Sample records for xmm-newton x-ray observations

  1. Exospheric Neutral Density at the Earth's subsolar magnetopause deduced from the XMM-Newton X-ray observations

    NASA Astrophysics Data System (ADS)

    Connor, H. K.; Carter, J. A.

    2017-12-01

    Soft X-rays can be emitted when highly charged solar wind ions and exospheric neutrals exchange electrons. Astrophysics missions, such as XMM-Newton and ROSAT X-ray telescopes, have found that such solar wind charge exchange happens at the Earth's exosphere. The Earth's magnetosphere can be imaged via soft X-rays in order to understand its interaction with solar wind. Consequently, two soft X-ray telescope missions (CuPID and SMILE) are scheduled to launch in 2019 and 2021. They will provide wide field-of-view soft X-ray images of the Earth's dayside magnetosphere. The imagers will track the location and movement of the cusps, magnetopause, and bow shock in response to solar wind variations. To support these missions, an understanding of exospheric neutral density profile is needed. The neutral density is one of the controlling factors of soft X-ray signals. Strong neutral density can help to obtain high-resolution and high-cadence of soft X-ray images. In this study, we estimate the exospheric neutral density at 10 RE subsolar point using XMM X-ray observations, Cluster plasma observations, and OpenGGCM global magnetosphere - ionosphere MHD model. XMM-Newton observes line-of-sight, narrow field-of-view, integrated soft X-ray emissions when it looks through the dayside magnetosphere. OpenGGCM reproduces soft X-ray signals seen by the XMM spacecraft, assuming exospheric neutral density as a function of the neutral density at the 10RE subsolar point and the radial distance. Cluster observations are used to confirm OpenGGCM plasma results. Finally, we deduce the neutral density at 10 RE subsolar point by adjusting the model results to the XMM-Newton soft X-ray observations.

  2. Identification of high-mass X-ray binaries selected from XMM-Newton observations of the LMC★

    NASA Astrophysics Data System (ADS)

    van Jaarsveld, N.; Buckley, D. A. H.; McBride, V. A.; Haberl, F.; Vasilopoulos, G.; Maitra, C.; Udalski, A.; Miszalski, B.

    2018-04-01

    The Large Magellanic Cloud (LMC) currently hosts around 23 high-mass X-ray binaries (HMXBs) of which most are Be/X-ray binaries. The LMC XMM-Newton survey provided follow-up observations of previously known X-ray sources that were likely HMXBs, as well as identifying new HMXB candidates. In total, 19 candidate HMXBs were selected based on their X-ray hardness ratios. In this paper we present red and blue optical spectroscopy, obtained with Southern African Large Telescope and the South African Astronomical Observatory 1.9-m telescope, plus a timing analysis of the long-term optical light curves from OGLE to confirm the nature of these candidates. We find that nine of the candidates are new Be/X-ray binaries, substantially increasing the LMC Be/X-ray binary population. Furthermore, we present the optical properties of these new systems, both individually and as a group of all the BeXBs identified by the XMM-Newton survey of the LMC.

  3. XMM-Newton X-ray Observatory Guest Observer program (AO-1) at CASA

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.

    2003-01-01

    In this research program, we obtained and analyzed X-ray observations of the Wolf-Rayet (WR) star WR 110 (HD 165688) using the XMM-Newton space-based observatory. Radio observations were also obtained using the Very Large Array (VLA) radio telescope located in New Mexico and operated by the Natl. Radio Astronomy Observatory (NRAO). This star was targeted for observations primarily because it is believed to be a single WR star without a companion. Single WR stars are thought to emit X-rays from cool plasma in shocks distributed throughout their powerful stellar winds. However, there has been little observational work done to test this idea since single WR stars are relatively weak X-ray sources and have been difficult to detect with previous generation telescopes. The launch of XMM-Newton provides a new telescope that is much more sensitive than its predecessors, allowing single WR stars to be studied in detail for the first time. X-ray emission was clearly detected from WR 110. Analysis of its spectrum yields a surprising result. Its X-ray emitting plasma is distributed over a range of temperatures and is dominated by relatively cool plasma with a characteristic temperature T is approximately 6 million K. Such plasma can be explained by existing theoretical wind shock models. However, the spectrum also shows hotter plasma whose temperature is uncertain but is thought to be in excess of T approximately 30 million K. The origin of this hotter plasma is yet unknown, but possible mechanisms are identified

  4. X-ray Observations of Binary and Single Wolf-Rayet Stars with XMM-Newton and Chandra

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen; Gudel, Manuel; Schmutz, Werner; Zhekov, Svetozar

    2006-01-01

    We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. These observations are aimed at determining the differences in X-ray properties between massive WR + OB binary systems and putatively single WR stars. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission (including the Fe Ka line complex), characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only nondetections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.

  5. NuSTAR and XMM-Newton Observations of the Hard X- Ray Spectrum of Centaurus A

    NASA Technical Reports Server (NTRS)

    Furst, F.; Muller, C.; Madsen, K. K.; Lanz, L.; Rivers, E.; Brightman, M.; Arevalo, P.; Balokovic, M.; Beuchert, T.; Zhang, W.

    2016-01-01

    We present simultaneous XMM-Newton and Nuclear Spectroscopic Telescope Array (NuSTAR) observations spanning 3-78 keV of the nearest radio galaxy, Centaurus A (Cen A). The accretion geometry around the central engine in Cen A is still debated, and we investigate possible configurations using detailed X-ray spectral modeling. NuSTAR imaged the central region of Cen A with subarcminute resolution at X-ray energies above 10 keV for the first time, but found no evidence for an extended source or other off-nuclear point sources. The XMM-Newton and NuSTAR spectra agree well and can be described with an absorbed power law with a photon index Gamma = 1.8150 +/- 0.005 and a fluorescent Fe Kaline in good agreement with literature values. The spectrum is greater than 1 MeV. A thermal Comptonization continuum describes the data well, with parameters that agree with values measured by INTEGRAL, in particular an electron temperature kTe between approximately 100-300 keV and seed photon input temperatures between 5 and 50 eV. We do not find evidence for reflection or a broad iron line and put stringent upper limits of R is less than 0.01 on the reflection fraction and accretion disk illumination. We use archival Chandra data to estimate the contribution from diffuse emission, extra-nuclear point sources, and the outer X-ray jet to the observed NuSTAR and XMM-Newton X-ray spectra and find the contribution to be negligible. We discuss different scenarios for the physical origin of the observed hard X-ray spectrum and conclude that the inner disk is replaced by an advection-dominated accretion flow or that the X-rays are dominated by synchrotron self-Compton emission from the inner regions of the radio jet or a combination thereof.

  6. An X-Ray Investigation of the NGC346 Field in the SMC (3): XMM-Newton Data

    NASA Technical Reports Server (NTRS)

    Naze, Yael; Manfroid, Jean; Corcoran, Michael F.; Stevens, Ian R.

    2004-01-01

    We present new XMM-Newton results on the field around the NGC346 star cluster in the SMC. This continues and extends previously published work on Chandra observations of the same field. The two XMM-Newton observations were obtained, respectively, six months before and six months after the previously published Chandra data. Of the 51 X-ray sources detected with XMM-Newton, 29 were already detected with Chandru. Comparing the properties of these X-ray sources in each of our three datasets has enabled us to investigate their variability on times scales of a year. Changes in the flux levels and/or spectral properties were observed for 21 of these sources. In addition, we discovered long-term variations in the X-ray properties of the peculiar system HD5980, a luminous blue variable star, that is likely to be a colliding wind binary system, which displays the largest luminosity during the first XMM-Newton observation.

  7. Supernova remnants in M33: X-ray properties as observed by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Garofali, Kristen; Williams, Benjamin F.; Plucinsky, Paul P.; Gaetz, Terrance J.; Wold, Brian; Haberl, Frank; Long, Knox S.; Blair, William P.; Pannuti, Thomas G.; Winkler, P. Frank; Gross, Jacob

    2017-11-01

    We have carried out a study of the X-ray properties of the supernova remnant (SNR) population in M33 with XMM-Newton, comprising deep observations of eight fields in M33 covering all of the area within the D25 contours, and with a typical luminosity of 7.1 × 1034 erg s-1 (0.2-2.0 keV). Here, we report our work to characterize the X-ray properties of the previously identified SNRs in M33, as well as our search for new X-ray detected SNRs. With our deep observations and large field of view we have detected 105 SNRs at the 3σ level, of which 54 SNRs are newly detected in X-rays, and three are newly discovered SNRs. Combining XMM-Newton data with deep Chandra survey data allows detailed spectral fitting of 15 SNRs, for which we have measured temperatures, ionization time-scales and individual abundances. This large sample of SNRs allows us to construct an X-ray luminosity function, and compare its shape to luminosity functions from host galaxies of differing metallicities and star formation rates to look for environmental effects on SNR properties. We conclude that while metallicity may play a role in SNR population characteristics, differing star formation histories on short time-scales, and small-scale environmental effects appear to cause more significant differences between X-ray luminosity distributions. In addition, we analyse the X-ray detectability of SNRs, and find that in M33 SNRs with higher [S II]/H α ratios, as well as those with smaller galactocentric distances, are more detectable in X-rays.

  8. XMM-Newton detects X-ray 'solar cycle' in distant star

    NASA Astrophysics Data System (ADS)

    2004-05-01

    The Sun as observed by SOHO hi-res Size hi-res: 708 Kb The Sun as observed by SOHO The Sun as observed by the ESA/NASA SOHO observatory near the minimum of the solar cycle (left) and near its maximum (right). The signs of solar activity near the maximum are clearly seen. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Solar flare - 4 November 2003 The huge flare produced on 4 November 2003 This image of the Sun, obtained by the ESA/NASA SOHO observatory, shows the powerful X-ray flare that took place on 4 November 2003. The associated coronal mass ejection, coming out of the Sun at a speed of 8.2 million kilometres per hour, hit the Earth several hours later and caused disruptions to telecommunication and power distribution lines. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Since the time Galileo discovered sunspots, in 1610, astronomers have measured their number, size and location on the disc of the Sun. Sunspots are relatively cooler areas on the Sun that are observed as dark patches. Their number rises and falls with the level of activity of the Sun in a cycle of about 11 years. When the Sun is very active, large-scale phenomena take place, such as the flares and coronal mass ejections observed by the ESA/NASA solar observatory SOHO. These events release a large amount of energy and charged particles that hit the Earth and can cause powerful magnetic storms, affecting radio communications, power distribution lines and even our weather and climate. During the solar cycle, the X-ray emission from the Sun varies by a large amount (about a factor of 100) and is strongest when the cycle is at its peak and the surface of the Sun is covered by the largest number of spots. ESA's X-ray observatory, XMM-Newton, has now shown for the first time that this cyclic X-ray behaviour is common to

  9. The XMM-Newton serendipitous survey. VII. The third XMM-Newton serendipitous source catalogue

    NASA Astrophysics Data System (ADS)

    Rosen, S. R.; Webb, N. A.; Watson, M. G.; Ballet, J.; Barret, D.; Braito, V.; Carrera, F. J.; Ceballos, M. T.; Coriat, M.; Della Ceca, R.; Denkinson, G.; Esquej, P.; Farrell, S. A.; Freyberg, M.; Grisé, F.; Guillout, P.; Heil, L.; Koliopanos, F.; Law-Green, D.; Lamer, G.; Lin, D.; Martino, R.; Michel, L.; Motch, C.; Nebot Gomez-Moran, A.; Page, C. G.; Page, K.; Page, M.; Pakull, M. W.; Pye, J.; Read, A.; Rodriguez, P.; Sakano, M.; Saxton, R.; Schwope, A.; Scott, A. E.; Sturm, R.; Traulsen, I.; Yershov, V.; Zolotukhin, I.

    2016-05-01

    Context. Thanks to the large collecting area (3 ×~1500 cm2 at 1.5 keV) and wide field of view (30' across in full field mode) of the X-ray cameras on board the European Space Agency X-ray observatory XMM-Newton, each individual pointing can result in the detection of up to several hundred X-ray sources, most of which are newly discovered objects. Since XMM-Newton has now been in orbit for more than 15 yr, hundreds of thousands of sources have been detected. Aims: Recently, many improvements in the XMM-Newton data reduction algorithms have been made. These include enhanced source characterisation and reduced spurious source detections, refined astrometric precision of sources, greater net sensitivity for source detection, and the extraction of spectra and time series for fainter sources, both with better signal-to-noise. Thanks to these enhancements, the quality of the catalogue products has been much improved over earlier catalogues. Furthermore, almost 50% more observations are in the public domain compared to 2XMMi-DR3, allowing the XMM-Newton Survey Science Centre to produce a much larger and better quality X-ray source catalogue. Methods: The XMM-Newton Survey Science Centre has developed a pipeline to reduce the XMM-Newton data automatically. Using the latest version of this pipeline, along with better calibration, a new version of the catalogue has been produced, using XMM-Newton X-ray observations made public on or before 2013 December 31. Manual screening of all of the X-ray detections ensures the highest data quality. This catalogue is known as 3XMM. Results: In the latest release of the 3XMM catalogue, 3XMM-DR5, there are 565 962 X-ray detections comprising 396 910 unique X-ray sources. Spectra and lightcurves are provided for the 133 000 brightest sources. For all detections, the positions on the sky, a measure of the quality of the detection, and an evaluation of the X-ray variability is provided, along with the fluxes and count rates in 7 X-ray energy

  10. Joint XMM-Newton, Chandra, and RXTE Observations of Cyg X-1 at Phase Zero

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja

    2008-01-01

    We present first results of simultaneous observations of the high mass X-ray binary Cyg X-1 for 50 ks with XMM-Newton, Chandra-HETGS and RXTE in 2008 April. The observations are centered on phase 0 of the 5.6 d orbit when pronounced dips in the X-ray emission from the black hole are known to occur. The dips are due to highly variable absorption in the accretion stream from the O-star companion to the black hole. Compared to previous high resolution spectroscopy studies of the dip and non-dip emission with Chandra, the addition of XMM-Newton data allows for a better determination of the continuum, especially through the broad iron line region (with RXTE constraining the greater than 10 keV continuum).

  11. Analysis of XMM-Newton Data from Extended Sources and the Diffuse X-Ray Background

    NASA Technical Reports Server (NTRS)

    Snowden, Steven

    2011-01-01

    Reduction of X-ray data from extended objects and the diffuse background is a complicated process that requires attention to the details of the instrumental response as well as an understanding of the multiple background components. We present methods and software that we have developed to reduce data from XMM-Newton EPIC imaging observations for both the MOS and PN instruments. The software has now been included in the Science Analysis System (SAS) package available through the XMM-Newton Science Operations Center (SOC).

  12. Insights on the X-ray weak quasar phenomenon from XMM-Newton monitoring of PHL 1092

    NASA Astrophysics Data System (ADS)

    Miniutti, Giovanni; Fabian, Andy; Gallo, Luigi; Brandt, Niel; Schneider, Donald

    2012-09-01

    PHL 1092 is a z~0.4 high-luminosity counterpart of the class of Narrow Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ~260 with respect to a previous observation performed 4.5 yr earlier. The UV flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope alpha_ox from -1.57 to -2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with XMM-Newton, producing a simultaneous UV and X-ray database spanning almost 10 yr in total in the activity of the source. We apply a series of physically motivated models to the data with the goal of explaining as self-consistently as possible the UV-to-X-ray spectral energy distribution (SED) and the extreme X-ray and alpha_ox variability. We discuss our results in the context of the class of non-BAL X-ray weak quasars and so-called PHL 1811 analogs.

  13. Extremely Hard X-ray Emission from Eta Carinae observed with XMM-Newton and NuSTAR around Periastron in 2014.5

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Takahashi, Hiromitsu; Yuasa, Tadayuki; Groh, Jose H.; Russell, Christopher Michael Post; Pittard, Julian M.; Madura, Thomas; Owocki, Stanley P.; Grefenstette, Brian

    2015-01-01

    The super massive colliding wind binary system, Eta Carinae, experienced another periastron passage in the summer of 2014. We monitored this event using the multiple X-ray observatories, Chandra, XMM-Newton, NuSTAR, Suzaku and Swift. With a high eccentricity of its 5.5 year orbit, X-ray emission from the wind-wind collision (WWC) increases strongly toward periastron but then drops sharply by more than two orders of magnitude in two weeks around periastron due probably to an eclipse and an intrinsic activity decline of the WWC plasma. In this observing campaign, XMM-Newton and NuSTAR coordinated two simultaneous observations around the X-ray flux maximum on June 6 and just before the flux minimum on July 28. These two observations captured Eta Carinae with X-ray focusing telescopes in the extreme hard X-ray band above 10 keV for the first time.During the first observation, XMM and NuSTAR detected stable X-ray emission from the central binary system between 1 - 40 keV. A fit of a 1-temperature bremsstrahlung model to the high energy slope in the NuSTAR spectrum derives an electron temperature of ~6 keV, which is significantly higher than an ionization temperature at ~4.5 keV, measured from the Fe K emission lines resolved in the XMM spectrum.This result suggests the presence of very hot plasma and/or X-ray reflection at surrounding cold material. During the second observation, the X-ray flux between 5 - 10 keV declined steadily by a factor of ~2 in a day, while the other energy bands were rather stable. This variation may be explained by an increase of the line of sight absorption to emission from the plasma component that dominates above 5 keV. NuSTAR did not detect, in either observation, the very hard non-thermal component that dominated emission above 25 keV seen in earlier INTEGRAL and Suzaku observations. We discuss the plasma condition and the wind structure of Eta Carinae around periastron, and the nature of the non-thermal component.

  14. Modeling the Magnetospheric X-ray Emission from Solar Wind Charge Exchange with Verification from XMM-Newton Observations

    DTIC Science & Technology

    2016-08-26

    Journal of Geophysical Research: Space Physics Modeling the magnetospheric X-ray emission from solar wind charge exchange with verification from XMM...Newton observations Ian C. Whittaker1, Steve Sembay1, Jennifer A. Carter1, AndrewM. Read1, Steve E. Milan1, andMinna Palmroth2 1Department of Physics ...observations, J. Geophys. Res. Space Physics , 121, 4158–4179, doi:10.1002/2015JA022292. Received 21 DEC 2015 Accepted 26 FEB 2016 Accepted article online 29

  15. XMM-Newton publication statistics

    NASA Astrophysics Data System (ADS)

    Ness, J.-U.; Parmar, A. N.; Valencic, L. A.; Smith, R.; Loiseau, N.; Salama, A.; Ehle, M.; Schartel, N.

    2014-02-01

    We assessed the scientific productivity of XMM-Newton by examining XMM-Newton publications and data usage statistics. We analyse 3272 refereed papers, published until the end of 2012, that directly use XMM-Newton data. The SAO/NASA Astrophysics Data System (ADS) was used to provide additional information on each paper including the number of citations. For each paper, the XMM-Newton observation identifiers and instruments used to provide the scientific results were determined. The identifiers were used to access the XMM-{Newton} Science Archive (XSA) to provide detailed information on the observations themselves and on the original proposals. The information obtained from these sources was then combined to allow the scientific productivity of the mission to be assessed. Since around three years after the launch of XMM-Newton there have been around 300 refereed papers per year that directly use XMM-Newton data. After more than 13 years in operation, this rate shows no evidence that it is decreasing. Since 2002, around 100 scientists per year become lead authors for the first time on a refereed paper which directly uses XMM-Newton data. Each refereed XMM-Newton paper receives around four citations per year in the first few years with a long-term citation rate of three citations per year, more than five years after publication. About half of the articles citing XMM-Newton articles are not primarily X-ray observational papers. The distribution of elapsed time between observations taken under the Guest Observer programme and first article peaks at 2 years with a possible second peak at 3.25 years. Observations taken under the Target of Opportunity programme are published significantly faster, after one year on average. The fraction of science time taken until the end of 2009 that has been used in at least one article is {˜ 90} %. Most observations were used more than once, yielding on average a factor of two in usage on available observing time per year. About 20 % of

  16. XMM-Newton Detection of a Delayed X-ray Eruption from V838 Monocerotis

    NASA Astrophysics Data System (ADS)

    Antonini, Fabio; Montez, R., Jr.; Kastner, J.; Bond, H. E.; Soker, N.; Tylenda, R.; Starrfield, S.

    2010-01-01

    The star V838 Mon, discovered undergoing an outburst at the beginning of January 2002, is one of the most enigmatic objects observed in stellar astrophysics in recent decades. We report the XMM-Newton/EPIC detection in 2008 March of a pair of spatially confused X-ray sources in the vicinity of V838 Mon. Spectral/spatial analysis demonstrates the presence of a relatively hard, luminous source that is spatially coincident with V838 Mon itself, and a second, more luminous source located 8'' south of V838 Mon (projected separation 0.2pc if at the 6 kpc distance of V838 Mon). Neither source was detected in a Chandra/ACIS-S observation obtained about one year after outburst. The inferred X-ray luminosity and temperature of the hard source component at the position of V838 Mon, as well as its delayed appearance, appear consistent with a stellar merger scenario for the optical/IR outburst of V838 Mon. Further X-ray observations of V838 Mon are warranted, to confirm the position(s) of the source(s) in the vicinity of V838 Mon and to establish their long- and short-term temporal behavior.This research has been supported via NASA/GSFC XMM/Newton Guest Observer Facility grant NNX08AD91G to RIT (and associated subcontracts to STScI and the University of Arizona).

  17. Radial Profiles of PKS 0745-191 Galaxy Cluster with XMM-Newton X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Tumer, A.; Ezer, C.; Ercan, E.

    2017-10-01

    Since clusters of galaxies are the largest comprehensive samples of the universe, they provide essential information on from the most basic to the most complex physical mechanisms such as nucleosynthesis and supernovae events. Some of these information are provided by the X-ray emission data from Intra Cluster Medium (ICM) which contains hot dilute gas. Recent archieved observation of the X-Ray spectrum of the cool core galaxy cluster PKS 0745-191 provided by XMM-Newton is subjected to data analysis using ESAS package. Followed by spectra analysis utilizing Xspec spectral fitting software, we present the radial profiles of temperature and abundance from the core to 0.5R_500 of brightest distant cluster (z ˜ 0.102) PKS 0745-191. Using the deprojected spectra, the radial distribution of pressure and entropy in the aforementioned region are also presented.

  18. XMM-Newton Observations of the Toothbrush and Sausage Clusters

    NASA Astrophysics Data System (ADS)

    Kara, S.; Mernier, F.; Ezer, C.; Akamatsu, H.; Ercan, E.

    2017-10-01

    Galaxy clusters are the largest gravitationally-bound objects in the universe. The member galaxies are embedded in a hot X-ray emitting Intra Cluster Medium (ICM) that has been enriched with metals produced by supernovae over the last billion years. Here we report new results from XMM-Newton archival observations of the merging clusters 1RXSJ0603.3+4213 and CIZA J2242.8+5301. These two clusters, also known as the Toothbrush and Sausage clusters, respectively, show a large radio relic associated with a merger shock North of their respective core. We show the distribution of the metal abundances with respect to the merger structures in these two clusters. The results are derived from spatially resolved X-ray spectra from the EPIC instrument on board XMM-Newton.

  19. Characterizing X-ray Sources in the Rich Open Cluster NGC 7789 Using XMM-Newton

    NASA Astrophysics Data System (ADS)

    Farner, William; Pooley, David

    2018-01-01

    It is well established that globular clusters exhibit a correlation between their population of exotic binaries and their rate of stellar encounters, but little work has been done to characterize this relationship in rich open clusters. X-ray observations are the most efficient means to find various types of close binaries, and optical (and radio) identifications can provide secure source classifications. We report on an observation of the rich open cluster NGC 7789 using the XMM-Newton observatory. We present the X-ray and optical imaging data, source lists, and preliminary characterization of the sources based on their X-ray and multiwavelength properties.

  20. A year after lift-off, XMM-Newton is impressing the X-ray astronomy community

    NASA Astrophysics Data System (ADS)

    2000-11-01

    XMM-Newton was launched from Kourou on 10 December 1999 on the first Ariane-5 commercial flight. After in-orbit commissioning of the spacecraft, and calibration and performance verification of its science instruments, the observatory entered its routine operations phase on 1 July. At the press conference, ESA's Director of Science Prof. Roger-Maurice Bonnet and XMM-Newton Project Scientist Fred Jansen will present some of the many scientific results from the first eight months of the mission. Also present will be two of Europe's foremost X-ray astronomers, Prof. Johan Bleeker of the Space Research Organisation of the Netherlands, and Prof. Guenther Hasinger of the Astrophysikalisches Institut Potsdam, Germany. Amongst the topics to be illustrated with some remarkably vivid "colour" images of the X-ray Universe, will be XMM-Newton's first examination of a cataclysmic binary star, its first insights into some enigmatic black hole systems, analysis of the morphology of a few supernovae remnants, and evidence it has collected to end the long-standing mystery over X-ray cosmic background emission... The press conference will also recap on the spacecraft's operations, the performance of its science instruments, the issue of radiation constraints and future aspects of the mission. Media representatives wishing to attend the press event are kindly invited to complete the attached reply form and fax it back to ESA Media Relations Office +33(0)1.53.69.7690. Note to editors XMM-Newton is ESA's second Cornerstone Mission of the Horizon 2000 programme. The spacecraft was built by a European consortium of companies led by Astrium (formerly Dornier Satellitensysteme), Friedrichshafen, Germany. Its X-ray imaging and spectrographic instruments (EPIC and RGS) and its optical telescope (OM) were provided by large consortia, whose principal investigators are from, respectively, the University of Leicester, UK, SRON University of Utrecht Netherlands, and the Mullard Space Science

  1. Contributions of the "Great" X-Ray Observatories (XMM-Newton and Chandra) to Astronomy and Astrophysics

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin

    2011-01-01

    NASA s Chandra X-ray Observatory and ESA s XMM-Newton made their first observations over a decade ago. The unprecedented and complementary capabilities of these observatories to detect, image, and measure the energy of cosmic X-rays, achieved less than 50 years after the first detection of an extra-solar X-ray source, represent an increase in sensitivity comparable in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. In this presentation we highlight some of the many discoveries made using these powerful X-ray observatories that have transformed 21st century astronomy. We briefly discuss future prospects for this truly exciting field.

  2. A (likely) X-ray jet from NGC6217 observed by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Falocco, Serena; Larsson, Josefin; Nandi, Sumana

    2017-12-01

    NGC6217 is a nearby spiral galaxy with a starburst region near its centre. Evidence for a low-luminosity Active Galactic Nucleus (AGN) in its core has also been found in optical spectra. Intriguingly, X-ray observations by ROSAT revealed three knots aligned with the galaxy centre, resembling a jet structure. This paper presents a study of XMM-Newton observations made to assess the hypothesis of a jet emitted from the centre of NGC6217. The XMM data confirm the knots found with ROSAT and our spectral analysis shows that they have similar spectral properties with a hard photon index Γ ∼ 1.7. The core of NGC6217 is well fitted by a model with an AGN and a starburst component, where the AGN contributes at most 46 per cent of the total flux. The candidate jet has an apparent length ∼15 kpc and a luminosity of ∼5 × 1038 erg s- 1. It stands out by being hosted by a spiral galaxy, since jets are more widely associated with ellipticals. To explain the jet launching mechanism we consider the hypothesis of an advection dominated accretion flow with a low accretion rate. The candidate jet emitted from NGC6217 is intriguing since it represents a challenge to the current knowledge of the connection between AGN, jets and host galaxies.

  3. X-ray emission from the Wolf-Rayet bubble NGC 6888 - II. XMM-Newton EPIC observations

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Guerrero, M. A.; Chu, Y.-H.; Arthur, S. J.; Tafoya, D.; Gruendl, R. A.

    2016-03-01

    We present deep XMM-Newton European Photon Imaging Camera observations of the Wolf-Rayet (WR) bubble NGC 6888 around the star WR 136. The complete X-ray mapping of the nebula confirms the distribution of the hot gas in three maxima spatially associated with the caps and north-west blowout hinted at by previous Chandra observations. The global X-ray emission is well described by a two-temperature optically thin plasma model (T1 = 1.4 × 106 K, T2 = 8.2 × 106 K) with a luminosity of LX = 7.8 × 1033 erg s-1 in the 0.3-1.5 keV energy range. The rms electron density of the X-ray-emitting gas is estimated to be ne = 0.4 cm-3. The high-quality observations presented here reveal spectral variations within different regions in NGC 6888, which allowed us for the first time to detect temperature and/or nitrogen abundance inhomogeneities in the hot gas inside a WR nebula. One possible explanation for such spectral variations is that the mixing of material from the outer nebula into the hot bubble is less efficient around the caps than in other nebular regions.

  4. The Soft-X-Ray Emission of Ark 120. XMM-Newton, NuSTAR, and the Importance of Taking the Broad View

    NASA Technical Reports Server (NTRS)

    Matt, G.; Marinucci, A.; Guainazzi, M.; Brenneman, L. W.; Elvis, M.; Lohfink, A.; Arevalo, P.; Boggs, S. E.; Cappi, M.; Stern, D.; hide

    2014-01-01

    We present simultaneous XMM-Newton and NuSTAR observations of the 'bare' Seyfert 1 galaxy, Ark 120, a system in which ionized absorption is absent. The NuSTAR hard-X-ray spectral coverage allows us to constrain different models for the excess soft-X-ray emission. Among phenomenological models, a cutoff power law best explains the soft-X-ray emission. This model likely corresponds to Comptonization of the accretion disc seed UV photons by a population of warm electrons: using Comptonization models, a temperature of approximately 0.3 kiloelectronvolts and an optical depth of approximately 13 are found. If the UV-to-X-ray OPTXAGNF model is applied, the UV fluxes from the XMM-Newton Optical Monitor suggest an intermediate black hole spin. Contrary to several other sources observed by NuSTAR, no high-energy cutoff is detected with a lower limit of 190 kiloelectronvolts.

  5. AG Draconis observed with XMM-Newton

    NASA Astrophysics Data System (ADS)

    González-Riestra, R.; Viotti, R. F.; Iijima, T.; Rossi, C.; Montagni, F.; Bernabei, S.; Frasca, A.; Skopal, A.

    2008-04-01

    Context: AG Draconis is the brightest symbiotic star in X-rays and one of the prototypes of the supersoft X-ray source class. Aims: Study of the X-ray spectrum of this peculiar binary system, covering both quiescence and activity periods, is necessary to investigate the physics of the high temperature spectral component, and to unveil the origin of the outbursts. Methods: X-ray and UV observations with XMM-Newton during 2003-2005 and coordinated optical spectrophotometric monitoring, together with archive data, are employed to derive the behaviour of the high energy source of the AG Dra system during different orbital and activity phases. Results: During quiescence the X-ray emission is very soft and is close in strength to the previous ROSAT observations, with an estimated luminosity of 2600 L_⊙ and a radius of 0.06 R_⊙. We also found a 20% flux decrease in June 2005 at the time when a U-band minimum coincided with a V-band maximum. The X-ray flux in the XMM range largely decreases, and even vanishes near the optical light maxima (bursts). The UV fluxes measured with the XMM Optical Monitor is close to the fluxes observed with the IUE satellite. There is a marked anticorrelation between X-ray fluxes, and ultraviolet and optical fluxes, indicating that during outburst the WD is mostly emitting below 0.1 keV. Conversely, the large strengthening of the He II 4686 Å emission during the October 2003 and July 2005 light maxima indicates a marked increase of the far-UV brightness especially during the early stages of the outbursts. A high energy 0.5-0.6 keV X-ray excess seems to be present both in quiescence and outburst. Conclusions: This is the first time that X-ray spectra of AG Draconis during an active phase are obtained. These data have allowed us to investigate the change of the energy distribution. The anti-correlation between X-ray and optical/ultraviolet emission appears to be a general feature of AG Dra independent of the type and strength of the outburst

  6. Insights on the X-ray weak quasar phenomenon from XMM-Newton monitoring of PHL 1092

    NASA Astrophysics Data System (ADS)

    Miniutti, G.; Brandt, W. N.; Schneider, D. P.; Fabian, A. C.; Gallo, L. C.; Boller, Th.

    2012-09-01

    PHL 1092 is a z ˜ 0.4 high-luminosity counterpart of the class of Narrow-Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ˜260 with respect to a previous observation performed 4.5 yr earlier. The ultraviolet (UV) flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope αox from -1.57 to -2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with three further XMM-Newton observations, producing a simultaneous UV and X-ray data base spanning almost 10 yr in total in the activity of the source. Our monitoring programme demonstrates that the αox variability in PHL 1092 is entirely driven by long-term X-ray flux changes. We apply a series of physically motivated models with the goal of explaining the UV-to-X-ray spectral energy distribution and the extreme X-ray and αox variability. We consider three possible models. (i) A breathing corona scenario in which the size of the X-ray-emitting corona is correlated with the X-ray flux. In this case, the lowest X-ray flux states of PHL 1092 are associated with an almost complete collapse of the X-ray corona down to the marginal stable orbit. (ii) An absorption scenario in which the X-ray flux variability is entirely due to intervening absorption. If so, PHL 1092 is a quasar with standard X-ray output for its optical luminosity, appearing as X-ray weak at times due to absorption. (iii) A disc-reflection-dominated scenario in which the X-ray-emitting corona is confined within a few gravitational radii from the black hole at all times. In this case, the intrinsic variability of PHL 1092 only needs to be a factor of ˜10 rather than the observed factor of ˜260. We discuss these scenarios in the context of non-BAL X-ray weak quasars.

  7. XMM-Newton and NuSTAR Simultaneous X-Ray Observations of IGR J11215-5952

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidoli, L.; Tiengo, A.; Paizis, A.

    2017-04-01

    We report the results of an XMM - Newton and NuSTAR coordinated observation of the Supergiant Fast X-ray Transient (SFXT) IGR J11215–5952, performed on 2016 February 14, during the expected peak of its brief outburst, which repeats every ∼165 days. Timing and spectral analysis were performed simultaneously in the energy band 0.4–78 keV. A spin period of 187.0 (±0.4) s was measured, consistent with previous observations performed in 2007. The X-ray intensity shows a large variability (more than one order of magnitude) on timescales longer than the spin period, with several luminous X-ray flares that repeat every 2–2.5 ks, somemore » of which simultaneously observed by both satellites. The broadband (0.4–78 keV) time-averaged spectrum was well deconvolved with a double-component model (a blackbody plus a power law with a high energy cutoff) together with a weak iron line in emission at 6.4 keV (equivalent width, EW, of 40 ± 10 eV). Alternatively, a partial covering model also resulted in an adequate description of the data. The source time-averaged X-ray luminosity was 10{sup 36} erg s{sup −1} (0.1–100 keV; assuming 7 kpc). We discuss the results of these observations in the framework of the different models proposed to explain SFXTs, supporting a quasi-spherical settling accretion regime, although alternative possibilities (e.g., centrifugal barrier) cannot be ruled out.« less

  8. Observing the Fast X-ray Spectral Variability of NLS1 1H1934-063 with XMM-Newton and NuSTAR

    NASA Astrophysics Data System (ADS)

    Frederick, Sara; Kara, Erin; Reynolds, Christopher S.

    2017-08-01

    The most variable active galactic nuclei (AGN), taken together, are a compelling wellspring of interesting accretion-related phenomena. They can exhibit dramatic variability in the X-ray band on a range of timescales down to a few minutes. We present the exemplifying case study of 1H1934-063 (z = 0.0102), a narrow-line Seyfert I (NLS1) that is among the most variable AGN ever observed with XMM-Newton. We present spectral and temporal analyses of a concurrent XMM-Newton and NuSTAR observation taken in 2015 and lasting 120 ks, during which the source exhibited a steep (factor of 1.5) plummet and subsequent full recovery of flux that we explore in detail here. Combined spectral and timing results point to a dramatic change in the continuum on timescales as short as a few ks. Similar to other highly variable Seyfert 1s, this AGN is quite X-ray bright and displays strong reflection spectral features. We find agreement with a change in the continuum, and we rule out absorption as the cause for this dramatic variability observed even at NuSTAR energies. We compare detailed time-resolved spectral fitting with Fourier-based timing analysis in order to constrain coronal geometry, dynamics, and emission/absorption processes dictating the nature of this variability. We also announce the discovery of a Fe-K time lag between the hard X-ray continuum emission (1 - 4 keV) and its relativistically-blurred reflection off the inner accretion flow (0.3 - 1 keV).

  9. A XMM-Newton Observation of Nova LMC 1995, a Bright Supersoft X-ray Source

    NASA Technical Reports Server (NTRS)

    Orio, Marina; Hartmann, Wouter; Still, Martin; Greiner, Jochen

    2003-01-01

    Nova LMC 1995, previously detected during 1995-1998 with ROSAT, was observed again as a luminous supersoft X-ray source with XMM-Newton in December of 2000. This nova offers the possibility to observe the spectrum of a hot white dwarf, burning hydrogen in a shell and not obscured by a wind or by nebular emission like in other supersoft X-ray sources. Notwithstanding uncertainties in the calibration of the EPIC instruments at energy E<0.5 keV, using atmospheric models in Non Local Thermonuclear Equilibrium we derived an effective temperature in the range 400,000-450,000 K, a bolometric luminosity Lbolabout equal to 2.3 times 10 sup37 erg s sup-l, and we verified that the abundance of carbon is not significantly enhanced in the X-rays emitting shell. The RGS grating spectra do not show emission lines (originated in a nebula or a wind) observed for some other supersoft X-ray sources. The crowded atmospheric absorption lines of the white dwarf cannot be not resolved. There is no hard component (expected from a wind, a surrounding nebula or an accretion disk), with no counts above the background at E>0.6 keV, and an upper limit Fx,hard = 10 sup-14 erg s sup-l cm sup-2 to the X-ray flux above this energy. The background corrected count rate measured by the EPIC instruments was variable on time scales of minutes and hours, but without the flares or sudden obscuration observed for other novae. The power spectrum shows a peak at 5.25 hours, possibly due to a modulation with the orbital period. We also briefly discuss the scenarios in which this nova may become a type Ia supernova progenitor.

  10. XMM Observations of X-Ray Emission from Supernovae

    NASA Technical Reports Server (NTRS)

    Immler, Stefan; Lewin, Walter

    2003-01-01

    Of the six proposed targets, only one observation was performed. The observation resulted in a 28ks observation of SN 1998S. At the time of writing the proposal, our target list only contained previously unknown X-ray supernovae. Between submission of the proposal and the actual observation, a Chandra DDT observation resulted in the detection of SN 1998S. Since SN 1998S was observed with Chandra five times before the XMM-Newton observation was made, the data did not yield enough new information to warrant a separate SN 1998S publication. The key science results of that observation were presented in a review article (by Immler and Lewin); the results were also presented at two conferences.

  11. The XMM-Newton Survey of the Small Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Haberl, F.; Sturm, R.; Ballet, J.; Bomans, D. J.; Buckley, D. A. H.; Coe, M. J.; Corbet, R.; Ehle, M.; Filipovic, M. D.; Gilfanov, M.; hide

    2012-01-01

    Context. Although numerous archival XMM-Newton observations existed towards the Small Magellanic Cloud (SMC) before 2009, only a fraction of the whole galaxy had been covered. Aims. Between May 2009 and March 2010, we carried out an XMM-Newton survey of the SMC, to ensure a complete coverage of both its bar and wing. Thirty-three observations of 30 different fields with a total exposure of about one Ms filled the previously missing parts. Methods. We systematically processed all available SMC data from the European Photon Imaging Camera. After rejecting observations with very high background, we included 53 archival and the 33 survey observations. We produced images in five different energy bands. We applied astrometric boresight corrections using secure identifications of X-ray sources and combined all the images to produce a mosaic covering the main body of the SMC. Results. We present an overview of the XMM-Newton observations, describe their analysis, and summarize our first results, which will be presented in detail in follow-up papers. Here, we mainly focus on extended X-ray sources, such as supernova remnants (SNRs) and clusters of galaxies, that are seen in our X-ray images. Conclusions. Our XMM-Newton survey represents the deepest complete survey of the SMC in the 0.15-12.0 keV X-ray band. We propose three new SNRs that have low surface brightnesses of a few 10-14 erg cm-2 s-1 arcmin-2 and large extents. In addition, several known remnants appear larger than previously measured at either X-rays or other wavelengths extending the size distribution of SMC SNRs to larger values.

  12. Symbiotic Stars in X-rays. II. Faint Sources Detected with XMM-Newton and Chandra

    NASA Technical Reports Server (NTRS)

    Nunez, N. E.; Luna, G. J. M.; Pillitteri, I.; Mukai, K.

    2014-01-01

    We report the detection from four symbiotic stars that were not known to be X-ray sources. These four object show a ß-type X-ray spectrum, that is, their spectra can be modeled with an absorbed optically thin thermal emission with temperatures of a few million degrees. Photometric series obtained with the Optical Monitor on board XMM-Newton from V2416 Sgr and NSV 25735 support the proposed scenario where the X-ray emission is produced in a shock-heated region inside the symbiotic nebulae.

  13. Eye-openers from XMM-Newton

    NASA Astrophysics Data System (ADS)

    2000-02-01

    many years of work. They are all that we hoped they would be. In the LMC we can see the elements, which go to make up new stars and planets, being released in giant stellar explosions. We can even see the creation of new stars going on, using elements scattered through space by previous stellar explosions. This is what we built the EPIC cameras for and they are really fulfilling their promise" Multiwavelength views of Hickson Group 16 The HCG-16 viewed by EPIC and by the Optical Monitor in the visible and ultraviolet wavelengths is one of approximately a hundred compact galaxy clusters listed by Canadian astronomer Paul Hickson in the 1980s. The criteria for the Hickson cluster groups included their compactness, their isolation from other galaxies and a limited magnitude range between their members. Most Hicksons are very faint, but a few can be observed with modest aperture telescopes. Galaxies in Hickson groups have a high probability of interacting. Their study has shed light on the question of galactic evolution and the effects of interaction. Investigation into their gravitational behaviour has also significantly contributed to our understanding of "dark matter", the mysterious matter that most astronomers feel comprises well over 90% of our universe. Observation of celestial objects from space over a range of X-ray, ultraviolet and visible wavelengths, is a unique feature of the XMM-Newton mission. The EPIC-PN view of the Hickson 16 group shows a handful of bright X-sources and in the background more than a hundred faint X-ray sources that XMM-Newton is revealing for the first time. Juxtaposing the X-ray view of HCG 16 with that of the Optical Monitor reveals one of the great strengths of XMM-Newton in being able to routinely compare the optical, ultraviolet and X-ray properties of objects. Many of the X-ray sources are revealed as elongated "fuzzy blobs" coincident with some of the optical galaxies. Routine access to ultraviolet images is a first for the mission

  14. The evolution of the X-ray afterglow emission of GW 170817/ GRB 170817A in XMM-Newton observations

    NASA Astrophysics Data System (ADS)

    D'Avanzo, P.; Campana, S.; Salafia, O. S.; Ghirlanda, G.; Ghisellini, G.; Melandri, A.; Bernardini, M. G.; Branchesi, M.; Chassande-Mottin, E.; Covino, S.; D'Elia, V.; Nava, L.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2018-05-01

    We report our observation of the short gamma-ray burst (GRB) GRB 170817A, associated to the binary neutron star merger gravitational wave (GW) event GW 170817, performed in the X-ray band with XMM-Newton 135 d after the event (on 29 December, 2017). We find evidence for a flattening of the X-ray light curve with respect to the previously observed brightening. This is also supported by a nearly simultaneous optical Hubble Space Telescope observation and successive X-ray Chandra and low-frequency radio observations recently reported in the literature. Since the optical-to-X-ray spectral slope did not change with respect to previous observations, we exclude that the change in the temporal evolution of the light curve is due to the passage of the cooling frequency: its origin must be geometric or dynamical. We interpret all the existing afterglow data with two models: i) a structured jet and ii) a jet-less isotropic fireball with some stratification in its radial velocity structure. Both models fit the data and predict that the radio flux must decrease simultaneously with the optical and X-ray emission, making it difficult to distinguish between them at the present stage. Polarimetric measurements and the rate of short GRB-GW associations in future LIGO/Virgo runs will be key to disentangle these two geometrically different scenarios.

  15. Deep X-ray and UV Surveys of Galaxies with Chandra, XMM-Newton, and GALEX

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2006-01-01

    Only with the deepest Chandra surveys has X-ray emission from normal and star forming galaxies (as opposed to AGN, which dominate the X-ray sky) been accessible at cosmologically interesting distances. The X-ray emission from accreting binaries provide a critical glimpse into the binary phase of stellar evolution and studies of the hot gas reservoir constrain past star formation. UV studies provide important, sensitive diagnostics of the young star forming populations and provide the most mature means for studying galaxies at 2 < zeta < 4. This talk will review current progress on studying X-ray emission in concert with UV emission from normal/star-forming galaxies at higher redshift. We will also report on our new, deep surveys with GALEX and XMM-Newton in the nearby Coma cluster. These studies are relevant to DEEP06 as Coma is the nearest rich cluster of galaxies and provides an important benchmark for high-redshift studies in the X-ray and UV wavebands. The 30 ks GALEX (note: similar depth to the GALEX Deep Imaging Survey) and the 110 ks XMM observations provide extremely deep coverage of a Coma outskirts field, allowing the construction of the UV and X-ray luminosity function of galaxies and important constraints on star formation scaling relations such as the X-ray-Star Formation Rate correlation and the X-ray/Stellar Mass correlation. We will discuss what we learn from these deep observations of Coma, including the recently established suppression of the X-ray emission from galaxies in the Coma outskirts that is likely associated with lower levels of past star formation and/or the results of tidal gas stripping.

  16. X-rays from young stars: A summary of highlights from the XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST)

    NASA Astrophysics Data System (ADS)

    Güdel, M.

    2008-02-01

    The XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST) is a survey of the nearest large star-forming region, the Taurus Molecular Cloud (TMC), making use of all instruments on board the XMM-Newton X-ray observatory. The survey, presently still growing, has provided unprecedented spectroscopic results from nearly every observed T Tauri star, and from ≈50% of the studied brown dwarfs and protostars. The survey includes the first coherent statistical sample of high-resolution spectra of T Tauri stars, and is accompanied by an U-band/ultraviolet imaging photometric survey of the TMC. XEST led to the discovery of new, systematic X-ray features not possible before with smaller samples, in particular the X-ray soft excess in classical T Tauri stars and the Two-Absorber X-ray (TAX) spectra of jet-driving T Tauri stars. This paper summarizes highlights from XEST and reviews the key role of this large project.

  17. XMM-NEWTON OBSERVATION OF THE {alpha} PERSEI CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillitteri, Ignazio; Evans, Nancy Remage; Wolk, Scott J.

    We report on the analysis of an archival observation of part of the {alpha} Persei cluster obtained with XMM-Newton. We detected 102 X-ray sources in the band 0.3-8.0 keV, of which 39 of them are associated with the cluster as evidenced by appropriate magnitudes and colors from Two Micron All Sky Survey photometry. We extend the X-ray luminosity distribution (XLD) for M dwarfs, to add to the XLD found for hotter dwarfs from spatially extensive surveys of the whole cluster by ROSAT. Some of the hotter stars are identified as a background, possible slightly older group of stars at amore » distance of approximately 500 pc.« less

  18. Broadband X-ray spectra of the ultraluminous X-ray source Holmberg IX X-1 observed with NuSTAR, XMM-Newton, and Suzaku

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walton, D. J.; Harrison, F. A.; Grefenstette, B. W.

    2014-09-20

    We present results from the coordinated broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 performed by NuSTAR, XMM-Newton, and Suzaku in late 2012. These observations provide the first high-quality spectra of Holmberg IX X-1 above 10 keV to date, extending the X-ray coverage of this remarkable source up to ∼30 keV. Broadband observations were undertaken at two epochs, between which Holmberg IX X-1 exhibited both flux and strong spectral variability, increasing in luminosity from L {sub X} = (1.90 ± 0.03) × 10{sup 40} erg s{sup –1} to L {sub X} = (3.35 ± 0.03) ×more » 10{sup 40} erg s{sup –1}. Neither epoch exhibits a spectrum consistent with emission from the standard low/hard accretion state seen in Galactic black hole binaries, which would have been expected if Holmberg IX X-1 harbors a truly massive black hole accreting at substantially sub-Eddington accretion rates. The NuSTAR data confirm that the curvature observed previously in the 3-10 keV bandpass does represent a true spectral cutoff. During each epoch, the spectrum appears to be dominated by two optically thick thermal components, likely associated with an accretion disk. The spectrum also shows some evidence for a nonthermal tail at the highest energies, which may further support this scenario. The available data allow for either of the two thermal components to dominate the spectral evolution, although both scenarios require highly nonstandard behavior for thermal accretion disk emission.« less

  19. XMM-Newton 13H deep field - I. X-ray sources

    NASA Astrophysics Data System (ADS)

    Loaring, N. S.; Dwelly, T.; Page, M. J.; Mason, K.; McHardy, I.; Gunn, K.; Moss, D.; Seymour, N.; Newsam, A. M.; Takata, T.; Sekguchi, K.; Sasseen, T.; Cordova, F.

    2005-10-01

    We present the results of a deep X-ray survey conducted with XMM-Newton, centred on the UK ROSAT13H deep field area. This region covers 0.18 deg2, and is the first of the two areas covered with XMM-Newton as part of an extensive multiwavelength survey designed to study the nature and evolution of the faint X-ray source population. We have produced detailed Monte Carlo simulations to obtain a quantitative characterization of the source detection procedure and to assess the reliability of the resultant sourcelist. We use the simulations to establish a likelihood threshold, above which we expect less than seven (3 per cent) of our sources to be spurious. We present the final catalogue of 225 sources. Within the central 9 arcmin, 68 per cent of source positions are accurate to 2 arcsec, making optical follow-up relatively straightforward. We construct the N(>S) relation in four energy bands: 0.2-0.5, 0.5-2, 2-5 and 5-10 keV. In all but our highest energy band we find that the source counts can be represented by a double power law with a bright-end slope consistent with the Euclidean case and a break around 10-14yergcm-2s-1. Below this flux, the counts exhibit a flattening. Our source counts reach densities of 700, 1300, 900 and 300 deg-2 at fluxes of 4.1 × 10-16,4.5 × 10-16,1.1 × 10-15 and 5.3 × 10-15ergcm-2s-1 in the 0.2-0.5, 0.5-2, 2-5 and 5-10 keV energy bands, respectively. We have compared our source counts with those in the two Chandra deep fields and Lockman hole, and found our source counts to be amongst the highest of these fields in all energy bands. We resolve >51 per cent (>50 per cent) of the X-ray background emission in the 1-2 keV (2-5 keV) energy bands.

  20. Dark Matter Search Using XMM-Newton Observations of Willman 1

    NASA Technical Reports Server (NTRS)

    Lowenstein, Michael; Kusenko, Alexander

    2012-01-01

    We report the results of a search for an emission line from radiatively decaying dark matter in the ultra-faint dwarf spheroidal galaxy Willman 1 based on analysis of spectra extracted from XMM-Newton X-ray Observatory data. The observation follows up our analysis of Chandra data of Willman 1that resulted in line flux upper limits over the Chandra bandpass and evidence of a 2.5 keY feature at a significance below the 99% confidence threshold used to define the limits. The higher effective area of the XMM-Newton detectors, combined with application of recently developing methods for extended-source analysis, allow us to derive improved constraints on the combination of mass and mixing angle of the sterile neutrino dark matter candidate. We do not confirm the Chandra evidence for a 2.5 keV emission line.

  1. XMM-Newton Observations of Four Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Zavlin, Vyacheslav E.

    2005-01-01

    I present an analysis of the XMM-Newton observations of four millisecond pulsars, J0437-4715, J2124-3358, J1024-0719, and J0034-0534. The new data provide strong evidence of thermal emission in the X-ray flux detected from the first three objects. This thermal component is best interpreted as radiation from pulsar polar caps covered with a nonmagnetic hydrogen atmosphere. A nonthermal power-law component, dominating at energies E greater than or equal to 3 keV, can also be present in the detected X-ray emission. For PSR J0437-4715, the timing analysis reveals that the shape and pulsed fraction of the pulsar light curves are energy dependent. This, together with the results obtained from the phase-resolved spectroscopy, supports the two-component (thermal plus nonthermal) interpretation of the pulsar's X-ray radiation. Highly significant pulsations have been found in the X-ray flux of PSRs 52124-3358 and 51024-0719. For PSR 50034-0534, a possible X-ray counterpart of the radio pulsar has been suggested. The inferred properties of the detected thermal emission are compared with predictions of radio pulsar models.

  2. Eta Carinae's Thermal X-Ray Tail Measured with XMM-Newton and NuStar

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Gull, Theodore R.; Takahashi, Hiromitsu; Grefenstette, Brian; Yuasa, Takayuki; Stuhlinger, Martin; Russell, Christopher; Moffat, Anthony F. J.; Madura, Thomas

    2016-01-01

    The evolved, massive highly eccentric binary system, Car, underwent a periastron passage in the summer of 2014. We obtained two coordinated X-ray observations with XMM-Newton and NuSTAR during the elevated X-ray flux state and just before the X-ray minimum flux state around this passage. These NuSTAR observations clearly detected X-ray emission associated with eta Car extending up to approx. 50 keV for the first time. The NuSTAR spectrum above 10 keV can be fit with the bremsstrahlung tail from a kT approx. 6 keV plasma. This temperature is delta kT 2 keV higher than those measured from the iron K emission line complex, if the shocked gas is in collisional ionization equilibrium. This result may suggest that the companion star's pre-shock wind velocity is underestimated. The NuSTAR observation near the X-ray minimum state showed a gradual decline in the X-ray emission by 40% at energies above 5 keV in a day, the largest rate of change of the X-ray flux yet observed in individual eta Car observations. The column density to the hardest emission component, N(sub H) approx. 10(exp24) H cm(exp-2), marked one of the highest values ever observed for eta Car, strongly suggesting the increased obscuration of the wind-wind colliding X-ray emission by the thick primary stellar wind prior to superior conjunction. Neither observation detected the power-law component in the extremely hard band that INTEGRAL and Suzaku observed prior to 2011. The power-law source might have faded before these observations.

  3. XMM-NEWTON SLEW SURVEY OBSERVATIONS OF THE GRAVITATIONAL WAVE EVENT GW150914

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troja, E.; Read, A. M.; Tiengo, A.

    The detection of the first gravitational wave (GW) transient GW150914 prompted an extensive campaign of follow-up observations at all wavelengths. Although no dedicated XMM-Newton observations have been performed, the satellite passed through the GW150914 error region during normal operations. Here we report the analysis of the data taken during these satellite slews performed two hours and two weeks after the GW event. Our data cover 1.1 and 4.8 deg{sup 2} of the final GW localization region. No X-ray counterpart to GW150914 is found down to a sensitivity of 6 × 10{sup −13} erg cm{sup −2} s{sup −1} in the 0.2–2more » keV band. Nevertheless, these observations show the great potential of XMM-Newton slew observations for searching for the electromagnetic counterparts of GW events. A series of adjacent slews performed in response to a GW trigger would take ≲1.5 days to cover most of the typical GW credible region. We discuss this scenario and its prospects for detecting the X-ray counterpart of future GW detections.« less

  4. The frequency of stellar X-ray flares from a large-scale XMM-Newton sample

    NASA Astrophysics Data System (ADS)

    Pye, John P.; Rosen, Simon

    2015-08-01

    We present a uniform, large-scale survey of X-ray flare emission, with emphasis on the corrections needed to arrive at estimates of flare occurrence rates. The XMM-Newton Serendipitous Source Catalogue has been used as the basis for a survey of X-ray flares from late-type (i.e. spectral type F-M) stars in the Hipparcos Tycho catalogue. The XMM catalogue and its associated data products provide an excellent basis for a comprehensive and sensitive survey of stellar flares - both from targeted active stars and from those observed serendipitously in the half-degree diameter field-of-view of each observation. Our sample contains ~130 flares with well-observed profiles; they range in duration from ~103 to ~104s, have peak X-ray fluxes from ~10-13 to ~10-11 erg cm-2 s-1, peak X-ray luminosities from ~1029 to ~1032 erg s-1 and X-ray energy output from ~1032 to ~1035 erg. Most of the serendipitously-observed stars have little previously reported information. We present flare frequency distributions from both target and serendipitous observations. The latter provide an unbiased (with respect to stellar activity) study of flare energetics. The serendipitous sample demonstrates the need for care when calculating flaring rates, especially when normalising the number of flares to a total exposure time, where it is important to consider both the stars seen to flare and those measured as non-variable, since in our survey, the latter outnumber the former by more than a factor ten. The serendipitous variable and non-variable stars appear very similar in terms of the distributions of general properties such as quiescent X-ray luminosity; from the available data, it is unclear whether the distinction by flaring is due to an additional, intrinsic property such as intra-system interactions in a close binary system, or is simply the result of limited observations of a random flaring process, with no real difference between the two samples. We discuss future observations and analyses

  5. Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Güdel, M.; Audard, M.; Reale, F.; Skinner, S. L.; Linsky, J. L.

    2004-03-01

    We report results from a comprehensive study of the nearby M dwarf Proxima Centauri with the XMM-Newton satellite, using simultaneously its X-ray detectors and the Optical Monitor with its U band filter. We find strongly variable coronal X-ray emission, with flares ranging over a factor of 100 in peak flux. The low-level emission is found to be continuously variable on at least three time scales (a slow decay of several hours, modulation on a time scale of 1 hr, and weak flares with time scales of a few minutes). Several weak flares are characteristically preceded by an optical burst, compatible with predictions from standard solar flare models. We propose that the U band bursts are proxies for the elusive stellar non-thermal hard X-ray bursts suggested from solar observations. In the course of the observation, a very large X-ray flare started and was observed essentially in its entirety. Its peak luminosity reached 3.9× 1028 erg s-1 [0.15-10 keV], and the total X-ray energy released in the same band is derived to be 1.5× 1032 ergs. This flare has for the first time allowed to measure significant density variations across several phases of the flare from X-ray spectroscopy of the O VII He-like triplet; we find peak densities reaching up to 4× 1011 cm-3 for plasma of about 1-5 MK. Abundance ratios show little variability in time, with a tendency of elements with a high first ionization potential to be overabundant relative to solar photospheric values. Using Fe XVII lines with different oscillator strengths, we do not find significant effects due to opacity during the flare, indicating that large opacity increases are not the rule even in extreme flares. We model the large flare in terms of an analytic 2-Ribbon flare model and find that the flaring loop system should have large characteristic sizes (≈ 1R*) within the framework of this simplistic model. These results are supported by full hydrodynamic simulations. Comparing the large flare to flares of similar

  6. Swift, XMM-Newton, and NuSTAR Observations of PSR J2032+4127/MT91 213

    NASA Astrophysics Data System (ADS)

    Li, K. L.; Kong, A. K. H.; Tam, P. H. T.; Hou, X.; Takata, J.; Hui, C. Y.

    2017-07-01

    We report our recent Swift, NuSTAR, and XMM-Newton X-ray and Lijiang optical observations on PSR J2032+4127/MT91 213, the γ-ray binary candidate with a period of 45-50 years. The coming periastron of the system was predicted to be in 2017 November, around which high-energy flares from keV to TeV are expected. Recent studies with Chandra and Swift X-ray observations taken in 2015/2016 showed that its X-ray emission has been brighter by a factors of ˜10 than that before 2013, probably revealing some ongoing activities between the pulsar wind and the stellar wind. Our new Swift/XRT lightcurve shows no strong evidence of a single vigorous brightening trend, but rather several strong X-ray flares on weekly to monthly timescales with a slowly brightening baseline, namely the low state. The NuSTAR and XMM-Newton observations taken during the flaring and the low states, respectively, show a denser environment and a softer power-law index during the flaring state, implying that the pulsar wind interacted with the stronger stellar winds of the companion to produce the flares. These precursors would be crucial in studying the predicted giant outburst from this extreme γ-ray binary during the periastron passage in late 2017.

  7. INTEGRAL and XMM-Newton Spectral Studies of NGC 4388

    NASA Technical Reports Server (NTRS)

    Beckmann, V.; Gehrels, N.; Favre, P.; Walter, R.; Courvoisier, T. J.-L.; Petrucci, P.-O.; Malzac, J.

    2004-01-01

    We present first INTEGRAL and XMM-Newton observations of a Seyfert galaxy, the type 2 AGN NGC 4388. Several INTEGRAL observations performed in 2003 allow us to study the spectrum in the 20 - 300 keV range. In addition two XMM-Newton observations give detailed insight into the 0.2 - 10 keV emission. Comparison with previous observations by BeppoSAX, SIGMA and CGRO/OSSE show that the overall spectrum for soft X-rays up to the gamma-rays can be described by a highly absorbed (N(sub H approx. = 2.7 x 10(exp 23)/sq cm) and variable non-thermal component in addition to constant non-absorbed thermal emission (T approx. = 0.8 keV) of low abundance (Z approx. 5% Z (solar)), plus a constant Fe K a line. The hard X-ray component is well described by a simple power law with a mean photon index of Gamma = 1.7. During the INTEGRAL observations the flux at 100 keV increased by a factor of 1.5. The analysis of XMM-Newton data implies that the emission below 3 keV is decoupled from the AGN and probably due to extended emission as seen in Chandra observations. The constant iron line emission is apparently also decoupled from the direct emission of the central engine and likely to be generated in the obscuring material, e.g. in the molecular torus.

  8. Exploring the Diffuse X-ray Emission of Supernova Remnant Kesteven 69 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Seo, Kyoung-Ae; Hui, Chung Yue

    2013-06-01

    We have investigated the X-ray emission from the shock-heated plasma of the Galactic supernova remnant Kesteven 69 with XMM-Newton. Assuming the plasma is at collisional ionization equilibrium, a plasma temperature and a column absorption are found to be kT ~ 0.62 keV and NH ~ 2.85 ×10^22 cm-2 respectively by imaging spectroscopy. Together with the deduced emission measure, we place constraints on its Sedov parameters.

  9. XMM-Newton observations of the non-thermal supernova remnant HESS J1731-347 (G353.6-0.7)

    NASA Astrophysics Data System (ADS)

    Doroshenko, V.; Pühlhofer, G.; Bamba, A.; Acero, F.; Tian, W. W.; Klochkov, D.; Santangelo, A.

    2017-12-01

    We report on the analysis of XMM-Newton observations of the non-thermal shell-type supernova remnant HESS J1731-347 (G353.6-0.7). For the first time the complete remnant shell has been covered in X-rays, which allowed direct comparison with radio and TeV observations. We carried out a spatially resolved spectral analysis of XMM-Newton data and confirmed the previously reported non-thermal power-law X-ray spectrum of the source with negligible variations of spectral index across the shell. On the other hand, the X-ray absorption column is strongly variable and correlates with the CO emission thus confirming that the absorbing material must be in the foreground and reinforcing the previously suggested lower limit on distance. Finally, we find that the X-ray emission of the remnant is suppressed towards the Galactic plane, which points to lower shock velocities in this region, likely due to the interaction of the shock with the nearby molecular cloud.

  10. The XXL Survey. I. Scientific motivations - XMM-Newton observing plan - Follow-up observations and simulation programme

    NASA Astrophysics Data System (ADS)

    Pierre, M.; Pacaud, F.; Adami, C.; Alis, S.; Altieri, B.; Baran, N.; Benoist, C.; Birkinshaw, M.; Bongiorno, A.; Bremer, M. N.; Brusa, M.; Butler, A.; Ciliegi, P.; Chiappetti, L.; Clerc, N.; Corasaniti, P. S.; Coupon, J.; De Breuck, C.; Democles, J.; Desai, S.; Delhaize, J.; Devriendt, J.; Dubois, Y.; Eckert, D.; Elyiv, A.; Ettori, S.; Evrard, A.; Faccioli, L.; Farahi, A.; Ferrari, C.; Finet, F.; Fotopoulou, S.; Fourmanoit, N.; Gandhi, P.; Gastaldello, F.; Gastaud, R.; Georgantopoulos, I.; Giles, P.; Guennou, L.; Guglielmo, V.; Horellou, C.; Husband, K.; Huynh, M.; Iovino, A.; Kilbinger, M.; Koulouridis, E.; Lavoie, S.; Le Brun, A. M. C.; Le Fevre, J. P.; Lidman, C.; Lieu, M.; Lin, C. A.; Mantz, A.; Maughan, B. J.; Maurogordato, S.; McCarthy, I. G.; McGee, S.; Melin, J. B.; Melnyk, O.; Menanteau, F.; Novak, M.; Paltani, S.; Plionis, M.; Poggianti, B. M.; Pomarede, D.; Pompei, E.; Ponman, T. J.; Ramos-Ceja, M. E.; Ranalli, P.; Rapetti, D.; Raychaudury, S.; Reiprich, T. H.; Rottgering, H.; Rozo, E.; Rykoff, E.; Sadibekova, T.; Santos, J.; Sauvageot, J. L.; Schimd, C.; Sereno, M.; Smith, G. P.; Smolčić, V.; Snowden, S.; Spergel, D.; Stanford, S.; Surdej, J.; Valageas, P.; Valotti, A.; Valtchanov, I.; Vignali, C.; Willis, J.; Ziparo, F.

    2016-06-01

    Context. The quest for the cosmological parameters that describe our universe continues to motivate the scientific community to undertake very large survey initiatives across the electromagnetic spectrum. Over the past two decades, the Chandra and XMM-Newton observatories have supported numerous studies of X-ray-selected clusters of galaxies, active galactic nuclei (AGNs), and the X-ray background. The present paper is the first in a series reporting results of the XXL-XMM survey; it comes at a time when the Planck mission results are being finalised. Aims: We present the XXL Survey, the largest XMM programme totaling some 6.9 Ms to date and involving an international consortium of roughly 100 members. The XXL Survey covers two extragalactic areas of 25 deg2 each at a point-source sensitivity of ~5 × 10-15 erg s-1 cm-2 in the [0.5-2] keV band (completeness limit). The survey's main goals are to provide constraints on the dark energy equation of state from the space-time distribution of clusters of galaxies and to serve as a pathfinder for future, wide-area X-ray missions. We review science objectives, including cluster studies, AGN evolution, and large-scale structure, that are being conducted with the support of approximately 30 follow-up programmes. Methods: We describe the 542 XMM observations along with the associated multi-λ and numerical simulation programmes. We give a detailed account of the X-ray processing steps and describe innovative tools being developed for the cosmological analysis. Results: The paper provides a thorough evaluation of the X-ray data, including quality controls, photon statistics, exposure and background maps, and sky coverage. Source catalogue construction and multi-λ associations are briefly described. This material will be the basis for the calculation of the cluster and AGN selection functions, critical elements of the cosmological and science analyses. Conclusions: The XXL multi-λ data set will have a unique lasting legacy

  11. Recovering galaxy cluster gas density profiles with XMM-Newton and Chandra

    NASA Astrophysics Data System (ADS)

    Bartalucci, I.; Arnaud, M.; Pratt, G. W.; Vikhlinin, A.; Pointecouteau, E.; Forman, W. R.; Jones, C.; Mazzotta, P.; Andrade-Santos, F.

    2017-12-01

    We examined the reconstruction of galaxy cluster radial density profiles obtained from Chandra and XMM-Newton X-ray observations, using high quality data for a sample of twelve objects covering a range of morphologies and redshifts. By comparing the results obtained from the two observatories and by varying key aspects of the analysis procedure, we examined the impact of instrumental effects and of differences in the methodology used in the recovery of the density profiles. We find that the final density profile shape is particularly robust. We adapted the photon weighting vignetting correction method developed for XMM-Newton for use with Chandra data, and confirm that the resulting Chandra profiles are consistent with those corrected a posteriori for vignetting effects. Profiles obtained from direct deprojection and those derived using parametric models are consistent at the 1% level. At radii larger than 6″, the agreement between Chandra and XMM-Newton is better than 1%, confirming an excellent understanding of the XMM-Newton PSF. Furthermore, we find no significant energy dependence. The impact of the well-known offset between Chandra and XMM-Newton gas temperature determinations on the density profiles is found to be negligible. However, we find an overall normalisation offset in density profiles of the order of 2.5%, which is linked to absolute flux cross-calibration issues. As a final result, the weighted ratios of Chandra to XMM-Newton gas masses computed at R2500 and R500 are r = 1.03 ± 0.01 and r = 1.03 ± 0.03, respectively. Our study confirms that the radial density profiles are robustly recovered, and that any differences between Chandra and XMM-Newton can be constrained to the 2.5% level, regardless of the exact data analysis details. These encouraging results open the way for the true combination of X-ray observations of galaxy clusters, fully leveraging the high resolution of Chandra and the high throughput of XMM-Newton.

  12. Swift , XMM - Newton , and NuSTAR Observations of PSR J2032+4127/MT91 213

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K. L.; Kong, A. K. H.; Tam, P. H. T.

    2017-07-10

    We report our recent Swift , NuSTAR , and XMM - Newton X-ray and Lijiang optical observations on PSR J2032+4127/MT91 213, the γ -ray binary candidate with a period of 45–50 years. The coming periastron of the system was predicted to be in 2017 November, around which high-energy flares from keV to TeV are expected. Recent studies with Chandra and Swift X-ray observations taken in 2015/2016 showed that its X-ray emission has been brighter by a factors of ∼10 than that before 2013, probably revealing some ongoing activities between the pulsar wind and the stellar wind. Our new Swift /XRTmore » lightcurve shows no strong evidence of a single vigorous brightening trend, but rather several strong X-ray flares on weekly to monthly timescales with a slowly brightening baseline, namely the low state. The NuSTAR and XMM - Newton observations taken during the flaring and the low states, respectively, show a denser environment and a softer power-law index during the flaring state, implying that the pulsar wind interacted with the stronger stellar winds of the companion to produce the flares. These precursors would be crucial in studying the predicted giant outburst from this extreme γ -ray binary during the periastron passage in late 2017.« less

  13. The XMM-SERVS survey: new XMM-Newton point-source catalog for the XMM-LSS field

    NASA Astrophysics Data System (ADS)

    Chen, C.-T. J.; Brandt, W. N.; Luo, B.; Ranalli, P.; Yang, G.; Alexander, D. M.; Bauer, F. E.; Kelson, D. D.; Lacy, M.; Nyland, K.; Tozzi, P.; Vito, F.; Cirasuolo, M.; Gilli, R.; Jarvis, M. J.; Lehmer, B. D.; Paolillo, M.; Schneider, D. P.; Shemmer, O.; Smail, I.; Sun, M.; Tanaka, M.; Vaccari, M.; Vignali, C.; Xue, Y. Q.; Banerji, M.; Chow, K. E.; Häußler, B.; Norris, R. P.; Silverman, J. D.; Trump, J. R.

    2018-04-01

    We present an X-ray point-source catalog from the XMM-Large Scale Structure survey region (XMM-LSS), one of the XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS) fields. We target the XMM-LSS region with 1.3 Ms of new XMM-Newton AO-15 observations, transforming the archival X-ray coverage in this region into a 5.3 deg2 contiguous field with uniform X-ray coverage totaling 2.7 Ms of flare-filtered exposure, with a 46 ks median PN exposure time. We provide an X-ray catalog of 5242 sources detected in the soft (0.5-2 keV), hard (2-10 keV), and/or full (0.5-10 keV) bands with a 1% expected spurious fraction determined from simulations. A total of 2381 new X-ray sources are detected compared to previous source catalogs in the same area. Our survey has flux limits of 1.7 × 10-15, 1.3 × 10-14, and 6.5 × 10-15 erg cm-2 s-1 over 90% of its area in the soft, hard, and full bands, respectively, which is comparable to those of the XMM-COSMOS survey. We identify multiwavelength counterpart candidates for 99.9% of the X-ray sources, of which 93% are considered as reliable based on their matching likelihood ratios. The reliabilities of these high-likelihood-ratio counterparts are further confirmed to be ≈97% reliable based on deep Chandra coverage over ≈5% of the XMM-LSS region. Results of multiwavelength identifications are also included in the source catalog, along with basic optical-to-infrared photometry and spectroscopic redshifts from publicly available surveys. We compute photometric redshifts for X-ray sources in 4.5 deg2 of our field where forced-aperture multi-band photometry is available; >70% of the X-ray sources in this subfield have either spectroscopic or high-quality photometric redshifts.

  14. An XMM-Newton Observation of 4U1755-33 in Quiescence: Evidence for a Fossil X-Ray Jet

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella; White, Nicholas E.

    2003-01-01

    We report an XMM-Newton observation of the Low mass X-ray Binary (LMXB) and black hole candidate 4U1755-33. This source had been a bright persistent source for at least 25 yrs, but in 1995 entered an extended quiescent phase. 4U1755-33 was not detected with an upper limit to the 2-10 keV luminosity of 5 x 10(exp 31) d(sup 2) (sub 4kpc) ergs per second (where d(sub 4kpc) is the distance in units of 4 kpc) - consistent with the luminosity of other black hole candidates in a quiescent state. An unexpected result is the discovery of a narrow 7 arc min long X-ray jet centered on the position of 4Ul755-33. The spectrum of the jet is similar to that of jets observed from other galactic and extragalactic sources, and may have been ejected from 4Ul755-33 when it was bright. Jets are a feature of accreting black holes, and the detection of a fossil jet provides additional evidence supporting the black hole candidacy of 4U1755-33. The spectral properties of three bright serendipitous sources in the field are reported and it is suggested these are background active galactic nuclei sources.

  15. Discovery of the Transient Magnetar 3XMM J185246.6+003317 near Supernova Remnant Kesteven 79 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Chen, Yang; Li, Xiang-Dong; Safi-Harb, Samar; Mendez, Mariano; Terada, Yukikatsu; Sun, Wei; Ge, Ming-Yu

    2014-01-01

    We report the serendipitous discovery with XMM-Newton that 3XMM J185246.6+003317 is an 11.56 s X-ray pulsar located 1' away from the southern boundary of supernova remnant Kes 79. The spin-down rate of 3XMM J185246.6+003317 is <1.1 × 10-13 s s-1, which, together with the long period P = 11.5587126(4) s, indicates a dipolar surface magnetic field of <3.6 × 1013 G, a characteristic age of >1.7 Myr, and a spin-down luminosity of <2.8 × 1030 erg s-1. Its X-ray spectrum is best-fitted with a resonant Compton scattering model and also can be adequately described by a blackbody model. The observations covering a seven-month span from 2008 to 2009 show variations in the spectral properties of the source, with the luminosity decreasing from 2.7 × 1034 erg s-1 to 4.6 × 1033 erg s-1, along with a decrease of the blackbody temperature from kT ≈ 0.8 keV to ≈0.6 keV. The X-ray luminosity of the source is higher than its spin-down luminosity, ruling out rotation as a power source. The combined timing and spectral properties, the non-detection of any optical or infrared counterpart, together with the lack of detection of the source in archival X-ray data prior to the 2008 XMM-Newton observation, point to 3XMM J185246.6+003317 being a newly discovered transient low-B magnetar undergoing an outburst decay during the XMM-Newton observations. The non-detection by Chandra in 2001 sets an upper limit of 4 × 1032 erg s-1 to the quiescent luminosity of 3XMM J185246.6+003317. Its period is the longest among currently known transient magnetars. The foreground absorption toward 3XMM J185246.6+003317 is similar to that of Kes 79, suggesting a similar distance of ~7.1 kpc.

  16. XMM-Newton operations beyond the design lifetime

    NASA Astrophysics Data System (ADS)

    Parmar, Arvind N.; Kirsch, Marcus G. F.; Muñoz, J. Ramon; Santos-Lleo, Maria; Schartel, Norbert

    2012-09-01

    After more than twelve years in orbit and two years beyond the design lifetime, XMM-Newton continues its near faultless operations providing the worldwide astronomical community with an unprecedented combination of imaging and spectroscopic X-ray capabilities together with simultaneous optical and ultra-violet monitoring. The interest from the scientific community in observing with XMM-Newton remains extremely high with the last annual Announcement of Observing Opportunity (AO-11) attracting proposals requesting 6.7 times more observing time than was available. Following recovery from a communications problem in 2008, all elements of the mission are stable and largely trouble free. The operational lifetime if currently limited by the amount of available hydrazine fuel. XMM-Newton normally uses reaction wheels for attitude control and fuel is only used when offsetting reaction wheel speed away from limiting values and for emergency Sun acquisition following an anomaly. Currently, the hydrazine is predicted to last until around 2020. However, ESA is investigating the possibility of making changes to the operations concept and the onboard software that would enable lower fuel consumption. This could allow operations to well beyond 2026.

  17. Searching for propeller-phase ULXs in the XMM-Newton Serendipitous Source Catalogue

    NASA Astrophysics Data System (ADS)

    Earnshaw, H. P.; Roberts, T. P.; Sathyaprakash, R.

    2018-05-01

    We search for transient sources in a sample of ultraluminous X-ray sources (ULXs) from the 3XMM-DR4 release of the XMM-Newton Serendipitous Source Catalogue in order to find candidate neutron star ULXs alternating between an accreting state and the propeller regime, in which the luminosity drops dramatically. By examining their fluxes and flux upper limits, we identify five ULXs that demonstrate long-term variability of over an order of magnitude. Using Chandra and Swift data to further characterize their light curves, we find that two of these sources are detected only once and could be X-ray binaries in outburst that only briefly reach ULX luminosities. Two others are consistent with being super-Eddington accreting sources with high levels of inter-observation variability. One source, M51 ULX-4, demonstrates apparent bimodal flux behaviour that could indicate the propeller regime. It has a hard X-ray spectrum, but no significant pulsations in its timing data, although with an upper limit of 10 per cent of the signal pulsed at ˜1.5 Hz a pulsating ULX cannot be excluded, particularly if the pulsations are transient. By simulating XMM-Newton observations of a population of pulsating ULXs, we predict that there could be approximately 200 other bimodal ULXs that have not been observed sufficiently well by XMM-Newton to be identified as transient.

  18. A survey of stellar X-ray flares from the XMM-Newton serendipitous source catalogue: HIPPARCOS-Tycho cool stars

    NASA Astrophysics Data System (ADS)

    Pye, J. P.; Rosen, S.; Fyfe, D.; Schröder, A. C.

    2015-09-01

    Context. The X-ray emission from flares on cool (i.e. spectral-type F-M) stars is indicative of very energetic, transient phenomena, associated with energy release via magnetic reconnection. Aims: We present a uniform, large-scale survey of X-ray flare emission. The XMM-Newton Serendipitous Source Catalogue and its associated data products provide an excellent basis for a comprehensive and sensitive survey of stellar flares - both from targeted active stars and from those observed serendipitously in the half-degree diameter field-of-view of each observation. Methods: The 2XMM Catalogue and the associated time-series ("light-curve") data products have been used as the basis for a survey of X-ray flares from cool stars in the Hipparcos-Tycho-2 catalogue. In addition, we have generated and analysed spectrally-resolved (i.e. hardness-ratio), X-ray light-curves. Where available, we have compared XMM OM UV/optical data with the X-ray light-curves. Results: Our sample contains ~130 flares with well-observed profiles; they originate from ~70 stars. The flares range in duration from ~103 to ~104 s, have peak X-ray fluxes from ~10-13 to ~10-11erg cm-2 s-1, peak X-ray luminosities from ~1029 to ~1032erg s-1, and X-ray energy output from ~1032 to ~1035 erg. Most of the ~30 serendipitously-observed stars have little previously reported information. The hardness-ratio plots clearly illustrate the spectral (and hence inferred temperature) variations characteristic of many flares, and provide an easily accessible overview of the data. We present flare frequency distributions from both target and serendipitous observations. The latter provide an unbiased (with respect to stellar activity) study of flare energetics; in addition, they allow us to predict numbers of stellar flares that may be detected in future X-ray wide-field surveys. The serendipitous sample demonstrates the need for care when calculating flaring rates, especially when normalising the number of flares to a total

  19. XMM-NEWTON MEASUREMENT OF THE GALACTIC HALO X-RAY EMISSION USING A COMPACT SHADOWING CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henley, David B.; Shelton, Robin L.; Cumbee, Renata S.

