Properties of Cochlear Nucleus Neurons in Monkeys

    PubMed Central

    Roth, G. Linn; Recio, A.

    2009-01-01

    Much of what is known about how the cochlear nuclei participate in mammalian hearing comes from studies of non-primate mammalian species. To determine to what extent the cochlear nuclei of primates resemble those of other mammalian orders, we have recorded responses to sound in three primate species: marmosets, Cynomolgus macaques, and squirrel monkeys. These recordings show that the same types of temporal firing patterns are found in primates that have been described in other mammals. Responses to tones of neurons in the ventral cochlear nucleus have similar tuning, latencies, post-stimulus time and interspike interval histograms as those recorded in non-primate cochlear nucleus neurons. In the dorsal cochlear nucleus, too, responses were similar. From these results it is evident that insights gained from non-primate studies can be applied to the peripheral auditory system of primates. PMID:19531377

  12. The effects of bilateral stimulation of the subthalamic nucleus on heart rate variability in patients with Parkinson's disease.

    PubMed

    Liu, Kang-Du; Shan, Din-E; Kuo, Terry B J; Yang, Cheryl C H

    2013-07-01

    The beneficial effects of subthalamic nucleus deep brain stimulation (STN-DBS) on motor symptoms and quality of life in Parkinson's disease (PD) are well known, but little is known of the effects on autonomic function. Diffusion of current during stimulation of the STN may simultaneously involve the motor and nonmotor, limbic and associative areas of the STN. The aims of this study were to examine whether STN stimulation affects functions of the autonomic nervous system and, if so, to correlate the effects with the active contacts of electrodes in the STN. Eight PD patients with good motor control and quality of sleep after STN-DBS surgery were recruited. All patients had two days of recordings with portable polysomnography (PSG) (first night with stimulation "on" and second night "off"). From the PSG data, the first sleep cycle of each recording night was defined. Heart rate variability (HRV) was analyzed between the same uninterrupted periods of the two sleep nights. In addition, the optimal electrode positions were defined from postoperative MRI studies, and the coordinates of active contacts were confirmed. HRV spectral analysis showed that only low-frequency (LF)/high-frequency (HF) power was significantly activated in the stimulation "on" groups (P = 0.011). There was a significant negative correlation between power change of LF/HF and electrode position lateral to the midcommissural point (ρ = 0.857, P = 0.007) These results demonstrate that STN-DBS can enhance sympathetic regulation; the autonomic response may be due to electrical signals being distributed to limbic components of the STN or descending sympathetic pathways in the zona incerta.

  13. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle Identification § 102-34.85 What motor vehicles require motor vehicle identification? All Government motor vehicles must...

  14. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle Identification § 102-34.85 What motor vehicles require motor vehicle identification? All Government motor vehicles must...

  15. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle Identification § 102-34.85 What motor vehicles require motor vehicle identification? All Government motor vehicles must...

  16. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle Identification § 102-34.85 What motor vehicles require motor vehicle identification? All Government motor vehicles must...

  17. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle Identification § 102-34.85 What motor vehicles require motor vehicle identification? All Government motor vehicles must...

  18. Deep brain stimulation of the subthalamic nucleus modulates reward processing and action selection in Parkinson patients.

    PubMed

    Wagenbreth, Caroline; Zaehle, Tino; Galazky, Imke; Voges, Jürgen; Guitart-Masip, Marc; Heinze, Hans-Jochen; Düzel, Emrah

