Sample records for xixi national wetland

  1. [Landscape pattern change and its driving forces in Xixi National Wetland Park since 1993].

    PubMed

    Cheng, Qian; Wu, Xiuju

    2006-09-01

    Under the support of GIS technology and the TM images of Xixi National Wetland Park, this paper studied the past ten years' landscape pattern change and its driving forces of Xixi Wetland. The results showed that the landscape diversity index increased from 1.7854 in 1993 to 1.8438 in 2001 and 2.2096 in 2003, and the landscape fragmentation index increased from 0.0036 in 1993 to 0.0042 in 2001, and 0.0047 in 2003, suggesting that the landscape fragmentation was increased with time. Human activity was the main driving force, while the exploitation of real estate was the main internal factor of the landscape pattern change of Xixi wetland. In addition, social and economic development level had a strong effect on the overall diversity of the landscape.

  2. [Ecotourism carrying capacity of Hangzhou Xixi National Wetland Park in China].

    PubMed

    Li, Rui; Rong, Liang

    2007-10-01

    In this paper, an integrated estimation on the ecotourism carrying capacity of Hangzhou Xixi National Wetland Park in China was made from the aspects of ecological carrying capacity, spatial carrying capacity, facility carrying capacity, management carrying capacity, and psychological carrying capacity. The results indicated that the tourism carrying capacity of the Park was 4 145 - 6 450 persons per day. The rational distance between man and bird was first adopted to determine the ecotourism carrying capacity of wetland, which provided an effective solution both to fully ensure bird safety and to appropriately develop wetland tourism. The estimation of psychological carrying capacity based on tourist satisfaction degree reflected more objectively the extent the tourist demands satisfied at the planning, construction and management of tour places. Such an integrated estimation method based on the distance between man and bird and the tourist satisfaction degree could be of practical and instructive significances in the planning and management of wetland parks.

  3. [Bad tourist behaviors and their environmental impacts on Xixi National Wetland Park in Hangzhou].

    PubMed

    Wang, Guo-Xin; Wang, Ru-Song; Mao, Chun-Hong

    2009-06-01

    By the methods of site investigation, data collection and correlation analysis, the bad tourist behaviors and their environmental impacts on Xixi National Wetland Park in 2006 were studied. The occurrence probabilities of three bad tourist behaviors, i.e., picking, trampling, and littering were 6.5%, 10.3% and 12.6%, respectively. Picking probability was primarily related to the vegetation types along walkways, while the scale of heavy trampling was negatively correlated with tour distance from the entrance. Waste production by each tourist was 782 g x d(-1) on average. The waste from littering amounted for 13.6% of the total. Tourist flow fluctuations of daily, weekly, and monthly perspectives for the study area showed high seasonality and successive days of overloaded tourist flows during peak seasons, which caused an increase of bad tourist behaviors. However, the water quality in the Park was not affected because of the improvement of dredging facilities.

  4. Mixing {Xi}--{Xi}' Effects and Static Properties of Heavy {Xi}'s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliev, T. M.; Ozpineci, A.; Zamiralov, V. S.

    It is shown the importance of mixing of heavy baryons {Xi}--{Xi}' with the new quantum numbers for analysis of its characteristics. The quark model of Ono is used as an example. Masses of new baryons as well as mixing angles of the states {Xi}--{Xi}' are obtained. The same reasoning is shown to be valid for the interpolating currents of these baryons in the framework of the QCD sum rules.

  5. National Wetland Condition Assessment 2011: A Collaborative Survey of the Nation's Wetlands

    EPA Science Inventory

    The National Wetland Condition Assessment 2011: A Collaborative Survey presents the results of an unprecedented assessment of the nation’s wetlands. This report is part of the National Aquatic Resource Surveys, a series of statistically based surveys designed to provide the publi...

  6. National Wetland Condition Assessment 2011: A ...

    EPA Pesticide Factsheets

    The National Wetland Condition Assessment 2011: A Collaborative Survey presents the results of an unprecedented assessment of the nation’s wetlands. This report is part of the National Aquatic Resource Surveys, a series of statistically based surveys designed to provide the public and decision makers with nationally consistent and representative information on the condition of all the nation's waters. The National Wetland Condition report provides information on the biological condition of the nation’s wetlands and key stressors that affect them.

  7. National Wetlands Inventory products

    USGS Publications Warehouse

    ,

    1998-01-01

    control. These predominantly wet areas, or wetlands as they are commonly called, now represent only about 5 percent of the land surface of the lower 48 States. Out of 221 million acres of wetlands that once existed in the conterminous United States, the U.S. Fish and Wildlife Service (FWS) estimates that only about 103.3 million acres remain. Each year, development, drainage, and agriculture eliminate another 290,000 acres-an area a little less than half the size of Rhode Island. From the 1950's to the 1970's, conversion of wetlands to farmland caused 87 percent of all wetland losses. The FWS has long recognized the importance of America's wetlands because they form breeding and wintering grounds for great numbers of migratory birds. In 1977, the FWS began the National Wetlands Inventory (NWI), a systematic effort to classify and map America's remaining wetlands.

  8. National Wetland Condition Assessment

    EPA Pesticide Factsheets

    The NWCA is a collaborative, statistical survey of the nation's wetlands. It is one of four national surveys that EPA and its partners conduct to assess the condition and health of the nation's water resources.

  9. National Wetlands Mitigation Action Plan

    EPA Pesticide Factsheets

    On December 26, 2002, EPA and the Corps of Engineers announced the release of a comprehensive, interagency National Wetlands Mitigation Action Plan to further achievement of the goal of no net loss of wetlands.

  10. National Wetlands Inventory products

    USGS Publications Warehouse

    ,

    1999-01-01

    Marshes, swamps, ponds, and bogs are teeming biological nurseries for migratory birds, fish, and aquatic plants. They also provide natural flood and erosion control. These predominantly wet areas, or wetlands as they are commonly called, now represent only about 5 percent of the land surface of the lower 48 States. Out of 221 million acres of wetlands that once existed in the conterminous United States, the U.S. Fish and Wildlife Service (FWS) estimates that only about 103.3 million acres remain. Each year, development, drainage, and agriculture eliminate another 290,000 acres - an area a little less than half the size of Rhode Island. From the 1950's to the 1970's, conversion of wetlands to farmland caused 87 percent of all wetland losses. The FWS has long recognized the importance of America's wetlands because they form breeding and wintering grounds for great numbers of migratory birds. In 1977, the FWS began the National Wetlands Inventory (NWI), a systematic effort to classify and map America's remaining wetlands.

  11. 76 FR 777 - National Wetland Plant List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... the Wetland Conservation Provisions of the Food Security Act. Other applications of the list include wetland restoration, establishment, and enhancement projects. To update the NWPL, the U.S. Army Corps of... Conservation Service (NRCS), is announcing the availability of the draft National Wetland Plant List (NWPL) and...

  12. Quantitative assessment of urban wetland dynamics using high spatial resolution satellite imagery between 2000 and 2013.

    PubMed

    Hu, Tangao; Liu, Jiahong; Zheng, Gang; Li, Yao; Xie, Bin

    2018-05-09

    Accurate and timely information describing urban wetland resources and their changes over time, especially in rapidly urbanizing areas, is becoming more important. We applied an object-based image analysis and nearest neighbour classifier to map and monitor changes in land use/cover using multi-temporal high spatial resolution satellite imagery in an urban wetland area (Hangzhou Xixi Wetland) from 2000, 2005, 2007, 2009 and 2013. The overall eight-class classification accuracies averaged 84.47% for the five years. The maps showed that between 2000 and 2013 the amount of non-wetland (urban) area increased by approximately 100%. Herbaceous (32.22%), forest (29.57%) and pond (23.85%) are the main land-cover types that changed to non-wetland, followed by cropland (6.97%), marsh (4.04%) and river (3.35%). In addition, the maps of change patterns showed that urban wetland loss is mainly distributed west and southeast of the study area due to real estate development, and the greatest loss of urban wetlands occurred from 2007 to 2013. The results demonstrate the advantages of using multi-temporal high spatial resolution satellite imagery to provide an accurate, economical means to map and analyse changes in land use/cover over time and the ability to use the results as inputs to urban wetland management and policy decisions.

  13. NATIONAL RESULTS FROM THE 2011 NATIONAL WETLAND CONDITION ASSESSMENT (NWCA) SOILS ANALYSIS

    EPA Science Inventory

    In 2011, US Environmental Protection Agency conducted the first National Wetland Condition Assessment (NWCA). Field crews conducted one-day surveys of over 1000 wetlands across the contiguous United States. For every wetland sampled, soils were collected by layer (i.e., horizon)...

  14. The National Wetland Condition Assessment: National Data on Wetland Quality to Inform and Improve Wetlands Protection

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA), in collaboration with states, tribes, the US Fish and Wildlife Service (US FWS), and other federal partners will conduct the first-ever National Wetland Condition Assessment (NWCA) in 2011. The NWCA is designed to build on the succ...

  15. National patterns in wetland water quality from the 2001 NWCA

    EPA Science Inventory

    Water quality (WQ) is central to understanding ecological condition of lakes, streams, and coastal waters but less often assessed in wetlands. The utility of national-scale wetland WQ data was examined in the 2011 National Wetland Condition Assessment, which covered 48 USA state...

  16. INVITED SESSION: THE 2011 NATIONAL WETLAND ...

    EPA Pesticide Factsheets

    The first-ever National Wetland Condition Assessment (NWCA) was conducted in 2011 by the US Environmental Protection Agency (USEPA) and its federal and state partners, using a survey design allowing extrapolation of results to national and regional scales. At each of 1138 locations across the contiguous US, vegetation, algae, soil, water chemistry, and hydrologic data were collected. Ecological condition was assessed in relation to a disturbance gradient anchored by least (reference) and most disturbed sites and identified using chemical, physical, and biological indices based on site-level data. A vegetation multimetric index (VMMI) was developed as an indicator of condition, and included four metrics: a floristic quality assessment index, relative importance of native plants, number of disturbance-tolerant plant species, and relative cover of native monocots. Potential stressors to condition were identified and incorporated into four indices of hydrologic alteration, two indices of physical alteration, a soil heavy metal index, and a nonnative plant indicator. These indices were used to quantify national and regional stressor extent, and their associated relative and attributable risk. Approximately 48±6% of the national wetland area was found to be in good condition and 32±6% in poor condition as defined by the VMMI. Nationally, 19% of wetland area had high or very high stress related to nonnative plants. Vegetation removal, hardening, and ditching stressor

  17. Identifying determinants of nations' wetland management programs using structural equation modeling: An exploratory analysis

    USGS Publications Warehouse

    La Peyre, M.K.; Mendelssohn, I.A.; Reams, M.A.; Templet, P.H.; Grace, J.B.

    2001-01-01

    Integrated management and policy models suggest that solutions to environmental issues may be linked to the socioeconomic and political Characteristics of a nation. In this study, we empirically explore these suggestions by applying them to the wetland management activities of nations. Structural equation modeling was used to evaluate a model of national wetland management effort and one of national wetland protection. Using five predictor variables of social capital, economic capital, environmental and political characteristics, and land-use pressure, the multivariate models were able to explain 60% of the variation in nations' wetland protection efforts based on data from 90 nations, as defined by level of participation, in the international wetland convention. Social capital had the largest direct effect on wetland protection efforts, suggesting that increased social development may eventually lead to better wetland protection. In contrast, increasing economic development had a negative linear relationship with wetland protection efforts, suggesting the need for explicit wetland protection programs as nations continue to focus on economic development. Government, environmental characteristics, and land-use pressure also had a positive direct effect on wetland protection, and mediated the effect of social capital on wetland protection. Explicit wetland protection policies, combined with a focus on social development, would lead to better wetland protection at the national level.

  18. National Wetland Plant List Indicator Rating Definitions

    DTIC Science & Technology

    2012-07-01

    ER D C/ CR RE L TN -1 2- 1 National Wetland Plant List Indicator Rating Definitions Co ld R eg io ns R es ea rc h an d En gi ne er in... Rating Definitions Robert W. Lichvar Cold Regions Research and Engineering Laboratory U.S. Army Engineer Research and Development Center 72 Lyme...status ratings in the United States. In 2012 the list, now called the National Wetland Plant List, was updated and approved for use for various

  19. Evaluating Vegetation in the National Wetland Condition Assessment

    EPA Science Inventory

    Vegetation is a key biotic indicator of wetland ecological condition and forms a critical element of the USEPA 2011 National Wetland Condition Assessment. Data describing plant species composition and abundance, vegetation structure, and ground surface characteristics were colle...

  20. Appilications of National Wetland Condition Assessment Data to Wetland Protection and Management

    EPA Science Inventory

    The first National Wetland Condition Assessment (NWCA) was conducted in 2011 by the US Environmental Protection Agency (USEPA) and its federal and state partners, using a survey design allowing extrapolation of results to national and regional scales. Vegetation, algae, soil, wat...

  1. The National Wetland Condition Assessment

    EPA Science Inventory

    The first National Wetland Condition Assessment (NWCA) was conducted in 2011 by the US Environmental Protection Agency (USEPA). Vegetation, algae, soil, water chemistry,and hydrologic data were collected at each of 1138 sites across the contiguous US. Ecological condition was ass...

  2. Frameworks Proposed for Reporting on the First National Wetland Condition Assessment

    EPA Science Inventory

    The 2011 National Wetland Condition Assessment (NWCA) is the first-ever national assessment of wetland condition and the fifth in a series of National Aquatic Resource Surveys (NARS), after streams, rivers, lakes, and coastal systems. The NWCA was implemented by the U.S. Environ...

  3. [Protection value evaluation of national wetland parks in Hunan Province, China].

    PubMed

    Wu, Hou Jian; Dan, Xin Qiu; Liu, Shi Hao; Huang, Yan; Shu, Yong; Cao, Hong; Wu, Zhao Bai

    2017-01-01

    This paper put forward an evaluation index system which included 5 aspects such as ecological location and representation, biodiversity, species rarity, naturality, scale and partition suitability as well as 15 indicators to assess the protection values of 60 national wetland parks in Hunan Province, China. Analytic hierarchy process (AHP) and entropy method were used in this evaluation index system. There were 37 national wetland parks (accounting for 61.7%) keeping high protection values with scores of greater than or equal to 67.64 points, and 12 national wetland parks (accounting for 20.0%) keeping very high protection values with scores of greater than or equal to 77.72 points. Although there was a discrete and rare regularity of the inter-annual variation, these values still showed a decreasing trend in general. From the space point of view, 70 points isogram divided the national wetland parks of Hunan Province into two high score areas and three high score points in the west and east area, and one low score area and four low score points in the middle. Ecological location, resource endowment and scale were the decisive factors for the conservation va-lues of national wetland parks in Hunan Province.

  4. National-Level Wetland Policy Specificity and Goals Vary According to Political and Economic Indicators.

    PubMed

    Peimer, Alex W; Krzywicka, Adrianna E; Cohen, Dora B; Van den Bosch, Kyle; Buxton, Valerie L; Stevenson, Natalie A; Matthews, Jeffrey W

    2017-01-01

    Growing recognition of the importance of wetlands to human and ecosystem well-being has led countries worldwide to implement wetland protection policies. Different countries have taken different approaches to wetland protection by implementing various policies, including territorial exclusion, market-based offsetting, and incentive programs for land users. Our objective was to describe the relationship between components of national-level wetland protection policies and national characteristics, including natural resource, economic, social, and political factors. We compiled data on the wetland policies of all 193 countries recognized by the U.N. and described the relationships among wetland policy goals and wetland protection mechanisms using non-metric multidimensional scaling. The first non-metric multidimensional scaling axis strongly correlated with whether a country had a wetland-specific environmental policy in place. Adoption of a comprehensive, wetland-specific policy was positively associated with degree of democracy and a commitment to establishing protected areas. The second non-metric multidimensional scaling axis defined a continuum of policy goals and mechanisms by which wetlands are protected, with goals to protect wetland ecosystem services on one end of the spectrum and goals to protect biodiversity on the other. Goals for protecting ecosystem services were frequently cited in policy documents of countries with agriculture-based economies, whereas goals associated with wetland biodiversity tended to be associated with tourism-based economies. We argue that the components of a country's wetland policies reflect national-level resource and economic characteristics. Understanding the relationship between the type of wetland policy countries adopt and national-level characteristics is critical for international efforts to protect wetlands.

  5. National-Level Wetland Policy Specificity and Goals Vary According to Political and Economic Indicators

    NASA Astrophysics Data System (ADS)

    Peimer, Alex W.; Krzywicka, Adrianna E.; Cohen, Dora B.; Van den Bosch, Kyle; Buxton, Valerie L.; Stevenson, Natalie A.; Matthews, Jeffrey W.

    2017-01-01

    Growing recognition of the importance of wetlands to human and ecosystem well-being has led countries worldwide to implement wetland protection policies. Different countries have taken different approaches to wetland protection by implementing various policies, including territorial exclusion, market-based offsetting, and incentive programs for land users. Our objective was to describe the relationship between components of national-level wetland protection policies and national characteristics, including natural resource, economic, social, and political factors. We compiled data on the wetland policies of all 193 countries recognized by the U.N. and described the relationships among wetland policy goals and wetland protection mechanisms using non-metric multidimensional scaling. The first non-metric multidimensional scaling axis strongly correlated with whether a country had a wetland-specific environmental policy in place. Adoption of a comprehensive, wetland-specific policy was positively associated with degree of democracy and a commitment to establishing protected areas. The second non-metric multidimensional scaling axis defined a continuum of policy goals and mechanisms by which wetlands are protected, with goals to protect wetland ecosystem services on one end of the spectrum and goals to protect biodiversity on the other. Goals for protecting ecosystem services were frequently cited in policy documents of countries with agriculture-based economies, whereas goals associated with wetland biodiversity tended to be associated with tourism-based economies. We argue that the components of a country's wetland policies reflect national-level resource and economic characteristics. Understanding the relationship between the type of wetland policy countries adopt and national-level characteristics is critical for international efforts to protect wetlands.

  6. Epiphytes and the National Wetland Plant List

    DTIC Science & Technology

    2011-03-07

    list") (Reed 1988 ). The NWPL was updated in 1996 (referred to here as the ඨ list," as posted in a USFWS draft web publication) (Reed 1998), but the...epiphytes. Ann. Missouri Bot. Gard. 74: 205–233. Gleason, H.A. and A . Cronquist . 1991. Manual of Vascular Plants of Northeastern United States and...National Wetland Plant List (NWPL) is a list of species that occur in wetlands in the United States. It is a product of a collaborative effort of

  7. Hydrogeomorphic Classification of Wetlands on Mt. Desert Island, Maine, Including Hydrologic Susceptibility Factors for Wetlands in Acadia National Park

    USGS Publications Warehouse

    Nielsen, Martha G.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, developed a hydrogeomorphic (HGM) classification system for wetlands greater than 0.4 hectares (ha) on Mt. Desert Island, Maine, and applied this classification using map-scale data to more than 1,200 mapped wetland units on the island. In addition, two hydrologic susceptibility factors were defined for a subset of these wetlands, using 11 variables derived from landscape-scale characteristics of the catchment areas of these wetlands. The hydrologic susceptibility factors, one related to the potential hydrologic pathways for contaminants and the other to the susceptibility of wetlands to disruptions in water supply from projected future changes in climate, were used to indicate which wetlands (greater than 1 ha) in Acadia National Park (ANP) may warrant further investigation or monitoring. The HGM classification system consists of 13 categories: Riverine-Upper Perennial, Riverine-Nonperennial, Riverine- Tidal, Depressional-Closed, Depressional-Semiclosed, Depressional-Open, Depressional-No Ground-Water Input, Mineral Soil Flat, Organic Soil Flat, Tidal Fringe, Lacustrine Fringe, Slope, and Hilltop/Upper Hillslope. A dichotomous key was developed to aid in the classification of wetlands. The National Wetland Inventory maps produced by the U.S. Fish and Wildlife Service provided the wetland mapping units used for this classification. On the basis of topographic map information and geographic information system (GIS) layers at a scale of 1:24,000 or larger, 1,202 wetland units were assigned a preliminary HGM classification. Two of the 13 HGM classes (Riverine-Tidal and Depressional-No Ground-Water Input) were not assigned to any wetlands because criteria for determining those classes are not available at that map scale, and must be determined by more site-specific information. Of the 1,202 wetland polygons classified, which cover 1,830 ha in ANP, 327 were classified as Slope, 258 were

  8. Wetlands of Argonne National Laboratory-East DuPage County, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Lonkhuyzen, R.A.; LaGory, K.E.

    1994-03-01

    Jurisdictional wetlands of the Argonne National Laboratory-East (ANL-E) site in DuPage County, Illinois, were delineated in the summer and autumn of 1993 in accordance with the 1987 US Army Corps of Engineers methodology. Potential wetland sites with an area greater than 500 m{sup 2} (0.05 ha [0.124 acre]) were identified for delineation on the basis of aerial photographs, the DuPage County soil survey, and reconnaissance-level field studies. To qualify as a jurisdictional wetland, an area had to support a predominance of hydrophytic vegetation as well as have hydric soil and wetland hydrology. Thirty-five individual jurisdictional wetlands were delineated at ANL-E,more » totaling 180,604 m{sup 2} (18.1 ha [44.6 acres]). These wetlands were digitized onto the ANL-E site map for use in project planning. Characteristics of each wetland are presented -- including size, dominant plant species and their indicator status, hydrologic characteristics (including water source), and soil characteristics.« less

  9. 50 CFR 84.21 - How do I apply for a National Coastal Wetlands Conservation Grant?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Wetlands Conservation Grant? 84.21 Section 84.21 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE... PROGRAM NATIONAL COASTAL WETLANDS CONSERVATION GRANT PROGRAM Applying for Grants § 84.21 How do I apply for a National Coastal Wetlands Conservation Grant? (a) Eligible applicants should submit their...

  10. Riparian wetlands and visitor use management in Big Bend National Park, Texas

    Treesearch

    C. M. Fleming; S. H. Kunkle; M. D. Flora

    1996-01-01

    Wetlands and riparian habitats constitute a small, but nonetheless vital component in the Chihuahuan Desert. Big Bend National Park, 801,000 acres, contains about 27,000 acres of wetland. The park has riparian or wetland habitat distributed around 315 water sources, some perennial streams, and along 118 miles of the Rio Grande. These areas contain unique vegetation...

  11. A blue carbon soil database: Tidal wetland stocks for the US National Greenhouse Gas Inventory

    NASA Astrophysics Data System (ADS)

    Feagin, R. A.; Eriksson, M.; Hinson, A.; Najjar, R. G.; Kroeger, K. D.; Herrmann, M.; Holmquist, J. R.; Windham-Myers, L.; MacDonald, G. M.; Brown, L. N.; Bianchi, T. S.

    2015-12-01

    Coastal wetlands contain large reservoirs of carbon, and in 2015 the US National Greenhouse Gas Inventory began the work of placing blue carbon within the national regulatory context. The potential value of a wetland carbon stock, in relation to its location, soon could be influential in determining governmental policy and management activities, or in stimulating market-based CO2 sequestration projects. To meet the national need for high-resolution maps, a blue carbon stock database was developed linking National Wetlands Inventory datasets with the USDA Soil Survey Geographic Database. Users of the database can identify the economic potential for carbon conservation or restoration projects within specific estuarine basins, states, wetland types, physical parameters, and land management activities. The database is geared towards both national-level assessments and local-level inquiries. Spatial analysis of the stocks show high variance within individual estuarine basins, largely dependent on geomorphic position on the landscape, though there are continental scale trends to the carbon distribution as well. Future plans including linking this database with a sedimentary accretion database to predict carbon flux in US tidal wetlands.

  12. Tidal Wetlands of the Yaquina and Alsea River Estuaries in Oregon: GIS layer development and recommendations for National Wetlands Inventory revisions

    EPA Science Inventory

    Geographic Information Systems (GIS) layers of current and likely former tidal wetlands in two Oregon estuaries were generated by enhancing the 2010 National Wetlands Inventory (NWI) data with expert local field knowledge, LiDAR-derived elevations, and 2009 aerial orthophotos. Th...

  13. Appilications of National Wetland Condition Assessment Data ...

    EPA Pesticide Factsheets

    The first National Wetland Condition Assessment (NWCA) was conducted in 2011 by the US Environmental Protection Agency (USEPA) and its federal and state partners, using a survey design allowing extrapolation of results to national and regional scales. Vegetation, algae, soil, water chemistry, and hydrologic data were collected at each of 1138 locations across the contiguous US. Ecological condition was assessed in relation to a disturbance gradient anchored by least (reference) and most disturbed sites and identified using chemical, physical, and biological disturbance indices based on site-level data. A vegetation multimetric index (VMMI) was used as the indicator of condition. Potential stressors to condition were incorporated into indices of hydrologic alteration, physical alteration and a soil heavy metals, and a nonnative plant indicator. The indices were used to quantify national and regional stressor extent, and their associated relative and attributable risk. All 1138 sites sampled were placed along a quantitatively defined disturbance gradient customized by the ecoregions used in NWCA reporting. The characteristics of the 277 sites at the end of the gradient identified as least disturbed were considered reference condition. The pool of reference sites will be increased with future assessments using the definition of reference set in 2011 and can serve as a benchmark for management decisions and restoration. Approximately 48±6% of the national wetland

  14. TRACKING WETLAND CHANGES IN AN URBANIZING AREA USING NATIONAL WETLAND INVENTORY AND FIELD SURVEY DATA

    EPA Science Inventory

    Urban wetlands can experience rapid change with development. Using information from National Inventory Maps (NWI) in combination with rapid field surveys conducted in 1992 and 1998, we tracked changes over 16 years in small ( 2 ha), palustrine emergent/open water (PEM/POW) wetla...

  15. Analysis and Reporting for the 2011 National Wetland Condition Assessment

    EPA Science Inventory

    The USEPA and its partners are in the process of producing the report to the public and publishing the data for the 2011 National Wetland Condition Assessment (NWCA). As with all National Aquatic Resource Surveys (NARS), the NWCA report includes a quantitative description of the ...

  16. Next steps for the National Wetlands Condition Assessment

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) anticipates conducting a national survey of wetland condition, with field work scheduled for 2011 and a report in 2013. This session has presented various aspects of the planning for the survey and examples of surveys that have or w...

  17. Mercury in wetlands at the Glacial Ridge National Wildlife Refuge, northwestern Minnesota, 2007-9

    USGS Publications Warehouse

    Cowdery, Timothy K.; Brigham, Mark E.

    2013-01-01

    The Glacial Ridge National Wildlife Refuge was established in 2004 on land in northwestern Minnesota that had previously undergone extensive wetland and prairie restorations. About 7,000 acres of drained wetlands were restored to their original hydrologic function and aquatic ecosystem. During 2007–9, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service and the Red Lake Watershed District, analyzed mercury concentrations in wetland water and sediment to evaluate the effect of wetland restoration on mercury methylation. The wetland waters sampled generally were of the calcium/magnesium bicarbonate type. Nitrogen in water was mostly in the form of dissolved-organic nitrogen, with very low dissolved-nitrate and dissolved-ammonia concentrations. About 71 percent of all phosphorus in water was dissolved, with one-half of that in the form of orthophosphorus. Wetland water had total-mercury and methylmercury concentrations ranging from 1.5 to 20 nanograms per liter (ng/L) and 0.2 to 16 ng/L, respectively. Median concentrations were 7.1 and 2.9 ng/L, respectively. About one-half of the mercury in wetland water samples was in the form of methylmercury, but this form ranged from 7 to 81 percent of each sample. Compared to concentrations in stream sediment samples collected throughout the United States, Glacial Ridge National Wildlife Refuge wetland sediment samples contained typical total-mercury concentrations, but methylmercury concentrations were nearly twice as high. The maximum concentration measured in Glacial Ridge National Wildlife Refuge wetland water approached the highest published water methylmercury concentration in uncontaminated waters of which we are aware. However, the upper quartile of water methylmercury concentrations is similar to concentrations reported for some impoundments and wetlands in northwestern Minnesota and North Dakota. Methylmercury concentrations in sampled wetlands were much higher than those from typical

  18. Wetland Hydrologic Connectivity to Downstream Waters: A Classification Approach and National Assessment

    NASA Astrophysics Data System (ADS)

    Leibowitz, S. G.; Hill, R. A.; Weber, M.; Jones, C., Jr.; Rains, M. C.; Creed, I. F.; Christensen, J.

    2017-12-01

    Connectivity has become a major focus of hydrological and ecological studies. Connectivity enhances fluxes among landscape features, whereas isolation eliminates or reduces such flows. Thus connectivity can be an important characteristic controlling ecosystem services. Hydrologic connectivity is particularly significant, since chemical and biological flows are often associated with water movement. Wetlands have many important functions, and the degree to which they are hydrologically connected influences the effect they have on downstream waters. Wetlands with high connectivity can serve as sources (e.g., net exporters of dissolved organic carbon), while those with low connectivity can function as sinks (e.g., net importers of suspended sediments). We developed a system to classify wetlands based on type, magnitude, and frequency of hydrologic connectivity with downstream waters. We determined type (riparian, non-riparian surface, and non-riparian subsurface) by considering soil and bedrock permeability. For magnitude, we developed indices to represent travel time based on Manning's kinematic and Darcy's equations. We used soil drainage class as an indicator of frequency. We also included an index that assesses relative level of anthropogenic impacts to connectivity (e.g., presence of canals and ditches and impervious surfaces). The classification system was designed to be applied at various spatial scales using available data. The system was applied to 4.7 million wetlands in the conterminous United States, using the National Land Cover Dataset and other nationally available geospatial data, and the resulting maps were assessed for patterns in wetland connectivity. While wetland connectivity was dominated by fast, frequent riparian connections nationally, distributions of connectivity were characteristic for each region. Consideration of these distributions of connectivity should promote better management of watershed functions such as flood control and water

  19. Regional and National Use of Semi‐Natural and Natural Depressional Wetlands in Green Infrastructure

    EPA Science Inventory

    Regional and National Use of Semi‐Natural and Natural Depressional Wetlands in Green Infrastructure Charles Lane, US Environmental Protection Agency, Ellen D’Amico, Pegasus Technical ServicesDepressional wetlands are frequently amongst the first aquatic systems to be ...

  20. Reporting on ecological condition and ecosystem services for the 2011 National Wetland Condition Assessment

    EPA Science Inventory

    The first-ever National Wetland Condition Assessment (NWCA) was conducted by the U.S. Environmental Protection Agency (USEPA) in 2011. Vegetation, algae, soil, water chemistry, and hydrologic data were collected at ~900 wetland points across the contiguous United States. The NW...

  1. Drainage investment and wetland loss: an analysis of the national resources inventory data

    USGS Publications Warehouse

    Douglas, Aaron J.; Johnson, Richard L.

    1994-01-01

    The United States Soil Conservation Service (SCS) conducts a survey for the purpose of establishing an agricultural land use database. This survey is called the National Resources Inventory (NRI) database. The complex NRI land classification system, in conjunction with the quantitative information gathered by the survey, has numerous applications. The current paper uses the wetland area data gathered by the NRI in 1982 and 1987 to examine empirically the factors that generate wetland loss in the United States. The cross-section regression models listed here use the quantity of wetlands, the stock of drainage capital, the realty value of farmland and drainage costs to explain most of the cross-state variation in wetland loss rates. Wetlands preservation efforts by federal agencies assume that pecuniary economic factors play a decisive role in wetland drainage. The empirical models tested in the present paper validate this assumption.

  2. Floodplain and Wetland Assessment for the Mortandad Wetland Enhancement and the DP Dissipater Projects at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathcock, Charles Dean

    This floodplain and wetland assessment was prepared in accordance with 10 Code of Federal Regulations (CFR) 1022 Compliance with Floodplain and Wetland Environmental Review Requirements, which was promulgated to implement the U.S. Department of Energy (DOE) requirements under Executive Order 11988 Floodplain Management and Executive Order 11990 Wetlands Protection. According to 10 CFR 1022, a 100-year floodplain is defined as “the lowlands adjoining inland and coastal waters and relatively flat areas and flood prone areas of offshore islands” and a wetland is defined as “an area that is inundated or saturated by surface or groundwater at a frequency and durationmore » sufficient to support, and that under normal circumstances does support, a prevalence of vegetation typically adapted for life in saturated soil conditions, including swamps, marshes, bogs, and similar areas.” In this action, DOE is proposing two projects to improve wetland and floodplain function at Los Alamos National Laboratory (LANL). The proposed work will comply with corrective action requirements under the Settlement Agreement and Stipulated Final Compliance Order (Settlement Agreement)1 Number HWB-14-20. The first project is located in Technical Areas (TA)-03 in upper Mortandad Canyon. The upper Mortandad wetlands have existing stormwater controls that need to be rehabilitated. Head-cut formation is occurring at the downstream portion of the wetland. This project will repair damages to the wetland and reduce the future erosion potential. The second project is located in TA-21 in Delta Prime (DP) Canyon. The intent of the DP Dissipater Project in DP Canyon is to install stormwater control structures in DP Canyon to retain low channel flows and reduce downstream sediment transport as well as peak flows during low and moderate storm events. Due to increased erosion, the stream bank in this area has unstable vertical walls within the stream channel. The DOE prepared this floodplain and

  3. Riparian and wetland plant community types of the Shoshone National Forest

    Treesearch

    Gillian Walford; George Jones; Walt Fertig; Sabine Mellman-Brown; Kent E. Houston

    2001-01-01

    This classification of riparian and wetland plant communities in the Shoshone National Forest was a cooperative project between the Wyoming Natural Diversity Database (WYNDD) of The Nature Conservancy and the Shoshone National Forest. This project identifies groups of plant species that commonly occur together in particular environmental settings. Each such group of...

  4. INVITED SESSION: THE 2011 NATIONAL WETLAND CONDITION ASSESSMENT: TECHNICAL UNDERPINNINGS AND RESULTS

    EPA Science Inventory

    The first-ever National Wetland Condition Assessment (NWCA) was conducted in 2011 by the US Environmental Protection Agency (USEPA) and its federal and state partners, using a survey design allowing extrapolation of results to national and regional scales. At each of 1138 locatio...

  5. Highlights and overview of the 2011 National Wetland Condition Assessment (NWCA) and upcoming 2016 NWCA

    EPA Science Inventory

    This presentation is for a webinar sponsored by the Society of Wetland Scientists. It is tailored to a technical audience with research interests in wetland ecology and management. The talk will introduce the National Aquatic Resource Surveys and then transition to a discussion...

  6. The US Geological Survey's National Mapping Division programs, products, and services that can support wetlands mapping

    USGS Publications Warehouse

    Baxter, F.S.

    1990-01-01

    The US Geological Survey (USGS) programs can play an important role in support of President Bush's policy of no net loss of wetlands. A principal goal of USGS is to provide cartographic information that contributes to the wise management of the Nation's natural resources. This information consists of maps, cartographic data bases (graphic and digital), remotely sensed imagery, and information services. These products are used by Federal, State, and local governments, the private sector, and individual citizens in making decisions on the existence and use of land and water resources. I discuss the programs, products, and information services of the National Mapping Division, the tools available to determine where wetlands exist, and the capability of periodic measurement of wetlands to help in assessing compliance with the concept of no net loss of wetlands. -from Author

  7. Selecting indicators for the 2011 Assessment of the Nation's Wetlands

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is planning to conduct a National Wetland Condition Assessment in 2011 with reporting due in 2013. The results will be used to ensure that technical and financial resources are more efficiently allocated to address risks that confro...

  8. 50 CFR 84.21 - How do I apply for a National Coastal Wetlands Conservation Grant?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Wetlands Conservation Grant? 84.21 Section 84.21 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM NATIONAL COASTAL WETLANDS CONSERVATION GRANT PROGRAM Applying for Grants § 84.21 How do I apply...

  9. Monitoring wetland of Poyang Lake National Nature Reserve zone by remote sensing

    NASA Astrophysics Data System (ADS)

    Le, Xinghua; Fan, Zhewen; Fang, Yu; Yu, Yuping; Zhang, Yun

    2008-10-01

    In order to monitor the wetland of the Poyang Lake national nature reserve zone, we selected three different seasons TM image data which were achieved individually in April 23th in 1988, Nov 2nd in 1994, and Jan 1st in 2000. Based on the band 5, band 4 and band 3of TM image, we divided the land coverage of Poyang Lake national nature reserve zone into three classes--water field, meadow field and the other land use by rule of maximum likelihood. Using the outcome data to make the statistical analysis, combining with the GIS overlay function operation, the land coverage changes of the Poyang Lake national nature reserve zone can be achieved. Clipped by the Poyang Lake national nature reserve zone boundary, the land coverage changes of Poyang Lake national nature reserve zone in three different years can be attained. Compared with the different wetland coverage data in year of 1988, 1994, 2000, the Poyang Lake national nature reserve zone eco-environment can be inferred from it. After analyzing the land coverage changes data, we draw the conclusion that the effort of Poyang Lake national nature reserve administration bureaucracy has worked well in certain sense.

  10. Estimated ultraviolet radiation doses in wetlands in six national parks

    USGS Publications Warehouse

    Diamond, S.A.; Trenham, P.C.; Adams, Michael J.; Hossack, B.R.; Knapp, R.A.; Stark, L.; Bradford, D.; Corn, P.S.; Czarnowski, K.; Brooks, P.D.; Fagre, D.B.; Breen, B.; Dentenbeck, N.E.; Tonnessen, K.

    2005-01-01

    Ultraviolet-B radiation (UV-B, 280–320-nm wavelengths) doses were estimated for 1024 wetlands in six national parks: Acadia (Acadia), Glacier (Glacier), Great Smoky Mountains (Smoky), Olympic (Olympic), Rocky Mountain (Rocky), and Sequoia/Kings Canyon (Sequoia). Estimates were made using ground-based UV-B data (Brewer spectrophotometers), solar radiation models, GIS tools, field characterization of vegetative features, and quantification of DOC concentration and spectral absorbance. UV-B dose estimates were made for the summer solstice, at a depth of 1 cm in each wetland. The mean dose across all wetlands and parks was 19.3 W-h m−2 (range of 3.4–32.1 W-h m−2). The mean dose was lowest in Acadia (13.7 W-h m−2) and highest in Rocky (24.4 W-h m−2). Doses were significantly different among all parks. These wetland doses correspond to UV-B flux of 125.0 μW cm−2 (range 21.4–194.7 μW cm−2) based on a day length, averaged among all parks, of 15.5 h. Dissolved organic carbon (DOC), a key determinant of water-column UV-B flux, ranged from 0.6 (analytical detection limit) to 36.7 mg C L−1 over all wetlands and parks, and reduced potential maximal UV-B doses at 1-cm depth by 1%–87 %. DOC concentration, as well as its effect on dose, was lowest in Sequoia and highest in Acadia (DOC was equivalent in Acadia, Glacier, and Rocky). Landscape reduction of potential maximal UV-B doses ranged from zero to 77% and was lowest in Sequoia. These regional differences in UV-B wetland dose illustrate the importance of considering all aspects of exposure in evaluating the potential impact of UV-B on aquatic organisms.

  11. 75 FR 68377 - Tamarac National Wildlife Refuge, Becker County, and Tamarac Wetland Management District, Minnesota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... Tamarac National Wildlife Refuge (NWR) and Tamarac Wetland Management District (WMD). Goals and objectives... complete the CCP process for Tamarac NWR and WMD, which we began by publishing a notice of intent on (72 FR... Federally-designated wilderness acres. The Tamarac WMD consists of 8,577 acres of wetland easements...

  12. Welcome to the National Wetlands Research Center Library: Successful Research Begins @ Your Library

    USGS Publications Warehouse

    Broussard, Linda

    2007-01-01

    The National Wetlands Research Center (NWRC) library is part of the U.S. Geological Survey (USGS) and is the only USGS library dedicated to wetland science. The mission of the NWRC library is to support the research and information needs of scientists, managers, and support personnel by providing a specialized, scientific collection of library materials and related information services that are responsive to and reflect internal and external customer needs and work processes. The NWRC library participates in international cataloging and resource sharing that allows libraries from throughout the world to borrow from its collections and lend to NWRC. This sharing of materials facilitates the research of other governmental agencies, universities, and those interested in the study of wetlands.

  13. Deep canyon and subalpine riparian and wetland plant associations of the Malheur, Umatilla, and Wallowa-Whitman National Forests.

    Treesearch

    Aaron F. Wells

    2006-01-01

    This guide presents a classification of the deep canyon and subalpine riparian and wetland vegetation types of the Malheur, Umatilla, and Wallowa-Whitman National Forests. A primary goal of the deep canyon and subalpine riparian and wetland classification was a seamless linkage with the midmontane northeastern Oregon riparian and wetland classification provided by...

  14. Tidal wetlands of the Yaquina and Alsea River estuaries, Oregon: Geographic Information Systems layer development and recommendations for National Wetlands Inventory revisions

    USGS Publications Warehouse

    Brophy, Laura S.; Reusser, Deborah A.; Janousek, Christopher N.

    2013-01-01

    Geographic Information Systems (GIS) layers of current, and likely former, tidal wetlands in two Oregon estuaries were generated by enhancing the 2010 National Wetlands Inventory (NWI) data with expert local field knowledge, Light Detection and Ranging-derived elevations, and 2009 aerial orthophotographs. Data were generated for two purposes: First, to enhance the NWI by recommending revised Cowardin classifications for certain NWI wetlands within the study area; and second, to generate GIS data for the 1999 Yaquina and Alsea River Basins Estuarine Wetland Site Prioritization study. Two sets of GIS products were generated: (1) enhanced NWI shapefiles; and (2) shapefiles of prioritization sites. The enhanced NWI shapefiles contain recommended changes to the Cowardin classification (system, subsystem, class, and/or modifiers) for 286 NWI polygons in the Yaquina estuary (1,133 acres) and 83 NWI polygons in the Alsea estuary (322 acres). These enhanced NWI shapefiles also identify likely former tidal wetlands that are classified as upland in the current NWI (64 NWI polygons totaling 441 acres in the Yaquina estuary; 16 NWI polygons totaling 51 acres in the Alsea estuary). The former tidal wetlands were identified to assist strategic planning for tidal wetland restoration. Cowardin classifications for the former tidal wetlands were not provided, because their current hydrology is complex owing to dikes, tide gates, and drainage ditches. The scope of this project did not include the field evaluation that would be needed to determine whether the former tidal wetlands are currently wetlands, and if so, determine their correct Cowardin classification. The prioritization site shapefiles contain 49 prioritization sites totaling 2,177 acres in the Yaquina estuary, and 39 prioritization sites totaling 1,045 acres in the Alsea estuary. The prioritization sites include current and former (for example, diked) tidal wetlands, and provide landscape units appropriate for basin

  15. Changes in the Vegetation Cover in a Constructed Wetland at Argonne National Laboratory, Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergman, C.L.; LaGory, K.

    2004-01-01

    Wetlands are valuable resources that are disappearing at an alarming rate. Land development has resulted in the destruction of wetlands for approximately 200 years. To combat this destruction, the federal government passed legislation that requires no net loss of wetlands. The United States Army Corps of Engineers (USACE) is responsible for regulating wetland disturbances. In 1991, the USACE determined that the construction of the Advanced Photon Source at Argonne National Laboratory would damage three wetlands that had a total area of one acre. Argonne was required to create a wetland of equal acreage to replace the damaged wetlands. For themore » first five years after this wetland was created (1992-1996), the frequency of plant species, relative cover, and water depth was closely monitored. The wetland was not monitored again until 2002. In 2003, the vegetation cover data were again collected with a similar methodology to previous years. The plant species were sampled using quadrats at randomly selected locations along transects throughout the wetland. The fifty sampling locations were monitored once in June and percent cover of each of the plant species was determined for each plot. Furthermore, the extent of standing water in the wetland was measured. In 2003, 21 species of plants were found and identified. Eleven species dominated the wetland, among which were reed canary grass (Phalaris arundinacea), crown vetch (Coronilla varia), and Canada thistle (Cirsium arvense). These species are all non-native, invasive species. In the previous year, 30 species were found in the same wetland. The common species varied from the 2002 study but still had these non-native species in common. Reed canary grass and Canada thistle both increased by more than 100% from 2002. Unfortunately, the non-native species may be contributing to the loss of biodiversity in the wetland. In the future, control measures should be taken to ensure the establishment of more desired native

  16. Preliminary monitoring protocol for the tidal freshwater wetland restoration herbivory study in national capital parks--east: Appendix B

    USGS Publications Warehouse

    Krafft, Cairn; Hatfield, Jeffrey S.

    2014-01-01

    Four tidal freshwater wetland restoration projects have been undertaken within Anacostia Park on lands managed by the National Park Service since 1993. Monitoring the impacts of Canada goose (Branta canadensis) herbivory on the wetland vegetation will play a key role in determining the long-term health of these tidal freshwater wetland restorations. This Implementation Plan lays out monitoring for impacts of herbivory on the vegetation in Kingman Area 1 and inferred to the other wetland areas.

  17. Reference site selection for the National Wetland Condition Assessment: Integrating best professional judgement and objective selection criteria

    EPA Science Inventory

    The National Wetlands Condition Assessment (NWCA), one of a series of environmental assessments being conducted by states, tribes, the U.S. Environmental Protection Agency, and other partners, surveyed over 900 wetland sites across the lower 48 states during Summer 2011. The NWC...

  18. Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data

    USGS Publications Warehouse

    Wright, C.; Gallant, Alisa L.

    2007-01-01

    The U.S. Fish and Wildlife Service uses the term palustrine wetland to describe vegetated wetlands traditionally identified as marsh, bog, fen, swamp, or wet meadow. Landsat TM imagery was combined with image texture and ancillary environmental data to model probabilities of palustrine wetland occurrence in Yellowstone National Park using classification trees. Model training and test locations were identified from National Wetlands Inventory maps, and classification trees were built for seven years spanning a range of annual precipitation. At a coarse level, palustrine wetland was separated from upland. At a finer level, five palustrine wetland types were discriminated: aquatic bed (PAB), emergent (PEM), forested (PFO), scrub–shrub (PSS), and unconsolidated shore (PUS). TM-derived variables alone were relatively accurate at separating wetland from upland, but model error rates dropped incrementally as image texture, DEM-derived terrain variables, and other ancillary GIS layers were added. For classification trees making use of all available predictors, average overall test error rates were 7.8% for palustrine wetland/upland models and 17.0% for palustrine wetland type models, with consistent accuracies across years. However, models were prone to wetland over-prediction. While the predominant PEM class was classified with omission and commission error rates less than 14%, we had difficulty identifying the PAB and PSS classes. Ancillary vegetation information greatly improved PSS classification and moderately improved PFO discrimination. Association with geothermal areas distinguished PUS wetlands. Wetland over-prediction was exacerbated by class imbalance in likely combination with spatial and spectral limitations of the TM sensor. Wetland probability surfaces may be more informative than hard classification, and appear to respond to climate-driven wetland variability. The developed method is portable, relatively easy to implement, and should be applicable in

  19. 75 FR 57978 - Notice of Intent; Request for Comments on Adoption of the National Park Service's Wetland and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... under the National Coastal Wetland Conservation Grant Program for habitat restoration activities. The... Creek Restoration Final Environmental Impact Statement/Environmental Impact Report, Big Lagoon, Muir... impact report (EIS/EIR) for the Wetland and Creek Restoration at Big Lagoon, Muir Beach, California...

  20. Ecological genetics at the USGS National Wetlands Research Center

    USGS Publications Warehouse

    Travis, Steven

    2006-01-01

    The Ecological Genetics Program at the USGS National Wetlands Research Center (NWRC) employs state-of-the-art DNA fingerprinting technologies in characterizing critical management aspects of the population biology of species of concern (fig. 1). The overarching themes of this program have been (1) the critical role that genetic diversity plays in maintaining population viability and (2) how management strategies might incorporate genetic information in preventing the decline of desirable species or in controlling the spread of invasive species.

  1. East African wetland-catchment data base for sustainable wetland management

    NASA Astrophysics Data System (ADS)

    Leemhuis, Constanze; Amler, Esther; Diekkrüger, Bernd; Gabiri, Geofrey; Näschen, Kristian

    2016-10-01

    Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  2. Carbon storage in US wetlands

    PubMed Central

    Nahlik, A. M.; Fennessy, M. S.

    2016-01-01

    Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in our remaining wetlands or of the potential effects of human disturbance on these stocks. Here we use field data from the 2011 National Wetland Condition Assessment to provide unbiased estimates of soil carbon stocks for wetlands at regional and national scales. We find that wetlands in the conterminous United States store a total of 11.52 PgC, much of which is within soils deeper than 30 cm. Freshwater inland wetlands, in part due to their substantial areal extent, hold nearly ten-fold more carbon than tidal saltwater sites—indicating their importance in regional carbon storage. Our data suggest a possible relationship between carbon stocks and anthropogenic disturbance. These data highlight the need to protect wetlands to mitigate the risk of avoidable contributions to climate change. PMID:27958272

  3. Carbon storage in US wetlands

    NASA Astrophysics Data System (ADS)

    Nahlik, A. M.; Fennessy, M. S.

    2016-12-01

    Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in our remaining wetlands or of the potential effects of human disturbance on these stocks. Here we use field data from the 2011 National Wetland Condition Assessment to provide unbiased estimates of soil carbon stocks for wetlands at regional and national scales. We find that wetlands in the conterminous United States store a total of 11.52 PgC, much of which is within soils deeper than 30 cm. Freshwater inland wetlands, in part due to their substantial areal extent, hold nearly ten-fold more carbon than tidal saltwater sites--indicating their importance in regional carbon storage. Our data suggest a possible relationship between carbon stocks and anthropogenic disturbance. These data highlight the need to protect wetlands to mitigate the risk of avoidable contributions to climate change.

  4. Welcome to the National Wetlands Research Center Library: Not Just Another Library-A Special Library

    USGS Publications Warehouse

    Broussard, Linda

    2007-01-01

    Libraries are grouped into four major types: public, school, academic, and special. The U.S. Geological Survey's (USGS) National Wetlands Research Center (NWRC) library is classified as a special library because it is sponsored by the Federal government, and the collections focus on a specific subject. The NWRC library is the only USGS library dedicated to wetland science. Library personnel offer expert research services to meet the informational needs of NWRC scientists, managers, and support personnel. The NWRC library participates in international cataloging and resource sharing, which allows libraries from throughout the world to borrow from its collections. This sharing facilitates the research of other governmental agencies, universities, and those interested in the study of wetlands.

  5. Wetland features and landscape context predict the risk of wetland habitat loss.

    PubMed

    Gutzwiller, Kevin J; Flather, Curtis H

    2011-04-01

    Wetlands generally provide significant ecosystem services and function as important harbors of biodiversity. To ensure that these habitats are conserved, an efficient means of identifying wetlands at risk of conversion is needed, especially in the southern United States where the rate of wetland loss has been highest in recent decades. We used multivariate adaptive regression splines to develop a model to predict the risk of wetland habitat loss as a function of wetland features and landscape context. Fates of wetland habitats from 1992 to 1997 were obtained from the National Resources Inventory for the U.S. Forest Service's Southern Region, and land-cover data were obtained from the National Land Cover Data. We randomly selected 70% of our 40 617 observations to build the model (n = 28 432), and randomly divided the remaining 30% of the data into five Test data sets (n = 2437 each). The wetland and landscape variables that were important in the model, and their relative contributions to the model's predictive ability (100 = largest, 0 = smallest), were land-cover/ land-use of the surrounding landscape (100.0), size and proximity of development patches within 570 m (39.5), land ownership (39.1), road density within 570 m (37.5), percent woody and herbaceous wetland cover within 570 m (27.8), size and proximity of development patches within 5130 m (25.7), percent grasslands/herbaceous plants and pasture/hay cover within 5130 m (21.7), wetland type (21.2), and percent woody and herbaceous wetland cover within 1710 m (16.6). For the five Test data sets, Kappa statistics (0.40, 0.50, 0.52, 0.55, 0.56; P < 0.0001), area-under-the-receiver-operating-curve (AUC) statistics (0.78, 0.82, 0.83, 0.83, 0.84; P < 0.0001), and percent correct prediction of wetland habitat loss (69.1, 80.4, 81.7, 82.3, 83.1) indicated the model generally had substantial predictive ability across the South. Policy analysts and land-use planners can use the model and associated maps to prioritize

  6. Carbon storage in US wetlands | Science Inventory | US EPA

    EPA Pesticide Factsheets

    This Nature Communications article is a product of legacy work that contributes to Safe and Sustainable Water Resources research on technical support and research on the enhancement of Office of Water’s National Aquatic Resource Surveys (NARS) (SSWR 3.01A). The research is also potentially relevant to SHC and ACE research program questions. The research was conducted under USEPA cooperative agreement number 83422601 with Michigan State University in association with Kenyon College. USEPA 2011 National Wetland Condition Assessment data used for this research are publically available from https://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys. ***This is article is clearing for completion ONLY*** The research and conclusions in this article highlight the role of wetland soils in storing carbon and the implications of disturbance to wetlands for climate change. Specifically, we provide unbiased estimates of soil carbon stocks for wetlands at regional and national scales using field data from the 2011 National Wetland Condition Assessment (NWCA). This research also describes how soil carbon stocks vary by wetland type and soil depth, and by anthropogenic disturbance to the wetland. We find that wetlands in the conterminous US store a total of 11.52 PgC – roughly equivalent to four years of annual carbon emissions by the US. Freshwater inland wetlands, in part due to their substantial areal extent, hold nearly ten-fol

  7. Avifaunal occurrence and distribution of wetland birds in Sakhya Sagar and Madhav Lakes in Madhav National Park, Shivpuri, India.

    PubMed

    Arya, Mohit; Rao, R J; Mishra, Anand Kumar

    2014-07-01

    The present study on wetland birds was carried out at Madhav National Park, Shivpuri, M.P., India. This Park comprises of two lakes namely Sakhya Sagar and Madhav Lakes, which support fascinating wildlife. These lakes are winter resorts for variety of migratory birds for shelter, breeding, nesting and provide a suitable habitat for several resident and local migratory wetland bird species. This paper assesses the occurrence of 73 wetland birds (18 families and 8 orders) with their distribution in different locations and habitats. The present study provides a comprehensive checklist of wetland birds of Sakhya Sagar and Madhav Lakes by covering 15 locations and 10 habitats utilized by migratory, resident migratory and resident wetland bird species during different seasons of year and at various sighting frequencies.

  8. Classification and management of aquatic, riparian, and wetland sites on the national forests of eastern Washington: series description.

    Treesearch

    Bernard L. Kovalchik; Rodrick R. Clausnitzer

    2004-01-01

    This is a classification of aquatic, wetland, and riparian series and plant associations found within the Colville, Okanogan, and Wenatchee National Forests. It is based on the potential vegetation occurring on lake and pond margins, wetland fens and bogs, and fluvial surfaces along streams and rivers within Forest Service lands. Data used in the classification were...

  9. A multivariate assessment of changes in wetland habitat for waterbirds at Moosehorn National Wildlife Refuge, Maine, USA

    USGS Publications Warehouse

    Hierl, L.A.; Loftin, C.S.; Longcore, J.R.; McAuley, D.G.; Urban, D.L.

    2007-01-01

    We assessed changes in vegetative structure of 49 impoundments at Moosehorn National Wildlife Refuge (MNWR), Maine, USA, between the periods 1984-1985 to 2002 with a multivariate, adaptive approach that may be useful in a variety of wetland and other habitat management situations. We used Mahalanobis Distance (MD) analysis to classify the refuge?s wetlands as poor or good waterbird habitat based on five variables: percent emergent vegetation, percent shrub, percent open water, relative richness of vegetative types, and an interspersion juxtaposition index that measures adjacency of vegetation patches. Mahalanobis Distance is a multivariate statistic that examines whether a particular data point is an outlier or a member of a data cluster while accounting for correlations among inputs. For each wetland, we used MD analysis to quantify a distance from a reference condition defined a priori by habitat conditions measured in MNWR wetlands used by waterbirds. Twenty-five wetlands declined in quality between the two periods, whereas 23 wetlands improved. We identified specific wetland characteristics that may be modified to improve habitat conditions for waterbirds. The MD analysis seems ideal for instituting an adaptive wetland management approach because metrics can be easily added or removed, ranges of target habitat conditions can be defined by field-collected data, and the analysis can identify priorities for single or multiple management objectives.

  10. National Mapping of Wetland Connectivity | Science Inventory ...

    EPA Pesticide Factsheets

    Connectivity has become a major focus of hydrological and ecological studies. Connectivity influences fluxes between landscape elements, while isolation reduces flows between elements. Thus connectivity can be an important characteristic controlling ecosystem services. Hydrologic connectivity is particularly significant, since movement of chemical constituents and biota flows are often associated with water flow. While wetlands have many important on-site functions, the degree to which they are connected to other ecosystems is a controlling influence on the effect these waters have on the larger landscape. Specifically, wetlands with high connectivity can serve as sources (e.g., net exporters of dissolved carbon), while those with low connectivity can function as sinks (e.g., net importers of suspended sediments). Here we focus on so-called “geographically isolated wetlands” (GIWs), or wetlands that are completely surrounded by uplands. While these wetlands normally lack surface water connections, they can be hydrologically connected to downstream waters through intermittent surface flow or groundwater. To help quantify connectivity of GIWs with downstream waters, we developed a system to classify GIWs based on type, magnitude, and frequency of hydrologic connectivity. We determine type (overland, shallow groundwater, or deep groundwater connectivity) by considering soil and bedrock permeability. For magnitude, we developed indices to represent tra

  11. National Wetland Mitigation Banking Study Wetland Migitation Banking.

    DTIC Science & Technology

    1994-02-01

    the rest, but granted easements to HBWC 4. Mid City Ranch Humboldt CA Fish & Game CA Fish & Game, Humboldt CA Fish & Game County , CA City of...Eureka, Humboldt County County , City of Eureka 5. Mission Viejo/ Orange Mission Viejo USFWS, CA Dept. multiple - public- Orange ACWHEP...Broadway Wetlands Restoration Conceptual Plan yes in Humboldt County 6 - acre bank on 13-acre parcel mitigates for ’pockef marshes (2 acres

  12. Using monitoring data to map amphibian breeding hotspots and describe wetland vulnerability in Yellowstone and Grand Teton National Parks

    USGS Publications Warehouse

    Ray, Andrew M.; Legg, Kristin; Sepulveda, Adam; Hossack, Blake R.; Patla, Debra

    2015-01-01

    Amphibians have been selected as a “vital sign” by several National Park Service (NPS) Inventory and Monitoring (I&M) networks. An eight-year amphibian monitoring data set provided opportunities to examine spatial and temporal patterns in amphibian breeding richness and wetland desiccation across Yellowstone and Grand Teton National Parks. Amphibian breeding richness was variable across both parks and only four of 31 permanent monitoring catchments contained all four widely distributed species. Annual breeding richness was also variable through time and fluctuated by as much as 75% in some years and catchments. Wetland desiccation was also documented across the region, but alone did not explain variations in amphibian richness. High annual variability across the region emphasizes the need for multiple years of monitoring to accurately describe amphibian richness and wetland desiccation dynamics.

  13. Importance of hydrologic data for interpreting wetland maps and assessing wetland loss and mitigation

    USGS Publications Warehouse

    Carter, V.

    1991-01-01

    The US Geological Survey collects and disseminates, in written and digital formats, groundwater and surface-water information related to the tidal and nontidal wetlands of the United States. This information includes quantity, quality, and availability of groundwater and surface water; groundwater and surface-water interactions (recharge-discharge); groundwater flow; and the basic surface-water characteristics of streams, rivers, lakes, and wetlands. Water resources information in digital format can be used in geographic information systems (GISs) for many purposes related to wetlands. US Geological Survey wetland-related activities include collection of information important for assessing and mitigating coastal wetland loss and modification, hydrologic data collection and interpretation, GIS activities, identification of national trends in water quality and quantity, and process-oriented wetland research. -Author

  14. Wetland modeling and information needs at Stillwater National Wildlife Refuge

    USGS Publications Warehouse

    Hamilton, David B.; Auble, Gregor T.

    1993-01-01

    The marshes in and around Stillwater National Wildlife Refuge (the Refuge) are extremely dynamic; expanding and contracting in size both seasonally, due to runoff and subsequent evapotranspiration, and over longer periods, due to climatic variation. The dynamic nature of these marshes results in a diversity of wetland habitats, which support a variety of migratory birds. To maintain this wetland diversity and control the loss of migratory bird habitat in the Lahontan Valley, the Refuge was established and currently manages a complex of marsh units. However, changes in the hydrology, and changes that will occur as a result of the Fallon Paiute-Shoshone and Truckee-Carson-Pyramid Lake Water Rights Settlement Act (Public Law 101-618, 104 Stat. 3389), greatly affect the Refuge's wetland management capability. In light of these changes, and the legal requirements associated with environmental impact assessments, the Refuge convened a workshop to discuss several aspects of wetland management in the Lahontan Valley. The workshop, described in this report, had three primary objectives: 1. discuss the types and relative proportions of primary wetland habitats that should be provided as described in the settlement act; 2. discuss wetland management models that might be developed to help manage these marshes under hydrologic regimes likely in the future; and 3. discuss future information and monitoring needs, including proposals for valley-wide biodiversity surveys, which would be helpful when considering withdrawn Bureau of Reclamation (BR) lands for possible incorporation into the Refuge. Several presentations at the beginning of the workshop provided a common basis for discussing these objectives. Refuge staff provided background on the history and past management. The Nature Conservatory discussed their role in the settlement act, proposals for valley-wide biodiversity surveys, and results of a literature review for Stillwater Marsh and the Lahontan Valley (Nachlinger

  15. Developing a National Vegetation Multimetric Metric Index of Wetland Condition for the Conterminous United States

    EPA Science Inventory

    This product is an abstract for the 2015 Ecological Society Meeting in Baltimore, Maryland in August. The U.S. Environmental Protection Agency (USEPA), with states, tribes, and other partners, conducted the first-ever National Wetland Condition Assessment (NWCA) in 2011, using a...

  16. Factors Influencing Farmers' Willingness to Participate in the Conversion of Cultivated Land to Wetland Program in Sanjiang National Nature Reserve, China

    NASA Astrophysics Data System (ADS)

    Zhang, Chunli; Robinson, Daniel; Wang, Jing; Liu, Jibin; Liu, Xiaohui; Tong, Lianjun

    2011-01-01

    Sanjiang National Nature Reserve (NNR) is a state-owned natural wetland in China that has suffered severe degradation due to cultivation and wetland reclamation by farmers. As a consequence, the conversion of cultivated land to wetlands (CCW) was proposed by the government of Heilongjiang province and the United Nations Development Programme/Global Environment Facility (UNDP/GEF) project team in 2007. We suggest that voluntary participation in the CCW could be an important tool for accomplishing the integrated objectives of wetland conservation and local development. The purpose of this study was to examine the main factors that influence farmers' willingness to participate in the CCW through a field investigation and a questionnaire. Based on the data from our questionnaire, which provided an effective sample of 310 households in 11 villages, the influencing factors of farmers' willingness to participate were analyzed through binary logistic regression analyses. It was concluded that age, education, the amount of cultivated land, geographical location, and the perceived benefits and risks were important factors for participation. Furthermore, suggestions for improving the wetland compensation system and providing alternative livelihoods are proposed to strengthen participation.