    2015-02-01

    Observations of interstellar clouds that cast shadows in the soft X-ray background can be used to separate the background Galactic halo emission from the local emission due to solar wind charge exchange (SWCX) and/or the Local Bubble (LB). We present an XMM-Newton observation of a shadowing cloud, G225.60–66.40, that is sufficiently compact that the on- and off-shadow spectra can be extracted from a single field of view (unlike previous shadowing observations of the halo with CCD-resolution spectrometers, which consisted of separate on- and off-shadow pointings). We analyzed the spectra using a variety of foreground models: one representing LB emission, andmore » two representing SWCX emission. We found that the resulting halo model parameters (temperature T {sub h} ≈ 2 × 10{sup 6} K, emission measure E{sub h}≈4×10{sup −3} cm{sup −6} pc) were not sensitive to the foreground model used. This is likely due to the relative faintness of the foreground emission in this observation. However, the data do favor the existence of a foreground. The halo parameters derived from this observation are in good agreement with those from previous shadowing observations, and from an XMM-Newton survey of the Galactic halo emission. This supports the conclusion that the latter results are not subject to systematic errors, and can confidently be used to test models of the halo emission.« less

  20. XMM-Newton X-ray and HST weak gravitational lensing study of the extremely X-ray luminous galaxy cluster Cl J120958.9+495352 (z = 0.902)

    NASA Astrophysics Data System (ADS)

    Thölken, Sophia; Schrabback, Tim; Reiprich, Thomas H.; Lovisari, Lorenzo; Allen, Steven W.; Hoekstra, Henk; Applegate, Douglas; Buddendiek, Axel; Hicks, Amalia

    2018-03-01

    Context. Observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased. Aims: We study the very luminous, high redshift (z = 0.902) galaxy cluster Cl J120958.9+495352 using XMM-Newton data. We measure global cluster properties and study the temperature profile and the cooling time to investigate the dynamical status with respect to the presence of a cool core. We use Hubble Space Telescope (HST) weak lensing data to estimate its total mass and determine the gas mass fraction. Methods: We perform a spectral analysis using an XMM-Newton observation of 15 ks cleaned exposure time. As the treatment of the background is crucial, we use two different approaches to account for the background emission to verify our results. We account for point spread function effects and deproject our results to estimate the gas mass fraction of the cluster. We measure weak lensing galaxy shapes from mosaic HST imaging and select background galaxies photometrically in combination with imaging data from the William Herschel Telescope. Results: The X-ray luminosity of Cl J120958.9+495352 in the 0.1-2.4 keV band estimated from our XMM-Newton data is LX = (13.4+1.2-1.0) × 1044 erg/s and thus it is one of the most X-ray luminous clusters known at similarly high redshift. We find clear indications for the presence of a cool core from the temperature profile and the central cooling time, which is very rare at such high redshifts. Based

  1. VizieR Online Data Catalog: The XMM-Newton 2nd Incremental Source Catalogue (2XMMi) (XMM-SSC, 2008)

    NASA Astrophysics Data System (ADS)

    Xmm-Newton Survey Science Centre, Consortium

    2007-09-01

    The 2XMMi catalogue is the fourth publicly released XMM X-ray source catalogue produced by the XMM Survey Science Centre (SSC) consortium, following the 1XMM (Cat. IX/37, released in April 2003), 2XMMp (July 2006) and 2XMM (Cat. IX/39, August 2007) catalogues: 2XMMp was a preliminary version of 2XMM. 2XMMi is an incremental version of the 2XMM catalogue. The 2XMMi catalogue is about 17% larger than the 2XMM catalogue, which it supersedes, due to the 1-year longer baseline of observations included (it is about 8 times larger than the 1XMM catalogue). As such, it is the largest X-ray source catalogue ever produced, containing more than twice as many discrete sources as either the ROSAT survey or pointed catalogues. 2XMMi complements deeper Chandra and XMM-Newton small area surveys, probing a large sky area at the flux limit where the bulk of the objects that contribute to the X-ray background lie. The 2XMMi catalogue provides a rich resource for generating large, well-defined samples for specific studies, utilizing the fact that X-ray selection is a highly efficient (arguably the most efficient) way of selecting certain types of object, notably active galaxies (AGN), clusters of galaxies, interacting compact binaries and active stellar coronae. The large sky area covered by the serendipitous survey, or equivalently the large size of the catalogue, also means that 2XMMi is a superb resource for exploring the variety of the X-ray source population and identifying rare source types. The production of the 2XMMi catalogue has been undertaken by the XMM-Newton SSC consortium in fulfilment of one of its major responsibilities within the XMM-Newton project. The catalogue production process has been designed to exploit fully the capabilities of the XMM-Newton EPIC cameras and to ensure the integrity and quality of the resultant catalogue through rigorous screening of the data. The predecessor 2XMM catalogue was made from a subset of public observations emerging from a re

  2. VizieR Online Data Catalog: The XMM-Newton 2nd Incremental Source Catalogue (2XMMi) (XMM-SSC, 2008)

    NASA Astrophysics Data System (ADS)

    Xmm-Newton Survey Science Centre, Consortium

    2008-09-01

    The 2XMMi catalogue is the fourth publicly released XMM X-ray source catalogue produced by the XMM Survey Science Centre (SSC) consortium, following the 1XMM (Cat. IX/37, released in April 2003), 2XMMp (July 2006) and 2XMM (Cat. IX/39, August 2007) catalogues: 2XMMp was a preliminary version of 2XMM. 2XMMi is an incremental version of the 2XMM catalogue. The 2XMMi catalogue is about 17% larger than the 2XMM catalogue, which it supersedes, due to the 1-year longer baseline of observations included (it is about 8 times larger than the 1XMM catalogue). As such, it is the largest X-ray source catalogue ever produced, containing more than twice as many discrete sources as either the ROSAT survey or pointed catalogues. 2XMMi complements deeper Chandra and XMM-Newton small area surveys, probing a large sky area at the flux limit where the bulk of the objects that contribute to the X-ray background lie. The 2XMMi catalogue provides a rich resource for generating large, well-defined samples for specific studies, utilizing the fact that X-ray selection is a highly efficient (arguably the most efficient) way of selecting certain types of object, notably active galaxies (AGN), clusters of galaxies, interacting compact binaries and active stellar coronae. The large sky area covered by the serendipitous survey, or equivalently the large size of the catalogue, also means that 2XMMi is a superb resource for exploring the variety of the X-ray source population and identifying rare source types. The production of the 2XMMi catalogue has been undertaken by the XMM-Newton SSC consortium in fulfilment of one of its major responsibilities within the XMM-Newton project. The catalogue production process has been designed to exploit fully the capabilities of the XMM-Newton EPIC cameras and to ensure the integrity and quality of the resultant catalogue through rigorous screening of the data. The predecessor 2XMM catalogue was made from a subset of public observations emerging from a re

  3. The XMM Cluster Survey: X-ray analysis methodology

    NASA Astrophysics Data System (ADS)

    Lloyd-Davies, E. J.; Romer, A. Kathy; Mehrtens, Nicola; Hosmer, Mark; Davidson, Michael; Sabirli, Kivanc; Mann, Robert G.; Hilton, Matt; Liddle, Andrew R.; Viana, Pedro T. P.; Campbell, Heather C.; Collins, Chris A.; Dubois, E. Naomi; Freeman, Peter; Harrison, Craig D.; Hoyle, Ben; Kay, Scott T.; Kuwertz, Emma; Miller, Christopher J.; Nichol, Robert C.; Sahlén, Martin; Stanford, S. A.; Stott, John P.

    2011-11-01

    The XMM Cluster Survey (XCS) is a serendipitous search for galaxy clusters using all publicly available data in the XMM-Newton Science Archive. Its main aims are to measure cosmological parameters and trace the evolution of X-ray scaling relations. In this paper we describe the data processing methodology applied to the 5776 XMM observations used to construct the current XCS source catalogue. A total of 3675 > 4σ cluster candidates with >50 background-subtracted X-ray counts are extracted from a total non-overlapping area suitable for cluster searching of 410 deg2. Of these, 993 candidates are detected with >300 background-subtracted X-ray photon counts, and we demonstrate that robust temperature measurements can be obtained down to this count limit. We describe in detail the automated pipelines used to perform the spectral and surface brightness fitting for these candidates, as well as to estimate redshifts from the X-ray data alone. A total of 587 (122) X-ray temperatures to a typical accuracy of <40 (<10) per cent have been measured to date. We also present the methodology adopted for determining the selection function of the survey, and show that the extended source detection algorithm is robust to a range of cluster morphologies by inserting mock clusters derived from hydrodynamical simulations into real XMMimages. These tests show that the simple isothermal β-profiles is sufficient to capture the essential details of the cluster population detected in the archival XMM observations. The redshift follow-up of the XCS cluster sample is presented in a companion paper, together with a first data release of 503 optically confirmed clusters.

  4. Discovery of the transient magnetar 3XMM J185246.6+003317 near supernova remnant Kesteven 79 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Mendez, Mariano; Chen, Yang; Li, Xiangdong; Safi-Harb, Samar; Terada, Yukikatsu; Sun, Wei; Ge, Mingyu

    We report the serendipitous discovery with XMM-Newton that 3XMM J185246.6+003317 is an 11.56 s X-ray pulsar located 1' away from the southern boundary of supernova remnant Kes 79. The spin-down rate of 3XMM J185246.6+003317 is <1.1× 10(-13) s s(-1) , which, together with the long period P=11.558714(2) s, indicates a dipolar surface magnetic field of <3.6× 10(13) G, a characteristic age of >1.7 Myr, and a spin-down luminosity of <2.8× 10(30) erg s(-1) . The X-ray spectrum of the source is best-fitted with a resonant Compton scattering model, and can be also adequately described by a blackbody model. The observations covering a seven month span from 2008 to 2009 show variations in the spectral properties of the source, with the luminosity decreasing from 2.7× 10(34) erg s(-1) to 4.6 × 10(33) erg s(-1) , along with a decrease of the blackbody temperature from kT≈ 0.8 keV to ≈0.6 keV. The X-ray luminosity of the source is higher than its spin-down luminosity, ruling out rotation as a power source. The combined timing and spectral properties, the non-detection of any optical or infrared counterpart, together with the lack of detection of the source in archival X-ray data prior to the 2008 XMM-Newton observation, point to this source being a newly discovered transient low-B magnetar undergoing an outburst decay during the XMM-Newton observations. The non-detection by Chandra in 2001 sets an upper limit 4× 10(32) erg s(-1) to the quiescent luminosity of 3XMM J185246.6+003317. Its period is the longest among currently known transient magnetars. The foreground absorption toward 3XMM J185246.6+003317 is similar to that of Kes 79, suggesting a similar distance of ˜7.1 kpc.

  5. Arakelian 564: An XMM-Newton View

    NASA Technical Reports Server (NTRS)

    Vignali, Cristian; Brandt, W. N.; Boller, Th.; Fabian, A. C.; Vaughan, Simon

    2003-01-01

    We report on two XMM-Newton observations of the bright narrow-line Seyfert 1 galaxy Ark 564 taken one year apart (2000 June and 2001 June). The 0.6-10 keV continuum is well described by a soft blackbody component (kTau approximately equal 140-150 eV) plus a steep power law (Tau approximately equal to 2.50-2.55). No significant spectral changes are observed between the two observations, although the X-ray flux in the second observation is approximately equal to 40-50 per cent lower. In both observations we detect a significant absorption edge at a rest-frame energy of approximately equal to 0.73 keV, corresponding to O VII. The presence of the absorption feature is confirmed by a simultaneous Chandra grating observation in 2000 June, although the best-fitting edge threshold is at a slightly lower energy in the Chandra data, possibly because of a different parameterization of the underlying X-ray continuum. We find tentative evidence for a broad iron emission line in the 2000 June observation. The results from an analysis of the power spectral density (PSD) function are also presented. The present XMM-Newton data support the idea that the PSD shown two breads, although the location of the high-frequency break requires further constraints.

  6. XMM-Newton RGS observations of the Cat's Eye Nebula

    NASA Astrophysics Data System (ADS)

    Guerrero, M. A.; Toalá, J. A.; Chu, Y.-H.; Gruendl, R. A.

    2015-02-01

    We present an analysis of XMM-Newton Reflection Grating Spectrometer (RGS) observations of the planetary nebula (PN) NGC 6543. These observations render it the second PN with high-resolution X-ray spectroscopic observations after BD +30°3639. The observations consist of 26 pointings, 14 of which included RGS observations for a total integration time of 435 ks. Many of these observations, however, were severely affected by high-background levels, and the net useful exposure time is drastically reduced to 25 ks. Only the O vii triplet at 22 Å is unambiguously detected in the RGS spectrum of NGC 6543. We find this spectrum consistent with an optically thin plasma at 0.147 keV (1.7 MK) and nebular abundances. Unlike BD +30°3639, the X-ray emission from NGC 6543 does not reveal overabundances of C and Ne. The results suggest that the N/O ratio of the hot plasma is consistent with that of the stellar wind, that is, it is lower than the nebular N/O ratio, but this result is not conclusive.

  7. ESA's XMM-Newton gains deep insights into the distant Universe

    NASA Astrophysics Data System (ADS)

    2003-07-01

    First image from the XMM-LSS survey hi-res Size hi-res: 87 kb Credits: ESA First image from the XMM-LSS survey The first image from the XMM-LSS survey is actually a combination of fourteen separate 'pointings' of the space observatory. It represents a region of the sky eight times larger than the full Moon and contains around 25 clusters. The circles represent the sources previously known from the 1991 ROSAT All-Sky Survey. A computer programme zooms in on an interesting region hi-res Size hi-res: 86 kb Credits: ESA A computer programme zooms in on an interesting region A computer programme zooms in on an interesting region of the image and identifies the possible cluster. Each point on this graph represents a single X-ray photons detected by XMM-Newton. Most come from distant actie galaxies and the computer must perform a sophisticated, statistical computation to determine which X-ray come from clusters. Contour map of clusters hi-res Size hi-res: 139 kb Credits: ESA Contour map of clusters The computer programme transforms the XMM-Newton data into a contour map of the cluster's probable extent and superimposes it over the CFHT snapshot, allowing the individual galaxies in the cluster to be targeted for further observations with ESO's VLT, to measure its distance and locate the cluster in the universe. Unlike grains of sand on a beach, matter is not uniformly spread throughout the Universe. Instead, it is concentrated into galaxies like our own which themselves congregate into clusters. These clusters are 'strung' throughout the Universe in a web-like structure. Astronomers have studied this large-scale structure of the nearby Universe but have lacked the instruments to extend the search to the large volumes of the distant Universe. Thanks to its unrivalled sensitivity, in less than three hours, ESA's X-ray observatory XMM-Newton can see back about 7000 million years to a cosmological era when the Universe was about half its present size, and clusters of galaxies

  8. ETA CARINAE’S THERMAL X-RAY TAIL MEASURED WITH XMM-NEWTON AND NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamaguchi, Kenji; Corcoran, Michael F.; Gull, Theodore R.

    The evolved, massive highly eccentric binary system, η Car, underwent a periastron passage in the summer of 2014. We obtained two coordinated X-ray observations with XMM-Newton and NuSTAR during the elevated X-ray flux state and just before the X-ray minimum flux state around this passage. These NuSTAR observations clearly detected X-ray emission associated with η Car extending up to ∼50 keV for the first time. The NuSTAR spectrum above 10 keV can be fit with the bremsstrahlung tail from a kT ∼ 6 keV plasma. This temperature is ΔkT ∼ 2 keV higher than those measured from the iron K emission line complex, if the shockedmore » gas is in collisional ionization equilibrium. This result may suggest that the companion star's pre-shock wind velocity is underestimated. The NuSTAR observation near the X-ray minimum state showed a gradual decline in the X-ray emission by 40% at energies above 5 keV in a day, the largest rate of change of the X-ray flux yet observed in individual η Car observations. The column density to the hardest emission component, N{sub H} ∼ 10{sup 24} H cm{sup −2}, marked one of the highest values ever observed for η Car, strongly suggesting increased obscuration of the wind–wind colliding X-ray emission by the thick primary stellar wind prior to superior conjunction. Neither observation detected the power-law component in the extremely hard band that INTEGRAL and Suzaku observed prior to 2011. If the non-detection by NuSTAR is caused by absorption, the power-law source must be small and located very near the wind–wind collision apex. Alternatively, it may be that the power-law source is not related to either η Car or the GeV γ-ray source.« less

  9. High-Resolution X-Ray Spectroscopy of the Galactic Supernova Remnant Puppis A with the XMM-Newton RGS

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shinya; Akamatsu, Hiroki; Konami, Saori; Tamagawa, Toru

    2012-01-01

    We present high-resolution X-ray spectra of cloud-shock interaction regions in the eastern and northern rims of the Galactic supernova remnant Puppis A, using the Reflection Grating Spectrometer onboard the XMM-Newton satellite. A number of emission lines including K(alpha) triplets of He-like N, O , and Ne are clearly resolved for the first time. Intensity ratios of forbidden to resonance lines in the triplets are found to be higher than predictions by thermal emission models having plausible plasma parameters. The anomalous line ratios cannot be reproduced by effects of resonance scattering, recombination, or inner-shell ionization processes, but could be explained by charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. Our observations thus provide observational support for charge-exchange X-ray emission in supernova remnants.

  10. X-ray spectroscopy of the mixed morphology supernova remnant W 28 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Nakamura, Ryoko; Bamba, Aya; Ishida, Manabu; Yamazaki, Ryo; Tatematsu, Ken'ichi; Kohri, Kazunori; Pühlhofer, Gerd; Wagner, Stefan J.; Sawada, Makoto

    2014-06-01

    We report on spatially resolved X-ray spectroscopy of the north-eastern part of the mixed morphology supernova remnant (SNR) W 28 with XMM-Newton. The observed field of view includes a prominent and twisted shell emission forming the edge of this SNR as well as part of the center-filled X-ray emission brightening toward the south-west edge of the field of view. The shell region spectra are in general represented by an optically thin thermal plasma emission in collisional ionization equilibrium with a temperature of ˜ 0.3 keV and a density of ˜ 10 cm-3, which is much higher than the density obtained for inner parts. In contrast, we detected no significant X-ray flux from one of the TeV γ-ray peaks with an upper-limit flux of 2.1 × 10-14 erg cm-2 s-1 in the 2-10 keV band. The large flux ratio of TeV to X-ray, larger than 16, and the spatial coincidence of the molecular cloud and the TeV γ-ray emission site indicate that the TeV γ-ray of W 28 is π0-decay emission originating from collisions between accelerated protons and molecular cloud protons. Comparing the spectrum in the TeV band and the X-ray upper limit, we obtained a weak upper limit on the magnetic field strength B ≲ 1500 μG.

  11. X-ray and optical observations of four polars

    NASA Astrophysics Data System (ADS)

    Worpel, H.; Schwope, A. D.; Granzer, T.; Reinsch, K.; Schwarz, R.; Traulsen, I.

    2016-08-01

    Aims: We investigate the temporal and spectral behaviour of four polar cataclysmic variables from the infrared to X-ray regimes, refine our knowledge of the physical parameters of these systems at different accretion rates, and search for a possible excess of soft X-ray photons. Methods: We obtained and analysed four XMM-Newton X-ray observations of three of the sources, two of them discovered with the SDSS and one in the RASS. The X-ray data were complemented by optical photometric and spectroscopic observations and, for two sources, archival Swift observations. Results: SDSSJ032855.00+052254.2 was X-ray bright in two XMM-Newton and two Swift observations, and shows transitions from high and low accretion states on a timescale of a few months. The source shows no significant soft excess. We measured the magnetic field strength at the main accreting pole to be 39 MG and the inclination to be 45° ≤ I ≤ 77°, and we refined the long-term ephemeris. SDSSJ133309.20+143706.9 was X-ray faint. We measured a faint phase X-ray flux and plasma temperature for this source, which seems to spend almost all of its time accreting at a low level. Its inclination is less than about 76°. 1RXSJ173006.4+033813 was X-ray bright in the XMM-Newton observation. Its spectrum contained a modest soft blackbody component, not luminous enough to be considered a significant soft excess. We inferred a magnetic field strength at the main accreting pole of 20 to 25 MG, and that the inclination is less than 77° and probably less than 63°. V808 Aur, also known as CSS081231:J071126+440405, was X-ray faint in the Swift observation, but there is nonetheless strong evidence for bright and faint phases in X-rays and perhaps in UV. Residual X-ray flux from the faint phase is difficult to explain by thermal emission from the white dwarf surface, or by accretion onto the second pole. We present a revised distance estimate of 250 pc. Conclusions: The three systems we were able to study in detail

  12. XMM-Newton Observations of the Cluster of Galaxies Sersic 159-03

    NASA Technical Reports Server (NTRS)

    Kaastra, J. S.; Ferrigno, C.; Tamura, T.; Paerels, F. B. S.; Peterson, J. R.; Mittaz, J. P. D.

    2000-01-01

    The cluster of galaxies Sersic 159-03 was observed with the XMM-Newton X-ray observatory as part of the Guaranteed Time program. X-ray spectra taken with the EPIC and RGS instruments show no evidence for the strong cooling flow derived from previous X-ray observations. There is a significant lack of cool gas below 1.5 keV as compared to standard isobaric cooling flow models. While the oxygen is distributed more or less uniformly over the cluster, iron shows a strong concentration in the center of the cluster, slightly offset from the brightness center but within the central cD galaxy. This points to enhanced type Ia supernova activity in the center of the cluster. There is also an elongated iron-rich structure ex- tending to the east of the cluster, showing the inhomogeneity of the iron distribution. Finally, the temperature drops rapidly beyond 4' from the cluster center.

  13. XMM-Newton Observations of MBM 12: More Constraints on the Solar Wind Charge Exchange and Local Bubble Emissions

    NASA Technical Reports Server (NTRS)

    Koutroumpa, Dimitra; Smith, Randall K.; Edgar, Richard J.; Kuntz, Kip D.; Plucinsky, Paul P.; Snowden, Steven L.

    2010-01-01

    We present the first analysis of an XMM-Newton observation of the nearby molecular cloud MBM 12. We find that in the direction of MBM 12 the total O VII (0.57 keV) triplet emission is 1.8(+0.5/-0.6) photons/sq cm/s/sr (or Line Units - LU) while for the O VIII (0.65 keV) line emission we find a 3(sigma) upper limit of <1 LU. We also use a heliospheric model to calculate the O VII and O VIII emission generated by Solar Wind Charge-eXchange (SWCX) which we compare to the XMM-Newton observations. This comparison provides new constraints on the relative heliospheric and Local Bubble contributions to the local diffuse X-ray background. The heliospheric SWCX model predicts 0.82 LU for O VII, which accounts for approx. 46+/-15% of the observed value, and 0.33 LU for the O VIII line emission consistent with the XMM-Newton observed value. We discuss our results in combination with previous observations of the MBM 12 with CHANDRA and Suzaku.

  14. Resolving galaxy cluster gas properties at z ˜ 1 with XMM-Newton and Chandra

    NASA Astrophysics Data System (ADS)

    Bartalucci, I.; Arnaud, M.; Pratt, G. W.; Démoclès, J.; van der Burg, R. F. J.; Mazzotta, P.

    2017-02-01

    Massive, high-redshift, galaxy clusters are useful laboratories to test cosmological models and to probe structure formation and evolution, but observations are challenging due to cosmological dimming and angular distance effects. Here we present a pilot X-ray study of the five most massive (M500 > 5 × 1014M⊙), distant (z 1), clusters detected via the Sunyaev-Zel'Dovich effect. We optimally combine XMM-Newton and Chandra X-ray observations by leveraging the throughput of XMM-Newton to obtain spatially-resolved spectroscopy, and the spatial resolution of Chandra to probe the bright inner parts and to detect embedded point sources. Capitalising on the excellent agreement in flux-related measurements, we present a new method to derive the density profiles, which are constrained in the centre by Chandra and in the outskirts by XMM-Newton. We show that the Chandra-XMM-Newton combination is fundamental for morphological analysis at these redshifts, the Chandra resolution being required to remove point source contamination, and the XMM-Newton sensitivity allowing higher significance detection of faint substructures. Measuring the morphology using images from both instruments, we found that the sample is dominated by dynamically disturbed objects. We use the combined Chandra-XMM-Newton density profiles and spatially-resolved temperature profiles to investigate thermodynamic quantities including entropy and pressure. From comparison of the scaled profiles with the local REXCESS sample, we find no significant departure from standard self-similar evolution, within the dispersion, at any radius, except for the entropy beyond 0.7 R500. The baryon mass fraction tends towards the cosmic value, with a weaker dependence on mass than that observed in the local Universe. We make a comparison with the predictions from numerical simulations. The present pilot study demonstrates the utility and feasibility of spatially-resolved analysis of individual objects at high-redshift through

  15. A deep X-ray view of the bare AGN Ark 120. IV. XMM-Newton and NuSTAR spectra dominated by two temperature (warm, hot) Comptonization processes

    NASA Astrophysics Data System (ADS)

    Porquet, D.; Reeves, J. N.; Matt, G.; Marinucci, A.; Nardini, E.; Braito, V.; Lobban, A.; Ballantyne, D. R.; Boggs, S. E.; Christensen, F. E.; Dauser, T.; Farrah, D.; Garcia, J.; Hailey, C. J.; Harrison, F.; Stern, D.; Tortosa, A.; Ursini, F.; Zhang, W. W.

    2018-01-01

    Context. The physical characteristics of the material closest to supermassive black holes (SMBHs) are primarily studied through X-ray observations. However, the origins of the main X-ray components such as the soft X-ray excess, the Fe Kα line complex, and the hard X-ray excess are still hotly debated. This is particularly problematic for active galactic nuclei (AGN) showing a significant intrinsic absorption, either warm or neutral, which can severely distort the observed continuum. Therefore, AGN with no (or very weak) intrinsic absorption along the line of sight, so-called "bare AGN", are the best targets to directly probe matter very close to the SMBH. Aims: We perform an X-ray spectral analysis of the brightest and cleanest bare AGN known so far, Ark 120, in order to determine the process(es) at work in the vicinity of the SMBH. Methods: We present spectral analyses of data from an extensive campaign observing Ark 120 in X-rays with XMM-Newton (4 × 120 ks, 2014 March 18-24), and NuSTAR (65.5 ks, 2014 March 22). Results: During this very deep X-ray campaign, the source was caught in a high-flux state similar to the earlier 2003 XMM-Newton observation, and about twice as bright as the lower-flux observation in 2013. The spectral analysis confirms the "softer when brighter" behavior of Ark 120. The four XMM-Newton/pn spectra are characterized by the presence of a prominent soft X-ray excess and a significant Fe Kα complex. The continuum is very similar above about 3 keV, while significant variability is present for the soft X-ray excess. We find that relativistic reflection from a constant-density, flat accretion disk cannot simultaneously produce the soft excess, broad Fe Kα complex, and hard X-ray excess. Instead, Comptonization reproduces the broadband (0.3-79 keV) continuum well, together with a contribution from a mildly relativistic disk reflection spectrum. Conclusions: During this 2014 observational campaign, the soft X-ray spectrum of Ark 120 below 0

  16. XMM-Newton Observations of NGC 253: Resolving the Emission Components in the Disk and Nuclear Area

    NASA Technical Reports Server (NTRS)

    Pietsch, W.; Borozdin, K. N.; Branduardi-Raymont, G.; Cappi, M.; Ehle, M.; Ferrando, P.; Freyberg, M. J.; Kahn, S. M.; Ponman, T. J.; Ptak, A.

    2000-01-01

    We describe the first XMM-Newton observations of the starburst galaxy NGC 253. As known from previous X-ray observations, NGC 253 shows a mixture of extended (disk and halo) and point-source emission. The high XMM-Newton throughput allows for the first time a detailed investigation of the spatial, spectral and variability properties of these components simultaneously. We detect a bright X-ray transient approx. 70 sec SSW of the nucleus and show the spectrum and light curve of the brightest point source (approx. 30 sec S of the nucleus, most likely a black-hole X-ray binary, BHXRB). The unprecedented combination of RGS and EPIC also sheds new light on the emission of the complex nuclear region, the X-ray plume and the disk diffuse emission. In particular, EPIC images reveal that the limb-brightening of the plume is mostly seen in higher ionization emission lines, while in the lower ionization lines, and below 0.5 keV, the plume is more homo- geneously structured, pointing to new interpretations as to the make up of the starburst-driven outflow. Assuming that type IIa supernova remnants (SNRs) are mostly responsible for the E greater than 4 keV emission, the detection with EPIC of the 6.7 keV line allows us to estimate a supernova rate within the nuclear starburst of 0.2 /yr.

  17. An XMM-Newton Observation of the Seyfert Galaxy 1H0419-577 in an Extreme Low State

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; O'Brien, P. T.

    2003-01-01

    Previous observations of the luminous Seyfert galaxy 1H 0419-577 have found its X-ray spectrum to range from that of a typical Seyfert 1 with 2-10 keV power law index Gamma approx. 1.9 to a much flatter power law of Gamma approx. 1.5 or less. We report here a new XMM-Newton observation which allows the low state spectrum to be studied in much greater detail than hitherto. We find a very hard spectrum (Gamma approx. 1.0) which exhibits broad features that can be modelled with the addition of an extreme relativistic Fe K emission line or with partial covering of the underlying continuum by a substantial column density of near-neutral gas. Both the EPIC and RGS data show evidence for strong line emission of OVII and OVIII requiring an extended region of low density photoionised gas in 1H 0419- 577. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicates the dominant spectral variability occurs via a steep power law component.

  18. EXTraS unveils a supernova shock break-out candidate in XMM-Newton archival data

    NASA Astrophysics Data System (ADS)

    Tiengo, A.; Novara, G.; Lisini, G.; De Luca, A.; Salvaterra, R.; Belfiore, A.; Marelli, M.; Salvetti, D.; Mereghetti, S.; Vianello, G.

    2017-10-01

    During the search for short X-ray transients within the Exploring the X-ray Transient and variable Sky (EXTraS) project, we discovered a new X-ray source that can be detected only in a ˜5 minutes interval of a ˜21 hours long XMM-Newton observation. Thanks to dedicated follow-up observations, we found that its position is consistent with a galaxy at redshift z=0.092. At this redshift, the transient released 2×10^{46} erg in the 0.3-10 keV energy band. Its luminosity and spectral and timing properties make it an analogue of the X-ray transient associated to SN2008, detected by Swift/XRT during an observation of the nearby supernova-rich galaxy NGC 2770. The discovery of this much more distant transient in a field galaxy during a systematic analysis of the full XMM-Newton archive allows us to better constrain the rate of these rare events.

  19. XMM-Newton, powerful AGN winds and galaxy feedback

    NASA Astrophysics Data System (ADS)

    Pounds, K.; King, A.

    2016-06-01

    The discovery that ultra-fast ionized winds - sufficiently powerful to disrupt growth of the host galaxy - are a common feature of luminous AGN is major scientific breakthrough led by XMM-Newton. An extended observation in 2014 of the prototype UFO, PG1211+143, has revealed an unusually complex outflow, with distinct and persisting velocities detected in both hard and soft X-ray spectra. While the general properties of UFOs are consistent with being launched - at the local escape velocity - from the inner disc where the accretion rate is modestly super-Eddington (King and Pounds, Ann Rev Astron Astro- phys 2015), these more complex flows have raised questions about the outflow geometry and the importance of shocks and enhanced cooling. XMM-Newton seems likely to remain the best Observatory to study UFOs prior to Athena, and further extended observations, of PG1211+143 and other bright AGN, have the exciting potential to establish the typical wind dynamics, while providing new insights on the accretion geometry and continuum source structure. An emphasis on such large, coordinated observing programmes with XMM-Newton over the next decade will continue the successful philosophy pioneered by EXOSAT, while helping to inform the optimum planning for Athena

  20. INTEGRAL and XMM-Newton observations of the puzzling binary system LSI +61 303

    NASA Astrophysics Data System (ADS)

    Chernyakova, Masha; Neronov, A.; Walter, R.

    LSI +61° 303 is one of the few X-ray binaries with Be star companion from which both radio and high-energy gamma-ray emission have been observed. We present XMM-Newton and INTE- GRAL observations which reveal variability of the X-ray spectral index of the system. The X-ray spectrum is hard (photon index Γ ≃ 1.5) during the orbital phases of both high and low X-ray flux. However, the spectrum softens at the moment of transition from high to low X-ray state. The spectrum of the system in the hard X-ray band does not reveal the presence of a cut-off (or, at least a spectral break) at 10-60 keV energies, expected if the compact object is an accreting neu- tron star. The observed spectrum and spectral variability can be explained if the compact object in the system is a rotation powered pulsar. In this case the recently found X-ray spectral variability of the system on the several kiloseconds time scale can be explained by the clumpy structure of the Be star disk.

  1. A long serendipitous XMM-Newton observation of the intermediate polar XY Ari1

    NASA Astrophysics Data System (ADS)

    Zengin Ćamurdan, D.; Balman, Ş.; Burwitz, V.

    2018-07-01

    XY Ari is one of the few known eclipsing intermediate polars. We present results from a detailed analysis of an unpublished archival observation using XMM-Newton EPIC pn and MOS data in a quiescent state of XY Ari. The X-ray orbital modulation and spin-pulse variations were investigated for energy-dependent modulations in different energy bands. The broad orbital modulation observed with various observations was confirmed with XMM-Newton in the hard X-ray (>1.6 keV). The EPIC light curves folded at the spin phases show a double-peak profile, as expected from two-pole accretion. The pulse profile is found to be energy-dependent. Hardness-ratio variations and energy modulation depth during spin modulation can be explained by photoelectric absorption. The simultaneously fitted EPIC spectra with a multi-temperature plasma emission model (CEVMKL) model yield a maximum plasma temperature of 28^{+3.1}_{-2.9} keV with an iron abundance Fe/Fe_{⊙}=0.37^{+0.06}_{-0.05}. We find two intrinsic partial covering absorption columns of 6.2^{+1.0}_{-0.9} × 10^{22} and 105.3^{+35.4}_{-30.4} × 10^{22} cm^{-2} with covering fractions of 0.53^{+0.05}_{-0.04}, 0.41^{+0.14}_{-0.13}, respectively. In addition, a Gaussian emission line at 6.43^{+0.01}_{-0.02} keV with an equivalent width of 51^{+12}_{-10} eV is required to account for fluorescent emission from neutral iron. The X-ray luminosity of the source is 4.2 × 1032 erg s-1 in the 0.2-10.0 keV energy band.

  2. XMM-Newton X-ray spectra of V407 Lup (Nova Lup 2016)

    NASA Astrophysics Data System (ADS)

    Ness, Jan-Uwe; Starrfield, Sumner; Woodward, Chick E.; Kuin, Paul; Page, Kim; Beardmore, Andy; Osborne, Julian; Sala, Gloria; Hernanz, Margarita; Orio, Marina; Williams, Bob

    2017-09-01

    Nova Lup 2016 (V407 Lup) was observed by XMM-Newton from 11 March 2017, 11:45 to 17:08 UT, 168 days after outburst (ATel #9538) with an exposure duration of 23,000 s. The EPIC pn was operated in Timing Mode with Medium filter.

  3. X-Ray Spectroscopy of the Cluster of Galaxies Abell 1795 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Tamura, T.; Kaastra, J. S.; Peterson, J. R.; Paerels, F.; Mittaz, J. P. D.; Trudolyubov, S. P.; Stewart, G.; Fabian, A. C.; Mushotzky, R. F.; Lumb, D. H.

    2000-01-01

    The initial results from XMM-Newton observations of the rich cluster of galaxies Abell 1795 are presented. The spatially-resolved X-ray spectra taken by the European Photon Imaging Cameras (EPIC) show a temperature drop at a radius of - 200 kpc from the cluster center, indicating that the ICM is cooling. Both the EPIC and the Reflection Grating Spectrometers (RGS) spectra extracted from the cluster center can be described by an isothermal model with a temperature of approx. 4 keV. The volume emission measure of any cool component (less than 1 keV) is less than a few % of the hot component at the cluster center. A strong O VIII Lyman alpha line was detected with the RGS from the cluster core. The O abundance of the ICM is 0.2-0.5 times the solar value. The O to Fe ratio at the cluster center is 0.5 - 1.5 times the solar ratio.

  4. An XMM-Newton Observation of the Seyfert 1 Galaxy 1H 0419-577 in an Extreme Low State

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; OBrien, P. T.

    2004-01-01

    Previous observations of the luminous Seyfert 1 galaxy 1H 0419-577 have found its X-ray spectrum to range from that of a typical Seyfert 1 with 2-10 keV power law index Gamma approx. 1.9 to a much flatter power law of Gamma approx. 1.5 or less. We report here a new XMM-Newton observation which allows the low state spectrum to be studied in much greater detail than hitherto. We find a very hard spectrum (Gamma approx. 1.0), which exhibits broad features that can be modelled myth the addition of an extreme relativistic Fe K emission line or with partial covering of the underlying continuum by a substantial column density of near-neutral gas. Both the EPIC and RGS data show evidence for strong line emission of OVII and OVIII requiring an extended region of low density photoionised gas in 1H 0419-577. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was 'X-ray bright' indicates the dominant spectral variability occurs via a steep power law component.

  5. XMM-Newton study of the supersoft symbiotic system Draco C1

    NASA Astrophysics Data System (ADS)

    Saeedi, Sara; Sasaki, Manami; Ducci, Lorenzo

    2018-01-01

    We present the results of the analysis of thirty-one XMM-Newton observations of the symbiotic star Draco C1 located in the Draco dwarf spheroidal galaxy. This object had been identified as a supersoft source based on ROSAT data. We analysed X-ray, ultraviolet (UV) and optical data taken with XMM-Newton in order to obtain the physical parameters and the geometry of the system. We have also performed the first X-ray timing analysis of Draco C1. The X-ray spectrum is well fitted with a blackbody model with a temperature of (1.8 ± 0.3) × 105 K. We obtained a bolometric luminosity of ≳1038 erg s-1 for the white dwarf. The X-ray spectrum and luminosity suggest stable nuclear burning on the surface of the white dwarf. The low column density derived from the X-ray spectrum is consistent with the lack of nebular lines found in previous UV studies. The long-term variability in the optical and the UV suggests that the system is not observed face-on and that the variability is caused by the reflection effect. For the red giant companion, we estimate a radius of ∼110 R⊙ and an upper limit ≲1.5 M⊙ for its mass assuming Roche lobe overflow.

  6. Observations of MCG-5-23-16 with Suzaku, XMM-Newton and NuSTAR: Disk Tomography and Compton Hump Reverberation

    NASA Technical Reports Server (NTRS)

    Zoghbi, A.; Cackett, E. M.; Reynolds, C.; Kara, E.; Harrison, F. A.; Fabian, A. C.; Lohfink, A.; Matt, G.; Stern, D.; Zhang, W. W.

    2014-01-01

    MCG-5-23-16 is one of the first active galactic nuclei (AGNs) where relativistic reverberation in the iron K line originating in the vicinity of the supermassive black hole was found, based on a short XMM-Newton observation. In this work, we present the results from long X-ray observations using Suzaku, XMM-Newton, and NuSTAR designed to map the emission region using X-ray reverberation. A relativistic iron line is detected in the lag spectra on three different timescales, allowing the emission from different regions around the black hole to be separated. Using NuSTAR coverage of energies above 10 keV reveals a lag between these energies and the primary continuum, which is detected for the first time in an AGN. This lag is a result of the Compton reflection hump responding to changes in the primary source in a manner similar to the response of the relativistic iron K line.

  7. Observations of MCG-5-23-16 with Suzaku, XMM-Newton and NuSTAR: Disk tomography and compton hump reverberation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoghbi, A.; Reynolds, C.; Lohfink, A.

    2014-07-01

    MCG-5-23-16 is one of the first active galactic nuclei (AGNs) where relativistic reverberation in the iron K line originating in the vicinity of the supermassive black hole was found, based on a short XMM-Newton observation. In this work, we present the results from long X-ray observations using Suzaku, XMM-Newton, and NuSTAR designed to map the emission region using X-ray reverberation. A relativistic iron line is detected in the lag spectra on three different timescales, allowing the emission from different regions around the black hole to be separated. Using NuSTAR coverage of energies above 10 keV reveals a lag between thesemore » energies and the primary continuum, which is detected for the first time in an AGN. This lag is a result of the Compton reflection hump responding to changes in the primary source in a manner similar to the response of the relativistic iron K line.« less

  8. Investigating the galactic Supernova Remnant Kes 78 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Bamba, A.; Orlando, S.; Bocchino, F.

    2016-06-01

    The galactic supernova remnant Kes 78 is associated with a HESS gamma-ray source and its X-ray emission has been recently revealed by Suzaku observations which have found indications for a hard X-ray component in the spectra. We analyzed an XMM-Newton EPIC observation of Kes 78 and studied the spatial distribution of the physical and chemical properties of the X-ray emitting plasma. The EPIC data unveiled a very complex morphology for the soft X-ray emission. We performed image analysis and spatially resolved spectral analysis finding indications for the interaction of the remnant with a local molecular cloud. Finally, we investigated the origin of the hard X-ray emitting component.

  9. Investigating the Galactic supernova remnant Kes 78 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Miceli, Marco; Bamba, Aya; Orlando, Salvatore; Bocchino, Fabrizio

    2016-06-01

    The galactic supernova remnant Kes 78 is associated with a HESS gamma-ray source and its X-ray emission has been recently revealed by Suzaku observations which have found indications for a hard X-ray component in the spectra. We analyzed an XMM-Newton EPIC observation of Kes 78 and studied the spatial distribution of the physical and chemical properties of the X-ray emitting plasma. The EPIC data unveiled a very complex morphology for the soft X-ray emission. We performed image analysis and spatially resolved spectral analysis finding indications for the interaction of the remnant with a local molecular cloud. Finally, we investigated the origin of the hard X-ray emitting component.

  10. The XXL Survey I. Scientific Motivations - Xmm-Newton Observing Plan - Follow-up Observations and Simulation Programme

    NASA Technical Reports Server (NTRS)

    Pierre, M.; Pacaud, F.; Adami, C.; Alis, S.; Altieri, B.; Baran, N.; Benoist, C.; Birkinshaw, M.; Bongiorno, A.; Bremer, M. N.; hide

    2016-01-01

    The quest for the cosmological parameters that describe our universe continues to motivate the scientific community to undertake very large survey initiatives across the electromagnetic spectrum. Over the past two decades, the Chandra and XMM-Newton observatories have supported numerous studies of X-ray-selected clusters of galaxies, active galactic nuclei (AGNs), and the X-ray background. The present paper is the first in a series reporting results of the XXL-XMM survey; it comes at a time when the Planck mission results are being finalized. Aims. We present the XXL Survey, the largest XMM programme totaling some 6.9 Ms to date and involving an international consortium of roughly 100 members. The XXL Survey covers two extragalactic areas of 25 deg2 each at a point-source sensitivity of approx. 5 x 10(exp 15) erg/s/sq cm in the [0.5-2] keV band (completeness limit). The surveys main goals are to provide constraints on the dark energy equation of state from the space-time-distribution of clusters of galaxies and to serve as a pathfinder for future, wide-area X-ray missions. We review science objectives, including cluster studies, AGN evolution, and large-scale structure, that are being conducted with the support of approximately 30 follow-up programs. Methods. We describe the 542 XMM observations along with the associated multi- and numerical simulation programmes. We give a detailed account of the X-ray processing steps and describe innovative tools being developed for the cosmological analysis. Results. The paper provides a thorough evaluation of the X-ray data, including quality controls, photon statistics, exposure and background maps, and sky coverage. Source catalogue construction and multi-associations are briefly described. This material will be the basis for the calculation of the cluster and AGN selection functions, critical elements of the cosmological and science analyses. Conclusions. The XXL multi- data set will have a unique lasting legacy value for

  11. XMM-Newton Proposal 03060602

    NASA Astrophysics Data System (ADS)

    Strickland, David

    2004-10-01

    We propose to observe 3 edge-on Milky-Way-like normal spiral galaxies in order to constrain the presence, properties and physical origin of hot gas in their halos, a topic about which relatively little is currently known. These observations will complete our sample of 8 edge-on normal spirals for which we have a wide range of existing observational data, so that all galaxies will have deep XMM-Newton and/or Chandra observations. With this sample we can assess the relative contribution to the halo X-ray emission of normal spirals from SNII-driven galactic fountains, accretion of primordial gas, and SNIa-driven outflows. The observations will robustly detect NGC 891-like hot halos, broadly quantify their properties, and can be used to constrain the efficiency of mechanical energy feedback.

  12. VizieR Online Data Catalog: XMM-Newton Bright Serendipitous Survey (Della Ceca+, 2004)

    NASA Astrophysics Data System (ADS)

    Della Ceca, R.; Maccacaro, T.; Caccianiga, A.; Severgnini, P.; Braito, V.; Barcons, X.; Carrera, F. J.; Watson, M. G.; Tedds, J. A.; Brunner, H.; Lehmann, I.; Page, M. J.; Lamer, G.; Schwope, A.

    2005-09-01

    We present here "The XMM-Newton Bright Serendipitous Survey", composed of two flux-limited samples: the XMM-Newton Bright Source Sample (BSS, hereafter) and the XMM-Newton "Hard" Bright Source Sample (HBSS, hereafter) having a flux limit of fX~7x10-14erg/cm2/s in the 0.5-4.5keV and 4.5-7.5keV energy band, respectively. After discussing the main goals of this project and the survey strategy, we present the basic data on a complete sample of 400 X-ray sources (389 of them belong to the BSS, 67 to the HBSS with 56 X-ray sources in common) derived from the analysis of 237 suitable XMM-Newton fields (211 for the HBSS). At the flux limit of the survey we cover a survey area of 28.10 (25.17 for the HBSS) sq. deg. The extragalactic number-flux relationships (in the 0.5-4.5keV and in the 4.5-7.5keV energy bands) are in good agreement with previous and new results making us confident about the correctness of data selection and analysis. (5 data files).

  13. NUSTAR AND XMM-Newton Observations of the Neutron Star X-Ray Binary 1RXS J180408.9-34205

    NASA Astrophysics Data System (ADS)

    Ludlam, Renee; Miller, Jon M.; Cackett, Edward; Fabian, Andrew C.; Bachetti, Matteo; Parker, Michael; Tomsick, John; Barret, Didier; Natalucci, Lorenzo; Rana, Vikram; Harrison, Fiona

    2016-04-01

    We report on observations of the neutron star (NS) residing in the low-mass X-ray binary 1RXS J180408.9-34205 taken 2015 March by NuSTAR and XMM-Newton while the source was in the hard spectral state. We findmultiple reflection features (Fe Kα detected with NuSTAR N VII, O VII, and O VIII detected in the RGS) fromdifferent ionization zones. Through joint fits using the self consistent relativistic reflection model RELXILL,we determine the inner radius to be 6.6(+13.2,-0.6) Rg. We find the inclination of the system to be between 18-29 degrees.If the disk is truncated at a radius greater than the innermost stable circular orbit (ISCO), then the position at which the inner disk terminates likely corresponds to the magnetospheric radius. For a spin parameter of a = 0, we estimate a conservative upper limit on the strength of the magnetic field to be B ≤ (0.9 - 3.0) × 109 G at the magnetic poles depending on the choice of conversion factor between spherical and disk accretion.

  14. NuSTAR and XMM-Newton Observations of 1E1743.1-2843: Indications of a Neutron Star LMXB Nature of the Compact Object

    NASA Technical Reports Server (NTRS)

    Lotti, Simone; Natalucci, Lorenzo; Mori, Kaya; Baganoff, Frederick K.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Hong, Jaesub; hide

    2016-01-01

    We report on the results of NuSTAR and XMM-Newton observations of the persistent X-ray source 1E1743.1-2843, located in the Galactic Center region. The source was observed between 2012 September and October by NuSTAR and XMM-Newton, providing almost simultaneous observations in the hard and soft X-ray bands. The high X-ray luminosity points to the presence of an accreting compact object. We analyze the possibilities of this accreting compact object being either a neutron star (NS) or a black hole, and conclude that the joint XMM-Newton and NuSTAR spectrum from 0.3 to 40 keV fits a blackbody spectrum with kT approximately 1.8 keV emitted from a hot spot or an equatorial strip on an NS surface. This spectrum is thermally Comptonized by electrons with kTe approximately 4.6 keV. Accepting this NS hypothesis, we probe the low-mass X-ray binary (LMXB) or high-mass X-ray binary (HMXB) nature of the source. While the lack of Type-I bursts can be explained in the LMXB scenario, the absence of pulsations in the 2 MHz-49 Hz frequency range, the lack of eclipses and of an IR companion, and the lack of a Kaline from neutral or moderately ionized iron strongly disfavor interpreting this source as a HMXB. We therefore conclude that 1E1743.1-2843 is most likely an NS-LMXB located beyond the Galactic Center. There is weak statistical evidence for a soft X-ray excess which may indicate thermal emission from an accretion disk. However, the disk normalization remains unconstrained due to the high hydrogen column density (N(sub H) approximately 1.6 x 10(exp 23) cm(exp -2)).

  15. Detection of a 9.4 min periodicity in the XMM-Newton and Chandra X-ray light curves of V407 Lup (Nova Lup 2016)

    NASA Astrophysics Data System (ADS)

    Beardmore, Andy; Dobrotka, Andrej; Ness, Jan-Uwe; Orio, Marina; Osborne, Julian; Page, Kim

    2017-09-01

    We report on the timing analysis of two long, uninterrupted X-ray observations of V407 Lup (also know as ASASSN-16kt and Nova Lup 2016; see ATel #9538, #9539, #9550, #9554, #9587, #9594 and #9644, #10632, #10722) performed with XMM-Newton for 22,000 s on 2017 March 11 and with the Chandra HRC_s and Low Energy Transmission Grating on 2017 August 30 for 34,000 s.

  16. Analysis of Quasi-periodic Oscillations and Time Lag in Ultraluminous X-Ray Sources with XMM-Newton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zi-Jian; Xiao, Guang-Cheng; Zhang, Shu

    We investigated the power density spectrum (PDS) and time lag of ultraluminous X-ray sources (ULXs) observed by XMM-Newton . We determined the PDSs for each ULX and found that five of them show intrinsic variability due to obvious quasi-periodic oscillations (QPOs) of mHz–1 Hz, consistent with previous reports. We further investigated these five ULXs to determine their possible time lag. The ULX QPOs exhibit a soft time lag that is linearly related to the QPO frequency. We discuss the likelihood of the ULX QPOs being type-C QPO analogs, and the time lag models. The ULXs might harbor intermediate-mass black holesmore » if their QPOs are type-C QPO analogs. We suggest that the soft lag and the linearity may be due to reverberation.« less

  17. UV, X-ray, and Optical Variability of the Young Star T Cha Produced by Inner Disk Obscuration: Results from a Coordinated HST, XMM-Newton, LCOGT, and SMARTS Observing Campaign

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; France, Kevin; Walter, Frederick M.; Schneider, P. Christian; Brown, Timothy M.; Andrews, Sean M.; Wilner, David J.

    2018-06-01

    The young (7 Myr) 1.5 solar mass T Tauri star T Chamaeleontis shows dramatic variability. The optical extinction varies by at least 3 magnitudes on few hour time-scales with no obvious periodicity. The obscuration is produced by material at the inner edge of the circumstellar disk and therefore characterizing the absorbing material can reveal important clues regarding the transport of gas and dust within such disks. The inner disk of T Cha is particularly interesting, because T Cha has a transitional disk with a large gap at 0.2-15 AU in the dust disk and allows study of the gas and dust structure in the terrestrial planet formation zone during this important rapid phase of protoplanetary disk evolution. For this reason we have conducted a major multi-spectral-region observing campaign to study the UV/X-ray/optical variability of T Cha. During 2018 February/March we monitored the optical photometric and spectral variability using LCOGT (Chile/South Africa/Australia) and the SMARTS telescopes in Chile. These optical data provide a broad context within which to interpret our shorter UV and X-ray observations. We observed T Cha during 3 coordinated observations (each 5 HST orbits + 25 ksec XMM; on 2018 Feb 22, Feb 26, Mar 2) using the HST COS/STIS spectrographs to measure the FUV/NUV spectra and XMM-Newton to measure the corresponding X-ray energy distribution. The observed spectral changes are well correlated and demonstrate the influence of the same absorbing material in all the spectral regions observed. By examining which spectral features change and by how much we can determine the location of different emitting regions relative to the absorbers along the line-of-sight to the star. In this poster we provide an overview of the variability seen in the different spectral regions and quantify the dust and gas content of T Cha's inner disk edge.(This work is supported by grant HST-GO-15128 and time awarded by HST, XMM-Newton, LCOGT, and SMARTS. We acknowledge the

  18. Has ESA's XMM-Newton cast doubt over dark energy?

    NASA Astrophysics Data System (ADS)

    2003-12-01

    Galaxy cluster RXJ0847 hi-res Size hi-res: 100k Galaxy cluster RXJ0847 The fuzzy object at the centre of the frame is one of the galaxy clusters observed by XMM-Newton in its investigation of the distant Universe. The cluster, designated RXJ0847.2+3449, is about 7 000 million light years away, so we see it here as it was 7 000 million years ago, when the Universe was only about half of its present age. This cluster is made up of several dozen galaxies. Observations of eight distant clusters of galaxies, the furthest of which is around 10 thousand million light years away, were studied by an international group of astronomers led by David Lumb of ESA's Space Research and Technology Centre (ESTEC) in the Netherlands. They compared these clusters to those found in the nearby Universe. This study was conducted as part of the larger XMM-Newton Omega Project, which investigates the density of matter in the Universe under the lead of Jim Bartlett of the College de France. Clusters of galaxies are prodigious emitters of X-rays because they contain a large quantity of high-temperature gas. This gas surrounds galaxies in the same way as steam surrounds people in a sauna. By measuring the quantity and energy of X-rays from a cluster, astronomers can work out both the temperature of the cluster gas and also the mass of the cluster. Theoretically, in a Universe where the density of matter is high, clusters of galaxies would continue to grow with time and so, on average, should contain more mass now than in the past. Most astronomers believe that we live in a low-density Universe in which a mysterious substance known as 'dark energy' accounts for 70% of the content of the cosmos and, therefore, pervades everything. In this scenario, clusters of galaxies should stop growing early in the history of the Universe and look virtually indistinguishable from those of today. In a paper soon to be published by the European journal Astronomy and Astrophysics, astronomers from the XMM-Newton

  19. TESTING RELATIVISTIC REFLECTION AND RESOLVING OUTFLOWS IN PG 1211+143 WITH XMM-NEWTON AND NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobban, A. P.; Pounds, K.; Vaughan, S.

    We analyze the broad-band X-ray spectrum (0.3–50 keV) of the luminous Seyfert 1/quasar PG 1211+143—the archetypal source for high-velocity X-ray outflows—using near-simultaneous XMM-Newton and NuSTAR observations. We compare pure relativistic reflection models with a model including the strong imprint of photoionized emission and absorption from a high-velocity wind, finding a spectral fit that extrapolates well over the higher photon energies covered by NuSTAR . Inclusion of the high signal-to-noise ratio XMM-Newton spectrum provides much tighter constraints on the model parameters, with a much harder photon index/lower reflection fraction compared to that from the NuSTAR data alone. We show that puremore » relativistic reflection models are not able to account for the spectral complexity of PG 1211+143 and that wind absorption models are strongly required to match the data in both the soft X-ray and Fe K spectral regions. In confirming the significance of previously reported ionized absorption features, the new analysis provides a further demonstration of the power of combining the high throughput and resolution of long-look XMM-Newton observations with the unprecedented spectral coverage of NuSTAR .« less

  20. XMM-Newton Observations of the Southeastern Radio Relic in Abell 3667

    NASA Astrophysics Data System (ADS)

    Storm, Emma; Vink, Jacco; Zandanel, Fabio; Akamatsu, Hiroki

    2018-06-01

    Radio relics, elongated, non-thermal, structures located at the edges of galaxy clusters, are the result of synchrotron radiation from cosmic-ray electrons accelerated by merger-driven shocks at the cluster outskirts. However, X-ray observations of such shocks in some clusters suggest that they are too weak to efficiently accelerate electrons via diffusive shock acceleration to energies required to produce the observed radio power. We examine this issue in the merging galaxy cluster Abell 3667 (A3667), which hosts a pair of radio relics. While the Northwest relic in A3667 has been well studied in the radio and X-ray by multiple instruments, the Southeast relic region has only been observed so far by Suzaku, which detected a temperature jump across the relic, suggesting the presence of a weak shock. We present observations of the Southeastern region of A3667 with XMM-Newton centered on the radio relic. We confirm the existence of an X-ray shock with Mach number of about 1.8 from a clear detection of temperature jump and a tentative detection of a density jump, consistent with previous measurements by Suzaku. We discuss the implications of this measurement for diffusive shock acceleration as the main mechanism for explaining the origin of radio relics. We then speculate on the plausibility of alternative scenarios, including re-acceleration and variations in the Mach number along shock fronts.

  1. X-ray Spectral Analysis of the Cataclysmic Variable LS Peg using XMM-Newton Observatory Data

    NASA Astrophysics Data System (ADS)

    Talebpour Sheshvan, N.; Nabizadeh, A.; Balman, S.

    2017-10-01

    LS Peg is a Cataclysmic Variable (CV) suggested as Intermediate Polar (IP) because of similar properties to those observed in IP systems. We used archival XMM-Newton observation of LS Peg in order to study the X-ray characteristics of the system. We show LS Peg light curves in several different energy bands, and discuss about orbital modulations and power spectral analysis. Unlike the previous spectral analysis of the EPIC-MOS data by fitting a hot optically thin plasma emission model with a single temperature, we simultaneously fit EPIC spectrum (pn+MOS) using a composite model of absorption (tbabs) along with two different partial covering absorbers plus a multi-temperature plasma emission component in XSPEC. In addition, we find a Gaussian emission line at 6.4 keV. For LS Peg the maximum temperature of the plasma distribution is found to be ˜ 17.8 keV with a luminosity of ˜ 7.4×10^{32}erg s^{-1} translating to an accretion rate of ˜ 1.7×10 ^{-10} M_{⊙} yr^{-1}. We present spectra for orbital minimum and orbital maximum. In addition, we use SWIFT observations of the source in order to make a comparison. We elaborate on the geometry of accretion and absorption in the X-ray emitting region with articulation on the magnetic nature.

  2. VizieR Online Data Catalog: Catalog of XMM X-ray galaxy groups (Gozaliasl+, 2014)

    NASA Astrophysics Data System (ADS)

    Gozaliasl, G.; Finoguenov, A.; Khosroshahi, H. G.; Mirkazemi, M.; Salvato, M.; Jassur, D. M. Z.; Erfanianfar, G.; Popesso, P.; Tanaka, M.; Lerchster, M.; Kneib, J. P.; McCracken, H. J.; Mellier, Y.; Egami, E.; Pereira, M. J.; Brimioulle, F.; Erben, T.; Seitz, S.

    2014-10-01

    We analysed the XMM-Newton observations of the CFHTLS wide (W1) field as a part of the XMM-LSS survey (Pierre et al., 2007MNRAS.382..279P, Cat. J/MNRAS/382/279). The details of observations and data reduction are presented in Bielby et al. (2010A&A...523A..66B). We concentrate on the low-z counterparts of the X-ray sources and use all XMM observations performed till 2009, covering an area of 2.276°x2.276°. The CFHTLS wide observations have been carried out in the period between 2003 and 2008, covering an effective survey area of ~154 square degrees. The optical images and data of the CFHTLS were obtained with the MegaPrime instrument mounted on the CFHT in the five filters u*, g', r', i' and z'. (1 data file).

  3. NuSTAR and XMM-Newton Observations of the 2015 Outburst Decay of GX 339-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiele, H.; Kong, A. K. H., E-mail: hstiele@mx.nthu.edu.tw

    The extent of the accretion disk in the low/hard state of stellar mass black hole X-ray binaries remains an open question. There is some evidence suggesting that the inner accretion disk is truncated and replaced by a hot flow, while the detection of relativistic broadened iron emission lines seems to require an accretion disk extending fully to the innermost stable circular orbit. We present comprehensive spectral and timing analyses of six Nuclear Spectroscopic Telescope Array and XMM-Newton observations of GX 339–4 taken during outburst decay in the autumn of 2015. Using a spectral model consisting of a thermal accretion disk,more » Comptonized emission, and a relativistic reflection component, we obtain a decreasing photon index, consistent with an X-ray binary during outburst decay. Although we observe a discrepancy in the inner radius of the accretion disk and that of the reflector, which can be attributed to the different underlying assumptions in each model, both model components indicate a truncated accretion disk that resiles with decreasing luminosity. The evolution of the characteristic frequency in Fourier power spectra and their missing energy dependence support the interpretation of a truncated and evolving disk in the hard state. The XMM-Newton data set allowed us to study, for the first time, the evolution of the covariance spectra and ratio during outburst decay. The covariance ratio increases and steeps during outburst decay, consistent with increased disk instabilities.« less

  4. Using XMM-Newton and Optical Photometry to Figure Out CVs

    NASA Astrophysics Data System (ADS)

    Szkody, P.; Homer, L.; Henden, A.

    2006-06-01

    X-ray light curves from XMM-Newton combined with optical data from the satellite and ground-based observers provide distinctive shapes and periodicities that give information on the correct classification of cataclysmic variables. Our recent data on three SDSS sources with strong helium emission are used to identify a highly magnetic system (a polar), the spin of the white dwarf in an intermediate polar, and a typical disk accreting system.

  5. Resolved Companions of Cepheids: Testing the Candidates with X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Evans, Nancy Remage; Pillitteri, Ignazio; Wolk, Scott; Karovska, Margarita; Tingle, Evan; Guinan, Edward; Engle, Scott; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.

    2016-04-01

    We have made XMM-Newton observations of 14 Galactic Cepheids that have candidate resolved (≥5″) companion stars based on our earlier HST Wide Field Camera 3 (WFC3) imaging survey. Main-sequence stars that are young enough to be physical companions of Cepheids are expected to be strong X-ray producers in contrast to field stars. XMM-Newton exposures were set to detect essentially all companions hotter than spectral type M0 (corresponding to 0.5 M⊙). The large majority of our candidate companions were not detected in X-rays, and hence are not confirmed as young companions. One resolved candidate (S Nor #4) was unambiguously detected, but the Cepheid is a member of a populous cluster. For this reason, it is likely that S Nor #4 is a cluster member rather than a gravitationally bound companion. Two further Cepheids (S Mus and R Cru) have X-ray emission that might be produced by either the Cepheid or the candidate resolved companion. A subsequent Chandra observation of S Mus shows that the X-rays are at the location of the Cepheid/spectroscopic binary. R Cru and also V659 Cen (also X-ray bright) have possible companions closer than 5″ (the limit for this study) which are the likely sources of X-rays. One final X-ray detection (V473 Lyr) has no known optical companion, so the prime suspect is the Cepheid itself. It is a unique Cepheid with a variable amplitude. The 14 stars that we observed with XMM constitute 36% of the 39 Cepheids found to have candidate companions in our HST/WFC3 optical survey. No young probable binary companions were found with separations of ≥5″ or 4000 au. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).

  6. XMM-Newton observations of NGC 3268 in the Antlia Galaxy Cluster: characterization of a hidden group of galaxies at z ≈ 0.41

    NASA Astrophysics Data System (ADS)

    Gargiulo, I. D.; García, F.; Combi, J. A.; Caso, J. P.; Bassino, L. P.

    2018-05-01

    We report on a detailed X-ray study of the extended emission of the intracluster medium (ICM) around NGC 3268, in the Antlia cluster of galaxies, together with a characterization of an extended source in the field, namely a background cluster of galaxies at z ≈ 0.41, which was previously accounted as an X-ray point source. The spectral properties of the extended emission of the gas present in Antlia were studied using data from the XMM-Newton satellite complemented with optical images of CTIO-Blanco telescope, to attain for associations of the optical sources with the X-ray emission. The XMM-Newton observations show that the intracluster gas is concentrated in a region centred in one of the main galaxies of the cluster, NGC 3268. By means of a spatially-resolved spectral analysis we derived the abundances of the ICM plasma. We found a wall-like feature in the northeast direction where the gas is characterized by a lower temperature with respect to the rest of the ICM. Furthermore, using combined optical observations we inferred the presence of an elliptical galaxy in the centre of the extended X-ray source considered as a background cluster, which favours this interpretation.

  7. The XMM-Newton SSC survey of the Galactic plane

    NASA Astrophysics Data System (ADS)

    Nebot Gómez-Morán, A.; Motch, C.; Barcons, X.; Carrera, F. J.; Ceballos, M. T.; Cropper, M.; Grosso, N.; Guillout, P.; Hérent, O.; Mateos, S.; Michel, L.; Osborne, J. P.; Pakull, M.; Pineau, F.-X.; Pye, J. P.; Roberts, T. P.; Rosen, S. R.; Schwope, A. D.; Watson, M. G.; Webb, N.

    2013-05-01

    Many different classes of X-ray sources contribute to the Galactic landscape at high energies. Although the nature of the most luminous X-ray emitters is now fairly well understood, the population of low-to-medium X-ray luminosity (LX = 1027-34 erg s-1) sources remains much less studied, our knowledge being mostly based on the observation of local members. The advent of wide field and high sensitivity X-ray telescopes such as XMM-Newton now offers the opportunity to observe this low-to-medium LX population at large distances. We report on the results of a Galactic plane survey conducted by the XMM-Newton Survey Science Centre (SSC). Beyond its astrophysical goals, this survey aims at gathering a representative sample of identified X-ray sources at low latitude that can be used later on to statistically identify the rest of the serendipitous sources discovered in the Milky Way. The survey is based on 26 XMM-Newton observations, obtained at | b | < 20 deg, distributed over a large range in Galactic longitudes and covering a summed area of 4 deg2. The flux limit of our survey is 2 × 10-15 erg cm-2 s-1 in the soft (0.5-2 keV) band and 1 × 10-14 erg cm-2 s-1 in the hard (2-12 keV) band. We detect a total of 1319 individual X-ray sources. Using optical follow-up observations supplemented by cross-correlation with a large range of multi-wavelength archival catalogues we identify 316 X-ray sources. This constitutes the largest group of spectroscopically identified low latitude X-ray sources at this flux level. The majority of the identified X-ray sources are active coronae with spectral types in the range A-M at maximum distances of ~1 kpc. The number of identified active starsincreases towards late spectral types, reaching a maximum at K. Using infrared colours we classify 18% of the stars as giants. The observed distributions of FX/FV, X-ray and infrared colours indicates that our sample is dominated by a young (100 Myr) to intermediate (600 Myr) age population with a

  8. The Jet/Disk Connection in AGN: Chandra and XMM-Newton Observations of Three Powerful Radio-Loud Quasars

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita; Gliozzi, Mario; Tavecchio, F.; Maraschi, L.; Foschini, Luigi

    2007-01-01

    The connection between the accretion process that powers AGN and the formation of jets is still poorly understood. Here we tackle this issue using new, deep Chandra and XMM-Newton observations of tlie cores of three powerful radio loud quasars: 1136-135, 1150+497 (Chandra), and 0723+679 (XMM-Newton), in the redshift range z=0.3-0.8. These sources are known from our previous Chandra siiapsliot survey to liave kpc-scale X-ray jets. In 1136-135 and 1150-1+497; evidence is found for the presence of diffuse thermal X-ray emission around the cores; on scales of 40-50 kpc and with luminosity L(sub 0.3-2 kev approx. 10(sup 43) erg per second, suggesting thermal emission from the host galaxy or a galaxy group. The X-ray continua of the cores in the three sources are described by an upward-curved (concave) broken power law, with photon indices GAMMA (sub soft) approx. 1.8 - 2.1 and GAMMA (sub hard) approx. 1.7 below and above approx. equal to 2 keV, respectively. There is evidence for an uiiresolved Fe K alpha line with EW approx. 70 eV in the three quasars. The Spectral Energy Distributions of the sources can be well described by a mix of jet and disk emission, with the jet dominating the radio and hard X-rays (via synchrotron and external Compton) and the disk dominating the optical/UV through soft X-rays. The ratio of the jet-to-disk powers is approx. 1, consistent with those derived for a number of gamma ray emitting blazars. This indicates that near equality of accretion and jet power may be common in powerful radio-loud AGN.

  9. Searching for Decaying Dark Matter in Deep XMM-Newton Observation of the Draco Dwarf Spheroidal

    NASA Technical Reports Server (NTRS)

    Ruchayskiy, Oleg; Boyardsky, Alex; Iakbovskyi, Dmytro; Bulbul, Esra; Eckert, Domique; Franse, Jeron; Malyshev, Denys; Markevitch, Maxim; Neronov, Andrii

    2016-01-01

    We present results of a search for the 3.5 keV emission line in our recent very long (approx. 1.4 Ms) XMM-Newton observation of the Draco dwarf spheroidal galaxy. The astrophysical X-ray emission from such dark matter-dominated galaxies is faint, thus they provide a test for the dark matter origin of the 3.5 keV line previously detected in other massive, but X-ray bright objects, such as galaxies and galaxy clusters. We do not detect a statistically significant emission line from Draco; this constrains the lifetime of a decaying dark matter particle to tau >(7-9) × 10(exp 27) s at 95% CL (combining all three XMM-Newton cameras; the interval corresponds to the uncertainty of the dark matter column density in the direction of Draco). The PN camera, which has the highest sensitivity of the three, does show a positive spectral residual (above the carefully modeled continuum) at E = 3.54 +/- 0.06 keV with a 2.3(sigma) significance. The two MOS cameras show less-significant or no positive deviations, consistently within 1(sigma) with PN. Our Draco limit on tau is consistent with previous detections in the stacked galaxy clusters, M31 and the Galactic Centre within their 1 - 2(sigma) uncertainties, but is inconsistent with the high signal from the core of the Perseus cluster (which has itself been inconsistent with the rest of the detections). We conclude that this Draco observation does not exclude the dark matter interpretation of the 3.5 keV line in those objects.

  10. The XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST)

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric; Guedel, M.

    2007-12-01

    The XMM-Newton Extended Survey of the Taurus Molecular Cloud is an exceptionally large and growing X-ray survey of the Taurus Molecular Cloud (TMC). Now comprising 31 1/2-degree diameter fields, observed with the three XMM-Newton EPIC cameras. High-resolution spectroscopy has been obtained for about ten T Tauri stars (TTS) with the RGS instruments, and the Optical Monitor secured an optical/UV survey. XEST detects essentially the entire surveyed TTS population of the TMC in X-rays including about half of the observed (8/16) brown dwarfs and Class I protostars (8/20). Several new candidate members are identified. The X-ray luminosity (LX) of TTS shows related correlations with both stellar bolometric luminosity and mass. Classical TTS show suppressed X-ray output in the CCD band by a factor of about 2. These statistical results confirm results from other star formation regions. Different from previous reports on TMC, XEST identifies no activity-rotation relation. Brown dwarfs are found to follow trends set by TTS, both for accreting and non-accreting objects. But a decrease of the fractional luminosity, LX/Lbol, is seen with decreasing mass indicating weakened heating efficiency in the substellar domain. XEST reports five members of the class of "Two-Absorber X-Ray" (TAX) sources which reveal a double-peaked spectrum originating from two unrelated sources with different absorption column densities. The softer emission is thought to be related to jets, as explicitly seen in DG Tau. RGS spectroscopy shows a systematic "X-ray soft excess" in classical TTS, suggesting excessive cool (1-2 MK) plasma due to accretion, although the excess seems to correlate with magnetic activity as well. XEST has been supported by the Space Science Institute (Bern/Switz.).

  11. Highly variable AGN from the XMM-Newton slew survey

    NASA Astrophysics Data System (ADS)

    Strotjohann, N. L.; Saxton, R. D.; Starling, R. L. C.; Esquej, P.; Read, A. M.; Evans, P. A.; Miniutti, G.

    2016-07-01

    Aims: We investigate the properties of a variability-selected complete sample of active galactic nuclei (AGN) in order to identify the mechanisms which cause large amplitude X-ray variability on timescales of years. Methods: A complete sample of 24 sources was constructed, from AGN which changed their soft X-ray luminosity by more than one order of magnitude over 5-20 years between ROSAT observations and the XMM-Newton slew survey. Follow-up observations were obtained with the Swift satellite. We analysed the spectra of these AGN at the Swift and XMM observation epochs, where six sources had continued to display extreme variability. Multiwavelength data are used to calculate black hole masses and the relative X-ray brightness αOX. Results: After removal of two probable spurious sources, we find that the sample has global properties which differ little from a non-varying control sample drawn from the wider XMM-slew/ROSAT/Veron sample of all secure AGN detections. A wide range of AGN types are represented in the varying sample. The black hole mass distributions for the varying and non-varying sample are not significantly different. This suggests that long timescale variability is not strongly affected by black hole mass. There is marginal evidence that the variable sources have a lower redshift (2σ) and X-ray luminosity (1.7σ). Apart from two radio-loud sources, the sample sources have normal optical-X-ray ratios (αOX) when at their peak but are X-ray weak during their lowest flux measurements. Conclusions: Drawing on our results and other studies, we are able to identify a variety of variability mechanisms at play: tidal disruption events, jet activity, changes in absorption, thermal emission from the inner accretion disc, and variable accretion disc reflection. Little evidence for strong absorption is seen in the majority of the sample and single-component absorption can be excluded as the mechanism for most sources.

  12. The peculiar isolated neutron star in the Carina Nebula. Deep XMM-Newton and ESO-VLT observations of 2XMM J104608.7-594306

    NASA Astrophysics Data System (ADS)

    Pires, A. M.; Motch, C.; Turolla, R.; Schwope, A.; Pilia, M.; Treves, A.; Popov, S. B.; Janot-Pacheco, E.

    2012-08-01

    While fewer in number than the dominant rotation-powered radio pulsar population, peculiar classes of isolated neutron stars (INSs) - which include magnetars, the ROSAT-discovered "Magnificent Seven" (M7), rotating radio transients (RRATs), and central compact objects in supernova remnants (CCOs) - represent a key element in understanding the neutron star phenomenology. We report the results of an observational campaign to study the properties of the source 2XMM J104608.7-594306, a newly discovered thermally emitting INS. The evolutionary state of the neutron star is investigated by means of deep dedicated observations obtained with the XMM-Newton Observatory, the ESO Very Large Telescope, as well as publicly available γ-ray data from the Fermi Space Telescope and the AGILE Mission. The observations confirm previous expectations and reveal a unique type of object. The source, which is likely within the Carina Nebula (NH = 2.6 × 1021 cm-2), has a spectrum that is both thermal and soft, with kT∞ = 135 eV. Non-thermal (magnetospheric) emission is not detected down to 1% (3σ, 0.1-12 keV) of the source luminosity. Significant deviations (absorption features) from a simple blackbody model are identified in the spectrum of the source around energies 0.6 keV and 1.35 keV. While the former deviation is likely related to a local oxygen overabundance in the Carina Nebula, the latter can only be accounted for by an additional spectral component, which is modelled as a Gaussian line in absorption with EW = 91 eV and σ = 0.14 keV (1σ). Furthermore, the optical counterpart is fainter than mV = 27 (2σ) and no γ-ray emission is significantly detected by either the Fermi or AGILE missions. Very interestingly, while these characteristics are remarkably similar to those of the M7 or the only RRAT so far detected in X-rays, which all have spin periods of a few seconds, we found intriguing evidence of very rapid rotation, P = 18.6 ms, at the 4σ confidence level. We interpret

  13. XMM-Newton spectroscopy of the accreting magnetar candidate 4U0114+65

    NASA Astrophysics Data System (ADS)

    Sanjurjo-Ferrrín, G.; Torrejón, J. M.; Postnov, K.; Oskinova, L.; Rodes-Roca, J. J.; Bernabeu, G.

    2017-10-01

    Aims: 4U0114+65 is one of the slowest known X-ray pulsars. We present an analysis of a pointed observation by the XMM-Newton X-ray telescope in order to study the nature of the X-ray pulsations and the accretion process, and to diagnose the physical properties of the donor's stellar wind. Methods: We analysed the energy-resolved light curve and the time-resolved X-ray spectra provided by the EPIC cameras on board XMM-Newton. We also analysed the first high-resolution spectrum of this source provided by the Reflection Grating Spectrometer. Results: An X-ray pulse of 9350 ± 160 s was measured. Comparison with previous measurements confirms the secular spin up of this source. We successfully fit the pulse-phase-resolved spectra with Comptonisation models. These models imply a very small (r 3 km) and hot (kT 2 - 3 keV) emitting region and therefore point to a hot spot over the neutron star (NS) surface as the most reliable explanation for the X-ray pulse. The long NS spin period, the spin-up rate, and persistent X-ray emission can be explained within the theory of quasi-spherical settling accretion, which may indicate that the magnetic field is in the magnetar range. Thus, 4U 0114+65 could be a wind-accreting magnetar. We also observed two episodes of low luminosity. The first was only observed in the low-energy light curve and can be explained as an absorption by a large over-dense structure in the wind of the B1 supergiant donor. The second episode, which was deeper and affected all energies, may be due to temporal cessation of accretion onto one magnetic pole caused by non-spherical matter capture from the structured stellar wind. The light curve displays two types of dips that are clearly seen during the high-flux intervals. The short dips, with durations of tens of seconds, are produced through absorption by wind clumps. The long dips, in turn, seem to be associated with the rarefied interclump medium. From the analysis of the X-ray spectra, we found evidence of

  14. High Resolution X-Ray Spectroscopy of zeta Puppis with the XMM-Newton Reflection Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Kahn, S. M.; Leutenegger, M. A.; Cottam, J.; Rauw, G.; Vreux, J.-M.; denBoggende, A. J. F.; Mewe, R.; Guedel, M.

    2000-01-01

    We present the first high resolution X-ray spectrum of the bright O4Ief supergiant star Puppis, obtained with the Reflection Grating Spectrometer on- board XMM-Newton. The spectrum exhibits bright emission lines of hydrogen-like and helium-like ions of nitrogen, oxygen, neon, magnesium, and silicon, as well as neon-like ions of iron. The lines are all significantly resolved, with characteristic velocity widths of order 1000 - 1500 km/ s. The nitrogen lines are especially strong, and indicate that the shocked gas in the wind is mixed with CNO-burned material, as has been previously inferred for the atmosphere of this star from ultraviolet spectra. We find that the forbidden to intercombination line ratios within the helium-like triplets are anomalously low for N VI, O VII, and Ne IX. While this is sometimes indicative of high electron density, we show that in this case, it is instead caused by the intense ultraviolet radiation field of the star. We use this interpretation to derive constraints on the location of the X-ray emitting shocks within the wind that agree remarkably well with current theoretical models for this system.

  15. X-Ray Temperatures, Luminosities, and Masses from XMM-Newton Follow-up of the First Shear-selected Galaxy Cluster Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshpande, Amruta J.; Hughes, John P.; Wittman, David, E-mail: amrejd@physics.rutgers.edu, E-mail: jph@physics.rutgers.edu, E-mail: dwittman@physics.ucdavis.edu

    We continue the study of the first sample of shear-selected clusters from the initial 8.6 square degrees of the Deep Lens Survey (DLS); a sample with well-defined selection criteria corresponding to the highest ranked shear peaks in the survey area. We aim to characterize the weak lensing selection by examining the sample’s X-ray properties. There are multiple X-ray clusters associated with nearly all the shear peaks: 14 X-ray clusters corresponding to seven DLS shear peaks. An additional three X-ray clusters cannot be definitively associated with shear peaks, mainly due to large positional offsets between the X-ray centroid and the shearmore » peak. Here we report on the XMM-Newton properties of the 17 X-ray clusters. The X-ray clusters display a wide range of luminosities and temperatures; the L {sub X} − T {sub X} relation we determine for the shear-associated X-ray clusters is consistent with X-ray cluster samples selected without regard to dynamical state, while it is inconsistent with self-similarity. For a subset of the sample, we measure X-ray masses using temperature as a proxy, and compare to weak lensing masses determined by the DLS team. The resulting mass comparison is consistent with equality. The X-ray and weak lensing masses show considerable intrinsic scatter (∼48%), which is consistent with X-ray selected samples when their X-ray and weak lensing masses are independently determined.« less

  16. A Potential Cyclotron Resonant Scattering Feature in the Ultraluminous X-Ray Source Pulsar NGC 300 ULX1 Seen by NuSTAR and XMM-Newton

    NASA Astrophysics Data System (ADS)

    Walton, D. J.; Bachetti, M.; Fürst, F.; Barret, D.; Brightman, M.; Fabian, A. C.; Grefenstette, B. W.; Harrison, F. A.; Heida, M.; Kennea, J.; Kosec, P.; Lau, R. M.; Madsen, K. K.; Middleton, M. J.; Pinto, C.; Steiner, J. F.; Webb, N.

    2018-04-01

    Based on phase-resolved broadband spectroscopy using XMM-Newton and NuSTAR, we report on a potential cyclotron resonant scattering feature (CRSF) at E ∼ 13 keV in the pulsed spectrum of the recently discovered ultraluminous X-ray source (ULX) pulsar NGC 300 ULX1. If this interpretation is correct, the implied magnetic field of the central neutron star is B ∼ 1012 G (assuming scattering by electrons), similar to that estimated from the observed spin-up of the star, and also similar to known Galactic X-ray pulsars. We discuss the implications of this result for the connection between NGC 300 ULX1 and the other known ULX pulsars, particularly in light of the recent discovery of a likely proton cyclotron line in another ULX, M51 ULX-8.

  17. Detection of Nitrogen and Neon in the X-ray Spectrum of GP Com with XMM/Newton

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.

    2004-01-01

    We report on X-ray spectroscopic observations with XMM/Newton of the ultra-compact, double white dwarf binary, GP Com. With the Reflection Grating Spectrometers (RGS) we detect the L(alpha) and L(beta) lines of hydrogen-like nitrogen (N VII) and neon (Ne X), as well as the helium-like triplets (N VI and Ne IX) of these same elements. All the emission lines are unresolved. These are the first detections of X-ray emission lines from a double-degenerate, AM CVn system. We detect the resonance (r) and intercombination (i) lines of the N VI triplet, but not the forbidden (f) line. The implied line ratios for N VI, R = f/i less than 0.3, and G = (f + i ) / r approx. = 1, combined with the strong resonance line are consistent with a dense, collision-dominated plasma. Both the RGS and EPIC/MOS spectra are well fit by emission horn an optically thin thermal plasma with an emission measure (EM) is a member of (kT/6.5 keV)(sup 0.8) (model cevmkl in XSPEC). Helium, nitrogen, oxygen and neon are required to adequately model the spectrum, however, the inclusion of sulphur and iron further improves the fit, suggesting these elements may also be present at low abundance. We confirm in the X-rays the under- abundance of both carbon and oxygen relative to nitrogen, first deduced from optical spectroscopy by Marsh et al. The average X-ray luminosity of approx. = 3 x 10(exp 30) ergs/s implies a mass accretion rate dot-m approx. = 9 x 10(exp -13) solar mass/yr. The implied temperature and density of the emitting plasma, combined with the presence of narrow emission lines and the low dot-m value, are consistent with production of the X-ray emission in an optically thin boundary layer just above the surface of the white dwarf.

  18. A High Resolution Spectroscopic Observation of CAL 83 with XMM-Newton/RGS

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Rasmussen, Andrew P.; Hartmann, H. W.; Heise, J.; Brinkman, A. C.; deVries, C. P.; denHerder, J.-W.

    2000-01-01

    We present the first high resolution photospheric X-ray spectrum of a Supersoft X-ray Source, the famous CAL 83 in the Large Magellanic Cloud. The spectrum was obtained with the Reflection Grating Spectrometer on XMM-Newton during the Calibration/Performance Verification phase of the observatory. The spectrum covers the range 20-40 A at an approximately constant resolution of 0.05 A, and shows very significant, intricate detail, that is very sensitive to the physical properties of the object. We present the results of an initial investigation of the spectrum, from which we draw the conclusion that the spectral structure is probably dominated by numerous absorption features due to transitions in the Gshells of the mid-2 elements and the M-shell of Fe, in addition to a few strong K-shell features due to CNO.

  19. XMM-Newton Observations of Solar Wind Charge Exchange Emission

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Collier, M. R.; Kuntz, K. D.

    2004-01-01

    We present an XMM-Newton spectrum of diffuse X-ray emission from within the solar system. The spectrum is dominated by O VII and O VIII lines at 0.57 keV and 0.65 keV, O VIII (and possibly Fe XVII) lines at approximately 0.8 keV, Ne IX lines at approximately 0.92 keV, and Mg XI lines at approximately 1.35 keV. This spectrum is consistent with what is expected from charge exchange emission between the highly ionized solar wind and either interstellar neutrals in the heliosphere or material from Earth's exosphere. The emission is clearly seen as a low-energy ( E less than 1.5 keV) spectral enhancement in one of a series of observations of the Hubble Deep Field North. The X-ray enhancement is concurrent with an enhancement in the solar wind measured by the ACE satellite. The solar wind enhancement reaches a flux level an order of magnitude more intense than typical fluxes at 1 AU, and has ion ratios with significantly enhanced higher ionization states. Whereas observations of the solar wind plasma made at a single point reflect only local conditions which may only be representative of solar wind properties with spatial scales ranging from less than half of an Earth radii (approximately 10 s) to 100 Earth radii, X-ray observations of solar wind charge exchange are remote sensing measurements which may provide observations which are significantly more global in character. Besides being of interest in its own right for studies of the solar system, this emission can have significant consequences for observations of more cosmological objects. It can provide emission lines at zero redshift which are of particular interest (e.g., O VII and O VIII) in studies of diffuse thermal emission, and which can therefore act as contamination in objects which cover the entire detector field of view. We propose the use of solar wind monitoring data, such as from the ACE and Wind spacecraft, as a diagnostic to screen for such possibilities.

