Sample records for xps measurements reveal

  1. Dynamic XPS measurements of ultrathin polyelectrolyte films containing antibacterial Ag–Cu nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taner-Camcı, Merve; Suzer, Sefik, E-mail: suzer@fen.bilkent.edu.tr

    Ultrathin films consisting of polyelectrolyte layers prepared by layer-by-layer deposition technique and containing also Ag and Cu nanoparticles exhibit superior antibacterial activity toward Escherichia coli. These films have been investigated with XPS measurements under square wave excitation at two different frequencies, in order to further our understanding about the chemical/physical nature of the nanoparticles. Dubbed as dynamical XPS, such measurements bring out similarities and differences among the surface structures by correlating the binding energy shifts of the corresponding XPS peaks. Accordingly, it is observed that the Cu2p, Ag3d of the metal nanoparticles, and S2p of cysteine, the stabilizer and themore » capping agent, exhibit similar shifts. On the other hand, the C1s, N1s, and S2p peaks of the polyelectrolyte layers shift differently. This finding leads us the claim that the Ag and Cu atoms are in a nanoalloy structure, capped with cystein, as opposed to phase separated entities.« less

  2. Versailles Project on Advanced Materials and Standards Interlaboratory Study on Measuring the Thickness and Chemistry of Nanoparticle Coatings Using XPS and LEIS.

    PubMed

    Belsey, Natalie A; Cant, David J H; Minelli, Caterina; Araujo, Joyce R; Bock, Bernd; Brüner, Philipp; Castner, David G; Ceccone, Giacomo; Counsell, Jonathan D P; Dietrich, Paul M; Engelhard, Mark H; Fearn, Sarah; Galhardo, Carlos E; Kalbe, Henryk; Won Kim, Jeong; Lartundo-Rojas, Luis; Luftman, Henry S; Nunney, Tim S; Pseiner, Johannes; Smith, Emily F; Spampinato, Valentina; Sturm, Jacobus M; Thomas, Andrew G; Treacy, Jon P W; Veith, Lothar; Wagstaffe, Michael; Wang, Hai; Wang, Meiling; Wang, Yung-Chen; Werner, Wolfgang; Yang, Li; Shard, Alexander G

    2016-10-27

    We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) inter-laboratory study on the measurement of the shell thickness and chemistry of nanoparticle coatings. Peptide-coated gold particles were supplied to laboratories in two forms: a colloidal suspension in pure water and; particles dried onto a silicon wafer. Participants prepared and analyzed these samples using either X-ray photoelectron spectroscopy (XPS) or low energy ion scattering (LEIS). Careful data analysis revealed some significant sources of discrepancy, particularly for XPS. Degradation during transportation, storage or sample preparation resulted in a variability in thickness of 53 %. The calculation method chosen by XPS participants contributed a variability of 67 %. However, variability of 12 % was achieved for the samples deposited using a single method and by choosing photoelectron peaks that were not adversely affected by instrumental transmission effects. The study identified a need for more consistency in instrumental transmission functions and relative sensitivity factors, since this contributed a variability of 33 %. The results from the LEIS participants were more consistent, with variability of less than 10 % in thickness and this is mostly due to a common method of data analysis. The calculation was performed using a model developed for uniform, flat films and some participants employed a correction factor to account for the sample geometry, which appears warranted based upon a simulation of LEIS data from one of the participants and comparison to the XPS results.

  3. Versailles Project on Advanced Materials and Standards Interlaboratory Study on Measuring the Thickness and Chemistry of Nanoparticle Coatings Using XPS and LEIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belsey, Natalie A.; Cant, David J. H.; Minelli, Caterina

    We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) inter-laboratory study on the measurement of the shell thickness and chemistry of nanoparticle coatings. Peptide-coated gold particles were supplied to laboratories in two forms: a colloidal suspension in pure water and; particles dried onto a silicon wafer. Participants prepared and analyzed these samples using either X-ray photoelectron spectroscopy (XPS) or low energy ion scattering (LEIS). Careful data analysis revealed some significant sources of discrepancy, particularly for XPS. Degradation during transportation, storage or sample preparation resulted in a variability in thickness of 53 %. The calculation methodmore » chosen by XPS participants contributed a variability of 67 %. However, variability of 12 % was achieved for the samples deposited using a single method and by choosing photoelectron peaks that were not adversely affected by instrumental transmission effects. The study identified a need for more consistency in instrumental transmission functions and relative sensitivity factors, since this contributed a variability of 33 %. The results from the LEIS participants were more consistent, with variability of less than 10 % in thickness and this is mostly due to a common method of data analysis. The calculation was performed using a model developed for uniform, flat films and some participants employed a correction factor to account for the sample geometry, which appears warranted based upon a simulation of LEIS data from one of the participants and comparison to the XPS results.« less

  4. Structural, XPS and magnetic studies of pulsed laser deposited Fe doped Eu{sub 2}O{sub 3} thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sandeep; Prakash, Ram, E-mail: rpgiuc@gmail.com; Choudhary, R.J.

    2015-10-15

    Highlights: • Growth of Fe doped Eu{sub 2}O{sub 3} thin films by PLD. • XRD and Raman’s spectroscopy used for structure confirmation. • The electronic states of Eu and Fe are confirmed by XPS. • Magnetic properties reveals room temperature magnetic ordering in deposited film. - Abstract: Fe (4 at.%) doped europium (III) oxide thin film was deposited on silicon (1 0 0) substrate by pulsed laser deposition technique. Structural, spectral and magnetic properties were studied by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and magnetization measurements. XRD and Raman spectroscopy reveal that the grown film is singlemore » phased and belongs to the cubic structure of Eu{sub 2}O{sub 3}. XPS study of the Eu{sub 1.92}Fe{sub 0.08}O{sub 3} film shows that Fe exists in Fe{sup 3+} ionic state in the film. The film exhibits magnetic ordering at room temperature.« less

  5. The Effect of Thermal and Mechanical Treatments on Kaolinite: Characterization by XPS and IEP Measurements.

    PubMed

    Torres Sánchez RM; Basaldella; Marco

    1999-07-15

    The surface transformations induced on kaolinite by different thermal and mechanical treatments have been investigated by means of X-ray photoelectron spectroscopy (XPS), Bremsstrahlung induced Auger spectroscopy, and isoelectric point (IEP) measurements. Heating the kaolinite at temperatures between 500 and 750 degrees C results in the change of a substantial fraction of surface Al from octahedral to tetrahedral coordination, which we associate with the dehydroxylation of kaolinite. Heating at 900 and 980 degrees C brings about the development of an octahedral Al fraction which is associated with the formation of gamma-Al(2)O(3). The development of an Al tetrahedral component in the Al KLL spectra of the mechanically treated (ground) samples has been also observed. The Si/Al atomic ratio obtained by XPS in the thermally treated samples is the same as that shown by the original kaolinite. However, the XPS data show a clear reduction of the Si/Al atomic ratio in the mechanically treated samples, which suggests that the mechanical treatment has induced an Al enrichment of the kaolinite surface. The IEP values indicated a thermal transformation to metakaolinite and mullite with the increase of temperature (750 to 980 degrees C). The IEP change for the milled samples can be only explained by assuming a 30% kaolinite coating by the Al oxide neoformed by grinding. Copyright 1999 Academic Press.

  6. Versatile technique for assessing thickness of 2D layered materials by XPS

    NASA Astrophysics Data System (ADS)

    Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.; Hu, Jianjun; Paul, Rajib; Kumar, Anurag; Pacley, Shanee; Glavin, Nicholas; Saenz, David; Smith, Kyle C.; Fisher, Timothy S.; Voevodin, Andrey A.

    2018-03-01

    X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) and the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Therefore, after XPS analysis, exactly the same sample can undergo further processing or utilization.

  7. Versatile technique for assessing thickness of 2D layered materials by XPS

    DOE PAGES

    Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.; ...

    2018-02-07

    X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS 2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) andmore » the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Furthermore, after XPS analysis, exactly the same sample can undergo further processing or utilization.« less

  8. Versatile technique for assessing thickness of 2D layered materials by XPS.

    PubMed

    Zemlyanov, Dmitry Y; Jespersen, Michael; Zakharov, Dmitry N; Hu, Jianjun; Paul, Rajib; Kumar, Anurag; Pacley, Shanee; Glavin, Nicholas; Saenz, David; Smith, Kyle C; Fisher, Timothy S; Voevodin, Andrey A

    2018-03-16

    X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS 2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) and the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Therefore, after XPS analysis, exactly the same sample can undergo further processing or utilization.

  9. Versatile technique for assessing thickness of 2D layered materials by XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.

    X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS 2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) andmore » the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Furthermore, after XPS analysis, exactly the same sample can undergo further processing or utilization.« less

  10. Transcription analysis of pilS and xpsEL genes from Xylella fastidiosa.

    PubMed

    Coltri, Patricia P; Rosato, Yoko B

    2005-04-01

    Xylella fastidiosa is a xylem-limited phytopathogen responsible for diseases in several plants such as citrus and coffee. Analysis of the bacterial genome revealed some putative pathogenicity-related genes that could help to elucidate the molecular mechanisms of plant-pathogen interactions. In the present work, the transcription of three genes of the bacterium, grown in defined and rich media and also in media containing host plant extracts (sweet orange, 'ponkan' and coffee) was analyzed by RT-PCR. The pilS gene, which encodes a sensor histidine kinase responsible for the biosynthesis of fimbriae, was transcribed when the bacterium was grown in more complex media such as PW and in medium containing plant extracts. The xps genes (xpsL and xpsE) which are related to the type II secretion system were also detected when the bacterium was grown in rich media and media with 'ponkan' and coffee extracts. It was thus observed that pilS and xpsEL genes of X. fastidiosa can be modulated by environmental factors and their expression is dependent on the nutritional status of the growth medium.

  11. Evaluation of the surface properties of PTFE foam coating filter media using XPS and contact angle measurements

    NASA Astrophysics Data System (ADS)

    Park, Byung Hyun; Lee, Myong-Hwa; Kim, Sang Bum; Jo, Young Min

    2011-02-01

    A newly developed PTFE foam coating filter was developed which can be used for hot gas cleaning at temperatures up to 250 °C. The emulsion-type PTFE was coated onto a woven glass fiber using a foam coating method. The filter surface was closely examined using X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The XPS results were used to determine the binding force between the carbon and fluorine of PTFE, which imparts coating stability to the filter medium. More than 95% of the bonds of the PTFE foam coating filter were between carbon and fluorine, and this filter demonstrated excellent hydrophobic and good oleophobic properties at the same time. The contact angles of liquid droplets on the filter surface were used to predict the potential wetability of the filter against water or oil. In addition, the very low surface free energy of the filter medium, which was evaluated using the Owens-Wendt method, demonstrates a very stable surface and a high de-dusting quality.

  12. AFM AND XPS Characterization of Zinc-Aluminum Alloy Coatings with Attention to Surface Dross and Flow Lines

    NASA Astrophysics Data System (ADS)

    Harding, Felipe A.; Alarcon, Nelson A.; Toledo, Pedro G.

    Surfaces of various zinc-aluminum alloy (Zn-Al) coated steel samples are studied with attention to foreign surface dross by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS/ESCA). AFM topographic maps of zinc-aluminum alloy surfaces free of dross reveal the perfect nanoscale details of two kinds of dendrites: branched and globular. In all magnifications the dendrites appear smooth and, in general, very clean. XPS analysis of the extreme surface of a Zn-Al sample reveals Al, Zn, Si and O as the main components. The XPS results show no segregation or separation of phases other than those indicated by the ternary Al-Zn-Si diagram. For surfaces of Zn-Al plagued with impurities, high resolution AFM topographic maps reveal three situations: (1) areas with well-defined dendrites, relatively free of dross; (2) areas with small, millimeter-sized black spots known as dross; and (3) areas with large black stains, known as flow lines. Dendrite deformation and dross accumulation increase notably in the neighborhood, apparently clean to the naked eye, of dross or flow lines. XPS results of areas with dross and flow lines indicate unacceptable high concentration of Si and important Si phase separation. These results, in the light of AFM work, reveal that dross and flow lines are a consequence of a high local concentration of Si from high melting point silica and silicate impurities in the Zn-Al alloy source.

  13. Measurement of Thicknesses of High-κ Gate-Dielectric Films on Silicon by Angle-Resolved XPS

    NASA Astrophysics Data System (ADS)

    Powell, Cedric; Smekal, Werner; Werner, Wolfgang

    2006-03-01

    We report on the use of a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA) in measuring thicknesses of candidate high-κ gate-dielectric materials (HfO2, HfSiO4, ZrO2, and ZrSiO4) on silicon by angle-resolved XPS. For conventional measurements of film thicknesses, effective attenuation lengths (EALs) have been computed for these materials from SESSA as a function of film thickness and photoelectron emission angle (i.e., to simulate the effects of tilting the sample). These EALs are believed to be more accurate than similar EALs obtained from the transport approximation because realistic cross sections are used for both elastic and inelastic scattering in the film and substrate materials. We also present ``calibration curves'' showing calculated ratios of selected photoelectron intensities from thin films of HfO2 on Si with an intermediate SiO2 layer. These ratios provide a simple and convenient means of determining the thicknesses of SiO2 and HfO2 films for particular measurement conditions.

  14. X-ray Photoelectron Spectroscopy (XPS), Rutherford Back Scattering (RBS) studies

    NASA Technical Reports Server (NTRS)

    Neely, W. C.; Bozak, M. J.; Williams, J. R.

    1993-01-01

    X-ray photoelectron spectroscopy (XPS), Rutherford Back Scattering (RBS) studies of each of sample received were completed. Since low angle X-ray could not be performed because of instrumentation problems, Auger spectrometry was employed instead. The results of these measurements for each of the samples is discussed in turn.

  15. Applications Performance on NAS Intel Paragon XP/S - 15#

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Simon, Horst D.; Copper, D. M. (Technical Monitor)

    1994-01-01

    The Numerical Aerodynamic Simulation (NAS) Systems Division received an Intel Touchstone Sigma prototype model Paragon XP/S- 15 in February, 1993. The i860 XP microprocessor with an integrated floating point unit and operating in dual -instruction mode gives peak performance of 75 million floating point operations (NIFLOPS) per second for 64 bit floating point arithmetic. It is used in the Paragon XP/S-15 which has been installed at NAS, NASA Ames Research Center. The NAS Paragon has 208 nodes and its peak performance is 15.6 GFLOPS. Here, we will report on early experience using the Paragon XP/S- 15. We have tested its performance using both kernels and applications of interest to NAS. We have measured the performance of BLAS 1, 2 and 3 both assembly-coded and Fortran coded on NAS Paragon XP/S- 15. Furthermore, we have investigated the performance of a single node one-dimensional FFT, a distributed two-dimensional FFT and a distributed three-dimensional FFT Finally, we measured the performance of NAS Parallel Benchmarks (NPB) on the Paragon and compare it with the performance obtained on other highly parallel machines, such as CM-5, CRAY T3D, IBM SP I, etc. In particular, we investigated the following issues, which can strongly affect the performance of the Paragon: a. Impact of the operating system: Intel currently uses as a default an operating system OSF/1 AD from the Open Software Foundation. The paging of Open Software Foundation (OSF) server at 22 MB to make more memory available for the application degrades the performance. We found that when the limit of 26 NIB per node out of 32 MB available is reached, the application is paged out of main memory using virtual memory. When the application starts paging, the performance is considerably reduced. We found that dynamic memory allocation can help applications performance under certain circumstances. b. Impact of data cache on the i860/XP: We measured the performance of the BLAS both assembly coded and Fortran

  16. Acetate- and thiol-capped monodisperse ruthenium nanoparticles: XPS, XAS, and HRTEM studies.

    PubMed

    Chakroune, Nassira; Viau, Guillaume; Ammar, Souad; Poul, Laurence; Veautier, Delphine; Chehimi, Mohamed M; Mangeney, Claire; Villain, Françoise; Fiévet, Fernand

    2005-07-19

    Monodisperse ruthenium nanoparticles were prepared by reduction of RuCl3 in 1,2-propanediol. The mean particle size was controlled by appropriate choice of the reduction temperature and the acetate ion concentration. Colloidal solutions in toluene were obtained by coating the metal particles with dodecanethiol. High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XANES and EXAFS for the Ru K-absorption edge) were performed on particles of two different diameters, 2 and 4 nm, and in different environments, polyol/acetate or thiol. For particles stored in polyol/acetate XPS studies revealed superficial oxidation limited to one monolayer and a surface coating containing mostly acetate ions. Analysis of the EXAFS spectra showed both oxygen and ruthenium atoms around the ruthenium atoms with a Ru-Ru coordination number N smaller than the bulk value, as expected for fine particles. In the case of 2 nm acetate-capped particles N is consistent with particles made up of a metallic core and an oxidized monolayer. For 2 nm thiol-coated particles, a Ru-S bond was evidenced by XPS and XAS. For the 4 nm particles XANES and XPS studies showed that most of the ruthenium atoms are in the zerovalent state. Nevertheless, in both cases, when capped with thiol, the Ru-Ru coordination number inferred from EXAFS is much smaller than for particles of the same size stored in polyol. This is attributed to a structural disorganization of the particles by thiol chemisorption. HRTEM studies confirm the marked dependence of the structural properties of the ruthenium particles on their chemical environment; they show the acetate-coated particles to be single crystals, whereas the thiol-coated particles appear to be polycrystalline.

  17. Analysis of XPS spectra of Fe 2+ and Fe 3+ ions in oxide materials

    NASA Astrophysics Data System (ADS)

    Yamashita, Toru; Hayes, Peter

    2008-02-01

    Samples of the iron oxides Fe 0.94O, Fe 3O 4, Fe 2O 3, and Fe 2SiO 4 were prepared by high temperature equilibration in controlled gas atmospheres. The samples were fractured in vacuum and high resolution XPS spectra of the fractured surfaces were measured. The peak positions and peak shape parameters of Fe 3p for Fe 2+ and Fe 3+ were derived from the Fe 3p XPS spectra of the standard samples of 2FeO·SiO 2 and Fe 2O 3, respectively. Using these parameters, the Fe 3p peaks of Fe 3O 4 and Fe 1- yO are analysed. The results indicate that high resolution XPS techniques can be used to determine the Fe 2+/Fe 3+ ratios in metal oxides. The technique has the potential for application to other transition metal oxide systems.

  18. Morphology and Chemical Composition of soot particles emitted by Wood-burning Cook-Stoves: a HRTEM, XPS and Elastic backscattering Studies.

    NASA Astrophysics Data System (ADS)

    Carabali-Sandoval, G. A., Sr.; Castro, T.; Peralta, O.; De la Cruz, W.; Días, J.; Amelines, O.; Rivera-Hernández, M.; Varela, A.; Muñoz-Muñoz, F.; Policroniades, R.; Murillo, G.; Moreno, E.

    2014-12-01

    The morphology, microstructure and the chemical composition on surface of soot particles were studied by using high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and elastic backscattering spectrometry. In order to obtain freshly soot particles emitted by home-made wood-burning cook stoves, copper grids for Transmission Electron Microscope (TEM) were placed on the last two of an 8-stages MOUDI cascade impactor. The analysis of HRTEM micrographs revealed the nanostructure and the particle size of soot particles. The XPS survey spectra show a large carbon peak around 285 eV and the oxygen signal at 533 eV. Some differences observed in the carbon/oxygen (C/O) ratio of the particles probably depend on the combustion process efficiency of each cook-stove analyzed. The C-1s XPS spectra show an asymmetric broad peak and other with low intensity that corresponds to sp2 and sp3hybridization, which were fitted with a convolution using Gaussian functions. Elastic backscattering technique allows a chemical elemental analysis of samples and confirms the presence of C, O and Si observed by XPS. Additionally, the morphological properties of soot aggregates were analyzed calculating the border-based fractal dimension (Df). Particles exhibit complex shapes with high values of Df. Also, real-time absorption (σabs) and scattering (σsct) coefficients of fine (with aerodynamic diameter < 2.5 µm) soot particles were measured. The trend in σabs and σsct indicate that the cooking process has two important combustion stages which varied in its flaming strength, being vigorous in the first stage and soft in the second one.

  19. Comparing XPS on bare and capped ZrN films grown by plasma enhanced ALD: Effect of ambient oxidation

    NASA Astrophysics Data System (ADS)

    Muneshwar, Triratna; Cadien, Ken

    2018-03-01

    In this article we compare x-ray photoelectron spectroscopy (XPS) measurements on bare- and capped- zirconium nitride (ZrN) films to investigate the effect of ambient sample oxidation on the detected bound O in the form of oxide ZrO2 and/or oxynitride ZrOxNy. ZrN films in both bare- and Al2O3/AlN capped- XPS samples were grown by plasma-enhanced atomic layer deposition (PEALD) technique using tetrakis dimethylamino zirconium (TDMAZr) precursor, forming gas (5% H2, rest N2) inductively coupled plasma (ICP), and as received research grade process gases under identical process conditions. Capped samples were prepared by depositing 1 nm thick PEALD AlN on ZrN, followed by additional deposition of 1 nm thick ALD Al2O3, without venting of ALD reactor. On bare ZrN sample at room temperature, spectroscopic ellipsometry (SE) measurements with increasing ambient exposure times (texp) showed a self-limiting surface oxidation with the oxide thickness (dox) approaching 3.7 ± 0.02 nm for texp > 120 min. In XPS data measured prior to sample sputtering (tsput = 0), ZrO2 and ZrOxNy were detected in bare- samples, whereas only ZrN and Al2O3/AlN from capping layer were detected in capped- samples. For bare-ZrN samples, appearance of ZrO2 and ZrOxNy up to sputter depth (dsput) of 15 nm in depth-profile XPS data is in contradiction with measured dox = 3.7 nm, but explained from sputtering induced atomic inter-diffusion within analyzed sample. Appearance of artifacts in the XPS spectra from moderately sputtered (dsput = 0.2 nm and 0.4 nm) capped-ZrN sample, provides an evidence to ion-bombardment induced modifications within analyzed sample.

  20. Quantitative analysis of Si1-xGex alloy films by SIMS and XPS depth profiling using a reference material

    NASA Astrophysics Data System (ADS)

    Oh, Won Jin; Jang, Jong Shik; Lee, Youn Seoung; Kim, Ansoon; Kim, Kyung Joong

    2018-02-01

    Quantitative analysis methods of multi-element alloy films were compared. The atomic fractions of Si1-xGex alloy films were measured by depth profiling analysis with secondary ion mass spectrometry (SIMS) and X-ray Photoelectron Spectroscopy (XPS). Intensity-to-composition conversion factor (ICF) was used as a mean to convert the intensities to compositions instead of the relative sensitivity factors. The ICFs were determined from a reference Si1-xGex alloy film by the conventional method, average intensity (AI) method and total number counting (TNC) method. In the case of SIMS, although the atomic fractions measured by oxygen ion beams were not quantitative due to severe matrix effect, the results by cesium ion beam were very quantitative. The quantitative analysis results by SIMS using MCs2+ ions are comparable to the results by XPS. In the case of XPS, the measurement uncertainty was highly improved by the AI method and TNC method.

  1. Use of XPS to clarify the Hall coefficient sign variation in thin niobium layers buried in silicon

    NASA Astrophysics Data System (ADS)

    Demchenko, Iraida N.; Lisowski, Wojciech; Syryanyy, Yevgen; Melikhov, Yevgen; Zaytseva, Iryna; Konstantynov, Pavlo; Chernyshova, Maryna; Cieplak, Marta Z.

    2017-03-01

    Si/Nb/Si trilayers formed with 9.5 and 1.3 nm thick niobium layer buried in amorphous silicon were prepared by magnetron sputtering and studied using XPS depth-profile techniques in order to investigate the change of Hall coefficient sign with thickness. The analysis of high-resolution (HR) XPS spectra revealed that the thicker layer sample has sharp top interface and metallic phase of niobium, thus holes dominate the transport. In contrast, the analysis indicates that the thinner layer sample has a Nb-rich mixed alloy formation at the top interface. The authors suggest that the main effect leading to a change of sign of the Hall coefficient for the thinner layer sample (which is negative contrary to the positive sign for the thicker layer sample) may be related to strong boundary scattering enhanced by the presence of silicon ions in the layer close to the interface/s. The depth-profile reconstruction was performed by SESSA software tool confirming that it can be reliably used for quantitative analysis/interpretation of experimental XPS data.

  2. XPS and 31P NMR inquiry of Eu3+-induced structural modification in SnO-containing phosphate glass

    NASA Astrophysics Data System (ADS)

    Jiménez, José A.; Fachini, Esteban Rosim; Zhao, Chunqing

    2018-07-01

    The influence of Eu3+ doping on the structural properties of SnO-containing phosphate glass has been investigated by X-ray photoelectron spectroscopy (XPS) and 31P nuclear magnetic resonance (NMR) spectroscopy. Oxygen 1s XPS data indicates that the Eu3+ doping results in a higher concentration of non-bridging oxygens in the glass matrix, whereas 31P NMR shows an increase in the terminal phosphate chain tetrahedral units, i.e. the amount of Q1 sites with only one bridging oxygen. Accordingly, both techniques agree with a depolymerization effect induced by the Eu3+ ions. Further, XPS reveals that together with the Eu3+ doping, the presence of Sn4+ is supported while the presence of Eu2+ is also indicated. The structural changes are then indicated to be a consequence of redox chemistry between Sn2+ and Eu3+ promoting a transition of tin from Sn2+ with a role as network former to Sn4+ acting as network modifier in the glass system.

  3. Study of fission-product segregation in used CANDU fuel by X-ray photoelectron spectroscopy (XPS) II

    NASA Astrophysics Data System (ADS)

    Hocking, William H.; Duclos, A. Michael; Johnson, Lawrence H.

    1994-03-01

    A thorough investigation of the grain-boundary chemistry of used CANDU fuel from one intact element has been conducted by X-ray photoelectron spectroscopy (XPS). Selected findings from more extensive XPS measurements on other used CANDU fuels exposed to storage conditions are included for comparison. Cesium, rubidium, tellurium and barium have been commonly observed, often reaching high degrees of surface enrichment, although their relative abundances can vary widely with a complex dependence on the fuel irradiation history. Lower concentrations of cadmium, molybdenum, strontium and iodine have also been occasionally detected. Except for iodine, chemical-shift data are indicative of oxidized species, possibly uranates. Segregation at monolayer-level coverages has been demonstrated by sequential XPS analysis and argon-ion sputtering. Calculations based on an idealized thin-film model are consistent with the depth profiles. The interpretation of these results is discussed in the context of previous studies, especially on LWR fuels.

  4. Effects of Mn Ion Implantation on XPS Spectroscopy of GaN Thin Films

    NASA Astrophysics Data System (ADS)

    Majid, Abdul; Ahmad, Naeem; Rizwan, Muhammad; Khan, Salah Ud-Din; Ali, Fekri Abdulraqeb Ahmed; Zhu, Jianjun

    2018-02-01

    Gallium nitride (GaN) thin film was deposited onto a sapphire substrate and then implanted with 250 keV Mn ions at two different doses of 2 × 1016 ions/cm2 and 5 × 1016 ions/cm2. The as-grown and post-implantation-thermally-annealed samples were studied in detail using x-ray photoelectron spectroscopy (XPS). The XPS peaks of Ga 3 d, Ga 2 p, N 1 s, Mn 2 p and C 1 s were recorded in addition to a full survey of the samples. The doublet peaks of Ga 2 p for pure GaN were observed blue-shifted when compared with elemental Ga, and appeared further shifted to higher energies for the implanted samples. These observations point to changes in the bonds and the chemical environment of the host as a result of ion implantation. The results revealed broadening of the N 1 s peak after implantation, which is interpreted in terms of the presence of N-Mn bonds in addition to N-Ga bonds. The XPS spectra of Mn 2 p recorded for ion-implanted samples indicated splitting of Mn 2 p 1/2 and Mn 2 p 3/2 peaks higher than that for metallic Mn, which helps rule out the possibility of clustering and points to substitutional doping of Mn. These observations provide a framework that sheds light on the local environment of the material for understanding the mechanism of magnetic exchange interactions in Mn:GaN based diluted magnetic semiconductors.