  17. Proceedings of the National Wetland Symposium: Wetland Hydrology Held in Chicago, Illinois on September 16-18 1987

    DTIC Science & Technology

    1987-09-16

    the leached sand at both outcrops. Woody wetland vegetation in the form of a shrub swamp or a wooded swamp, as suggested The leached sand overlies...till vertical feet of woody moss peat was deposited that is more friable and reddish brown in color either by the persistence of a shrub or wooded...important and the dominant typically marshes, replacing many shrub and source of water for wetlands located on river forested wetlands slopes or

  18. Hydrologic and hydraulic analyses of Great Meadow wetland, Acadia National Park, Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2017-01-26

    The U.S. Geological Survey completed hydrologic and hydraulic analyses of Cromwell Brook and the Sieur de Monts tributary in Acadia National Park, Maine, to better understand causes of flooding in complex hydrologic and hydraulic environments, like those in the Great Meadow wetland and Sieur de Monts Spring area. Regional regression equations were used to compute peak flows with from 2 to 100-year recurrence intervals at seven locations. Light detection and ranging data were adjusted for bias caused by dense vegetation in the Great Meadow wetland; and then combined with local ground surveys used to define the underwater topography and hydraulic structures in the study area. Hydraulic modeling was used to evaluate flood response in the study area to a variety of hydrologic and hydraulic scenarios.Hydraulic modeling indicates that enlarging the culvert at Park Loop Road could help mitigate flooding near the Sieur de Monts Nature Center that is caused by streamflows with large recurrence intervals; however, hydraulic modeling also indicates that the Park Loop Road culvert does not aggravate flooding near the Nature Center caused by the more frequent high intensity rainstorms. That flooding is likely associated with overland flow resulting from (1) quick runoff from the steep Dorr Mountain hitting the lower gradient Great Meadow wetland area and (2) poor drainage aggravated by beaver dams holding water in the wetland.Rapid geomorphic assessment data collected in June 2015 and again in April 2016 indicate that Cromwell Brook has evidence of aggradation, degradation, and channel widening throughout the drainage basin. Two of five reference cross sections developed for this report also indicate channel aggradation.

  19. Digging Deep: how the convergence of national-scale and field-based soil core data shines a light on sustainability of wetland carbon sequestration

    NASA Astrophysics Data System (ADS)

    Windham-Myers, L.; Holmquist, J. R.; Sundquist, E. T.; Drexler, J. Z.; Bliss, N.

    2016-12-01

    Wetland soils have long been recognized as conditional archives of past environments, including vegetation structure, nutrient status, sediment supply and the variability in those factors. Both sedimentary processes and organic accretion processes form the soil matrix that identifies wetland soils as "hydric" while also providing archival insights. As repositories of information on net biogeochemical processes, their down-core and across-site structure can show both consistency and distinction. Through several related studies, we have been exploring the use of component-level U.S. Natural Resources Conservation Service (NRCS) Soil Survey data (SSURGO) to map carbon density to 1m depth across wetlands of the US, with an emphasis on coastal wetlands. To assess the accuracy of mapped carbon data from SSURGO, several field-generated datasets (public or compiled for the NASA-funded Blue Carbon Monitoring Project) have been extracted for key metrics such as dry bulk density (g/cc), organic carbon content (%C by combustion) and the combination, soil carbon density (g C /cc) with depth. These profiles indicate ecogeomorphic feedbacks of elevation, vegetation structure and biogeochemical processes through millennia, illustrating both resilience and shifts in behavior that constrain wetland extent as well as wetland function. National datasets such as SSURGO and validation datasets such as the EPA's National Wetland Condition Assessment (NWCA) and Louisiana's Coastwide Reference Monitoring System (CRMS) are publically available and have been underutilized for predicting and/or validating changes in wetland carbon dynamics. We have explored their use for interpretating and understanding changing carbon accretion rates, changing wetland extents through elevation gain or loss, and changing methane emissions. This talk will focus on insights for wetland carbon sequestration functions as determined by soil core structure, both for coastal settings and potentially for inland

  20. The 2011 National Wetland Condition Assessment

    EPA Science Inventory

    The ecological condition of wetland resources across the conterminous United States is poorly understood. To address this issue, the U.S. Environmental Protection Agency (USEPA), in collaboration with states, tribes, and other federal partners, is conducting the first-ever Natio...

  1. Wetland occupancy of pond-breeding amphibians in Yosemite National Park, USA

    USGS Publications Warehouse

    Fellers, Gary M.; Kleeman, Patrick M.; Miller, David A.W.

    2015-01-01

    We estimated wetland occupancy and population trends for three species of pond-breeding anurans in Yosemite National Park from 2007-2011. We used a double survey technique in which two observers independently surveyed each site on the same day. Double surveys allowed us to calculate detectability for the three most common anurans within the park: Rana sierrae, Anaxyrus canorus, and Pseudacris regilla. Annual estimates of detectability were generally high; mean detectability ranged from 73.7% + 0.6 (SE) for any life history stage of A. canorus to 86.7% + 0.7 for sites with P. regilla reproduction (eggs or larvae present). Detectability was most variable for Anaxyrus canorus, which ranged from 45.9% to 99.7%. The probability of occupancy for R. sierrae was highest in larger, low-elevation wetlands that lacked fish. Anaxyrus canorus were more common in shallow high-elevation ponds; their occurrence was minimally impacted by the presence of fish. Finally, occurrence of P. regilla was largely unrelated to wetland size and elevation, but like R. sierrae, they were less likely to occupy sites with fi sh. Occupancy showed no trend over the five years of our study for R. sierrae or A. canorus when considering either sites with any life stage or only sites with reproduction. However, P. regilla showed a modest downward trend for sites with any life stage and sites with reproduction. Our results for R. sierrae run counter to expectations given recent concern about the decline of this species, while our findings for P. regilla raise concerns for this widespread and generally common species.

  2. Testing Methods for Challenging the National Wetland Plant List: Using Tsuga canadensis (L.) Carr. (Eastern Hemlock) as a Case Study

    DTIC Science & Technology

    2017-07-01

    ESRI (Nature Conservancy and Environmental Systems Research Institute). 1994. Field Methods . In Field Methods for Vegetation Mapping: United States...ER D C/ CR RE L TR -1 7- 9 Wetlands Regulatory Assistance Program (WRAP) Testing Methods for Challenging the National Wetland Plant List...Robert W. Lichvar and Jennifer J. Goulet July 2017 Approved for public release; distribution is unlimited. The U.S. Army Engineer Research

  3. Carbon Storage in US Wetlands. | Science Inventory | US EPA

    EPA Pesticide Factsheets

    Background/Question/Methods Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in US wetlands or of the potential effects of human disturbance on these stocks. We provide unbiased estimates of soil carbon stocks for wetlands at regional and national scales and describe how soil carbon stocks vary by anthropogenic disturbance to the wetland. To estimate the quantity and distribution of carbon stocks in wetlands of the conterminous US, we used data gathered in the field as part of the 2011 National Wetland Condition Assessment (NWCA) conducted by USEPA. During the growing season, field crews collected soil samples by horizon from 120-cm deep soil pits at 967 randomly selected wetland sites. Soil samples were analyzed for bulk density and organic carbon. We applied site carbon stock averages by soil depth back to the national population of wetlands and to several subpopulations, including five geographic areas and anthropogenic disturbance level. Disturbance levels were categorized by the NWCA as least, intermediately, or most disturbed using a priori defined physical, chemical, and biological indicators that were observable at the time of the site visit.Results/Conclusions We find that wetlands in the conterminous US store a total of 11.52 PgC – roughly equivalent to four years of annual carbon emissions by the US, with the greatest soil ca

  4. Tracking trends on the quality of the nation's wetlands - A powerful supplement to status and trends

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA), in collaboration with states, tribes, the US Fish and Wildlife Service (US FWS), and other federal partners will conduct the first-ever National Wetland Condition Assessment (NWCA) in 2011. The NWCA is designed to build on the succ...

  5. Regional and National Use of Semi-Natural and Natural Depressional Wetlands in Green Infrastructure

    NASA Astrophysics Data System (ADS)

    Lane, C.; D'Amico, E.

    2016-12-01

    Depressional wetlands are frequently amongst the first aquatic systems to be exposed to pollutants from terrestrial source areas. Wetland functions include the finite ability to process nutrients and other pollutants. Through assimilation or sequestration of pollutants, depressional wetlands can affect other waters. While the functions of wetlands are well known, the abundance of depressional wetlands throughout the United States is not well known. Recent estimates conclude that approximately 16% of the freshwater wetlands of the conterminous United States may be depressional wetlands, or putative "geographically isolated wetlands" (Lane and D'Amico JAWRA 2016 52(3):705-722). However, there remains uncertainty in the impact or effects of depressional wetlands on other waters. We present geographic information system analyses showing the abundance and types of depressional wetlands effectively serving as green infrastructure throughout the conterminous U.S. We furthermore analyze the landscape position of depressional wetlands intersecting potentially pollutant-laden surficial flow paths from specific land uses (e.g., depressional wetlands embedded in agricultural landscapes). We discuss how similarities and differences in types and abundances of depressional wetlands between and among ecoregions of the conterminous US provide an opportunity for wise management at broad geographic scales. These data may suggest utility in including wetland depressions in large-scale coupled hydrological and nutrient modeling.

  6. Exploring drivers of wetland hydrologic fluxes across parameters and space

    NASA Astrophysics Data System (ADS)

    Jones, C. N.; Cheng, F. Y.; Mclaughlin, D. L.; Basu, N. B.; Lang, M.; Alexander, L. C.

    2017-12-01

    Depressional wetlands provide diverse ecosystem services, ranging from critical habitat to the regulation of landscape hydrology. The latter is of particular interest, because while hydrologic connectivity between depressional wetlands and downstream waters has been a focus of both scientific research and policy, it remains difficult to quantify the mode, magnitude, and timing of this connectivity at varying spatial and temporary scales. To do so requires robust empirical and modeling tools that accurately represent surface and subsurface flowpaths between depressional wetlands and other landscape elements. Here, we utilize a parsimonious wetland hydrology model to explore drivers of wetland water fluxes in different archetypal wetland-rich landscapes. We validated the model using instrumented sites from regions that span North America: Prairie Pothole Region (south-central Canada), Delmarva Peninsula (Mid-Atlantic Coastal Plain), and Big Cypress Swamp (southern Florida). Then, using several national scale datasets (e.g., National Wetlands Inventory, USFWS; National Hydrography Dataset, USGS; Soil Survey Geographic Database, NRCS), we conducted a global sensitivity analysis to elucidate dominant drivers of simulated fluxes. Finally, we simulated and compared wetland hydrology in five contrasting landscapes dominated by depressional wetlands: prairie potholes, Carolina and Delmarva bays, pocosins, western vernal pools, and Texas coastal prairie wetlands. Results highlight specific drivers that vary across these regions. Largely, hydroclimatic variables (e.g., PET/P ratios) controlled the timing and magnitude of wetland connectivity, whereas both wetland morphology (e.g., storage capacity and watershed size) and soil characteristics (e.g., ksat and confining layer depth) controlled the duration and mode (surface vs. subsurface) of wetland connectivity. Improved understanding of the drivers of wetland hydrologic connectivity supports enhanced, region

  7. Detecting wetland changes in Shanghai, China using FORMOSAT and Landsat TM imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Bo; Zhou, Yun-xuan; Thom, Ronald M.

    Understanding the state of wetland ecosystems and their changes at the national and local levels is critical for wetland conservation, management, decision-making, and policy development practices. This study analyzed the wetlands in Shanghai, a province-level city, using remote sensing, image processing, and geographic information systems (GIS) techniques based on the Chinese national wetland inventory procedure and standards. FORMOSAT imagery acquired in 2012 and Navy nautical charts of the Yangtze estuarine area were used in conjunction with object-oriented segmentation, expert interpretation, and field validation to determine wetland status. Landsat imagery from 1985, 1995, 2000, 2003 and 2013 as well as social-economicmore » data collected from 1985 to 2013 were used to further assess wetland changes. In 2013, Shanghai contained 376,970.6 ha of wetlands, and 78.8% of all wetlands were in marine or estuarine systems. Estuarine waters comprised the single largest wetland category. Between the first national wetland inventory in 2003 and the second national wetland inventory in 2013, Shanghai lost 50,519.13 ha of wetlands, amounting to a mean annual loss rate of 1.2% or an 11.8% loss over the decade. Declines were proportionately higher in marine and estuarine wetlands, with an annual loss of 1.8%, while there was a sharp increase of 1882.6% in constructed water storage areas for human uses. Diking, filling, impoundment and reclamation, which are all attributable to the economic development and urbanization associated with population increases, were the major factors that explained the gain and loss of wetlands. Additional factors affecting wetland losses and gains include sediment trapping by the hydropower system, which reduces supply to the estuary and erodes wetlands, and sediment trapping by the jetties, spur dikes, and diversion bulwark associated with a navigation channel deepening project, which has the converse effect, increasing saltmarsh wetland area

  8. An integrated approach to assess broad-scale condition of coastal wetlands - The Gulf of Mexico Coastal Wetlands pilot survey

    USGS Publications Warehouse

    Nestlerode, J.A.; Engle, V.D.; Bourgeois, P.; Heitmuller, P.T.; Macauley, J.M.; Allen, Y.C.

    2009-01-01

    The Environmental Protection Agency (EPA) and U.S. Geological Survey (USGS) initiated a two-year regional pilot survey in 2007 to develop, test, and validate tools and approaches to assess the condition of northern Gulf of Mexico (GOM) coastal wetlands. Sampling sites were selected from estuarine and palustrine wetland areas with herbaceous, forested, and shrub/scrub habitats delineated by the US Fish and Wildlife Service National Wetlands Inventory Status and Trends (NWI S&T) program and contained within northern GOM coastal watersheds. A multi-level, stepwise, iterative survey approach is being applied to multiple wetland classes at 100 probabilistically-selected coastal wetlands sites. Tier 1 provides information at the landscape scale about habitat inventory, land use, and environmental stressors associated with the watershed in which each wetland site is located. Tier 2, a rapid assessment conducted through a combination of office and field work, is based on best professional judgment and on-site evidence. Tier 3, an intensive site assessment, involves on-site collection of vegetation, water, and sediment samples to establish an integrated understanding of current wetland condition and validate methods and findings from Tiers 1 and 2. The results from this survey, along with other similar regional pilots from the Mid-Atlantic, West Coast, and Great Lakes Regions will contribute to a design and implementation approach for the National Wetlands Condition Assessment to be conducted by EPA's Office of Water in 2011. ?? Springer Science+Business Media B.V. 2008.

  9. U.S. Fish and Wildlife Service 1979 wetland classification: a review

    USGS Publications Warehouse

    Cowardin, L.M.; Golet, F.C.

    1995-01-01

    In 1979 the US Fish and Wildlife Service published and adopted a classification of wetlands and deepwater habitats of the United States. The system was designed for use in a national inventory of wetlands. It was intended to be ecologically based, to furnish the mapping units needed for the inventory, and to provide national consistency in terminology and definition. We review the performance of the classification after 13 years of use. The definition of wetland is based on national lists of hydric soils and plants that occur in wetlands. Our experience suggests that wetland classifications must facilitate mapping and inventory because these data gathering functions are essential to management and preservation of the wetland resource, but the definitions and taxa must have ecological basis. The most serious problem faced in construction of the classification was lack of data for many of the diverse wetland types. Review of the performance of the classification suggests that, for the most part, it was successful in accomplishing its objectives, but that problem areas should be corrected and modification could strengthen its utility. The classification, at least in concept, could be applied outside the United States. Experience gained in use of the classification can furnish guidance as to pitfalls to be avoided in the wetland classification process.

  10. USGS research on Florida's isolated freshwater wetlands

    USGS Publications Warehouse

    Torres, Arturo E.; Haag, Kim H.; Lee, Terrie M.; Metz, Patricia A.

    2011-01-01

    The U.S. Geological Survey (USGS) has studied wetland hydrology and its effects on wetland health and ecology in Florida since the 1990s. USGS wetland studies in Florida and other parts of the Nation provide resource managers with tools to assess current conditions and regional trends in wetland resources. Wetland hydrologists in the USGS Florida Water Science Center (FLWSC) have completed a number of interdisciplinary studies assessing the hydrology, ecology, and water quality of wetlands. These studies have expanded the understanding of wetland hydrology, ecology, and related processes including: (1) the effects of cyclical changes in rainfall and the influence of evapotranspiration; (2) surface-water flow, infiltration, groundwater movement, and groundwater and surfacewater interactions; (3) the effects of water quality and soil type; (4) the unique biogeochemical components of wetlands required to maintain ecosystem functions; (5) the effects of land use and other human activities; (6) the influences of algae, plants, and invertebrates on environmental processes; and (7) the effects of seasonal variations in animal communities that inhabit or visit Florida wetlands and how wetland function responds to changes in the plant community.

  11. Examining Wetland Frequency Discrepancies Produced by Data Collected at Wetland Boundaries and across the Landscape: Using Tsuga canadensis (L.) Carr. (Eastern Hemlock) as a Case Study

    DTIC Science & Technology

    2017-08-01

    Agriculture Natural Resources Conservation Service NTCWV National Technical Committee for Wetland Vegetation NWPL National Wetland Plant List OBL Obligate...Wildlife Service (FWS), and the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS). Panel members receive input from

  12. Application of a three-tier framework to assess ecological condition of Gulf of Mexico coastal wetlands

    EPA Science Inventory

    A multi‐level coastal wetland assessment strategy was applied to wetlands in the northern Gulf of Mexico (GOM) to evaluate the feasibility of this approach for a broad national scale wetland condition assessment (U.S. Environmental Protection Agency’s National Wetlands Condition ...

  13. Improved Mapping of Riparian Wetlands Using Reach Topography

    EPA Science Inventory

    Riparian wetlands provide a suite of ecosystems services including floodwater retention, biogeochemical processing, and habitat provisioning. However in one mid-Atlantic watershed the National Wetlands Inventory was shown to underrepresent these systems by greater than 50%. These...

  14. Coastal wetlands: The present and future role of remote sensing

    NASA Technical Reports Server (NTRS)

    Carter, V.

    1977-01-01

    During the past decade, there has been a rapid expansion of remote sensing research and technology development related to coastal wetlands. As a result of this research, all of the 23 coastal states have ongoing or completed wetland inventories, most utilizing aerial photographs as the data source for producing a variety of map products with varying scales, formats, classification systems and intended uses. The U.S. Geological Survey is increasing emphasis on map production and revision for the coastal zone. The new U.S. Fish and Wildlife Service National Wetland Inventory is intended to provide a standardized method for comparison of wetlands on a national basis - it too will use available aerial photographs as a basic data source. At present, satellite data is not used for operational mapping of coastal wetlands because of resolution and geometric constraints. In the future, however, satellite data may provide an accurate reliable and economical source to update wetland inventories and to monitor or evaluate coastal wetlands. The technological improvements accompanying the development and launch of Landsat C and D and the space shuttle promise to make satellite digital data a more powerful tool to supply information for future management decisions for coastal wetlands.

  15. Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park

    NASA Astrophysics Data System (ADS)

    Choo, Jenny; Sabri, Nuraini Binti Mohd; Tan, Daniel; Mujahid, Aazani; Müller, Moritz

    2015-06-01

    Heavy metal pollution is an environmental issue globally and the aim of this study was to isolate endophytic fungi from mangrove wetlands of Sarawak to assess and test their ability to grow in the presence of various heavy metals (copper (Cu), zinc (Zn), lead (Pb), and chromium (Cr)). Samples of Nypa fruticans were collected from Kuching Wetland National Park (KWNP) for subsequent endophyte isolation. Ninety-three (93) isolates were obtained and assessed and the most resistant isolates (growing at concentrations up to 1000 ppm) were identified using fungal primers ITS 1 and ITS 4. All of the endophytic fungi were identified to be closely related to Pestalotiopsis sp. and this is to our knowledge the first study reporting the ability of Pestalotiopsis sp. to grow at high concentrations of copper, lead, zinc and chromium. Our results highlight the potential of using endophytic fungi for the treatment of heavy metal pollution, for example as biosorbents.

  16. Influence of climate drivers on colonization and extinction dynamics of wetland-dependent species

    USGS Publications Warehouse

    Ray, Andrew M.; Gould, William R.; Hossack, Blake R.; Sepulveda, Adam; Thoma, David P.; Patla, Debra A.; Daley, Rob; Al-Chokhachy, Robert K.

    2016-01-01

    Freshwater wetlands are particularly vulnerable to climate change. Specifically, changes in temperature, precipitation, and evapotranspiration (i.e., climate drivers) are likely to alter flooding regimes of wetlands and affect the vital rates, abundance, and distributions of wetland-dependent species. Amphibians may be among the most climate-sensitive wetland-dependent groups, as many species rely on shallow or intermittently flooded wetland habitats for breeding. Here, we integrated multiple years of high-resolution gridded climate and amphibian monitoring data from Grand Teton and Yellowstone National Parks to explicitly model how variations in climate drivers and habitat conditions affect the occurrence and breeding dynamics (i.e., annual extinction and colonization rates) of amphibians. Our results showed that models incorporating climate drivers outperformed models of amphibian breeding dynamics that were exclusively habitat based. Moreover, climate-driven variation in extinction rates, but not colonization rates, disproportionately influenced amphibian occupancy in monitored wetlands. Long-term monitoring from national parks coupled with high-resolution climate data sets will be crucial to describing population dynamics and characterizing the sensitivity of amphibians and other wetland-dependent species to climate change. Further, long-term monitoring of wetlands in national parks will help reduce uncertainty surrounding wetland resources and strengthen opportunities to make informed, science-based decisions that have far-reaching benefits.

  17. Hydrological drivers of wetland vegetational biodiversity patterns within Everglades National Park, Florida

    NASA Astrophysics Data System (ADS)

    Todd, J.; Pumo, D.; Azaele, S.; Muneepeerakul, R.; Miralles-Wilhelm, F. R.; Rinaldo, A.; Rodriguez-Iturbe, I.

    2009-12-01

    The influence of hydrological dynamics on vegetational biodiversity and structuring of wetland environments is of growing interest as wetlands are modified by human alteration and the increasing threat from climate change. Hydrology has long been considered a driving force in shaping wetland communities as the frequency of inundation along with the duration and depth of flooding are key determinants of wetland structure. We attempt to link hydrological dynamics with vegetational distribution and species richness across Everglades National Park (ENP) using two publicly available datasets. The first, the Everglades Depth Estimation Network (EDEN),is a water-surface model which determines the median daily measure of water level across a 400mX400m grid over seven years of measurement. The second is a vegetation map and classification system at the 1:15,000 scale which categorizes vegetation within the Everglades into 79 community types. From these data, we have studied the probabilistic structure of the frequency, duration, and depth of hydroperiods. Preliminary results indicate that the percentage of time a location is inundated is a principal structuring variable with individual communities responding differently. For example, sawgrass appears to be more of a generalist community as it is found across a wide range of time inundated percentages while spike rush has a more restricted distribution and favors wetter environments disproportionately more than predicted at random. Further, the diversity of vegetation communities (e.g. a measure of biodiversity) found across a hydrologic variable does not necessarily match the distribution function for that variable on the landscape. For instance, the number of communities does not differ across the percentage of time inundated. Different measures of vegetation biodiversity such as the local number of community types are also studied at different spatial scales with some characteristics, like the slope of the semi

  18. Decision analysis of mitigation and remediation of sedimentation within large wetland systems: a case study using Agassiz National Wildlife Refuge

    USGS Publications Warehouse

    Post van der Burg, Max; Jenni, Karen E.; Nieman, Timothy L.; Eash, Josh D.; Knutsen, Gregory A.

    2014-01-01

    Sedimentation has been identified as an important stressor across a range of wetland systems. The U.S. Fish and Wildlife Service has the responsibility of maintaining wetlands within its National Wildlife Refuge System for use by migratory waterbirds and other wildlife. Many of these wetlands could be negatively affected by accelerated rates of sedimentation, especially those located in agricultural parts of the landscape. In this report we document the results of a decision analysis project designed to help U.S. Fish and Wildlife Service staff at the Agassiz National Wildlife Refuge (herein referred to as the Refuge) determine a strategy for managing and mitigating the negative effects of sediment loading within Refuge wetlands. The Refuge’s largest wetland, Agassiz Pool, has accumulated so much sediment that it has become dominated by hybrid cattail (Typha × glauca), and the ability of the staff to control water levels in the Agassiz Pool has been substantially reduced. This project consisted of a workshop with Refuge staff, local and regional stakeholders, and several technical and scientific experts. At the workshop we established Refuge management and stakeholder objectives, a range of possible management strategies, and assessed the consequences of those strategies. After deliberating a range of actions, the staff chose to consider the following three strategies: (1) an inexpensive strategy, which largely focused on using outreach to reduce external sediment inputs to the Refuge; (2) the most expensive option, which built on the first option and relied on additional infrastructure changes to the Refuge to increase management capacity; and (3) a strategy that was less expensive than strategy 2 and relied mostly on existing infrastructure to improve management capacity. Despite the fact that our assessments were qualitative, Refuge staff decided they had enough information to select the third strategy. Following our qualitative assessment, we discussed

  19. Improved Mapping of Riparian Wetlands Using Reach Topography (ECOSERV)

    EPA Science Inventory

    Riparian wetlands provide a suite of ecosystems services including floodwater retention, biogeochemical processing, and habitat provisioning. However in one mid-Atlantic watershed the National Wetlands Inventory was shown to underrepresent these systems by greater than 50%. These...

  20. North American Wetlands and Mosquito Control

    PubMed Central

    Rey, Jorge R.; Walton, William E.; Wolfe, Roger J.; Connelly, Roxanne; O’Connell, Sheila M.; Berg, Joe; Sakolsky-Hoopes, Gabrielle E.; Laderman, Aimlee D.

    2012-01-01

    Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems. Mosquito control in wetlands is a complex issue influenced by numerous factors, including many hard to quantify elements such as human perceptions, cultural predispositions, and political climate. In spite of considerable progress during the last decades, habitat protection and environmentally sound habitat management still remain inextricably tied to politics and economics. Furthermore, the connections are often complex, and occur at several levels, ranging from local businesses and politicians, to national governments and multinational institutions. Education is the key to lasting wetlands conservation. Integrated mosquito abatement strategies incorporate many approaches and practicable options, as described herein, and need to be well-defined, effective, and ecologically and economically sound for the wetland type and for the mosquito species of concern. The approach will certainly differ in response to disease outbreaks caused by mosquito-vectored pathogens versus quality of life issues caused by nuisance-biting mosquitoes. In this contribution, we provide an overview of the ecological setting and context for mosquito control in wetlands, present pertinent information on wetlands mosquitoes, review the mosquito abatement options available for current wetlands managers and mosquito control professionals, and outline some necessary considerations when devising mosquito control strategies. Although the emphasis is on North American wetlands, most of the material is applicable to wetlands everywhere. PMID:23222252

  1. Global wetlands: Potential distribution, wetland loss, and status.

    PubMed

    Hu, Shengjie; Niu, Zhenguo; Chen, Yanfen; Li, Lifeng; Zhang, Haiying

    2017-05-15

    Even though researchers have paid a great deal of attention to wetland loss and status, the actual extent of wetland loss on a global scale, especially the loss caused directly by human activities, and the actual extent of currently surviving wetlands remains uncertain. This paper simulated the potential distribution of global wetlands by employing a new Precipitation Topographic Wetness Index (PTWI) and global remote sensing training samples. The results show earth would have approximately 29.83millionkm 2 of wetlands, if humans did not interfere with wetland ecosystems. By combining datasets related to global wetlands, we found that at least 33% of global wetlands had been lost as of 2009, including 4.58millionkm 2 of non-water wetlands and 2.64millionkm 2 of open water. The areal extent of wetland loss has been greatest in Asia, but Europe has experienced the most serious losses. Wetland-related datasets suffer from major inconsistencies, and estimates of the areal extent of the remaining global wetlands ranged from 1.53 to 14.86millionkm 2 . Therefore, although it is challenging, thematic mapping of global wetlands is necessary and urgently needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. 77 FR 63326 - Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... FXRS1265066CCP0] Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland... assessment (EA) involving Huron, Madison, and Sand Lake Wetland Management Districts (Districts). In this..., Madison Wetland Management District, Sand Lake Wetland Management District final CCP'' in the subject line...

  3. Building a potential wetland restoration indicator for the contiguous United States

    PubMed Central

    Horvath, Elena K.; Christensen, Jay R.; Mehaffey, Megan H.; Neale, Anne C.

    2018-01-01

    Wetlands provide key functions in the landscape from improving water quality, to regulating flows, to providing wildlife habitat. Over half of the wetlands in the contiguous United States (CONUS) have been converted to agricultural and urban land uses. However, over the last several decades, research has shown the benefits of wetlands to hydrologic, chemical, biological processes, spurring the creation of government programs and private initiatives to restore wetlands. Initiatives tend to focus on individual wetland creation, yet the greatest benefits are achieved when strategic restoration planning occurs across a watershed or multiple watersheds. For watershed-level wetland restoration planning to occur, informative data layers on potential wetland areas are needed. We created an indicator of potential wetland areas (PWA), using nationally available datasets to identify characteristics that could support wetland ecosystems, including: poorly drained soils and low-relief landscape positions as indicated by a derived topographic data layer. We compared our PWA with the National Wetlands Inventory (NWI) from 11 states throughout the CONUS to evaluate their alignment. The state-level percentage of NWI-designated wetlands directly overlapping the PWA ranged from 39 to 95%. When we included NWI that was immediately adjacent to the overlapping NWI, our range of correspondence to NWI ranged from 60 to 99%. Wetland restoration is more likely on certain landscapes (e.g., agriculture) than others due to the lack of substantive infrastructure and the potential for the restoration of hydrology; therefore, we combined the National Land Cover Dataset (NLCD) with the PWA to identify potentially restorable wetlands on agricultural land (PRW-Ag). The PRW-Ag identified a total of over 46 million ha with the potential to support wetlands. The largest concentrations of PRW-Ag occurred in the glaciated corn belt of the upper Mississippi River from Ohio to the Dakotas and in the

  4. Building a potential wetland restoration indicator for the contiguous United States.

    PubMed

    Horvath, Elena K; Christensen, Jay R; Mehaffey, Megan H; Neale, Anne C

    2017-01-01

    Wetlands provide key functions in the landscape from improving water quality, to regulating flows, to providing wildlife habitat. Over half of the wetlands in the contiguous United States (CONUS) have been converted to agricultural and urban land uses. However, over the last several decades, research has shown the benefits of wetlands to hydrologic, chemical, biological processes, spurring the creation of government programs and private initiatives to restore wetlands. Initiatives tend to focus on individual wetland creation, yet the greatest benefits are achieved when strategic restoration planning occurs across a watershed or multiple watersheds. For watershed-level wetland restoration planning to occur, informative data layers on potential wetland areas are needed. We created an indicator of potential wetland areas (PWA), using nationally available datasets to identify characteristics that could support wetland ecosystems, including: poorly drained soils and low-relief landscape positions as indicated by a derived topographic data layer. We compared our PWA with the National Wetlands Inventory (NWI) from 11 states throughout the CONUS to evaluate their alignment. The state-level percentage of NWI-designated wetlands directly overlapping the PWA ranged from 39 to 95%. When we included NWI that was immediately adjacent to the overlapping NWI, our range of correspondence to NWI ranged from 60 to 99%. Wetland restoration is more likely on certain landscapes (e.g., agriculture) than others due to the lack of substantive infrastructure and the potential for the restoration of hydrology; therefore, we combined the National Land Cover Dataset (NLCD) with the PWA to identify potentially restorable wetlands on agricultural land (PRW-Ag). The PRW-Ag identified a total of over 46 million ha with the potential to support wetlands. The largest concentrations of PRW-Ag occurred in the glaciated corn belt of the upper Mississippi River from Ohio to the Dakotas and in the

  5. Interagency Coastal Wetlands Workgroup: Statement of purpose and goals

    USGS Publications Warehouse

    ,

    2017-01-01

    Purpose The Interagency Coastal Wetlands Workgroup (ICWWG) helps to address coastal wetland loss by bringing together seven federal agencies with programs and authorities that support protection and management of coastal wetlands. Background Wetlands in coastal watersheds of the U.S. were lost at an average rate of 80,000 acres per year between 2004 and 2009. This is an increase from 59,000 acres per year between 1998 and 2004 as documented by the U.S. Fish and Wildlife Service (FWS) and National Oceanic and Atmospheric Administration (NOAA) in their reports on the Status and Trends of Wetlands in the Coastal Watersheds. The ICWWG was formed in 2009 in response to these loss trends. Coastal wetlands include saltwater and freshwater wetlands located within coastal watersheds — specifically USGS 8-digit watersheds which drain into the Atlantic, Pacific, or Gulf of Mexico.

  6. 76 FR 65525 - Huron, Madison, and Sand Lake Wetland Management District; Comprehensive Conservation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ...] Huron, Madison, and Sand Lake Wetland Management District; Comprehensive Conservation Plan AGENCY: Fish... (CCP) and environmental assessment (EA) for the Huron, Madison, and Sand Lake Wetland Management...), Madison Wetland Management District, and Sand Lake Wetland Management District are part of the National...

  7. Water quality and aquatic communities of upland wetlands, Cumberland Island National Seashore, Georgia, April 1999 to July 2000

    USGS Publications Warehouse

    Frick, Elizabeth A.; Gregory, M. Brian; Calhoun, Daniel L.; Hopkins, Evelyn H.

    2002-01-01

    Cumberland Island is the southernmost and largest barrier island along the coast of Georgia. The island contains about 2,500 acres of freshwater wetlands that are located in a variety of physical settings, have a wide range of hydroperiods, and are influenced to varying degrees by surface and ground water, rainwater, and seawater. In 1999-2000, the U.S. Geological Survey, in cooperation with the National Park Service, conducted a water-quality study of Cumberland Island National Seashore to document and interpret the quality of a representative subset of surface- and ground-water resources for management of the seashore's natural resources. As part of this study, historical ground-water, surface-water, and ecological studies conducted on Cumberland Island also were summarized. Surface-water samples from six wetland areas located in the upland area of Cumberland Island were collected quarterly from April 1999 to March 2000 and analyzed for major ions, nutrients, trace elements, and field water-quality constituents including specific conductance, pH, temperature, dissolved oxygen, alkalinity, tannin and lignin, and turbidity. In addition, water temperature and specific conductance were recorded continuously from two wetland areas located near the mean high-tide mark on the Atlantic Ocean beaches from April 1999 to July 2000. Fish and invertebrate communities from six wetlands were sampled during April and December 1999. The microbial quality of the near-shore Atlantic Ocean was assessed in seawater samples collected for 5 consecutive days in April 1999 at five beaches near campgrounds where most recreational water contact occurs. Ground-water samples were collected from the Upper Floridan aquifer in April 1999 and from the surficial aquifer in April 2000 at 11 permanent wells and 4 temporary wells (drive points), and were analyzed for major ions, nutrients, trace elements, and field water-quality constituents (conductivity, pH, temperature, dissolved oxygen, and

  8. Wonderful Wetlands: An Environmental Education Curriculum Guide for Wetlands.

    ERIC Educational Resources Information Center

    King County Parks Div., Redmond, WA.

    This curriculum guide was designed to give teachers, students, and society a better understanding of wetlands in the hope that they learn why wetlands should be valued and preserved. It explores what is meant by wetlands, functions and values of wetlands, wetland activities, and wetland offerings which benefit animal and plant life, recreation,…

  9. Physiological Ecology and Ecohydrology of Coastal Forested Wetlands

    USGS Publications Warehouse

    Krauss, Ken W.

    2007-01-01

    The form, function, and productivity of wetland communities are influenced strongly by the hydrologic regime of an area. Wetland ecosystems persist by depending upon surpluses of rainfall, evapotranspiration, soil moisture, and frequency and amplitude of water-level fluctuations. Yet, wetland vegetation can also influence ecosystem water economy through conservative water- and carbon-use strategies at several organizational scales. Scientists have described leaf-level water-use efficiency in coastal mangrove forests as being among the highest of any ecosystem. These forested wetlands occur in intertidal areas and often persist under flooded saline conditions. Are these same strategies used by other types of coastal forested wetlands? Do conservative water-use strategies reflect a consequence of salt balance more than efficiency in water use per se? At what organizational scales do these strategies manifest? These are just a few of the questions being answered by physiological and landscape ecologists at the U.S. Geological Survey National Wetlands Research Center (NWRC).

  10. National Wetland Mitigation Banking Study. Commercial Wetland Mitigation Credit Markets: Theory and Practice.

    DTIC Science & Technology

    1995-11-01

    based on established and incentive for Delta compliance. functioning replacement wetlands. Perhaps the most compelling reason given for why The permit...developed mitigation plans powerful incentive for ventures to carefully site, for the Cricket Creek site in accordance with the plan, and execute the...Opportunity. Lev, Esther (with field assistance by Peter Zika ) for the Lane County Council of Governments, 1988 (revised 1990), Preliminary Inventory of

  11. Quantifying Spatially Integrated Floodplain and Wetland Systems for the Conterminous US

    NASA Astrophysics Data System (ADS)

    Lane, C.; D'Amico, E.; Wing, O.; Bates, P. D.

    2017-12-01

    Wetlands interact with other waters across a variable connectivity continuum, from permanent to transient, from fast to slow, and from primarily surface water to exclusively groundwater flows. Floodplain wetlands typically experience fast and frequent surface and near-surface groundwater interactions with their river networks, leading to an increasing effort to tailor management strategies for these wetlands. Management of floodplain wetlands is contingent on accurate floodplain delineation, and though this has proven challenging, multiple efforts are being made to alleviate this data gap at the conterminous scale using spatial, physical, and hydrological floodplain proxies. In this study, we derived and contrasted floodplain extents using the following nationally available approaches: 1) a geospatial-buffer floodplain proxy (Lane and D'Amico 2016, JAWRA 52(3):705-722, 2) a regionalized flood frequency analysis coupled to a 30m resolution continental-scale hydraulic model (RFFA; Smith et al. 2015, WRR 51:539-553), and 3) a soils-based floodplain analysis (Sangwan and Merwade 2015, JAWRA 51(5):1286-1304). The geospatial approach uses National Wetlands Inventory and buffered National Hydrography Datasets. RFFA estimates extreme flows based on catchment size, regional climatology and upstream annual rainfall and routes these flows through a hydraulic model built with data from USGS HydroSHEDS, NOAA, and the National Elevation Dataset. Soil-based analyses define floodplains based on attributes within the USDA soil-survey data (SSURGO). Nearly 30% (by count) of U.S. freshwater wetlands are located within floodplains with geospatial analyses, contrasted with 37% (soils-based), and 53% (RFFA-based). The dichotomies between approaches are mainly a function of input data-layer resolution, accuracy, coverage, and extent, further discussed in this presentation. Ultimately, these spatial analyses and findings will improve floodplain and integrated wetland system extent

  12. Wetlands in a changing climate: Science, policy and management

    USGS Publications Warehouse

    Moomaw, William R.; Chmura, G.L.; Davies, Gillian T.; Finlayson, Max; Middleton, Beth A.; Natali, Sue M.; Perry, James; Roulet, Nigel; Sutton-Grier, Ariana

    2018-01-01

    Part 1 of this review synthesizes recent research on status and climate vulnerability of freshwater and saltwater wetlands, and their contribution to addressing climate change (carbon cycle, adaptation, resilience). Peatlands and vegetated coastal wetlands are among the most carbon rich sinks on the planet sequestering approximately as much carbon as do global forest ecosystems. Estimates of the consequences of rising temperature on current wetland carbon storage and future carbon sequestration potential are summarized. We also demonstrate the need to prevent drying of wetlands and thawing of permafrost by disturbances and rising temperatures to protect wetland carbon stores and climate adaptation/resiliency ecosystem services. Preventing further wetland loss is found to be important in limiting future emissions to meet climate goals, but is seldom considered. In Part 2, the paper explores the policy and management realm from international to national, subnational and local levels to identify strategies and policies reflecting an integrated understanding of both wetland and climate change science. Specific recommendations are made to capture synergies between wetlands and carbon cycle management, adaptation and resiliency to further enable researchers, policy makers and practitioners to protect wetland carbon and climate adaptation/resiliency ecosystem services.

  13. Hydrologic response of desert wetlands to Holocene climate change: preliminary results from the Soda Springs area, Mojave National Preserve, California

    USGS Publications Warehouse

    Pigati, Jeffrey S.; Reheis, Marith C.; McGeehin, John P.; Honke, Jeffrey S.; Bright, J.

    2016-01-01

    Desert wetlands are common features in arid environments and include a variety of hydrologic facies, including seeps, springs, marshes, wet meadows, ponds, and spring pools. Wet ground conditions and dense stands of vegetation in these settings combine to trap eolian, alluvial, and fluvial sediments that accumulate over time. The resulting deposits are collectively called ground-water discharge (GWD) deposits, and contain information on how small desert watersheds responded to climate change in the past. Most GWD studies in the southwestern U.S. have focused on the late Pleistocene because the Holocene was too dry to support the extensive wetland systems that were so pervasive just a few millennia earlier. Here we describe the results of a pilot project that involves coring extant wetlands and analyzing the sedimentology and microfauna of the recovered sediment to infer Holocene hydrologic conditions. In 2011, a series of cores were taken near wetlands situated along the western margin of the Soda Lake basin in the Mojave National Preserve of southern California. The core sediments appear to show that the wetlands responded to the relatively minor climate fluctuations that characterized the Holocene. However, our analysis was limited by relatively low sediment recovery (which only averaged 70-80%) and a general paucity of datable materials in the cores. Additional studies aimed at improving recovery and developing new techniques for concentrating plant microfossils (plant remains that are <150 m in diameter) for radiocarbon dating are ongoing.

  14. Wetlands monitoring - hydrological conditions and water quality in selected transects of Biebrza National Park.

    NASA Astrophysics Data System (ADS)

    Stelmaszczyk, Mateusz; Okruszko, Tomasz

    2010-05-01

    Water Framework Directive (WFD) obligates Member States to prevent further deterioration as well as to protect and enhance the status of aquatic ecosystems and wetlands. In order to fulfill one of the WFD objectives - to keep wetlands in good surface water and groundwater status (determined by good ecological, chemical and quantitative status) it is necessary to specify most favourable conditions for them. In that case monitoring of factors responsible for wetlands status in natural areas is a key issue. Further, achieved knowledge of existing relations in ecosystems can be implemented in protection and restoration projects. There are a number of factors influencing diversity of habitats responsible for developing different wetland ecosystems and their sustaining in good ecological status. It's believed that among significant factors such as hydrological conditions, water quality, nutrient availability in the soil, pH value and management (e.g. grazing, mowing) the hydrological conditions are the most important. In presented work authors concentrated on hydrological conditions and water quality and theirs influence on wetland vegetation of Biebrza National Park (BNP). BNP located north-east part of Poland is recognized by many scientist as a unique undisturbed wetland reference area. Five transects located in different basins of BNP were chosen. Transects consist of piezometers in which the water table levels and water quality were measured. Analysis of electroconductivity (EC), alkalinity (HCO3-) and pH were done directly in the field. In the laboratory anions (NO3-, PO43-, Cl-, SO42-) and cations (NH4+, Ca2+, Mg2+, Br+, Li+, Na+, K+) concentration was determined using High Performance Liquid Chromatography (HPLC). D-divers, electronic devices to permanent measurement of groundwater level changes were located in some of the piezometers. Piezometers were located in the sites characterized by different hydrological conditions, from groundwater fed to river fed areas

  15. Wetlands issue stalls Clean Water Act

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    Although reauthorization of the Clean Water Act was scheduled for 1992, action has stalled due to debate over the contentious wetland issue and is not likely to pick up again until after the first of the year. The subject of the debate, regulation of wetlands, is found in Section 404, which makes up only a small part of the Clean Water Act.At the meeting, “New Directions in Clean Water Policy,” held in Charlottesville, Va., July 28-31, Ralph Heimlich, an economist with the Office of Policy and Planning Evaluation at the Environmental Protection Agency, said “it is unfortunate that the Section 404 Dredge and Fill permit program, our only national wetland regulation, is part of the Clean Water Act.” The controversy over wetland reform, he added, “has delayed and threatens to poison action on Clean Water Act reauthorization, provisions that may be more directly significant in improving water quality.”

  16. Object-based classification of semi-arid wetlands

    NASA Astrophysics Data System (ADS)

    Halabisky, Meghan; Moskal, L. Monika; Hall, Sonia A.

    2011-01-01

    Wetlands are valuable ecosystems that benefit society. However, throughout history wetlands have been converted to other land uses. For this reason, timely wetland maps are necessary for developing strategies to protect wetland habitat. The goal of this research was to develop a time-efficient, automated, low-cost method to map wetlands in a semi-arid landscape that could be scaled up for use at a county or state level, and could lay the groundwork for expanding to forested areas. Therefore, it was critical that the research project contain two components: accurate automated feature extraction and the use of low-cost imagery. For that reason, we tested the effectiveness of geographic object-based image analysis (GEOBIA) to delineate and classify wetlands using freely available true color aerial photographs provided through the National Agriculture Inventory Program. The GEOBIA method produced an overall accuracy of 89% (khat = 0.81), despite the absence of infrared spectral data. GEOBIA provides the automation that can save significant resources when scaled up while still providing sufficient spatial resolution and accuracy to be useful to state and local resource managers and policymakers.

  17. Delineating wetland catchments and modeling hydrologic ...

    EPA Pesticide Factsheets

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical structures and dynamic filling–spilling–merging surface-water hydrological processes. Differentiating and appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution lidar data and aerial imagery. The graph-theory-based contour tree method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost-path algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other or to the river network on scales finer than those available through the National Hydrography Dataset. The results demonstrated that

  18. Does prescribed fire benefit wetland vegetation?

    USGS Publications Warehouse

    Flores, C.; Bounds, D.L.; Ruby, D.E.

    2011-01-01

    The effects of fire on wetland vegetation in the mid-Atlantic region of the United States are poorly known, despite the historical use of fire by federal, state, and private landowners in the Chesapeake Bay Region. Prescribed fire is widely used by land managers to promote vegetation that is beneficial to migratory waterfowl, muskrats, and other native wildlife and to reduce competition from less desirable plant species. We compared vegetative response to two fire rotations, annual burns and 3-year burns, and two control sites, Control 1 and Control 2. We tested the effects of fire within six tidal marsh wetlands at Blackwater National Wildlife Refuge and Fishing Bay Wildlife Management Area in Maryland. We examined changes in total live biomass (all species), total stem density, litter, and changes in live biomass and stem density of four dominant wetland plant species (11 variables). Our results suggest that annual prescribed fires will decrease the accumulation of litter, increase the biomass and stem densities of some wetland plants generally considered less desirable for wildlife, and have little or no effect on other wetland plants previously thought to benefit from fire. ?? 2011 US Government.

  19. 7 CFR 12.33 - Use of wetland and converted wetland.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Use of wetland and converted wetland. 12.33 Section 12.33 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation § 12.33 Use of wetland and converted wetland. (a) The provisions of § 12.32(b)(2) are...

  20. Association between wetland disturbance and biological attributes in floodplain wetlands

    USGS Publications Warehouse

    Chipps, S.R.; Hubbard, D.E.; Werlin, K.B.; Haugerud, N.J.; Powell, K.A.; Thompson, John; Johnson, T.

    2006-01-01

    We quantified the influence of agricultural activities on environmental and biological conditions of floodplain wetlands in the upper Missouri River basin. Seasonally-flooded wetlands were characterized as low impact (non-disturbed) or high impact (disturbed) based on local land use. Biological data collected from these wetlands were used to develop a wetland condition index (WCI). Fourteen additional wetlands were sampled to evaluate the general condition of seasonally-flooded floodplain wetlands. Structural and functional attributes of macrophyte, algae, and macroinvertebrate communities were tested as candidate metrics for assessing biotic responses. The WCI we developed used six biological metrics to discriminate between disturbed and non-disturbed wetlands: 1) biomass of Culicidae larvae, 2) abundance of Chironomidae larvae, 3) macroinvertebrate diversity, 4) total number of plant species, 5) the proportion of exotic plant species, and 6) total number of sensitive diatom species. Disturbed wetlands had less taxa richness and species diversity and more exotic and nuisance (e.g., mosquitoes) species. Environmental differences between low and high impact wetlands included measures of total potassium, total phosphorus, total nitrogen, alkalinity, conductance, and sediment phosphorus concentration. Canonical analyses showed that WCI scores were weakly correlated (P = 0.057) with environmental variables in randomly selected wetlands. In addition, mean WCI score for random wetlands was higher than that for high impact wetlands, implying that floodplain wetlands were less impacted by the types of agricultural activities affecting high impact sites. Inter-year sampling of some wetlands revealed that WCI metrics were correlated in 2000 and 2001, implying that biological metrics provided useful indicators of disturbance in floodplain wetlands. ?? 2006, The Society of Wetland Scientists.

  1. TRACKING CHANGES IN WETLANDS WITH URBANIZATION: SIXTEEN YEARS OF EXPERIENCE IN PORTLAND, OREGON, USA

    EPA Science Inventory

    Long-term studies of the wetland resource in urbanizing areas are essential to understanding the effects of urbanization on wetlands and the effectiveness of management actions. Using data from the National Wetland Inventory (NWI) in combination with field surveys, we tracked ch...

  2. Organic wastewater compounds in water and sediment in and near restored wetlands, Great Marsh, Indiana Dunes National Lakeshore, 2009–11

    USGS Publications Warehouse

    Egler, Amanda L.; Risch, Martin R.; Alvarez, David A.; Bradley, Paul M.

    2013-01-01

    A cooperative investigation between the U.S. Geological Survey and the National Park Service was completed from 2009 through 2011 to understand the occurrence, distribution, and environmental processes affecting concentrations of organic wastewater compounds in water and sediment in and near Great Marsh at the Indiana Dunes National Lakeshore in Beverly Shores, Indiana. Sampling sites were selected to represent hydrologic inputs to the restored wetlands from adjacent upstream residential and less developed areas and to represent discharge points of cascading cells within the restored wetland. A multiphase approach was used for the investigation. Discrete water samples and time-integrated passive samples were analyzed for 69 organic wastewater compounds. Continuous water-level information and periodic streamflow measurements characterized flow conditions at discharge points from restored wetland cells. Wetland sediments were collected and analyzed for sorptive losses of organic wastewater compounds and to evaluate of the potential for wetland sediments to biotransform organic wastewater compounds. A total of 52 organic wastewater compounds were detected in discrete water samples at 1 or more sites. Detections of organic wastewater compounds were widespread, but concentrations were generally low and 95 percent were less than 2.1 micrograms per liter. Six compounds were detected at concentrations greater than 2.1 micrograms per liter—four fecal sterols (beta-sitosterol, cholesterol, beta-stigmastanol, and 2-beta coprostanol), one plasticizer (bis-2-ethylhex ylphthalate), and a non-ionic detergent (4-nonylphenol diethoxylate). Two 1-month deployments of time-integrative passive samplers, called polar organic chemical integrative samplers, detected organic wastewater compounds at lower concentrations than were possible with discrete water samples. Isopropyl benzene (solvent), caffeine (plant alkaloid, stimulant), and hexahydrohexamethyl cyclopentabenzopyran (fragrance

  3. Ohio Uses Wetlands Program Development Grants to Protect Wetlands

    EPA Pesticide Factsheets

    The wetland water quality standards require the use of ORAM score to determine wetland quality. OEPA has also used these tools to evaluate wetland mitigation projects, develop performance standards for wetland mitigation banks and In Lieu Fee programs an.

  4. Research: The Effect of Wetland Mitigation Banking on the Achievement of No-Net-Loss.

    PubMed

    BROWN; LANT

    1999-04-01

    / This study determines whether the 68 wetland mitigation banks in existence in the United States through 1 January 1996 are achieving no-net-loss of wetland acreage nationally and regionally. Although 74% of the individual banks achieve no-net-loss by acreage, overall, wetland mitigation banks are projected to result in a net loss of 21,328 acres of wetlands nationally, 52% of the acreage in banks, as already credited wetland acreages are converted to otheruses. While most wetland mitigation banks are using appropriate compensation methods and ratios, several of the largest banks use preservation or enhancement, instead of restoration or creation. Most of these preservation/enhancement banks use minimum mitigation ratios of 1:1, which is much lower than ratios given in current guidelines. Assuming that mitigation occurs in these banks as preservation at the minimum allowable ratio, ten of these banks, concentrated in the western Gulf Coast region, will account for over 99% of projected net wetland acreage loss associated with banks. We conclude that wetland mitigation banking is a conceptually sound environmental policy and planning tool, but only if applied according to recently issued guidelines that ensure no-net-loss of wetland functions and values. Wetland mitigation banking inevitably leads to geographic relocation of wetlands, and therefore changes, either positively or negatively, the functions they perform and ecosystem services they provide. KEY WORDS: Mitigation banking; Wetlands; Army Corps of Engineers; No-net-loss

  5. TWO-STAGE SAMPLING FOR RARE RESOURCES: SAMPLING WETLANDS IN THE JUNIATA WATERSHED OF PENNSYLVANIA

    EPA Science Inventory

    The National Wetland Inventory (NWI) is the most complete catalog of wetland location, type, and extent that is presently available. As such, it is the default frame for developing a survey to assess wetland condition. However, experience suggests that the NWI may miss a substan...

  6. Is wetland mitigation successful in Southern California?

    NASA Astrophysics Data System (ADS)

    Cummings, D. L.; Rademacher, L. K.

    2004-12-01

    Wetlands perform many vital functions within their landscape position; they provide unique habitats for a variety of flora and fauna and they act as treatment systems for upstream natural and anthropogenic waste. California has lost an estimated 91% of its wetlands. Despite the 1989 "No Net Loss" policy and mitigation requirements by the regulatory agencies, the implemented mitigation may not be offsetting wetlands losses. The "No Net Loss" policy is likely failing for numerous reasons related to processes in the wetlands themselves and the policies governing their recovery. Of particular interest is whether these mitigation sites are performing essential wetlands functions. Specific questions include: 1) Are hydric soil conditions forming in mitigation sites; and, 2) are the water quality-related chemical transformations that occur in natural wetlands observed in mitigation sites. This study focuses on success (or lack of success) in wetlands mitigation sites in Southern California. Soil and water quality investigations were conducted in wetland mitigation sites deemed to be successful by vegetation standards. Observations of the Standard National Resource Conservation Service field indicators of reducing conditions were made to determine whether hydric soil conditions have developed in the five or more years since the implementation of mitigation plans. In addition, water quality measurements were performed at the inlet and outlet of these mitigation sites to determine whether these sites perform similar water quality transformations to natural wetlands within the same ecosystem. Water quality measurements included nutrient, trace metal, and carbon species measurements. A wetland location with minimal anthropogenic changes and similar hydrologic and vegetative features was used as a control site. All sites selected for study are within a similar ecosystem, in the interior San Diego and western Riverside Counties, in Southern California.

  7. Wetland delineation with IKONOS high-resolution satellite imagery, Fort Custer Training Center, Battle Creek, Michigan, 2005

    USGS Publications Warehouse

    Fuller, L.M.; Morgan, T.R.; Aichele, Stephen S.

    2006-01-01

    The Michigan Army National Guard’s Fort Custer Training Center (FCTC) in Battle Creek, Mich., has the responsibility to protect wetland resources on the training grounds while providing training opportunities, and for future development planning at the facility. The National Wetlands Inventory (NWI) data have been the primary wetland-boundary resource, but a check on scale and accuracy of the wetland boundary information for the Fort Custer Training Center was needed. In cooperation with the FCTC, the U.S. Geological Survey (USGS) used an early spring IKONOS pan-sharpened satellite image to delineate the wetlands and create a more accurate wetland map for the FCTC. The USGS tested automated approaches (supervised and unsupervised classifications) to identify the wetland areas from the IKONOS satellite image, but the automated approaches alone did not yield accurate results. To ensure accurate wetland boundaries, the final wetland map was manually digitized on the basis of the automated supervised and unsupervised classifications, in combination with NWI data, field verifications, and visual interpretation of the IKONOS satellite image. The final wetland areas digitized from the IKONOS satellite imagery were similar to those in NWI; however, the wetland boundaries differed in some areas, a few wetlands mapped on the NWI were determined not to be wetlands from the IKONOS image and field verification, and additional previously unmapped wetlands not recognized by the NWI were identified from the IKONOS image.

  8. A novel algorithm for delineating wetland depressions and ...

    EPA Pesticide Factsheets

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features that are seldom fully filled with water. For instance, wetland depressions in the Prairie Pothole Region (PPR) are seasonally to permanently flooded wetlands characterized by nested hierarchical structures with dynamic filling- spilling-merging surface-water hydrological processes. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution LiDAR data and aerial imagery. We proposed a novel algorithm delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost path algorithm. The resulting flow network delineated putative temporary or seasonal flow paths connecting wetland depressions to each other or to the river network at scales finer than available through the National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving overland flow modeling and hydrologic connectivity analysis. Presentation at AWRA Spring Specialty Conference in Sn

  9. Wetlands postcard

    USGS Publications Warehouse

    Ball, Lianne C.

    2016-05-25

    Research conducted by scientists at the U.S. Geological Survey provides reliable scientific information for the management of wetlands ranging from small freshwater alpine lakes in the Western United States to coastal wetlands of the Great Lakes and salt marshes along the Southeastern coast. Learn more about USGS wetlands research at: http://www.usgs.gov/ecosystems/environments/wetlands.html.

  10. Impacts of Intensified Agriculture Developments on Marsh Wetlands

    PubMed Central

    Luan, Zhaoqing; Zhou, Demin

    2013-01-01

    A spatiotemporal analysis on the changes in the marsh landscape in the Honghe National Nature Reserve, a Ramsar reserve, and the surrounding farms in the core area of the Sanjiang Plain during the past 30 years was conducted by integrating field survey work with remote sensing techniques. The results indicated that intensified agricultural development had transformed a unique natural marsh landscape into an agricultural landscape during the past 30 years. Ninety percent of the natural marsh wetlands have been lost, and the areas of the other natural landscapes have decreased very rapidly. Most dry farmland had been replaced by paddy fields during the progressive change of the natural landscape to a farm landscape. Attempts of current Chinese institutions in preserving natural wetlands have achieved limited success. Few marsh wetlands have remained healthy, even after the establishment of the nature reserve. Their ecological qualities have been declining in response to the increasing threats to the remaining wetland habitats. Irrigation projects play a key role in such threats. Therefore, the sustainability of the natural wetland ecosystems is being threatened by increased regional agricultural development which reduced the number of wetland ecotypes and damaged the ecological quality. PMID:24027441

  11. Relationship between the natural abundance of soil nitrogen isotopes and condition in North Dakota wetlands

    EPA Science Inventory

    A statewide condition assessment of North Dakota wetlands in the summer of 2011 was conducted as part of the U.S. Environmental Protection Agency’s National Wetland Condition Assessment (NWCA). Two other wetland condition assessments, the Index of Plant Community Integrity (IPCI...

  12. Elemental composition of native wetland plants in constructed mesocosm treatment wetlands.

    PubMed

    Collins, Beverly S; Sharitz, Rebecca R; Coughlin, Daniel P

    2005-05-01

    Plants that accumulate a small percentage of metals in constructed treatment wetlands can contribute to remediation of acidic, metal contaminated runoff waters from coal mines or processing areas. We examined root and shoot concentrations of elements in four perennial wetland species over two seasons in mesocosm wetland systems designed to remediate water from a coal pile runoff basin. Deep wetlands in each system contained Myriophyllum aquaticum and Nymphaea odorata; shallow wetlands contained Juncus effusus and Pontederia cordata. Shoot elemental concentrations differed between plants of deep and shallow wetlands, with higher Zn, Al, and Fe concentrations in plants in shallow wetlands and higher Na, Mn, and P concentrations in plants in deep wetlands. Root and shoot concentrations of most elements differed between species in each wetland type. Over two seasons, these four common wetland plants did help remediate acidic, metal-contaminated runoff from a coal storage pile.

  13. Modeling natural wetlands: A new global framework built on wetland observations

    NASA Astrophysics Data System (ADS)

    Matthews, E.; Romanski, J.; Olefeldt, D.

    2015-12-01

    Natural wetlands are the world's largest methane (CH4) source, and their distribution and CH4 fluxes are sensitive to interannual and longer-term climate variations. Wetland distributions used in wetland-CH4 models diverge widely, and these geographic differences contribute substantially to large variations in magnitude, seasonality and distribution of modeled methane fluxes. Modeling wetland type and distribution—closely tied to simulating CH4 emissions—is a high priority, particularly for studies of wetlands and CH4 dynamics under past and future climates. Methane-wetland models either prescribe or simulate methane-producing areas (aka wetlands) and both approaches result in predictable over- and under-estimates. 1) Monthly satellite-derived inundation data include flooded areas that are not wetlands (e.g., lakes, reservoirs, and rivers), and do not identify non-flooded wetlands. 2) Models simulating methane-producing areas overwhelmingly rely on modeled soil moisture, systematically over-estimating total global area, with regional over- and under-estimates, while schemes to model soil-moisture typically cannot account for positive water tables (i.e., flooding). Interestingly, while these distinct hydrological approaches to identify wetlands are complementary, merging them does not provide critical data needed to model wetlands for methane studies. We present a new integrated framework for modeling wetlands, and ultimately their methane emissions, that exploits the extensive body of data and information on wetlands. The foundation of the approach is an existing global gridded data set comprising all and only wetlands, including vegetation information. This data set is augmented with data inter alia on climate, inundation dynamics, soil type and soil carbon, permafrost, active-layer depth, growth form, and species composition. We investigate this enhanced wetland data set to identify which variables best explain occurrence and characteristics of observed

  14. Does encouraging the use of wetlands in water quality trading programs make economic sense? journal

    EPA Science Inventory

    This paper examines a proposal to incorporate the use of wetlands in water quality trading (WQT) programs in order to meet national wetlands goals and advance WQT. It develops a competitive WQT model wherein wetland services are explicitly considered. To participate in a WQT pro...

  15. Range-wide wetland associations of the King Rail: A multi-scale approach

    USGS Publications Warehouse

    Glisson, Wesley J.; Conway, Courtney J.; Nadeau, Christopher P.; Borgmann, Kathi L.; Laxson, Thomas A.

    2015-01-01

    King Rail populations have declined and identifying wetland features that influence King Rail occupancy can help prevent further population declines. We integrated continent-wide marsh bird survey data with spatial wetland data from the National Wetland Inventory (NWI) to examine wetland features that influenced King Rail occupancy throughout the species’ range. We analyzed wetland data at 7 spatial scales to examine the scale(s) at which 68 wetland features were most strongly related to King Rail occupancy. Occupancy was most strongly associated with estuarine features and brackish and tidal saltwater regimes. King Rail occupancy was positively associated with emergent and scrub-shrub wetlands and negatively associated with forested wetlands. The best spatial scale for assessing King Rail occupancy differed among wetland features; we could not identify one spatial scale (among all wetland features) that best explained variation in occupancy. Future research on King Rail habitat that includes multiple spatial scales is more likely to identify the suite of features that influence occupancy. Our results indicate that NWI data may be useful for predicting occupancy based on broad habitat features across the King Rail’s range, which may help inform management decisions for this and other wetland-dependent birds.

  16. Inclusion of Coastal Wetlands within the Inventory of United States Greenhouse Gas Emissions and Sinks

    NASA Astrophysics Data System (ADS)

    Crooks, S.; Wirth, T. C.; Herold, N.; Bernal, B.; Holmquist, J. R.; Troxler, T.; Megonigal, P.; Sutton-Grier, A.; Muth, M.; Emmett-Mattox, S.

    2016-12-01

    The Inventory of U.S. GHG Emissions and Sinks' (Inventory) chapter on Land Use, Land Use Change and Forestry (LULUCF) reports C stock changes and emissions of CH4 and N2O from forest management, and other land-use/land-use change activities. With the release of the 2013 Supplement to the 2006 IPCC Guidelines for National GHG Inventories: Wetlands (Wetlands Supplement) the United States has begun working to include emissions and removals from management activities on coastal wetlands, and is responding to a request by the United Nations Framework Convention on Climate Change (UNFCCC) for Parties to report back in March 2017 on their country's experience in applying the Wetlands Supplement. To support the EPA, NOAA has formed an interagency and science community group i.e., Coastal Wetland Carbon Working Group (CWCWG). The task of the CWCWG is to conduct an initial IPCC Tier 1-2 baseline assessment of GHG emissions and removals associated with coastal wetlands using the methodologies described in the recently released IPCC Wetlands Supplement for inclusion in the Inventory submitted to the UNFCCC in April 2017. The 5 million ha coastal land area of the conterminous United States has been delineated based upon tide stations and LIDAR derived digital elevation model. Land use change within the coastal land area has been calculated from NOAA Coastal Change Analysis Program (C-CAP), Forest Inventory and National Resource Inventory (NRI). Tier 2 (i.e., country-specific) subnational / climate zone estimates of carbon stocks (including soils), along with carbon sequestration rates and methane emissions rates have been developed from literature. Future opportunities to improve the coastal wetland estimates include: refined quantification of methane emissions from wetlands across the salinity gradient (including mapping of this gradient) and from impounded waters; quantification of impacts of forestry activities on wetland soils; emissions and removals on forested tidally

  17. Sustainable wetland management and support of ecosystem services

    USGS Publications Warehouse

    Smith, Loren M.; Euliss, Ned H.; Wilcox, Douglas A.; Brinson, Mark M.