  20. The XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST)

    NASA Technical Reports Server (NTRS)

    Guedel, M.; Briggs, K. R.; Arzner, K.; Audard, M.; Bouvier, J.; Feigelson, E. D.; Franciosini, E.; Glauser, A.; Grosso, N.; Micela, G.; hide

    2007-01-01

    The Taurus Molecular Cloud (TMC) is the nearest large star-forming region, prototypical for the distributed mode of low-mass star formation. Pre-main sequence stars are luminous X-ray sources, probably mostly owing to magnetic energy release. Aims. The XMM-Newton Extended Survey of the Taurus Molecular Cloud (EST) presented in this paper surveys the most populated =5 square degrees of the TMC, using the XMM-Newton X-ray observatory to study the thermal structure, variability, and long-term evolution of hot plasma, to investigate the magnetic dynamo, and to search for new potential members of the association. Many targets are also studied in the optical, and high-resolution X-ray grating spectroscopy has been obtained for selected bright sources. Methods. The X-ray spectra have been coherently analyzed with two different thermal models (2-component thermal model, and a continuous emission measure distribution model). We present overall correlations with fundamental stellar parameters that were derived from the previous literature. A few detections from Chandra observations have been added. Results. The present overview paper introduces the project and provides the basic results from the X-ray analysis of all sources detected in the XEST survey. Comprehensive tables summarize the stellar properties of all targets surveyed. The survey goes deeper than previous X-ray surveys of Taurus by about an order of magnitude and for the first time systematically accesses very faint and strongly absorbed TMC objects. We find a detection rate of 85% and 98% for classical and weak-line T Tau stars (CTTS resp. WTTS), and identify about half of the surveyed protostars and brown dwarfs. Overall, 136 out of 169 surveyed stellar systems are detected. We describe an X-ray luminosity vs. mass correlation, discuss the distribution of X-ray-to-bolometric luminosity ratios, and show evidence for lower X-ray luminosities in CTTS compared to WTTS. Detailed analysis (e.g., variability, rotation

  1. XMM-Newton Observation of IGR J18538-0102 and an Optical/IR Candidate

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.; Gotthelf, E. V.

    2010-02-01

    We observed the X-ray counterpart of IGR J18538-0102 (Stephen et al., ATel #2441) in a pointed observation with XMM-Newton on 2004 October 8. This apparently steady source (in an 8 ks exposure) can be fitted with a power-law model of photon index 1.7+/-0.1, NH = (1.5+/-0.2)e22 cm-2, and unabsorbed 1-10 keV flux 5.6e-12 erg cm-2 s-1. Its coordinates 18h53m48.50s, -01d02'30.0" (J2000), with 90% confidence error radius of 3.2", coincide with an object in the 2MASS Point Source Catalog at 18h53m48.48s, -01d02'29.6" of magnitudes H=14.00+/-0.05 and K=12.50+/-0.05.

  2. An XMM-Newton Study of the Bright Narrow-Line Seyfert 1 Galaxy Arakelian 564

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2004-01-01

    We report on two XMM-Newton observations of the bright Narrow-Line Seyfert 1 galaxy Ark 564 taken one year apart (2000 June and 2001 June). The 0.6-10 keV continuum is well described by a soft blackbody component (kT - 140-150 eV) plus a steep power law (Gamma - 2.50-2.55). No significant spectral changes are observed between the two observations, although the X-ray flux in the second observation is - 40-50 per cent lower. In both observations we detect a significant absorption edge at a rest-frame energy of - 0.73 keV, corresponding to 0 VII. The presence of the absorption feature is confirmed by a simultaneous Chandra grating observation in 2000 June, although the best-fitting edge threshold is at a slightly lower energy in the Chandra data, possibly because of a different parameterization of the underlying X-ray continuum. We find tentative evidence for a broad iron emission line in the 2000 June observation. The results from an analysis of the power spectral density (PSD) function are also presented. The present XMM-Newton data support the idea that the PSD shows two breaks, although the location of the high-frequency break requires further constraints.

  3. OMCat: Catalogue of Serendipitous Sources Detected with the XMM-Newton Optical Monitor

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Harrus, Ilana; McGlynn, Thomas A.; Mushotsky, Richard F.; Snowden, Steven L.

    2007-01-01

    The Optical Monitor Catalogue of serendipitous sources (OMCat) contains entries for every source detected in the publically available XMM-Newton Optical Monitor (OM) images taken in either the imaging or "fast" modes. Since the OM records data simultaneously with the X-ray telescopes on XMM-Newton, it typically produces images in one or more near-UV/optical bands for every pointing of the observatory. As of the beginning of 2006, the public archive had covered roughly 0.5% of the sky in 2950 fields. The OMCat is not dominated by sources previously undetected at other wavelengths; the bulk of objects have optical counterparts. However, the OMCat can be used to extend optical or X-ray spectral energy distributions for known objects into the ultraviolet, to study at higher angular resolution objects detected with GALEX, or to find high-Galactic-latitude objects of interest for UV spectroscopy.

  4. INTEGRAL, XMM-Newton and ESO/NTT identification of AX J1749.1-2733: an obscured and probably distant Be/X-ray binary

    NASA Astrophysics Data System (ADS)

    Zurita Heras, J. A.; Chaty, S.

    2008-10-01

    Context: AX J1749.1-2733 is an unclassified transient X-ray source discovered during surveys by ASCA in 1993-1999. The transient behaviour and the short and bright flares of the source have led to the idea that it is part of the recently revealed subclass of supergiant fast X-ray transients. Aims: A multi-wavelength study in NIR, optical, X-rays, and hard X-rays of AX J1749.1-2733 is undertaken in order to determine its nature. Methods: Public INTEGRAL data and our target of opportunity observation with XMM-Newton were used to study the high-energy source through timing and spectral analysis. Multi-wavelength observations in optical and NIR with the ESO/NTT telescope were also performed to search for the counterpart. Results: AX J1749.1-2733 is a new high-mass X-ray binary pulsar with an orbital period of 185.5±1.1 days (or 185.5/f with f=2,3 or 4) and a spin period of 66 s, parameters typical of a Be/X-ray binary. The outbursts last 12 d. A spin-down of dot{P}=0.08 ± 0.02 s yr -1 is also observed, very likely due to the propeller effect. The most accurate X-ray position is RA (2000) =17h49m06.8s and Dec =-27°32 arcmin32.5 arcsec (uncertainty 2 arcsec). The high-energy broad-band spectrum is well-fitted with an absorbed powerlaw and a high-energy cutoff with values NH=20.1-1.3+1.5×1022 cm-2, Γ=1.0-0.3+0.1, and Ecut=21-3+5 keV. The only optical/NIR candidate counterpart within the X-ray error circle has magnitudes of R=21.9±0.1, I=20.92±0.09, J=17.42±0.03, H=16.71±0.02, and Ks=15.75±0.07, which points towards a Be star located far away (>8.5 kpc) and highly absorbed (NH˜ 1.7×1022 cm-2). The average 22-50 keV luminosity is 0.4-0.9×1036 erg s-1 during the long outbursts and 3×1036 erg s-1 during the bright flare that occurred on MJD 52891 for an assumed distance of 8.5 kpc. Based on observations made with 1) INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany

  5. The XMM-Newton Wide Angle Survey (XWAS): the X-ray spectrum of type-1 AGN

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Page, M. J.; Watson, M. G.; Corral, A.; Tedds, J. A.; Ebrero, J.; Krumpe, M.; Schwope, A.; Ceballos, M. T.

    2010-02-01

    Aims: We discuss the broad band X-ray properties of one of the largest samples of X-ray selected type-1 AGN to date (487 objects in total), drawn from the XMM-Newton Wide Angle Survey (XWAS). The objects presented in this work cover 2-10 keV (rest-frame) luminosities from 1042-1045 erg s-1 and are detected up to redshift 4. We constrain the overall properties of the broad band continuum, soft excess and X-ray absorption, along with their dependence on the X-ray luminosity and redshift. We discuss the implications for models of AGN emission. Methods: We fitted the observed 0.2-12 keV broad band spectra with various models to search for X-ray absorption and soft excess. The F-test was used with a significance threshold of 99% to statistically accept the detection of additional spectral components. Results: We constrained the mean spectral index of the broad band X-ray continuum to <Γ> = 1.96 ± 0.02 with intrinsic dispersion {σ< Γ >} = 0.27-0.02+0.01. The continuum becomes harder at faint fluxes and at higher redshifts and hard (2-10 keV) luminosities. The dependence of Γ with flux is likely due to undetected absorption rather than to spectral variation. We found a strong dependence of the detection efficiency of objects on the spectral shape. We expect this effect to have an impact on the measured mean continuum shapes of sources at different redshifts and luminosities. We detected excess absorption in ⪆3% of our objects, with rest-frame column densities a few ×1022 cm-2. The apparent mismatch between the optical classification and X-ray properties of these objects is a challenge for the standard orientation-based AGN unification model. We found that the fraction of objects with detected soft excess is 36%. Using a thermal model, we constrained the soft excess mean rest-frame temperature and intrinsic dispersion to kT 100 eV and σkT 34 eV. The origin of the soft excess as thermal emission from the accretion disk or Compton scattered disk emission is ruled

  6. Extreme AGN Captured in a Low State by XMM-Newton and NuSTAR

    NASA Astrophysics Data System (ADS)

    Frederick, Sara; Kara, Erin; Reynolds, Christopher S.

    2018-01-01

    The most variable active galactic nuclei (AGN), taken together, are a compelling wellspring of interesting accretion-related phenomena and can exhibit dramatic variability in the X-ray band down to timescales of a few minutes. We present the exemplifying case study of 1H 1934-063 (z = 0.0102), a narrow-line Seyfert I (NLS1) that is among the most variable AGN ever observed with XMM-Newton. We present spectroscopic and temporal analyses of a concurrent XMM-Newton and NuSTAR 120 ks observation, during which the source exhibited a steep (factor of 1.5) plummet and subsequent full recovery of flux that we explore in detail. Combined spectral and timing results point to a dramatic change in the continuum on timescales as short as a few ks. Similar to other highly variable Seyfert 1s, this AGN is X-ray bright and displays strong reflection spectral features. We find agreement with a change in the continuum, and we rule out absorption as the cause for this dramatic variability that is observed even at NuSTAR energies. We compare measurements from detailed time-resolved spectral fitting with Fourier-based timing results to constrain coronal geometry, dynamics, and emission/absorption processes dictating the nature of this variability. We also announce the discovery of a Fe-K time lag between the hard X-ray continuum emission (1-4 keV) and relativistically-blurred reprocessing by the inner accretion flow (0.3-1 keV).

  7. XMM-Newton studies of the supernova remnant G350.0-2.0

    NASA Astrophysics Data System (ADS)

    Karpova, A.; Shternin, P.; Zyuzin, D.; Danilenko, A.; Shibanov, Yu.

    2016-11-01

    We report the results of XMM-Newton observations of the Galactic mixed-morphology supernova remnant G350.0-2.0. Diffuse thermal X-ray emission fills the north-western part of the remnant surrounded by radio shell-like structures. We did not detect any X-ray counterpart of the latter structures, but found several bright blobs within the diffuse emission. The X-ray spectrum of the most part of the remnant can be described by a collisionally ionized plasma model VAPEC with solar abundances and a temperature of ≈0.8 keV. The solar abundances of plasma indicate that the X-ray emission comes from the shocked interstellar material. The overabundance of Fe was found in some of the bright blobs. We also analysed the brightest point-like X-ray source 1RXS J172653.4-382157 projected on the extended emission. Its spectrum is well described by the two-temperature optically thin thermal plasma model MEKAL typical for cataclysmic variable stars. The cataclysmic variable source nature is supported by the presence of a faint (g ≈ 21) optical source with non-stellar spectral energy distribution at the X-ray position of 1RXS J172653.4-382157. It was detected with the XMM-Newton optical/UV monitor in the U filter and was also found in the archival Hα and optical/near-infrared broad-band sky survey images. On the other hand, the X-ray spectrum is also described by the power law plus thermal component model typical for a rotation powered pulsar. Therefore, the pulsar interpretation of the source cannot be excluded. For this source, we derived the upper limit for the pulsed fraction of 27 per cent.

  8. X-Ray Temperatures, Luminosities, and Masses from XMM-Newton Follow-upof the First Shear-selected Galaxy Cluster Sample

    NASA Astrophysics Data System (ADS)

    Deshpande, Amruta J.; Hughes, John P.; Wittman, David

    2017-04-01

    We continue the study of the first sample of shear-selected clusters from the initial 8.6 square degrees of the Deep Lens Survey (DLS); a sample with well-defined selection criteria corresponding to the highest ranked shear peaks in the survey area. We aim to characterize the weak lensing selection by examining the sample’s X-ray properties. There are multiple X-ray clusters associated with nearly all the shear peaks: 14 X-ray clusters corresponding to seven DLS shear peaks. An additional three X-ray clusters cannot be definitively associated with shear peaks, mainly due to large positional offsets between the X-ray centroid and the shear peak. Here we report on the XMM-Newton properties of the 17 X-ray clusters. The X-ray clusters display a wide range of luminosities and temperatures; the L X -T X relation we determine for the shear-associated X-ray clusters is consistent with X-ray cluster samples selected without regard to dynamical state, while it is inconsistent with self-similarity. For a subset of the sample, we measure X-ray masses using temperature as a proxy, and compare to weak lensing masses determined by the DLS team. The resulting mass comparison is consistent with equality. The X-ray and weak lensing masses show considerable intrinsic scatter (˜48%), which is consistent with X-ray selected samples when their X-ray and weak lensing masses are independently determined. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  9. XMM-Newton Remote Interface to Science Analysis Software: First Public Version

    NASA Astrophysics Data System (ADS)

    Ibarra, A.; Gabriel, C.

    2011-07-01

    We present the first public beta release of the XMM-Newton Remote Interface to Science Analysis (RISA) software, available through the official XMM-Newton web pages. In a nutshell, RISA is a web based application that encapsulates the XMM-Newton data analysis software. The client identifies observations and creates XMM-Newton workflows. The server processes the client request, creates job templates and sends the jobs to a computer. RISA has been designed to help, at the same time, non-expert and professional XMM-Newton users. Thanks to the predefined threads, non-expert users can easily produce light curves and spectra. And on the other hand, expert user can use the full parameter interface to tune their own analysis. In both cases, the VO compliant client/server design frees the users from having to install any specific software to analyze XMM-Newton data.

  10. Tidal disruption events seen in the XMM-Newton slew survey

    NASA Astrophysics Data System (ADS)

    Saxton, Richard; Komossa, S.; Read, Andrew; Lira, Paulina; Alexander, Kate D.; Steele, Iain

    XMM-Newton performs a survey of the sky in the 0.2-12 keV X-ray band while slewing between observation targets. The sensitivity in the soft X-ray band is comparable with that of the ROSAT all-sky survey, allowing bright transients to be identified in near real-time by a comparison of the flux in both surveys. Several of the soft X-ray flares are coincident with galaxy nuclei and five of these have been interpreted as candidate tidal disruption events (TDE). The first three discovered had a soft X-ray spectrum, consistent with the classical model of TDE, where radiation is released during the accretion phase by thermal processes. The remaining two have an additional hard, power-law component, which in only one case was accompanied by radio emission. Overall the flares decay with the classical index of t -5/3 but vary greatly in the early phase.

  11. The XMM-SERVS Survey: first results in the 5 deg^2 XMM-LSS region

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Ting; Brandt, William; Luo, Bin; X-SERVS team

    2018-01-01

    We present an X-ray source catalog obtained with XMM-Newton in the XMM-LSS region as part of the X-SERVS survey (XMM-SERVS-LSS), which aims to expand the parameter space of current X-ray surveys with medium-deep X-ray observations in multiple large fields with superb multiwavelength coverage. Within the 5 deg$^2$ XMM-SERVS-LSS field, we combine the 1.3 Ms XMM observations allocated at XMM AO-15 with archival data, and identified 5218 X-ray sources of which 2400 are new sources. We reach $1.2\\times10^{-15}$ erg s$^{-1} cm$^{-1}$ for 50\\% of the area, which is comparable to the XMM-COSMOS survey but with 2.5 times more sources. We also present multiwavelength identifications, basic photometric properties, and spectroscopic redshifts obtained from the literature. These data, combined with the existing data from COSMOS, will enable a wide range of science on AGN evolution, including studying SMBH growth across the full range of cosmic environments and minimizing cosmic variance.

  12. A Search for Hyperluminous X-Ray Sources in the XMM-Newton Source Catalog

    NASA Astrophysics Data System (ADS)

    Zolotukhin, I.; Webb, N. A.; Godet, O.; Bachetti, M.; Barret, D.

    2016-02-01

    We present a new method to identify luminous off-nuclear X-ray sources in the outskirts of galaxies from large public redshift surveys, distinguishing them from foreground and background interlopers. Using the 3XMM-DR5 catalog of X-ray sources and the SDSS DR12 spectroscopic sample of galaxies, with the help of this off-nuclear cross-matching technique, we selected 98 sources with inferred X-ray luminosities in the range 1041 < LX < 1044 erg s-1, compatible with hyperluminous X-ray objects (HLX). To validate the method, we verify that it allowed us to recover known HLX candidates such as ESO 243-49 HLX-1 and M82 X-1. From a statistical study, we conservatively estimate that up to 71 ± 11 of these sources may be foreground- or background sources, statistically leaving at least 16 that are likely to be HLXs, thus providing support for the existence of the HLX population. We identify two good HLX candidates and using other publicly available data sets, in particular the VLA FIRST in radio, UKIRT Infrared Deep Sky Survey in the near-infrared, GALEX in the ultraviolet and Canada-France-Hawaii Telescope Megacam archive in the optical, we present evidence that these objects are unlikely to be foreground or background X-ray objects of conventional types, e.g., active galactic nuclei, BL Lac objects, Galactic X-ray binaries, or nearby stars. However, additional dedicated X-ray and optical observations are needed to confirm their association with the assumed host galaxies and thus secure their HLX classification.

  13. XMM-Newton study of the lensing cluster of galaxies CL 0024+17

    NASA Astrophysics Data System (ADS)

    Zhang, Y.-Y.; Böhringer, H.; Mellier, Y.; Soucail, G.; Forman, W.

    2005-01-01

    We present a detailed gravitational mass measurement based on the XMM-Newton imaging spectroscopy analysis of the lensing cluster of galaxies CL 0024+17 at z=0.395. The emission appears approximately symmetric. However, on the scale of r ˜ 3.3' some indication of elongation is visible in the northwest-southeast (NW-SE) direction from the hardness ratio map (HRM). Within 3', we measure a global gas temperature of 3.52 ± 0.17 keV, metallicity of 0.22 ± 0.07, and bolometric luminosity of 2.9 ± 0.1 × 1044 h-270 erg s-1. We derive a temperature distribution with an isothermal temperature of 3.9 keV to a radius of 1.5' and a temperature gradient in the outskirts (1.3'observed temperature profile. The complex structure in the core region is the key to explaining the discrepancy in gravitational mass determined from XMM-Newton X-ray observations and HST optical lensing measurements. This work is based on observations made with the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and the USA (NASA). Based on observations made with the European Southern Observatory telescopes obtained from the ESO/ST-ECF Science Archive Facility.

  14. A systematic analysis of the XMM-Newton background: III. Impact of the magnetospheric environment

    NASA Astrophysics Data System (ADS)

    Ghizzardi, Simona; Marelli, Martino; Salvetti, David; Gastaldello, Fabio; Molendi, Silvano; De Luca, Andrea; Moretti, Alberto; Rossetti, Mariachiara; Tiengo, Andrea

    2017-12-01

    A detailed characterization of the particle induced background is fundamental for many of the scientific objectives of the Athena X-ray telescope, thus an adequate knowledge of the background that will be encountered by Athena is desirable. Current X-ray telescopes have shown that the intensity of the particle induced background can be highly variable. Different regions of the magnetosphere can have very different environmental conditions, which can, in principle, differently affect the particle induced background detected by the instruments. We present results concerning the influence of the magnetospheric environment on the background detected by EPIC instrument onboard XMM-Newton through the estimate of the variation of the in-Field-of-View background excess along the XMM-Newton orbit. An important contribution to the XMM background, which may affect the Athena background as well, comes from soft proton flares. Along with the flaring component a low-intensity component is also present. We find that both show modest variations in the different magnetozones and that the soft proton component shows a strong trend with the distance from Earth.

  15. XMM-Newton and INTEGRAL view of the hard state of EXO 1745-248 during its 2015 outburst

    NASA Astrophysics Data System (ADS)

    Matranga, M.; Papitto, A.; Di Salvo, T.; Bozzo, E.; Torres, D. F.; Iaria, R.; Burderi, L.; Rea, N.; de Martino, D.; Sanchez-Fernandez, C.; Gambino, A. F.; Ferrigno, C.; Stella, L.

    2017-07-01

    Context. Transient low-mass X-ray binaries (LMXBs) often show outbursts that typically last a few weeks and are characterized by a high X-ray luminosity (Lx ≈ 1036-1038 erg s-1), while most of the time they are found in X-ray quiescence (LX ≈ 1031-1033 erg s-1). The source EXO 1745-248 is one of them. Aims: The broad-band coverage and sensitivity of the instrument on board XMM-Newton and INTEGRAL offers the opportunity of characterizing the hard X-ray spectrum during the outburst of EXO 1745-248. Methods: We report on quasi-simultaneous XMM-Newton and INTEGRAL observations of the X-ray transient EXO 1745-248 located in the globular cluster Terzan 5, performed ten days after the beginning of the outburst (on 2015 March 16) of the source between March and June 2015. The source was caught in a hard state, emitting a 0.8-100 keV luminosity of ≃ 1037 erg s-1. Results: The spectral continuum was dominated by thermal Comptonization of seed photons with temperature kTin ≃ 1.3 keV, by a cloud with a moderate optical depth τ ≃ 2, and with an electron temperature of kTe ≃ 40 keV. A weaker soft thermal component at temperature kTth ≃ 0.6-0.7 keV and compatible with a fraction of the neutron star radius was also detected. A rich emission line spectrum was observed by the EPIC-pn on board XMM-Newton; features at energies compatible with K-α transitions of ionized sulfur, argon, calcium, and iron were detected, with a broadness compatible with either thermal Compton broadening or Doppler broadening in the inner parts of an accretion disk truncated at 20 ± 6 gravitational radii from the neutron star. Strikingly, at least one narrow emission line ascribed to neutral or mildly ionized iron is needed to model the prominent emission complex detected between 5.5 and 7.5 keV. The different ionization state and broadness suggest an origin in a region located farther from the neutron star than where the other emission lines are produced. Seven consecutive type I bursts

  16. Non-thermal emission in the core of Perseus: results from a long XMM-Newton observation

    NASA Astrophysics Data System (ADS)

    Molendi, S.; Gastaldello, F.

    2009-01-01

    We employ a long XMM-Newton observation of the core of the Perseus cluster to validate claims of a non-thermal component discovered with Chandra. From a meticulous analysis of our dataset, which includes a detailed treatment of systematic errors, we find the 2-10 keV surface brightness of the non-thermal component to be less than about 5 × 10-16 erg~cm-2 s-1 arcsec-2. The most likely explanation for the discrepancy between the XMM-Newton and Chandra estimates is a problem in the effective area calibration of the latter. Our EPIC-based magnetic field lower limits do not disagree with Faraday rotation measure estimates on a few cool cores and with a minimum energy estimate on Perseus. In the not too distant future Simbol-X may allow detection of non-thermal components with intensities more than 10 times lower than those that can be measured with EPIC; nonetheless even the exquisite sensitivity within reach for Simbol-X might be insufficient to detect the IC emission from Perseus.

  17. The XMM-Newton View of Wolf-Rayet Bubbles

    NASA Astrophysics Data System (ADS)

    Guerrero, M.; Toala, J.

    2017-10-01

    The powerful stellar winds of Wolf-Rayet (WR) stars blow large bubble into the circumstellar material ejected in previous phases of stellar evolution. The shock of those stellar winds produces X-ray-emitting hot plasmas which tells us about the diffusion of processed material onto the interstellar medium, about processes of heat conduction and turbulent mixing at the interface, about the late stages of stellar evolution, and about the shaping of the circumstellar environment, just before supernova explosions. The unique sensitivity of XMM-Newton has been key for the detection, mapping and spectral analysis of the X-ray emission from the hot bubbles around WR stars. These observations underscore the importance of the structure of the interstellar medium around massive stars, but they have also unveiled unknown phenomena, such as blowouts of hot gas into the interstellar medium or spatially-resolved spectral properties of the hot gas, which disclose inhomogeneous chemical abundances and physical properties across these bubbles.

  18. XMM-Newton confirmation of a new intermediate polar: XMMU J185330.7-012815

    NASA Astrophysics Data System (ADS)

    Hui, C. Y.; Sriram, K.; Choi, C.-S.

    2012-01-01

    We report on the results of a detailed spectro-imaging and temporal analysis of an archival XMM-Newton observation of a new intermediate polar XMMU J185330.7-012815. Its X-ray spectrum can be well described by a multitemperature thermal plasma model with the K lines of heavy elements clearly detected. Possible counterparts of XMMU J185330.7-012815 have been identified in optical and ultraviolet (UV) bands. The low values of the inferred X-ray-to-UV and X-ray-to-optical flux ratios safely rule out the possibility of its being an isolated neutron star. We confirm the X-ray periodicity of ˜238 s but, differently from the previous preliminary results, we do not find any convincing evidence of phase shift in this observation. We further investigate its properties through an energy-resolved temporal analysis and find that the pulsed fraction monotonically increases with energy.

  19. X-Ray Spectroscopy of AS1101 with Chandra, XMM-Newton, and ROSAT: Bandpass Dependence of the Temperature Profile and Soft Excess Emission

    NASA Astrophysics Data System (ADS)

    Bonamente, Massimiliano; Nevalainen, Jukka

    2011-09-01

    We present spatially resolved spectroscopy of the galaxy cluster AS1101, also known as Sèrsic 159-03, with Chandra, XMM-Newton, and ROSAT, and investigate the presence of soft X-ray excess emission above the contribution from the hot intracluster medium. In earlier papers we reported an extremely bright soft excess component that reached 100% of the thermal radiation in the R2 ROSAT band (0.2-0.4 keV), using the H I column density measurement by Dickey and Lockman. In this paper we use the newer Leiden-Argentine-Bonn survey measurements of the H I column density toward AS1101, significantly lower than the previous value, and show that the soft excess emission in AS1101 is now at the level of 10%-20% of the hot gas emission, in line with those of a large sample of clusters analyzed by Bonamente et al. in 2002. The ROSAT soft excess emission is detected regardless of calibration uncertainties between Chandra and XMM-Newton. This new analysis of AS1101 indicates that the 1/4 keV band emission is compatible with the presence of warm-hot intergalactic medium (WHIM) filaments connected to the cluster and extending outward into the intergalactic medium; the temperatures we find in this study are typically lower than those of the WHIM probed in other X-ray studies. We also show that the soft excess emission is compatible with a non-thermal origin as the inverse Compton scattering of relativistic electrons off the cosmic microwave background, with pressure less than 1% of the thermal electrons.

  20. New Gener. High-Energy Spectra of the Blazar 3C 279 with XMM-Newton and GLAST

    NASA Astrophysics Data System (ADS)

    Collmar, Werner

    2007-10-01

    We propose two 20 ksec XMM-Newton observations of the X-ray bright gamma-ray blazar 3C~279 simultaneous with GLAST/LAT. The main goal is to measure its X-ray properties (spectrum, variability) in order to (1) improve our knowledge on the X-ray emission of the blazar, and (2) to supplement and correlate them to simultaneous GLAST/LAT Gamma-ray observations (30 MeV-300 GeV). Simultaneous GLAST observations of 3C 279 are guaranteed (assuming proper operation then). The high-energy data will be supplemented by ground-based measurements, adding finally up to multifrequency spectra which have unprecedented accuracy and will extend up to high-energy gamma-rays. Such high-quality SEDs will provide severe constraints on their modeling and have the potential to discriminate among models.

  1. A sensitive search for unknown spectral emission lines in the diffuse X-ray background with XMM-Newton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gewering-Peine, A.; Horns, D.; Schmitt, J.H.M.M., E-mail: alexander.gewering-peine@desy.de, E-mail: dieter.horns@desy.de, E-mail: jschmitt@hs.uni-hamburg.de

    The Standard Model of particle physics can be extended to include sterile (right-handed) neutrinos or axions to solve the dark matter problem. Depending upon the mixing angle between active and sterile neutrinos, the latter have the possibility to decay into monoenergetic active neutrinos and photons in the keV-range while axions can couple to two photons. We have used data taken with the X-ray telescope XMM-Newton for the search of line emissions. We used pointings with high exposures and expected dark matter column densities with respect to the dark matter halo of the Milky Way. The posterior predictive p-value analysis hasmore » been applied to locate parameter space regions which favour additional emission lines. In addition, upper limits of the parameter space of the models have been generated such that the preexisting limits have been significantly improved.« less

  2. The XMM-Newton view of the non-thermal supernova remnant HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Puehlhofer, G.; Doroshenko, V.; Acero, F.; Bamba, A.; Klochkov, D.; Tian, W.

    2017-10-01

    HESS J1731-347 belongs to a small group of supernova remnants that are characterized by a spatially-resolved shell-type TeV morphology and strong synchrotron X-ray emission. We report on XMM-Newton observations of the source that provide for the first time a complete X-ray view of the remnant. The data show an emissivity gradient across the source, which is not observed in the TeV gamma-ray and radio bands. While the broadband spectral analysis is compatible with a pure leptonic emission scenario up to TeV energies, the morphological analysis could be indicative of a blend of hadronic and leptonic TeV emission. We discuss the possibility of an interaction of the supernova remnant with nearby molecular clouds.

  3. 3XMM J181923.7-170616: An X-Ray Binary with a 408 s Pulsar

    NASA Astrophysics Data System (ADS)

    Qiu, Hao; Zhou, Ping; Yu, Wenfei; Li, Xiangdong; Xu, Xiaojie

    2017-09-01

    We carry out a dedicated study of 3XMM J181923.7-170616 with an approximate pulsation period of 400 s using the XMM-Newton and Swift observations spanning across nine years. We have refined the period of the source to 407.904(7) s (at epoch MJD 57142) and constrained the 1σ upper limit on the period derivative \\dot{P}≤slant 1.1× {10}-8 {{s}} {{{s}}}-1. The source radiates hard, persistent X-ray emission during the observation epochs, which is best described by an absorbed power-law model (Γ ˜ 0.2-0.8) plus faint Fe lines at 6.4 and 6.7 keV. The X-ray flux revealed a variation within a factor of 2, along with a spectral hardening as the flux increased. The pulse shape is sinusoid-like and the spectral properties of different phases do not present significant variation. The absorption {N}{{H}} (˜ 1.3× {10}22 {{cm}}-2) is similar to the total Galactic hydrogen column density along the direction, indicating that it is a distant source. A search for the counterpart in optical and near-infrared surveys reveals a low-mass K-type giant, while the existence of a Galactic OB supergiant is excluded. A symbiotic X-ray binary (SyXB) is the favored nature of 3XMM J181923.7-170616 and can essentially explain the low luminosity of 2.78× {10}34{d}102 {erg} {{{s}}}-1, slow pulsation, hard X-ray spectrum, and possible K3 III companion. An alternative explanation of the source is a persistent Be X-ray binary (BeXB) with a companion star no earlier than B3-type.

  4. XMM-Newton Observations of NGC 507: Supersolar Metal Abundances in the Hot Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo; Fabbiano, Giuseppina

    2004-10-01

    We present the results of the X-ray XMM-Newton observations of NGC 507, a dominant elliptical galaxy in a small group of galaxies, and report supersolar metal abundances of both Fe and α-elements in the hot interstellar medium (ISM) of this galaxy. These results are robust in that we considered all possible systematic effects in our analysis. We find ZFe=2-3 times solar inside the D25 ellipse of NGC 507. This is the highest ZFe reported so far for the hot halo of an elliptical galaxy; this high iron abundance is fully consistent with the predictions of stellar evolution models, which include the yield of both Type II and Type Ia supernovae (SNe). Our analysis shows that abundance measurements are critically dependent on the selection of the proper emission model. The spatially resolved, high-quality XMM-Newton spectra provide enough statistics to formally require at least three emission components in each of four circumnuclear concentric shells (within 5' or 100 kpc): two soft thermal components indicating a range of temperatures in the hot ISM plus a harder component, consistent with the integrated output of low-mass X-ray binaries (LMXBs) in NGC 507. The two-component (thermal+LMXB) model customarily used in past studies yields a much lower ZFe, consistent with previous reports of subsolar metal abundances. This model, however, gives a significantly worse fit to the data (F-test probability<0.0001). The abundance of α-elements (most accurately determined by Si) is also found to be supersolar. The α-element-to-Fe abundance ratio is close to the solar ratio, suggesting that ~70% of the iron mass in the hot ISM originated from Type Ia SNe. The α-element-to-Fe abundance ratio remains constant out to at least 100 kpc, indicating that Types II and Ia SN ejecta are well mixed on a scale much larger than the extent of the stellar body.

  5. THE XMM-NEWTON WIDE-FIELD SURVEY IN THE COSMOS FIELD (XMM-COSMOS): DEMOGRAPHY AND MULTIWAVELENGTH PROPERTIES OF OBSCURED AND UNOBSCURED LUMINOUS ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brusa, M.; Cappelluti, N.; Merloni, A.

    2010-06-10

    We report the final optical identifications of the medium-depth ({approx}60 ks), contiguous (2 deg{sup 2}) XMM-Newton survey of the COSMOS field. XMM-Newton has detected {approx}1800 X-ray sources down to limiting fluxes of {approx}5 x 10{sup -16}, {approx}3 x 10{sup -15}, and {approx}7 x 10{sup -15} erg cm{sup -2} s{sup -1} in the 0.5-2 keV, 2-10 keV, and 5-10 keV bands, respectively ({approx}1 x 10{sup -15}, {approx}6 x 10{sup -15}, and {approx}1 x 10{sup -14} erg cm{sup -2} s{sup -1}, in the three bands, respectively, over 50% of the area). The work is complemented by an extensive collection of multiwavelength datamore » from 24 {mu}m to UV, available from the COSMOS survey, for each of the X-ray sources, including spectroscopic redshifts for {approx}>50% of the sample, and high-quality photometric redshifts for the rest. The XMM and multiwavelength flux limits are well matched: 1760 (98%) of the X-ray sources have optical counterparts, 1711 ({approx}95%) have IRAC counterparts, and 1394 ({approx}78%) have MIPS 24 {mu}m detections. Thanks to the redshift completeness (almost 100%) we were able to constrain the high-luminosity tail of the X-ray luminosity function confirming that the peak of the number density of log L{sub X} > 44.5 active galactic nuclei (AGNs) is at z {approx} 2. Spectroscopically identified obscured and unobscured AGNs, as well as normal and star-forming galaxies, present well-defined optical and infrared properties. We devised a robust method to identify a sample of {approx}150 high-redshift (z > 1), obscured AGN candidates for which optical spectroscopy is not available. We were able to determine that the fraction of the obscured AGN population at the highest (L{sub X} > 10{sup 44} erg s{sup -1}) X-ray luminosity is {approx}15%-30% when selection effects are taken into account, providing an important observational constraint for X-ray background synthesis. We studied in detail the optical spectrum and the overall spectral energy

  6. A Comparative View of X-rays from the Solar System

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron; Gladstone, Randy; Cravens, Tom; Waite, Hunter; Branduardi-Raymont, Graziella; Ostgaard, Nikolai; Dennerl, Konrad; Lisse, Carey; Kharchenko, Vasili

    2005-01-01

    With the advent of sophisticated X-ray observatories, viz., Chandra and XMM-Newton, the field of planetary X-ray astronomy is advancing at a faster pace. Several new solar system objects are now know to shine in X-rays at energies generally below 2 keV. Jupiter, Saturn, and Earth, all three magnetized planets, have been observed by Chandra and XMM-Newton. At Jupiter, both auroral and non-auroral disk X-ray emissions have been observed. The first soft X-ray observation of Earth's aurora by Chandra shows that it is highly variable. X-rays have been detected from Saturn's disk, but no convincing evidence of X-ray aurora has been seen. Several comets have been observed in X-rays by Chandra and XMM-Newton. Cometary X-rays are produced due to change exchange of solar wind ions with cold cometary neutrals. Soft X-rays have also been observed from Venus, Mars, Moon, Io, Europa, Io plasma torus, and heliosphere. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, and those from sunlit disk of Mars, Venus, and Moon are produced due to scattering of solar X-rays. The spectral characteristics of X-ray emission from comets, heliosphere, darkside of Moon, and Martian halo are quite similar, but they appear to be quite different from those of Jovian auroral X-rays. The X- ray aurora on Earth is generated by electron bremsstrahlung and on Jupiter by precipitation of highly-ionized energetic heavy ions. In this paper we will present a comparative overview of X-ray emission from different solar system objects and make an attempt to synthesize a coherent picture.

  7. ESO imaging survey: optical follow-up of 12 selected XMM-Newton fields

    NASA Astrophysics Data System (ADS)

    Dietrich, J. P.; Miralles, J.-M.; Olsen, L. F.; da Costa, L.; Schwope, A.; Benoist, C.; Hambaryan, V.; Mignano, A.; Motch, C.; Rité, C.; Slijkhuis, R.; Tedds, J.; Vandame, B.; Watson, M. G.; Zaggia, S.

    2006-04-01

    This paper presents the data recently released for the XMM-Newton/WFI survey carried out as part of the ESO Imaging Survey (EIS) project. The aim of this survey is to provide optical imaging follow-up data in BVRI for identification of serendipitously detected X-ray sources in selected XMM-Newton fields. In this paper, fully calibrated individual and stacked images of 12 fields as well as science-grade catalogs for the 8 fields located at high-galactic latitude are presented. These products were created, calibrated and released using the infrastructure provided by the EIS Data Reduction system and its associated EIS/MVM image processing engine, both of which are briefly described here. The data covers an area of ~3 square degrees for each of the four passbands. The median seeing as measured in the final stacked images is 0.94 arcsec, ranging from 0.60 arcsec and 1.51 arcsec. The median limiting magnitudes (AB system, 2´´ aperture, 5σ detection limit) are 25.20, 24.92, 24.66, and 24.39 mag for B-, V-, R-, and I-band, respectively. When only the 8 high-galactic latitude fields are included these become 25.33, 25.05, 25.36, and 24.58 mag, in good agreement with the planned depth of the survey. Visual inspection of images and catalogs, comparison of statistics derived from the present data with those obtained by other authors and model predictions, as well as direct comparison of the results obtained from independent reductions of the same data, demonstrate the science-grade quality of the automatically produced final images and catalogs. These survey products, together with their logs, are available to the community for science exploitation in conjunction with their X-ray counterparts. Preliminary results from the X-ray/optical cross-correlation analysis show that about 61% of the detected X-ray point sources in deep XMM-Newton exposures have at least one optical counterpart within 2´´ radius down to R ≃ 25 mag, 50% of which are so faint as to require VLT

  8. X-Ray Spectral Study of AGN Sources Content in Some Deep Extragalactic XMM-Newton Fields

    NASA Astrophysics Data System (ADS)

    Hassan, M. A.; Korany, B. A.; Misra, R.; Issa, I. A. M.; Ahmed, M. K.; Abdel-Salam, F. A.

    2012-06-01

    We undertake a spectral study of a sample of bright X-ray sources taken from six XMM-Newton fields at high galactic latitudes, where AGN are the most populous class. These six fields were chosen such that the observation had an exposure time more than 60 ksec, had data from the EPIC-pn detector in the full-Frame mode and lying at high galactic latitude | b|>25°. The analysis started by fitting the spectra of all sources with an absorbed power-law model, and then we fitted all the spectra with an absorbed power-law with a low energy black-body component model.The sources for which we added a black body gave an F-test probability of 0.01 or less (i.e. at 99% confidence level), were recognized as sources that display soft excess. We perform a comparative analysis of soft excess spectral parameters with respect to the underlying power-law one for sources that satisfy this criterion. Those sources, that do not show evidence for a soft excess, based on the F-test probability at a 99% confidence level, were also fitted with the absorbed power-law with a low energy black-body component model with the black-body temperature fixed at 0.1 and 0.2 keV. We establish upper limits on the soft excess flux for those sources at these two temperatures. Finally we have made use of Aladdin interactive sky atlas and matching with NASA/IPAC Extragalactic Database (NED) to identify the X-ray sources in our sample. For those sources which are identified in the NED catalogue, we make a comparative study of the soft excess phenomenon for different types of systems.

  9. UV Observations of the Galaxy Cluster Abell 1795 with the Optical Monitor on XMM-Newton

    NASA Technical Reports Server (NTRS)

    Mittaz, J. P. D.; Kaastra, J. S.; Tamura, T.; Fabian, A. C.; Mushotzky, F.; Peterson, J. R.; Ikebe, Y.; Lumb, D. H.; Paerels, F.; Stewart, G.

    2000-01-01

    We present the results of an analysis of broad band UV observations of the central regions of Abell 1795 observed with the optical monitor on XMM-Newton. As have been found with other UV observations of the central regions of clusters of galaxies, we find evidence for star formation. However, we also find evidence for absorption in the cD galaxy on a more extended scale than has been seen with optical imaging. We also report the first UV observation of part of the filamentary structure seen in H-alpha, X-rays and very deep U band imaging. The part of the filament we see is very blue with UV colours consistent with a very early (O/B) stellar population. This is the first direct evidence of a dominant population of early type stars at the centre of Abell 1795 and implies very recent star formation. The relationship of this emission to emission at other wavebands is discussed.

  10. The Properties of the Diffuse X-ray Background from the DXL sounding rocket mission (plus ROSAT, XMM-Newton and Suzaku data)

    NASA Astrophysics Data System (ADS)

    Galeazzi, Massimiliano

    2017-08-01

    Understanding the properties of the different components of the Diffuse X-ray Background (DXB) is made particularly difficult by their similar spectral signature.The University of Miami has been working on disentangling the different DXB components for many years, using a combination of proprietary and archival data from XMM-Newton, Suzaku, and Chandra, and a sounding rocket mission (DXL) specifically designed to study the properties of Local Hot Bubble (LHB) and Solar Wind Charge eXchange (SWCX) using their spatial signature. In this talk we will present:(a) Results from the DXL mission, specifically launch #2, to study the properties of the SWCX and LHB (and GH) and their contribution to the ROSAT All Sky Survey Bands(b) Results from a Suzaku key project to characterize the SWCX and build a semi-empirical model to predict the SWCX line emission for any time, any direction. A publicly available web portal for the model will go online by the end of the year(c) Results from XMM-Newton deep surveys to study the angular correlation of the Warm-Hot Intergalactic Medium (WHIM) in the direction of the Chandra Deep Field South.DXL launch #3, schedule for January 2018 and the development of the DXG sounding rocket mission to characterize the GH-CGM emission using newly developed micropore optics will also be discussed.

  11. A good mass proxy for galaxy clusters with XMM-Newton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hai-Hui; Jia, Shu-Mei; Chen, Yong

    2013-12-01

    We use a sample of 39 galaxy clusters at redshift z < 0.1 observed by XMM-Newton to investigate the relations between X-ray observables and total mass. Based on central cooling time and central temperature drop, the clusters in this sample are divided into two groups: 25 cool core clusters and 14 non-cool core clusters, respectively. We study the scaling relations of L {sub bol}-M {sub 500}, M {sub 500}-T, M {sub 500}-M {sub g}, and M {sub 500}-Y {sub X}, and also the influences of cool core on these relations. The results show that the M {sub 500}-Y {sub X}more » relation has a slope close to the standard self-similar value, has the smallest scatter and does not vary with the cluster sample. Moreover, the M {sub 500}-Y {sub X} relation is not affected by the cool core. Thus, the parameter of Y{sub X} may be the best mass indicator.« less

  12. XMM-Newton Proposal 03039101

    NASA Astrophysics Data System (ADS)

    Hernanz, Margarita

    2004-10-01

    Two recent galactic novae, V2487 Oph 1998 and V4633 Sgr 1998, have been detec- ted in both soft and hard X-rays with XMM. V2487 Oph showed an iron fluores- cent line only 2.7 yrs after its explosion, a clear signature of the very fast recovery of accretion, and V4633 Sgr displayed hard X-ray emission not clearly attributable to shocked ejecta or accretion. Longer observations are needed to do accurate timing and high resolution spectroscopy, essential to determine the main properties of the underlying cataclysmic variable in V2487 Oph (first nova seen in X-rays prior and after exploding) and to disentangle the origin of the hard X-rays from V4633 Sgr, through an analysis of the chemical compo- sition of the emitting thermal plasma, solar if accretion, non solar if ejecta.

  13. XMM-Newton observations of the Lockman Hole IV: spectra of the brightest AGN

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Barcons, X.; Carrera, F. J.; Ceballos, M. T.; Hasinger, G.; Lehmann, I.; Fabian, A. C.; Streblyanska, A.

    2005-12-01

    This paper presents the results of a detailed X-ray spectral analysis of a sample of 123 X-ray sources detected with XMM-Newton in the Lockman Hole field. This is the deepest observation carried out with XMM-Newton with more that 600 ks of good EPIC-pn data. We have spectra with good signal to noise (>500 source counts) for all objects down to 0.2-12 keV fluxes of 5×10-15 erg cm-2 s-1 (flux limit of 6×10-16 erg cm-2 s-1 in the 0.5-2 and 2-10 keV bands). At the time of the analysis, we had optical spectroscopic identifications for 60% of the sources, 46 being optical type-1 AGN and 28 optical type-2 AGN. Using a single power law model our sources' average spectral slope hardens at faint 0.5-2 keV fluxes but not at faint 2-10 keV fluxes. We have been able to explain this effect in terms of an increase in X-ray absorption at faint fluxes. We did not find in our data any evidence for the existence of a population of faint intrinsically harder sources. The average spectral slope of our sources is 1.9, with an intrinsic dispersion of 0.28. We detected X-ray absorption (F-test significance ≥95%) in 37% of the sources, 10% in type-1 AGN (rest-frame {NH ˜ 1.6 × 1021{-}1.2 × 1022 cm-2}) and 77% (rest-frame {NH ˜ 1.5 ×1021{-}4× 1023 cm-2}) in type-2 AGN. Using X-ray fluxes corrected for absorption, the fraction of absorbed objects and the absorbing column density distribution did not vary with X-ray flux. Our type-1 and type-2 AGN do not appear to have different continuum shapes, but the distribution of intrinsic (rest-frame) absorbing column densities is different among both classes. A significant fraction of our type-2 AGN (5 out of 28) were found to display no substantial absorption ({NH<1021 cm-2}). We discuss possible interpretations to this in terms of Compton-thick AGN and intrinsic Broad Line Region properties. An emission line compatible with Fe Kα was detected in 8 sources (1 type-1 AGN, 5 type-2 AGN and 2 unidentified) with rest frame equivalent widths

  14. Chandra X-Ray Observatory Observations of the Jovian System

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Bhardwaj, A.; Gladstone, R.; Waite, J. H.; Ford, P.; Branduari-Raymont, G.

    2005-01-01

    Chandra X-ray Observatory (CXO) and XMM-Newton observations of x-rays from the Jovian system have answered questions that arose from early observations with the Einstein and Rosat X-ray Observatories, but in the process of vastly increasing our knowledge of x-ray emission from Jupiter and its environs they have also raised new questions and point to new opportunities for future studies. We will review recent x-ray results on the Jovian system, from the point of view of the CXO, and discuss various questions that have arisen in the course of our studies. We will discuss prospects for more observations in the immediate future, and how they might address open questions. Finally we will briefly describe ways in which an imaging x-ray spectrometer in the vicinity of the Jovian system could provide a wealth of data and results concerning Jupiter's x-ray auroral and disk emission, elemental abundance measurements for the Galilean moons, and detailed studies of x-ray emission from the Io Plasma Torus.

  15. X-ray Weak Broad-line Qquasars: Absorption or Intrinsic X-ray Weakness

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Risaliti, Guida

    2005-01-01

    XMM observations of X-ray weak quasars have been performed during 2003 and 2004. The data for all the observations have become available in 2004 (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed all the data, and obtained interesting scientific results. Out of the eight sources, 4 are confirmed to be extremely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confined to be highly variable both in flux (by factor 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects we are completing a publication: 1) For the X-ray weak sources, a paper is submitted with a complete analysis of the X-ray spectra both from Chandra and XMM-Newton, and a comparison with optical and near-IR photometry obtained from all-sky surveys. Possible models for the unusual spectral energy distribution of these sources are also presented. 2) For the variable sources, a paper is being finalized where the X-ray spectra obtained with XMM-Newton are compared with previous X-ray observations and with observations at other wavelengths. It is shown that these sources are high luminosity and extreme cases of the highly variable class of narrow-line Seyfert Is. In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations have been performed in early 2004. They will complement the XMM data and will lead to understanding of whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circum-nuclear material. The infrared spectra of the variable sources have been already

  16. Optical, Near-IR, and X-Ray Observations of SN 2015J and Its Host Galaxy

    NASA Astrophysics Data System (ADS)

    Nucita, A. A.; De Paolis, F.; Saxton, R.; Testa, V.; Strafella, F.; Read, A.; Licchelli, D.; Ingrosso, G.; Convenga, F.; Boutsia, K.

    2017-12-01

    SN 2015J was discovered on 2015 April 27th and is classified as an SN IIn. At first, it appeared to be an orphan SN candidate, I.e., without any clear identification of its host galaxy. Here, we present an analysis of the observations carried out by the VLT 8 m class telescope with the FORS2 camera in the R band and the Magellan telescope (6.5 m) equipped with the IMACS Short-Camera (V and I filters) and the FourStar camera (Ks filter). We show that SN 2015J resides in what appears to be a very compact galaxy, establishing a relation between the SN event and its natural host. We also present and discuss archival and new X-ray data centered on SN 2015J. At the time of the supernova explosion, Swift/XRT observations were made and a weak X-ray source was detected at the location of SN 2015J. Almost one year later, the same source was unambiguously identified during serendipitous observations by Swift/XRT and XMM-Newton, clearly showing an enhancement of the 0.3-10 keV band flux by a factor ≃ 30 with respect to the initial state. Swift/XRT observations show that the source is still active in the X-rays at a level of ≃ 0.05 counts s-1. The unabsorbed X-ray luminosity derived from the XMM-Newton slew and SWIFT observations, {L}x≃ 5× {10}41 erg s-1, places SN 2015J among the brightest young supernovae in X-rays. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, with ESO Telescopes at the La Silla-Paranal Observatory under program ID 298.D-5016(A), and with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. We also acknowledge the use of public data from the Swift data archive.

  17. Studying The Spectral Shape And The X-ray/uv Variability Of Active Galactic Nuclei With Data From Swift And Xmm Archives

    NASA Astrophysics Data System (ADS)

    Turriziani, Sara

    2011-01-01

    Many efforts have been made in understanding the underlying origin of variability in Active Galactic Nuclei (AGN), but at present they could give still no conclusive answers. Since a deeper knowledge of variability will enable to understand better the accretion process onto supermassive black holes, I built the first ensemble struction function analysis of the X-ray variability of samples of quasars with data from Swift and XMM-Newton archives in order to study the average properties of their variability. Moreover, it is known that UV and X-ray luminosities of quasars are correlated and recent studies quantified this relation across 5 orders of magnitude. In this context, I presents results on the X-ray/UV ratio from simultaneous observations in UV and X-ray bands of a sample of quasars with data from XMM-Newton archive. Lastly, I will present a complete sample of Swift/SDSS faint blazars and other non-thermal dominated AGNs. I used this sample to calculate the general statistical properties of faint blazars and radio galaxies and in particular their Radio LogN-LogS with fluxes down to 10 mJy, in order to gain knowledge on the contribution to Cosmic Microwave Background (CMB) and gamma-ray background radiation from the faint tail of the radio population. I acknowledge financial support through Grant ASI I/088/06/0.

  18. Rapid X-ray variability properties during the unusual very hard state in neutron-star low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wijnands, R.; Parikh, A. S.; Altamirano, D.; Homan, J.; Degenaar, N.

    2017-11-01

    Here, we study the rapid X-ray variability (using XMM-Newton observations) of three neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248 and IGR J18245-2452) during their recently proposed very hard spectral state. All our systems exhibit a strong to very strong noise component in their power density spectra (rms amplitudes ranging from 34 per cent to 102 per cent) with very low characteristic frequencies (as low as 0.01 Hz). These properties are more extreme than what is commonly observed in the canonical hard state of neutron-star low-mass X-ray binaries observed at X-ray luminosities similar to those we observe from our sources. This suggests that indeed the very hard state is a spectral-timing state distinct from the hard state, although we argue that the variability behaviour of IGR J18245-2452 is very extreme and possibly this source was in a very unusual state. We also compare our results with the rapid X-ray variability of the accreting millisecond X-ray pulsars IGR J00291+5934 and Swift J0911.9-6452 (also using XMM-Newton data) for which previously similar variability phenomena were observed. Although their energy spectra (as observed using the Swift X-ray telescope) were not necessarily as hard (i.e. for Swift J0911.9-6452) as for our other three sources, we conclude that likely both sources were also in very similar state during their XMM-Newton observations. This suggests that different sources that are found in this new state might exhibit different spectral hardness and one has to study both the spectral and the rapid variability to identify this unusual state.

  19. The XMM-Newton Wide-Field Survey in the COSMOS Field. II. X-Ray Data and the logN-logS Relations

    NASA Astrophysics Data System (ADS)

    Cappelluti, N.; Hasinger, G.; Brusa, M.; Comastri, A.; Zamorani, G.; Böhringer, H.; Brunner, H.; Civano, F.; Finoguenov, A.; Fiore, F.; Gilli, R.; Griffiths, R. E.; Mainieri, V.; Matute, I.; Miyaji, T.; Silverman, J.

    2007-09-01

    We present data analysis and X-ray source counts for the first season of XMM-Newton observations in the COSMOS field. The survey covers ~2 deg2 within the region of sky bounded by 09h57m30sobserved source counts with a slope α~2.4. A comparison with the results of previous surveys shows good agreement in all the energy bands under investigation in the overlapping flux range. We also notice a remarkable agreement between our logN-logS relations and the most recent model of the X-ray background. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; also based on data collected at the Canada-France-Hawaii Telescope operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of

  20. A Multi-Epoch Timing and Spectral Study of the Ultraluminous X-Ray NGC 5408 X-1 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Dheeraj, Pasham; Strohmayer, Tod E.

    2012-01-01

    We present results of new XMM-Newton observations of the ultraluminous X-ray source (ULX) NGC 5408 X-1, one of the few ULXs to show quasi-periodic oscillations (QPOs). We detect QPOs in each of four new (approximately equal to 100 ks) pointings, expanding the range of frequencies observed from 10 to 40 mHz. We compare our results with the timing and spectral correlations seen in stellar-mass black hole systems, and find that the qualitative nature of the timing and spectral behavior of NGC 5408 X-1 is similar to systems in the steep power-law state exhibiting Type-C QPOs. However, in order for this analogy to quantitatively hold we must only be seeing the so-called saturated portion of the QPO frequency-photon index (or disk flux) relation. Assuming this to be the case, we place a lower limit on the mass of NGC 5408 X-1 of greater than or equal to 800 solar mass. Alternatively, the QPO frequency is largely independent of the spectral parameters, in which case a close analogy with the Type-C QPOs in stellar system is problematic. Measurement of the source's timing properties over a wider range of energy spectral index is needed to definitively resolve this ambiguity. We searched all the available data for both a broad Fe emission line as well as high-frequency QPO analogs (0.1- 1 Hz), but detected neither. We place upper limits on the equivalent width of any Fe emission feature in the 6-7 keV band and of the amplitude (rms) of a high-frequency QPO analog of approximately equal to 10 eV and approximately equal to 4%, respectively.

  1. Simultaneous broadband observations and high-resolution X-ray spectroscopy of the transitional millisecond pulsar PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Coti Zelati, F.; Campana, S.; Braito, V.; Baglio, M. C.; D'Avanzo, P.; Rea, N.; Torres, D. F.

    2018-03-01

    We report on the first simultaneous XMM-Newton, NuSTAR, and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.

  2. First XMM-Newton Observations of a Cataclysmic Variable II: Spectral Studies of OY Car

    NASA Technical Reports Server (NTRS)

    Ramsay, Gavin; Cordova, France; Cottam, Jean; Mason, Keith; Much, Rudu; Osborne, Julian; Pandel, Dirk; Poole, Tracey; Wheatley, Peter

    2000-01-01

    We present XMM-Newton X-ray spectra of the disc accreting cataclysmic variable OY Car, which were obtained during the performance verification phase of the mission. These data were taken 4 days after a short outburst. In the EPIC spectra we find strong Iron K(beta) emission with weaker Iron K(alpha) emission together with Silicon and Sulphur lines. The spectra are best fitted with a three temperature plasma model with a partial covering absorber. Multiple temperature emission is confirmed by the emission lines seen in the RGS spectrum and the H/He like intensity ratio for Iron and Sulphur which imply temperatures of approx. 7keV and approx. 3keV respectively.

  3. X-ray shout echoing through space

    NASA Astrophysics Data System (ADS)

    2004-01-01

    observatories around the world were pointing their instruments at this mysterious source in the sky, named GRB 031203, in the attempt to decipher its nature. Also ESA's X-ray observatory, XMM-Newton, joined the hunt and observed the source in detail, using its on-board European Photon Imaging Camera (EPIC). The fading X-ray emission from GRB 031203 - called the `afterglow' - is clearly seen in XMM-Newton's images. But much more stunning are the two rings, centred on the afterglow, which appear to expand thousand times faster than the speed of light. Dr. Simon Vaughan, of the University of Leicester, United Kingdom, leads an international team of scientists studying GRB 031203. He explains that these rings are what astronomers call an `echo'. They form when the X-rays from the distant gamma-ray burst shine on a layer of dust in our own Galaxy. "The dust scatters some of the X-rays, causing XMM-Newton to observe these rings, much in the same way as fog scatters the light from a car's headlights," said Vaughan. Although the afterglow is the brightest feature seen in XMM-Newton's images, the expanding echo is much more spectacular. "It is like a shout in a cathedral," Vaughan said. "The shout of the gamma-ray burst is louder, but the Galactic reverberation, seen as the rings, is much more beautiful." The rings seem to expand because the X-rays scattered by dust farther from the direction of GRB 031203 take longer to reach us than those hitting the dust closer to the line of sight. However, nothing can move faster than light. "This is precisely what we expect because of the finite speed of light," said Vaughan. "The rate of expansion that we see is just a visual effect." He and his colleagues explain that we see two rings because there are two thin sheets of dust between the source of the gamma-ray burst and Earth, one closer to us creating the wider ring and one further away where the smaller ring is formed. Since they know precisely at what speed the X-ray light travels in space

  4. The Reflection Grating Spectrometer on Board XMM-Newton

    NASA Technical Reports Server (NTRS)

    denHerder, J. W.; Brinkman, A. C.; Kahn, S. M.; Branduardi-Raymont, G.; Thomsen, K.; Aarts, H.; Audard, M.; Bixler, J. V.; denBoggende, A. J.

    2000-01-01

    The ESA X-ray Multi Mirror mission, XMM-Newton, carries two identical Reflection Grating Spectrometers (RGS) behind two of its three nested sets of Wolter I type mirrors. The instrument allows high-resolution (E/(Delta)E = 100 to 500) measurements in the soft X-ray range (6 to 38 A or 2.1 to 0.3 keV) with a maximum effective area of about 140 sq cm at 15 A. Its design is optimized for the detection of the K-shell transitions of carbon, nitrogen, oxygen, neon, magnesium, and silicon. as well as the L shell transitions of iron. The present paper gives a full description of the design of the RGS and its operational modes. We also review details of the calibrations and in-orbit performance including the line spread function, the wavelength calibration, the effective area, and the instrumental background.

  5. Simultaneous X-Ray, Gamma-Ray, and Radio Observations of the Repeating Fast Radio Burst FRB 121102

    NASA Astrophysics Data System (ADS)

    Scholz, P.; Bogdanov, S.; Hessels, J. W. T.; Lynch, R. S.; Spitler, L. G.; Bassa, C. G.; Bower, G. C.; Burke-Spolaor, S.; Butler, B. J.; Chatterjee, S.; Cordes, J. M.; Gourdji, K.; Kaspi, V. M.; Law, C. J.; Marcote, B.; McLaughlin, M. A.; Michilli, D.; Paragi, Z.; Ransom, S. M.; Seymour, A.; Tendulkar, S. P.; Wharton, R. S.

    2017-09-01

    We undertook coordinated campaigns with the Green Bank, Effelsberg, and Arecibo radio telescopes during Chandra X-ray Observatory and XMM-Newton observations of the repeating fast radio burst FRB 121102 to search for simultaneous radio and X-ray bursts. We find 12 radio bursts from FRB 121102 during 70 ks total of X-ray observations. We detect no X-ray photons at the times of radio bursts from FRB 121102 and further detect no X-ray bursts above the measured background at any time. We place a 5σ upper limit of 3 × 10‑11 erg cm‑2 on the 0.5–10 keV fluence for X-ray bursts at the time of radio bursts for durations < 700 ms, which corresponds to a burst energy of 4 × 1045 erg at the measured distance of FRB 121102. We also place limits on the 0.5–10 keV fluence of 5 × 10‑10 and 1 × 10‑9 erg cm‑2 for bursts emitted at any time during the XMM-Newton and Chandra observations, respectively, assuming a typical X-ray burst duration of 5 ms. We analyze data from the Fermi Gamma-ray Space Telescope Gamma-ray Burst Monitor and place a 5σ upper limit on the 10–100 keV fluence of 4 × 10‑9 erg cm‑2 (5 × 1047 erg at the distance of FRB 121102) for gamma-ray bursts at the time of radio bursts. We also present a deep search for a persistent X-ray source using all of the X-ray observations taken to date and place a 5σ upper limit on the 0.5–10 keV flux of 4 × 10‑15 erg s‑1 cm‑2 (3 × 1041 erg s‑1 at the distance of FRB 121102). We discuss these non-detections in the context of the host environment of FRB 121102 and of possible sources of fast radio bursts in general.

  6. Chandra X-ray Observations of Jovian Low-latitude Emissions: Morphological, Temporal, and Spectral Characteristics

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Cravens, Thomas E.; Waiate J. Hunter, Jr.; Branduardi-Raymont, Graziella; Ford, Peter

    2004-01-01

    Chandra observed X-rays from Jupiter during 24-26 February 2003 for about 40 hours with the ACIS-S and HRC-I instruments. The analysis of Jovian low-latitude "disk" Xray emissions are presented and compared with the high-latitude "auroral" emissions. We report the first Chandra ACIS-S measured X-ray spectrum (0.3-2 keV) of Jupiter's low-latitude disk The disk X-ray emission is harder and extends to higher energies than the auroral spectrum. The temporal variation in the Jovian disk X-rays is on an average consistent with those in the solar X-rays observed by GOES, and TIMED/SSE. Contrary to the auroral X-rays, the disk emissions are uniformly distributed over Jupiter; no indication of longitudinal dependence or correlation with surface magneh field strength is visible. Also, unlike the approx. 40 +/- 20 min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations. The disk spectrum seems to be consistent with resonant and fluorescent scattering of solar X-rays by the Jovian upper atmosphere. Jupiter's disk is found to be about 50% dimmer in soft X-rays in February 2003 compared that in December 2000, which is consistent with the decrease in solar activity. No evidence of lightning-induced X-rays is seen in the Chandra X-ray data. The Jovian disk spectra observed with Chandra-ACIS is stronger than that observed with XMM-Newton two months later during April 28-29, 2003. The XMM-Newton Xray image of Jupiter shows evidence of limb darkening on the anti-sunward side as seen from Earth, as well as an asymmetry with respect to the subsolar point: suggesting a solar driven process.

  7. Discovery of the Candidate Off-nuclear Ultrasoft Hyper-luminous X-Ray Source 3XMM J141711.1+522541

    NASA Astrophysics Data System (ADS)

    Lin, Dacheng; Carrasco, Eleazar R.; Webb, Natalie A.; Irwin, Jimmy A.; Dupke, Renato; Romanowsky, Aaron J.; Ramirez-Ruiz, Enrico; Strader, Jay; Homan, Jeroen; Barret, Didier; Godet, Olivier

    2016-04-01

    We report the discovery of an off-nuclear ultrasoft hyper-luminous X-ray source candidate 3XMM J141711.1+522541 in the inactive S0 galaxy SDSS J141711.07+522540.8 (z = 0.41827, dL = 2.3 Gpc) in the Extended Groth Strip. It is located at a projected offset of ˜1.″0 (5.2 kpc) from the nucleus of the galaxy and was serendipitously detected in five XMM-Newton observations in 2000 July. Two observations have enough counts and can be fitted with a standard thermal disk with an apparent inner disk temperature {{kT}}{MCD}˜ 0.13 {{keV}} and a 0.28-14.2 keV unabsorbed luminosity LX ˜ 4 × 1043 erg s-1 in the source rest frame. The source was still detected in three Chandra observations in 2002 August, with similarly ultrasoft but fainter spectra (kTMCD ˜ 0.17 keV, LX ˜ 0.5 × 1043 erg s-1). It was not detected in later observations, including two by Chandra in 2005 October, one by XMM-Newton in 2014 January, and two by Chandra in 2014 September-October, implying a long-term flux variation factor of >14. Therefore the source could be a transient with an outburst in 2000-2002. It has a faint optical counterpart candidate, with apparent magnitudes of mF606W = 26.3 AB mag and mF814W = 25.5 AB mag in 2004 December (implying an absolute V-band magnitude of ˜-15.9 AB mag). We discuss various explanations for the source and find that it is best explained as a massive black hole (BH) embedded in the nucleus of a possibly stripped satellite galaxy, with the X-ray outburst due to tidal disruption of a surrounding star by the BH. The BH mass is ˜105 M⊙, assuming the peak X-ray luminosity at around the Eddington limit.

  8. The Broad Iron K-alpha line of Cygnus X-1 as Seen by XMM-Newton in the EPIC-pn Modified Timing Mode

    NASA Technical Reports Server (NTRS)

    Duro, Refiz; Dauser, Thomas; Wilms, Jorn; Pottschmidt, Katja; Nowak, Michael A.; Fritz, Sonja; Kendziorra, Eckhard; Kirsch, Marcus G. F.; Reynolds, Christopher S.; Staubert, Rudiger

    2011-01-01

    We present the analysis of the broadened, flourescent iron K(alpha) line in simultaneous XMM-Newton and RXTE data from the black hole Cygnus X-I. The XMM-Newton data were taken in a modified version of the Timing Mode of the EPIC-pn camera. In this mode the lower energy threshold of the instrument is increased to 2.8 keV to avoid telemetry drop outs due to the brightness of the source, while at the same time preserving the signal to noise ratio in the Fe K(alpha) band. We find that the best-fit spectrum consists of the sum of an exponentially cut-off power-law and relativistically smeared, ionized reflection. The shape of the broadened Fe K(alpha) feature is due to strong Compton broadening combined with relativistic broadening. Assuming a standard, thin accretion disk, the black hole is close to maximally rotating. Key words. X-rays: binaries - black hole physics - gravitation

  9. An XMM-Newton Observation of the Lagoon Nebula and the Very Young Open Cluster NGC 6530

    NASA Technical Reports Server (NTRS)

    Rauw, G.; Naze, Y.; Gosset, E.; Stevens, I. R.; Blomme, R.; Corcoran, M. F.; Pittard, J. M.; Runacres, M. C.

    2002-01-01

    We report the results of an XMM-Newton observation of the Lagoon Nebula (M 8). Our EPIC images of this region reveal a cluster of point sources, most of which have optical counterparts inside the very young open cluster NGC 6530. The bulk of these X-ray sources are probably associated with low and intermediate mass pre-main sequence stars. One of the sources experiences a flare-like increase of its X-ray flux making it the second brightest source in M 8 after the O4 star 9 Sgr. The X-ray spectra of most of the brightest sources can be fitted with thermal plasma models with temperatures of kT approximately a few keV. Only a few of the X-ray selected PMS candidates are known to display H(alpha) emission and were previously classified as classical T Tauri stars. This suggests that most of the X-ray emitting PMS stars in NGC 6530 are weak line T Tauri stars. In addition to 9 Sgr, our EPIC field of view contains also a few early-type stars. The X-ray emission from HD 164816 is found to be typical for an O9.5III-IV star. At least one of the known Herbig Be stars in NGC 6530 (LkH(alpha) 115) exhibits a relatively strong X-ray emission, while most of the main sequence stars of spectral type B1 and later are not detected. We also detect (probably) diffuse X-ray emission from the Hourglass Region that might reveal a hot bubble blown by the stellar wind of Herschel 36, the ionizing star of the Hourglass Region.

  10. Nature of the Unidentified TeV Source HESS J1614-518 Revealed by Suzaku and XMM-Newton Observations

    NASA Astrophysics Data System (ADS)

    Sakai, M.; Yajima, Y.; Matsumoto, H.

    2013-03-01

    We report new results concerning HESS J1614-518, which exhibits two regions with intense γ-ray emission. The south and center regions of HESS J1614-518 were observed with Suzaku in 2008, while the north region with the 1st brightest peak was observed in 2006. No X-ray counterpart is found at the 2nd brightest peak; the upper limit of the X-ray flux is estimated as 1.6 × 10-13 erg cm-2 s-1 in the 2-10 keV band. A previously-known soft X-ray source, Suzaku J1614-5152, is detected at the center of HESS J1614-518. Analyzing the XMM-Newton archival data, we reveal that Suzaku J1614-5152 consists of multiple point sources. The X-ray spectrum of the brightest point source, XMMU J161406.0-515225, could be described by a power-law model with the photon index Γ = 5.2+0.6-0.5 or a blackbody model with the temperature kT = 0.38+0.04-0.04 {keV}. In the blackbody model, the estimated column density N H = 1.1+0.3-0.2 × 1022 {cm}-2 is almost the same as that of the hard extended X-ray emission in Suzaku J1614-5141, spatially coincident with the 1st peak position. In this case, XMMU J161406.0-515225 may be physically related to Suzaku J1614-5141 and HESS J1614-518.

  11. XMM-Newton Mobile Web Application

    NASA Astrophysics Data System (ADS)

    Ibarra, A.; Kennedy, M.; Rodríguez, P.; Hernández, C.; Saxton, R.; Gabriel, C.

    2013-10-01

    We present the first XMM-Newton web mobile application, coded using new web technologies such as HTML5, the Query mobile framework, and D3 JavaScript data-driven library. This new web mobile application focuses on re-formatted contents extracted directly from the XMM-Newton web, optimizing the contents for mobile devices. The main goals of this development were to reach all kind of handheld devices and operating systems, while minimizing software maintenance. The application therefore has been developed as a web mobile implementation rather than a more costly native application. New functionality will be added regularly.

  12. NuSTAR hard X-ray observations of the Jovian magnetosphere during Juno perijove and apojove intervals

    NASA Astrophysics Data System (ADS)

    Dunn, W.; Mori, K.; Hailey, C. J.; Branduardi-Raymont, G.; Grefenstette, B.; Jackman, C. M.; Hord, B. J.; Ray, L. C.

    2017-12-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing hard X-ray telescope operating in the 3-79 keV band with sub-arcminute angular resolution (18" FWHM). For the first time, NuSTAR provides sufficient sensitivity to detect/resolve hard X-ray emission from Jupiter above 10 keV, since the in-situ Ulysses observation failed to detect X-ray emission in the 27-48 keV band [Hurley et al. 1993]. The initial, exploratory NuSTAR observation of Jupiter was performed in February 2015 with 100 ksec exposure. NuSTAR detected hard X-ray emission (E > 10 keV) from the south polar region at a marginally significance of 3 sigma level [Mori et al. 2016, AAS meeting poster]. This hard X-ray emission is likely an extension of the non-thermal bremsstrahlung component detected up to 7 keV by XMM-Newton [Branduardi-Raymont et al. 2007]. The Ulysses non-detection suggests there should be a spectral cutoff between 7 and 27 keV. Most intriguingly, the NuSTAR detection of hard X-ray emission from the south aurora is in contrast to the 2003 XMM-Newton observations where soft X-ray emission below 8 keV was seen from both the north and south poles [Gladstone et al. 2002]. Given the marginal, but tantalizing, hard X-ray detection of the southern Jovian aurora, a series of NuSTAR observations with total exposure of nearly half a million seconds were approved in the NuSTAR GO and DDT program. These NuSTAR observations coincided with one Juno apojove (in June 2017) and three perijoves (in May, July and September 2017), also joining the multi-wavelength campaigns of observing Jupiter coordinating with Chandra and XMM-Newton X-ray telescope (below 10 keV) and HST. We will present NuSTAR imaging, spectral and timing analysis of Jupiter. NuSTAR imaging analysis will map hard X-ray emission in comparison with soft X-ray and UV images. In addition to investigating any distinctions between the soft and hard X-ray morphology of the Jovian aurorae, we will probe whether hard X-ray

  13. X-rays from HD 100546- A Young Herbig Star Orbited by Giant Protoplanets

    NASA Astrophysics Data System (ADS)

    Skinner, Stephen

    A protoplanetary system consisting of at least two giant planets has beendetected orbiting the young nearby Herbig Be star HD 100546. The inner protoplanet orbits inside a gap within 14 AU of the star and is exposed to strong stellar UV and X-ray radiation. The detection of very warm disk gas provides evidence that stellar heating is affecting physical conditions in the planet-forming environment. We obtained a deep 74 ksec X-ray observation of HD 100546 in 2015 with XMM-Newton yielding an excellent-quality spectrum. We propose here to analyze the XMM-Newton data to determine the X-ray ionization and heating rates in the disk. X-ray ionization and heating affect the thermal and chemical structure of the disk and are key parameters for constructing realistic planet formation models. We are requesting ADAP funding to support the analysis and publication of this valuable XMM-Newton data set, which is now in the public archive.

  14. The physical origin of the X-ray emission from SN 1987A

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Orlando, S.; Petruk, O.

    2017-10-01

    We revisit the spectral analysis of the set of archive XMM-Newton observations of SN 1987A through our 3-D hydrodynamic model describing the whole evolution from the onset of the supernova to the full remnant development. For the first time the spectral analysis accounts for the single observations and for the evolution of the system self-consistently. We adopt a forward modeling approach which allows us to directly synthesize, from the model, X-ray spectra and images in different energy bands. We fold the synthetic observables through the XMM-Newton instrumental response and directly compare models and actual data. We find that our simulation provides an excellent fit to the data, by reproducing simultaneously X-ray fluxes, spectral features, and morphology of SN 1987A at all evolutionary stages. Our analysis enables us to obtain a deep insight on the physical origin of the observed multi-thermal emission, by revealing the contribution of shocked surrounding medium, dense clumps of the circumstellar ring, and ejecta to the total emission. We finally provide predictions for future observations (to be performed with XMM-Newton in the next future and with the forthcoming Athena X-ray telescope in approximately 10 years), showing the growing contribution of the ejecta X-ray emission.

  15. X-ray versus infrared selection of distant galaxy clusters: A case study using the XMM-LSS and SpARCS cluster samples

    NASA Astrophysics Data System (ADS)

    Willis, J. P.; Ramos-Ceja, M. E.; Muzzin, A.; Pacaud, F.; Yee, H. K. C.; Wilson, G.

    2018-04-01

    We present a comparison of two samples of z > 0.8 galaxy clusters selected using different wavelength-dependent techniques and examine the physical differences between them. We consider 18 clusters from the X-ray selected XMM-LSS distant cluster survey and 92 clusters from the optical-MIR selected SpARCS cluster survey. Both samples are selected from the same approximately 9 square degree sky area and we examine them using common XMM-Newton, Spitzer-SWIRE and CFHT Legacy Survey data. Clusters from each sample are compared employing aperture measures of X-ray and MIR emission. We divide the SpARCS distant cluster sample into three sub-samples: a) X-ray bright, b) X-ray faint, MIR bright, and c) X-ray faint, MIR faint clusters. We determine that X-ray and MIR selected clusters display very similar surface brightness distributions of galaxy MIR light. In addition, the average location and amplitude of the galaxy red sequence as measured from stacked colour histograms is very similar in the X-ray and MIR-selected samples. The sub-sample of X-ray faint, MIR bright clusters displays a distribution of BCG-barycentre position offsets which extends to higher values than all other samples. This observation indicates that such clusters may exist in a more disturbed state compared to the majority of the distant cluster population sampled by XMM-LSS and SpARCS. This conclusion is supported by stacked X-ray images for the X-ray faint, MIR bright cluster sub-sample that display weak, centrally-concentrated X-ray emission, consistent with a population of growing clusters accreting from an extended envelope of material.

  16. An XMM-Newton Study of 9SGR and the Lagoon Nebula

    NASA Technical Reports Server (NTRS)

    Rauw, G.; Blomme, R.; Waldron, W. L.; Naze, Y.; Harries, T. J.; Chapman, J. M.; Corcoran, M. F.; Detal, A.; Gosset, E.

    2001-01-01

    We report preliminary results of an XMM-Newton observation of the 04 V star 9 Sgr (= HD 164794). 9 Sgr is one of a few single OB stars that display a non-thermal radio emission attributed to synchrotron emission by relativistic electrons. Inverse Compton scattering of photospheric UV photons by these relativistic electrons is a priori expected to generate a non-thermal power-law tail in the X-ray spectrum. Our EPIC and RGS spectra of 9 Sgr suggest a more complex situation than expected from this 'simple' theoretical picture. Furthermore, soft-band EPIC images of the region around 9 Sgr reveal a number of point sources inside the Lagoon Nebula (M8). Most of these sources have optical counterparts inside the very young open cluster NGC 6530 and several X-ray sources are associated with low and intermediate mass pre-main sequence stars. Finally, we also detect (probably) diffuse X-ray emission from the Hourglass Region that might reveal a hot bubble blown by the stellar wind of Herschel 36, the ionizing star of the HG region.

  17. XMM-Newton observations of the supernova remnant IC 443. II. Evidence of stellar ejecta in the inner regions

    NASA Astrophysics Data System (ADS)

    Troja, E.; Bocchino, F.; Miceli, M.; Reale, F.

    2008-07-01

    Aims: We investigate the spatial distribution of the physical and chemical properties of the hot X-ray emitting plasma of the supernova remnant IC 443, to derive important constraints on its ionization stage, on the progenitor supernova explosion, on the age of the remnant, and its physical association with a close pulsar wind nebula. Methods: We present XMM-Newton images of IC 443, a median photon energy map, silicon and sulfur equivalent width maps, and a spatially resolved spectral analysis of a set of homogeneous regions. Results: The hard X-ray thermal emission (1.4-5.0 keV) of IC 443 displays a centrally-peaked morphology, its brightness peaks being associated with hot (kT > 1 keV) X-ray emitting plasma. A ring-shaped structure, characterized by high values of equivalent widths and median photon energy, encloses the PWN. Its hard X-ray emission is spectrally characterized by a collisional ionization equilibrium model, and strong emission lines of Mg, Si, and S, requiring oversolar metal abundances. Dynamically, the location of the ejecta ring suggests an SNR age of ~4000 yr. The presence of overionized plasma in the inner regions of IC 443, addressed in previous works, is much less evident in our observations.

  18. Revealing the X-Ray Emission Processes of Old Rotation-Powered Pulsars: XMM-Newton Observations of PSR B0950+08, PSR B0823+26 and PSR J2043+2740

    NASA Technical Reports Server (NTRS)

    Becker, Werner; Weisskopf, Martin C.; Tenant, Allyn F.; Jessmer, Axel; Zhang, Shiang N.

    2004-01-01

    We have completed part of a program to study the X-ray emission properties of old rotation-powered pulsars with XMM-Newton in order to probe and identify the origin of their X radiation. The X-ray emission from these old pulsars is largely dominated by non-thermal processes. None of the observed spectra required adding a thermal component consisting of either a hot polar cap or surface cooling emission to model the data. The energy spectrum of PSR B0950+08 is best described by a single power law of photon-index alpha = 1.93(sup +0.14)(sub -0.12). Three-sigma temperature upper limits for possible contributions from a heated polar cap or the whole neutron star surface are T(sup infinity)(sub pc) < 0.87 x 10(exp 6) K and T(sup infinity)(sub s) < 0.48 x 10(exp 6) K, respectively. We also find that the X-ray emission from PSR B0950+08 is pulsed with two peaks per rotation period. The phase separation between the two X-ray peaks is approx. 144 deg (maximum to maximum) which is similar to the pulse peak separation observed in the radio band at 1.4 GHz. The fraction of X-ray pulsed photons is approx. 30%. A phase resolved spectral analysis confirms the nonthermal nature of the pulsed emission and finds power law slopes of alpha = 2.4(sup +0.52)(sub -0.42) and alpha = 1.93(sup +0.29)(sub -0.24) for the pulse peaks P1 and P2, respectively. The spectral emission properties observed for PSR B0823+26 are similar to those of PSR B0950+08. Its energy spectrum is very well described by a single power law with photon-index alpha = 2.5(sup +0.52)(sub -0.24. Three-sigma temperature upper limits for thermal contributions from a hot polar cap or from the entire neutron star surface are T(sup infinity)(sub pc) < 1.17 x 10(exp 6) K and T(sup infinity)(sub s) < 0.5 x 10(exp 6) K, respectively. There is evidence for pulsed X-ray emission at the - 97% confidence level with a pulsed fraction of 49 +/- 22%. For PSR 52043+2740 we report the first detection of X-ray emission. A power law

  19. Turbulence in the Intracluster Medium: XMM-Newton legacy

    NASA Astrophysics Data System (ADS)

    Pinto, C.; Fabian, A.; Sanders, J.; De Plaa, J.