  5. XPS Protocol for the Characterization of Pristine and Functionalized Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Sosa, E. D.; Allada, R.; Huffman, C. B.; Arepalli, S.

    2009-01-01

    Recent interest in developing new applications for carbon nanotubes (CNT) has fueled the need to use accurate macroscopic and nanoscopic techniques to characterize and understand their chemistry. X-ray photoelectron spectroscopy (XPS) has proved to be a useful analytical tool for nanoscale surface characterization of materials including carbon nanotubes. Recent nanotechnology research at NASA Johnson Space Center (NASA-JSC) helped to establish a characterization protocol for quality assessment for single wall carbon nanotubes (SWCNTs). Here, a review of some of the major factors of the XPS technique that can influence the quality of analytical data, suggestions for methods to maximize the quality of data obtained by XPS, and the development of a protocol for XPS characterization as a complementary technique for analyzing the purity and surface characteristics of SWCNTs is presented. The XPS protocol is then applied to a number of experiments including impurity analysis and the study of chemical modifications for SWCNTs.

  6. XPS characterization of silver exchanged ETS-10 and mordenite molecular sieves.

    PubMed

    Anson, A; Maham, Y; Lin, C C H; Kuznicki, T M; Kuznicki, S M

    2009-05-01

    Silver exchanged molecular sieves ETS-10 (Ag-ETS-10) and mordenite (Ag-mordenite) were dehydrated under vacuum at temperatures between 100 degrees C-350 degrees C. Changes in the state of the silver were studied using X-ray photoelectron spectroscopy (XPS). Silver cations in titanosilicate Ag-ETS-10 are fully reduced to Ag(0) at temperatures as low as 150 degrees C. The characteristic features of the XPS spectrum of silver in this Ag-ETS-10 species correspond to only metallic silver. The signal for metallic silver is not observed in the XPS spectrum of aluminosilicate Ag-mordenite, indicating that silver cations are not reduced, even after heating to 350 degrees C.

  7. Applications of XPS in the characterization of Battery materials

    DOE PAGES

    Shutthanandan, Vaithiyalingam; Nandasiri, Manjula; Zheng, Jianming; ...

    2018-05-26

    In this study, technological development requires reliable power sources where energy storage devices are emerging as a critical component. Wide range of energy storage devices, Redox-flow batteries (RFB), Lithium ion based batteries (LIB), and Lithium-sulfur (LSB) batteries are being developed for various applications ranging from grid-scale level storage to mobile electronics. Material complexities associated with these energy storage devices with unique electrochemistry are formidable challenge which needs to be address for transformative progress in this field. X-ray photoelectron spectroscopy (XPS) - a powerful surface analysis tool - has been widely used to study these energy storage materials because of itsmore » ability to identify, quantify and image the chemical distribution of redox active species. However, accessing the deeply buried solid-electrolyte interfaces (which dictates the performance of energy storage devices) has been a challenge in XPS usage. Herein we report our recent efforts to utilize the XPS to gain deep insight about these interfaces under realistic conditions with varying electrochemistry involving RFB, LIB and LSB.« less

  8. Applications of XPS in the characterization of Battery materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shutthanandan, Vaithiyalingam; Nandasiri, Manjula; Zheng, Jianming

    In this study, technological development requires reliable power sources where energy storage devices are emerging as a critical component. Wide range of energy storage devices, Redox-flow batteries (RFB), Lithium ion based batteries (LIB), and Lithium-sulfur (LSB) batteries are being developed for various applications ranging from grid-scale level storage to mobile electronics. Material complexities associated with these energy storage devices with unique electrochemistry are formidable challenge which needs to be address for transformative progress in this field. X-ray photoelectron spectroscopy (XPS) - a powerful surface analysis tool - has been widely used to study these energy storage materials because of itsmore » ability to identify, quantify and image the chemical distribution of redox active species. However, accessing the deeply buried solid-electrolyte interfaces (which dictates the performance of energy storage devices) has been a challenge in XPS usage. Herein we report our recent efforts to utilize the XPS to gain deep insight about these interfaces under realistic conditions with varying electrochemistry involving RFB, LIB and LSB.« less

  9. Cohort study comparing prostate photovaporisation with XPS 180W and HPS 120W laser.

    PubMed

    López, B; Capitán, C; Hernández, V; de la Peña, E; Jiménez-Valladolid, I; Guijarro, A; Pérez-Fernández, E; Llorente, C

    2016-01-01

    Prostate photovaporisation with Greenlight laser for the surgical treatment of benign prostate hyperplasia has rapidly evolve to the new XPS 180W. We have previously demonstrated the safety and efficacy of the HPS 120W. The aim of this study was to assess the functional and safety results, with a year of follow-up, of photovaporisation using the XPS 180W laser compared with its predecessor. A cohort study was conducted with a series of 191 consecutive patients who underwent photovaporisation between 1/2008 and 5/2013. The inclusion criteria were an international prostate symptom score (IPSS) >15 after medical failure, a prostate volume <80 cm(3) and a maximum flow <15 mL/s. We assessed preoperative and intraoperative variables (energy used, laser time and total surgical time), complications, catheter hours, length of stay and functional results (maximum flow, IPSS, prostate-specific antigen and prostate volume) at 3, 6 and 12 months. We analysed the homogeneity in preoperative characteristics of the 2 groups through univariate analysis techniques. The postoperative functional results were assessed through an analysis of variance of repeated measures with mixed models. A total of 109 (57.1%) procedures were performed using HPS 120W, and 82 (42.9%) were performed using XPS. There were no differences between the preoperative characteristics. We observed significant differences both in the surgical time and effective laser time in favour of the XPS system. This advantage was 11% (48 ± 15.7 vs. 53.8 ± 16.2, p<.05) and 9% (32.8 ± 11.7 vs. 36 ± 11.6, p<.05), respectively. There were no statistically significant differences in the rest of the analysed parameters. The technical improvements in the XPS 180W system help reduce surgical time, maintaining the safety and efficacy profile offered by the HPS 120W system, with completely superimposable results at 1 year of follow-up. Copyright © 2015 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Toward a better determination of dairy powders surface composition through XPS matrices development.

    PubMed

    Nikolova, Y; Petit, J; Sanders, C; Gianfrancesco, A; Scher, J; Gaiani, C

    2015-01-01

    The surface composition of dairy powders prepared by mixing various amounts of micellar casein (MC), whey proteins isolate (WPI), lactose, and anhydrous milk fat (AMF) was investigated by XPS measurements. The use of matrices are generally accepted to transform surface atomic composition (i.e., C, O, N contents) into surface component composition (i.e., lactose, proteins, lipids). These atomic-based matrices were revisited and two new matrices based on the surface bond composition were developed. Surface compositions obtained from atomic and bond-based matrices were compared. A successful matrix allowing good correlations between XPS predicted and theoretical surface composition for powders free from fat was identified. Nevertheless, samples containing milk fat were found to present a possible segregation of components owing to the AMF overrepresentation on the surface. Supplementary analyses (FTIR, SEM) were carried out in order to investigate the homogeneity of the mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Combined PIXE and XPS analysis on republican and imperial Roman coins

    NASA Astrophysics Data System (ADS)

    Daccà, A.; Prati, P.; Zucchiatti, A.; Lucarelli, F.; Mandò, P. A.; Gemme, G.; Parodi, R.; Pera, R.

    2000-03-01

    A combined PIXE and XPS analysis has been performed on a few Roman coins of the republican and imperial age. The purpose was to investigate via XPS the nature and extent of patina in order to be capable of extracting PIXE data relative to the coins bulk. The inclusion of elements from the surface layer, altered by oxidation and inclusion, is a known source of uncertainty in PIXE analyses of coins, performed to assess the composition and the provenance.

  12. Rondorfite-type structure — XPS and UV–vis study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dulski, M., E-mail: mateusz.dulski@smcebi.edu.pl; A.Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice; Bilewska, K., E-mail: kbilewska@us.edu.pl

    2015-10-15

    Highlights: • Structural and spectroscopic characterization of chlorosilicate mineral, rondorfite. • Characterization of main photoemission lines and valence band spectra. • The study of color origin’s using UV–vis spectroscopy. • Analysis of structural changes in context of origin of natural fluorescence. • Discussion of a new application possibilities of analyzed mineral - Abstract: This paper focuses on X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy of two different (green, orange) rondorfite samples. The differences in the sample color originate from various O/Cl ratios. The orange color was found to be related either to the isomorphic substitution of Fe{sup 3+}/Al{sup 3+} formore » Mg{sup 2+}, the presence of atypical [MgO{sub 4}] tetrahedrons in crystal structure or electronegativity of the sample. The tetrahedron is known to be very prone to accumulation of impurities and substitute atoms. Moreover, the XPS data showed tetrahedrally coordinated Mg{sup 2+} and isomorphic substitution of Al{sup 3+}/Fe{sup 3+} for Mg{sup 2+}, which influences local disordering and the point defects density and distribution. Non-equilibrium chlorine positions inside the crystal cages as well as Ca-Cl bonds have also been found. The XPS measurements as a function of temperature indicate occurrence of a structural transformation at about 770 K which is accompanied by a rotation of silicate tetrahedra within magnesiosilicate pentamer and luminescence disappearance.« less

  13. Characterization of fossil remains using XRF, XPS and XAFS spectroscopies

    NASA Astrophysics Data System (ADS)

    Zougrou, I. M.; Katsikini, M.; Pinakidou, F.; Brzhezinskaya, M.; Papadopoulou, L.; Vlachos, E.; Tsoukala, E.; Paloura, E. C.

    2016-05-01

    Synchrotron radiation micro-X-Ray Fluorescence (μ-XRF), X-ray photoelectron (XPS) and X-ray Absorption Fine Structure (XAFS) spectroscopies are applied for the study of paleontological findings. More specifically the costal plate of a gigantic terrestrial turtle Titanochelon bacharidisi and a fossilized coprolite of the cave spotted hyena Crocuta crocuta spelaea are studied. Ca L 2,3-edge NEXAFS and Ca 2p XPS are applied for the identification and quantification of apatite and Ca containing minerals. XRF mapping and XAFS are employed for the study of the spatial distribution and speciation of the minerals related to the deposition environment.

  14. XPS-XRF hybrid metrology enabling FDSOI process

    NASA Astrophysics Data System (ADS)

    Hossain, Mainul; Subramanian, Ganesh; Triyoso, Dina; Wahl, Jeremy; Mcardle, Timothy; Vaid, Alok; Bello, A. F.; Lee, Wei Ti; Klare, Mark; Kwan, Michael; Pois, Heath; Wang, Ying; Larson, Tom

    2016-03-01

    Planar fully-depleted silicon-on-insulator (FDSOI) technology potentially offers comparable transistor performance as FinFETs. pFET FDOSI devices are based on a silicon germanium (cSiGe) layer on top of a buried oxide (BOX). Ndoped interfacial layer (IL), high-k (HfO2) layer and the metal gate stacks are then successively built on top of the SiGe layer. In-line metrology is critical in precisely monitoring the thickness and composition of the gate stack and associated underlying layers in order to achieve desired process control. However, any single in-line metrology technique is insufficient to obtain the thickness of IL, high-k, cSiGe layers in addition to Ge% and N-dose in one single measurement. A hybrid approach is therefore needed that combines the capabilities of more than one measurement technique to extract multiple parameters in a given film stack. This paper will discuss the approaches, challenges, and results associated with the first-in-industry implementation of XPS-XRF hybrid metrology for simultaneous detection of high-k thickness, IL thickness, N-dose, cSiGe thickness and %Ge, all in one signal measurement on a FDSOI substrate in a manufacturing fab. Strong correlation to electrical data for one or more of these measured parameters will also be presented, establishing the reliability of this technique.

  15. XUV Photometer System (XPS): New Dark-Count Corrections Model and Improved Data Products

    NASA Astrophysics Data System (ADS)

    Elliott, J. P.; Vanier, B.; Woods, T. N.

    2017-12-01

    We present newly updated dark-count calibrations for the SORCE XUV Photometer System (XPS) and the resultant improved data products released in March of 2017. The SORCE mission has provided a 14-year solar spectral irradiance record, and the XPS contributes to this record in the 0.1 nm to 40 nm range. The SORCE spacecraft has been operating in what is known as Day-Only Operations (DO-Op) mode since February of 2014. In this mode it is not possible to collect data, including dark-counts, when the spacecraft is in eclipse as we did prior to DO-Op. Instead, we take advantage of the position of the XPS filter-wheel, and collect these data when the wheel position is in a "dark" position. Further, in this mode dark data are not always available for all observations, requiring an extrapolation in order to calibrate data at these times. To extrapolate, we model this with a piece-wise 2D nonlinear least squares surface fit in the time and temperature dimensions. Our model allows us to calibrate XPS data into the DO-Op phase of the mission by extrapolating along this surface. The XPS version 11 data product release benefits from this new calibration. We present comparisons of the previous and current calibration methods in addition to planned future upgrades of our data products.

  16. XPS/NEXAFS spectroscopic and conductance studies of glycine on AlGaN/GaN transistor devices

    NASA Astrophysics Data System (ADS)

    Myers, Matthew; Khir, Farah Liyana Muhammad; Home, Michael A.; Mennell, Christopher; Gillbanks, Jeremy; Tadich, Anton; Baker, Murray V.; Nener, Brett D.; Parish, Giacinta

    2018-03-01

    We report on a study using a combination of XPS/NEXAFS and conductivity measurements to develop a fundamental understanding of how dipolar molecules interact with the heterostructure device surface and affect the device conductivity of AlGaN/GaN heterostructure-based transistors. In such structures, which are increasingly being investigated for chemical and biological sensing, a 2-dimensional electron gas spontaneously forms at the layer interface that is sensitive to the charge characteristics of the exposed surface. Glycine, chosen for this study because it is the simplest of the amino acids and is known to form a zwitterionic configuration when stabilized through intermolecular interactions, was evaporated under ultra-high vacuum conditions onto the device surface and subsequently both XPS/NEXAFS and conductivity measurements were conducted. NEXAFS spectra show a preferential orientation for the Glycine molecules on the surface and evidence for both neutral and zwitterionic species on the surface. In situ conductivity measurements suggest that the negatively charged carboxylate group is closest to the surface. These results are a unique and pivotal contribution to the previous and at times conflicting literature on the zwitterionic nature of Glycine.

  17. Single-layer ZnS supported on Au(111): A combined XPS, LEED, STM and DFT study

    DOE PAGES

    Deng, Xingyi; Sorescu, Dan C.; Lee, Junseok

    2016-12-31

    Single-layer of ZnS, consisting of one atomic layer of ZnS(111) plane, has been grown on Au(111) and characterized using X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). While the LEED measurement indicates a coincidence structure of ZnS-(3×3)/Au(111)-(4×4), high resolution STM images reveal hexagonal unit cells of 6.7×6.7 Å 2 and 11.6×11.6 Å 2, corresponding to √3 and 3 times the unit cell of the ideal zincblende ZnS-(1×1), respectively, depending on the tunneling conditions. Calculations based on density functional theory (DFT) indicate a significantly reconstructed non-planar structure of ZnS single-layer on Au(111) with 2/3 ofmore » the S anions being located nearly in the plane of the Zn cations and the rest 1/3 of the S anions protruding above the Zn plane. In conclusion, the calculated STM image shows similar characteristics to those of the experimental STM image. Additionally, the DFT calculations reveal the different bonding nature of the S anions in ZnS single-layer supported on Au(111).« less

  18. Surface Coverage and Structure of Mixed DNA/Alkylthiol Monolayers on Gold: Characterization by XPS, NEXAFS, and Fluorescence Intensity Measurements

    PubMed Central

    Lee, Chi-Ying; Gong, Ping; Harbers, Gregory M.; Grainger, David W.; Castner, David G.; Gamble, Lara J.

    2006-01-01

    Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s → π* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in complex

  19. XPS and bioactivity study of the bisphosphonate pamidronate adsorbed onto plasma sprayed hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    McLeod, Kate; Kumar, Sunil; Smart, Roger St. C.; Dutta, Naba; Voelcker, Nicolas H.; Anderson, Gail I.; Sekel, Ron

    2006-12-01

    This paper reports the use of X-ray photoelectron spectroscopy (XPS) to investigate bisphosphonate (BP) adsorption onto plasma sprayed hydroxyapatite (HA) coatings commonly used for orthopaedic implants. BPs exhibit high binding affinity for the calcium present in HA and hence can be adsorbed onto HA-coated implants to exploit their beneficial properties for improved bone growth at the implant interface. A rigorous XPS analysis of pamidronate, a commonly used nitrogenous BP, adsorbed onto plasma sprayed HA-coated cobalt-chromium substrates has been carried out, aimed at: (a) confirming the adsorption of this BP onto HA; (b) studying the BP diffusion profile in the HA coating by employing the technique of XPS depth profiling; (c) confirming the bioactivity of the adsorbed BP. XPS spectra of plasma sprayed HA-coated discs exposed to a 10 mM aqueous BP solution (pamidronate) for periods of 1, 2 and 24 h showed nitrogen and phosphorous photoelectron signals corresponding to the BP, confirming its adsorption onto the HA substrate. XPS depth profiling of the 2 h BP-exposed HA discs showed penetration of the BP into the HA matrix to depths of at least 260 nm. The bioactivity of the adsorbed BP was confirmed by the observed inhibition of osteoclast (bone resorbing) cell activity. In comparison to the HA sample, the HA sample with adsorbed BP exhibited a 25-fold decrease in primary osteoclast cells.

  20. Surface Characterization of Polymer Blends by XPS and ToF-SIMS

    PubMed Central

    Chan, Chi Ming; Weng, Lu-Tao

    2016-01-01

    The surface properties of polymer blends are important for many industrial applications. The physical and chemical properties at the surface of polymer blends can be drastically different from those in the bulk due to the surface segregation of the low surface energy component. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary mass spectrometry (ToF-SIMS) have been widely used to characterize surface and bulk properties. This review provides a brief introduction to the principles of XPS and ToF-SIMS and their application to the study of the surface physical and chemical properties of polymer blends. PMID:28773777

  1. Effects of the low Earth orbit space environment on the surface chemistry of Kapton polyimide film: An XPS study

    NASA Technical Reports Server (NTRS)

    Lee, Myung; Rooney, William; Whiteside, James

    1992-01-01

    Kapton H (DuPont Trademark) polyimide specimens exposed to the low earth (LEO) space environment suffered significant weathering with surface erosions of approximately 8.0 microns. Despite these effects, no significant changes in bulk chemistry were observed. X-ray photoelectron spectroscopy (XPS) was used to determine local changes induced from approximately 25 percent in 1980 vintage ground control specimens to nearly 53 percent in space exposed specimens. The greatest increase was observed for the divalent oxygen moieties, although a slight increase in carbonyl oxygen was also measured. Furthermore, the chemical shifts of all XPS peaks of space-exposed Kapton are shifted to higher energy. This is consistent with a higher oxidation state of the space exposed surface. Finally, space exposed specimens had distinct silicon peaks (2p 100 eV and 2s 149 eV) in their XPS spectra in agreement with widespread reports of silicon contamination throughout the LDEF satellite. These results are discussed in terms of surface reactivity of the polyimide exposed to the LEO environment and the chemical nature of contaminants deposited on flight surfaces due to satellite outgassing.

  2. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques.

    PubMed

    Fantauzzi, Marzia; Licheri, Cristina; Atzei, Davide; Loi, Giovanni; Elsener, Bernhard; Rossi, Giovanni; Rossi, Antonella

    2011-10-01

    In this work, a multi-technical bulk and surface analytical approach was used to investigate the bioleaching of a pyrite and arsenopyrite flotation concentrate with a mixed microflora mainly consisting of Acidithiobacillus ferrooxidans. X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and X-ray-induced Auger electron spectroscopy mineral surfaces investigations, along with inductively coupled plasma-atomic emission spectroscopy and carbon, hydrogen, nitrogen and sulphur determination (CHNS) analyses, were carried out prior and after bioleaching. The flotation concentrate was a mixture of pyrite (FeS(2)) and arsenopyrite (FeAsS); after bioleaching, 95% of the initial content of pyrite and 85% of arsenopyrite were dissolved. The chemical state of the main elements (Fe, As and S) at the surface of the bioreactor feed particles and of the residue after bioleaching was investigated by X-ray photoelectron and X-ray excited Auger electron spectroscopy. After bioleaching, no signals of iron, arsenic and sulphur originating from pyrite and arsenopyrite were detected, confirming a strong oxidation and the dissolution of the particles. On the surfaces of the mineral residue particles, elemental sulphur as reaction intermediate of the leaching process and precipitated secondary phases (Fe-OOH and jarosite), together with adsorbed arsenates, was detected. Evidence of microbial cells adhesion at mineral surfaces was also produced: carbon and nitrogen were revealed by CHNS, and nitrogen was also detected on the bioleached surfaces by XPS. This was attributed to the deposition, on the mineral surfaces, of the remnants of a bio-film consisting of an extra-cellular polymer layer that had favoured the bacterial action. © Springer-Verlag 2011

  3. Interfaces in heterogeneous catalytic reactions: Ambient pressure XPS as a tool to unravel surface chemistry

    DOE PAGES

    Palomino, Robert M.; Hamlyn, Rebecca; Liu, Zongyuan; ...

    2017-04-27

    In this paper we provide a summary of the recent development of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and its application to catalytic surface chemistry. The methodology as well as significant advantages and challenges associated with this novel technique are described. Details about specific examples of using AP-XPS to probe surface chemistry under working reaction conditions for a number of reactions are explained: CO oxidation, water-gas shift (WGS), CO 2 hydrogenation, dry reforming of methane (DRM) and ethanol steam reforming (ESR). In conclusion, we discuss insights into the future development of the AP-XPS technique and its applications.

  4. Interfaces in heterogeneous catalytic reactions: Ambient pressure XPS as a tool to unravel surface chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomino, Robert M.; Hamlyn, Rebecca; Liu, Zongyuan

    In this paper we provide a summary of the recent development of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and its application to catalytic surface chemistry. The methodology as well as significant advantages and challenges associated with this novel technique are described. Details about specific examples of using AP-XPS to probe surface chemistry under working reaction conditions for a number of reactions are explained: CO oxidation, water-gas shift (WGS), CO 2 hydrogenation, dry reforming of methane (DRM) and ethanol steam reforming (ESR). In conclusion, we discuss insights into the future development of the AP-XPS technique and its applications.

  5. Upgrade of the Surface Spectrometer at NEPOMUC for PAES, XPS and STM Investigations

    NASA Astrophysics Data System (ADS)

    Zimnik, S.; Lippert, F.; Hugenschmidt, C.

    2014-04-01

    The characterization of the elemental composition of surfaces is of great importance for the understanding of many surface processes, such as surface segregation or oxidation. Positron-annihilation-induced Auger Electron Spectroscopy (PAES) is a powerful technique for gathering information about the elemental composition of only the topmost atomic layer of a sample. The upgraded surface spectrometer at NEPOMUC (NEtron induced POsitron source MUniCh) enables a comprehensive surface analysis with the complementary techniques STM, XPS and PAES. A new X-ray source for X-ray induced photoelectron spectroscopy (XPS) was installed to gather additional information on oxidation states. A new scanning tunneling microscope (STM) is used as a complementary method to investigate with atomic resolution the surface electron density. The combination of PAES, XPS and STM allows the characterization of both the elemental composition, and the surface topology.

  6. Theoretical modeling of the uranium 4f XPS for U(VI) and U(IV) oxides

    NASA Astrophysics Data System (ADS)

    Bagus, Paul S.; Nelin, Connie J.; Ilton, Eugene S.

    2013-12-01

    A rigorous study is presented of the physical processes related to X-Ray photoelectron spectroscopy, XPS, in the 4f level of U oxides, which, as well as being of physical interest in themselves, are representative of XPS in heavy metal oxides. In particular, we present compelling evidence for a new view of the screening of core-holes that extends prior understandings. Our analysis of the screening focuses on the covalent mixing of high lying U and O orbitals as opposed to the, more common, use of orbitals that are nominally pure U or pure O. It is shown that this covalent mixing is quite different for the initial and final, core-hole, configurations and that this difference is directly related to the XPS satellite intensity. Furthermore, we show that the high-lying U d orbitals as well as the U(5f) orbital may both contribute to the core-hole screening, in contrast with previous work that has only considered screening through the U(5f) shell. The role of modifying the U-O interaction by changing the U-O distance has been investigated and an unexpected correlation between U-O distance and XPS satellite intensity has been discovered. The role of flourite and octahedral crystal structures for U(IV) oxides has been examined and relationships established between XPS features and the covalent interactions in the different structures. The physical views of XPS satellites as arising from shake processes or as arising from ligand to metal charge transfers are contrasted; our analysis provides strong support that shake processes give a more fundamental physical understanding than charge transfer. Our theoretical studies are based on rigorous, strictly ab initio determinations of the electronic structure of embedded cluster models of U oxides with formal U(VI) and U(IV) oxidation states. Our results provide a foundation that makes it possible to establish quantitative relationships between features of the XPS spectra and materials properties.

  7. A poly-epoxy surface explored by Hartree-Fock ΔSCF simulations of C1s XPS spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavrielides, A.; Duguet, T., E-mail: thomas.duguet@ensiacet.fr, E-mail: Paul.Bagus@unt.edu; Esvan, J.