    2009-01-01

    This article is a follow-up on a previous piece in the National Wetlands Newsletter in which we outlined problems associated with a static, local approach to wetland management versus an alternative that proposes a temporal and geomorphic approach (Euliss et al. 2009). We extend that concept by drawing on companion papers recently published in the journal Wetlands (Euliss et al. 2008, Smith et al. 2008). Here we highlight reasons for the failure of many managed wetlands to provide a suite of ecosystem services (e.g., carbon storage, diodiversity, ground-water recharge, contaminant filtering, floodwater storage). Our principal theme is that wetland management is best approached by giving consideration to the hydrogeomorphic processes that maintain productive ecosystems and by removing physical and social impediments to those processes. Traditional management actions are often oriented toward maintaining static conditions in wetlands without considering the temporal cycles that wetlands need to undergo or achieve productivity for specific groups of wildlife, such as waterfowl. Possibly more often, a manager's ability to influence hydrogeomorphic processes is restricted by activities in surrounding watersheds. These could be dams, for example, which do not allow management of flood-pulse processes essential to productivity of riparian systems. In most cases, sediments and nutrients associated with land use in contributing watersheds complicate management of wetlands for a suite of services, including wildlife. Economic or policy forces far-removed from a wetland often interact to prevent occurrence of basic ecosystem processes. Our message is consistent with recommendation of supply-side sustainability of Allen et al. (2002) in which ecosystems are managed "for the system that produces outputs rather than the outputs themselves."

  18. Effects of wastewater on forested wetlands

    USGS Publications Warehouse

    Doyle, Thomas W.

    2002-01-01

    Cycling nutrient-enriched wastewater from holding ponds through natural, forested wetlands is a practice that municipal waste treatment managers are considering as a viable option for disposing of wastewater. In this wastewater cycling process, sewer effluent that has been circulated through aerated ponds is discharged into neighboring wetland systems. To understand how wastewater cycling affects forest and species productivity, researchers at the USGS National Wetlands Research Center conducted dendroecological investigations in a swamp system and in a bog system that have been exposed to wastewater effluent for many decades. Dendroecology involves the study of forest changes over time as interpreted from tree rings. Tree-ring chronologies describe the pattern and history of growth suppression and release that can be associated with aging and disturbances such as hurricanes, floods, and fires. But because of limited monitoring, little is known about the potential for long-term effects on forested wetlands as a result of wastewater flooding. USGS researchers used tree rings to detect the effect of wastewater cycling on tree growth. Scientists expected to find that tree-ring width would be increased as a result of added nutrients.

  19. Using intensive indicators of wetland condition to evaluate a rapid assessment methodology in Oregon tidal wetlands

    EPA Science Inventory

    In 2011, the US EPA and its partners will conduct the first-ever national survey on the condition of the Nation’s wetlands. This survey will utilize a three-tiered assessment approach that includes landscape level indicators (Level 1), rapid indicators (Level 2), and intensive, ...

  20. Wetlands: Tidal

    USGS Publications Warehouse

    Conner, William H.; Krauss, Ken W.; Baldwin, Andrew H.; Hutchinson, Stephen

    2014-01-01

    Tidal wetlands are some of the most dynamic areas of the Earth and are found at the interface between the land and sea. Salinity, regular tidal flooding, and infrequent catastrophic flooding due to storm events result in complex interactions among biotic and abiotic factors. The complexity of these interactions, along with the uncertainty of where one draws the line between tidal and nontidal, makes characterizing tidal wetlands a difficult task. The three primary types of tidal wetlands are tidal marshes, mangroves, and freshwater forested wetlands. Tidal marshes are dominated by herbaceous plants and are generally found at middle to high latitudes of both hemispheres. Mangrove forests dominate tropical coastlines around the world while tidal freshwater forests are global in distribution. All three wetland types are highly productive ecosystems, supporting abundant and diverse faunal communities. Unfortunately, these wetlands are subject to alteration and loss from both natural and anthropogenic causes.

  1. Evaluation of a wetland classification system devised for ...

    EPA Pesticide Factsheets

    The manuscript is part of an FY14 RAP product: "Functional Assessment of Alaska Peatlands in Cook Inlet Basin: A report to Region 10". This report included this technical information product which is a manuscript that has now been fully revised, reviewed and published in a scientific peer-reviewed publication with open access (doi:10.1007/s11273-016-9504-0). The journal article scientific abstract is as follows: "Several wetland classification schemes are now commonly used to describe wetlands in the contiguous United States to meet local, regional, and national regulatory requirements. However, these established systems have proven to be insufficient to meet the needs of land managers in Alaska. The wetlands of this northern region are predominantly peatlands, which are not adequately treated by the nationally-used systems, which have few, if any, peatland classes. A new system was therefore devised to classify wetlands in the rapidly urbanizing Cook Inlet Basin of southcentral Alaska, USA. The Cook Inlet Classification (CIC) is based on seven geomorphic and six hydrologic components that incorporate the environmental gradients responsible for the primary sources of variation in peatland ecosystems. The geomorphic and hydrologic components have the added advantage of being detectable on remote sensing imagery, which facilitates regional mapping across large tracts of inaccessible terrain. Three different quantitative measures were used to evaluate the robu

  2. Contributions of air pollution and climate warming to tufa wetland degradation in Jiuzhaigou National Nature Reserve, eastern rim of the Qinghai-Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Qiao, X.; Tang, Y.

    2017-12-01

    Massive deposition of calcium carbonate in ambient temperature waters forms magnificent tufa wetlands, many of which are designated as protected areas and are popular tourist destinations. There is a tufa wetland belt along the Eastern Rim of the Qinghai-Tibetan Plateau (ERQTP), and many of them are experiencing degradation, such as nutrient enrichment and tufa degradation. Meanwhile, there is also an air pollution belt in the ERQTP. This study was made to understand the correlation of tufa wetland degradation with climate change and air pollution for Jiuzhaigou National Nature Reserve (hereafter Jiuzhaigou). Atmospheric changes were first studied. The results show that annual mean air temperature increased by 1.2oC from 1951 to 2014. Anthropogenic emissions contributed to over 90% annual wet deposition fluxes of reactive sulfur and nitrogen and caused acid rain (pH<5.60). Wet deposition fluxes of reactive sulfur and nitrogen (including SO42-, NH4+, and NO3-) were mostly from inter-regional transport of air pollutants. Then, the impacts of air pollution and climate warming on tufa wetlands were further investigated. We found that precipitation was calcite-unsaturated so it could dissolve exposed tufa and considerably reduce tufa deposition rate and even cause tufa dissolution in shallow waters. These effects enhanced as precipitation pH decreased. Annual volume-weighted mean concentration of reactive nitrogen in wet deposition and runoff were 26.1 and 14.8 µmol L-1, respectively, both exceeding China's national standard of total nitrogen in runoff for nature reserves (14.3 µmol L-1) and this suggested a nitrogen fertilization effect of wet deposition on green algae. As water temperature is the limiting factor of algal growth in Jiuzhaigou and temperature in the top layer (0-5 cm) of runoff (with a depth<1 m, no canopy coverage of trees and shrubs) was significantly higher at the sites with increased biomass of green algae (p<0.05), climate warming would favor the

  3. Sedimentation of prairie wetlands

    USGS Publications Warehouse

    Gleason, Robert A.; Euliss, Ned H.

    1998-01-01

    Many wetlands in the prairie pothole region are embedded within an agricultural landscape where they are subject to varying degrees of siltation. Cultivation of wetland catchment areas has exacerbated soil erosion; wetlands in agricultural fields receive more sediment from upland areas than wetlands in grassland landscapes and hence are subject to premature filling (i.e., they have shorter topographic lives). Associated impacts from increased turbidity, sediment deposition, and increased surface water input likely have impaired natural wetland functions. Although trapping of sediments by wetlands is often cited as a water quality benefit, sediment input from agricultural fields has potential to completely fill wetlands and shorten their effective life-span. Thus, the value placed on wetlands to trap sediments is in conflict with maximizing the effective topographic life of wetlands. Herein, we provide an overview of sedimentation, identify associated impacts on wetlands, and suggest remedial management strategies. We also highlight the need to evaluate the impact of agricultural practices on wetland functions from an interdisciplinary approach to facilitate development of best management practices that benefit both wetland and agricultural interests.

  4. Wetlands ‘Zaymische’ as a promising protected natural territories in the republic of Tatarstan

    NASA Astrophysics Data System (ADS)

    Assanova, N. Yu; Mingasova, N. M.

    2018-01-01

    The article reviews the data of a comprehensive survey of wetlands of the Kuibyshev reservoir (Zelenodolsk district of Republic of Tatarstan). The study discusses wetlands as one of the key elements of the ecological frame of the city of Kazan and Republic of Tatarstan. Change of the status to reserve or national park is recommended for the conservation of wetlands.

  5. Mapping wetlands in the Lower Mekong Basin for wetland resource and conservation management using Landsat ETM images and field survey data.

    PubMed

    MacAlister, Charlotte; Mahaxay, Manithaphone

    2009-05-01

    The Mekong River Basin is considered to be the second most species rich river basin in the world. The 795,000 km(2) catchment encompasses several ecoregions, incorporating biodiverse and productive wetland systems. Eighty percent of the rapidly expanding population of the Lower Mekong Basin (LMB), made up in part by Lao PDR, Thailand, Cambodia and Viet Nam, live in rural areas and are heavily reliant on wetland resources. As the populations of Cambodia and Lao PDR will double in the next 20 years, pressure on natural resources and particularly wetlands can only increase. For development planning, resource and conservation management to incorporate wetland issues, information on the distribution and character of Mekong wetlands is essential. The existing but outdated wetland maps were compiled from secondary landuse-landcover data, have limited coverage, poor thematic accuracy and no meta-data. Therefore the Mekong River Commission (MRC) undertook to produce new wetland coverage for the LMB. As resources, funding and regional capacity are limited, it was determined that the method applied should use existing facilities, be easily adaptable, and replicable locally. For the product to be useful it must be accepted by local governments and decision makers. The results must be of acceptable accuracy (>75%) and the methodology should be relatively understandable to non-experts. In the first stage of this exercise, field survey was conducted at five pilot sites covering a range of typical wetland habitats (MRC wetland classification) to supply data for a supervised classification of Landsat ETM images from the existing MRC archive. Images were analysed using ERDAS IMAGINE and applying Maximum Likelihood Classification. Field data were reserved to apply formal accuracy assessment to the final wetland habitat maps, with resulting accuracy ranging from 77 to 94%. The maps produced are now in use at a Provincial and National level in three countries for resource and

  6. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules.

    PubMed

    Lee, S; Yeo, I-Y; Lang, M W; Sadeghi, A M; McCarty, G W; Moglen, G E; Evenson, G R

    2018-06-07

    Despite recognizing the importance of wetlands in the Coastal Plain of the Chesapeake Bay Watershed (CBW) in terms of ecosystem services, our understanding of wetland functions has mostly been limited to individual wetlands and overall catchment-scale wetland functions have rarely been investigated. This study is aimed at assessing the cumulative impacts of wetlands on watershed hydrology for an agricultural watershed within the Coastal Plain of the CBW using the Soil and Water Assessment Tool (SWAT). We employed two improved wetland modules for enhanced representation of physical processes and spatial distribution of riparian wetlands (RWs) and geographically isolated wetlands (GIWs). This study focused on GIWs as their hydrological impacts on watershed hydrology are poorly understood and GIWs are poorly protected. Multiple wetland scenarios were prepared by removing all or portions of the baseline GIW condition indicated by the U.S. Fish and Wildlife Service National Wetlands Inventory geospatial dataset. We further compared the impacts of GIWs and RWs on downstream flow (i.e., streamflow at the watershed outlet). Our simulation results showed that GIWs strongly influenced downstream flow by altering water transport mechanisms in upstream areas. Loss of all GIWs reduced both water routed to GIWs and water infiltrated into the soil through the bottom of GIWs, leading to an increase in surface runoff of 9% and a decrease in groundwater flow of 7% in upstream areas. These changes resulted in increased variability of downstream flow in response to extreme flow conditions. GIW loss also induced an increase in month to month variability of downstream flow and a decrease in the baseflow contribution to streamflow. Loss of all GIWs was shown to cause a greater fluctuation of downstream flow than loss of all RWs for this study site, due to a greater total water storage capacity of GIWs. Our findings indicate that GIWs play a significant role in controlling hydrological

  7. Tidal wetland vegetation and ecotone profiles: The Rush Ranch Open Space Preserve

    USDA-ARS?s Scientific Manuscript database

    The Rush Ranch Open Space Preserve (Rush Ranch) is a component site of the San Francisco Bay National Estuarine Research Reserve (SF Bay NERR) that includes one of the largest undiked tidal wetlands in the San Francisco Estuary. The brackish tidal wetlands grade into transitional vegetation and unde...

  8. The topic is the Relevance of wetland economic valuation in Uganda Acase study of Kiyanja-Kaku wetland in Lwengo District-Central Uganda.

    NASA Astrophysics Data System (ADS)

    Namulema, Mary Jude

    2016-04-01

    This study examined the relevance of economic valuation of wetlands in Uganda. A case study was done on Kiyanja-Kaku wetland in Lwengo District in Central Uganda using a semi-structured survey. Three objectives were examined i.e.: (i) To identify wetland ecosystem services in Uganda (ii) To identify the economic valuation methods appropriate for wetlands in Uganda (iii) To value clean water obtained from Kiyanja-Kaku wetland. The wetland ecosystem services were identified as provisioning, regulating, habitat, cultural and amenities services. The community had knowledge about 17 out of the 22 services as given by TEEB (2010). The economic valuation methods identified were, market price, efficiency price, travel cost, contingent valuation, hedonic pricing, and production function and benefit transfer methods. These were appropriate for valuation of wetlands in Uganda but only three methods i.e. market price, contingent valuation and productivity methods have been applied by researchers in Uganda so far. The economic value of clean water from Kiyanja-Kaku wetland to the nearby community was established by using the market price of clean water the National water and Sewerage Corporation charges for the water in Uganda to obtain the low value and the market price of water from the survey was used to obtain the high value. The estimated economic value of clean water service for a household ranges from UGX. 612174 to 4054733 (US 168.0-1095.0). The estimated economic value of clean water service from Kiyanja-Kaku wetland to the entire community ranges from UGX. 2,732,133,000.0 to 18,096,274,000.0 (US 775,228.0-4,885,994.0).

  9. The spatial distribution of soil organic carbon in tidal wetland soils of the continental United States.

    PubMed

    Hinson, Audra L; Feagin, Rusty A; Eriksson, Marian; Najjar, Raymond G; Herrmann, Maria; Bianchi, Thomas S; Kemp, Michael; Hutchings, Jack A; Crooks, Steve; Boutton, Thomas

    2017-12-01

    Tidal wetlands contain large reservoirs of carbon in their soils and can sequester carbon dioxide (CO 2 ) at a greater rate per unit area than nearly any other ecosystem. The spatial distribution of this carbon influences climate and wetland policy. To assist with international accords such as the Paris Climate Agreement, national-level assessments such as the United States (U.S.) National Greenhouse Gas Inventory, and regional, state, local, and project-level evaluation of CO 2 sequestration credits, we developed a geodatabase (CoBluCarb) and high-resolution maps of soil organic carbon (SOC) distribution by linking National Wetlands Inventory data with the U.S. Soil Survey Geographic Database. For over 600,000 wetlands, the total carbon stock and organic carbon density was calculated at 5-cm vertical resolution from 0 to 300 cm of depth. Across the continental United States, there are 1,153-1,359 Tg of SOC in the upper 0-100 cm of soils across a total of 24 945.9 km 2 of tidal wetland area, twice as much carbon as the most recent national estimate. Approximately 75% of this carbon was found in estuarine emergent wetlands with freshwater tidal wetlands holding about 19%. The greatest pool of SOC was found within the Atchafalaya/Vermilion Bay complex in Louisiana, containing about 10% of the U.S. total. The average density across all tidal wetlands was 0.071 g cm -3 across 0-15 cm, 0.055 g cm -3 across 0-100 cm, and 0.040 g cm -3 at the 100 cm depth. There is inherent variability between and within individual wetlands; however, we conclude that it is possible to use standardized values at a range of 0-100 cm of the soil profile, to provide first-order quantification and to evaluate future changes in carbon stocks in response to environmental perturbations. This Tier 2-oriented carbon stock assessment provides a scientific method that can be copied by other nations in support of international requirements. © 2017 John Wiley & Sons Ltd.

  10. TRACKING CHANGES IN WETLANDS WITH URBANIZATION: SIXTEEN YEARS OF EXPERIENCE IN PORTLAND, OREGON

    EPA Science Inventory

    Urban wetlands can provide valuable ecological and societal services. They also can experience rapid change with development. Data from National Wetland Inventory Maps (NWI) and a series of field studies conducted between 1987 and 1998 were used to track changes over 16 years i...

  11. Classifying and mapping wetlands and peat resources using digital cartography

    USGS Publications Warehouse

    Cameron, Cornelia C.; Emery, David A.

    1992-01-01

    Digital cartography allows the portrayal of spatial associations among diverse data types and is ideally suited for land use and resource analysis. We have developed methodology that uses digital cartography for the classification of wetlands and their associated peat resources and applied it to a 1:24 000 scale map area in New Hampshire. Classifying and mapping wetlands involves integrating the spatial distribution of wetlands types with depth variations in associated peat quality and character. A hierarchically structured classification that integrates the spatial distribution of variations in (1) vegetation, (2) soil type, (3) hydrology, (4) geologic aspects, and (5) peat characteristics has been developed and can be used to build digital cartographic files for resource and land use analysis. The first three parameters are the bases used by the National Wetlands Inventory to classify wetlands and deepwater habitats of the United States. The fourth parameter, geological aspects, includes slope, relief, depth of wetland (from surface to underlying rock or substrate), wetland stratigraphy, and the type and structure of solid and unconsolidated rock surrounding and underlying the wetland. The fifth parameter, peat characteristics, includes the subsurface variation in ash, acidity, moisture, heating value (Btu), sulfur content, and other chemical properties as shown in specimens obtained from core holes. These parameters can be shown as a series of map data overlays with tables that can be integrated for resource or land use analysis.

  12. Using Tradtional Ecological Knowledge to Protect Wetlands: the Swinomish Tribe's Wetland Cultural Assessment Project

    NASA Astrophysics Data System (ADS)

    Mitchell, T.

    2017-12-01

    "Traditional" wetland physical assessment modules do not adequately identify Tribal cultural values of wetlands and thus wetlands may not be adequately protected for cultural uses. This Swinomish Wetlands Cultural Assessment Project has developed a cultural resource scoring module that can be incorporated into wetland assessments to better inform wetland protections. Local native knowledge was gathered about the traditional uses of 99 native wetland plant species. A cultural scoring matrix was developed based on the presence of traditionally used plants in several use categories including: construction, ceremonial, subsistence, medicinal, common use, plant rarity, and place of value for each wetland. The combined score of the cultural and physcial modules provides an overall wetland score that relates to proscribed buffer protection widths. With this local native knowledge incorporated into wetland assessments, we are protecting and preserving Swinomish Reservation wetlands for both cultural uses and ecological functionality through the Tribe's wetland protection law.

  13. ADVANCING EPA WETLAND SCIENCE: DEVELOPING TOOLS FOR QUANTITATIVE ASSESSMENT OF WETLAND FUNCTION AND CONDITION AT THE REGIONAL LEVEL

    EPA Science Inventory

    The EPA Office of Water has recognized a critical need for tribes, states and federal agencies to be able to quantitatively assess the condition of the nations wetland resources. Currently, greater than 85% of states, tribes, and territories are lacking even rudimentary biologic...

  14. A Framework for Wetlands Research: Development of a Wetlands Data Base

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Issues related to the assembly of a comprehensive global wetlands data base are presented. A strategy to collect relevant data for wetland ecosystems through remote sensing inventories of wetland distribution was discussed. Elements of a research program on biogenic gas fluxes were identified. The major wetland parameters and their functional importance to material exchange mechanisms are summarized.

  15. Application of a geomorphic and temporal perspective to wetland management in North America

    USGS Publications Warehouse

    Smith, L.M.; Euliss, N.H.; Wilcox, D.A.; Brinson, M.M.

    2008-01-01

    The failure of managed wetlands to provide a broad suite of ecosystem services (e.g., carbon storage, wildlife habitat, ground-water recharge, storm-water retention) valuable to society is primarily the result of a lack of consideration of ecosystem processes that maintain productive wetland ecosystems or physical and social forces that restrict a manager's ability to apply actions that allow those processes to occur. Therefore, we outline a course of action that considers restoration of ecosystem processes in those systems where off-site land use or physical alterations restrict local management. Upon considering a wetland system, or examining a particular management regime, there are several factors that will allow successful restoration of wetland services. An initial step is examination of the political/social factors that have structured the current ecological condition and whether those realities can be addressed. Most successful restorations of wetland ecosystem services involve cooperation among multiple agencies, acquisition of funds from non-traditional sources, seeking of scientific advice on ecosystem processes, and cultivation of good working relationships among biologists, managers, and maintenance staff. Beyond that, in on-site wetland situations, management should examine the existing hydrogeomorphic situation and processes (e.g., climatic variation, tides, riverine flood-pulse events) responsible for maintenance of ecosystem services within a given temporal framework appropriate for that wetland's hydrologic pattern. We discuss these processes for five major wetland types (depressional, lacustrine, estuarine, riverine, and man-made impoundments) and then provide two case histories in which this approach was applied: Seney National Wildlife Refuge with a restored fen system and Bosque del Apache National Wildlife Refuge where riverine processes have been simulated to restore native habitat. With adequate partnerships and administrative and political

  16. STEPS FORWARD IN WETLAND MONITORING AND ASSESSMENT

    EPA Science Inventory

    The recent report of the National Research Council on wetland mitigation again highlighted the need for regional watershed evaluation as a context from which to determine the efficacy of past regulatory decisions and to improve the effectiveness of future actions. Collaborative ...

  17. Multipurpose Wetlands Phase II/III: final design and ongoing research investigations

    USGS Publications Warehouse

    Babbitt, Bruce; Beard, Daniel P.; Hancock, Lawrence F.

    1994-01-01

    The Eastern Municipal Water District (EMWD), the Bureau of Reclamation (USBR), and the National Biological Survey (NBS), in consultation with other governmental agencies, the academic community, and environmental groups, are involved in a cooperative wetlands research and demonstration effort. This report reflects progress through the first 3 years of a 5-year program. The goal of the Multipurpose Wetlands Research and Demonstration Project is to evaluate and expand the use of reclaimed water and contaminated ground water through the incorporation of multipurpose constructed wetlands into EMWD's total water resources management program. The focus of the wetlands is the development of design, construction, and operation criteria that will provide a cost-effective and innovative alternative for managing water resources and provide other public benefits in arid areas. The program also recognizes the fact that naturally-occurring wetlands, both coastal and inland, have been disappearing at an alarming rate.

  18. A model for evaluating effects of climate, water availability, and water management on wetland impoundments--a case study on Bowdoin, Long Lake, and Sand Lake National Wildlife Refuges

    USGS Publications Warehouse

    Tangen, Brian A.; Gleason, Robert A.; Stamm, John F.

    2013-01-01

    Many wetland impoundments managed by the U.S. Fish and Wildlife Service (USFWS) National Wildlife Refuge System throughout the northern Great Plains rely on rivers as a primary water source. A large number of these impoundments currently are being stressed from changes in water supplies and quality, and these problems are forecast to worsen because of projected changes to climate and land use. For example, many managed wetlands in arid regions have become degraded owing to the long-term accumulation of salts and increased salinity associated with evapotranspiration. A primary goal of the USFWS is to provide aquatic habitats for a diversity of waterbirds; thus, wetland managers would benefit from a tool that facilitates evaluation of wetland habitat quality in response to current and anticipated impacts of altered hydrology and salt balances caused by factors such as climate change, water availability, and management actions. A spreadsheet model that simulates the overall water and salinity balance (WSB model) of managed wetland impoundments is presented. The WSB model depicts various habitat metrics, such as water depth, salinity, and surface areas (inundated, dry), which can be used to evaluate alternative management actions under various water-availability and climate scenarios. The WSB model uses widely available spreadsheet software, is relatively simple to use, relies on widely available inputs, and is readily adaptable to specific locations. The WSB model was validated using data from three National Wildlife Refuges with direct and indirect connections to water resources associated with rivers, and common data limitations are highlighted. The WSB model also was used to conduct simulations based on hypothetical climate and management scenarios to demonstrate the utility of the model for evaluating alternative management strategies and climate futures. The WSB model worked well across a range of National Wildlife Refuges and could be a valuable tool for USFWS

  19. Hydroperiod regime controls the organization of plant species in wetlands

    PubMed Central

    Foti, Romano; del Jesus, Manuel; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2012-01-01

    With urban, agricultural, and industrial needs growing throughout the past decades, wetland ecosystems have experienced profound changes. Most critically, the biodiversity of wetlands is intimately linked to its hydrologic dynamics, which in turn are being drastically altered by ongoing climate changes. Hydroperiod regimes, e.g., percentage of time a site is inundated, exert critical control in the creation of niches for different plant species in wetlands. However, the spatial signatures of the organization of plant species in wetlands and how the different drivers interact to yield such signatures are unknown. Focusing on Everglades National Park (ENP) in Florida, we show here that cluster sizes of each species follow a power law probability distribution and that such clusters have well-defined fractal characteristics. Moreover, we individuate and model those signatures via the interplay between global forcings arising from the hydroperiod regime and local controls exerted by neighboring vegetation. With power law clustering often associated with systems near critical transitions, our findings are highly relevant for the management of wetland ecosystems. In addition, our results show that changes in climate and land management have a quantifiable predictable impact on the type of vegetation and its spatial organization in wetlands. PMID:23150589

  20. Introduction to the Wetland Book 1: Wetland structure and function, management, and nethods

    USGS Publications Warehouse

    Davidson, Nick C.; Middleton, Beth A.; McInnes, Robert J.; Everard, Mark; Irvine, Kenneth; Van Dam, Anne A.; Finlayson, C. Max; Finlayson, C. Max; Everard, Mark; Irvine, Kenneth; McInnes, Robert J.; Middleton, Beth A.; Van Dam, Anne A.; Davidson, Nick C.

    2016-01-01

    The Wetland Book 1 is designed as a ‘first port-of-call’ reference work for information on the structure and functions of wetlands, current approaches to wetland management, and methods for researching and understanding wetlands. Contributions by experts summarize key concepts, orient the reader to the major issues, and support further research on such issues by individuals and multidisciplinary teams. The Wetland Book 1 is organized in three parts - Wetland structure and function; Wetland management; and Wetland methods - each of which is divided into a number of thematic Sections. Each Section starts with one or more overview chapters, supported by chapters providing further information and case studies on different aspects of the theme.

  1. Towards a Global Wetland Observation System: The Geo-Wetlands Initiative

    NASA Astrophysics Data System (ADS)

    Strauch, Adrian; Geller, Gary; Grobicki, Ania; Hilarides, Lammert; Muro, Javier; Paganini, Marc; Weise, Kathrin

    2016-08-01

    Wetlands are hot spots of biodiversity and provide a wide range of valuable ecosystem services, but at the same time they globally are one of the fastest declining and most endangered ecosystems. The development of a Global Wetland Observation System (GWOS) that is supported by the Ramsar Convention on Wetlands since 2007 is seen as a step towards improved capabilities for global mapping, monitoring and assessment of wetland ecosystems and their services, status and trends. A newly proposed GEO-Wetlands initiative is taking up this effort and developing the necessary governance and management structures, a community of practice and the necessary scientific and technical outputs to set up this system and maintain it over the long term. This effort is aiming at directly supporting the needs of global conventions and monitoring frameworks as well as users of wetland information on all levels (local to global) to build a platform that provides a knowledge-hub as a baseline for informed ecosystem management and decision-making.

  2. InSAR-Detected Tidal Flow in Louisiana's Coastal Wetlands

    NASA Astrophysics Data System (ADS)

    Oliver-Cabrera, T.; Wdowinski, S.

    2014-12-01

    The Louisiana coast is among the most productive coastal area in the US and home to the largest coastal wetland area in the nation. However, Louisiana coastal wetlands have been threatened by natural (sea-level rise) and human (infrastructure development) stresses; they constitute the major part of the wetland loss of the country. Monitoring Louisiana's coastal wetlands represent a large challenge for local and federal authorities due to the large amount of area and hostile environment. Insofar, optical remote sensing observations have been used to classify the wetlands, monitor land cover changes, and assess the wetland loss over time. However, optical data is insensitive to surface flow and, hence, unable to detect the width of the tidal zone and changes in this area over time. SAR interferometry can provide useful information and ease the monitoring task. Wetland InSAR is the only application of the InSAR technology that provides information of aquatic surface. It provides useful information on surface water level changes in both inland and coastal wetlands. In this study, we use InSAR and tide gauge observations to detect and compare surface water level changes in response to ocean tide propagation through the Louisiana coastal wetlands. Our data consist of ALOS PALSAR, Radarsat-1 and tide gauge information over the coast of Louisiana. In order to detect water level changes, we used mainly high coherence interferferograms with short temporal baselines (46-92 days for ALOS data and 24-48 days for Radarsat-1). Interferometric processing of the data provides details maps of water level changes in the coastal zone. Preliminary results indicate tidal changes of up 30 cm and that tidal flow is limited to 8-10 km from the open water. Our results also show that the tidal flow is disrupted by various man-made structures as, canals and roads. The high spatial resolution wetland InSAR observations can provide useful constraints for detailed coastal wetland flow models.

  3. Riparian Wetlands: Mapping

    EPA Science Inventory

    Riparian wetlands are critical systems that perform functions and provide services disproportionate to their extent in the landscape. Mapping wetlands allows for better planning, management, and modeling, but riparian wetlands present several challenges to effective mapping due t...

  4. Wetlands Research Program. Wetland Evaluation Technique (WET). Volume 2. Methodology.

    DTIC Science & Technology

    1987-10-01

    in Zones B or C fiom wind. (b) Open water fetch is less than 100 ft (Figure 19)? 19.1B (Answer "I" if the AA/IA is mostly a riverine wetland system ...and upland .... 58 19 Examples of sheltered open water in the AA/IA .................. 59 20 Example of a wetland protected shoreline...the wetland and adjacent of the channel, as well as contiguous wetlands within open water for a distance of 300 ft. from the deep 0.5 mile. water

  5. Our Valuable Wetlands.

    ERIC Educational Resources Information Center

    Texley, Juliana

    1988-01-01

    Defines wetlands and lists several types of wetland habitat. Describes explorations that can be done with secondary school students including the baby boom, a food pyramid, and microenvironments. Includes a classroom poster with text on the variety of wetlands. (CW)

  6. Upland-wetland connectivity provides a significant nexus between isolated wetlands and downstream water bodies

    NASA Astrophysics Data System (ADS)

    Mclaughlin, D. L.; Kaplan, D. A.; Cohen, M. J.

    2013-12-01

    Recent rulings by the U.S. Supreme Court have limited federal protection over isolated wetlands, requiring documentation of a 'significant nexus' to a navigable water body to ensure federal jurisdiction. Despite geographic isolation, isolated wetlands influence the surficial aquifer dynamics that regulate baseflow to surface water systems. Due to differences in specific yield (Sy) between upland soils and inundated wetlands, responses of the upland water table to atmospheric fluxes (precipitation, P, and evapotranspiration, ET) are amplified relative to wetland water levels, leading to reversals in the hydraulic gradient between the two systems. As such, wetlands act as a water sink during wet cycles (via wetland exfiltration) and a source (via infiltration) during drier times, regulating both the surficial aquifer and its baseflow to downstream systems. To explore the importance of this wetland function at the landscape scale, we integrated models of soil moisture, upland water table, and wetland stage to simulate the hydrology of a low-relief, depressional landscape. We quantified the hydrologic buffering effect of wetlands by calculating the relative change in the standard deviation (SD) of water table elevation between model runs with and without wetlands. Using this model we explored the effects wetland area and spatial distribution over a range of climatic drivers (P and ET) and soil types. Increasing wetland cumulative area and/or density reduced water table variability relative to landscapes without wetlands, supporting the idea that wetlands stabilize regional hydrologic variation, but also increased mean water table depth because of sustained high ET rates in wetlands during dry periods. Maintaining high cumulative wetland area, but with fewer wetlands, markedly reduced the effect of wetland area, highlighting the importance of small, distributed wetlands on water table regulation. Simulating a range of climate scenarios suggested that the capacity of

  7. Constructed Wetlands

    EPA Pesticide Factsheets

    these systems can improve water quality, engineers and scientists construct systems that replicate the functions of natural wetlands. Constructed wetlands are treatment systems that use natural processes

  8. Resource Management plan for the Oak Ridge Reservation. Volume 28, Wetlands on the Oak Ridge Reservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, M.; Pounds, Larry

    1991-12-01

    A survey of wetlands on the Oak Ridge Reservation (ORR) was conducted in 1990. Wetlands occurring on ORR were identified using National Wetlands Inventory (NWI) maps and field surveys. More than 120 sites were visited and 90 wetlands were identified. Wetland types on ORR included emergent communities in shallow embayments on reservoirs, emergent and aquatic communities in ponds, forested wetland on low ground along major creeks, and wet meadows and marshes associated with streams and seeps. Vascular plant species occurring on sites visited were inventoried, and 57 species were added to the checklist of vascular plants on ORR. Three speciesmore » listed as rare in Tennessee were discovered on ORR during the wetlands survey. The survey provided an intensive ground truth of the wetlands identified by NWI and offered an indication of wetlands that the NWI remote sensing techniques did not detect.« less

  9. The biogeography of Mid-Atlantic CEAP wetlands

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods: The national U.S.D.A. Conservation Effects Assessment Project (CEAP) is a multi-agency effort to quantify the environmental benefits of conservation practices. The goal of CEAP is to determine the effectiveness of wetland conservation practices and programs, including im...

  10. Influence of wetland type, hydrology, and wetland destruction on aquatic communities within wetland reservoir subirrigation systems in northwestern Ohio

    USDA-ARS?s Scientific Manuscript database

    Establishment of an agricultural water recycling system known as the wetland reservoir subirrigation system (WRSIS) results in the creation of two different types of wetlands adjacent to agricultural fields. Each WRSIS consists of one treatment wetland designed to process agricultural contaminants (...

  11. Conversions between natural wetlands and farmland in China: A multiscale geospatial analysis.

    PubMed

    Mao, Dehua; Luo, Ling; Wang, Zongming; Wilson, Maxwell C; Zeng, Yuan; Wu, Bingfang; Wu, Jianguo

    2018-09-01

    Agricultural activity is widely recognized as a leading driver of natural wetland loss in many parts of the world. However, little is known about the spatiotemporal patterns of conversion between natural wetlands and farmland in China. This information deficiency has limited decision-making for the sustainable management of natural wetland ecosystems. In this study, we explicitly quantified bidirectional natural wetland-farmland conversions during the periods of 1990-2000 and 2000-2010 at multiple spatiotemporal scales. Our results revealed that about 60% (15,765km 2 ) of China's lost natural wetlands were due to agricultural encroachment for grain production, 74.7% (11,778km 2 ) of which occurred from 1990 to 2000. Natural wetland conversion to farmland was highest in Northeast China (13,467km 2 or 85.4%), whereas the natural wetlands in Northwest China demand extra attention because of a notable increase of agricultural encroachment. Natural wetlands in the humid zone experienced tremendous agricultural encroachment, leading to a loss of 10,649km 2 , accounting for 67.5% of the total agriculture-induced natural wetland loss in China. On the other hand, a total of 1369km 2 of natural wetlands were restored from farmland, with 66.3% of this restoration occurring between 2000 and 2010, primarily in Northeast China and the humid zone. Although a series of national policies and population pressure resulted in agricultural encroachment into natural wetlands, there are also policies and management measures protecting and restoring natural wetlands in China. The spatial differences in natural wetland-farmland conversions among different geographic regions and climatic zones suggest that China must develop place-based sustainable management policies and plans for natural wetlands. This study provides important scientific information necessary for developing such policies and implementation plans. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Water Quality-Chapter 5 for National Wetland Condition Assessment technical report

    EPA Science Inventory

    Objectives of the water quality data analyses presented here are to examine the extent to which water quality could be sampled across US wetlands, to evaluate the various measurement endpoints obtained (e.g., variability, repeatability, information content), to present broad patt...

  13. Reference site selection for wetland condition assessments: Integrating best professional judgement and objective selection criteria

    EPA Science Inventory

    The National Wetlands Condition Assessment (NWCA), one of a series of water assessments being conducted by states, tribes, the U.S. Environmental Protection Agency (EPA), and other partners, surveyed over 900 wetland sites across the lower 48 states during Summer 2011. The NWCA ...

  14. Using Wetlands to Teach Ecology & Environmental Awareness in General Biology.

    ERIC Educational Resources Information Center

    O'Neal, Lyman H.

    1995-01-01

    Presents advantages of using wetlands educationally and their relevance to local, national, and global environmental issues. Discusses field trips to mangrove forests and freshwater marshes. (Author/MKR)

  15. Application of a three-tier framework to assess ecological condition of Gulf of Mexico coastal wetlands.

    PubMed

    Nestlerode, Janet A; Hansen, Virginia D; Teague, Aarin; Harwell, Matthew C

    2014-06-01

    A multi-level coastal wetland assessment strategy was applied to wetlands in the northern Gulf of Mexico (GOM) to evaluate the feasibility of this approach for a broad national scale wetland condition assessment (US Environmental Protection Agency's National Wetlands Condition Assessment). Landscape-scale assessment indicators (tier 1) were developed and applied at the sub-watershed (12-digit hydrologic unit code (HUC)) level within the GOM coastal wetland sample frame with scores calculated using land-use maps and geographic information system. Rapid assessment protocols (tier 2), using a combination of data analysis and field work, evaluated metrics associated with landscape context, hydrology, physical structure, and biological structure. Intensive site monitoring (tier 3) included measures of soil chemistry and composition, water column and pore-water chemistry, and dominant macrophyte community composition and tissue chemistry. Relationships within and among assessment levels were evaluated using multivariate analyses with few significant correlations found. More detailed measures of hydrology, soils, and macrophyte species composition from sites across a known condition gradient, in conjunction with validation of standardized rapid assessment method, may be necessary to fully characterize coastal wetlands across the region.

  16. Leveraging field and remotely sensed data to reduce uncertainty in national inventories of coastal wetland carbon fluxes: Year 2 findings from the NASA "Blue" Carbon Monitoring System

    NASA Astrophysics Data System (ADS)

    Windham-Myers, L.; Holmquist, J. R.; Woo, I.; Bergamaschi, B. A.; Byrd, K. B.; Crooks, S.; Drexler, J. Z.; Feagin, R. A.; Ferner, M. C.; Gonneea, M. E.; Kroeger, K. D.; Megonigal, P.; Morris, J. T.; Schile, L. M.; Simard, M.; Sutton-Grier, A.; Takekawa, J.; Troxler, T.; Weller, D.; Callaway, J.; Herold, N.

    2016-12-01

    In Year 2, the NASA Blue Carbon Monitoring Systems group leveraged USDA, USFWS and NOAA datasets, extensive field datasets, and targeted remote-sensing products to address basic questions regarding the size of carbon (C) stocks, and the directions and magnitudes of C fluxes in the US coastal zone since 1996. We review the uncertainty associated with 5 major terms in our Land Use-Land Cover Change (LULCC)-based accounting, both nationally and within sentinel sites (Cape Cod, Chesapeake Bay, Everglades, Louisiana, San Francisco Bay, Puget Sound). 1) To make distinctions between tidal and non-tidal wetlands we have relied on a combination of wetland and LiDAR-derived elevation maps. Existing products appear sufficient for saline wetlands, however many freshwater wetlands (1M ha) may be tidal despite current hydrologic mapcodes. 2) We are currently estimating methane emissions using salinity regime as a proxy. Methane emissions are variable across intermediate salinities, though not captured by the current binary classification of wetlands as either fresh or saline. 3) We are currently using a combination of USDA's SSURGO and independent core data to map soil C stocks. Soil C density varies little and is consistent across depth, salinity regime, and dominant plant cover type. 4) To model soil C fluxes, with C accumulating as sea level rises and C released with erosion or oxidation, we have applied IPCC default emission factors for the 2% of tidal wetland acreage lost to water (the dominant conversion), but have modeled C gain in wetlands-remaining-wetlands (98% of CONUS tidal wetlands) based on correlations between sea-level rise and sediment accretion, with the equation - Δ soil organic C stock = Δ elevation x soil C density. 5) To quantify biomass change through time, we developed a robust (R2 > 0.6) hybrid mapping approach including object-based image analysis, multispectral data, and RADAR. Overall, soil and biomass C stocks appear readily estimated and improved

  17. Wetland biogeochemistry and ecological risk assessment

    NASA Astrophysics Data System (ADS)

    Bai, Junhong; Huang, Laibin; Gao, Haifeng; Zhang, Guangliang

    2017-02-01

    Wetlands are an important ecotone between terrestrial and aquatic ecosystems and can provide great ecological service functions. Soils/sediments are one of the important components of wetland ecosystems, which support wetland plants and microorganisms and influence wetland productivity. Moreover, wetland soils/sediments serve as sources, sinks and transfers of carbon, nitrogen, phosphorus and chemical contaminants such as heavy metals. In natural wetland ecosystems, wetland soils/sediments play a great role in improving water quality as these chemical elements can be retained in wetland soils/sediments for a long time. Moreover, the biogeochemical processes of the abovementioned elements in wetland soils/sediments can drive wetland evolution and development, and their changes will considerably affect wetland ecosystem health. Therefore, a better understanding of wetland soil biogeochemistry will contribute to improving wetland ecological service functions.

  18. Reduction of neonicotinoid insecticide residues in Prairie wetlands by common wetland plants.

    PubMed

    Main, Anson R; Fehr, Jessica; Liber, Karsten; Headley, John V; Peru, Kerry M; Morrissey, Christy A

    2017-02-01

    Neonicotinoid insecticides are frequently detected in wetlands during the early to mid-growing period of the Canadian Prairie cropping season. These detections also overlap with the growth of macrophytes that commonly surround agricultural wetlands which we hypothesized may reduce neonicotinoid transport and retention in wetlands. We sampled 20 agricultural wetlands and 11 macrophyte species in central Saskatchewan, Canada, over eight weeks to investigate whether macrophytes were capable of reducing movement of neonicotinoids from cultivated fields and/or reducing concentrations in surface water by accumulating insecticide residues into their tissues. Study wetlands were surrounded by clothianidin-treated canola and selected based on the presence (n=10) or absence (n=10) of a zonal plant community. Neonicotinoids were positively detected in 43% of wetland plants, and quantified in 8% of all plant tissues sampled. Three plant species showed high rates of detection: 78% Equisetum arvense (clothianidin, range: wetlands had higher detection frequency and water concentrations of clothianidin (β±S.E.: -0.77±0.26, P=0.003) and thiamethoxam (β±S.E.: -0.69±0.35, P=0.049) than vegetated wetlands. We assessed the importance of wetland characteristics (e.g. vegetative zone width, emergent plant height, water depth) on neonicotinoid concentrations in Prairie wetlands over time using linear mixed-effects models. Clothianidin concentrations were significantly lower in wetlands surrounded by taller plants (β±S.E.: -0.57±0.12, P≤0.001). The results of this study suggest that macrophytes can play an important role in mitigating water contamination by accumulating neonicotinoids and possibly slowing transport to wetlands during the growing season. Copyright © 2016 Elsevier B

  19. Avian utilization of subsidence wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrot, J.R.; Conley, P.S.; Smout, C.L.

    1995-09-01

    Diverse and productive wetlands have resulted from coal mining in the midwest. The trend from surface to underground mining has increased the potential for subsidence. Planned subsidence of longwall mining areas provides increased opportunities for wetland habitat establishment. Planned subsidence over a 180 meter (590 foot) deep longwall mine in southern Illinois during 1984 to 1986 produced three subsidence wetlands totaling 15 hectares (38 acres). The resulting palustrine emergent wetlands enhanced habitat diversity within the surrounding palustrine forested unsubsided area. Habitat assessments and evaluations of avian utilization of the subsidence wetlands were conducted during February 1990 through October 1991. Avianmore » utilization was greatest within the subsided wetlands. Fifty-three bird species representing seven foraging guilds utilized the subsidence wetlands. Wading/fishing, dabbling waterfowl, and insectivorous avian guilds dominated the subsidence wetlands. The subsidence wetlands represented ideal habitat for wood ducks and great blue herons which utilized snags adjacent to and within the wetlands for nesting (19 great blue heron nests produced 25 young). Dense cover and a rich supply of macroinvertebrates provide excellent brood habitat for wood ducks, while herpetofauna and ichthyofauna provided abundant forage in shallow water zones for great blue herons and other wetland wading birds. The diversity of game and non-game avifauna utilizing the subsidence areas demonstrated the unique value of these wetlands. Preplanned subsidence wetlands can help mitigate loss of wetland habitats in the midwest.« less

  20. Mapping invasive wetland plants in the Hudson River National Estuarine Research Reserve using quickbird satellite imagery

    USGS Publications Warehouse

    Laba, M.; Downs, R.; Smith, S.; Welsh, S.; Neider, C.; White, S.; Richmond, M.; Philpot, W.; Baveye, P.

    2008-01-01

    The National Estuarine Research Reserve (NERR) program is a nationally coordinated research and monitoring program that identifies and tracks changes in ecological resources of representative estuarine ecosystems and coastal watersheds. In recent years, attention has focused on using high spatial and spectral resolution satellite imagery to map and monitor wetland plant communities in the NERRs, particularly invasive plant species. The utility of this technology for that purpose has yet to be assessed in detail. To that end, a specific high spatial resolution satellite imagery, QuickBird, was used to map plant communities and monitor invasive plants within the Hudson River NERR (HRNERR). The HRNERR contains four diverse tidal wetlands (Stockport Flats, Tivoli Bays, Iona Island, and Piermont), each with unique water chemistry (i.e., brackish, oligotrophic and fresh) and, consequently, unique assemblages of plant communities, including three invasive plants (Trapa natans, Phragmites australis, and Lythrum salicaria). A maximum-likelihood classification was used to produce 20-class land cover maps for each of the four marshes within the HRNERR. Conventional contingency tables and a fuzzy set analysis served as a basis for an accuracy assessment of these maps. The overall accuracies, as assessed by the contingency tables, were 73.6%, 68.4%, 67.9%, and 64.9% for Tivoli Bays, Stockport Flats, Piermont, and Iona Island, respectively. Fuzzy assessment tables lead to higher estimates of map accuracies of 83%, 75%, 76%, and 76%, respectively. In general, the open water/tidal channel class was the most accurately mapped class and Scirpus sp. was the least accurately mapped. These encouraging accuracies suggest that high-resolution satellite imagery offers significant potential for the mapping of invasive plant species in estuarine environments. ?? 2007 Elsevier Inc. All rights reserved.

  1. Characterization of Inundated Wetlands with Microwave Remote Sensing: Cross-Product Comparison for Uncertainty Assessment in Tropical Wetlands

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Jensen, K.; Alvarez, J.; Azarderakhsh, M.; Schroeder, R.; Podest, E.; Chapman, B. D.; Zimmermann, R.

    2015-12-01

    We have been assembling a global-scale Earth System Data Record (ESDR) of natural Inundated Wetlands to facilitate investigations on their role in climate, biogeochemistry, hydrology, and biodiversity. The ESDR comprises (1) Fine-resolution (100 meter) maps, delineating wetland extent, vegetation type, and seasonal inundation dynamics for regional to continental-scale areas, and (2) global coarse-resolution (~25 km), multi-temporal mappings of inundated area fraction (Fw) across multiple years. During March 2013, the NASA/JPL L-band polarimetric airborne imaging radar, UAVSAR, conducted airborne studies over regions of South America including portions of the western Amazon basin. We collected UAVSAR datasets over regions of the Amazon basin during that time to support systematic analyses of error sources related to the Inundated Wetlands ESDR. UAVSAR datasets were collected over Pacaya Samiria, Peru, Madre de Dios, Peru, and the Napo River in Ecuador. We derive landcover classifications from the UAVSAR datasets emphasizing wetlands regions, identifying regions of open water and inundated vegetation. We compare the UAVSAR-based datasets with those comprising the ESDR to assess uncertainty associated with the high resolution and the coarse resolution ESDR components. Our goal is to create an enhanced ESDR of inundated wetlands with statistically robust uncertainty estimates. The ESDR documentation will include a detailed breakdown of error sources and associated uncertainties within the data record. This work was carried out in part within the framework of the ALOS Kyoto & Carbon Initiative. PALSAR data were provided by JAXA/EORC and the Alaska Satellite Facility. Portions of this work were conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration.

  2. Forested wetland habitat

    USGS Publications Warehouse

    Duberstein, Jamie A.; Krauss, Ken W.; Kennish, Michael J.

    2015-01-01

    A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g/l. It is known locally as tidal várzea in the Amazon delta, Brazil. A tidal saltwater forested wetland (mangrove forest) is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity often exceeding 3 g/l and reaching levels that can exceed seawater. Mangrove ecosystems are composed of facultative halophytes that generally experience better growth at moderate salinity concentrations.

  3. Spatial variability of coastal wetland resilience to sea-level rise using Bayesian inference

    NASA Astrophysics Data System (ADS)

    Hardy, T.; Wu, W.

    2017-12-01

    The coastal wetlands in the Northern Gulf of Mexico (NGOM) account for 40% of coastal wetland area in the United States and provide various ecosystem services to the region and broader areas. Increasing rates of relative sea-level rise (RSLR), and reduced sediment input have increased coastal wetland loss in the NGOM, accounting for 80% of coastal wetland loss in the nation. Traditional models for predicting the impact of RSLR on coastal wetlands in the NGOM have focused on coastal erosion driven by geophysical variables only, and/or at small spatial extents. Here we developed a model in Bayesian inference to make probabilistic prediction of wetland loss in the entire NGOM as a function of vegetation productivity and geophysical attributes. We also studied how restoration efforts help maintain the area of coastal wetlands. Vegetation productivity contributes organic matter to wetland sedimentation and was approximated using the remotely sensed normalized difference moisture index (NDMI). The geophysical variables include RSLR, tidal range, river discharge, coastal slope, and wave height. We found a significantly positive relation between wetland loss and RSLR, which varied significantly at different river discharge regimes. There also existed a significantly negative relation between wetland loss and NDMI, indicating that in-situ vegetation productivity contributed to wetland resilience to RSLR. This relation did not vary significantly between river discharge regimes. The spatial relation revealed three areas of high RSLR but relatively low wetland loss; these areas were associated with wetland restoration projects in coastal Louisiana. Two projects were breakwater projects, where hard materials were placed off-shore to reduce wave action and promote sedimentation. And one project was a vegetation planting project used to promote sedimentation and wetland stabilization. We further developed an interactive web tool that allows stakeholders to develop similar wetland

  4. EPA METHODS FOR EVALUATING WETLAND CONDITION, WETLANDS CLASSIFICATION

    EPA Science Inventory

    In 1999, the U.S. Environmental Protection Agency (EPA) began work on this series of reports entitled Methods for Evaluating Wetland Condition. The purpose of these reports is to help States and Tribes develop methods to evaluate 1) the overall ecological condition of wetlands us...

  5. Wetland Program Development Grants: Building State and Tribal Capacity to Protect Wetlands

    EPA Pesticide Factsheets

    This brochure highlights just a few examples of the progress being made by states and tribes through the use of the Wetland Program Development Grant funds. Wetland Program Development Grants: Building State and Tribal Capacity to Protect Wetlands

  6. Wetland survey of the X-10 Bethel Valley and Melton Valley groundwater operable units at Oak Ridge National Labortory Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosensteel, B.A.

    1996-03-01

    Executive Order 11990, Protection of Wetlands, (May 24, 1977) requires that federal agencies avoid, to the extent possible, adverse impacts associated with the destruction and modification of wetlands and that they avoid direct and indirect support of wetlands development when there is a practicable alternative. In accordance with Department of Energy (DOE) Regulations for Compliance with Floodplains and Wetlands Environmental Review Requirements (Subpart B, 10 CFR 1022.11), surveys for wetland presence or absence were conducted in both the Melton Valley and the Bethel Valley Groundwater Operable Units (GWOU) on the DOE Oak Ridge Reservation (ORR) from October 1994 through Septembermore » 1995. As required by the Energy and Water Development Appropriations Act of 1992, wetlands were identified using the criteria and methods set forth in the Wetlands Delineation Manual (Army Corps of Engineers, 1987). Wetlands were identified during field surveys that examined and documented vegetation, soils, and hydrologic evidence. Most of the wetland boundary locations and wetland sizes are approximate. Boundaries of wetlands in Waste Area Grouping (WAG) 2 and on the former proposed site of the Advanced Neutron Source in the upper Melton Branch watershed were located by civil survey during previous wetland surveys; thus, the boundary locations and areal sizes in these areas are accurate. The wetlands were classified according to the system developed by Cowardin et al. (1979) for wetland and deepwater habitats of the United States. A total of 215 individual wetland areas ranging in size from 0.002 ha to 9.97 ha were identified in the Bethel Valley and Melton Valley GWOUs. The wetlands are classified as palustrine forested broad-leaved deciduous (PFO1), palustrine scrub-shrub broad-leaved deciduous (PSS1), and palustrine persistent emergent (PEM1).« less

  7. Freshwater Wetlands: A Citizen's Primer.

    ERIC Educational Resources Information Center

    Catskill Center for Conservation and Development, Inc., Hobart, NY.

    The purpose of this "primer" for the general public is to describe the general characteristics of wetlands and how wetland alteration adversely affects the well-being of humans. Particular emphasis is placed on wetlands in New York State and the northeast. Topics discussed include wetland values, destruction of wetlands, the costs of…

  8. Assessing the relationship between Section 404 and wetland losses: a feasibility study

    USGS Publications Warehouse

    Gladwin, Douglas N.; Roelle, James E.; Asherin, Duane A.

    1989-01-01

    The primary objective of the Clean Water Act of 1977 (33 U.S.C. 1251) is to restore and maintain the physical, chemical, and biological integrity of the Nation's waters. Section 404 of the Act regulates the discharge of dredged or fill materials into wetlands and represents the primary Federal authority for regulation of wetland alterations. Since its inception, the Section 404 program has been controversial in regard to the extent to which it was intended to provide wetlands regulation. Section 404 requires those who wish to discharge dredged or fill material into waters of the United States, which include many wetlands, to first obtain a Federal permit. The Environmental Protection Agency (EPA) has overall responsibility for administration of the Section 404 program and promulgates guidelines that must be followed in issuing permits. In addition, EPA has the final authority to prohibit specific discharges if the environmental impacts are unacceptable. The U.S. Army Corps of Engineers (Corps) issues Section 404 permits, which can be of two types. Individual Permits are issued following case-by-case reviews of proposed discharges. General Permits, which can be either nationwide or regional in scope, are authorized by the Corps for categories of activities that are similar in nature and that have only minimal individual and cumulative adverse environmental impacts. EPA, the National Marine Fisheries Service (NMFS), the Fish and Wildlife Service (Service), and State natural resource agencies review and comment on permit applications and offer recommendations on appropriate mitigation measures. Although comments from the Service and other natural resource agencies are advisory in nature (EPA's veto authority excepted), they can serve as the basis for modifying, conditioning, or denying a Section 404 permit. In 1986, in a survey conducted by the National Ecology Research Center, Service personnel indicated interest in additional information concerning both wetland

  9. The surface elevation table and marker horizon technique: A protocol for monitoring wetland elevation dynamics

    USGS Publications Warehouse

    James C. Lynch,; Phillippe Hensel,; Cahoon, Donald R.

    2015-01-01

    The National Park Service, in response to the growing evidence and awareness of the effects of climate change on federal lands, determined that monitoring wetland elevation change is a top priority in North Atlantic Coastal parks (Stevens et al, 2010). As a result, the NPS Northeast Coastal and Barrier Network (NCBN) in collaboration with colleagues from the U.S. Geological Survey (USGS) and The National Oceanic and Atmospheric Administration (NOAA) have developed a protocol for monitoring wetland elevation change and other processes important for determining the viability of wetland communities. Although focused on North Atlantic Coastal parks, this document is applicable to all coastal and inland wetland regions. Wetlands exist within a narrow range of elevation which is influenced by local hydrologic conditions. For coastal wetlands in particular, local hydrologic conditions may be changing as sea levels continue to rise. As sea level rises, coastal wetland systems may respond by building elevation to maintain favorable hydrologic conditions for their survival. This protocol provides the reader with instructions and guidelines on designing a monitoring plan or study to: A) Quantify elevation change in wetlands with the Surface Elevation Table (SET). B) Understand the processes that influence elevation change, including vertical accretion (SET and Marker Horizon methods). C) Survey the wetland surface and SET mark to a common reference datum to allow for comparing sample stations to each other and to local tidal datums. D) Survey the SET mark to monitor its relative stability. This document is divided into two parts; the main body that presents an overview of all aspects of monitoring wetland elevation dynamics, and a collection of Standard Operating Procedures (SOP) that describes in detail how to perform or execute each step of the methodology. Detailed instruction on the installation, data collection, data management and analysis are provided in this report

  10. Wetlands: water, wildlife, plants, & people

    USGS Publications Warehouse

    Vandas, Stephen; Farrar, Frank

    1996-01-01

    Wetlands are part of all our lives. They can generally be described as transitional areas between land and deepwater habitats. There are many different kinds of wetlands, and they can be found in many different habitat types, from forests to deserts; some are maintained by saltwater, others by freshwater. This poster shows general types of diverse wetlands and demonstrates how people and wetlands can benefit by living together. The diversity of plants and animals is shown in cartooned pictures. As with plants and animals, there are many different common names for the various wetland types. The common names used on this poster were used by the U.S. Fish and Wildlife Service in the publication "Wetlands-Status and Trends in the Conterminous United States, Mid-1970's to Mid-1980's." Estuarine wetland types--salt marshes and mangrove swamps--are labeled in red letters. The estuary is where ocean saltwater and river freshwater mix. The estuary is labeled in orange letters. The inland wetland types-inland marshes and wet meadows, forested wetlands, and shrub wetlands-are labeled in yellow. Other wetlands are present in rivers, lakes, and reservoirs. The water bodies associated with these wetlands are labeled in black. The poster is folded into 8.5" x 11" panels; front and back panels can easily be photocopied.

  11. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park.

    PubMed

    McMenamin, Sarah K; Hadly, Elizabeth A; Wright, Christopher K

    2008-11-04

    Amphibians are a bellwether for environmental degradation, even in natural ecosystems such as Yellowstone National Park in the western United States, where species have been actively protected longer than anywhere else on Earth. We document that recent climatic warming and resultant wetland desiccation are causing severe declines in 4 once-common amphibian species native to Yellowstone. Climate monitoring over 6 decades, remote sensing, and repeated surveys of 49 ponds indicate that decreasing annual precipitation and increasing temperatures during the warmest months of the year have significantly altered the landscape and the local biological communities. Drought is now more common and more severe than at any time in the past century. Compared with 16 years ago, the number of permanently dry ponds in northern Yellowstone has increased 4-fold. Of the ponds that remain, the proportion supporting amphibians has declined significantly, as has the number of species found in each location. Our results indicate that climatic warming already has disrupted one of the best-protected ecosystems on our planet and that current assessments of species' vulnerability do not adequately consider such impacts.

  12. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park

    PubMed Central

    McMenamin, Sarah K.; Hadly, Elizabeth A.; Wright, Christopher K.

    2008-01-01

    Amphibians are a bellwether for environmental degradation, even in natural ecosystems such as Yellowstone National Park in the western United States, where species have been actively protected longer than anywhere else on Earth. We document that recent climatic warming and resultant wetland desiccation are causing severe declines in 4 once-common amphibian species native to Yellowstone. Climate monitoring over 6 decades, remote sensing, and repeated surveys of 49 ponds indicate that decreasing annual precipitation and increasing temperatures during the warmest months of the year have significantly altered the landscape and the local biological communities. Drought is now more common and more severe than at any time in the past century. Compared with 16 years ago, the number of permanently dry ponds in northern Yellowstone has increased 4-fold. Of the ponds that remain, the proportion supporting amphibians has declined significantly, as has the number of species found in each location. Our results indicate that climatic warming already has disrupted one of the best-protected ecosystems on our planet and that current assessments of species' vulnerability do not adequately consider such impacts. PMID:18955700

  13. Prairie basin wetlands of the Dakotas: a community profile

    USGS Publications Warehouse

    Kantrud, H.A.; Krapu, G.L.; Swanson, G.A.

    1989-01-01

    This description of prairie basin wetlands of the Dakotas is part of a series of community profiles on ecologically important wetlands of national significance. The shallow wetlands of the Dakotas form the bulk of the portion of the Prairie Pothole Region lying within the United States. This region is famous as the producer of at least half of North America's waterfowl and an unknown, but large, proportion of other prairie-dwelling marsh and aquatic birds.The wetlands described here lie in relatively small, shallow basins that vary greatly in their ability to maintain surface water, and in their water chemistry, which varies from fresh to hypersaline. These wetlands occur in a wide variety of hydrological settings, in an area where annual and seasonal precipitation varies greatly in form and amount. Thus the presence of surface water in these wetlands is largely unpredictable. Superimposed on these phenomena are the effects of a variety of land uses, including pasture, cultivation, mechanical forage removal, idle conditions and burning. All those factors greatly affect the plant and animal communities found in these basins.This profile covers lacustrine and palustrine basins with temporarily flooded, seasonally flooded, and semipermanently flooded water regimes. Basins with these water regimes compose about 90% of the basins in the Prairie Pothole Region of the Dakotas. This profile outlines the wetland subsystems, classes and subclasses that occur in these basins, and provides a useful reference to their geologic, climatic, hydrologic, and pedologic setting.Detailed information on the biotic environment of the wetlands dealt with in this profile will be useful to scientists and resource managers. Special recognition is paid to the macrophyte and invertebrate communities, which have dynamic qualities found in few other of the world's wetland ecosystems.The most noteworthy animal inhabitants of these basins are waterfowl, which are a resource of international

  14. Characteristic community structure of Florida's subtropical wetlands: the Florida wetland condition index

    EPA Science Inventory

    Depending upon the classification scheme applied, there are between 10 and 45 different wetland types in Florida. Land use and land cover change has a marked effect on wetland condition, and different wetland types are affected differentially depending on many abiotic and biotic ...

  15. Neotropical coastal wetlands

    USGS Publications Warehouse

    McKee, Karen L.; Batzer, Darold P.; Baldwin, Andrew H.

    2012-01-01

    The Neotropical region, which includes the tropical Americas, is one of the world's eight biogeographic zones. It contains some of the most diverse and unique wetlands in the world, some of which are still relatively undisturbed by humans. This chapter focuses on the northern segment of the Neotropics (south Florida, the Caribbean islands, Mexico, and Central America), an area that spans a latitudinal gradient from about 7 N to 29 N and 60 W to 112 W. Examples of coastal wetlands in this realm include the Everglades (Florida, USA), Ten Thousand Islands (Florida, USA), Laguna de Terminos (Mexico), Twin Cays (Belize), and Zapata Swamp (Cuba). Coastal wetlands are dominated by mangroves, which will be emphasized here, but also include freshwater swamps and marshes, saline marshes, and seagrass beds. The aim of this chapter is to provide a broad overview of Neotropical coastal wetlands of the North American continent, with an emphasis on mangroves, since this is the dominant vegetation type and because in-depth coverage of all wetland types is impossible here. Instead, the goal is to describe the environmental settings, plant and animal communities, key ecological controls, and some conservation concerns, with specific examples. Because this book deals with wetlands of North America, this chapter excludes coastal wetlands of South America. However, much of the information is applicable to mangrove, marsh, and seagrass communities of other tropicaI regions.