    2017-10-01

    The kinematics structure of the Intracluster Medium (ICM) in clusters of galaxies is heir of their past evolution. AGN feedback, sloshing of gas within the potential well, and galaxy mergers are thought to generate turbulence of several hundred km/s into the ICM. Accurate measurements of velocity widths provide the means to understand the effects of these energetic phenomena onto the evolution of the clusters. In this talk I will review our recent measurements of turbulence using the high-resolution grating and microcalorimeter spectrometers on board XMM-Newton and Hitomi, respectively. Most recently, we have produced the largest XMM-Newton/RGS grating catalogue totalling about a hundred objects, which merge the recent CHEERS campaign and the efforts of the last decade as well as the newest observations of clusters and groups of galaxies. This catalogue includes all high-quality grating spectra publicly available by January 2017 and provides the XMM-Newton legacy for the future work. In this talk, I will discuss the first results with particular focus on the measurements of velocity broadening and the new constraints on turbulence.

  20. XMM-Newton On-demand Reprocessing Using SaaS Technology

    NASA Astrophysics Data System (ADS)

    Ibarra, A.; Fajersztejn, N.; Loiseau, N.; Gabriel, C.

    2014-05-01

    We present here the architectural design of the new on-the-fly reprocessing capabilities that will be soon developed and implemented in the new XMM-Newton Science Operation Centre. The inclusion of processing capabilities into the archive, as we plan, will be possible thanks to the recent refurbishment of the XMM-Newton science archive, its alignment with the latest web technologies and the XMM-Newton Remote Interface for Science Analysis (RISA), a revolutionary idea of providing processing capabilities through internet services.

  1. Peering Through the Dust. II. XMM-Newton Observations of Two Additional FIRST-2MASS Red Quasars

    NASA Astrophysics Data System (ADS)

    Glikman, Eilat; LaMassa, Stephanie; Piconcelli, Enrico; Urry, Meg; Lacy, Mark

    2017-10-01

    We obtained XMM-Newton observations of two highly luminous dust-reddened quasars, F2M1113+1244 and F2M1656+3821, that appear to be in the early, transitional phase predicted by merger-driven models of quasar/galaxy co-evolution. These sources have been well studied at optical through mid-infrared wavelengths and are growing relatively rapidly, with Eddington ratios > 30 % . Their black hole masses are relatively small compared to their host galaxies, placing them below the {M}{BH}{--}{L}{bulge} relation. We find that for both sources, an absorbed power-law model with 1%-3% of the intrinsic continuum scattered or leaked back into the line of sight best fits their X-ray spectra. We measure the absorbing column density (N H ) and constrain the dust-to-gas ratios in these systems, finding that they lie well below the Galactic value. This, combined with the presence of broad emission lines in their optical and near-infrared spectra, suggests that the dust absorption occurs far from the nucleus and in the host galaxy, while the X-rays are mostly absorbed in the nuclear, dust-free region within the sublimation radius. We also compare the quasars’ absorption-corrected, rest-frame X-ray luminosities (2-10 keV) to their rest-frame infrared luminosities (6 μm) and find that red quasars, similar to other populations of luminous obscured quasars, are either underluminous in X-rays or overluminous in the infrared.

  2. Monte Carlo simulations of soft proton flares: testing the physics with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Fioretti, Valentina; Bulgarelli, Andrea; Malaguti, Giuseppe; Spiga, Daniele; Tiengo, Andrea

    2016-07-01

    Low energy protons (< 100 - 300 keV) in the Van Allen belt and the outer regions can enter the field of view of X-ray focusing telescopes, interact with the Wolter-I optics, and reach the focal plane. The funneling of soft protons was discovered after the damaging of the Chandra/ACIS Front-Illuminated CCDs in September 1999 after the first passages through the radiation belt. The use of special filters protects the XMM-Newton focal plane below an altitude of 70000 km, but above this limit the effect of soft protons is still present in the form of sudden ares in the count rate of the EPIC instruments that can last from hundreds of seconds to hours and can hardly be disentangled from X-ray photons, causing the loss of large amounts of observing time. The accurate characterization of (i) the distribution of the soft proton population, (ii) the physics interaction at play, and (iii) the effect on the focal plane, are mandatory to evaluate the background and design the proton magnetic diverter on board future X-ray focusing telescopes (e.g. ATHENA). Several solutions have been proposed so far for the primary population and the physics interaction, however the difficulty in precise angle and energy measurements in laboratory makes the smoking gun still unclear. Since the only real data available is the XMM-Newton spectrum of soft proton flares in orbit, we try to characterize the input proton population and the physics interaction by simulating, using the BoGEMMS framework, the proton interaction with a simplified model of the X-ray mirror module and the focal plane, and comparing the result with a real observation. The analysis of ten orbits of observations of the EPIC/pn instrument show that the detection of flares in regions far outside the radiation belt is largely influenced by the different orientation of the Earth's magnetosphere respect with XMM-Newton'os orbit, confirming the solar origin of the soft proton population. The Equator-S proton spectrum at 70000 km

  3. The HELLAS2XMM survey. XI. Unveiling the nature of X-ray bright optically normal galaxies

    NASA Astrophysics Data System (ADS)

    Civano, F.; Mignoli, M.; Comastri, A.; Vignali, C.; Fiore, F.; Pozzetti, L.; Brusa, M.; La Franca, F.; Matt, G.; Puccetti, S.; Cocchia, F.

    2007-12-01

    Aims:X-ray bright optically normal galaxies (XBONGs) constitute a small but significant fraction of hard X-ray selected sources in recent Chandra and XMM-Newton surveys. Even though several possibilities were proposed to explain why a relatively luminous hard X-ray source does not leave any significant signature of its presence in terms of optical emission lines, the nature of XBONGs is still subject of debate. We aim to better understand their nature by means of a multiwavelength and morphological analysis of a small sample of these sources. Methods: Good-quality photometric near-infrared data (ISAAC/VLT) of four low-redshift (z = 0.1{-}0.3) XBONGs, selected from the HELLAS2XMM survey, have been used to search for the presence of the putative nucleus, applying the surface-brightness decomposition technique through the least-squares fitting program GALFIT. Results: The surface brightness decomposition allows us to reveal a nuclear point-like source, likely to be responsible for the X-ray emission, in two out of the four sources. The results indicate that moderate amounts of gas and dust, covering a large solid angle (possibly 4π) at the nuclear source, combined with the low nuclear activity, may explain the lack of optical emission lines. The third XBONG is associated with an X-ray extended source and no nuclear excess is detected in the near infrared at the limits of our observations. The last source is associated to a close (d≤ 1 arcsec) double system and the fitting procedure cannot achieve a firm conclusion. Based on observations made at the European Southern Observatory, Paranal, Chile (ESO Programme ID 69.A-0554).

  4. Modeling the Oxygen K Absorption in the Interstellar Medium: An XMM-Newton View of Sco X-1

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Ramirez, J. M.; Kallman, T. R.; Witthoeft, M.; Bautista, M. A.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2011-01-01

    We investigate the absorption structure of the oxygen in the interstellar medium by analyzing XMM-Newton observations of the low mass X-ray binary Sco X-1. We use simple models based on the O I atomic cross section from different sources to fit the data and evaluate the impact of the atomic data in the interpretation of astrophysical observations. We show that relatively small differences in the atomic calculations can yield spurious results. We also show that the most complete and accurate set of atomic cross sections successfully reproduce the observed data in the 21 - 24.5 Angstrom wavelength region of the spectrum. Our fits indicate that the absorption is mainly due to neutral gas with an ionization parameter of Epsilon = 10(exp -4) erg/sq cm, and an oxygen column density of N(sub O) approx. = 8-10 x 10(exp 17)/sq cm. Our models are able to reproduce both the K edge and the K(alpha) absorption line from O I, which are the two main features in this region. We find no conclusive evidence for absorption by other than atomic oxygen.

  5. Why Evolved Massive Single Stars Create X-rays: Analysis of XMM Observations of WR 6 (EZ CMa)

    NASA Astrophysics Data System (ADS)

    Gayley, Kenneth

    The proposers are US Co-Is on an XMM-Newton proposal that has been awarded a 400 ksec exposure of the Wolf-Rayet star EZ CMa (WR 6). The XMM observations do not currently come with funding for data analysis, so the US Co-Is need separate funding from NASA to be able to carry out the analysis of this important and unique dataset. The reason the data is so important is that it is the longest and highest-resolution X-ray spectrum that has ever been taken of a single Wolf-Rayet star, and it will provide large photon counts as a function of time (to study variability), as a function of phase within the rotation period (to study longitudinal structure), and within each spectral line (to study line shapes and f/i/r ratios). Thus the dataset represents a treasure trove of information about how X-rays are formed in the winds of single Wolf-Rayet stars, which is important to understand because the winds of these stars so completely shroud the underlying hydrostatic object that the only way to study the characteristics and evolution of this important class of supernova and GRB progenitor is by studying its winds. X-rays provide a window into the processes that generate shocks and hot gas in these winds, which in turn may couple to the stellar rotation, pulsations, magnetic fields, and wind acceleration mechanisms, all currently poorly understood for this type of star. Our data analysis will focus on identifying the basic physical processes most likely to be responsible for the X-ray emission. Starting from issues like the total fluxes in lines and continua, we will constrain the energetics involved, and then by considering the details of the line shapes, we can use the line widths, asymmetries, and f/i/r ratios (where applicable) to obtain robust constraints on the location of the hot gas in the wind. Then by considering the temporal variability of the emission, we can distinguish the emission from numerous stochastically distributed shocks, such as from the line

  6. X-rays from the Solar System

    NASA Astrophysics Data System (ADS)

    Dennerl, K.

    2017-10-01

    While the beginning of X-ray astronomy was motivated by solar system studies (Sun and Moon), the main research interest soon shifted outwards to much more distant and exotic objects. However, the ROSAT discovery of X-rays from comets in 1996 and the insight that this `new' kind of X-ray emission, charge exchange, was underestimated for a long time, has demonstrated that solar system studies are still important for X-ray astrophysics in general. While comets provide the best case for studying the physics of charge exchange, the X-ray signatures of this process have now also been detected at Venus, Mars, and Jupiter, thanks to Chandra and XMM-Newton. An analysis of the X-ray data of solar system objects, however, is challenging in many respects. This is particularly true for comets, which appear as moving, extended X-ray sources, emitting a line-rich spectrum at low energies. Especially for XMM-Newton, which has the unparalleled capability to observe with five highly sensitive X-ray instruments plus an optical monitor simultaneously, it is a long way towards photometrically and spectroscopically calibrated results, which are consistent between all its instruments. I will show this in my talk, where I will also summarize the current state of solar system X-ray research.

  7. X-ray versus infrared selection of distant galaxy clusters: a case study using the XMM-LSS and SpARCS cluster samples

    NASA Astrophysics Data System (ADS)

    Willis, J. P.; Ramos-Ceja, M. E.; Muzzin, A.; Pacaud, F.; Yee, H. K. C.; Wilson, G.

    2018-07-01

    We present a comparison of two samples of z> 0.8 galaxy clusters selected using different wavelength-dependent techniques and examine the physical differences between them. We consider 18 clusters from the X-ray-selected XMM Large Scale Structure (LSS) distant cluster survey and 92 clusters from the optical-mid-infrared (MIR)-selected Spitzer Adaptation of the Red Sequence Cluster survey (SpARCS) cluster survey. Both samples are selected from the same approximately 9 sq deg sky area and we examine them using common XMM-Newton, Spitizer Wide-Area Infrared Extra-galactic (SWIRE) survey, and Canada-France-Hawaii Telescope Legacy Survey data. Clusters from each sample are compared employing aperture measures of X-ray and MIR emission. We divide the SpARCS distant cluster sample into three sub-samples: (i) X-ray bright, (ii) X-ray faint, MIR bright, and (iii) X-ray faint, MIR faint clusters. We determine that X-ray- and MIR-selected clusters display very similar surface brightness distributions of galaxy MIR light. In addition, the average location and amplitude of the galaxy red sequence as measured from stacked colour histograms is very similar in the X-ray- and MIR-selected samples. The sub-sample of X-ray faint, MIR bright clusters displays a distribution of brightest cluster galaxy-barycentre position offsets which extends to higher values than all other samples. This observation indicates that such clusters may exist in a more disturbed state compared to the majority of the distant cluster population sampled by XMM-LSS and SpARCS. This conclusion is supported by stacked X-ray images for the X-ray faint, MIR bright cluster sub-sample that display weak, centrally concentrated X-ray emission, consistent with a population of growing clusters accreting from an extended envelope of material.

  8. XMM-Newton Proposal 03001001

    NASA Astrophysics Data System (ADS)

    Barrado Y Navascues, David

    2004-10-01

    We propose observations with XMM-EPIC/MOS in five distinct sibling associations belonging to the Lambda Orionis Star Forming Region (2-5 Myr, 340 pc). We have already optical and IR photometry and spectroscopy for objects down to 0.015 M(sun). The goals are: i) Assess the membership of our candidates and detect new members. ii) Derive accurate IMFs for each association, checking the universality of the IMF. iii) Study the properties and evolution of the X-ray Luminosity Functions.

  9. Star formation history of Canis Major OB1. II. A bimodal X-ray population revealed by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Santos-Silva, T.; Gregorio-Hetem, J.; Montmerle, T.; Fernandes, B.; Stelzer, B.

    2018-02-01

    Aims: The Canis Major OB1 Association has an intriguing scenario of star formation, especially in the region called Canis Major R1 (CMa R1) traditionally assigned to a reflection nebula, but in reality an ionized region. This work is focussed on the young stellar population associated with CMa R1, for which our previous results from ROSAT, optical, and near-infrared data had revealed two stellar groups with different ages, suggesting a possible mixing of populations originated from distinct star formation episodes. Methods: The X-ray data allow the detected sources to be characterized according to hardness ratios, light curves, and spectra. Estimates of mass and age were obtained from the 2MASS catalogue and used to define a complete subsample of stellar counterparts for statistical purposes. Results: A catalogue of 387 XMM-Newton sources is provided, of which 78% are confirmed as members or probable members of the CMa R1 association. Flares (or similar events) were observed for 13 sources and the spectra of 21 bright sources could be fitted by a thermal plasma model. Mean values of fits parameters were used to estimate X-ray luminosities. We found a minimum value of log(LX [erg/s] ) = 29.43, indicating that our sample of low-mass stars (M⋆ ≤ 0.5 M⊙), which are faint X-ray emitters, is incomplete. Among the 250 objects selected as our complete subsample (defining our "best sample"), 171 are found to the east of the cloud, near Z CMa and dense molecular gas, of which 50% of them are young (<5 Myr) and 30% are older (>10 Myr). The opposite happens to the west, near GU CMa, in areas lacking molecular gas: among 79 objects, 30% are young and 50% are older. These findings confirm that a first episode of distributed star formation occurred in the whole studied region 10 Myr ago and dispersed the molecular gas, while a second, localized episode (<5 Myr) took place in the regions where molecular gas is still present.

  10. An X-ray spectral study of colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko

    2012-03-01

    We present results of spectral studies of two Wolf-Rayet colliding wind binaries (WR 140 and WR 30a), using the data obtained by the Suzaku and XMM-Newton satellites. WR 140 is one of the best known examples of a Wolf-Rayet star. We executed the Suzaku X-ray observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. We detected hard X-ray excess in the HXD band (> 10 keV) for the first time from a W-R binary. The emission measure of the dominant, high temperature component is not inversely proportional to the distance between the two stars. WR 30a is the rare WO-type W-R binary. We executed XMM-Newton observations and detected X-ray emission for the first time. The broad-band spectrum was well-fitted with double-absorption model. The hard X-ray emission was heavily absorbed. This can be interpreted that the hard X-ray emitting plasma exist near WO star.

  11. Fifteen years in the high-energy life of the solar-type star HD 81809. XMM-Newton observations of a stellar activity cycle

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Favata, F.; Micela, G.; Sciortino, S.; Maggio, A.; Schmitt, J. H. M. M.; Robrade, J.; Mittag, M.

    2017-09-01

    Context. The modulation of the activity level of solar-like stars is commonly revealed by cyclic variations in their chromospheric indicators, such as the Ca II H&K S-index, similarly to what is observed in our Sun. However, while the variation of solar activity is also reflected in the cyclical modulation of its coronal X-ray emission, similar behavior has only been discovered in a few stars other than the Sun. Aims: The data set of the long-term XMM-Newton monitoring program of HD 81809 is analyzed to study its X-ray cycle, investigate if the latter is related to the chromospheric cycle, infer the structure of the corona of HD 81809, and explore if the coronal activity of HD 81809 can be ascribed to phenomena similar to solar activity and, therefore, considered an extension of the solar case. Methods: We analyzed the observations of HD 81809 performed with XMM-Newton with a regular cadence of six months from 2001 to 2016, which represents one of the longest available observational baseline ( 15 yr) for a solar-like star with a well-studied chromospheric cycle (with a period of 8 yr). We investigated the modulation of coronal luminosity and temperature and its relation with the chromospheric cycle. We interpreted the data in terms of a mixture of solar-like coronal regions, adopting a method originally proposed to study the Sun as an X-ray star. Results: The observations show a well-defined regular cyclic modulation of the X-ray luminosity that reflects the activity level of HD 81809. The data covers approximately two cycles of coronal activity; the modulation has an amplitude of a factor of 5 (excluding evident flares, as in the June 2002 observation) and a period of 7.3 ± 1.5 yr, which is consistent with that of the chromospheric cycle. We demonstrate that the corona of HD 81809 can be interpreted as an extension of the solar case and can be modeled with a mixture of solar-like coronal regions along the whole cycle. The activity level is mainly determined by

  12. X-ray Emission Line Spectroscopy of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Daniel

    What are the origins of the diffuse soft X-ray emission from non-AGN galaxies? Preliminary analysis of XMM-Newton RGS spectra shows that a substantial fraction of the emission cannot arise from optically-thin thermal plasma, as commonly assumed, and may originate in charge exchange at the interface with neutral gas. We request the support for a comprehensive observing, data analysis, and modeling program to spectroscopically determine the origins of the emission. First, we will use our scheduled XMM-Newton AO-10 368 ks observations of the nearest compact elliptical galaxy M32 to obtain the first spectroscopic calibration of the cumulative soft X-ray emission from the old stellar population and will develop a spectral model for the charge exchange, as well as analysis tools to measure the spatial and kinematic properties of the X-ray line- emitting plasma. Second, we will characterize the truly diffuse emission from the hot plasma and/or its interplay with the neutral gas in a sample of galactic spheroids and active star forming/starburst regions in nearby galaxies observed by XMM-Newton. In particular, we will map out the spatial distributions of key emission lines and measure (or tightly constrain) the kinematics of hot plasma outflows for a few X-ray-emitting regions with high-quality RGS data. For galaxies with insufficient counting statistics in individual emission lines, we will conduct a spectral stacking analysis to constrain the average properties of the X-ray-emitting plasma. We will use the results of these X-ray spectroscopic analyses, together with complementary X-ray CCD imaging/spectral data and observations in other wavelength bands, to test the models of the emission. In addition to the charge exchange, alternative scenarios such as resonance scattering and relic AGN photo-ionization will also be examined for suitable regions. These studies are important to the understanding of the relationship between the diffuse soft X-ray emission and various

  13. XMM-Newton observation of the supernova remnant Kes 78 (G32.8-0.1): Evidence of shock-cloud interaction

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Bamba, A.; Orlando, S.; Zhou, P.; Safi-Harb, S.; Chen, Y.; Bocchino, F.

    2017-03-01

    Context. The Galactic supernova remnant Kes 78 is surrounded by dense molecular clouds, whose projected position overlaps with the extended HESS γ-ray source HESS J1852-000. The X-ray emission from the remnant has recently been revealed by Suzaku observations, which have shown indications for a hard X-ray component in the spectra that might be associated with synchrotron radiation. Aims: We describe the spatial distribution of the physical properties of the X-ray emitting plasma and reveal the effects of the interaction of the remnant with the inhomogeneous ambient medium. We also investigate the origin of the γ-ray emission, which may be inverse-Compton radiation associated with X-ray synchrotron-emitting electrons or hadronic emission originating from the impact of high-energy protons on the nearby clouds. Methods: We analyzed an XMM-Newton EPIC observation of Kes 78 by performing image analysis and spatially resolved spectral analysis on a set of three regions. We tested our findings against the observations of the 12CO and 13CO emission in the environment of the remnant. Results: We reveal the complex X-ray morphology of Kes 78 and find variations in the spectral properties of the plasma, with significantly denser and cooler material at the eastern edge of the remnant, which we interpret as a signature of interaction with a molecular cloud. We also exclude that narrow filaments emit the X-ray synchrotron radiation. Conclusions: Assuming that the very high energy γ-ray emission is associated with Kes 78, the lack of synchrotron emission rules out a leptonic origin. A hadronic origin is further supported by evidence of interaction of the remnant with a dense molecular cloud in its eastern limb.

  14. Exceptional AGN long-timescale X-ray variability: The case of PHL 1092

    NASA Astrophysics Data System (ADS)

    Miniutti, G.; Brandt, W. N.; Schneider, D. P.; Fabian, A. C.; Gallo, L. C.; Boller, Th.

    2012-12-01

    PHL 1092 is a z ˜ 0.4 high-luminosity counterpart of the class of Narrow-Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ˜ 260 with respect to a previous observation performed 4.5 yr earlier. The UV flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope αox from - 1.57 to - 2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with three further XMM-Newton observations, producing a simultaneous UV and X-ray database spanning almost 10 yr in total in the activity of the source. We present here results from our monitoring campaign.

  15. The changing source of X-ray reflection in the radio-intermediate Seyfert 1 galaxy III Zw 2

    NASA Astrophysics Data System (ADS)

    Gonzalez, A. G.; Waddell, S. G. H.; Gallo, L. C.

    2018-03-01

    We report on X-ray observations of the radio-intermediate, X-ray bright Seyfert 1 galaxy, III Zw 2, obtained with XMM-Newton, Suzaku, and Swift over the past 17 yr. The source brightness varies significantly over yearly time-scales, but more modestly over periods of days. Pointed observations with XMM-Newton in 2000 and Suzaku in 2011 show spectral differences despite comparable X-ray fluxes. The Suzaku spectra are consistent with a power-law continuum and a narrow Gaussian emission feature at ˜6.4 keV, whereas the earlier XMM-Newton spectrum requires a broader Gaussian profile and soft-excess below ˜2 keV. A potential interpretation is that the primary power-law emission, perhaps from a jet base, preferentially illuminates the inner accretion disc in 2000, but the distant torus in 2011. The interpretation could be consistent with the hypothesized precessing radio jet in III Zw 2 that may have originated from disc instabilities due to an ongoing merging event.

  16. An XMM-Newton Monitoring Campaign of the Accretion Flow in IGRJ16318-4848

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Nicastro, Fabrizio

    2005-01-01

    This grant is associated to a successful XMM-Newton-AO3 observational proposal to monitor the spectrum of the X-ray loud component of the recently discovered binary system IGR J16138-4848, to study the conditions of the accretion flows (and their evolution) in binary system. All four EPIC-PN and MOS observations of the target have now been performed (the last one of the 4, only 3 months ago). The four observations were logarithmically spaced, so to cover timescales from days to months. Data from all four pointings have now been reduced, using the XMM-Newton data reduction pipeline, and spectra and lightcurves from the target have been extracted. For the first three observations we have already performed the observation-by-observation data analysis, by fitting the single EPIC spectra with spectral models that include an intrinsic continuum power law (reduced at low energy by neutral absorption), a 6.4 keV iron emission line (detected in all spectra with varying intensity) and a Compton-reflection component. A Compton reflection component is also detected in all spectra, although at lower significance. The analysis of the fourth and last observation of our monitoring campaign has just recently begun. Next, we will (1) stack together the four observations of IGR J16138-4848, to obtain high-accuracy estimates of the average spectral parameters of this object; and then (2) proceed to the time-evolving analysis, of the three spectral parameters: (a) Gamma (the slope of the intrinsic continuum), (b) W(FeK), the equivalent width of the 6.4 keV Iron emission line, and (c) R, the relative amount of Compton reflection. Through this time-resolved spectroscopic analysis we hope to constrain (a) the physical state of the accreting matter and its relation with the X-ray output, and (b) the evolution of the accretion flow geometry, distribution and covering factor.

  17. First XMM-Newton Observations of an Isolated Neutron Star: RXJ0720.4-3125

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Mori, Kaya; Motch, Christian; Haberl, Frank; Zavlin, Vyacheslav E.; Zane, Silvia; Ramsay, Gavin; Cropper, Mark

    2000-01-01

    We present the high resolution spectrum of the isolated neutron star RXJ0720.4-3125, obtained with the Reflection Grating Spectrometer on XMM-Newton, complemented with the broad band spectrum observed with the EPIC PN camera. The spectrum appears smooth, with no evidence for strong photospheric absorption or emission features. We briefly discuss the implications of our failure to detect structure in the spectrum.

  18. The X-ray Absorber in the X-ray Transient NLS1 WPVS 007

    NASA Astrophysics Data System (ADS)

    Grupe, Dirk

    This proposal is for a funding request for an approved XMM-Newton observations of the X-ray transient Narrow-Line Seyfert 1 galaxy WPVS 007. The request is for 4 month of salary for the PI for one year in order to do the data analysis, publish the results, and attend an international AGN meeting. XMM will observe WPVS 007 in June 2010 simultaneously with HST, Chandra, and Swift. The goal is to establish a tight connection between the UV broad absorption line troughs found in FUSE observations and the strong partial covering absorber feature found by Swift. WPVS 007 showed a dramatic transformation into a Broad Absorption line QSO like AGN between a 1996 HST observation and a 2003 FUSE observation. Several Swift monitoring observations have suggested that the absorber may have started to disappear. Therefore it is crucial for our HST COS UV spectroscopy to know what the status of the X-ray absorber is. The XMM observation will provide a well-exposed X-ray spectrum even if WPVS 007 will be in a low flux state. This spectrum will enable us to put constraints on the absorption column density and covering fraction of the partial covering absorber.

  19. LoCuSS: comparison of observed X-ray and lensing galaxy cluster scaling relations with simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Y.-Y.; Finoguenov, A.; Böhringer, H.; Kneib, J.-P.; Smith, G. P.; Kneissl, R.; Okabe, N.; Dahle, H.

    2008-05-01

    The Local Cluster Substructure Survey (LoCuSS, Smith et al.) is a systematic multi-wavelength survey of more than 100 X-ray luminous galaxy clusters in the redshift range 0.14-0.3 selected from the ROSAT All Sky Survey. We used data on 37 LoCuSS clusters from the XMM-Newton archive to investigate the global scaling relations of galaxy clusters. The scaling relations based solely on the X-ray data (S-T, S-Y_X, P-Y_X, M-T, M-Y_X, M-M_gas, M_gas-T, L-T, L-Y_X, and L-M) obey empirical self-similarity and reveal no additional evolution beyond the large-scale structure growth. They also reveal up to 17 per cent segregation between all 37 clusters and non-cool core clusters. Weak lensing mass measurements are also available in the literature for 19 of the clusters with XMM-Newton data. The average of the weak lensing mass to X-ray based mass ratio is 1.09± 0.08, setting the limit of the non-thermal pressure support to 9 ± 8 per cent. The mean of the weak lensing mass to X-ray based mass ratio of these clusters is ~1, indicating good agreement between X-ray and weak lensing masses for most clusters, although with 31-51 per cent scatter. The scatter in the mass-observable relations (M-Y_X, M-M_gas, and M-T) is smaller using X-ray based masses than using weak lensing masses by a factor of 2. With the scaled radius defined by the YX profile - r500 Y_X,X, r500YX,wl, and r500Y_X,si, we obtain lower scatter in the weak lensing mass based mass-observable relations, which means the origin of the scatter is M^wl and MX instead of Y_X. The normalization of the M-YX relation using X-ray mass estimates is lower than the one from simulations by up to 18-24 per cent at 3σ significance. This agrees with the M-YX relation based on weak lensing masses, the normalization of the latter being ~20 per cent lower than the one from simulations at ~2σ significance. This difference between observations and simulations is also indicated in the M-M_gas and M-T relations. Despite the large

  20. XMM-Newton X-ray spectroscopy of the high-mass X-ray binary 4U 1700-37 at low flux

    NASA Astrophysics Data System (ADS)

    van der Meer, A.; Kaper, L.; di Salvo, T.; Méndez, M.; van der Klis, M.; Barr, P.; Trams, N. R.

    2005-03-01

    We present results of a monitoring campaign of the high-mass X-ray binary system 4U 1700-37/HD 153919, carried out with XMM-Newton in February 2001. The system was observed at four orbital phase intervals, covering 37% of one 3.41-day orbit. The lightcurve includes strong flares, commonly observed in this source. We focus on three epochs in which the data are not affected by photon pile up: the eclipse, the eclipse egress and a low-flux interval in the lightcurve around orbital phase φ ˜ 0.25. The high-energy part of the continuum is modelled as a direct plus a scattered component, each represented by a power law with identical photon index (α ˜ 1.4), but with different absorption columns. We show that during the low-flux interval the continuum is strongly reduced, probably due to a reduction of the accretion rate onto the compact object. A soft excess is detected in all spectra, consistent with either another continuum component originating in the outskirts of the system or a blend of emission lines. Many fluorescence emission lines from near-neutral species and discrete recombination lines from He- and H-like species are detected during eclipse and egress. The fluorescence Fe Kα line at 6.4 keV is very prominent; a second Kα line is detected at slightly higher energies (up to 6.7 keV) and a Kβ line at 7.1 keV. In the low-flux interval the Fe Kα line at 6.4 keV is strongly (factor ˜ 30) reduced in strength. In eclipse, the Fe Kβ/Kα ratio is consistent with a value of 0.13. In egress we initially measure a higher ratio, which can be explained by a shift in energy of the Fe K-edge to ~ 7.15 keV, which is consistent with moderately ionised iron, rather than neutral iron, as expected for the stellar wind medium. The detection of recombination lines during eclipse indicates the presence of an extended ionised region surrounding the compact object. The observed increase in strength of some emission lines corresponding to higher values of the ionisation

  1. VizieR Online Data Catalog: XMM-Newton slew survey Source Catalogue, version 2.0 (XMM-SSC, 2017)

    NASA Astrophysics Data System (ADS)

    XMM-SSC

    2018-01-01

    XMMSL2 is the second catalogue of X-ray sources found in slew data taken from the European Space Agency's (ESA) XMM-Newton observatory, and has been constructed by members of the XMM SOC and the EPIC consortium on behalf of ESA. This release uses results of work which has been carried out within the framework of the EXTraS project ("Exploring the X-ray variable and Transient Sky"), funded from the EU's Seventh Framework Programme under grant agreement no.607452. This is the first release of XMMSL2 which contains data taken between revolutions 314 and 2758. The previous catalogue was called XMMSL1_Delta6 and contained slews up to revolution 2441. The release includes two FITS files. A full catalogue (xmmsl2_total.fits.gz), containing 72352 detections found with a likelihood of DETML>8 and a "clean" catalogue (xmmsl2clean.fits.gz) where all known bad sources have been removed and where the detection limit has been raised to DETML>10.5 in general and DETML>15.5 for sources found in images with a higher than usual background. Efforts have been made to identify spurious detections and 3017 have been flagged as such in the full catalogue. (3 data files).

  2. NuSTAR + XMM-Newton monitoring of the neutron star transient AX J1745.6-2901

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Bianchi, S.; Muñoz-Darias, T.; Mori, K.; De, K.; Rau, A.; De Marco, B.; Hailey, C.; Tomsick, J.; Madsen, K. K.; Clavel, M.; Rahoui, F.; Lal, D. V.; Roy, S.; Stern, D.

    2018-01-01

    AX J1745.6-2901 is a high-inclination (eclipsing) transient neutron star (NS) low-mass X-ray binary showcasing intense ionized Fe K absorption. We present here the analysis of 11 XMM-Newton and 15 NuSTAR new data sets (obtained between 2013 and 2016), therefore tripling the number of observations of AX J1745.6-2901 in outburst. Thanks to simultaneous XMM-Newton and NuSTAR spectra, we greatly improve on the fitting of the X-ray continuum. During the soft state, the emission can be described by a disc blackbody (kT ∼ 1.1-1.2 keV and inner disc radius rDBB ∼ 14 km), plus hot (kT ∼ 2.2-3.0 keV) blackbody radiation with a small emitting radius (rBB ∼ 0.5 - 0.8 km) likely associated with the boundary layer or NS surface, plus a faint Comptonization component. Imprinted on the spectra are clear absorption features created by both neutral and ionized matter. Additionally, positive residuals suggestive of an emission Fe K α disc line and consistent with relativistic ionized reflection are present during the soft state, while such residuals are not significant during the hard state. The hard-state spectra are characterized by a hard (Γ ∼ 1.9-2.1) power law, showing no evidence for a high energy cut-off (kTe > 60-140 keV) and implying a small optical depth (τ < 1.6). The new observations confirm the previously witnessed trend of exhibiting strong Fe K absorption in the soft state that significantly weakens during the hard state. Optical (GROND) and radio (GMRT) observations suggest for AX J1745.6-2901 a standard broad-band spectral energy distribution as typically observed in accreting NSs.

  3. The x-ray luminous galaxy cluster population at 0.9 < z ≲ 1.6 as revealed by the XMM-Newton Distant Cluster Project

    NASA Astrophysics Data System (ADS)

    Fassbender, R.; Böhringer, H.; Nastasi, A.; Šuhada, R.; Mühlegger, M.; de Hoon, A.; Kohnert, J.; Lamer, G.; Mohr, J. J.; Pierini, D.; Pratt, G. W.; Quintana, H.; Rosati, P.; Santos, J. S.; Schwope, A. D.

    2011-12-01

    We present the largest sample to date of spectroscopically confirmed x-ray luminous high-redshift galaxy clusters comprising 22 systems in the range 0.9 as part of the XMM-Newton Distant Cluster Project (XDCP). All systems were initially selected as extended x-ray sources over 76.1 deg2 of non-contiguous deep archival XMM-Newton coverage, of which 49.4 deg2 are part of the core survey with a quantifiable selection function and 17.7 deg2 are classified as ‘gold’ coverage as the starting point for upcoming cosmological applications. Distant cluster candidates were followed up with moderately deep optical and near-infrared imaging in at least two bands to photometrically identify the cluster galaxy populations and obtain redshift estimates based on the colors of simple stellar population models. We test and calibrate the most promising redshift estimation techniques based on the R-z and z-H colors for efficient distant cluster identifications and find a good redshift accuracy performance of the z-H color out to at least z ˜ 1.5, while the redshift evolution of the R-z color leads to increasingly large uncertainties at z ≳ 0.9. Photometrically identified high-z systems are spectroscopically confirmed with VLT/FORS 2 with a minimum of three concordant cluster member redshifts. We present first details of two newly identified clusters, XDCP J0338.5+0029 at z = 0.916 and XDCP J0027.2+1714 at z = 0.959, and investigate the x-ray properties of SpARCS J003550-431224 at z = 1.335, which shows evidence for ongoing major merger activity along the line-of-sight. We provide x-ray properties and luminosity-based total mass estimates for the full sample of 22 high-z clusters, of which 17 are at z ⩾ 1.0 and seven populate the highest redshift bin at z > 1.3. The median system mass of the sample is M200 ≃ 2 × 1014 M⊙, while the probed mass range for the distant clusters spans approximately (0.7-7) × 1014 M⊙. The majority (>70%) of the x-ray selected clusters

  4. VizieR Online Data Catalog: XMM-Newton FOV brightest serendipitous sources (Marelli+, 2016)

    NASA Astrophysics Data System (ADS)

    Marelli, M.; Pizzocaro, D.; de, Luca A.; Gastaldello, F.; Caraveo, P.; Parkinson, P. S.

    2018-02-01

    Our deep XMM-Newton observation of PSR J2055+2539, lasting 136.2 ks, was performed on 2013 May 1 (ObsID 0724090101). The PN camera (Struder et al. 2001AJ....121.1413P) of the EPIC instrument was operating in Large Window mode, with a time resolution of 47.7 ms on a 27'x13' field of view (FOV). The high time resolution, combined with the large FOV, allows for both the timing analysis of the J2055 pulsar and the spatial analysis of the nebular structures. The Metal Oxide Semiconductor (MOS) detectors (Turner et al. 2001A&A...365L..27T) were set in full-frame mode (2.6 s time resolution on a 15' radius FOV). The thin optical filter was used for both PN and MOSs. We also analyzed XMM-Newton observations 0605470401 and 0605470901, taken on 2009 October 26 and on 2010 April 21, and lasting 24.5 and 17.9 ks, respectively. (1 data file).

  5. Physics and evolution of obscured X-ray sources: a multiwavelength approach

    NASA Astrophysics Data System (ADS)

    Brusa, Marcella

    2004-06-01

    Observations at high energies yield important information on the structure and nature of AGN; when coupled with deep optical and near-infrared (photometric and spectroscopic) follow-up, they provide constraints on the mass of the growing black holes and, therefore, are essential to better understand the nature of the various components of the X-ray background light and can be used as test for the accretion paradigm. Conversely, optical and near-infrared surveys of galaxies are crucial to discriminate between different cosmological scenarios (e.g. hierarchical or monolithic growth of the structures) and, thus, to recover the galaxy evolution path. In this framework, in the first part of the thesis, I will discuss the main results from an extensive program of multiwavelength observations of hard X-ray selected sources serendipitously discovered in XMM-Newton fields over ~1 deg^2 (the HELLAS2XMM survey). With a complementary approach to that of hard X-ray surveys, in order to investigate the link between nuclear activity and the galaxy formation, in the second part of the thesis I will present XMM-Newton and Chandra observations of photometric and spectroscopically selected Extremely Red Objects (EROs).

  6. How fast can an AGN shut down? XMM-Newton observation of IC 2497

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin

    2008-10-01

    We propose to observe IC 2497 with XMM-Newton to detect, or rule out, an obscured AGN that might account for the illumination of `Hanny's Voorwerp'. The Voorwerp is a highly ionised cloud of gas extended over 15-25 kpc next to the spiral galaxy IC 2497. There is no source of ionisation within the Voorwerp, implicating a luminous 1E44 erg/s AGN in IC 2497 as the source. Swift XRT observations do not yield a detection, allowing the presence of a highly obscured, sufficiently luminous AGN. With 34 ksec of XMM observations, we could detect an obscured AGN down to 1E42 erg/s. We can thus either locate an obscured AGN, or we can for the first time constrain the shutdown time scale for a powerful AGN, as it drops by a factor of 100 in luminosity in 1E5 years.

  7. Chandra and XMM-Newton Observations of the Abell 3395/Abell 3391 Intercluster Filament

    NASA Astrophysics Data System (ADS)

    Alvarez, Gabriella E.; Randall, Scott W.; Bourdin, Hervé; Jones, Christine; Holley-Bockelmann, Kelly

    2018-05-01

    We present Chandra and XMM-Newton X-ray observations of the Abell 3391/Abell 3395 intercluster filament. It has been suggested that the galaxy clusters Abell 3395, Abell 3391, and the galaxy group ESO-161 -IG 006 located between the two clusters, are in alignment along a large-scale intercluster filament. We find that the filament is aligned close to the plane of the sky, in contrast to previous results. We find a global projected filament temperature kT = {4.45}-0.55+0.89 keV, electron density {n}e={1.08}-0.05+0.06× {10}-4 cm‑3, and {M}gas}={2.7}-0.1+0.2 × {10}13 M ⊙. The thermodynamic properties of the filament are consistent with that of the intracluster medium (ICM) of Abell 3395 and Abell 3391, suggesting that the filament emission is dominated by ICM gas that has been tidally disrupted during an early stage merger between these two clusters. We present temperature, density, entropy, and abundance profiles across the filament. We find that the galaxy group ESO-161 may be undergoing ram-pressure-stripping in the low-density environment at or near the virial radius of both clusters, due to its rapid motion through the filament.

  8. VizieR Online Data Catalog: XMM-Newton and Chandra monitoring of Sgr A* (Ponti+, 2015)

    NASA Astrophysics Data System (ADS)

    Ponti, G.; de, Marco B.; Morris, M. R.; Merloni, A.; Munoz-Darias, T.; Clavel, M.; Haggard, D.; Zhang, S.; Nandra, K.; Gillessen, S.; Mori, K.; Neilsen, J.; Rea, N.; Degenaar, N.; Terrier, R.; Goldwurm, A.

    2018-01-01

    As of 2014 November 11 the XMM-Newton archive contains 37 public observations that can be used for our analysis of Sgr A*. In addition, we consider four new observations aimed at monitoring the interaction between the G2 object and Sgr A*, performed in fall 2014 (see Table A4). A total of 41 XMM-Newton data sets are considered in this work. All the 46 Chandra observations accumulated between 1999 and 2011 and analysed here are obtained with the ACIS-I camera without any gratings on (see Table A1). From 2012 onwards, data from the ACIS-S camera were also employed. The 2012 Chandra "X-ray Visionary Project" (XVP) is composed of 38 High-Energy Transmission Grating (HETG) observations with the ACIS-S camera at the focus (Nowak et al. 2012ApJ...759...95N; Neilsen et al. 2013ApJ...774...42N; 2015ApJ...799..199N; Wang et al. 2013Sci...341..981W; see Table A2). The first two observations of the 2013 monitoring campaign were performed with the ACIS-I instrument, while the ACIS-S camera was employed in all the remaining observations, after the outburst of SGR J1745-2900 on 2013 April 25. Three observations between 2013 May and July were performed with the HETG on, while all the remaining ones do not employ any gratings (see Table A2). (4 data files).

  9. Planetary X-ray studies: past, present and future

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, Graziella

    2016-07-01

    Our solar system is a fascinating physics laboratory and X-ray observations are now firmly established as a powerful diagnostic tool of the multiple processes taking place in it. The science that X-rays reveal encompasses solar, space plasma and planetary physics, and the response of bodies in the solar system to the impact of the Sun's activity. This talk will review what we know from past observations and what we expect to learn in the short, medium and long term. Observations with Chandra and XMM-Newton have demonstrated that the origin of Jupiter's bright soft X-ray aurorae lies in the Charge eXchange (CX) process, likely to involve the interaction with atmospheric neutrals of local magnetospheric ions, as well as those carried in the solar wind. At higher energies electron bremsstrahlung is thought to be the X-ray emitting mechanism, while the whole planetary disk acts as a mirror for the solar X-ray flux via Thomson and fluorescent scattering. This 'X-ray mirror' phenomenon is all that is observed from Saturn's disk, which otherwise lacks X-ray auroral features. The Earth's X-ray aurora is bright and variable and mostly due to electron bremsstrahlung and line emission from atmospheric species. Un-magnetised planets, Venus and Mars, do not show X-ray aurorae but display the interesting combination of mirroring the solar X-ray flux and producing X-rays by Solar Wind Charge eXchange (SWCX) in their exospheres. These processes respond to different solar stimulation (photons and solar wind plasma respectively) hence their relative contributions are seen to vary according to the Sun's output. Present and future of planetary X-ray studies are very bright. We are preparing for the arrival of the Juno mission at Jupiter this summer and for coordinated observations with Chandra and XMM-Newton on the approach and later during Juno's orbital phase. These will allow direct correlation of the local plasma conditions with the X-ray emissions and the establishment of the

  10. The very faint hard state of the persistent neutron star X-ray binary SLX 1737-282 near the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Armas Padilla, M.; Ponti, G.; De Marco, B.; Muñoz-Darias, T.; Haberl, F.

    2018-01-01

    We report on a detailed study of the spectral and temporal properties of the neutron star low-mass X-ray binary SLX 1737-282, which is located only ∼1° away from Sgr A*. The system is expected to have a short orbital period, even within the ultracompact regime, given its persistent nature at low X-ray luminosities and the long duration thermonuclear burst that it has displayed. We have analysed a Suzaku (18 ks) observation and an XMM-Newton (39 ks) observation taken 7 yr apart. We infer (0.5-10 keV) X-ray luminosities in the range of 3-6 × 1035ergs-1, in agreement with previous findings. The spectra are well described by a relatively cool (kTbb = 0.5 keV) blackbody component plus a Comptonized emission component with Γ ∼ 1.5-1.7. These values are consistent with the source being in a faint hard state, as confirmed by the ∼20 per cent fractional root-mean-square amplitude of the fast variability (0.1-7 Hz) inferred from the XMM-Newton data. The electron temperature of the corona is ≳7 keV for the Suzaku observation, but it is measured to be as low as ∼2 keV in the XMM-Newton data at higher flux. The latter is significantly lower than expected for systems in the hard state. We searched for X-ray pulsations and imposed an upper limit to their semi-amplitude of 2 per cent (0.001-7 Hz). Finally, we investigated the origin of the low-frequency variability emission present in the XMM-Newton data and ruled out an absorption dip origin. This constraint the orbital inclination of the system to ≲65° unless the orbital period is longer than 11 h (i.e. the length of the XMM-Newton observation).

  11. Development of High Resolution Hard X-Ray Telescope with Multilayer Coatings

    NASA Technical Reports Server (NTRS)

    Brinton, John C. (Technical Monitor); Gorenstein, Paul

    2004-01-01

    The major objective of this program is the development of a focusing hard X-ray telescope with moderately high angular resolution, i .e. comparable to the telescopes of XMM-Newton. The key ingredients of the telescope are a depth graded multilayer coatings and electroformed nickel substrates that are considerably lighter weight than those of previous missions such as XMM-Newton, which have had conventional single metal layer reflective coatings and have operated at much lower energy X-rays. The ultimate target mission for this technology is the Hard X-Ray Telescope (HXT) of the Constellation X-Ray Mission. However, it is applicable to potential SMEX and MIDEX programs as well.

  12. An XMM-Newton and NuSTAR Study of IGR J18214-1318: A Non-pulsating High-mass X-Ray Binary with a Neutron Star

    NASA Astrophysics Data System (ADS)

    Fornasini, Francesca M.; Tomsick, John A.; Bachetti, Matteo; Krivonos, Roman A.; Fürst, Felix; Natalucci, Lorenzo; Pottschmidt, Katja; Wilms, Jörn

    2017-05-01

    IGR J18214-1318, a Galactic source discovered by the International Gamma-Ray Astrophysics Laboratory, is a high-mass X-ray binary (HMXB) with a supergiant O-type stellar donor. We report on the XMM-Newton and NuSTAR observations that were undertaken to determine the nature of the compact object in this system. This source exhibits high levels of aperiodic variability, but no periodic pulsations are detected with a 90% confidence upper limit of 2% fractional rms between 0.00003-88 Hz, a frequency range that includes the typical pulse periods of neutron stars (NSs) in HMXBs (0.1-103 s). Although the lack of pulsations prevents us from definitively identifying the compact object in IGR J18214-1318, the presence of an exponential cutoff with e-folding energy ≲ 30 {keV} in its 0.3-79 keV spectrum strongly suggests that the compact object is an NS. The X-ray spectrum also shows a Fe Kα emission line and a soft excess, which can be accounted for by either a partial-covering absorber with {N}{{H}}≈ {10}23 cm-2, which could be due to the inhomogeneous supergiant wind, or a blackbody component with {kT}={1.74}-0.05+0.04 keV and {R}{BB}≈ 0.3 km, which may originate from NS hot spots. Although neither explanation for the soft excess can be excluded, the former is more consistent with the properties observed in other supergiant HMXBs. We compare IGR J18214-1318 to other HMXBs that lack pulsations or have long pulsation periods beyond the range covered by our observations.

  13. X-ray emission processes in stars and their immediate environment

    PubMed Central

    Testa, Paola

    2010-01-01

    A decade of X-ray stellar observations with Chandra and XMM-Newton has led to significant advances in our understanding of the physical processes at work in hot (magnetized) plasmas in stars and their immediate environment, providing new perspectives and challenges, and in turn the need for improved models. The wealth of high-quality stellar spectra has allowed us to investigate, in detail, the characteristics of the X-ray emission across the Hertzsprung-Russell (HR) diagram. Progress has been made in addressing issues ranging from classical stellar activity in stars with solar-like dynamos (such as flares, activity cycles, spatial and thermal structuring of the X-ray emitting plasma, and evolution of X-ray activity with age), to X-ray generating processes (e.g., accretion, jets, magnetically confined winds) that were poorly understood in the preChandra/XMM-Newton era. I will discuss the progress made in the study of high energy stellar physics and its impact in a wider astrophysical context, focusing on the role of spectral diagnostics now accessible. PMID:20360562

  14. The XMM-Newton Science Archive and its integration into ESASky

    NASA Astrophysics Data System (ADS)

    Loiseau, N.; Baines, D.; Colomo, E.; Giordano, F.; Merín, B.; Racero, E.; Rodríguez, P.; Salgado, J.; Sarmiento, M.

    2017-07-01

    We describe the variety of functionalities of the XSA (XMM-Newton Science Archive) that allow to search and access the XMM-Newton data and catalogues. The web interface http://nxsa.esac.esa.int/ is very flexible allowing different kinds of searches by a single position or target name, or by a list of targets, with several selecting options (target type, text in the abstract, etc.), and with several display options. The resulting data can be easily broadcast to Virtual Observatory (VO) facilities for a first look analysis, or for cross-matching the results with info from other observatories. Direct access via URL or command line are also possible for scripts usage, or to link XMM-Newton data from other interfaces like Vizier, ADS, etc. The full metadata content of the XSA can be queried through the TAP (Table access Protocol) via ADQL (Astronomical Data Query Language). We present also the roadmap for future improvements of the XSA including the integration of the Upper Limit server, the on-the-fly data analysis, and the interactive visualization of EPIC sources spectra and light curves and RGS spectra, among other advanced features. Within this modern visualization philosophy XSA is also being integrated into ESASky (http://sky.esa.int). ESASky is the science-driven multi-wavelength discovery portal for all the ESA Astronomy Missions (Integral, HST, Herschel, Suzaku, Planck, etc.), and other space and ground telescope data. The system offers progressive multi-resolution all-sky projections of full mission datasets using HiPS, a new generation of HEALPix projections developed by CDS, precise footprints to connect to individual observations, and direct access to science-ready data from the underlying mission specific science archives. XMM-Newton EPIC and OM all-sky HiPS maps, catalogues and links to the observations are available through ESASky.

  15. Chemical Evolution in Sersic 159-03 Observed with Xmm-Newton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Plaa, Jelle; Werner, N.; Bykov, A.M.

    2006-03-10

    Using a new long X-ray observation of the cluster of galaxies Sersic 159-03 with XMM-Newton, we derive radial temperature and abundance profiles using single- and multi-temperature models. The fits to the EPIC and RGS spectra prefer multi-temperature models especially in the core. The radial profiles of oxygen and iron measured with EPIC/RGS and the line profiles in RGS suggest that there is a dip in the O/Fe ratio in the centre of the cluster compared to its immediate surroundings. A possible explanation for the large scale metallicity distribution is that SNIa and SNII products are released in the ICM throughmore » ram-pressure stripping of in-falling galaxies. This causes a peaked metallicity distribution. In addition, SNIa in the central cD galaxy enrich mainly the centre of the cluster with iron. This excess of SNIa products is consistent with the low O/Fe ratio we detect in the centre of the cluster. We fit the abundances we obtain with yields from SNIa, SNII and Population-III stars to derive the clusters chemical evolution. We find that the measured abundance pattern does not require a Population-III star contribution. The relative contribution of the number of SNIa with respect to the total number of SNe which enrich the ICM is about 25-50%. Furthermore, we discuss the possible presence of a non-thermal component in the EPIC spectra. A potential source of this non-thermal emission can be inverse-Compton scattering between Cosmic Microwave Background (CMB) photons and relativistic electrons, which are accelerated in bow shocks associated with ram-pressure stripping of in-falling galaxies.« less

  16. Thermal and Non-thermal Nature of the Soft Excess Emission from Sersic 159-03 observed with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; Lieu, Richard; Mittaz, Jonathan P. D.; Kaastra, Jelle S.; Nevalainen, Jukka

    2005-01-01

    Several nearby clusters exhibit an excess of soft X-ray radiation which cannot be attributed to the hot virialized intra-cluster medium. There is no consensus to date on the origin of the excess emission: it could be either of thermal origin, or due to an inverse Compton scattering of the cosmic microwave background. Using high resolution XMM-Newton data of Sersic 159-03 we first show that strong soft excess emission is detected out to a radial distance of 0.9 Mpc. The data are interpreted using the two viable models available, i.e., by invoking a warm reservoir of thermal gas, or relativistic electrons which are part of a cosmic ray population. The thermal model leads to a better goodness-of-fit, and the emitting warm gas must be high in mass and low in metallicity.

  17. Deciphering the X-ray Emission of the Nearest Herbig Ae Star

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.

    2004-01-01

    In this research program, we obtained and analyzed an X-ray observation of the young nearby intermediate mass pre-main sequence star HD 104237 using the XMM-Newton space-based observatory. The observation was obtained on 17 Feb. 2002. This observation yielded high-quality X-ray images, spectra, and timing data which provided valuable information on the physical processes responsible for the X-ray emission. This star is a member of the group of so-called Herbig Ae/Be stars, which are young intermediate mass (approx. 2 - 4 solar masses) pre-main sequence (PMS) stars a few million years old that have not yet begun core hydrogen burning. The objective of the XMM-Newton observation was to obtain higher quality data than previously available in order to constrain possible X-ray emission mechanisms. The origin of the X-ray emission from Herbig Ae/Be stars is not yet known. These intermediate mass PMS stars lie on radiative tracks and are not expected to emit X-rays via solar-like magnetic processes, nor are their winds powerful enough to produce X-rays by radiative wind shocks as in more massive O-type stars. The emission could originate in unseen low-mass companions, or it may be intrinsic to the Herbig stars themselves if they still have primordial magnetic fields or can sustain magnetic activity via a nonsolar dynamo.

  18. Recycling Matter in the Universe. X-Ray observations of SBS1150+599A (PN 6135.9+55.9)

    NASA Technical Reports Server (NTRS)

    Tovmassian, Gagik; Tomsick, John; Napiwotzki, Ralf; Yungelson, Lev; Stasinska, Grazyna; Pena, Miriam; Richer, Michael

    2008-01-01

    We present X-ray observations of the close binary nucleus of the planetary nebula SBS 1150+599A obtained with the XMM-Newton satellite. Only one component of the binary can be observed in optical-UV. New X-ray observations show that the previously invisible component is a very hot compact star. This finding allows us to deduce rough values for the basic parameters of the binary. With a high probability the total mass of the system exceeds Chandrasekhar limit and makes the SBS1150+599A one of the best candidate for a supernova type Ia progenitor.

  19. UNBIASED CORRECTION RELATIONS FOR GALAXY CLUSTER PROPERTIES DERIVED FROM CHANDRA AND XMM-NEWTON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Hai-Hui; Li, Cheng-Kui; Chen, Yong

    2015-01-20

    We use a sample of 62 clusters of galaxies to investigate the discrepancies between the gas temperature and total mass within r {sub 500} from XMM-Newton and Chandra data. Comparisons of the properties show that (1) both the de-projected and projected temperatures determined by Chandra are higher than those of XMM-Newton and there is a good linear relationship for the de-projected temperatures: T {sub Chandra} = 1.25 × T {sub XMM}–0.13. (2) The Chandra mass is much higher than the XMM-Newton mass with a bias of 0.15 and our mass relation is log{sub 10} M {sub Chandra} = 1.02 × log{sub 10}more » M {sub XMM}+0.15. To explore the reasons for the discrepancy in mass, we recalculate the Chandra mass (expressed as M{sub Ch}{sup mo/d}) by modifying its temperature with the de-projected temperature relation. The results show that M{sub Ch}{sup mo/d} is closer to the XMM-Newton mass with the bias reducing to 0.02. Moreover, M{sub Ch}{sup mo/d} are corrected with the r {sub 500} measured by XMM-Newton and the intrinsic scatter is significantly improved with the value reducing from 0.20 to 0.12. These mean that the temperature bias may be the main factor causing the mass bias. Finally, we find that M{sub Ch}{sup mo/d} is consistent with the corresponding XMM-Newton mass derived directly from our mass relation at a given Chandra mass. Thus, the de-projected temperature and mass relations can provide unbiased corrections for galaxy cluster properties derived from Chandra and XMM-Newton.« less

  20. VizieR Online Data Catalog: XMM-Newton point-source catalogue of the SMC (Sturm+, 2013)

    NASA Astrophysics Data System (ADS)

    Sturm, R.; Haberl, F.; Pietsch, W.; Ballet, J.; Hatzidimitriou, D.; Buckley, D. A. H.; Coe, M.; Ehle, M.; Filipovic, M. D.; La Palombara, N.; Tiengo, A.

    2013-07-01

    The XMM-Newton survey of the Small Magellanic Cloud (SMC) yields a complete coverage of the bar and eastern wing in the 0.2-12.0keV band. This catalogue comprises 3053 unique X-ray point sources and sources with moderate extent that have been reduced from 5236 individual detections found in observations between April 2000 and April 2010. Sources have a median position uncertainty of 1.3" (1σ) and limiting fluxes down to ~1*10-14erg/s/cm2 in the 0.2-4.5keV band, corresponding to 5*1033erg/s for sources in the SMC. Sources have been classified using hardness ratios, X-ray variability, and their multi-wavelength properties. In addition to the main-field (5.58deg2) available outer fields have been included in the catalogue, yielding a total field area of 6.32deg2. X-ray sources with high extent (>40", e.g. supernova remnants and galaxy cluster) have been presented by Haberl et al. (2012, Cat. J/A+A/545/A128) (2 data files).

  1. An XMM-Newton Study of the Mixed-morphology Supernova Remnant G346.6-0.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auchettl, Katie; Lopez, Laura; Ng, C-Y.

    We present an X-ray imaging and spectroscopic study of the molecular cloud interacting mixed-morphology supernova remnant G346.6–0.2 using XMM-Newton . The X-ray spectrum of the remnant is well described by a recombining plasma that most likely arises from adiabatic cooling and has subsolar abundances of Mg, Si, and S. Our fits also suggest the presence of either an additional power-law component with a photon index of ∼2 or an additional thermal component with a temperature of ∼2.0 keV. We investigate the possible origin of this component and suggest that it could arise from either the Galactic ridge X-ray emission, anmore » unidentified pulsar wind nebula, or X-ray synchrotron emission from high-energy particles accelerated at the shock. However, deeper, high-resolution observations of this object are needed to shed light on the presence and origin of this feature. Based on its morphology, its Galactic latitude, the density of the surrounding environment, and its association with a dense molecular cloud, G346.6–0.2 most likely arises from a massive progenitor that underwent core collapse.« less

  2. Revival of the Magnetar PSR J1622–4950: Observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR

    NASA Astrophysics Data System (ADS)

    Camilo, F.; Scholz, P.; Serylak, M.; Buchner, S.; Merryfield, M.; Kaspi, V. M.; Archibald, R. F.; Bailes, M.; Jameson, A.; van Straten, W.; Sarkissian, J.; Reynolds, J. E.; Johnston, S.; Hobbs, G.; Abbott, T. D.; Adam, R. M.; Adams, G. B.; Alberts, T.; Andreas, R.; Asad, K. M. B.; Baker, D. E.; Baloyi, T.; Bauermeister, E. F.; Baxana, T.; Bennett, T. G. H.; Bernardi, G.; Booisen, D.; Booth, R. S.; Botha, D. H.; Boyana, L.; Brederode, L. R. S.; Burger, J. P.; Cheetham, T.; Conradie, J.; Conradie, J. P.; Davidson, D. B.; De Bruin, G.; de Swardt, B.; de Villiers, C.; de Villiers, D. I. L.; de Villiers, M. S.; de Villiers, W.; De Waal, C.; Dikgale, M. A.; du Toit, G.; du Toit, L. J.; Esterhuyse, S. W. P.; Fanaroff, B.; Fataar, S.; Foley, A. R.; Foster, G.; Fourie, D.; Gamatham, R.; Gatsi, T.; Geschke, R.; Goedhart, S.; Grobler, T. L.; Gumede, S. C.; Hlakola, M. J.; Hokwana, A.; Hoorn, D. H.; Horn, D.; Horrell, J.; Hugo, B.; Isaacson, A.; Jacobs, O.; Jansen van Rensburg, J. P.; Jonas, J. L.; Jordaan, B.; Joubert, A.; Joubert, F.; Józsa, G. I. G.; Julie, R.; Julius, C. C.; Kapp, F.; Karastergiou, A.; Karels, F.; Kariseb, M.; Karuppusamy, R.; Kasper, V.; Knox-Davies, E. C.; Koch, D.; Kotzé, P. P. A.; Krebs, A.; Kriek, N.; Kriel, H.; Kusel, T.; Lamoor, S.; Lehmensiek, R.; Liebenberg, D.; Liebenberg, I.; Lord, R. T.; Lunsky, B.; Mabombo, N.; Macdonald, T.; Macfarlane, P.; Madisa, K.; Mafhungo, L.; Magnus, L. G.; Magozore, C.; Mahgoub, O.; Main, J. P. L.; Makhathini, S.; Malan, J. A.; Malgas, P.; Manley, J. R.; Manzini, M.; Marais, L.; Marais, N.; Marais, S. J.; Maree, M.; Martens, A.; Matshawule, S. D.; Matthysen, N.; Mauch, T.; McNally, L. D.; Merry, B.; Millenaar, R. P.; Mjikelo, C.; Mkhabela, N.; Mnyandu, N.; Moeng, I. T.; Mokone, O. J.; Monama, T. E.; Montshiwa, K.; Moss, V.; Mphego, M.; New, W.; Ngcebetsha, B.; Ngoasheng, K.; Niehaus, H.; Ntuli, P.; Nzama, A.; Obies, F.; Obrocka, M.; Ockards, M. T.; Olyn, C.; Oozeer, N.; Otto, A. J.; Padayachee, Y.; Passmoor, S.; Patel, A. A.; Paula, S.; Peens-Hough, A.; Pholoholo, B.; Prozesky, P.; Rakoma, S.; Ramaila, A. J. T.; Rammala, I.; Ramudzuli, Z. R.; Rasivhaga, M.; Ratcliffe, S.; Reader, H. C.; Renil, R.; Richter, L.; Robyntjies, A.; Rosekrans, D.; Rust, A.; Salie, S.; Sambu, N.; Schollar, C. T. G.; Schwardt, L.; Seranyane, S.; Sethosa, G.; Sharpe, C.; Siebrits, R.; Sirothia, S. K.; Slabber, M. J.; Smirnov, O.; Smith, S.; Sofeya, L.; Songqumase, N.; Spann, R.; Stappers, B.; Steyn, D.; Steyn, T. J.; Strong, R.; Struthers, A.; Stuart, C.; Sunnylall, P.; Swart, P. S.; Taljaard, B.; Tasse, C.; Taylor, G.; Theron, I. P.; Thondikulam, V.; Thorat, K.; Tiplady, A.; Toruvanda, O.; van Aardt, J.; van Balla, T.; van den Heever, L.; van der Byl, A.; van der Merwe, C.; van der Merwe, P.; van Niekerk, P. C.; van Rooyen, R.; van Staden, J. P.; van Tonder, V.; van Wyk, R.; Wait, I.; Walker, A. L.; Wallace, B.; Welz, M.; Williams, L. P.; Xaia, B.; Young, N.; Zitha, S.

    2018-04-01

    New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622–4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100× larger than during its dormant state. The X-ray flux one month after reactivation was at least 800× larger than during quiescence, and has been decaying exponentially on a 111 ± 19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3–6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6–8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation.

  3. GRS 1739-278 Observed at Very Low Luminosity with XMM-Newton and NuSTAR

    NASA Astrophysics Data System (ADS)

    Fürst, F.; Tomsick, J. A.; Yamaoka, K.; Dauser, T.; Miller, J. M.; Clavel, M.; Corbel, S.; Fabian, A.; García, J.; Harrison, F. A.; Loh, A.; Kaaret, P.; Kalemci, E.; Migliari, S.; Miller-Jones, J. C. A.; Pottschmidt, K.; Rahoui, F.; Rodriguez, J.; Stern, D.; Stuhlinger, M.; Walton, D. J.; Wilms, J.

    2016-12-01

    We present a detailed spectral analysis of XMM-Newton and NuSTAR observations of the accreting transient black hole GRS 1739-278 during a very faint low hard state at ˜0.02% of the Eddington luminosity (for a distance of 8.5 kpc and a mass of 10 {M}⊙ ). The broadband X-ray spectrum between 0.5 and 60 keV can be well-described by a power-law continuum with an exponential cutoff. The continuum is unusually hard for such a low luminosity, with a photon index of Γ = 1.39 ± 0.04. We find evidence for an additional reflection component from an optically thick accretion disk at the 98% likelihood level. The reflection fraction is low, with {{ R }}{refl}={0.043}-0.023+0.033. In combination with measurements of the spin and inclination parameters made with NuSTAR during a brighter hard state by Miller et al., we seek to constrain the accretion disk geometry. Depending on the assumed emissivity profile of the accretion disk, we find a truncation radius of 15-35 {R}{{g}} (5-12 {R}{ISCO}) at the 90% confidence limit. These values depend strongly on the assumptions and we discuss possible systematic uncertainties.

  4. Suzaku Observation of Strong Fluorescent Iron Line Emission from the Young Stellar Object V1647 Ori during Its New X-ray Outburst

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Grosso, Nicolas; Kastner, Joel H.; Weintraub, David A.; Richmond, Michael

    2009-01-01

    The Suzaku X-ray satellite observed the young stellar object V1647 Ori on 2008 October 8 during the new mass accretion outburst reported in August 2008. During the 87 ksec observation with a net exposure of 40 ks, V1647 Ori showed a. high level of X-ray emission with a gradual decrease in flux by a factor of 5 and then displayed an abrupt flux increase by an order of magnitude. Such enhanced X-ray variability was also seen in XMM-Newton observations in 2004 and 2005 during the 2003-2005 outburst, but has rarely been observed for other young stellar objects. The spectrum clearly displays emission from Helium-like iron, which is a signature of hot plasma (kT approx.5 keV). It also shows a fluorescent iron Ka line with a remarkably large equivalent width of approx. 600 eV. Such a, large equivalent width indicates that a part of the incident X-ray emission that irradiates the circumstellar material and/or the stellar surface is hidden from our line of sight. XMM-Newton spectra during the 2003-2005 outburst did not show a strong fluorescent iron Ka line ; so that the structure of the circumstellar gas very close to the stellar core that absorbs and re-emits X-ray emission from the central object may have changed in between 2005 and 2008. This phenomenon may be related to changes in the infrared morphology of McNeil's nebula between 2004 and 2008.

  5. Discovery of gamma- and X-ray pulsations from the young and energetic PSR J1357$-$6429 with Fermi and XMM-Newton

    DOE PAGES

    Lemoine-Goumard, M.; Zavlin, V. E.; Grondin, M. -H.; ...

    2011-09-07

    Context. Since the launch of the Fermi satellite, the number of known gamma-ray pulsars has increased tenfold. Most gamma-ray detected pulsars are young and energetic, and many are associated with TeV sources. PSR J1357-6429 is a high spin-down power pulsar (È = 3.1 × 1036 erg s -1), discovered during the Parkes multibeam survey of the Galactic plane, with significant timing noise typical of very young pulsars. In the very-high-energy domain (E > 100 GeV), H.E.S.S. has reported the detection of the extended source HESS J1356-645 (intrinsic Gaussian width of 12') whose centroid lies 7' from PSR J1357-6429. Aims. Wemore » search for gamma- and X-ray pulsations from this pulsar, characterize the neutron star emission and explore the environment of PSR J1357-6429. Methods. Using a rotational ephemeris obtained with 74 observations made with the Parkes telescope at 1.4 GHz, we phase-fold more than two years of gamma-ray data acquired by the Large Area Telescope on-board Fermi as well as those collected with XMM-Newton, and perform gamma-ray spectral modeling. Results. Significant gamma- and X-ray pulsations are detected from PSR J1357-6429. The light curve in both bands shows one broad peak. Gamma-ray spectral analysis of the pulsed emission suggests that it is well described by a simple power-law of index 1.5 ± 0.3 stat ± 0.3 syst with an exponential cut-off at 0.8 ± 0.3 stat ± 0.3 syst GeV and an integral photon flux above 100 MeV of (6.5 ± 1.6 stat ± 2.3 syst) × 10 -8 cm -2 s -1. The X-ray spectra obtained from the new data provide results consistent with previous work. Upper limits on the gamma-ray emission from its potential pulsar wind nebula (PWN) are also reported. Conclusions. Assuming a distance of 2.4 kpc, the Fermi LAT energy flux yields a gamma-ray luminosity for PSR J1357-6429 of L γ = (2.13 ± 0.25 stat ± 0.83 syst) × 1034 erg s -1, consistent with an relationship. The Fermi non-detection of the pulsar wind nebula associated with HESS J1356

  6. A medium-deep Chandra and Subaru survey of the 13-h XMM/ROSAT deep survey area

    NASA Astrophysics Data System (ADS)

    McHardy, I. M.; Gunn, K. F.; Newsam, A. M.; Mason, K. O.; Page, M. J.; Takata, T.; Sekiguchi, K.; Sasseen, T.; Cordova, F.; Jones, L. R.; Loaring, N.

    2003-07-01

    We present the results of a Chandra ACIS-I survey of a high-latitude region at 13 h +38° which was earlier observed with ROSAT and which has recently been observed by XMM-Newton for 200 ks. XMM-Newton will provide good-quality X-ray spectra for over 200 sources with fluxes around the knee of the log N/ log S, which are responsible for the bulk of the X-ray background. The main aim of the Chandra observations is to provide arcsecond, or better, positions, and hence reliable identifications, for the XMM-Newton sources. The ACIS-I observations were arranged in a mosaic of four 30-ks pointings, covering almost all of the 15-arcmin radius XMM-Newton/ROSAT field. We detect 214 Chandra sources above a Cash likelihood statistic of 25, which approximates to 5σ significance, to a limiting flux of ~1.3 × 10-15 erg cm-2 s-1 (0.5-7 keV). Optical counterparts are derived from a Subaru SuprimeCam image reaching to R~ 27. The very large majority of the Chandra sources have an optical counterpart, with the distribution peaking at 23 < R < 24, although 14 have no counterpart to R= 27. The fraction of X-ray sources with no identification brighter than R= 27 is similar to that found in deeper Chandra surveys. The majority of the identifications are with galaxies. As found in other Chandra surveys, there is a very wide range of optical magnitudes for a given X-ray flux, implying a range of emission mechanisms, and many sources have high LX/Lopt ratios, implying absorption at moderate redshift. Comparison with the earlier ROSAT survey shows that the accuracy of the ROSAT positions agrees very well with the predictions from simulations by McHardy et al. and that the large majority of the identifications were correct.

  7. An Archival Chandra and XMM-Newton Survey of Type 2 Quasars

    NASA Technical Reports Server (NTRS)

    Jia, Jianjun; Ptak, Andrew Francis; Heckman, Timothy; Zakamska, Nadia L.

    2013-01-01

    In order to investigate obscuration in high-luminosity type 2 active galactic nuclei (AGNs), we analyzed Chandra and XMM-Newton archival observations for 71 type 2 quasars detected at 0.05 < z < 0.73, which were selected based on their [O III] lambda5007 emission lines. For 54 objects with good spectral fits, the observed hard X-ray luminosity ranges from 2 × 10(exp 41) to 5.3 × 10(exp 44) erg s(exp -1), with a median of 1.1 × 10(exp 43) erg s(exp -1). We find that the means of the column density and photon index of our sample are log N(sub H) = 22.9 cm(exp -2) and gamma = 1.87, respectively. From simulations using a more physically realistic model, we find that the absorbing column density estimates based on simple power-law models significantly underestimate the actual absorption in approximately half of the sources. Eleven sources show a prominent Fe K alpha emission line (EW>100 eV in the rest frame) and we detect this line in the other sources through a joint fit (spectral stacking). The correlation between the Fe K alpha and [O III] fluxes and the inverse correlation of the equivalent width of the Fe Ka line with the ratio of hard X-ray and [O III] fluxes is consistent with previous results for lower luminosity Seyfert 2 galaxies. We conclude that obscuration is the cause of the weak hard X-ray emission rather than intrinsically low X-ray luminosities. We find that about half of the population of optically selected type 2 quasars are likely to be Compton thick. We also find no evidence that the amount of X-ray obscuration depends on the AGN luminosity (over a range of more than three orders of magnitude in luminosity).

  8. Buoyancy, Uplift, and AGN Feedback - Deep Chandra and XMM-Newton Observations of the Radio Outbursts in NGC 4472 and NGC 1399

    NASA Astrophysics Data System (ADS)

    Kraft, R.; Su, Y.; Gendron Marsolais, M.; Roediger, E.; Nulsen, P.; Hlavacek-Larrondo, J.; Forman, W.; Jones, C.; Randall, S.; Machacek, M.

    2017-10-01

    We present results from deep Chandra and XMM-Newton observations of the AGN outbursts in the nearby early-type galaxies NGC 4472 and NGC 1399. Both pairs of radio bubbles are surrounded by rims of enhanced X-ray emission. Spectral analysis shows that the temperatures of these rims are less than that of the surrounding medium, suggesting that they are gas uplifted from the group center by the buoyant rise of the radio bubbles and not shocks due to the supersonic inflation of the lobes. The energy required to uplift these shells can be a significant fraction of the total outburst energy, and thus may play an important role in the thermodynamic evolution of the galaxy core. Buoyant uplift could also be a very efficient means of transporting metals from the galaxy core to the halo.

  9. ESA study of XEUS, a potential follow-on to XMM-Newton

    NASA Astrophysics Data System (ADS)

    Rando, N.; Lyngvi, A.; Gondoin, P.; Lumb, D.; Bavdaz, M.; Verhoeve, P.; de Wilde, D.; Parmar, A.; Peacock, A.

    2017-11-01

    In October 2005, based on a massive response by the Science Community to ESA's call for themes in space science, a large aperture X-ray Observatory (XRO) was identified as a candidate project for Europe within the frame of the 2015-2025 Cosmic Vision program. Such a mission would represent the natural follow-on to XMM Newton, providing a large aperture X-ray telescope combined with high spectral and time resolution instruments, capable of investigating matter under extreme conditions and the evolution of the early universe. The paper summarises the results of the most recent ESA internal study activities, leading to an updated mission configuration, with a mirror and a detector spacecraft flying in formation around L2 and a consolidated scientific payload design. The paper also describes the ongoing technology development activities for the payload and for the spacecraft that will play a crucial role in case ESA would decide to develop such a mission.

  10. ESA's X-ray space observatory XMM takes first pictures

    NASA Astrophysics Data System (ADS)

    2000-02-01

    Under the aegis of Prof. Roger Bonnet, ESA Director of Science, the mission's Principal Investigators will be presenting these spectacular first images at a press conference to be held on 9 February at the ESA Vilspa facility at Villafranca/Madrid in Spain, where the XMM Science Operations Centre is located. The event will also be the occasion for several major announcements concerning the XMM mission. In particular Professor Bonnet will launch the third XMM competition "Stargazing" - previously announced in September 1999. This will address European youngsters, 16 to 18 years old, who will be offered the unique opportunity of winning observing time using the X-ray telescope. Commissioning phase starts After a successful launch from Kourou on Ariane 504 on 10 December 1999, XMM was brought to its final operational orbit in the following week. The telescope doors on the X-ray Mirror Modules and on the Optical Monitor telescope were opened on 17/18 December. The Radiation Monitor was activated on 19 December and the spacecraft was put into a quiet mode over the Christmas and New Year period. The mission's scientific data is being received, processed and dispatched to astronomers by the XMM Science Operations Centre in Villafranca. Operations with the spacecraft restarted there on 4 January when, as part of the commissioning phase, all the science payloads were switched on one after the other for initial verifications. By the week of 17 January functional tests had begun on the Optical Monitor, the EPIC pn, the two EPIC MOS and the two RGS instruments. The internal doors of the EPIC cameras were opened whilst keeping the camera filter wheels closed. Astounding first images After a series of engineering exposures, all three EPIC cameras were used in turn, between 19-24 January, to take several views of two different extragalactic regions of the Universe. These views, featuring a variety of extended and X-ray point sources, were chosen to demonstrate the full

  11. A Deep XMM-Newton Survey of M33: Point-source Catalog, Source Detection, and Characterization of Overlapping Fields

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin F.; Wold, Brian; Haberl, Frank; Garofali, Kristen; Blair, William P.; Gaetz, Terrance J.; Kuntz, K. D.; Long, Knox S.; Pannuti, Thomas G.; Pietsch, Wolfgang; Plucinsky, Paul P.; Winkler, P. Frank

    2015-05-01

    We have obtained a deep 8 field XMM-Newton mosaic of M33 covering the galaxy out to the D25 isophote and beyond to a limiting 0.2-4.5 keV unabsorbed flux of 5 × 10-16 erg cm-2 s-1 (L \\gt 4 × 1034 erg s-1 at the distance of M33). These data allow complete coverage of the galaxy with high sensitivity to soft sources such as diffuse hot gas and supernova remnants (SNRs). Here, we describe the methods we used to identify and characterize 1296 point sources in the 8 fields. We compare our resulting source catalog to the literature, note variable sources, construct hardness ratios, classify soft sources, analyze the source density profile, and measure the X-ray luminosity function (XLF). As a result of the large effective area of XMM-Newton below 1 keV, the survey contains many new soft X-ray sources. The radial source density profile and XLF for the sources suggest that only ˜15% of the 391 bright sources with L \\gt 3.6 × 1035 erg s-1 are likely to be associated with M33, and more than a third of these are known SNRs. The log(N)-log(S) distribution, when corrected for background contamination, is a relatively flat power law with a differential index of 1.5, which suggests that many of the other M33 sources may be high-mass X-ray binaries. Finally, we note the discovery of an interesting new transient X-ray source, which we are unable to classify.

  12. X-ray Binaries and the Galaxy Structure in Hard X-rays

    NASA Astrophysics Data System (ADS)

    Lutovinov, Alexander

    The Galaxy structure in the hard X-ray energy band (¿20 keV) was studied using data of the INTEGRAL observatory. A deep and nearly uniform coverage of the galactic plane allowed to increase significantly the sensitivity of the survey and discover several dozens new galac-tic sources. The follow-up observations with XMM-Newton and CHANDRA observatories in X-rays and ground-based telescopes in optical and infrared wavebands gave us a possibility to determine optical counterparts and distances for number of new and already known faint sources. That, in turn, allowed us to build the spatial distribution of different classes of galactic X-ray binaries and obtain preliminary results of the structure of the further part of the Galaxy.

  13. X-Ray Probes of Jupiter's Auroral Zones, Galilean Moons, and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Swartz, D. A.; Rehak, P.; Waite, J. H., Jr.; Cooper, J. F.; Johnson, R. E.

    2005-01-01

    Remote observations from the Earth orbiting Chandra X-ray Observatory and the XMM-Newton Observatory have shown the the Jovian system is a rich and complex source of x-ray emission. The planet's auroral zones and its disk are powerful sources of x-ray emission, though with different origins. Chandra observations discovered x-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions, producing fluorescent x-ray emission lines from the elements in their surfaces against an intense background continuum. Although very faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around the icy Galilean moons would provide a detail mapping of the elemental composition in their surfaces. Here we review the results of Chandra and XMM-Newton observations of the Jovian system and describe the characteristics of X-MIME, an imaging x-ray spectrometer undergoing study for possible application to future missions to Jupiter such as JIMO. X-MIME has the ultimate goal of providing detailed high-resolution maps of the elemental abundances of the surfaces of Jupiter's icy moons and Io, as well as detailed study of the x-ray mission from the Io plasma torus, Jupiter's auroral zones, and the planetary disk.

  14. A Catalog of Galaxy Clusters Observed by XMM-Newton

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Mushotzky, R. M.; Kuntz, K. D.; Davis, David S.

    2007-01-01

    Images and the radial profiles of the temperature, abundance, and brightness for 70 clusters of galaxies observed by XMM-Newton are presented along with a detailed discussion of the data reduction and analysis methods, including background modeling, which were used in the processing. Proper consideration of the various background components is vital to extend the reliable determination of cluster parameters to the largest possible cluster radii. The various components of the background including the quiescent particle background, cosmic diffuse emission, soft proton contamination, and solar wind charge exchange emission are discussed along with suggested means of their identification, filtering, and/or their modeling and subtraction. Every component is spectrally variable, sometimes significantly so, and all components except the cosmic background are temporally variable as well. The distributions of the events over the FOV vary between the components, and some distributions vary with energy. The scientific results from observations of low surface brightness objects and the diffuse background itself can be strongly affected by these background components and therefore great care should be taken in their consideration.

  15. XMM-Newton mission operations - ready for its third decade

    NASA Astrophysics Data System (ADS)

    Kirsch, M.; Finn, T.; Godard, T.; v. Krusenstiern, N.; Pfeil, N.; Salt, D.; Toma, L.; Webert, D.; Weissmann, U.

    2017-10-01

    The XMM-Newton X-ray space observatory is approaching its third decade of operations. The spacecraft and payload are operating without major degradation and scientific demand is continuously very high. With the change to a new way of using the Attitude and Orbit control System in 2013 the fuel consumption was reduced by a factor of two, additionally this has reduced stress on the reaction wheels. The challenge for the next decade is now to ensure that the saved fuel is available for continuous usage. We will describe the process of the so called 'fuel migration and replenishment' activities needed to keep the spacecraft operational potentially up to 2029+. We provide as well an overall health status of the mission, the evolution of the ground segment and concepts on streamlining mission operations with continued high safety requirements using automation tools.

  16. Characterizing the X-ray Emission in Small Magellanic Cloud Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Man, Nicole; Auchettl, Katie; Lopez, Laura

    2018-01-01

    The Small Magellanic Cloud is a close, metal-poor galaxy with active star formation, and it has a diverse population of 24 supernova remnants (SNRs) that have been identified at several wavelengths. Past work has characterized the X-ray emission in these sources separately and aimed to constrain their explosive origins from observations with Chandra and XMM-Newton. Three SNRs have possible evidence for Type Ia explosions based on strong Fe-L emission in their X-ray spectra, although the environments and intermediate-mass element abundances are more consistent with those of core-collapse SNe. In this poster, we analyze the archival Chandra and XMM-Newton observations of the SMC SNR sample, and we model the sources' X-ray spectra in a systematic way to derive the plasma properties and to constrain the nature of the explosions. In one SNR, we note the presence of an X-ray binary near the source's geometric center, suggesting the compact object was produced in the SN explosion. As one of only three SNRs known in the Local Group to host a binary system, this source is worthy of follow-up investigations to probe explosions of massive stars in binary systems.