    Whereas poly-epoxy polymers represent a class of materials with a wide range of applications, the structural disorder makes them difficult to model. In the present work, we use good experimental model samples in the sense that they are pure, fully polymerized, flat and smooth, defect-free, and suitable for ultrahigh vacuum x-ray photoelectron spectroscopy, XPS, experiments. In parallel, we perform Hartree-Fock, HF, calculations of the binding energies, BEs, of the C1s electrons in a model molecule composed of the two constituents of the poly-epoxy sample. These C1s BEs were determined using the HF ΔSCF method, which is known to yield accuratemore » values, especially for the shifts of the BEs, ΔBEs. We demonstrate the benefits of combining rigorous theory with careful XPS measurements in order to obtain correct assignments of the C1s XPS spectra of the polymer sample. Both the relative binding energies—by the ΔSCF method—and relative intensities—in the sudden approximation, SA, are calculated. It results in an excellent match with the experimental spectra. We are able to identify 9 different chemical environments under the C1s peak, where an exclusively experimental work would have found only 3 contributions. In addition, we observe that some contributions are localized at discrete binding energies, whereas others allow a much wider range because of the variation of their second neighbor bound polarization. Therefore, HF-ΔSCF simulations significantly increase the spectral resolution of XPS and thus offer a new avenue for the exploration of the surface of polymers.« less

  8. Compositional and surface characterization of HULIS by UV-Vis, FTIR, NMR and XPS: Wintertime study in Northern India

    NASA Astrophysics Data System (ADS)

    Kumar, Varun; Goel, Anubha; Rajput, Prashant

    2017-09-01

    This study (first attempt) characterizes HULIS (Humic Like Substances) in wintertime aerosols (n = 12 during day and nighttime each) from Indo-Gangetic Plain (IGP, at Kanpur) by using various state-of-the art techniques such as UV-VIS, FTIR, 1H NMR and XPS. Based on UV-Vis analysis the absorption coefficient at 365 nm (babs-365) of HULIS was found to average at 13.6 and 28.8 Mm-1 during day and nighttime, respectively. Relatively high babs-365 of HULIS during the nighttime is attributed to influence of fog-processing. However, the power fit of UV-Vis spectrum provided near similar AAE (absorption Angstrom exponent) value of HULIS centering at 4.9 ± 1.4 and 5.1 ± 1.3 during daytime and nighttime, respectively. FTIR spectra and its double derivative revealed the presence of various functional groups viz. alcohols, ketones aldehydes, carboxylic acids as well as unsaturated and saturated carbon bonds. 1H NMR spectroscopy was applied to quantify relative percentage of various types of hydrogen atoms contained in HULIS, whereas XPS technique provided information on surface composition and oxidation states of various elements present. A significantly high abundance of H‒C‒O group has been observed in HULIS (based on 1H NMR); 41.4± 2.7% and 30.9± 2.4% in day and nighttime, respectively. However, aromatic protons (Ar-H) were higher in nighttime samples (19.3± 1.8%) as compared to that in daytime samples (7.5 ± 1.9). XPS studies revealed presence of various species on the surface of HULIS samples. Carbon existed in 7 different chemical states while total nitrogen and sulfur exhibited 3 and 2 different oxidation states (respectively) on the surface of HULIS. This study reports structural information and absorption properties of HULIS which has implications to their role as cloud condensation nuclei and atmospheric direct radiative forcing.

  9. Initial stages of oxide formation on the Zr surface at low oxygen pressure: An in situ FIM and XPS study

    PubMed Central

    Bespalov, I.; Datler, M.; Buhr, S.; Drachsel, W.; Rupprechter, G.; Suchorski, Y.

    2015-01-01

    An improved methodology of the Zr specimen preparation was developed which allows fabrication of stable Zr nanotips suitable for FIM and AP applications. Initial oxidation of the Zr surface was studied on a Zr nanotip by FIM and on a polycrystalline Zr foil by XPS, both at low oxygen pressure (10−8–10−7 mbar). The XPS data reveal that in a first, fast stage of oxidation, a Zr suboxide interlayer is formed which contains three suboxide components (Zr+1, Zr+2 and Zr+3) and is located between the Zr surface and a stoichiometric ZrO2 overlayer that grows in a second, slow oxidation stage. The sole suboxide layer has been observed for the first time at very early states of the oxidation (oxygen exposure ≤4 L). The Ne+ FIM observations are in accord with a two stage process of Zr oxide formation. PMID:25766998

  10. The adsorption of methyl iodide on uranium and uranium dioxide: Surface characterization using X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES)

    NASA Astrophysics Data System (ADS)

    Dillard, J. G.; Moers, H.; Klewe-Nebenius, H.; Kirch, G.; Pfennig, G.; Ache, H. J.

    1984-09-01

    The adsorption of methyl iodide on uranium and on uranium dioxide has been studied at 25 °C. Surfaces of the substrates were characterized before and after adsorption by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The XPS binding energy results indicate that CH 3I adsorption on uranium yields a carbide-type carbon, UC, and uranium iodide, UI 3. On uranium dioxide the carbon electron binding energy measurements are consistent with the formation of a hydrocarbon, —CH 3-type moiety. The interpretation of XPS and AES spectral features for CH 3I adsorption on uranium suggest that a complex dissociative adsorption reaction takes place. Adsorption of CH 3I on UO 2 occurs via a dissociative process. Saturation coverage occurs on uranium at approximately two langmuir (1 L = 10 -6 Torr s) exposure whereas saturation coverage on uranium dioxide is found at about five langmuir.

  11. A first-principles core-level XPS study on the boron impurities in germanium crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamauchi, Jun; Yoshimoto, Yoshihide; Suwa, Yuji

    2013-12-04

    We systematically investigated the x-ray photoelectron spectroscopy (XPS) core-level shifts and formation energies of boron defects in germanium crystals and compared the results to those in silicon crystals. Both for XPS core-level shifts and formation energies, relationship between defects in Si and Ge is roughly linear. From the similarity in the formation energy, it is expected that the exotic clusters like icosahedral B12 exist in Ge as well as in Si.

  12. XPS studies of nitrogen doping niobium used for accelerator applications

    NASA Astrophysics Data System (ADS)

    Yang, Ziqin; Lu, Xiangyang; Tan, Weiwei; Zhao, Jifei; Yang, Deyu; Yang, Yujia; He, Yuan; Zhou, Kui

    2018-05-01

    Nitrogen doping study on niobium (Nb) samples used for the fabrication of superconducting radio frequency (SRF) cavities was carried out. The samples' surface treatment was attempted to replicate that of the Nb SRF cavities, which includes heavy electropolishing (EP), nitrogen doping and the subsequent EP with different amounts of material removal. The surface chemical composition of Nb samples with different post treatments has been studied by XPS. The chemical composition of Nb, O, C and N was presented before and after Gas Cluster Ion Beam (GCIB) etching. No signals of poorly superconducting nitrides NbNx was found on the surface of any doped Nb sample with the 2/6 recipe before GCIB etching. However, in the depth range greater than 30 nm, the content of N element is below the XPS detection precision scope even for the Nb sample directly after nitrogen doping treatment with the 2/6 recipe.

  13. In vivo characterization of magnesium alloy biodegradation using electrochemical H2 monitoring, ICP-MS, and XPS.

    PubMed

    Zhao, Daoli; Wang, Tingting; Nahan, Keaton; Guo, Xuefei; Zhang, Zhanping; Dong, Zhongyun; Chen, Shuna; Chou, Da-Tren; Hong, Daeho; Kumta, Prashant N; Heineman, William R

    2017-03-01

    The effect of widely different corrosion rates of Mg alloys on four parameters of interest for in vivo characterization was evaluated: (1) the effectiveness of transdermal H 2 measurements with an electrochemical sensor for noninvasively monitoring biodegradation compared to the standard techniques of in vivo X-ray imaging and weight loss measurement of explanted samples, (2) the chemical compositions of the corrosion layers of the explanted samples by XPS, (3) the effect on animal organs by histology, and (4) the accumulation of corrosion by-products in multiple organs by ICP-MS. The in vivo biodegradation of three magnesium alloys chosen for their widely varying corrosion rates - ZJ41 (fast), WKX41 (intermediate) and AZ31 (slow) - were evaluated in a subcutaneous implant mouse model. Measuring H 2 with an electrochemical H 2 sensor is a simple and effective method to monitor the biodegradation process in vivo by sensing H 2 transdermally above magnesium alloys implanted subcutaneously in mice. The correlation of H 2 levels and biodegradation rate measured by weight loss shows that this non-invasive method is fast, reliable and accurate. Analysis of the insoluble biodegradation products on the explanted alloys by XPS showed all of them to consist primarily of Mg(OH) 2 , MgO, MgCO 3 and Mg 3 (PO 4 ) 2 with ZJ41 also having ZnO. The accumulation of magnesium and zinc were measured in 9 different organs by ICP-MS. Histological and ICP-MS studies reveal that there is no significant accumulation of magnesium in these organs for all three alloys; however, zinc accumulation in intestine, kidney and lung for the faster biodegrading alloy ZJ41 was observed. Although zinc accumulates in these three organs, no toxicity response was observed in the histological study. ICP-MS also shows higher levels of magnesium and zinc in the skull than in the other organs. Biodegradable devices based on magnesium and its alloys are promising because they gradually dissolve and thereby

  14. A comprehensive study of catalytic, morphological and electronic properties of ligand-protected gold nanoclusters using XPS, STM, XAFS, and TPD techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qiyuan; Cen, Jiajie; Zhao, Yue

    Ultra-small gold nanoclusters were synthesized via a ligand exchange method and deposited onto different TiO2 supports to study their properties. STM imaging revealed that the as-synthesized gold nanoclusters had 2-D morphology consisting of monolayers of gold atoms. In conclusion, subsequent XPS, XAFS, and CO oxidation TPD results indicated that heat treatments of gold clusters at different temperatures significantly altered their electronic and catalytic properties due to ligand deprotection and cluster agglomeration.

  15. A comprehensive study of catalytic, morphological and electronic properties of ligand-protected gold nanoclusters using XPS, STM, XAFS, and TPD techniques

    DOE PAGES

    Wu, Qiyuan; Cen, Jiajie; Zhao, Yue; ...

    2017-12-08

    Ultra-small gold nanoclusters were synthesized via a ligand exchange method and deposited onto different TiO2 supports to study their properties. STM imaging revealed that the as-synthesized gold nanoclusters had 2-D morphology consisting of monolayers of gold atoms. In conclusion, subsequent XPS, XAFS, and CO oxidation TPD results indicated that heat treatments of gold clusters at different temperatures significantly altered their electronic and catalytic properties due to ligand deprotection and cluster agglomeration.

  16. The (001) 3C SiC surface termination and band structure after common wet chemical etching procedures, stated by XPS, LEED, and HREELS

    NASA Astrophysics Data System (ADS)

    Tengeler, Sven; Kaiser, Bernhard; Ferro, Gabriel; Chaussende, Didier; Jaegermann, Wolfram

    2018-01-01

    The (001) surface of cubic silicon carbide (3C SiC) after cleaning, Ar sputtering and three different wet chemical etching procedures was thoroughly investigated via (angle resolved) XPS, HREELS, and LEED. While Ar sputtering was found to be unsuitable for surface preparation, all three employed wet chemical etching procedures (piranha/NH4F, piranha/HF, and RCA) provide a clean surface. HF as oxide removal agent tends to result in fluorine traces on the sample surface, despite thorough rinsing. All procedures yield a 1 × 1 Si-OH/C-H terminated surface. However, the XPS spectra reveal some differences in the resulting surface states. NH4F for oxide removal produces a flat band situation, whereas the other two procedures result in a slight downward (HF) or upward (RCA) band bending. Because the band bending is small, it can be concluded that the number of unsaturated surface defects is low.

  17. New Pt/Alumina model catalysts for STM and in situ XPS studies

    NASA Astrophysics Data System (ADS)

    Nartova, Anna V.; Gharachorlou, Amir; Bukhtiyarov, Andrey V.; Kvon, Ren I.; Bukhtiyarov, Valerii I.

    2017-04-01

    The new Pt/alumina model catalysts for STM and in situ XPS studies based on thin alumina film formed over the conductive substrate are proposed. Procedure of platinum deposition developed for porous alumina was adapted for the model alumina support. The set of Pt/AlOx-film samples with the different mean platinum particle size was prepared. Capabilities of in situ XPS investigations of the proposed catalysts were demonstrated in study of NO decomposition on platinum nanoparticles. It is shown that proposed model catalysts behave similarly to Pt/γ-Al2O3 and provide the new opportunities for the instrumental studies of platinum catalysts due to resolving several issues (charging, heating, screening) that are typical for the investigation of the porous oxide supported catalysts.

  18. A quantitative model and the experimental evaluation of the liquid fuel layer for the downward flame spread of XPS foam.

    PubMed

    Luo, Shengfeng; Xie, Qiyuan; Tang, Xinyi; Qiu, Rong; Yang, Yun

    2017-05-05

    The objective of this work is to investigate the distinctive mechanisms of downward flame spread for XPS foam. It was physically considered as a moving down of narrow pool fire instead of downward surface flame spread for normal solids. A method was developed to quantitatively analyze the accumulated liquid fuel based on the experimental measurement of locations of flame tips and burning rates. The results surprisingly showed that about 80% of the generated hot liquid fuel remained in the pool fire during a certain period. Most of the consumed solid XPS foam didn't really burn away but transformed as the liquid fuel in the downward moving pool fire, which might be an important promotion for the fast fire development. The results also indicated that the dripping propensity of the hot liquid fuel depends on the total amount of the hot liquid accumulated in the pool fire. The leading point of the flame front curve might be the breach of the accumulated hot liquid fuel if it is enough for dripping. Finally, it is suggested that horizontal noncombustible barriers for preventing the accumulation and dripping of liquid fuel are helpful for vertical confining of XPS fire. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. XPS and UPS studies on electronic structure of Li 2O

    NASA Astrophysics Data System (ADS)

    Tanaka, Satoru; Taniguchi, Masaki; Tanigawa, Hisashi

    2000-12-01

    The adsorption behavior of H 2O on Li 2O was studied by X-ray photo electron spectroscopy (XPS) and ultraviolet photo electron spectroscopy (UPS). XPS and UPS spectra of Li 2O single crystals which were exposed to different pressure of H 2O vapor were observed. In O(1s) region, two peaks were observed and they were assigned to O(1s) in precipitated LiOH on the surface and O(1s) in Li 2O. After H 2O exposure, a peak broadening and an appearance of a new peak were observed at the higher binding energy region than O(1s) in Li 2O. They were attributed to surface -OH and H 2O molecule adsorbed on the surface. The adsorption behavior of H 2O was discussed from the observation of electronic structure in Li 2O surface.

  20. RECENT XPS STUDIES OF THE EFFECT OF PROCESSING ON NB SRF SURFACES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui Tian; Binping Xiao; Michael Kelley

    XPS studies have consistently shown that Nb surfaces for SRF chiefly comprise of a few nm of Nb2O5 on top of Nb metal, with minor amounts of Nb sub-oxides. Nb samples after BCP/EP treatment with post-baking at the various conditions have been examined by using synchrotron based XPS. Despite the confounding influence of surface roughness, certain outcomes are clear. Lower-valence Nb species are always and only associated with the metal/oxide interface, but evidence for an explicit layer structure or discrete phases is lacking. Post-baking without air exposure shows decreased oxide layer thickness and increased contribution from lower valence species, butmore » spectra obtained after subsequent air exposure cannot be distinguished from those obtained prior to baking, though the SRF performance improvement remains.« less

  1. Reaction of Si nanopowder with water investigated by FT-IR and XPS

    NASA Astrophysics Data System (ADS)

    Imamura, Kentaro; Kobayashi, Yuki; Matsuda, Shinsuke; Akai, Tomoki; Kobayashi, Hikaru

    2017-08-01

    The initial reaction of Si nanopowder with water to generate hydrogen is investigated using FT-IR and XPS measurements. Si nanopowder is fabricated using the simple beads milling method. For HF-etched Si nanopowder, strong peaks due to Si-H and Si-H2 stretching vibrational modes and a weak shoulder peak due to Si-H3 are observed. Although no peaks due to oxide is observed in the Si 2p XPS spectrum, weak vibrational peaks due to HSiO2 and HSiO3 species are observable. The hydrogen generation rate greatly increases with pH, indicating that the reacting species is hydroxide ions (OH- ions). After the reaction, the intensities of the peaks due to SiH and SiH2 species decrease while those for HSiO, HSiO2, and HSiO3 species increase. This result demonstrates that OH- ions attack Si back-bonds, with surface Si-H bonds remaining. After initial reaction of HF-etched Si nanopowder with heavy water, vibrational peaks for SiD, SiDH, and SiDH2 appear, and then, a peak due to DSiO3 species is observed, but no peaks due to DSiO2 and DSiO species are observable. This result indicates that SiD, SiDH, and SiDH2 species are formed by substitution reactions, followed by oxidation of back-bonds to form DSiO3 species. After immersion in D2O for a day, 37% H atoms on the surface are replaced to D atoms.

  2. New insights into micro/nanoscale combined probes (nanoAuger, μXPS) to characterize Ag/Au@SiO2 core-shell assemblies

    NASA Astrophysics Data System (ADS)

    Ledeuil, J. B.; Uhart, A.; Soulé, S.; Allouche, J.; Dupin, J. C.; Martinez, H.

    2014-09-01

    This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming electron signal (potentially affected by the topography of the material) during analysis. SEM experiments have unambiguously revealed the hollow-morphology of the metal core, while Auger spectroscopy observations showed chemical heterogeneity within the particles (as silver and gold are randomly found in the core ring). To our knowledge, this is the first time that Auger nano probe spectroscopy has been used and successfully optimized for the study of some complex metal/inorganic interfaces at such a high degree of resolution (~12 nm). Complementarily, XPS Au 4f and Ag 3d peaks were finally detected attesting the possibility of access to the whole chemistry of such nanostructured assemblies.This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming

  3. Samarium electrodeposited acetate and oxide thin films on stainless steel substrate characterized by XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myhre, Kristian; Burns, Jonathan; Meyer, Harry

    Characterization of a samarium thin film deposited on a stainless steel substrate using molecular electrodeposition was carried out using a Thermo Scientific K-Alpha X-ray photoelectron spectrometer. We studied two types of samarium electrodeposition samples, one as-deposited and one heated to 700 °C in an air flow. Survey scans include peaks coming from the stainless steel substrate, such as Fe and Cr. An X-ray photoelectron spectroscopy (XPS) survey spectrum, Sm 3d, C 1s, and O 1s narrow scans are shown. It was determined that the heating process decomposed the deposited Sm acetate to Sm 2O 3 using XPS.

  4. Samarium electrodeposited acetate and oxide thin films on stainless steel substrate characterized by XPS

    DOE PAGES

    Myhre, Kristian; Burns, Jonathan; Meyer, Harry; ...

    2016-06-01

    Characterization of a samarium thin film deposited on a stainless steel substrate using molecular electrodeposition was carried out using a Thermo Scientific K-Alpha X-ray photoelectron spectrometer. We studied two types of samarium electrodeposition samples, one as-deposited and one heated to 700 °C in an air flow. Survey scans include peaks coming from the stainless steel substrate, such as Fe and Cr. An X-ray photoelectron spectroscopy (XPS) survey spectrum, Sm 3d, C 1s, and O 1s narrow scans are shown. It was determined that the heating process decomposed the deposited Sm acetate to Sm 2O 3 using XPS.

  5. Silicon (100)/SiO2 by XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, David S.; Kanyal, Supriya S.; Madaan, Nitesh

    2013-09-25

    Silicon (100) wafers are ubiquitous in microfabrication and, accordingly, their surface characteristics are important. Herein, we report the analysis of Si (100) via X-ray photoelectron spectroscopy (XPS) using monochromatic Al K radiation. Survey scans show that the material is primarily silicon and oxygen, and the Si 2p region shows two peaks that correspond to elemental silicon and silicon dioxide. Using these peaks the thickness of the native oxide (SiO2) was estimated using the equation of Strohmeier.1 The oxygen peak is symmetric. The material shows small amounts of carbon, fluorine, and nitrogen contamination. These silicon wafers are used as the basemore » material for subsequent growth of templated carbon nanotubes.« less

  6. Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.

    PubMed

    Bulavchenko, O A; Vinokurov, Z S; Afonasenko, T N; Tsyrul'nikov, P G; Tsybulya, S V; Saraev, A A; Kaichev, V V

    2015-09-21

    A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.

  7. An in situ XPS study of L-cysteine co-adsorbed with water on polycrystalline copper and gold

    NASA Astrophysics Data System (ADS)

    Jürgensen, Astrid; Raschke, Hannes; Esser, Norbert; Hergenröder, Roland

    2018-03-01

    The interactions of biomolecules with metal surfaces are important because an adsorbed layer of such molecules introduces complex reactive functionality to the substrate. However, studying these interactions is challenging: they usually take place in an aqueous environment, and the structure of the first few monolayers on the surface is of particular interest, as these layers determine most interfacial properties. Ideally, this requires surface sensitive analysis methods that are operated under ambient conditions, for example ambient pressure x-ray photoelectron spectroscopy (AP-XPS). This paper focuses on an AP-XPS study of the interaction of water vapour and l-Cysteine on polycrystalline copper and gold surfaces. Thin films of l-Cysteine were characterized with XPS in UHV and in a water vapour atmosphere (P ≤ 1 mbar): the structure of the adsorbed l-Cysteine layer depended on substrate material and deposition method, and exposure of the surface to water vapour led to the formation of hydrogen bonds between H2O molecules and the COO- and NH2 groups of adsorbed l-Cysteine zwitterions and neutral molecules, respectively. This study also proved that it is possible to investigate monolayers of biomolecules in a gas atmosphere with AP-XPS using a conventional laboratory Al-Kα x-ray source.

  8. Stability of boron-doped graphene/copper interface: DFT, XPS and OSEE studies

    NASA Astrophysics Data System (ADS)

    Boukhvalov, D. W.; Zhidkov, I. S.; Kukharenko, A. I.; Slesarev, A. I.; Zatsepin, A. F.; Cholakh, S. O.; Kurmaev, E. Z.

    2018-05-01

    Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission (OSEE) measurements have demonstrated that boron-doped graphene coating provides a high corrosion resistivity of Cu-substrate with the light traces of the oxidation of carbon cover. The density functional theory calculations suggest that for the case of substitutional (graphitic) boron-defect only the oxidation near boron impurity is energetically favorable and creation of the vacancies that can induce the oxidation of copper substrate is energetically unfavorable. In the case of non-graphitic boron defects oxidation of the area, a nearby impurity is metastable that not only prevent oxidation but makes boron-doped graphene. Modeling of oxygen reduction reaction demonstrates high catalytic performance of these materials.

  9. Combining complexity measures of EEG data: multiplying measures reveal previously hidden information

    PubMed Central

    Burns, Thomas; Rajan, Ramesh

    2015-01-01

    Many studies have noted significant differences among human electroencephalograph (EEG) results when participants or patients are exposed to different stimuli, undertaking different tasks, or being affected by conditions such as epilepsy or Alzheimer's disease. Such studies often use only one or two measures of complexity and do not regularly justify their choice of measure beyond the fact that it has been used in previous studies. If more measures were added to such studies, however, more complete information might be found about these reported differences. Such information might be useful in confirming the existence or extent of such differences, or in understanding their physiological bases. In this study we analysed publically-available EEG data using a range of complexity measures to determine how well the measures correlated with one another. The complexity measures did not all significantly correlate, suggesting that different measures were measuring unique features of the EEG signals and thus revealing information which other measures were unable to detect. Therefore, the results from this analysis suggests that combinations of complexity measures reveal unique information which is in addition to the information captured by other measures of complexity in EEG data. For this reason, researchers using individual complexity measures for EEG data should consider using combinations of measures to more completely account for any differences they observe and to ensure the robustness of any relationships identified. PMID:26594331

  10. Combining complexity measures of EEG data: multiplying measures reveal previously hidden information.

    PubMed

    Burns, Thomas; Rajan, Ramesh

    2015-01-01

    Many studies have noted significant differences among human electroencephalograph (EEG) results when participants or patients are exposed to different stimuli, undertaking different tasks, or being affected by conditions such as epilepsy or Alzheimer's disease. Such studies often use only one or two measures of complexity and do not regularly justify their choice of measure beyond the fact that it has been used in previous studies. If more measures were added to such studies, however, more complete information might be found about these reported differences. Such information might be useful in confirming the existence or extent of such differences, or in understanding their physiological bases. In this study we analysed publically-available EEG data using a range of complexity measures to determine how well the measures correlated with one another. The complexity measures did not all significantly correlate, suggesting that different measures were measuring unique features of the EEG signals and thus revealing information which other measures were unable to detect. Therefore, the results from this analysis suggests that combinations of complexity measures reveal unique information which is in addition to the information captured by other measures of complexity in EEG data. For this reason, researchers using individual complexity measures for EEG data should consider using combinations of measures to more completely account for any differences they observe and to ensure the robustness of any relationships identified.

  11. Investigating early stages of biocorrosion with XPS: AISI 304 stainless steel exposed to Burkholderia species

    NASA Astrophysics Data System (ADS)

    Johansson, Leena-Sisko; Saastamoinen, Tuomas

    1999-04-01

    We have investigated the interactions of an exopolymer-producing bacteria, Burkholderia sp. with polished AISI 304 stainless steel substrates using X-ray photoelectron spectroscopy (XPS). Steel coupons were exposed to the pure bacteria culture in a specially designed flowcell for 6 h during which the experiment was monitored in situ with an optical microscope. XPS results verified the formation of biofilm containing extracellular polymer on all the samples exposed to bacteria. Sputter results indicated that some ions needed for metabolic processes were trapped within the biofilm. Changes in the relative Fe concentration and Fe 2p peak shape indicated that also iron had accumulated into the biofilm.

  12. NEXAFS and XPS characterization of molecular oxygen adsorbed on Ni(100) at 80 K

    NASA Astrophysics Data System (ADS)

    Kim, C. M.; Jeong, H. S.; Kim, E. H.

    2000-07-01

    X-ray photoelectron spectroscopy (XPS), thermal desorption spectroscopy (TDS) and near edge extended X-ray absorption fine structure (NEXAFS) have been combined to investigate the adsorption of oxygen on Ni(100) at 80 K. Three O(1s) XPS features were observed at 530.0, 531.1 and 534.7 eV when the Ni(100) surface was exposed to 600 L of oxygen at 80 K. They are assigned as O 2-, O 1- and molecular oxygen species, respectively. The presence of molecular oxygen has been confirmed by TDS and NEXAFS. Molecular O 2 on Ni(100) is oriented perpendicular to the surface, and the OO bond length is estimated to be 1.24 Å, based on the NEXAFS σ ∗ resonance energy.

  13. XPS Study of Oxide/GaAs and SiO2/Si Interfaces

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Grunthaner, P. J.; Vasquez, R. P.; Lewis, B. F.; Maserjian, J.; Madhukar, A.

    1982-01-01

    Concepts developed in study of SiO2/Si interface applied to analysis of native oxide/GaAs interface. High-resolution X-ray photoelectron spectroscopy (XPS) has been combined with precise chemical-profiling technique and resolution-enhancement methods to study stoichiometry of transitional layer. Results are presented in report now available.

  14. XPS analysis of activated carbon supported ionic liquids: Enhanced purity and reduced charging

    NASA Astrophysics Data System (ADS)

    Foelske-Schmitz, A.; Weingarth, D.; Kötz, R.

    2011-12-01

    Herein we report on XPS measurements on five different [EMIM] based ionic liquids (IL) prepared on activated carbon and aluminium supports. The anions were [TFSI], [BF4], [FAP], [B(CN)4] and [EtOSO3]. The results show that impurities such as O, Si or hydrocarbons were significantly reduced or no longer detected when preparation was performed on the high surface area carbon support. All core level spectra were fitted and for [EMIM][FAP], [EMIM][B(CN)4] and [EMIM][EtOSO3] de-convolution procedures of the C 1s lines are suggested. Comparison of the determined binding energies with published data strongly suggests that sample charging is irrelevant when preparation is performed on the activated carbon support. This observation is supposed to refer to the high capacitance of the high surface area carbon.

  15. Gold/silver core-shell 20 nm nanoparticles extracted from citrate solution examined by XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelhard, Mark H.; Smith, Jordan N.; Baer, Donald R.