  16. Determination of the health of Lunyangwa wetland using Wetland Classification and Risk Assessment Index

    NASA Astrophysics Data System (ADS)

    Wanda, Elijah M. M.; Mamba, Bhekie B.; Msagati, Titus A. M.; Msilimba, Golden

    2016-04-01

    Wetlands are major sources of various ecological goods and services including storage and distribution of water in space and time which help in ensuring the availability of surface and groundwater throughout the year. However, there still remains a poor understanding of the range of values of water quality parameters that occur in wetlands either in its impacted state or under natural conditions. It was thus imperative to determine the health of Lunyangwa wetland in Mzuzu City in Malawi in order to classify and determine its state. This study used the Escom's Wetland Classification and Risk Assessment Index Field Guide to determine the overall characteristics of Lunyangwa wetland and to calculate its combined Wetland Index Score. Data on site information, field measurements (i.e. EC, pH, temperature and DO) and physical characteristics of Lunyangwa wetland were collected from March, 2013 to February, 2014. Results indicate that Lunyangwa wetland is a largely open water zone which is dominated by free-floating plants on the water surface, beneath surface and emergent in substrate. Furthermore, the wetland can be classified as of a C ecological category (score = 60-80%), which has been moderately modified with moderate risks of the losses and changes occurring in the natural habitat and biota in the wetland. It was observed that the moderate modification and risk were largely because of industrial, agricultural, urban/social catchment stressors on the wetland. This study recommends an integrated and sustainable management approach coupled with continuous monitoring and evaluation of the health of the wetland for all stakeholders in Mzuzu City. This would help to maintain the health of Lunyangwa wetland which is currently at risk of being further modified due to the identified catchment stressors.

  17. Spatiotemporal analysis of encroachment on wetlands: a case of Nakivubo wetland in Kampala, Uganda.

    PubMed

    Isunju, John Bosco; Kemp, Jaco

    2016-04-01

    Wetlands provide vital ecosystem services such as water purification, flood control, and climate moderation among others, which enhance environmental quality, promote public health, and contribute to risk reduction. The biggest threat to wetlands is posed by human activities which transform wetlands, often for short-term consumptive benefits. This paper aimed to classify and map recent land cover and provide a multi-temporal analysis of changes from 2002 to 2014 in the Nakivubo wetland through which wastewater from Kampala city drains to Lake Victoria in Uganda. The paper contributes through spatially congruent change maps showing site-specific land cover conversions. In addition, it gives insight into what happened to the wetlands, why it happened, how the changes in the wetlands affect the communities living in them, and how the situation could be better managed or regulated in future. The analysis is based on very high resolution (50-62 cm) aerial photos and satellite imagery, focus group discussions, and key informant interviews. Overall, the analysis of losses and gains showed a 62 % loss of wetland vegetation between 2002 and 2014, mostly attributable to crop cultivation. Cultivation in the wetland buffering the lake shore makes it unstable to anchor. The 2014 data shows large portions of the wetland calved away by receding lake waves. With barely no wetland vegetation buffer around the lake, the heavily polluted wastewater streams will lower the quality of lake water. Furthermore, with increased human activities in the wetland, exposure to flooding and pollution will be likely to have a greater impact on the health and livelihoods of vulnerable communities. This calls for a multi-faceted approach, coordination of the various stakeholders and engagement of wetland-dependent communities as part of the solution, and might require zoning out the wetland and restricting certain activities to specific zones.

  18. Wetland Hydrology

    EPA Science Inventory

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefit...

  19. Chemical fractionation of metals in wetland sediments: Indiana Dunes National Lakeshore.

    PubMed

    Dollar, N L; Souch, C J; Filippelli, G M; Mastalerz, M

    2001-09-15

    Tessier-type (1979) sequential extractions for heavy metals (Cd, Cr, Cu, Fe, Mn, Pb, and Zn) were conducted on sediments from two wetland sites, one inundated and the other drained, within the Indiana Dunes National Lakeshore (IDNL), NW Indiana, with the objective of (i) evaluating extraction techniques on organic-rich sediments, (ii) determining the geochemistry and mobility of potentially biotoxic trace metals in a contaminated environment, and (iii) considering the implications of different restoration strategies on the potential for heavy metal remobilization. Long and repeated extractions were needed to effectively degrade the organic-rich sediments (up to 75% of the sediment by mass). Analysis of sulfur fractionation revealed that it was predominantly sequestered along with the organically bound fraction (renamed oxidizable). Metal recovery was good with the sum of the extractant steps typically within 20% of the total metal concentration determined after total microwave digestion. Results showed metal fractionation to be both metal- and site-specific, The oxidizable fraction is dominant for Cu, Cr, and Fe (>65% of the nonresidual fraction for almost all samples) and overall is most important also for Cd and Pb. The iron/manganese oxide fraction is important for Pb, Mn, and Zn, particularly at the drained site. The carbonate bound fraction is relatively insignificant at both sites, except for Cd and Mn, although it is more important at the drained site. The exchangeable fraction is significant in the uppermost sediments at the drained site, particularly for Cd (3-24%), Pb (3-14%), and Zn (36-45%); whereas, for the inundated site, it ranged only from 0 to 1% Zn, with no detectable Cd or Pb. Chromium, Cu, and Fe exist in forms not likely to be remobilized, whereas Cd, Mn, Pb, and Zn are potentially mobile if drained wetland sites are reflooded (and pH and redox potential altered). Simple mass balance calculations illustrate the potential for the removal of

  20. Wetlands reserve program: a partnership to restore wetlands and associated habitat

    Treesearch

    Randall L. Gray

    2005-01-01

    The 1990 Farm Bill created the Wetlands Reserve Program (WRP) to restore and protect wetland, which as of 2002 has enrolled over 1.4 million acres of wetland and upland habitat in 49 states and Puerto Rico. The program is administered by the U. S. Department of Agriculture Natural Resource Conservation Service and delivered in cooperation with many partners from the...

  1. Patterns of distribution and environmental correlates of macroalgal assemblages and sediment chlorophyll a in Oregon tidal wetlands

    EPA Science Inventory

    Algae have important functional roles in estuarine wetlands along the Pacific coast of the United States. We quantified differences in macroalgal abundance, composition and diversity, and sediment chlorophyll a and pheophytin a among three National Wetlands Inventory emergent mar...

  2. 2011 Summary: Coastal wetland restoration research

    USGS Publications Warehouse

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.; Carlson Mazur, Martha L.; Czayka, Alex; Dominguez, Andrea; Doty, Susan; Eggleston, Mike; Green, Sean; Sweetman, Amanda

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) projects currently taking place in Great Lakes coastal wetlands provide a unique opportunity to study ecosystem response to management actions as practitioners strive to improve wetland function and increase ecosystem services. Through a partnership between the U.S. Geological Survey – Great Lakes Science Center (GLSC), U.S. Fish and Wildlife Service (USFWS), and Ducks Unlimited, a GLRI-funded project has reestablished the hydrologic connection between an intensively managed impounded wetland (Pool 2B) and Crane Creek, a small Lake Erie tributary, by building a water-control structure that was opened in the spring of 2011. The study site is located within the USFWS Ottawa National Wildlife Refuge (ONWR) and lies within the boundaries of the U.S. Environmental Protection Agency (EPA)-designated Maumee River Area of Concern. The broad objective of the project is to evaluate how hydrologically reconnecting a previously diked wetland impacts fish, mollusks, and other biota and affects nutrient transport, nutrient cycling, water quality, flood storage, and many other abiotic conditions. The results from this project suggest large system-wide benefits from sustainable reestablishment of lake-driven hydrology in this and other similar systems. We comprehensively sampled water chemistry, fish, birds, plants, and invertebrates in Crane Creek coastal wetlands, Pool 2A (a reference diked wetland), and Pool 2B (the reconnected wetland) in 2010 and 2011 to: 1) Characterize spatial and seasonal patterns for these parameters. 2) Examine ecosystem response to the opening of a water-control structure that allows fish passage Our sampling efforts have yielded data that reveal striking changes in water quality, hydrology, and fish assemblages in our experimental unit (2B). Prior to the reconnection, the water chemistry in pools 2A and 2B were very similar. Afterwards, we found that the water chemistry in reconnected Pool 2B was more

  3. FGD liner experiments with wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitsch, W.J.; Ahn, C.; Wolfe, W.E.

    1999-07-01

    The construction of artificial wetlands for wastewater treatment often requires impermeable liners not only to protect groundwater resources but also to ensure that there is adequate water in the wetland to support appropriate aquatic life, particularly wetland vegetation. Liners or relatively impervious site soils are very important to the success of constructed treatment wetlands in areas where ground water levels are typically close to the ground surface. This study, carried out at the Olentangy River Wetland Research Park, investigated the use of FGD material from sulfur scrubbers as a possible liner material for constructed wetlands. While several studies have investigatedmore » the use of FGD material to line ponds, no studies have investigated the use of this material as a liner for constructed wetlands. They used experimental mesocosms to see the effect of FGD liner materials in constructed wetlands on water quality and on wetland plant growth. This paper presents the results of nutrient analyses and physicochemical investigation of leachate and surface outflow water samples collected from the mesocosms. Plant growth and biomass of wetland vegetation are also included in this paper. First two year results are reported by Ahn et al. (1998, 1999). The overall goal of this study is the identification of advantages and disadvantages of using FGD by-product as an artificial liner in constructed wetlands.« less

  4. Environmental characteristics associated with the occurrence of avian botulism in wetlands of a northern California refuge

    USGS Publications Warehouse

    Rocke, Tonie E.; Euliss, Ned H.; Samuel, Michael D.

    1999-01-01

    Avian botulism is an important disease affecting many species of waterbirds in North America, but the environmental conditions that initiate outbreaks are poorly understood. To determine wetland attributes associated with outbreaks of avian botulism in waterbirds at the Sacramento National Wildlife Refuge (SNWR), California, we compared environmental characteristics between wetlands where outbreaks occurred (outbreak wetlands) and did not occur (nonoutbreak wetlands). In June through October, 1987 89, we monitored the occurrence of avian botulism via observations for sick or dead sentinel mallards (Anas platyrhynchos) placed in 4 wetland enclosures. During this same time period, we collected environmental data from the water column and sediments of each wetland enclosure at 10 14-day sampling intervals. Multivariate analysis was used to reduce 22 environmental variables to 7 factors for inclusion in subsequent statistical analyses. We found that outbreak wetlands had significantly lower redox potential than nonoutbreak wetlands. The probability of botulism in sentinel mallards was associated with increasing temperature, increasing invertebrate abundance or biomass, and decreasing turbidity. However, because these factors were not consistently higher in outbreak wetlands compared to nonoutbreak wetlands, they may have a more proximate effect in initiating an outbreak.

  5. Environmental characteristics associated with the occurrence of avian botulism in wetlands on a northern California refuge

    USGS Publications Warehouse

    Rocke, Tonie E.; Euliss, Ned H.; Samuel, Michael D.

    1999-01-01

    Avian botulism is an important disease affecting many species of waterbirds in North America, but the environmental conditions that initiate outbreaks are poorly understood. To determine wetland attributes associated with outbreaks of avian botulism in waterbirds at the Sacramento National Wildlife Refuge (SNWR), California, we compared environmental characteristics between wetlands where outbreaks occurred (outbreak wetlands) and did not occur (nonoutbreak wetlands). In June through October 1987-89, we monitored the occurrence of avian botulism via observations for sick or dead sentinel mallards (Anas platyrhynchos) placed in 4 wetland enclosures. During this same time period, we collected environmental data from the water column and sediments of each wetland enclosure at 10-14-day sampling intervals. Multivariate analysis was used to reduce 22 environmental variables to 7 factors for inclusion in subsequent statistical analyses. We found that outbreak wetlands had significantly lower redox potential than nonoutbreak wetlands. The probability of botulism in sentinel mallards was associated with increasing temperature, increasing invertebrate abundance or biomass, and decreasing turbidity. However, because these factors were not consistently higher in outbreak wetlands compared to nonoutbreak wetlands, they may have a more proximate effect in initiating an outbreak.

  6. Management of wetlands for wildlife

    USGS Publications Warehouse

    Matthew J. Gray,; Heath M. Hagy,; J. Andrew Nyman,; Stafford, Joshua D.

    2013-01-01

    Wetlands are highly productive ecosystems that provide habitat for a diversity of wildlife species and afford various ecosystem services. Managing wetlands effectively requires an understanding of basic ecosystem processes, animal and plant life history strategies, and principles of wildlife management. Management techniques that are used differ depending on target species, coastal versus interior wetlands, and available infrastructure, resources, and management objectives. Ideally, wetlands are managed as a complex, with many successional stages and hydroperiods represented in close proximity. Managing wetland wildlife typically involves manipulating water levels and vegetation in the wetland, and providing an upland buffer. Commonly, levees and water control structures are used to manipulate wetland hydrology in combination with other management techniques (e.g., disking, burning, herbicide application) to create desired plant and wildlife responses. In the United States, several conservation programs are available to assist landowners in developing wetland management infrastructure on their property. Managing wetlands to increase habitat quality for wildlife is critical, considering this ecosystem is one of the most imperiled in the world.

  7. Acidification of experimental wetlands: Effects on wetland productivity and survival of juvenile black ducks

    USGS Publications Warehouse

    Haramis, G.M.; Chu, D.S.; Bunck, C.M.; Mingo, T.M.; Schaffner, W.W.R.

    1997-01-01

    Six man-made wetlands (0.02 ha each) and pen-reared broods of American black ducks (Anas rubripes) were used to assess the effects of reduced pH on the quality of fish- free, palustrine habitat for brood rearing. Acid treatment was assigned randomly among newly constructed wetlands during April through June 1984-85, to simulate depressed pH from snowmelt and spring rain. Sampling of chlorophyll epiphytic growth, zooplankton and macroinvertebrates confirmed reduced productivity of acidified (pH 5.0) versus control (pH 6.8) wetlands. Primary productivity was particularly reduced in acidified wetlands in early spring as indicated by high water transparency and low chlorophyll a concentrations. Chlrophyll a concentrations showed treatment (p = 0.01) and date (p = 0.05) effects, but no interaction, and dry weight of epiphytic growth was lower (p = 0.03) in acidified versus control wetlands. Numbers of zooplankton were similar in experimental wetlands, although controls generally exceeded acidified wetlands in abundance; only a single treatment effect for cladocerans (p = 0.1) was detected. Sweep net samples yielded greater numbers (p = 0.03), taxa (p = 0.01) and biomass (p = 0.07) of macroinvertebrates in control wetlands with gastropods, pelecypods and leeches notably reduced by acidification. Placement of 18 broods (female with four 10-day-old ducklings) for 10-day trials on experimental wetlands revealed limited growth, altered behaviour and marked reduction in survival of ducklings on acidified wetlands. An inadequate number of invertebrates is indicated as the cause for poor duckling productivity on acidified wetlands

  8. Flora characteristics of Chenier Wetland in Bohai Bay and biogeographic relations with adjacent wetlands

    NASA Astrophysics Data System (ADS)

    Zhao, Yanyun; Lu, Zhaohua; Liu, Jingtao; Hu, Shugang

    2017-12-01

    A key step towards the restoration of heavily disturbed fragile coastal wetland ecosystems is determining the composition and characteristics of the plant communities involved. This study determined and characterized the community of higher plants in the Chenier wetland of Bohai Bay using a combination of field surveys, quadrat approaches, and multivariate statistical analyses. This community was then compared to other adjacent wetlands (Tianjin, Qinhuangdao, Laizhouwan, Jiaozhouwan, and Yellow River Delta wetland) located near the Huanghai and Bohai Seas using principal coordinate analysis (PCoA). Results showed a total of 56 higher plant species belonging to 52 genera from 20 families in Chenier wetland, the majority of which were dicotyledons. Single-species families were predominant, while larger families, including Gramineae, Compositae, Leguminosae, and Chenopodiaceae contained a higher number of species (each⩾6 species). Cosmopolitan species were also dominant with apparent intrazonality. Abundance (number of species) of temperate species was twice that of tropical taxa. Species number of perennial herbs, such as Gramineae and Compositae, was generally higher. Plant diversity in the Chenier wetland, based on the Shannon-Wiener index, was observed to be between the Qinhuangdao and Laizhouwan indices, while no significant difference was found in other wetlands using the Simpson index. Despite these slight differences in diversity, PCoA based on species abundance and composition of the wetland flora suggest that the Bohai Chenier community was highly similar to the coastal wetlands in Tianjin and Laizhouwan, further suggesting that these two wetlands could be important breeding grounds and resources for the restoration of the plant ecosystem in the Chenier wetland.

  9. HISTORIC WETLANDS OF PRUDENCE ISLAND

    EPA Science Inventory

    Ten wetland sites around Narragansett Bay, Rhode Island have been selected for a multidisciplinary study. These wetland sites are being studied to develop indicators of "wetland health." The study includes assessing the ecological conditions of the wetlands in the past, and the c...

  10. Utilizing GNSS Reflectometry to Assess Surface Inundation Dynamics in Tropical Wetlands

    NASA Astrophysics Data System (ADS)

    Jensen, K.; McDonald, K. C.; Podest, E.; Chew, C. C.

    2017-12-01

    Tropical wetlands play a significant role in global atmospheric methane and terrestrial water storage. Despite the growing number of remote sensing products from satellite sensors, both spatial distribution and temporal variability of wetlands remain highly uncertain. An emerging innovative approach to mapping wetlands is offered by GNSS reflectometry (GNSS-R), a bistatic radar concept that takes advantage of GNSS transmitting satellites to yield observations with global coverage and rapid revisit time. This technology offers the potential to capture dynamic inundation changes in wetlands at higher temporal fidelity and sensitivity under the canopy than presently possible. We present an integrative analysis of radiometric modeling, ground measurements, and several microwave remote sensing datasets traditionally used for wetland observations. From a theoretical standpoint, GNSS-R sensitivities for vegetation and wetlands are investigated with a bistatic radar model in order to understand the interactions of the signal with various land surface components. GNSS reflections from the TechDemoSat-1 (TDS-1), Soil Moisture Active Passive (SMAP), and Cyclone GNSS (CYGNSS) missions are tested experimentally with contemporaneous (1) field measurements collected from the Pacaya Samiria National Reserve in the Peruvian Amazon, (2) imaging radar from Sentinel-1 and PALSAR-2 observed over a variety of tropical wetland systems, and (3) pan-tropical coarse-resolution (25km) microwave datasets (Surface Water Microwave Product Series). We find that GNSS-R data provide the potential to extend capabilities of current remote sensing techniques to characterize surface inundation extent, and we explore how to maximize synergism between different satellite sensors to produce an enhanced wetland monitoring product.

  11. Challenges in global modeling of wetland extent and wetland methane dynamics

    NASA Astrophysics Data System (ADS)

    Spahni, R.; Melton, J. R.; Wania, R.; Stocker, B. D.; Zürcher, S.; Joos, F.

    2012-12-01

    Global wetlands are known to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. Modelling of global wetland extent and wetland CH4 dynamics remains a challenge. Here we present results from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) that investigated our present ability to simulate large scale wetland characteristics (e.g. wetland type, water table, carbon cycling, gas transport, etc.) and corresponding CH4 emissions. Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The WETCHIMP experiments showed that while models disagree in spatial and temporal patterns of simulated CH4 emissions and wetland areal extent, they all do agree on a strong positive response to increased carbon dioxide concentrations. WETCHIMP made clear that we currently lack observation data sets that are adequate to evaluate model CH4 soil-atmosphere fluxes at a spatial scale comparable to model grid cells. Thus there are substantial parameter and structural uncertainties in large-scale CH4 emission models. As an illustration of the implications of CH4 emissions on climate we show results of the LPX-Bern model, as one of the models participating in WETCHIMP. LPX-Bern is forced with observed 20th century climate and climate output from an ensemble of five comprehensive climate models for a low and a high emission scenario till 2100 AD. In the high emission scenario increased substrate availability for methanogenesis due to a strong stimulation of net primary productivity, and faster soil turnover leads to an amplification of CH4 emissions with the sharpest increase in peatlands (+180% compared to present). Combined with prescribed anthropogenic CH4 emissions, simulated atmospheric CH4 concentration reaches ~4500 ppbv by 2100 AD, about 800 ppbv more than in

  12. China's coastal wetlands: conservation history, implementation efforts, existing issues and strategies for future improvement.

    PubMed

    Sun, Zhigao; Sun, Wenguang; Tong, Chuan; Zeng, Congsheng; Yu, Xiang; Mou, Xiaojie

    2015-06-01

    China has approximately 5.80×10(6)ha coastal wetlands by 2014, accounting for 10.82% of the total area of natural wetlands. Healthy coastal wetland ecosystems play an important role in guaranteeing the territory ecological security and the sustainable development of coastal zone in China. In this paper, the natural geography and the past and present status of China's coastal wetlands were introduced and the five stages (1950s-1970s, 1980s-1991, 1992-2002, 2003-2010 and 2011-present) of China's coastal wetlands conservation from the foundation of the People's Republic in 1949 to present were distinguished and reviewed. Over the past decades, China has made great efforts in coastal wetland conservation, as signified by the implementation of coastal wetland restoration projects, the construction of coastal wetland nature reserves, the practice of routine ecological monitoring and two national wetland surveys, the promulgation of local wetland conservation statutes and specific regulations, the coordination mechanism to enhance management capacity, the wide development of coastal wetland research and public participation, and the extensive communication to strengthen international cooperation. Nonetheless, six major issues recently emerged in China's coastal wetland conservation are evidently existed, including the increasing threats of pollution and human activities, the increasing adverse effects of threaten factors on ecosystem function, the increasing threats of coastal erosion and sea-level rising, the insufficient funding for coastal wetlands conservation, the imperfect legal and management system for coastal wetlands, and the insufficient education, research and international cooperation. Although the threats and pressures on coastal wetlands conservation are still apparent, the future of China's coastal wetlands looks promising since the Chinese government understands that the sustainable development in coastal zone requires new attitudes, sound policies and

  13. Trends and causes of historical wetland loss, Sabine National Wildlife Refuge, southwest Louisiana

    USGS Publications Warehouse

    Bernier, Julie C.; Morton, Robert A.; Kelso, Kyle W.

    2011-01-01

    The thickness of the uppermost Holocene sediments (peat and organic-rich mud) and the elevation of stratigraphic contacts were compared at marsh and open-water sites across areas of formerly continuous marsh to estimate magnitudes of recent elevation loss caused by vertical erosion and subsidence. Results of these analyses indicate that erosion greatly exceeded subsidence at most of the core sites, although both processes have contributed to historical wetland loss. Comparison of these results with results of our prior studies indicates that magnitudes of subsidence and total accommodation space that formed in the western chenier plain were less than those in the delta plain. Compared with the delta plain, where subsidence generally exceeded erosion and peat thicknesses were so great that peat was preserved even where erosion was greater than subsidence, the SNWR peats are thin and were absent (eroded) at most open-water sites. Although historical subsidence rates in the chenier plain are substantially lower than most of the same rates in the delta plain, the temporal and spatial trends of rapid wetland loss, highest rates of land-surface subsidence, and high rates of oil-and-gas production are similar, indicating that historical wetland loss was likely initiated by similar processes (deep-subsurface subsidence) in both regions.

  14. Macroinvertebrate abundance, water chemistry, and wetland characteristics affect use of wetlands by avian species in Maine

    USGS Publications Warehouse

    Longcore, J.R.; McAuley, D.G.; Pendelton, G.W.; Bennatti, C.R.; Mingo, T.M.; Stromborg, K.L.

    2006-01-01

    Our objective was to determine use by avian species (e.g., piscivores, marsh birds, waterfowl, selected passerines) of 29 wetlands in areas with low (<200 μeq l−1) acid-neutralizing capacity (ANC) in southeastern Maine. We documented bird, pair, and brood use during 1982–1984 and in 1982 we sampled 10 wetlands with a sweep net to collect invertebrates. We related mean numbers of invertebrates per wetland to water chemistry, basin characteristics, and avian use of different wetland types. Shallow, beaver (Castor canadensis)-created wetlands with the highest phosphorus levels and abundant and varied macrophyte assemblages supported greater densities of macroinvertebrates and numbers of duck broods (88.3% of all broods) in contrast to deep, glacial type wetlands with sparse vegetation and lower invertebrate densities that supported fewer broods (11.7%). Low pH may have affected some acid-intolerant invertebrate taxa (i.e., Ephemeroptera), but high mean numbers of Insecta per wetland were recorded from wetlands with a pH of 5.51. Other Classes and Orders of invertebrates were more abundant on wetlands with pH > 5.51. All years combined use of wetlands by broods was greater on wetlands with pH ≤ 5.51 (77.4%) in contract to wetlands with pH > 5.51 that supported 21.8% of the broods. High mean brood density was associated with mean number of Insecta per wetland. For lentic wetlands created by beaver, those habitats contained vegetative structure and nutrients necessary to provide cover to support invertebrate populations that are prey of omnivore and insectivore species. The fishless status of a few wetlands may have affected use by some waterfowl species and obligate piscivores.

  15. Wetland features and landscape context predict the risk of wetland habitat loss

    Treesearch

    Kevin J. Gutzwiller; Curtis H. Flather

    2011-01-01

    Wetlands generally provide significant ecosystem services and function as important harbors of biodiversity. To ensure that these habitats are conserved, an efficient means of identifying wetlands at risk of conversion is needed, especially in the southern United States where the rate of wetland loss has been highest in recent decades. We used multivariate adaptive...

  16. [Research progress on wetland ecotourism].

    PubMed

    Wang, Li-Long; Lu, Lin

    2009-06-01

    Wetland is rich in biodiversity and cultural diversity, possessing higher tourism value and environmental education and community participation functions. Wetland ecotourism reflects the sustainable development of tourism economy and wetland protection, having received great concern from governments and scholars at home and abroad. This paper summarized the related theories and practices, discussed the research advances in wetland ecotourism from the aspects of significance, progress, contents, methods and results, and pointed out the important research fields in the future, aimed to accelerate the development of wetland ecotourism research and to provide reference about the resources exploitation, environment protection, and scientific administration of wetland and related scenic areas.

  17. Coastal wetlands of Chesapeake Bay

    USGS Publications Warehouse

    Baldwin, Andrew H.; Kangas, Patrick J.; Megonigal, J. Patrick; Perry, Matthew C.; Whigham, Dennis F.; Batzer, Darold P.; Batzer, Darold P.; Baldwin, Andrew H.

    2012-01-01

    Wetlands are prominent landscapes throughout North America. The general characteristics of wetlands are controversial, thus there has not been a systematic assessment of different types of wetlands in different parts of North America, or a compendium of the threats to their conservation. Wetland Habitats of North America adopts a geographic and habitat approach, in which experts familiar with wetlands from across North America provide analyses and syntheses of their particular region of study. Addressing a broad audience of students, scientists, engineers, environmental managers, and policy makers, this book reviews recent, scientifically rigorous literature directly relevant to understanding, managing, protecting, and restoring wetland ecosystems of North America.

  18. Trends and causes of historical wetland loss in coastal Louisiana

    USGS Publications Warehouse

    Bernier, Julie

    2013-01-01

    Wetland losses in the northern Gulf Coast region of the United States are so extensive that they represent critical concerns to government environmental agencies and natural resource managers. In Louisiana, almost 3,000 square kilometers (km2) of low-lying wetlands converted to open water between 1956 and 2004, and billions of dollars in State and Federal funding have been allocated for coastal restoration projects intended to compensate for some of those wetland losses. Recent research at the St. Petersburg Coastal and Marine Science Center (SPCMSC) focused on understanding the physical processes and human activities that contributed to historical wetland loss in coastal Louisiana and the spatial and temporal trends of that loss. The physical processes (land-surface subsidence and sediment erosion) responsible for historical wetland loss were quantified by comparing marsh-surface elevations, water depths, and vertical displacements of stratigraphic contacts at 10 study areas in the Mississippi River delta plain and 6 sites at Sabine National Wildlife Refuge (SNWR) in the western chenier plain. The timing and extent of land loss at the study areas was determined by comparing historical maps, aerial photographs, and satellite imagery; the temporal and spatial trends of those losses were compared with historical subsidence rates and hydrocarbon production trends.

  19. Investigation of wind and water level for the Giacomini Wetland Restoration Project, Point Reyes National Seashore

    USGS Publications Warehouse

    Dingler, John R.; Anima, Roberto J.

    2007-01-01

    Point Reyes National Seashore (PRNS), comprising unique elements of geological, biological, and historical interest, is located on the central California coast approximately 60 km northwest of San Francisco. The National Seashore contains nearly 130 km of exposed and protected shorelines, spectacular coastal cliffs and headlands, lagoons, open grasslands, bushy hillsides, and forested ridges. Approximately 30 km of the shoreline are coastal-dune habitat that supports 11 federally listed species, including the threatened western snowy plover and the endangered plants Tidestrom's lupine (Lupinus tidestromii) and beach layia (Layia carnosa). The San Andreas Fault, a right-lateral strike-slip fault, trends northwest along the northeastern side of the park. Tomales Bay, which is straight, long, narrow, and shallow, runs along the northeastern boundary of PRNS. The Bay, which fills the northwestern end of a rift valley at the intersection of the San Andreas Fault with the coastline, is approximately 20 km long, 2 km wide, and 6 m deep with mountainous terrain to the southwest and rolling hills to the northeast. Tomales Bay is one of the cleanest estuaries on the West Coast. In winter, approximately 17,000 to 20,000 shorebirds inhabit Tomales Bay and Bodega Bay, which lies directly to the north. At the head of Tomales Bay, the Giacomini Ranch comprises 563 acres of pastureland currently being used for grazing dairy cattle. After more than 50 years of operation as a dairy, the National Park Service acquired the Giacomini property with the intention to restore most of it and the nearby Olema Marsh to tidal wetland. Restoration will add approximately 4% to the existing coastal wetlands in California. The project will return the headwaters of Tomales Bay and two major stream intersections to an intertidal marsh environment, enhancing habitat for both wildlife and fish populations and contributing to the long-term health of Tomales Bay. Prior to the establishment of the ranch

  20. Hydrologic processes governing near surface saturation of alpine wetlands in the Canadian Rockies

    NASA Astrophysics Data System (ADS)

    Westbrook, C.; Mercer, J.

    2016-12-01

    Alpine wetlands are vital for habitat, biodiversity, carbon cycling and water storage, but little is known about their hydrologic condition. Climate trends toward smaller mountain snowpacks that melt earlier are thought to pose a threat to the continued provision of alpine wetland ecological functions, and their existence, as it is believed they derive their water mainly from snowmelt. Our objective was to determine the hydrologic processes governing near surface saturation in alpine wetlands. We monitored the water table dynamics of three alpine wetlands in contrasting hydrogeomorphic landscape positions for two summers in Banff National Park, Canada. We concurrently monitored water balance components, and analyzed soil properties and source water geochemistry. Despite very different snow conditions between the two study years, water tables remained near the surface and relatively stable in both years, indicating wetlands are more hydrologically buffered from snowpack variations than expected. We did not find convincing evidence of hydrogeomorphic position influencing wetland water table dynamics. Instead, peat thickness seemed to be critical in regulating water table as the wetland with the thickest peat soil (>1 m) maintained water tables closest to the ground surface for the longest period of time. Thicker peat deposits may develop under convergent hydrologic flow path conditions. Our results indicate that alpine wetlands are more resilient to shifting environmental conditions than previously reported.

  1. 40 CFR 257.9 - Wetlands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... actions (e.g., restoration of existing degraded wetlands or creation of man-made wetlands); and (5... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Wetlands. 257.9 Section 257.9... Location Restrictions § 257.9 Wetlands. (a) Owners or operators of new units and lateral expansions shall...

  2. 40 CFR 257.9 - Wetlands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... actions (e.g., restoration of existing degraded wetlands or creation of man-made wetlands); and (5... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Wetlands. 257.9 Section 257.9... Location Restrictions § 257.9 Wetlands. (a) Owners or operators of new units and lateral expansions shall...

  3. 7 CFR Exhibit K to Subpart G of... - Locations and Telephone Numbers of U.S. Fish and Wildlife Service's Wetland Coordinators

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Wildlife Service's Wetland Coordinators K Exhibit K to Subpart G of Part 1940 Agriculture Regulations of... Part 1940—Locations and Telephone Numbers of U.S. Fish and Wildlife Service's Wetland Coordinators The U.S. Fish and Wildlife Service (FWS) is presently preparing the National Wetlands Inventory. Each...

  4. 7 CFR Exhibit K to Subpart G of... - Locations and Telephone Numbers of U.S. Fish and Wildlife Service's Wetland Coordinators

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Wildlife Service's Wetland Coordinators K Exhibit K to Subpart G of Part 1940 Agriculture Regulations of... Part 1940—Locations and Telephone Numbers of U.S. Fish and Wildlife Service's Wetland Coordinators The U.S. Fish and Wildlife Service (FWS) is presently preparing the National Wetlands Inventory. Each...

  5. 7 CFR Exhibit K to Subpart G of... - Locations and Telephone Numbers of U.S. Fish and Wildlife Service's Wetland Coordinators

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Wildlife Service's Wetland Coordinators K Exhibit K to Subpart G of Part 1940 Agriculture Regulations of... Part 1940—Locations and Telephone Numbers of U.S. Fish and Wildlife Service's Wetland Coordinators The U.S. Fish and Wildlife Service (FWS) is presently preparing the National Wetlands Inventory. Each...

  6. 7 CFR Exhibit K to Subpart G of... - Locations and Telephone Numbers of U.S. Fish and Wildlife Service's Wetland Coordinators

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Wildlife Service's Wetland Coordinators K Exhibit K to Subpart G of Part 1940 Agriculture Regulations of... Part 1940—Locations and Telephone Numbers of U.S. Fish and Wildlife Service's Wetland Coordinators The U.S. Fish and Wildlife Service (FWS) is presently preparing the National Wetlands Inventory. Each...

  7. 7 CFR Exhibit K to Subpart G of... - Locations and Telephone Numbers of U.S. Fish and Wildlife Service's Wetland Coordinators

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Wildlife Service's Wetland Coordinators K Exhibit K to Subpart G of Part 1940 Agriculture Regulations of... Part 1940—Locations and Telephone Numbers of U.S. Fish and Wildlife Service's Wetland Coordinators The U.S. Fish and Wildlife Service (FWS) is presently preparing the National Wetlands Inventory. Each...

  8. Freshwater Wetlands.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides descriptions about freshwater wetlands, such as marshes, swamps, and bogs. Contains three learning activities which deal with unusual wetland plants, the animals and plants in a typical marsh, and the effects of a draught on a swamp. Included are reproducible handouts and worksheets for two of the activities. (TW)

  9. Soil recovery across a chronosequence of restored wetlands in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Wang, Qibing; Li, Yuncong; Zhang, Min

    2015-12-01

    The restoration project in the Hole-in-the-Donut of Everglades National Park in Florida, USA is to reestablish native wetlands by complete removal of the invasive plants and the associated soil. However, there is little information available about changes in properties of the newly formed Marl soils in restored wetlands. In this study, we measured soil physicochemical properties, soil enzymatic activities, and stable isotopes of carbon (δ13C) in plants and soil organic carbon (SOC) in an undisturbed natural wetland (UNW) and three wetlands restored respectively in 1989, 1996 and 1999 (WR89, WR96 and WR99). The older restored wetlands (WR89 and WR96) are characterized by greater SOC and mineral nitrogen. The values of soil dehydrogenase and phosphatase activities in the four wetlands follow the order: UNW > WR89 > WR96 > WR99, and are consistent with changes in vegetation coverage. The principal component analysis shows that dehydrogenase and phosphatase activities are the vital variables contributing to the soil of UNW. The similar δ13C values of SOC and plants in the restored wetlands suggest the formation of SOC during restoration is mainly derived from the associated plants. These results indicate that the newly restored soils develop toward the soil in the UNW with time since restoration.

  10. Soil recovery across a chronosequence of restored wetlands in the Florida Everglades.

    PubMed

    Wang, Qibing; Li, Yuncong; Zhang, Min

    2015-12-01

    The restoration project in the Hole-in-the-Donut of Everglades National Park in Florida, USA is to reestablish native wetlands by complete removal of the invasive plants and the associated soil. However, there is little information available about changes in properties of the newly formed Marl soils in restored wetlands. In this study, we measured soil physicochemical properties, soil enzymatic activities, and stable isotopes of carbon (δ(13)C) in plants and soil organic carbon (SOC) in an undisturbed natural wetland (UNW) and three wetlands restored respectively in 1989, 1996 and 1999 (WR89, WR96 and WR99). The older restored wetlands (WR89 and WR96) are characterized by greater SOC and mineral nitrogen. The values of soil dehydrogenase and phosphatase activities in the four wetlands follow the order: UNW > WR89 > WR96 > WR99, and are consistent with changes in vegetation coverage. The principal component analysis shows that dehydrogenase and phosphatase activities are the vital variables contributing to the soil of UNW. The similar δ(13)C values of SOC and plants in the restored wetlands suggest the formation of SOC during restoration is mainly derived from the associated plants. These results indicate that the newly restored soils develop toward the soil in the UNW with time since restoration.

  11. Landscape ecological assessment and eco-tourism development in the South Dongting Lake Wetland, China.

    PubMed

    He, Ping; Wang, Bao-zhong

    2003-03-01

    As an important resource and the living environment of mankind, wetland has become gradually a highlight, strongly concerned and intensively studied by scientists and sociologists. The governments in the world and the whole society have been paying more and more attention on it. The Dongting Lake of China is regarded as an internationally important wetland. For a rational development and protection of the wetland, an investigation and studied on its resources and its value to tourism in the South Dongting Lake was conducted, to create an assessment system of the ecological landscapes, and to evaluate qualitatively and quantitatively the value of wetland landscape to the ecotourism. The results showed that the scenic value of the South Dongting Lake Wetland satisfied the criterion of AAAA grade of China national scenic attraction. The eco-tourism value of the landscape cultures in the South Dongting Lake Wetland was discussed with emphasis. It were formulated that a principle and frame of sustainable exploitation of the wetland landscapes and it was proposed as well that establishing a Wetland Park and developing eco-tourism in the South Dongting Lake Wetland is a fragile ecosystem with low resistance to the impact of the exploitation. Thus, we must pay intensively attention to the influence of exploitation on the landscape, take the ecological risk in account to employ a right countermeasure and avoid the negative affection.

  12. Native plants for effective coastal wetland restoration

    USGS Publications Warehouse

    Howard, Rebecca J.

    2003-01-01

    Plant communities, along with soils and appropriate water regimes, are essential components of healthy wetland systems. In Louisiana, the loss of wetland habitat continues to be an issue of major concern. Wetland loss is caused by several interacting factors, both natural and human-induced (e.g., erosion and saltwater intrusion from the construction of canals and levees). Recent estimates of annual coastal land loss rates of about 62 km2 (24 mi2 ) over the past decade emphasize the magnitude of this problem. In an attempt to slow the rate of loss and perhaps halt the overall trend, resource managers in Louisiana apply various techniques to restore damaged or degraded habitats to functioning wetland systems.Researchers at the U.S. Geological Survey’s National Wetlands Research Center (NWRC) have cooperated with the Louisiana Department of Natural Resources in studies that address effective restoration strategies for coastal wetlands. The studies have identified differences in growth that naturally exist in native Louisiana wetland plant species and genetic varieties (i.e., clones) within species. Clones of a species have a distinctive genetic identity, and some clones may also have distinctive growth responses under various environmental conditions (i.e., preferences). Indeed, large areas of coastal marsh are typically populated by several clones of a plant species, each growing in a microenvironment suited to its preferences.These studies will provide information that will assist resource managers in selecting plant species and clones of species with known growth characteristics that can be matched to environmental conditions at potential restoration sites. Before the studies began, a collection of several clones from four plant species native to coastal Louisiana was established. The species collected included saltgrass (Distichlis spicata), common reed (Phragmites australis), giant bulrush (Schoenoplectus californicus), and saltmarsh bulrush (Schoenoplectus

  13. Wetland Hydrology | Science Inventory | US EPA

    EPA Pesticide Factsheets

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefits and types, and explains the role and importance of hydrology on wetland functioning. The chapter continues with the description of wetland hydrologic terms and related estimation and modeling techniques. The chapter provides a quick but valuable information regarding hydraulics of surface and subsurface flow, groundwater seepage/discharge, and modeling groundwater/surface water interactions in wetlands. Because of the aggregated effects of the wetlands at larger scales and their ecosystem services, wetland hydrology at the watershed scale is also discussed in which we elaborate on the proficiencies of some of the well-known watershed models in modeling wetland hydrology. This chapter can serve as a useful reference for eco-hydrologists, wetland researchers and decision makers as well as watershed hydrology modelers. In this chapter, the importance of hydrology for wetlands and their functional role are discussed. Wetland hydrologic terms and the major components of water budget in wetlands and how they can be estimated/modeled are also presented. Although this chapter does not provide a comprehensive coverage of wetland hydrology, it provides a quick understanding of the basic co

  14. Using structural equation modeling to link human activities to wetland ecological integrity

    USGS Publications Warehouse

    Schweiger, E. William; Grace, James B.; Cooper, David; Bobowski, Ben; Britten, Mike

    2016-01-01

    The integrity of wetlands is of global concern. A common approach to evaluating ecological integrity involves bioassessment procedures that quantify the degree to which communities deviate from historical norms. While helpful, bioassessment provides little information about how altered conditions connect to community response. More detailed information is needed for conservation and restoration. We have illustrated an approach to addressing this challenge using structural equation modeling (SEM) and long-term monitoring data from Rocky Mountain National Park (RMNP). Wetlands in RMNP are threatened by a complex history of anthropogenic disturbance including direct alteration of hydrologic regimes; elimination of elk, wolves, and grizzly bears; reintroduction of elk (absent their primary predators); and the extirpation of beaver. More recently, nonnative moose were introduced to the region and have expanded into the park. Bioassessment suggests that up to half of the park's wetlands are not in reference condition. We developed and evaluated a general hypothesis about how human alterations influence wetland integrity and then develop a specific model using RMNP wetlands. Bioassessment revealed three bioindicators that appear to be highly sensitive to human disturbance (HD): (1) conservatism, (2) degree of invasion, and (3) cover of native forbs. SEM analyses suggest several ways human activities have impacted wetland integrity and the landscape of RMNP. First, degradation is highest where the combined effects of all types of direct HD have been the greatest (i.e., there is a general, overall effect). Second, specific HDs appear to create a “mixed-bag” of complex indirect effects, including reduced invasion and increased conservatism, but also reduced native forb cover. Some of these effects are associated with alterations to hydrologic regimes, while others are associated with altered shrub production. Third, landscape features created by historical beaver

  15. A Comparative Study of Labour Participation in Three Wetland Regions of West Bengal, India

    NASA Astrophysics Data System (ADS)

    Roy, Malabika Biswas; Roy, Pankaj Kumar; Samal, Nihar Ranjan; Mazumdar, Asis

    2016-06-01

    Wetlands are invaluable components of the environment, ecology, resource potential and biodiversity in India. In the Gangetic flood plain of West Bengal, wetlands are used for multiple purposes, and have significant role in the livelihoods of the local people. Thus an awareness of the importance of wetland is raised from few decades, because Government authorities and private organizations are started to realize the fact that wetlands are complex ecological systems, whose structure provides numerous goods and various services, including food storage, water quality sustenance, agriculture production, fisheries and recreation. The objective of this work is to analyze the conditions of unemployed people through labour participation and to evolve an adaptation for the sustainable use of wetlands, emphasizing the economic upliftment for the selected floodplain region. It may be concluded that as some of the floodplain wetlands serves as bird sanctuaries, national parks and reserves of biodiversity, it results in several environmental issues to mitigate and are also used for irrigation, jute retting, collection of edible aquatic plants and animals as well as birds. Thus a plan for floodplain wetlands may be developed to integrate the various uses of the water body with a holistic approach.

  16. A MANAGEMENT SUPPORT SYSTEM FOR GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    The Great Lakes National Program Office in conjunction with the Great Lakes Commission and other researchers is leading a large scale collaborative effort that will yield, in unprecedented detail, a management support system for Great Lakes coastal wetlands. This entails the dev...

  17. Landscape unit based digital elevation model development for the freshwater wetlands within the Arthur C. Marshall Loxahatchee National Wildlife Refuge, Southeastern Florida

    USGS Publications Warehouse

    Xie, Zhixiao; Liu, Zhongwei; Jones, John W.; Higer, Aaron L.; Telis, Pamela A.

    2011-01-01

    The hydrologic regime is a critical limiting factor in the delicate ecosystem of the greater Everglades freshwater wetlands in south Florida that has been severely altered by management activities in the past several decades. "Getting the water right" is regarded as the key to successful restoration of this unique wetland ecosystem. An essential component to represent and model its hydrologic regime, specifically water depth, is an accurate ground Digital Elevation Model (DEM). The Everglades Depth Estimation Network (EDEN) supplies important hydrologic data, and its products (including a ground DEM) have been well received by scientists and resource managers involved in Everglades restoration. This study improves the EDEN DEMs of the Loxahatchee National Wildlife Refuge, also known as Water Conservation Area 1 (WCA1), by adopting a landscape unit (LU) based interpolation approach. The study first filtered the input elevation data based on newly available vegetation data, and then created a separate geostatistical model (universal kriging) for each LU. The resultant DEMs have encouraging cross-validation and validation results, especially since the validation is based on an independent elevation dataset (derived by subtracting water depth measurements from EDEN water surface elevations). The DEM product of this study will directly benefit hydrologic and ecological studies as well as restoration efforts. The study will also be valuable for a broad range of wetland studies.

  18. Estimating coastal wetland gain and losses in Galveston County and Cameron County, Texas, USA.

    PubMed

    Entwistle, Clare; Mora, Miguel A; Knight, Robert

    2018-01-01

    Coastal wetlands serve many important ecological services. One of these important ecological services is their use as storm buffers. Coastal wetlands provide habitat for migratory birds and aquatic species and can improve water quality. In the late 1990s, the US Fish and Wildlife Service (USFWS) published a study outlining the trends of coastal wetlands from the 1950s to early 1990s. In the present study, wetland gains and losses were calculated for Galveston County and Cameron County, Texas, USA, between 2001 and 2011. Maps from the National Land Cover Database were used to determine wetland areas for the years 2001, 2006, and 2011. ArcGIS was used to compare land cover between the study periods to determine overall wetland losses and gains. A statistical analysis was performed between wetland loss and population data to determine whether increased population density led to a higher loss of wetlands. Our analysis indicates that wetland loss is still occurring, however at a lower rate of loss (0.14%-0.18% annually) than the USFWS study predicted earlier (2.7%). In addition, the majority of wetland losses were due to conversion to upland areas. We found a positive correlation between increased population density and decreased wetland area; however, the trend was not significant. The present study shows how the majority of wetland loss in Galveston and Cameron counties is occurring as a result of increased upland areas. In addition, the present study shows that the use of online mapping systems can be used as a low-cost alternative to assess land changes when field tests are not feasible. Integr Environ Assess Manag 2018;14:120-129. © 2017 SETAC. © 2017 SETAC.

  19. Wetland and water supply

    USGS Publications Warehouse

    Baker, John Augustus

    1960-01-01

    The Geological Survey has received numerous inquiries about the effects of proposed changes in the wetland environment. The nature of the inquiries suggests a general confusion in the public mind as to wetland values and an increasing concern by the public with the need for facts as a basis for sound decisions when public action is required. Perhaps the largest gap in our knowledge is in regard to the role played by the wetland in the natural water scheme. Specialists in such fields as agriculture and conservation have studied the wetland in relation to its special uses and values for farming and as a habitat for fish and wildlife. However, except as studied incidentally by these specialists, the role of the wetland with respect to water has been largely neglected. This facet of the wetland problem is of direct concern to the Geological Survey. We commonly speak of water in terms of its place in the hydrologic environment---as, for example, surface water or ground water. These terms imply that water can be neatly pigeonholed. With respect to the wetland environment nothing can be further from the truth. In fact, one objective of this discussion is to demonstrate that for the wetland environment surface water, ground water, and soil water cannot be separated realistically, but are closely interrelated and must be studied together. It should be noted that this statement holds true for the hydrologic environment in general, and that the wetland environment is by no means unique in this respect. Our second and principal objective is to identify some of the problems that must be studied in order to clarify the role of the wetland in relation to water supply. We have chosen to approach these objectives by briefly describing one area for which we have some information, and by using this example to point out some of the problems that need study. First, however, let us define what we, as geohydrologists, mean by wetland and briefly consider wetland classifications. For our

  20. Managing wetlands for waterbirds: How managers can make a difference in improving habitat to support a North American Bird Conservation Plan

    USGS Publications Warehouse

    Erwin, R.M.; Laubhan, M.K.; Cornely, J.E.; Bradshaw, D.M.; Bonney, Rick; Pashley, David N.; Cooper, Robert; Niles, Larry

    2000-01-01

    Wetlands are the most productive ecosystems in the world, yet they have suffered more loss and degradation than any other ecosystem. Not surprisingly, 50% (29 of 58) of all the bird species in the U. S. (excluding Hawaii and territories) that are listed either as federally threatened or endangered, or are on the U. S. Fish & Wildlife Service 1995 List of Migratory Nongame Birds of Management Concern, occupy wetland or aquatic habitats even though many remaining wetlands across the North American landscape already are managed primarily for waterbirds. Some of these wetlands are administered by federal and state entities (e.g., national wildlife refuges, national and state parks, state wetland management areas) or are maintained on private lands through federally supported restoration and enhancement programs (e.g., Conservation Reserve Program, Wetland Reserve Program, Waterfowl Production Areas, and Partners for Wildlife). Private organizations, such as the National Audubon Society, The Nature Conservancy, and private hunting clubs, also own wetland areas that are managed specifically to benefit wildlife. If management philosophies are altered to consider the entire complex of wetlands, many wetlands can provide benefits to a broad array of waterbirds, as opposed to just one or a few species. However, challenges for natural resource managers are in forming partnerships with owners-managers of wetlands where the objectives are not primarily wildlife oriented. These owners or managers need to be included in wetland training workshops in an attempt to educate them about wetland values and secondary wildlife benefits that may be derived in flooded agricultural lands, aquaculture ponds, altered coastal marshes (mosquito control), and salt evaporation ponds. In some cases, compensation for crop damages by wildlife may be a necessary part of any cooperative agreements. In the development of a North American Bird Conservation Plan we propose a four-step approach and

  1. [Sedimentological Implications of the change in the coverage of mangrove forest in Boca Zacate, Térraba-Sierpa National Wetlands, Costa Rica].

    PubMed

    Silva Benavides, Ana Margarita; Picado Barboza, Jorge; Mora Rodríguez, Fernando; González Gairaud, Carmen

    2015-09-01

    In the last sixty years many geomorphological changes have occurred in Costa Rica's Térraba-Sierpe National Wetlands. Changes in coastal geomorphology are generally associated with erosion or accretion of sediment, which has led to the removal of sections of mangrove forests or sediment banks colonized by mangroves. The aim of this study was to analyze sedimentation as a leading process in the dynamics of coastal morphology and its implications for mangrove forest cover in the Boca Zacate area of Térraba-Sierpe wetlands. The study was conducted in the sectors of Bocón, Brujo and Coco Island in Boca Zacate, from 2008 to 2013. The research was based on a multi-temporal analysis of coastal morphology using aerial photographs from the years 1948, 1960, 1974, 1978, 1984, 1992 and 2011. The following measurements were also performed: monthly sedimentation rate (g/cm2/day), and granulometric composition and content of chemical elements in the sediments of the study area. These last two measurements were performed once each in the dry and rainy seasons during the years of study. The results indicated that over the past 60 years, Boca Zacate has witnessed a process of sustained erosion; from 1948 through 2001, losing 10.6 % of its land and approximately 8.9 % of its forest cover. It has also experienced accretion in the area of Coco Island. The Brujo sector showed the highest sedimentation rate and the Camibar estuary, the lowest. The dominant type of sediment in all study sites was sand, followed by clay and silt. The most widespread chemical elements (mg/L) included magnesium, calcium and potassium; others, such as manganese, iron, aluminum, phosphorus, zinc and copper, were measured in smaller amounts. Transport, composition and quantity of sediment in Boca Zacate are crucial to the changes that have occurred on the coastal area of La Boca, where the presence of dead trees was evident. This geomorphological analysis holds great importance for future guidelines and

  2. The Wetland and Aquatic Research Center strategic science plan

    USGS Publications Warehouse

    ,

    2017-02-02

    IntroductionThe U.S. Geological Survey (USGS) Wetland and Aquatic Research Center (WARC) has two primary locations (Gainesville, Florida, and Lafayette, Louisiana) and field stations throughout the southeastern United States and Caribbean. WARC’s roots are in U.S. Fish and Wildlife Service (USFWS) and National Park Service research units that were brought into the USGS as the Biological Research Division in 1996. Founded in 2015, WARC was created from the merger of two long-standing USGS biology science Centers—the Southeast Ecological Science Center and the National Wetlands Research Center—to bring together expertise in biology, ecology, landscape science, geospatial applications, and decision support in order to address issues nationally and internationally. WARC scientists apply their expertise to a variety of wetland and aquatic research and monitoring issues that require coordinated, integrated efforts to better understand natural environments. By increasing basic understanding of the biology of important species and broader ecological and physiological processes, this research provides information to policymakers and aids managers in their stewardship of natural resources and in regulatory functions.This strategic science plan (SSP) was developed to guide WARC research during the next 5–10 years in support of Department of the Interior (DOI) partnering bureaus such as the USFWS, the National Park Service, and the Bureau of Ocean Energy Management, as well as other Federal, State, and local natural resource management agencies. The SSP demonstrates the alignment of the WARC goals with the USGS mission areas, associated programs, and other DOI initiatives. The SSP is necessary for workforce planning and, as such, will be used as a guide for future needs for personnel. The SSP also will be instrumental in developing internal funding priorities and in promoting WARC’s capabilities to both external cooperators and other groups within the USGS.

  3. Detection and characterizacion of Colombian wetlands using Alos Palsar and MODIS imagery

    NASA Astrophysics Data System (ADS)

    Estupinan-Suarez, L. M.; Florez-Ayala, C.; Quinones, M. J.; Pacheco, A. M.; Santos, A. C.

    2015-04-01

    Wetlands regulate the flow of water and play a key role in risk management of extreme flooding and drought. In Colombia, wetland conservation has been a priority for the government. However, there is an information gap neither an inventory nor a national baseline map exists. In this paper, we present a method that combines a wetlands thematic map with remote sensing derived data, and hydrometeorological stations data in order to characterize the Colombian wetlands. Following the adopted definition of wetlands, available spatial data on land forms, soils and vegetation was integrated in order to characterize spatially the occurrence of wetlands. This data was then complemented with remote sensing derived data from active and passive sensors. A flood frequency map derived from dense time series analysis of the ALOS PALSAR FBD /FBS data (2007-2010) at 50m resolution was used to analyse the recurrence of flooding. In this map, flooding under the canopy and open water classes could be mapped due to the capabilities of the L-band radar. In addition, MODIS NDVI profiles (2007-2012) were used to characterize temporally water mirrors and vegetation, founding different patterns at basin levels. Moreover, the Colombian main basins were analysed and typified based on hydroperiods, highlighting different hydrological regimes within each basin. The combination of thematic maps, SAR data, optical imagery and hydrological data provided information on the spatial and temporal dynamics of wetlands at regional scales. Our results provide the first validated baseline wetland map for Colombia, this way providing valuable information for ecosystem management.

  4. A Review of Wetland Remote Sensing.

    PubMed

    Guo, Meng; Li, Jing; Sheng, Chunlei; Xu, Jiawei; Wu, Li

    2017-04-05

    Wetlands are some of the most important ecosystems on Earth. They play a key role in alleviating floods and filtering polluted water and also provide habitats for many plants and animals. Wetlands also interact with climate change. Over the past 50 years, wetlands have been polluted and declined dramatically as land cover has changed in some regions. Remote sensing has been the most useful tool to acquire spatial and temporal information about wetlands. In this paper, seven types of sensors were reviewed: aerial photos coarse-resolution, medium-resolution, high-resolution, hyperspectral imagery, radar, and Light Detection and Ranging (LiDAR) data. This study also discusses the advantage of each sensor for wetland research. Wetland research themes reviewed in this paper include wetland classification, habitat or biodiversity, biomass estimation, plant leaf chemistry, water quality, mangrove forest, and sea level rise. This study also gives an overview of the methods used in wetland research such as supervised and unsupervised classification and decision tree and object-based classification. Finally, this paper provides some advice on future wetland remote sensing. To our knowledge, this paper is the most comprehensive and detailed review of wetland remote sensing and it will be a good reference for wetland researchers.

  5. A Review of Wetland Remote Sensing

    PubMed Central

    Guo, Meng; Li, Jing; Sheng, Chunlei; Xu, Jiawei; Wu, Li

    2017-01-01

    Wetlands are some of the most important ecosystems on Earth. They play a key role in alleviating floods and filtering polluted water and also provide habitats for many plants and animals. Wetlands also interact with climate change. Over the past 50 years, wetlands have been polluted and declined dramatically as land cover has changed in some regions. Remote sensing has been the most useful tool to acquire spatial and temporal information about wetlands. In this paper, seven types of sensors were reviewed: aerial photos coarse-resolution, medium-resolution, high-resolution, hyperspectral imagery, radar, and Light Detection and Ranging (LiDAR) data. This study also discusses the advantage of each sensor for wetland research. Wetland research themes reviewed in this paper include wetland classification, habitat or biodiversity, biomass estimation, plant leaf chemistry, water quality, mangrove forest, and sea level rise. This study also gives an overview of the methods used in wetland research such as supervised and unsupervised classification and decision tree and object-based classification. Finally, this paper provides some advice on future wetland remote sensing. To our knowledge, this paper is the most comprehensive and detailed review of wetland remote sensing and it will be a good reference for wetland researchers. PMID:28379174

  6. The National Action Plan To Implement the Hydrogeomorphic Approach To Assessing Wetland Functions

    EPA Pesticide Factsheets

    Full text of Federal Register notice. The strategy the Corps and other Federal agencies will follow to implement the Hydrogeomorphic Approach for Assessing Wetland Functions (HGM Approach) through the development of regional guidebooks.

  7. Morphology of a Wetland Stream

    PubMed

    Jurmu; Andrle

    1997-11-01

    / Little attention has been paid to wetland stream morphology in the geomorphological and environmental literature, and in the recently expanding wetland reconstruction field, stream design has been based primarily on stream morphologies typical of nonwetland alluvial environments. Field investigation of a wetland reach of Roaring Brook, Stafford, Connecticut, USA, revealed several significant differences between the morphology of this stream and the typical morphology of nonwetland alluvial streams. Six morphological features of the study reach were examined: bankfull flow, meanders, pools and riffles, thalweg location, straight reaches, and cross-sectional shape. It was found that bankfull flow definitions originating from streams in nonwetland environments did not apply. Unusual features observed in the wetland reach include tight bends and a large axial wavelength to width ratio. A lengthy straight reach exists that exceeds what is typically found in nonwetland alluvial streams. The lack of convex bank point bars in the bends, a greater channel width at riffle locations, an unusual thalweg location, and small form ratios (a deep and narrow channel) were also differences identified. Further study is needed on wetland streams of various regions to determine if differences in morphology between alluvial and wetland environments can be applied in order to improve future designs of wetland channels.KEY WORDS: Stream morphology; Wetland restoration; Wetland creation; Bankfull; Pools and riffles; Meanders; Thalweg

  8. Michigan Wetlands: Yours To Protect. A Citizen's Guide to Local Involvement in Wetland Protection. Second Edition.

    ERIC Educational Resources Information Center

    Cwikiel, Wilfred

    This guidebook is designed to assist concerned Michigan citizens, local governments, conservation organizations, landowners, and others in their efforts to initiate wetlands protection activities. Chapter 1 focuses on wetland functions, values, losses, and the urgent need to protect wetland resources. Chapter 2 discusses wetland identification and…

  9. Assessing and measuring wetland hydrology

    USGS Publications Warehouse

    Rosenberry, Donald O.; Hayashi, Masaki; Anderson, James T.; Davis, Craig A.

    2013-01-01

    Virtually all ecological processes that occur in wetlands are influenced by the water that flows to, from, and within these wetlands. This chapter provides the “how-to” information for quantifying the various source and loss terms associated with wetland hydrology. The chapter is organized from a water-budget perspective, with sections associated with each of the water-budget components that are common in most wetland settings. Methods for quantifying the water contained within the wetland are presented first, followed by discussion of each separate component. Measurement accuracy and sources of error are discussed for each of the methods presented, and a separate section discusses the cumulative error associated with determining a water budget for a wetland. Exercises and field activities will provide hands-on experience that will facilitate greater understanding of these processes.

  10. Evaluation of a market in wetland credits: entrepreneurial wetland banking in Chicago.

    PubMed

    Robertson, Morgan; Hayden, Nicholas

    2008-06-01

    With the rise of market-led approaches to environmental policy, compensation for permitted discharge of dredge or fill material into wetlands under Section 404 of the U.S. Clean Water Act has been purchased increasingly from entrepreneurial third-party providers. The growth of this practice (i.e., entrepreneurial wetland banking) has resolved many challenges associated with wetland compensation. But it has also produced (1) quantifiable temporal loss of wetland ecological functions, (2) spatial redistribution of wetland area, and (3) a degree of regulatory instability that may pose a threat to entrepreneurial compensation as a sustainable component of wetland-compensation policy. We used achieved compensation ratios, lapse between bank credit sale and the attainment of performance standards, distance between impact and bank site, and changes in bank market area to examine these 3 factors. We analyzed data from a census of all such transactions in the Chicago District of the U.S. Army Corps of Engineers, compiled from site visits, Corps databases, and contacts with consultants and Section 404 permittees. Entrepreneurial banking provided compensation at a lower overall ratio than nonbank forms of compensation. Approximately 60% of bank credits were sold after site-protection standards were met but before ecological performance standards were met at the bank site. The average distance between bank and impact site was approximately 26 km. The area of markets within which established banks can sell wetland credits has fluctuated considerably over the study period. Comparing these data with similar data for other compensation mechanisms will assist in evaluating banking as an element of conservation policy. Data characterizing the performance of entrepreneurial wetland banks in actual regulatory environments are scarce, even though it is the most established of similar markets that have become instrumental to federal policy in administering several major environmental

  11. Vegetation of Upper Coastal Plain Depression Wetlands: Environmental Templates and Wetland Dynamics Within A Landscape Framework

    Treesearch

    Diane De Steven; Maureen M. Toner

    2004-01-01

    Reference wetlands play an important role in efforts to protect wetlands and assess wetland condition. Because wetland vegetation integrates the influence of many ecological factors, a useful reference system would identify natural vegetation types and include models relating vegetation to important regional geomorphic, hydrologic, and geochemical properties. Across...

  12. Placing prairie pothole wetlands along spatial and temporal continua to improve integration of wetland function in ecological investigations

    USGS Publications Warehouse

    Euliss, Ned H.; Mushet, David M.; Newton, Wesley E.; Otto, Clint R.V.; Nelson, Richard D.; LaBaugh, James W.; Scherff, Eric J.; Rosenberry, Donald O.