  17. Black Holes in Bulgeless Galaxies: An XMM-Newton Investigation of NGC 3367 AND NGC 4536

    NASA Technical Reports Server (NTRS)

    McAlpine, W.; Satyapal, S.; Gliozzi, M.; Cheung, C. C.; Sambruna, R. M.; Eracleous, Michael

    2012-01-01

    The vast majority of optically identified active galactic nuclei (AGNs) in the local Universe reside in host galaxies with prominent bulges, supporting the hypothesis that black hole formation and growth is fundamentally connected to the build-up of galaxy bulges. However, recent mid-infrared spectroscopic studies with Spitzer of a sample of optically "normal" late-type galaxies reveal remarkably the presence of high-ionization [NeV] lines in several sources, providing strong evidence for AGNs in these galaxies. We present follow-up X-ray observations recently obtained with XMM-Newton of two such sources, the late-type optically normal galaxies NGC 3367 and NGC 4536. Both sources are detected in our observations. Detailed spectral analysis reveals that for both galaxies, the 2-10 keV emission is dominated by a power law with an X-ray luminosity in the L(sub 2- 10 keV) approximates 10(exp 39) - 10(exp 40) ergs/s range, consistent with low luminosity AGNs. While there is a possibility that X-ray binaries account for some fraction of the observed X-ray luminosity, we argue that this fraction is negligible. These observations therefore add to the growing evidence that the fraction of late-type galaxies hosting AGNs is significantly underestimated using optical observations alone. A comparison of the midinfrared [NeV] luminosity and the X-ray luminosities suggests the presence of an additional highly absorbed X-ray source in both galaxies, and that the black hole masses are in the range of 10(exp 5) - 10(exp 7) solar M for NGC 3367 and 10(exp 4) - (exp 10) solar M for NGC 4536

  18. An X-ray look at the first head-trail nebula in an X-ray binary

    NASA Astrophysics Data System (ADS)

    Soleri, Paolo

    2010-10-01

    Head-tail trails are a common feature in active galactic nuclei and pulsar bow-shocks. Heinz et al. (2008) suggested that also X-ray binaries, being jet sources moving with high velocities in dense media, can leave trails of highly ionized plasma that should be detectable at radio frequencies. During observations of faint-persistent X-ray binaries, we discovered an optical nebula around the X-ray binary SAX J1712.6-3739, consisting of a bow-shock ring-like nebula ``in front'' of the binary and two trails originating close to it. This is the first detection of such structure in a X-ray binary and it opens a new sub-field in the study of these objects. Observations with XMM-Newton and Chandra are now needed to investigate the properties of the surrounding nebula.

  19. Identification of HESS J1303-631 as a pulsar wind nebula through γ-ray, X-ray, and radio observations

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Gérard, L.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Menzler, U.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2012-12-01

    Aims: The previously unidentified very high-energy (VHE; E > 100 GeV) γ-ray source HESS J1303-631, discovered in 2004, is re-examined including new data from the H.E.S.S. Cherenkov telescope array in order to identify this object. Archival data from the XMM-Newton X-ray satellite and from the PMN radio survey are also examined. Methods: Detailed morphological and spectral studies of VHE γ-ray emission as well as of the XMM-Newton X-ray data are performed. Radio data from the PMN survey are used as well to construct a leptonic model of the source. The γ-ray and X-ray spectra and radio upper limit are used to construct a one zone leptonic model of the spectral energy distribution (SED). Results: Significant energy-dependent morphology of the γ-ray source is detected with high-energy emission (E > 10 TeV) positionally coincident with the pulsar PSR J1301-6305 and lower energy emission (E < 2 TeV) extending 0.4° to the southeast of the pulsar. The spectrum of the VHE source can be described with a power-law with an exponential cut-off N0 = (5.6 ± 0.5) × 10-12 TeV-1 cm-2 s-1, Γ = 1.5 ± 0.2) and Ecut = (7.7 ± 2.2) TeV. The pulsar wind nebula (PWN) is also detected in X-rays, extending 2-3' from the pulsar position towards the center of the γ-ray emission region. A potential radio counterpart from the PMN survey is also discussed, showing a hint for a counterpart at the edge of the X-ray PWN trail and is taken as an upper limit in the SED. The extended X-ray PWN has an unabsorbed flux of F_2{-10 keV ˜ 1.6+0.2-0.4× 10-13 erg cm-2 s-1} and is detected at a significance of 6.5σ. The SED is well described by a one zone leptonic scenario which, with its associated caveats, predicts a very low average magnetic field for this source. Conclusions: Significant energy-dependent morphology of this source, as well as the identification of an associated X-ray PWN from XMM-Newton observations enable identification of the VHE source as an evolved PWN associated to the

  20. XMM TOO Observation

    NASA Technical Reports Server (NTRS)

    Kong, Albert

    2005-01-01

    The primary research goal of this project is to perform follow-up observations of a recurrent ultraluminous supersoft X-ray source (SSS) in Ml0l. The source was first discovered by ROSAT and was confirmed as a SSS with a blackbody temperature of about l00eV by Chandra. During 2000 March, Chandra detected it at Lx=4e39 erg per second, and then in 2000 October, its luminosity dropped to around le39 erg per second. During 2004, Chandra is conducting a monitoring program for Ml0l. The SSS was near the detection limit during January, March, and May; the X-ray spectra were harder with a power-law shape, and the X-ray luminosity was about 3e37 erg/second, a factor of greater than 200 fainter than that in the previous high state. The source was found to be in outburst again during the July 5 observation, with an X-ray luminosity of about 7e39 erg/second. Data taken on July 6,7, and 8 show that the source was in a strong outburst with a peak bolometric luminosity of about 7e39 erg/second. In general, the X-ray spectra are best described with an absorbed blackbody model with temperatures of approximately 50-100eV. In addition, we found absorption edges at 0.33, 0.57, 0.66, and 0.88 keV in two of the high state spectra. These features may signal the presence of highly ionized gas in the vicinity of the accretor (e.g., warm absorber). In order to study an ultraluminous SSS in outburst in detail, we proposed a TOO XMM observation to observe the source. The observation was taken on July 23 and the source was fainter with a luminosity of 6e38 ergs, and a harder X-ray spectrum with a power-law tail seen up to 7 keV. This clearly indicates that the source was in the decline stage with spectral change. In addition to the XMM observation, we also arranged radio observation and a simultaneous CFHT observation. The X-ray results were published in ATel and ApJL. There were several more Chandra observations taken after 2004 July. The source was in a low luminosity state but it underwent

  1. New Insights Into The X-ray Properties Of NGC 1672

    NASA Astrophysics Data System (ADS)

    Jenkins, Leigh; Roberts, T.; Brandt, N.; Colbert, E.; Levan, A.; Zezas, A.; Ward, M.

    2006-09-01

    We present the first results of new Chandra and XMM-Newton X-ray observations of the barred spiral galaxy NGC1672. Previously classified as a Seyfert galaxy, the new combined X-ray imaging and spectral information provides evidence that the nucleus of the galaxy may be almost entirely starburst in nature, presumably triggered and sustained by gas and dust driven to the central region along the galactic bar.

  2. Groups and the Entropy Floor: XMM-Newton Observations of Two Groups

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Figueroa-Feliciano, E.; Loewenstein, M.; Snowden, S. L.

    2002-01-01

    Using XMM-Newton spatially resolved X-ray imaging spectroscopy we obtain the temperature, density, entropy, gas mass, and total mass profiles for two groups of galaxies out to approximately 0.3 R(sub vir)(R(sub vir), the virial radius). Our density profiles agree well with those derived previously, and the temperature data are broadly consistent with previous results but are considerably more precise. Both of these groups are at the mass scale of 2x10(exp 13) M(solar mass), but have rather different properties. Both have considerably lower gas mass fractions at r < 0.3 R(sub vir), than the rich clusters. NGC2563, one of the least luminous groups for its X-ray temperature, has a very low gas mass fraction of approximately 0.004 inside 0.1 R(sub vir), which increases with radius. NGC4325, one of the most luminous groups at the same average temperature, has a higher gas mass fraction of 0.02. The entropy profiles and the absolute values of the entropy as a function of virial radius also differ, with NGC4325 having a value of approximately 100 keV cm(exp -2) and NGC2563 a value of approximately 300 keV cm(exp -2) at r approximately 0.1 R(sub vir). For both groups the profiles rise monotonically with radius and there is no sign of an entropy 'floor'. These results are inconsistent with pre-heating scenarios that have been developed to explain a possible entropy floor in groups, but are broadly consistent with models of structure formation that include the effects of heating and/or the cooling of the gas. The total entropy in these systems provides a strong constraint on all models of galaxy and group formation, and on the poorly defined feedback process that controls the transformation of gas into stars and thus the formation of structure in the universe.

  3. SPIDERS: selection of spectroscopic targets using AGN candidates detected in all-sky X-ray surveys

    NASA Astrophysics Data System (ADS)

    Dwelly, T.; Salvato, M.; Merloni, A.; Brusa, M.; Buchner, J.; Anderson, S. F.; Boller, Th.; Brandt, W. N.; Budavári, T.; Clerc, N.; Coffey, D.; Del Moro, A.; Georgakakis, A.; Green, P. J.; Jin, C.; Menzel, M.-L.; Myers, A. D.; Nandra, K.; Nichol, R. C.; Ridl, J.; Schwope, A. D.; Simm, T.

    2017-07-01

    SPIDERS (SPectroscopic IDentification of eROSITA Sources) is a Sloan Digital Sky Survey IV (SDSS-IV) survey running in parallel to the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) cosmology project. SPIDERS will obtain optical spectroscopy for large numbers of X-ray-selected active galactic nuclei (AGN) and galaxy cluster members detected in wide-area eROSITA, XMM-Newton and ROSAT surveys. We describe the methods used to choose spectroscopic targets for two sub-programmes of SPIDERS X-ray selected AGN candidates detected in the ROSAT All Sky and the XMM-Newton Slew surveys. We have exploited a Bayesian cross-matching algorithm, guided by priors based on mid-IR colour-magnitude information from the Wide-field Infrared Survey Explorer survey, to select the most probable optical counterpart to each X-ray detection. We empirically demonstrate the high fidelity of our counterpart selection method using a reference sample of bright well-localized X-ray sources collated from XMM-Newton, Chandra and Swift-XRT serendipitous catalogues, and also by examining blank-sky locations. We describe the down-selection steps which resulted in the final set of SPIDERS-AGN targets put forward for spectroscopy within the eBOSS/TDSS/SPIDERS survey, and present catalogues of these targets. We also present catalogues of ˜12 000 ROSAT and ˜1500 XMM-Newton Slew survey sources that have existing optical spectroscopy from SDSS-DR12, including the results of our visual inspections. On completion of the SPIDERS programme, we expect to have collected homogeneous spectroscopic redshift information over a footprint of ˜7500 deg2 for >85 per cent of the ROSAT and XMM-Newton Slew survey sources having optical counterparts in the magnitude range 17 < r < 22.5, producing a large and highly complete sample of bright X-ray-selected AGN suitable for statistical studies of AGN evolution and clustering.

  4. XMM-Newton Archival Study of the ULX Population in Nearby Galaxies

    NASA Technical Reports Server (NTRS)

    Winter, Lisa M.; Mushotzky, Richard; Reynolds, Christopher S.

    2005-01-01

    We have conducted an archival XMM-Newton study of the bright X-ray point sources in 32 nearby galaxies. From our list of approximately 100 point sources, we attempt to determine if there is a low-state counterpart to the Ultraluminous X-ray (ULX) population. Indeed, 16 sources in our sample match the criteria we set for a low-state ULX, namely, L(sub X) greater than 10(exp 38 ergs per second) and a spectrum best fit with an absorbed power law. Further, we find evidence for 26 high-state ULXs which are best fit by a combined blackbody and a power law. As in Galactic black hole systems, the spectral indices, GAMMA, of the low-state objects, as well a s the luminosities, tend to be lower than those of the high-state objects. The observed range of blackbody temperatures is 0.1-1 keV with the most luminous systems tending toward the lowest temperatures. We also find a class of object whose properties (luminosity, blackbody temperature, and power law slopes) are very similar to those of galactic stellar mass black holes. In addition, we find a subset of these objects that can be best fit by a Comptonized spectrum similar to that used for Galactic black holes in the very high state, when they are radiating near the Eddington limit.

  5. A systematic analysis of the XMM-Newton background: I. Dataset and extraction procedures

    NASA Astrophysics Data System (ADS)

    Marelli, Martino; Salvetti, David; Gastaldello, Fabio; Ghizzardi, Simona; Molendi, Silvano; Luca, Andrea De; Moretti, Alberto; Rossetti, Mariachiara; Tiengo, Andrea

    2017-12-01

    XMM-Newton is the direct precursor of the future ESA ATHENA mission. A study of its particle-induced background provides therefore significant insight for the ATHENA mission design. We make use of ˜12 years of data, products from the third XMM-Newton catalog as well as FP7 EXTraS project to avoid celestial sources contamination and to disentangle the different components of the XMM-Newton particle-induced background. Within the ESA R&D AREMBES collaboration, we built new analysis pipelines to study the different components of this background: this covers time behavior as well as spectral and spatial characteristics.

  6. A Multi-Epoch Timing and Spectral Study of the ULX NGC 5408 X-1 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Dheeraj, Pasham R.

    2012-01-01

    We report results from extensive new XMM- Newton observations of the ultraluminous X-ray source (ULX) NGC 5408 X-1, one of the few ULXs to show quasi-periodic X-ray variability. We detect quasi-periodic oscillations (QPOs) in each of four new (approximately equal 100 ks each) pointings, expanding the range of frequencies and rms amplitudes observed from the source to 10-40 mHz and 10-45 %, respectively. However, similarly significant variations in the power-law photon spectral index, Gamma, are not observed. We use the results of timing and energy spectral modeling to compare with the timing and spectral correlations seen in stellar-mass systems. We find that the qualitative nature of the timing and energy spectra of NGC 5408 X-1 are very similar to stellar-mass black holes in the steep power-law state exhibiting Type-C QPOs. However, in order for this analogy to quantitatively hold we must only be seeing the so-called saturated portion of the QPO frequency - photon index (or disk flux) relation. Assuming this to be the case, we place a lower limit on the mass of NGC 5408 X-1 of approx greater than 800 Solar Mass. Alternatively, the QPO centroid frequency is largely independent of the spectral parameters, in which case a close analogy of NGC 5408 X-1's mHz QPOs with Type-C QPOs in stellar systems is problematic. Measurement of the source's timing properties over a greater range of spectral parameters (in particular the spectral index) is needed in order to definitively resolve this ambiguity. We searched all the available data for both a broad Fe emission line as well as high frequency QPO analogs (0.1 - 1 Hz), but detected neither. We place upper limits on the equivalent width of any Fe emission feature in the 6 - 7 keY band, and of the amplitude (rms) of a high frequency QPO analog of approx equal 10 eV and approx equal 4%, respectively.

  7. Seeing Red and Shooting Blanks: A Study of Red Quasars and Blank Field X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Elvis, Martin

    2004-01-01

    One type of "Blank Field X-ray Source" is now being seen in deep Chandra and XMM-Newton surveys. These are the newly dubbed "XBONGs" (X-ray Bright, Optically Normal Galaxies). The study of the brighter counterparts from ROSAT and XMM- Newton serendipitous surveys is therefore of renewed interest and topicality. We continue to define the properties of the ROSAT sample which is the basis of this grant. We expect to publish the SEDs of these sources soon.

  8. XMM-Newton observation of the Coma Galaxy cluster. The temperature structure in the central region

    NASA Astrophysics Data System (ADS)

    Arnaud, M.; Aghanim, N.; Gastaud, R.; Neumann, D. M.; Lumb, D.; Briel, U.; Altieri, B.; Ghizzardi, S.; Mittaz, J.; Sasseen, T. P.; Vestrand, W. T.

    2001-01-01

    We present a temperature map and a temperature profile of the central part (r < 20' or 1/4 virial radius) of the Coma cluster. We combined 5 overlapping pointings made with XMM/EPIC/MOS and extracted spectra in boxes of 3.5'x3.5'. The temperature distribution around the two central galaxies is remarkably homogeneous (r<10'), contrary to previous ASCA results, suggesting that the core is actually in a relaxed state. At larger distance from the cluster center we do see evidence for recent matter accretion. We confirm the cool area in the direction of NGC 4921, probably due to gas stripped from an infalling group. We find indications of a hot front in the South West, in the direction of NGC 4839, probably due to an adiabatic compression. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). EPIC was developed by the EPIC Consortium led by the Principal Investigator, Dr. M. J. L. Turner. The consortium comprises the following Institutes: University of Leicester, University of Birmingham, (UK); CEA/Saclay, IAS Orsay, CESR Toulouse, (France); IAAP Tuebingen, MPE Garching, (Germany); IFC Milan, ITESRE Bologna, IAUP Palermo, Italy. EPIC is funded by: PPARC, CEA, CNES, DLR and ASI.

  9. The Outer X-ray and Radio Jets in R Aquarii

    NASA Technical Reports Server (NTRS)

    Kellogg, E.; Anderson, C.; DePasquale, J.; Korreck, K.; Nichols, J.; Sokoloski, J.; Krauss, M.; Pedelty, J.

    2007-01-01

    The symbiotic star R Aquarii has been known to emit collimated outflow in the form of jets for many years. We report on five years of observations in x-rays and radio using Chandra, VLA and XMM-Newton. We discuss the evolution of the outer thermal jets, including new observations performed in June and October 2005. We see motion of the NE x-ray jet at a projected velocity of about 600 km (sup -1). The SW x-ray jet has almost disappeared between 2000.7 and 2004.0. An XMM grating spectrum of the NE jet confirms the existence of O VII He-like lines, and offers the possibility of doing plasma density diagnostics. We comment on on the physics of cooling in the SW jet and implications for the density of the x-ray emitting gas, the heating mechanism, and mass and kinetic energy in the jets and its implications for the system as a whole. This work was supported by NASA and NSF.

  10. Evidence for Intermediate Polars as the Origin of the Galactic Center Hard X-Ray Emission

    NASA Technical Reports Server (NTRS)

    Hailey, Charles J.; Mori, Kaya; Perez, Kerstin; Canipe, Alicia M.; Hong, Jaesub; Tomsick, John A.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fornasini, Francesa; hide

    2016-01-01

    Recently, unresolved hard (20-40 keV) X-ray emission has been discovered within the central 10 pc of the Galaxy, possibly indicating a large population of intermediate polars (IPs). Chandra and XMM-Newton measurements in the surrounding approximately 50 pc imply a much lighter population of IPs with (M(sub WD)) approximately 0.5 solar mass. Here we use broadband NuSTAR observations of two IPs: TV Columbae, which has a fairly typical but widely varying reported mass of (M(sub WD)) approximately 0.5-1.0 solar mass, and IGR J17303-0601, with a heavy reported mass of (M(sub WD)) approximately 1.0-1.2 solar mass. We investigate how varying spectral models and observed energy ranges influences estimated white dwarf mass. Observations of the inner 10 pc can be accounted for by IPs with (M(sub WD) approximately 0.9 solar mass, consistent with that of the CV population in general and the X-ray observed field IPs in particular. The lower mass derived by Chandra and XMM-Newton appears to be an artifact of narrow energy-band fitting. To explain the (unresolved) central hard X-ray emission (CHXE) by IPs requires an X-ray (2-8 keV) luminosity function (XLF) extending down to at least 5 x 10(exp 31) per erg s. The CHXE XLF, if extended to the surrounding approximately 50 pc observed by Chandra and XMM-Newton, requires that at least approximately 20%-40% of the approximately 9000 point sources are IPs. If the XLF extends just a factor of a few lower in luminosity, then the vast majority of these sources are IPs. This is in contrast to recent observations of the Galactic ridge, where the bulk of the 2-8 keV emission is ascribed to non-magnetic CVs.

  11. The NGC 4839 group falling into the Coma cluster observed by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Neumann, D. M.; Arnaud, M.; Gastaud, R.; Aghanim, N.; Lumb, D.; Briel, U. G.; Vestrand, W. T.; Stewart, G. C.; Molendi, S.; Mittaz, J. P. D.

    2001-01-01

    We present here the first analysis of the XMM-Newton EPIC-MOS data of the galaxy group around NGC 4839, which lies at a projected distance to the Coma cluster center of 1.6h50-1 Mpc. In our analysis, which includes imaging, spectro-imaging and spectroscopy we find compelling evidence for the sub group being on its first infall onto the Coma cluster. The complex temperature structure around NGC 4839 is consistent with simulations of galaxies falling into a cluster environment. We see indications of a bow shock and of ram pressure stripping around NGC 4839. Furthermore our data reveal a displacement between NGC 4839 and the center of the hot gas in the group of about 300h50-1 kpc. With a simple approximation we can explain this displacement by the pressure force originating from the infall, which acts much stronger on the group gas than on the galaxies. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). EPIC was developed by the EPIC Consortium led by the Principal Investigator, Dr. M. J. L. Turner. The consortium comprises the following Institutes: University of Leicester, University of Birmingham, (UK); CEA/Saclay, IAS Orsay, CESR Toulouse, (France); IAAP Tuebingen, MPE Garching, (Germany); IFC Milan, ITESRE Bologna, IAUP Palermo, Italy. EPIC is funded by: PPARC, CEA, CNES, DLR and ASI.

  12. VizieR Online Data Catalog: X-ray supernova remnants in LMC (Maggi+, 2016)

    NASA Astrophysics Data System (ADS)

    Maggi, P.; Haberl, F.; Kavanagh, P. J.; Sasaki, M.; Bozzetto, L. M.; Filipovic, M. D.; Vasilopoulos, G.; Pietsch, W.; Points, S. D.; Chu, Y.-H.; Dickel, J.; Ehle, M.; Williams, R.; Greiner, J.

    2016-03-01

    The processing of all available XMM-Newton data in the LMC region, and those of the VLP survey in particular, was done with the data reduction pipeline developed in our research group over several years. Various non-X-ray data were used to supplement the XMM-Newton observations. They allow us to assess e.g. the relation between the population of SNRs and large scale structure of the LMC, or to evaluate doubtful candidates in the sample compilation. We compiled a sample of 59 definite SNRs, cleaned of misclassified objects and doubtful candidates. (2 data files).

  13. XMM-Newton Proposal 03033401

    NASA Astrophysics Data System (ADS)

    Ghosh, Kajal

    2004-10-01

    We have detected a highly blueshifted (7.6 keV at the source frame) emission feature in the ASCA spectra of the unusual Narrow-line Seyfert 1 galaxy RX J0136.9-3510. At ASCA resolution it is impossible to tell if the feature is a single line or a combination of lines nor if the feature is due to He-like or H-like Fe. The line profile can tell us where the bulk of the emission origin- ates: A low velocity dispersion would favor a wind/outflow origin, while a hi- gher dispersion may allow for an ionized disk reflection origin. Strong absor- ption and resonant scattering could also produce blueshifted line. To acquire better resolution spectrum to constrain the origin of the line via detailed physical modeling, we propose 50 ks XMM-Newton observations of RXJ0136.9-3510.

  14. First X-ray Observations of the Young Pulsar J1357-6429

    NASA Technical Reports Server (NTRS)

    Zavlin, Vyacheslav E.

    2007-01-01

    The first short Chandra and XMM-Newton observations of the young and energetic pulsar J1357-6429 provided strong indications of a tail-like pulsar-wind nebula associated with this object, as well as strong pulsations of its X-ray flux with a pulsed fraction above 40% and a thermal component dominating at lower photon energies (below 2 keV). The elongated nebular is very compact in size. about 1" x 1.5" and might be interpreted as a pulsar jet. The thermal radiation is most plausibly emitted from the entire neutron star surface of an effective temperature about 1 MK covered with a magnetized hydrogen atmosphere At higher energies the pulsar's emission is of a nonthermal (magnetospheric) origin, with a power-law spectrum of a photon index Gamma approx. equals 1.1. This makes the X-ray properties of PSR J1357-6429 very similar to those of the youngest pulsars J1119-6127 and Vela with a detected thermal radiation.

  15. X-ray and Optical Explorations of Spiders

    NASA Astrophysics Data System (ADS)

    Roberts, M.; Al Noori, H.; Torres, R.; Russell, D.; Mclaughlin, M.; Gentile, P.

    2017-10-01

    Black widows and redbacks are binary systems consisting of a millisecond pulsar in a close binary with a companion which is having matter driven off of its surface by the pulsar wind. X-rays due to an intrabinary shock have been observed from many of these systems, as well as orbital variations in the optical emission from the companion due to heating and tidal distortion. We have been systematically studying these systems in radio, optical and X-rays. Here we will present an overview of X-ray and optical studies of these systems, including new XMM-Newton data obtained from several of these systems, along with new optical photometry.

  16. An X-ray look at the first head-trail nebula in an X-ray binary

    NASA Astrophysics Data System (ADS)

    Soleri, Paolo

    2011-09-01

    Head-tail trails are a common feature in active galactic nuclei and pulsar bow-shocks. Heinz et al. (2008) suggested that also X-ray binaries, being jet sources moving with high velocities in dense media, can leave trails of highly ionized plasma that should be detectable at radio frequencies. During bservations of faint-persistent X-ray binaries, we discovered an optical nebula around the X-ray binary SAX J1712.6-3739, consisting of a bow-shock ring-like nebula in front of the binary and two trails originating close to it. This is the first detection of such structure in a X-ray binary and it opens a new sub-field in the study of these objects. Observations with XMM-Newton and Chandra are now needed to investigate the properties of the surrounding nebula.

  17. X-ray diagnostics of massive star winds

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Ignace, R.; Huenemoerder, D. P.

    2017-11-01

    Observations with powerful X-ray telescopes, such as XMM-Newton and Chandra, significantly advance our understanding of massive stars. Nearly all early-type stars are X-ray sources. Studies of their X-ray emission provide important diagnostics of stellar winds. High-resolution X-ray spectra of O-type stars are well explained when stellar wind clumping is taking into account, providing further support to a modern picture of stellar winds as non-stationary, inhomogeneous outflows. X-ray variability is detected from such winds, on time scales likely associated with stellar rotation. High-resolution X-ray spectroscopy indicates that the winds of late O-type stars are predominantly in a hot phase. Consequently, X-rays provide the best observational window to study these winds. X-ray spectroscopy of evolved, Wolf-Rayet type, stars allows to probe their powerful metal enhanced winds, while the mechanisms responsible for the X-ray emission of these stars are not yet understood.

  18. The X-ray monitoring of the long-period colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Sugawara, Y.; Maeda, Y.; Tsuboi, Y.

    2017-10-01

    We present the first results from XMM-Newton and Swift observations of two long-period colliding wind binaries WR19 and WR125 around periastron passages. Mass-loss is one of the most important and uncertain parameters in the evolution of a massive star. The X-ray spectrum off the colliding wind binary is the best measure of conditions in the hot postshock gas. By monitoring the changing of the X-ray luminosity and column density along with the orbital phases, we derive the mass-loss rates of these stars. It is known that WR19 (WC5+O9; P=10.1 yr) and WR125 (WC7+O9; P> 24.3 yr) are the dust-making binaries. Each periastron is expected to come in 2016-2017. Since 2016, we carry out on-going monitoring campaigns of WR19 and WR125 with XMM-Newton and Swift. On these observations, the X-rays from WR19 and WR125 were detected for the first time. In the case of WR19, as periastron approached, the column density increased, which indicates that the emission from the wind-wind collision plasma was absorbed by the dense Wolf-Rayet wind.

  19. A Search for New Galactic Magnetars in Archival Chandra and XMM-Newton Observations

    NASA Astrophysics Data System (ADS)

    Muno, M. P.; Gaensler, B. M.; Nechita, A.; Miller, J. M.; Slane, P. O.

    2008-06-01

    We present constraints on the number of Galactic magnetars, which we have established by searching for sources with periodic variability in 506 archival Chandra observations and 441 archival XMM-Newton observations of the Galactic plane (| b| < 5°). Our search revealed four sources with periodic variability on timescales of 200-5000 s, all of which are probably accreting white dwarfs. We identify 7 of 12 known Galactic magnetars, but find no new examples with periods between 5 and 20 s. We convert this nondetection into limits on the total number of Galactic magnetars by computing the fraction of the young Galactic stellar population that our survey covered. We find that easily detectable magnetars, modeled after persistent anomalous X-ray pulsars (e.g., with LX = 1035 ergs s-1 [0.5-10.0 keV] and Arms = 12% ), could have been identified in ≈5% of the Galactic spiral arms by mass. If we assume that three previously known examples randomly fall within our survey, then there are 59+ 92-32 in the Galaxy. Barely detectable magnetars (LX = 3 × 1033 ergs s-1 and Arms = 15% ) could have been identified throughout ≈0.4% of the spiral arms. The lack of new examples implies that <540 exist in the Galaxy (90% confidence). Similar constraints are found by considering the detectability of transient magnetars in outburst. For assumed lifetimes of 104 yr, the birth rate of magnetars is between 0.003 and 0.06 yr-1. Therefore, the birth rate of magnetars is at least 10% of that for normal radio pulsars, and could exceed that value, unless transient magnetars are active for gtrsim105 yr.

  20. Quasar spectral variability from the XMM-Newton serendipitous source catalogue

    NASA Astrophysics Data System (ADS)

    Serafinelli, R.; Vagnetti, F.; Middei, R.

    2017-04-01

    Context. X-ray spectral variability analyses of active galactic nuclei (AGN) with moderate luminosities and redshifts typically show a "softer when brighter" behaviour. Such a trend has rarely been investigated for high-luminosity AGNs (Lbol ≳ 1044 erg/s), nor for a wider redshift range (e.g. 0 ≲ z ≲ 5). Aims: We present an analysis of spectral variability based on a large sample of 2700 quasars, measured at several different epochs, extracted from the fifth release of the XMM-Newton Serendipitous Source Catalogue. Methods: We quantified the spectral variability through the parameter β defined as the ratio between the change in the photon index Γ and the corresponding logarithmic flux variation, β = -ΔΓ/Δlog FX. Results: Our analysis confirms a softer when brighter behaviour for our sample, extending the previously found general trend to high luminosity and redshift. We estimate an ensemble value of the spectral variability parameter β = -0.69 ± 0.03. We do not find dependence of β on redshift, X-ray luminosity, black hole mass or Eddington ratio. A subsample of radio-loud sources shows a smaller spectral variability parameter. There is also some change with the X-ray flux, with smaller β (in absolute value) for brighter sources. We also find significant correlations for a small number of individual sources, indicating more negative values for some sources.

  1. An XMM-Newton Science Archive for next decade, and its integration into ESASky

    NASA Astrophysics Data System (ADS)

    Loiseau, N.; Baines, D.; Rodriguez, P.; Salgado, J.; Sarmiento, M.; Colomo, E.; Merin, B.; Giordano, F.; Racero, E.; Migliari, S.

    2016-06-01

    We will present a roadmap for the next decade improvements of the XMM-Newton Science Archive (XSA), as planned for an always faster and more user friendly access to all XMM-Newton data. This plan includes the integration of the Upper Limit server, an interactive visualization of EPIC and RGS spectra, on-the-fly data analysis, among other advanced features. Within this philosophy XSA is also being integrated into ESASky, the science-driven discovery portal for all the ESA Astronomy Missions. A first public beta release of the ESASky service has been already released at the end of 2015. It is currently featuring an interface for exploration of the multi-wavelength sky and for single and/or multiple target searches of science-ready data. The system offers progressive multi-resolution all-sky projections of full mission datasets using a new generation of HEALPix projections called HiPS, developed at the CDS; detailed geometrical footprints to connect the all-sky mosaics to individual observations; and direct access to science-ready data at the underlying mission-specific science archives. New XMM-Newton EPIC and OM all-sky HiPS maps, catalogues and links to the observations are available through ESASky, together with INTEGRAL, HST, Herschel, Planck and other future data.

  2. X-ray and optical spectroscopy of the massive young open cluster IC 1805

    NASA Astrophysics Data System (ADS)

    Rauw, G.; Nazé, Y.

    2016-10-01

    Context. Very young open clusters are ideal places to study the X-ray properties of a homogeneous population of early-type stars. In this respect, the IC 1805 open cluster is very interesting as it hosts the O4 If+ star HD 15570 thought to be in an evolutionary stage intermediate between a normal O-star and a Wolf-Rayet star. Aims: Such a star could provide a test for theoretical models aiming at explaining the empirical scaling relation between the X-ray and bolometric luminosities of O-type stars. Methods: We have observed IC 1805 with XMM-Newton and further collected optical spectroscopy of some of the O-star members of the cluster. Results: The optical spectra allow us to revisit the orbital solutions of BD+60° 497 and HD 15558, and provide the first evidence of binarity for BD+60° 498. X-ray emission from colliding winds does not appear to play an important role among the O-stars of IC 1805. Notably, the X-ray fluxes do not vary significantly between archival X-ray observations and our XMM-Newton pointing. The very fast rotator BD+60° 513, and to a lesser extent the O4 If+ star HD 15570 appear somewhat underluminous. Whilst the underluminosity of HD 15570 is only marginally significant, its amplitude is found to be compatible with theoretical expectations based on its stellar and wind properties. A number of other X-ray sources are detected in the field, and the brightest objects, many of which are likely low-mass pre-main sequence stars, are analyzed in detail. Based on observations collected with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and the USA (NASA), and with the TIGRE telescope (La Luz, Mexico).Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A82

  3. The XMM-Newton bright serendipitous survey. Identification and optical spectral properties

    NASA Astrophysics Data System (ADS)

    Caccianiga, A.; Severgnini, P.; Della Ceca, R.; Maccacaro, T.; Cocchia, F.; Barcons, X.; Carrera, F. J.; Matute, I.; McMahon, R. G.; Page, M. J.; Pietsch, W.; Sbarufatti, B.; Schwope, A.; Tedds, J. A.; Watson, M. G.

    2008-01-01

    Aims:We present the optical classification and redshift of 348 X-ray selected sources from the XMM-Newton Bright Serendipitous Survey (XBS), which contains a total of 400 objects (identification level = 87%). About 240 are new identifications. In particular, we discuss in detail the classification criteria adopted for the active galactic nuclei (AGNs) population. Methods: By means of systematic spectroscopic campaigns using various telescopes and through the literature search, we have collected an optical spectrum for the large majority of the sources in the XBS survey and applied a well-defined classification “flow chart”. Results: We find that the AGNs represent the most numerous population at the flux limit of the XBS survey (~10-13 erg cm-2 s-1) constituting 80% of the XBS sources selected in the 0.5-4.5 keV energy band and 95% of the “hard” (4.5-7.5 keV) selected objects. Galactic sources populate the 0.5-4.5 keV sample significantly (17%) and only marginally (3%) the 4.5-7.5 keV sample. The remaining sources in both samples are clusters/groups of galaxies and normal galaxies (i.e. probably not powered by an AGN). Furthermore, the percentage of type 2 AGNs (i.e. optically absorbed AGNs with A_V>2 mag) dramatically increases going from the 0.5-4.5 keV sample (f=NAGN 2/N_AGN=7%) to the 4.5-7.5 keV sample (f=32%). We finally propose two simple diagnostic plots that can be easily used to obtain the spectral classification for relatively low-redshift AGNs even if the quality of the spectrum is not good. Based on observations collected at the Telescopio Nazionale Galileo (TNG) and at the European Southern Observatory (ESO) and on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). Table 3 is only available in electronic form at http://www.aanda.org

  4. The HELLAS2XMM survey. IV. Optical identifications and the evolution of the accretion luminosity in the Universe

    NASA Astrophysics Data System (ADS)

    Fiore, F.; Brusa, M.; Cocchia, F.; Baldi, A.; Carangelo, N.; Ciliegi, P.; Comastri, A.; La Franca, F.; Maiolino, R.; Matt, G.; Molendi, S.; Mignoli, M.; Perola, G. C.; Severgnini, P.; Vignali, C.

    2003-10-01

    We present results from the photometric and spectroscopic identification of 122 X-ray sources recently discovered by XMM-Newton in the 2-10 keV band (the HELLAS2XMM 1dF sample). Their flux cover the range 8*E-15-4*E-13 erg cm-2 s-1 and the total area surveyed is 0.9 square degrees. One of the most interesting results (which is found also in deeper sourveys) is that about 20% of the hard X-ray selected sources have an X-ray to optical flux ratio (X/O) ten times or more higher than that of optically selected AGN. Unlike the faint sources found in the ultra-deep Chandra and XMM-Newton surveys, which reach X-ray (and optical) fluxes more than one order of magnitude lower than the HELLAS2XMM survey sources, many of the extreme X/O sources in our sample have Rprotect la25 and are therefore accessible to optical spectroscopy. We report the identification of 13 sources with X/Oprotect ga10 (to be compared with 9 sources known from the deeper, pencil-beam surveys). Eight of them are narrow line QSO (seemingly the extension to very high luminosity of the type 2 Seyfert galaxies), four are broad line QSO. The results from our survey are also used to make reliable predictions about the luminosity of the sources not yet spectroscopically identified, both in our sample and in deeper Chandra and XMM-Newton samples. We then use a combined sample of 317 hard X-ray selected sources (HELLAS2XMM 1dF, Chandra Deep Field North 1Msec, Chandra SSA13 and XMM-Newton Lockman Hole flux limited samples), 221 with measured redshifts, to evaluate the cosmological evolution of the hard X-ray source's number and luminosity densities. Looking backward in time, the low luminosity sources (log L2-10 keV=43-44 erg s-1) increase in number at a much slower rate than the very high luminosity sources (log L2-10 keV >44.5 erg s-1), reaching a maximum around z=1 and then levelling off beyond z=2. This translates into an accretion driven luminosity density which is dominated by sources with log L2-10 keV <44

  5. Discovery of Periodic Dips in the Brightest Hard X-Ray Source of M31 with EXTraS

    NASA Astrophysics Data System (ADS)

    Marelli, Martino; Tiengo, Andrea; De Luca, Andrea; Salvetti, David; Saronni, Luca; Sidoli, Lara; Paizis, Adamantia; Salvaterra, Ruben; Belfiore, Andrea; Israel, Gianluca; Haberl, Frank; D’Agostino, Daniele

    2017-12-01

    We performed a search for eclipsing and dipping sources in the archive of the EXTraS project—a systematic characterization of the temporal behavior of XMM-Newton point sources. We discovered dips in the X-ray light curve of 3XMM J004232.1+411314, which has been recently associated with the hard X-ray source dominating the emission of M31. A systematic analysis of XMM-Newton observations revealed 13 dips in 40 observations (total exposure time of ∼0.8 Ms). Among them, four observations show two dips, separated by ∼4.01 hr. Dip depths and durations are variable. The dips occur only during low-luminosity states ({L}0.2{--12}< 1× {10}38 erg s‑1), while the source reaches {L}0.2{--12}∼ 2.8× {10}38 erg s‑1. We propose that this system is a new dipping low-mass X-ray binary in M31 seen at high inclination (60°–80°) the observed dipping periodicity is the orbital period of the system. A blue HST source within the Chandra error circle is the most likely optical counterpart of the accretion disk. The high luminosity of the system makes it the most luminous (not ULX) dipper known to date.

  6. An X-ray Observation of the L1251 Dark Cloud

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    2006-01-01

    An X-ray image of the L1251 dark cloud in Cepheus was obtained with the XMM-Newton telescope. More than three dozen sources were detected above a 3 delta limit in X-ray luminosity of L(sub X = 10(exp 29) ergs/s. Among the detections are eight optically visible T Tauri stars, which had been identified in earlier work from their emission at H(alpha). The two strongest X-ray sources have steady luminosities of L(sub X) approx. 10(exp 31) ergs/s and are at the saturation limit for X-ray activity in late-type stars, L(sub X)/L(sub bol) approx. 10(exp -3). X-ray emission was also observed from two CO emission cores in L1251, core C (L1251A) and core E (L1251B). Both regions contain high-velocity molecular gas, bright IRAS sources (Class I protostars), thermal radio sources, and Herbig-Haro (HH) jets. In L1251A strong X-ray emission was discovered in close proximity to the near-inbred and radio source IRSA/VLA 7 and to IRAS 22343+7501. IRSA/VLA 7 thus appears to be the most likely source of the molecular and HH outflows in L1251A. In L1251B X-ray emission was observed from a visible T Tauri star, KP2-44, which is thought to be the driving source for HH 189. Also reported is the tentative detection of X-ray emission from VLA 3, a thermal radio continuum source in L1251B that is closely associated with the extreme Class I protostar IRAS 22376+7455.

  7. Efficient management of high level XMM-Newton science data products

    NASA Astrophysics Data System (ADS)

    Zolotukhin, Ivan

    2015-12-01

    Like it is the case for many large projects, XMM-Newton data have been used by the community to produce many valuable higher level data products. However, even after 15 years of the successful mission operation, the potential of these data is not yet fully uncovered, mostly due to the logistical and data management issues. We present a web application, http://xmm-catalog.irap.omp.eu, to highlight an idea that existing public high level data collections generate significant added research value when organized and exposed properly. Several application features such as access to the all-time XMM-Newton photon database and online fitting of extracted sources spectra were never available before. In this talk we share best practices we worked out during the development of this website and discuss their potential use for other large projects generating astrophysical data.

  8. X-ray emitting class I protostars in the Serpens dark cloud

    NASA Astrophysics Data System (ADS)

    Preibisch, T.

    2004-12-01

    We analyze a set of three individual XMM-Newton X-ray observation of the Serpens dark cloud. In addition to the 45 sources already reported in the analysis of the first of these XMM-Newton observations by Preibisch (\\cite{Preibisch2003), the complete combined data set leads to the detection of X-ray emission from four of the 19 known class I protostars in the region. The set of three observations allows us to study the variability of the sources on timescales from minutes to several months. The lightcurves of two of the four X-ray detected class I protostars show evidence for significant variability; the data suggest at least four flare-like events on these objects. This relatively high level of variability in the X-ray emission from the class I protostars is in qualitative agreement with the result by Imanishi et al. (\\cite{Imanishi2001}), who found that the class I protostars in the ρ Ophiuchi dark cloud show a higher level of variability than that of more evolved class II and class III young stellar objects. This may support non-coronal X-ray emission mechanisms for class I protostars and is in agreement with the predictions of models that assume magnetic interactions between the protostar and its surrounding disk as a source of high-energy emission. We also find a strong variation (by a factor of ˜10) in the X-ray luminosity of the class II object EC 74 between the three observations, which may be explained by a long duration flare or by rotational modulation. Finally, we find no evidence for X-ray emission from the five class 0 protostars in the region.

  9. X-ray pulsars in nearby irregular galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    2018-01-01

    The Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Irregular Galaxy IC 10 are valuable laboratories to study the physical, temporal and statistical properties of the X-ray pulsar population with multi-satellite observations, in order to probe fundamental physics. The known distance of these galaxies can help us easily categorize the luminosity of the pulsars and their age difference can be helpful for for studying the origin and evolution of compact objects. Therefore, a complete archive of 116 XMM-Newton PN, 151 Chandra (Advanced CCD Imaging Spectrometer) ACIS, and 952 RXTE PCA observations for the pulsars in the Small Magellanic Cloud (SMC) were collected and analyzed, along with 42 XMM-Newton and 30 Chandra observations for the Large Magellanic Cloud, spanning 1997-2014. From a sample of 67 SMC pulsars we generate a suite of products for each pulsar detection: spin period, flux, event list, high time-resolution light-curve, pulse-profile, periodogram, and X-ray spectrum. Combining all three satellites, I generated complete histories of the spin periods, pulse amplitudes, pulsed fractions and X-ray luminosities. Many of the pulsars show variations in pulse period due to the combination of orbital motion and accretion torques. Long-term spin-up/down trends are seen in 28/25 pulsars respectively, pointing to sustained transfer of mass and angular momentum to the neutron star on decadal timescales. The distributions of pulse detection and flux as functions of spin period provide interesting findings: mapping boundaries of accretion-driven X-ray luminosity, and showing that fast pulsars (P<10 s) are rarely detected, which yet are more prone to giant outbursts. In parallel we compare the observed pulse profiles to our general relativity (GR) model of X-ray emission in order to constrain the physical parameters of the pulsars.In addition, we conduct a search for optical counterparts to X-ray sources in the local dwarf galaxy IC 10 to form a comparison

  10. Using XMM-OM UV Data to Study Cluster Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Miller, Neal A.; O'Steen, R.

    2010-01-01

    The XMM-Newton satellite includes an Optical Monitor (XMM-OM) for the simultaneous observation of its X-ray targets at UV and optical wavelengths. On account of XMM's excellent characteristics for the observation of the hot intracluster medium, a large number of galaxy clusters have been observed by XMM and there is consequently a large and virtually unused database of XMM-OM UV data for galaxies in the cores of these clusters. We have begun a program to capitalize on such data, and describe here our efforts on a subsample of ten nearby clusters having XMM-OM, GALEX, and SDSS data. We present our methods for photometry and calibration of the XMM-OM UV data, and briefly present some applications including galaxy color magnitude diagrams (and identification of the red sequence, blue cloud, and green valley) and SED fitting (and galaxy stellar masses and star formation histories). Support for this work is provided by NASA Award Number NNX09AC76G.

  11. XMM Observations of Low Mass Groups

    NASA Technical Reports Server (NTRS)

    Davis, David S.

    2005-01-01

    The contents of this report contains discussion of the two-dimensional XMM-Newton group survey. The analysis of the NGC 2300 and Pavo observations indicated by the azimuthally averaged analysis that the temperature structure is minimal to the NGC2300 system; however, the Pavo system shows signs of a merger in progress. XMM data is used to generate two dimensional maps of the temperature and abundance used to generate maps of pressure and entropy.

  12. O Star Wind Mass-Loss Rates and Shock Physics from X-ray Line Profiles in Archival XMM RGS Data

    NASA Astrophysics Data System (ADS)

    Cohen, David

    O stars are characterized by their dense, supersonic stellar winds. These winds are the site of X-ray emission from shock-heated plasma. By analyzing high-resolution X-ray spectra of these O stars, we can learn about the wind-shock heating and X-ray production mechanism. But in addition, the X-rays can also be used to measure the mass-loss rate of the stellar wind, which is a key observational quantity whose value affects stellar evolution and energy, momentum, and mass input to the Galactic interstellar medium. We make this X-ray based mass-loss measurement by analyzing the profile shapes of the X-ray emission lines observed at high resolution with the Chandra and XMM-Newton grating spectrometers. One advantage of our method is that it is insensitive to small-scale clumping that affects density-squared diagnostics. We are applying this analysis technique to O stars in the Chandra archive, and are finding mass-loss rates lower than those traditionally assumed for these O stars, and in line with more recent independent determinations that do account for clumping. By extending this analysis to the XMM RGS data archive, we will make significant contributions to the understanding of both X-ray production in O stars and to addressing the issue of the actual mass-loss rates of O stars. The XMM RGS data archive provides several extensions and advantages over the smaller Chandra HETGS archive: (1) there are roughly twice as many O and early B stars in the XMM archive; (2) the longer wavelength response of the RGS provides access to diagnostically important lines of nitrogen and carbon; (3) the very long, multiple exposures of zeta Pup provide the opportunity to study this canonical O supergiant's X-ray spectrum in unprecedented detail, including looking at the time variability of X-ray line profiles. Our research team has developed a sophisticated empirical line profile model as well as a computational infrastructure for fitting the model to high-resolution X-ray spectra

  13. Spectral and Temporal Characteristics of LS PEG and TW PIC Using XMM-NEWTON Data

    NASA Astrophysics Data System (ADS)

    Talebpour Sheshvan, Nasrin; Balman, Solen

    2016-07-01

    We report the analysis of archival XMM-Newton X-ray observations of LS Peg and TW Pic. These are Cataclysmic Variables (CVs) suggested as Intermediate Polars (IPs), but unconfirmed in the X-rays. Identification of several periodic oscillations in the optical band hint them as IPs. Unlike the previous spectral analysis on the EPIC-MOS data by fitting a hot optically thin plasma emission model with a single temperature for LS Peg, we simultaneously fitted all EPIC spectrum (pn+MOS) using a composite model of absorption for interstellar medium (tbabs) with two different partial covering absorbers (pcfabs) including a multitemperature plasma emission component (cevmkl) and a Gaussian emission line at 6.4 keV. TW Pic is best modeled in a similar manner with only one partial covering absorber and an extra Gaussian emission line at 6.7 keV. LS Peg has a maximum plasma temperature of ˜14.8 keV with an X-ray luminosity of ˜5×10^{32}ergs ^{-1} translating to an accretion rate of ˜1.27×10^{-10}M _{⊙}yr ^{-1}. TW Pic shows kT _{max} ˜38.7 keV with an X-ray luminosity around 1.6×10^{33}ergs ^{-1} at an accretion rate of ˜4×10^{-10}M _{⊙}yr ^{-1}. In addition, we discuss orbital modulations in the X-rays and power spectral analysis, and derive the EPIC pn spectra for orbital minimum and orbital maximum phases for both sources. We elaborate on the geometry of accretion and absorption in the X-ray emitting regions of both sources with articulation on the magnetic nature.

  14. Combining MeV-GeV γ-ray and X-ray Observations: A Broadband View of Supernova Remnant Kes 41

    NASA Astrophysics Data System (ADS)

    Castro, Daniel; Joubert, Timothy; Slane, Patrick O.; Figueroa-Feliciano, Enectali

    2015-01-01

    We report the detection of γ-ray emission coincident with the supernova remnant (SNR) Kes 41, using data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Kes 41 is believed to be interacting with molecular clouds, as evidenced by observations of hydroxyl (OH) maser emission at 1720 MHz in its direction and other observational information. SNR shocks are expected to be sites of cosmic ray acceleration, and clouds of dense material can provide effective targets for production of γ-rays from π0-decay. We model its broadband nonthermal emission (from radio to γ-ray) using a simple one-zone model, and after considering scenarios where the MeV-GeV source originate in either π0-decay or leptonic emission, we conclude that the γ-rays must be produced through the hadronic channel and derive a lower limit to the density with which the SNR is interacting. Additionally, we analyze the XMM-Newton X-ray observation of this remnant and derive an approximate density of the emmitting material. The discrepancy between the densities derived from the X-ray and γ-ray is discussed.

  15. X-ray time lags in PG 1211+143

    NASA Astrophysics Data System (ADS)

    Lobban, A. P.; Vaughan, S.; Pounds, K.; Reeves, J. N.

    2018-05-01

    We investigate the X-ray time lags of a recent ˜630 ks XMM-Newton observation of PG 1211+143. We find well-correlated variations across the XMM-Newton EPIC bandpass, with the first detection of a hard lag in this source with a mean time delay of up to ˜3 ks at the lowest frequencies. We find that the energy-dependence of the low-frequency hard lag scales approximately linearly with log(E) when averaged over all orbits, consistent with the propagating fluctuations model. However, we find that the low-frequency lag behaviour becomes more complex on time-scales longer than a single orbit, suggestive of additional modes of variability. We also detect a high-frequency soft lag at ˜10-4 Hz with the magnitude of the delay peaking at ≲ 0.8 ks, consistent with previous observations, which we discuss in terms of small-scale reverberation.

  16. A Long Decay of X-Ray Flux and Spectral Evolution in the Supersoft Active Galactic Nucleus GSN 069

    NASA Astrophysics Data System (ADS)

    Shu, X. W.; Wang, S. S.; Dou, L. M.; Jiang, N.; Wang, J. X.; Wang, T. G.

    2018-04-01

    GSN 069 is an optically identified very low-mass active galactic nuclei (AGN) that shows supersoft X-ray emission. The source is known to exhibit a huge X-ray outburst, with flux increased by more than a factor of ∼240 compared to the quiescence state. We report its long-term evolution in the X-ray flux and spectral variations over a timescale of ∼decade, using both new and archival X-ray observations from the XMM-Newton and Swift. The new Swift observations detected the source in its lowest level of X-ray activity since the outburst, a factor of ∼4 lower in the 0.2–2 keV flux than that obtained with the XMM-Newton observations nearly eight years ago. Combining with the historical X-ray measurements, we find that the X-ray flux is decreasing slowly. There seemed to be spectral softening associated with the drop of X-ray flux. In addition, we find evidence for the presence of a weak, variable, hard X-ray component, in addition to the dominant thermal blackbody emission reported before. The long decay of X-ray flux and spectral evolution, as well as the supersoft X-ray spectra, suggest that the source could be a tidal disruption event (TDE), though a highly variable AGN cannot be fully ruled out. Further continued X-ray monitoring would be required to test the TDE interpretation, by better determining the flux evolution in the decay phase.

  17. X-ray Emission from Hot Bubbles in nebulae around Evolved Stars

    NASA Astrophysics Data System (ADS)

    Toalá Sánz, Jesús Alberto

    This thesis presents an observational and numerical study on the X-ray emission related to the formation and evolution from hot bubbles in nebulae around evolved stars. The observational part of this study consists mainly in observations obtained from the X-ray satellites X-ray Multi Mirror Mission (XMM-Newton) and Chandra X-ray Observatory (CXO). We have made use of optical, infrared, and ultraviolet observations that have complemented our results and analysis. These observations have allowed us to study the Wolf-Rayet (WR) nebulae S 308 and NGC 6888 and that around the WR star WR 16. We have also studied the planetary nebulae (PNe) NGC 6543 and Abell 78 (A 78). The X-ray telescopes, XMM-Newton and CXO, have allowed us to study the distribution and physical characteristics of the hot and diffuse gas in the WR nebulae S 308 and NGC 6888 with exquisite detail. Even though the CXO observations do not map entirely NGC 6888, we are able to estimate global parameters of the X-ray emission making use of ROSAT observations. Previous observations performed with were hampered by Suzaku, ROSAT, and ASCA were hampered by a large number of point sources in the line of sight of the nebulae. S 308 was observed with XMM-Newton with four pointings. We have made use of the most up-to-date tools for the analysis of soft and diffuse X-ray emission (the ESAS tasks). We found that in both nebulae the hot gas has a plasma temperature of 1-1.5×10^6 K and it is delineated by the [O III] emission and not the Hα as stated in previous studies. A notable difference between these two WR nebulae is that S 308 has a limb-brightened morphology in the distribution of its hot gas, while NGC 6888 displays three maxima. We have studied the WR nebula around WR 16 with archived XMM-Newton observations. Even though it was expected that diffuse X-ray emission should be detected from a spherical, non-disrupted WR nebula, by comparison with S 308 and NGC 6888, we are not able to detect such emission

  18. Distant clusters of galaxies in the 2XMM/SDSS footprint: follow-up observations with the LBT

    NASA Astrophysics Data System (ADS)

    Rabitz, A.; Lamer, G.; Schwope, A.; Takey, A.

    2017-11-01

    Context. Galaxy clusters at high redshift are important to test cosmological models and models for the growth of structure. They are difficult to find in wide-angle optical surveys, however, leaving dedicated follow-up of X-ray selected candidates as one promising identification route. Aims: We aim to increase the number of galaxy clusters beyond the SDSS-limit, z 0.75. Methods: We compiled a list of extended X-ray sources from the 2XMMp catalogue within the footprint of the Sloan Digital Sky Survey. Fields without optical counterpart were selected for further investigation. Deep optical imaging and follow-up spectroscopy were obtained with the Large Binocular Telescope, Arizona (LBT), of those candidates not known to the literature. Results: From initially 19 candidates, selected by visually screening X-ray images of 478 XMM-Newton observations and the corresponding SDSS images, 6 clusters were found in the literature. Imaging data through r,z filters were obtained for the remaining candidates, and 7 were chosen for multi-object (MOS) spectroscopy. Spectroscopic redshifts, optical magnitudes, and X-ray parameters (flux, temperature, and luminosity) are presented for the clusters with spectroscopic redshifts. The distant clusters studied here constitute one additional redshift bin for studies of the LX-T relation, which does not seem to evolve from high to low redshifts. Conclusions: The selection method of distant galaxy clusters presented here was highly successful. It is based solely on archival optical (SDSS) and X-ray (XMM-Newton) data. Out of 19 selected candidates, 6 of the 7 candidates selected for spectroscopic follow-up were verified as distant clusters, a further candidate is most likely a group of galaxies at z 1.21. Out of the remaining 12 candidates, 6 were known previously as galaxy clusters, one object is a likely X-ray emission from an AGN radio jet, and for 5 we see no clear evidence for them to be high-redshift galaxy clusters. Based on

  19. Novae as a Class of Transient X-ray Sources

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Orio, M.; Valle, M. Della

    2007-01-01

    Motivated by the recently discovered class of faint (10(exp 34)-10(exp 35) ergs/s) X-ray transients in the Galactic Center region, we investigate the 2-10 keV properties of classical and recurrent novae. Existing data are consistent with the idea that all classical novae are transient X-ray sources with durations of months to years and peak luminosities in the 10(exp 34)-10(exp 35)ergs/s range. This makes classical novae a viable candidate class for the faint Galactic Center transients. We estimate the rate of classical novae within a 15 arcmin radius region centered on the Galactic Center (roughly the field of view of XMM-Newton observations centered on Sgr A*) to be approx.0.1 per year. Therefore, it is plausible that some of the Galactic Center transients that have been announced to date are unrecognized classical novae. The continuing monitoring of the Galactic Center region carried out by Chandra and XMM-Newton may therefore provide a new method to detect classical novae in this crowded and obscured region, an

  20. X-Ray Brightening and UV Fading of Tidal Disruption Event ASASSN-15oi

    NASA Astrophysics Data System (ADS)

    Gezari, S.; Cenko, S. B.; Arcavi, I.

    2017-12-01

    We present late-time observations by Swift and XMM-Newton of the tidal disruption event (TDE) ASASSN-15oi that reveal that the source brightened in the X-rays by a factor of ∼10 one year after its discovery, while it faded in the UV/optical by a factor of ∼100. The XMM-Newton observations measure a soft X-ray blackbody component with {{kT}}{bb}∼ 45 {eV}, corresponding to radiation from several gravitational radii of a central ∼ {10}6 {M}ȯ black hole. The last Swift epoch taken almost 600 days after discovery shows that the X-ray source has faded back to its levels during the UV/optical peak. The timescale of the X-ray brightening suggests that the X-ray emission could be coming from delayed accretion through a newly forming debris disk and that the prompt UV/optical emission is from the prior circularization of the disk through stream–stream collisions. The lack of spectral evolution during the X-ray brightening disfavors ionization breakout of a TDE “veiled” by obscuring material. This is the first time a TDE has been shown to have a delayed peak in soft X-rays relative to the UV/optical peak, which may be the first clear signature of the real-time assembly of a nascent accretion disk, and provides strong evidence for the origin of the UV/optical emission from circularization, as opposed to reprocessed emission of accretion radiation.

  1. On the origin of the broad, relativistic iron line of MCG-6-30-15 observed by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Martocchia, A.; Matt, G.; Karas, V.

    2002-03-01

    The relativistic iron line profile recently observed by XMM-Newton in the spectrum of the Seyfert 1 galaxy MCG-6-30-15 (Wilms et al. \\cite{Wilms01}) is discussed in the framework of the lamp-post model. It is shown that the steep disc emissivity, the large line equivalent width and the amount of Compton reflection can be self-consistently reproduced in this scenario.

  2. X-ray Diffraction Gratings for Astrophysics

    NASA Astrophysics Data System (ADS)

    Paerels, Frits

    2010-12-01

    Over the past year, we have celebrated the tenth anniversary of the Chandra and XMM-Newton X-ray observatories. Both carry powerful, novel diffraction grating spectrometers, which have opened true X-ray spectroscopy for astrophysics. I will describe the design and operation of these instruments, as the background to some of the beautiful results they have produced. But these designs do not exhaust the versatility and essential simplicity of diffraction grating spectrometers, and I will discuss applications for the International X-ray Observatory IXO.

  3. First stars of the ρ Ophiuchi dark cloud. XMM-Newton view of ρ Oph and its neighbors

    NASA Astrophysics Data System (ADS)

    Pillitteri, I.; Wolk, S. J.; Chen, H. H.; Goodman, A.

    2016-08-01

    Star formation in molecular clouds can be triggered by the dynamical action of winds from massive stars. Furthermore, X-ray and UV fluxes from massive stars can influence the life time of surrounding circumstellar disks. We present the results of a 53 ks XMM-Newton observation centered on the ρ Ophiuchi A+B binary system. ρ Ophiuchi lies in the center of a ring of dust, likely formed by the action of its winds. This region is different from the dense core of the cloud (L1688 Core F) where star formation is at work. X-rays are detected from ρ Ophiuchi as well as a group of surrounding X-ray sources. We detected 89 X-ray sources, 47 of them have at least one counterpart in 2MASS+All-WISE catalogs. Based on IR and X-ray properties, we can distinguish between young stellar objects (YSOs) belonging to the cloud and background objects. Among the cloud members, we detect three debris-disk objects and 22 disk-less - Class III young stars.We show that these stars have ages in 5-10 Myr, and are significantly older than the YSOs in L1688. We speculate that they are the result of an early burst of star formation in the cloud. An X-ray energy of ≥5 × 1044 erg has been injected into the surrounding mediumover the past 5 Myr, we discuss the effects of such energy budget in relation to the cloud properties and dynamics.

  4. A hard X-ray view of the soft excess in AGN

    NASA Astrophysics Data System (ADS)

    Boissay, R.; Ricci, C.; Paltani, S.

    2017-10-01

    A soft X-ray emission in excess of the extrapolation of the hard X-ray continuum is detected in many Seyfert 1 galaxies below 1 keV. To understand the uncertain nature of this soft excess, which could be due to warm Comptonization or to blurred ionized reflection, we consider the different behaviors of these models above 10 keV. We present the results of a study done on 102 Seyfert 1s from the Swift BAT 70-Month Hard X-ray Survey catalog. We have performed the joint spectral analysis of Swift/BAT and XMM-Newton data in order to get a hard X-ray view of the soft excess. We discuss the links between the soft-excess strength and the reflection at high energy, the slope of the continuum and the Eddington ratio. We compare our results to simulations of blurred ionized-reflection models and show that they are in contradiction. Indeed, we do not find the expected correlation between the reflection and the soft-excess strengths, neither in individual, nor in stacked spectra. We also present our current project of broadband fitting, using different models explaining the soft excess, to simultaneous XMM-Newton and NuSTAR observations of about ten objects of our sample.

  5. XAssist: A System for the Automation of X-ray Astrophysics Analysis

    NASA Astrophysics Data System (ADS)

    Ptak, A.; Griffiths, R.

    XAssist is a NASA AISR-funded project for the automation of X-ray astrophysics, with emphasis on galaxies. It is nearing completion of its initially funded effort, and is working well for Chandra and ROSAT data. Initial support for XMM-Newton data is present as well. It is capable of data reprocessing, source detection, and preliminary spatial, temporal and spectral analysis for each source with sufficient counts. The bulk of the system is written in Python, which in turn drives underlying software (CIAO for Chandra data, etc.). Future work will include a GUI (mainly for beginners and status monitoring) and the exposure of at least some functionality as web services. The latter will help XAssist to eventually become part of the VO, making advanced queries possible, such as determining the X-ray fluxes of counterparts to HST or SDSS sources (including the use of unpublished X-ray data), and add the ability of ``on-the-fly'' X-ray processing. Pipelines are running on ROSAT, Chandra and now XMM-Newton observations of galaxies to demonstrate XAssist's capabilities, and the results are available online (in real time) at http://www.xassist.org. XAssist itself as well as various associated projects are available for download.

  6. Observaciones combinadas XMM-Newton/Chandra del remanente de supernova G306.3-0.9

    NASA Astrophysics Data System (ADS)

    Filócomo, A.; Combi, J. A.; García, F.; Suárez, A. E.; Luque-Escamilla, P. L.; Parón, S.

    2016-08-01

    In this paper we study the spatial and spectral distribution of the physical and chemical properties of the supernova remnant G306.3-0.9 by using data of the X-rays telescopes XMM-Newton and Chandra, which we complement with radio and infrared information in order to study the morphology of the source and the effect of the shock wave in the interestelar medium. The results show a non-uniform morphology of the emission, dominated by thermal radiation with high values of Ne, Mg, S, Ca, Ar and Fe in the central region, typical of ejecta material. Also, using an infrared flux distribution, we could restrict the type of the progenitor responsible of the supernova phenomena.

  7. X-ray observations of Galactic H.E.S.S. sources: an update

    NASA Astrophysics Data System (ADS)

    Puehlhofer, G.; Eger, P.; Sasaki, M.; Gottschall, D.; Capasso, M.; H. E. S. S. Collaboration

    2016-06-01

    X-ray diagnostics of TeV sources continues to be an important tool to identify the nature of newly detected sources as well as to pinpoint the physics processes that are at work in these highly energetic objects. The contribution aims at giving a review of recent studies that we have performed on TeV sources with H.E.S.S. and XMM-Newton and also other X-ray facilities. Here, we will mainly focus on Galactic objects such as gamma-ray binaries, pulsar wind nebulae, and supernova remnants (SNRs). Particular emphasis will be given to SNR studies, including recently identified SNRs such as HESS J1731-347 and HESS J1534-571 as well as a revisit of RX J1713.7-3946.

  8. Estimating photometric redshifts for X-ray sources in the X-ATLAS field using machine-learning techniques

    NASA Astrophysics Data System (ADS)

    Mountrichas, G.; Corral, A.; Masoura, V. A.; Georgantopoulos, I.; Ruiz, A.; Georgakakis, A.; Carrera, F. J.; Fotopoulou, S.

    2017-12-01

    We present photometric redshifts for 1031 X-ray sources in the X-ATLAS field using the machine-learning technique TPZ. X-ATLAS covers 7.1 deg2 observed with XMM-Newton within the Science Demonstration Phase of the H-ATLAS field, making it one of the largest contiguous areas of the sky with both XMM-Newton and Herschel coverage. All of the sources have available SDSS photometry, while 810 additionally have mid-IR and/or near-IR photometry. A spectroscopic sample of 5157 sources primarily in the XMM/XXL field, but also from several X-ray surveys and the SDSS DR13 redshift catalogue, was used to train the algorithm. Our analysis reveals that the algorithm performs best when the sources are split, based on their optical morphology, into point-like and extended sources. Optical photometry alone is not enough to estimate accurate photometric redshifts, but the results greatly improve when at least mid-IR photometry is added in the training process. In particular, our measurements show that the estimated photometric redshifts for the X-ray sources of the training sample have a normalized absolute median deviation, nmad ≈ 0.06, and a percentage of outliers, η = 10-14%, depending upon whether the sources are extended or point like. Our final catalogue contains photometric redshifts for 933 out of the 1031 X-ray sources with a median redshift of 0.9. The table of the photometric redshifts is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A39

  9. Hunting for swinging millisecond pulsars with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Papitto, Alessandro

    2013-10-01

    The recent XMM discovery of a millisecond pulsar swinging between an accretion- powered (X-ray) and a rotation-powered (radio) pulsar state provided the final evidence of the evolutionary link between these two classes, demonstrating that transitions between the two states can be observed over of a few weeks. We propose a ToO program (made of 3 triggers of 60 ks, over a 3years timescale) aimed at detecting X-ray accretion powered pulsations in sources already known as ms radio pulsars. Candidates are restricted to black widows and redbacks, systems in an evolutionary phase that allows state transitions. Enlarging the number of systems in this transitional phase is crucial to test binary evolution theories, and to study the disk-field interaction over a large range of mass accretion rates.

  10. A long XMM-Newton campaign on the mode-switching radio pulsar PSR B0943+10

    NASA Astrophysics Data System (ADS)

    Mereghetti, S.

    2017-10-01

    Observations obtained in the last years challenged the widespread notion that rotation-powered neutron stars are steady X-ray emitters. Besides the few pulsars showing "magnetar-like" activity, in at least one remarkable object, PSR B0943+10, significant variations, correlated to radio-mode switching have been discovered. Their study opens a new window to investigate the processes responsible for the pulsar radio and high-energy emission. An XMM-Newton Large Program, with simultaneous radio observations with LOFAR, LWA and Arecibo, allowed us to detect X-ray pulsations also during the fainter state and to better constrain the spectral and variability properties of PSR B0943+10. In both radio states the pulsed emission can be described by a thermal blackbody with temperature of a few 10^6 K and the unpulsed emission by a power-law. We discuss a scenario in which both unpulsed non-thermal emission, likely of magnetospheric origin, and pulsed thermal emission from a small polar cap (˜1500 m^2) with a strong non-dipolar field (˜10^{14} G), are present during both modes and vary in intensity in a correlated way. This is broadly consistent with the predictions of the partially screened gap model and does not necessarily imply global magnetospheric rearrangements to explain the mode switching.

  11. XMM-Newton Archival Study of the ULX Population in Nearby Galaxies

    NASA Technical Reports Server (NTRS)

    Winter, Lisa M.; Mushotzky, Richard F.; Reynolds, christopher S.

    2006-01-01

    We present the results of an archival XMM-Newton study of the bright X-ray point sources (L(sub X) greater than 10(exp 38 erg per second)) in 32 nearby galaxies. From our list of approximately 100 point sources, we attempt to determine if there is a low-state counterpart to the Ultraluminous X-ray (ULX) population, searching for a soft-hard state dichotomy similar to that known for Galactic X-ray binaries and testing the specific predictions of the IMBH hypothesis. To this end, we searched for low-state objects, which we defined as objects within our sample which had a spectrum well fit by a simple absorbed power law, and high-state objects, which we defined as objects better fit by a combined blackbody and a power law. Assuming that low-state)) objects accrete at approximately 10% of the Eddington luminosity (Done & Gierlinski 2003) and that high-state objects accrete near the Eddington luminosity we further divided our sample of sources into low and high state ULX sources. We classify 16 sources as low-state ULXs and 26 objects as high-state ULXs. As in Galactic black hole systems, the spectral indices, GAMMA, of the lowstate objects, as well as the luminosities, tend to be lower than those of the high-state objects. The observed range of blackbody temperatures for the high state is 0.1-1 keV, with the most luminous systems tending toward the lowest temperatures. We therefore divide our high-state ULXs into candidate IMBHs (with blackbody temperatures of approximately 0.1 keV) and candidate stellar mass BHs (with blackbody temperatures of approximately 1.0 keV). A subset of the candidate stellar mass BHs have spectra that are well-fit by a Comptonization model, a property similar of Galactic BHs radiating in the very-high state near the Eddington limit.

  12. First Detection of Phase-dependent Colliding Wind X-ray Emission outside the Milky Way

    NASA Technical Reports Server (NTRS)

    Naze, Yael; Koenigsberger, Gloria; Moffat, Anthony F. J.

    2007-01-01

    After having reported the detection of X-rays emitted by the peculiar system HD 5980, we assess here the origin of this high-energy emission from additional X-ray observations obtained with XMM-Newton. This research provides the first detection of apparently periodic X-ray emission from hot gas produced by the collision of winds in an evolved massive binary outside the Milky Way. It also provides the first X-ray monitoring of a Luminous Blue Variable only years after its eruption and shows that the source of the X-rays is not associated with the ejecta.

  13. Nine Years of XMM-Newton Pipeline: Experience and Feedback

    NASA Astrophysics Data System (ADS)

    Michel, Laurent; Motch, Christian

    2009-05-01

    The Strasbourg Astronomical Observatory is member of the Survey Science Centre (SSC) of the XMM-Newton satellite. Among other responsibilities, we provide a database access to the 2XMMi catalogue and run the part of the data processing pipeline performing the cross-correlation of EPIC sources with archival catalogs. These tasks were all developed in Strasbourg. Pipeline processing is flawlessly in operation since 1999. We describe here the work load and infrastructure setup in Strasbourg to support SSC activities. Our nine year long SSC experience could be used in the framework of the Simbol-X ground segment.

  14. Radio/X-ray monitoring of the broad-line radio galaxy 3C 382. High-energy view with XMM-Newtonand NuSTAR

    NASA Astrophysics Data System (ADS)

    Ursini, F.; Petrucci, P.-O.; Matt, G.; Bianchi, S.; Cappi, M.; Dadina, M.; Grandi, P.; Torresi, E.; Ballantyne, D. R.; De Marco, B.; De Rosa, A.; Giroletti, M.; Malzac, J.; Marinucci, A.; Middei, R.; Ponti, G.; Tortosa, A.

    2018-05-01

    We present the analysis of five joint XMM-Newton/NuSTARobservations, 20 ks each and separated by 12 days, of the broad-line radio galaxy 3C 382. The data were obtained as part of a campaign performed in September-October 2016 simultaneously with VLBA. The radio data and their relation with the X-ray ones will be discussed in a following paper. The source exhibits a moderate flux variability in the UV/X-ray bands, and a limited spectral variability especially in the soft X-ray band. In agreement with past observations, we find the presence of a warm absorber, an iron Kα line with no associated Compton reflection hump, and a variable soft excess well described by a thermal Comptonization component. The data are consistent with a "two-corona" scenario, in which the UV emission and soft excess are produced by a warm (kT ≃ 0.6 keV), optically thick (τ ≃ 20) corona consistent with being a slab fully covering a nearly passive accretion disc, while the hard X-ray emission is due to a hot corona intercepting roughly 10% of the soft emission. These results are remarkably similar to those generally found in radio-quiet Seyferts, thus suggesting a common accretion mechanism.

  15. ESA's XMM-Newton sees matter speed-racing around a black hole

    NASA Astrophysics Data System (ADS)

    2005-01-01

    shift and resembles that used by the police to catch speeding motorists. As an object moves towards us, the frequency or energy of its light rises. Conversely, the energy falls as the object moves away. This is the ‘Doppler effect’ and a similar phenomenon happens with the changing pitch of a police siren. If it is approaching, the frequency of the sound is higher, but if it is receding the frequency is lower. "We think we are viewing the accretion disc at a slightly tilted angle, so we see the light from each of these flares rise and fall in energy as they orbit the black hole," Miller said. By studying the pattern with which the light from the clumps rises and falls in energy, scientists could also determine the mass of the black hole and the viewing angle of the accretion disc. With a known mass and orbital period, Turner and her team could determine the speed of the clumps using relatively simple Newtonian physics. Two factors made the measurement possible. One is that XMM-Newton captured particularly persistent flares during a long observation, lasting nearly 27 hours. Equally crucial is the unprecedented light collecting power of XMM-Newton, which allowed scientists to look at how energy from the clumps changed over time. Turner said this observation confirms a preliminary XMM-Newton result, announced in September 2004 by a European team led by Dr Kazushi Iwasawa of the Institute of Astronomy in Cambridge, United Kingdom, that something as detailed as an orbital period could be detected with the current generation of X-ray observatories. The combination of results indicates that scientists, given long observation times, are now able to make careful black hole measurements and even test general relativity in the domain of extreme gravity.

  16. Observations of X-ray flares in G-K dwarfs by XMM-Newton

    NASA Astrophysics Data System (ADS)

    Pandey, Jeewan Chandra

    Eclipsing binary BD +5 706 is best investigated member of rare class of cool Algols, which differ from clasical Algol systems in that the mass gaining component is also a late-type star. The analysis of X-ray lightcurve of this system registered by ROSAT suggested the primary component to be the dominant source of activity in the system (Torres et al, AJ 125, 3237, 2003). We reconstruct the spatial structure of coronal emission within the system according to the method proposed by Siarkowski, and show that coronal emission is most likely attributed to both components.

  17. Two X-Ray Observatories are Better Than One

    NASA Image and Video Library

    2013-02-27

    NASA NuSTAR, has helped to show that the spin rates of black holes can be measured conclusively. The solid lines show two theoretical models that explain low-energy X-ray emission seen previously from the spiral galaxy NGC 1365 by XMM-Newton.

  18. The XMM-Newton View of Stellar Coronae: High-Resolution X-Ray Spectroscopy of Capella

    NASA Technical Reports Server (NTRS)

    Audard, M.; Behar, E.; Guedel, M.; Raassen, A. J. J.; Porquet, D.; Mewe, R.; Foley, C. A.; Bromage, G. E.

    2000-01-01

    We present the high-resolution RGS spectrum of the bright stellar binary Capella observed by the XMM-Newton satellite. A multi-thermal approach has been applied to fit the data and derive elemental abundances. The differential emission measure distribution is reconstructed using a Chebychev polynomial fit. The DEM shape is found to display a sharp peak around 7 MK, consistent with previous EUVE and ASCA results. A small but significant amount of emission measure is required around 1.8 MK in order to explain the O VII He-like triplet and the C VI Ly(alpha) line. Using the sensitivity to temperature of dielectronic recombination lines from O VI around 22 A, we confirm that the cool plasma temperature needs to be higher than 1.2 MK. In the approximation of a cool plasma described by one temperature, we used line ratios from the forbidden, intercombination, and resonance lines of the O VII triplet and derived an average density for the cool coronal plasma at the low density limit. A tentative study of line ratios from the M XI triplet gives an average temperature close to the sharp peak in emission measure and an average density of the order of 10(exp 12)cu cm, three orders of magnitude higher than for O VII. Implications for the coronal physics of Capella are discussed. We complement this paper with a discussion of the importance of the atomic code uncertainties on the spectral fitting procedure.

  19. In-depth study of long-term variability in the X-ray emission of the Be/X-ray binary system AX J0049.4-7323

    NASA Astrophysics Data System (ADS)

    Ducci, L.; Romano, P.; Malacaria, C.; Ji, L.; Bozzo, E.; Santangelo, A.

    2018-06-01

    AX J0049.4-7323 is a Be/X-ray binary in the Small Magellanic Cloud hosting a 750 s pulsar which has been observed over the last 17 years by several X-ray telescopes. Despite numerous observations, little is known about its X-ray behaviour. Therefore, we coherently analysed archival Swift, Chandra, XMM-Newton, RXTE, and INTEGRAL data, and we compared them with already published ASCA data, to study its X-ray long-term spectral and flux variability. AX J0049.4-7323 shows a high X-ray variability, spanning more than three orders of magnitudes, from L ≈ 1.6 × 1037 erg s-1 (0.3-8 keV, d = 62 kpc) down to L ≈ 8 × 1033 erg s-1. RXTE, Chandra, Swift, and ASCA observed, in addition to the expected enhancement of X-ray luminosity at periastron, flux variations by a factor of 270 with peak luminosities of ≈2.1 × 1036 erg s-1 far from periastron. These properties are difficult to reconcile with the typical long-term variability of Be/XRBs, traditionally interpreted in terms of type I and type II outbursts. The study of AX J0049.4-7323 is complemented with a spectral analysis of Swift, Chandra, and XMM-Newton data which showed a softening trend when the emission becomes fainter, and an analysis of optical/UV data collected by the UVOT telescope on board Swift. In addition, we measured a secular spin-up rate of Ṗ = (-3.00 ± 0.12) × 10-3 s day-1, which suggests that the pulsar has not yet achieved its equilibrium period. Assuming spherical accretion, we estimated an upper limit for the magnetic field strength of the pulsar of ≈3 × 1012 G.

  20. Evolution of the X-ray luminosity in young HII galaxies

    NASA Astrophysics Data System (ADS)

    Rosa González, D.; Terlevich, E.; Jiménez Bailón, E.; Terlevich, R.; Ranalli, P.; Comastri, A.; Laird, E.; Nandra, K.

    2009-10-01

    In an effort to understand the correlation between X-ray emission and present star formation rate, we obtained XMM-Newton data to estimate the X-ray luminosities of a sample of actively star-forming HII galaxies. The obtained X-ray luminosities are compared to other well-known tracers of star formation activity such as the far-infrared and the ultraviolet luminosities. We also compare the obtained results with empirical laws from the literature and with recently published analysis applying synthesis models. We use the time delay between the formation of the stellar cluster and that of the first X-ray binaries, in order to put limits on the age of a given stellar burst. We conclude that the generation of soft X-rays, as well as the Hα or infrared luminosities is instantaneous. The relation between the observed radio and hard X-ray luminosities, on the other hand, points to the existence of a time delay between the formation of the stellar cluster and the explosion of the first massive stars and the consequent formation of supernova (SN) remnants and high-mass X-ray binaries, which originate the radio and hard X-ray fluxes, respectively. When comparing hard X-rays with a star formation indicator that traces the first million years of evolution (e.g. Hα luminosities), we found a deficit in the expected X-ray luminosity. This deficit is not found when the X-ray luminosities are compared with infrared luminosities, a star formation tracer that represents an average over the last 108yr. The results support the hypothesis that hard X-rays are originated in X-ray binaries which, as SN remnants, have a formation time delay of a few mega years after the star-forming burst. Partially based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. E-mail: danrosa@inaoep.mx ‡ Visiting Fellow, IoA, Cambridge, UK.

  1. The high energy X-ray universe

    PubMed Central

    Giacconi, Riccardo

    2010-01-01

    Since its beginning in the early 1960s, the field of X-ray astronomy has exploded, experiencing a ten-billion-fold increase in sensitivity, which brought it on par with the most advanced facilities at all wavelengths. I will briefly describe the revolutionary first discoveries prior to the launch of the Chandra and XMM-Newton X-ray observatories, present some of the current achievements, and offer some thoughts about the future of this field. PMID:20404148

  2. X-Ray Properties of the Youngest Radio Sources and Their Environments

    NASA Astrophysics Data System (ADS)

    Siemiginowska, Aneta; Sobolewska, Małgosia; Migliori, Giulia; Guainazzi, Matteo; Hardcastle, Martin; Ostorero, Luisa; Stawarz, Łukasz

    2016-05-01

    We present the first results from our X-ray study of young radio sources classified as compact symmetric objects (CSOs). Using the Chandra X-ray Observatory we observed six CSOs for the first time in X-rays, and re-observed four CSOs already observed with XMM-Newton or BeppoSAX. We also included six other CSOs with archival data to built a pilot study of a sample of the 16 CSO sources observed in X-rays to date. All the sources are nearby, z\\lt 1, and the age of their radio structures (\\lt 3000 yr) has been derived from the expansion velocity of their hot spots. Our results show the heterogeneous nature of the CSOs’ X-ray emission, indicating a complex environment associated with young radio sources. The sample covers a range in X-ray luminosity, {L}2{--10{keV}}˜ {10}41-1045 erg s-1, and intrinsic absorbing column density of {N}{{H}}≃ {10}21-1022 cm-2. In particular, we detected extended X-ray emission in 1718-649 a hard photon index of {{Γ }}≃ 1 in 2021+614 and 1511+0518 consistent with either a Compton-thick absorber or non-thermal emission from compact radio lobes, and in 0710+439 an ionized iron emission line at {E}{rest}=(6.62+/- 0.04) keV and EW ˜ 0.15-1.4 keV, and a decrease by an order of magnitude in the 2-10 keV flux since the 2008 XMM-Newton observation in 1607+26. We conclude that our pilot study of CSOs provides a variety of exceptional diagnostics and highlights the importance of deep X-ray observations of large samples of young sources. This is necessary in order to constrain theoretical models for the earliest stage of radio source evolution and to study the interactions of young radio sources with the interstellar environment of their host galaxies.