    Silver nanoparticles of many types are widely used in consumer and medical products. The surface chemistry of particles and the coatings that form during synthesis or use in many types of media can significantly impact the behaviors of particles including dissolution, transformation and biological or environmental impact. Consequently it is useful to be able to extract information about the thickness of surface coatings and other attributes of nanoparticles produced in a variety of ways. It has been demonstrated that X-ray Photoelectron Spectroscopy (XPS) can be reliably used to determine the thickness of organic and other nanoparticles coatings and shells. However,more » care is required to produce reliable and consistent information. Here we report the XPS spectra from gold/silver core-shell nanoparticles of nominal size 20 nm removed from a citrate saturated solution after one and two washing cycles. The Simulation of Electron Spectra for Surface Analysis (SESSA) program had been used to model peak amplitudes to obtain information on citrate coatings that remain after washing and demonstrate the presence of the gold core. This data is provided so that others can compare use of SESSA or other modeling approaches to quantify the nature of coatings to those already published and to explore the impacts particle non-uniformities on XPS signals from core-shell nanoparticles.« less

  16. Monitoring N3 dye adsorption and desorption on TiO2 surfaces: a combined QCM-D and XPS study.

    PubMed

    Wayment-Steele, Hannah K; Johnson, Lewis E; Tian, Fangyuan; Dixon, Matthew C; Benz, Lauren; Johal, Malkiat S

    2014-06-25

    Understanding the kinetics of dye adsorption and desorption on semiconductors is crucial for optimizing the performance of dye-sensitized solar cells (DSSCs). Quartz crystal microbalance with dissipation monitoring (QCM-D) measures adsorbed mass in real time, allowing determination of binding kinetics. In this work, we characterize adsorption of the common RuBipy dye N3 to the native oxide layer of a planar, sputter-coated titanium surface, simulating the TiO2 substrate of a DSSC. We report adsorption equilibrium constants consistent with prior optical measurements of N3 adsorption. Dye binding and surface integrity were also verified by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy (XPS). We further study desorption of the dye from the native oxide layer on the QCM sensors using tetrabutylammonium hydroxide (TBAOH), a commonly used industrial desorbant. We find that using TBAOH as a desorbant does not fully regenerate the surface, though little ruthenium or nitrogen is observed by XPS after desorption, suggesting that carboxyl moieties of N3 remain bound. We demonstrate the native oxide layer of a titanium sensor as a valid and readily available planar TiO2 morphology to study dye adsorption and desorption and begin to investigate the mechanism of dye desorption in DSSCs, a system that requires further study.

  17. XPS and EELS characterization of Mn2SiO4, MnSiO3 and MnAl2O4

    NASA Astrophysics Data System (ADS)

    Grosvenor, A. P.; Bellhouse, E. M.; Korinek, A.; Bugnet, M.; McDermid, J. R.

    2016-08-01

    X-ray Photoelectron Spectroscopy (XPS) and Electron Energy Loss Spectroscopy (EELS) are strong candidate techniques for characterizing steel surfaces and substrate-coating interfaces when investigating the selective oxidation and reactive wetting of advanced high strength steels (AHSS) during the continuous galvanizing process. However, unambiguous identification of ternary oxides such as Mn2SiO4, MnSiO3, and MnAl2O4 by XPS or EELS, which can play a significant role in substrate reactive wetting, is difficult due to the lack of fully characterized standards in the literature. To resolve this issue, samples of Mn2SiO4, MnSiO3 and MnAl2O4 were synthesized and characterized by XPS and EELS. The unique features of the XPS and EELS spectra for the Mn2SiO4, MnSiO3 and MnAl2O4 standards were successfully derived, thereby allowing investigators to fully differentiate and identify these oxides at the surface and subsurface of Mn, Si and Al alloyed AHSS using these techniques.

  18. New insights into micro/nanoscale combined probes (nanoAuger, μXPS) to characterize Ag/Au@SiO2 core-shell assemblies.

    PubMed

    Ledeuil, J B; Uhart, A; Soulé, S; Allouche, J; Dupin, J C; Martinez, H

    2014-10-07

    This work has examined the elemental distribution and local morphology at the nanoscale of core@shell Ag/Au@SiO2 particles. The characterization of such complex metal/insulator materials becomes more efficient when using an initial cross-section method of preparation of the core@shell nanoparticles (ion milling cross polisher). The originality of this route of preparation allows one to obtain undamaged, well-defined and planar layers of cross-cut nano-objects. Once combined with high-resolution techniques of characterization (XPS, Auger and SEM), the process appears as a powerful way to minimize charging effects and enhance the outcoming electron signal (potentially affected by the topography of the material) during analysis. SEM experiments have unambiguously revealed the hollow-morphology of the metal core, while Auger spectroscopy observations showed chemical heterogeneity within the particles (as silver and gold are randomly found in the core ring). To our knowledge, this is the first time that Auger nano probe spectroscopy has been used and successfully optimized for the study of some complex metal/inorganic interfaces at such a high degree of resolution (≈12 nm). Complementarily, XPS Au 4f and Ag 3d peaks were finally detected attesting the possibility of access to the whole chemistry of such nanostructured assemblies.

  19. Surface composition XPS analysis of a plasma treated polystyrene: Evolution over long storage periods.

    PubMed

    Ba, Ousmane M; Marmey, Pascal; Anselme, Karine; Duncan, Anthony C; Ponche, Arnaud

    2016-09-01

    A polystyrene surface (PS) was initially treated by cold nitrogen and oxygen plasma in order to incorporate in particular amine and hydroxyl functions, respectively. The evolution of the chemical nature of the surface was further monitored over a long time period (580 days) by chemical assay, XPS and contact angle measurements. Surface density quantification of primary amine groups was performed using three chemical amine assays: 4-nitrobenzaldehyde (4-NBZ), Sulfo succinimidyl 6-[3'(2 pyridyldithio)-pionamido] hexanoate (Sulfo-LC-SPDP) and iminothiolane (ITL). The results showed amine densities were in the range of 2 per square nanometer (comparable to the results described in the literature) after 5min of nitrogen plasma treatment. Over the time period investigated, chemical assays, XPS and contact angles suggest a drastic significant evolution of the chemical nature of the surface within the first two weeks. Beyond that time period and up to almost two years, nitrogen plasma modified substrates exhibits a slow and continuous oxidation whereas oxygen plasma modifed polystyrene surface is chemically stable after two weeks of storage. The latter appeared to "ease of" showing relatively mild changes within the one year period. Our results suggest that it may be preferable to wait for a chemical "stabilization" period of two weeks before subsequent covalent immobilization of proteins onto the surface. The originality of this work resides in the study of the plasma treated surface chemistry evolution over long periods of storage time (580 days) considerably exceeding those described in the literature. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Atomistic characterisation of Li+ mobility and conductivity in Li(7-x)PS(6-x)Ix argyrodites from molecular dynamics simulations, solid-state NMR, and impedance spectroscopy.

    PubMed

    Pecher, Oliver; Kong, Shiao-Tong; Goebel, Thorsten; Nickel, Vera; Weichert, Katja; Reiner, Christof; Deiseroth, Hans-Jörg; Maier, Joachim; Haarmann, Frank; Zahn, Dirk

    2010-07-26

    The atomistic mechanisms of Li(+) ion mobility/conductivity in Li(7-x)PS(6-x)I(x) argyrodites are explored from both experimental and theoretical viewpoints. Ionic conductivity in the title compound is associated with a solid-solid phase transition, which was characterised by low-temperature differential scanning calorimetry, (7)Li and (127)I NMR investigations, impedance measurements and molecular dynamics simulations. The NMR signals of both isotopes are dominated by anisotropic interactions at low temperatures. A significant narrowing of the NMR signal indicates a motional averaging of the anisotropic interactions above 177+/-2 K. The activation energy to ionic conductivity was assessed from both impedance spectroscopy and molecular dynamics simulations. The latter revealed that a series of interstitial sites become accessible to the Li(+) ions, whilst the remaining ions stay at their respective sites in the argyrodite lattice. The interstitial positions each correspond to the centres of tetrahedra of S/I atoms, and differ only in terms of their common corners, edges, or faces with adjacent PS(4) tetrahedra. From connectivity analyses and free-energy rankings, a specific tetrahedron is identified as the key restriction to ionic conductivity, and is clearly differentiated from local mobility, which follows a different mechanism with much lower activation energy. Interpolation of the lattice parameters as derived from X-ray diffraction experiments indicates a homogeneity range for Li(7-x)PS(6-x)I(x) with 0.97 < or = x < or = 1.00. Within this range, molecular dynamics simulations predict Li(+) conductivity at ambient conditions to vary considerably.

  1. In situ NAP-XPS spectroscopy during methane dry reforming on ZrO2/Pt(1 1 1) inverse model catalyst

    NASA Astrophysics Data System (ADS)

    Rameshan, C.; Li, H.; Anic, K.; Roiaz, M.; Pramhaas, V.; Rameshan, R.; Blume, R.; Hävecker, M.; Knudsen, J.; Knop-Gericke, A.; Rupprechter, G.

    2018-07-01

    Due to the need of sustainable energy sources, methane dry reforming is a useful reaction for conversion of the greenhouse gases CH4 and CO2 to synthesis gas (CO  +  H2). Syngas is the basis for a wide range of commodity chemicals and can be utilized for fuel production via Fischer–Tropsch synthesis. The current study focuses on spectroscopic investigations of the surface and reaction properties of a ZrO2/Pt inverse model catalyst, i.e. ZrO2 particles (islands) grown on a Pt(1 1 1) single crystal, with emphasis on in situ near ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) during MDR reaction. In comparison to technological systems, model catalysts facilitate characterization of the surface (oxidation) state, surface adsorbates, and the role of the metal-support interface. Using XPS and infrared reflection absorption spectroscopy we demonstrated that under reducing conditions (UHV or CH4) the ZrO2 particles transformed to an ultrathin ZrO2 film that started to cover (wet) the Pt surface in an SMSI-like fashion, paralleled by a decrease in surface/interface oxygen. In contrast, (more oxidizing) dry reforming conditions with a 1:1 ratio of CH4 and CO2 were stabilizing the ZrO2 particles on the model catalyst surface (or were even reversing the strong metal support interaction (SMSI) effect), as revealed by in situ XPS. Carbon deposits resulting from CH4 dissociation were easily removed by CO2 or by switching to dry reforming conditions (673–873 K). Thus, at these temperatures the active Pt surface remained free of carbon deposits, also preserving the ZrO2/Pt interface.

  2. Comparative study of the native oxide on 316L stainless steel by XPS and ToF-SIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tardio, Sabrina, E-mail: s.tardio@surrey.ac.uk; Abel, Marie-Laure; Castle, James E.

    2015-09-15

    The very thin native oxide film on stainless steel, of the order of 2 nm, is known to be readily modified by immersion in aqueous media. In this paper, X-ray photoelectron spectroscopy (XPS) and time of flight secondary ions mass spectrometry are employed to investigate the nature of the air-formed film and modification after water emersion. The film is described in terms of oxide, hydroxide, and water content. The preferential dissolution of iron is shown to occur on immersion. It is shown that a water absorbed layer and a hydroxide layer are present above the oxide-like passive film. The concentrations ofmore » water and hydroxide appear to be higher in the case of exposure to water. A secure method for the peak fitting of Fe2p and Cr2p XPS spectra of such films on their metallic substrates is described. The importance of XPS survey spectra is underlined and the feasibility of C{sub 60}{sup +} SIMS depth profiling of a thin oxide layer is shown.« less

  3. X-PEEM, XPS and ToF-SIMS characterisation of xanthate induced chalcopyrite flotation: Effect of pulp potential

    NASA Astrophysics Data System (ADS)

    Kalegowda, Yogesh; Chan, Yuet-Loy; Wei, Der-Hsin; Harmer, Sarah L.

    2015-05-01

    Synchrotron-based X-ray photoemission electron microscopy (X-PEEM), X-ray photo-electron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and ultraviolet visible spectroscopy were used to characterize the flotation behaviour of chalcopyrite with xanthate at different processing conditions. The flotation recovery of chalcopyrite decreased from 97% under oxidative conditions (Eh ~ 385 mV SHE, pH 4) to 41% at a reductive potential of - 100 mV SHE (at pH 9). X-PEEM images constructed from the metal L3 absorption edges were used to produce near-edge X-ray absorption fine structure (NEXAFS) spectra from regions of interest, allowing the variability in mineral surface chemistry of each mineral particle to be analysed, and the effect of pulp potential (Eh) on the flotation of chalcopyrite to be determined. XPS, ToF-SIMS and NEXAFS analyses of chalcopyrite particles at oxidative conditions show that the surface was mildly oxidised and covered with adsorbed molecular CuEX. The Cu 2p XPS and Cu L2,3 NEXAFS spectra were dominated by CuI species attributed to bulk chalcopyrite and adsorbed CuEX. At a reductive potential of - 100 mV SHE, an increase in concentration of CuI and FeIII oxides and hydroxides was observed. X-PEEM analysis was able to show the presence of a low percentage of CuII oxides (CuO or Cu(OH)2) with predominantly CuI oxide (Cu2O) which is not evident in Cu 2p XPS spectra.

  4. Incorporation of low energy activated nitrogen onto HOPG surface: Chemical states and thermal stability studies by in-situ XPS and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chandran, Maneesh; Shasha, Michal; Michaelson, Shaul; Hoffman, Alon

    2016-09-01

    In this paper we report the chemical states analysis of activated nitrogen incorporated highly oriented pyrolytic graphite (HOPG) surface under well-controlled conditions. Nitrogen incorporation is carried out by two different processes: an indirect RF nitrogen plasma and low energy (1 keV) N2+ implantation. Bonding configuration, concentration and thermal stability of the incorporated nitrogen species by aforesaid processes are systematically compared by in-situ X-ray photoelectron spectroscopy (XPS). Relatively large concentration of nitrogen is incorporated onto RF nitride HOPG surface (16.2 at.%), compared to N2+ implanted HOPG surface (7.7 at.%). The evolution of N 1s components (N1, N2, N3) with annealing temperature is comprehensively discussed, which indicates that the formation and reorganization of local chemical bonding states are determined by the process of nitridation and not by the prior chemical conditioning (i.e., amorphization or hydrogenation) of the HOPG surface. A combined XPS and Raman spectroscopy studies revealed that N2+ implantation process resulted in a high level of defects to the HOPG surface, which cannot be annealed-out by heat treatment up to 1000 °C. On the other hand, the RF nitrogen plasma process did not produce a high level of surface defects, while incorporating nearly the same amount of stable nitrogen species.

  5. Ultrathin TiO(x) films on Pt(111): a LEED, XPS, and STM investigation.

    PubMed

    Sedona, Francesco; Rizzi, Gian Andrea; Agnoli, Stefano; Llabrés i Xamena, Francesc X; Papageorgiou, Anthoula; Ostermann, Dieter; Sambi, Mauro; Finetti, Paola; Schierbaum, Klaus; Granozzi, Gaetano

    2005-12-29

    Ultrathin ordered titanium oxide films on Pt(111) surface are prepared by reactive evaporation of Ti in oxygen. By varying the Ti dose and the annealing conditions (i.e., temperature and oxygen pressure), six different long-range ordered phases are obtained. They are characterized by means of low-energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). By careful optimization of the preparative parameters, we find conditions where predominantly single phases of TiO(x), revealing distinct LEED pattern and STM images, are produced. XPS binding energy and photoelectron diffraction (XPD) data indicate that all the phases, except one (the stoichiometric rect-TiO2), are one monolayer thick and composed of a Ti-O bilayer with interfacial Ti. Atomically resolved STM images confirm that these TiO(x) phases wet the Pt surface, in contrast to rect-TiO2. This indicates their interface stabilization. At a low Ti dose (0.4 monolayer equivalents, MLE), an incommensurate kagomé-like low-density phase (k-TiO(x) phase) is observed where hexagons are sharing their vertexes. At a higher Ti dose (0.8 MLE), two denser phases are found, both characterized by a zigzag motif (z- and z'-TiO(x) phases), but with distinct rectangular unit cells. Among them, z'-TiO(x), which is obtained by annealing in ultrahigh vacuum (UHV), shows a larger unit cell. When the postannealing of the 0.8 MLE deposit is carried out at high temperatures and high oxygen partial pressures, the incommensurate nonwetting, fully oxidized rect-TiO2 is found The symmetry and lattice dimensions are almost identical with rect-VO2, observed in the system VO(x)/Pd(111). At a higher coverage (1.2 MLE), two commensurate hexagonal phases are formed, namely the w- [(square root(43) x square root(43)) R 7.6 degrees] and w'-TiO(x) phase [(7 x 7) R 21.8 degrees]. They show wagon-wheel-like structures and have slightly different lattice dimensions. Larger Ti deposits

  6. Evaluation Metrics for the Paragon XP/S-15

    NASA Technical Reports Server (NTRS)

    Traversat, Bernard; McNab, David; Nitzberg, Bill; Fineberg, Sam; Blaylock, Bruce T. (Technical Monitor)

    1993-01-01

    On February 17th 1993, the Numerical Aerodynamic Simulation (NAS) facility located at the NASA Ames Research Center installed a 224 node Intel Paragon XP/S-15 system. After its installation, the Paragon was found to be in a very immature state and was unable to support a NAS users' workload, composed of a wide range of development and production activities. As a first step towards addressing this problem, we implemented a set of metrics to objectively monitor the system as operating system and hardware upgrades were installed. The metrics were designed to measure four aspects of the system that we consider essential to support our workload: availability, utilization, functionality, and performance. This report presents the metrics collected from February 1993 to August 1993. Since its installation, the Paragon availability has improved from a low of 15% uptime to a high of 80%, while its utilization has remained low. Functionality and performance have improved from merely running one of the NAS Parallel Benchmarks to running all of them faster (between 1 and 2 times) than on the iPSC/860. In spite of the progress accomplished, fundamental limitations of the Paragon operating system are restricting the Paragon from supporting the NAS workload. The maximum operating system message passing (NORMA IPC) bandwidth was measured at 11 Mbytes/s, well below the peak hardware bandwidth (175 Mbytes/s), limiting overall virtual memory and Unix services (i.e. Disk and HiPPI I/O) performance. The high NX application message passing latency (184 microns), three times than on the iPSC/860, was found to significantly degrade performance of applications relying on small message sizes. The amount of memory available for an application was found to be approximately 10 Mbytes per node, indicating that the OS is taking more space than anticipated (6 Mbytes per node).

  7. Morphological, chemical and structural characterisation of deciduous enamel: SEM, EDS, XRD, FTIR and XPS analysis.

    PubMed

    Zamudio-Ortega, C M; Contreras-Bulnes, R; Scougall-Vilchis, R J; Morales-Luckie, R A; Olea-Mejía, O F; Rodríguez-Vilchis, L E

    2014-09-01

    The purpose of this study was to characterise the enamel surface of sound deciduous teeth in terms of morphology, chemical composition, structure and crystalline phases. The enamel of 30 human deciduous teeth was examined by: Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS). Chemical differences between incisors and canines were statistically evaluated using the Mann-Whitney U test (p ≤ 0.05). Three enamel patterns were observed by SEM: 'mostly smooth with some groves', 'abundant microporosities' and 'exposed prisms'. The average Ca/P molar ratios were 1.37 and 1.03 by EDS and XPS, respectively. The crystallite size determined by XRD was 210.82 ± 16.78 Å. The mean ratio between Ca bonded to phosphate and Ca bonded to hydroxyl was approximately 10:1. The enamel of sound deciduous teeth showed two main patterns: 'mostly smooth with some groves' and 'abundant microporosities'. 'Exposed prisms' was a secondary pattern. There were slight variations among the Ca/P molar ratios found by EDS and XPS, suggesting differences in the mineral content from the enamel surface to the interior. The crystalline phases found in enamel were hydroxyapatite and carbonate apatite, with major type B than type A carbonate incorporation.

  8. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: behavior and XPS study.

    PubMed

    Pan, Bingjun; Qiu, Hui; Pan, Bingcai; Nie, Guangze; Xiao, Lili; Lv, Lu; Zhang, Weiming; Zhang, Quanxing; Zheng, Shourong

    2010-02-01

    The present study developed a polymer-based hybrid sorbent (HFO-001) for highly efficient removal of heavy metals [e.g., Pb(II), Cd(II), and Cu(II)] by irreversibly impregnating hydrated Fe(III) oxide (HFO) nanoparticles within a cation-exchange resin D-001 (R-SO(3)Na), and revealed the underlying mechanism based on X-ray photoelectron spectroscopy (XPS) study. HFO-001 combines the excellent handling, flow characteristics, and attrition resistance of conventional cation-exchange resins with the specific affinity of HFOs toward heavy metal cations. As compared to D-001, sorption selectivity of HFO-001 toward Pb(II), Cu(II), and Cd(II) was greatly improved from the Ca(II) competition at greater concentration. Column sorption results indicated that the working capacity of HFO-001 was about 4-6 times more than D-001 with respect to removal of three heavy metals from simulated electroplating water (pH approximately 4.0). Also, HFO-001 is particularly effective in removing trace Pb(II) and Cd(II) from simulated natural waters to meet the drinking water standard, with treatment volume orders of magnitude higher than D-001. The superior performance of HFO-001 was attributed to the Donnan membrane effect exerted by the host D-001 as well as to the impregnated HFO nanoparticles of specific interaction toward heavy metal cations, as further confirmed by XPS study on lead sorption. More attractively, the exhausted HFO-001 beads can be effectively regenerated by HCl-NaCl solution (pH 3) for repeated use without any significant capacity loss. (c) 2009 Elsevier Ltd. All rights reserved.

  9. Nanopatterning of metal-coated silicon surfaces via ion beam irradiation: Real time x-ray studies reveal the effect of silicide bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Atwani, Osman; Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907; Gonderman, Sean

    We investigated the effect of silicide formation on ion-induced nanopatterning of silicon with various ultrathin metal coatings. Silicon substrates coated with 10 nm Ni, Fe, and Cu were irradiated with 200 eV argon ions at normal incidence. Real time grazing incidence small angle x-ray scattering (GISAXS) and x-ray fluorescence (XRF) were performed during the irradiation process and real time measurements revealed threshold conditions for nanopatterning of silicon at normal incidence irradiation. Three main stages of the nanopatterning process were identified. The real time GISAXS intensity of the correlated peaks in conjunction with XRF revealed that the nanostructures remain for amore » time period after the removal of the all the metal atoms from the sample depending on the binding energy of the metal silicides formed. Ex-situ XPS confirmed the removal of all metal impurities. In-situ XPS during the irradiation of Ni, Fe, and Cu coated silicon substrates at normal incidence demonstrated phase separation and the formation of different silicide phases that occur upon metal-silicon mixing. Silicide formation leads to nanostructure formation due the preferential erosion of the non-silicide regions and the weakening of the ion induced mass redistribution.« less

  10. XPS studies of MgO based magnetic tunnel junction structures

    NASA Astrophysics Data System (ADS)

    Read, John; Mather, Phil; Tan, Eileen; Buhrman, Robert

    2006-03-01

    The very high tunneling magnetoresistance (TMR) obtained in MgO magnetic tunnel junctions (MTJ)^(1,2) motivates the investigation of the electronic properties of the MgO barrier layer and the study of the ferromagnetic metal - MgO interface chemistry. Such large TMR values are predicted by theory due to the high degree of order apparent in the barrier and electrode materials. However, as grown ultra-thin MgO films generally contain defects that can influence electron transport properties through the creation of low energy states within the bulk MgO band-gap. We will report the results of x-ray photoelectron spectroscopy (XPS) studies of (001) textured ultra-thin MgO layers that are prepared by RF magnetron sputtering and electron beam evaporation on ordered ferromagnetic electrodes and in ordered MTJ structures with and without post growth vacuum annealing. XPS spectra for both MgO deposition techniques clearly indicate a surface oxygen species that is likely bound by defects in the oxide^(3) in half-formed junctions and improvements in MgO quality after counter electrode deposition. We will discuss our results regarding the chemical properties of the oxide and its interfaces directed towards possibly providing guidance to engineer improved MgO MTJ devices. [1] S.S.P. Parkin et. al., Nature Materials, 3, 862 (2004). [2] S. Yuasa et. al., Nature Materials, 3, 868 (2004). [3] E. Tan et. al. , Phys. Rev. B. , 71, 161401 (2005).

  11. Chemistry Characterization of Jet Aircraft Engine Particulate by XPS: Results from APEX III

    NASA Technical Reports Server (NTRS)

    Vander Wal, Randy L.; Bryg, Victoria M.

    2014-01-01

    This paper reports XPS analysis of jet exhaust particulate from a B737, Lear, ERJ, and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and platforms. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20 percent or more. By lower resolution survey scans various elements including transition metals are identified along with lighter elements such as S, N, and O in the form of oxides. Burning additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their presence can be used as a tracer for identifying soots from aircraft engines as well as diagnostic for monitoring engine performance and wear.

  12. Composite targets in HiPIMS plasmas: Correlation of in-vacuum XPS characterization and optical plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Layes, Vincent; Monje, Sascha; Corbella, Carles; Schulz-von der Gathen, Volker; von Keudell, Achim; de los Arcos, Teresa

    2017-05-01

    In-vacuum characterization of magnetron targets after High Power Impulse Magnetron Sputtering (HiPIMS) has been performed by X-ray photoelectron spectroscopy (XPS). Al-Cr composite targets (circular, 50 mm diameter) mounted in two different geometries were investigated: an Al target with a small Cr disk embedded at the racetrack position and a Cr target with a small Al disk embedded at the racetrack position. The HiPIMS discharge and the target surface composition were characterized in parallel for low, intermediate, and high power conditions, thus covering both the Ar-dominated and the metal-dominated HiPIMS regimes. The HiPIMS plasma was investigated using optical emission spectroscopy and fast imaging using a CCD camera; the spatially resolved XPS surface characterization was performed after in-vacuum transfer of the magnetron target to the XPS chamber. This parallel evaluation showed that (i) target redeposition of sputtered species was markedly more effective for Cr atoms than for Al atoms; (ii) oxidation at the target racetrack was observed even though the discharge ran in pure Ar gas without O2 admixture, the oxidation depended on the discharge power and target composition; and (iii) a bright emission spot fixed on top of the inserted Cr disk appeared for high power conditions.

  13. The Gaussian-Lorentzian Sum, Product, and Convolution (Voigt) functions in the context of peak fitting X-ray photoelectron spectroscopy (XPS) narrow scans

    NASA Astrophysics Data System (ADS)

    Jain, Varun; Biesinger, Mark C.; Linford, Matthew R.

    2018-07-01

    X-ray photoelectron spectroscopy (XPS) is arguably the most important vacuum technique for surface chemical analysis, and peak fitting is an indispensable part of XPS data analysis. Functions that have been widely explored and used in XPS peak fitting include the Gaussian, Lorentzian, Gaussian-Lorentzian sum (GLS), Gaussian-Lorentzian product (GLP), and Voigt functions, where the Voigt function is a convolution of a Gaussian and a Lorentzian function. In this article we discuss these functions from a graphical perspective. Arguments based on convolution and the Central Limit Theorem are made to justify the use of functions that are intermediate between pure Gaussians and pure Lorentzians in XPS peak fitting. Mathematical forms for the GLS and GLP functions are presented with a mixing parameter m. Plots are shown for GLS and GLP functions with mixing parameters ranging from 0 to 1. There are fundamental differences between the GLS and GLP functions. The GLS function better follows the 'wings' of the Lorentzian, while these 'wings' are suppressed in the GLP. That is, these two functions are not interchangeable. The GLS and GLP functions are compared to the Voigt function, where the GLS is shown to be a decent approximation of it. Practically, both the GLS and the GLP functions can be useful for XPS peak fitting. Examples of the uses of these functions are provided herein.