    2015-06-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for motor impairments in Parkinson's disease (PD) but its effect on the motivational regulation of action control is still not fully understood. We investigated whether DBS of the STN influences the ability of PD patients to act for anticipated reward or loss, or whether DBS improves action execution independent of motivational valence. 16 PD patients (12 male, mean age = 58.5 ± 10.17 years) treated with bilateral STN-DBS and an age- and gender-matched group of healthy controls (HC) performed a go/no-go task whose contingencies explicitly decouple valence and action. Patients were tested with (ON) and without (OFF) active STN stimulation. For HC, there was a benefit in performing rewarded actions when compared to actions that avoided punishment. PD patients showed such a benefit reliably only when STN stimulation was ON. In fact, the relative behavioral benefit for go for reward over go to avoid losing was stronger in the PD patients under DBS ON than in HC. In PD patients, rather than generally improving motor functions independent of motivational valence, modulation of the STN by DBS improves action execution specifically when rewards are anticipated. Thus, STN-DBS establishes a reliable congruency between action and reward ("Pavlovian congruency") and remarkably enhances it over the level observed in HC.

  19. Association between subthalamic nucleus deep brain stimulation and weight gain: Results of a case-control study.

    PubMed

    Strowd, Roy E; Herco, Maja; Passmore-Griffin, Leah; Avery, Bradley; Haq, Ihtsham; Tatter, Stephen B; Tate, Jessica; Siddiqui, Mustafa S

    2016-01-01

    To evaluate whether weight change in patients with Parkinson's disease (PD) is different in those undergoing deep brain stimulation (DBS) of the subthalamic nucleus (STN) compared to those not undergoing DBS. A retrospective case-control study was performed in PD patients who had undergone STN DBS (cases) compared to matched PD patients without DBS (controls). Demographic and clinical data including Unified Parkinson's Disease Rating Scale (UPDRS) motor scores were collected. Repeated measures mixed model regression was used to identify variables associated with weight gain. Thirty-five cases and 34 controls were identified. Baseline age, gender, diagnosis and weight were similar. Duration of diagnosis was longer in cases (6.3 vs 4.9 years, p=0.0015). At 21.3 months, cases gained 2.9 kg (+4.65%) while controls lost 1.8 kg (-3.05%, p<0.02). Postoperative UPDRS motor scores improved by 49% indicating surgical efficacy. Only younger age (p=0.0002) and DBS (p=0.008) were significantly associated with weight gain. In this case-control study, PD patients undergoing STN DBS experienced post-operative weight gain that was significantly different from the weight loss observed in non-DBS PD controls. Patients, especially overweight individuals, should be informed that STN DBS can result in weight gain. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The Multiple Correspondence Analysis Method and Brain Functional Connectivity: Its Application to the Study of the Non-linear Relationships of Motor Cortex and Basal Ganglia.

    PubMed

    Rodriguez-Sabate, Clara; Morales, Ingrid; Sanchez, Alberto; Rodriguez, Manuel

    2017-01-01

    The complexity of basal ganglia (BG) interactions is often condensed into simple models mainly based on animal data and that present BG in closed-loop cortico-subcortical circuits of excitatory/inhibitory pathways which analyze the incoming cortical data and return the processed information to the cortex. This study was aimed at identifying functional relationships in the BG motor-loop of 24 healthy-subjects who provided written, informed consent and whose BOLD-activity was recorded by MRI methods. The analysis of the functional interaction between these centers by correlation techniques and multiple linear regression showed non-linear relationships which cannot be suitably addressed with these methods. The multiple correspondence analysis (MCA), an unsupervised multivariable procedure which can identify non-linear interactions, was used to study the functional connectivity of BG when subjects were at rest. Linear methods showed different functional interactions expected according to current BG models. MCA showed additional functional interactions which were not evident when using lineal methods. Seven functional configurations of BG were identified with MCA, two involving the primary motor and somatosensory cortex, one involving the deepest BG (external-internal globus pallidum, subthalamic nucleus and substantia nigral), one with the input-output BG centers (putamen and motor thalamus), two linking the input-output centers with other BG (external pallidum and subthalamic nucleus), and one linking the external pallidum and the substantia nigral. The results provide evidence that the non-linear MCA and linear methods are complementary and should be best used in conjunction to more fully understand the nature of functional connectivity of brain centers.