  3. A DEEP CHANDRA OBSERVATION OF THE WOLF-RAYET + BLACK HOLE BINARY NGC 300 X-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binder, B.; Williams, B. F.; Anderson, S. F.

    We have obtained a 63 ks Chandra ACIS-I observation of the Wolf-Rayet + black hole binary NGC 300 X-1. We measure rapid low-amplitude variability in the 0.35-8 keV light curve. The power density spectrum has a power-law index {gamma} = 1.02 {+-} 0.15 consistent with an accreting black hole in a steep power-law state. When compared to previous studies of NGC 300 X-1 performed with XMM-Newton, we find the source at the low end of the previously measured 0.3-10 keV luminosity. The spectrum of NGC 300 X-1 is dominated by a power law ({Gamma} = 2.0 {+-} 0.3) with amore » contribution at low energies by a thermal component. We estimate the 0.3-10 keV luminosity to be 2.6{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 38} erg s{sup -1}. The timing and spectroscopic properties of NGC 300 X-1 are consistent with being in a steep power-law state, similar to earlier observations performed with XMM-Newton. We additionally compare our observations to known high-mass X-ray binaries and ultraluminous X-ray sources, and find the properties of NGC 300 X-1 are most consistent with black hole high-mass X-ray binaries.« less

  4. CHEERS: Chemical enrichment of clusters of galaxies measured using a large XMM-Newton sample

    NASA Astrophysics Data System (ADS)

    de Plaa, J.; Mernier, F.; Kaastra, J.; Pinto, C.

    2017-10-01

    The Chemical Enrichment RGS Sample (CHEERS) is aimed to be a sample of the most optimal clusters of galaxies for observation with the Reflection Grating Spectrometer (RGS) aboard XMM-Newton. It consists of 5 Ms of deep cluster observations of 44 objects obtained through a very large program and archival observations. The main goal is to measure chemical abundances in the hot Intra-Cluster Medium (ICM) of clusters to provide constraints on chemical evolution models. Especially the origin and evolution of type Ia supernovae is still poorly known and X-ray observations could contribute to constrain models regarding the SNIa explosion mechanism. Due to the high quality of the data, the uncertainties on the abundances are dominated by systematic effects. By carefully treating each systematic effect, we increase the accuracy or estimate the remaining uncertainty on the measurement. The resulting abundances are then compared to supernova models. In addition, also radial abundance profiles are derived. In the talk, we present an overview of the results that the CHEERS collaboration obtained based on the CHEERS data. We focus on the abundance measurements. The other topics range from turbulence measurements through line broadening to cool gas in groups.

  5. On the Detectability of CO Molecules in the Interstellar Medium via X-Ray Spectroscopy

    NASA Technical Reports Server (NTRS)

    Joachimi, Katerine; Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.

    2016-01-01

    We present a study of the detectability of CO molecules in the Galactic interstellar medium using high-resolution X-ray spectra obtained with the XMM-Newton Reflection Grating Spectrometer. We analysed 10 bright low mass X-ray binaries (LMXBs) to study the CO contribution in their line of sights. A total of 25 observations were fitted with the ISMabs X-ray absorption model which includes photoabsorption cross-sections for Oi, Oii, Oiii and CO. We performed a Monte Carlo (MC) simulation analysis of the goodness of fit in order to estimate the significance of the CO detection. We determine that the statistical analysis prevents a significant detection of CO molecular X-ray absorption features, except for the lines of sight towards XTE J1718-330 and 4U 1636-53. In the case of XTE J1817-330, this is the first report of the presence of CO along its line of sight. Our results reinforce the conclusion that molecules have a minor contribution to the absorption features in the O K-edge spectral region. We estimate a CO column density lower limit to perform a significant detection with XMM-Newton of N(CO) greater than 6 x 10(exp 16) per sq cm for typical exposure times.

  6. Catalog of candidates for quasars at 3 < z < 5.5 selected among X-Ray sources from the 3XMM-DR4 survey of the XMM-Newton observatory

    NASA Astrophysics Data System (ADS)

    Khorunzhev, G. A.; Burenin, R. A.; Meshcheryakov, A. V.; Sazonov, S. Yu.

    2016-05-01

    We have compiled a catalog of 903 candidates for type 1 quasars at redshifts 3 < z < 5.5 selected among the X-ray sources of the "serendipitous" XMM-Newton survey presented in the 3XMMDR4 catalog (the median X-ray flux is ≈5 × 10-15 erg s-1 cm-2 in the 0.5-2 keV energy band) and located at high Galactic latitudes | b| > 20° in Sloan Digital Sky Survey (SDSS) fields with a total area of about 300 deg2. Photometric SDSS data as well infrared 2MASS and WISE data were used to select the objects. We selected the point sources from the photometric SDSS catalog with a magnitude error δ mz' < 0.2 and a color i' - z' < 0.6 (to first eliminate the M-type stars). For the selected sources, we have calculated the dependences χ2( z) for various spectral templates from the library that we compiled for these purposes using the EAZY software. Based on these data, we have rejected the objects whose spectral energy distributions are better described by the templates of stars at z = 0 and obtained a sample of quasars with photometric redshift estimates 2.75 < z phot < 5.5. The selection completeness of known quasars at z spec > 3 in the investigated fields is shown to be about 80%. The normalized median absolute deviation (Δ z = | z spec - z phot|) is σ Δ z /(1+ z spec) = 0.07, while the outlier fraction is η = 9% when Δ z/(1 + z cпek.) > 0.2. The number of objects per unit area in our sample exceeds the number of quasars in the spectroscopic SDSS sample at the same redshifts approximately by a factor of 1.5. The subsequent spectroscopic testing of the redshifts of our selected candidates for quasars at 3 < z < 5.5 will allow the purity of this sample to be estimated more accurately.

  7. OBSERVATIONS OF THE HIGH-MASS X-RAY BINARY A 0535+26 IN QUIESCENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothschild, Richard; Markowitz, Alex; Hemphill, Paul

    2013-06-10

    We have analyzed three observations of the high-mass X-ray binary A 0535+26 performed by the Rossi X-Ray Timing Explorer (RXTE) three, five, and six months after the last outburst in 2011 February. We detect pulsations only in the second observation. The 3-20 keV spectra can be fit equally well with either an absorbed power law or absorbed thermal bremsstrahlung model. Reanalysis of two earlier RXTE observations made 4 yr after the 1994 outburst, original BeppoSAX observations 2 yr later, reanalysis of four EXOSAT observations made 2 yr after the last 1984 outburst, and a recent XMM-Newton observation in 2012 revealmore » a stacked, quiescent flux level decreasing from {approx}2 to <1 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1} over 6.5 yr after outburst. The detection of pulsations during half of the quiescent observations would imply that accretion onto the magnetic poles of the neutron star continues despite the fact that the circumstellar disk may no longer be present. The accretion could come from material built up at the corotation radius or from an isotropic stellar wind.« less

  8. Discovery of Coherent Pulsations from the Ultraluminous X-Ray Source NGC 7793 P13

    NASA Technical Reports Server (NTRS)

    Furst, F.; Walton, D. J.; Harrison, F. A.; Stern, D.; Barret, D.; Brightman, M.; Fabian, A. C.; Grefenstette, B.; Madsen, K. K.; Middleton, M. J.; hide

    2016-01-01

    We report the detection of coherent pulsations from the ultraluminous X-ray source (ULX) NGC 7793P13. The approx. =0.42 s nearly sinusoidal pulsations were initially discovered in broadband X-ray observations using XMM-Newton and NuSTAR taken in 2016. We subsequently also found pulsations in archival XMM-Newton data taken in 2013 and 2014. The significant (>>5(sigma)) detection of coherent pulsations demonstrates that the compact object in P13 is a neutron star, and given the observed peak luminosity of 10(exp 40) erg/ s (assuming isotropy), it is well above the Eddington limit for a 1.4 Stellar Mass accretor. This makes P13 the second ULX known to be powered by an accreting neutron star. The pulse period varies between epochs, with a slow but persistent spin-up over the 2013-2016 period. This spin-up indicates a magnetic field of B1.51012 G, typical of many Galactic accreting pulsars. The most likely explanation for the extreme luminosity is a high degree of beaming; however, this is difficult to reconcile with the sinusoidal pulse profile.

  9. A cluster in a crowded environment: XMM-Newton and Chandra observations of A3558

    NASA Astrophysics Data System (ADS)

    Rossetti, M.; Ghizzardi, S.; Molendi, S.; Finoguenov, A.

    2007-03-01

    Combining XMM-Newton and Chandra data, we have performed a detailed study of Abell 3558. Our analysis shows that its dynamical history is more complicated than previously thought. We have found some traits typical of cool core clusters (surface brightness peaked at the center, peaked metal abundance profile) and others that are more common in merging clusters, like deviations from spherical symmetry in the thermodynamic quantities of the ICM. This last result has been achieved with a new technique for deriving temperature maps from images. We have also detected a cold front and, with the combined use of XMM-Newton and Chandra, we have characterized its properties, such as the speed and the metal abundance profile across the edge. This cold front is probably due to the sloshing of the core, induced by the perturbation of the gravitational potential associated with a past merger. The hydrodynamic processes related to this perturbation have presumably produced a tail of lower entropy, higher pressure and metal rich ICM, which extends behind the cold front for~500 kpc. The unique characteristics of A3558 are probably due to the very peculiar environment in which it is located: the core of the Shapley supercluster. Appendices A and B are only available in electronic form at http://www.aanda.org

  10. Applications for edge detection techniques using Chandra and XMM-Newton data: galaxy clusters and beyond

    NASA Astrophysics Data System (ADS)

    Walker, S. A.; Sanders, J. S.; Fabian, A. C.

    2016-09-01

    The unrivalled spatial resolution of the Chandra X-ray observatory has allowed many breakthroughs to be made in high-energy astrophysics. Here we explore applications of Gaussian gradient magnitude (GGM) filtering to X-ray data, which dramatically improves the clarity of surface brightness edges in X-ray observations, and maps gradients in X-ray surface brightness over a range of spatial scales. In galaxy clusters, we find that this method is able to reveal remarkable substructure behind the cold fronts in Abell 2142 and Abell 496, possibly the result of Kelvin-Helmholtz instabilities. In Abell 2319 and Abell 3667, we demonstrate that the GGM filter can provide a straightforward way of mapping variations in the widths and jump ratios along the lengths of cold fronts. We present results from our ongoing programme of analysing the Chandra and XMM-Newton archives with the GGM filter. In the Perseus cluster, we identify a previously unseen edge around 850 kpc from the core to the east, lying outside a known large-scale cold front, which is possibly a bow shock. In MKW 3s we find an unusual `V' shape surface brightness enhancement starting at the cluster core, which may be linked to the AGN jet. In the Crab nebula a new, moving feature in the outer part of the torus is identified which moves across the plane of the sky at a speed of ˜0.1c, and lies much further from the central pulsar than the previous motions seen by Chandra.

  11. A Survey of X-Ray Variability in Seyfert 1 Galaxies with XMM-Newton to study the soft excess and the broad Fe lines

    NASA Astrophysics Data System (ADS)

    Ponti, Gabriele

    The nature of the soft excess and the presence of the broad Fe lines is still nowadays highly debated because the different absorption/emission models are degenerate. Spectral variability studies have the potential to break this degeneracy. I will present the results of a spectral variability RMS survey of the 36 brightest type 1 Seyfert galaxies observed by XMM-Newton for more than 30 ks. More than 80 as already measured, on longer timescales, with RXTE (Markowitz et al. 2004). About half of the sample show lower variability in the soft energy band, indicating that the emission from the soft excess is more stable than the one of the continuum. While the other sources show a soft excess that is as variable as the continuum. About half of the sample do not show an excess of variability where the warm absorber component imprints its stronger features, suggesting that for these sources the soft excess is not produced by a relativistic absorbing wind. In a few bright and well exposed sources it has been possible to measure an excess of variability at the energy of the broad component of the Fe K line, in agreement with the broad emission line interpretation. For the sources where more than one observation was available the stability of the shape of the RMS spectrum has been investigated. Moreover, it will be presented the results of the computation of the excess variance of all the radio quiet type 1 AGN of the XMM-Newton database. The relations between variability, black hole mass, accretion rate and luminosity are investigated and their scatter measured.

  12. Reconstruction of the two-dimensional gravitational potential of galaxy clusters from X-ray and Sunyaev-Zel'dovich measurements

    NASA Astrophysics Data System (ADS)

    Tchernin, C.; Bartelmann, M.; Huber, K.; Dekel, A.; Hurier, G.; Majer, C. L.; Meyer, S.; Zinger, E.; Eckert, D.; Meneghetti, M.; Merten, J.

    2018-06-01

    Context. The mass of galaxy clusters is not a direct observable, nonetheless it is commonly used to probe cosmological models. Based on the combination of all main cluster observables, that is, the X-ray emission, the thermal Sunyaev-Zel'dovich (SZ) signal, the velocity dispersion of the cluster galaxies, and gravitational lensing, the gravitational potential of galaxy clusters can be jointly reconstructed. Aims: We derive the two main ingredients required for this joint reconstruction: the potentials individually reconstructed from the observables and their covariance matrices, which act as a weight in the joint reconstruction. We show here the method to derive these quantities. The result of the joint reconstruction applied to a real cluster will be discussed in a forthcoming paper. Methods: We apply the Richardson-Lucy deprojection algorithm to data on a two-dimensional (2D) grid. We first test the 2D deprojection algorithm on a β-profile. Assuming hydrostatic equilibrium, we further reconstruct the gravitational potential of a simulated galaxy cluster based on synthetic SZ and X-ray data. We then reconstruct the projected gravitational potential of the massive and dynamically active cluster Abell 2142, based on the X-ray observations collected with XMM-Newton and the SZ observations from the Planck satellite. Finally, we compute the covariance matrix of the projected reconstructed potential of the cluster Abell 2142 based on the X-ray measurements collected with XMM-Newton. Results: The gravitational potentials of the simulated cluster recovered from synthetic X-ray and SZ data are consistent, even though the potential reconstructed from X-rays shows larger deviations from the true potential. Regarding Abell 2142, the projected gravitational cluster potentials recovered from SZ and X-ray data reproduce well the projected potential inferred from gravitational-lensing observations. We also observe that the covariance matrix of the potential for Abell 2142

  13. NuSTAR Hard X-Ray Observation of the Gamma-Ray Binary Candidate HESS J1832-093

    NASA Astrophysics Data System (ADS)

    Mori, Kaya; Gotthelf, E. V.; Hailey, Charles J.; Hord, Ben J.; de Oña Wilhelmi, Emma; Rahoui, Farid; Tomsick, John A.; Zhang, Shuo; Hong, Jaesub; Garvin, Amani M.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2017-10-01

    We present a hard X-ray observation of the TeV gamma-ray binary candidate HESS J1832-093, which is coincident with the supernova remnant G22.7-0.2, using the Nuclear Spectroscopic Telescope Array. Non-thermal X-ray emission from XMMU J183245-0921539, the X-ray source associated with HESS J1832-093, is detected up to ˜30 keV and is well-described by an absorbed power-law model with a best-fit photon index {{Γ }}=1.5+/- 0.1. A re-analysis of archival Chandra and XMM-Newton data finds that the long-term X-ray flux increase of XMMU J183245-0921539 is {50}-20+40 % (90% C.L.), much less than previously reported. A search for a pulsar spin period or binary orbit modulation yields no significant signal to a pulse fraction limit of {f}p< 19 % in the range 4 ms < P< 40 ks. No red noise is detected in the FFT power spectrum to suggest active accretion from a binary system. While further evidence is required, we argue that the X-ray and gamma-ray properties of XMMU J183245-0921539 are most consistent with a non-accreting binary generating synchrotron X-rays from particle acceleration in the shock formed as a result of the pulsar and stellar wind collision. We also report on three nearby hard X-ray sources, one of which may be associated with diffuse emission from a fast-moving supernova fragment interacting with a dense molecular cloud.

  14. A DEEP X-RAY VIEW OF THE BARE AGN ARK 120. I. REVEALING THE SOFT X-RAY LINE EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, J. N.; Braito, V.; Porquet, D.

    2016-09-10

    The Seyfert 1 galaxy Ark 120 is a prototype example of the so-called class of bare nucleus active galactic nuclei (AGNs), whereby there is no known evidence for the presence of ionized gas along the direct line of sight. Here deep (>400 ks exposure), high-resolution X-ray spectroscopy of Ark 120 is presented from XMM-Newton observations that were carried out in 2014 March, together with simultaneous Chandra /High Energy Transmission Grating exposures. The high-resolution spectra confirmed the lack of intrinsic absorbing gas associated with Ark 120, with the only X-ray absorption present originating from the interstellar medium (ISM) of our ownmore » Galaxy, with a possible slight enhancement of the oxygen abundance required with respect to the expected ISM values in the solar neighborhood. However, the presence of several soft X-ray emission lines are revealed for the first time in the XMM-Newton RGS spectrum, associated with the AGN and arising from the He- and H-like ions of N, O, Ne, and Mg. The He-like line profiles of N, O, and Ne appear velocity broadened, with typical FWHMs of ∼5000 km s{sup −1}, whereas the H-like profiles are unresolved. From the clean measurement of the He-like triplets, we deduce that the broad lines arise from a gas of density n {sub e} ∼ 10{sup 11} cm{sup −3}, while the photoionization calculations infer that the emitting gas covers at least 10% of 4 π steradian. Thus the broad soft X-ray profiles appear coincident with an X-ray component of the optical–UV broad-line region on sub-parsec scales, whereas the narrow profiles originate on larger parsec scales, perhaps coincident with the AGN narrow-line region. The observations show that Ark 120 is not intrinsically bare and substantial X-ray-emitting gas exists out of our direct line of sight toward this AGN.« less

  15. Optics Requirements For The Generation-X X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    O'Dell, S. .; Elsner, R. F.; Kolodziejczak, J. J.; Ramsey, B. D.; Weisskopf, M. C.; Zhang, W. W.; Content, D. A.; Petre, R.; Saha, T. T.; Reid, P. B.; hide

    2008-01-01

    US, European, and Japanese space agencies each now operate successful X-ray missions -- NASA s Chandra, ESA s XMM-Newton, and JAXA s Suzaku observatories. Recently these agencies began a collaboration to develop the next major X-ray astrophysics facility -- the International X-ray Observatory (IXO) -- for launch around 2020. IXO will provide an order-of-magnitude increase in effective area, while maintaining good (but not sub-arcsecond) angular resolution. X-ray astronomy beyond IXO will require optics with even larger aperture areas and much better angular resolution. We are currently conducting a NASA strategic mission concept study to identify technology issues and to formulate a technology roadmap for a mission -- Generation-X (Gen-X) -- to provide these capabilities. Achieving large X-ray collecting areas in a space observatory requires extremely lightweight mirrors.

  16. X-Ray Emission for the Saturnian System

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Branduardi-Raymont, Graziella; Cravens, Tom E.; Ford, Peter G.

    2005-01-01

    Early attempts to detect X-ray emission from Saturn with Einstein (in December 1979) and ROSAT (in April 1992) were negative and marginal, respectively. Saturnian X-rays were unambiguously detected by XMM-Newton in September 2002 and by the Chandra X-ray Observatory in April 2003. These earlier X-ray observations of Saturn revealed emissions only from its non-auroral disk. In January 2004, Saturn was observed by the Advanced CCD Imaging Spectrometer of the Chandra observatory in two exposures on 20 and 26-27 January; each continuous observation lasted for about one full Saturn rotation. These new observations detected an X-ray flare at Saturn, and show that the Saturnian X-ray emission is highly variable - a factor of 4 variability in brightness over one week. These observations also discovered X-rays from Saturn's rings. The X-ray spectrum of the rings is dominated by emission in the 0.49-0.63 keV band with peak flux near the atomic oxygen K(lpha) fluorescence line at 525 eV. In addition, there is a hint of auroral emission from Saturn's south pole. But unlike Jupiter, X-rays from Saturn's polar region have characteristics similar to those from its disk and that they vary in brightness inversely to the FUV aurora observed by the Hubble Space Telescope. These exciting results obtained from Chandra observations will be presented and discussed.

  17. Unusual Black Hole Binary LMC X-3: A Transient High-Mass X-Ray Binary That Is Almost Always On?

    NASA Technical Reports Server (NTRS)

    Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.

    2017-01-01

    We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi- Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with Gamma = 1.41‚+/- 0.65 and a luminosity of 7.97 x 10(exp 33) erg/s (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of approx. 8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of approx. 4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always "on."

  18. Unusual Black Hole Binary LMC X-3: A Transient High-mass X-Ray Binary That Is Almost Always On?

    NASA Astrophysics Data System (ADS)

    Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.

    2017-11-01

    We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi-Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with {{Γ }}=1.41+/- 0.65 and a luminosity of 7.97× {10}33 erg s-1 (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of ˜8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of ˜4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always “on.”

  19. A deep X-ray view of the bare AGN Ark 120. III. X-ray timing analysis and multiwavelength variability

    NASA Astrophysics Data System (ADS)

    Lobban, A. P.; Porquet, D.; Reeves, J. N.; Markowitz, A.; Nardini, E.; Grosso, N.

    2018-03-01

    We present the spectral/timing properties of the bare Seyfert galaxy Ark 120 through a deep ˜420 ks XMM-Newton campaign plus recent NuSTAR observations and a ˜6-month Swift monitoring campaign. We investigate the spectral decomposition through fractional rms, covariance and difference spectra, finding the mid- to long-time-scale (˜day-year) variability to be dominated by a relatively smooth, steep component, peaking in the soft X-ray band. Additionally, we find evidence for variable Fe K emission redward of the Fe Kα core on long time-scales, consistent with previous findings. We detect a clearly defined power spectrum which we model with a power law with a slope of α ˜ 1.9. By extending the power spectrum to lower frequencies through the inclusion of Swift and Rossi X-ray Timing Explorer data, we find tentative evidence of a high-frequency break, consistent with existing scaling relations. We also explore frequency-dependent Fourier time lags, detecting a negative (`soft') lag for the first time in this source with the 0.3-1 keV band lagging behind the 1-4 keV band with a time delay, τ, of ˜900 s. Finally, we analyse the variability in the optical and ultraviolet (UV) bands using the Optical/UV Monitor onboard XMM-Newton and the Ultra-Violet/Optical Telescope onboard Swift and search for time-dependent correlations between the optical/UV/X-ray bands. We find tentative evidence for the U-band emission lagging behind the X-rays with a time delay of τ = 2.4 ± 1.8 d, which we discuss in the context of disc reprocessing.

  20. An X-ray view of HD 166734, a massive supergiant system

    NASA Astrophysics Data System (ADS)

    Nazé, Yaël; Gosset, Eric; Mahy, Laurent; Parkin, Elliot Ross

    2017-11-01

    The X-ray emission of the O+O binary HD 166734 was monitored using Swift and XMM-Newton observatories, leading to the discovery of phase-locked variations. The presence of an f line in the He-like triplets further supports a wind-wind collision as the main source of the X-rays in HD 166734. While temperature and absorption do not vary significantly along the orbit, the X-ray emission strength varies by one order of magnitude, with a long minimum state (Δ(φ) 0.1) occurring after a steep decrease. The flux at minimum is compatible with the intrinsic emission of the O-stars in the system, suggesting a possible disappearance of colliding wind emission. While this minimum cannot be explained by eclipse or occultation effects, a shock collapse may occur at periastron in view of the wind properties. Afterwards, the recovery is long, with an X-ray flux proportional to the separation d (in hard band) or to d2 (in soft band). This is incompatible with an adiabatic nature for the collision (which would instead lead to FX ∝ 1 /d), but could be reconciled with a radiative character of the collision, though predicted temperatures are lower and more variable than in observations. An increase in flux around φ 0.65 and the global asymmetry of the light curve remain unexplained, however. Based on observations collected with Swift and the ESA science mission XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).

  1. A Large X-Ray Outburst in Mira A

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita; Schlegel, Eric; Hack, Warren; Raymond, John C.; Wood, Brian E.

    2005-04-01

    We report the Chandra ACIS-S detection of a bright soft X-ray transient in the Mira AB interacting symbiotic-like binary. We have resolved the system for the first time in X-rays. Using Chandra and Hubble Space Telescope images, we determine that the unprecedented outburst is likely associated with the cool asymptotic giant branch (AGB) star, Mira A, the prototype of the Mira class of variables. X-rays have never before been detected from an AGB star, and the recent activity signals that the system is undergoing dramatic changes. The total X-ray luminosity of the system is several times higher than the luminosity estimated using previous XMM-Newton and ROSAT observations. The outburst may be caused by a giant flare in Mira A associated with a mass ejection or a jet and may have long-term consequences on the system. We dedicate this paper to the memory of Janet A. Mattei, who inspired this work and made these observations possible for many years.

  2. Magnetar-like X-Ray Bursts Suppress Pulsar Radio Emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archibald, R. F.; Lyutikov, M.; Kaspi, V. M.

    Rotation-powered pulsars and magnetars are two different observational manifestations of neutron stars: rotation-powered pulsars are rapidly spinning objects that are mostly observed as pulsating radio sources, while magnetars, neutron stars with the highest known magnetic fields, often emit short-duration X-ray bursts. Here, we report simultaneous observations of the high-magnetic-field radio pulsar PSR J1119−6127 at X-ray, with XMM-Newton and NuSTAR , and at radio energies with the Parkes radio telescope, during a period of magnetar-like bursts. The rotationally powered radio emission shuts off coincident with the occurrence of multiple X-ray bursts and recovers on a timescale of ∼70 s. These observationsmore » of related radio and X-ray phenomena further solidify the connection between radio pulsars and magnetars and suggest that the pair plasma produced in bursts can disrupt the acceleration mechanism of radio-emitting particles.« less

  3. X-MIME: An Imaging X-ray Spectrometer for Detailed Study of Jupiter's Icy Moons and the Planet's X-ray Aurora

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Such maps would provide important constraints on formation and evolution scenarios for the surfaces of these moons. Here we describe the characteristics of X-MIME, an imaging x-ray spectrometer under going a feasibility study for the JIMO mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  4. New insights into the X-ray properties of nearby barred spiral galaxy NGC 1672

    NASA Astrophysics Data System (ADS)

    Jenkins, L. P.; Brnadt, W. N.; Colbert, E. J. M.; Levan, A. J.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2008-02-01

    We present some preliminary results from new Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located near each end of its strong bar, both of which host ultraluminous X-ray sources (ULXs). With the new high-spatial-resolution Chandra imaging, we show for the first time that NGC1672 possesses a faint ($L(X)~10^39 erg/s), hard central X-ray source surrounded by an X-ray bright circumnuclear starburst ring that dominates the X-ray emission in the region. The central source may represent low-level AGN activity, or alternatively the emission from X-ray binaries associated with star-formation in the nucleus.

  5. Variable X-ray Emission from FU Orionis

    NASA Astrophysics Data System (ADS)

    Skinner, Steve L.; Guedel, M.; Briggs, K. R.; Lamzin, S. A.; Sokal, K. R.

    2009-05-01

    FU Orionis is the prototype of a small but remarkable class of pre-main sequence stars ('FUors') that have undergone large optical outbursts thought to be linked to episodic accretion. FU Ori increased in optical brightness by about 6 mag in 1936-37 and is still in slow decline. Because of their high accretion rates, FUors are good candidates for exploring potential effects of accretion on X-ray emission. A recently completed survey of FUors with XMM-Newton detected X-rays from FU Ori and V1735 Cyg. We present new results from a sensitive 99 ksec (1.15 day) follow-up X-ray observation of FU Ori with Chandra. The Chandra ACIS-S CCD spectrum confirms the presence of a cool plasma component (kT < 1 keV) viewed under moderate absorption and a much hotter component (kT > 3 keV), viewed under high absorption, in accord with previous XMM results. The uninterrupted Chandra light curve shows that the hot component is slowly variable on a timescale of one day, but no variability is detected in the cool component. The slow variability and high plasma temperature point to a magnetic origin for the hot component, but other mechanisms (including accretion) may be responsible for the cool non-variable component. We will discuss these new results in the context of what is known about FU Ori from previous observations, including XMM (Skinner et al. 2006, ApJ, 643, 995) and HST (Kravtsova et al. 2007, Ast. Ltrs., 33, 755).

  6. News on the X-ray emission from hot subdwarf stars

    NASA Astrophysics Data System (ADS)

    Palombara, Nicola La; Mereghetti, Sandro

    2017-12-01

    In latest years, the high sensitivity of the instruments on-board the XMM-Newton and Chandra satellites allowed us to explore the properties of the X-ray emission from hot subdwarf stars. The small but growing sample of X-ray detected hot subdwarfs includes binary systems, in which the X-ray emission is due to wind accretion onto a compact companion (white dwarf or neutron star), as well as isolated sdO stars, in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low-mass stars provide information which can be useful for our understanding of the weak winds of this type of stars and can lead to the discovery of particularly interesting binary systems. Here we report the most recent results we have recently obtained in this research area.

  7. X-Ray Emission from the MUSCLES Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; Schneider, P. Christian; France, Kevin; Loyd, Parke; MUSCLES Team

    2016-07-01

    The MUSCLES (Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems) project is a multi-spectral-region investigation of the high-energy (UV/X-ray) radiation fields of K dwarf / M dwarf exoplanet host stars and how this radiation will influence the evolution of the exoplanet atmospheres. As part of this project we have used Chandra and XMM-Newton to study the X-ray emission from ten (7 M dwarf and 3 K dwarf), nearby (within 15 pc), low mass exoplanet hosts. Typically, we have coordinated the X-ray observations with HST-COS FUV and ground-based optical spectroscopy of the same targets. Even though these stars are generally considered to be inactive we find evidence for significant X-ray variability for many of the M dwarfs observed. In this poster we illustrate the coronal properties of the stars using example light-curves and spectral analyses. The UV and X-ray data are crucial input to the modeling the complete spectral energy distributions for exoplanet studies.This work was supported by Chandra grants GO4-15041X and GO5-16155X and NASA XMM grant NNX16AC09G to the University of Colorado at Boulder. The overall MUSCLES project was undertaken by HST GO programs 12464 and 13650 and supported by STScI grants HST-GO-12464.01 and HST-GO-13650.01 . P.C.S. is supported by an ESA Research Fellowship.

  8. AUTOCLASSIFICATION OF THE VARIABLE 3XMM SOURCES USING THE RANDOM FOREST MACHINE LEARNING ALGORITHM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, Sean A.; Murphy, Tara; Lo, Kitty K., E-mail: s.farrell@physics.usyd.edu.au

    In the current era of large surveys and massive data sets, autoclassification of astrophysical sources using intelligent algorithms is becoming increasingly important. In this paper we present the catalog of variable sources in the Third XMM-Newton Serendipitous Source catalog (3XMM) autoclassified using the Random Forest machine learning algorithm. We used a sample of manually classified variable sources from the second data release of the XMM-Newton catalogs (2XMMi-DR2) to train the classifier, obtaining an accuracy of ∼92%. We also evaluated the effectiveness of identifying spurious detections using a sample of spurious sources, achieving an accuracy of ∼95%. Manual investigation of amore » random sample of classified sources confirmed these accuracy levels and showed that the Random Forest machine learning algorithm is highly effective at automatically classifying 3XMM sources. Here we present the catalog of classified 3XMM variable sources. We also present three previously unidentified unusual sources that were flagged as outlier sources by the algorithm: a new candidate supergiant fast X-ray transient, a 400 s X-ray pulsar, and an eclipsing 5 hr binary system coincident with a known Cepheid.« less

  9. Adaptation of XMM-Newton SAS to GRID and VO architectures via web

    NASA Astrophysics Data System (ADS)

    Ibarra, A.; de La Calle, I.; Gabriel, C.; Salgado, J.; Osuna, P.

    2008-10-01

    The XMM-Newton Scientific Analysis Software (SAS) is a robust software that has allowed users to produce good scientific results since the beginning of the mission. This has been possible given the SAS capability to evolve with the advent of new technologies and adapt to the needs of the scientific community. The prototype of the Remote Interface for Science Analysis (RISA) presented here, is one such example, which provides remote analysis of XMM-Newton data with access to all the existing SAS functionality, while making use of GRID computing technology. This new technology has recently emerged within the astrophysical community to tackle the ever lasting problem of computer power for the reduction of large amounts of data.

  10. The Secret Lives of Cepheids: δ Cep—The Prototype of a New Class of Pulsating X-Ray Variable Stars

    NASA Astrophysics Data System (ADS)

    Engle, Scott G.; Guinan, Edward F.; Harper, Graham M.; Cuntz, Manfred; Remage Evans, Nancy; Neilson, Hilding R.; Fawzy, Diaa E.

    2017-03-01

    From our Secret Lives of Cepheids program, the prototype Classical Cepheid, δ Cep, is found to be an X-ray source with periodic pulsation-modulated X-ray variations. This finding complements our earlier reported phase-dependent FUV-UV emissions of the star that increase ˜10-20 times with highest fluxes at ˜ 0.90{--}0.95φ , just prior to maximum brightness. Previously δ Cep was found as potentially X-ray variable, using XMM-Newton observations. Additional phase-constrained data were secured with Chandra near X-ray emission peak, to determine if the emission and variability were pulsation-phase-specific to δ Cep and not transient or due to a possible coronally active, cool companion. The Chandra data were combined with prior XMM-Newton observations, and were found to very closely match the previously observed X-ray behavior. From the combined data set, a ˜4 increase in X-ray flux is measured, reaching a peak {L}{{X}} = 1.7 × 1029 erg s-1 near 0.45ϕ. The precise X-ray flux phasing with the star’s pulsation indicates that the emissions arise from the Cepheid and not from a companion. However, it is puzzling that the maximum X-ray flux occurs ˜0.5ϕ (˜3 days) later than the FUV-UV maximum. There are several other potential Cepheid X-ray detections with properties similar to δ Cep, and comparable X-ray variability is indicated for two other Cepheids: β Dor and V473 Lyr. X-ray generating mechanisms in δ Cep and other Cepheids are discussed. If additional Cepheids are confirmed to show phased X-ray variations, then δ Cep will be the prototype of a new class of pulsation-induced X-ray variables.

  11. RADIO-QUIET AND RADIO-LOUD PULSARS: SIMILAR IN GAMMA-RAYS BUT DIFFERENT IN X-RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marelli, M.; Mignani, R. P.; Luca, A. De

    2015-04-01

    We present new Chandra and XMM-Newton observations of a sample of eight radio-quiet (RQ) γ-ray pulsars detected by the Fermi Large Area Telescope. For all eight pulsars we identify the X-ray counterpart, based on the X-ray source localization and the best position obtained from γ-ray pulsar timing. For PSR J2030+4415 we found evidence for a ∼10″-long pulsar wind nebula. Our new results consolidate the work from Marelli et al. and confirm that, on average, the γ-ray-to-X-ray flux ratios (F{sub γ}/F{sub X}) of RQ pulsars are higher than for the radio-loud (RL) ones. Furthermore, while the F{sub γ}/F{sub X} distribution featuresmore » a single peak for the RQ pulsars, the distribution is more dispersed for the RL ones, possibly showing two peaks. We discuss possible implications of these different distributions based on current models for pulsar X-ray emission.« less

  12. The Discovery of an Evolving Dust Scattered X-ray Halo Around GRB 031203

    NASA Technical Reports Server (NTRS)

    Vaughan, S.; Willingale, R.; OBrien, P. T.; Osborne, J. P.; Reeves, J. N.; Levan, A. J.; Watson, M. G.; Tedds, J. A.; Watson, D.; Santos-Lleo, M.

    2003-01-01

    We report the first detection of a time-dependent, dust-scattered X-ray halo around a gamma-ray burst. GRB3 031203 was observed by XMM-Newton starting six hours after the burst. The halo appeared as concentric ring-like structures centered on the GRB location. The radii of these structures increased with time as t(sup 1/2), consistent with small-angle X-ray scattering caused by a large column of dust along the line of sight to a cosmologically distant GRB. The rings are due to dust concentrated in two distinct slabs in the Galaxy located at distances of 880 and 1390 pc, consistent with known Galactic features. The halo brightness implies an initial soft X-ray pulse consistent with the observed GRB.

  13. Multiwavelength Properties of the X-Ray Sources in the Groth-Westphal Strip Field

    NASA Astrophysics Data System (ADS)

    Miyaji, Takamitsu; Sarajedini, Vicki; Griffiths, Richard E.; Yamada, Toru; Schurch, Matthew; Cristóbal-Hornillos, David; Motohara, Kentaro

    2004-06-01

    We summarize the multiwavelength properties of X-ray sources detected in the 80 ks XMM-Newton observation of the Groth-Westphal strip, a contiguous strip of 28 Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) images. Among the ~150 X-ray sources detected in the XMM-Newton field of view, 23 are within the WFPC2 fields. Ten spectroscopic redshifts are available from the Deep Extragalactic Evolutionary Probe and Canada-France Redshift Survey projects. Four of these show broad Mg II emission and can be classified as type 1 active galactic nuclei (AGNs). Two of those without any broad lines, nevertheless, have [Ne V] emission, which is an unambiguous signature of AGN activity. One is a narrow-line Seyfert 1 and the other a type 2 AGN. As a follow-up, we have made near-infrared spectroscopic observations using the OHS/CISCO spectrometer for five of the X-ray sources for which we found no indication of AGN activity in the optical spectrum. We have detected Hα+[N II] emission in four of them. A broad Hα component and/or a large [N II]/Hα ratio is seen, suggestive of AGN activity. Nineteen sources have been detected in the Ks band, and four of these are extremely red objects (EROs) (I814-Ks>4). The optical counterparts for the majority of the X-ray sources are bulge-dominated. The I814-Ks color of these bulge-dominated hosts are indeed consistent with evolving elliptical galaxies, while contaminations from star formation/AGNs seems to be present in their V606-I814 color. Assuming that the known local relations among the bulge luminosity, central velocity dispersion, and the mass of the central blackhole still hold at z~1, we compare the AGN luminosity with the Eddington luminosity of the central blackhole mass. The AGN bolometric luminosity to Eddington luminosity ratio ranges from 0.3% to 10%. Based on observations from the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA. Also based on data

  14. X-Ray Wind Tomography of IGR J17252-3616

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonios; Walter, Roland

    2010-07-01

    IGR J17252-3616, a highly absorbed High Mass X-ray Binary (HMXB) with Hydrogen column density NH~(2-4)×1023 cm-2, has been observed with XMM-Newton for about one month. Observations were scheduled in order to cover the orbital-phase space as much as possible. IGR J17252-3616 shows a varying column density NH and Fe Kα line when fit with simple phenomenological models. A refined orbital solution can be derived. Spectral timing analysis allows derivation of the wind properties of the massive star.

  15. The XMM Cluster Outskirts Project (X-COP)

    NASA Astrophysics Data System (ADS)

    Eckert, D.

    2017-10-01

    The outskirts of galaxy clusters (typically the regions located beyond R500) are the regions where the transition between the virialized ICM and the infalling material from the large-scale structure takes place. As such, they play a central role in our understanding of the processes leading to the virialization of the accreting gas within the central dark-matter halo. I will give an overview of the XMM cluster outskirts project (X-COP), a very large program on XMM to study the virial region of galaxy clusters with unprecedented details. I will show how X-ray observations can be combined with the Sunyaev-Zeldovich signal to recover the thermodynamic properties and hydrostatic mass of the ICM, bypassing the need for expensive X-ray spectroscopic observations. I will discuss the results obtained using this technique on Abell 2142 and Abell 2319 and give prospects for the results expected using the full X-COP sample. I will also present recent results on the search for warm-hot baryons in the filaments connected to clusters, emphasizing on the discovery of 3 filaments of 10-million-degree gas connected to the massive cluster Abell 2744.

  16. HESS J1818-154, a new composite supernova remnant discovered in TeV gamma rays and X-rays

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zabalza, V.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2014-02-01

    Composite supernova remnants (SNRs) constitute a small subclass of the remnants of massive stellar explosions where non-thermal radiation is observed from both the expanding shell-like shock front and from a pulsar wind nebula (PWN) located inside of the SNR. These systems represent a unique evolutionary phase of SNRs where observations in the radio, X-ray, and γ-ray regimes allow the study of the co-evolution of both these energetic phenomena. In this article, we report results from observations of the shell-type SNR G 15.4+0.1 performed with the High Energy Stereoscopic System (H.E.S.S.) and XMM-Newton. A compact TeV γ-ray source, HESS J1818-154, located in the center and contained within the shell of G 15.4+0.1 is detected by H.E.S.S. and featurs a spectrum best represented by a power-law model with a spectral index of -2.3 ± 0.3stat ± 0.2sys and an integral flux of F(> 0.42 TeV) = (0.9 ± 0.3stat ± 0.2sys) × 10-12 cm-2 s-1. Furthermore, a recent observation with XMM-Newton reveals extended X-ray emission strongly peaked in the center of G 15.4+0.1. The X-ray source shows indications of an energy-dependent morphology featuring a compact core at energies above 4 keV and more extended emission that fills the entire region within the SNR at lower energies. Together, the X-ray and VHE γ-ray emission provide strong evidence of a PWN located inside the shell of G 15.4+0.1 and this SNR can therefore be classified as a composite based on these observations. The radio, X-ray, and γ-ray emission from the PWN is compatible with a one-zone leptonic model that requires a low average magnetic field inside the emission region. An unambiguous counterpart to the putative pulsar, which is thought to power the PWN, has been detected neither in radio nor in X-ray observations of G 15.4+0.1.

  17. X-ray Follow-ups of XSS J12270-4859: A Low-mass X-ray Binary with Gamma-ray Fermi-LAT Association

    NASA Technical Reports Server (NTRS)

    deMartino, D.; Belloni, T.; Falanga, M.; Papitto, A.; Motta, S.; Pellizzoni, A.; Evangelista, Y.; Piano, G.; Masetti, N.; Mouchet, M.; hide

    2013-01-01

    Context. XSS J1227.0-4859 is a peculiar, hard X-ray source recently positionally associated to the Fermi-LAT source 1FGL J1227.9- 4852/2FGL J1227.7-4853. Multi-wavelength observations have added information on this source, indicating a low-luminosity lowmass X-ray binary (LMXB), but its nature is still unclear. Aims. To progress in our understanding, we present new X-ray data from a monitoring campaign performed in 2011 with the XMM-Newton, RXTE, and Swift satellites and combine them with new gamma-ray data from the Fermi and AGILE satellites. We complement the study with simultaneous near-UV photometry from XMM-Newton and with previous UV/optical and near-IR data. Methods. We analysed the temporal characteristics in the X-rays, near-UV, and gamma rays and studied the broad-band spectral energy distribution from radio to gamma rays. Results. The X-ray history of XSS J1227 over 7 yr shows a persistent and rather stable low-luminosity (6 × 1033 d2 1 kpcerg s-1) source, with flares and dips being peculiar and permanent characteristics. The associated Fermi-LAT source 2FGL J1227.7-4853 is also stable over an overlapping period of 4.7 yr. Searches for X-ray fast pulsations down to msec give upper limits to pulse fractional amplitudes of 15-25% that do not rule out a fast spinning pulsar. The combined UV/optical/near-IR spectrum reveals a hot component at approximately 13 kK and a cool one at approximately 4.6 kK. The latter would suggest a late-type K2-K5 companion star, a distance range of 1.4-3.6 kpc, and an orbital period of 7-9 h. A near-UV variability (6 h) also suggests a longer orbital period than previously estimated. Conclusions. The analysis shows that the X-ray and UV/optical/near-IR emissions are more compatible with an accretion-powered compact object than with a rotational powered pulsar. The X-ray to UV bolometric luminosity ratio could be consistent with a binary hosting a neutron star, but the uncertainties in the radio data may also allow an LMXB

  18. The 2-79 keV X-ray Spectrum of the Circinus Galaxy with NuSTAR, XMM-Newton and Chandra: a Fully Compton-Thick Active Galactic Nucleus

    DOE PAGES

    Arevalo, P.; Bauer, F. E.; Puccetti, S.; ...

    2014-07-30

    Here, the Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region,more » but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N H = (6-10) × 10 24 cm –2, and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 10 42 erg s –1. These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and L X versus L IR phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. Here, the lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.« less

  19. NR TrA (Nova TrA 2008) monitoring in support of XMM observations

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2017-03-01

    Dr. Fred Walter (Stony Brook University) has requested AAVSO observers' assistance in monitoring NR TrA (Nova TrA 2008) in support of upcoming XMM Newton observations. The XMM observations will take place 2017 March 13 06:21 through March 14 10:34 UT. Walter writes: "NR TrA (Nova TrA 2008) is a compact eclipsing system with a 5.5 hour period. It was a normal Fe II nova that, upon reaching quiescence, took on the appearance of a super-soft source in the optical high state, which suggests an extremely high mass accretion rate. The optical spectrum is dominated by hot permitted lines of O VI, N V, C IV, and He II. Some nova-like variables have similar spectra, though generally without the hot emission lines. Primary eclipse is broad - nearly 40% of the orbit - and deeper at shorter wavelengths, which suggests the eclipse of a hot accretion disk. Primary eclipse depth is about 1 mag at V. There appears to be a shallow secondary eclipse.The primary aim [of the XMM observations] is to detect and characterize the eclipse at X-ray and UV wavelengths. We will obtain low cadence BVRI/JHK observations with SMARTS/Andicam. We request AAVSO support to obtain continuous photometric time series simultaneous with the XMM observation. Any filters are acceptable, but standard Johnson B, V or Cousins R, I are preferred. Clear filters are acceptable. Time resolution better than 5 minutes and uncertainties (outside of eclipse) <0.02 mag are preferred. The best ephemeris I have is: minimum light at JD 55956.822 + 0.219109E. This is based on data from 2013-2015." Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  20. The X-Ray Weakness of GPS Radio Galaxies: A Volume-Limited Complete Sample

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard F. (Technical Monitor); Siemiginowska, Aneta (Principal Investigator)

    2004-01-01

    The XMM observations of Mkn 668 have been analyzed. We found soft X-ray signatures of a hot plasma (kT approximately 10^7 approximately K) and a hard X-ray emission from the nucleus. The X-ray spectrum above 2.5 approximately keV is characterized by a very flat (observed photon index, Gamma approximately 0.5) power-law continuum, alongside with a strong Fe-K-alpha neutral iron fluorescent line (EW approximately 600 approximately eV). The best explanation for the origin of this high energy X-ray emission is in terms of the Compton-reflection of the nuclear emission. The primary X-ray emission is obscured by a Compton-thick (N_H approximately 10^24 approximately cm-2) matter which becomes transparent at higher energies. The observed above 2.5-keV X-rays are mostly due to reflection which is indicated by a strong Fe-K-alpha line. This represents the second hard X-ray detection of the GPS galaxy ever (the first one being 1345+125; O Dea et al. 2000). Interestingly, the both such trend is confirmed by our on going XMM-Newton observations of a larger GPS sample, it would lead us to looking into the question on how the dense nuclear environment impacts the nature and evolution of a GPS source, and more generally, on the history of radio power in the universe. The paper summarizing the results has been submitted to Astronomy and Astrophysics in December 2003.

  1. An XMM-Newton Study of the Mixed-morphology Supernova Remnant W28 (G6.4-0.1)

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Safi-Harb, Samar; Chen, Yang; Zhang, Xiao; Jiang, Bing; Ferrand, Gilles

    2014-08-01

    We have performed an XMM-Newton imaging and spectroscopic study of supernova remnant (SNR) W28, a prototype mixed-morphology or thermal composite SNR believed to be interacting with a molecular cloud. The observed hot X-ray emitting plasma is characterized by low metal abundances, showing no evidence of ejecta. The X-rays arising from the deformed northeastern shell consist of a thermal component with a temperature of ~0.3 keV plus a hard component of either thermal (temperature ~0.6 keV) or non-thermal (photon index = 0.9-2.4) origin. The X-ray emission in the SNR interior is blobby and the corresponding spectra are best described as the emission from a cold (~0.4 keV) plasma in non-equilibrium ionization with an ionization timescale of ~4.3 × 1011 cm-3 s plus a hot (~0.8 keV) gas in collisional ionization equilibrium. Applying the two-temperature model to the smaller central regions, we find non-uniform interstellar absorption, temperature, and density distribution, which indicates that the remnant is evolving in a non-uniform environment with denser material in the east and north. The cloudlet evaporation mechanism can essentially explain the properties of the X-ray emission in the center, and thermal conduction may also play a role for length scales comparable to the remnant radius. A recombining plasma model with an electron temperature of ~0.6 keV is also feasible for describing the hot central gas with the recombination age of the gas estimated at ~2.9 × 104 yr.

  2. What can be Learned from X-ray Spectroscopy Concerning Hot Gas in Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2007-01-01

    What can be learned from x-ray spectroscopy in observing hot gas in local bubble and charge exchange processes depends on spectral resolution, instrumental grasp, instrumental energy band, signal-to-nose, field of view, angular resolution and observatory location. Early attempts at x-ray spectroscopy include ROSAT; more recently, astronomers have used diffuse x-ray spectrometers, XMM Newton, sounding rocket calorimeters, and Suzaku. Future observations are expected with calorimeters on the Spectrum Roentgen Gamma mission, and the Solar Wind Charge Exchange (SWCX). The Geospheric SWCX may provide remote sensing of the solar wind and magnetosheath and remote observations of solar CMEs moving outward from the sun.

  3. Processing challenges in the XMM-Newton slew survey

    NASA Astrophysics Data System (ADS)

    Saxton, Richard D.; Altieri, Bruno; Read, Andrew M.; Freyberg, Michael J.; Esquej, M. P.; Bermejo, Diego

    2005-08-01

    The great collecting area of the mirrors coupled with the high quantum efficiency of the EPIC detectors have made XMM-Newton the most sensitive X-ray observatory flown to date. This is particularly evident during slew exposures which, while giving only 15 seconds of on-source time, actually constitute a 2-10 keV survey ten times deeper than current "all-sky" catalogues. Here we report on progress towards making a catalogue of slew detections constructed from the full, 0.2-12 keV energy band and discuss the challenges associated with processing the slew data. The fast (90 degrees per hour) slew speed results in images which are smeared, by different amounts depending on the readout mode, effectively changing the form of the point spread function. The extremely low background in slew images changes the optimum source searching criteria such that searching a single image using the full energy band is seen to be more sensitive than splitting the data into discrete energy bands. False detections due to optical loading by bright stars, the wings of the PSF in very bright sources and single-frame detector flashes are considered and techniques for identifying and removing these spurious sources from the final catalogue are outlined. Finally, the attitude reconstruction of the satellite during the slewing maneuver is complex. We discuss the implications of this on the positional accuracy of the catalogue.

  4. Bright X-ray transient in the LMC

    NASA Astrophysics Data System (ADS)

    Saxton, R.; Read, A. M.; Li, D. Y.

    2018-01-01

    We report a bright X-ray transient in the LMC from an XMM-Newton slew made on 5th January 2018. The source, XMMSL2 J053629.4-675940, had a soft X-ray (0.2-2 keV) count rate in the EPIC-pn detector, medium filter of 1.82+/-0.56 c/s, equivalent to a flux Fx=2.3+/-0.7E-12 ergs/s/cm2 for a nominal spectrum of a power-law of slope 2 absorbed by a column NH=3E20 cm^-2.

  5. Hard X-Ray Emission from SH 2-104: A NuSTAR Search for Gamma-Ray Counterparts

    NASA Technical Reports Server (NTRS)

    Gotthelf, E. V.; Mori, K.; Aliu, E.; Paredes, J. M.; Tomsick, J. A.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Hailey, C. J.; Harrison, F. A.; hide

    2016-01-01

    We present NuSTAR hard X-ray observations of Sh 2-104, a compact H II region containing several young massive stellar clusters (YMSCs). We have detected distinct hard X-ray sources coincident with localized VERITAS TeV emission recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. Fainter, diffuse X-rays coincident with the eastern YMSC in Sh2-104 likely result from the colliding winds of a component star. Just outside the radio shell of Sh 2-104 lies 3XMM J201744.7+365045 and a nearby nebula, NuSTAR J201744.3+364812, whose properties are most consistent with extragalactic objects. The combined XMM-Newton and NuSTAR spectrum of 3XMM J201744.7+365045 is well-fit to an absorbed power-law model with N(sub H) = (3.1 +/- 1.0) x 10(exp 22) cm(exp -2) and a photon index gamma = 2.1 +/- 0.1. Based on possible long-term flux variation and the lack of detected pulsations (less than or equal to 43% modulation), this object is likely a background active galactic nucleus rather than a Galactic pulsar. The spectrum of the NuSTAR nebula shows evidence of an emission line at E = 5.6 keV, suggesting an optically obscured galaxy cluster at z = 0.19 +/- 0.02 (d = 800 Mpc) and L(sub X) = 1.2 x 10(exp 44) erg s(exp -1). Follow-up Chandra observations of Sh 2-104 will help identify the nature of the X-ray sources and their relation to MGRO J2019+37. We also show that the putative VERITAS excess south of Sh 2-104, is most likely associated with the newly discovered Fermi pulsar PSR J2017+3625 and not the H II region.

  6. X-Ray, UV, and Optical Observations of Supernova 2006bp with Swift: Detection of Early X-Ray Emission

    NASA Technical Reports Server (NTRS)

    Immler, S.; Brown, P. J.; Milne, P.; Dessart, L.; Mazzali, P. A.; Landsman, W.; Gehrels, N.; Petre, R.; Burrows, D. N.; Nousek, J. A.; hide

    2007-01-01

    We present results on the X-ray and optical/UV emission from the Type IIP supernova (SN) 2006bp and the interaction of the SW shock with its environment, obtained with the X-Ray Telescope (XRT) and UV/Optical Telescope (UVOT) on-board the Swift observatory. SN 2006bp is detected in X-rays at a 4.5 sigmalevel of significance in the merged XRT data from days 1 to 12 after the explosion. If the (0.2-10 keV band) X-ray luminosity of L(sub 0.2-10) = (1.8 plus or minus 0.4) x l0(exp 39 ergs s(exp -1) is caused by interaction of the SN shock with circumstellar material (CSM), deposited by a stellar wind from the progenitor's companion star, a mass-loss rate of M is approximately 2x10(exp -6) solar mass yr(exp -1) (v(sub w)/10 km s(exp -l) is inferred. The mass-loss rate is one of the lowest ever recorded for a core-collapse SN and consistent with the non-detection in the radio with the VLA on days 2, 9, and 11 after the explosion. The Swift data further show a fading of the X-ray emission starting around day 12 after the explosion. In combination with a follow-up XMM-Newton observation obtained on day 21 after the explosion, an X-ray rate of decline Lx, varies as t(exp -n) with index n = 1.2 plus or minus 0.6 is inferred. Since no other SN has been detected in X-rays prior to the optical peak and since Type IIP SNe have an extended 'plateau' phase in the optical, we discuss the scenario that the X-rays might be due to inverse Compton scattering of photospheric optical photons off relativistic electrons produced in circumstellar shocks. However, due to the high required value of the Lorentz factor (approximately 10-100), inconsistent with the ejecta velocity inferred from optical line widths, we conclude that Inverse Compton scattering is an unlikely explanation for the observed X-ray emission. The fast evolution of the optical/ultraviolet (1900-5500A) spectral energy distribution and the spectral changes observed with Swift reveal the onset of metal line-blanketing and

  7. First Search for an X-Ray-Optical Reverberation Signal in an Ultraluminous X-Ray Source

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Cenko, S. Bradley; Trippe, Margaret L.; Mushotzky, Richard F.; Gandhi, Poshak

    2016-01-01

    Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to active galactic nucleus broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1's X-rays are variable on a timescale of a few hundred seconds (rms of 9.0 +/- 0.5%), the optical emission does not show any statistically significant variations. We set a 3s upper limit on the rms optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected rms optical variability is approximately equal to 2%, which is still a factor of roughly two lower than what was possible with the VLT observations in this study. We find marginal evidence (3 sigma) for optical variability on an approximately 24 hr timescale. Our results demonstrate that such measurements can be made, but photometric conditions, low sky background levels, and longer simultaneous observations will be required to reach optical variability levels similar to those of X-ray binaries.

  8. Two new intermediate polars with a soft X-ray component

    NASA Astrophysics Data System (ADS)

    Anzolin, G.; de Martino, D.; Bonnet-Bidaud, J.-M.; Mouchet, M.; Gänsicke, B. T.; Matt, G.; Mukai, K.

    2008-10-01

    Aims: We analyze the first X-ray observations with XMM-Newton of 1RXS J070407.9+262501 and 1RXS 180340.0+401214, in order to characterize their broad-band temporal and spectral properties, also in the UV/optical domain, and to confirm them as intermediate polars. Methods: For both objects, we performed a timing analysis of the X-ray and UV/optical light curves to detect the white dwarf spin pulsations and study their energy dependence. For 1RXS 180340.0+401214 we also analyzed optical spectroscopic data to determine the orbital period. X-ray spectra were analyzed in the 0.2-10.0 keV range to characterize the emission properties of both sources. Results: We find that the X-ray light curves of both systems are energy dependent and are dominated, below 3-5 keV, by strong pulsations at the white dwarf rotational periods (480 s for 1RXS J070407.9+262501 and 1520.5 s for 1RXS 180340.0+401214). In 1RXS 180340.0+401214 we also detect an X-ray beat variability at 1697 s which, together with our new optical spectroscopy, favours an orbital period of 4.4 h that is longer than previously estimated. Both systems show complex spectra with a hard (temperature up to 40 keV) optically thin and a soft (kT ~ 85-100 eV) optically thick components heavily absorbed by material partially covering the X-ray sources. Conclusions: Our observations confirm the two systems as intermediate polars and also add them as new members of the growing group of “soft” systems which show the presence of a soft X-ray blackbody component. Differences in the temperatures of the blackbodies are qualitatively explained in terms of reprocessing over different sizes of the white dwarf spot. We suggest that systems showing cooler soft X-ray blackbody components also possess white dwarfs irradiated by cyclotron radiation. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, and with the Observatoire de Haute

  9. The supersoft X-ray source in V5116 Sagittarii. I. The high resolution spectra

    NASA Astrophysics Data System (ADS)

    Sala, G.; Ness, J. U.; Hernanz, M.; Greiner, J.

    2017-05-01

    Context. Classical nova explosions occur on the surface of an accreting white dwarf in a binary system. After ejection of a fraction of the envelope and when the expanding shell becomes optically thin to X-rays, a bright source of supersoft X-rays arises, powered by residual H burning on the surface of the white dwarf. While the general picture of the nova event is well established, the details and balance of accretion and ejection processes in classical novae are still full of unknowns. The long-term balance of accreted matter is of special interest for massive accreting white dwarfs, which may be promising supernova Ia progenitor candidates. Nova V5116 Sgr 2005b was observed as a bright and variable supersoft X-ray source by XMM-Newton in March 2007, 610 days after outburst. The light curve showed a periodicity consistent with the orbital period. During one third of the orbit the luminosity was a factor of seven brighter than during the other two thirds of the orbital period. Aims: In the present work we aim to disentangle the X-ray spectral components of V5116 Sgr and their variability. Methods: We present the high resolution spectra obtained with XMM-Newton RGS and Chandra LETGS/HRC-S in March and August 2007. Results: The grating spectrum during the periods of high-flux shows a typical hot white dwarf atmosphere dominated by absorption lines of N VI and N VII. During the low-flux periods, the spectrum is dominated by an atmosphere with the same temperature as during the high-flux period, but with several emission features superimposed. Some of the emission lines are well modeled with an optically thin plasma in collisional equilibrium, rich in C and N, which also explains some excess in the spectra of the high-flux period. No velocity shifts are observed in the absorption lines, with an upper limit set by the spectral resolution of 500 km s-1, consistent with the expectation of a non-expanding atmosphere so late in the evolution of the post-nova. Based on

  10. High Resolution Spectroscopy of X-ray Quasars: Searching for the X-ray Absorption from the Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Fang, Taotao; Canizares, Claude R.; Marshall, Herman L.

    2004-01-01

    We present a survey of six low to moderate redshift quasars with Chandra and XMM-Newton. The primary goal is to search for the narrow X-ray absorption lines produced by highly ionized metals in the Warm-Hot Intergalactic Medium. All the X-ray spectra can be well fitted by a power law with neutral hydrogen absorption. Only one feature is detected at above 3-sigma level in all the spectra, which is consistent with statistic fluctuation. We discuss the implications in our understanding of the baryon content of the universe. We also discuss the implication of the non-detection of the local (z approx. 0) X-ray absorption.

  11. X-ray observations of dust obscured galaxies in the Chandra deep field south

    NASA Astrophysics Data System (ADS)

    Corral, A.; Georgantopoulos, I.; Comastri, A.; Ranalli, P.; Akylas, A.; Salvato, M.; Lanzuisi, G.; Vignali, C.; Koutoulidis, L.

    2016-08-01

    We present the properties of X-ray detected dust obscured galaxies (DOGs) in the Chandra deep field south. In recent years, it has been proposed that a significant percentage of the elusive Compton-thick (CT) active galactic nuclei (AGN) could be hidden among DOGs. This type of galaxy is characterized by a very high infrared (IR) to optical flux ratio (f24 μm/fR > 1000), which in the case of CT AGN could be due to the suppression of AGN emission by absorption and its subsequent re-emission in the IR. The most reliable way of confirming the CT nature of an AGN is by X-ray spectroscopy. In a previous work, we presented the properties of X-ray detected DOGs by making use of the deepest X-ray observations available at that time, the 2Ms observations of the Chandra deep fields, the Chandra deep field north (CDF-N), and the Chandra deep field south (CDF-S). In that work, we only found a moderate percentage (<50%) of CT AGN among the DOGs sample. However, we pointed out that the limited photon statistics for most of the sources in the sample did not allow us to strongly constrain this number. In this paper, we further explore the properties of the sample of DOGs in the CDF-S presented in that work by using not only a deeper 6Ms Chandra survey of the CDF-S, but also by combining these data with the 3Ms XMM-Newton survey of the CDF-S. We also take advantage of the great coverage of the CDF-S region from the UV to the far-IR to fit the spectral energy distributions (SEDs) of our sources. Out of the 14 AGN composing our sample, 9 are highly absorbed (NH > 1023 cm-2), whereas 2 look unabsorbed, and the other 3 are only moderately absorbed. Among the highly absorbed AGN, we find that only three could be considered CT AGN. In only one of these three cases, we detect a strong Fe Kα emission line; the source is already classified as a CT AGN with Chandra data in a previous work. Here we confirm its CT nature by combining Chandra and XMM-Newton data. For the other two CT

  12. TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Marco, B.; Ponti, G.; Nandra, K.

    2015-11-20

    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4more » in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation.« less

  13. X-Ray Optics: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Zhang, William W.

    2010-01-01

    X-ray astronomy started with a small collimated proportional counter atop a rocket in the early 1960s. It was immediately recognized that focusing X-ray optics would drastically improve both source location accuracy and source detection sensitivity. In the past 5 decades, X-ray astronomy has made significant strides in achieving better angular resolution, large photon collection area, and better spectral and timing resolutions, culminating in the three currently operating X-ray observatories: Chandra, XMM/Newton, and Suzaku. In this talk I will give a brief history of X-ray optics, concentrating on the characteristics of the optics of these three observatories. Then I will discuss current X-ray mirror technologies being developed in several institutions. I will end with a discussion of the optics for the International X-ray Observatory that I have been developing at Goddard Space Flight Center.

  14. Retrograde Accretion Discs in High-Mass Be/X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.

    2017-01-01

    We have compiled a comprehensive library of all X-ray observations of Magellanic pulsars carried out by XMM-Newton, Chandra and RXTE in the period 1997-2014. In this work, we use the data from 53 high-mass Be/X-ray binaries in the Small Magellanic Cloud to demonstrate that the distribution of spin-period derivatives versus spin periods of spinning-down pulsars is not at all different from that of the accreting spinning-up pulsars. The inescapable conclusion is that the up and down samples were drawn from the same continuous parent population; therefore, Be/X-ray pulsars that are spinning down over periods spanning 18 yr are, in fact, accreting from retrograde discs. The presence of prograde and retrograde discs in roughly equal numbers supports a new evolutionary scenario for Be/X-ray pulsars in their spin period-period derivative diagram.

  15. PROPERTIES OF THE 24 DAY MODULATION IN GX 13+1 FROM NEAR-INFRARED AND X-RAY OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbet, Robin H. D.; Pearlman, Aaron B.; Buxton, Michelle

    2010-08-10

    A 24 day period for the low-mass X-ray binary (LMXB) GX 13+1 was previously proposed on the basis of seven years of RXTE All-Sky Monitor (ASM) observations and it was suggested that this was the orbital period of the system. This would make it one of the longest known orbital periods for a Galactic LMXB powered by Roche lobe overflow. We present here the results of (1) K-band photometry obtained with the SMARTS Consortium CTIO 1.3 m telescope on 68 nights over a 10 month interval; (2) continued monitoring with the RXTE ASM, analyzed using a semi-weighted power spectrum insteadmore » of the data filtering technique previously used; and (3) Swift Burst Alert Telescope (BAT) hard X-ray observations. Modulation near 24 days is seen in both the K band and additional statistically independent ASM X-ray observations. However, the modulation in the ASM is not strictly periodic. The periodicity is also not detected in the Swift BAT observations, but modulation at the same relative level as seen with the ASM cannot be ruled out. If the 24 day period is the orbital period of system, this implies that the X-ray modulation is caused by structure that is not fixed in location. A possible mechanism for the X-ray modulation is the dipping behavior recently reported from XMM-Newton observations.« less

  16. The gamma-ray emitting radio-loud narrow-line Seyfert 1 galaxy PKS 2004-447. I. The X-ray View

    NASA Astrophysics Data System (ADS)

    Kreikenbohm, A.; Schulz, R.; Kadler, M.; Wilms, J.; Markowitz, A.; Chang, C. S.; Carpenter, B.; Elsässer, D.; Gehrels, N.; Mannheim, K.; Müller, C.; Ojha, R.; Ros, E.; Trüstedt, J.

    2016-01-01

    As part of the TANAMI multiwavelength progam, we discuss new X-ray observations of the γ-ray and radio-loud narrow line Seyfert 1 galaxy (γ-NLS1) PKS 2004-447. The active galaxy is a member of a small sample of radio-loud NLS1s detected in γ-rays by the Fermi Large Area Telescope. It stands out for being the radio-loudest and the only southern-hemisphere source in this sample. We present results from our X-ray monitoring program comprised of Swift snapshot observations from 2012 through 2014 and two new X-ray observations with XMM-Newton in 2012. Supplemented by archival data from 2004 and 2011, our data set allows for a careful analysis of the X-ray spectrum and variability of this peculiar source. The (0.5-10) keV spectrum is described well by a power law (Γ ~ 1.6), which can be interpreted as non-thermal emission from a relativistic jet. The source exhibits moderate flux variability on timescales of both months and years. Correlated brightness variations in the (0.5-2) keV and (2-10) keV bands are explained by a single variable spectral component, such as the one from the jet. A possible soft excess seen in the data from 2004 cannot be confirmed by the new XMM-Newton observations taken during low-flux states. Any contribution to the total flux in 2004 is less than 20% of the power-law component. The (0.5-10) keV luminosities of PKS 2004-447 are in the range of (0.5-2.7) × 1044 erg s-1. A comparison of the X-ray properties among the known γ-NLS1 galaxies shows that in four out of five cases the X-ray spectrum is dominated by a flat power law without intrinsic absorption. These objects are moderately variable in their brightness, while spectral variability is observed in at least two sources. The major difference across the X-ray spectra of γ-NLS1s is the luminosity, which spans a range of almost two orders of magnitude from 1044 erg s-1 to 1046 erg s-1 in the (0.5-10) keV band.

  17. A Massive X-ray Outflow From The Quasar PDS 456

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; O'Brien, P. T.; Ward, M. J.

    2003-01-01

    We report on XMM-Newton spectroscopic observations of the luminous, radio-quiet quasar PDS 456. The hard X-ray spectrum of PDS 456 shows a deep absorption trough (constituting 50% of the continuum) at energies above 7 keV in the quasar rest frame, which can be attributed to a series of blue-shifted K-shell absorption edges due to highly ionized iron. The higher resolution soft X-ray grating RGS spectrum exhibits a broad absorption line feature near 1 keV, which can be modeled by a blend of L-shell transitions from highly ionized iron (Fe XVII - XXIV). An extreme outflow velocity of approx. 50000 km/s is required to model the K and L shell iron absorption present in the XMM-Newton data. Overall, a large column density (N(sub H) = 5 x 10(exp 23)/sq cm) of highly ionized gas (log xi = 2.5) is required in PDS 456. A large mass outflow rate of approx. 10 solar mass/year (assuming a conservative outflow covering factor of 0.1 steradian) is derived, which is of the same order as the overall mass accretion rate in PDS 456. This represents a substantial fraction (approx. 10%) of the quasar energy budget, whilst the large column and outflow velocity place PDS 456 towards the extreme end of the broad absorption line quasar population.

  18. A Link between X-Ray Emission Lines and Radio Jets in 4U 1630-47?

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, Anastasios K.; Edwards, Philip G.; Broderick, Jess W.

    2014-03-01

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ~5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is >~ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission.

  19. Solar and Stellar X-ray Cycles

    NASA Astrophysics Data System (ADS)

    Martens, P. C. H.; SADE Team

    2004-05-01

    Stern et al. have shown that Yohkoh-SXT full disk X-ray irradiance shows an 11 year cycle with an max/min amplitude ratio of a factor 30. Similar cyclic X-ray variation in Sun-like stars observed by ROSAT and its predecessors is observed in only a few cases and limited to a factor two or three. We will show, by means of detailed bandpass comparisons, that this discrepancy cannot be ascribed to the differences in energy response between SXT and the stellar soft X-ray detectors. Is the Sun exceptional? After centuries of geocentric and heliocentric worldviews we find this a difficult proposition to entertain. But perhaps the Sun is a member of a small class of late-type stars with large amplitudes in their X-ray cycles. The stellar X-ray observations listed in the HEASARC catalog are too sparse to verify this hypothesis. To resolve these and related questions we have proposed a small low-cost stellar X-ray spectroscopic imager originally called SADE to obtain regular time series from late and early-type stars and accretion disks. This instrument is complimentary to the much more advanced Chandra and XMM-Newton observatories, and allows them to focus on those sources that require their full spatial and spectral resolution. We will describe the basic design and spectroscopic capability of SADE and show it meets the mission requirements.

  20. On the Absence of Non-thermal X-Ray Emission around Runaway O Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toalá, J. A.; Oskinova, L. M.; Ignace, R.

    Theoretical models predict that the compressed interstellar medium around runaway O stars can produce high-energy non-thermal diffuse emission, in particular, non-thermal X-ray and γ -ray emission. So far, detection of non-thermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six well-determined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward ζ Oph and BD+43°3654. We carefully investigated multi-wavelength observations ofmore » AE Aur and could not confirm previous findings of non-thermal X-rays. We conclude that so far there is no clear evidence of non-thermal extended emission in bow shocks around runaway O stars.« less

  1. X-rays Provide a New Way to Investigate Exploding Stars

    NASA Astrophysics Data System (ADS)

    2007-05-01

    exhausted. The duration of this X-ray emission traces the amount of material left on the white dwarf after the nova explosion. Optical Image of Andromeda Galaxy (M31) Optical Image of Andromeda Galaxy (M31) A well determined start time of the optical nova outburst and the X-ray turn-on and turn-off times are therefore important benchmarks for replication in computer models of novae. Whilst monitoring the M31 novae, frequently over several months, for the appearance and subsequent disappearance of the X-rays, Pietsch made an important discovery. Some novae start to emit X-rays and then turn them off again within just a few months. "These novae are a new class. They would have been overlooked before," says Pietsch. That's because previous surveys looked only every six months or so. Within that time, the fast X-ray novae could have blinked both on and off. In addition to discovering the short-lived ones, the new survey also confirms that other novae generate X-rays over a much longer time. XMM-Newton detected seven novae that were still shining X-rays into space, up to a decade after the original eruption. The differing lengths of times are thought to reflect the masses of the white dwarfs at the heart of the nova explosion. The fastest evolving novae are thought to be those coming from the most massive white dwarfs. To investigate further, the team have been awarded more XMM-Newton and Chandra observing time. They now plan to monitor M31's novae every ten days for several months, starting in November 2007 to glean more information about these puzzling stellar explosions. Notes for editors: X-ray monitoring of optical novae in M31 from July 2004 to February 2005 by W. Pietsch et al. is published in Astronomy and Astrophysics, 465, 375-392 (2007). For more information: Wolfgang Pietsch wnp@mpe.mpg.de Norbert Schartel Norbert.Schartel@sciops.esa.int

  2. A Deep X-ray Survey of Low-Mass PMS Stars in NGC 2264

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    2005-01-01

    Two X-ray images were obtained with the XMM-Newton spacecraft of more than 300 members of the NGC 2264 Open Cluster and its associated molecular cloud in order to investigate their magnetic activity. The X-ray fluxes extracted from those observations were used to study the dependence of stellar dynamo activity upon age and rotation for the optically revealed T Tauri stars and to place empirical constraints on theoretical models of angular momentum/dynamo evolution. The observations were also used to study the role of magnetic fields in the formation of low mass stars through the observation of very young protostars that are deeply embedded in the molecular cloud located behind the visible open cluster.

  3. The peculiar optical-UV X-ray spectra of the X-ray weak quasar PG 0043+039

    NASA Astrophysics Data System (ADS)

    Kollatschny, W.; Schartel, N.; Zetzl, M.; Santos-Lleó, M.; Rodríguez-Pascual, P. M.; Ballo, L.; Talavera, A.

    2016-01-01

    Context. The object PG 0043+039 has been identified as a broad absorption line (BAL) quasar based on its UV spectra. However, this optical luminous quasar has not been detected before in deep X-ray observations, making it the most extreme X-ray weak quasar known today. Aims: This study aims to detect PG 0043+039 in a deep X-ray exposure. The question is what causes the extreme X-ray weakness of PG 0043+039? Does PG 0043+039 show other spectral or continuum peculiarities? Methods: We took simultaneous deep X-ray spectra with XMM-Newton, far-ultraviolet (FUV) spectra with the Hubble Space Telescope (HST), and optical spectra of PG 0043+039 with the Hobby-Eberly Telescope (HET) and Southern African Large Telescope (SALT) in July, 2013. Results: We have detected PG 0043+039 in our X-ray exposure taken in 2013. We presented our first results in a separate paper (Kollatschny et al. 2015). PG 0043+039 shows an extreme αox gradient (αox = -2.37). Furthermore, we were able to verify an X-ray flux of this source in a reanalysis of the X-ray data taken in 2005. At that time, it was fainter by a factor of 3.8 ±0.9 with αox = -2.55. The X-ray spectrum is compatible with a normal quasar power-law spectrum (Γ = 1.70-0.45+0.57) with moderate intrinsic absorption (NH = 5.5-3.9+6.9 × 1021 cm-2) and reflection. The UV/optical flux of PG 0043+039 has increased by a factor of 1.8 compared to spectra taken in the years 1990-1991. The FUV spectrum is highly peculiar and dominated by broad bumps besides Lyα. There is no detectable Lyman edge associated with the BAL absorbing gas seen in the CIV line. PG 0043+039 shows a maximum in the overall continuum flux at around λ ≈ 2500 Å in contrast to most other AGN where the maximum is found at shorter wavelengths. All the above is compatible with an intrinsically X-ray weak quasar, rather than an absorbed X-ray emission. Besides strong FeII multiplets and broad Balmer and HeI lines in the optical band we only detect a narrow [O II

  4. AGN Populations in Large-volume X-Ray Surveys: Photometric Redshifts and Population Types Found in the Stripe 82X Survey

    NASA Astrophysics Data System (ADS)

    Ananna, Tonima Tasnin; Salvato, Mara; LaMassa, Stephanie; Urry, C. Megan; Cappelluti, Nico; Cardamone, Carolin; Civano, Francesca; Farrah, Duncan; Gilfanov, Marat; Glikman, Eilat; Hamilton, Mark; Kirkpatrick, Allison; Lanzuisi, Giorgio; Marchesi, Stefano; Merloni, Andrea; Nandra, Kirpal; Natarajan, Priyamvada; Richards, Gordon T.; Timlin, John

    2017-11-01

    Multiwavelength surveys covering large sky volumes are necessary to obtain an accurate census of rare objects such as high-luminosity and/or high-redshift active galactic nuclei (AGNs). Stripe 82X is a 31.3 X-ray survey with Chandra and XMM-Newton observations overlapping the legacy Sloan Digital Sky Survey Stripe 82 field, which has a rich investment of multiwavelength coverage from the ultraviolet to the radio. The wide-area nature of this survey presents new challenges for photometric redshifts for AGNs compared to previous work on narrow-deep fields because it probes different populations of objects that need to be identified and represented in the library of templates. Here we present an updated X-ray plus multiwavelength matched catalog, including Spitzer counterparts, and estimated photometric redshifts for 5961 (96% of a total of 6181) X-ray sources that have a normalized median absolute deviation, σnmad=0.06, and an outlier fraction, η = 13.7%. The populations found in this survey and the template libraries used for photometric redshifts provide important guiding principles for upcoming large-area surveys such as eROSITA and 3XMM (in X-ray) and the Large Synoptic Survey Telescope (optical).

  5. Hard X-Ray Emission from Sh 2-104: A NuSTAR Search for Gamma-Ray Counterparts

    NASA Astrophysics Data System (ADS)

    Gotthelf, E. V.; Mori, K.; Aliu, E.; Paredes, J. M.; Tomsick, J. A.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Hailey, C. J.; Harrison, F. A.; Hong, J. S.; Rahoui, F.; Stern, D.; Zhang, W. W.

    2016-07-01

    We present NuSTAR hard X-ray observations of Sh 2-104, a compact H II region containing several young massive stellar clusters (YMSCs). We have detected distinct hard X-ray sources coincident with localized VERITAS TeV emission recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. Fainter, diffuse X-rays coincident with the eastern YMSC in Sh2-104 likely result from the colliding winds of a component star. Just outside the radio shell of Sh 2-104 lies 3XMM J201744.7+365045 and a nearby nebula, NuSTAR J201744.3+364812, whose properties are most consistent with extragalactic objects. The combined XMM-Newton and NuSTAR spectrum of 3XMM J201744.7+365045 is well-fit to an absorbed power-law model with {N}{{H}}=(3.1+/- 1.0)× {10}22 cm-2 and a photon index {{Γ }}=2.1+/- 0.1. Based on possible long-term flux variation and the lack of detected pulsations (≤43% modulation), this object is likely a background active galactic nucleus rather than a Galactic pulsar. The spectrum of the NuSTAR nebula shows evidence of an emission line at E = 5.6 keV, suggesting an optically obscured galaxy cluster at z = 0.19 ± 0.02 (d = 800 Mpc) and L X = 1.2 × 1044 erg s-1. Follow-up Chandra observations of Sh 2-104 will help identify the nature of the X-ray sources and their relation to MGRO J2019+37. We also show that the putative VERITAS excess south of Sh 2-104, is most likely associated with the newly discovered Fermi pulsar PSR J2017+3625 and not the H II region.

  6. Resolving the X-ray emission from the Lyman-continuum emitting galaxy Tol 1247-232

    NASA Astrophysics Data System (ADS)

    Kaaret, P.; Brorby, M.; Casella, L.; Prestwich, A. H.

    2017-11-01

    Chandra observations of the nearby, Lyman-continuum (LyC) emitting galaxy Tol 1247-232 resolve the X-ray emission and show that it is dominated by a point-like source with a hard spectrum (Γ = 1.6 ± 0.5) and a high luminosity [(9 ± 2) × 1040 erg s- 1]. Comparison with an earlier XMM-Newton observation shows flux variation of a factor of 2. Hence, the X-ray emission likely arises from an accreting X-ray source: a low-luminosity active galactic nucleus or one or a few X-ray binaries. The Chandra X-ray source is similar to the point-like, hard spectrum (Γ = 1.2 ± 0.2), high-luminosity (1041 erg s- 1) source seen in Haro 11, which is the only other confirmed LyC-emitting galaxy that has been resolved in X-rays. We discuss the possibility that accreting X-ray sources contribute to LyC escape.

  7. X-RAY SOURCES IN THE DWARF SPHEROIDAL GALAXY DRACO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonbas, E.; Rangelov, B.; Kargaltsev, O.

    2016-04-10

    We present the spectral analysis of an 87 ks XMM-Newton observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we report X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with active galactic nuclei, few of them possess the characteristics of low-mass X-ray binaries (LMXBs) and cataclysmic variable (CVs). Our analysis places constraints on the population of X-ray sources with L{sub X} > 3 × 10{sup 33} erg s{sup −1} in Draco, suggesting that there are no actively accreting black hole andmore » neutron star binaries. However, we find four sources that could be quiescent state LMXBs/CVs associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5 keV.« less

  8. Measuring Quasar Spin via X-ray Continuum Fitting

    NASA Astrophysics Data System (ADS)

    Jenkins, Matthew; Pooley, David; Rappaport, Saul; Steiner, Jack

    2018-01-01

    We have identified several quasars whose X-ray spectra appear very soft. When fit with power-law models, the best-fit indices are greater than 3. This is very suggestive of thermal disk emission, indicating that the X-ray spectrum is dominated by the disk component. Galactic black hole binaries in such states have been successfully fit with disk-blackbody models to constrain the inner radius, which also constrains the spin of the black hole. We have fit those models to XMM-Newton spectra of several of our identified soft X-ray quasars to place constraints on the spins of the supermassive black holes.