  14. Multicenter study on costs associated with two surgical procedures: GreenLight XPS 180 W versus the gold standard transurethral resection of the prostate.

    PubMed

    Benejam-Gual, J M; Sanz-Granda, A; Budía, A; Extramiana, J; Capitán, C

    2014-01-01

    To analyze the costs associated with two surgical procedures for lower urinary tract symptoms secondary to benign prostatic hyperplasia: GreenLight XPS 180¦W versus the gold standard transurethral resection of the prostate. A multicenter, retrospective cost study was carried out from the National Health Service perspective, over a 3-month time period. Costs were broken down into pre-surgical, surgical and post-surgical phases. Data were extracted from records of patients operated sequentially, with IPSS=15, Qmax=15 mL/seg and a prostate volume of 40-80mL, adding only direct healthcare costs (€, 2013) associated with the procedure and management of complications. A total of 79 patients sequentially underwent GL XPS (n: 39) or TURP (n: 40) between July and October, 2013. Clinical outcomes were similar (94.9% and 92.5%, GL XPS and TURP, respectively) without significant differences (P=.67). The average direct cost per patient was reduced by €114 in GL XPS versus TURP patients; the cost was higher in the surgical phase with GL XPS (difference: €1,209; P<.001) but was lower in the post-surgical phase (difference: €-1,351; P<.001). The GreenLight XPS 180-W laser system is associated with a reduction in costs with respect to transurethral resection of prostate in the surgical treatment of LUTS secondary to PBH. This reduction is due to a shorter inpatient length of stay that offsets the cost of the new technology. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  15. XPS investigation of depth profiling induced chemistry

    NASA Astrophysics Data System (ADS)

    Pratt, Quinn; Skinner, Charles; Koel, Bruce; Chen, Zhu

    2017-10-01

    Surface analysis is an important tool for understanding plasma-material interactions. Depth profiles are typically generated by etching with a monatomic argon ion beam, however this can induce unintended chemical changes in the sample. Tantalum pentoxide, a sputtering standard, and PEDOT:PSS, a polymer that was used to mimic the response of amorphous carbon-hydrogen co-deposits, were studied. We compare depth profiles generated with monatomic and gas cluster argon ion beams (GCIB) using X-ray photoelectron spectroscopy (XPS) to quantify chemical changes. In both samples, monatomic ion bombardment led to beam-induced chemical changes. Tantalum pentoxide exhibited preferential sputtering of oxygen and the polymer experienced significant bond modification. Depth profiling with clusters is shown to mitigate these effects. We present sputtering rates for Ta2O5 and PEDOT:PSS as a function of incident energy and flux. Support was provided through DOE Contract Number DE-AC02-09CH11466.

  16. XPS studies of Mg doped GDC (Ce0.8Gd0.2O2-δ) for IT-SOFC

    NASA Astrophysics Data System (ADS)

    Tyagi, Deepak; Rao, P. Koteswara; Wani, B. N.

    2018-04-01

    Fuel Cells have gained much attention as efficient and environment friendly device for both stationary as well as mobile applications. For intermediate temperature SOFC (IT-SOFC), ceria based electrolytes are the most promising one, due to their higher ionic conductivity at relatively lower temperatures. Gd doped ceria is reported to be having the highest ionic conductivity. In the present work, Mg is codoped along with Gd and the electronic structure of the constituents is studied by XPS. XPS confirm that the Cerium is present in +4 oxidation state only which indicates that electronic conduction can be completely avoided.

  17. Elucidating the resistance to failure under tribological tests of various boron-based films by XPS and ToF-SIMS

    NASA Astrophysics Data System (ADS)

    Spadaro, F.; Rossi, A.; Lainé, E.; Woodward, P.; Spencer, N. D.

    2017-12-01

    Tribotests performed on boron-based thermal films have revealed higher mechanical durability and lower wear coefficients compared to results from tests performed on boron-free thermal films. In the current study, in order to follow and identify the tribochemical reactions taking place in the contact regions, post-characterization has been carried out on the steel ball and on the steel disc. The techniques adopted to achieve this goal were small-area X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary-ion mass spectroscopy (ToF-SIMS). The contact areas have been investigated before and after failure of the thermal films, revealing thermal-film removal inside the wear track on the disc and the presence of a transfer film in the contact area on the steel ball following tribotesting. Furthermore, borate contributions in the deeper layers within the tribo-stressed area on the disc were revealed at the end of the tribotest. These procedures shed light on the tribomechanical and tribochemical reactions taking place in the contact region, on the ability of boron species to sustain tribological stress and provide mechanical stability, and on the mechanical-mixing processes occurring within the sliding contacts. The mass spectra collected before tribotesting on all thermal films suggest the presence of phosphate- and borate-containing structures.

  18. Extended study on oxidation behaviors of UN0.68 and UN1.66 by XPS

    NASA Astrophysics Data System (ADS)

    Luo, Lizhu; Hu, Yin; Pan, Qifa; Long, Zhong; Lu, Lei; Liu, Kezhao; Wang, Xiaolin

    2018-04-01

    The surface oxidation behaviors of UN0.68 and UN1.66 thin films are investigated by X-ray photoelectron spectroscopy (XPS), and the traditional U4f/N1s, O1s, valence band spectra as well as the unconventional U4d and U5d spectra are collected for the understanding of their oxidation behavior in-depth. Similar asymmetrical peak shape of the U4f spectra to uranium is observed for both uranium nitrides, despite of a slight shift to higher energy side for UN1.66 clean surface. However, significant difference among the corresponding spectra of UN0.68 and UN1.66 during oxidation reveals the distinctive properties of each own. The coexistence of UO2-x, UO2 and UO2-x.Ny on UN0.68 surface results in the peculiar features of U4f spectra as well as the others within the XPS energy scale, where peaks of the oxidized species firstly shift to higher energy side compared to the clean surface, and then return closely towards those of stoichiometric UO2. For UN1.66, the generation of U-N-O ternary compounds on the surface is identified with the symmetrical U4f peaks at 379.9eV and 390.8 eV, which locate intermediate between UO2 and UN1.66, and gradually expanding to higher energy side during the progressive oxidation. Furthermore, the formation of N-O species on UN1.66 surface is also detected as an oxidation product. The metallic character of UN1.66 is identified by the intense signal at Fermi level, which is greatly suppressed by the increasing oxygen exposure and implies the weakening metallic properties of the as-generated U-N-O compounds. Higher uranium oxides, such as UO3 and U4O9, are deduced to be the final oxidation products, and a multistage mechanism for UN1.66 following the exposure to oxygen is discussed.

  19. Intensity analysis of XPS spectra to determine oxide uniformity - Application to SiO2/Si interfaces

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Grunthaner, F. J.

    1980-01-01

    A simple method of determining oxide uniformity is derived which requires no knowlege of film thickness, escape depth, or film composition. The method involves only the measurement of oxide and substrate intensities and is illustrated by analysis of XPS spectral data for thin SiO2 films grown both thermally and by low-temperature chemical vapor deposition on monocrystalline Si. A region 20-30 A thick is found near the SiO2/Si interface on thermally oxidized samples which has an inelastic mean free path 35% less than that found in the bulk oxide. This is interpreted as being due to lattice mismatch resulting in a strained region which is structurally, but not stoichiometrically, distinct from the bulk oxide.

  20. Quantitative depth profiling of Ce(3+) in Pt/CeO2 by in situ high-energy XPS in a hydrogen atmosphere.

    PubMed

    Kato, Shunsuke; Ammann, Markus; Huthwelker, Thomas; Paun, Cristina; Lampimäki, Markus; Lee, Ming-Tao; Rothensteiner, Matthäus; van Bokhoven, Jeroen A

    2015-02-21

    The redox property of ceria is a key factor in the catalytic activity of ceria-based catalysts. The oxidation state of well-defined ceria nanocubes in gas environments was analysed in situ by a novel combination of near-ambient pressure X-ray Photoelectron Spectroscopy (XPS) and high-energy XPS at a synchrotron X-ray source. In situ high-energy XPS is a promising new tool to determine the electronic structure of matter under defined conditions. The aim was to quantitatively determine the degree of cerium reduction in a nano-structured ceria-supported platinum catalyst as a function of the gas environment. To obtain a non-destructive depth profile at near-ambient pressure, in situ high-energy XPS analysis was performed by varying the kinetic energy of photoelectrons from 1 to 5 keV, and, thus, the probing depth. In ceria nanocubes doped with platinum, oxygen vacancies formed only in the uppermost layers of ceria in an atmosphere of 1 mbar hydrogen and 403 K. For pristine ceria nanocubes, no change in the cerium oxidation state in various hydrogen or oxygen atmospheres was observed as a function of probing depth. In the absence of platinum, hydrogen does not dissociate and, thus, does not lead to reduction of ceria.

  1. XPS and Raman studies of Pt catalysts supported on activated carbon

    NASA Astrophysics Data System (ADS)

    Tyagi, Deepak; Varma, Salil; Bharadwaj, S. R.

    2018-04-01

    Activated carbon is a widely used support for dispersing noble metals in addition to its many applications. We have prepared platinum catalyst supported on activated carbon for HI decomposition reaction of I-S thermochemical process of hydrogen generation. These catalysts were characterized by XPS and Raman before and after using for the reaction. It was observed that platinum is present in zero oxidation state, while carbon is present is both sp2 and sp3 hybridized forms along with some amount of it bonded to oxygen.

  2. 13C NMR and XPS characterization of anion adsorbent with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Wang, Zhenqian; Zeng, Qingling; Shen, Chunhua

    2016-12-01

    Despite amino groups modified crop straw has been intensively studied as new and low-cost adsorbent for removal of anionic species from water, there is still a lack of clear characterization for amino groups, especially quaternary ammonium groups in the surface of crop straw. In this study, we used 13C NMR and XPS technologies to characterize adsorbents with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse. 13C NMR spectra clearly showed the presence of quaternary ammonium groups in lignocelluloses structure of modified crop straw. The increase of nitrogen observed in XPS survey spectra also indicated the existence of quaternary ammonium group in the surface of the adsorbents. The curve fitting of high-resolution XPS N1s and C1s spectra were conducted to probe the composition of nitrogen and carbon contained groups, respectively. The results showed the proportion of quaternary ammonium group significantly increased in the prepared adsorbent's surface that was dominated by methyl/methylene, hydroxyl, quaternary ammonium, ether and carbonyl groups. This study proved that 13C NMR and XPS could be successfully utilized for characterization of quaternary ammonium modified crop straw adsorbents.

  3. Structural model of homogeneous As–S glasses derived from Raman spectroscopy and high-resolution XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovchak, R.; Shpotyuk, O.; Mccloy, J. S.

    2010-11-28

    The structure of homogeneous bulk As x S 100- x (25 ≤ x ≤ 42) glasses, prepared by the conventional rocking–melting–quenching method, was investigated using high-resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. It is shown that the main building blocks of their glass networks are regular AsS 3/2 pyramids and sulfur chains. In the S-rich domain, the existence of quasi-tetrahedral (QT) S = As(S 1/2) 3 units is deduced from XPS data, but with a concentration not exceeding ~3–5% of total atomic sites. Therefore, QT units do not appear as primary building blocks of the glass backbone in thesemore » materials, and an optimally-constrained network may not be an appropriate description for glasses when x < 40. Finally, it is shown that, in contrast to Se-based glasses, the ‘chain-crossing’ model is only partially applicable to sulfide glasses.« less

  4. A perspective on two chemometrics tools: PCA and MCR, and introduction of a new one: Pattern recognition entropy (PRE), as applied to XPS and ToF-SIMS depth profiles of organic and inorganic materials

    NASA Astrophysics Data System (ADS)

    Chatterjee, Shiladitya; Singh, Bhupinder; Diwan, Anubhav; Lee, Zheng Rong; Engelhard, Mark H.; Terry, Jeff; Tolley, H. Dennis; Gallagher, Neal B.; Linford, Matthew R.

    2018-03-01

    X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are much used analytical techniques that provide information about the outermost atomic and molecular layers of materials. In this work, we discuss the application of multivariate spectral techniques, including principal component analysis (PCA) and multivariate curve resolution (MCR), to the analysis of XPS and ToF-SIMS depth profiles. Multivariate analyses often provide insight into data sets that is not easily obtained in a univariate fashion. Pattern recognition entropy (PRE), which has its roots in Shannon's information theory, is also introduced. This approach is not the same as the mutual information/entropy approaches sometimes used in data processing. A discussion of the theory of each technique is presented. PCA, MCR, and PRE are applied to four different data sets obtained from: a ToF-SIMS depth profile through ca. 100 nm of plasma polymerized C3F6 on Si, a ToF-SIMS depth profile through ca. 100 nm of plasma polymerized PNIPAM (poly (N-isopropylacrylamide)) on Si, an XPS depth profile through a film of SiO2 on Si, and an XPS depth profile through a film of Ta2O5 on Ta. PCA, MCR, and PRE reveal the presence of interfaces in the films, and often indicate that the first few scans in the depth profiles are different from those that follow. PRE and backward difference PRE provide this information in a straightforward fashion. Rises in the PRE signals at interfaces suggest greater complexity to the corresponding spectra. Results from PCA, especially for the higher principal components, were sometimes difficult to understand. MCR analyses were generally more interpretable.

  5. Dissolution of uranophane: An AFM, XPS, SEM and ICP study

    NASA Astrophysics Data System (ADS)

    Schindler, Michael; Freund, Michael; Hawthorne, Frank C.; Burns, Peter C.; Maurice, Patricia A.

    2009-05-01

    Dissolution experiments on single crystals of uranophane and uranophane-β, Ca(H 2O) 5[(UO 2)(SiO 3(OH)] 2, from the Shinkolobwe mine of the Democratic Republic of Congo, were done in an aqueous HCl solution of pH 3.5 for 3 h, in HCl solutions of pH 2 for 5, 10 and 30 min, and in Pb 2+-, Ba-, Sr-, Ca- and Mg-HCl solutions of pH 2 for 30 min. The basal surfaces of the treated uranophane crystals were examined using atomic-force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Solutions after dissolution experiments on single crystals and synthetic powders were analysed with inductively coupled plasma-optical emission spectroscopy (ICP-OES) and mass spectroscopy (ICP-MS). The morphology of the observed etch pits (measured by AFM) were compared to the morphology, predicted on the basis of the bond-valence deficiency of polyhedron chains along the edges of the basal surface. Etch pits form in HCl solutions of pH 2. Their decrease in depth with the duration of the dissolution experiment is explained with the stepwave dissolution model, which describes the lowering of the surrounding area of an etch pit with continuous waves of steps emanated from the etch pit into the rest of the crystal surface. Hillocks form in an HCl solution of pH 3.5, and the chemical composition of the surface (as indicated by XPS) shows that these hillocks are the result of the precipitation of a uranyl-hydroxy-hydrate phase. Well-orientated hillocks form on the surface of uranophane in a SrCl 2-HCl solution of pH 2. They are part of an aged silica coating of composition Si 2O 2(OH) 4(H 2O) n. An amorphous layer forms on the surface of uranophane in a MgCl 2-HCl solution of pH 2, which has a composition and structure similar to silicic acid. Small crystallites of uranyl-hydroxy-hydrate phases form on the surface of uranophane after treatment in Pb(NO 3) 2-HCl and BaCl 2-HCl solutions of pH 2. Dissolution experiments on synthetic uranophane powders

  6. A Chemical View on X-ray Photoelectron Spectroscopy: the ESCA Molecule and Surface-to-Bulk XPS Shifts.

    PubMed

    Delesma, Francisco A; Van den Bossche, Maxime; Grönbeck, Henrik; Calaminici, Patrizia; Köster, Andreas M; Pettersson, Lars G M

    2018-01-19

    In this paper we remind the reader of a simple, intuitive picture of chemical shifts in X-ray photoelectron spectroscopy (XPS) as the difference in chemical bonding between the probed atom and its neighbor to the right in the periodic table, the so called Z+1 approximation. We use the classical ESCA molecule, ethyl trifluoroacetate, and 4d-transition metals to explicitly demonstrate agreement between core-level shifts computed as differences between final core-hole states and the approach where each core-ionized atom is replaced by a Z+1 atom. In this final state, or total energy picture, the XPS shift arises due to the more or less unfavorable chemical bonding of the effective nitrogen in the carbon geometry for the ESCA molecule. Surface core level shifts in metals are determined by whether the Z+1 atom as an alloy segregates to the surface or is more soluble in the bulk. As further illustration of this more chemical picture, we compare the geometry of C 1s and O 1s core-ionized CO with that of, respectively, NO + and CF + . The scope is not to propose a new method to compute XPS shifts but rather to stress the validity of this simple interpretation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electrochemical and XPS study of LiFePO4 cathode nanocomposite with PPy/PEG conductive network

    NASA Astrophysics Data System (ADS)

    Fedorková, A.; Oriňáková, R.; Oriňák, A.; Kupková, M.; Wiemhöfer, H.-D.; Audinot, J. N.; Guillot, J.

    2012-08-01

    High performance PPy/PEG-LiFePO4 nanocomposites as cathode materials were synthesized by solvothermal method and simple chemical oxidative polymerization of pyrrole (Py) monomer on the surface of LiFePO4 particles. The samples were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectrometry (XPS) and charge-discharge tests. PPyPEG hybrid layers decrease particle to particle contact resistance while the impedance measurements confirmed that the coating of PPy-PEG significantly decreases the charge transfer resistance of the electrode material. The initial discharge capacities of this sample at C/5 and 1C are 150 and 128 mAh/g, respectively. The results show that PPy/PEGLiFePO4 composites are more effective than bare LiFePO4 as cathode material.

  8. Spectroellipsometric, AFM and XPS probing of stainless steel surfaces subjected to biological influences

    NASA Astrophysics Data System (ADS)

    Vinnichenko, M.; Chevolleau, Th; Pham, M. T.; Poperenko, L.; Maitz, M. F.

    2002-11-01

    Surface modification of austenitic stainless steel (SS) 316L after incubation in growing cell cultures and cell-free media as control has been studied. The following treatments were applied: mouse fibrosarcoma cells L929 for 3 and 7 days, polymorphonuclear neutrophils for 3 and 7 days and human osteosarcoma cells SAOS-2 for 7 and 14 days. Cells were enzymatically removed in all cases. The modified surfaces were probed in comparison with untreated ones by means of spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). XPS shows the appearance of the peak of bonded nitrogen at 400.5 eV characteristic for adsorbed proteins on the surface for each type of cells and for the cell-free medium. Migration of Ni in the adsorbed layer is observed in all cases for samples after the cell cultures. The protein layer thickness is ellipsometrically determined to be within 2.5-6.0 nm for all treated samples with parameterization of its optical constants in Cauchy approach. The study showed that for such biological treatments of the SS the protein layer adsorption is the dominating process in the first 2 weeks, which could play a role in the process of corrosion by complex forming properties with metal ions.

  9. XPS study of the surface chemistry of UO2 (111) single crystal film

    NASA Astrophysics Data System (ADS)

    Maslakov, Konstantin I.; Teterin, Yury A.; Popel, Aleksej J.; Teterin, Anton Yu.; Ivanov, Kirill E.; Kalmykov, Stepan N.; Petrov, Vladimir G.; Springell, Ross; Scott, Thomas B.; Farnan, Ian

    2018-03-01

    A (111) air-exposed surface of UO2 thin film (150 nm) on (111) YSZ (yttria-stabilized zirconia) before and after the Ar+ etching and subsequent in situ annealing in the spectrometer analytic chamber was studied by XPS technique. The U 5f, U 4f and O 1s electron peak intensities were employed for determining the oxygen coefficient kO = 2 + x of a UO2+x oxide on the surface. It was found that initial surface (several nm) had kO = 2.20. A 20 s Ar+ etching led to formation of oxide UO2.12, whose composition does not depend significantly on the etching time (up to 180 s). Ar+ etching and subsequent annealing at temperatures 100-380 °C in vacuum was established to result in formation of stable well-organized structure UO2.12 reflected in the U 4f XPS spectra as high intensity (∼28% of the basic peak) shake-up satellites 6.9 eV away from the basic peaks, and virtually did not change the oxygen coefficient of the sample surface. This agrees with the suggestion that a stable (self-assembling) phase with the oxygen coefficient kO ≈ 2.12 forms on the UO2 surface.

  10. XPS study of the effect of hydrocarbon contamination on polytetrafluoroethylene (teflon) exposed to atomic oxygen

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore; Cormia, Robert D.

    1991-01-01

    The presence of hydrocarbon contamination on the surface of polytetrafluoroethylene (PTFE) markedly affects the oxygen uptake, and hence the wettability, of this polymer when exposed to an oxygen plasma. As revealed by X-ray photoelectron spectroscopy (XPS) analysis, the oxygen-to-carbon ratio (O/C) for such a polymer can increase sharply, and correspondingly the fluorine-to-carbon ratio (F/C) can decrease sharply, at very short exposure times; at longer times, however, such changes in the O/C and F/C ratios reverse direction, and these ratios then assume values similar to those of the unexposed PTFE. The greater the extent of hydrocarbon contamination in the PTFE, the larger are the amplitudes of the 'spikes' in the O/C- and F/C-exposure time plots. In contrast, a pristine PTFE experiences a very small, monotonic increase of surface oxidation or O/C ratio with time of exposure to oxygen atoms, while the F/C ratio is virtually unchanged from that of the unexposed polymer (2.0). Unless the presence of adventitious hydrocarbon is taken into account, anomalous surface properties relating to polymer adhesion may be improperly ascribed to PTFE exposed to an oxygen plasma.

  11. Chemical Visualization of a GaN p-n junction by XPS

    PubMed Central

    Caliskan, Deniz; Sezen, Hikmet; Ozbay, Ekmel; Suzer, Sefik

    2015-01-01

    We report on an operando XPS investigation of a GaN diode, by recording the Ga2p3/2 peak position under both forward and reverse bias. Areal maps of the peak positions under reverse bias are completely decoupled with respect to doped regions and allow a novel chemical visualization of the p-n junction in a 2-D fashion. Other electrical properties of the device, such as leakage current, resistivity of the domains are also tapped via recording line-scan spectra. Application of a triangular voltage excitation enables probing photoresponse of the device. PMID:26359762

  12. Quantifying the Impact of Nanoparticle Coatings and Non-uniformities on XPS Analysis: Gold/silver Core-shell Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yung-Chen Andrew; Engelhard, Mark H.; Baer, Donald R.

    2016-03-07

    Abstract or short description: Spectral modeling of photoelectrons can serve as a valuable tool when combined with X-ray photoelectron spectroscopy (XPS) analysis. Herein, a new version of the NIST Simulation of Electron Spectra for Surface Analysis (SESSA 2.0) software, capable of directly simulating spherical multilayer NPs, was applied to model citrate stabilized Au/Ag-core/shell nanoparticles (NPs). The NPs were characterized using XPS and scanning transmission electron microscopy (STEM) to determine the composition and morphology of the NPs. The Au/Ag-core/shell NPs were observed to be polydispersed in size, non-circular, and contain off-centered Au-cores. Using the average NP dimensions determined from STEM analysis,more » SESSA spectral modeling indicated that washed Au/Ag-core shell NPs were stabilized with a 0.8 nm l« less

  13. XPS study of ruthenium tris-bipyridine electrografted from diazonium salt derivative on microcrystalline boron doped diamond.

    PubMed

    Agnès, Charles; Arnault, Jean-Charles; Omnès, Franck; Jousselme, Bruno; Billon, Martial; Bidan, Gérard; Mailley, Pascal

    2009-12-28

    Boron doped diamond (BDD) functionalization has received an increasing interest during the last few years. Such an infatuation comes from the original properties of BDD, including chemical stability or an electrochemical window, that opens the way for the design of (bio)sensors or smart interfaces. In such a context, diazonium salts appear to be well suited for BDD functionalization as they enable covalent immobilization of functional entities such as enzymes or DNA. In this study we report microcrystalline BDD functionalization with a metallic complex, ruthenium tris(bipyridine), using the p-(tris(bipyridine)Ru(2+))phenyl diazonium salt. Electrografting using cyclic voltammetry (CV) allowed the formation of a ruthenium complex film that was finely characterized using electrochemistry and X-ray photoelectron spectroscopy (XPS). Moreover, we showed that chronopotentiometry (CP) is a convenient tool to monitor Ru complex film deposition through the control of the electrochemical pulse parameters (i.e. current density and pulse duration). Finally, such a control was demonstrated through the correlation between electrochemical and XPS characterizations.

  14. A ToF-SIMS and XPS study of protein adsorption and cell attachment across PEG-like plasma polymer films with lateral compositional gradients

    NASA Astrophysics Data System (ADS)

    Menzies, Donna J.; Jasieniak, Marek; Griesser, Hans J.; Forsythe, John S.; Johnson, Graham; McFarland, Gail A.; Muir, Benjamin W.

    2012-12-01

    In this work we report a detailed X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) study of poly(ethylene glycol) PEG-like chemical gradients deposited via plasma enhanced chemical vapour deposition (PECVD) at two different load powers using diethylene glycol dimethyl ether (DG) as a monomer. Principal component analysis (PCA) was applied to the ToF-SIMS data both before and after protein adsorption on the plasma polymer thin films. Results of the PCA loadings indicated a higher content of hydrocarbon fragments across the higher load power gradient, which adsorbed higher amounts of proteins. Gradients deposited at a lower load power retained a higher degree of monomer like functionality as did the central region directly underneath the knife edge electrode. Analysis of the adsorption of serum proteins (human serum albumin and fetal bovine serum) was monitored across the gradient films and increased with decreasing ether (PEG-like) film chemistries. The effect of protein incubation time on the levels adsorbed fetal bovine serum on the plasma polymer films was critical, with significantly more protein adsorbing after 24 hour incubation times on both gradient films. The attachment of HeLa cells on the gradients appeared to be dictated not only by the surface chemistry, but also by the adsorption of serum proteins. XPS analysis revealed that at surface ether concentrations of less than 70% in the gradient films, significant increases in protein and cell attachment were observed.

  15. Surface and electronic structure of Bi-Ca-Sr-Cu-O superconductors studied by LEED, UPS and XPS

    NASA Astrophysics Data System (ADS)

    Shen, Z.-X.; Lindberg, P. A. P.; Wells, B. O.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Eom, C. B.; Kapitulnik, A.; Geballe, T. H.; Soukiassian, P.

    1989-02-01

    Single crystal and polycrystalline samples of Bi2CaSr2Cu2O8 have been studied by various surface sensitive techniques, including low energy electron diffraction (LEED), ultraviolet photoemission spectroscopy (UPS) and x-ray photoemission spectroscopy (XPS). The surface structure of the single crystals was characterized by LEED to be consistent with that of the bulk structure. Our data suggest that Bi2CaSr2Cu2O8 single crystals are very stable in the ultrahigh vacuu. No change of XPS spectra with temperature was observed. We have also studied the electronic structure of Bi2Sr2CuO6, which has a lower superconducting transition temperature Tc. Comparing the electronic structure of the two Bi-Ca-Sr-Cu-O superconductors, an important difference in the density of states near EF was observed which seems to be related to the difference in Tc.

  16. [Quantitative surface analysis of Pt-Co, Cu-Au and Cu-Ag alloy films by XPS and AES].