    2014-01-01

    We evaluated the efficacy of using chemical characteristics to rank wetland relation to surface and groundwater along a hydrologic continuum ranging from groundwater recharge to groundwater discharge. We used 27 years (1974–2002) of water chemistry data from 15 prairie pothole wetlands and known hydrologic connections of these wetlands to groundwater to evaluate spatial and temporal patterns in chemical characteristics that correspond to the unique ecosystem functions each wetland performed. Due to the mineral content and the low permeability rate of glacial till and soils, salinity of wetland waters increased along a continuum of wetland relation to groundwater recharge, flow-through or discharge. Mean inter-annual specific conductance (a proxy for salinity) increased along this continuum from wetlands that recharge groundwater being fresh to wetlands that receive groundwater discharge being the most saline, and wetlands that both recharge and discharge to groundwater (i.e., groundwater flow-through wetlands) being of intermediate salinity. The primary axis from a principal component analysis revealed that specific conductance (and major ions affecting conductance) explained 71% of the variation in wetland chemistry over the 27 years of this investigation. We found that long-term averages from this axis were useful to identify a wetland’s long-term relation to surface and groundwater. Yearly or seasonal measurements of specific conductance can be less definitive because of highly dynamic inter- and intra-annual climate cycles that affect water volumes and the interaction of groundwater and geologic materials, and thereby influence the chemical composition of wetland waters. The influence of wetland relation to surface and groundwater on water chemistry has application in many scientific disciplines and is especially needed to improve ecological understanding in wetland investigations. We suggest ways that monitoring in situ wetland conditions could be linked

  13. Use of wetlands for water quality improvement under the USEPA Region V Clean Lakes Program

    NASA Astrophysics Data System (ADS)

    Landers, Judith C.; Knuth, Barbara A.

    1991-03-01

    The United States Environmental Protection Agency (USEPA) Region V Clean Lakes Program employs artificial and modified natural wetlands in an effort to improve the water quality of selected lakes. We examined use of wetlands at seven lake sites and evaluated the physical and institutional means by which wetland projects are implemented and managed, relative to USEPA program goals and expert recommendations on the use of wetlands for water quality improvement. Management practices recommended by wetlands experts addressed water level and retention, sheet flow, nutrient removal, chemical treatment, ecological and effectiveness monitoring, and resource enhancement. Institutional characteristics recommended included local monitoring, regulation, and enforcement and shared responsibilities among jurisdictions. Institutional and ecological objectives of the National Clean Lakes Program were met to some degree at every site. Social objectives were achieved to a lesser extent. Wetland protection mechanisms and appropriate institutional decentralization were present at all sites. Optimal management techniques were employed to varying degrees at each site, but most projects lack adequate monitoring to determine adverse ecological impacts and effectiveness of pollutant removal and do not extensively address needs for recreation and wildlife habitat. There is evidence that the wetland projects are contributing to improved lake water quality; however, more emphasis needs to be placed on wetland protection and long-term project evaluation.

  14. Macroinvertebrate abundance, water chemistry, and wetland characteristics affect use of wetlands by avian species in Maine

    USGS Publications Warehouse

    Longcore, J.R.; McAuley, D.G.; Pendleton, G.W.; Bennatti, C.R.; Mingo, T.M.; Stromborg, K.L.; Hanson, Alan; Kerekes, Joseph; Paquet, Julie

    2006-01-01

    Our objective was to determine use by avian species (e.g., piscivores, marsh birds, waterfowl, selected passerines) of 29 wetlands in areas with low ( 5.51. All years combined use of wetlands by broods was greater on wetlands with pH 5.51 that supported 21.8% of the broods. High mean brood density was associated with mean number of Insecta per wetland. For lentic wetlands created by beaver, those habitats contained vegetative structure and nutrients necessary to provide cover to support invertebrate populations that are prey of omnivore and insectivore species. The fishless status of a few wetlands may have affected use by some waterfowl species and obligate piscivores.

  15. A model of depressional wetland formation in low-relief karst landscapes

    NASA Astrophysics Data System (ADS)

    Heffernan, J. B.; Murray, A. B.; Cohen, M. J.; Martin, J. B.; Mclaughlin, D. L.; Bianchi, T. S.; Watts, A.

    2014-12-01

    Karst landscapes are formed by the self-reinforcing dissolution of limestone and other soluble rocks, and these positive feedbacks can create a variety of landforms depending on initial topography, climate, bedrock characteristics, and potentially, the activity of biota. In Big Cypress National Preserve (BICY), a low-relief karst landscape in southwestern FL (USA), depressional wetlands, are interspersed within an upland matrix in a regular pattern. This landscape is characterized by over-dispersion of wetland patches, periodic variation in bedrock depth and soil thickness, and distinct bi-modality of these and other soil properties. We hypothesize that the structure of the BICY landscape reflects the concurrent effects of local positive feedbacks among hydroperiod, vegetation productivity and bedrock dissolution; these local processes may ultimately be constrained by landscape scale limitations of water volume. We further hypothesize that low relief and shallow water tables are essential boundary conditions for the emergence of regular patterning of wetlands. To explore these hypotheses, we have developed a quasi-spatial model of a single nascent wetland and its catchment, where the expansion of the wetland basin is driven by acidity associated with belowground root production and aquatic metabolism and their effects on carbonate mineral dissolution, and by the lateral and vertical discharge of water between wetlands and bedrock porosity. This model can, depending on boundary conditions, recreate a range of karst features, including vertical dissolution holes, extensive wetlands that overtake the entire basin, or smaller wetlands whose size equilibrates at a small proportion of the catchment area. This last endpoint, a landform similar to those observed in BICY, occurs only in response to relatively shallow water tables, limited hydrologic inputs, and strong positive feedbacks of biotic activity on dissolution.

  16. Factors affecting coastal wetland loss and restoration

    USGS Publications Warehouse

    Cahoon, D.R.; Phillips, S.W.

    2007-01-01

    Opening paragraph: Tidal and nontidal wetlands in the Chesapeake Bay watershed provide vital hydrologic, water-quality, and ecological functions. Situated at the interface of land and water, these valuable habitats are vulnerable to alteration and loss by human activities including direct conversion to non-wetland habitat by dredge-and-fill activities from land development, and to the effects of excessive nutrients, altered hydrology and runoff, contaminants, prescribed fire management, and invasive species. Processes such as sea-level rise and climate change also impact wetlands. Although local, State, and Federal regulations provide for protection of wetland resources, the conversion and loss of wetland habitats continue in the Bay watershed. Given the critical values of wetlands, the Chesapeake 2000 Agreement has a goal to achieve a net gain in wetlands by restoring 25,000 acres of tidal and nontidal wetlands by 2010. The USGS has synthesized findings on three topics: (1) sea-level rise and wetland loss, (2) wetland restoration, and (3) factors affecting wetland diversity.

  17. Development of a "Hydrologic Equivalent Wetland" Concept for Modeling Cumulative Effects of Wetlands on Watershed Hydrology

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, T.; Li, R.; Yang, X.; Duan, L.; Luo, Y.

    2012-12-01

    Wetlands are one of the most important watershed microtopographic features that affect, in combination rather than individually, hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models, such as the Soil and Water Assessment Tool (SWAT), can be a best resort if wetlands can be appropriately represented in the models. However, the exact method that should be used to incorporate wetlands into hydrologic models is the subject of much disagreement in the literature. In addition, there is a serious lack of information about how to model wetland conservation-restoration effects using such kind of integrated modeling approach. The objectives of this study were to: 1) develop a "hydrologic equivalent wetland" (HEW) concept; and 2) demonstrate how to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba of Canada, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota of the United States. The HEWs were defined in terms of six calibrated parameters: the fraction of the subbasin area that drains into wetlands (WET_FR), the volume of water stored in the wetlands when filled to their normal water level (WET_NVOL), the volume of water stored in the wetlands when filled to their maximum water level (WET_MXVOL), the longest tributary channel length in the subbasin (CH_L1), Manning's n value for the tributary channels (CH_N1), and Manning's n value for the main channel (CH_N2). The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes

  18. Wetland Management - A Success Story In Transition - Restoration of Bhoj Wetland, India

    NASA Astrophysics Data System (ADS)

    Mudgal, M. K.; Tech, B. M.; Miwwa

    Wetlands are beautiful, biologically diverse, hydrologically disperse and ecological vibrant landscape world wide, embracing soils, water, plants, animals and human be- ing. The population growth in the catchment of wetlands led to multifarious human interventions for deriving maximum benefit from the wetlands and their catchments neglecting and disrespecting the principles of sustainability. This act of destruction has been pronounced in developing countries which are under the grip of poverty, illiteracy and lack of environmental education. SBhoj WetlandS is a Lake situated ´ in Central India, Earthen Dam across the river KOLANS in 1061 AD by then ruler king BHOJ. Till 1950 this Wetland was served as a principal source of water supply, even not requiring filtration. As the city grew and the wetland started getting encir- cled by habitation and urban development, the anthropogenic pressures on the lake increased, thus accelerating the process of eutrophication, making the water unfit for human consumption without due treatment due to deterioration of quality of water. For the conservation and management of Bhoj Wetland (Lake Bhopal) a project is under- taken in the financial assistance from Japan Bank for International Cooperation (JBIC, Japan). The project envisages tackle various issues of conservation and management ofn the wetlands under a multi prongs strategies and manner. Although these issues are deeply interrelated and interlinked but for operational and management ease, these issues have been divided into various sub projects which are being tackled indepen- dently, albeit with undercurrent knowledge and understanding of the related issues and interconnectivity with each other. The Project itself is an apt example of the spectrum of varied problems and issues that come to light when attempts are made for sustain- able conservation and management of a wetland. The Project as envisaged intends to conserve and manage through 14 sub projects as under:- Sub

  19. Model Estimates of Pan-Arctic Lake and Wetland Methane Emissions

    NASA Astrophysics Data System (ADS)

    Chen, X.; Bohn, T. J.; Glagolev, M.; Maksyutov, S.; Lettenmaier, D. P.

    2012-12-01

    Lakes and wetlands are important sources of the greenhouse gases CO2 and CH4, whose emission rates are sensitive to climate. The northern high latitudes, which are especially susceptible to climate change, contain about 50% of the world's lakes and wetlands. With the predicted changes in the regional climate for this area within the next century, there is concern about a possible positive feedback resulting from greenhouse gas emissions (especially of methane) from the region's wetlands and lakes. To study the climate response to emissions from northern hemisphere lakes and wetlands, we have coupled a large-scale hydrology and carbon cycling model (University of Washington's Variable Infiltration Capacity model; VIC) with the atmospheric chemistry and transport model (CTM) of Japan's National Institute for Environmental Studies and have applied this modelling framework over the Pan-Arctic region. In particular, the VIC model simulates the land surface hydrology and carbon cycling across a dynamic lake-wetland continuum. The model includes a distributed wetland water table that accounts for microtopography and simulates variations in inundated area that are calibrated to match a passive microwave based inundation product. Per-unit-area carbon uptake and methane emissions have been calibrated using extensive in situ observations. In this paper, the atmospheric methane concentrations from a coupled run of VIC and CTM are calibrated and verified for the Pan-Arctic region with satellite observations from Aqua's Atmospheric Infrared Sounder (AIRS) and Envisat's Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) instruments. We examine relative emissions from lakes and wetlands, as well as their net greenhouse warming potential, over the last half-century across the Pan-Arctic domain. We also assess relative uncertainties in emissions from each of the sources.

  20. Atrazine remediation in wetland microcosms.

    PubMed

    Runes, H B; Bottomley, P J; Lerch, R N; Jenkins, J J

    2001-05-01

    Laboratory wetland microcosms were used to study treatment of atrazine in irrigation runoff by a field-scale-constructed wetland under controlled conditions. Three experiments, in which 1 ppm atrazine was added to the water column of three wetland, one soil control, and one water control microcosm, were conducted. Atrazine dissipation from the water column and degradate formation (deethylatrazine [DEA]; deisopropylatrazine [DIA]; and hydroxyatrazine [HA]) were monitored. Atrazine dissipation from the water column of wetland microcosms was biphasic. Less than 12% of the atrazine applied to wetland microcosms remained in the water column on day 56. Atrazine degradates were observed in water and sediment, with HA the predominant degradate. Analysis of day 56 sediment samples indicated that a significant portion of the initial application was detected as the parent compound and HA. Most probable number (MPN) assays demonstrated that atrazine degrader populations were small in wetland sediment. Wetland microcosms were able to reduce atrazine concentration in the water column via sorption and degradation. Based on results from this study, it is hypothesized that plant uptake contributed to atrazine dissipation from the water column.

  1. Remote sensing of wetlands

    NASA Technical Reports Server (NTRS)

    Roller, N. E. G.

    1977-01-01

    The concept of using remote sensing to inventory wetlands and the related topics of proper inventory design and data collection are discussed. The material presented shows that aerial photography is the form of remote sensing from which the greatest amount of wetlands information can be derived. For extensive, general-purpose wetlands inventories, however, the use of LANDSAT data may be more cost-effective. Airborne multispectral scanners and radar are, in the main, too expensive to use - unless the information that these sensors alone can gather remotely is absolutely required. Multistage sampling employing space and high altitude remote sensing data in the initial stages appears to be an efficient survey strategy for gathering non-point specific wetlands inventory data over large areas. The operational role of remote sensing insupplying inventory data for application to several typical wetlands management problems is illustrated by summary descriptions of past ERIM projects.

  2. The pollution and the potential ecological risk of heavy metals in swan lake wetland of Sanmenxia

    NASA Astrophysics Data System (ADS)

    Li, Jifeng

    2018-04-01

    The soil samples were collected from swanlake wetland and digested by the national standard method. The contents of Pb, Cr, Cu, Zn and Mn were detected and the potential ecological risk was estimated by the the potential ecological risk index. The result shows the wetland was slightly ecological hazarded. The ecosystem has been affected by the heavy metal.

  3. Wetlands: Earth's Kidneys

    EPA Science Inventory

    Wetlands are unique, diverse, and productive habitats that emerge at the fringe of aquatic and upland land systems. The U.S. Environmental Protection Agency (EPA) defines wetlands as "areas that are regularly inundated by surface water or groundwater and characterized by a preva...

  4. Community metabolism during early development of a restored wetland

    USGS Publications Warehouse

    McKenna, J.E.

    2003-01-01

    Productivity is an important ecological function of any natural system and may be quite high in wetlands. Restoration of productive wetlands may play a key role in re-establishing ecological function to portions of the vast areas of wetlands (roughly 86%) drained and otherwise altered in the United States over the past two centuries. A restored wetland at the Montezuma National Wildlife Refuge (upstate New York, USA) was examined to determine if ecological function (i.e., productivity), as well as biotic structure, was restored. Physicochemical conditions and both aquatic and terrestrial productivity were measured at the restoration site and compared with rates and conditions in a reference wetland. Gross aquatic community production rates (based on diurnal oxygen curves) were similar at each site (1,679 and 2,311 g O2 · m−2 · yr−1) and within the range expected for the habitat. Terrestrial Net Aboveground Primary Production rates (measured by monthly biomass changes) (2,400 and 2,500 g dry wt. · m−2 · yr−1) were also similar between sites when tree and herb production were combined. Aquatic respiration rates (3,704 and 4,552 g O2 · m−2· yr−1) were also similar but high, typically more than twice as large as gross aquatic production. As a result, net aquatic production rates at both sites were usually negative, indicating that these small wetlands are organic matter sinks that satisfy aquatic respiration by consumption of both autochthonous aquatic production and imported terrestrial production. They enhance diversity of the local landscape by producing populations of aquatic consumers that cannot be supported by aquatic production alone. Typical wetland conditions and processes developed quickly after restoration, but differences in biotic community structure indicate that observed rates of production and respiration at both sites were maintained by flow through different foodweb pathways. Despite the relatively high process rates, and

  5. Remotely sensed MODIS wetland components for assessing the variability of methane emissions in Indian tropical/subtropical wetlands

    NASA Astrophysics Data System (ADS)

    Bansal, Sangeeta; Katyal, Deeksha; Saluja, Ridhi; Chakraborty, Monojit; Garg, J. K.

    2018-02-01

    Temperature and area fluctuations in wetlands greatly influence its various physico-chemical characteristics, nutrients dynamic, rates of biomass generation and decomposition, floral and faunal composition which in turn influence methane (CH4) emission rates. In view of this, the present study attempts to up-scale point CH4 flux from the wetlands of Uttar Pradesh (UP) by modifying two-factor empirical process based CH4 emission model for tropical wetlands by incorporating MODIS derived wetland components viz. wetland areal extent and corresponding temperature factors (Ft). This study further focuses on the utility of remotely sensed temperature response of CH4 emission in terms of Ft. Ft is generated using MODIS land surface temperature products and provides an important semi-empirical input for up-scaling CH4 emissions in wetlands. Results reveal that annual mean Ft values for UP wetlands vary from 0.69 (2010-2011) to 0.71(2011-2012). The total estimated area-wise CH4 emissions from the wetlands of UP varies from 66.47 Gg yr-1with wetland areal extent and Ft value of 2564.04 km2 and 0.69 respectively in 2010-2011 to 88.39 Gg yr-1with wetland areal extent and Ft value of 2720.16 km2 and 0.71 respectively in 2011-2012. Temporal analysis of estimated CH4 emissions showed that in monsoon season estimated CH4 emissions are more sensitive to wetland areal extent while in summer season sensitivity of estimated CH4 emissions is chiefly controlled by augmented methanogenic activities at high wetland surface temperatures.

  6. Application of the EPA Wetland Research Program Approach to a floodplain wetland restoration assessment

    Treesearch

    R. K. Kolka; C. C. Trettin; E. A. Nelson; C. D. Barton; D. E. Fletcher

    2002-01-01

    Forested wetland restoration assessment is difficult because of the timeframe necessary for the development of a forest ecosystem. The development of a forested wetland ecosystem includes the recovery of hydrology, soils, vegetation, and faunal communities. To assess forested wetland restoration projects, measures need to be developed that are sensitive to early...

  7. Application of the EPA wetland research program approach to a floodplain wetland restoration assessment

    Treesearch

    R.K. Kolka; Carl C. Trettin; E.A. Nelson; C.D. Barton; D.E. Fletcher

    2002-01-01

    Forested wetland restoration assessment is difficult because of the timeframe necessary for the development of a forest ecosystem. The development of a forested wetland ecosystem includes the recovery of hydrology, soils, vegetation, and faunal communities. To assess forested wetland restoration projects, measures need to be developed that are sensitive to early...

  8. Variation in tidal wetland plant diversity and composition within and among coastal estuaries: assessing the relative importance of environmental gradients

    EPA Science Inventory

    Question: Does wetland plant composition vary more by estuarine type (differentiated by the degree of riverine versus oceanic influence) or habitat type within estuaries (defined by US National Wetlands Inventory [NWI] marsh classes)? Location: Oregon estuaries: Netarts Bay, ...

  9. Methane Fluxes from Subtropical Wetlands

    NASA Astrophysics Data System (ADS)

    DeLucia, N.; Gomez-Casanovas, N.; Bernacchi, C.

    2013-12-01

    It is well documented that green house gas concentrations have risen at unequivocal rates since the industrial revolution but the disparity between anthropogenic sources and natural sources is uncertain. Wetlands are one example of a natural ecosystem that can be a substantial source or sink for methane (CH4) depending on climate conditions. Due to strict anaerobic conditions required for CH4-generating microorganisms, natural wetlands are one of the main sources for biogenic CH4. Although wetlands occupy less than 5% of total land surface area, they contribute approximately 20% of total CH4 emissions to the atmosphere. The processes regulating CH4 emissions are sensitive to land use and management practices of areas surrounding wetlands. Variation in adjacent vegetation or grazing intensity by livestock can, for example, alter CH4 fluxes from wetland soils by altering nutrient balance, carbon inputs and hydrology. Therefore, understanding how these changes will affect wetland source strength is essential to understand the impact of wetland management practices on the global climate system. In this study we quantify wetland methane fluxes from subtropical wetlands on a working cattle ranch in central Florida near Okeechobee Lake (27o10'52.04'N, 81o21'8.56'W). To determine differences in CH4 fluxes associated with land use and management, a replicated (n = 4) full factorial experiment was designed for wetlands where the surrounding vegetation was (1) grazed or un-grazed and (2) composed of native vegetation or improved pasture. Net exchange of CH4 and CO2 between the land surface and the atmosphere were sampled with a LICOR Li-7700 open path CH4 analyzer and Li-7500A open path CO2/H20 analyzer mounted in a 1-m3 static gas-exchange chamber. Our results showed and verified that CH4 emissions from subtropical wetlands were larger when high soil moisture was coupled with high temperatures. The presence of cattle only amplified these results. These results help quantify

  10. Hydrology of Mid-Atlantic Freshwater Wetlands

    EPA Science Inventory

    Hydrology is a key variable in the structure and function of a wetland; it is a primary determinant of wetland type, and it drives many of the functions a wetland performs and in turn the services it provides. However, wetland hydrology has been understudied. Efforts by Riparia s...

  11. Climate change and intertidal wetlands.

    PubMed

    Ross, Pauline M; Adam, Paul

    2013-03-19

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause-the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the "squeeze" experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  12. Climate Change and Intertidal Wetlands

    PubMed Central

    Ross, Pauline M.; Adam, Paul

    2013-01-01

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. PMID:24832670

  13. Monitoring Greater Yellowstone Ecosystem wetlands: Can long-term monitoring help us understand their future?

    USGS Publications Warehouse

    Ray, Andrew M.; Sepulveda, Adam; Hossack, Blake R.; Patla, Debra; Thoma, David; Al-Chokhachy, Robert K.; Litt, Andrea R.

    2015-01-01

    In the Greater Yellowstone Ecosystem (GYE), changes in the drying cycles of wetlands have been documented. Wetlands are areas where the water table is at or near the land surface and standing shallow water is present for much or all of the growing season. We discuss how monitoring data can be used to document variation in annual flooding and drying patterns of wetlands monitored across Yellowstone and Grand Teton national parks, investigate how these patterns are related to a changing climate, and explore how drying of wetlands may impact amphibians. The documented declines of some amphibian species are of growing concern to scientists and land managers alike, in part because disappearances have occurred in some of the most protected places. These disappearances are a recognized component of what is being described as Earth’s sixth mass extinction.

  14. SLOSS or Not? Factoring Wetland Size Into Decisions for Wetland Conservation, Enhancement, Restoration, and Creation

    EPA Science Inventory

    Mitigation or replacement of several small impacted wetlands or sites with fewer large wetlands can occur deliberately through the application of functional assessment methods (e.g., Adamus 1997) or coincidentally as the result of market-based mechanisms for wetland mitigation ba...

  15. Two science communities and coastal wetlands policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeVine, J.B.

    1984-01-01

    This study compares the attitudes of academic and government wetlands scientists about wetlands science and policy. Analysis of one thousand seven hundred responses to Delphi-type questions posed to twenty California scientists on a wide range of issues about California coastal wetlands found significant differences between academic and government scientists about wetlands definitions, threats to wetlands, wetlands policies, wetlands health, and wetlands mitigation strategies. These differences were consistent with descriptive models of political sociology developed by D. Price and C.P. Snow and with normative models of the philosophy of science developed in the renaissance by F. Bacon and R. Descartes. Characteristics,more » preferences, and personality attributes consistent with group functions and roles have been described in these models. These findings have serious implications for policy. When academic and government wetlands scientists act as advisors to the major parties in land use conflicts, basic differences in perspective have contributed to costly contention over the future use of wetlands.« less

  16. Ecosystem Level Methane Dynamics in a Southern Forest Wetland

    NASA Astrophysics Data System (ADS)

    Mitra, B.; Minick, K.; Miao, G.; Furst, J.; Domec, J. C.; Sun, G.; McNulty, S.; King, J. S.; Noormets, A.

    2017-12-01

    Methane (CH4) budgets of most ecosystems remain poorly defined, particularly for the forested wetlands of the Southeastern United States.These once abundant ecosystems are unique in the amount of sequestered soil carbon they hold, and because of their interaction with climate through their contribution to both CO2 and CH4 exchange. The stability of the large C stocks in the vegetation and soil of these ecosystems is largest in submerged anoxic conditions, even though methanogenic processes still occur. However, the pressure from land development and drainage, more variable hydrology, and salt-water intrusion can alter the magnitude and balance of aerobic and anaerobic decomposition processes. Here we report five years of CH4 and CO2 fluxes from a forested wetland in the Alligator River National Wildlife Refuge (ARNWR) on the Albemarle-Pamlico Peninsula of North Carolina, USA. Time series of eddy covariance based estimates of CH4 fluxes from 2012 to 2016 show large temporal variation, with seasonal progression in daily mean fluxes from June through October. The peak methane emission coincided with the peak of gross primary production and ecosystem level respiration. The combined responses of these fluxes increases the uncertainty in whether wetlands will be sources or sinks of carbon. CH4 fluxes demonstrated strong variability and different environmental regulation across years and seasons. Water table depth and atmospheric pressure regulated synoptic and seasonal patterns of CH4 emissions. Across all years, the forested wetland emitted CH4 at rates far exceeding those reported for mid-latitude wetlands and rice paddy systems.

  17. Applications of Remote Sensing for Studying Lateral Carbon Fluxes and Inundation Dynamics in Tidal Wetlands

    NASA Astrophysics Data System (ADS)

    Lamb, B. T.; Tzortziou, M.; McDonald, K. C.

    2017-12-01

    Wetlands play a key role in Earth's carbon cycle. However, wetland carbon cycling exhibits a high level of spatiotemporal dynamism, and thus, is not as well understood as carbon cycling in other ecosystems. In order to accurately characterize wetland carbon cycling and fluxes, wetland vegetation phenology, seasonal inundation dynamics, and tidal regimes must be understood as these factors influence carbon generation and transport. Here, we use radar remote sensing to map wetland properties in the Chesapeake Bay, the largest estuary in the United States with more than 1,500 square miles of tidal wetlands, across a range of tidal amplitudes, salinity regimes, and soil organic matter content levels. We have been using Sentinel-1 and ALOS PALSAR-1 radar measurements to characterize vegetation and seasonal inundation dynamics with the future goal of characterizing salinity gradients and tidal regimes. Differences in radar backscatter from various surface targets has been shown to effectively discriminate between dry soil, wet soil, vegetated areas, and open water. Radar polarization differences and ratios are particularly effective at distinguishing between vegetated and non-vegetated areas. Utilizing these principles, we have been characterizing wetland types using supervised classification techniques including: Random Forest, Maximum Likelihood, and Minimum Distance. The National Wetlands Inventory has been used as training and validation data. Ideally, the techniques we outline in this research will be applicable to the characterization of wetlands in coastal areas outside of Chesapeake Bay.

  18. Condition of Tidal Wetlands of Washington, Oregon and California - 2002

    EPA Science Inventory

    The National Coastal Assessment (NCA) of US EPA conducted the first probability based assessment of the condition of estuarine intertidal wetland resources of the West Coast of the U.S. in 2002. The study results constitute a baseline estimate of condition of coastal resources t...

  19. A wetland aquifer interaction test

    NASA Astrophysics Data System (ADS)

    Wise, W. R.; Annable, M. D.; Walser, J. A. E.; Switt, R. S.; Shaw, D. T.

    2000-01-01

    An understanding of the hydraulic connectivity between an isolated wetland and its underlying groundwater is required to help assess the ecological impact that changes in the groundwater level may induce. Literature values for the hydraulic conductivity of peat vary up to ten orders of magnitude, indicating the absolute necessity of obtaining site-specific information. Horizontal and vertical variability in peat layers makes the process of extrapolating point-based measurements to predict system-level behavior difficult. By inducing or augmenting a flow up from the underlying aquifer into the wetland through a rapid lowering of wetland water level, the system-level hydraulic connectivity of a wetland to the groundwater may be directly measured. At a study site, a small, seasonally flooded depression mash wetland in Florida, the method and subsequent analysis yielded a value for the hydraulic resistance of the organic layer of 6 days, indicating a significant connection between the wetland and the aquifer.

  20. Conservation of Mexican wetlands: role of the North American Wetlands Conservation Act

    USGS Publications Warehouse

    Wilson, M.H.; Ryan, D.A.

    1997-01-01

    Mexico's wetlands support a tremendous biological diversity and provide significant natural resource benefits to local communities. Because they are also critical stopover and wintering grounds for much of North America's waterfowl and other migratory birds, Mexico has become an important participant in continental efforts to conserve these resources through the North American Wetlands Conservation Act. Funding from the Act has supported partnerships in a number of Mexico's priority wetlands to conduct data analyses and dissemination, mapping, environmental education, wetland restoration, development of sustainable economic alternatives for local people, and reserve planning and management. These partnerships, with the close involvement of Mexico's Federal Government authority, the Instituto Nacional de Ecologia, have advanced conservation in a uniquely Mexican model that differs from that employed in the United States and Canada.

  1. Constraining rates and trends of historical wetland loss, Mississippi River Delta Plain, south-central Louisiana

    USGS Publications Warehouse

    Bernier, Julie C.; Morton, Robert A.; Barras, John A.

    2006-01-01

    The timing, magnitude, and rate of wetland loss were described for five wetland-loss hotspots in the Terrebonne Basin of the Mississippi River delta plain. Land and water areas were mapped for 34 dates between 1956 and 2004 from historical National Wetlands Inventory (NWI) datasets, aerial photographs, and Landsat Thematic Mapper (TM) satellite images. Since 1956, the emergent land area at the five study areas in south-central Louisiana has decreased by about 50%. Comparison of the water-area curve derived from the 29 TM images with water-level records from the nearby Grand Isle, Louisiana tide gauge (NOS #8761724) clearly shows that changes in land and water areas fluctuate in response to variations in regional water levels. The magnitude of water-area fluctuations decreased from the 1980s to the 1990s as former areas of wet marsh within and immediately adjacent to the wetland-loss hotspots became permanently submerged. The most rapid wetland loss occurred during the late 1960s and 1970s. Peak wetland-loss rates during this period were two to four times greater than both the pre-1970s background rates and the most recent wetland-loss rates. These results provide constraints on predicting future delta-plain wetland losses and identify Landsat TM imagery as an important source for analyzing land- and water-area changes across the entire delta plain.

  2. National Aquatic Resource Surveys

    EPA Pesticide Factsheets

    EPA reports information on the condition of our nation's waters using probabilistic surveys. The National Aquatic Resource Surveys assess the status of and changes in water quality of the nation's coastal waters, lakes, rivers and streams, and wetlands.

  3. Identification, evaluation and change detection of highly sensitive wetlands in South-Eastern Sri Lanka using ALOS (AVNIR2, PALSAR) and Landsat ETM+ data

    NASA Astrophysics Data System (ADS)

    Gunawardena, Ajith; Fernando, Tamasha; Takeuchi, Wataru; Wickramasinghe, Chathura H.; Samarakoon, Lal

    2014-06-01

    Sri Lanka is an island consists of numerous wetlands and many of these ecosystems have been indiscriminately exploited for a commercial, agricultural, residential and industrial development and waste dumping. Eastern River Basin Region in Sri Lanka is rapidly urbanizing, which leads more threats to the surrounding wetland ecosystems considerably. Therefore, it is important to identify and designated them as reserved areas where necessary in order to protect them under the National Environmental Act of Sri Lanka. Mapping and change detection of wetlands in the selected region is a key requirement to fulfill the above task. GIS and Remote Sensing techniques were used to identify and analyze the wetland eco systems. In this study Landsat ETM+, ALOS-AVNIR2, ALOS-PALSAR images were analyzed for identifying and change detection of wetlands. The secondary information and data were collected through a questionnaire survey to recognize the possible threats and benefits. The collected data and information were incorporated in identification, analyzing and ranking the wetlands. The final outcome of the project is to correlate the satellite data with the field observations to quantify the highly sensitive wetlands to declare as Environmental Protection Areas under the National Environment Act of Sri Lanka.

  4. Wetland restoration and compliance issues on the Savannah River site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wein, G.R.; McLeod, K.W.; Sharitz, R.R.

    1993-01-01

    Operation of the nuclear production reactors on the Savannah River Site has faced potential conflicts with wetland regulations on several occasions. This paper provides two examples in which regulatory compliance and restoration research have been meshed, providing both compliance and better knowledge to aid future regulatory needs. The decision to restart the L reactor required the mitigation of thermal effluents under Sec. 316 of the Clean Water Act. The National Pollutant Discharge Elimination System, permit for the selected mitigation alternative, a 405-ha once-through cooling reservoir, required the establishment of a balanced biological community (BBC) within the lake. To promote themore » development of a BBC, the reservoir was seeded with water from an existing BBC (Par Pond) and stocked with fish and had artificial reefs constructed. The US Department of Energy (DOE) also requested that the Savannah River Ecology Laboratory establish littoral/wetland vegetation along the shoreline to provide aquatic and wildlife habitat, shoreline stabilization, and a good faith effort toward the establishment of a BBC. The development of wetland vegetation was deemed important to the successful development of a BBC within L Lake. However, in a similar cooling reservoir system constructed in 1957 (Par Pond), wetland vegetation successfully developed without any planting effort. Other than the good faith effort toward a BBC, there is no reason to assume a littoral/wetland community would not develop of its own accord. However, research conducted at L Lake indicates that the planting of wetland vegetation at L Lake accelerated the process of natural selection over that of areas that were not planted.« less

  5. Stochastic modeling of wetland-groundwater systems

    NASA Astrophysics Data System (ADS)

    Bertassello, Leonardo Enrico; Rao, P. Suresh C.; Park, Jeryang; Jawitz, James W.; Botter, Gianluca

    2018-02-01

    Modeling and data analyses were used in this study to examine the temporal hydrological variability in geographically isolated wetlands (GIWs), as influenced by hydrologic connectivity to shallow groundwater, wetland bathymetry, and subject to stochastic hydro-climatic forcing. We examined the general case of GIWs coupled to shallow groundwater through exfiltration or infiltration across wetland bottom. We also examined limiting case with the wetland stage as the local expression of the shallow groundwater. We derive analytical expressions for the steady-state probability density functions (pdfs) for wetland water storage and stage using few, scaled, physically-based parameters. In addition, we analyze the hydrologic crossing time properties of wetland stage, and the dependence of the mean hydroperiod on climatic and wetland morphologic attributes. Our analyses show that it is crucial to account for shallow groundwater connectivity to fully understand the hydrologic dynamics in wetlands. The application of the model to two different case studies in Florida, jointly with a detailed sensitivity analysis, allowed us to identify the main drivers of hydrologic dynamics in GIWs under different climate and morphologic conditions.

  6. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apfelbaum, Steven L.; Duvall, Kenneth W.; Nelson, Theresa M.

    Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric powermore » plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant

  7. BIOCONVERSION AND MASS TRANSFER OF PESTICIDES IN A MODEL WETLANDS SYSTEM

    EPA Science Inventory

    The widespread use of agrichemicals over the years has impaired the nation's water quality through contamination of soil and of surface and groundwaters. A constructed wetlands environment has natural restorative processes which are attractive methods for improving water qu...

  8. Integrating geographically isolated wetlands into land ...

    EPA Pesticide Factsheets

    Wetlands across the globe provide extensive ecosystem services. However, many wetlands – especially those surrounded by uplands, often referred to as geographically isolated wetlands (GIWs) – remain poorly protected. Protection and restoration of wetlands frequently requires information on their hydrologic connectivity to other surface waters, and their cumulative watershed-scale effects. The integration of measurements and models can supply this information. However, the types of measurements and models that should be integrated are dependent on management questions and information compatibility. We summarize the importance of GIWs in watersheds and discuss what wetland connectivity means in both science and management contexts. We then describe the latest tools available to quantify GIW connectivity and explore crucial next steps to enhancing and integrating such tools. These advancements will ensure that appropriate tools are used in GIW decision making and maintaining the important ecosystem services that these wetlands support. In a nutshell: Wetlands in general receive insufficient protection and this is particularly true for geographically isolated wetlands (GIWs), which are completely surrounded by upland areas GIWs have recently gained policy attention because they provide important ecosystem services, but like most wetlands, their loss and degradation continues Knowledge of the hydrologic connections of GIWs to downstream waters is necessary for th

  9. Recent Subsidence and Erosion at Diverse Wetland Sites in the Southeastern Mississippi Delta Plain

    USGS Publications Warehouse

    Morton, Robert A.; Bernier, Julie C.; Kelso, Kyle W.

    2009-01-01

    A prior study (U.S. Geological Survey Open-File Report 2005-1216) examined historical land- and water-area changes and estimated magnitudes of land subsidence and erosion at five wetland sites in the Terrebonne hydrologic basin of the Mississippi delta plain. The present study extends that work by analyzing interior wetland loss and relative magnitudes of subsidence and erosion at five additional wetland sites in the adjacent Barataria hydrologic basin. The Barataria basin sites were selected for their diverse physical settings and their recent (post-1978) conversion from marsh to open water. Historical aerial photography, datum-corrected marsh elevations and water depths, sediment cores, and radiocarbon dates were integrated to evaluate land-water changes in the Mississippi delta plain on both historical and geological time scales. The thickness of the organic-rich sediments (peat) and the elevation of the stratigraphic contact between peat and underlying mud were compared at marsh and open-water sites across areas of formerly continuous marsh to estimate magnitudes of recent delta-plain elevation loss caused by vertical erosion and subsidence of the wetlands. Results of these analyses indicate that erosion exceeded subsidence at most of the study areas, although both processes have contributed to historical wetland loss. Comparison of these results with prior studies indicates that subsidence largely caused rapid interior wetland loss in the Terrebonne basin before 1978, whereas erosional processes primarily caused more gradual interior wetland loss in the Barataria basin after 1978. Decadal variations in rates of relative sea-level rise at a National Ocean Service tide gage, elevation changes between repeat benchmark-leveling surveys, and GPS height monitoring at three National Geodetic Survey Continuously Operating Reference Stations indicate that subsidence rates since the early 1990s are substantially lower than those previously reported and are similar in

  10. Combining Field Monitoring with Remote Sensing to Reconstruct Historical Hydroperiod: a Case Study in a Degrading Tropical Wetland

    NASA Astrophysics Data System (ADS)

    Alonso, A.; Munoz-Carpena, R.; Kaplan, D. A.

    2017-12-01

    Wetland ecosystem structure and function are primarily governed by water regime. Characterizing past and current wetland hydrology is thus crucial for identifying the drivers of long-term wetland degradation. Critically, a lack of spatially distributed and long-term data has impeded such characterization in most wetland systems across the world. The publically accessible Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products encode spatial and temporal data for landscape monitoring, but it was unclear whether it could be used to reliably predict the hydric status of wetland due to the mixture of spectral signatures existing within and between such systems. We proposed and tested a methodological framework for the identification of site-specific wetness status spectral identification rule (WSSIR) using two recent technical innovations: affordable, easily deployable field water level sensors to train the WSSIR with supervised learning, and the powerful cloud-based Google Earth Engine (GEE) platform to rapidly access and process the MODIS imagery. This methodological framework was used in a study case of the globally important Palo Verde National Park tropical wetland in Costa Rica. Results showed that a site-specific WISSR could reliably detect wetland wet or dry status (hydroperiod) and capture the temporal variability of the wetness status. We applied it on the 500 m 2000-2016 MODIS Land Surface Reflectance daily product to reconstruct hydroperiod history, hence reaching a temporal resolution rarely matched in remote sensing for environmental studies. The analysis of the resulting long-term, spatially distributed MODIS-derived data, coupled with shorter-term, 15-minute resolution field water level time-series provided new insights into the drivers controlling the spatiotemporal dynamics of hydrology within Palo Verde National Park's degrading wetlands. This new knowledge is critical to make informed restoration and management decisions

  11. Methane emissions from global wetlands: An assessment of the uncertainty associated with various wetland extent data sets

    NASA Astrophysics Data System (ADS)

    Zhang, Bowen; Tian, Hanqin; Lu, Chaoqun; Chen, Guangsheng; Pan, Shufen; Anderson, Christopher; Poulter, Benjamin

    2017-09-01

    A wide range of estimates on global wetland methane (CH4) fluxes has been reported during the recent two decades. This gives rise to urgent needs to clarify and identify the uncertainty sources, and conclude a reconciled estimate for global CH4 fluxes from wetlands. Most estimates by using bottom-up approach rely on wetland data sets, but these data sets show largely inconsistent in terms of both wetland extent and spatiotemporal distribution. A quantitative assessment of uncertainties associated with these discrepancies among wetland data sets has not been well investigated yet. By comparing the five widely used global wetland data sets (GISS, GLWD, Kaplan, GIEMS and SWAMPS-GLWD), it this study, we found large differences in the wetland extent, ranging from 5.3 to 10.2 million km2, as well as their spatial and temporal distributions among the five data sets. These discrepancies in wetland data sets resulted in large bias in model-estimated global wetland CH4 emissions as simulated by using the Dynamic Land Ecosystem Model (DLEM). The model simulations indicated that the mean global wetland CH4 emissions during 2000-2007 were 177.2 ± 49.7 Tg CH4 yr-1, based on the five different data sets. The tropical regions contributed the largest portion of estimated CH4 emissions from global wetlands, but also had the largest discrepancy. Among six continents, the largest uncertainty was found in South America. Thus, the improved estimates of wetland extent and CH4 emissions in the tropical regions and South America would be a critical step toward an accurate estimate of global CH4 emissions. This uncertainty analysis also reveals an important need for our scientific community to generate a global scale wetland data set with higher spatial resolution and shorter time interval, by integrating multiple sources of field and satellite data with modeling approaches, for cross-scale extrapolation.

  12. Assessing coastal plain wetland composition using advanced spaceborne thermal emission and reflection radiometer imagery

    NASA Astrophysics Data System (ADS)

    Pantaleoni, Eva

    Establishing wetland gains and losses, delineating wetland boundaries, and determining their vegetative composition are major challenges that can be improved through remote sensing studies. We used the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to separate wetlands from uplands in a study of 870 locations on the Virginia Coastal Plain. We used the first five bands from each of two ASTER scenes (6 March 2005 and 16 October 2005), covering the visible to the short-wave infrared region (0.52-2.185mum). We included GIS data layers for soil survey, topography, and presence or absence of water in a logistic regression model that predicted the location of over 78% of the wetlands. While this was slightly less accurate (78% vs. 86%) than current National Wetland Inventory (NWI) aerial photo interpretation procedures of locating wetlands, satellite imagery analysis holds great promise for speeding wetland mapping, lowering costs, and improving update frequency. To estimate wetland vegetation composition classes, we generated a classification and regression tree (CART) model and a multinomial logistic regression (logit) model, and compared their accuracy in separating woody wetlands, emergent wetlands and open water. The overall accuracy of the CART model was 73.3%, while for the logit model was 76.7%. The CART producer's accuracy of the emergent wetlands was higher than the accuracy from the multinomial logit (57.1% vs. 40.7%). However, we obtained the opposite result for the woody wetland category (68.7% vs. 52.6%). A McNemar test between the two models and NWI maps showed that their accuracies were not statistically different. We conducted a subpixel analysis of the ASTER images to estimate canopy cover of forested wetlands. We used top-of-atmosphere reflectance from the visible and near infrared bands, Delta Normalized Difference Vegetation Index, and a tasseled cap brightness, greenness, and wetness in linear regression model with canopy

  13. Lake Superior Coastal Wetland Fish Assemblages and ...

    EPA Pesticide Factsheets

    The role of the coastal margin and the watershed context in defining the ecology of even very large lakes is increasingly being recognized and examined. Coastal wetlands are both important contributors to the biodiversity and productivity of large lakes and important mediators of the lake-basin connection. We explored wetland-watershed connections and their relationship to wetland function and condition using data collected from 37 Lake Superior wetlands spanning a substantial geographic and geomorphic gradient. While none of these wetlands are particularly disturbed, there were nevertheless clear relationships between watershed landuse and wetland habitat and biota, and these varied consistently across wetland type categories that reflected the strength of connection to the watershed. For example, water clarity and vegetation structure complexity declined with decreasing percent natural land cover, and these effects were strongest in riverine wetlands (having generally large watersheds and tributary-dominated hydrology) and weakest in lagoon wetlands (having generally small watersheds and lake-dominate hydrology). Fish abundance and species richness both increased with decreasing percent natural land cover while species diversity decreased, and again the effect was strongest in riverine wetlands. Lagoonal wetlands, which lack any substantial tributary, consistently harbored the fewest species of fish and a composition different from the more watershed-lin

  14. Flooding Frequency Alters Vegetation in Isolated Wetlands

    USGS Publications Warehouse

    Haag, Kim H.; Lee, Terrie M.

    2006-01-01

    Many isolated wetlands in central Florida occur as small, shallow depressions scattered throughout the karst topography of the region. In these wetlands, the water table approaches land surface seasonally, and water levels and flooding frequency are largely determined by differences between precipitation and evapotranspiration. Because much of the region is flat with little topographic relief, small changes in wetland water levels can cause large changes in wetland surface area. Persistent changes in wetland flooding frequencies, as a result of changes in rainfall or human activity, can cause a substantial change in the vegetation of thousands of acres of land. Understanding the effect that flooding frequency has on wetland vegetation is important to assessing the overall ecological status of wetlands. Wetland bathymetric mapping, when combined with water-level data and vegetation assessments, can enable scientists to determine the frequency of flooding at different elevations in a wetland and describe the effects of flooding frequency on wetland vegetation at those elevations. Five cypress swamps and five marshes were studied by the U.S. Geological Survey (USGS) during 2000-2004, as part of an interdisciplinary study of isolated wetlands in central Florida (Haag and others, 2005). Partial results from two of these marshes are described in this report.

  15. Diverse characteristics of wetlands restored under the Wetlands Reserve Program in the Southeastern United States

    Treesearch

    Diane De Steven; Joel M. Gramling

    2012-01-01

    The Wetlands Reserve Program (WRP) restores converted or degraded wetlands on private working lands; however, the nature and outcomes of such efforts are undocumented in the Southeastern U.S. Identification of wetland types is needed to assess the program's conservation benefits, because ecological functions differ with hydrogeomorphic (HGM) type. We reviewed...

  16. Developing a New Wetland Habitat

    ERIC Educational Resources Information Center

    Bernard, Rosalie

    2006-01-01

    This article features a project at Ohio's Miami Valley Career Technology Center (MVCTC) which has made a real difference in the wetland environment on campus. The goals of the wetland project were to replace a poorly functioning tile system and develop two wetland areas for local and migratory wildlife. The environmental/natural resources students…

  17. LAKE-WETLAND LINKAGE AND PERIPHYTON DYNAMICS IN A LAKE SUPERIOR COASTAL WETLAND

    EPA Science Inventory

    Tributaries feeding coastal wetlands along the Wisconsin shore of Lake Superior are generally depleted in inorganic nitrogen (TIN) relative to phosphorus (SRP), while Lake Superior is phosphorous depleted and relatively rich in TIN. Within wetlands, mixing of tributary and lake w...

  18. Multiple factors influence the vegetation composition of Southeast U.S. wetlands restored in the Wetlands Reserve Program

    Treesearch

    Diane De Steven; Joel M. Gramling

    2013-01-01

    Degradation of wetlands on agricultural lands contributes to the loss of local or regional vegetation diversity. The U.S. Department of Agriculture’s Wetlands Reserve Program (WRP) funds the restoration of degraded wetlands on private ‘working lands’, but these WRP projects have not been studied in the Southeast United States. Wetland hydrogeomorphic type influences...

  19. Wetland soils, hydrology and geomorphology

    Treesearch

    C. Rhett Jackson; James A. Thompson; Randall K. Kolka

    2014-01-01

    The hydrology, soils, and watershed processes of a wetland all interact with vegetation and animals over time to create the dynamic physical template upon which a wetland's ecosystem is based (Fig. 2.1). With respect to many ecosystem processes, the physical factors defining a wetland environment at any particular time are often treated as independent variables,...

  20. Identification of potential wetlands in training areas on Ravenna Army Ammunition Plant, Ohio, and guidelines for their management

    USGS Publications Warehouse

    Schalk, C.W.; Tertuliani, J.S.; Darner, R.A.

    1999-01-01

    Potential wetlands in training areas on Ravenna Army Ammunition Plant, Ohio, were mapped by use of geographic information system (GIS) data layers and field inspection. The GIS data layers were compiled from existing sources and interpretation of aerial photography. Data layers used in the GIS analysis were wetland-plant communities, hydric soils, National Wetlands Inventory designated areas, and wet areas based on photogrammetry. According to review of these data layers, potential wetlands constitute almost one-third of the land in the training areas. A composite map of these four data layers was compiled for use during inspection of the training areas. Field inspection focused on the presence of hydrophytic vegetation and macroscopic evidences of wetland hydrology. Results of the field inspection were in general agreement with those predicted by the GIS analysis, except that some wet areas were more extensive than predicted because of high amounts of precipitation during critical periods of 1995 and 1996. Guidelines for managing wetlands in the training areas are presented.

  1. The role of protected area wetlands in waterfowl habitat conservation: implications for protected area network design

    USGS Publications Warehouse

    Beatty, William S.; Kesler, Dylan C.; Webb, Elisabeth B.; Raedeke, Andrew H.; Naylor, Luke W.; Humburg, Dale D.

    2014-01-01

    The principal goal of protected area networks is biodiversity preservation, but efficacy of such networks is directly linked to animal movement within and outside area boundaries. We examined wetland selection patterns of mallards (Anas platyrhynchos) during non-breeding periods from 2010 to 2012 to evaluate the utility of protected areas to migratory waterfowl in North America. We tracked 33 adult females using global positioning system (GPS) satellite transmitters and implemented a use-availability resource selection design to examine mallard use of wetlands under varying degrees of protection. Specifically, we examined effects of proximities to National Wildlife Refuges, private land, state wildlife management areas, Wetland Reserve Program easements (WRP), and waterfowl sanctuaries on mallard wetland selection. In addition, we included landscape-level variables that measured areas of sanctuary and WRP within the surrounding landscape of each used and available wetland. We developed 8 wetland selection models according to season (autumn migration, winter, spring migration), hunting season (present, absent), and time period (diurnal, nocturnal). Model averaged parameter estimates indicated wetland selection patterns varied across seasons and time periods, but ducks consistently selected wetlands with greater areas of sanctuary and WRP in the surrounding landscape. Consequently, WRP has the potential to supplement protected area networks in the midcontinent region. Additionally, seasonal variation in wetland selection patterns indicated considering the effects of habitat management and anthropogenic disturbances on migratory waterfowl during the non-breeding period is essential in designing protected area networks.

  2. Wetland Characteristics and Denitrification

    EPA Science Inventory

    This presentation serves as an initial summary of our wetland field work's watershed characteristics hydrologic characteristics, water quality measurements, and denitrification assays. We present our measurement results in the context of wetland type (Estuarine, Freshwater Mars...

  3. Classifying and retracking altimeter waveforms over wetlands: A case study in the Hsiang-Shan wetland, Taiwan

    NASA Astrophysics Data System (ADS)

    Huan Chin, K.; Wei Ming, C.; Chung-Yen, K.; Tseng, K. H.; Shum, C. K.; Hwang, C.; Cheng, K. C.

    2017-12-01

    A coastal wetland is an area saturated with fresh to saline water, and has a distinct ecological system. Taiwan has abundant wetlands, and some of them contain altimeter measurements from the Enivsat and TOPEX/Poseidon series of satellites. Typically, such measurements are refined to provide additional sea level measurements over tide gauge data. Often, here the refinements have limitations because of the contaminations of altimeter waveforms and improper geophysical corrections. In this study, we classify Envisat and SARAL/Altika waveforms over coastal areas of Taiwan using the Linear Discriminant Analysis (LDA). Three types of waveforms are identified: coastal ocean, wetland and land-noise waveforms. We carry out a case study over Hsinchu's Hsiang-Shan wetland in northern Taiwan. The coastal ocean and wetland waveforms, are retracked by two different retrackers, with the main objective of improving the accuracy of sea surface height measurements. The result is then assessed by measurements from a nearby tide gauge and modeled geoidal heights from EGM2008. Some of the parameters in our retrackers are associated with the surface and sub-surface properties of the Hsiang-Shan wetland. The space-time evolutions of these parameters can reflect wetland changes due to factors such as changes in sedimentation and soil moisture. This presentation will show how coastal altimeter data can benefit wetland studies.

  4. A Carbon Monitoring System Approach to US Coastal Wetland Carbon Fluxes: Progress Towards a Tier II Accounting Method with Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Windham-Myers, L.; Holmquist, J. R.; Bergamaschi, B. A.; Byrd, K. B.; Callaway, J.; Crooks, S.; Drexler, J. Z.; Feagin, R. A.; Ferner, M. C.; Gonneea, M. E.; Kroeger, K. D.; Megonigal, P.; Morris, J. T.; Schile, L. M.; Simard, M.; Sutton-Grier, A.; Takekawa, J.; Troxler, T.; Weller, D.; Woo, I.

    2015-12-01

    Despite their high rates of long-term carbon (C) sequestration when compared to upland ecosystems, coastal C accounting is only recently receiving the attention of policy makers and carbon markets. Assessing accuracy and uncertainty in net C flux estimates requires both direct and derived measurements based on both short and long term dynamics in key drivers, particularly soil accretion rates and soil organic content. We are testing the ability of remote sensing products and national scale datasets to estimate biomass and soil stocks and fluxes over a wide range of spatial and temporal scales. For example, the 2013 Wetlands Supplement to the 2006 IPCC GHG national inventory reporting guidelines requests information on development of Tier I-III reporting, which express increasing levels of detail. We report progress toward development of a Carbon Monitoring System for "blue carbon" that may be useful for IPCC reporting guidelines at Tier II levels. Our project uses a current dataset of publically available and contributed field-based measurements to validate models of changing soil C stocks, across a broad range of U.S. tidal wetland types and landuse conversions. Additionally, development of biomass algorithms for both radar and spectral datasets will be tested and used to determine the "price of precision" of different satellite products. We discuss progress in calculating Tier II estimates focusing on variation introduced by the different input datasets. These include the USFWS National Wetlands Inventory, NOAA Coastal Change Analysis Program, and combinations to calculate tidal wetland area. We also assess the use of different attributes and depths from the USDA-SSURGO database to map soil C density. Finally, we examine the relative benefit of radar, spectral and hybrid approaches to biomass mapping in tidal marshes and mangroves. While the US currently plans to report GHG emissions at a Tier I level, we argue that a Tier II analysis is possible due to national

  5. Applicability Assessment of Uavsar Data in Wetland Monitoring: a Case Study of Louisiana Wetland

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Niu, Y.; Lu, Z.; Yang, J.; Li, P.; Liu, W.

    2018-04-01

    Wetlands are highly productive and support a wide variety of ecosystem goods and services. Monitoring wetland is essential and potential. Because of the repeat-pass nature of satellite orbit and airborne, time-series of remote sensing data can be obtained to monitor wetland. UAVSAR is a NASA L-band synthetic aperture radar (SAR) sensor compact pod-mounted polarimetric instrument for interferometric repeat-track observations. Moreover, UAVSAR images can accurately map crustal deformations associated with natural hazards, such as volcanoes and earthquakes. And its polarization agility facilitates terrain and land-use classification and change detection. In this paper, the multi-temporal UAVSAR data are applied for monitoring the wetland change. Using the multi-temporal polarimetric SAR (PolSAR) data, the change detection maps are obtained by unsupervised and supervised method. And the coherence is extracted from the interfometric SAR (InSAR) data to verify the accuracy of change detection map. The experimental results show that the multi-temporal UAVSAR data is fit for wetland monitor.

  6. Efficiencies of freshwater and estuarine constructed wetlands for phenolic endocrine disruptor removal in Taiwan.

    PubMed

    Hsieh, Chi-Ying; Yang, Lei; Kuo, Wen-Chien; Zen, Yi-Peng

    2013-10-01

    We examined the distribution and removal efficiencies of phenolic endocrine disruptors (EDs), namely nonylphenol diethoxylates (NP2EO), nonylphenol monoethoxylates (NP1EO), nonylphenol (NP), and octylphenol (OP), in wastewater treated by estuarine and freshwater constructed wetland systems in Dapeng Bay National Scenic Area (DBNSA) and along the Dahan River in Taiwan. Water samples were taken bimonthly at 30 sites in three estuarine constructed wetlands (Datan, Pengcun and Linbian right bank (A and B)) in DBNSA, for eight sampling campaigns. The average removal efficiencies were in the range of 3.13-97.3% for wetlands in DBNSA. The highest average removal occurred in the east inlet to the outlet of the Tatan wetland. The most frequently detected compound was OP (57.7%), whose concentration was up to 1458.7 ng/L in DBNSA. NP was seen in only 20.5% of the samples. The temporal variation of EDs showed a decrease across seasons, where summer>spring>winter>autumn in these constructed wetlands. The removal efficiencies of EDs by estuarine wetlands, in decreasing order, were Datan>Pengcun>Linbian right bank in DBNSA. Water samples collected at 18 sites in three freshwater constructed wetlands (Daniaopi, Hsin-Hai I, and Hsin-Hai II) along the riparian area of Dahan River. NP2EO was the most abundant compound, with a concentration of up to 11,200 ng/L. Removal efficiencies ranged from 55% to 91% for NP1EO, NP2EO, and NP in Hsin-Hai I. The average removal potential of EDs in freshwater constructed wetlands, in decreasing order, was Hsin-Hai II>Daniaopi>Hsin-Hai I constructed wetlands. The lowest concentrations of the selected compounds were observed in the winter. The highest removal efficiency of the selected phenolic endocrine disruptors was achieved by Hsin-Hai I wetland. The calculated risk quotients used to evaluate the ecological risk were up to 30 times higher in the freshwater wetlands along Dahan River than in the estuarine (DBNSA) constructed wetlands, indicating

  7. Influence of UV radiation on chlorophyll, and antioxidant enzymes of wetland plants in different types of constructed wetland.

    PubMed

    Xu, Defu; Wu, Yinjuan; Li, Yingxue; Howard, Alan; Jiang, Xiaodong; Guan, Yidong; Gao, Yongxia

    2014-09-01

    A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P. austrail, and T. augustifolia in the constructed wetland was significantly lower where UV radiation was increased by 10 and 20 % above ambient solar level than in treatment with ambient solar UV radiation (p < 0.05). (2) The malondialdehyde (MDA) content, guaiacol peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities of wetland plants increased with elevated UV radiation intensity. (3) The increased rate of MDA, SOD, POD, and CAT activities of C. indica, P. australis, and T. angustifolia by elevated UV radiation of 10 % was higher in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland. The sensitivity of MDA, SOD, POD, and CAT activities of C. indica, P. austrail, and T. augustifolia to the elevated UV radiation was lower in surface-flow-constructed wetland than in the vertical subsurface-flow-constructed wetland, which was related to a reduction in UV radiation intensity through the dissolved organic carbon and suspended matter in the water. C. indica had the highest SOD and POD activities, which implied it is more sensitive to enhanced UV radiation. Therefore, different wetland plants had different antioxidant enzymes by elevated UV radiation, which were more sensitive in vertical subsurface-flow-constructed wetland than in surface-flow-constructed wetland.

  8. Hydrologic considerations in defining isolated wetlands

    USGS Publications Warehouse

    Winter, T.C.; LaBaugh, J.W.

    2003-01-01

    Wetlands that are not connected by streams to other surface-water bodies are considered to be isolated. Although the definition is based on surface-water connections to other water bodies, isolated wetlands commonly are integral parts of extensive ground-water flow systems, and isolated wetlands can spill over their surface divides into adjacent surface-water bodies during periods of abundant precipitation and high water levels. Thus, characteristics of ground-water flow and atmospheric-water flow affect the isolation of wetlands. In general, the degree that isolated wetlands are connected through the ground-water system to other surface-water bodies depends to a large extent on the rate that ground water moves and the rate that hydrologic stresses can be transmitted through the ground-water system. Water that seeps from an isolated wetland into a gravel aquifer can travel many kilometers through the ground-water system in one year. In contrast, water that seeps from an isolated wetland into a clayey or silty substrate may travel less than one meter in one year. For wetlands that can spill over their surface watersheds during periods of wet climate conditions, their isolation is related to the height to a spill elevation above normal wetland water level and the recurrence interval of various magnitudes of precipitation. The concepts presented in this paper indicate that the entire hydrologic system needs to be considered in establishing a definition of hydrologic isolation.

  9. Development of a Global Wetland Sustainability Index for comprehensive land use planning

    NASA Astrophysics Data System (ADS)

    Schleupner, C.; Schneider, U. A.; Havlik, P.; Stacke, T.

    2012-04-01

    Allocation of nature reserves for conservation of ecosystem functions and services is a multi-dimensional task. Conservation programs act from local to regional or national scales, and some efforts involve entire continents. Globally, several international environmental agreements have been established which include conservation issues. Examples are the Convention on Biological Diversity, the Convention on Migratory Species of Wild Animals, the UN Framework Convention on Climate Change, and the Ramsar Convention on Wetlands. A common aim of most initiatives is the protection and restoration of valuable natural sites by providing a functional network of sites. The planning of protected habitat networks to safeguard global biodiversity requires substantial knowledge on exposure, services, and functions of ecosystems. Further, the complex spatial relationships between humans and the environment under consideration of costs and land use competition have to be determined. Often such analyses are hindered by lack of data. We developed a global index that ranks sites for wetland protection according to its wetland quantity, wetland quality and pressure upon the wetland sites. Each of the three parts is based on several spatial-ecological datasets that contain important information for the adequate assessment of spatial economic and ecologic interdependencies. Applying cluster analyses and ecological decision trees the data are combined and results are translated to the final index and expressed per simulation unit for integration into the Global Biomass Optimization Model GLOBIOM. This global recursive dynamic partial equilibrium model integrates the agricultural, bio energy and forestry sectors with the aim to provide policy analyses on global issues concerning land use competition between the major land-based production sectors. Results not only show the most vulnerable wetland areas to nature loss and the most valuable wetland areas for biodiversity protection under

  10. Monitoring wetlands change using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Hardin, D. L.

    1981-01-01

    A wetlands monitoring study was initiated as part of Delaware's LANDSAT applications demonstration project. Classifications of digital data are conducted in an effort to determine the location and acreage of wetlands loss or gain, species conversion, and application for the inventory and typing of freshwater wetlands. A multi-seasonal approach is employed to compare data from two different years. Unsupervised classifications were conducted for two of the four dates examined. Initial results indicate the multi-seasonal approach allows much better separation of wetland types for both tidal and non-tidal wetlands than either season alone. Change detection is possible but generally misses the small acreages now impacted by man.

  11. Wetland Mitigation Monitoring at the Fernald Preserve - 13200

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Jane; Bien, Stephanie; Decker, Ashlee

    The U.S. Department of Energy is responsible for 7.2 hectares (17.8 acres) of mitigation wetland at the Fernald Preserve, Ohio. Remedial activities affected the wetlands, and mitigation plans were incorporated into site-wide ecological restoration planning. In 2008, the Fernald Natural Resource Trustees developed a comprehensive wetland mitigation monitoring approach to evaluate whether compensatory mitigation requirements have been met. The Fernald Preserve Wetland Mitigation Monitoring Plan provided a guideline for wetland evaluations. The Ohio Environmental Protection Agency (Ohio EPA) wetland mitigation monitoring protocols were adopted as the means for compensatory wetland evaluation. Design, hydrologic regime, vegetation, wildlife, and biogeochemistry were evaluatedmore » from 2009 to 2011. Evaluations showed mixed results when compared to the Ohio EPA performance standards. Results of vegetation monitoring varied, with the best results occurring in wetlands adjacent to forested areas. Amphibians, particularly ambystomatid salamanders, were observed in two areas adjacent to forested areas. Not all wetlands met vegetation performance standards and amphibian biodiversity metrics. However, Fernald mitigation wetlands showed substantially higher ratings compared to other mitigated wetlands in Ohio. Also, soil sampling results remain consistent with other Ohio mitigated wetlands. The performance standards are not intended to be 'pass/fail' criteria; rather, they are reference points for use in making decisions regarding future monitoring and maintenance. The Trustees approved the Fernald Preserve Wetland Mitigation Monitoring Report with the provision that long-term monitoring of the wetlands continues at the Fernald Preserve. (authors)« less

  12. Hydrologic budget for a wetland system.

    DOT National Transportation Integrated Search

    1998-07-01

    An important functional indicator of the success of a constructed wetland as a replacement for a natural system is the hydrology of : a site and whether it is adequate to support wetland vegetation and habitats. For constructed wetlands with potentia...