  9. Seeing Red and Shooting Blanks: Study of Red Quasars and Blank X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Elvis, Martin

    2005-01-01

    A major paper describing the technique and providing a list of 'blanks' was published in the Astrophysical Journal (abstract below). The results revealed a fascinating trove of novel X-ray sources: high redshift clusters of galaxies found efficiently; X-ray absorbed, optically clean AGN, which may be the bright prototypes of Chandra Deep Survey sources; and several with a still unknown nature. Recent XMM-Newton results confirm the existence of this class of X-ray source with much refined positions. During the first year of this project we have made a major discovery. The second 'blanks' X-ray source observed with Chandra was found to be extended. Using Chandra data and ground-based R and K band imaging we estimated this to be a high redshift cluster of galaxies with z approx. 0.85. Spectroscopy agrees with this estimate (z=0.89). This success shows that our method of hunting down 'blank' field X-ray sources is a highly efficient method of finding the otherwise elusive high redshift clusters. With extensive follow-up we should be able to use 'blanks' to make cosmological tests. The paper is now in press in the Astrophysical Journal (abstract below.) The other Chandra source is point-like, showing that there are a variety of 'blank' source types. Other follow-up observations with XMM-Newton, and (newly approved in cycle 2) with Chandra are eagerly awaited. A follow-up paper uses a large amount of supporting data for the remaining blanks. A combination of ROSAT, Chandra and ground based data convincingly identified one of the blanks as a Ultra-luminous X-ray source (ULX) in a spiral galaxy (abstract below). This program resulted in 3 refereed papers in major journals, 4 conference proceedings and a significant fraction of the PhD thesis of Dr. Ilaria Cagnoni. Details of the publications are given.

  10. Mapping the hot gas temperature in galaxy clusters using X-ray and Sunyaev-Zel'dovich imaging

    NASA Astrophysics Data System (ADS)

    Adam, R.; Arnaud, M.; Bartalucci, I.; Ade, P.; André, P.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourdin, H.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; D'Addabbo, A.; Désert, F.-X.; Doyle, S.; Ferrari, C.; Goupy, J.; Kramer, C.; Lagache, G.; Leclercq, S.; Macías-Pérez, J.-F.; Maurogordato, S.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pajot, F.; Pascale, E.; Perotto, L.; Pisano, G.; Pointecouteau, E.; Ponthieu, N.; Pratt, G. W.; Revéret, V.; Ritacco, A.; Rodriguez, L.; Romero, C.; Ruppin, F.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.

    2017-10-01

    We propose a method to map the temperature distribution of the hot gas in galaxy clusters that uses resolved images of the thermal Sunyaev-Zel'dovich (tSZ) effect in combination with X-ray data. Application to images from the New IRAM KIDs Array (NIKA) and XMM-Newton allows us to measure and determine the spatial distribution of the gas temperature in the merging cluster MACS J0717.5+3745, at z = 0.55. Despite the complexity of the target object, we find a good morphological agreement between the temperature maps derived from X-ray spectroscopy only - using XMM-Newton (TXMM) and Chandra (TCXO) - and the new gas-mass-weighted tSZ+X-ray imaging method (TSZX). We correlate the temperatures from tSZ+X-ray imaging and those from X-ray spectroscopy alone and find that TSZX is higher than TXMM and lower than TCXO by 10% in both cases. Our results are limited by uncertainties in the geometry of the cluster gas, contamination from kinetic SZ ( 10%), and the absolute calibration of the tSZ map (7%). Investigation using a larger sample of clusters would help minimise these effects.

  11. Restablished Accretion in Post-outburst Classical Novae Revealed by X-rays

    NASA Astrophysics Data System (ADS)

    Hernanz, Margarita; Ferri, Carlo; Sala, Glòria

    2009-05-01

    Classical novae are explosions on accreting white dwarfs (hereinafter WDs) in cataclysmic variables (hereinafter CVs) a hydrogen thermonuclear runaway on top of the WD is responsible for the outburst. X-rays provide a unique way to study the turn-off of H-burning, because super soft X-rays reveal the hot WD photosphere, but also to understand how accretion is established again in the binary system. Observations with XMM-Newton of some post-outburst novae have revealed such a process, but a coverage up to larger energies -as Simbol-X will provide- is fundamental to well understand the characteristics of the binary system and of the nova ejecta. We present a brief summary of our results up to now and prospects for the Simbol-X mission.

  12. A tidal disruption-like X-ray flare from the quiescent galaxy SDSS J120136.02+300305.5

    NASA Astrophysics Data System (ADS)

    Saxton, R. D.; Read, A. M.; Esquej, P.; Komossa, S.; Dougherty, S.; Rodriguez-Pascual, P.; Barrado, D.

    2012-05-01

    Aims: The study of tidal disruption flares from galactic nuclei has historically been hampered by a lack of high quality spectral observations taken around the peak of the outburst. Here we introduce the first results from a program designed to identify tidal disruption events at their peak by making near-real-time comparisons of the flux seen in XMM-Newton slew sources with that seen in ROSAT. Methods: Flaring extragalactic sources, which do not appear to be AGN, are monitored with Swift and XMM-Newton to track their temporal and spectral evolution. Timely optical observations are made to monitor the reaction of circumnuclear material to the X-ray flare. Results: SDSS J120136.02+300305.5 was detected in an XMM-Newton slew from June 2010 with a flux 56 times higher than an upper limit from ROSAT, corresponding to LX ~ 3 × 1044 erg s-1. It has the optical spectrum of a quiescent galaxy (z = 0.146). Overall the X-ray flux has evolved consistently with the canonical t-5/3 model, expected for returning stellar debris, fading by a factor ~300 over 300 days. In detail the source is very variable and became invisible to Swift between 27 and 48 days after discovery, perhaps due to self-absorption. The X-ray spectrum is soft but is not the expected tail of optically thick thermal emission. It may be fit with a Bremsstrahlung or double-power-law model and is seen to soften with time and declining flux. Optical spectra taken 12 days and 11 months after discovery indicate a deficit of material in the broad line and coronal line regions of this galaxy, while a deep radio non-detection implies that a jet was not launched during this event. Partly based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC) and observations made with the WHT operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio

  13. Searching for X-ray emission from AGB stars

    NASA Astrophysics Data System (ADS)

    Ramstedt, S.; Montez, R.; Kastner, J.; Vlemmings, W. H. T.

    2012-07-01

    Context. Magnetic fields have been measured around asymptotic giant branch (AGB) stars of all chemical types using maser polarization observations. If present, a large-scale magnetic field would lead to X-ray emission, which should be observable using current X-ray observatories. Aims: The aim is to search the archival data for AGB stars that are intrinsic X-ray emitters. Methods: We have searched the ROSAT, CXO, and XMM-Newton archives for serendipitous X-ray observations of a sample of ~500 AGB stars. We specifically searched for the AGB stars detected with GALEX. The data is calibrated, analyzed and the X-ray luminosities and temperatures are estimated as functions of the circumstellar absorption. Results: We identify 13 AGB stars as having either serendipitous or targeted observations in the X-ray data archives, however for a majority of the sources the detailed analysis show that the detections are questionable. Two new sources are detected by ROSAT: T Dra and R UMa. The spectral analysis suggests that the emission associated with these sources could be due to coronal activity or interaction across a binary system. Conclusions: Further observations of the detected sources are necessary to clearly determine the origin of the X-ray emission. Moreover, additional objects should be subject to targeted X-ray observations in order to achieve better constraints for the magnetic fields around AGB stars. Appendices are available in electronic form at http://www.aanda.org

  14. Planning for future X-ray astronomy missions .

    NASA Astrophysics Data System (ADS)

    Urry, C. M.

    Space science has become an international business. Cutting-edge missions are too expensive and too complex for any one country to have the means and expertise to construct. The next big X-ray mission, Astro-H, led by Japan, has significant participation by Europe and the U.S. The two premier missions currently operating, Chandra and XMM-Newton, led by NASA and ESA, respectively, are thoroughly international. The science teams are international and the user community is International. It makes sense that planning for future X-ray astronomy missions -- and the eventual missions themselves -- be fully integrated on an international level.

  15. X-Ray Spectra of Quasars from the ROSAT Public Archive

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.; West, Donald (Technical Monitor)

    2000-01-01

    This has been a most productive proposal. We have: (1) Found many new X-ray absorbed quasars at z>2; (2) Determined that all of these are radio-loud, favoring an intrinsic origin for the absorption; (3) Found that the one radio-quiet exception lay close to a nearby galaxy, so initiating the X-ray study of the ISM of normal galaxies via X-ray spectroscopy; (4) Discovered a class of 'red quasars', probably the tip of a large obscured population; and (5) Discovered a class of 'blank field X-ray sources'. These are a heterogeneous collection but probably include several peculiar types of active galactic nuclei (AGN). Follow-up of the 'blanks' is being undertaken under a separate ADP program. Chandra and XMM-Newton observing time for these objects has been approved. This program has produced six refereed papers and six published conference proceedings.

  16. Narrow-line Seyfert 1 galaxies at hard X-rays

    NASA Astrophysics Data System (ADS)

    Panessa, F.; de Rosa, A.; Bassani, L.; Bazzano, A.; Bird, A.; Landi, R.; Malizia, A.; Miniutti, G.; Molina, M.; Ubertini, P.

    2011-11-01

    Narrow-line Seyfert 1 (NLSy1) galaxies are a peculiar class of type 1 active galactic nuclei (broad-line Seyfert 1 galaxies, hereinafter BLSy1). The X-ray properties of individual objects belonging to this class are often extreme and associated with accretion at high Eddington ratios. Here, we present a study on a sample of 14 NLSy1 galaxies selected at hard X-rays (>20 keV) from the fourth INTEGRAL/IBIS catalogue. The 20-100 keV IBIS spectra show hard-X-ray photon indices flatly distributed (Γ20-100 keV ranging from ˜1.3 to ˜3.6) with an average value of <Γ20-100 keV>= 2.3 ± 0.7, compatible with a sample of hard-X-ray BLSy1 average slopes. Instead, NLSy1 galaxies show steeper spectral indices with respect to BLSy1 galaxies when broad-band spectra are considered. Indeed, we combine XMM-Newton and Swift/XRT with INTEGRAL/IBIS data sets to obtain a wide energy spectral coverage (0.3-100 keV). A constraint on the high energy cut-off and on the reflection component is achieved only in one source, SWIFT J2127.4+5654 (Ecut-off˜ 50 keV, R= 1.0+0.5- 0.4). Hard-X-ray-selected NLSy1 galaxies do not display particularly strong soft excess emission, while absorption fully or partially covering the continuum is often measured as well as Fe line emission features. Variability is a common trait in this sample, both at X-rays and at hard X-rays. The fraction of NLSy1 galaxies in the hard-X-ray sky is likely to be ˜15 per cent, in agreement with estimates derived in optically selected NLSy1 samples. We confirm the association of NLSy1 galaxies with small black hole masses with a peak at 107 M⊙ in the distribution; however, hard-X-ray NLSy1 galaxies seem to occupy the lower tail of the Eddington ratio distribution of classical NLSy1 galaxies. Based on observations obtained with the INTEGRAL/IBIS, XMM-Newton and Swift/XRT.

  17. An Overview of the Performance and Scientific Results From the Chandra X-Ray Observatory (CXO)

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Brinkman, B.; Canizares, C.; Garmine, G.; Murray, S.; VanSpeybroeck, L. P.; Six, N. Frank (Technical Monitor)

    2001-01-01

    The Chandra X-Ray Observatory (CXO), the x-ray component of NASA's Great Observatories, was launched on 1999, July 23 by the Space Shuttle Columbia. After satellite systems activation, the first x-rays focused by the telescope were observed on 1999, August 12. Beginning with the initial observation it was clear that the telescope had survived the launch environment and was operating as expected. Despite an initial surprise due to the discovery that the telescope was far more efficient for concentrating CCD-damaging low-energy protons than had been anticipated, the observatory is performing well and is returning superb scientific data. Together with other space observatories, most notably XMM-Newton, it is clear that we have entered a new era of discovery in high-energy astrophysics.

  18. The results of the thin x-ray mirror module production for the ESA XMM spacecraft

    NASA Astrophysics Data System (ADS)

    de Chambure, Daniel; Laine, Robert; Grisoni, Gabriele; Kampf, Dirck

    2018-04-01

    This paper, "The results of the thin x-ray mirror module production for the ESA XMM spacecraft," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.

  19. Joint XMM-Newton and Chandra observations of the NGC 1407/1400 complex: A tail of an early-type galaxy and a tale of a nearby merging group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yuanyuan; Gu, Liyi; White III, Raymond E.

    2014-05-10

    The nearby group centered on its bright central galaxy NGC 1407 has been suggested by previous kinematic studies to be an unusually dark system. It is also known for hosting a bright galaxy, NGC 1400, with a large radial velocity (1200 km s{sup –1}) with respect to the group center. Previous ROSAT X-ray observations revealed an extended region of enhanced surface brightness just eastward of NGC 1400. We investigate the NGC 1407/1400 complex with XMM-Newton and Chandra observations. We find that the temperature and metallicity of the enhanced region are different (cooler and more metal rich) than those of themore » surrounding group gas but are consistent with those of the interstellar medium (ISM) in NGC 1400. The relative velocity of NGC 1400 is large enough that much of its ISM could have been ram pressure stripped while plunging through the group atmosphere. We conclude that the enhanced region is likely to be hot gas stripped from the ISM of NGC 1400. We constrain the motion of NGC 1400 using the pressure jump at its associated stagnation front and the total mass profile of the NGC 1407 group. We conclude that NGC 1400 is moving within ∼30° of the line of sight with Mach number M≲3. We do not detect any obvious shock features in this complex, perhaps because of the high line-of-sight motion of NGC 1400. With an XMM-Newton pointing on the relatively relaxed eastern side of NGC 1407, we derive a hydrostatic mass for this group of ∼1 × 10{sup 13} M {sub ☉} within 100 kpc. The total mass extrapolated to the virial radius (681 kpc) is 3.8 × 10{sup 13} M {sub ☉}, which puts an upper limit of ∼300 M{sub ⊙}/L{sub B{sub ⊙}} on the mass-to-light ratio of this group. This suggests that the NGC 1407 group is not an unusually dark group.« less

  20. Cosmology with XMM galaxy clusters: the X-CLASS/GROND catalogue and photometric redshifts

    NASA Astrophysics Data System (ADS)

    Ridl, J.; Clerc, N.; Sadibekova, T.; Faccioli, L.; Pacaud, F.; Greiner, J.; Krühler, T.; Rau, A.; Salvato, M.; Menzel, M.-L.; Steinle, H.; Wiseman, P.; Nandra, K.; Sanders, J.

    2017-06-01

    The XMM Cluster Archive Super Survey (X-CLASS) is a serendipitously detected X-ray-selected sample of 845 galaxy clusters based on 2774 XMM archival observations and covering an approximately 90 deg2 spread across the high-Galactic latitude (|b| > 20°) sky. The primary goal of this survey is to produce a well-selected sample of galaxy clusters on which cosmological analyses can be performed. This paper presents the photometric redshift follow-up of a high signal-to-noise ratio subset of 265 of these clusters with declination δ < +20° with Gamma-Ray Burst Optical and Near-Infrared Detector (GROND), a 7-channel (grizJHK) simultaneous imager on the MPG 2.2-m telescope at the ESO La Silla Observatory. We use a newly developed technique based on the red sequence colour-redshift relation, enhanced with information coming from the X-ray detection to provide photometric redshifts for this sample. We determine photometric redshifts for 232 clusters, finding a median redshift of z = 0.39 with an accuracy of Δz = 0.02(1 + z) when compared to a sample of 76 spectroscopically confirmed clusters. We also compute X-ray luminosities for the entire sample and find a median bolometric luminosity of 7.2 × 1043 erg s-1 and a median temperature of 2.9 keV. We compare our results to those of the XMM-XCS and XMM-XXL surveys, finding good agreement in both samples. The X-CLASS catalogue is available online at http://xmm-lss.in2p3.fr:8080/l4sdb/.

  1. Replicated Nickel Optics for the Hard-X-Ray Region

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian

    2005-01-01

    Replicated nickel optics has been used extensively in x-ray astronomy, most notable for the XMM/Newton mission. Thc combination of relative ease of fabrication and the inherent stability of full shell optics, make them FIJI attractive approach for medium-resolution, high-throughput applications. MSFC has been developing these optics for use in the hard-x-ray region. Efforts at improving the resolution of these, particularly the very-thin shells required to meet thc weight budget of future missions, will be described together with the prospects for significant improvements down to the 5-arcsec level.

  2. X-ray Properties of an Unbiased Hard X-ray Detected Sample of AGN

    NASA Technical Reports Server (NTRS)

    Winter, Lisa M.; Mushotzky, Richard F.; Tueller, Jack; Markwardt, Craig

    2007-01-01

    The SWIFT gamma ray observatory's Burst Alert Telescope (BAT) has detected a sample of active galactic nuclei (AGN) based solely on their hard X-ray flux (14-195keV). In this paper, we present for the first time XMM-Newton X-ray spectra for 22 BAT AGXs with no previously analyzed X-ray spectra. If our sources are a representative sample of the BAT AGN, as we claim, our results present for the first time global X-ray properties of an unbiased towards absorption (n(sub H) < 3 x 10(exp 25)/sq cm), local (< z >= 0.03), AGN sample. We find 9/22 low absorption (n(sub H) < 10(exp 23)/sq cm), simple power law model sources, where 4 of these sources have a statistically significant soft component. Among these sources, we find the presence of a warm absorber statistically significant for only one Seyfert 1 source, contrasting with the ASCA results of Reynolds (1997) and George et al. (1998), who find signatures of warm absorption in half or more of their Seyfert 1 samples at similar redshifts. Additionally, the remaining sources (13122) have more complex spectra, well-fit by an absorbed power law at E > 2.0 keV. Five of the complex sources (NGC 612, ESO 362-G018, MRK 417, ESO 506-G027, and NGC 6860) are classified as Compton-thick candidates. Further, we find four more sources (SWIFT J0641.3+3257, SWIFT J0911.2+4533, SWIFT J1200.8+0650, and NGC 4992) with properties consistent with the hidden/buried AGN reported by Ueda et al. (2007). Finally, we include a comparison of the XMM EPIC spectra with available SWIFT X-ray Telescope (XRT) observations. From these comparisons, we find 6/16 sources with varying column densities, 6/16 sources with varying power law indices, and 13/16 sources with varying fluxes, over periods of hours to months. Flux and power law index are correlated for objects where both parameters vary.

  3. The XMM deep survey in the CDF-S. X. X-ray variability of bright sources

    NASA Astrophysics Data System (ADS)

    Falocco, S.; Paolillo, M.; Comastri, A.; Carrera, F. J.; Ranalli, P.; Iwasawa, K.; Georgantopoulos, I.; Vignali, C.; Gilli, R.

    2017-12-01

    Aims: We aim to study the variability properties of bright hard X-ray selected active galactic nuclei (AGN) in the redshift range between 0.3 and 1.6 detected in the Chandra Deep Field South (XMM-CDFS) by a long ( 3 Ms) XMM observation. Methods: Taking advantage of the good count statistics in the XMM CDFS, we search for flux and spectral variability using the hardness ratio (HR) techniques. We also investigate the spectral variability of different spectral components (photon index of the power law, column density of the local absorber, and reflection intensity). The spectra were merged in six epochs (defined as adjacent observations) and in high and low flux states to understand whether the flux transitions are accompanied by spectral changes. Results: The flux variability is significant in all the sources investigated. The HRs in general are not as variable as the fluxes, in line with previous results on deep fields. Only one source displays a variable HR, anti-correlated with the flux (source 337). The spectral analysis in the available epochs confirms the steeper when brighter trend consistent with Comptonisation models only in this source at 99% confidence level. Finding this trend in one out of seven unabsorbed sources is consistent, within the statistical limits, with the 15% of unabsorbed AGN in previous deep surveys. No significant variability in the column densities, nor in the Compton reflection component, has been detected across the epochs considered. The high and low states display in general different normalisations but consistent spectral properties. Conclusions: X-ray flux fluctuations are ubiquitous in AGN, though in some cases the data quality does not allow for their detection. In general, the significant flux variations are not associated with spectral variability: photon index and column densities are not significantly variable in nine out of the ten AGN over long timescales (from three to six and a half years). Photon index variability is

  4. Anchoring the Distance Scale via X-Ray/Infrared Data for Cepheid Clusters: SU Cas

    NASA Astrophysics Data System (ADS)

    Majaess, D.; Turner, D. G.; Gallo, L.; Gieren, W.; Bonatto, C.; Lane, D. J.; Balam, D.; Berdnikov, L.

    2012-07-01

    New X-ray (XMM-Newton) and JHKs (Observatoire du Mont-Mégantic) observations for members of the star cluster Alessi 95, which Turner et al. discovered hosts the classical Cepheid SU Cas, were used in tandem with UCAC3 (proper motion) and Two Micron All Sky Survey observations to determine precise cluster parameters: E(J - H) = 0.08 ± 0.02 and d = 405 ± 15 pc. The ensuing consensus among cluster, pulsation, and trigonometric distances (d=414+/- 5(\\sigma _{\\bar{x}}) +/- 10 (\\sigma) pc) places SU Cas in a select group of nearby fundamental Cepheid calibrators (δ Cep, ζ Gem). High-resolution X-ray observations may be employed to expand that sample as the data proved pertinent for identifying numerous stars associated with SU Cas. Acquiring X-ray observations of additional fields may foster efforts to refine Cepheid calibrations used to constrain H 0.

  5. X-ray variability of Seyfert 1.8/1.9 galaxies

    NASA Astrophysics Data System (ADS)

    Hernández-García, L.; Masegosa, J.; González-Martín, O.; Márquez, I.; Guainazzi, M.; Panessa, F.

    2017-06-01

    Context. Seyfert 1.8/1.9 are sources showing weak broad Hα components in their optical spectra. According to unification schemes, they are seen with an edge-on inclination, similar to type 2 Seyfert galaxies, but with slightly lower inclination angles. Aims: We aim to test whether Seyfert 1.8/1.9 have similar properties at UV and X-ray wavelengths. Methods: We used the 15 Seyfert 1.8/1.9 in the Véron Cetty and Véron catalog with public data available from the Chandra and/or XMM-Newton archives at different dates, with timescales between observations ranging from days to years. All the spectra of the same source were simultaneously fit with the same model and different parameters were left free to vary in order to select the variable parameter(s). Whenever possible, short-term variations from the analysis of the X-ray light curves and long-term UV variations from the optical monitor onboard XMM-Newton were studied. Our results are homogeneously compared with a previous work using the same methodology applied to a sample of Seyfert 2. Results: X-ray variability is found in all 15 nuclei over the aforementioned ranges of timescales. The main variability pattern is related to intrinsic changes in the sources, which are observed in ten nuclei. Changes in the column density are also frequent, as they are observed in six nuclei, and variations at soft energies, possibly related to scattered nuclear emission, are detected in six sources. X-ray intra-day variations are detected in six out of the eight studied sources. Variations at UV frequencies are detected in seven out of nine sources. Conclusions: A comparison between the samples of Seyfert 1.8/1.9 and 2 shows that, even if the main variability pattern is due to intrinsic changes of the sources in the two families, these nuclei exhibit different variability properties in the UV and X-ray domains. In particular, variations in the broad X-ray band on short timescales (days to weeks), and variations in the soft X-rays

  6. X-Ray Detection of the Cluster Containing the Cepheid S Mus

    NASA Astrophysics Data System (ADS)

    Evans, Nancy Remage; Pillitteri, Ignazio; Wolk, Scott; Guinan, Edward; Engle, Scott; Bond, Howard E.; Schaefer, Gail H.; Karovska, Margarita; DePasquale, Joseph; Tingle, Evan

    2014-04-01

    The galactic Cepheid S Muscae has recently been added to the important list of Cepheids linked to open clusters, in this case the sparse young cluster ASCC 69. Low-mass members of a young cluster are expected to have rapid rotation and X-ray activity, making X-ray emission an excellent way to discriminate them from old field stars. We have made an XMM-Newton observation centered on S Mus and identified a population of X-ray sources whose near-IR Two Micron All Sky Survey counterparts lie at locations in the J, (J - K) color-magnitude diagram consistent with cluster membership at the distance of S Mus. Their median energy and X-ray luminosity are consistent with young cluster members as distinct from field stars. These strengthen the association of S Mus with the young cluster, making it a potential Leavitt law (period-luminosity relation) calibrator.

  7. Unveiling the X-ray/UV properties of AGN winds using Broad and mini-Broad Absorption Line Quasars

    NASA Astrophysics Data System (ADS)

    Giustini, M.

    2015-07-01

    BAL/mini-BALs are observed in the UV spectra of ˜ 20-30% of optically selected AGN as broad absorption troughs blueshifted by several thousands km/s, indicative of powerful nuclear winds. They could be representative of the average AGN if their winds cover only 20-30% of the continuum source, and/or represent an evolutionary state analogous to the high-soft state of BHB, when the jet emission is quenched and strong X-ray absorbing equatorial disk winds are virtually ubiquitous. High-quality, possibly time-resolved X-ray/UV studies are crucial to assess the global amount and 'character' of absorption in BAL/mini-BAL QSOs and to constrain the physical mechanism responsible for the launch and acceleration of their winds, therefore placing them in the broader context of AGN geometry and evolution. I will review here the known X-ray properties of BAL/mini-BAL QSOs, and present new results from a comprehensive X-ray spectral analysis of all the Palomar-Green BAL/mini-BAL QSOs with available XMM-Newton observations, for a total of 51 pointings of 14 different sources. These will include the most recent results from a high-quality simultaneous XMM/HST observational campaign on the mini-BAL QSO PG 1126-041, that unveiled with stunning details the X-ray/UV connection in action in an AGN disk wind through correlated X-ray/UV absorption variability.

  8. Global X-ray Spectral Variation of Eta Carinae through the 2003 X-ray Minimum

    NASA Technical Reports Server (NTRS)

    Hamaguchi, K.; Corcoran, M. F.; White, N. E.; Gull, T.; Damineli, A.; Davidson, K.

    2006-01-01

    We report on the results of the X-ray observing campaign of the massive, evolved star Eta Carinae in 2003 around its recent X-ray Minimum, mainly using data from the XMM-Newton observatory. These imaging observations show that the hard X-ray source associated with the Eta Carinae system does not completely disappear in any of the observations during the Minimum. The variation of the spectral shape revealed two emission components. One newly discovered component did not exhibit any variation on kilo-second to year-long timescales, in a combined analysis with earlier ASCA and ROSAT data, and might represent the collision of a high speed outflow from Eta Carinae with ambient gas clouds. The other emission component was strongly variable in flux but the temperature of the hottest plasma did not vary significantly at any orbital phase. Absorption to the hard emission, was about a factor of three larger than the absorption determined from the cutoff of the soft emission, and reached a maximum of approx.4 x 10(exp 23)/sq cm before the Minimum. The thermal Fe\\rm XXV emission line showed significant excesses on both the red and blue sides of the line outside the Minimum and exhibited a large redward excess during the Minimum. This variation in the line profile probably requires an abrupt change in ionization balance in the shocked gas.

  9. PATCHY ACCRETION DISKS IN ULTRA-LUMINOUS X-RAY SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J. M.; Bachetti, M.; Barret, D.

    2014-04-10

    The X-ray spectra of the most extreme ultra-luminous X-ray sources—those with L ≥ 10{sup 40} erg s{sup –1}—remain something of a mystery. Spectral roll-over in the 5-10 keV band was originally detected in the deepest XMM-Newton observations of the brightest sources; this is confirmed in subsequent NuSTAR spectra. This emission can be modeled via Comptonization, but with low electron temperatures (kT{sub e} ≅ 2 keV) and high optical depths (τ ≅ 10) that pose numerous difficulties. Moreover, evidence of cooler thermal emission that can be fit with thin disk models persists, even in fits to joint XMM-Newton and NuSTAR observations.more » Using NGC 1313 X-1 as a test case, we show that a patchy disk with a multiple temperature profile may provide an excellent description of such spectra. In principle, a number of patches within a cool disk might emit over a range of temperatures, but the data only require a two-temperature profile plus standard Comptonization, or three distinct blackbody components. A mechanism such as the photon bubble instability may naturally give rise to a patchy disk profile, and could give rise to super-Eddington luminosities. It is possible, then, that a patchy disk (rather than a disk with a standard single-temperature profile) might be a hallmark of accretion disks close to or above the Eddington limit. We discuss further tests of this picture and potential implications for sources such as narrow-line Seyfert-1 galaxies and other low-mass active galactic nuclei.« less

  10. Identification of Hard X-ray Sources in Galactic Globular Clusters: Simbol-X Simulations

    NASA Astrophysics Data System (ADS)

    Servillat, M.

    2009-05-01

    Globular clusters harbour an excess of X-ray sources compared to the number of X-ray sources in the Galactic plane. It has been proposed that many of these X-ray sources are cataclysmic variables that have an intermediate magnetic field, i.e. intermediate polars, which remains to be confirmed and understood. We present here several methods to identify intermediate polars in globular clusters from multiwavelength analysis. First, we report on XMM-Newton, Chandra and HST observations of the very dense Galactic globular cluster NGC 2808. By comparing UV and X-ray properties of the cataclysmic variable candidates, the fraction of intermediate polars in this cluster can be estimated. We also present the optical spectra of two cataclysmic variables in the globular cluster M 22. The HeII (4868 Å) emission line in these spectra could be related to the presence of a magnetic field in these objects. Simulations of Simbol-X observations indicate that the angular resolution is sufficient to study X-ray sources in the core of close, less dense globular clusters, such as M 22. The sensitivity of Simbol-X in an extended energy band up to 80 keV will allow us to discriminate between hard X-ray sources (such as magnetic cataclysmic variables) and soft X-ray sources (such as chromospherically active binaries).

  11. Active x-ray optics for high resolution space telescopes

    NASA Astrophysics Data System (ADS)

    Doel, Peter; Atkins, Carolyn; Brooks, D.; Feldman, Charlotte; Willingale, Richard; Button, Tim; Rodriguez Sanmartin, Daniel; Meggs, Carl; James, Ady; Willis, Graham; Smith, Andy

    2017-11-01

    The Smart X-ray Optics (SXO) Basic Technology project started in April 2006 and will end in October 2010. The aim is to develop new technologies in the field of X-ray focusing, in particular the application of active and adaptive optics. While very major advances have been made in active/adaptive astronomical optics for visible light, little was previously achieved for X-ray optics where the technological challenges differ because of the much shorter wavelengths involved. The field of X-ray astronomy has been characterized by the development and launch of ever larger observatories with the culmination in the European Space Agency's XMM-Newton and NASA's Chandra missions which are currently operational. XMM-Newton uses a multi-nested structure to provide modest angular resolution ( 10 arcsec) but large effective area, while Chandra sacrifices effective area to achieve the optical stability necessary to provide sub-arc second resolution. Currently the European Space Agency (ESA) is engaged in studies of the next generation of X-ray space observatories, with the aim of producing telescopes with increased sensitivity and resolution. To achieve these aims several telescopes have been proposed, for example ESA and NASA's combined International X-ray Observatory (IXO), aimed at spectroscopy, and NASA's Generation-X. In the field of X-ray astronomy sub 0.2 arcsecond resolution with high efficiency would be very exciting. Such resolution is unlikely to be achieved by anything other than an active system. The benefits of a such a high resolution would be important for a range of astrophysics subjects, for example the potential angular resolution offered by active X-ray optics could provide unprecedented structural imaging detail of the Solar Wind bowshock interaction of comets, planets and similar objects and auroral phenomena throughout the Solar system using an observing platform in low Earth orbit. A major aim of the SXO project was to investigate the production of thin

  12. High-Resolution Spectroscopy with the Chandra X-ray Observatory

    ScienceCinema

    Canizares, Claude R. [MIT, Cambridge, Massachusetts, United States

    2017-12-09

    The capabilities of the Chandra X-ray Observatory and XMM-Newton for high-resolution spectroscopy have brought tradition plasma diagnostic techniques to the study of cosmic plasma. Observations have probed nearly every class of astronomical object, from young proto-starts through massive O starts and black hole binaries, supernova remnants, active galactic nuclei, and the intergalactic medium. Many of these sources show remarkable rich spectra that reveal new physical information, such as emission measure distributions, elemental abundances, accretion disk and wind signatures, and time variability. This talk will present an overview of the Chandra instrumentaton and selected examples of spectral observations of astrophysical and cosmological importance.

  13. X-ray wind tomography of IGR J17252-3616

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonios; Walter, Roland

    IGR J17252-3616 is an heavily absorbed and eclipsing High Mass X-ray Binary with an ab-sorbing hydrogen column density >1023 cm-2 . We have observed it with XMM-Newton to understand the geometry of the absorbing material. Observations were scheduled in order to cover as many orbital phases as possible. Timing analysis is constraining the orbital solution and the physical parameters of the system. Spectral analysis reveals remarkable variations of the absorbing column density and of the Iron Kα fluorescence line around the eclipse. These variations allow to map the geometry of the absorbing and reflection material. Very large accretion structures could be imaged for the first time.

  14. Polarization and long-term variability of Sgr A* X-ray echo

    NASA Astrophysics Data System (ADS)

    Churazov, E.; Khabibullin, I.; Ponti, G.; Sunyaev, R.

    2017-06-01

    We use a model of the molecular gas distribution within ˜100 pc from the centre of the Milky Way (Kruijssen, Dale & Longmore) to simulate time evolution and polarization properties of the reflected X-ray emission, associated with the past outbursts from Sgr A*. While this model is too simple to describe the complexity of the true gas distribution, it illustrates the importance and power of long-term observations of the reflected emission. We show that the variable part of X-ray emission observed by Chandra and XMM-Newton from prominent molecular clouds is well described by a pure reflection model, providing strong support of the reflection scenario. While the identification of Sgr A* as a primary source for this reflected emission is already a very appealing hypothesis, a decisive test of this model can be provided by future X-ray polarimetric observations, which will allow placing constraints on the location of the primary source. In addition, X-ray polarimeters (like, e.g. XIPE) have sufficient sensitivity to constrain the line-of-sight positions of molecular complexes, removing major uncertainty in the model.

  15. XMM-Newton discovery of pulsations from IGR J21237+4218=V2069 Cyg

    NASA Astrophysics Data System (ADS)

    de Martino, D.; Bonnet-Bidaud, J. M.; Falanga, M.; Mouchet, M.; Motch, C.

    2009-06-01

    We report on a preliminary analysis of a XMM-Newton observation of the INTEGRAL source IGR J21237+4218 identified as the cataclysmic variable RXJ2123.7+4217=V2069 Cyg (Motch et al. 1996 A&A 307, 459; Barlow et al. 2006, MNRAS 372, 224). This observation was performed on April 30, 2009 (Start time: 2009-04-30T10:45:58.000) for a total of 28ksec (Observation ID: 0601270101). The source is detected in the EPIC cameras at an average net countrate of 1.05 cts/sec (EPIC-pn) and 0.65cts/sec (EPIC-MOS).

  16. X-Ray Study of Variable Gamma-Ray Pulsar PSR J2021+4026

    NASA Astrophysics Data System (ADS)

    Wang, H. H.; Takata, J.; Hu, C.-P.; Lin, L. C. C.; Zhao, J.

    2018-04-01

    PSR J2021+4026 showed a sudden decrease in the gamma-ray emission at the glitch that occurred around 2011 October 16, and a relaxation of the flux to the pre-glitch state at around 2014 December. We report X-ray analysis results of the data observed by XMM-Newton on 2015 December 20 in the post-relaxation state. To examine any change in the X-ray emission, we compare the properties of the pulse profiles and spectra at the low gamma-ray flux state and at the post-relaxation state. The phase-averaged spectra for both states can be well described by a power-law component plus a blackbody component. The former is dominated by unpulsed emission and probably originated from the pulsar wind nebula as reported by Hui et al. The emission property of the blackbody component is consistent with the emission from the polar cap heated by the back-flow bombardment of the high-energy electrons or positrons that were accelerated in the magnetosphere. We found no significant change in the X-ray emission properties between two states. We suggest that the change of the X-ray luminosity is at an order of ∼4%, which is difficult to measure with the current observations. We model the observed X-ray light curve with the heated polar cap emission, and we speculate that the observed large pulsed fraction is owing to asymmetric magnetospheric structure.

  17. X-Ray Observations of Magnetar SGR 0501+4516 from Outburst to Quiescence

    NASA Astrophysics Data System (ADS)

    Mong, Y.-L.; Ng, C.-Y.

    2018-01-01

    Magnetars are neutron stars having extreme magnetic field strengths. Study of their emission properties in quiescent state can help understand effects of a strong magnetic field on neutron stars. SGR 0501+4516 is a magnetar that was discovered in 2008 during an outburst, which has recently returned to quiescence. We report its spectral and timing properties measured with new and archival observations from the Chandra X-ray Observatory, XMM-Newton, and Suzaku. We found that the quiescent spectrum is best fit by a power-law plus two blackbody model, with temperatures of kT low ∼ 0.26 keV and kT high ∼ 0.62 keV. We interpret these two blackbody components as emission from a hotspot and the entire surface. The hotspot radius shrunk from 1.4 km to 0.49 km since the outburst, and there was a significant correlation between its area and the X-ray luminosity, which agrees well with the prediction by the twisted magnetosphere model. We applied the two-temperature spectral model to all magnetars in quiescence and found that it could be a common feature among the population. Moreover, the temperature of the cooler blackbody shows a general trend with the magnetar field strength, which supports the simple scenario of heating by magnetic field decay.

  18. VizieR Online Data Catalog: X-ATLAS X-ray sources photometric redshifts (Mountrichas+, 2017)

    NASA Astrophysics Data System (ADS)

    Mountrichas, G.; Corral, A.; Masoura, V. A.; Georgantopoulos, I.; Ruiz, A.; Georgakakis, A.; Carrera, F. J.; Fotopoulou, S.

    2017-10-01

    The Herschel Terahertz Large Area survey (H-ATLAS) is the largest Open Time Key Project carried out with the Herschel Space Observatory (Eales et al., 2010PASP..122..499E), covering an area of 550 deg2 in five far-infrared and sub-millimeter (submm) bands (100, 160, 250, 350, and 500um). 16 deg2 have been presented in the Science Demonstration Phase (SDP) catalogue (Rigby et al., 2011, Cat. J/MNRAS/415/2336) and lie within one of the regions observed by the Galaxy And Mass Assembly (GAMA) survey (Driver et al. 2011, Cat. J/MNRAS/413/971; Baldry et al. 2010MNRAS.404...86B). XMM-Newton observed 7.1 deg2 with a total exposure time of 336ks (in the MOS1 camera) within the H-ATLAS SDP area, making the XMM-ATLAS one of the largest contiguous areas of the sky with both XMM-Newton and Herschel coverage. The catalogue contains 1816 unique sources (Ranalli et al. 2015, Cat. J/A+A/577/A121). To obtain optical, mid-IR, and far-IR photometry for the XMM-ATLAS sources, we cross-matched the X-ray catalogue with the SDSS-DR13 (Albareti et al., 2015, Cat. J/MNRAS/452/4153), the WISE (Wright et al. 2010AJ....140.1868W, See Cat. II/311 and II/328), and the VISTA-VIKING catalogues (Emerson et al. 2006, Msngr, 126, 41; Dalton et al. 2006, SPIE, 6269, see Cat. II/343/) with the ARCHES cross-correlation tool xmatch, which symmetrically matches an arbitrary number of catalogues providing a Bayesian Probability of association or non-association (Pineau, 2016, eprint arXiv:1609.03457). (1 data file).

  19. Coordinated Multiwavelength Observations of PKS 0528+134 in Quiescence

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Palma, N.

    2011-01-01

    We report results of an intensive multiwavelength campaign on the prominent high-redshift (z = 2.06) gamma-ray bright blazar PKS 0528+134 in September - October 2009. The campaign was centered on four 30 ksec pointings with XMM-Newton, supplemented with ground-based optical (MDM, Perkins) and radio (UMRAO, Medicina, Metsaehovi, Noto, SMA) observations as well as long-term X-ray monitoring with RXTE and gamma-ray monitoring by Fermi. We find significant variability on 1 day time scales in the optical regime, accompanied by a weak redder-when-brighter trend. X-ray variability is found on longer ( 1 week) time scales, while the Fermi light curve shows no evidence for variability, neither in flux nor spectral index. We constructed four simultaneous spectral energy distributions, which can all be fit satisfactorily with a one-zone leptonic jet model. This work was supported by NASA through XMM-Newton Guest Observer Grant NNX09AV45G.

  20. X-ray sources associated with young stellar objects in the star formation region CMa R1

    NASA Astrophysics Data System (ADS)

    Santos-Silva, Thais; Gregorio-Hetem, Jane; Montmerle, Thierry

    2013-07-01

    In previous works we studied the star formation scenario in the molecular cloud Canis Major R1 (CMa R1), derived from the existence of young stellar population groups near the Be stars Z CMa and GU CMa. Using data from the ROSAT X-ray satellite, having a field-of-view of ~ 1° in diameter, Gregorio-Hetem et al. (2009) discovered in this region young stellar objects mainly grouped in two clusters of different ages, with others located in between. In order to investigate the nature of these objects and to test a possible scenario of sequential star formation in this region, four fields (each 30 arcmin diameter, with some overlap) have been observed with the XMM-Newton satellite, with a sensitivity about 10 times better than ROSAT. The XMM-Newton data are currently under analysis. Preliminary results indicate the presence of about 324 sources, most of them apparently having one or more near-infrared counterparts showing typical colors of young stars. The youth of the X-ray sources was also confirmed by X-ray hardness ratio diagrams (XHRD), in different energy bands, giving an estimate of their Lx/Lbol ratios. In addition to these results, we present a detailed study of the XMM field covering the cluster near Z CMa. Several of these sources were classified as T Tauri and Herbig Ae/Be stars, using optical spectroscopy obtained with Gemini telescopes, in order to validate the use of XHRD applied to the entire sample. This classification is also used to confirm the relation between the luminosities in the near-infrared and X-ray bands expected for the T Tauri stars in CMa R1. In the present work we show the results of the study based on the spectra of about 90 sources found nearby Z CMa. We checked that the X-ray spectra (0.3 to 10 keV) of young objects is different from that observed in field stars and extragalactic objects. Some of the candidates also have light curve showing flares that are typical of T Tauri stars, which confirms the young nature of these X-ray

  1. On the Nature of the mHz X-Ray QPOs from ULX M82 X-1: Evidence for Timing-Spectral (anti) Correlation

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    Using all the archival XMM-Newton X-ray (3-10 keV) observations of the ultraluminous X-ray source (ULX) M82 X-1 we searched for a correlation between its variable mHz quasi-periodic oscillation (QPO) frequency and its energy spectral power-law index. These quantities are known to correlate in stellar mass black holes (StMBHs) exhibiting Type-C QPOs (approx 0.2-15 Hz). The detection of such a correlation would strengthen the identification of its mHz QPOs as Type-C and enable a more reliable mass estimate by scaling its QPO frequencies to those of Type-C QPOs in StMBHs of known mass. We resolved the count rates of M82 X-1 and a nearby bright ULX (source 5/X42.3+59) through surface brightness modeling and identify observations in which M82 X-1 was at least as bright as source 5. Using only those observations, we detect QPOs in the frequency range of 36-210 mHz during which the energy spectral power-law index varied from 1.7-2.2. Interestingly, we find evidence for an anti-correlation (Pearsons correlation coefficient = -0.95) between the power-law index and the QPO centroid frequency. While such an anti-correlation is observed in StMBHs at high Type-C QPO frequencies (approx 5-15 Hz), the frequency range over which it holds in StMBHs is significantly smaller (factor of approx 1.5-3) than the QPO range reported here from M82 X-1 (factor of 6). However, it remains possible that contamination from source 5 can bias our result. Joint Chandra/XMM-Newton observations in the future can resolve this problem and confirm the timing-spectral anti-correlation reported here.

  2. Long term X-ray variability characteristics of the narrow-line Seyfert 1 galaxy RE J1034+396

    NASA Astrophysics Data System (ADS)

    Chaudhury, K.; Chitnis, V. R.; Rao, A. R.; Singh, K. P.; Bhattacharyya, Sudip; Dewangan, G. C.; Chakraborty, S.; Chandra, S.; Stewart, G. C.; Mukerjee, K.; Dey, R. K.

    2018-05-01

    We present the results of our study of the long term X-ray variability characteristics of the Narrow Line Seyfert 1 galaxy RE J1034+396. We use data obtained from the AstroSat satellite along with the light curves obtained from XMM-Newton and Swift-XRT. We use the 0.3 - 7.0 keV and 3 - 20 keV data, respectively, from the SXT and the LAXPC of AstroSat. The X-ray spectra in the 0.3 - 20 keV region are well fit with a model consisting of a power-law and a soft excess described by a thermal-Compton emission with a large optical depth, consistent with the earlier reported results. We have examined the X-ray light curves in the soft and hard X-ray bands of SXT and LAXPC, respectively, and find that the variability is slightly larger in the hard band. To investigate the variability characteristics of this source at different time scales, we have used X-ray light curves obtained from XMM-Newton data (200 s to 100 ks range) and Swift-XRT data (1 day to 100 day range) and find that there are evidences to suggest that the variability sharply increases at longer time scales. We argue that the mass of the black hole in RE J1034+396 is likely to be ˜3 × 106 M⊙, based on the similarity of the observed QPO to the high frequency QPO seen in the Galactic black hole binary, GRS 1915+105.

  3. Narrow phase-dependent features in X-ray dim isolated neutron stars: a new detection and upper limits

    NASA Astrophysics Data System (ADS)

    Borghese, A.; Rea, N.; Coti Zelati, F.; Tiengo, A.; Turolla, R.; Zane, S.

    2017-07-01

    We report on the results of a detailed phase-resolved spectroscopy of archival XMM-Newton observations of X-ray dim isolated neutron stars (XDINSs). Our analysis revealed a narrow and phase-variable absorption feature in the X-ray spectrum of RX J1308.6+2127. The feature has an energy of ˜740 eV and an equivalent width of ˜15 eV. It is detected only in ˜1/5 of the phase cycle, and appears to be present for the entire timespan covered by the observations (2001 December to 2007 June). The strong dependence on the pulsar rotation and the narrow width suggest that the feature is likely due to resonant cyclotron absorption/scattering in a confined high-B structure close to the stellar surface. Assuming a proton cyclotron line, the magnetic field strength in the loop is Bloop ˜ 1.7 × 1014 G, about a factor of ˜5 higher than the surface dipolar magnetic field (Bsurf ˜ 3.4 × 1013 G). This feature is similar to that recently detected in another XDINS, RX J0720.4-3125, showing (as expected by theoretical simulations) that small-scale magnetic loops close to the surface might be common to many highly magnetic neutron stars (although difficult to detect with current X-ray instruments). Furthermore, we investigated the available XMM-Newton data of all XDINSs in search for similar narrow phase-dependent features, but could derive only upper limits for all the other sources.

  4. BLACK HOLE MASS AND EDDINGTON RATIO DISTRIBUTION FUNCTIONS OF X-RAY-SELECTED BROAD-LINE AGNs AT z {approx} 1.4 IN THE SUBARU XMM-NEWTON DEEP FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobuta, K.; Akiyama, M.; Ueda, Y.

    2012-12-20

    In order to investigate the growth of supermassive black holes (SMBHs), we construct the black hole mass function (BHMF) and Eddington ratio distribution function (ERDF) of X-ray-selected broad-line active galactic nuclei (AGNs) at z {approx} 1.4 in the Subaru XMM-Newton Deep Survey (SXDS) field. A significant part of the accretion growth of SMBHs is thought to take place in this redshift range. Black hole masses of X-ray-selected broad-line AGNs are estimated using the width of the broad Mg II line and 3000 A monochromatic luminosity. We supplement the Mg II FWHM values with the H{alpha} FWHM obtained from our NIRmore » spectroscopic survey. Using the black hole masses of broad-line AGNs at redshifts between 1.18 and 1.68, the binned broad-line AGN BHMFs and ERDFs are calculated using the V{sub max} method. To properly account for selection effects that impact the binned estimates, we derive the corrected broad-line AGN BHMFs and ERDFs by applying the maximum likelihood method, assuming that the ERDF is constant regardless of the black hole mass. We do not correct for the non-negligible uncertainties in virial BH mass estimates. If we compare the corrected broad-line AGN BHMF with that in the local universe, then the corrected BHMF at z = 1.4 has a higher number density above 10{sup 8} M{sub Sun} but a lower number density below that mass range. The evolution may be indicative of a downsizing trend of accretion activity among the SMBH population. The evolution of broad-line AGN ERDFs from z = 1.4 to 0 indicates that the fraction of broad-line AGNs with accretion rates close to the Eddington limit is higher at higher redshifts.« less

  5. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    NASA Technical Reports Server (NTRS)

    Rana, Vikram; Loh, Alan; Corbel, Stephane; Tomsick, John A.; Chakrabarty, Deepto; Walton, Dominic J.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William; hide

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0.3-30 keV) quiescent luminosity of the source is 8.9 x 10(exp 32) erg per sec for a distance of 2.4 kpc. The source shows clear variability on short timescales (an hour to a couple of hours) in the radio, soft X-ray, and hard X-ray bands in the form of multiple flares. The broadband X-ray spectra obtained from XMM-Newton and NuSTAR can be characterized with a power-law model having a photon index of gamma = 2.12 +/- 0.07 (90% confidence errors); however, residuals at high energies indicate spectral curvature significant at a 3 sigma confidence level with the e-folding energy of the cutoff as 20(sub -7)(sup +20) keV. Such curvature can be explained using synchrotron emission from the base of a jet outflow. Radio observations using the VLA reveal that the spectral index evolves on very fast timescales (as short as 10 minutes), switching between optically thick and thin synchrotron emission, possibly due to instabilities in the compact jet or stochastic instabilities in the accretion rate. We explore different scenarios to explain this very fast variability.

  6. Outburst of the 2 s Anomalous X-ray Pulsar 1E 1547.0-5408

    NASA Technical Reports Server (NTRS)

    Halpern, J. P.; Gotthelf, E. V.; Camilo, F.; Reynolds, J.; Ransom, S. M.

    2008-01-01

    Following our discovery of radio pulsations from the newly recognized anomalous X-ray pulsar (AXP) 1E 1547.0-5408, we initiated X-ray monitoring with the Swift X-ray telescope and obtained a single target-of-opportunity observation with the Newton X-ray Multi-Mirror Mission (XMM-Newton). In comparison with its historic minimum flux of 3 x 10(exp -l3)ergs/sq cm/s, the source was found to be in a record high state, f(sub x)(1-8 keV) = 5 x 10(exp -12)ergs/sq cm/s, or L(sub x) = 1.7 x 10(exp 35)(d/9 kpc )(sup 2)ergs/s, and declining by 25% in 1 month. Extrapolating the decay, we bound the total energy in this outburst to 1042 ergs < E < ergs. The spectra (fitted with a Comptonized blackbody) show that an increase in the temperature and area of a hot region, to 0.5 keV and -16% of the surface area of the neutron star, respectively, are primarily responsible for its increase in luminosity. The energy, spectrum, and timescale of decay are consistent with a deep crustal heating event, similar to an interpretation of the X-ray turn-on of the transient AXP XTE J18 10- 197. Simultaneous with the 4.6 hr ATdA4-Newton observation, we observed at 6.4 GHz with the Parkes telescope, measuring the phase relationship of the radio and X-ray pulse. The X-ray pulsed fraction of 1E 1547.0-5408 is only approx. 7 %, while its radio pulse is relatively broad for such a slow pulsar, which may indicate a nearly aligned rotator. As also inferred from the transient behavior of XTE J18 10-197, the only other AXP known to emit in the radio, the magnetic field rearrangement responsible for this X-ray outburst of 1E 1547.0-5408 is probably the cause of its radio turn-on.

  7. Automatic Classification of Time-variable X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M.

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ~97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7-500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  8. Automatic classification of time-variable X-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, andmore » other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.« less

  9. Further constraints on neutron star crustal properties in the low-mass X-ray binary 1RXS J180408.9-342058

    NASA Astrophysics Data System (ADS)

    Parikh, A. S.; Wijnands, R.; Degenaar, N.; Ootes, L.; Page, D.

    2018-05-01

    We report on two new quiescent XMM-Newton observations (in addition to the earlier Swift/XRT and XMM-Newton coverage) of the cooling neutron star crust in the low-mass X-ray binary 1RXS J180408.9-342058. Its crust was heated during the ˜4.5 month accretion outburst of the source. From our quiescent observations, fitting the spectra with a neutron star atmosphere model, we found that the crust had cooled from ˜100 to ˜73 eV from ˜8 to ˜479 d after the end of its outburst. However, during the most recent observation, taken ˜860 d after the end of the outburst, we found that the crust appeared not to have cooled further. This suggested that the crust had returned to thermal equilibrium with the neutron star core. We model the quiescent thermal evolution with the theoretical crustal cooling code NSCool and find that the source requires a shallow heat source, in addition to the standard deep crustal heating processes, contributing ˜0.9 MeV per accreted nucleon during outburst to explain its observed temperature decay. Our high quality XMM-Newton data required an additional hard component to adequately fit the spectra. This slightly complicates our interpretation of the quiescent data of 1RXS J180408.9-342058. The origin of this component is not fully understood.

  10. Mechanical Overview of the International X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Robinson, David W.; McClelland, Ryan S.

    2009-01-01

    The International X-ray Observatory (IXO) is a new collaboration between NASA, ESA, and JAXA which is under study for launch in 2020. IXO will be a large 6600 kilogram Great Observatory-class mission which will build upon the legacies of the Chandra and XMM-Newton X-ray observatories. It combines elements from NASA's Constellation-X program and ESA's XEUS program. The observatory will have a 20-25 meter focal length, which necessitates the use of a deployable instrument module. Currently the project is actively trading configurations and layouts of the various instruments and spacecraft components. This paper will provide a snapshot of the latest observatory configuration under consideration and summarize the observatory from the mechanical engineering perspective.

  11. X-Ray, UV and Optical Observations of Classical Cepheids: New Insights into Cepheid Evolution, and the Heating and Dynamics of Their Atmospheres

    NASA Astrophysics Data System (ADS)

    Engle, Scott G.; Guinan, Edward F.

    2012-06-01

    To broaden the understanding of classical Cepheid structure, evolution and atmospheres, we have extended our continuing secret lives of Cepheids program by obtaining XMM/Chandra X-ray observations, and Hubble space telescope (HST) / cosmic origins spectrograph (COS) FUV-UV spectra of the bright, nearby Cepheids Polaris, δ Cep and β Dor. Previous studies made with the international ultraviolet explorer (IUE) showed a limited number of UV emission lines in Cepheids. The well-known problem presented by scattered light contamination in IUE spectra for bright stars, along with the excellent sensitivity & resolution combination offered by HST/COS, motivated this study, and the spectra obtained were much more rich and complex than we had ever anticipated. Numerous emission lines, indicating 10^4 K up to ~3 x 10^5 K plasmas, have been observed, showing Cepheids to have complex, dynamic outer atmospheres that also vary with the photospheric pulsation period. The FUV line emissions peak in the phase range φ ∼ 0.8-1.0 and vary by factors as large as 10x. A more complete picture of Cepheid outer atmospheres is accomplished when the HST/COS results are combined with X-ray observations that we have obtained of the same stars with XMM-Newton & Chandra. The Cepheids detected to date have X-ray luminosities of log Lx ~ 28.5-29.1 ergs/sec, and plasma temperatures in the 2-8 x 10^6 K range. Given the phase-timing of the enhanced emissions, the most plausible explanation is the formation of a pulsation-induced shocks that excite (and heat) the atmospheric plasmas surrounding the photosphere. A pulsation-driven α^2 equivalent dynamo mechanism is also a viable and interesting alternative. However, the tight phase-space of enhanced emission (peaking near 0.8-1.0 φ) favor the shock heating mechanism hypothesis.

  12. A combined HST and XMM-Newton campaign for the magnetic O9.7 V star HD 54879. Constraining the weak-wind problem of massive stars

    NASA Astrophysics Data System (ADS)

    Shenar, T.; Oskinova, L. M.; Järvinen, S. P.; Luckas, P.; Hainich, R.; Todt, H.; Hubrig, S.; Sander, A. A. C.; Ilyin, I.; Hamann, W.-R.

    2017-10-01

    Context. HD 54879 (O9.7 V) is one of a dozen O-stars for which an organized atmospheric magnetic field has been detected. Despite their importance, little is known about the winds and evolution of magnetized massive stars. Aims: To gain insights into the interplay between atmospheres, winds, and magnetic fields of massive stars, we acquired UV and X-ray data of HD 54879 using the Hubble Space Telescope and the XMM-Newton satellite. In addition, 35 optical amateur spectra were secured to study the variability of HD 54879. Methods: A multiwavelength (X-ray to optical) spectral analysis is performed using the Potsdam Wolf-Rayet (PoWR) model atmosphere code and the xspec software. Results: The photospheric parameters (T∗ = 30.5 kK, log g = 4.0 [cm s-2], log L = 4.45 [L⊙]) are typical for an O9.7 V star. The microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (ξph,vmac,vsini ≤ 4 km s-1). An initial mass of 16 M⊙ and an age of 5 Myr are inferred from evolutionary tracks. We derive a mean X-ray emitting temperature of log TX = 6.7 [K] and an X-ray luminosity of LX = 1 × 1032 erg s-1. Short- and long-scale variability is seen in the Hα line, but only a very long period of P ≈ 5 yr could be estimated. Assessing the circumstellar density of HD 54879 using UV spectra, we can roughly estimate the mass-loss rate HD 54879 would have in the absence of a magnetic field as log ṀB = 0 ≈ -9.0 [M⊙ yr-1]. The magnetic field traps the stellar wind up to the Alfvén radius rA ≳ 12 R∗, implying that its true mass-loss rate is log Ṁ ≲ -10.2 [M⊙ yr-1]. Hence, density enhancements around magnetic stars can be exploited to estimate mass-loss rates of non-magnetic stars of similar spectral types, essential for resolving the weak wind problem. Conclusions: Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence

  13. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazé, Yaël; Petit, Véronique; Rinbrand, Melanie

    2014-11-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens formore » the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.« less

  14. A Link Between X-ray Emission Lines and Radio Jets in 4U 1630-47?

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, A.; Edwards, Phillip; Broderick, Jess

    2014-06-01

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. We present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find a strong disk wind but no evidence for any relativistic X-ray emission lines. Indeed, despite ˜5× brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ˜20× weaker than the line observed by Díaz Trigo et al. Thus we can conclusively say that radio emission is not universally associated with relativistically Doppler-shifted emission lines in 4U 1630-47. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby ISM, in which case the X-ray emission lines might be unrelated to the radio emission.

  15. 3XMM J185246.6+003317: Another Low Magnetic Field Magnetar

    NASA Astrophysics Data System (ADS)

    Rea, N.; Viganò, D.; Israel, G. L.; Pons, J. A.; Torres, D. F.

    2014-01-01

    We study the outburst of the newly discovered X-ray transient 3XMM J185246.6+003317, re-analyzing all available XMM-Newton observations of the source to perform a phase-coherent timing analysis, and derive updated values of the period and period derivative. We find the source rotating at P = 11.55871346(6) s (90% confidence level; at epoch MJD 54728.7) but no evidence for a period derivative in the seven months of outburst decay spanned by the observations. This translates to a 3σ upper limit for the period derivative of \\dot{P}< 1.4\\times 10^{-13} s s-1, which, assuming the classical magneto-dipolar braking model, gives a limit on the dipolar magnetic field of B dip < 4.1 × 1013 G. The X-ray outburst and spectral characteristics of 3XMM J185246.6+003317 confirm its identification as a magnetar, but the magnetic field upper limit we derive defines it as the third "low-B" magnetar discovered in the past 3 yr, after SGR 0418+5729 and Swift J1822.3-1606. We have also obtained an upper limit to the quiescent luminosity (<4 × 1033 erg s-1), in line with the expectations for an old magnetar. The discovery of this new low field magnetar reaffirms the prediction of about one outburst per year from the hidden population of aged magnetars.

  16. CHANDRA and XMM-NEWTON observations of the bimodal PLANCK SZ-detected clustered CKG345.40-39.34 (A3716) with high and low entropy subcluster cores

    DOE PAGES

    Andrade-Santos, Felipe; Jones, Christine; Forman, William R.; ...

    2015-04-22

    Here, we present results from Chandra, XMM-Newton, and ROSAT observations of the Planck SZ-detected cluster A3716 (PLCKG345.40-39.34-G345). We show that G345 is, in fact, two subclusters separated on the sky by 400 kpc. We measure the subclusters' gas temperatures (~2–3 keV), total (~1–2 × 10 14more » $${{M}_{\\odot }}$$) and gas (~1–2 × 10 13 $${{M}_{\\odot }}$$) masses, gas mass fraction within r500, entropy profiles, and X-ray luminosities (~10 43 erg s -1). Using the gas density and temperature profiles for both subclusters, we show that there is good (0.8σ) agreement between the expected Sunyaev–Zel'dovich signal predicted from the X-ray data and that measured from the Planck mission, and better agreement within 0.6σ when we re-computed the Planck value assuming a two component cluster model, with relative amplitudes fixed based on the X-ray data. Dynamical analysis shows that the two galaxy subclusters are very likely ($$\\gt 97\\%$$ probability) gravitationally bound, and in the most likely scenario, the subclusters will undergo core passage in 500 ± 200 Myr. The northern subcluster is centrally peaked and has a low entropy core, while the southern subcluster has a high central entropy. Finally, the high central entropy in the southern subcluster can be explained either by the mergers of several groups, as suggested by the presence of five giant ellipticals or by active galactic nucleus energy injection, as suggested by the presence of a strong radio source in one of its massive elliptical galaxies, or by a combination of both processes.« less

  17. X-RAY OBSERVATIONS OF BOW SHOCKS AROUND RUNAWAY O STARS. THE CASE OF ζ OPH AND BD+43°3654

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toalá, J. A.; Guerrero, M. A.; Oskinova, L. M.

    2016-04-20

    Non-thermal radiation has been predicted within bow shocks around runaway stars by recent theoretical works. We present X-ray observations toward the runaway stars ζ Oph by Chandra and Suzaku and of BD+43°3654 by XMM-Newton to search for the presence of non-thermal X-ray emission. We found no evidence of non-thermal emission spatially coincident with the bow shocks; nonetheless, diffuse emission was detected in the vicinity of ζ Oph. After a careful analysis of its spectral characteristics, we conclude that this emission has a thermal nature with a plasma temperature of T ≈ 2 × 10{sup 6} K. The cometary shape ofmore » this emission seems to be in line with recent predictions of radiation-hydrodynamic models of runaway stars. The case of BD+43°3654 is puzzling, as non-thermal emission has been reported in a previous work for this source.« less

  18. X-ray Reverberation Mapping of Ci Cam

    NASA Astrophysics Data System (ADS)

    Bartlett, Elizabeth; Garcia, M.

    2009-01-01

    We have analyzed the X-ray lightcurve of the star CI Cam, the optical counterpart of the X-ray transient XTE J0421+56 using data from XMM-Newton. Our motivation is based on evidence from ground based optical interferometry from the Keck and IOTA observatories which suggests that the dust surrounding CI CAM has a taurus morphology rather than a spherical distribution as previously hypothesized. By using a technique known as reverberation mapping we have constrained the time delay between the continuum of CI Cam and the Fe-K fluorescence line, corresponding to the reflection of the continuum off the dusty taurus. The time delay yields information on the size of the taurus.

  19. The massive binary CPD - 41° 7742. II. Optical light curve and X-ray observations

    NASA Astrophysics Data System (ADS)

    Sana, H.; Antokhina, E.; Royer, P.; Manfroid, J.; Gosset, E.; Rauw, G.; Vreux, J.-M.

    2005-10-01

    In the first paper of this series, we presented a detailed high-resolution spectroscopic study of CPD - 41° 7742, deriving for the first time an orbital solution for both components of the system. In this second paper, we focus on the analysis of the optical light curve and on recent XMM-Newton X-ray observations. In the optical, the system presents two eclipses, yielding an inclination i˜77°. Combining the constraints from the photometry with the results of our previous work, we derive the absolute parameters of the system. We confirm that the two components of CPD - 41° 7742 are main sequence stars (O9 V + B1-1.5 V) with masses (M_1˜18 M⊙ and M_2˜10 M⊙) and respective radii (R_1˜7.5 R⊙ and R_2˜5.4 R⊙) close to the typical values expected for such stars. We also report an unprecedented set of X-ray observations that almost uniformly cover the 2.44-day orbital cycle. The X-ray emission from CPD - 41° 7742 is well described by a two-temperature thermal plasma model with energies close to 0.6 and 1.0 keV, thus slightly harder than typical early-type emission. The X-ray light curve shows clear signs of variability. The emission level is higher when the primary is in front of the secondary. During the high emission state, the system shows a drop of its X-ray emission that almost exactly matches the optical eclipse. We interpret the main features of the X-ray light curve as the signature of a wind-photosphere interaction, in which the overwhelming primary O9 star wind crashes into the secondary surface. Alternatively the light curve could result from a wind-wind interaction zone located near the secondary star surface. As a support to our interpretation, we provide a phenomenological geometric model that qualitatively reproduces the observed modulations of the X-ray emission.

  20. Development of the focal plane PNCCD camera system for the X-ray space telescope eROSITA

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Andritschke, Robert; Ebermayer, Stefanie; Elbs, Johannes; Hälker, Olaf; Hartmann, Robert; Herrmann, Sven; Kimmel, Nils; Schächner, Gabriele; Schopper, Florian; Soltau, Heike; Strüder, Lothar; Weidenspointner, Georg

    2010-12-01

    A so-called PNCCD, a special type of CCD, was developed twenty years ago as focal plane detector for the XMM-Newton X-ray astronomy mission of the European Space Agency ESA. Based on this detector concept and taking into account the experience of almost ten years of operation in space, a new X-ray CCD type was designed by the ‘MPI semiconductor laboratory’ for an upcoming X-ray space telescope, called eROSITA (extended Roentgen survey with an imaging telescope array). This space telescope will be equipped with seven X-ray mirror systems of Wolter-I type and seven CCD cameras, placed in their foci. The instrumentation permits the exploration of the X-ray universe in the energy band from 0.3 up to 10 keV by spectroscopic measurements with a time resolution of 50 ms for a full image comprising 384×384 pixels. Main scientific goals are an all-sky survey and investigation of the mysterious ‘Dark Energy’. The eROSITA space telescope, which is developed under the responsibility of the ‘Max-Planck-Institute for extraterrestrial physics’, is a scientific payload on the new Russian satellite ‘Spectrum-Roentgen-Gamma’ (SRG). The mission is already approved by the responsible Russian and German space agencies. After launch in 2012 the destination of the satellite is Lagrange point L2. The planned observational program takes about seven years. We describe the design of the eROSITA camera system and present important test results achieved recently with the eROSITA prototype PNCCD detector. This includes a comparison of the eROSITA detector with the XMM-Newton detector.

  1. NuSTAR Search for Hard X-ray Emission from the Star Formation Regions in Sh2-104

    NASA Astrophysics Data System (ADS)

    Gotthelf, Eric V.

    2016-04-01

    We present NuSTAR hard X-ray observations of Sh2-104, a compact Hii region containing several young massive stellar clusters (YMSCs). We have detected distinct hard X-ray sources coincident with localized VERITAS TeV emission recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. Faint, diffuse X-ray emission coincident with the eastern YMSC in Sh2-104 is likely the result of colliding winds of component stars. Just outside the radio shell of Sh2-104 lies 3XMM J201744.7+365045 and nearby nebula NuSTAR J201744.3+364812, whose properties are most consistent with extragalactic objects. The combined XMM-Newton and NuSTAR spectrum of 3XMM J201744.7+365045 is well-fit to an absorbed power-law model with NH = (3.1+/-1.0)E22 1/cm^2 and photon index Gamma = 2.1+/-0.1. Based on possible long-term flux variation and lack of detected pulsations (<43% modulation), this object is likely a background AGN rather than a Galactic pulsar. The spectrum of the NuSTAR nebula shows evidence of an emission line at E = 5.6 keV suggesting an optically obscured galaxy cluster at z = 0.19+/-0.02 (d = 800 Mpc) and Lx = 1.2E44 erg/s. Follow-up Chandra observations of Sh2-104 will help identify the nature of the X-ray sources and their relation to MGRO J2019+37.

  2. Using XMM-Newton to study the energy-dependent variability of H 1743-322 during its 2014 outburst

    NASA Astrophysics Data System (ADS)

    Stiele, H.; Yu, W.

    2016-08-01

    Black hole transients evolve during bright outbursts, showing distinct changes in their spectral and variability properties. These changes are interpreted as evidence for changes in the accretion flow and in the X-ray-emitting regions. We obtained an anticipated XMM-Newton Target of Opportunity observation of H 1743-322 during its outburst in 2014 September. Based on data from eight outbursts observed in the last 10 yr, we expected to catch the start of the hard-to-soft state transition. The fact that neither the general shape of the observed power density spectrum nor the characteristic frequency shows an energy dependence implies that the source remained in the low-hard state at the time of our observation near outburst peak. The spectral properties agree with the source being in the low-hard state, and a Swift/XRT monitoring of the outburst revealed that H 1743-322 stayed in the low-hard state during the entire outburst (known as a `failed outburst'). Here we derive the averaged QPO waveform and obtain phase-resolved spectra. A comparison of the phase-resolved spectra with the phase-averaged energy spectrum reveals spectral pivoting. We compare variability on long and short time-scales using covariance spectra and find that the covariance ratio does not show an increase towards lower energies. In other binaries an increase has been found. There are two possible explanations: either the absence of additional disc variability on longer time-scales is related to the high inclination of H 1743-322 compared with other black hole X-ray binaries, or it is the reason why we observe H 1743-322 during a failed outburst. More data on failed outbursts and on high-inclination sources will be needed in order to investigate these two possibilities further.

  3. On Overview of the Performance and Scientific Results from the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Brinkman, B.; Canizares, C.; Garmire, G.; Murray, S.; VanSpeybroeck, L. P.

    2002-01-01

    The Chandra X-Ray Observatory (CXO) was launched on 1999 July 23 by the Columbia Space Shuttle. The first X-rays focused by the telescope were seen on 1999 August 12 after the satellite systems were activated. Beginning with the first observation, it was clear that the telescope was not damaged by the launch environment and was operating as planned. After the early surprise due to the discovery that the telescope concentrated CCD-damaging low-energy protons far more efficiently than had been expected, the observatory is performing optimally and is returning excellent scientific data. Together with other space observatories, especially XMM-Newton, it is obvious that we have entered a new era of discovery in high-energy astrophysics.

  4. Recurrent Outbursts Revealed in 3XMM J031820.8-663034

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Hui; Weng, Shan-Shan; Wang, Jun-Xian

    2018-06-01

    3XMM J031820.8-663034, first detected by ROSAT in NGC 1313, is one of a few known transient ultraluminous X-ray sources (ULXs). In this paper, we present decades of X-ray data of this source from ROSAT, XMM-Newton, Chandra, and the Neil Gehrels Swift Observatory. We find that its X-ray emission experienced four outbursts since 1992, with a typical recurrent time ∼1800 days, an outburst duration ∼240–300 days, and a nearly constant peak X-ray luminosity ∼1.5 × 1039 erg s‑1. The upper limit of X-ray luminosity at the quiescent state is ∼5.6 × 1036 erg s‑1, and the total energy radiated during one outburst is ∼1046 erg. The spectra at the high luminosity states can be described with an absorbed disk blackbody, and the disk temperature increases with the X-ray luminosity. We compare its outburst properties with other known transient ULXs including ESO 243-49 HLX-1. As its peak luminosity only marginally puts it in the category of ULXs, we also compare it with normal transient black hole binaries. Our results suggest that the source is powered by an accreting massive stellar-mass black hole, and the outbursts are triggered by the thermal-viscous instability.

  5. X-Ray Characteristics of Megamaser Galaxies

    NASA Astrophysics Data System (ADS)

    Leiter, K.; Kadler, M.; Wilms, J.; Braatz, J.; Grossberger, C.; Krauss, F.; Kreikenbohm, A.; Langejahn, M.; Litzinger, E.; Markowitz, A.

    2017-10-01

    Water megamaser galaxies are a rare subclass of Active Galactic Nuclei (AGN). They play a key role in modern cosmology, providing a significant improvement for measuring geometrical distances with high precision. Megamaser studies presently measure H_{0} to about 5%. The goal of modern programs is to reach 3%, which strongly constrains the equation of state of dark energy. An increasing number of independent measurements of suitable water masers is providing the statistics necessary to decrease the uncertainties. X-ray studies of maser galaxies yield important constraints on target-selection criteria for future surveys, increasing their detection rate. We studied the X-ray properties of a homogeneous sample of Type 2 AGN with water maser activity observed by XMM-Newton to investigate the properties of megamaser-hosting galaxies compared to a control sample of non-maser galaxies. Comparing the luminosity distributions confirm previous results that water maser galaxies appear more luminous than non-maser sources. The maser phenomenon goes along with more complex X-ray spectra, higher column densities and higher equivalent widths of the Fe Kα line. Both a sufficiently luminous X-ray source and a high absorbing column density in the line of sight are necessary prerequisites to favour the appearance of the water megamaser phenomenon in AGN.

  6. CAVITIES AND SHOCKS IN THE GALAXY GROUP HCG 62 AS REVEALED BY CHANDRA, XMM-NEWTON, AND GIANT METREWAVE RADIO TELESCOPE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gitti, Myriam; O'Sullivan, Ewan; Giacintucci, Simona

    2010-05-01

    We report on the results of an analysis of Chandra, XMM-Newton, and new Giant Metrewave Radio Telescope (GMRT) data of the X-ray bright compact group of galaxies HCG 62, which is one of the few groups known to possess clear, small X-ray cavities in the inner regions. This is part of an ongoing X-ray/low-frequency radio study of 18 groups, initially chosen for the availability of good-quality X-ray data and evidence for active galactic nucleus/hot gas interaction. At higher frequency (1.4 GHz), the HCG 62 cavity system shows minimal if any radio emission, but the new GMRT observations at 235 MHzmore » and 610 MHz clearly detect extended low-frequency emission from radio lobes corresponding to the cavities. By means of the synergy of X-ray and low-frequency radio observations, we compare and discuss the morphology, luminosity, and pressure of the gas and of the radio source. We find that the radio source is radiatively inefficient, with a ratio of radio luminosity to mechanical cavity power of {approx}10{sup -4}, and that the radio pressure of the lobes is about 1 order of magnitude lower than the X-ray pressure of the surrounding thermal gas. Thanks to the high spatial resolution of the Chandra surface brightness and temperature profiles, we also identify a shock front located at 36 kpc to the southwest of the group center, close to the southern radio lobe, with a Mach number {approx}1.5 and a total power which is about 1 order of magnitude higher than the cavity power. Such a shock may have heated the gas in the southern region, as indicated by the temperature map. The shock may also explain the arc-like region of enriched gas seen in the iron abundance map, as this may be produced by a non-Maxwellian electron distribution near its front.« less

  7. Sixteen years of X-ray monitoring of Sagittarius A*: Evidence for a decay of the faint flaring rate from 2013 August, 13 months before a rise in the bright flaring rate

    NASA Astrophysics Data System (ADS)

    Mossoux, Enmanuelle; Grosso, Nicolas

    2017-08-01

    Context. X-ray flaring activity from the closest supermassive black hole Sagittarius A* (Sgr A*) located at the center of our Galaxy has been observed since 2000 October 26 thanks to the current generation of X-ray facilities. In a study of X-ray flaring activity from Sgr A* using Chandra and XMM-Newton public observations from 1999 to 2014 and Swift monitoring in 2014, it was argued that the "bright and very bright" flaring rate has increased from 2014 August 31. Aims: As a result of additional observations performed in 2015 with Chandra, XMM-Newton, and Swift (total exposure of 482 ks), we seek to test the significance and persistence of this increase of flaring rate and to determine the threshold of unabsorbed flare flux or fluence leading to any change of flaring rate. Methods: We reprocessed the Chandra, XMM-Newton, and Swift data from 1999 to 2015 November 2. From these data, we detected the X-ray flares via our two-step Bayesian blocks algorithm with a prior on the number of change points properly calibrated for each observation. We improved the Swift data analysis by correcting the effects of the target variable position on the detector and we detected the X-ray flares with a 3σ threshold on the binned light curves. The mean unabsorbed fluxes of the 107 detected flares were consistently computed from the extracted spectra and the corresponding calibration files, assuming the same spectral parameters. We constructed the observed distribution of flare fluxes and durations from the XMM-Newton and Chandra detections. We corrected this observed distribution from the detection biases to estimate the intrinsic distribution of flare fluxes and durations. From this intrinsic distribution, we determined the average flare detection efficiency for each XMM-Newton, Chandra, and Swift observation. We finally applied the Bayesian blocks algorithm on the arrival times of the flares corrected from the corresponding efficiency. Results: We confirm a constant overall flaring

  8. The Restless Universe - Understanding X-Ray Astronomy in the Age of Chandra and Newton

    NASA Astrophysics Data System (ADS)

    Schlegel, Eric M.

    2002-10-01

    Carl Sagan once noted that there is only one generation that gets to see things for the first time. We are in the midst of such a time right now, standing on the threshold of discovery in the young and remarkable field of X-ray astronomy. In The Restless Universe , astronomer Eric Schlegel offers readers an informative survey of this cutting-edge science. Two major space observatories launched in the last few years--NASA's Chandra and the European Newton --are now orbiting the Earth, sending back a gold mine of data on the X-ray universe. Schlegel, who has worked on the Chandra project for seven years, describes the building and launching of this space-based X-ray observatory. But the book goes far beyond the story of Chandra . What Schlegel provides here is the background a nonscientist would need to grasp the present and follow the future of X-ray astronomy. He looks at the relatively brief history of the field, the hardware used to detect X-rays, the satellites--past, present, and future--that have been or will be flown to collect the data, the way astronomers interpret this data, and, perhaps most important, the insights we have already learned as well as speculations about what we may soon discover. And throughout the book, Schlegel conveys the excitement of looking at the universe from the perspective brought by these new observatories and the sharper view they deliver. Drawing on observations obtained from Chandra, Newton , and previous X-ray observatories, The Restless Universe gives a first look at an exciting field which significantly enriches our understanding of the universe.

  9. X-ray Pulsars Across the Parameter Space of Luminosity, Accretion Mode, and Spin

    NASA Astrophysics Data System (ADS)

    Laycock, Silas

    We propose to expand the scope of our successful project providing a multi-satellite library of X-ray Pulsar observations to the community. The library provides high-level products, activity monitoring, pulse-profiles, phased event files, spectra, and a unique pulse-profile modeling interface. The library's scientific footprint will expand in 4 key directions: (1) Update, by processing all new XMM-Newton and Chandra observations (2015-2017) of X-ray Binary Pulsars in the Magellanic Clouds. (2) Expand, by including all archival Suzaku, Swift and NuStar observations, and including Galactic pulsars. (3) Improve, by offering innovative data products that provide deeper insight. (4) Advance, by implementing a new generation of physically motivated emission and pulse-profile models. The library currently includes some 2000 individual RXTE-PCA, 200 Chandra ACIS-I, and 120 XMM-PN observations of the SMC spanning 15 years, creating an unrivaled record of pulsar temporal behavior. In Phase-2, additional observations of SMC pulsars will be added: 221 Chandra (ACIS-S and ACIS-I), 22 XMM-PN, 142 XMM-MOS, 92 Suzaku, 25 NuSTAR, and >10,000 Swift; leveraging our pipeline and analysis techniques already developed. With the addition of 7 Galactic pulsars each having many hundred multisatellite observations, these datasets cover the entire range of variability timescales and accretion regimes. We will model the pulse-profiles using state of the art techniques to parameterize their morphology and obtain the distribution of offsets between magnetic and spin axes, and create samples of profiles under specific accretion modes (whether pencil-beam or fan-beam dominated). These products are needed for the next generation of advances in neutron star theory and modeling. The long-duration of the dataset and “whole-galaxy" nature of the SMC sample make possible a new statistical approach to uncover the duty-cycle distribution and hence population demographics of transient High Mass X-ray

  10. X-rays from Magnetic B-type Stars

    NASA Astrophysics Data System (ADS)

    Fletcher, Corinne; Petit, Véronique; Caballero-Nieves, Saida Maria; Nazé, Yaël; Owocki, Stan; Wade, Gregg; Cohen, David; Townsend, Richard; David-Uraz, Alexandre; Shultz, Matt

    2018-01-01

    Recent surveys have found that ~10% of OB-type stars host strong (~1kG), mostly dipolar magnetic fields. The prominent idea describing the interaction between the stellar winds and the magnetic field is the magnetically confined wind shock model. In this model, the ionized wind material is forced to move along the closed magnetic field loops and collides at the magnetic equator creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the wind material confined by the magnetic fields of these stars. Some of these magnetic B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force is predicted to cause faster wind outflows along the field lines, which could lead to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this question from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere model, developed for slow rotators and implement the physics of rapid rotation. Using X-ray spectroscopy from ESA’s XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role an added centrifugal acceleration plays in the magnetospheres of these stars.

  11. X-Ray Shadowing Experiments Toward Infrared Dark Clouds

    NASA Technical Reports Server (NTRS)

    Anderson, L. E.; Snowden, S.; Bania, T. M.

    2009-01-01

    We searched for X-ray shadowing toward two infrared dark clouds (IRDCs) using the MOS detectors on XMM-Newton to learn about the Galactic distribution of X-ray emitting plasma. IRDCs make ideal X-ray shadowing targets of 3/4 keY photons due to their high column densities, relatively large angular sizes, and known kinematic distances. Here we focus on two clouds near 30 deg Galactic longitude at distances of 2 and 5 kpc from the Sun. We derive the foreground and background column densities of molecular and atomic gas in the direction of the clouds. We find that the 3/4 ke V emission must be distributed throughout the Galactic disk. It is therefore linked to the structure of the cooler material of the ISM, and to the birth of stars.

  12. Using the XMM-Newton Optical Monitor to Study Cluster Galaxy Evolution

    NASA Technical Reports Server (NTRS)

    Miller, Neal A.; O'Steen, Richard; Yen, Steffi; Kuntz, K. D.; Hammer, Derek

    2012-01-01

    We explore the application of XMM Newton Optical Monitor (XMM-OM) ultraviolet (UV) data to study galaxy evolution. Our sample is constructed as the intersection of all Abell clusters with z < 0.05 and having archival XMM-OM data in either the UVM2 or UVW1 filters, plus optical and UV photometry from the Sloan Digital Sky Survey and GALEX, respectively. The 11 resulting clusters include 726 galaxies with measured redshifts, 520 of which have redshifts placing them within their parent Abell clusters. We develop procedures for manipulating the XMM-OM images and measuring galaxy photometry from them, and we confirm our results via comparison with published catalogs. Color-magnitude diagrams (CMDs) constructed using the XMM-OM data along with SDSS optical data show promise for evolutionary studies, with good separation between red and blue sequences and real variation in the width of the red sequence that is likely indicative of differences in star formation history. This is particularly true for UVW1 data, as the relative abundance of data collected using this filter and its depth make it an attractive choice. Available tools that use stellar synthesis libraries to fit the UV and optical photometric data may also be used, thereby better describing star formation history within the past billion years and providing estimates of total stellar mass that include contributions from young stars. Finally, color-color diagrams that include XMM-OM UV data appear useful to the photometric identification of both extragalactic and stellar sources.