    PubMed

    Li, Lian-Zhong; Zhuo, Shang-Jun; Shen, Ru-Xiang; Qian, Rong; Gao, Jie

    2013-11-01

    In order to improve the quantitative analysis accuracy of AES, We associated XPS with AES and studied the method to reduce the error of AES quantitative analysis, selected Pt-Co, Cu-Au and Cu-Ag binary alloy thin-films as the samples, used XPS to correct AES quantitative analysis results by changing the auger sensitivity factors to make their quantitative analysis results more similar. Then we verified the accuracy of the quantitative analysis of AES when using the revised sensitivity factors by other samples with different composition ratio, and the results showed that the corrected relative sensitivity factors can reduce the error in quantitative analysis of AES to less than 10%. Peak defining is difficult in the form of the integral spectrum of AES analysis since choosing the starting point and ending point when determining the characteristic auger peak intensity area with great uncertainty, and to make analysis easier, we also processed data in the form of the differential spectrum, made quantitative analysis on the basis of peak to peak height instead of peak area, corrected the relative sensitivity factors, and verified the accuracy of quantitative analysis by the other samples with different composition ratio. The result showed that the analytical error in quantitative analysis of AES reduced to less than 9%. It showed that the accuracy of AES quantitative analysis can be highly improved by the way of associating XPS with AES to correct the auger sensitivity factors since the matrix effects are taken into account. Good consistency was presented, proving the feasibility of this method.

  17. Morphological and XPS study of ball milled Fe1-xAlx (0.3≤x≤0.6) alloys

    NASA Astrophysics Data System (ADS)

    Rajan, Sandeep; Kumar, Anil; Vyas, Anupam; Brajpuriya, Ranjeet

    2018-05-01

    The paper presents mechanical and XPS study of ball milled Fe1-xAlx (0.3≤x≤0.6) alloys. The author prepared the solid solution of Fe(Al) with different composition of Al by using mechanical alloying (MA) technique. The MA process induces a progressive dissolution of Al into Fe, resulted in the formation of an extended Fe(Al) solid solution with the bcc structure after 5 hr of milling. The SEM Images shows that the initial shape of particles disappeared completely, and their structure became a mixture of small and large angular-shaped crystallites with different sizes. The TEM micrograph also confirms the reduction in crystallite size and alloy formation. XPS study shows the shift in the binding energy position of both Fe and Al Peaks provide strong evidence of Fe(Al) phase formation after milling.

  18. Low-temperature thermal reduction of graphene oxide: In situ correlative structural, thermal desorption, and electrical transport measurements

    NASA Astrophysics Data System (ADS)

    Lipatov, Alexey; Guinel, Maxime J.-F.; Muratov, Dmitry S.; Vanyushin, Vladislav O.; Wilson, Peter M.; Kolmakov, Andrei; Sinitskii, Alexander

    2018-01-01

    Elucidation of the structural transformations in graphene oxide (GO) upon reduction remains an active and important area of research. We report the results of in situ heating experiments, during which electrical, mass spectrometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy (TEM) measurements were carried out correlatively. The simultaneous electrical and temperature programmed desorption measurements allowed us to correlate the onset of the increase in the electrical conductivity of GO by five orders of magnitude at about 150 °C with the maxima of the rates of desorption of H2O, CO, and CO2. Interestingly, this large conductivity change happens at an intermediate level of the reduction of GO, which likely corresponds to the point when the graphitic domains become large enough to enable percolative electronic transport. We demonstrate that the gas desorption is intimately related to (i) the changes in the chemical structure of GO detected by XPS and Raman spectroscopy and (ii) the formation of nanoscopic holes in GO sheets revealed by TEM. These in situ observations provide a better understanding of the mechanism of the GO thermal reduction.

  19. A XPS Study of the Passivity of Stainless Steels Influenced by Sulfate-Reducing Bacteria.

    NASA Astrophysics Data System (ADS)

    Chen, Guocun

    The influence of sulfate-reducing bacteria (SRB) on the passivity of type 304 and 317L stainless steels (SS) was investigated by x-ray photoelectron spectroscopy (XPS), microbiological and electrochemical techniques. Samples were exposed to SRB, and then the resultant surfaces were analyzed by XPS, and the corrosion resistance by potentiodynamic polarization in deaerated 0.1 M HCl. To further understand their passivity, the SRB-exposed samples were analyzed by XPS after potentiostatic polarization at a passive potential in the hydrochloric solution. The characterization was performed under two surface conditions: unrinsed and rinsed by deaerated alcohol and deionized water. Comparisons were made with control samples immersed in uninoculated medium. SRB caused a severe loss of the passivity of 304 SS through sulfide formation and possible additional activation to form hexavalent chromium. The sulfides included FeS, FeS_2, Cr_2S _3, NiS and possibly Fe_ {rm 1-x}S. The interaction took place nonuniformly, resulting in undercutting of the passive film and preferential hydration of inner surface layers. The bacterial activation of the Cr^{6+ }^ecies was magnified by subsequent potentiostatic polarization. In contrast, 317L SS exhibited a limited passivity. The sulfides were formed mainly in the outer layers. Although Cr^{6+}^ecies were observed after the exposure, they were dissolved upon polarization. Since 317L SS has a higher Mo content, its higher passivity was ascribed to Mo existing as molybdate on the surface and Mo^{5+} species in the biofilm. Consequently, the interaction of SRB with Mo was studied. It was observed that molybdate could be retained on the surfaces of Mo coupons by corrosion products. In the presence of SRB, however, a considerable portion of the molybdate interacted with intermediate sulfur -containing proteins, forming Mo(V)-S complexes and reducing bacterial growth and sulfate reduction. The limited insolubility of the Mo(V)-S complexes in 0

  20. A Multicenter Randomized Noninferiority Trial Comparing GreenLight-XPS Laser Vaporization of the Prostate and Transurethral Resection of the Prostate for the Treatment of Benign Prostatic Obstruction: Two-yr Outcomes of the GOLIATH Study.

    PubMed

    Thomas, James A; Tubaro, Andrea; Barber, Neil; d'Ancona, Frank; Muir, Gordon; Witzsch, Ulrich; Grimm, Marc-Oliver; Benejam, Joan; Stolzenburg, Jens-Uwe; Riddick, Antony; Pahernik, Sascha; Roelink, Herman; Ameye, Filip; Saussine, Christian; Bruyère, Franck; Loidl, Wolfgang; Larner, Tim; Gogoi, Nirjan-Kumar; Hindley, Richard; Muschter, Rolf; Thorpe, Andrew; Shrotri, Nitin; Graham, Stuart; Hamann, Moritz; Miller, Kurt; Schostak, Martin; Capitán, Carlos; Knispel, Helmut; Bachmann, Alexander

    2016-01-01

    The GOLIATH study is a 2-yr trial comparing transurethral resection of prostate (TURP) to photoselective vaporization with the GreenLight XPS Laser System (GL-XPS) for the treatment of benign prostatic obstruction (BPO). Noninferiority of GL-XPS to TURP was demonstrated based on a 6-mo follow-up from the study. To determine whether treatment effects observed at 6 mo between GL-XPS and TURP was maintained at the 2-yr follow-up. Prospective randomized controlled trial at 29 centers in nine European countries involving 281 patients with BPO. Photoselective vaporization using the 180-W GreenLight GL-XPS or conventional (monopolar or bipolar) TURP. The primary outcome was the International Prostate Symptom Score for which a margin of three was used to evaluate the noninferiority of GL-XPS. Secondary outcomes included Qmax, prostate volume, prostate specific antigen, Overactive Bladder Questionnaire Short Form, International Consultation on Incontinence Questionnaire Short Form, occurrence of surgical retreatment, and freedom from complications. One hundred and thirty-six patients were treated using GL-XPS and 133 using TURP. Noninferiority of GL-XPS on International Prostate Symptom Score, Qmax, and freedom from complications was demonstrated at 6-mo and was sustained at 2-yr. The proportion of patients complication-free through 24-mo was 83.6% GL-XPS versus 78.9% TURP. Reductions in prostate volume and prostate specific antigen were similar in both arms and sustained over the course of the trial. Compared with the 1(st) yr of the study, very few adverse events or retreatments were reported in either arm. Treatment differences in the Overactive Bladder Questionnaire Short Form observed at 12-mo were not statistically significant at 24-mo. A limitation was that patients and treating physicians were not blinded to the therapy. Twenty-four-mo follow-up data demonstrated that GL-XPS provides a durable surgical option for the treatment of BPO that exhibits efficacy and

  1. XPS Investigation on Changes in UO 2 Speciation following Exposure to Humidity

    DOE PAGES

    Donald, Scott B.; Davisson, M. Lee; Nelson, Art J.

    2016-04-27

    High purity UO 2powder samples were subjected to accelerated aging under controlled conditions with relative humidity ranging from 34% to 98%. Characterization of the chemical speciation of the products was accomplished using X-ray photoelectron spectroscopy (XPS). A shift to higher uranium oxidation states was found to be directly correlated to increased relative humidity exposure. In addition, the relative abundance of O 2-, OH -, and H 2O was found to vary with exposure time. Therefore, it is expected that uranium oxide materials exposed to high relative humidity conditions during processing and storage would display a similar increase in average uraniummore » valence.« less

  2. Eu(III) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS studies.

    PubMed

    Tan, Xiaoli; Fan, Qiaohui; Wang, Xiangke; Grambow, Bernd

    2009-05-01

    The sorption of Eu(III) on anatase and rutile was studied as a function of ionic strength, humic acid (HA, 7.5 mg/L), and electrolyte anions over a large range of pH (2-12). The presence of HA significantly affected Eu(III) sorption to anatase and rutile. The sorption of Eu(III) on anatase and rutile was independent of ionic strength. Results of an X-ray photoelectron spectroscopy (XPS) analysis showed that Eu(III) was chemically present within the near-surface of TiO2 due to the formation of triple bond SOEu and triple bond SOHAEu complexes. An extended X-ray absorption fine structure (EXAFS) technique was applied to characterize the local structural environment of the adsorbed Eu(III), and the results indicated that Eu(III) was bound to about seven or eight O atoms at a distance of about 2.40 A. The functional groups of surface-bound HA were expected to be involved in the sorption process. The measured Eu-Ti distance confirmed the formation of inner-sphere sorption complexes on a TiO2 surface.

  3. Method for revealing biases in precision mass measurements

    NASA Astrophysics Data System (ADS)

    Vabson, V.; Vendt, R.; Kübarsepp, T.; Noorma, M.

    2013-02-01

    A practical method for the quantification of systematic errors of large-scale automatic comparators is presented. This method is based on a comparison of the performance of two different comparators. First, the differences of 16 equal partial loads of 1 kg are measured with a high-resolution mass comparator featuring insignificant bias and 1 kg maximum load. At the second stage, a large-scale comparator is tested by using combined loads with known mass differences. Comparing the different results, the biases of any comparator can be easily revealed. These large-scale comparator biases are determined over a 16-month period, and for the 1 kg loads, a typical pattern of biases in the range of ±0.4 mg is observed. The temperature differences recorded inside the comparator concurrently with mass measurements are found to remain within a range of ±30 mK, which obviously has a minor effect on the detected biases. Seasonal variations imply that the biases likely arise mainly due to the functioning of the environmental control at the measurement location.

  4. Physical and Chemical Behaviors of HCl on Ice Surface: Insights from an XPS and NEXAFS Study

    NASA Astrophysics Data System (ADS)

    Kong, X.; Waldner, A.; Orlando, F.; Birrer, M.; Artiglia, L.; Ammann, M.; Bartels-Rausch, T.

    2016-12-01

    Ice and snow play active roles for the water cycle, the energy budget of the Earth, and environmental chemistry in the atmosphere and cryosphere. Trace gases can be taken up by ice, and physical and chemical fates of the impurities could modify surface properties significantly and consequently influence atmospheric chemistry and the climate system. However, the understanding of chemical behaviour of impurities on ice surface are very poor, which is largely limited by the difficulties to apply high sensitivity experimental approaches to ambient air conditions, e.g. studies of volatile surfaces, because of the strict requirements of vacuum experimental conditions. In this study, we employed synchrotron-based X-ray photoelectron spectroscopy (XPS) and partial electron yield Near Edge X-ray Absorption Fine Structure (NEXAFS) in a state-of-the-art near-ambient pressure photoelectron (NAPP) spectroscopy end station. The NAPP enables to utilize the surface sensitive experimental methods, XPS and NEXAFS, on volatile surfaces, i.e. ice at temperatures approaching 0°C. XPS and NEXAFS together provide unique information of hydrogen bonding network, dopants surface concentration, dopant depth profile, and acidic dissociation on the surfaces1. Taking the advantages of the highly sensitive techniques, the adsorption, dissociation and depth profile of Hydrogen Chloride (HCl) on ice were studied. In brief, two states of Chloride on ice surface are identified from the adsorbed HCl, and they are featured with different depth profiles along the ice layers. Combining our results and previously reported constants from literatures (e.g. HCl diffusion coefficients in ice)2, a layered kinetic model has been constructed to fit the depth profiles of two states of Chloride. On the other side, pure ice and doped ice are compared for their surface structure change caused by temperature and the presence of HCl, which shows how the strong acid affect the ice surface in turn. 1. Orlando, F., et

  5. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology.

    PubMed

    Zhu, Xiangdong; Yang, Shijun; Wang, Liang; Liu, Yuchen; Qian, Feng; Yao, Wenqing; Zhang, Shicheng; Chen, Jianmin

    2016-04-01

    Antibiotic mycelial fermentation residues (AMFRs), which are emerging solid pollutants, have been recognized as hazardous waste in China since 2008. Nitrogen (N), which is an environmental sensitivity element, is largely retained in AMFR samples derived from fermentation substrates. Pyrolysis is a promising technology for the treatment of solid waste. However, the outcomes of N element during the pyrolysis of AMFRs are still unknown. In this study, the conversion of N element during the pyrolysis of AMFRs was tracked using XPS (X-ray photoelectron spectroscopy) and online TG-FTIR-MS (Thermogravimetry-Fourier transform infrared-Mass spectrometry) technology. In the AMFR sample, organic amine-N, pyrrolic-N, protein-N, pyridinic-N, was the main N-containing species. XPS results indicated that pyrrolic-N and pyridinic-N were retained in the AMFR-derived pyrolysis char. More stable species, such as N-oxide and quaternary-N, were also produced in the char. TG-FTIR-MS results indicated that NH3 and HCN were the main gaseous species, and their contents were closely related to the contents of amine-N and protein-N, and pyrrolic-N and pyridinic-N of AMFRs, respectively. Increases in heating rate enhanced the amounts of NH3 and HCN, but had less of an effect on the degradation degree of AMFRs. N-containing organic compounds, including amine-N, nitrile-N and heterocyclic-N, were discerned from the AMFR pyrolysis process. Their release range was extended with increasing of heating rate and carbon content of AMFR sample. This work will help to take appropriate measure to reduce secondary pollution from the treatment of AMFRs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Surface modification of EPDM rubber by plasma treatment.

    PubMed

    Grythe, Kai Frode; Hansen, Finn Knut

    2006-07-04

    The effect of argon, oxygen, and nitrogen plasma treatment of solvent cast EPDM rubber films has been investigated by means of atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and surface energy measurements. Plasma treatment leads to changes in the surface energy from 25 to 70 mN/m. Treatment conditions influenced both the changes in surface energy and the stability, and it became more difficult to obtain good contact angle measurements after longer (> ca. 4 min) treatment times, probably because of an increasingly uneven surface structure. XPS analyses revealed that up to 20 at. % oxygen can be easily incorporated and that variations of approximately 5% can be controlled by the plasma conditions. Oxygen was mainly found in hydroxyl groups, but also as carbonyl and carboxyl. XPS analyses showed more stable surfaces than expected from contact angles, probably because XPS analysis is less surface sensitive than contact angle measurements. AFM measurements revealed different surface structures with the three gases. The surface roughness increased generally with treatment time, and dramatic changes could be observed at longer times. At short times, surface energy changes were much faster than the changes in surface structure, showing that plasma treatment conditions can be utilized to tailor both surface energies and surface structure of EPDM rubber.

  7. Colloidal diatomite, radionickel, and humic substance interaction: a combined batch, XPS, and EXAFS investigation.

    PubMed

    Sheng, Guodong; Shen, Runpu; Dong, Huaping; Li, Yimin

    2013-06-01

    This work determined the influence of humic acid (HA) and fulvic acid (FA) on the interaction mechanism and microstructure of Ni(II) onto diatomite by using batch experiments, X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS) methods. Macroscopic and spectroscopic experiments have been combined to see the evolution of the interaction mechanism and microstructure of Ni(II) in the presence of HA/FA as compared with that in the absence of HA/FA. The results indicated that the interaction of Ni(II) with diatomite presents the expected solution pH edge at 7.0, which is modified by addition of HA/FA. In the presence of HA/FA, the interaction of Ni(II) with diatomite increased below solution pH 7.0, while Ni(II) interaction decreased above solution pH 7.0. XPS analysis suggested that the enrichment of Ni(II) onto diatomite may be due to the formation of (≡SO)2Ni. EXAFS results showed that binary surface complexes and ternary surface complexes of Ni(II) can be simultaneously formed in the presence of HA/FA, whereas only binary surface complexes of Ni(II) are formed in the absence of HA/FA, which contribute to the enhanced Ni(II) uptake at low pH values. The results observed in this work are important for the evaluation of Ni(II) and related radionuclide physicochemical behavior in the natural soil and water environment.

  8. Kinetic Measurements Reveal Enhanced Protein-Protein Interactions at Intercellular Junctions

    PubMed Central

    Shashikanth, Nitesh; Kisting, Meridith A.; Leckband, Deborah E.

    2016-01-01

    The binding properties of adhesion proteins are typically quantified from measurements with soluble fragments, under conditions that differ radically from the confined microenvironment of membrane bound proteins in adhesion zones. Using classical cadherin as a model adhesion protein, we tested the postulate that confinement within quasi two-dimensional intercellular gaps exposes weak protein interactions that are not detected in solution binding assays. Micropipette-based measurements of cadherin-mediated, cell-cell binding kinetics identified a unique kinetic signature that reflects both adhesive (trans) bonds between cadherins on opposing cells and lateral (cis) interactions between cadherins on the same cell. In solution, proposed lateral interactions were not detected, even at high cadherin concentrations. Mutations postulated to disrupt lateral cadherin association altered the kinetic signatures, but did not affect the adhesive (trans) binding affinity. Perturbed kinetics further coincided with altered cadherin distributions at junctions, wound healing dynamics, and paracellular permeability. Intercellular binding kinetics thus revealed cadherin interactions that occur within confined, intermembrane gaps but not in solution. Findings further demonstrate the impact of these revealed interactions on the organization and function of intercellular junctions. PMID:27009566

  9. Surface Propensity of Atmospherically Relevant Amino Acids Studied by XPS.

    PubMed

    Mocellin, Alexandra; Gomes, Anderson Herbert de Abreu; Araújo, Oscar Cardoso; de Brito, Arnaldo Naves; Björneholm, Olle

    2017-04-27

    Amino acids constitute an important fraction of the water-soluble organic nitrogen (WSON) compounds in aerosols and are involved in many processes in the atmosphere. In this work, we applied X-ray photoelectron spectroscopy (XPS) to study aqueous solutions of four amino acids, glycine, alanine, valine, and methionine, in their zwitterionic forms. We found that amino acids with hydrophilic side chains and smaller size, GLY and ALA, tend to stay in the bulk of the liquid, while the hydrophobic and bigger amino acids, VAL and MET, are found to concentrate more on the surface. We found experimental evidence that the amino acids have preferential orientation relative to the surface, with the hydrophobic side chain being closer to the surface than the hydrophilic carboxylate group. The observed amino acid surface propensity has implications in atmospheric science as the surface interactions play a central role in cloud droplet formation, and they should be considered in climate models.

  10. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Embong, Zaidi, E-mail: zaidi@uthm.edu.my; Research Centre for Soft Soils; Johar, Saffuwan

    2015-04-29

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangaumore » soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si{sup 2+} and Al{sup 2+} cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail.« less

  11. Observation of GaSe-SnO2 Heterostructure by XPS and AES

    NASA Astrophysics Data System (ADS)

    Tatsuyama, Chiei; Ichimura, Shoji; Iwakuro, Hiroaki

    1982-01-01

    The depth profile of the elemental composition of the GaSe-SnO2 heterostructure has been studied by XPS and AES. The SnO2 layer was prepared by spraying a solution of SnCl4 and SbCl3 in ethyl alcohol on to the the cleaved surface of GaSe heated to ˜400°C in air. After the solution had been sprayed on for about 5 secs., an SnO2 layer of thickness ˜460 Å formed, and a Ga2O3 layer of thickness ˜120 Å formed under the SnO2 layer. The Ga2O3 layer is a likely origin of the high-resistivity layer observed in the GaSe-SnO2 heterostructure.

  12. Composition measurement of epitaxial Sc x Ga1-x N films

    NASA Astrophysics Data System (ADS)

    Tsui, H. C. L.; Goff, L. E.; Barradas, N. P.; Alves, E.; Pereira, S.; Palgrave, R. G.; Davies, R. J.; Beere, H. E.; Farrer, I.; Ritchie, D. A.; Moram, M. A.

    2016-06-01

    Four different methods for measuring the compositions of epitaxial Sc x Ga1-x N films were assessed and compared to determine which was the most reliable and accurate. The compositions of epitaxial Sc x Ga1-x N films with 0 ≤ x ≤ 0.26 were measured directly using Rutherford backscattering (RBS) and x-ray photoelectron spectroscopy (XPS), and indirectly using c lattice parameter measurements from x-ray diffraction and c/a ratio measurements from electron diffraction patterns. RBS measurements were taken as a standard reference. XPS was found to underestimate the Sc content, whereas c lattice parameter and c/a ratio were not reliable for composition determination due to the unknown degree of strain relaxation in the film. However, the Sc flux used during growth was found to relate linearly with x and could be used to estimate the Sc content.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Laura; Harvey, Stephen P.; Teeter, Glenn

    We demonstrate the potential of X-ray photoelectron spectroscopy (XPS) to characterize new carrier-selective contacts (CSC) for solar cell application. We show that XPS not only provides information about the surface chemical properties of the CSC material, but that operando XPS, i.e. under light bias condition, can also directly measure the photovoltage that develops at the CSC/absorber interface, revealing device relevant information without the need of assembling a full solar cell. We present the application of the technique to molybdenum oxide hole-selective contact films on a crystalline silicon absorber.

  14. XPS and ToF-SIMS analysis of natural rubies and sapphires heat-treated in a reducing (5 mol% H 2/Ar) atmosphere

    NASA Astrophysics Data System (ADS)

    Achiwawanich, S.; James, B. D.; Liesegang, J.

    2008-12-01

    Surface effects on Mong Hsu rubies and Kanchanaburi sapphires after heat treatment in a controlled reducing atmosphere (5 mol% H 2/Ar) have been investigated using advanced surface science techniques including X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Visual appearance of the gemstones is clearly affected by the heat treatment in a reducing atmosphere. Kanchanaburi sapphires, in particular, exhibit Fe-containing precipitates after the heat treatment which have not been observed in previous studies under an inert atmosphere. Significant correlation between changes in visual appearance of the gemstones and variations in surface concentration of trace elements, especially Ti and Fe are observed. The XPS and ToF-SIMS results suggest that; (1) a reducing atmosphere affects the oxidation state of Fe; (2) dissociation of Fe-Ti interaction may occur during heat treatment.

  15. Load-embedded inertial measurement unit reveals lifting performance.

    PubMed

    Tammana, Aditya; McKay, Cody; Cain, Stephen M; Davidson, Steven P; Vitali, Rachel V; Ojeda, Lauro; Stirling, Leia; Perkins, Noel C

    2018-07-01

    Manual lifting of loads arises in many occupations as well as in activities of daily living. Prior studies explore lifting biomechanics and conditions implicated in lifting-induced injuries through laboratory-based experimental methods. This study introduces a new measurement method using load-embedded inertial measurement units (IMUs) to evaluate lifting tasks in varied environments outside of the laboratory. An example vertical load lifting task is considered that is included in an outdoor obstacle course. The IMU data, in the form of the load acceleration and angular velocity, is used to estimate load vertical velocity and three lifting performance metrics: the lifting time (speed), power, and motion smoothness. Large qualitative differences in these parameters distinguish exemplar high and low performance trials. These differences are further supported by subsequent statistical analyses of twenty three trials (including a total of 115 total lift/lower cycles) from fourteen healthy participants. Results reveal that lifting time is strongly correlated with lifting power (as expected) but also correlated with motion smoothness. Thus, participants who lift rapidly do so with significantly greater power using motions that minimize motion jerk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Effects of M=Si, Ga and Al for Co substitution on the electronic properties of RCo4M as probed by XPS

    NASA Astrophysics Data System (ADS)

    Laslo, A.; Dudric, R.; Neumann, M.; Isnard, O.; Coldea, M.; Pop, V.

    2014-12-01

    The electronic properties of RCo5-xMx (R=Er, Sm, Tm; M=Si, Ga, Al; x=0 and 1) compounds were investigated by X-ray photoelectron spectroscopy (XPS). The study was focused on the Co 3s exchange splitting, the valence bands and chemical shifts of the elements from the analyzed compounds. The Co 2p3/2 core-level chemical shifts were described by means of the Auger parameters and Wagner plot. The hybridization between the R 5d6s and M 3sp and 4sp states and Co 3d states leads to a partial filling of the Co 3d band and to a decrease of the Co magnetic moments in comparison with the value in pure Co metal, in good agreement with the magnetic measurements.

  17. Towards nanometric resolution in multilayer depth profiling: a comparative study of RBS, SIMS, XPS and GDOES.

    PubMed

    Escobar Galindo, Ramón; Gago, Raul; Duday, David; Palacio, Carlos

    2010-04-01

    An increasing amount of effort is currently being directed towards the development of new functionalized nanostructured materials (i.e., multilayers and nanocomposites). Using an appropriate combination of composition and microstructure, it is possible to optimize and tailor the final properties of the material to its final application. The analytical characterization of these new complex nanostructures requires high-resolution analytical techniques that are able to provide information about surface and depth composition at the nanometric level. In this work, we comparatively review the state of the art in four different depth-profiling characterization techniques: Rutherford backscattering spectroscopy (RBS), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and glow discharge optical emission spectroscopy (GDOES). In addition, we predict future trends in these techniques regarding improvements in their depth resolutions. Subnanometric resolution can now be achieved in RBS using magnetic spectrometry systems. In SIMS, the use of rotating sample holders and oxygen flooding during analysis as well as the optimization of floating low-energy ion guns to lower the impact energy of the primary ions improves the depth resolution of the technique. Angle-resolved XPS provides a very powerful and nondestructive technique for obtaining depth profiling and chemical information within the range of a few monolayers. Finally, the application of mathematical tools (deconvolution algorithms and a depth-profiling model), pulsed sources and surface plasma cleaning procedures is expected to greatly improve GDOES depth resolution.