  13. Why are Wetlands Important?

    EPA Pesticide Factsheets

    Wetlands are among the most productive ecosystems in the world, comparable to rain forests and coral reefs. An immense variety of species of microbes, plants, insects, amphibians, reptiles, birds, fish, and mammals can be part of a wetland ecosystem.

  14. Measured and Calculated Volumes of Wetland Depressions

    EPA Pesticide Factsheets

    Measured and calculated volumes of wetland depressionsThis dataset is associated with the following publication:Wu, Q., and C. Lane. Delineation and quantification of wetland depressions in the Prairie Pothole Region of North Dakota. WETLANDS. The Society of Wetland Scientists, McLean, VA, USA, 36(2): 215-227, (2016).

  15. Wetland resources investigation based on 3S technology

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Jing, Haitao; Zhang, Lianpeng

    2008-10-01

    Wetland is a special ecosystem between land and water . It can provide massive foods, raw material, water resources and habitat for human being, animals and plants, Wetlands are so important that wetlands' development, management and protection have become the focus of public attention ."3S" integration technology was applied to investigate wetland resources in Shandong Province ,the investigation is based on remote sensing(RS) information, combining wetlandrelated geographic information system(GIS) data concerning existing geology, hydrology, land, lakes, rivers, oceans and environmental protection, using the Global Positioning System (GPS) to determine location accurately and conveniently , as well as multi-source information to demonstrate each other based on "3S" integration technology. In addition, the remote sensing(RS) interpretation shall be perfected by combining house interpretation with field survey and combining interpretation results with known data.By contrasting various types of wetland resources with the TM, ETM, SPOT image and combining with the various types of information, remote sensing interpretation symbols of various types of wetland resources are established respectively. According to the interpretation symbols, we systematically interpret the wetland resources of Shandong Province. In accordance with the purpose of different work, we interpret the image of 1987, 1996 and 2000. Finally, various interpretation results are processed by computer scanning, Vectored, projection transformation and image mosaic, wetland resources distribution map is worked out and wetland resources database of Shandong Province is established in succession. Through the investigation, wetland resource in Shandong province can be divided into 4 major categories and 17 sub-categories. we have ascertained the range and area of each category as well as their present utilization status.. By investigating and calculating, the total area of wetland in Shandong Province is

  16. The challenges of remote monitoring of wetlands

    USGS Publications Warehouse

    Gallant, Alisa L.

    2015-01-01

    Wetlands are highly productive and support a wide variety of ecosystem goods and services. Various forms of global change impose compelling needs for timely and reliable information on the status of wetlands worldwide, but several characteristics of wetlands make them challenging to monitor remotely: they lack a single, unifying land-cover feature; they tend to be highly dynamic and their energy signatures are constantly changing; and steep environmental gradients in and around wetlands produce narrow ecotones that often are below the resolving capacity of remote sensors. These challenges and needs set the context for a special issue focused on wetland remote sensing. Contributed papers responded to one of three overarching questions aimed at improving remote, large-area monitoring of wetlands: (1) What approaches and data products are being developed specifically to support regional to global long-term monitoring of wetland landscapes? (2) What are the promising new technologies and sensor/multisensor approaches for more accurate and consistent detection of wetlands? (3) Are there studies that demonstrate how remote long-term monitoring of wetland landscapes can reveal changes that correspond with changes in land cover and land use and/or changes in climate?

  17. Are isolated wetlands groundwater recharge hotspots?

    NASA Astrophysics Data System (ADS)

    Webb, A.; Wicks, C. M.; Brantley, S. T.; Golladay, S. W.

    2017-12-01

    Geographically isolated wetlands (GIWs) are a common landscape feature in the mantled karst terrain of the Dougherty Plain physiographic district in Southwestern Georgia. These wetlands support a high diversity of obligate/facultative wetland flora and fauna, including several endangered species. While the ecological value of these wetlands is well documented, the hydrologic effects of GIWs on larger watershed processes, such as water storage and aquifer recharge, are less clear. Our project seeks to understand the spatial and temporal variation in recharge across GIWs on this mantled karst landscape. In particular, our first step is to understand the role of isolated wetlands (presumed sinkholes) in delivering water into the underlying aquifer. Our hypothesis is that many GIWs are actually water-filled sinkholes and are locations of focused recharge feeding either the underlying upper Floridan aquifer or the nearby creeks. If we are correct, then these sinkholes should exhibit "drains", i.e., conduits into the limestone bedrock. Thus, the purposes of our initial study are to image the soil-limestone contact (the buried epikarstic surface) and determine if possible subsurface drains exist. Our field work was conducted at the Joseph W Jones Ecological Research Center. During the dry season, we conducted ground penetrating radar (GPR) surveys as grids and lines across a large wetland and across a field with no surface expression of a wetland or sinkhole. We used GPR (200 MHz antenna) with 1-m spacing between antenna and a ping rate of 1 ping per 40 centimeters. Our results show that the epikarstic surface exhibits a drain underneath the wetland (sinkhole) and that no similar feature was seen under the field, even though the survey grid and spacing were similar. As our project progresses, we will survey additional wetlands occurring across varying soil types to determine the spatial distribution between surface wetlands and subsurface drains.

  18. Attenuation of Storm Surge Flooding By Wetlands in the Chesapeake Bay: An Integrated Geospatial Framework Evaluating Impacts to Critical Infrastructure

    NASA Astrophysics Data System (ADS)

    Khalid, A.; Haddad, J.; Lawler, S.; Ferreira, C.

    2014-12-01

    Areas along the Chesapeake Bay and its tributaries are extremely vulnerable to hurricane flooding, as evidenced by the costly effects and severe impacts of recent storms along the Virginia coast, such as Hurricane Isabel in 2003 and Hurricane Sandy in 2012. Coastal wetlands, in addition to their ecological importance, are expected to mitigate the impact of storm surge by acting as a natural protection against hurricane flooding. Quantifying such interactions helps to provide a sound scientific basis to support planning and decision making. Using storm surge flooding from various historical hurricanes, simulated using a coupled hydrodynamic wave model (ADCIRC-SWAN), we propose an integrated framework yielding a geospatial identification of the capacity of Chesapeake Bay wetlands to protect critical infrastructure. Spatial identification of Chesapeake Bay wetlands is derived from the National Wetlands Inventory (NWI), National Land Cover Database (NLCD), and the Coastal Change Analysis Program (C-CAP). Inventories of population and critical infrastructure are extracted from US Census block data and FEMA's HAZUS-Multi Hazard geodatabase. Geospatial and statistical analyses are carried out to develop a relationship between wetland land cover, hurricane flooding, population and infrastructure vulnerability. These analyses result in the identification and quantification of populations and infrastructure in flooded areas that lie within a reasonable buffer surrounding the identified wetlands. Our analysis thus produces a spatial perspective on the potential for wetlands to attenuate hurricane flood impacts in critical areas. Statistical analysis will support hypothesis testing to evaluate the benefits of wetlands from a flooding and storm-surge attenuation perspective. Results from geospatial analysis are used to identify where interactions with critical infrastructure are relevant in the Chesapeake Bay.

  19. Delineating wetland catchments and modeling hydrologic connectivity using lidar data and aerial imagery

    NASA Astrophysics Data System (ADS)

    Wu, Qiusheng; Lane, Charles R.

    2017-07-01

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical structures and dynamic filling-spilling-merging surface-water hydrological processes. Differentiating and appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution lidar data and aerial imagery. The graph-theory-based contour tree method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost-path algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other or to the river network on scales finer than those available through the National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving overland flow simulation and hydrologic connectivity analysis.

  20. SELECTION, WITH MINIMAL BIAS, OF AN EXPERIMENTAL CONTROL FROM NATURAL WETLAND ENVIRONMENTS

    EPA Science Inventory

    This report is of the National Network for Environmental Management studies conducted under the auspices of the Office of Cooperative Environmental Management--U.S. Environmental Protection Agency. The goal of wetland restoration and creation projects is to replicate the native w...

  1. 75 FR 52969 - Final Environmental Impact Statement; Prisoners Harbor Wetland Restoration, Santa Cruz Island...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... approximately 3 acres of coastal wetland on Santa Cruz Island, Channel Islands National Park. The requisite no-action ``wait period'' was initiated April 16, 2010, with the Environmental Protection Agency's Federal...

  2. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands

    DOE PAGES

    Herbert, Ellen R.; Boon, Paul; Burgin, Amy J.; ...

    2015-10-29

    Salinization, a widespread threat to the structure and ecological functioning of inland and coastal wetlands, is currently occurring at an unprecedented rate and geographic scale. The causes of salinization are diverse and include alterations to freshwater flows, land-clearance, irrigation, disposal of wastewater effluent, sea level rise, storm surges, and applications of de-icing salts. Climate change and anthropogenic modifications to the hydrologic cycle are expected to further increase the extent and severity of wetland salinization. Salinization alters the fundamental physicochemical nature of the soil-water environment, increasing ionic concentrations and altering chemical equilibria and mineral solubility. Increased concentrations of solutes, especially sulfate,more » alter the biogeochemical cycling of major elements including carbon, nitrogen, phosphorus, sulfur, iron, and silica. The effects of salinization on wetland biogeochemistry typically include decreased inorganic nitrogen removal (with implications for water quality and climate regulation), decreased carbon storage (with implications for climate regulation and wetland accretion), and increased generation of toxic sulfides (with implications for nutrient cycling and the health/functioning of wetland biota). Indeed, increased salt and sulfide concentrations induce physiological stress in wetland biota and ultimately can result in large shifts in wetland communities and their associated ecosystem functions. The productivity and composition of freshwater species assemblages will be highly altered, and there is a high potential for the disruption of existing interspecific interactions. Although there is a wealth of information on how salinization impacts individual ecosystem components, relatively few studies have addressed the complex and often non-linear feedbacks that determine ecosystem-scale responses or considered how wetland salinization will affect landscape-level processes. Although the

  3. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbert, Ellen R.; Boon, Paul; Burgin, Amy J.

    Salinization, a widespread threat to the structure and ecological functioning of inland and coastal wetlands, is currently occurring at an unprecedented rate and geographic scale. The causes of salinization are diverse and include alterations to freshwater flows, land-clearance, irrigation, disposal of wastewater effluent, sea level rise, storm surges, and applications of de-icing salts. Climate change and anthropogenic modifications to the hydrologic cycle are expected to further increase the extent and severity of wetland salinization. Salinization alters the fundamental physicochemical nature of the soil-water environment, increasing ionic concentrations and altering chemical equilibria and mineral solubility. Increased concentrations of solutes, especially sulfate,more » alter the biogeochemical cycling of major elements including carbon, nitrogen, phosphorus, sulfur, iron, and silica. The effects of salinization on wetland biogeochemistry typically include decreased inorganic nitrogen removal (with implications for water quality and climate regulation), decreased carbon storage (with implications for climate regulation and wetland accretion), and increased generation of toxic sulfides (with implications for nutrient cycling and the health/functioning of wetland biota). Indeed, increased salt and sulfide concentrations induce physiological stress in wetland biota and ultimately can result in large shifts in wetland communities and their associated ecosystem functions. The productivity and composition of freshwater species assemblages will be highly altered, and there is a high potential for the disruption of existing interspecific interactions. Although there is a wealth of information on how salinization impacts individual ecosystem components, relatively few studies have addressed the complex and often non-linear feedbacks that determine ecosystem-scale responses or considered how wetland salinization will affect landscape-level processes. Although the

  4. The study of Phosphorus distribution at Putrajaya Wetland

    NASA Astrophysics Data System (ADS)

    Mubin Zahari, Nazirul; Malek, Nur Farzana Fasiha Abdul; Fai, Chow Ming; Humaira Haron, Siti; Hafiz Zawawi, Mohd; Nazmi Ismail, Iszmir; Mohamad, Daud; Syamsir, Agusril; Sidek, Lariyah Mohd; Zakwan Ramli, Mohd; Ismail, Norfariza; Zubir Sapian, Ahmad; Noordin, Normaliza; Rahaman, Nurliyana Abdul; Muhamad, Yahzam; Mat Saman, Jarina

    2018-04-01

    This study is concerning phosphorus distribution in Putrajaya Wetland. Phosphorus is one of the important component in nutrients for living things be it aquatic or non – aquatic organisms. Total phosphorus (TP) results will give some information on the trophic status of surface water in water bodies. The focus of this study is to determine the total phosphorus concentration in Putrajaya Wetland which is in the inlet of the wetland then outlet of the wetland (Central Wetland Lake). The water sample is taken from Putrajaya Wetland and the test was conducted in the laboratory. The result from this study shows the results for total phosphorus according to month, sampling station and cells. Lowest total phosphate at the Central Wetland compare with all the wetland arms cells.

  5. Development of an Indicator to Monitor Mediterranean Wetlands

    PubMed Central

    Sanchez, Antonio; Abdul Malak, Dania; Guelmami, Anis; Perennou, Christian

    2015-01-01

    Wetlands are sensitive ecosystems that are increasingly subjected to threats from anthropogenic factors. In the last decades, coastal Mediterranean wetlands have been suffering considerable pressures from land use change, intensification of urban growth, increasing tourism infrastructure and intensification of agricultural practices. Remote sensing (RS) and Geographic Information Systems (GIS) techniques are efficient tools that can support monitoring Mediterranean coastal wetlands on large scales and over long periods of time. The study aims at developing a wetland indicator to support monitoring Mediterranean coastal wetlands using these techniques. The indicator makes use of multi-temporal Landsat images, land use reference layers, a 50m numerical model of the territory (NMT) and Corine Land Cover (CLC) for the identification and mapping of wetlands. The approach combines supervised image classification techniques making use of vegetation indices and decision tree analysis to identify the surface covered by wetlands at a given date. A validation process is put in place to compare outcomes with existing local wetland inventories to check the results reliability. The indicator´s results demonstrate an improvement in the level of precision of change detection methods achieved by traditional tools providing reliability up to 95% in main wetland areas. The results confirm that the use of RS techniques improves the precision of wetland detection compared to the use of CLC for wetland monitoring and stress the strong relation between the level of wetland detection and the nature of the wetland areas and the monitoring scale considered. PMID:25826210

  6. Development of an indicator to monitor mediterranean wetlands.

    PubMed

    Sanchez, Antonio; Abdul Malak, Dania; Guelmami, Anis; Perennou, Christian

    2015-01-01

    Wetlands are sensitive ecosystems that are increasingly subjected to threats from anthropogenic factors. In the last decades, coastal Mediterranean wetlands have been suffering considerable pressures from land use change, intensification of urban growth, increasing tourism infrastructure and intensification of agricultural practices. Remote sensing (RS) and Geographic Information Systems (GIS) techniques are efficient tools that can support monitoring Mediterranean coastal wetlands on large scales and over long periods of time. The study aims at developing a wetland indicator to support monitoring Mediterranean coastal wetlands using these techniques. The indicator makes use of multi-temporal Landsat images, land use reference layers, a 50m numerical model of the territory (NMT) and Corine Land Cover (CLC) for the identification and mapping of wetlands. The approach combines supervised image classification techniques making use of vegetation indices and decision tree analysis to identify the surface covered by wetlands at a given date. A validation process is put in place to compare outcomes with existing local wetland inventories to check the results reliability. The indicator´s results demonstrate an improvement in the level of precision of change detection methods achieved by traditional tools providing reliability up to 95% in main wetland areas. The results confirm that the use of RS techniques improves the precision of wetland detection compared to the use of CLC for wetland monitoring and stress the strong relation between the level of wetland detection and the nature of the wetland areas and the monitoring scale considered.

  7. Wetlands in Changed Landscapes: The Influence of Habitat Transformation on the Physico-Chemistry of Temporary Depression Wetlands

    PubMed Central

    Bird, Matthew S.; Day, Jenny A.

    2014-01-01

    Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated) occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology) are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis) indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m); although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%), relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%). The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m) buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality. PMID:24533161

  8. Forestry Best Management Practices for Wetlands in Minnesota

    Treesearch

    Michael J. Phillips

    1997-01-01

    Wetlands are a common landscape feature in Minnesota in spite of significant losses of wetlands to agriculture and development. Prior to European settlement, Minnesota contained 7.5 million ha of wetlands, including both wet, mineral and peat soils. These wetlands covered approximately 35 percent of the state. The current extent of wetlands for Minnesota is...

  9. Preconstruction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield (HAAF) Wetlands Restoration Site. Part 3

    DTIC Science & Technology

    2009-12-01

    ER D C/ EL T R- 09 -2 1 Preconstruction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield (HAAF) Wetlands...Preconstruction Biogeochemical Analysis of Mercury in Wetlands Bordering the Hamilton Army Airfield (HAAF) Wetlands Restoration Site Part 3 Elly P. H... mercury methylation and demethylation, and biogeochemical parameters related to the mercury cycle as measured by both conventional and emerging methods

  10. 7 CFR 1410.10 - Restoration of wetlands.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Restoration of wetlands. 1410.10 Section 1410.10... Restoration of wetlands. (a) An owner or operator who entered into a CRP contract on land that is suitable for restoration to wetlands or that was restored to wetlands while under such contract, may, if approved by CCC...

  11. Refining soil organic carbon stock estimates for China’s palustrine wetlands

    NASA Astrophysics Data System (ADS)

    Ma, Kun; Liu, Junguo; Zhang, Ying; Parry, Lauren E.; Holden, Joseph; Ciais, Philippe

    2015-12-01

    Palustrine wetlands (PWs) include all bogs, fens, swamps and marshes that are non-saline and which are not lakes or rivers. They therefore form a highly important group of wetlands which hold large carbon stocks. If these wetlands are not protected properly they could become a net carbon source in the future. Compilation of spatially explicit wetland databases, national inventory data and in situ measurement of soil organic carbon (SOC) could be useful to better quantify SOC and formulate long-term strategies for mitigating global climate change. In this study, a synergistic mapping approach was used to create a hybrid map for PWs for China and to estimate their SOC content. Total SOC storage in PWs was estimated to be 4.3 ± 1.4 Pg C, with a SOC density of 31.17 (±10.55) kg C m-2 in the upper 1 m of the soil layer. This carbon stock is concentrated in Northeast China (49%) and the Qinghai-Tibet Plateau (41%). Given the large pool of carbon stored in PWs compared to other soil types, we suggest that urgent monitoring programmes on SOC should be established in regions with very few datasets, but where PWs appear to be common such as the Tibet region and Northwest China.

  12. Wetland restoration, flood pulsing, and disturbance dynamics

    USGS Publications Warehouse

    Middleton, Beth A.

    1999-01-01

    While it is generally accepted that flood pulsing and disturbance dynamics are critical to wetland viability, there is as yet no consensus among those responsible for wetland restoration about how best to plan for those phenomena or even whether it is really necessary to do so at all. In this groundbreaking book, Dr. Beth Middleton draws upon the latest research from around the world to build a strong case for making flood pulsing and disturbance dynamics integral to the wetland restoration planning process.While the initial chapters of the book are devoted to laying the conceptual foundations, most of the coverage is concerned with demonstrating the practical implications for wetland restoration and management of the latest ecological theory and research. It includes a fascinating case history section in which Dr. Middleton explores the restoration models used in five major North American, European, Australian, African, and Asian wetland projects, and analyzes their relative success from the perspective of flood pulsing and disturbance dynamics planning.Wetland Restoration also features a wealth of practical information useful to all those involved in wetland restoration and management, including: * A compendium of water level tolerances, seed germination, seedling recruitment, adult survival rates, and other key traits of wetland plant species * A bibliography of 1,200 articles and monographs covering all aspects of wetland restoration * A comprehensive directory of wetland restoration ftp sites worldwide * An extensive glossary of essential terms

  13. Hydrology of flooded and wetland forests

    USGS Publications Warehouse

    Williams, T.M.; Krauss, Ken W.; Okruszko, T.; Amatya, D.; Williams, T.M.; Bren, L.; de Jong, C.

    2016-01-01

    In this chapter we will examine the hydrology of forested areas that are subject to soil saturation by rain, groundwater, or surface flooding. They include mangroves and other tidal forests, the forested portions of peatlands, and tree dominated wetlands defined by the Ramsar Convention (Mathews 1993). They also include estuarine tidal forests, palustrine forested wetlands, and the portion of palustrine scrub-shrub which are made up of immature tree species of the Cowardin et al. (1985) classification. A broad outline of ecology of all wetlands are described in Mitsch and Gosselink (2015), wetlands specifically with tidal influence are described by Tiner (2013), while descriptions of northern and southern forested wetlands can be found in Trettin et al. (1996) and Messina and Conner (1998) respectively.

  14. The carbon balance of North American wetlands

    USGS Publications Warehouse

    Bridgham, S.D.; Megonigal, J.P.; Keller, J.K.; Bliss, N.B.; Trettin, C.

    2006-01-01

    We examine the carbon balance of North American wetlands by reviewing and synthesizing the published literature and soil databases. North American wetlands contain about 220 Pg C, most of which is in peat. They are a small to moderate carbon sink of about 49 Tg C yr-1, although the uncertainty around this estimate is greater than 100%, with the largest unknown being the role of carbon sequestration by sedimentation in freshwater mineral-soil wetlands. We estimate that North American wetlands emit 9 Tg methane (CH 4) yr-1; however, the uncertainty of this estimate is also greater than 100%. With the exception of estuarine wetlands, CH4 emissions from wetlands may largely offset any positive benefits of carbon sequestration in soils and plants in terms of climate forcing. Historically, the destruction of wetlands through land-use changes has had the largest effects on the carbon fluxes and consequent radiative forcing of North American wetlands. The primary effects have been a reduction in their ability to sequester carbon (a small to moderate increase in radiative forcing), oxidation of their soil carbon reserves upon drainage (a small increase in radiative forcing), and reduction in CH4 emissions (a small to large decrease in radiative forcing). It is uncertain how global changes will affect the carbon pools and fluxes of North American wetlands. We will not be able to predict accurately the role of wetlands as potential positive or negative feedbacks to anthropogenic global change without knowing the integrative effects of changes in temperature, precipitation, atmospheric carbon dioxide concentrations, and atmospheric deposition of nitrogen and sulfur on the carbon balance of North American wetlands

  15. Integrating geographically isolated wetlands into land management decisions

    EPA Science Inventory

    Wetlands across the globe provide extensive ecosystem services. However, many wetlands – especially those surrounded by uplands, often referred to as geographically isolated wetlands (GIWs) – remain poorly protected. Protection and restoration of wetlands frequently r...

  16. User's guide to the wetland creation/restoration data base, version 2

    USGS Publications Warehouse

    Miller, Lee; Auble, Gregor T.; Schneller-McDonald, Keith

    1991-01-01

    Wetland creation or restoration projects are frequently proposed as mitigation for unavoidable wetland losses, as components of wetland enhancement programs, and as tools to accomplish specific objectives such as waterfowl production or flood control. There is considerable controversy concerning the effectiveness of such projects as well as the most appropriate and efficient techniques to employ. The importance of the resource and the long time scales involved in fully evaluating a creation or restoration effort make it imperative to consider existing information as fully as possible in the development and evaluation of wetland creation or restoration proposals.To aid in the evaluation of wetland/creation efforts, the U.s. Fish and Wildlife Service (FWS), National Ecology Research Center, has developed the Wetland Creation/Restoration (WCR) Data Base. The data base is a highly indexed or keyworded bibliography of wetland creation or restoration articles. ("Articles" refers to any type of publication that deals specifically with wetland creation/restoration projects or studies.) The scope of the articles is international, although most of them are concerned with projects conducted in the United States. Information coded for each article includes author; citation; type of wetland and its location in terms of state, ecoregion, and FWS region; type of study undertaken; objectives in creating or restoring the wetland; actions performed to realize those objectives; length of time encompassed by the study; evaluation of results and responses to the wetland creation/restoration actions; and a listing of plant species significant to the project. A brief annotation summarizes the article and includes any significant additional information that may not be adequately reflected in the above described fields.Many of these articles describe only one or two components of a total wetland restoration effort. Planning a project that is designed to restore a wetland system (including

  17. Structural and Functional Loss in Restored Wetland Ecosystems

    PubMed Central

    Moreno-Mateos, David; Power, Mary E.; Comín, Francisco A.; Yockteng, Roxana

    2012-01-01

    Wetlands are among the most productive and economically valuable ecosystems in the world. However, because of human activities, over half of the wetland ecosystems existing in North America, Europe, Australia, and China in the early 20th century have been lost. Ecological restoration to recover critical ecosystem services has been widely attempted, but the degree of actual recovery of ecosystem functioning and structure from these efforts remains uncertain. Our results from a meta-analysis of 621 wetland sites from throughout the world show that even a century after restoration efforts, biological structure (driven mostly by plant assemblages), and biogeochemical functioning (driven primarily by the storage of carbon in wetland soils), remained on average 26% and 23% lower, respectively, than in reference sites. Either recovery has been very slow, or postdisturbance systems have moved towards alternative states that differ from reference conditions. We also found significant effects of environmental settings on the rate and degree of recovery. Large wetland areas (>100 ha) and wetlands restored in warm (temperate and tropical) climates recovered more rapidly than smaller wetlands and wetlands restored in cold climates. Also, wetlands experiencing more (riverine and tidal) hydrologic exchange recovered more rapidly than depressional wetlands. Restoration performance is limited: current restoration practice fails to recover original levels of wetland ecosystem functions, even after many decades. If restoration as currently practiced is used to justify further degradation, global loss of wetland ecosystem function and structure will spread. PMID:22291572

  18. Geographically isolated wetlands: Rethinking a misnomer

    USGS Publications Warehouse

    Mushet, David M.; Calhoun, Aram J.K.; Alexander, Laurie C.; Cohen, Matthew J.; DeKeyser, Edward S.; Fowler, Laurie G.; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Walls, Susan

    2015-01-01

    We explore the category “geographically isolated wetlands” (GIWs; i.e., wetlands completely surrounded by uplands at the local scale) as used in the wetland sciences. As currently used, the GIW category (1) hampers scientific efforts by obscuring important hydrological and ecological differences among multiple wetland functional types, (2) aggregates wetlands in a manner not reflective of regulatory and management information needs, (3) implies wetlands so described are in some way “isolated,” an often incorrect implication, (4) is inconsistent with more broadly used and accepted concepts of “geographic isolation,” and (5) has injected unnecessary confusion into scientific investigations and discussions. Instead, we suggest other wetland classification systems offer more informative alternatives. For example, hydrogeomorphic (HGM) classes based on well-established scientific definitions account for wetland functional diversity thereby facilitating explorations into questions of connectivity without an a priori designation of “isolation.” Additionally, an HGM-type approach could be used in combination with terms reflective of current regulatory or policymaking needs. For those rare cases in which the condition of being surrounded by uplands is the relevant distinguishing characteristic, use of terminology that does not unnecessarily imply isolation (e.g., “upland embedded wetlands”) would help alleviate much confusion caused by the “geographically isolated wetlands” misnomer.

  19. Feedbacks stablizing wetland geometry on a pattened landscape

    NASA Astrophysics Data System (ADS)

    Dong, X.; Heffernan, J. B.; Murray, A. B.

    2017-12-01

    Karst morphology is highly varied across different climatic and geologic regions of the world. Big Cypress National Preserve in SW Florida, features regularly distributed wetland depressions, located on exposed limestone bedrock. In this study, we explored the development of wetland depressions over the past 10kyrs of landscape formation. Specifically, we are interested in (1) whether the wetland depressions on the landscape have reached equilibrium size, and (2) if so, what are feedback mechanisms that contributed to stabilizing these depressions. We hypothesized three stabilizing feedback mechanisms. HYP1: increased size of depressions reduces landscape hydrological connectivity, which resulted in reduced landscape capacity to export dissolution products, hence lower weathering rate. HYP2: expansion of depression area increases tree biomass within the depression, which increased average evapotranspiration (ET) within the dome. The greater difference of ET rate between depression and upland leads to a lower water table in the depression. As a result, more subsurface water, carrying dissolved calcium, flows from catchment to depression. With lower export capacity and more calcium moving into the depression zones, rate of calcite precipitation increases, which lowers net weathering rate. HYP3: increasingly thicker sediment cover in the wetland depression over time decreases chemical transport capacity. This lowers both transport of CO2 from shallower soil to bedrock and transport of dissolution products from bedrock to surface. Both of these processes reduce bedrock-weathering rate. We built a 3-D numerical simulation model that partitioned the relative importance of different mechanisms. Preliminary results show that (1) there is an equilibrium size for wetland depressions for both radius and depth dimension; (2) current depressions are formed by coalescence of several nearby small depressions during development; (3) the soil cover feedback (HYP3) is the major

  20. Estimating restorable wetland water storage at landscape scales

    EPA Science Inventory

    Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., the volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many...

  1. Correlation between aircraft MSS and LIDAR remotely sensed data on a forested wetland in South Carolina

    NASA Technical Reports Server (NTRS)

    Jensen, John R.; Hodgson, Michael E.; Mackey, Halkard E., Jr.; Krabill, William

    1987-01-01

    Wetlands in a portion of the Savannah River swamp forest, the Steel Creek Delta, were mapped using April 26, 1985 high-resolution aircraft multispectral scanner (MSS) data. Due to the complex spectral characteristics of the wetland vegetation, it was necessary to implement several techniques in the classification of the MSS imagery of the Steel Creek Delta. In particular, when performing unsupervised classification, an iterative cluster busting technique was used which simplified the cluster labeling process. In addition to the MSS data, light detecting and ranging (LIDAR) data were acquired by National Aeronautics and Space Administration (NASA) personnel along two flightlines over the Steel Creek Delta. These data were registered with the wetland classification map and correlated. Statistical analyses demonstrated that the laser derived canopy height information was significantly correlated with the Steel Creek Delta wetland classes encountered along the profiling transect of the LIDAR data.

  2. Conservation of Louisiana's coastal wetland forests

    Treesearch

    Jim L. Chambers; Richard F. Keim; William H. Conner; John W. Jr. Day; Stephen P. Faulkner; Emile S. Gardiner; Melinda s. Hughes; Sammy L. King; Kenneth W. McLeod; Craig A. Miller; J. Andrew Nyman; Gary P. Shaffer

    2006-01-01

    Large-scale efforts to protect and restore coastal wetlands and the concurrent renewal of forest harvesting in cypress-tupelo swamps have brought new attention to Louisiana's coastal wetland forests in recent years. Our understanding of these coastal wetland forests has been limited by inadequate data and the lack of a comprehensive review of existing information...

  3. Forested wetlands constructed for mitigation of destroyed natural wetlands

    USGS Publications Warehouse

    Perry, M.C.; Pugh, S.B.; Deller, A.S.

    1995-01-01

    Forested wetlands constructed for mitigation were evaluated at six sites in Maryland to determine the success of these areas for providing suitable wildlife habitat. Natural forested wetlands were used as reference sites. Initial mortality of planted woody shrubs and trees was high (avg. 55%) and mostly attributed to excessive moisture. The number of woody seedlings from natural regeneration was inversely proportional to the amount of grass cover on the site, which was planted for erosion control. The number of volunteer woody seedlings was also inversely proportional to the distance from adjacent natural forests. Preliminary data indicate that cost does not support use of transplants and that enhancement of soil with organic supplements, followed by widespread and heavy seeding of woody plants would be more efficient and effective. Wildlife use of areas measured by avian surveys and trapping of mammals, reptiles, and amphibians showed that in general wildlife species were more representative of open grassland areas than forested habitats. Natural succession of the sites probably will take at least 20-30 years before typical values and functions of forested wetlands are obtained.

  4. Wetlands ecology

    NASA Technical Reports Server (NTRS)

    Anderson, R. R. (Principal Investigator); Carter, V. L.; Mcginness, J. W., Jr.

    1972-01-01

    The author has identified the following significant results. The ERTS imagery analyzed provides approximately 2/3 coverage of the test site. Analysis was made using visual methods, density slicing, and multispectral analysis. Preliminary conclusions reached are that most, if not all, of the investigation objectives can be met. Saline and near-saline wetlands can be delineated from ERTS-1 images as the wetland-upland boundaries and land-water interface are clearly defined. Major plant species or communities such as Spartina alterniflora (high and low vigor forms), Spartina patens/Distichlis spicata, and Juncus roemarianus can be discriminated and spoil disposal areas identified.

  5. On leadership and success in professional wetland science

    EPA Science Inventory

    The Society of Wetland Scientists and the wetland profession are fortunate to have an abundance of leaders. These leaders respond to the needs of the Society for guidance and direction. They also consistently advance wetland science and improve the quality of wetland management...

  6. Hydrologic indices for nontidal wetlands

    USGS Publications Warehouse

    Lent, Robert M.; Weiskel, Peter K.; Lyford, Forest P.; Armstrong, David S.

    1997-01-01

    Two sets of hydrologic indices were developed to characterize the water-budget components of nontidal wetlands. The first set consisted of six water-budget indices for input and output variables, and the second set consisted of two hydrologic interaction indices derived from the water-budget indices. The indices then were applied to 19 wetlands with previously published water-budget data. Two trilinear diagrams for each wetland were constructed, one for the three input indices and another for the three output indices. These two trilinear diagrams then were combined with a central quadrangle to form a Piper-type diagram, with data points from the trilinear diagrams projected onto the quadrangle. The quadrangle then was divided into nine fields that summarized the water-budget information. Two quantitative "interaction indices" were calculated from two of the six water-budget indices (precipitation and evapotranspiration). They also were obtained graphically from the water-budget indices, which were first projected to the central quadrangle of a Piper-type diagram from the flanking trilinear plots. The first interaction index (l) defines the strength of interaction between a wetland and the surrounding ground- and surface-water system. The second interaction index (S) defines the nature of the interaction between the wetland and the surrounding ground- and surface-water system (source versus sink). Evaluation of these indices using published wetland water-budget data illustrates the usefulness of the technique.

  7. Depressional wetlands affect watershed hydrological, biogeochemical, and ecological functions.

    PubMed

    Evenson, Grey R; Golden, Heather E; Lane, Charles R; McLaughlin, Daniel L; D'Amico, Ellen

    2018-06-01

    Depressional wetlands of the extensive U.S. and Canadian Prairie Pothole Region afford numerous ecosystem processes that maintain healthy watershed functioning. However, these wetlands have been lost at a prodigious rate over past decades due to drainage for development, climate effects, and other causes. Options for management entities to protect the existing wetlands, and their functions, may focus on conserving wetlands based on spatial location vis-à-vis a floodplain or on size limitations (e.g., permitting smaller wetlands to be destroyed but not larger wetlands). Yet the effects of such management practices and the concomitant loss of depressional wetlands on watershed-scale hydrological, biogeochemical, and ecological functions are largely unknown. Using a hydrological model, we analyzed how different loss scenarios by wetland size and proximal location to the stream network affected watershed storage (i.e., inundation patterns and residence times), connectivity (i.e., streamflow contributing areas), and export (i.e., streamflow) in a large watershed in the Prairie Pothole Region of North Dakota, USA. Depressional wetlands store consequential amounts of precipitation and snowmelt. The loss of smaller depressional wetlands (<3.0 ha) substantially decreased landscape-scale inundation heterogeneity, total inundated area, and hydrological residence times. Larger wetlands act as hydrologic "gatekeepers," preventing surface runoff from reaching the stream network, and their modeled loss had a greater effect on streamflow due to changes in watershed connectivity and storage characteristics of larger wetlands. The wetland management scenario based on stream proximity (i.e., protecting wetlands 30 m and ~450 m from the stream) alone resulted in considerable landscape heterogeneity loss and decreased inundated area and residence times. With more snowmelt and precipitation available for runoff with wetland losses, contributing area increased across all loss scenarios

  8. High-resolution mapping of wetland vegetation biomass and distribution with L-band radar in southeastern coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Thomas, N. M.; Simard, M.; Byrd, K. B.; Windham-Myers, L.; Castaneda, E.; Twilley, R.; Bevington, A. E.; Christensen, A.

    2017-12-01

    Louisiana coastal wetlands account for approximately one third (37%) of the estuarine wetland vegetation in the conterminous United States, yet the spatial distribution of their extent and aboveground biomass (AGB) is not well defined. This knowledge is critical for the accurate completion of national greenhouse gas (GHG) inventories. We generated high-resolution baselines maps of wetland vegetation extent and biomass at the Atchafalaya and Terrebonne basins in coastal Louisiana using a multi-sensor approach. Optical satellite data was used within an object-oriented machine learning approach to classify the structure of wetland vegetation types, offering increased detail over currently available land cover maps that do not distinguish between wetland vegetation types nor account for non-permanent seasonal changes in extent. We mapped 1871 km2 of wetlands during a period of peak biomass in September 2015 comprised of flooded forested wetlands and leaf, grass and emergent herbaceous marshes. The distribution of aboveground biomass (AGB) was mapped using JPL L-band Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). Relationships between time-series radar imagery and field data collected in May 2015 and September 2016 were derived to estimate AGB at the Wax Lake and Atchafalaya deltas. Differences in seasonal biomass estimates reflect the increased AGB in September over May, concurrent with periods of peak biomass and the onset of the vegetation growing season, respectively. This method provides a tractable means of mapping and monitoring biomass of wetland vegetation types with L-band radar, in a region threatened with wetland loss under projections of increasing sea-level rise and terrestrial subsidence. Through this, we demonstrate a method that is able to satisfy the IPCC 2013 Wetlands Supplement requirement for Tier 2/Tier 3 reporting of coastal wetland GHG inventories.

  9. 7 CFR 1467.9 - Wetlands Reserve Enhancement Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Wetlands Reserve Enhancement Program. 1467.9 Section... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS WETLANDS RESERVE PROGRAM § 1467.9 Wetlands Reserve Enhancement Program. (a) Wetlands Reserve Enhancement Program (WREP). (1) The...

  10. Groundwater Flow Through a Constructed Treatment Wetland

    DTIC Science & Technology

    2002-03-01

    sediments or has the water found preferential flow paths? (2) Does the behavior of groundwater flow change with varying loading rates or environmental...surface of the wetland. Water flows through a subsurface flow wetland in a similar fashion as groundwater flows through an aquifer. The concept is...circuiting of the wetland media. Groundwater Flow Various physical properties influence the flow of water through soil. In wetlands, the type of soil

  11. Radioiodine concentrated in a wetland.

    PubMed

    Kaplan, Daniel I; Zhang, Saijin; Roberts, Kimberly A; Schwehr, Kathy; Xu, Chen; Creeley, Danielle; Ho, Yi-Fang; Li, Hsiu-Ping; Yeager, Chris M; Santschi, Peter H

    2014-05-01

    Most subsurface environmental radioactivity contamination is expected to eventually resurface in riparian zones, or wetlands. There are a number of extremely sharp biogeochemical interfaces in wetlands that could alter radionuclide speciation and promote accumulation. The objective of this study was to determine if a wetland concentrated (129)I emanating from a former waste disposal basin located on the Savannah River Site (SRS) in South Carolina, USA. Additionally, studies were conducted to evaluate the role of sediment organic matter in immobilizing the radioiodine. Groundwater samples were collected along a 0.7-km transect away from the seepage basin and in the downstream wetlands. The samples were analyzed for (129)I speciation (iodide (I(-)), iodate (IO3(-)), and organo-I). Groundwater (129)I concentrations in many locations in the wetlands (as high as 59.9 Bq L(-1)(129)I) were greatly elevated with respect to the source term (5.9 Bq L(-1)(129)I). (129)I concentration profiles in sediment cores were closely correlated to organic matter concentrations (r(2) = 0.992; n = 5). While the sediment organic matter promoted the uptake of (129)I to the wetland sediment, it also promoted the formation of a soluble organic fraction: 74% of the wetland groundwater (129)I could pass through a 1 kDa (<1 nm) membrane and only 26% of the (129)I was colloidal. Of that fraction that could pass through a 1 kDa membrane, 39% of the (129)I was organo-I. Therefore, while wetlands may be highly effective at immobilizing aqueous (129)I, they may also promote the formation of a low-molecular-weight organic species that does not partition to sediments. This study provides a rare example of radioactivity concentrations increasing rather than decreasing as it migrates from a point source and brings into question assumptions in risk models regarding continuous dilution of released contaminants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Regional lists of plant species that occur in wetlands: data base user's guide

    USGS Publications Warehouse

    Reed, Porter B.; Auble, Gregor T.; Muhlenbruck, Jill E.; Manci, Karen M.

    1989-01-01

    The Data Base List of Plant Species that Occur in Wetlands (LIST) currently contains records for 6,728 plant species. Each record provides information on nomenclature, plant characteristics and lifeforms, distribution, and frequency of occurrence in wetlands. The List of Plant Species that Occur in Wetlands, developed to supplement the U.S. Fish and Wildlife Service's Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al. 1979), underwent an intensive review by field botanists across the country. This review was coordinated by national and regional interagency wetland plant list review panels composed of representatives from the U. S. Fish and Wildlife Service, U. S. Army Corps of Engineers, Soil Conservation Service, and the Environmental Protection Agency. Initial and updated versions of the Data Base List of Plant Species that Occur in Wetlands are available in hardcopy (Reed 1986, 1988). Regional lists are available as U.S. Fish and Wildlife Service Biological Report Series 88(26.126.13). State lists are available as National Ecology Research Center Report Series 88(18.01-18.50). The computerized data base tracks and documents indicator assignments made by regional interagency review panels and facilitates generation of reports. This user's guide describes the format and contents of the LIST Data Base. The Data Base is available on 5-1/4" floppy disks in ASCII format for use with a data base management system on an IBM PC/XT/AT compatible computer. The LIST Data Base was developed using the QUICKTEXT Data Base Management System (Osborn and Strong 1984). Use of QUICKTEXT with the LIST Data Base is strongly recommended. Instructions for loading LIST into QUICKTEXT are included in this user's guide. Other data base management systems capable of handling variable length fields can be used by individuals familiar with these software packages. LIST distribution disks are available for 13 regions (Table 1). QUICKTEXT (course QT100

  13. WETLAND MONITORING AND ASSESSMENT TO SUPPORT DECISION MAKING: A VISION FOR THE FUTURE

    EPA Science Inventory

    The recent report of the National Research Council on wetland mitigation again highlighted the need for regional watershed evaluation as a context from which to determine the efficacy of past regulatory decisions and to improve the effectiveness of future actions. Collaborative ...

  14. Wetlands.

    ERIC Educational Resources Information Center

    Nelson, Patricia L.

    1986-01-01

    Suggests studying New York's wetlands, both in the classroom and in the field, to illustrate ecological concepts of diversity, succession, and adaptation and to learn about their importance in controlling flooding, erosion, and pollution. (NEC)

  15. Characterizing spatial and temporal variability in methane gas-flux dynamics of subtropical wetlands in the Big Cypress National Preserve, Florida

    NASA Astrophysics Data System (ADS)

    Sirianni, M.; Comas, X.; Shoemaker, B.

    2017-12-01

    Wetland methane emissions are highly variable both in space and time, and are controlled by changes in certain biogeochemical controls (i.e. organic matter availability; redox potential) and/or other environmental factors (i.e. soil temperature; water level). Consequently, hot spots (areas with disproportionally high emissions) may develop where biogeochemical and environmental conditions are especially conducive for enhancing certain microbial processes such as methanogenesis. The Big Cypress National Preserve is a collection of subtropical wetlands in southwestern Florida, including extensive forested (cypress, pine, hardwood) and sawgrass ecosystems that dry and flood annually in response to rainfall. In addition to rainfall, hydroperiod, fire regime, elevation above mean sea level, dominant vegetation type and underlying geological controls contribute to the development and evolution of organic and calcitic soils found throughout the Preserve. Currently, the U.S. Geological Survey employs eddy covariance methods within the Preserve to quantify carbon and methane exchanges over several spatially extensive vegetation communities. While eddy covariance towers are a convenient tool for measuring gas exchanges at the ecosystem scale, their spatially extensive footprint (hundreds of meters) may mask smaller scale spatial variabilities that may be conducive to the development of hot spots. Similarly, temporal resolution (i.e. sampling effort) at scales smaller that the eddy covariance measurement footprint is important since low resolution data may overlook rapid emission events and the temporal variability of discrete hot spots. In this work, we intend to estimate small-scale contributions of organic and calcitic soils to gas exchanges measured by the eddy covariance towers using a unique combination of ground penetrating radar (GPR), capacitance probes, gas traps, and time-lapse photography. By using an array of methods that vary in spatio-temporal resolution, we

  16. ERTS-1 investigation of wetlands ecology

    NASA Technical Reports Server (NTRS)

    Anderson, R. R. (Principal Investigator); Carter, V.; Mcginness, J.

    1975-01-01

    The author has identified the following significant results. Data from aircraft can be used for large scale mapping where detailed information is necessary, whereas Landsat-1 data are useful for rapid mapping of gross wetland boundaries and vegetative composition and assessment of seasonal change plant community composition such as high and low growth forms of Spartina alterniflora, Juncus roemarianus, and Spartina cynosuroides. Spoil disposal and wetland ditching activities may also be defined. Wetland interpretation is affected by tidal stage; drainage patterns are more easily detected at periods of low water. Species discrimination is easier at periods of high water during the growing season; upper wetland boundaries in fresh water tidal marshes are more easily delineated during the winter months when marsh vegetation is largely dead or dormant. Fresh water discharges from coastal streams may be inferred from the species composition of contiguous wetlands.

  17. A Study of Natural and Restored Wetland Hydrology

    USGS Publications Warehouse

    Bayless, E. Randall; Arihood, Leslie D.; Sidle, William C.; Pavlovic, Noel B.

    1999-01-01

    The U.S. Geological Survey and the U.S. Environmental Protection Agency are jointly studying the hydrology of a long-existing natural wetland and a recently restored wetland in the Kankakee River Valley in northwestern Indiana. In characterizing the two wetlands, project investigators are testing innovative methods to identify the analytical tools best suited for evaluating the success of wetland restoration. Investigators also are examining and comparing the relations between hydrology and restored wetland vegetation.

  18. Baryon interactions in lattice QCD: the direct method vs. the HAL QCD potential method

    NASA Astrophysics Data System (ADS)

    Iritani, T.; HAL QCD Collaboration

    We make a detailed comparison between the direct method and the HAL QCD potential method for the baryon-baryon interactions, taking the $\\Xi\\Xi$ system at $m_\\pi= 0.51$ GeV in 2+1 flavor QCD and using both smeared and wall quark sources. The energy shift $\\Delta E_\\mathrm{eff}(t)$ in the direct method shows the strong dependence on the choice of quark source operators, which means that the results with either (or both) source are false. The time-dependent HAL QCD method, on the other hand, gives the quark source independent $\\Xi\\Xi$ potential, thanks to the derivative expansion of the potential, which absorbs the source dependence to the next leading order correction. The HAL QCD potential predicts the absence of the bound state in the $\\Xi\\Xi$($^1$S$_0$) channel at $m_\\pi= 0.51$ GeV, which is also confirmed by the volume dependence of finite volume energy from the potential. We also demonstrate that the origin of the fake plateau in the effective energy shift $\\Delta E_\\mathrm{eff}(t)$ at $t \\sim 1$ fm can be clarified by a few low-lying eigenfunctions and eigenvalues on the finite volume derived from the HAL QCD potential, which implies that the ground state saturation of $\\Xi\\Xi$($^1$S$_0$) requires $t \\sim 10$ fm in the direct method for the smeared source on $(4.3 \\ \\mathrm{fm})^3$ lattice, while the HAL QCD method does not suffer from such a problem.

  19. North Atlantic Coastal Tidal Wetlands

    EPA Science Inventory

    The book chapter provides college instructors, researchers, graduate and advanced undergraduate students, and environmental consultants interested in wetlands with foundation information on the ecology and conservation concerns of North Atlantic coastal wetlands. The book c...

  20. Are wetlands the reservoir for avian cholera?

    USGS Publications Warehouse

    Samuel, M.D.; Shadduck, D.J.; Goldberg, Diana R.

    2004-01-01

    Wetlands have long been suspected to be an important reservoir for Pasteurella multocida and therefore the likely source of avian cholera outbreaks. During the fall of 1995a??98 we collected sediment and water samples from 44 wetlands where avian cholera epizootics occurred the previous winter or spring. We attempted to isolate P. multocida in sediment and surface water samples from 10 locations distributed throughout each wetland. We were not able to isolate P. multocida from any of the 440 water and 440 sediment samples collected from these wetlands. In contrast, during other investigations of avian cholera we isolated P. multocida from 20 of 44 wetlands, including 7% of the water and 4.5% of the sediment samples collected during or shortly following epizootic events. Our results indicate that wetlands are an unlikely reservoir for the bacteria that causes avian cholera.

  1. Modelling of seasonal dynamics of Wetland-Groundwater flow interaction in the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Ali, Melkamu; Nussbaumer, Raphaël; Ireson, Andrew; Keim, Dawn

    2015-04-01

    Wetland-shallow groundwater interaction is studied at the St. Denis National Wildlife Area in Saskatchewan, Canada, located within the northern glaciated prairies of North America. Ponds in the Canadian Prairies are intermittently connected by fill-spill processes in the spring and growing season of some wetter years. The contribution of the ponds and wetlands to groundwater is still a significant research challenge. The objective of this study is to evaluate model's ability to reproduce observed effects of groundwater-wetland interactions including seasonal pattern of shallow groundwater table, intended flow direction and to quantify the depression induced infiltration from the wetland to the surrounding uplands. The integrated surface-wetland-shallow groundwater processes and the changes in land-energy and water balances caused by the flow interaction are simulated using ParFlow-CLM at a small watershed of 1km2 containing both permanent and seasonal wetland complexes. We compare simulated water table depth with piezometers reading monitored by level loggers at the watershed. We also present the strengths and limitations of the model in reproducing observed behaviour of the groundwater table response to the spring snowmelt and summer rainfall. Simulations indicate that the shallow water table at the uphill recovers quickly after major rainfall events in early summer that generates lateral flow to the pond. In late summer, the wetland supplies water to the surrounding upland when the evapotranspiration is higher than the precipitation in which more water from the root zone is up taken by plants. Results also show that Parflow-CLM is able to reasonably simulate the water table patterns response to summer rainfall, while it is insufficient to reproduce the spring snowmelt infiltration which is the most dominant hydrological process in the Prairies.

  2. Factors affecting biological recovery of wetland restorations

    DOT National Transportation Integrated Search

    1999-06-01

    This report describes a long-term study to monitor and evaluate the ecosystem recovery of seven wetland restorations in south central Minnesota. The study looks at the impact of planting on wetland restoration success in inland wetlands and develops ...

  3. 10 CFR 1022.11 - Floodplain or wetland determination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Floodplain or wetland determination. 1022.11 Section 1022.11 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS Procedures for Floodplain and Wetland Reviews § 1022.11 Floodplain or wetland determination. (a) Concurrent with its review...

  4. 10 CFR 1022.11 - Floodplain or wetland determination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Floodplain or wetland determination. 1022.11 Section 1022.11 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS Procedures for Floodplain and Wetland Reviews § 1022.11 Floodplain or wetland determination. (a) Concurrent with its review...

  5. 10 CFR 1022.11 - Floodplain or wetland determination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Floodplain or wetland determination. 1022.11 Section 1022.11 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS Procedures for Floodplain and Wetland Reviews § 1022.11 Floodplain or wetland determination. (a) Concurrent with its review...

  6. 10 CFR 1022.11 - Floodplain or wetland determination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Floodplain or wetland determination. 1022.11 Section 1022.11 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) COMPLIANCE WITH FLOODPLAIN AND WETLAND ENVIRONMENTAL REVIEW REQUIREMENTS Procedures for Floodplain and Wetland Reviews § 1022.11 Floodplain or wetland determination. (a) Concurrent with its review...

  7. Aquatic macrophyte diversity of the Pantanal wetland and upper basin.

    PubMed

    Pott, V J; Pott, A; Lima, L C P; Moreira, S N; Oliveira, A K M

    2011-04-01

    This is a short review of the state of the art concerning diversity of aquatic macrophytes and the main aquatic vegetation types in the Brazilian Pantanal wetland and upper watershed. There are ca. 280 species of aquatic macrophytes on the Pantanal floodplain, with scarce endemism. On the upper watershed, Cerrado wetlands (veredas) and limestone springs have a distinct flora from the Pantanal, with twice the species richness. As a representative case of aquatic habitats influenced by river flood, some primary data are presented for the Pantanal Matogrossense National Park and associated Acurizal Preserve, analysing the floristic similarity among aquatic vegetation types. We comment on problems of conservation and observe that Panicum elephantipes Nees is one of the few natives to compete with the invasive Urochloa arrecta (Hack. ex T. Durand & Schinz) Morrone & Zuloaga.

  8. AmeriFlux US-Myb Mayberry Wetland

    DOE Data Explorer

    Baldocchi, Dennis [University of California, Berkeley

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Myb Mayberry Wetland. Site Description - The Mayberry Wetland site is a 300-acre restored wetland on Sherman Island, north of Mayberry Slough, that is on the property of Mayberry Farms and managed by the California Department of Water Resources and Ducks Unlimited. During Summer 2010, the site was restored from a pepperweed and annual grassland pasture to a wetland through a project managed by Bryan Brock (bpbrock@water.ca.gov). A flux tower equipped to analyze energy, H2O, CO2, and CH4 fluxes was installed on October 14, 2010. At the time of installation, flooding of the site had only recently begun after extensive reconstruction of the wetland bathymetry conducted during the summer. Although some small patches of tules remain within the site, the site is a patchwork of deep and shallow open water with some remaining vegetation. Currently, there is an intention to flood-to-kill the current pepperweed and upland grasses and let the wetland plants propagate naturally, so no additional plant manipulation will occur.

  9. 75 FR 18146 - Wetlands Reserve Enhancement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Wetlands Reserve Enhancement Program AGENCY... assistance will be made available in fiscal year (FY) 2010 for the Wetlands Reserve Enhancement Program (WREP... partners to help enhance conservation outcomes on wetlands and adjacent lands. WREP targets and leverages...

  10. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions of... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR...

  11. Artificial wetlands to augment use by estuarine birds

    USGS Publications Warehouse

    Zedler, Joy B.; Kus, Barbara E.

    1996-01-01

    The value of natural wetlands to bird populations is well-recognized, and declines in waterfowl numbers are often attributed to losses in wetland area. if the destruction of wetland reduces bird populations, then adding wetland habitats might improve the situation. This idea was tested in Tijuana Estuary in the late 1980s.

  12. 76 FR 22785 - Wetland Conservation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... Wetland Conservation AGENCY: Office of the Secretary, United States Department of Agriculture (USDA..., U.S. Department of Agriculture, Natural Resources Conservation Service, Room 6819, South Building, P... recordkeeping requirements subject to the Paperwork Reduction Act. Background Existing wetland conservation...

  13. Wetlands Restoration Definitions and Distinctions

    EPA Pesticide Factsheets

    Ecological restoration is a valuable endeavor that has proven very difficult to define. The term indicates that degraded and destroyed natural wetland systems will be reestablished to sites where they once existed. But, what wetland ecosystems are we talki

  14. Changes in Landscape Pattern of Wetland around Hangzhou Bay

    NASA Astrophysics Data System (ADS)

    Lin, Wenpeng; Li, Yuan; Xu, Dan; Zeng, Ying

    2018-04-01

    Hangzhou Bay is an important estuarial coastal wetland, which offers a large number of land and ecological resources. It plays a significant role in the sustainable development of resources, environment and economy. In this paper, based on the remote sensing images in 1996, 2005 and 2013, we extracted the coastal wetland data and analyzed the wetland landscape pattern of the Hangzhou Bay in the past 20 years. The results show that: (1) the area of coastal wetland is heading downwards in the recent decades. Paddy field and the coastal wetland diminish greatly. (2) the single dynamic degree of wetland of the Hangzhou Bay displays that paddy fields and coastal wetlands are shrinking, but lakes, reservoirs and ponds are constantly expanding. (3) the wetland landscape pattern index shows that total patch area of the coastal wetland and paddy fields have gradually diminished. The Shannon diversity index, the Shannon evenness index as well as the landscape separation index of the coastal wetlands in the Hangzhou Bay increase steadily. The landscape pattern in the study area has shown a trend of high fragmentation, dominance decreases, but some dominant landscape still exist in this region. (4) Urbanization and natural factors lead to the reduction of wetland area. Besides the pressure of population is a major threat to the wetland. The study will provide scientific basis for long-term planning for this region.

  15. Critical Questions in Wetland Science

    EPA Science Inventory

    Wetlands are transitional between terrestrial and aquatic environments. As such, they perform important ecological functions (e.g., nutrient cycling, flood abatement) providing a variety of ecosystem services on which humans rely. Wetlands are also one of the world’s most e...

  16. Foreword: function, classification and management of Asian wetlands

    USGS Publications Warehouse

    Turnipseed, D. Phil; Middleton, Beth A.

    2014-01-01

    Asian wetland conservation is critical for future environmental protection in the region, but these wetlands are understudied. In particular, there is a lack of research studies published in English due to the limited access of Asian researchers to western scientific journals. This special feature of Wetlands showcases primary research conducted in Asian wetlands and was sponsored by various agencies of the U.S. and Chinese governments including the U.S. Geological Survey, U.S. Department of State, and The State Forestry Administration of the People’s Republic of China. The featured articles should be of great value to wetland scientists, managers and policy-makers with an interest in the conservation of Asian wetlands.

  17. Responses to water depth and clipping of twenty−three plant species in an Indian monsoonal wetland

    USGS Publications Warehouse

    Middleton, Beth A.; van der Valk, Arnold; Davis, Craig B.

    2015-01-01

    Responses of species to disturbances give insights into how species might respond to future wetland changes. In this study, species of monsoonal wetlands belonging to various functional types (graminoid and non−graminoid emergents, submersed aquatic, floating−leaved aquatic) varied in their growth responses to water depth and harvesting. We tested the effects of water depth (moist soil, flooded) and clipping (unclipped, and clipped) on the biomass and longevity of twenty−three dominant plant species of monsoonal wetlands in the Keoladeo National Park, India in a controlled experiment. With respect to total biomass and survival, six species responded positively to flooding and twelve species responded negatively to clipping. Responses to flooding and clipping, however, sometimes interacted. Individualistic responses of species to water levels and clipping regimes were apparent; species within a functional group did not always respond similarly. Therefore, detailed information on the individualistic responses of species may be needed to predict the vegetation composition of post−disturbance wetlands. In particular, as demands for fresh water increase around the world, studies of life history constraints and responses to hydrological changes will aid wetland managers in developing strategies to conserve biodiversity.

  18. Ecosystem services: developing sustainable management paradigms based on wetland functions and processes

    USGS Publications Warehouse

    Euliss, Ned H.; Mushet, David M.; Smith, Loren M.; Conner, William H.; Burkett, Virginia R.; Wilcox, Douglas A.; Hester, Mark W.; Zheng, Haochi

    2013-01-01

    In the late nineteenth century and twentieth century, there was considerable interest and activity to develop the United States for agricultural, mining, and many other purposes to improve the quality of human life standards and prosperity. Most of the work to support this development was focused along disciplinary lines with little attention focused on ecosystem service trade-offs or synergisms, especially those that transcended boundaries of scientific disciplines and specific interest groups. Concurrently, human population size has increased substantially and its use of ecosystem services has increased more than five-fold over just the past century. Consequently, the contemporary landscape has been highly modified for human use, leaving behind a fragmented landscape where basic ecosystem functions and processes have been broadly altered. Over this period, climate change also interacted with other anthropogenic effects, resulting in modern environmental problems having a complexity that is without historical precedent. The challenge before the scientific community is to develop new science paradigms that integrate relevant scientific disciplines to properly frame and evaluate modern environmental problems in a systems-type approach to better inform the decision-making process. Wetland science is a relatively new discipline that grew out of the conservation movement of the early twentieth century. In the United States, most of the conservation attention in the earlier days was on wildlife, but a growing human awareness of the importance of the environment led to the passage of the National Environmental Policy Act in 1969. Concurrently, there was a broadening interest in conservation science, and the scientific study of wetlands gradually gained acceptance as a scientific discipline. Pioneering wetland scientists became formally organized when they formed The Society of Wetland Scientists in 1980 and established a publication outlet to share wetland research

  19. Characterization and Placement of Wetlands for Integrated ...

    EPA Pesticide Factsheets

    Constructed wetlands have been recognized as an efficient and cost-effective conservation practice to protect water quality through reducing the transport of sediments and nutrients from upstream croplands to downstream water bodies. The challenge resides in targeting the strategic location of wetlands within agricultural watersheds to maximize the reduction in nutrient loads while minimizing their impact on crop production. Furthermore, agricultural watersheds involve complex interrelated processes requiring a systems approach to evaluate the inherent relationships between wetlands and multiple sediment/nutrient sources (sheet, rill, ephemeral gully, channels) and other conservation practices (filter strips). This study describes new capabilities of the USDA’s Annualized Agricultural Non-Point Source pollutant loading model, AnnAGNPS. A developed AnnAGNPS GIS-based wetland component, AgWet, is introduced to identify potential sites and characterize individual artificial or natural wetlands at a watershed scale. AgWet provides a simplified, semi-automated, and spatially distributed approach to quantitatively evaluate wetlands as potential conservation management alternatives. AgWet is integrated with other AnnAGNPS components providing seamless capabilities of estimating the potential sediment/nutrient reduction of individual wetlands. This technology provides conservationists the capability for improved management of watershed systems and support for nutrient

  20. Effect of wetland management: are lentic wetlands refuges of plant-species diversity in the Andean–Orinoco Piedmont of Colombia?

    PubMed Central

    Murillo-Pacheco, Johanna I.; Rös, Matthias; Castro-Lima, Francisco; Verdú, José R.; López-Iborra, Germán M.

    2016-01-01

    Accelerated degradation of the wetlands and fragmentation of surrounding vegetation in the Andean–Orinoco Piedmont are the main threats to diversity and ecological integrity of these ecosystems; however, information on this topic is of limited availability. In this region, we evaluated the value of 37 lentic wetlands as reservoirs of woody and aquatic plants and analyzed diversity and changes in species composition within and among groups defined according to management given by: (1) type (swamps, heronries, rice fields, semi-natural lakes, constructed lakes and fish farms) and (2) origins (natural, mixed and artificial). A total of 506 plant species were recorded: 80% woody and 20% aquatic. Of these, 411 species (81%) were considered species typical of the area (Meta Piedmont distribution). Diversity patterns seem to be driven by high landscape heterogeneity and wetland management. The fish farms presented the highest diversity of woody plants, while swamps ranked highest for aquatic plant diversity. Regarding wetland origin, the artificial systems were the most diverse, but natural wetlands presented the highest diversity of typical species and can therefore be considered representative ecosystems at the regional scale. Our results suggest that lentic wetlands act as refuges for native vegetation of Meta Piedmont forest, hosting 55% of the woody of Piedmont species and 29% of the aquatic species of Orinoco basin. The wetlands showed a high species turnover and the results indicated that small wetlands (mean ± SD: size = 11 ± 18.7 ha), with a small area of surrounding forest (10 ± 8.6 ha) supported high local and regional plant diversity. To ensure long-term conservation of lentic wetlands, it is necessary to develop management and conservation strategies that take both natural and created wetlands into account. PMID:27602263

  1. Effect of wetland management: are lentic wetlands refuges of plant-species diversity in the Andean-Orinoco Piedmont of Colombia?

    PubMed

    Murillo-Pacheco, Johanna I; Rös, Matthias; Escobar, Federico; Castro-Lima, Francisco; Verdú, José R; López-Iborra, Germán M

    2016-01-01

    Accelerated degradation of the wetlands and fragmentation of surrounding vegetation in the Andean-Orinoco Piedmont are the main threats to diversity and ecological integrity of these ecosystems; however, information on this topic is of limited availability. In this region, we evaluated the value of 37 lentic wetlands as reservoirs of woody and aquatic plants and analyzed diversity and changes in species composition within and among groups defined according to management given by: (1) type (swamps, heronries, rice fields, semi-natural lakes, constructed lakes and fish farms) and (2) origins (natural, mixed and artificial). A total of 506 plant species were recorded: 80% woody and 20% aquatic. Of these, 411 species (81%) were considered species typical of the area (Meta Piedmont distribution). Diversity patterns seem to be driven by high landscape heterogeneity and wetland management. The fish farms presented the highest diversity of woody plants, while swamps ranked highest for aquatic plant diversity. Regarding wetland origin, the artificial systems were the most diverse, but natural wetlands presented the highest diversity of typical species and can therefore be considered representative ecosystems at the regional scale. Our results suggest that lentic wetlands act as refuges for native vegetation of Meta Piedmont forest, hosting 55% of the woody of Piedmont species and 29% of the aquatic species of Orinoco basin. The wetlands showed a high species turnover and the results indicated that small wetlands (mean ± SD: size = 11 ± 18.7 ha), with a small area of surrounding forest (10 ± 8.6 ha) supported high local and regional plant diversity. To ensure long-term conservation of lentic wetlands, it is necessary to develop management and conservation strategies that take both natural and created wetlands into account.