  13. Using the XMM-Newton Optical Monitor to Study Cluster Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Miller, Neal A.; O'Steen, Richard; Yen, Steffi; Kuntz, K. D.; Hammer, Derek

    2012-02-01

    We explore the application of XMM-Newton Optical Monitor (XMM-OM) ultraviolet (UV) data to study galaxy evolution. Our sample is constructed as the intersection of all Abell clusters with z < 0.05 and having archival XMM-OM data in either the UVM2 or UVW1 filters, plus optical and UV photometry from the Sloan Digital Sky Survey and GALEX, respectively. The 11 resulting clusters include 726 galaxies with measured redshifts, 520 of which have redshifts placing them within their parent Abell clusters. We develop procedures for manipulating the XMM-OM images and measuring galaxy photometry from them, and we confirm our results via comparison with published catalogs. Color-magnitude diagrams (CMDs) constructed using the XMM-OM data along with SDSS optical data show promise for evolutionary studies, with good separation between red and blue sequences and real variation in the width of the red sequence that is likely indicative of differences in star formation history. This is particularly true for UVW1 data, as the relative abundance of data collected using this filter and its depth make it an attractive choice. Available tools that use stellar synthesis libraries to fit the UV and optical photometric data may also be used, thereby better describing star formation history within the past billion years and providing estimates of total stellar mass that include contributions from young stars. Finally, color-color diagrams that include XMM-OM UV data appear useful to the photometric identification of both extragalactic and stellar sources.

  14. Low-mass X-ray Binaries with RXTE

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Below are the publications which directly and indirectly evolved from this very successful program: 1) 'Search for millisecond periodicities in type I X-ray bursts of the Rapid Burster'; 2) 'High-Frequency QPOs in the 2000 Outburst of the Galactic Microquasar XTE J1550-564'; 3) 'Chandra and RXTE Spectroscopy of Galactic Microquasar XTE 51550-564 in Outburst'; 4) 'GX 339-4: back to life'; 5) 'Evidence for black hole spin in GX 339-4: XMM-Newton EPIC-PN and RXTE spectroscopy of the very high state'.

  15. Unveiling an X-ray counterpart to the Unid. TeV source HESS J1852-000

    NASA Astrophysics Data System (ADS)

    Kosack, Karl

    2011-10-01

    We propose to use XMM-Newton to attempt to identify the hard-spectrum very-high- energy (VHE) gamma-ray source HESS J1852-000, which has currently no clear counterpart in lower-energy wavebands. The VHE source lies near the shell-type supernova remnant Kes 78, which may be associated with part of the VHE emission, e.g. through the illumination of nearby molecular clouds by escaping hadrons, via direct shock interaction, or via an as-yet-undetected nearby pulsar wind nebula. We present an analysis of archival XMM data from the region near Kes 78 that shows evidence for X-ray emission from part of the shell, and we propose a pointing that would complement the existing data while covering the peaks of the VHE gamma-ray emission as well as several weak X-ray and radio hotspots.

  16. Active galactic nucleus X-ray variability in the XMM-COSMOS survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanzuisi, G.; Ponti, G.; Salvato, M.

    2014-02-01

    We used the observations carried out by XMM in the COSMOS field over 3.5 yr to study the long term variability of a large sample of active galactic nuclei (AGNs) (638 sources) in a wide range of redshifts (0.1 < z < 3.5) and X-ray luminosities (10{sup 41} < L {sub 0.5-10} <10{sup 45.5}). Both a simple statistical method to assess the significance of variability and the Normalized Excess Variance (σ{sub rms}{sup 2}) parameter were used to obtain a quantitative measurement of the variability. Variability is found to be prevalent in most AGNs, whenever we have good statistics to measuremore » it, and no significant differences between type 1 and type 2 AGNs were found. A flat (slope –0.23 ± 0.03) anti-correlation between σ{sub rms}{sup 2} and X-ray luminosity is found when all significantly variable sources are considered together. When divided into three redshift bins, the anti-correlation becomes stronger and evolving with z, with higher redshift AGNs being more variable. We prove, however, that this effect is due to the pre-selection of variable sources: when considering all of the sources with an available σ{sub rms}{sup 2} measurement, the evolution in redshift disappears. For the first time, we were also able to study long term X-ray variability as a function of M {sub BH} and Eddington ratio for a large sample of AGNs spanning a wide range of redshifts. An anti-correlation between σ{sub rms}{sup 2} and M {sub BH} is found, with the same slope of anti-correlation between σ{sub rms}{sup 2} and X-ray luminosity, suggesting that the latter may be a by-product of the former. No clear correlation is found between σ{sub rms}{sup 2} and the Eddington ratio in our sample. Finally, no correlation is found between the X-ray σ{sub rms}{sup 2} and optical variability.« less

  17. Study of the Many Fluorescent Lines and the Absorption Variability in GX 301-2 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Fuerst, F.; Suchy, S.; Kreykenbohm, I.; Barragan, L.; Wilms, J.; Pottschmidt, K.; Caballero, I.; Kretschmar, P.; Ferrigno, C.; Rothschild, R. E.

    2011-01-01

    We present an in-depth study of the High Mass X-ray Binary (HMXB) GX 301-2 during its pre-periastron flare using data from the XMM-Newton satellite. The energy spectrum shows a power law continuum absorbed by a large equivalent hydrogen column on the order of 10(exp 24)/ sq cm and a prominent Fe K-alpha fluorescent emission line. Besides the Fe K-alpha line, evidence for Fe K-Beta, Ni K-alpha, Ni K-Beta, S K-alpha, Ar K-alpha, Ca K-alpha, and Cr K-alpha fluorescent lines is found. The observed line strengths are consistent with fluorescence in a cold absorber. This is the first time that Cr K-alpha is seen in emission in the X-ray spectrum of a HMXB. In addition to the modulation by the strong pulse period of approx 685 sec the source is highly variable and shows different states of activity. We perform time-resolved as well as pulse-to-pulse resolved spectroscopy to investigate differences between these states of activity. We find that fluorescent line fluxes are strongly variable and generally follow the overall flux. The N-H value is variable by a factor of 2, but not correlated to continuum normalization. We find an interval of low flux in the light curve in which the pulsations cease almost completely, without any indication of an increasing absorption column. We investigate this dip in detail and argue that it is most likely that during the dip the accretion ceased and the afterglow of the fluorescent iron accounted for the main portion of the X-ray flux. A similar dip was found earlier in RXTE data, and we compare our findings to these results.

  18. Oxygen, Neon, and Iron X-Ray Absorption in the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.; Mendoza, Claudio

    2016-01-01

    We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods. By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results. We have determined the absorbing material distribution as a function of source distance and galactic latitude longitude. Conclusions. Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.

  19. Discovery of Extremely Embedded X-ray Sources in the R Coronae Australis Star Forming Core

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Ken-Ji; Corcoran, Michael F.; Petre, Rob; White, Nicholas E.; Stelzer, Beate; Nedachi, Ko; Kobayashi, Naoto

    2004-01-01

    We detected three extremely embedded X-ray sources in the R Corona Australis (R CrA) star forming core, IRS 7 region. Two weak X-ray sources are associated with the VLA centimeter radio sources 10E & W, whereas the third brightest source detected in the two XMM-Newton observations on March 2003 has no counterpart at any wavelengths. The large K-band upper-limit (19.4m) measured with the University of Hawaii 88-inch Telescope and strong absorption derived in X-rays (N(sub H) approx. 2.8 x 10(exp 23)/sq cm equivalent to A(sub v) approx. 180 m) indicate that the source is younger than typical Class I protostars, i.e. a Class 0 protostar or an intermittent phase between Class 0 and Class I protostars. The X-ray luminosity was less than one thirtieth (log L(sub x) less than or approx. equals 29.3 ergs/s) in the former Chandra observation in October 2000, which suggests that the X-ray activity, probably generated by magnetic activity, is triggered by an intermittent mass accretion episode such as FU Ori type outbursts. Because the source was detected at high significance in the XMM-Newton observations (approx. 2,000 cnts), X-ray properties of such young protostars can be well investigated for the first time. The light curves were constant in the 1st observation and increased linearly by a factor of two during 30 ksec in the 2nd observation. Both spectra showed iron K lines originated in hot thin-thermal plasma and fluorescence by cold gas. They can be reproduced by an absorbed thin-thermal plasma model with a Gaussian component at 6.4 keV (kT approx. 3-4 keV, L(sub x) approx. 7-20 x 10(exp 30) ergs/s). The rising timescale of the light curves in the 2nd observation was too slow for magnetically generated X-ray flares, whereas large equivalent width of the fluorescence iron K line in the 1st observation (approx. 810 eV) requires strong partial covering of the X-ray source. These results suggest that a confined hot (perhaps accretion) spot on the protostellar core was

  20. Design and development of the SIMBOL-X hard x-ray optics

    NASA Astrophysics Data System (ADS)

    Pareschi, G.; Attinà, P.; Basso, S.; Borghi, G.; Burkert, W.; Buzzi, R.; Citterio, O.; Civitani, M.; Conconi, P.; Cotroneo, V.; Cusumano, G.; Dell'Orto, E.; Freyberg, M.; Hartner, G. D.; Gorenstein, P.; Mattaini, E.; Mazzoleni, F.; Parodi, G.; Romaine, S.; Spiga, D.; Tagliaferri, G.; Valtolina, R.; Valsecchi, G.; Vernani, D.

    2008-07-01

    The SIMBOL-X formation-flight X-ray mission will be operated by ASI and CNES in 2014, with a large participation of the French and Italian high energy astrophysics scientific community. Also German and US Institutions are contributing in the implementation of the scientific payload. Thanks to the formation-flight architecture, it will be possible to operate a long (20 m) focal length grazing incidence mirror module, formed by 100 confocal multilayer-coated Wolter I shells. This system will allow us to focus X-rays over a very broad energy band, from 0.5 keV up to 80 keV and beyond, with more than two orders of magnitude improvement in angular resolution (20 arcsec HEW) and sensitivity (0.5 µCrab on axis @30 keV) compared to non focusing detectors used so far. The X-ray mirrors will be realized by Ni electroforming replication, already successfully used for BeppoSAX, XMM-Newton, and JET-X/SWIFT; the thickness trend will be about two times less than for XMM, in order to save mass. Multilayer reflecting coatings will be implemented, in order to improve the reflectivity beyond 10 keV and to increase the field of view 812 arcmin at 30 keV). In this paper, the SIMBOL-X optics design, technology and implementation challenges will be discussed; it will be also reported on recent results obtained in the context of the SIMBOL-X optics development activities.

  1. The Reverberation Lag in the Low-mass X-ray Binary H1743-322

    NASA Astrophysics Data System (ADS)

    De Marco, Barbara; Ponti, Gabriele

    2016-07-01

    The evolution of the inner accretion flow of a black hole X-ray binary during an outburst is still a matter of active research. X-ray reverberation lags are powerful tools for constraining disk-corona geometry. We present a study of X-ray lags in the black hole transient H1743-322. We compared the results obtained from analysis of all the publicly available XMM-Newton observations. These observations were carried out during two different outbursts that occurred in 2008 and 2014. During all the observations the source was caught in the hard state and at similar luminosities ({L}3-10{keV}/{L}{Edd}˜ 0.004). We detected a soft X-ray lag of ˜60 ms, most likely due to thermal reverberation. We did not detect any significant change of the lag amplitude among the different observations, indicating a similar disk-corona geometry at the same luminosity in the hard state. On the other hand, we observe significant differences between the reverberation lag detected in H1743-322 and in GX 339-4 (at similar luminosities in the hard state), which might indicate variations of the geometry from source to source.

  2. X-ray aspects of the DAFT/FADA clusters

    NASA Astrophysics Data System (ADS)

    Guennou, L.; Durret, F.; Lima Neto, G. B.; Adami, C.

    2012-12-01

    We have undertaken the DAFT/FADA survey with the aim of applying constraints on dark energy based on weak lensing tomography as well as obtaining homogeneous and high quality data for a sample of 91 massive clusters in the redshift range [0.4,0.9] for which there are HST archive data. We have analysed the XMM-Newton data available for 42 of these clusters to derive their X-ray temperatures and luminosities and search for substructures. This study was coupled with a dynamical analysis for the 26 clusters having at least 30 spectroscopic galaxy redshifts in the cluster range. We present preliminary results on the coupled X-ray and dynamical analyses of these clusters.

  3. Understanding The Time Evolution Of Luminosity And Associated Accretion Structures In X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Laycock, Silas

    We propose to analyze the large archive of RXTE, XMM-Newton and Chandra observations of X-ray Binary Pulsars in the Magellanic Clouds and Milky Way. There are some 2000 individual RXTE PCA pointings on the SMC spanning 15 years, and a smaller number on the LMC. Each PCA observation covers a large fraction of the whole SMC (or LMC) population, and we are able to deconvolve the sometimes simultaneous signals to create an unrivaled record of pulsar temporal behavior. More than 200 XMM- Newton and Chandra observations of the SMC/LMC and individual Galactic pulsars provide information at lower luminosity levels. Together, these datasets cover the entire range of variability timescales and accretion regimes in High Mass X-ray Binaries. We will produce a comprehensive library of energy- resolved pulse profiles covering the entire luminosity and spin-period parameter space, and make this available to the community. We will then model these pulse profiles using state of the art techniques to parameterize the morphology, and publish the resulting data-cube. This result will include for example the distribution of offsets between magnetic and spin axes. These products are needed for the next generation of advances in neutron star theory and modeling. The unique dataset will also enable us to determine the upper and lower limits of accretion powered luminosity in a large statistically complete sample of neutron stars, and hence make several direct tests of fundamental NS parameters and accretion physics. In addition the long-duration of the dataset and "whole-galaxy" nature of the SMC sample make possible a new statistical approach to uncover the duty-cycle distribution and hence population demographics of transient High Mass X-ray Binary (HMXB) populations.

  4. Spectral and Temporal Analysis of 1H1934-0617: Observing an “Eclipsed” AGN with XMM-Newton and NuSTAR

    NASA Astrophysics Data System (ADS)

    Frederick, Sara; Kara, Erin; Reynolds, Christopher S.

    2017-01-01

    1H1934-0617 is a low-mass (3×106 M⊙) NLS1 which was ranked as 7th in excess variance among AGN comprising the CAIXA catalogue (Ponti 2012). Similar to its high-ranking and oft-studied counterparts, this AGN is extremely time-variable, luminous, and displays strong reflection features. We present spectral and temporal analyses of concurrent XMM-Newton and NuSTAR observations (120 ks), during which we explore a dramatic dip in flux, similar to that of Fairall 9 (Lohfink 2012, 2016). The transit-like dip appears in the NuSTAR band, and the spectral shape of the 0.3-2 keV band remains constant throughout the flux varied observation, ruling out a strong absorber. XMM-Newton’s large effective area and NuSTAR’s constraints on the 10-79 keV band combine to inform us about the source geometry, black hole spin, and emission/absorption processes as we speculate on the nature of the variability of this scarcely-studied AGN. Preliminary spectral modeling indicates that the dip in flux can be understood as a decrease in the height of the corona, and preliminary timing analysis shows hints of an iron K reverberation lag.

  5. Hard X-Ray Emission of the Luminous Infrared Galaxy NGC 6240 as Observed by Nustar

    NASA Technical Reports Server (NTRS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; hide

    2016-01-01

    We present a broadband (approx.0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by approx.1.5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau approx. = 1.2, NH approx. 1.5×10(exp 24)/sq cm. We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at approx..30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH < or = 2×10(exp 23)/sq cm over long (approx.3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  6. The Energy-Dependent X-Ray Timing Characteristics of the Narrow Line Seyfert 1 MKN 766

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Papadakis, I.; Arevalo, P.; Turner, T. J.; Miller, L.; Reeves, J. N.

    2007-01-01

    We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766, obtained from combining data obtained during an XMM-Newton observation spanning six revolutions in 2005 with data obtained from an XMM-Newton long-look in 2001. The PSD shapes and rms-flux relations are found to be consistent between the 2001 and 2005 observations, suggesting the 2005 observation is simply a low-flux extension of the 2001 observation and permitting us to combine the two data sets. The resulting PSD has the highest temporal frequency resolution for any AGN PSD measured to date. Applying a broken power-law model yields break frequencies which increase in temporal frequency with photon energy. Obtaining a good fit when assuming energy-independent break frequencies requires the presence of a Lorentzian at 4.6 +/- 0.4 x 10(exp -4)Hz whose strength increases with photon energy, a behavior seen in black hole X-ray binaries. The cross-spectral properties are measured; temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time. Cross-spectral results are consistent with those for other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.

  7. XAssist: A System for the Automation of X-ray Astrophysics Analysis

    NASA Astrophysics Data System (ADS)

    Ptak, A.

    2004-08-01

    XAssist is a NASA AISR-funded project for the automation of X-ray astrophysics. It is capable of data reprocessing, source detection, and preliminary spatial, temporal and spectral analysis for each source with sufficient counts. The bulk of the system is written in Python, which in turn drives underlying software (CIAO for Chandra data, etc.). Future work will include a GUI (mainly for beginners and status monitoring) and the exposure of at least some functionality as web services. The latter will help XAssist to eventually become part of the VO, making advanced queries possible, such as determining the X-ray fluxes of counterparts to HST or SDSS sources (including the use of unpublished X-ray data), and add the ability of ``on-the-fly'' X-ray processing. Pipelines are running on Chandra and XMM-Newton observations of galaxies to demonstrate XAssist's capabilities, and the results are available online (in real time) at http://www.xassist.org. XAssist itself as well as various associated projects are available for download.

  8. Radio and X-Ray Observations of SN 2006jd: Another Strongly Interacting Type IIn Supernova

    NASA Technical Reports Server (NTRS)

    Chandra, Poonam; Chevalier, Roger A.; Chugai, Nikolai; Fransson, Claes; Irwin, Christopher M.; Soderberg, Alicia M.; Chakraborti, Sayan; Immler, Stefan

    2012-01-01

    We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope and Expanded Very Large Array at X-ray wavelengths with Chandra, XMM-Newton and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density approximately 10(exp 6) per cubic meter at a radius r approximately 2 x 10(exp 16) centimeter, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r2 because of the slow evolution of the unabsorbed emission.

  9. X-ray morphological study of galaxy cluster catalogues

    NASA Astrophysics Data System (ADS)

    Democles, Jessica; Pierre, Marguerite; Arnaud, Monique

    2016-07-01

    Context : The intra-cluster medium distribution as probed by X-ray morphology based analysis gives good indication of the system dynamical state. In the race for the determination of precise scaling relations and understanding their scatter, the dynamical state offers valuable information. Method : We develop the analysis of the centroid-shift so that it can be applied to characterize galaxy cluster surveys such as the XXL survey or high redshift cluster samples. We use it together with the surface brightness concentration parameter and the offset between X-ray peak and brightest cluster galaxy in the context of the XXL bright cluster sample (Pacaud et al 2015) and a set of high redshift massive clusters detected by Planck and SPT and observed by both XMM-Newton and Chandra observatories. Results : Using the wide redshift coverage of the XXL sample, we see no trend between the dynamical state of the systems with the redshift.

  10. A Catalog of Candidate Intermediate-Luminosity X-Ray Objects

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Ptak, A. F.

    2002-11-01

    ROSAT, and now Chandra, X-ray images allow studies of extranuclear X-ray point sources in galaxies other than our own. X-ray observations of normal galaxies with ROSAT and Chandra have revealed that off-nuclear, compact, intermediate-luminosity (LX[2-10keV]>=1039.0 ergs s-1) X-ray objects (IXOs, a.k.a. ULXs [ultraluminous X-ray sources]) are quite common. Here we present a catalog and finding charts for 87 IXOs in 54 galaxies, derived from all of the ROSAT HRI imaging data for galaxies with cz<=5000 km s-1 from the Third Reference Catalog of Bright Galaxies. We have defined the cutoff LX for IXOs so that it is well above the Eddington luminosity of a 1.4 Msolar black hole (1038.3 ergs s-1), so as not to confuse IXOs with ``normal'' black hole X-ray binaries. This catalog is intended to provide a baseline for follow-up work with Chandra and XMM-Newton, and with space- and ground-based survey work at wavelengths other than X-ray. We demonstrate that elliptical galaxies with IXOs have a larger number of IXOs per galaxy than nonelliptical galaxies with IXOs and note that they are not likely to be merely high-mass X-ray binaries with beamed X-ray emission, as may be the case for IXOs in starburst galaxies. Approximately half of the IXOs with multiple observations show X-ray variability, and many (19) of the IXOs have faint optical counterparts in DSS optical B-band images. Follow-up observations of these objects should be helpful in identifying their nature.

  11. The X-ray properties of Be/X-ray pulsars in quiescence

    NASA Astrophysics Data System (ADS)

    Tsygankov, Sergey S.; Wijnands, Rudy; Lutovinov, Alexander A.; Degenaar, Nathalie; Poutanen, Juri

    2017-09-01

    Observations of accreting neutron stars (NSs) with strong magnetic fields can be used not only for studying the accretion flow interaction with the NS magnetospheres, but also for understanding the physical processes inside NSs and for estimating their fundamental parameters. Of particular interest are (I) the interaction of a rotating NS (magnetosphere) with the infalling matter at different accretion rates, and (II) the theory of deep crustal heating and the influence of a strong magnetic field on this process. Here, we present results of the first systematic investigation of 16 X-ray pulsars with Be optical companions during their quiescent states, based on data from the Chandra, XMM-Newton and Swift observatories. The whole sample of sources can be roughly divided into two distinct groups: (I) relatively bright objects with a luminosity around ˜1034 erg s-1 and (hard) power-law spectra, and (II) fainter ones showing thermal spectra. X-ray pulsations were detected from five objects in group (I) with quite a large pulse fraction of 50-70 per cent. The obtained results are discussed within the framework of the models describing the interaction of the infalling matter with the NS magnetic field and those describing heating and cooling in accreting NSs.

  12. The SWIFT Gamma-Ray Burst X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Chincarini, G.; Abbey, A. F.; Angelini, L.; Beardmore, A.; Brauninger, H. W.; Chang, W.

    2006-01-01

    The Swift Gamma-Ray Burst Explorer is designed to make prompt multi-wavelength observations of Gamma-Ray Bursts and GRB afterglows. The X-ray Telescope enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/ EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with an effective area of more than 120 sq cm at 1.5 keV, a field of view of 23.6 x 23.6 arcminutes, and an angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10(exp 14) erg/sq cm/s in 10(exp 4) seconds. The instrument provides automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Iron line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return as the source intensity fades. The XRT measures spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and follows each burst for days or weeks. We provide an overview of the X-ray Telescope scientific background from which the systems engineering requirements were derived, with specific emphasis on the design and qualification aspects from conception through to launch. We describe the impact on cleanliness and vacuum requirements for the instrument low energy response and to maintain the high sensitivity to the fading signal of the Gamma-ray Bursts.

  13. XMM-NEWTON DETECTS A HOT GASEOUS HALO IN THE FASTEST ROTATING SPIRAL GALAXY UGC 12591

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai Xinyu; Anderson, Michael E.; Bregman, Joel N.

    2012-08-20

    We present our XMM-Newton observation of the fastest rotating spiral galaxy UGC 12591. We detect hot gas halo emission out to 80 kpc from the galaxy center, and constrain the halo gas mass to be smaller than 4.5 Multiplication-Sign 10{sup 11} M{sub Sun }. We also measure the temperature of the hot gas as T = 0.64 {+-} 0.03 keV. Combining our x-ray constraints and the near-infrared and radio measurements in the literature, we find a baryon mass fraction of 0.03-0.05 in UGC 12591, suggesting a missing baryon mass of 70% compared with the cosmological mean value. Combined with anothermore » recent measurement in NGC 1961, the result strongly argues that the majority of missing baryons in spiral galaxies do not reside in their hot halos. We also find that UGC 12591 lies significantly below the baryonic Tully-Fisher relationship. Finally, we find that the baryon fractions of massive spiral galaxies are similar to those of galaxy groups with similar masses, indicating that the baryon loss is ultimately controlled by the gravitational potential well. The cooling radius of this gas halo is small, similar to NGC 1961, which argues that the majority of the stellar mass of this galaxy is not assembled as a result of cooling of this gas halo.« less

  14. The Peculiar Galactic Center Neutron Star X-Ray Binary XMM J174457-2850.3

    NASA Technical Reports Server (NTRS)

    Degenaar, N.; Wijnands, R.; Reynolds, M. T.; Miller, J. M.; Altamirano, D.; Kennea, J.; Gehrels, N.; Haggard, D.; Ponti, G.

    2014-01-01

    The recent discovery of a milli-second radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of 2 hr and a radiated energy output of 5E40 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of Lx5E32 ergs and exhibits occasional accretion outbursts during which it brightens to Lx1E35-1E36 ergs for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at Lx1E33-1E34 ergs. This unusual X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.

  15. Complex X-ray Absorption and the Fe K(alpha) Profile in NGC 3516

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Kraemer, S. B.; George, I. M.; Reeves, J. N.; Botorff, M. C.

    2004-01-01

    We present data from simultaneous Chandra, XMM-Newton and BeppoSAX observations of the Seyfert 1 galaxy NGC 3516, taken during 2001 April and November. We have investigated the nature of the very flat observed X-ray spectrum. Chandra grating data show the presence of X-ray absorption lines, revealing two distinct components of the absorbing gas, one which is consistent with our previous model of the UV/X-ray absorber while the other, which is outflowing at a velocity of approximately 1100 kilometers per second, has a larger column density and is much more highly ionized. The broad-band spectral characteristics of the X-ray continuum observed with XMM during 2001 April, reveal the presence of a third layer of absorption consisting of a very large column (approximately 2.5 x 10(exp 23) per square centimeter) of highly ionized gas with a covering fraction approximately 50%. This low covering fraction suggests that the absorber lies within a few 1t-days of the X-ray source and/or is filamentary in structure. Interestingly, these absorbers are not in thermal equilibrium with one another. The two new components are too highly ionized to be radiatively accelerated, which we suggest is evidence for a hydromagnetic origin for the outflow. Applying our model to the November dataset, we can account for the spectral variability primarily by a drop in the ionization states of the absorbers, as expected by the change in the continuum flux. When this complex absorption is accounted for we find the underlying continuum to be typical of Seyfert 1 galaxies. The spectral curvature attributed to the high column absorber, in turn, reduces estimates of the flux and extent of any broad Fe emission line from the accretion disk.

  16. How to Build a Time Machine: Interfacing Hydrodynamics, Ionization Calculations and X-ray Spectral Codes for Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Badenes, Carlos

    2006-02-01

    Thanks to Chandra and XMM-Newton, spatially resolved spectroscopy of SNRsin the X-ray band has become a reality. Several impressive data sets forejecta-dominated SNRs can now be found in the archives, the Cas A VLP justbeing one (albeit probably the most spectacular) example. However, it isoften hard to establish quantitative, unambiguous connections between theX-ray observations of SNRs and the dramatic events involved in a corecollapse or thermonuclear SN explosion. The reason for this is that thevery high quality of the data sets generated by Chandra and XMM for thelikes of Cas A, SNR 292.0+1.8, Tycho, and SN 1006 has surpassed our abilityto analyze them. The core of the problem is in the transient nature of theplasmas in SNRs, which results in anintimate relationship between the structure of the ejecta and AM, the SNRdynamics arising from their interaction, and the ensuing X-rayemission. Thus, the ONLY way to understand the X-ray observations ofejecta-dominated SNRs at all levels, from the spatially integrated spectrato the subarcsecond scales that can be resolved by Chandra, is to couplehydrodynamic simulations to nonequilibrium ionization (NEI) calculationsand X-ray spectral codes. I will review the basic ingredients that enterthis kind of calculations, and what are the prospects for using them tounderstand the X-ray emission from the shocked ejecta in young SNRs. Thisunderstanding (when it is possible), can turn SNRs into veritable timemachines, revealing the secrets of the titanic explosions that generatedthem hundreds of years ago.

  17. Pulse Phase Dependence of Low Energy Emission Lines in an X-ray pulsar 4U 1626-67 during its spin-up and spin-down phase

    NASA Astrophysics Data System (ADS)

    Beri, Aru; Paul, Biswajit; Dewangan, Gulab Chand

    2016-07-01

    We will present the results obtained from the new observation of an ultra-compact X-ray binary pulsar 4U 1626-67, carried out with the XMM-Newton observatory. 4U 1626-67, a unique accretion powered pulsar underwent two torque reversals since its discovery in 1977. Pulse phase resolved spectroscopy of this source performed using the data from the XMM-Newton observatory during its spin-down phase revealed the dependence of the emission lines on the pulse phase. O VII emission line at 0.569 keV showed the maximum variation by factor of 4. These variations were interpreted due to warps in the accretion disk (Beri et al. 2015). Radiation pressure induced warping is also believed to be the cause for spin-down. In light of this possible explanation for spin-down torque reversal we expect different line variability during the spin-up phase. We will discuss the implications of the results obtained after performing pulse phase resolved spectroscopy using data from the EPIC-pn during the current spin-up phase. Detailed study of the prominent Neon and Oxygen line complexes with the high resolution Reflection Grating Spectrometer (RGS) on-board XMM-Newton will also be presented.

  18. NuSTAR Observations of the Compton-thick Active Galactic Nucleus and Ultraluminous X-Ray Source Candidate in NGC 5643

    NASA Astrophysics Data System (ADS)

    Annuar, A.; Gandhi, P.; Alexander, D. M.; Lansbury, G. B.; Arévalo, P.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Del Moro, A.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Matt, G.; Puccetti, S.; Ricci, C.; Rigby, J. R.; Stern, D.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2015-12-01

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy (˜0.5-100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line of sight. However, the lack of high-quality ≳10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X-1, have left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X-1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of NH ≳ 5 × 1024 cm-2. The range of 2-10 keV absorption-corrected luminosity inferred from the best-fitting models is L2-10,int = (0.8-1.7) × 1042 erg s-1, consistent with that predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X-1 and show that it exhibits evidence of a spectral cutoff at energy E ˜ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3-8 keV band from 2003 to 2014, our results further strengthen the ULX classification of NGC 5643 X-1.

  19. X-Ray Weak Broad-Line Quasars: Absorption or Intrinsic X-Ray Weakness

    NASA Technical Reports Server (NTRS)

    Risaliti, Guido; Mushotzky, Richard F. (Technical Monitor)

    2004-01-01

    XMM observations of X-ray weak quasars have been performed during 2003. The data for all but the last observation are now available (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed these data, and obtained interesting preliminary scientific results. Out of the eight sources, 4 are confirmed to be extrimely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confirmed to be highly variable both in flux (by factors 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects, an article is in preparation. Preliminary results have been presented at an international workshop on AGN surveys in December 2003, in Cozumel (Mexico). In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations, and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations will be performed in early 2004, and will complement the XMM data, in order to understand whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circumnuclear material.

  20. A multiwavelength study of SXP 1062, the long-period X-ray pulsar associated with a supernova remnant

    NASA Astrophysics Data System (ADS)

    González-Galán, A.; Oskinova, L. M.; Popov, S. B.; Haberl, F.; Kühnel, M.; Gallagher, J.; Schurch, M. P. E.; Guerrero, M. A.

    2018-04-01

    SXP 1062 is a Be X-ray binary (BeXB) located in the Small Magellanic Cloud. It hosts a long-period X-ray pulsar and is likely associated with the supernova remnant MCSNR J0127-7332. In this work we present a multiwavelength view on SXP 1062 in different luminosity regimes. We consider monitoring campaigns in optical (OGLE survey) and X-ray (Swift telescope). During these campaigns a tight coincidence of X-ray and optical outbursts is observed. We interpret this as typical Type I outbursts as often detected in BeXBs at periastron passage of the neutron star (NS). To study different X-ray luminosity regimes in depth, during the source quiescence we observed it with XMM-Newton while Chandra observations followed an X-ray outburst. Nearly simultaneously with Chandra observations in X-rays, in optical the RSS/SALT telescope obtained spectra of SXP 1062. On the basis of our multiwavelength campaign we propose a simple scenario where the disc of the Be star is observed face-on, while the orbit of the NS is inclined with respect to the disc. According to the model of quasi-spherical settling accretion our estimation of the magnetic field of the pulsar in SXP 1062 does not require an extremely strong magnetic field at the present time.

  1. Hard X-ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR

    NASA Astrophysics Data System (ADS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; Annuar, A.; Arévalo, P.; Baloković, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Koss, M. J.; La Massa, S.; Marinucci, A.; Ricci, C.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2016-01-01

    We present a broadband (~0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ~1.̋5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (τ ≃ 1.2, NH ~ 1.5 × 1024 cm-2). We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at ~30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH ≤ 2 × 1023 cm-2 over long (~3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  2. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Gladstone, G. R.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keY from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  3. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    NASA Technical Reports Server (NTRS)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keV from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  4. Multiwavelength follow-up observations of the tidal disruption event candidate 2XMMi J184725.1-631724

    NASA Astrophysics Data System (ADS)

    Lin, Dacheng; Strader, Jay; Carrasco, Eleazar R.; Godet, Olivier; Grupe, Dirk; Webb, Natalie A.; Barret, Didier; Irwin, Jimmy A.

    2018-03-01

    The ultrasoft X-ray flare 2XMMi J184725.1-631724 was serendipitously detected in two XMM-Newton observations in 2006 and 2007, with a peak luminosity of 6 × 1043 erg s-1. It was suggested to be a tidal disruption event (TDE) because its position is consistent with the centre of an inactive galaxy. It is the only known X-ray TDE candidate whose X-ray spectra showed evidence of a weak steep power-law component besides a dominant supersoft thermal disc. We have carried out multiwavelength follow-up observations of the event. Multiple X-ray monitorings show that the X-ray luminosity has decayed significantly after 2011. Especially, in our deep Chandra observation in 2013, we detected a very faint counterpart that supports the nuclear origin of 2XMMi J184725.1-631724 but had an X-ray flux a factor of ˜1000 lower than in the peak of the event. Compared with follow-up ultraviolet (UV) observations, we found that there might be some enhanced UV emission associated with the TDE in the first XMM-Newton observation. We also obtained a high-quality UV-optical spectrum with the Southern Astrophysical Research (SOAR) Telescope and put a very tight constraint on the persistent nuclear activity, with a persistent X-ray luminosity expected to be lower than the peak of the flare by a factor of >2700. Therefore, our multiwavelength follow-up observations strongly support the TDE explanation of the event.

  5. X-ray emission from galaxies - The distribution of low-luminosity X-ray sources in the Galactic Centre region

    NASA Astrophysics Data System (ADS)

    Heard, Victoria; Warwick, Robert

    2012-09-01

    We report a study of the extended X-ray emission observed in the Galactic Centre (GC) region based on archival XMM-Newton data. The GC diffuse emission can be decomposed into three distinct components: the emission from low-luminosity point sources; the fluorescence of (and reflection from) dense molecular material; and soft (kT ~1 keV), diffuse thermal plasma emission most likely energised by supernova explosions. Here, we examine the emission due to unresolved point sources. We show that this source component accounts for the bulk of the 6.7-keV and 6.9-keV line emission. We fit the surface brightness distribution evident in these lines with an empirical 2-d model, which we then compare with a prediction derived from a 3-d mass model for the old stellar population in the GC region. We find that the X-ray surface brightness declines more rapidly with angular offset from Sgr A* than the mass-model prediction. One interpretation is that the X-ray luminosity per solar mass characterising the GC source population is increasing towards the GC. Alternatively, some refinement of the mass-distribution within the nuclear stellar disc may be required. The unresolved X-ray source population is most likely dominated by magnetic CVs. We use the X-ray observations to set constraints on the number density of such sources in the GC region. Our analysis does not support the premise that the GC is pervaded by very hot (~ 7.5 keV) thermal plasma, which is truly diffuse in nature.

  6. Timing Observations of PSR J1023+0038 During a Low-mass X-Ray Binary State

    NASA Astrophysics Data System (ADS)

    Jaodand, Amruta; Archibald, Anne M.; Hessels, Jason W. T.; Bogdanov, Slavko; D'Angelo, Caroline R.; Patruno, Alessandro; Bassa, Cees; Deller, Adam T.

    2016-10-01

    Transitional millisecond pulsars (tMSPs) switch, on roughly multi-year timescales, between rotation-powered radio millisecond pulsar (RMSP) and accretion-powered low-mass X-ray binary (LMXB) states. The tMSPs have raised several questions related to the nature of accretion flow in their LMXB state and the mechanism that causes the state switch. The discovery of coherent X-ray pulsations from PSR J1023+0038 (while in the LMXB state) provides us with the first opportunity to perform timing observations and to compare the neutron star’s spin variation during this state to the measured spin-down in the RMSP state. Whereas the X-ray pulsations in the LMXB state likely indicate that some material is accreting onto the neutron star’s magnetic polar caps, radio continuum observations indicate the presence of an outflow. The fraction of the inflowing material being ejected is not clear, but it may be much larger than that reaching the neutron star’s surface. Timing observations can measure the total torque on the neutron star. We have phase-connected nine XMM-Newton observations of PSR J1023+0038 over the last 2.5 years of the LMXB state to establish a precise measurement of spin evolution. We find that the average spin-down rate as an LMXB is 26.8 ± 0.4% faster than the rate (-2.39 × 10-15 Hz s-1) determined during the RMSP state. This shows that negative angular momentum contributions (dipolar magnetic braking, and outflow) exceed positive ones (accreted material), and suggests that the pulsar wind continues to operate at a largely unmodified level. We discuss implications of this tight observational constraint in the context of possible accretion models.

  7. X-ray Luminosity and Absorption Column Fluctuations in the H2O Maser Galaxy NGC 4258 from Weeks to Years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argon, A.

    2004-07-30

    The authors report monitoring of the 0.3-10 keV spectrum of NGC 4258 with the XMM-Newton observatory at five epochs over 1.5 years. They also report reprocessing of an overlapping four epoch series of archival Chandra observations (0.5-10 keV). By including earlier ASCA and Beppo-SAX observations, they present a new, nine year time-series of models fit to the X-ray spectrum of NGC 4258. They model the Chandra and XMM-Newton data self-consistently with partially absorbed, hard power-law, soft thermal plasma, and soft power-law components. Over the nine years, the photo-electric absorbing column ({approx} 10{sup 23} cm{sup -2}) did not vary detectably, exceptmore » for a {approx} 40% drop between two ASCA epochs separated by 3 years (in 1993 and 1996) and a {approx} 60% rise between two XMM-Newton epochs separated by just 5 months (in 2001 and 2002). In contrast, factor of 2-3 changes are seen in absorbed flux on the timescale of years. These are uncorrelated with changes in absorbing column and indicative of central engine variability. The most rapid change in luminosity (5-10 keV) that the authors detect (with XMM-Newton and Chandra) is on the order of 30% over 19 days. The warped disk that is a known source of H{sub 2}O maser emission in NGC 4258 is believed to cross the line of sight to the central engine. They propose that the variations in absorbing column arise from inhomogeneities in the rotating disk, as they sweep across the line of sight. They estimate that the inhomogeneities are {approx} 10{sup 15} cm in size.« less

  8. X-RAY EMISSION FROM THE WOLF-RAYET BUBBLE S 308

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toala, J. A.; Guerrero, M. A.; Chu, Y.-H.

    The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its northwest quadrant, map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a central cavity {approx}22' in size and a shell thickness of {approx}8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at 0.43more » keV and O VII at 0.57 keV, and declines toward high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T{sub 1} {approx} 1.1 Multiplication-Sign 10{sup 6} K, T{sub 2} {approx} 13 Multiplication-Sign 10{sup 6} K), with a total X-ray luminosity {approx}2 Multiplication-Sign 10{sup 33} erg s{sup -1} at the assumed distance of 1.5 kpc.« less

  9. pnCCD for photon detection from near-infrared to X-rays

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Andritschke, Robert; Hartmann, Robert; Herrmann, Sven; Holl, Peter; Lutz, Gerhard; Strüder, Lothar

    2006-09-01

    A pnCCD is a special type of charge-coupled device developed for spectroscopy and imaging of X-rays with high time resolution and quantum efficiency. Its most famous application is the operation on the XMM-Newton satellite, an X-ray astronomy mission that was launched by the European space agency in 1999. The excellent performance of the focal plane camera has been maintained for more than 6 years in orbit. The energy resolution in particular has shown hardly any degradation since launch. In order to satisfy the requirements of future X-ray astronomy missions as well as those of ground-based experiments, a new type of pnCCD has been developed. This ‘frame-store pnCCD’ shows an enhanced performance compared to the XMM-Newton type of pnCCD. Now, more options in device design and operation are available to tailor the detector to its respective application. Part of this concept is a programmable analog signal processor, which has been developed for the readout of the CCD signals. The electronic noise of the new detector has a value of only 2 electrons equivalent noise charge (ENC), which is less than half of the figure achieved for the XMM-Newton-type pnCCD. The energy resolution for the Mn-Kα line at 5.9 keV is approximately 130 eV FWHM. We have close to 100% quantum efficiency for both low- and high-energy photon detection (e.g. the C-K line at 277 eV, and the Ge-Kα line at 10 keV, respectively). Very high frame rates of 1000 images/s have been achieved due to the ultra-fast readout accomplished by the parallel architecture of the pnCCD and the analog signal processor. Excellent spectroscopic performance is shown even at the relatively high operating temperature of -25 °C that can be achieved by a Peltier cooler. The applications of the low-noise and fast pnCCD detector are not limited to the detection of X-rays. With an anti-reflective coating deposited on the photon entrance window, we achieve high quantum efficiency also for near-infrared and optical

  10. Evidence of Black Hole Spin in GX 339-4: XMM-Newton/EPIC-pn and RXTE Spectroscopy of the Very High State

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Fabian, A. C.; Reynolds, C. S.; Nowak, M. A.; Homan, J.; Freyberg, M. J.; Ehle, M.; Belloni, T.; Wijnands, R.; van der Klis, M.; Charles, P. A.; Lewin, W. H. G.

    2004-05-01

    We have analyzed spectra of the Galactic black hole GX 339-4 obtained through simultaneous 76 ks XMM-Newton/EPIC-pn and 10 ks Rossi X-Ray Timing Explorer observations during a bright phase of its 2002-2003 outburst. An extremely skewed, relativistic Fe Kα emission line and ionized disk reflection spectrum are revealed in these spectra. Self-consistent models for the Fe Kα emission-line profile and disk reflection spectrum rule out an inner disk radius compatible with a Schwarzschild black hole at more than the 8 σ level of confidence. The best-fit inner disk radius of (2-3)rg suggests that GX 339-4 harbors a black hole with a>=0.8-0.9 (where rg=GM/c2 and a=cJ/GM2, and assuming that reflection in the plunging region is relatively small). This confirms indications for black hole spin based on a Chandra spectrum obtained later in the outburst. The emission line and reflection spectrum also rule out a standard power-law disk emissivity in GX 339-4 a broken power-law form with enhanced emissivity inside ~6rg gives improved fits at more than the 8 σ level of confidence. The extreme red wing of the line and the steep emissivity require a centrally concentrated source of hard X-rays that can strongly illuminate the inner disk. Hard X-ray emission from the base of a jet-enhanced by gravitational light-bending effects-could create the concentrated hard X-ray emission; this process may be related to magnetic connections between the black hole and the inner disk. We discuss these results within the context of recent results from analyses of XTE J1650-500 and MCG -6-30-15, and of models for the inner accretion flow environment around black holes.

  11. Phase-dependent absorption features in X-ray spectra of X-ray Dim Isolated Neutron Stars

    NASA Astrophysics Data System (ADS)

    Borghese, A.; Rea, N.; Coti Zelati, F.; Turolla, R.; Tiengo, A.; Zane, S.

    2017-12-01

    A detailed phase-resolved spectroscopy of archival XMM-Newton observations of X-ray Dim Isolated Neutron Stars (XDINSs) led to the discovery of narrow and strongly phase-dependent absorption features in two of these sources. The first was discovered in the X-ray spectrum of RX J0720.4-3125, followed by a new possible candidate in RX J1308.6+2127. Both spectral lines have similar properties: they are detected for only ˜ 20% of the rotational cycle and appear to be stable over the timespan covered by the observations. We performed Monte Carlo simulations to test the significance of these phase-variable features and in both cases the outcome has confirmed the detection with a confidence level > 4.6σ. Because of the narrow width and the strong dependence on the pulsar rotational phase, the most likely interpretation for these spectral features is in terms of resonant proton cyclotron absorption scattering in a confined high-B structure close to the stellar surface. Within the framework of this interpretation, our results provide evidence for deviations from a pure dipole magnetic field on small scales for highly magnetized neutron stars and support the proposed scenario of XDINSs being aged magnetars, with a strong non-dipolar crustal B-field component.

  12. X-raying supernova remnants in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Maggi, P.; Hirschi, R.; Haberl, F.; Vasilopoulos, G.; Pietsch, W.; Greiner, J.; Kavanagh, J. P.; Sasaki, M.; Bozzetto, M. L.; Filipovic, M. D.; Points, S. D.; Chu, Y.-H.; Dickel, J.; Ehle, M.; Williams, R.

    2016-06-01

    The Magellanic Clouds (MCs) offer an ideal laboratory for the study of the SNR population in star-forming galaxies, since they are relatively nearby and free of large absorption. Both the LMC and SMC have been targeted by large XMM-Newton surveys, which, combined with archival observations, provide the best dataset to systematically study the X-ray emission of their numerous SNRs (˜ 60 in the LMC, ˜ 20 in the SMC). In this talk, I will highlight the results from this homogeneous analysis, which allows for the first time meaningful comparisons of temperature, chemical composition, and luminosity of SNRs in the MCs. The SNRs can be used as probes of their host galaxies: We measured chemical abundances in the hot phase of the LMC, and constrained the ratio of core-collapse to type Ia SN rates. The X-ray luminosity function of SNRs in the MCs are compared to those in other Local Group galaxies with different metallicities and star formation properties. Finally, we present a new population of evolved type Ia SNRs that was discovered recently in the MCs via their iron-rich X-ray emission.

  13. Complex UV/X-ray variability of 1H 0707-495

    NASA Astrophysics Data System (ADS)

    Pawar, P. K.; Dewangan, G. C.; Papadakis, I. E.; Patil, M. K.; Pal, Main; Kembhavi, A. K.

    2017-12-01

    We study the relationship between the UV and X-ray variability of the narrow-line Seyfert 1 galaxy 1H 0707-495. Using a year-long Swift monitoring and four long XMM-Newton observations, we perform cross-correlation analyses of the UV and X-ray light curves, on both long and short time-scales. We also perform time-resolved X-ray spectroscopy on 1-2 ks scale, and study the relationship between the UV emission and the X-ray spectral components - soft X-ray excess and a power law. We find that the UV and X-ray variations anticorrelate on short, and possibly on long time-scales as well. Our results rule out reprocessing as the dominant mechanism for the UV variability, as well as the inward propagating fluctuations in the accretion rate. Absence of a positive correlation between the photon index and the UV flux suggests that the observed UV emission is unlikely to be the seed photons for the thermal Comptonization. We find a strong correlation between the continuum flux and the soft-excess temperature which implies that the soft excess is most likely the reprocessed X-ray emission in the inner accretion disc. Strong X-ray heating of the innermost regions in the disc, due to gravitational light bending, appears to be an important effect in 1H 0707-495, giving rise to a significant fraction of the soft excess as reprocessed thermal emission. We also find indications for a non-static, dynamic X-ray corona, where either the size or height (or both) vary with time.

  14. Is there a UV/X-ray connection in IRAS 13224-3809?

    NASA Astrophysics Data System (ADS)

    Buisson, D. J. K.; Lohfink, A. M.; Alston, W. N.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; De Marco, B.; Fabian, A. C.; Gallo, L. C.; García, J. A.; Jiang, J.; Kara, E.; Middleton, M. J.; Miniutti, G.; Parker, M. L.; Pinto, C.; Uttley, P.; Walton, D. J.; Wilkins, D. R.

    2018-04-01

    We present results from the optical, ultraviolet, and X-ray monitoring of the NLS1 galaxy IRAS 13224-3809 taken with Swift and XMM-Newton during 2016. IRAS 13224-3809 is the most variable bright AGN in the X-ray sky and shows strong X-ray reflection, implying that the X-rays strongly illuminate the inner disc. Therefore, it is a good candidate to study the relationship between coronal X-ray and disc UV emission. However, we find no correlation between the X-ray and UV flux over the available ˜40 d monitoring, despite the presence of strong X-ray variability and the variable part of the UV spectrum being consistent with irradiation of a standard thin disc. This means either that the X-ray flux which irradiates the UV emitting outer disc does not correlate with the X-ray flux in our line of sight and/or that another process drives the majority of the UV variability. The former case may be due to changes in coronal geometry, absorption or scattering between the corona and the disc.

  15. X-RAY EMISSION FROM THE FU ORIONIS STAR V1735 CYGNI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, Stephen L.; Sokal, Kimberly R.; Guedel, Manuel

    2009-05-01

    The variable star V1735 Cyg (=Elias 1-12) lies in the IC 5146 dark cloud and is a member of the class of FU Orionis objects whose dramatic optical brightenings are thought to be linked to episodic accretion. We report the first X-ray detections of V1735 Cyg and a deeply embedded class I protostar lying 24'' to its northeast. X-ray spectra obtained with EPIC on XMM-Newton reveal very high-temperature plasma (kT > 5 keV) in both objects, but no large flares. Such hard X-ray emission is not anticipated from accretion shocks and is a signature of magnetic processes. We place thesemore » new results into the context of what is presently known about the X-ray properties of FU Orionis stars and other accreting young stellar objects.« less

  16. Implications from XMM and Chandra Source Catalogs for Future Studies with Lynx

    NASA Astrophysics Data System (ADS)

    Ptak, Andrew

    2018-01-01

    Lynx will perform extremely sensitive X-ray surveys by combining very high-resolution imaging over a large field of view with a high effective area. These will include deep planned surveys and serendipitous source surveys. Here we discuss implications that can be gleaned from current Chandra and XMM-Newton serendipitous source surveys. These current surveys have discovered novel sources such as tidal disruption events, binary AGN, and ULX pulsars. In addition these surveys have detected large samples of normal galaxies, low-luminosity AGN and quasars due to the wide-area coverage of the Chandra and XMM-Newton source catalogs, allowing the evolution of these phenonema to be explored. The wide area Lynx surveys will probe down further in flux and will be coupled with very sensitive wide-area surveys such as LSST and SKA, allowing for detailed modeling of their SEDs and the discovery of rare, exotic sources and transient events.

  17. The 2.35 year itch of Cygnus OB2 #9. I. Optical and X-ray monitoring

    NASA Astrophysics Data System (ADS)

    Nazé, Y.; Mahy, L.; Damerdji, Y.; Kobulnicky, H. A.; Pittard, J. M.; Parkin, E. R.; Absil, O.; Blomme, R.

    2012-10-01

    Context. Nonthermal radio emission in massive stars is expected to arise in wind-wind collisions occurring inside a binary system. One such case, the O-type star Cyg OB2 #9, was proven to be a binary only four years ago, but the orbital parameters remained uncertain. The periastron passage of 2011 was the first one to be observable under good conditions since the discovery of binarity. Aims: In this context, we have organized a large monitoring campaign to refine the orbital solution and to study the wind-wind collision. Methods: This paper presents the analysis of optical spectroscopic data, as well as of a dedicated X-ray monitoring performed with Swift and XMM-Newton. Results: In light of our refined orbital solution, Cyg OB2 #9 appears as a massive O+O binary with a long period and high eccentricity; its components (O5-5.5I for the primary and O3-4III for the secondary) have similar masses and similar luminosities. The new data also provide the first evidence that a wind-wind collision is present in the system. In the optical domain, the broad Hα line varies, displaying enhanced absorption and emission components at periastron. X-ray observations yield the unambiguous signature of an adiabatic collision, because as the stars approach periastron, the X-ray luminosity closely follows the 1/D variation expected in that case. The X-ray spectrum appears, however, slightly softer at periastron, which is probably related to winds colliding at slightly lower speeds at that time. Conclusions: It is the first time that such a variation has been detected in O+O systems, and the first case where the wind-wind collision is found to remain adiabatic even at periastron passage. Based on observations collected at OHP, with Swift, and with XMM-Newton.Tables 1 and 2 are available in electronic form at http://www.aanda.org

  18. Detection of Accretion X-Rays from QS Vir: Cataclysmic or a Lot of Hot Air?

    NASA Astrophysics Data System (ADS)

    Matranga, Marco; Drake, Jeremy J.; Kashyap, Vinay; Steeghs, Danny

    2012-03-01

    An XMM-Newton observation of the nearby "pre-cataclysmic" short-period (P orb = 3.62 hr) binary QS Vir (EC 13471-1258) revealed regular narrow X-ray eclipses when the white dwarf passed behind its M2-4 dwarf companion. The X-ray emission provides a clear signature of mass transfer and accretion onto the white dwarf. The low-resolution XMM-Newton EPIC spectra are consistent with a cooling flow model and indicate an accretion rate of \\dot{M} = 1.7 \\times 10^{-13} \\,M_\\odot yr-1. At 48 pc distant, QS Vir is then the second nearest accreting cataclysmic variable known, with one of the lowest accretion rates found to date for a non-magnetic system. To feed this accretion through a wind would require a wind mass-loss rate of \\dot{M}\\sim 2\\times 10^{-12}\\,M_\\odot yr-1 if the accretion efficiency is of the order of 10%. Consideration of likely mass-loss rates for M dwarfs suggests this is improbably high and pure wind accretion unlikely. A lack of accretion disk signatures also presents some difficulties for direct Roche lobe overflow. We speculate that QS Vir is on the verge of Roche lobe overflow, and that the observed mass transfer could be supplemented by upward chromospheric flows on the M dwarf, analogous to spicules and mottles on the Sun, that escape the Roche surface to be subsequently swept up into the white dwarf Roche lobe. If so, QS Vir would be in a rare evolutionary phase lasting only a million years. The X-ray luminosity of the M dwarf estimated during primary eclipse is LX = 3 × 1028 erg s-1, which is consistent with that of rapidly rotating "saturated" K and M dwarfs.

  19. X-ray imaging and spectroscopic study of the SNR Kes 73 hosting the magnetar 1E 1841-045

    NASA Astrophysics Data System (ADS)

    Kumar, H. S.; Safi-Harb, S.; Slane, P. O.; Gotthelf, E. V.

    2014-01-01

    We present the first detailed Chandra and XMM-Newton study of the young Galactic supernova remnant (SNR) Kes 73 associated with the anomalous X-ray pulsar (AXP) 1E 1841-045. Images of the remnant in the radio (20 cm), infrared (24 μm), and X-rays (0.5-7 keV) reveal a spherical morphology with a bright western limb. High-resolution Chandra images show bright diffuse emission across the remnant, with several small-scale clumpy and knotty structures filling the SNR interior. The overall Chandra and XMM-Newton spectrum of the SNR is best described by a two-component thermal model with the hard component characterized by a low ionization timescale, suggesting that the hot plasma has not yet reached ionization equilibrium. The soft component is characterized by enhanced metal abundances from Mg, Si, and S, suggesting the presence of metal-rich supernova ejecta. We discuss the explosion properties of the supernova and infer the mass of its progenitor star. Such studies shed light on our understanding of SNRs associated with highly magnetized neutron stars.

  20. X-ray Properties and the Environment of Compact Radio Sources.

    NASA Astrophysics Data System (ADS)

    Siemiginowska, Aneta; Sobolewska, Malgorzata; Guainazzi, Matteo; Hardcastle, Martin; Migliori, Giulia; Ostorero, Luisa; Stawarz, Lukasz

    2018-01-01

    Compact extragalactic radio sources provide important insights into the initial stages of radio source evolution and probe states of a black hole activity at the time of the formation of the relativistic outflow. Such outflows propagate out to hundreds kpc distances from the origin and impact environment on many scales, and thus influence evolution of structures in the universe. These compact sources show radio features typically observed in large-scale radio galaxies (jets, lobes, hot spots), but contained within the central 1 kpc region of the host galaxy. Compact Symmetric Objects (CSOs, a subclass of GigaHertz Peaked spectrum radio sources) are symmetric and not affected by beaming. Their linear radio size can be translated into a source age if one measures the expansion velocity of the radio structures. Such ages has been measured for a small sample of CSOs. Using the Chandra X-ray Observatory and XMM-Newton we observed a pilot samples of 16 CSOs in X-rays (6 for the first time). Our results show heterogeneous nature of the CSOs X-ray emission indicating a range of AGN luminosities and a complex environment. In particular, we identified four Compton Thick sources with a dense medium (equivalent column > 1e24 cm^-2) capable of disturbing/slowing down the jet and confining the jet to a small region. Thus for the first time we gain the observational evidence in X-ray domain in favor of the hypothesis that in a sub-population of CSOs the radio jets may be confined by the dense X-ray obscuring medium. As a consequence, the kinematic ages of these CSOs may be underestimated.. We discuss the implications of our results on the emission models of CSOs, the earliest stages of the radio source evolution, jet interactions with the ISM, diversity of the environments in which the jets expand, and jet-galaxy co-evolution.Partial support for this work was provided by the NASA grants GO1-12145X, GO4-15099X, NNX10AO60G, NNX17AC23G and XMM AO15 project 78461. This work supported

  1. Detection of blueshifted emission and absorption and a relativistic iron line in the X-ray spectrum of ESO323-G077

    NASA Astrophysics Data System (ADS)

    Jiménez-Bailón, E.; Krongold, Y.; Bianchi, S.; Matt, G.; Santos-Lleó, M.; Piconcelli, E.; Schartel, N.

    2008-12-01

    We report on the X-ray observation of the Seyfert 1 galaxy ESO323-G077 performed with XMM-Newton. The EPIC spectra show a complex spectrum with conspicuous absorption and emission features. The continuum emission can be modelled with a power law with an index of 1.99 +/- 0.02 in the whole XMM-Newton energy band, marginally consistent with typical values of type I objects. An absorption component with an uncommonly high equivalent hydrogen column (nH = 5.82+0.12-0.11 × 1022cm-2) is affecting the soft part of the spectrum. Additionally, two warm absorption components are also present in the spectrum. The lower ionized one, mainly imprinting the soft band of the spectrum, has an ionization parameter of logU = 2.14+0.06-0.07 and an outflowing velocity of v = 3200+600-200kms-1. Two absorption lines located at ~6.7 and ~7.0keV can be modelled with the highly ionized absorber. The ionization parameter and outflowing velocity of the gas measured are logU = 3.26+0.19-0.15 and v = 1700+600-400kms-1, respectively. Four emission lines were also detected in the soft energy band. The most likely explanation for these emission lines is that they are associated with an outflowing gas with a velocity of ~2000kms-1. The data suggest that the same gas which is causing the absorption could also being responsible of these emission features. Finally, the XMM-Newton spectrum shows the presence of a relativistic iron emission line likely originated in the accretion disc of a Kerr black hole with an inclination of ~25°. We propose a model to explain the observed X-ray properties which invokes the presence of a two-phase outflow with cone-like structure and a velocity of the order of 2000- 4000kms-1. The inner layer of the cone would be less ionized, or even neutral, than the outer layer. The inclination angle of the source would be lower than the opening angle of the outflowing cone. Partially based on observations obtained with XMM-Newton, an ESA science mission with instruments and

  2. Simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822-09

    NASA Astrophysics Data System (ADS)

    Hermsen, W.; Kuiper, L.; Hessels, J. W. T.; Mitra, D.; Rankin, J. M.; Stappers, B. W.; Wright, G. A. E.; Basu, R.; Szary, A.; van Leeuwen, J.

    2017-04-01

    We report on simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822-09 with ESA's XMM-Newton and the Westerbork Synthesis Radio Telescope, Giant Metrewave Radio Telescope and Lovell radio telescopes. PSR B1822-09 switches between a radio-bright and radio-quiet mode, and we discovered a relationship between the durations of its modes and a known underlying radio-modulation time-scale within the modes. We discovered X-ray (energies 0.2-1.4 keV) pulsations with a broad sinusoidal pulse, slightly lagging the radio main pulse in phase by 0.094 ± 0.017, with an energy-dependent pulsed fraction varying from ˜0.15 at 0.3 keV to ˜0.6 at 1 keV. No evidence is found for simultaneous X-ray and radio mode switching. The total X-ray spectrum consists of a cool component (T ˜0.96 × 106 K, hotspot radius R ˜2.0 km) and a hot component (T ˜2.2 × 106 K, R ˜100 m). The hot component can be ascribed to the pulsed emission and the cool component to the unpulsed emission. The high-energy characteristics of PSR B1822-09 resemble those of middle-aged pulsars such as PSR B0656+14, PSR B1055-52 and Geminga, including an indication for pulsed high-energy gamma-ray emission in Fermi Large Area Telescope data. Explanations for the high pulsed fraction seem to require different temperatures at the two poles of this orthogonal rotator, or magnetic anisotropic beaming effects in its strong magnetic field. In our X-ray skymap, we found a harder source at only 5.1 ± 0.5 arcsec from PSR B1822-09, which might be a pulsar wind nebula.

  3. The First Detection of [O IV] from an Ultraluminous X-ray Source with Spitzer. I. Observational Results for Holmberg II ULX

    NASA Technical Reports Server (NTRS)

    Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.

    2009-01-01

    We presen the first Spitzer Infrared Spectrograph (IRS) observations of the [O IV] 25.89 um emission line detected from the ultraluminous X-ray source (ULX) in Holmberg II. This line is a well established signature of high excitation usually associated with AGN. Its detection suggests that the ULX has a strong impact on the surrounding gas. A Spitzer high resolution spectral map shows that the [O IV] is coincident with the X-ray position of the ULX. The ratios of the [O IV] to lower ionization lines are similar to those observed in AGN, suggesting that a strong UV and X-ray source is responsible for the, photoionization. The best XMM-Newton data is used to model the X-ray band which is then extrapolated into the UV. We perform infrared and ultraviolet photometry, and use its previously published optical and radio data to construct the full SED for the ULX and its companion. The preferred model to describe the SED includes an accretion disk which dominates the soft X-rays but contributes little at UV and optical wavelengths. The optical counterpart is consistent with a B supergiant as previously suggested in other studies. The bolometric luminosity of the ULX suggests the presence of an intermediate-mass black hole with mass >85 M for sub-Eddington accretion or, alternatively, a stellar-mass black hole that is accreting at super-Eddington rates. In a follow-up second paper we perform detailed photoionization modeling of the infrared lines in order to constrain the bolometric luminosity of the ULX.

  4. Planetary Observations in the Soft X-ray band; Present status and Future CMOS based technology

    NASA Astrophysics Data System (ADS)

    Kenter, A.; Kraft, R.; Murray, S.; Smith, R.; George, F.; Branduardi-Raymont, G.; Roediger, E.; Forman, W.; Elvis, M.

    2013-12-01

    Virtually every object in the Solar system emits X-rays, and X-ray studies of these objects often provides information that cannot be obtained by observations in other bands. The Solar Wind Charge Exchange (SWX) has revealed the nature and constituents of everything from comets, to the magnetosphere of the Earth and the gas giants. X-ray fluorescence observations of atmosphere-less rocky bodies have revealed their surface composition and gross morphology. Existing data, however, have been limited by observations with state of the art Earth-orbiting telescopes (e.g. Chandra, XMM-Newton, and Suzaku) or in-situ instruments with limited capabilities. We are developing CMOS imaging detectors optimized for use as soft x-ray imaging spectrometers. These devices, when coupled to a light-weight focusing optic or mechanical collimator, would be ideal for examining X-ray emission within the Solar System with unprecedented spatial, spectral and temporal resolution. CMOS devices, apart from their observational capabilities, would be ideal for a planetary mission as they consume very little power (~mW) and require only modest cooling. Furthermore, CMOS devices, unlike conventional CCDs, are extremely radiation hard (>5MRad) and could withstand even the hostile radiation environment of a Jovian orbit with little or no performance degradation. The devices can also be read at high (hundreds to thousands of frames per second) frame rates at low noise, a critical requirement given the high count rates (thousands of cts per second). Our CMOS imaging detectors are back thinned and optimized to detect very soft X-ray emission from light elements such as C,N,O,P,S as well as emission from higher Z elements such as Fe and Ti. This sensor can also resolve the strong CX emission lines of O present is the magnetospheric X-ray emission of the gas giants, as well as thermal and non-thermal bremsstrahlung. We could also detect and study the temporal evolution X-ray synchrotron emission from

  5. Classification of X-ray sources in the direction of M31

    NASA Astrophysics Data System (ADS)

    Vasilopoulos, G.; Hatzidimitriou, D.; Pietsch, W.

    2012-01-01

    M31 is our nearest spiral galaxy, at a distance of 780 kpc. Identification of X-ray sources in nearby galaxies is important for interpreting the properties of more distant ones, mainly because we can classify nearby sources using both X-ray and optical data, while more distant ones via X-rays alone. The XMM-Newton Large Project for M31 has produced an abundant sample of about 1900 X-ray sources in the direction of M31. Most of them remain elusive, giving us little signs of their origin. Our goal is to classify these sources using criteria based on properties of already identified ones. In particular we construct candidate lists of high mass X-ray binaries, low mass X-ray binaries, X-ray binaries correlated with globular clusters and AGN based on their X-ray emission and the properties of their optical counterparts, if any. Our main methodology consists of identifying particular loci of X-ray sources on X-ray hardness ratio diagrams and the color magnitude diagrams of their optical counterparts. Finally, we examined the X-ray luminosity function of the X-ray binaries populations.

  6. Lightweight and High-Resolution Single Crystal Silicon Optics for X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Zhang, William W.; Biskach, Michael P.; Chan, Kai-Wing; Mazzarella, James R.; McClelland, Ryan S.; Riveros, Raul E.; Saha, Timo T.; Solly, Peter M.

    2016-01-01

    We describe an approach to building mirror assemblies for next generation X-ray telescopes. It incorporates knowledge and lessons learned from building existing telescopes, including Chandra, XMM-Newton, Suzaku, and NuSTAR, as well as from our direct experience of the last 15 years developing mirror technology for the Constellation-X and International X-ray Observatory mission concepts. This approach combines single crystal silicon and precision polishing, thus has the potential of achieving the highest possible angular resolution with the least possible mass. Moreover, it is simple, consisting of several technical elements that can be developed independently in parallel. Lastly, it is highly amenable to mass production, therefore enabling the making of telescopes of very large photon collecting areas.

  7. A 70 Kiloparsec X-Ray Tail in the Cluster A3627

    NASA Technical Reports Server (NTRS)

    Sun, M.; Jones, C.; Forman, W.; Nulsen, P. E. J.; Donahue, M.; Voit, G. M.

    2006-01-01

    We present the discovery of a 70 kpc X-ray tail behind the small late-type galaxy ESO 137-001, in the nearby, hot (T=6.5 keV) merging cluster A3627, from both Chandra and XMM-Newton observations. The tail has a length-to-width ratio of approx. 10. It is luminous (L(0.5-2keV) approx 1041 ergs/s), with a temperature of approx. 0.7 keV and an X-ray gas mass of approx 10(exp 9) solar masses (approx 10% of the galaxy's stellar mass). We interpret this tail as the stripped interstellar medium of ESO 137-001 mixed with the hot cluster medium, with this blue galaxy being converted into a gas-poor galaxy. Three X-ray point sources are detected in the axis of the tail, which may imply active star formation there. The straightness and narrowness of the tail also imply that the turbulence in the intracluster medium is not strong on scales of 20-70 kpc.

  8. High Performance Non-Dispersive X-Ray Spectrometers for Charge Exchange Measurements

    NASA Technical Reports Server (NTRS)

    Porter Frederick; Adams, J.; Beiersdorfer, P.; Brown, G. V.; Karkatoua, D.; Kelley, R. L.; Kilbourne, C. A.; Lautenagger, M.

    2010-01-01

    Currently, the only measurements of cosmological charge exchange have been made using low resolution, non-dispersive spectrometers like the PSPC on ROSAT and the CCD instruments on Chandra and XMM/Newton. However, upcoming cryogenic spectrometers on Astro-H and IXO will add vast new capabilities to investigate charge exchange in local objects such as comets and planetary atmospheres. They may also allow us to observe charge exchange in extra-solar objects such as galactic supernova remnants. With low spectral resolution instruments such as CCDs, x-ray emission due to charge exchange recombination really only provides information on the acceptor species, such as the solar wind. With the new breed of x-ray calorimeter instruments, emission from charge exchange becomes highly diagnostic allowing one to uniquely determine the acceptor species, ionization state, donor species and ionization state, and the relative velocity of the interaction. We will describe x-ray calorimeter instrumentation and its potential for charge exchange measurements in the near term. We will also touch on the instrumentation behind a decade of high resolution measurements of charge exchange using an x-ray calorimeter at the Lawrence Livermore National Laboratory.

  9. XMM-Newton X-ray and HST weak gravitational lensing study of the extremely X-ray luminous galaxy cluster Cl J120958.9+495352 ( z = 0.902)

    DOE PAGES

    Tholken, Sophia; Schrabback, Tim; Reiprich, Thomas H.; ...

    2018-03-05

    Here, observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased.

  10. XMM-Newton X-ray and HST weak gravitational lensing study of the extremely X-ray luminous galaxy cluster Cl J120958.9+495352 ( z = 0.902)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tholken, Sophia; Schrabback, Tim; Reiprich, Thomas H.

    Here, observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased.

  11. HIGH-RESOLUTION X-RAY SPECTROSCOPY REVEALS THE SPECIAL NATURE OF WOLF-RAYET STAR WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oskinova, L. M.; Hamann, W.-R.; Gayley, K. G.

    We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, 'cool' stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line atmore » Almost-Equal-To 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow 'sticky clumps' that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.« less

  12. THE X-RAY LINE FEATURE AT 3.5 KeV IN GALAXY CLUSTER SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, K. J. H.; Sylwester, B.; Sylwester, J., E-mail: kennethjhphillips@yahoo.com, E-mail: bs@cbk.pan.wroc.pl, E-mail: js@cbk.pan.wroc.pl

    2015-08-10

    Recent work by Bulbul et al. and Boyarsky et al. has suggested that a line feature at ∼3.5 keV in the X-ray spectra of galaxy clusters and individual galaxies seen with XMM-Newton is due to the decay of sterile neutrinos, a dark matter candidate. This identification has been criticized by Jeltema and Profumo on the grounds that model spectra suggest that atomic transitions in helium-like potassium (K xviii) and chlorine (Cl xvi) are more likely to be the emitters. Here it is pointed out that the K xviii lines have been observed in numerous solar flare spectra at high spectralmore » resolution with the RESIK crystal spectrometer and also appear in Chandra HETG spectra of the coronally active star σ Gem. In addition, the solar flare spectra at least indicate a mean coronal potassium abundance, which is a factor between 9 and 11 higher than the solar photospheric abundance. This fact, together with the low statistical quality of the XMM-Newton spectra, completely account for the ∼3.5 keV feature and there is therefore no need to invoke a sterile neutrino interpretation of the observed line feature at ∼3.5 keV.« less

  13. A HARD X-RAY POWER-LAW SPECTRAL CUTOFF IN CENTAURUS X-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakrabarty, Deepto; Nowak, Michael A.; Tomsick, John A.

    2014-12-20

    The low-mass X-ray binary (LMXB) Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unknown origin. We report here on a simultaneous observation of Cen X-4 with NuSTAR (3-79 keV) and XMM-Newton (0.3-10 keV) in 2013 January, providing the first sensitive hard X-ray spectrum of a quiescent neutron star transient. The 0.3-79 keV luminosity was 1.1×10{sup 33} D{sub kpc}{sup 2} erg s{sup –1}, with ≅60% in the thermalmore » component. We clearly detect a cutoff of the hard spectral tail above 10 keV, the first time such a feature has been detected in this source class. We show that thermal Comptonization and synchrotron shock origins for the hard X-ray emission are ruled out on physical grounds. However, the hard X-ray spectrum is well fit by a thermal bremsstrahlung model with kT{sub e} = 18 keV, which can be understood as arising either in a hot layer above the neutron star atmosphere or in a radiatively inefficient accretion flow. The power-law cutoff energy may be set by the degree of Compton cooling of the bremsstrahlung electrons by thermal seed photons from the neutron star surface. Lower thermal luminosities should lead to higher (possibly undetectable) cutoff energies. We compare Cen X-4's behavior with PSR J1023+0038, IGR J18245–2452, and XSS J12270–4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity.« less

  14. Finding X-ray counterparts for unidentified sources in the 105 months BAT survey - 1

    NASA Astrophysics Data System (ADS)

    Stephen, J. B.; Bassani, L.; Malizia, A.; Masetti, N.; Ubertini, P.

    2018-02-01

    We provide X-ray counterparts for the unidentified Swift/BAT sources listed in the 105 month catalogue (Oh et al. 2018, ApJS in press). These associations were found by cross-correlating the list of U1,U2 and U3 sources with the ROSAT Bright (RASSBSC, Voges et al. 1999, A & A, 349, 389) and the XMM-Newton Slew (XMMSlew, Saxton et al. 2008, A & A, 480, 611) catalogues.

  15. The corona of HD 189733 and its X-ray activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillitteri, I.; Wolk, S. J.; Günther, H. M.

    2014-04-20

    Testing whether close-in massive exoplanets (hot Jupiters) can enhance the stellar activity in their host primary is crucial for the models of stellar and planetary evolution. Among systems with hot Jupiters, HD 189733 is one of the best studied because of its proximity, strong activity, and the presence of a transiting planet, which allows transmission spectroscopy and a measure of the planetary radius and its density. Here we report on the X-ray activity of the primary star, HD 189733 A, using a new XMM-Newton observation and a comparison with the previous X-ray observations. The spectrum in the quiescent intervals ismore » described by two temperatures at 0.2 keV and 0.7 keV, while during the flares a third component at 0.9 keV is detected. With the analysis of the summed Reflection Grating Spectrometer spectra, we obtain estimates of the electron density in the range n{sub e} = (1.6-13) × 10{sup 10} cm{sup –3}, and thus the corona of HD 189733 A appears denser than the solar one. For the third time, we observe a large flare that occurred just after the eclipse of the planet. Together with the flares observed in 2009 and 2011, the events are restricted to a small planetary phase range of φ = 0.55-0.65. Although we do not find conclusive evidence of a significant excess of flares after the secondary transits, we suggest that the planet might trigger such flares when it passes close to the locally high magnetic field of the underlying star at particular combinations of stellar rotational phases and orbital planetary phases. For the most recent flares, a wavelet analysis of the light curve suggests a loop of length of four stellar radii at the location of the bright flare, and a local magnetic field of the order of 40-100 G, in agreement with the global field measured in other studies. The loop size suggests an interaction of magnetic nature between planet and star, separated by only ∼8R {sub *}. The X-ray variability of HD 189733 A is larger than the

  16. The calibration of read-out-streak photometry in the XMM-Newton Optical Monitor and the construction of a bright-source catalogue

    NASA Astrophysics Data System (ADS)

    Page, M. J.; Chan, N.; Breeveld, A. A.; Talavera, A.; Yershov, V.; Kennedy, T.; Kuin, N. P. M.; Hancock, B.; Smith, P. J.; Carter, M.

    2017-04-01

    The dynamic range of the XMM-Newton Optical Monitor (XMM-OM) is limited at the bright end by coincidence loss, the superposition of multiple photons in the individual frames recorded from its micro-channel-plate (MCP) intensified charge-coupled device (CCD) detector. One way to overcome this limitation is to use photons that arrive during the frame transfer of the CCD, forming vertical read-out streaks for bright sources. We calibrate these read-out streaks for photometry of bright sources observed with XMM-OM. The bright-source limit for read-out-streak photometry is set by the recharge time of the MCPs. For XMM-OM, we find that the MCP recharge time is 5.5 × 10-4 s. We determine that the effective bright limits for read-out-streak photometry with XMM-OM are approximately 1.5 mag brighter than the bright-source limits for normal aperture photometry in full-frame images. This translates into bright-source limits in Vega magnitudes of UVW2=7.1, UVM2=8.0, UVW1=9.4, U=10.5, B=11.5, V=10.2, and White=12.5 for data taken early in the mission. The limits brighten by up to 0.2 mag, depending on filter, over the course of the mission as the detector ages. The method is demonstrated by deriving UVW1 photometry for the symbiotic nova RR Telescopii, and the new photometry is used to constrain the e-folding time of its decaying ultraviolet (UV) emission. Using the read-out-streak method, we obtain photometry for 50 per cent of the missing UV source measurements in version 2.1 of the XMM-Newton Serendipitous UV Source Survey catalogue.

  17. Variable X-Ray Absorption in the Mini-BAL QSO PG 1126-041

    NASA Technical Reports Server (NTRS)

    Giustini, M.; Cappi, M.; Chartas, G.; Dadina, M.; Eracleous, M.; Ponti, G.; Proga, D.; Tombesi, F.; Vignali, C.; Palumbo, G. G. C.

    2011-01-01

    Context. X-ray studies of AGN with powerful nuclear winds are important to constrain the physics of the inner accretion/ejection flow around SMBH, and to understand the impact of such winds on the AGN environment. Aims. Our main scientific goal is to constrain the properties of a variable outflowing absorber that is thought to be launched near the SMBH of the mini-BAL QSO PG 1126-041 using a multi-epoch observational campaign performed with XMM-Newton. Methods. We performed temporally resolved X-ray spectroscopy and simultaneous UV and X-ray photometry on the most complete set of observations and on the deepest X-ray exposure of a mini-BAL QSO to date. Results. We found complex X-ray spectral variability on time scales of both months and hours, best reproduced by means of variable massive ionized absorbers along the line of sight. As a consequence, the observed optical-to-X-ray spectral index is found to be variable with time. In the highest signal-to-noise observation we detected highly ionized X-ray absorbing material outflowing much faster (u(sub X) approx. 16 500 km/s) than the UV absorbing one (u(sub uv) approx. 5,000 km/s). This highly ionized absorber is found to be variable on very short (a few kiloseconds) time scales. Conclusions. Our findings are qualitatively consistent with line driven accretion disk winds scenarios. Our observations have opened the time-resolved X-ray spectral analysis field for mini-BAL QSOs; only with future deep studies will we be able to map the dynamics of the inner flow and understand the physics of AGN winds and their impact on the environment.

  18. The enigma of the magnetic pulsar SXP1062: a new look with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Oskinova, Lidia

    2012-10-01

    SXP 1062 is an exceptional case of a young neutron star with known age in a wind-fed HMXB. A unique combination of measured spin period, its derivative, luminosity and young age makes this source a key probe for the physics of accretion and neutron star evolution. All current accretion scenarios encounter major difficulties explaining the spin-down rate of this accretion-powered pulsar. This study will allow us to construct a spin period-luminosity relation as a powerful tool for distinguishing between different accretion and evolution scenarios. The XMM-Newton observations of SXP 1062 will thus shed new light on the physics of accreting neutron stars.

  19. ESA unveils its big XMM spacecraft

    NASA Astrophysics Data System (ADS)

    1998-02-01

    XMM, the X-ray Multi-Mirror mission, is due do be lanched in 1999. It is a European conception with innovative telescopes. XMM will revolutionize the study of X-rays coming from the Universe, by harvesting far more X-rays per hour than any previous mission. Its enormous capacity will enable astronomers to analyse many strong sources of cosmic X-rays very quickly, and to discover and characterize many faint sources previously beyond their reach. As the most popular and competitive branch of space astronomy, X-ray astronomy reveals special places in the Universe where very high temperatures or violent forces generate energetic radiation. These sources include black holes, exploding stars, paris of stars orbiting very close together, and the central region of clusters of galaxies. XMM's optical monitor, viewing the scenes by visible light, will help in the interpretations. The combination of X-ray telescopes and optical monitoring should be well-suited to tracking down gamma-ray bursters - extraordinary explosions in space that mystify the astronomers. Full descriptions of the X-ray sources will depend on precise spectral analysis of the relative intensities of X-rays of different energies, including the signatures of identifiable chemical elements. Such spectral analysis is XMM's task, using instruments of the highest quality fed by the remarkable telescopes. As seen at ESTEC today, the spacecraft stands upside down. Its front end, where the mirror modules of the X-ray telescopes pass through the satellite's service module, is closest to the ground. At the top is the section containing detectors at the focus of the X-ray telescopes. Surmounting the assembly, a pair of cones will carry heat away from the detectors. XMM's appearance is, though, dominated by the long tube that spans the telescope's focal length, and by the black thermal blanket that will protect the spacecraft from unequal heating on the sunny and shaded sides. A miracle of telescope engineering « You

  20. TWELVE AND A HALF YEARS OF OBSERVATIONS OF CENTAURUS A WITH THE ROSSI X-RAY TIMING EXPLORER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothschild, R. E.; Markowitz, A.; Rivers, E.

    2011-05-20

    The Rossi X-ray Timing Explorer (RXTE) has observed the nearest radio galaxy, Centaurus A (Cen A), in 13 intervals from 1996 August to 2009 February over the 3-200 keV band. Spectra accumulated over the 13 intervals were well described with an absorbed power law and an iron line. Cutoff power laws and Compton reflection from cold matter did not provide a better description. For the 2009 January observation, we set a lower limit on the cutoff energy at over 2 MeV. The power spectral density function was generated from RXTE/All Sky Monitor and Proportional Counter Array data as well asmore » an XMM-Newton long look, and clear evidence for a break at 18{sup +18}{sub -7} days (68% conf.) was seen. Given Cen A's high black hole mass and very low value of L{sub X}/L{sub Edd}, the break was a factor of 17{sup +36}{sub -13} times higher than the break frequency predicted by the McHardy et al. relation, which was empirically derived for a sample of objects, which are radio-quiet and accreting at relatively high values of L{sub bol}/L{sub Edd}. We have interpreted our observations in the context of a clumpy molecular torus. The variability characteristics and the broadband spectral energy distribution, when compared to Seyferts, imply that the bright hard X-ray continuum emission may originate at the base of the jet, yet from behind the absorbing line-of-sight material, in contrast to what is commonly observed from blazars.« less