  18. Applications of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) to study interactions of genetically engineered proteins with noble metal films

    NASA Astrophysics Data System (ADS)

    Suzuki, Noriaki

    Genetically engineered proteins for inorganics (GEPIs) belong to a new class of polypeptides that are designed to have specific affinities to inorganic materials. A "gold binding protein (GBP)" was chosen as a model protein for GEPIs to study the molecular origins of binding specificity to gold using Time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS). TOF-SIMS, a surface-sensitive analytical instrument with extremely high mass resolutions, provides information on specific amino acid-surface interactions. We used "principal component analysis (PCA)" to analyze the data. We also introduced a new multivariate technique, "hierarchical cluster analysis (HCA)" to organize the data into meaningful structures by measuring a degree of "similarity" and "dissimilarity" of the data. This report discusses a combined use of PCA and HCA to elucidate the binding specificity of GBP to Au. Based on the knowledge gained from TOF-SIMS measurements, we further investigated the nature of the interaction between selected amino acids and noble metal surfaces by using X-ray photoelectron spectroscopy (XPS). We developed a unique capability to introduce water vapor during the adsorption of a single amino acid and applied this method to study the intrinsic nature of sidechain/Au interactions. To further apply this unique research protocol, we characterized another type of GEPI, "quartz binding protein (QBP)," to identify the possible binding sites. This thesis research aims to provide experimental protocols for analyzing short peptide-substrate interface from complex spectroscopic data by using multivariate analysis techniques.

  19. Nonclassical light revealed by the joint statistics of simultaneous measurements.

    PubMed

    Luis, Alfredo

    2016-04-15

    Nonclassicality cannot be a single-observable property, since the statistics of any quantum observable is compatible with classical physics. We develop a general procedure to reveal nonclassical behavior of light states from the joint statistics arising in the practical measurement of multiple observables. Beside embracing previous approaches, this protocol can disclose nonclassical features for standard examples of classical-like behavior, such as SU(2) and Glauber coherent states. When combined with other criteria, this would imply that every light state is nonclassical.

  20. A Novel Approach for the Treatment of Radiation-Induced Hemorrhagic Cystitis with the GreenLight™ XPS Laser

    PubMed Central

    Martinez, Daniel Roberto; Ercole, Cesar E; Lopez, Juan Gabriel; Parker, Justin; Hall, Mary K

    2015-01-01

    ABSTRACT Introduction: The treatment of pelvic malignancies with radiotherapy can develop severe sequelae, especially radiation-induced hemorrhagic cystitis. It is a progressive disease that can lead to the need for blood transfusion, hospitalizations, and surgical interventions. This tends to affect the quality of life of these patients, and management can at times be difficult. We have evaluated the GreenLight Xcelerated Performance System (XPS) with TruCoag, although primarily used for management of benign prostatic hypertrophy (BPH), for the treatment of radiation-induced hemorrhagic cystitis. Materials and Methods: After International Review Board (IRB) approval, a retrospective chart review was performed in addition to a literature search. A series of four male patients, mean age of 81 years, with radiation-induced hemorrhagic cystitis secondary to radiotherapy for pelvic malignancies (3 prostate cancer, 1 rectal cancer) were successfully treated with the GreenLight laser after unsuccessful treatment with current therapies described in the literature. Results: All four patients treated with the GreenLight laser had resolution of their hematuria after one treatment and were discharge from the hospital with clear urine. Conclusion: The GreenLight XPS laser shows promising results for the treatment of patients with radiation-induced hemorrhagic cystitis, and deserves further evaluation and validation, especially since there is limited data available in the literature regarding the use of this technology for the treatment of this devastating condition. PMID:26200555

  1. XPS and biocompatibility studies of titania film on anodized NiTi shape memory alloy.

    PubMed

    Chu, C L; Wang, R M; Hu, T; Yin, L H; Pu, Y P; Lin, P H; Dong, Y S; Guo, C; Chung, C Y; Yeung, K W K; Chu, Paul K

    2009-01-01

    A dense titania film is fabricated in situ on NiTi shape memory alloy (SMA) by anodic oxidation in a Na(2)SO(4) electrolyte. The microstructure of the titania film and its influence on the biocompatibility of NiTi SMA are investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), hemolysis analysis, and platelet adhesion test. The results indicate that the titania film has a Ni-free zone near the surface and can effectively block the release of harmful Ni ions from the NiTi substrate in simulated body fluids. Moreover, the wettability, hemolysis resistance, and thromboresistance of the NiTi sample are improved by this anodic oxidation method.

  2. Depth profile composition studies of thin film CdS:Cu2S solar cells using XPS and AES

    NASA Astrophysics Data System (ADS)

    Bhide, V. G.; Salkalachen, S.; Rastogi, A. C.; Rao, C. N. R.; Hegde, M. S.

    1981-09-01

    Studies of the surface composition and depth profiles of thin film CdS:Cu2S solar cells based on the techniques of X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) are reported. Specimens were fabricated by the thermal deposition of polycrystalline CdS films onto silver-backed electrodes predeposited on window glass substrates, followed by texturization in hot HCl and chemical plating in a hot CuCl(I) bath for a few seconds to achieve the topotaxial growth of CuS films. The XPS and AES studies indicate the junction to be fairly diffused in the as-prepared cell, with heat treatment in air at 210 C sharpening the junction, improving the stoichiometry of the Cu2S layer and thus improving cell performance. The top copper sulfide layer is found to contain impurities such as Cd, Cl, O and C, which may be removed by mild Ar(+) ion beam etching. The presence of copper deep in the junction is invariably detected, apparently in the grain boundary region in the form of CuS or Cu(2+) trapped in the lattice. It is also noted that the nominal valence state of copper changes abruptly from Cu(+) to Cu(2+) across the junction.

  3. Interactions of gaseous molecules with X-ray photons and photoelectrons in AP-XPS study of solid surface in gas phase.

    PubMed

    Tao, Franklin Feng; Nguyen, Luan

    2018-04-18

    Studies of the surface of a catalyst in the gas phase via photoelectron spectroscopy is an important approach to establish a correlation between the surface of a catalyst under reaction conditions or during catalysis and its corresponding catalytic performance. Unlike the well understood interactions between photoelectrons and the atomic layers of a surface in ultrahigh vacuum (UHV) and the well-developed method of quantitative analysis of a solid surface in UHV, a fundamental understanding of the interactions between X-ray photons and gaseous molecules and between photoelectrons and molecules of the gas phase in ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is lacking. Through well designed experiments, here the impact of the interactions between photoelectrons and gaseous molecules and interactions between X-ray photons and gaseous molecules on the intensity of the collected photoelectrons have been explored. How the changes in photoelectron intensity resulting from these interactions influence measurement of the authentic atomic ratio of element M to A of a solid surface has been discussed herein, and methods to correct the measured nominal atomic ratio of two elements of a solid surface upon travelling through a gas phase to its authentic atomic ratio have been developed.

  4. [XPS analysis of beads formed by fuse breaking of electric copper wire].

    PubMed

    Wu, Ying; Meng, Qing-Shan; Wang, Xin-Ming; Gao, Wei; Di, Man

    2010-05-01

    The in-depth composition of beads formed by fuse breaking of the electric copper wire in different circumstances was studied by XPS with Ar+ ion sputtering. In addition, the measured Auger spectra and the calculated Auger parameters were compared for differentiation of the substances of Cu and Cu2O. Corresponding to the sputtering depth, the molten product on a bead induced directly by fuse breaking of the copper wire without cover may be distinguished as three portions: surface layer with a drastic decrease in carbon content; intermediate layer with a gentle change in oxygen content and gradually diminished carbon peak, and consisting of Cu2O; transition layer without Cu2O and with a rapid decrease in oxygen content. While the molten product on a bead formed by fuse breaking of the copper wire after its insulating cover had been burned out may be distinguished as two portions: surface layer with carbon content decreasing quickly; subsurface layer without Cu2O and with carbon and oxygen content decreasing gradually. Thus, it can be seen that there was an obvious interface between the layered surface product and the substrate for the first type of bead, while as to the second type of bead there was no interface. As a result, the presence of Cu2O and the quantitative results can be used to identify the molten product on a bead induced directly by fuse breaking of the copper wire without cover and the molten product on a bead formed by fuse breaking of the cupper wire after its insulating cover had been burned out, as a complementary technique for the judgments of fire cause.

  5. Surface analysis of glass fibres using XPS and AFM: case study of glass fibres recovered from the glass fibre reinforced polymer using chemical recycling

    NASA Astrophysics Data System (ADS)

    Nzioka, A. M.; Kim, Y. J.

    2018-01-01

    In this study, we present the results of an experimental study of the use of the X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) to characterise the coatings of the recovered E - glass fibres. The recovered E - glass fibres were obtained using chemical recycling process coupled with ultrasound cavitation. The objective of this study was to analyse the impact of chemical recycling and the ultrasound cavitation process on the sizing properties of the recovered fibres. We obtained the recovered fibres and sized using 1 wt% 3 - aminopropyltriethoxysilane (APS). Part of the sized fibres was washed with acetone and analysed all the sample fibres using AFM and XPS. Results showed the different composition of sizing after extraction using acetone. We compared the results of this study with that of virgin clean glass fibres.

  6. In-situ XPS analysis of oxidized and reduced plasma deposited ruthenium-based thin catalytic films

    NASA Astrophysics Data System (ADS)

    Balcerzak, Jacek; Redzynia, Wiktor; Tyczkowski, Jacek

    2017-12-01

    A novel in-situ study of the surface molecular structure of catalytically active ruthenium-based films subjected to the oxidation (in oxygen) and reduction (in hydrogen) was performed in a Cat-Cell reactor combined with a XPS spectrometer. The films were produced by the plasma deposition method (PEMOCVD). It was found that the films contained ruthenium at different oxidation states: metallic (Ru0), RuO2 (Ru+4), and other RuOx (Ru+x), of which content could be changed by the oxidation or reduction, depending on the process temperature. These results allow to predict the behavior of the Ru-based catalysts in different redox environments.

  7. Quantification of the toxic hexavalent chromium content in an organic matrix by X-ray photoelectron spectroscopy (XPS) and ultra-low-angle microtomy (ULAM)

    NASA Astrophysics Data System (ADS)

    Greunz, Theresia; Duchaczek, Hubert; Sagl, Raffaela; Duchoslav, Jiri; Steinberger, Roland; Strauß, Bernhard; Stifter, David

    2017-02-01

    Cr(VI) is known for its corrosion inhibitive properties and is, despite legal regulations, still a potential candidate to be added to thin (1-3 μm) protective coatings applied on, e.g., electrical steel as used for transformers, etc. However, Cr(VI) is harmful to the environment and to the human health. Hence, a reliable quantification of it is of decisive interest. Commonly, an alkaline extraction with a photometric endpoint detection of Cr(VI) is used for such material systems. However, this procedure requires an accurate knowledge on sample parameters such as dry film thickness and coating density that are occasionally associated with significant experimental errors. We present a comprehensive study of a coating system with a defined Cr(VI) pigment concentration applied on electrical steel. X-ray photoelectron spectroscopy (XPS) was employed to resolve the elemental chromium concentration and the chemical state. Turning to the fact that XPS is extremely surface sensitive (<10 nm) and that the lowest commonly achievable lateral resolution is a number of times higher than the coating thickness (∼2 μm), a bulk analysis was achieved with XPS line scans on extended wedge-shaped tapers through the coating. For that purpose a special sample preparation step performed on an ultra-microtome was required prior to analysis. Since a temperature increase leads to a reduction of Cr(VI) we extend our method on samples, which were subjected to different curing temperatures. We show that our proposed approach now allows to determine the elemental and Cr(VI) concentration and distribution inside the coating.

  8. Fabrication and characterization of ultrathin dextran layers: Time dependent nanostructure in aqueous environments revealed by OWLS.

    PubMed

    Saftics, Andras; Kurunczi, Sándor; Szekrényes, Zsolt; Kamarás, Katalin; Khánh, Nguyen Quoc; Sulyok, Attila; Bősze, Szilvia; Horvath, Robert

    2016-10-01

    Surface coatings of the polysaccharide dextran and its derivatives are key ingredients especially in label-free biosensors for the suppression of non-specific binding and for receptor immobilization. Nevertheless, the nanostructure of these ultrathin coatings and its tailoring by the variation of the preparation conditions have not been profoundly characterized and understood. In this work carboxymethylated dextran (CMD) was prepared and used for fabricating ultrathin surface coatings. A grafting method based on covalent coupling to aminosilane- and epoxysilane-functionalized surfaces was applied to obtain thin CMD layers. The carboxyl moiety of the CMD was coupled to the aminated surface by EDC-NHS reagents, while CMD coupling through epoxysilane molecules was performed without any additional reagents. The surface analysis following the grafting procedures consisted of X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared spectroscopy (ATR-IR), spectroscopic ellipsometry, atomic force microscopy (AFM) and optical waveguide lightmode spectroscopy (OWLS). The XPS and AFM measurements showed that the grafting resulted in a very thin dextran layer of a few nanometers. The OWLS method allowed devising the structure of the interfacial dextran layers by the evaluation of the optogeometrical parameters. The alteration in the nanostructure of the CMD layer with the chemical composition of the silane coverage and the pH of the grafting solution was revealed by in situ OWLS, specifically, lain down chains were found to be prevalent on the surface under neutral and basic conditions on epoxysilylated surfaces. The developed methodologies allowed to design and fabricate nanometer scale CMD layers with well-controlled surface structure, which are very difficult to characterize in aqueous environments using present instrumentations and highly hydrated surface layers. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. XPS Spectra Analysis of Ti2+, Ti3+ Ions and Dye Photodegradation Evaluation of Titania-Silica Mixed Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chinh, Vu Duc; Broggi, Alessandra; Di Palma, Luca; Scarsella, Marco; Speranza, Giorgio; Vilardi, Giorgio; Thang, Pham Nam

    2018-04-01

    TiO2-SiO2 mixed oxides have been prepared by the sol-gel technique from tetrabutyl orthotitanate and tetraethyl orthosilicate. The prepared materials were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, nitrogen physisorption, Fourier-transform infrared spectroscopy (FT-IR) and x-ray photoelectron spectroscopy (XPS). The results indicate that the TiO2-SiO2 mixed oxides have a large surface area and a nanoscale size. FT-IR spectra show that Ti atoms are bonded to silica by oxygen bridging atoms in Ti-O-Si bonds. The titanium valence states in TiO2-SiO2 mixed oxides were investigated by XPS, and their spectra report the presence of Ti2+ and Ti3+ cations for high silica concentration, suggesting the formation of oxygen vacancies. The photocatalytic activity of the prepared materials has been evaluated for the photodegradation of methylene blue (MB). The mixed oxides were activated by means of a UV light source, and the concentration of MB was monitored by UV-Vis spectroscopy. The synthesized TiO2-SiO2 shows significantly higher MB removal efficiency in comparison with that of the commercial TiO2 Degussa, P25.

  10. Combined use of FE-SEM+EDS, ToF-SIMS, XPS, XRD and OM for the study of ancient gilded artefacts

    NASA Astrophysics Data System (ADS)

    Ingo, G. M.; Riccucci, C.; Pascucci, M.; Messina, E.; Giuliani, C.; Biocca, P.; Tortora, L.; Fierro, G.; Di Carlo, G.

    2018-07-01

    Gilded brooches dating back to 16th-17th centuries CE were investigated by means of integrated and complementary analytical techniques such as high spatial resolution field emission scanning electron microscopy coupled with energy dispersive X-ray spectrometry (FE-SEM+EDS), time of flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and optical microscopy (OM). The results reveal in detail the surface and subsurface morphology and the chemical features of the micrometric decorative Au layer that has been deposited by means of the so-called fire-gilding technique based on the use of an amalgam. Moreover, the results allow to recognise chlorine, sulphur and phosphorous species as the main degradation agents and to identify the corrosion products naturally formed during the long-term interaction with the burial soil constituents. The findings show also that the galvanic coupling between the two dissimilar metals, i.e. Cu and Au, lead to enhancement of corrosion phenomena causing the spalling of the gold thin film and the disfigurement of the object. From a conservation point of view, the results suggest a targeted use of low-toxic inhibitors to hinder the detrimental role of chlorine as possible responsible of future further severe degradation phenomena. In conclusions, the micro and nano-chemical, structural and morphological investigations in a depth range from a few nanometers to micrometers have revealed the complex nature of corroded surface of ancient gold coated artefacts, highlighting some specific aspects related to their peculiar degradation mechanisms thus extending the scientific relevance of the tailored use of complementary and integrated surface and subsurface analytical techniques for the investigation of ancient coated artefacts.

  11. A combined ToF-SIMS and XPS study for the elucidation of the role of water in the performances of a Post-Plasma Process using LaMnO3+δ as catalyst in the total oxidation of trichloroethylene

    NASA Astrophysics Data System (ADS)

    Nuns, N.; Beaurain, A.; Dinh, M. T. Nguyen; Vandenbroucke, A.; De Geyter, N.; Morent, R.; Leys, C.; Giraudon, J.-M.; Lamonier, J.-F.

    2014-11-01

    LaMnO3+δ which is an environment-friendly and inexpensive material has been previously used as catalyst in Post-Plasma Catalysis (PPC) in the total oxidation of trichloroethylene (TCE) which is a solvent widely used in dry cleaning and degreasing processes. It has been shown that the process efficiency increases in moist air (RH = 18%).The issue we want to address herein is the effect of water on the location of chlorine at the surface of the catalyst as chlorine is able to alter the catalyst structure, activity and stability. Therefore, a combined Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS) study has been carried out on the fresh LaMnO3+δ catalyst (LM) and used catalysts after performing PPC with TCE diluted in dry synthetic air (LM0) or with industrial air containing water (LM18; 18 stands for the Relative Humidity) and CO2 (about 560 ppmv) at a temperature of 150 °C. XPS and ToF-SIMS results both show the presence of chlorine on the tested catalysts whose amount increases by exposure of the catalyst to the reactive mixture in dry synthetic air. XPS results reveal that chlorine is present as both chloride ion and covalent chlorine on LM0 while organic chlorinated residues are absent on LM18 catalyst. ToF-SIMS study indicates that lanthanum excess as oxide(hydroxide) partially covering the perovskite mainly transforms into LaOCl and to a minor extent into LaCl3. Extent of Mn chlorination seems to be favored over LM0 having a higher MnClx±/MnOCl± ionic ratio compared to LM18. Furthermore ToF-SIMS clearly identifies C1 chlorinated organic ions, mainly CH2Cl+ and CHCl2-, on LM0 which may contribute to the XPS Cl organic component. From the combined ToF-SIMS and XPS results it is found that water delays the surface degradation extent of the perovskite into related (oxy)(hydroxy)chlorinated inorganic phases by less molecular chlorine and related chlorine species on the catalyst surface. A reaction scheme of

  12. In situ formation of the active sites in Pd-Au bimetallic nanocatalysts for CO oxidation: NAP (near ambient pressure) XPS and MS study.

    PubMed

    Bukhtiyarov, A V; Prosvirin, I P; Saraev, A A; Klyushin, A Yu; Knop-Gericke, A; Bukhtiyarov, V I

    2018-06-07

    Model bimetallic Pd-Au/HOPG catalysts have been investigated in the CO oxidation reaction using a combination of NAP XPS and MS techniques. The samples have shown catalytic activity at temperatures above 150 °C. The redistribution of Au and Pd on the surface depending on the reaction conditions has been demonstrated using NAP XPS. The Pd enrichment of the bimetallic particles' surface under reaction gas mixture has been shown. Apparently, CO adsorption induces Pd segregation on the surface. Heating the sample under reaction conditions above 150 °C decomposes the Pd-CO state due to CO desorption and reaction and simultaneous Pd-Au alloy formation on the surface takes place. Cooling back down to RT results in reversible Pd segregation due to Pd-CO formation and the sample becomes inactive. It has been shown that in situ studies are necessary for investigation of the active sites in Pd-Au bimetallic systems.

  13. Determination of trace metals in TSP and PM2.5 materials collected in the Metropolitan Area of Monterrey, Mexico: A characterization study by XPS, ICP-AES and SEM-EDS

    NASA Astrophysics Data System (ADS)

    González, Lucy T.; Longoria Rodríguez, F. E.; Sánchez-Domínguez, M.; Cavazos, Aleyda; Leyva-Porras, C.; Silva-Vidaurri, L. G.; Askar, Karim Acuña; Kharissov, B. I.; Villarreal Chiu, J. F.; Alfaro Barbosa, J. M.

    2017-11-01

    The concentration levels of trace metals of toxicological importance were evaluated in the total suspended particles (TSP) and particulate matter smaller than 2.5 μm (PM2.5) collected in the Metropolitan Area of Monterrey (MAM) in Mexico. Samples were characterized by inductively coupled plasma atomic emission spectroscopy (ICP-AES), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with an energy-dispersive spectroscopy system (SEM-EDS). In addition, the data were statistically treated by the methodology of Pearson Correlation (PC) and Principal Components Analysis (PCA) to identify the possible emitting sources. Surface analysis of the particulate matter (PM) by XPS revealed that the most abundant elements were Ca, Al, Na, Zn, Cu and Mg. The deconvolution of the Ca2p, Zn2p and Cu2p signals showed that the main contributors were CaCO3, ZnO and Cu/Cu2O, respectively. The bulk analysis of the PM by ICP-AES showed Fe, Cu and Zn as the most abundant elements. Fe-rich particles presented two different morphologies: the prismatic particles were associated with a natural origin, while the spherical particles with anthropogenic sources. The Zn and Cu were predominantly observed in the sampling stations with high vehicular traffic, and the emitting sources were associated with the burning of fuels from automobiles and the wear of the tires and brakes. The highest concentration of Pb was detected in the sampling station located near the industrial zones, and its cause was associated with the ceramic and glass industries, the burning of fuel oil in power plants and the production of lead-based batteries for automobiles.

  14. Identification of the silver state in the framework of Ag-containing zeolite by XRD, FTIR, photoluminescence, 109Ag NMR, EPR, DR UV-vis, TEM and XPS investigations.

    PubMed

    Popovych, Nataliia; Kyriienko, Pavlo; Soloviev, Sergiy; Baran, Rafal; Millot, Yannick; Dzwigaj, Stanislaw

    2016-10-26

    Silver has been identified in the framework of Ag x SiBEA zeolites (where x = 3-6 Ag wt%) by the combined use of XRD, 109 Ag MAS NMR, FTIR, diffuse reflectance UV-visible, EPR and XPS spectroscopy. The incorporation of Ag ions into the framework of SiBEA zeolite has been evidenced by XRD. The consumption of OH groups as a result of their reaction with the silver precursor has been monitored by FTIR and photoluminescence spectroscopy. The changes in the silver state as a function of Ag content and thermal and hydrogen treatment at 573 K have been identified by 109 Ag MAS NMR, EPR, DR UV-visible, TEM and XPS investigations. The acidity of AgSiBEA has been investigated by FTIR spectroscopy of adsorbed CO and pyridine used as probe molecules.

  15. Interfacial chemistry of a perfluoropolyether lubricant studied by XPS and TDS

    NASA Technical Reports Server (NTRS)

    Herrera-Fierro, Pilar C.; Jones, William R., Jr.; Pepper, Stephen V.

    1992-01-01

    The interfacial chemistry of Fomblin Z25, a commercial perfluoropolyether used as lubricant for space applications, with different metallic surfaces: 440C steel, gold and aluminum was studied. Thin layers of Fomblin Z25 were evaporated onto the oxide-free substrates and the interfacial chemistry studied using XPS and TDS. The reactions were induced by heating the substrate and by rubbing the substrate with a steel ball. Gold was found to be completely unreactive towards Fomblin at any temperature. Reaction at room temperature was observed only in the case of the aluminum substrate, the most reactive towards Fomblin Z25 of the substrates studied. It was necessary to heat the 440C steel substrate to 190 degree C to induce decomposition of the fluid. The degradation of the fluid was indicated by the formation of a debris layer at the interface. This debris layer, composed of inorganic and organic reaction products, when completely formed, passivated the surface from further attack to the Fromblin on top. The tribologically induced reactions on 440C steel formed a debris layer of similar chemical characteristics to the thermally induced layer. In all cases, the degradation reaction resulted in preferential consumption of the difluoroformyl carbon (-OCF2O-).

  16. Surface chemical properties of eutectic and frozen NaCl solutions probed by XPS and NEXAFS.

    PubMed

    Křepelová, Adéla; Huthwelker, Thomas; Bluhm, Hendrik; Ammann, Markus

    2010-12-17

    We study the surface of sodium chloride-water mixtures above, at, and below the eutectic temperature using X-ray photoelectron spectroscopy (XPS) and electron-yield near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The NaCl frozen solutions are mimicking sea-salt deposits in ice or snow. Sea-salt particles emitted from the oceans are a major contributor to the global aerosol burden and can act as a catalyst for heterogeneous chemistry or as cloud condensation nuclei. The nature of halogen ions at ice surfaces and their influence on surface melting of ice are of significant current interest. We found that the surface of the frozen solution, depending on the temperature, consists of ice and different NaCl phases, that is, NaCl, NaCl·2H(2)O, and surface-adsorbed water.

  17. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions.

    PubMed

    Brown, Matthew A; Redondo, Amaia Beloqui; Jordan, Inga; Duyckaerts, Nicolas; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Müächler, Jean-Pierre; Birrer, Mario; Honegger, Juri; Wetter, Reto; Wörner, Hans Jakob; van Bokhoven, Jeroen A

    2013-07-01

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  18. XPS analysis of PE and EVA samples irradiated at different γ-doses

    NASA Astrophysics Data System (ADS)

    Dorey, Samuel; Gaston, Fanny; Marque, Sylvain R. A.; Bortolotti, Benjamin; Dupuy, Nathalie

    2018-01-01

    The principal plastic materials used for the fluid contact and storage in the biopharmaceutical industry are mainly made up of semi-crystalline polymers, polyolefins, PVC, Siloxane and PET. The polyethylene (PE) and the polypropylene (PP) are often used as fluid contact in multi-layer materials like films. As one sterilisation way of single-use plastic devices used in medical and pharmaceutical fields can take place via γ-irradiation, the effect of sterilization on plastics must be investigated. The irradiation process leads to the production of radicals, which can generate changes in the polymer structure and on the polymer surface. It is well known that the presence of oxygen with free radicals precede the generation of peroxide species so called ROS (reactive oxygen species) which are highly reactive. The purpose of this work is to investigate the γ-rays impact on the surface of PE (polyethylene) and EVA (polyethylene vinyl alcohol) based films when ionized at different doses. X-ray Photoelectron Spectroscopy (XPS) was applied to determine the surface compositions of the polymers to highlight the different chemical moieties generated during the γ-irradiation process and to monitor the potential presence of the ROS.

  19. X ray photoelectron spectroscopy (XPS) analysis of Photosensitive ZrO2 array

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhao, G.; Zhu, R.; Kou, Z.

    2018-03-01

    Based on organic zirconium source as the starting material, by adding chemical modifiers which are made up with photosensitive ZrO2 sol. A uniformed ZrO2 array dot was fabricated with a mean diameter of around 800 nm. By using UV-vis spectra and X-ray photoelectron spectroscopy analysis method, studies the photosensitive ZrO2 gel film of photochemical reaction process and the photosensitive mechanism, to determine the zirconium atom centered chelate structure, reaction formed by metal chelate Zr atom for the center, and to establish the molecular model of the chelate. And studied the ultraviolet light in the process of the variation of the XPS spectra, Zr3d5/2 to 184.9 eV corresponding to the binding energy of the as the combination of state peak gradually reduce; By combining with the status of Zr-O peak gradually increase; The strength of the peak is gradually decline. This suggests that in the process of ultraviolet light photo chemical reaction happened. This study is of great significance to the micro fabrication of ZrO2 array not only to the memory devices but also to the optical devices.