  2. Effects of energy development on wetland plants and macroinvertebrate communities in Prairie Pothole Region wetlands

    USGS Publications Warehouse

    Preston, Todd M.; Ray, Andrew M.

    2016-01-01

    Energy production in the Williston Basin, USA, results in the coproduction of highly saline, sodium chloride-dominated water (brine). The Prairie Pothole Region (PPR) overlies the northeastern portion of the Williston Basin. Although PPR wetlands span a range of salinity, the dominant salt is sodium sulfate, and salinities are much lower than brine. Introduction of brine to wetlands can result in pronounced water-quality changes; however, the ecological effects of such contamination are poorly understood. We examined the effects of brine contamination on primary productivity, emergent macrophyte tissue chemistry, and invertebrate communities from 10 wetlands in the PPR. Based on a recognized Contamination Index (CI) used to identify brine contamination in the PPR, water-quality samples indicated that six wetlands were uncontaminated while four were contaminated. Across this gradient, we observed a significant decrease in above-ground biomass and a significant increase in tissue chloride concentrations of hardstem bulrush (Schoenoplectus acutus) with increased CI values. Additionally, a significant decrease in macroinvertebrate taxonomic richness with increased CI values was observed. These findings provide needed insight on the biological effects of brine contamination on PPR wetlands.

  3. Studies of Louisiana's Deltas and Wetlands using SAR

    NASA Astrophysics Data System (ADS)

    Jones, C. E.

    2017-12-01

    Sustainable coastal environments exist in delicate balance between subsidence, erosion, and sea level rise on one hand and accretion of sediment and retention of decomposing organic matter on the other. In this talk we present results from a series of studies using an airborne L-band SAR (UAVSAR) to measure changing conditions in the Mississippi River Delta and coastal wetlands of Louisiana. Change within the Mississippi River delta (MRD), which is a highly engineered environment, is contrasted to those in the Wax Lake Delta, a small, naturally evolving delta located to the west of the current-day lobe of the MRD. The UAVSAR studies provide evidence that in the MRD subsidence and erosion related to human activities are increasing risk of flooding, submergence, and land loss. These are not seen in the Wax Lake Delta, where new land is forming. We evaluate geomorphic and hydrologic changes In the Wax Lake Delta and wetlands hydrologically connected to the Wax Lake Outlet canal that are apparent on the timescales of the UAVSAR data set, which consists of both near-yearly acquisitions (2009-2016) and several series of repeat acquisitions in 2015 and 2016 capturing conditions across a tidal cycle. Using the yearly data, we observe the evolution of subaqueous channels and crevasses in the delta and changes in distributary channels within the wetlands. We use water level change derived from InSAR applied to the rapid repeat data acquired during different stages of a tidal cycle to study the natural pattern of water flux within the delta and the coastal wetlands. The studies, results, and plans for future work will be presented. This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under contracts with the California Dept. of Water Resources and with the National Aeronautics and Space Administration.

  4. Options for water-level control in developed wetlands

    USGS Publications Warehouse

    Kelley, J. R.; Laubhan, M. K.; Reid, F. A.; Wortham, J. S.; Fredrickson, L. H.

    1993-01-01

    Wetland habitats in the United States currently are lost at a rate of 260,000 acres/year (105,218 ha/year). Consequently, water birds concentrate in fewer and smaller areas. Such concentrations may deplete food supplies and influence behavior, physiology, and survival. Continued losses increase the importance of sound management of the remaining wetlands because water birds depend on them. Human activities modified the natural hydrology of most remaining wetlands in the conterminous United States, and such hydrologic alterations frequently reduce wetland productivity. The restoration of original wetland functions and productivity often requires the development of water distribution and discharge systems to emulate natural hydrologic regimes. Construction of levees and correct placement of control structures and water-delivery and water-discharge systems are necessary to (1) create soil and water conditions for the germination of desirable plants, (2) control nuisance vegetation, (3) promote the production of invertebrates, and (4) make foods available for wildlife that depends of wetlands (Leaflets 13.2.1 and 13.4.6). This paper provides basic guidelines for the design of wetlands that benefit wildlife. If biological considerations are not incorporated into such designs, the capability of managing wetlands for water birds is reduced and costs often are greater. Although we address the development of palustrine wetlands in migration and wintering areas, many of the discussed principles are applicable to the development of other wetland types and in other locations.

  5. Winter Tourism and mountain wetland management and restoration

    NASA Astrophysics Data System (ADS)

    Gaucherand, S.; Mauz, I.

    2012-04-01

    The degradation and loss of wetlands is more rapid than that of other ecosystems (MEA 2005). In mountains area, wetlands are small and scattered and particularly sensitive to global change. The development of ski resorts can lead to the destruction or the deterioration of mountain wetlands because of hydrologic interferences, fill in, soil compression and erosion, etc. Since 2008, we have studied a high altitude wetland complex in the ski resort of Val Thorens. The aim of our study was to identify the impacts of mountain tourism development (winter and summer tourism) on wetland functioning and to produce an action plan designed to protect, rehabilitate and value the wetlands. We chose an approach based on multi-stakeholder participatory process at every stage, from information gathering to technical choices and monitoring. In this presentation, we show how such an approach can efficiently improve the consideration of wetlands in the development of a ski resort, but also the bottlenecks that need to be overcome. We will also discuss some of the ecological engineering techniques used to rehabilitate or restore high altitude degraded wetlands. Finally, this work has contributed to the creation in 2012 of a mountain wetland observatory coordinated by the conservatory of Haute-Savoie. The objective of this observatory is to estimate ecosystem services furnished by mountain wetlands and to find restoration strategies adapted to the local socio-economical context (mountain agriculture and mountain tourism).

  6. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands.

    PubMed

    Lee, Se-Yeun; Ryan, Maureen E; Hamlet, Alan F; Palen, Wendy J; Lawler, Joshua J; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916-2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce

  7. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands

    PubMed Central

    Hamlet, Alan F.; Palen, Wendy J.; Lawler, Joshua J.; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916–2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce

  8. Optimizing water depth for wetland-dependent wildlife could increase wetland restoration success, water efficiency, and water security

    USGS Publications Warehouse

    Nadeau, Christopher P.; Conway, Courtney J.

    2015-01-01

    Securing water for wetland restoration efforts will be increasingly difficult as human populations demand more water and climate change alters the hydrologic cycle. Minimizing water use at a restoration site could help justify water use to competing users, thereby increasing future water security. Moreover, optimizing water depth for focal species will increase habitat quality and the probability that the restoration is successful. We developed and validated spatial habitat models to optimize water depth within wetland restoration projects along the lower Colorado River intended to benefit California black rails (Laterallus jamaicensis coturniculus). We observed a 358% increase in the number of black rails detected in the year after manipulating water depth to maximize the amount of predicted black rail habitat in two wetlands. The number of black rail detections in our restoration sites was similar to those at our reference site. Implementing the optimal water depth in each wetland decreased water use while simultaneously increasing habitat suitability for the focal species. Our results also provide experimental confirmation of past descriptive accounts of black rail habitat preferences and provide explicit water depth recommendations for future wetland restoration efforts for this species of conservation concern; maintain surface water depths between saturated soil and 100 mm. Efforts to optimize water depth in restored wetlands around the world would likely increase the success of wetland restorations for the focal species while simultaneously minimizing and justifying water use.

  9. Using dual classifications in the development of avian wetland indices of biological integrity for wetlands in West Virginia, USA.

    PubMed

    Veselka, Walter; Anderson, James T; Kordek, Walter S

    2010-05-01

    Considerable resources are being used to develop and implement bioassessment methods for wetlands to ensure that "biological integrity" is maintained under the United States Clean Water Act. Previous research has demonstrated that avian composition is susceptible to human impairments at multiple spatial scales. Using a site-specific disturbance gradient, we built avian wetland indices of biological integrity (AW-IBI) specific to two wetland classification schemes, one based on vegetative structure and the other based on the wetland's position in the landscape and sources of water. The resulting class-specific AW-IBI was comprised of one to four metrics that varied in their sensitivity to the disturbance gradient. Some of these metrics were specific to only one of the classification schemes, whereas others could discriminate varying levels of disturbance regardless of classification scheme. Overall, all of the derived biological indices specific to the vegetative structure-based classes of wetlands had a significant relation with the disturbance gradient; however, the biological index derived for floodplain wetlands exhibited a more consistent response to a local disturbance gradient. We suspect that the consistency of this response is due to the inherent nature of the connectivity of available habitat in floodplain wetlands.

  10. The contribution of wetlands to stream nitrogen load in the Loch Vale Watershed, Colorado, USA

    USGS Publications Warehouse

    Jian-hui, Huang; Baron, Jill S.; Binkley, Dan

    1996-01-01

    We explored the difference between the concentrations of different N forms and other chemical properties between stream water and riparian zone wetland soil water in the Loch Vale Watershed which is located on the eastern slope of the Continental Divide in Rocky Mountain National Park, Colorado, USA. The nitrate N concentration in stream water were significantly higher than in soil water of the three wetlands, while no significant difference appeared in ammonium N. The pH values were higher and conductivity values were lower in stream water than in wetland soil water. However, significant difference also appeared between nitrate N concentrations, pH and conductivity values in the water sampled from different positions of streams. The stream tributary water had higher nitrate N concentrations, higher pH and higher conducitity values. We also conducted experiments to compare the difference between the productivity, total N concentrations in biomass and soil of upper layers. At the end, we concluded that the wetlands distributed along the streams in Loch Vale Watershed had little effect on the nitrogen load of the stream water there.

  11. North Dakota Wetlands Discovery Guide. Photocopy Booklet.

    ERIC Educational Resources Information Center

    Dietz, Nancy J., Ed.; And Others

    This booklet contains games and activities that can be photocopied for classroom use. Activities include Wetland Terminology, Putting on the Map, Erosional Forces, Water in...Water out, Who Lives Here?, Wetlands in Disguise, Dichotomous Plant Game, Algae Survey, Conducting an Algal Survey, Water Quality Indicators Guide, Farming Wetlands, Wetlands…

  12. Education and training of future wetland scientists and managers

    USGS Publications Warehouse

    Wilcox, D.A.

    2008-01-01

    Wetland science emerged as a distinct discipline in the 1980s. In response, courses addressing various aspects of wetland science and management were developed by universities, government agencies, and private firms. Professional certification of wetland scientists began in the mid-1990s to provide confirmation of the quality of education and experience of persons involved in regulatory, management, restoration/construction, and research involving wetland resources. The education requirements for certification and the need for persons with specific wetland training to fill an increasing number of wetland-related positions identified a critical need to develop curriculum guidelines for an undergraduate wetland science and management major for potential accreditation by the Society of Wetland Scientists. That proposed major contains options directed toward either wetland science or management. Both options include required basic courses to meet the general education requirements of many universities, required upper-level specialized courses that address critical aspects of physical and biological sciences applicable to wetlands, and a minimum of four additional upper-level specialized courses that can be used to tailor a degree to students' interests. The program would be administered by an independent review board that would develop guidelines and evaluate university applications for accreditation. Students that complete the required coursework will fulfill the education requirements for professional wetland scientist certification and possess qualifications that make them attractive candidates for graduate school or entry-level positions in wetland science or management. Universities that offer this degree program could gain an advantage in recruiting highly qualified students with an interest in natural resources. Alternative means of educating established wetland scientists are likewise important, especially to provide specialized knowledge and experience or

  13. Global Change and the Function and Distribution of Wetlands

    USGS Publications Warehouse

    Middleton, Beth A.

    2012-01-01

    The Global Change Ecology and Wetlands book series will highlight the latest research from the world leaders in the field of climate change in wetlands. Global Change and the Function and Distribution of Wetlands highlights information of importance to wetland ecologists.  The chapters include syntheses of international studies on the effects of drought on function and regeneration in wetlands, sea level rise and the distribution of mangrove swamps, former distributions of swamp species and future lessons from paleoecology, and shifts in atmospheric emissions across geographical regions in wetlands.  Overall, the book will contribute to a better understanding of the potential effects of climate change on world wetland distribution and function.

  14. Examination of oxygen release from plants in constructed wetlands in different stages of wetland plant life cycle.

    PubMed

    Zhang, Jian; Wu, Haiming; Hu, Zhen; Liang, Shuang; Fan, Jinlin

    2014-01-01

    The quantification of oxygen release by plants in different stages of wetland plant life cycle was made in this study. Results obtained from 1 year measurement in subsurface wetland microcosms demonstrated that oxygen release from Phragmites australis varied from 108.89 to 404.44 mg O₂/m(2)/d during the different periods from budding to dormancy. Plant species, substrate types, and culture solutions had a significant effect on the capacity of oxygen release of wetland plants. Oxygen supply by wetland plants was estimated to potentially support a removal of 300.37 mg COD/m(2)/d or 55.87 mg NH₄-N/m(2)/d. According to oxygen balance analysis, oxygen release by plants could provide 0.43-1.12% of biochemical oxygen demand in typical subsurface-flow constructed wetlands (CWs). This demonstrates that oxygen release of plants may be a potential source for pollutants removal especially in low-loaded CWs. The results make it possible to quantify the role of plants in wastewater purification.

  15. Rejuvenating the Largest Treatment Wetland in Florida: Tracer Moment and Model Analysis of Wetland Hydraulic Performance

    NASA Astrophysics Data System (ADS)

    White, J. R.; Wang, H.; Jawitz, J. W.; Sees, M. D.

    2004-12-01

    The Orlando Easterly Wetland (OEW), the largest municipal treatment wetland in Florida, began operation in 1987 mainly for reducing nutrient loads in tertiary treated domestic wastewater produced by the city of Orlando. After more than ten years of operation, a decrease in total P removal effectiveness has occurred since 1999, even though the effluent concentration of the wetland has remained below the permitted limit of 0.2 mg/L,. Hydraulic inefficiency in the wetland, especially in the front-end cells of the north flow train, was identified as a primary cause of the reduced treatment effectiveness. In order to improve the hydraulic performance of the OEW and maintain its efficient phosphorus treatment, a rejuvenation program (including muck removal followed by re-vegetation) was initiated on the front-end cells of the north flow train in 2002. The effectiveness of this activity for the improvement of hydraulic performance was evaluated with a tracer test and subsequent moment and model analyses for the tracer resident time distribution (RTDs). Results were compared to similar tracer tests conducted prior to rejuvenation activities. The models included one-path tank-in-series (TIS), two-path TIS, one-dimensional transport with inflow and storage (OTIS), plug flow with dispersion (PFD), and plug flow with fractional dispersion (PFFD). The hydraulic performance was characterized by both wetland hydraulic efficiency and the spreading of tracers. The results demonstrated that the rejuvenation considerably improved the hydraulic performance in the restored area. Also presented is a comparison of the wetland response between both bromide and lithium tracers, and the determination of the complete moments of residence time distributions (RTD) in cell-network wetlands.

  16. CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, E.

    2010-07-19

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m{sup 3} per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volumemore » and be able to handle 83,280 m{sup 3} of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m{sup 3} per day, and be able to handle 9,690 m{sup 3} of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation

  17. Vulnerability of northern prairie wetlands to climate change

    USGS Publications Warehouse

    Johnson, W.C.; Millett, B.V.; Gilmanov, T.; Voldseth, R.A.; Guntenspergen, G.R.; Naugle, D.E.

    2005-01-01

    The prairie pothole region (PPR) lies in the heart of North America and contains millions of glacially formed, depressional wetlands embedded in a landscape matrix of natural grassland and agriculture. These wetlands provide valuable ecosystem services and produce 50% to 80% of the continent's ducks. We explored the broad spatial and temporal patterns across the PPR between climate and wetland water levels and vegetation by applying a wetland simulation model (WETSIM) to 18 stations with 95-year weather records. Simulations suggest that the most productive habitat for breeding waterfowl would shift under a drier climate from the center of the PPR (the Dakotas and southeastern Saskatchewan) to the wetter eastern and northern fringes, areas currently less productive or where most wetlands have been drained. Unless these wetlands are protected and restored, there is little insurance for waterfowl against future climate warming. WETSIM can assist wetland managers in allocating restoration dollars in an uncertain climate future.

  18. Carbon Storage in US Wetlands.

    EPA Science Inventory

    Background/Question/Methods Wetland soils contain some of the highest stores of soil carbon in the biosphere. However, there is little understanding of the quantity and distribution of carbon stored in US wetlands or of the potential effects of human disturbance on these stocks. ...

  19. Understanding Coastal Wetland Vulnerability to Sea-Level Rise Enhanced Inundation Using Real-Time Stage Monitoring, LiDAR, and Monte Carlo Simulation in Everglades National Park

    NASA Astrophysics Data System (ADS)

    Cooper, H.; Zhang, C.

    2017-12-01

    Coastal wetlands are one of the most productive ecological systems in the world, providing critical habitat area and valuable ecosystem services such as carbon sequestration. However, due to their location in low lying areas, coastal wetlands are particularly vulnerable to sea-level rise (SLR). Everglades National Park (ENP) encompasses the southern-most portion of the Greater Everglades Ecosystem, and is the largest subtropical wetland in the USA. Water depths have shown to have a significant relationship to vegetation community composition and organization while also playing a crucial role in vegetation health throughout the Everglades. Live plants play a vital role in maintaining soil structure (i.e. elevation), and decreases in vegetation health can cause peat collapse or wetland loss resulting in dramatic habitat, organic soil, and elevation loss posing concerns for Everglades management and restoration. One suspected mechanism for peat collapse is enhanced inundation due to SLR, thus mapping and modeling water depths is a critical component to understanding the potential impacts of future SLR. Previous research in the Everglades focused on a conventional Water Depth Model (WDM) approach where a Digital Elevation Model (DEM) is subtracted from a Water Table Elevation Model (WTEM). In this study, the conventional WDM approach is extended to a more rigorous WDM technique so that the accuracy and precision of the underlying data may be considered. Monte Carlo simulation is used to propagate probability distributions through our SLR depth model using our Random Forest-based LiDAR DEM, Empirical Bayesian Kriging-based WTEMs, uncertainties in vertical datums, soil accretion projections, and regional sea-level rise projections. Water depth maps were produced for the wet and dry seasons in April and October, which successfully revealed the potential spatial and temporal water depth variations due to future SLR. It is concluded that a more rigorous WDM technique helps

  20. Contemporary and restorable wetland water storage: A landscape perspective

    USDA-ARS?s Scientific Manuscript database

    Surface water storage in wetlands drives ecosystem function from local to landscape scales. In many regions, hydrologic modifications have significantly reduced wetland storage capacity and subsequently diminished wetland functions. While the loss of wetland area has been well documented across many...

  1. Floristic Quality Assessment Across the Nation: Status, Opportunities, and Challenges

    EPA Science Inventory

    Floristic Quality Assessment (FQA) will be considered in the USEPA National Wetland Condition Assessment (NWCA). FQA is a powerful tool to describe wetland ecological condition, and is based on Coefficients of Conservatism (CC) of individual native plant species. CCs rank sensiti...

  2. Hydrologic Reconnaissance of Wetland-Bird Habitat in Areas With Potential to be Influenced by Water Produced During Coalbed Methane Production in the Northern Powder River Basin, MT

    NASA Astrophysics Data System (ADS)

    Custer, S. G.; Sojda, R. S.

    2003-12-01

    The removal and disposal of ground water during production of coalbed methane has the potential to influence wetland-bird habitat in the Powder River Basin. Office analysis of wetland areas was conducted on National Wetland Inventory maps and Digital Orthophoto Quadrangles along the Tongue and Powder rivers in the northern Powder River Basin, Montana. Selected sites were palustrine emergent, large enough to be important to waterbirds, part of a wetland complex, not dependent on artificial water regimes, in an area with high potential for coalbed methane production, and judged to be accessible in the field. Several promising wetland areas were selected for field examination. Field investigation suggests that the most promising wetlands in oxbow cutoffs would not be productive sites. Only facultative not obligate wetland plants were observed, the topographic position of the wetlands suggested that flooding would be infrequent, and the stream flow would likely dilute the effect of produced water adjacent to these rivers. Fortuitously wetland-bird habitat not recognized on the National Wetland Inventory maps and Digital Orthophoto Quadrangles was observed along Rosebud Creek during the field reconnaissance. This habitat is not continuous. The lack of continuity is reflected in the soil surveys as well as in the reconnaissance field nvestigation. The Alluvial Land soil series corresponds to observed wetland areas but the extent of the wetland-bird habitat varies substantially within the soil unit. When the Korchea series is present, extensive wetland-bird habitat is not observed. Field and aerial photo analysis suggests that the presence of the habitat may be controlled by beaver, and/or by stratigraphic and structural elements that influence stream erosion. Human modification of the stream for irrigation purposes may impact habitat continuity in some areas. The "Rosebud" type wetland-bird habitat may have the potential to be influenced by coalbed methane water

  3. Development of soil properties and nitrogen cycling in created wetlands

    USGS Publications Warehouse

    Wolf, K.L.; Ahn, C.; Noe, G.B.

    2011-01-01

    Mitigation wetlands are expected to compensate for the loss of structure and function of natural wetlands within 5–10 years of creation; however, the age-based trajectory of development in wetlands is unclear. This study investigates the development of coupled structural (soil properties) and functional (nitrogen cycling) attributes of created non-tidal freshwater wetlands of varying ages and natural reference wetlands to determine if created wetlands attain the water quality ecosystem service of nitrogen (N) cycling over time. Soil condition component and its constituents, gravimetric soil moisture, total organic carbon, and total N, generally increased and bulk density decreased with age of the created wetland. Nitrogen flux rates demonstrated age-related patterns, with younger created wetlands having lower rates of ammonification, nitrification, nitrogen mineralization, and denitrification potential than older created wetlands and natural reference wetlands. Results show a clear age-related trajectory in coupled soil condition and N cycle development, which is essential for water quality improvement. These findings can be used to enhance N processing in created wetlands and inform the regulatory evaluation of mitigation wetlands by identifying structural indicators of N processing performance.

  4. Advancing the use of minirhizotrons in wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iversen, Colleen M; Murphy, Meaghan T.; Allen, Michael F.

    Background: Wetlands store a substantial amount of carbon (C) in deep soil organic matter deposits, and play an important role in global fluxes of carbon dioxide and methane. Fine roots (i.e., ephemeral roots that are active in water and nutrient uptake) are recognized as important components of biogeochemical cycles in nutrient-limited wetland ecosystems. However, quantification of fine-root dynamics in wetlands has generally been limited to destructive approaches, possibly because of methodological difficulties associated with the unique environmental, soil, and plant community characteristics of these systems. Non-destructive minirhizotron technology has rarely been used in wetland ecosystems. Scope: Our goal was tomore » develop a consensus on, and a methodological framework for, the appropriate installation and use of minirhizotron technology in wetland ecosystems. Here, we discuss a number of potential solutions for the challenges associated with the deployment of minirhizotron technology in wetlands, including minirhizotron installation and anchorage, capture and analysis of minirhizotron images, and upscaling of minirhizotron data for analysis of biogeochemical pools and parameterization of land surface models. Conclusions: The appropriate use of minirhizotron technology to examine relatively understudied fine-root dynamics in wetlands will advance our knowledge of ecosystem C and nutrient cycling in these globally important ecosystems.« less

  5. Hurricane-induced failure of low salinity wetlands

    PubMed Central

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ∼30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  6. Simulating the biogeochemical cycles in cypress wetland-pine upland ecosystems at a landscape scale with the wetland-DNDC model

    Treesearch

    G. Sun; C. Li; C. Tretting; J. Lu; S.G. McNulty

    2005-01-01

    A modeling framework (Wetland-DNDC) that described forested wetland ecosystem processes has been developed and validated with data from North America and Europe. The model simulates forest photosynthesis, respiration, carbon allocation, and liter production, soil organic matter (SOM) turnover, trace gas emissions, and N leaching. Inputs required by Wetland-DNDC...

  7. Use of Constructed Wetlands for Polishing Recharge Wastewater

    NASA Astrophysics Data System (ADS)

    Cardwell, W.

    2009-12-01

    The use of constructed wetlands for waste water treatment is becoming increasingly popular as more focus is being shifted to natural means of waste treatment. These wetlands employ processes that occur naturally and effectively remove pollutants and can greatly minimize costs when compared to full scale treatment plants. Currently, wetland design is based on basic “rules-of-thumb,” meaning engineers have a general understanding but not necessarily a thorough knowledge of the intricate physical, biological, and chemical processes involved in these systems. Furthermore, there is very little consideration given to use the wetland as a recharge pond to allow the treated water to percolate and recharge the local groundwater aquifers. The City of Foley, located in Alabama, and the Utilities Board of the City of Foley partnered with Wolf Bay Watershed Watch to evaluate alternative wastewater effluent disposal schemes. Rather than discharging the treated water into a local stream, a pilot program has been developed to allow water from the treatment process to flow into a constructed wetlands area where, after natural treatment, the treated water will then be allowed to percolate into a local unconfined aquifer. The goal of this study is to evaluate how constructed wetlands can be used for “polishing” effluent as well as how this treated water might be reused. Research has shown that constructed wetlands, with proper design and construction elements, are effective in the treatment of BOD, TSS, nitrogen, phosphorous, pathogens, metals, sulfates, organics, and other substances commonly found in wastewater. Mesocosms will be used to model the wetland, at a much smaller scale, in order to test and collect data about the wetland treatment capabilities. Specific objectives include: 1. Determine optimum flow rates for surface flow wetlands where water treatment is optimized. 2. Evaluate the capabilities of constructed wetlands to remove/reduce common over the counter

  8. 40 CFR 258.12 - Wetlands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Wetlands. 258.12 Section 258.12... Act or applicable State wetlands laws, the presumption that practicable alternative to the proposed... Species Act of 1973, and (iv) Violate any requirement under the Marine Protection, Research, and...

  9. 40 CFR 258.12 - Wetlands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Wetlands. 258.12 Section 258.12... Act or applicable State wetlands laws, the presumption that practicable alternative to the proposed... Species Act of 1973, and (iv) Violate any requirement under the Marine Protection, Research, and...

  10. 40 CFR 258.12 - Wetlands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Wetlands. 258.12 Section 258.12... Act or applicable State wetlands laws, the presumption that practicable alternative to the proposed... Species Act of 1973, and (iv) Violate any requirement under the Marine Protection, Research, and...

  11. 40 CFR 230.41 - Wetlands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... surface or ground water at a frequency and duration sufficient to support, and that under normal...) Where wetlands are adjacent to open water, they generally constitute the transition to upland. The margin between wetland and open water can best be established by specialists familiar with the local...

  12. Remote Sensing and Wetland Ecology: a South African Case Study.

    PubMed

    De Roeck, Els R; Verhoest, Niko E C; Miya, Mtemi H; Lievens, Hans; Batelaan, Okke; Thomas, Abraham; Brendonck, Luc

    2008-05-26

    Remote sensing offers a cost efficient means for identifying and monitoring wetlands over a large area and at different moments in time. In this study, we aim at providing ecologically relevant information on characteristics of temporary and permanent isolated open water wetlands, obtained by standard techniques and relatively cheap imagery. The number, surface area, nearest distance, and dynamics of isolated temporary and permanent wetlands were determined for the Western Cape, South Africa. Open water bodies (wetlands) were mapped from seven Landsat images (acquired during 1987 - 2002) using supervised maximum likelihood classification. The number of wetlands fluctuated over time. Most wetlands were detected in the winter of 2000 and 2002, probably related to road constructions. Imagery acquired in summer contained fewer wetlands than in winter. Most wetlands identified from Landsat images were smaller than one hectare. The average distance to the nearest wetland was larger in summer. In comparison to temporary wetlands, fewer, but larger permanent wetlands were detected. In addition, classification of non-vegetated wetlands on an Envisat ASAR radar image (acquired in June 2005) was evaluated. The number of detected small wetlands was lower for radar imagery than optical imagery (acquired in June 2002), probably because of deterioration of the spatial information content due the extensive pre-processing requirements of the radar image. Both optical and radar classifications allow to assess wetland characteristics that potentially influence plant and animal metacommunity structure. Envisat imagery, however, was less suitable than Landsat imagery for the extraction of detailed ecological information, as only large wetlands can be detected. This study has indicated that ecologically relevant data can be generated for the larger wetlands through relatively cheap imagery and standard techniques, despite the relatively low resolution of Landsat and Envisat imagery. For

  13. Strength in Numbers: Describing the Flooded Area of Isolated Wetlands

    USGS Publications Warehouse

    Lee, Terrie M.; Haag, Kim H.

    2006-01-01

    Thousands of isolated, freshwater wetlands are scattered across the karst1 landscape of central Florida. Most are small (less than 15 acres), shallow, marsh and cypress wetlands that flood and dry seasonally. Wetland health is threatened when wetland flooding patterns are altered either by human activities, such as land-use change and ground-water pumping, or by changes in climate. Yet the small sizes and vast numbers of isolated wetlands in Florida challenge our efforts to characterize them collectively as a statewide water resource. In the northern Tampa Bay area of west-central Florida alone, water levels are measured monthly in more than 400 wetlands by the Southwest Florida Water Management Distirct (SWFWMD). Many wetlands have over a decade of measurements. The usefulness of long-term monitoring of wetland water levels would greatly increase if it described not just the depth of water at a point in the wetland, but also the amount of the total wetland area that was flooded. Water levels can be used to estimate the flooded area of a wetland if the elevation contours of the wetland bottom are determined by bathymetric mapping. Despite the recognized importance of the flooded area to wetland vegetation, bathymetric maps are not available to describe the flooded areas of even a representative number of Florida's isolated wetlands. Information on the bathymetry of isolated wetlands is rare because it is labor intensive to collect the land-surface elevation data needed to create the maps. Five marshes and five cypress wetlands were studied by the U.S. Geological Survey (USGS) during 2000 to 2004 as part of a large interdisciplinary study of isolated wetlands in central Florida. The wetlands are located either in municipal well fields or on publicly owned lands (fig. 1). The 10 wetlands share similar geology and climate, but differ in their ground-water settings. All have historical water-level data and multiple vegetation surveys. A comprehensive report by Haag and

  14. Hydrologic connectivity of geographically isolated wetlands to surface water systems

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Ameli, A.

    2016-12-01

    Hydrologic connectivity of wetlands is poorly characterized and understood. Our inability to quantify this connectivity compromises our understanding of the potential impacts of land use (e.g., wetland drainage) and climate changes on watershed structure, function and water supplies. We develop a computationally efficient physically-based subsurface-surface hydrological model to map both the subsurface and surface hydrologic connectivity of geographically isolated wetlands (i.e., wetlands without surface outlets) and explore the time and length variations in these connections to a river within the Prairie Pothole Region of North America. Despite a high density of geographically isolated wetlands, modeled connections show that these wetlands are not hydrologically isolated. Hydrologic subsurface connectivity differs significantly from surface connectivity in terms of timing and length of connections. Slow subsurface connections between wetlands and the downstream river originate from wetlands throughout the watershed, whereas fast surface connections were limited to large events and originate from wetlands located near the river. Results also suggest that prioritization of protection of wetlands that relies on shortest distance of wetland to the river or surface connections alone can lead to unintended consequences in terms of loss of attending wetland ecosystem functions, services and their benefits to society. This modeling approach provides first ever insight on the nature of geographically isolated wetland subsurface and surface hydrological connections to rivers, and can provide guidance on the development of watershed management and conservation plans (e.g., wetlands drainage/restoration) under different climate and land management scenarios.

  15. Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades

    USGS Publications Warehouse

    Zhu, Qiuan; Peng, Changhui; Liu, Jinxun; Jiang, Hong; Fang, Xiuqin; Chen, Huai; Niu, Zhichun; Gong, Peng; Lin, Guanghui; Wang, Meng; Yang, Yanzheng; Chang, Jie; Ge, Ying; Xiang, Wenhua; Deng, Xiangwen; He, Jin-Sheng

    2016-01-01

    Both anthropogenic activities and climate change can affect the biogeochemical processes of natural wetland methanogenesis. Quantifying possible impacts of changing climate and wetland area on wetland methane (CH4) emissions in China is important for improving our knowledge on CH4 budgets locally and globally. However, their respective and combined effects are uncertain. We incorporated changes in wetland area derived from remote sensing into a dynamic CH4 model to quantify the human and climate change induced contributions to natural wetland CH4 emissions in China over the past three decades. Here we found that human-induced wetland loss contributed 34.3% to the CH4 emissions reduction (0.92 TgCH4), and climate change contributed 20.4% to the CH4 emissions increase (0.31 TgCH4), suggesting that decreasing CH4 emissions due to human-induced wetland reductions has offset the increasing climate-driven CH4 emissions. With climate change only, temperature was a dominant controlling factor for wetland CH4 emissions in the northeast (high latitude) and Qinghai-Tibet Plateau (high altitude) regions, whereas precipitation had a considerable influence in relative arid north China. The inevitable uncertainties caused by the asynchronous for different regions or periods due to inter-annual or seasonal variations among remote sensing images should be considered in the wetland CH4 emissions estimation.

  16. Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades

    PubMed Central

    Zhu, Qiuan; Peng, Changhui; Liu, Jinxun; Jiang, Hong; Fang, Xiuqin; Chen, Huai; Niu, Zhenguo; Gong, Peng; Lin, Guanghui; Wang, Meng; Wang, Han; Yang, Yanzheng; Chang, Jie; Ge, Ying; Xiang, Wenhua; Deng, Xiangwen; He, Jin-Sheng

    2016-01-01

    Both anthropogenic activities and climate change can affect the biogeochemical processes of natural wetland methanogenesis. Quantifying possible impacts of changing climate and wetland area on wetland methane (CH4) emissions in China is important for improving our knowledge on CH4 budgets locally and globally. However, their respective and combined effects are uncertain. We incorporated changes in wetland area derived from remote sensing into a dynamic CH4 model to quantify the human and climate change induced contributions to natural wetland CH4 emissions in China over the past three decades. Here we found that human-induced wetland loss contributed 34.3% to the CH4 emissions reduction (0.92 TgCH4), and climate change contributed 20.4% to the CH4 emissions increase (0.31 TgCH4), suggesting that decreasing CH4 emissions due to human-induced wetland reductions has offset the increasing climate-driven CH4 emissions. With climate change only, temperature was a dominant controlling factor for wetland CH4 emissions in the northeast (high latitude) and Qinghai-Tibet Plateau (high altitude) regions, whereas precipitation had a considerable influence in relative arid north China. The inevitable uncertainties caused by the asynchronous for different regions or periods due to inter-annual or seasonal variations among remote sensing images should be considered in the wetland CH4 emissions estimation. PMID:27892535

  17. The wetland continuum: a conceptual framework for interpreting biological studies

    USGS Publications Warehouse

    Euliss, N.H.; LaBaugh, J.W.; Fredrickson, L.H.; Mushet, D.M.; Swanson, G.A.; Winter, T.C.; Rosenberry, D.O.; Nelson, R.D.

    2004-01-01

    We describe a conceptual model, the wetland continuum, which allows wetland managers, scientists, and ecologists to consider simultaneously the influence of climate and hydrologic setting on wetland biological communities. Although multidimensional, the wetland continuum is most easily represented as a two-dimensional gradient, with ground water and atmospheric water constituting the horizontal and vertical axis, respectively. By locating the position of a wetland on both axes of the continuum, the potential biological expression of the wetland can be predicted at any point in time. The model provides a framework useful in the organization and interpretation of biological data from wetlands by incorporating the dynamic changes these systems undergo as a result of normal climatic variation rather than placing them into static categories common to many wetland classification systems. While we developed this model from the literature available for depressional wetlands in the prairie pothole region of North America, we believe the concept has application to wetlands in many other geographic locations.

  18. Using soil isotopes as an indicator of site-specific to national-scale denitrification in wetlands

    EPA Science Inventory

    Denitrification is an anaerobic, microbial process that converts nitrate to inert dinitrogen (N2) gas and nitrous oxide (N2O), a potent greenhouse and ozone depleting gas. High rates of denitrification can be found in wetlands, resulting in the removal of large quantities of nitr...

  19. Compartment-based hydrodynamics and water quality modeling of a NorthernEverglades Wetland, Florida, USA

    EPA Science Inventory

    The last remaining large remnant of softwater wetlands in the US Florida Everglades lies within the Arthur R. Marshall Loxahatchee National Wildlife Refuge. However, Refuge water quality today is impacted by pumped stormwater inflows to the eutrophic and mineral-enriched 100-km c...

  20. Bibliography of Remote Sensing Techniques Used in Wetland Research.

    DTIC Science & Technology

    1993-01-01

    remote sensing technology for detecting changes in wetland environments. This report documents a bibliographic search conducted as part of that work unit on applications of remote sensing techniques in wetland research. Results were used to guide research efforts on the use of remote sensing technology for wetland change detection and assessment. The citations are presented in three appendixes, organized by wetland type, sensor type, and author.... Change detection, Wetland assessment, Remote sensing ,

  1. 76 FR 77162 - Floodplain Management and Protection of Wetlands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ...] RIN 2501-AD51 Floodplain Management and Protection of Wetlands AGENCY: Office of the Secretary, HUD... the protection of wetlands and floodplains. With respect to wetlands, the proposed rule would codify existing procedures for Executive Order 11990 (E.O. 11990), Protection of Wetlands. HUD's current policy is...

  2. Broken connections of wetland cultural knowledge

    USGS Publications Warehouse

    Middleton, Beth A.

    2016-01-01

    As global agriculture intensifies, cultural knowledge of wetland utilization has eroded as natural resources become more stressed, and marginal farmers move away from the land. The excellent paper by Fawzi et al. (2016) documents a particularly poignant case of traditional knowledge loss among the Marsh Arab women of Iraq. Through interviews, the authors document the breakdown of skill transfer from the older to younger generation of women. The authors link the loss of their cultural knowledge with the loss of wetlands in the region. Women no longer can help provide for their families using wetland products, and along with that, their ancient knowledge of plant usage is lost. These ancient skills included medicinal uses, and reed harvesting for weaving and water buffalo fodder. As, the majority of the Mesopotamian Marshes have dried, this way of life is being forgotten (Fawzi et al. 2015). The global tragedy is that while the careful alliance of wetlands and people have sustained human cultures for millennia, degraded wetlands lose their ability to provide these services (Maltby 1980).

  3. Hydrology of a natural hardwood forested wetland

    Treesearch

    George M. Chescheir; Devendra M. Amatya; R. Wayne Skaggs

    2008-01-01

    This paper documents the hydrology of a natural forested wetland near Plymouth, NC, USA. The research site was located on one of the few remaining, undrained non-riverine, palustrine forested hardwood wetlands on the lower coastal plain of North Carolina. A 137 ha watershed within the 350ha wetland was selected for intensive field study. Water balance components...

  4. Wetland habitats for wildlife of the Chesapeake Bay

    USGS Publications Warehouse

    Perry, M.C.; Majumdar, S.K.; Miller, E.W.; Brenner, Fred J.

    1998-01-01

    The wetlands of Chesapeake Bay have provided the vital habitats that have sustained the impressive wildlife populations that have brought international fame to the Bay. As these wetland habitats decrease in quantity and quality we will continue to see the decline in the wildlife populations that started when European settlers first came to this continent. These declines have accelerated significantly in this century. As the human population continues to increase in the Bay watershed, one can expect that wetland habitats will continue to decline, resulting in declines in species diversity and population numbers. Although federal, state, and local governments are striving for 'no net loss' of wetlands, the results to date are not encouraging. It is unrealistic to believe that human populations and associated development can continue to increase and not adversely affect the wetland resources of the Bay. Restrictions on human population growth in the Chesapeake area is clearly the best way to protect wetland habitats and the wildlife that are dependent on these habitats. In addition, there should be more aggressive approaches to protect wetland habitats from continued perturbations from humans. More sanctuary areas should be created and there should be greater use of enhancement and management techniques that will benefit the full complement of species that potentially exist in these wetlands. The present trend in wetland loss can be expected to continue as human populations increase with resultant increases in roads, shopping malls, and housing developments. Creation of habitat for mitigation of these losses will not result in 'no net loss'. More innovative approaches should be employed to reverse the long-term trend in wetland loss by humans.

  5. Review and Comparison of Wetland Impacts and Mitigation Requirements Between New Jersey, USA, Freshwater Wetlands Protection Act and Section 404 of the Clean Water Act

    PubMed

    Torok; Lockwood; Fanz

    1996-09-01

    A review of wetland impacts authorized under the New Jersey Freshwater Wetlands Protection Act (FWPA) was conducted based on permitting data compiled for the period 1 July 1988 to 31 December 1993. Data regarding the acreage of wetlands impacted, location of impacts by drainage basin and watershed, and mitigation were analyzed. Wetland impacts authorized and mitigation under New Jersey's program were evaluated and compared with Section 404 information available for New Jersey and other regions of the United States.Under the FWPA, 3003 permits were issued authorizing impacts to 234.76 ha (602.27 acres) of wetlands and waters. Compensatory mitigation requirements for impacts associated with individual permits required the creation of 69.20 ha.(171.00 acres), and restoration of 16.49 ha (40.75 acres) of wetlands. Cumulative impacts by watershed were directly related to levels of development and population growth.The FWPA has resulted in an estimated 67% reduction [44.32 ha (109.47 acres) vs 136.26 ha (336.56 acres)] in annual wetland and water impacts when compared with Section 404 data for New Jersey. For mitigation, the slight increase in wetland acreage over acreage impacted is largely consistent with Section 404 data.Based on this evaluation, the FWPA has succeeded in reducing the level of wetland impacts in New Jersey. However, despite stringent regulation of activities in and around wetlands, New Jersey continues to experience approximately 32 ha (79 acres) of unmitigated wetland impacts annually. Our results suggest that additional efforts focusing on minimizing wetland impacts and increasing wetlands creation are needed to attain a goal of no net loss of freshwater wetlands.KEY WORDS: Wetlands; Clean Water Act; Freshwater Wetland Protection Act; Nationwide permits; Mitigation; New Jersey

  6. Wetlands and agriculture: Are we heading for confrontation or conservation

    Treesearch

    Brij Gopal

    2000-01-01

    Wetlands and agriculture are closely linked. Historically, agriculture had its beginning in riparian wetland habitats and expanded into other wetlands. Later, large areas of riverine, palustrine, and coastal wetlands were converted into paddy fields or drained for agriculture. Agriculture has grown most at the expense of natural wetlands. Today, the intensive...

  7. Prospective HyspIRI global observations of tidal wetlands

    USGS Publications Warehouse

    Kevin Turpie,; Victor Klemas,; Byrd, Kristin B.; Maggi Kelly,; Young-Heon Jo,

    2015-01-01

    Tidal wetlands are highly productive and act as critical habitat for a wide variety of plants, fish, shellfish, and other wildlife. These ecotones between aquatic and terrestrial environments also provide protection from storm damage, run-off filtering, and recharge of aquifers. Many wetlands along coasts have been exposed to stress-inducing alterations globally, including dredge and fill operations, hydrologic modifications, pollutants, impoundments, fragmentation by roads/ditches, and sea level rise. For wetland protection and sensible coastal development, there is a need to monitor these ecosystems at global and regional scales. Recent advances in satellite sensor design and data analysis are providing practical methods for monitoring natural and man-made changes in wetlands. However, available satellite remote sensors have been limited to mapping primarily wetland location and extent. This paper describes how the HyspIRI hyperspectral and thermal infrared sensors can be used to study and map key ecological properties, such as species composition, biomass, hydrology, and evapotranspiration of tidal salt and brackish marshes and mangroves, and perhaps other major wetland types, including freshwater marshes and wooded/shrub wetlands.

  8. 40 CFR 257.9 - Wetlands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Wetlands. 257.9 Section 257.9...; and (iv) Violate any requirement under the Marine Protection, Research, and Sanctuaries Act of 1972... extent required under section 404 of the Clean Water Act or applicable State wetlands laws, steps have...

  9. 40 CFR 257.9 - Wetlands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Wetlands. 257.9 Section 257.9...; and (iv) Violate any requirement under the Marine Protection, Research, and Sanctuaries Act of 1972... extent required under section 404 of the Clean Water Act or applicable State wetlands laws, steps have...

  10. 40 CFR 257.9 - Wetlands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Wetlands. 257.9 Section 257.9...; and (iv) Violate any requirement under the Marine Protection, Research, and Sanctuaries Act of 1972... extent required under section 404 of the Clean Water Act or applicable State wetlands laws, steps have...

  11. Vegetation of wetlands of the prairie pothole region

    USGS Publications Warehouse

    Kantrud, H.A.; Millar, J.B.; Van Der Valk, A.G.; van der Valk, A.

    1989-01-01

    precipitation can raise water levels high enough to drown out emergent vegetation or produce 'eat outs' due to increases in the size of muskrat populations that accompany periods of high water. The elimination of emergents creates a lake marsh dominated by submersed vegetation. During the next drought when the marsh bottom is exposed by receding water levels (a drawdown), seeds of emergents and mudflat annuals in the soil (the seed bank) germinate (the dry marsh stage). When the marsh refloods, ending the dry marsh stage, the emergents survive and spread vegetatively. This is the regenerating marsh. This stage continues until high water again eliminates the emergents, starting the next degenerating stage.Zonation patterns are conspicuous because each zone often is dominated by a single species that has a lifeform different from those in adjacent zones. The species composition of each zone is a function of its environment (water or moisture regime, salinity, and disturbance history). Within a zone it may take a year or more for species composition to adjust to a change of environmental conditions. These lags sometimes result in abnormal zonation patterns, particularly after a change in water level.Classification of prairie wetlands is more difficult than for most other wetland type, because of these vegetation cycles. Early attempts to classify prairie wetlands did not take the dynamic nature of their vegetation into account. Stewart and Kantrud (1971) developed a classification system for prairie potholes that recognized different phases of vegetation zones dominated by deep marsh species. It used the composition of the vegetation in the deepest part (zone) of a pothole as an indicator of its water-level regime and water chemistry. The application of the national wetland classification system of Cowardin et al. (1979) to potholes is also discussed, and lists of species that characterize the various dominance types associated with the subclasses in this system are presented.

  12. Hydrology and Ecology of Freshwater Wetlands in Central Florida - A Primer

    USGS Publications Warehouse

    Haag, Kim H.; Lee, Terrie M.

    2010-01-01

    Freshwater wetlands are an integral part of central Florida, where thousands are distributed across the landscape. However, their relatively small size and vast numbers challenge efforts to characterize them collectively as a statewide water resource. Wetlands are a dominant landscape feature in Florida; in 1996, an estimated 11.4 million acres of wetlands occupied 29 percent of the area of the State. Wetlands represent a greater percentage of the land surface in Florida than in any other state in the conterminous United States. Statewide, 90 percent of the total wetland area is freshwater wetlands and 10 percent is coastal wetlands. About 55 percent of the freshwater wetlands in Florida are forested, 25 percent are marshes and emergent wetlands, 18 percent are scrub-shrub wetlands, and the remaining 2 percent are freshwater ponds. Freshwater wetlands are distributed differently in central Florida than in other parts of the State. In the panhandle and in northern Florida, there are fewer isolated wetlands than in the central and southern parts of the State, and few of those wetlands are affected by activities such as groundwater withdrawals. In southern Florida, the vast wetlands of the Everglades and the Big Cypress Swamp blanket the landscape and form contiguous shallow expanses of water, which often exhibit slow but continuous flow toward the southwestern coast. In contrast, the wetlands of central Florida are relatively small, numerous, mostly isolated, and widely distributed. In many places, wetlands are flanked by uplands, generating a mosaic of contrasting environments-unique wildlife habitat often adjacent to dense human development. As the population of central Florida increases, the number of residents living near wetlands also increases. Living in close proximity to wetlands provides many Floridians with an increased awareness of nature and an opportunity to examine the relationship between people and wetlands. Specifically, these residents can observe

  13. Reconstruction of Anacostia wetlands: success?

    USGS Publications Warehouse

    Hammerschlag, R.S.; Perry, M.C.

    2002-01-01

    Historically, the tidal Anacostia River in Washington, D.C. had been an extensive system of freshwater tidal marshes replete with a full array of wetland vegetation dominated by wild rice. The local Nacochtank Indians had found the abundant fish and wildlife sufficient to sustain their daily lives. White man's intrusion upon the landscape gradually brought about deterioration of the natural (and associated cultural) system. Total demise followed mid-20th century dredge and fill channelization, which was conducted from the confluence of the Anacostia with the Potomac near the heart of Washington, D.C. to the terminus of the tidal regime at Bladensburg, Maryland. The National Park Service (NPS) became the manager for much of the land along the Anacostia, particularly the eastern bank. As part of its planning effort, the NPS envisioned returning portions of the Anacostia under its control to a natural system as a vignette. The concept was based on bringing back as comprehensive a collection of vegetation and wildlife as possible through the reestablishment of tidal marshes at Kenilworth and Kingman. The resultant wetlands were to be made accessible to the public both logistically and through a well designed interpretative program. In fact, this vision has been realized due to an impressive cooperative effort among a number of Federal and local agencies and organizations. In 1993, 32 acres of freshwater tidal marsh were reconstructed at Kenilworth. Based upon the 5-year monitoring program that has been in place since reconstruction, several generalizations may be made concerning the degree of success of the marsh reconstruction. Water quality in the marsh system and nearby tidal waters has not been noticeably improved. The poor quality may be clue to the overwhelmingly high loads (e.g., sediment, nutrients, etc.) brought in on the twice daily tidal cycle from the Anacostia and to the relatively small volume of water which actually interacts with the emergent marsh

  14. Inclusion of Riparian Wetland Module (RWM) into the SWAT model for assessment of wetland hydrological benefit

    USDA-ARS?s Scientific Manuscript database

    Wetlands are an integral part of many agricultural watersheds. They provide multiple ecosystem functions, such as improving water quality, mitigating flooding, and serving as natural habitats. Those functions are highly depended on wetland hydrological characteristics and their connectivity to the d...

  15. The significant surface-water connectivity of "geographically isolated wetlands"

    USGS Publications Warehouse

    Calhoun, Aram J.K.; Mushet, David M.; Alexander, Laurie C.; DeKeyser, Edward S.; Fowler, Laurie; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Richter, Stephen; Walls, Susan

    2017-01-01

    We evaluated the current literature, coupled with our collective research expertise, on surface-water connectivity of wetlands considered to be “geographically isolated” (sensu Tiner Wetlands 23:494–516, 2003a) to critically assess the scientific foundation of grouping wetlands based on the singular condition of being surrounded by uplands. The most recent research on wetlands considered to be “geographically isolated” shows the difficulties in grouping an ecological resource that does not reliably indicate lack of surface water connectivity in order to meet legal, regulatory, or scientific needs. Additionally, the practice of identifying “geographically isolated wetlands” based on distance from a stream can result in gross overestimates of the number of wetlands lacking ecologically important surface-water connections. Our findings do not support use of the overly simplistic label of “geographically isolated wetlands”. Wetlands surrounded by uplands vary in function and surface-water connections based on wetland landscape setting, context, climate, and geographic region and should be evaluated as such. We found that the “geographically isolated” grouping does not reflect our understanding of the hydrologic variability of these wetlands and hence does not benefit conservation of the Nation’s diverse wetland resources. Therefore, we strongly discourage use of categorizations that provide overly simplistic views of surface-water connectivity of wetlands fully embedded in upland landscapes.

  16. Hydrology Prior to Wetland and Prairie Restoration in and around the Glacial Ridge National Wildlife Refuge, Northwestern Minnesota, 2002-5

    USGS Publications Warehouse

    Cowdery, Timothy K.; Lorenz, David L.; Arntson, Allan D.

    2008-01-01

    The Nature Conservancy (TNC) owned and managed 24,795 acres of mixed wetland, native prairie, farmland and woods east of Crookston, in northwestern Minnesota. The original wetlands and prairies that once occupied this land are being restored by TNC in cooperation with many partners and are becoming part of the Glacial Ridge National Wildlife Refuge. Results of this study indicate that these restorations are likely to have a substantial effect on the local hydrology. Water occurs within the study area on the land surface, in surficial aquifers, and in buried aquifers of various depths, the tops of which are 50 to several hundred feet below the land surface. Surficial aquifers are generally thin (about 20 feet), narrow (several hundred feet), and long (tens of miles). Estimates of the horizontal hydraulic conductivity of surficial aquifers were 2.7?300 feet per day. Buried aquifers underlie much of the study area, but interact with surficial aquifers only in isolated areas. In these areas, water flows directly from buried to surficial aquifers and forms a single aquifer as much as 78 feet thick. The surface?water channel network is modified by several manmade ditches that were installed to remove excess water seasonally and to drain wetlands. The channels of the network lie primarily parallel to the beach ridges but cut through them in places. Back?beach basin wetlands delay and reduce direct runoff to ditches. Recharge to the surficial aquifers (10.97?25.08 inches per year during 2003?5) is from vertical infiltration of rainfall and snowmelt (areal recharge); from surface waters (particularly ephemeral wetlands); and from upward leakage of water from buried aquifers through till confining units (estimated at about 1 inch per year). Areal recharge is highly variable in space and time. Water leaves (discharges from) the surficial aquifers as flow to surface waters (closed basins and ditches), evapotranspiration, and withdrawals from wells. Unmeasured losses (primarily

  17. China's natural wetlands: past problems, current status, and future challenges

    Treesearch

    Shuqing An; Harbin Li; Baohua Guan; Changfang Zhou; Zhongsheng Wang; Zifa Deng; Yingbiao Zhi; Yuhong Liu; Chi Xu; Shubo Fang; Jinhui Jiang; Hongli Li

    2007-01-01

    Natural wetlands, occupying 3.8% of China's land and providing 54.9% of ecosystem services, are unevenly distributed among eight wetland regions. Natural wetlands in China suffered great loss and degradation (e.g., 23.0% freshwater swamps, 51.2% coastal wetlands) because of the wetland reclamation during China's long history of civilization, and the...

  18. Use of created cattail ( Typha) wetlands in mitigation strategies

    NASA Astrophysics Data System (ADS)

    Dobberteen, Ross A.; Nickerson, Norton H.

    1991-11-01

    In order to balance pressures for land-use development with protection of wetland resources, artificial wetlands have been constructed in an effort to replace lost ecosystems. Despite its regulatory appeal and prominent role in current mitigation strategies, it is unclear whether or not created systems actually compensate for lost wetland resources. Mitigation predictions that rely on artificial wetlands must be analyzed critically in terms of their efficacy. Destruction of wetlands due to burial by coal fly ash at a municipal landfill in Danvers, Massachusetts, USA, provided an opportunity to compare resulting growth of created cattail ( Typha) marshes with natural wetland areas. Once the appropriate cattail species was identified for growth under disturbed landfill conditions, two types of artificial wetlands were constructed. The two systems differed in their hydrologic attributes: while one had a surface water flow characteristic of most cattail wetlands, the second system mimicked soil and water conditions found in naturally occurring floating cattail marshes. Comparison of plant growth measurements for two years from the artificial systems with published values for natural cattail marshes revealed similar structure and growth patterns. Experiments are now in progress to investigate the ability of created cattail marshes to remove and accumulate heavy metals from polluted landfill leachate. Research of the type reported here must be pursued aggressively in order to document the performance of artificial wetlands in terms of plant structure and wetland functions. Such research should allow us to start to evaluate whether artificial systems actually compensate for lost wetlands by performing similar functions and providing the concomitant public benefits.

  19. Ecological distribution and crude density of breeding birds on prairie wetlands

    USGS Publications Warehouse

    Kantrud, H.A.; Stewart, R.E.

    1984-01-01

    Breeding populations of 28 species of wetland-dwelling birds other than waterfowl (Anatidae) were censused on 1,321 wetlands lying within the prairie pothole region of North Dakota. Ecological distribution and two crude measures of relative density were calculated for the 22 commonest species using eight wetland classes. Semipermanent wetlands supported nearly two-thirds of the population and were used by all 22 species, whereas seasonal wetlands contained about one-third of the population and were used by 20 species Semipermanent, fen, and temporary wetlands contained highest bird densities on the basis of wetland area; on the basis of wetland unit, densities were highest on semipermanent, permanent, alkali, and fen wetlands. The highest ranking of semipermanent wetlands by all three measures of use was probably because these wetlands, as well as being relatively numerous and large, were vegetatively diverse. The fairly large proportion of the bird population supported by seasonal wetlands was a result of wetland abundance and moderate vegetative diversity. Increased vegetative diversity results from the development of characteristic zones of hydrophytes at sites where water persists longer during the growing season. Frequent cultivation of prairie wetlands results in the replacement of tall, robust perennials by bare soil or stands of short, weak-stemmed annuals that likely are unattractive to nesting birds.

  20. Integrating geographically isolated wetlands into land management decisions

    USGS Publications Warehouse

    Golden, Heather E.; Creed, Irena F.; Ali, Genevieve; Basu, Nandita; Neff, Brian; Rains, Mark C.; McLaughlin, Daniel L.; Alexander, Laurie C.; Ameli, Ali A.; Christensen, Jay R.; Evenson, Grey R.; Jones, Charles N.; Lane, Charles R.; Lang, Megan

    2017-01-01

    Wetlands across the globe provide extensive ecosystem services. However, many wetlands – especially those surrounded by uplands, often referred to as geographically isolated wetlands (GIWs) – remain poorly protected. Protection and restoration of wetlands frequently requires information on their hydrologic connectivity to other surface waters, and their cumulative watershed‐scale effects. The integration of measurements and models can supply this information. However, the types of measurements and models that should be integrated are dependent on management questions and information compatibility. We summarize the importance of GIWs in watersheds and discuss what wetland connectivity means in both science and management contexts. We then describe the latest tools available to quantify GIW connectivity and explore crucial next steps to enhancing and integrating such tools. These advancements will ensure that appropriate tools are used in GIW decision making and maintaining the important ecosystem services that these wetlands support.

  1. Study of Wetland Ecosystem Vegetation Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Dyukarev, E. A.; Alekseeva, M. N.; Golovatskaya, E. A.

    2017-12-01

    The normalized difference vegetation index (NDVI) is used to estimate the aboveground net production (ANP) of wetland ecosystems for the key area at the South Taiga zone of West Siberia. The vegetation index and aboveground production are related by linear dependence and are specific for each wetland ecosystem. The NDVI grows with an increase in the ANP at wooded oligotrophic ecosystems. Open oligotrophic bogs and eutrophic wetlands are characterized by an opposite relation. Maps of aboveground production for wetland ecosystems are constructed for each study year and for the whole period of studies. The average aboveground production for all wetland ecosystems of the key area, which was estimated with consideration for the area they occupy and using the data of satellite measurements of the vegetation index, is 305 g C/m2/yr. The total annual carbon accumulation in aboveground wetland vegetation in the key area is 794600 t.

  2. WETLAND MORPHOLOGIC AND BIOGEOGRAPHIC INFLUENCES ON ALGAL RESPONSES TO NUTRIENT LOADING IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    We are testing the influence of wetland morphology (protected vs. riverine) and biogeography (upper vs. lower Great Lakes) on algal responses to nutrients in Great Lakes Coastal wetlands. Principal components analysis using nutrient-specific GIS data was used to select sites wit...

  3. Balancing the Needs of China's Wetland Conservation and Rice Production.

    PubMed

    Chen, Hongjun; Wang, Guoping; Lu, Xianguo; Jiang, Ming; Mendelssohn, Irving A

    2015-06-02

    China's rice policy for protecting paddy fields and constructing rice production bases is in conflict with its wetland conservation strategy. The policy will increase the rice planting area, the loss of remaining wetlands, and environmental pollution, with intensive application of fertilizers and heavy use of pesticides. The key to resolving this conflict is to bring rice production in compliance with wetland conservation and sustainable agriculture. An operational, sound regulatory program is needed to improve China's wetland conservation. Using wetland conservation in the US as an example, we argue that more effective technical guidelines for wetland inventory and monitoring are necessary to support the implementation of the regulatory program. Agricultural conservation programs are also needed to stop further wetland loss from agricultural usages. An ecoagricultural strategy and practice should be adopted for rice production to reduce pollution and loss of remaining wetlands. Agroecological engineering tools can be used to reduce the impacts of nutrient- and pesticide-enriched agricultural runoff to wetlands.

  4. Wetland mitigation in abandoned gravel pits.

    DOT National Transportation Integrated Search

    2010-03-01

    It is becoming increasingly difficult to provide on-site mitigation for wetland impacts due to road construction in : northeastern Minnesota counties that retain greater than 80 percent of their pre-settlement wetlands. Abandoned : gravel pits are on...

  5. Wetlands delineation by spectral signature analysis and legal implications

    NASA Technical Reports Server (NTRS)

    Anderon, R. R.; Carter, V.

    1972-01-01

    High altitude analysis of wetland resources and the use of such information in an operational mode to address specific problems of wetland preservation at a state level are discussed. Work efforts were directed toward: (1) developing techniques for using large scale color IR photography in state wetlands mapping program, (2) developing methods for obtaining wetlands ecology information from high altitude photography, (3) developing means by which spectral data can be more accurately analyzed visually, and (4) developing spectral data for automatic mapping of wetlands.

  6. Estimates of Carbon Sequestration in Tidal Coastal Wetlands Along the US east Coast

    EPA Science Inventory

    Globally, salt marshes are reported to sequester carbon (210 g C m-2 y -1), and along with mangroves in the US, they are reported to account for 1–2 % of the carbon sink for the conterminous US. Using the published salt marsh carbon sequestration rate and National Wetland Invent...

  7. Relating groundwater to seasonal wetlands in southeastern Wisconsin, USA

    USGS Publications Warehouse

    Skalbeck, J.D.; Reed, D.M.; Hunt, R.J.; Lambert, J.D.

    2009-01-01

    Historically, drier types of wetlands have been difficult to characterize and are not well researched. Nonetheless, they are considered to reflect the precipitation history with little, if any, regard for possible relation to groundwater. Two seasonal coastal wetland types (wet prairie, sedge meadow) were investigated during three growing seasons at three sites in the Lake Michigan Basin, Wisconsin, USA. The six seasonal wetlands were characterized using standard soil and vegetation techniques and groundwater measurements from the shallow and deep systems. They all met wetland hydrology criteria (e.g., water within 30 cm of land surface for 5% of the growing season) during the early portion of the growing season despite the lack of appreciable regional groundwater discharge into the wetland root zones. Although root-zone duration analyses did not fit a lognormal distribution previously noted in groundwater-dominated wetlands, they were able to discriminate between the plant communities and showed that wet prairie communities had shorter durations of continuous soil saturation than sedge meadow communities. These results demonstrate that the relative rates of groundwater outflows can be important for wetland hydrology and resulting wetland type. Thus, regional stresses to the shallow groundwater system such as pumping or low Great Lake levels can be expected to affect even drier wetland types. ?? Springer-Verlag 2008.

  8. Nevada Test Site Wetlands Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. J. Hansen

    1997-05-01

    This report identifies 16 Nevada Test Site (NTS) natural water sources that may be classified by the U.S. Army Corps of Engineers (USACE) as jurisdictional wetlands and identifies eight water sources that may be classified as waters of the United States. These water sources are rare, localized habitats on the NTS that are important to regional wildlife and to isolated populations of water tolerant plants and aquatic organisms. No field investigations on the NTS have been conducted in the past to identify those natural water sources which would be protected as rare habitats and which may fall under regulatory authoritymore » of the Clean Water Act (CWA) of 1997. This report identifies and summarizes previous studies of NTS natural water sources, and identifies the current DOE management practices related to the protection of NTS wetlands. This report also presents management goals specific for NTS wetlands that incorporate the intent of existing wetlands legislation, the principles of ecosystem management, and the interests of regional land managers and other stakeholders.« less

  9. Using Internet search behavior to assess public awareness of protected wetlands.

    PubMed

    Do, Yuno; Kim, Ji Yoon; Lineman, Maurice; Kim, Dong-Kyun; Joo, Gea-Jae

    2015-02-01

    Improving public awareness of protected wetlands facilitates sustainable wetland management, which depends on public participation. One way of gauging public interest is by tracking Internet search behavior (ISB). We assessed public awareness of issues related to protected wetland areas (PWAs) in South Korea by examining the frequencies of specific queries (PWAs, Ramsar, Upo wetland, Sunchon Bay, etc.) using relative search volumes (RSVs) obtained from an Internet search engine. RSV shows how many times a search term is used relative to a second search term during a specific period. Public awareness of PWAs changed from 2007 to 2013. Initially the majority of Internet searches were related to the most well-known tidal and inland wetlands Sunchon Bay and Upo wetlands, which are the largest existing wetlands in Korea with the greatest historical exposure. Public awareness, as reflected in RSVs, of wetlands increased significantly following PWA designation for the wetlands in 2008, which followed the Ramsar 10th Conference of Contracting Parties to the Convention on Wetlands (COP10) meeting. Public interest was strongly correlated to the number of news articles in the popular media, as evidenced by the increase in Internet searches for specific wetlands and words associated with specific wetlands. Correspondingly, the number of visitors to specific wetlands increased. To increase public interest in wetlands, wetland aspects that enhance wetland conservation should be promoted by the government and enhanced via public education. Our approach can be used to gauge public awareness and participation in a wide range of conservation efforts. © 2014 Society for Conservation Biology.

  10. Model Estimate of Pan-Arctic Lakes and Wetlands Methane Emissions and Their Future Climate Response

    NASA Astrophysics Data System (ADS)

    Chen, X.; Bohn, T. J.; Maksyutov, S. S.; Lettenmaier, D. P.

    2013-12-01

    Lakes and wetlands are important sources of the greenhouse gas CH4, whose emission rate is sensitive to climate. The northern high latitudes, which are especially susceptible to climate change, contain about 50% of the world's lakes and wetlands. Given predicted changes in the climate of this region over the next century (IPCC AR5 scenarios), there is concern about a possible positive feedback resulting from methane emissions from the region's wetlands and lakes. To study the climate response of emissions from northern high latitude lakes and wetlands, we employed a large-scale hydrology and carbon cycling model (Variable Infiltration Capacity model; VIC) over the Pan-Arctic domain, which was linked to an atmospheric model (Japan's National Institute of Environmental Studies transport model; NIES TM). In particular, the VIC model simulates the land surface hydrology and carbon cycling across a dynamic lake-wetland continuum, while NIES TM models the atmospheric mixing and 3-dimension transport of methane emitted. The VIC model includes a distributed wetland water table scheme, which accounts for microtopography around the lakes and simulates variations in inundated area that are calibrated to match a passive microwave based inundation product. Per-unit-area carbon uptake and methane emissions at the land surface have been calibrated using extensive in situ observations at West Siberia. Also, the atmospheric methane concentration from this linked model run was verified for the recent 5 years with satellite observations from Aqua's Atmospheric Infrared Sounder (AIRS) and Envisat's Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) instruments. Using RCP4.5 and RCP8.5 future climate scenarios, we examine CH4 emissions from high latitude lakes and wetlands, as well as their net greenhouse warming potential, over the next 3 centuries across the Pan-Arctic domain. We also assess relative uncertainties in emissions from each of the sources.

  11. AmeriFlux US-Tw4 Twitchell East End Wetland

    DOE Data Explorer

    Baldocchi, Dennis [University of California, Berkeley

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Tw4 Twitchell East End Wetland. Site Description - The Twitchell East End Wetland is a newly constructed restored wetland on Twitchell Island, CA. This site and the surrounding region are part of the San Joaquin - Sacramento River Delta drained beginning in the 1850's and subsequently used for agriculture. The site was previously a corn field. The wetland was designed to have a mix of vegetated and open water channels and ponds (due to surface elevation differences). Flooding of the wetland was done gradually beginning in January, 2014. Berms wind throughout the wetland to allow vehicle access. Tule and Cattail plant material from a nearby wetland were spread along the berms immediately prior to flooding to facilitate plant establishment and stabilization of the berms from wind/water erosion. The tower was installed on November 25, 2013.

  12. Louisiana Wetland Monitoring Using TOPEX/POSEIDON Altimetry

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Lee, H.; Ibaraki, M.; Shum, C.

    2006-12-01

    Conventional satellite radar altimetry is designed to observe ocean topography and significant technological advance has enabled our capability to measure sea level change, ice sheet elevation and sea ice freeboard height changes, hydrologic changes for large inland lake and rivers, and potentially land deformation. Wide- swath altimetry or interferometric altimetry onboard proposed and planned platforms are anticipated to significantly improve the spatial resolution of observations over ocean, land water, and ice surfaces. Coastal estuaries and wetlands play important roles in ecological environments. They not only provide habitat for thousands of aquatic/terrestrial plant and animal species but also control floods and storm surges by absorbing and reducing the velocity of storm water. Regional measurement of wetland water level changes from space is essential for hydrological studies. To our knowledge, there have been no reported successful attempts to use Ku-band altimetry for this purpose, especially over wetlands with seasonally varying vegetations. Here we demonstrate the use of the pulsed-limited radar altimeter (TOPEX), for the potential monitoring of wetland water level changes. The specific study regions are over the vegetated wetland in Louisiana. In addition to the retracking of Ku-band radar waveforms and generate a water level change time series over Louisiana wetland, we study the effect of media corrections, including the ionosphere and wet troposphere delays which are largely not applied for inland hydrological studies using altimetry. We find that most of the TOPEX waveform responses over the study region are specular or narrow-peaked, and we have tested various retrackers including the conventional OCOG, threshold, and the modified threshold algorithms which result in a decadal (1992-2002) height time series over several specific regions of the Louisiana wetland. It is found that the use of various corrections including wet troposphere delays

  13. Evaluating the potential for site-specific modification of LiDAR DEM derivatives to improve environmental planning-scale wetland identification using Random Forest classification

    NASA Astrophysics Data System (ADS)

    O'Neil, Gina L.; Goodall, Jonathan L.; Watson, Layne T.

    2018-04-01

    Wetlands are important ecosystems that provide many ecological benefits, and their quality and presence are protected by federal regulations. These regulations require wetland delineations, which can be costly and time-consuming to perform. Computer models can assist in this process, but lack the accuracy necessary for environmental planning-scale wetland identification. In this study, the potential for improvement of wetland identification models through modification of digital elevation model (DEM) derivatives, derived from high-resolution and increasingly available light detection and ranging (LiDAR) data, at a scale necessary for small-scale wetland delineations is evaluated. A novel approach of flow convergence modelling is presented where Topographic Wetness Index (TWI), curvature, and Cartographic Depth-to-Water index (DTW), are modified to better distinguish wetland from upland areas, combined with ancillary soil data, and used in a Random Forest classification. This approach is applied to four study sites in Virginia, implemented as an ArcGIS model. The model resulted in significant improvement in average wetland accuracy compared to the commonly used National Wetland Inventory (84.9% vs. 32.1%), at the expense of a moderately lower average non-wetland accuracy (85.6% vs. 98.0%) and average overall accuracy (85.6% vs. 92.0%). From this, we concluded that modifying TWI, curvature, and DTW provides more robust wetland and non-wetland signatures to the models by improving accuracy rates compared to classifications using the original indices. The resulting ArcGIS model is a general tool able to modify these local LiDAR DEM derivatives based on site characteristics to identify wetlands at a high resolution.

  14. Emissions of sulfur gases from wetlands

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.

    1992-01-01

    Data on the emissions of sulfur gases from marine and freshwater wetlands are summarized with respect to wetland vegetation type and possible formation mechanisms. The current data base is largest for salt marshes inhabited by Spartina alterniflora. Both dimethyl sulfide (DMS) and hydrogen sulfide (H2S) dominate emissions from salt marshes, with lesser quantities of methyl mercaptan (MeSH), carbonyl sulfide (COS), carbon disulfide (CS2) and dimethyl disulfide (DMDS) being emitted. High emission rates of DMS are associated with vegetation that produces the DMS precursor dimethylsulfonionpropionate (DMSP). Although large quantities of H2S are produced in marshes, only a small percentage escapes to the atmosphere. High latitude marshes emit less sulfur gases than temperate ones, but DMS still dominates. Mangrove-inhabited wetlands also emit less sulfur than temperate S. alterniflora marshes. Few data are available on sulfur gas emissions from freshwater wetlands. In most instances, sulfur emissions from temperate freshwater sites are low. However, some temperate and subtropical freshwater sites are similar in magnitude to those from marine wetlands which do not contain vegetation that produces DMSP. Emissions are low in Alaskan tundra but may be considerably higher in some bogs and fens.

  15. Water, sanitation and hygiene in wetlands. A case study from the Ewaso Narok Swamp, Kenya.

    PubMed

    Anthonj, Carmen; Rechenburg, Andrea; Kistemann, Thomas

    2016-10-01

    with the quantitative and qualitative data, the approach served as a very helpful model to develop a multi-layered understanding of WASH conditions and related behaviour. The people in the researched wetland use by far less improved water sources and sanitation facilities than the nationwide average for rural populations. Since Ewaso Narok Swamp serves as a model case for the domestic WASH conditions in a rural wetland in semiarid East Africa, this fact make the study relevant not only at a national, but also at an international level. The results underline the previously formulated need of an integrative approach that first and foremost complements wetland management by public health interventions. In order to improve WASH conditions and to change behaviour in the long term, interventions should include the provision of clean water and sanitation infrastructure, as well as widespread health education. The approach proved to be useful for wetland environments and will be integrated into the development of a health impact assessment tool for wetlands. Moreover, it can be adopted in other contexts. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Losing function through wetland mitigation in central Pennsylvania, USA.

    PubMed

    Hoeltje, S M; Cole, C A

    2007-03-01

    In the United States, the Clean Water Act requires mitigation for wetlands that are negatively impacted by dredging and filling activities. During the mitigation process, there generally is little effort to assess function for mitigation sites and function is usually inferred based on vegetative cover and acreage. In our study, hydrogeomorphic (HGM) functional assessment models were used to compare predicted and potential levels of functional capacity in created and natural reference wetlands. HGM models assess potential function by measurement of a suite of structural variables and these modeled functions can then be compared to those in natural, reference wetlands. The created wetlands were built in a floodplain setting of a valley in central Pennsylvania to replace natural ridge-side slope wetlands. Functional assessment models indicated that the created sites differed significantly from natural wetlands that represented the impacted sites for seven of the ten functions assessed. This was expected because the created wetlands were located in a different geomorphic setting than the impacted sites, which would affect the type and degree of functions that occur. However, functional differences were still observed when the created sites were compared with a second set of reference wetlands that were located in a similar geomorphic setting (floodplain). Most of the differences observed in both comparisons were related to unnatural hydrologic regimes and to the characteristics of the surrounding landscape. As a result, the created wetlands are not fulfilling the criteria for successful wetland mitigation.

  17. Effects of a herbicide mixture on primary and bacterial productivity in four prairie wetlands with varying salinities: an enclosure approach.

    PubMed

    Sura, Srinivas; Waiser, Marley J; Tumber, Vijay; Raina-Fulton, Renata; Cessna, Allan J

    2015-04-15

    Wetlands in the Prairie pothole region of Saskatchewan and Manitoba serve an important role in providing wildlife habitat, water storage and water filtration. They display a wide range of water quality parameters such as salinity, nutrients and major ions with sulfate as the dominant ion for the most saline wetlands. The differences in these water quality parameters among wetlands are reflected in the composition of aquatic plant communities and their productivity. Interspersed within an intensely managed agricultural landscape where pesticides are commonly used, mixtures of herbicides are often detected in these wetlands as well as in rivers, and drinking water reservoirs. One freshwater and three wetlands of varying salinity in the St. Denis National Wildlife Area, Saskatchewan, Canada were selected to study the effects of a mixture of eight herbicides (2,4-D, MCPA, dicamba, clopyralid, bromoxynil, mecoprop, dichlorprop, and glyphosate) on wetland microbial communities using an outdoor enclosure approach. Six enclosures (three controls and three treatments) were installed in each wetland and the herbicide mixture added to the treatment enclosures. The concentration of each herbicide in the enclosure water was that which would have resulted from a direct overspray of a 0.5-m deep wetland at its recommended field application rate. After herbicide addition, primary and bacterial productivity, and algal biomass were measured in both planktonic and benthic communities over 28 days. The herbicide mixture had a stimulatory effect on primary productivity in the nutrient-sufficient freshwater wetland while no stimulatory effect was observed in the nutrient-deficient saline wetlands. The differences observed in the effects of the herbicide mixture appear to be related to the nutrient bioavailability in these wetlands. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  18. Coastal wetlands of Lake Superior’s south shore

    EPA Science Inventory

    There are more than two thousand coastal wetlands that encompass an area of about 215,000 ha in the Laurentian Great Lakes (LGL) of North America. Coastal wetlands in the LGL are distinguished hydrologically from nearby inland wetlands by a direct surface water connection with wa...

  19. HANDBOOK FOR CONSTRUCTED WETLANDS RECEIVING ACID MINE DRAINAGE

    EPA Science Inventory

    In the summer of 1987, a pilot constructed wetland was built at the Big Five Tunnel in Idaho Springs, Colorado. This report details the theory, design and construction of wetlands receiving acid mine drainages, based on the second and third year of operation of this wetland, whic...

  20. Microbial Enzyme Activities of Wetland Soils as Indicators of Nutrient Condition: A Test in Wetlands of Gulf of Mexico Coastal Watershed

    EPA Science Inventory

    Microbial enzyme activities measured from wetland soils are being tested as indicators of wetland nutrient function and human disturbance. This is part of an assessment of condition of wetlands being conducted by the U.S. EPA Gulf Ecology Division in coastal watersheds along the...

  1. Observations On Some Upper Amazonian Wetlands of Southeastern Peru

    NASA Astrophysics Data System (ADS)

    Householder, J. E.; Muttiah, R.; Khanal, S.

    2007-05-01

    Upper Amazonian wetlands represent little studied, poorly understood, and grossly under protected systems. Scientific investigation of Amazonian wetlands is in its infancy; nor is there much known about their ecological services. Regionally, wetlands form a ubiquitous and significant component of floodplain habitat fed by perennial springs as well as overland runoff. Locally, wetland vegetation forms bewilderingly complex vegetation mosaics that seem to be governed by local topography and hydrology. Drawing upon intensive field campaigns and remotely sensed imagery, we summarize the results and experiences gathered in wetlands of southeastern Peru.

  2. Human-Climate Interactions Drive Loss of Isolated Wetlands

    NASA Astrophysics Data System (ADS)

    Krapu, C.; Kumar, M.

    2017-12-01

    The disappearance of geographically isolated wetlands (GIWs) across the American midcontinent is known to be related to the expansion of row crops such as soybeans and maize northward beginning in the late 20th century. GIWs provide a range of ecosystem services yet frequently undergo preferential loss due to agriculture and development, among other factors. In this study we examined the dynamics of GIWs in the North Dakota Prairie Pothole Region from 1984-2015 in relation to shifts in agricultural practices. Using a newly developed metric of wetland drainage and consolidation, we found that the disappearance of these wetlands was hastened by an intense multiyear wet period during 1995-2000. This wet period led to widespread installation of agricultural drainage systems and annual loss rates of wetlands as high as 366 km2 per year. An analysis of wetland area-perimeter relationships further confirms that these drainage systems led to the widespread consolidation of wetlands into larger, more permanent complexes.

  3. Historical range of variation assessment for wetland and riparian ecosystems, U.S. Forest Service Rocky Mountain Region

    Treesearch

    Edward Gage; David J. Cooper

    2013-01-01

    This document provides an overview of historical range of variation concepts and explores their application to wetland and riparian ecosystems in the US Forest Service Rocky Mountain Region (Region 2), which includes National Forests and National Grasslands occurring in the states of Colorado, Wyoming, Nebraska, Kansas, and South Dakota. For each of five ecosystem...

  4. Baseline aquatic contamination and endocrine status in a resident fish of Biscayne National Park

    USGS Publications Warehouse

    Bargar, Timothy A.; Whelan, Kevin R.T.; Alvarez, David; Echols, Kathy R.; Peterman, Paul H.

    2017-01-01

    Surface water, sediment, and fish from Biscayne Bay, coastal wetlands adjacent to the Bay, and canals discharging into the Bay were sampled for determination of baseline contamination in Biscayne National Park. While the number of contaminants detected in canal waters was greater during the wet season than the dry season, no seasonal difference was evident for Biscayne Bay or coastal wetland waters. Estrogen equivalency (as 17β-estradiol equivalents), as predicted by the Yeast Estrogen Screen, for extracts of passive water samplers deployed in canals and wetlands was elevated during the wet relative to the dry season. Generally, contamination in water, sediments, and fish was greater in the canals than in Biscayne Bay and the wetlands. Guideline levels for sediment contaminant were exceeded most frequently in canals relative to the coastal wetlands and the Bay. Further investigation is necessary to better understand the impact of contaminants in Biscayne National Park.

  5. Agricultural conservation practices and wetland ecosystem services in the wetland-rich Piedmont–Coastal Plain region

    Treesearch

    Diane De Steven; Richard Lowrance

    2011-01-01

    In the eastern U.S. Coastal Plain and Piedmont region, diverse inland wetlands (riverine, depressional, wet flats) have been impacted by or converted to agriculture. Farm Bill conservation practices that restore or enhance wetlands can return their ecological functions and services to the agricultural landscape. We review the extent of regional knowledge regarding the...

  6. Prediction CH4 Emissions from the Wetlands in the Sanjiang Plain of Northeastern China in the 21st Century.

    PubMed

    Li, Tingting; Zhang, Qing; Zhang, Wen; Wang, Guocheng; Lu, Yanyu; Yu, Lijun; Zhang, Ran

    2016-01-01

    The Sanjiang Plain has been experienced significant wetland loss due to expanded agricultural activities, and will be potentially restored by the China National Wetland Conservation Action Plan (NWCP) in future. The objective of this study is to evaluate the impact of future climate warming and wetland restoration on wetland CH4 emissions in northeast China. We used an atmosphere-vegetation interaction model (AVIM2) to drive a modified biogeophysical model (CH4MODwetland), and projected CH4 flux variations from the Sanjiang Plain wetlands under different Representative Concentration Pathway scenarios throughout the 21st century. Model validation showed that the regressions between the observed and simulated CH4 fluxes by the modified model produced an R2 of 0.49 with a slope of 0.87 (p<0.001, n = 237). According to the AVIM2 simulation, the net primary productivity of the Sanjiang Plain wetlands will increase by 38.2 g m-2 yr-1, 116.6 g m-2 yr-1 and 250.4 g m-2 yr-1 under RCP 2.6, RCP 4.5 and RCP 8.5, respectively, by the end of this century. For RCP 2.6, 4.5 and 8.5 scenarios, the CH4 fluxes will increase by 5.7 g m-2 yr-1, 57.5 g m-2 yr-1 and 112.2 g m-2 yr-1. Combined with the wetland restoration, the regional emissions will increase by 0.18‒1.52 Tg. The CH4 emissions will be stimulated by climate change and wetland restoration. Regional wetland restoration planning should be directed against different climate scenarios in order to suppress methane emissions.

  7. Prediction CH4 Emissions from the Wetlands in the Sanjiang Plain of Northeastern China in the 21st Century

    PubMed Central

    Li, Tingting; Zhang, Qing; Zhang, Wen; Wang, Guocheng; Lu, Yanyu; Yu, Lijun; Zhang, Ran

    2016-01-01

    The Sanjiang Plain has been experienced significant wetland loss due to expanded agricultural activities, and will be potentially restored by the China National Wetland Conservation Action Plan (NWCP) in future. The objective of this study is to evaluate the impact of future climate warming and wetland restoration on wetland CH4 emissions in northeast China. We used an atmosphere-vegetation interaction model (AVIM2) to drive a modified biogeophysical model (CH4MODwetland), and projected CH4 flux variations from the Sanjiang Plain wetlands under different Representative Concentration Pathway scenarios throughout the 21st century. Model validation showed that the regressions between the observed and simulated CH4 fluxes by the modified model produced an R2 of 0.49 with a slope of 0.87 (p<0.001, n = 237). According to the AVIM2 simulation, the net primary productivity of the Sanjiang Plain wetlands will increase by 38.2 g m-2 yr-1, 116.6 g m-2 yr-1 and 250.4 g m-2 yr-1 under RCP 2.6, RCP 4.5 and RCP 8.5, respectively, by the end of this century. For RCP 2.6, 4.5 and 8.5 scenarios, the CH4 fluxes will increase by 5.7 g m-2 yr-1, 57.5 g m-2 yr-1 and 112.2 g m-2 yr-1. Combined with the wetland restoration, the regional emissions will increase by 0.18‒1.52 Tg. The CH4 emissions will be stimulated by climate change and wetland restoration. Regional wetland restoration planning should be directed against different climate scenarios in order to suppress methane emissions. PMID:27409586

  8. The Regulation of CH4 and N2O fluxes by Wetlands at Landscape Level

    NASA Astrophysics Data System (ADS)

    Soosaar, K.; Maddison, M.; Salm, J. O.; Järveoja, J.; Hansen, R.; Mander, Ü.

    2012-04-01

    The world's wetlands, despite being only about 5% of the terrestrial landscape, are currently significant net sinks of more than 1 Pg yr-1 of carbon (Mitsch et al 2012). At landscape level wetlands and riparian zones are important regulators of nutrient transport (Zedler 2003). However, they can be also significant hot spots of greenhouse gas (GHG) emissions (Teiter&Mander 2005). Swedish experience shows that the nationally planned wetland creation (12,000 ha) could make a significant contribution to the targeted reduction of N fluxes (up to 27% of the Swedish environmental objective), at an environmental risk equalling 0.04% of the national anthropogenic GHG emission (Thiere et al 2011). Only few studies consider the potential GHG emission throughout both natural and created wetlands. The main objective of this study was to clarify the potential of various wetland ecosystem and riparian zones of northern rural landscapes in regulation of GHG emissions. Monthly-based measurements of GHG emissions using closed chamber method were performed from October 2007 to October 2011 in 47 study sites in Estonia. The study sites cover various wetlands and riparian forests as well as reference areas on automorphic soils. In general, wetlands' drainage was the most significant disturbance factor influencing GHG fluxes, causing significant increase of N2O emission as well as decreasing CH4 emission. However, we also observed significantly high CH4 flux from drained peatlands. In most of the soils with ground/soil water levels deeper than 30 cm from the surface, a significant decrease of CH4 fluxes were detected. The highest CH4 emissions (up to 5060 kg CH4-C ha-1 yr-1) were detected from drained fen grasslands. In the case of N2O, no clear differences were found between colder and warmer periods. Relatively higher N2O fluxes were measured from the drained fen grassland, the fertilized arable land, the riparian forest on automorphic soil, and the drained transition fen forest

  9. Observation of Wetland Dynamics with Global Navigation Satellite Signals Reflectometry

    NASA Astrophysics Data System (ADS)

    Zuffada, C.; Shah, R.; Nghiem, S. V.; Cardellach, E.; Chew, C. C.

    2015-12-01

    Wetland dynamics is crucial to changes in both atmospheric methane and terrestrial water storage. The Intergovernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5) highlights the role of wetlands as a key driver of methane (CH4) emission, which is more than one order of magnitude stronger than carbon dioxide as a greenhouse gas in the centennial time scale. Among the multitude of methane emission sources (hydrates, livestock, rice cultivation, freshwaters, landfills and waste, fossil fuels, biomass burning, termites, geological sources, and soil oxidation), wetlands constitute the largest contributor with the widest uncertainty range of 177-284 Tg(CH4) yr-1 according to the IPCC estimate. Wetlands are highly susceptible to climate change that might lead to wetland collapse. Such wetland destruction would decrease the terrestrial water storage capacity and thus contribute to sea level rise, consequently exacerbating coastal flooding problems. For both methane change and water storage change, wetland dynamics is a crucial factor with the largest uncertainty. Nevertheless, a complete and consistent map of global wetlands still needs to be obtained as the Ramsar Convention calls for a wetlands inventory and impact assessment. We develop a new method for observations of wetland change using Global Navigation Satellite Signals Reflectometry (GNSS-R) signatures for global wetland mapping in synergy with the existing capability, not only as a static inventory but also as a temporal dataset, to advance the capability for monitoring the dynamics of wetland extent relevant to addressing the science issues of CH4 emission change and terrestrial water storage change. We will demonstrate the capability of the new GNSS-R method over a rice field in the Ebro Delta wetland in Spain.

  10. Community-Based Wetland Restoration Workshop in the Lower Ninth Ward, New Orleans

    NASA Astrophysics Data System (ADS)

    Wang, H. F.; Craig, L.; Ross, J. A.; Zepeda, L.; Carpenter, Q.

    2010-12-01

    Since 2007 a workshop class of University of Wisconsin-Madison students has participated in a community-based project in New Orleans to investigate the feasibility of restoring the Bayou Bienvenue Wetland Triangle (BBWT), which is adjacent to the Lower 9th Ward in New Orleans. This 440-acre region is currently open water but was a cypress forest until the 1970s. Restoration would provide protection from storm surges, restored ecological services, and recreational use. The workshop introduced students to the multidisciplinary skills needed to work effectively with the complex and interconnected issues within a project involving many stakeholders. The stakeholders included the Center for Sustainable Engagement and Development (CSED), Lower 9th Ward residents, non-profits (e.g., Sierra Club, Environmental Defense, Lake Pontchartrain Basin Foundation, National Wildlife Federation), government agencies (e.g., New Orleans Sewerage and Water Board, Army Corps of Engineers), neighborhood groups (e.g., Holy Cross Neighborhood Association, The Village), and universities (Tulane, U. of New Orleans, LSU, U. Colorado-Denver, Southeastern Louisiana). The course ran initially as a Water Resources Management practicum in the first two summers and then as a broader multidisciplinary project with student expertise in hydrology, social science, law, planning, policy analysis, community development, GIS, public health, environmental education and ecological restoration. The project divided into three main components: wetland science, social science, and land tenure and planning. Principal activities in wetland science were to monitor water levels and water quality, inventory flora and fauna, and plant grasses on small “floating islands.” The principal social science activity was to conduct a neighborhood survey about knowledge of the wetland and interest in its restoration. The land tenure and planning activity was to investigate ownership and transfer of property within the

  11. Assessment of wetland productive capacity from a remote-sensing-based model - A NASA/NMFS joint research project

    NASA Technical Reports Server (NTRS)

    Butera, M. K.; Frick, A. L.; Browder, J.

    1983-01-01

    NASA and the U.S. National Marine Fisheries Service have undertaken the development of Landsat Thematic Mapper (TM) technology for the evaluation of the usefulness of wetlands to estuarine fish and shellfish production. Toward this end, a remote sensing-based Productive Capacity model has been developed which characterizes the biological and hydrographic features of a Gulf Coast Marsh to predict detrital export. Regression analyses of TM simulator data for wetland plant production estimation are noted to more accurately estimate the percent of total vegetative cover than biomass, indicating that a nonlinear relationship may be involved.

  12. Mountain wetlands: efficient uranium filters - potential impacts

    USGS Publications Warehouse

    Owen, D.E.; Otton, J.K.

    1995-01-01

    Sediments in 67 of 145 Colorado wetlands sampled by the US Geological Survey contain moderate (20 ppm) or greater concentrations of uranium (some as high as 3000 ppm) based on dry weight. The proposed maximum contaminant level (MCL) for uranium in drinking water is 20 ??g/l or 20 ppb. By comparison, sediments in many of these wetlands contain 3 to 5 orders of magnitude more uranium than the proposed MCL. Wetlands near the workings of old mines may be trapping any number of additional metals/elements including Cu, Pb, Zn, As and Ag. Anthropogenic disturbances and natural changes may release uranium and other loosely bound metals presently contained in wetland sediments. -from Authors

  13. Structure and vulnerability of Pacific Northwest tidal wetlands – A summary of wetland climate change research by the Western Ecology Division, U.S. EPA

    USGS Publications Warehouse

    Folger, Christina L; Lee, Henry; Janousek, Christopher N.; Reusser, Deborah A.

    2014-01-01

    Climate change poses a serious threat to the tidal wetlands of the Pacific Northwest (PNW) region of the U.S. In response to this threat, scientists at the Western Ecology Division of the U.S. EPA at and the Western Fisheries Research Center of the U.S. Geological Survey, along with other partners, initiated a series of studies on the structure and vulnerability of tidal wetlands to climate change. One research thrust was to evaluate community structure of PNW marshes, experimentally assess the vulnerability of marsh plants to inundation and salinity stress (as would happen with sea level rise), and evaluate the utility of the National Wetland Inventory (NWI) classification system. Another research thrust was to develop tools that provide insights into possible impacts of climate change. This effort included enhancing the Sea Level Affecting Marshes Model (SLAMM) to predict the effects of sea level rise on submerged aquatic vegetation (Zostera marina) distributions, evaluating changes in river flow into coastal estuaries in response to precipitation changes, and synthesizing Pacific Coast estuary, watershed, and climate data in a downloadable tool. Because the research resulting from these efforts was published in multiple venues, we summarized them in this document. We anticipate that future research efforts by the U.S. EPA will continue with a focus on climate change impacts on a regional scale.

  14. A significant nexus: Geographically isolated wetlands influence landscape hydrology

    NASA Astrophysics Data System (ADS)

    McLaughlin, Daniel L.; Kaplan, David A.; Cohen, Matthew J.

    2014-09-01

    Recent U.S. Supreme Court rulings have limited federal protections for geographically isolated wetlands (GIWs) except where a "significant nexus" to a navigable water body is demonstrated. Geographic isolation does not imply GIWs are hydrologically disconnected; indeed, wetland-groundwater interactions may yield important controls on regional hydrology. Differences in specific yield (Sy) between uplands and inundated GIWs drive differences in water level responses to precipitation and evapotranspiration, leading to frequent reversals in hydraulic gradients that cause GIWs to act as both groundwater sinks and sources. These reversals are predicted to buffer surficial aquifer dynamics and thus base flow delivery, a process we refer to as landscape hydrologic capacitance. To test this hypothesis, we connected models of soil moisture, upland water table, and wetland stage to simulate hydrology of a low-relief landscape with GIWs, and explored the influences of total wetland area, individual wetland size, climate, and soil texture on water table and base flow variation. Increasing total wetland area and decreasing individual wetland size substantially decreased water table and base flow variation (e.g., reducing base flow standard deviation by as much as 50%). GIWs also decreased the frequency of extremely high and low water tables and base flow deliveries. For the same total wetland area, landscapes with fewer (i.e., larger) wetlands exhibited markedly lower hydrologic capacitance than those with more (i.e., smaller) wetlands, highlighting the importance of small GIWs to regional hydrology. Our results suggest that GIWs buffer dynamics of the surficial aquifer and stream base flow, providing an indirect but significant nexus to the regional hydrologic system.

  15. Remarkable amphibian biomass and abundance in an isolated wetland: implications for wetland conservation.

    PubMed

    Gibbons, J Whitfield; Winne, Christopher T; Scott, David E; Willson, John D; Glaudas, Xavier; Andrews, Kimberly M; Todd, Brian D; Fedewa, Luke A; Wilkinson, Lucas; Tsaliagos, Ria N; Harper, Steven J; Greene, Judith L; Tuberville, Tracey D; Metts, Brian S; Dorcas, Michael E; Nestor, John P; Young, Cameron A; Akre, Tom; Reed, Robert N; Buhlmann, Kurt A; Norman, Jason; Croshaw, Dean A; Hagen, Cris; Rothermel, Betsie B

    2006-10-01

    Despite the continuing loss of wetland habitats and associated declines in amphibian populations, attempts to translate wetland losses into measurable losses to ecosystems have been lacking. We estimated the potential productivity from the amphibian community that would be compromised by the loss of a single isolated wetland that has been protected from most industrial, agricultural, and urban impacts for the past 54 years. We used a continuous drift fence at Ellenton Bay, a 10-ha freshwater wetland on the Savannah River Site, near Aiken, South Carolina (U.S.A.), to sample all amphibians for 1 year following a prolonged drought. Despite intensive agricultural use of the land surrounding Ellenton Bay prior to 1951, we documented 24 species and remarkably high numbers and biomass of juvenile amphibians (>360,000 individuals; >1,400 kg) produced during one breeding season. Anurans (17 species) were more abundant than salamanders (7 species), comprising 96.4% of individual captures. Most (95.9%) of the amphibian biomass came from 232095 individuals of a single species of anuran (southern leopard frog[Rana sphenocephala]). Our results revealed the resilience of an amphibian community to natural stressors and historical habitat alteration and the potential magnitude of biomass and energy transfer from isolated wetlands to surrounding terrestrial habitat. We attributed the postdrought success of amphibians to a combination of adult longevity (often >5 years), a reduction in predator abundance, and an abundance of larval food resources. Likewise, the increase of forest cover around Ellenton Bay from <20% in 1951 to >60% in 2001 probably contributed to the long-term persistence of amphibians at this site. Our findings provide an optimistic counterpoint to the issue of the global decline of biological diversity by demonstrating that conservation efforts can mitigate historical habitat degradation.

  16. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Depression Wetlands in the Upper Des Plaines River Basin

    DTIC Science & Technology

    2006-05-01

    Wetlands and Coastal Ecology Branch; Dr. David J. Tazik, Chief, Eco- system Evaluation and Engineering Division; and Dr. Edwin A. Theriot, Direc- tor, EL...wetlands (Euliss and Mushet 1996, Azous and Horner 2001, Bhaduri et al. 1997) and nutrient loading into those wetlands. The overall LU score is...Euliss, N. H., and Mushet , D. M. (1996). “Water-level fluctuation in wetlands as a function of landscape condition in the prairie pothole region

  17. The road to higher permanence and biodiversity in exurban wetlands.

    PubMed

    Urban, Mark C; Roehm, Robert

    2018-01-01

    Exurban areas are expanding throughout the world, yet their effects on local biodiversity remain poorly understood. Wetlands, in particular, face ongoing and substantial threats from exurban development. We predicted that exurbanization would reduce the diversity of wetland amphibian and invertebrate communities and that more spatially aggregated residential development would leave more undisturbed natural land, thereby promoting greater local diversity. Using structural equation models, we tested a series of predictions about the direct and indirect pathways by which exurbanization extent, spatial pattern, and wetland characteristics might affect diversity patterns in 38 wetlands recorded during a growing season. We used redundancy, indicator species, and nested community analyses to evaluate how exurbanization affected species composition. In contrast to expectations, we found higher diversity in exurban wetlands. We also found that housing aggregation did not significantly affect diversity. Exurbanization affected biodiversity indirectly by increasing roads and development, which promoted permanent wetlands with less canopy cover and more aquatic vegetation. These pond characteristics supported greater diversity. However, exurbanization was associated with fewer temporary wetlands and fewer of the species that depend on these habitats. Moreover, the best indicator species for an exurban wetland was the ram's head snail, a common disease vector in disturbed ponds. Overall, results suggest that exurbanization is homogenizing wetlands into more permanent water bodies. These more permanent, exurban ponds support higher overall animal diversity, but exclude temporary wetland specialists. Conserving the full assemblage of wetland species in expanding exurban regions throughout the world will require protecting and creating temporary wetlands.

  18. Characterization of microtopography and its influence on vegetation patterns in created wetlands

    USGS Publications Warehouse

    Moser, K.; Ahn, C.; Noe, G.

    2007-01-01

    Created wetlands are increasingly used to mitigate wetland loss. Thus, identifying wetland creation methods that enhance ecosystem development might increase the likelihood of mitigation success. Noting that the microtopographic variation found in natural wetland settings may not commonly be found in created wetlands, this study explores relationships between induced microtopography, hydrology, and plant species richness/ diversity in non-tidal freshwater wetlands, comparing results from two created wetland complexes with those from a mature reference wetland complex in northern Virginia. Elevation, steel rod oxidation depth, and species cover were measured along replicate multiscale (0.5 m-, 1 m-, 2 m-, and 4 m-diameter) tangentially conjoined circular transects in each wetland. Microtopography was surveyed using a total station and results used to derive three roughness indices: tortuosity, limiting slope, and limiting elevation difference. Steel rod oxidation depth was used to estimate water table depth, with data collected four times during the growing season for each study site. Plant species cover was estimated visually in 0.2 m2 plots surveyed at peak growth and used to assess species richness, diversity, and wetland prevalence index. Differences in each attribute were examined among disked and non-disked created wetlands and compared to a natural wetland as a reference. Disked and non-disked created wetlands differed in microtopography, both in terms of limiting elevation difference and tortuosity. However, both were within the range of microtopography encompassed by natural wetlands. Disked wetlands supported higher plant diversity and species richness than either natural or non-disked wetlands, as well as greater within-site species assemblage variability than non-disked wetlands. Irrespective of creation method, plant diversity in created wetlands was correlated with tortuosity and limiting elevation difference, similar to correlations observed for

  19. Coastal wetlands: an integrated ecosystem approach

    USGS Publications Warehouse

    Perillo, G. M. E.; Wolanski, E.; Cahoon, D.R.; Brinson, M.M.

    2009-01-01

    Coastal wetlands are under a great deal of pressure from the dual forces of rising sea level and the intervention of human populations both along the estuary and in the river catchment. Direct impacts include the destruction or degradation of wetlands from land reclamation and infrastructures. Indirect impacts derive from the discharge of pollutants, changes in river flows and sediment supplies, land clearing, and dam operations. As sea level rises, coastal wetlands in most areas of the world migrate landward to occupy former uplands. The competition of these lands from human development is intensifying, making the landward migration impossible in many cases. This book provides an understanding of the functioning of coastal ecosystems and the ecological services that they provide, and suggestions for their management. In this book a CD is included containing color figures of wetlands and estuaries in different parts of the world.

  20. Canadian SAR remote sensing for the Terrestrial Wetland Global Change Research Network (TWGCRN)

    USGS Publications Warehouse

    Kaya, Shannon; Brisco, Brian; Cull, Andrew; Gallant, Alisa L.; Sadinski, Walter J.; Thompson, Dean

    2010-01-01

    The Canada Centre for Remote Sensing (CCRS) has more than 30 years of experience investigating the use of SAR remote sensing for many applications related to terrestrial water resources. Recently, CCRS scientists began contributing to the Terrestrial Wetland Global Change Research Network (TWGCRN), a bi-national research network dedicated to assessing impacts of global change on interconnected wetland-upland landscapes across a vital portion of North America. CCRS scientists are applying SAR remote sensing to characterize wetland components of these landscapes in three ways. First, they are using a comprehensive set of RADARSAT-2 SAR data collected during April to September 2009 to extract multi-temporal surface water information for key TWGCRN study landscapes in North America. Second, they are analyzing polarimetric RADARSAT-2 data to determine areas where double-bounce represents the primary scattering mechanism and is indicative of flooded vegetation in these landscapes. Third, they are testing advanced interferometric SAR techniques to estimate water levels with RADARSAT-2 Fine Quad polarimetric image pairs. The combined information from these three SAR analysis activities will provide TWGCRN scientists with an integrated view and monitoring capability for these dynamic wetland-upland landscapes. These data are being used in conjunction with other remote sensing and field data to study interactions between landscape and animal (birds and amphibians) responses to climate/global change.

  1. Influence of seasonal variations in sea level on the salinity regime of a coastal groundwater-fed wetland.

    PubMed

    Wood, Cameron; Harrington, Glenn A

    2015-01-01

    Seasonal variations in sea level are often neglected in studies of coastal aquifers; however, they may have important controls on processes such as submarine groundwater discharge, sea water intrusion, and groundwater discharge to coastal springs and wetlands. We investigated seasonal variations in salinity in a groundwater-fed coastal wetland (the RAMSAR listed Piccaninnie Ponds in South Australia) and found that salinity peaked during winter, coincident with seasonal sea level peaks. Closer examination of salinity variations revealed a relationship between changes in sea level and changes in salinity, indicating that sea level-driven movement of the fresh water-sea water interface influences the salinity of discharging groundwater in the wetland. Moreover, the seasonal control of sea level on wetland salinity seems to override the influence of seasonal recharge. A two-dimensional variable density model helped validate this conceptual model of coastal groundwater discharge by showing that fluctuations in groundwater salinity in a coastal aquifer can be driven by a seasonal coastal boundary condition in spite of seasonal recharge/discharge dynamics. Because seasonal variations in sea level and coastal wetlands are ubiquitous throughout the world, these findings have important implications for monitoring and management of coastal groundwater-dependent ecosystems. © 2014, National Ground Water Association.

  2. Agricultural use of wetlands: opportunities and limitations

    PubMed Central

    Verhoeven, Jos T. A.; Setter, Tim L.

    2010-01-01

    Background Wetlands are species-rich habitats performing valuable ecosystem services such as flood protection, water quality enhancement, food chain support and carbon sequestration. Worldwide, wetlands have been drained to convert them into agricultural land or industrial and urban areas. A realistic estimate is that 50 % of the world's wetlands have been lost. Scope This paper reviews the relationship between wetlands and agriculture with the aim to identify the successes and failures of agricultural use in different types of wetlands, with reference to short-term and long-term benefits and issues of sustainability. It also addresses a number of recent developments which will lead to pressure to reclaim and destroy natural wetlands, i.e. the continuous need for higher production to feed an increasing world population and the increasing cultivation of energy crops. Finally, attention is paid to the development of more flood-tolerant crop cultivars. Conclusions Agriculture has been carried out in several types of (former) wetlands for millennia, with crop fields on river floodplain soils and rice fields as major examples. However, intensive agricultural use of drained/reclaimed peatlands has been shown to lead to major problems because of the oxidation and subsidence of the peat soil. This does not only lead to severe carbon dioxide emissions, but also results in low-lying land which needs to be protected against flooding. Developments in South-East Asia, where vast areas of tropical peatlands are being converted into oil palm plantations, are of great concern in this respect. Although more flood-tolerant cultivars of commercial crop species are being developed, these are certainly not suitable for cultivation in wetlands with prolonged flooding periods, but rather will survive relatively short periods of waterlogging in normally improved agricultural soils. From a sustainability perspective, reclamation of peatlands for agriculture should be strongly discouraged

  3. Occurrence of riverine wetlands on floodplains along a climatic gradient

    USGS Publications Warehouse

    Kroes, D.E.; Brinson, M.M.

    2004-01-01

    The relation between the occurrence of riverine wetlands in floodplains along a humid to semi-arid climatic continuum was studied in two regions. The first included 36 mid-reach streams from Colorado to Iowa, USA, a region with a broad range of PET ratios (potential evapotranspiration/precipitation) from 0.70 to 1.75. The second region included 16 headwater streams in eastern North Carolina with PET ratios ranging from 0.67 to 0.83. Wetland boundaries were identified in the field along transects perpendicular to the floodplain. The width of jurisdictional wetlands was compared with flood-prone width (FPW) and expressed as a percent. An increase in PET ratio corresponded to an exponential decrease in the percentage of the FPW that is wetland. Soil texture, duration of overbank flow, and stream order did not correlate with percentage of FPW that was wetland. Streams with a PET ratio greater than 0.98 did not have wetlands associated with them. Greater channel cross-sectional areas correlated positively with greater wetland widths in both study regions. Overbank flow did not appear to contribute to wetland prevalence. Supplemental ground-water sources, however, as indicated by greater base flows, could not be ruled out as sources contributing to wetland occurrence. ?? 2004, The Society of Wetland Scientists.

  4. Assessment of nutrient retention by Natete wetland Kampala, Uganda

    NASA Astrophysics Data System (ADS)

    Kanyiginya, V.; Kansiime, F.; Kimwaga, R.; Mashauri, D. A.

    Natete wetland which is located in a suburb of Kampala city in Uganda is dominated by C yperus papyrus and covers an area of approximately 1 km 2. The wetland receives wastewater and runoff from Natete town which do not have a wastewater treatment facility. The main objective of this study was to assess nutrient retention of Natete wetland and specifically to: determine the wastewater flow patterns in the wetland; estimate the nutrient loads into and out of the wetland; determine the nutrient retention by soil, plants and water column in the wetland; and assess the above and belowground biomass density of the dominant vegetation. Soil, water and plant samples were taken at 50 m intervals along two transects cut through the wetland; soil and water samples were taken at 10 cm just below the surface. Physico-chemical parameters namely pH, electrical conductivity and temperature were measured in situ. Water samples were analyzed in the laboratory for ammonium-nitrogen, nitrate-nitrogen, total nitrogen, orthophosphate and total phosphorus. Electrical conductivity ranged between 113 μS/cm and 530 μS/cm and the wastewater flow was concentrated on the eastern side of the wetland. pH varied between 6 and 7, temperature ranged from 19 °C to 24 °C. NH 4-N, NO 3-N, and TN concentrations were retained by 21%, 98%, and 35% respectively. Phosphorus concentration was higher at the outlet of the wetland possibly due to release from sediments and leaching. Nutrient loads were higher at the inlet (12,614 ± 394 kgN/day and 778 ± 159 kgP/day) than the outlet (2368 ± 425 kgN/day and 216 ± 56 kgP/day) indicating retention by the wetland. Plants stored most nutrients compared to soil and water. The belowground biomass of papyrus vegetation in the wetland was higher (1288.4 ± 8.3 gDW/m 2) than the aboveground biomass (1019.7 ± 13.8 gDW/m 2). Plant uptake is one of the important routes of nutrient retention in Natete wetland. It is recommended that harvesting papyrus can be an

  5. Estimating restorable wetland water storage at landscape scales

    USGS Publications Warehouse

    Jones, Charles Nathan; Evenson, Grey R.; McLaughlin, Daniel L.; Vanderhoof, Melanie; Lang, Megan W.; McCarty, Greg W.; Golden, Heather E.; Lane, Charles R.; Alexander, Laurie C.

    2018-01-01

    Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many landscapes and used to guide restoration efforts, few studies have directly quantified the associated wetland storage capacity. Here, we present a novel raster-based approach to quantify both contemporary and potential (i.e., restorable) storage capacities of individual depressional basins across landscapes. We demonstrate the utility of this method by applying it to the Delmarva Peninsula, a region punctuated by both depressional wetlands and drainage ditches. Across the entire peninsula, we estimated that restoration (i.e., plugging ditches) could increase storage capacity by 80%. Focusing on an individual watershed, we found that over 59% of restorable storage capacity occurs within 20 m of the drainage network, and that 93% occurs within 1 m elevation of the drainage network. Our demonstration highlights widespread ditching in this landscape, spatial patterns of both contemporary and potential storage capacities, and clear opportunities for hydrologic restoration. In Delmarva and more broadly, our novel approach can inform targeted landscape-scale conservation and restoration efforts to optimize hydrologically mediated wetland functions.

  6. Estimating restorable wetland water storage at landscape scales.

    PubMed

    Jones, Charles Nathan; Evenson, Grey R; McLaughlin, Daniel L; Vanderhoof, Melanie K; Lang, Megan W; McCarty, Greg W; Golden, Heather E; Lane, Charles R; Alexander, Laurie C

    2018-01-01

    Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many landscapes and used to guide restoration efforts, few studies have directly quantified the associated wetland storage capacity. Here, we present a novel raster-based approach to quantify both contemporary and potential (i.e., restorable) storage capacities of individual depressional basins across landscapes. We demonstrate the utility of this method by applying it to the Delmarva Peninsula, a region punctuated by both depressional wetlands and drainage ditches. Across the entire peninsula, we estimated that restoration (i.e., plugging ditches) could increase storage capacity by 80%. Focusing on an individual watershed, we found that over 59% of restorable storage capacity occurs within 20 m of the drainage network, and that 93% occurs within 1 m elevation of the drainage network. Our demonstration highlights widespread ditching in this landscape, spatial patterns of both contemporary and potential storage capacities, and clear opportunities for hydrologic restoration. In Delmarva and more broadly, our novel approach can inform targeted landscape-scale conservation and restoration efforts to optimize hydrologically mediated wetland functions.

  7. Book review: Southern Forested Wetlands: Ecology and Management

    Treesearch

    Carl C. Trettin

    2000-01-01

    The southern region has the largest proportion of wetlands in the conterminous US. The majority of that wetland resource is forested by diverse vegetation communities reflecting differences in soil, hydrology, geomorphology, climatic conditions and past management. Wetland resources in the southern US are very important to the economy providing both commodity and non-...

  8. Analysis of Unmanned Aerial Vehicle (UAV) hyperspectral remote sensing monitoring key technology in coastal wetland

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Zhang, Jie; Zhang, Jingyu

    2016-01-01

    The coastal wetland, a transitional zone between terrestrial ecosystems and marine ecosystems, is the type of great value to ecosystem services. For the recent 3 decades, area of the coastal wetland is decreasing and the ecological function is gradually degraded with the rapid development of economy, which restricts the sustainable development of economy and society in the coastal areas of China in turn. It is a major demand of the national reality to carry out the monitoring of coastal wetlands, to master the distribution and dynamic change. UAV, namely unmanned aerial vehicle, is a new platform for remote sensing. Compared with the traditional satellite and manned aerial remote sensing, it has the advantage of flexible implementation, no cloud cover, strong initiative and low cost. Image-spectrum merging is one character of high spectral remote sensing. At the same time of imaging, the spectral curve of each pixel is obtained, which is suitable for quantitative remote sensing, fine classification and target detection. Aimed at the frontier and hotspot of remote sensing monitoring technology, and faced the demand of the coastal wetland monitoring, this paper used UAV and the new remote sensor of high spectral imaging instrument to carry out the analysis of the key technologies of monitoring coastal wetlands by UAV on the basis of the current situation in overseas and domestic and the analysis of developing trend. According to the characteristic of airborne hyperspectral data on UAV, that is "three high and one many", the key technology research that should develop are promoted as follows: 1) the atmosphere correction of the UAV hyperspectral in coastal wetlands under the circumstance of complex underlying surface and variable geometry, 2) the best observation scale and scale transformation method of the UAV platform while monitoring the coastal wetland features, 3) the classification and detection method of typical features with high precision from multi scale

  9. Peatlands and potatoes; organic wetland soils in Uganda

    NASA Astrophysics Data System (ADS)

    Farmer, Jenny; Langan, Charlie; Gimona, Alessandro; Poggio, Laura; Smith, Jo

    2017-04-01

    Land use change in Uganda's wetlands has received very little research attention. Peat soils dominate the papyrus wetlands of the south west of the country, but the areas they are found in have been increasingly converted to potato cultivation. Our research in Uganda set out to (a) document both the annual use of and changes to these soils under potato cultivation, and (b) the extent and condition of these soils across wetland systems. During our research we found it was necessary to develop locally appropriate protocols for sampling and analysis of soil characteristics, based on field conditions and locally available resources. Over the period of one year we studied the use of the peat soil for potato cultivation by smallholder farmers in Ruhuma wetland and measured changes to surface peat properties and soil nutrients in fields over that time. Farmer's use of the fields changed over the year, with cultivation, harvesting and fallow periods, which impacted on soil micro-topography. Measured soil properties changed over the course of the year as a result of the land use, with bulk density, nitrogen content, potassium and magnesium all reducing. Comparison of changes in soil carbon stocks over the study period were difficult to make as it was not possible to reach the bottom of the peat layer. However, a layer of fallow weeds discarded onto the soil prior to preparation of the raised potato beds provided a time marker which gave insight into carbon losses over the year. To determine the peatland extent, a spatial survey was conducted in the Kanyabaha-Rushebeya wetland system, capturing peat depths and key soil properties (bulk density, organic matter and carbon contents). Generalised additive models were used to map peat depth and soil characteristics across the system, and maps were developed for these as well as drainage and land use classes. Comparison of peat cores between the two study areas indicates spatial variability in peat depths and the influence of

  10. Environmental gradients and identification of wetlands in north-central Florida

    USGS Publications Warehouse

    Davis, M.M.; Sprecher, S.W.; Wakeley, J.S.; Best, G.R.

    1996-01-01

    Vegetation composition, soil morphology, and hydrology were characterized along wetland-to-upland gradients at six forested sites in north-central Florida to compare results of Federal wetland delineation methods with 3–5 yr of hydrologic data. Wetland and non-wetland identifications were supported by hydrology data in eight of nine plant communities. Lack of hydric soil indicators and hydrophytic vegetation in two upland communities (scrub and mixed mesic hardwoods) agreed with a deep water table. Six wetland communities (cypress dome, cypress strand, bayhead, cypress/bayhead, red maple/oak swamp, and cedar swamp) with field indicators of wetland hydrology, hydrophytic vegetation, and hydric soils were inundated or had water tables at or near the ground surface at least 5% of the growing season in most years., Flatwoods communities, however, occurred at intermediate positions on the moisture gradient and could not be consistently identified as wetland or upland communities. Identification of flatwoods as wetlands depended on wetland delineation method and was not usually supported by hydrologic measurements. In the flatwoods community, soil properties and vegetation composition were correlated with the mean and standard deviation of water-table depths, as well as the depth continuously exceeded by the water table at least 5% of the growing season in most years. Various hydrologic parameters need to be considered in addition to the 5% exceedence level currently used in Federal wetland delineation guidance when characterizing wetland conditions in low-gradient areas such as flatwoods.

  11. Albuquerque's constructed wetland pilot project for wastewater polishing

    Treesearch

    Michael D. Marcus; Shannon M. House; Nathan A. Bowles; Robert T. Sekiya; J. Steven Glass

    1999-01-01

    The City of Albuquerque has funded the Constructed Wetland Pilot Project (CWPP) since 1995 at the City's Southside Water Reclamation Plant (SWRP). Results from CWPP and other wetland treatment projects indicate that appropriately designed surface-flow wetlands could increase the cost-efficiencies of wastewater treatment, as well as help the City meet present and...

  12. Valuing wetland attributes in the Lake Champlain Basin

    Treesearch

    Donald F. Dennis; Walter F. Kuentzel

    1998-01-01

    This research explores the use of conjoint analysis to assess and understand wetland values. A conjoint rating survey was designed and mailed to landowners in the Laplatte River Basin (Lake Champlain) in Vermont. Landowners rated options to protect wetlands that varied by the wetland's ability to decrease pollutants entering Lake Champlain, value in providing food...

  13. Research access to privately owned wetland basins in the prairie pothole region of the United States

    USGS Publications Warehouse

    Fellows, David P.; Buhl, Thomas K.

    1995-01-01

    We describe efforts to obtain access for research to 81 wetland basins on 69 farms in four zones of the Prairie Pothole Region of North Dakota, South Dakota, and Minnesota. Access was obtained to 54% of the farms in areas where land was intensively cropped and 87% of farms in areas of low cropping intensity. On average, 1.35 operators had to be contacted and 1.70 interviews were required to obtain a decision on access to a farm. On 77% of the farms, cooperators placed at least one restriction on access, most commonly requiring walking access only or notification before nighttime work. Cost of obtaining access averaged $265/farm in wages and travel expenses. No cooperators were willing to sign written access agreements. Operators rescinded access to four farms and drained three wetland basins during the first year; six of the seven sites lost were in the intensively cropped portion of a low-wetland-density zone. The difficulty of obtaining and retaining research access to privately owned wetland basins in intensively cropped areas may be related to landowner attitudes towards wetlands. Researchers may have to rely on remote sensing or consider payment for access to secure representative research sites in such areas. Unwillingness of cooperators to sign access agreements may jeopardize research by the newly formed National Biological Service and other resource management agencies.

  14. Conservative and reactive solute transport in constructed wetlands

    USGS Publications Warehouse

    Keefe, Steffanie H.; Barber, Larry B.; Runkel, Robert L.; Ryan, Joseph N.; McKnight, Diane M.; Wass, Roland D.

    2004-01-01

    The transport of bromide, a conservative tracer, and rhodamine WT (RWT), a photodegrading tracer, was evaluated in three wastewater‐dependent wetlands near Phoenix, Arizona, using a solute transport model with transient storage. Coupled sodium bromide and RWT tracer tests were performed to establish conservative transport and reactive parameters in constructed wetlands with water losses ranging from (1) relatively impermeable (15%), (2) moderately leaky (45%), and (3) significantly leaky (76%). RWT first‐order photolysis rates and sorption coefficients were determined from independent field and laboratory experiments. Individual wetland hydraulic profiles influenced the extent of transient storage interaction in stagnant water areas and consequently RWT removal. Solute mixing and transient storage interaction occurred in the impermeable wetland, resulting in 21% RWT mass loss from main channel and storage zone photolysis (10%) and sorption (11%) reactions. Advection and dispersion governed solute transport in the leaky wetland, limiting RWT photolysis removal (1.2%) and favoring main channel sorption (3.6%). The moderately leaky wetland contained islands parallel to flow, producing channel flow and minimizing RWT losses (1.6%).

  15. Advancing Wetlands Mapping and Monitoring with GNSS Reflectometry

    NASA Astrophysics Data System (ADS)

    Zuffada, Cinzia; Chew, Clara; Nghiem, Son V.; Shah, Rashmi; Podest, Erika; Bloom, A. Anthony; Koning, Alexandra; Small, Eric; Schimel, David; Reager, J. T.; Mannucci, Anthony; Williamson, Walton; Cardellach, Estel

    2016-08-01

    Wetland dynamics is crucial to address changes in both atmospheric methane (CH4) and terrestrial water storage. Yet, both spatial distribution and temporal variability of wetlands remain highly unconstrained despite the existence of remote sensing products from past and present satellite sensors. An innovative approach to mapping wetlands is offered by the Global Navigation Satellite System Reflectometry (GNSS-R), which is a bistatic radar concept that takes advantage of the ever increasing number of GNSS transmitting satellites to yield many randomly distributed measurements with broad-area global coverage and rapid revisit time. Hence, this communication presents the science motivation for mapping of wetlands and monitoring of their dynamics, and shows the relevance of the GNSS-R technique in this context, relative to and in synergy with other existing measurement systems. Additionally, the communication discusses results of our data analysis on wetlands in the Amazon, specifically from the initial analysis of satellite data acquired by the TechDemoSat-1 mission launched in 2014. Finally, recommendations are provided for the design of a GNSS-R mission specifically to address wetlands science issues.

  16. Assessment of Blue Carbon Storage by Baja California (Mexico) Tidal Wetlands and Evidence for Wetland Stability in the Face of Anthropogenic and Climatic Impacts

    PubMed Central

    Watson, Elizabeth Burke

    2017-01-01

    Although saline tidal wetlands cover less than a fraction of one percent of the earth’s surface (~0.01%), they efficiently sequester organic carbon due to high rates of primary production coupled with surfaces that aggrade in response to sea level rise. Here, we report on multi-decadal changes (1972–2008) in the extent of tidal marshes and mangroves, and characterize soil carbon density and source, for five regions of tidal wetlands located on Baja California’s Pacific coast. Land-cover change analysis indicates the stability of tidal wetlands relative to anthropogenic and climate change impacts over the past four decades, with most changes resulting from natural coastal processes that are unique to arid environments. The disturbance of wetland soils in this region (to a depth of 50 cm) would liberate 2.55 Tg of organic carbon (C) or 9.36 Tg CO2eq. Based on stoichiometry and carbon stable isotope ratios, the source of organic carbon in these wetland sediments is derived from a combination of wetland macrophyte, algal, and phytoplankton sources. The reconstruction of natural wetland dynamics in Baja California provides a counterpoint to the history of wetland destruction elsewhere in North America, and measurements provide new insights on the control of carbon sequestration in arid wetlands. PMID:29295540

  17. Assessment of Blue Carbon Storage by Baja California (Mexico) Tidal Wetlands and Evidence for Wetland Stability in the Face of Anthropogenic and Climatic Impacts.

    PubMed

    Watson, Elizabeth Burke; Hinojosa Corona, Alejandro

    2017-12-24

    Although saline tidal wetlands cover less than a fraction of one percent of the earth's surface (~0.01%), they efficiently sequester organic carbon due to high rates of primary production coupled with surfaces that aggrade in response to sea level rise. Here, we report on multi-decadal changes (1972-2008) in the extent of tidal marshes and mangroves, and characterize soil carbon density and source, for five regions of tidal wetlands located on Baja California's Pacific coast. Land-cover change analysis indicates the stability of tidal wetlands relative to anthropogenic and climate change impacts over the past four decades, with most changes resulting from natural coastal processes that are unique to arid environments. The disturbance of wetland soils in this region (to a depth of 50 cm) would liberate 2.55 Tg of organic carbon (C) or 9.36 Tg CO₂eq. Based on stoichiometry and carbon stable isotope ratios, the source of organic carbon in these wetland sediments is derived from a combination of wetland macrophyte, algal, and phytoplankton sources. The reconstruction of natural wetland dynamics in Baja California provides a counterpoint to the history of wetland destruction elsewhere in North America, and measurements provide new insights on the control of carbon sequestration in arid wetlands.

  18. A review of the ecohydrology of the Sakumo wetland in Ghana.

    PubMed

    Nonterah, Cynthia; Xu, Yongxin; Osae, Shiloh; Akiti, Thomas T; Dampare, Samuel B

    2015-11-01

    The Sakumo wetland is an internationally recognized Ramsar site located in a largely urban area and provides essential ecological and social services to wetland community dwellers. Despite its importance, the wetland has over the years been subjected to human interference resulting in considerable risks of deteriorating water quality, biodiversity loss, and drying up of most parts of the wetland. The conversion of land for residential and agricultural uses has significantly altered the hydrological characteristics of the land surface and modified pathways and flow of water into the wetland. Other drivers identified included drainage (mainly as runoff from agricultural farms), anthropogenic pressure (waste discharge) due to infrastructure development associated with urbanization, chemical contamination as a result of industrial and household pollution, and unsustainable fishing practices (overfishing). The purpose of the study was to review some of the physical and chemical properties of the Sakumo wetland on the changing wetland resources with emphasis on water quality. Rapid urbanization, industrialization, and overexploitation of wetland resources were identified as key causative factors affecting the wetland functions. Their effects on the wetland among others include increased nutrient and toxic chemical load which has resulted in reduced wetland surface water quality and decrease in species diversity. pH of the wetland waters was generally alkaline which is characteristic of water bodies influenced by seawater under oxygenated conditions. The increasing trends of electrical conductivity, phosphates, ammonia, nitrate, and nitrite, though small, point to deteriorating water quality in the wetland. The lagoon water was observed to be heavily polluted with nutrients particularly phosphate. The sequence of nutrient in the wetland was found to be in the order of PO4-P>NH3-N>NO3-N>NO2-N. These, if not checked, will result in further deterioration of the wetland

  19. Microbial diversity in restored wetlands of San Francisco Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theroux, Susanna; Hartman, Wyatt; He, Shaomei

    Wetland ecosystems may serve as either a source or a sink for atmospheric carbon and greenhouse gases. This delicate carbon balance is influenced by the activity of belowground microbial communities that return carbon dioxide and methane to the atmosphere. Wetland restoration efforts in the San Francisco Bay-Delta region may help to reverse land subsidence and possibly increase carbon storage in soils. However, the effects of wetland restoration on microbial communities, which mediate soil metabolic activity and carbon cycling, are poorly studied. In an effort to better understand the underlying factors which shape the balance of carbon flux in wetland soils,more » we targeted the microbial communities in a suite of restored and historic wetlands in the San Francisco Bay-Delta region. Using DNA and RNA sequencing, coupled with greenhouse gas monitoring, we profiled the diversity and metabolic potential of the wetland soil microbial communities along biogeochemical and wetland age gradients. Our results show relationships among geochemical gradients, availability of electron acceptors, and microbial community composition. Our study provides the first genomic glimpse into microbial populations in natural and restored wetlands of the San Francisco Bay-Delta region and provides a valuable benchmark for future studies.« less

  20. Conceptual hierarchical modeling to describe wetland plant community organization

    USGS Publications Warehouse

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.

    2010-01-01

    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.