  20. XPS and XANES studies of biomimetic composites based on B-type nano-hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Goloshchapov, D. L.; Gushchin, M. S.; Kashkarov, V. M.; Seredin, P. V.; Ippolitov, Y. A.; Khmelevsky, N. O.; Aksenenko, A. Yu.

    2018-06-01

    The paper presents an investigation of the local atomic structure of nanocrystalline carbonate-substituted hydroxyapatite (CHAP) contained in biomimetic composites - analogues of intact human tooth tissues. Using the XPS technique, the presence of impurity Mg and F atoms and structurally bound carbon in CHAP, at the concentrations typical of apatite enamel and dentine was determined. The XANES method was used to study the changes occurring in P L2,3 spectra of biocomposites with CHAP, depending on the percentage of the amino acid matrix. The appearance of maxima in the spectra of XANES P L2,3 near 135.7 eV for the samples with the composition of amino acid complex/hydroxyapatite - 5/95, 25/75 and the splitting of a broad peak of 146.9 eV in the spectrum of a biocomposite with a composition of 40/60 indicates at the interaction of molecular complex of amino acids with atomic environment of phosphorus. This fact can be used in the fundamental medicine for synthesizing of new biomaterials in dentistry.

  1. Oxygen accumulation on metal surfaces investigated by XPS, AES and LEIS, an issue for sputter depth profiling under UHV conditions

    NASA Astrophysics Data System (ADS)

    Steinberger, R.; Celedón, C. E.; Bruckner, B.; Roth, D.; Duchoslav, J.; Arndt, M.; Kürnsteiner, P.; Steck, T.; Faderl, J.; Riener, C. K.; Angeli, G.; Bauer, P.; Stifter, D.

    2017-07-01

    Depth profiling using surface sensitive analysis methods in combination with sputter ion etching is a common procedure for thorough material investigations, where clean surfaces free of any contamination are essential. Hence, surface analytic studies are mostly performed under ultra-high vacuum (UHV) conditions, but the cleanness of such UHV environments is usually overrated. Consequently, the current study highlights the in principle known impact of the residual gas on metal surfaces (Fe, Mg, Al, Cr and Zn) for various surface analytics methods, like X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and low-energy ion scattering (LEIS). The investigations with modern, state-of-the-art equipment showed different behaviors for the metal surfaces in UHV during acquisition: (i) no impact for Zn, even after long time, (ii) solely adsorption of oxygen for Fe, slight and slow changes for Cr and (iii) adsorption accompanied by oxide formation for Al and Mg. The efficiency of different counter measures was tested and the acquired knowledge was finally used for ZnMgAl coated steel to obtain accurate depth profiles, which exhibited before serious artifacts when data acquisition was performed in an inconsiderate way.

  2. Americium(III) capture using phosphonic acid-functionalized silicas with different mesoporous morphologies: adsorption behavior study and mechanism investigation by EXAFS/XPS.

    PubMed

    Zhang, Wen; He, Xihong; Ye, Gang; Yi, Rong; Chen, Jing

    2014-06-17

    Efficient capture of highly toxic radionuclides with long half-lives such as Americium-241 is crucial to prevent radionuclides from diffusing into the biosphere. To reach this purpose, three different types of mesoporous silicas functionalized with phosphonic acid ligands (SBA-POH, MCM-POH, and BPMO-POH) were synthesized via a facile procedure. The structure, surface chemistry, and micromorphology of the materials were fully characterized by (31)P/(13)C/(29)Si MAS NMR, XPS, and XRD analysis. Efficient adsorption of Am(III) was realized with a fast rate to reach equilibrium (within 10 min). Influences including structural parameters and functionalization degree on the adsorption behavior were investigated. Slope analysis of the equilibrium data suggested that the coordination with Am(III) involved the exchange of three protons. Moreover, extended X-ray absorption fine structure (EXAFS) analysis, in combination with XPS survey, was employed for an in-depth probe into the binding mechanism by using Eu(III) as a simulant due to its similar coordination behavior and benign property. The results showed three phosphonic acid ligands were coordinated to Eu(III) in bidentate fashion, and Eu(P(O)O)3(H2O) species were formed with the Eu-O coordination number of 7. These phosphonic acid-functionalized mesoporous silicas should be promising for the treatment of Am-containing radioactive liquid waste.

  3. An XPS study on the impact of relative humidity on the aging of UO 2 powders

    DOE PAGES

    Donald, Scott B.; Dai, Zurong R.; Davisson, M. Lee; ...

    2017-02-10

    High resolution x-ray photoemission spectroscopy (XPS) was used to characterize the chemical speciation of high purity uranium dioxide (UO 2) powder samples following aging for periods of up to one year under controlled conditions with relative humidity ranging from 34% to 98%. A systematic shift to higher uranium oxidation states, and thus an increase in the mean uranium valence, was found to directly correlate with the dose of water received (i.e. the product of exposure time and relative humidity). Exposure duration was found to have a greater impact on sample aging than relative humidity. Lastly, the sample aged at 98%more » relative humidity was found to have unique structural differences for exposure time beyond 180 days when observed by scanning electron microscopy (SEM).« less

  4. An XPS study on the impact of relative humidity on the aging of UO 2 powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald, Scott B.; Dai, Zurong R.; Davisson, M. Lee

    High resolution x-ray photoemission spectroscopy (XPS) was used to characterize the chemical speciation of high purity uranium dioxide (UO 2) powder samples following aging for periods of up to one year under controlled conditions with relative humidity ranging from 34% to 98%. A systematic shift to higher uranium oxidation states, and thus an increase in the mean uranium valence, was found to directly correlate with the dose of water received (i.e. the product of exposure time and relative humidity). Exposure duration was found to have a greater impact on sample aging than relative humidity. Lastly, the sample aged at 98%more » relative humidity was found to have unique structural differences for exposure time beyond 180 days when observed by scanning electron microscopy (SEM).« less

  5. Ageing of plasma-mediated coatings with embedded silver nanoparticles on stainless steel: An XPS and ToF-SIMS investigation

    NASA Astrophysics Data System (ADS)

    Zanna, S.; Saulou, C.; Mercier-Bonin, M.; Despax, B.; Raynaud, P.; Seyeux, A.; Marcus, P.

    2010-09-01

    Nanocomposite thin films (˜170 nm), composed of silver nanoparticles enclosed in an organosilicon matrix, were deposited onto stainless steel, with the aim of preventing biofilm formation. The film deposition was carried out under cold plasma conditions, combining radiofrequency (RF) glow discharge fed with argon and hexamethyldisiloxane and simultaneous silver sputtering. XPS and ToF-SIMS were used to characterize Ag-organosilicon films in native form and after ageing in saline solution (NaCl 0.15 M), in order to further correlate their lifetime with their anti-fouling properties. Two coatings with significantly different silver contents (7.5% and 20.3%) were tested. Surface analysis confirmed the presence of metallic silver in the pristine coating and revealed significant modifications after immersion in the saline solution. Two different ageing mechanisms were observed, depending on the initial silver concentration in the film. For the sample exhibiting the low silver content (7.5%), the metal amount decreased at the surface in contact with the solution, due to the release of silver from the coating. As a result, after a 2-day exposure, silver nanoparticles located at the extreme surface were entirely released, whereas silver is still present in the inner part of the film. The coating thickness was not modified during ageing. In contrast, for the high silver content film (20.3%), the thickness decreased with immersion time, due to significant silver release and matrix erosion, assigned to a percolation-like effect. However, after 18 days of immersion, the delamination process stopped and a thin strongly bounded layer remained on the stainless steel surface.

  6. InP/ZnS nanocrystals: coupling NMR and XPS for fine surface and interface description.

    PubMed

    Virieux, Héloïse; Le Troedec, Marianne; Cros-Gagneux, Arnaud; Ojo, Wilfried-Solo; Delpech, Fabien; Nayral, Céline; Martinez, Hervé; Chaudret, Bruno

    2012-12-05

    Advanced (1)H, (13)C, and (31)P solution- and solid-state NMR studies combined with XPS were used to probe, at the molecular scale, the composition (of the core, the shell, and the interface) and the surface chemistry of InP/ZnS core/shell quantum dots prepared via a non-coordinating solvent strategy. The interface between the mismatched InP and ZnS phases is composed of an amorphous mixed oxide phase incorporating InPO(x) (with x = 3 and predominantly 4), In(2)O(3), and InO(y)(OH)(3-2y) (y = 0, 1). Thanks to the analysis of the underlying reaction mechanisms, we demonstrate that the oxidation of the upper part of the InP core is the consequence of oxidative conditions brought by decarboxylative coupling reactions (ketonization). These reactions occur during both the core preparation and the coating process, but according to different mechanisms.

  7. Oxidation of MnO(100) and NaMnO2 formation: Characterization of Mn2+ and Mn3+ surfaces via XPS and water TPD

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Cox, David F.

    2018-09-01

    The oxidation of clean and Na precovered MnO(100) has been investigated by X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and temperature programmed desorption (TPD) of adsorbed water. XPS results indicate that Mn3O4-like and Mn2O3-like surfaces can be formed by various oxidation treatments of clean and nearly-stoichiometric MnO(100), while a NaMnO2-like surface can be produced by the oxidation of MnO(100) pre-covered with multilayers of metallic Na. Water TPD results indicate that water adsorption/desorption is sensitive to the available oxidation states of surface Mn cations, and can be used to distinguish between surfaces exposing Mn2+and Mn3+ cations, or a combination of these oxidation states. Carbon dioxide and water TPD results from the NaMnO2-like surface indicate that pre-adsorbed water blocks the uptake of CO2, while water displaces pre-adsorbed CO2. No indication of a strong reactive interaction is observed between CO2, water and the NaMnO2-like surface under the conditions of our study.

  8. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies

    NASA Astrophysics Data System (ADS)

    Motin, Abdul Md.; Haunold, Thomas; Bukhtiyarov, Andrey V.; Bera, Abhijit; Rameshan, Christoph; Rupprechter, Günther

    2018-05-01

    Pt nanoparticles supported on carbon are an important technological catalyst. A corresponding model catalyst was prepared by physical vapor deposition (PVD) of Pt on sputtered HOPG (highly oriented pyrolytic graphite). The carbon substrate before and after sputtering as well as the Pt/HOPG system before and after Pt deposition and annealing were examined by XPS and STM. This yielded information on the surface density of defects, which serve as nucleation centres for Pt, and on the size distribution (mean size/height) of the Pt nanoparticles. Two different model catalysts were prepared with mean sizes of 2.0 and 3.6 nm, both turned out to be stable upon UHV-annealing to 300 °C. After transfer into a UHV-compatible flow microreactor and subsequent cleaning in UHV and under mbar pressure, the catalytic activity of the Pt/HOPG model system for ethylene hydrogenation was examined under atmospheric pressure flow conditions. This enabled to determine temperature-dependent conversion rates, turnover frequencies (TOFs) and activation energies. The catalytic results obtained are in line with the characteristics of technological Pt/C, demonstrating the validity of the current surface science based model catalyst approach.

  9. Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS)

    NASA Astrophysics Data System (ADS)

    Lou, Leo; Nelson, Alan E.; Heo, Giseon; Major, Paul W.

    2008-08-01

    The surface chemical composition of dental enamel has been postulated as a contributing factor in the variation of bond strength of brackets bonded to teeth, and hence, the probability of bracket failure during orthodontic treatment. This study systematically investigated the chemical composition of 98 bonding surfaces of human maxillary premolars using X-ray photoelectron spectroscopy (XPS) to ascertain compositional differences between right and left first premolars. The major elements detected in all samples were calcium, phosphorus, oxygen, nitrogen and carbon. Surface compositions were highly variable between samples and several elements were found to be highly correlated. No statistical significant difference in the chemical composition of the maxillary right and left first premolars was found ( p > 0.05). Knowledge of the chemical composition of enamel surfaces will facilitate future studies that relate this information to the variations in dental enamel bond strength.

  10. As-Received, Ozone Cleaned and Ar+ Sputtered Surfaces of Hafnium Oxide Grown by Atomic Layer Deposition and Studied by XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelhard, Mark H.; Herman, Jacob A.; Wallace, Robert

    2012-06-27

    In this study, X-ray photoelectron spectroscopy (XPS) characterization was performed on 47 nm thick hafnium oxide (HfO{sub 2}) films grown by atomic layer deposition using TEMA-Hf/H{sub 2}O at 250 C substrate temperature. HfO{sub 2} is currently being studied as a possible replacement for Silicon Oxide (SiO{sub 2}) as a gate dielectric in electronics transistors. XPS spectra were collected on a Physical Electronics Quantum 2000 Scanning ESCA Microprobe using a monochromatic Al K{sub a} X-ray (1486.7 eV) excitation source. The sample was analyzed under the following conditions: as received, after UV irradiation for five minutes, and after sputter cleaning with 2more » kV Ar{sup +} ions for 180 seconds. Survey scans showed carbon, oxygen, and hafnium as the major species in the film, while the only minor species of argon and carbide was detected after sputtering. Adventitious carbon initially composed approximately 18.6 AT% of the surface, but after UV cleaning it was reduced to 2.4 AT%. This demonstrated that that the majority of carbon was due to adventitious carbon. However, after 2 kV Ar{sup +} sputtering there was still only trace amounts of carbon at {approx}1 AT%, Some of this trace carbon is now in the form of a carbide due to the interaction with Ar{sup +} used for sputter cleaning. Furthermore, the stoiciometric ratio of oxygen and hafnium is consistent with a high quality HfO{sub 2} film.« less

  11. Time-dependent investigation of sub-monolayers of Ni on Pd using Positron-annihilation induced Auger Electron Spectroscopy and XPS

    NASA Astrophysics Data System (ADS)

    Zimnik, Samantha; Piochacz, Christian; Vohburger, Sebastian; Hugenschmidt, Christoph

    2016-01-01

    The surface of a polycrystalline Pd-substrate covered with (sub-) monolayers of Ni was investigated with Positron-annihilation induced Auger Electron Spectroscopy (PAES). Comparative studies using conventional AES induced by electrons and X-rays showed the outstanding surface sensitivity of PAES. Time-dependent PAES was performed on a 0.5 ML Ni cover layer on Pd and compared with conventional X-ray induced Photoelectron Spectroscopy (XPS) in order to observe changes in the elemental composition of the surface. The PAES results appear to show a migration of Ni atoms into the Pd substrate, whereas the Ni signal shows a decrease of 12% within 13 h with respect to the initial value.

  12. A Multi-technique Characterization of Adsorbed Protein Films: Orientation and Structure by ToF-SIMS, NEXAFS, SFG, and XPS

    NASA Astrophysics Data System (ADS)

    Baio, Joseph E.

    There are many techniques that allow surface scientists to study interfaces. However, few are routinely applied to probe biological surfaces. The work presented here demonstrates how detailed information about the conformation, orientation, chemical state, and molecular structure of biological molecules immobilized onto a surface can be assessed by electron spectroscopy, mass spectrometry, and nonlinear vibrational spectroscopy techniques. This investigation began with the development of simple model systems (small proteins, and peptides) and evolved into a study of more complex --- real world systems. Initially, two model systems based on the chemical and electrostatic immobilization of a small rigid protein (Protein G B1 domain, 6kDa) were built to develop the capabilities of time-of-flight secondary ion mass spectrometry (ToFSIMS), near edge X-ray absorption fine structure spectroscopy (NEXAFS) and sum frequency generation (SFG) spectroscopy as tools to probe the structure of surface immobilized proteins. X-ray photoelectron spectroscopy (XPS) was used to measure the amount of immobilized protein and ToF-SIMS sampled the amino acid composition of the exposed surface of the protein film. Within the ToF-SIMS spectra, an enrichment of secondary ions from amino acids located at opposite ends of the proteins were used to describe protein orientation. SFG spectral peaks characteristic of ordered alpha-helix and beta-sheet elements were observed for both systems and the phase of the peaks indicated a predominantly upright orientation for both the covalent and electrostatic configurations. Polarization dependence of the NEXAFS signal from the N 1s to pi* transition of the peptide bonds that make up the beta-sheets also indicated protein ordering at the surface. Building upon the Protein G B1 studies, the orientation and structure of a surface immobilized antibody (HuLys Fv: variant of humanized anti-lysozyme variable fragment, 26kDa) was characterized across two

  13. Preparation of γ-LiV2O5 from polyoxovanadate cluster Li7[V15O36(CO3)] as a high-performance cathode material and its reaction mechanism revealed by operando XAFS

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Isobe, Jin; Shimizu, Takeshi; Matsumura, Daiju; Ina, Toshiaki; Yoshikawa, Hirofumi

    2017-08-01

    γ-phase LiV2O5, which shows superior electrochemical performance as cathode material in Li-ion batteries, was prepared by annealing the polyoxovanadate cluster Li7 [V15O36(CO3)]. The reaction mechanism was studied using operando X-ray absorption fine structure (XAFS), powder X-ray diffraction (PXRD), and X-ray photoelectron spectroscopy (XPS) analyses. The X-ray absorption near edge structure (XANES) and XPS results reveal that γ-LiV2O5 undergoes two-electron redox reaction per V2O5 pyramid unit, resulting in a large reversible capacity of 260 Ah/kg. The extended X-ray absorption fine structure (EXAFS) and PXRD analyses also suggest that the V-V distance slightly increases, due to the reduction of V5+ to V4+ during Li ion intercalation as the material structure is maintained. As a result, γ-LixV2O5 shows highly reversible electrochemical reaction with x = 0.1-1.9.

  14. XPS and NRA investigations during the fabrication of gold nanostructured functionalized screen-printed sensors for the detection of metallic pollutants

    NASA Astrophysics Data System (ADS)

    Jasmin, Jean-Philippe; Miserque, Frédéric; Dumas, Eddy; Vickridge, Ian; Ganem, Jean-Jacques; Cannizzo, Caroline; Chaussé, Annie

    2017-03-01

    An all covalent nanostructured lead sensor was built by the successive grafting of gold nanoparticles and carboxylic ligands at the surface of self-adhesive carbon screen-printed electrodes (SPEs). Surface analysis techniques were used in each step in order to investigate the structuration of this sensor. The self-adhesive surfaces were made from the electrochemical grafting of p-phenylenediamine at the surface of the SPEs via diazonium salts chemistry. The quantity of grafted aniline functions, estimated by Nuclear Reaction Analysis (NRA) performed with p-phenylenediamine labelled with 15N isotope, is in agreement with an almost complete coverage of the electrode surface. The subsequent diazotization of the aniline functions at the surface of the SPEs was performed; X-ray Photoelectron Spectroscopy (XPS) allowed us to consider a quantitative conversion of the aniline functions into diazonium moieties. The spontaneous grafting of gold nanoparticles on the as-obtained reactive surfaces ensures the nanostructuration of the material, and XPS studies showed that the covalent bonding of the gold nanoparticles at the surface of the SPEs induces a change both in the Au-4f (gold nanoparticles) and Cl-2p (carbon ink) core level signals. These unusual observations are explained by an interaction between the carbon ink constituting the substrate and the gold nanoparticles. Heavy and toxic metals are considered of major environmental concern because of their non-biodegradability. In a final step, the grafting of the carboxylic ligands at the surface of the SPEs and an accumulation step in the presence of lead(II) cations allowed us to evidence the interest of nanostructured materials as metallic pollutants sensors.

  15. Solar Ion Processing of Major Element Surface Compositions of Mature Mare Soils: Insights from Combined XPS and Analytical TEM Observations

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Dukes, C.; Keller, L. P.; Baragiola, R.

    2012-01-01

    Solar wind ions are capable of altering the sur-face chemistry of the lunar regolith by a number of mechanisms including preferential sputtering, radiation-enhanced diffusion and sputter erosion of space weathered surfaces containing pre-existing compositional profiles. We have previously reported in-situ ion irradiation experiments supported by X-ray photoelectron spectroscopy (XPS) and analytical TEM that show how solar ions potentially drive Fe and Ti reduction at the monolayer scale as well as the 10-100 nm depth scale in lunar soils [1]. Here we report experimental data on the effect of ion irradiation on the major element surface composition in a mature mare soil.

  16. Experimental study of the effect of local atomic ordering on the energy band gap of melt grown InGaAsN alloys

    NASA Astrophysics Data System (ADS)

    Milanova, M.; Donchev, V.; Kostov, K. L.; Alonso-Álvarez, D.; Valcheva, E.; Kirilov, K.; Asenova, I.; Ivanov, I. G.; Georgiev, S.; Ekins-Daukes, N.

    2017-08-01

    We present a study of melt grown dilute nitride InGaAsN layers by x-ray photoelectron spectroscopy (XPS), Raman and photoluminescence (PL) spectroscopy. The purpose of the study is to determine the degree of atomic ordering in the quaternary alloy during the epitaxial growth at near thermodynamic equilibrium conditions and its influence on band gap formation. Despite the low In concentration (˜3%) the XPS data show a strong preference toward In-N bonding configuration in the InGaAsN samples. Raman spectra reveal that most of the N atoms are bonded to In instead of Ga atoms and the formation of N-centred In3Ga1 clusters. PL measurements reveal smaller optical band gap bowing as compared to the theoretical predictions for random alloy and localised tail states near the conduction band minimum.

  17. Parameter setting for peak fitting method in XPS analysis of nitrogen in sewage sludge

    NASA Astrophysics Data System (ADS)

    Tang, Z. J.; Fang, P.; Huang, J. H.; Zhong, P. Y.

    2017-12-01

    Thermal decomposition method is regarded as an important route to treat increasing sewage sludge, while the high content of N causes serious nitrogen related problems, then figuring out the existing form and content of nitrogen of sewage sludge become essential. In this study, XPSpeak 4.1 was used to investigate the functional forms of nitrogen in sewage sludge, peak fitting method was adopted and the best-optimized parameters were determined. According to the result, the N1s spectra curve can be resolved into 5 peaks: pyridine-N (398.7±0.4eV), pyrrole-N(400.5±0.3eV), protein-N(400.4eV), ammonium-N(401.1±0.3eV) and nitrogen oxide-N(403.5±0.5eV). Based on the the experimental data obtained from elemental analysis and spectrophotometry method, the optimum parameters of curve fitting method were decided: background type: Tougaard, FWHM 1.2, 50% Lorentzian-Gaussian. XPS methods can be used as a practical tool to analysis the nitrogen functional groups of sewage sludge, which can reflect the real content of nitrogen of different forms.

  18. Magnetization measurements reveal the local shear stiffness of hydrogels probed by ferromagnetic nanorods

    NASA Astrophysics Data System (ADS)

    Bender, P.; Tschöpe, A.; Birringer, R.

    2014-12-01

    The local mechanical coupling of ferromagnetic nanorods in hydrogels was characterized by magnetization measurements. Nickel nanorods were synthesized by the AAO-template method and embedded in gelatine hydrogels with mechanically soft or hard matrix properties determined by the gelatine weight fraction. By applying a homogeneous magnetic field during gelation the nanorods were aligned along the field resulting in uniaxially textured ferrogels. The magnetization curves of the soft ferrogel exhibited not only important similarities but also characteristic differences as compared to the hard ferrogel. The hystereses measured in a field parallel to the texture axis were almost identical for both samples indicating effective coupling of the nanorods with the polymer network. By contrast, measurements in a magnetic field perpendicular to the texture axis revealed a much higher initial susceptibility of the soft as compared to the hard ferrogel. This difference was attributed to the additional rotation of the nanorods allowed by the reduced shear modulus in the soft ferrogel matrix. Two methods for data analysis were presented which enabled us to determine the shear modulus of the gelatine matrix which was interpreted as a local rather than macroscopic quantity in consideration of the nanoscale of the probe particles.

  19. XPS analysis of Al/EPDM bondlines from IUS SRM-1 polar bosses

    NASA Astrophysics Data System (ADS)

    Hemminger, Carol S.; Marquez, Nicholas

    1993-03-01

    A temperature-stress rupture method using partial immersion in liquid nitrogen was developed for the aluminum/EPDM rubber insulation bondline of the IUS SRM-1 polar bosses in order to investigate a corrosion problem. Subsequent XPS analysis of the ruptured bondline followed changes in the locus of failure as corrosion progressed. Samples from the forward polar bosses had a predominantly noncorroded appearance on the ruptured surfaces. The locus of failure was predominantly through the primer layer, which is distinguished by a high concentration of chlorinated hydrocarbon. The aft polar boss segments analyzed were characterized by the presence of corrosion over the entire mid-section of the ruptured aluminum to insulation bondline. The predominant corrosion product detected was aluminum oxide/hydroxide. The corroded bondline sections had significantly higher concentrations of aluminum oxide/hydroxide than the noncorroded areas, and lower concentrations of primer material. The temperature-stress rupture appeared to progress most readily through areas of thickened aluminum oxide/hydroxide infiltrated into the primer layer. In general there was a very good correlation between the calculated Cl:Al atomic % ratio, and the visual characterization of the extent of corrosion. The Cl:Al ratio, which represents the primer to corrosion product ratio at the locus of failure, varied from 0.4 to 47. With only a few exceptions, surfaces with a predominantly noncorroded appearance had Cl:Al ratios greater than 2, and surfaces with a heavily corroded appearance had Cl:Al ratios less than 1.

  20. Measure Guideline: Installing Rigid Foam Insulation on the Interior of Existing Brick Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natarajan, H.; Klocke, S.; Puttagunta, S.

    2012-06-01

    This measure guideline provides information on an effective method to insulate the interior of existing brick masonry walls with extruded polystyrene (XPS) insulation board. The guide outlines step-by-step design and installation procedures while explaining the benefits and tradeoffs where applicable. The authors intend that this document be useful to a varied audience that includes builders, remodelers, contractors and homeowners.

  1. Measure Guideline. Installing Rigid Foam Insulation on the Interior of Existing Brick Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natarajan, Hariharan; Klocke, Steve; Puttagunta, Srikanth

    2012-06-01

    This measure guideline provides information on an effective method to insulate the interior of existing brick masonry walls with extruded polystyrene (XPS) insulation board. The guide outlines step-by-step design and installation procedures while explaining the benefits and tradeoffs where applicable. The authors intend that this document be useful to a varied audience that includes builders,remodelers, contractors and homeowners.

  2. Quantitative analysis of Ni2+/Ni3+ in Li[NixMnyCoz]O2 cathode materials: Non-linear least-squares fitting of XPS spectra

    NASA Astrophysics Data System (ADS)

    Fu, Zewei; Hu, Juntao; Hu, Wenlong; Yang, Shiyu; Luo, Yunfeng

    2018-05-01

    Quantitative analysis of Ni2+/Ni3+ using X-ray photoelectron spectroscopy (XPS) is important for evaluating the crystal structure and electrochemical performance of Lithium-nickel-cobalt-manganese oxide (Li[NixMnyCoz]O2, NMC). However, quantitative analysis based on Gaussian/Lorentzian (G/L) peak fitting suffers from the challenges of reproducibility and effectiveness. In this study, the Ni2+ and Ni3+ standard samples and a series of NMC samples with different Ni doping levels were synthesized. The Ni2+/Ni3+ ratios in NMC were quantitatively analyzed by non-linear least-squares fitting (NLLSF). Two Ni 2p overall spectra of synthesized Li [Ni0.33Mn0.33Co0.33]O2(NMC111) and bulk LiNiO2 were used as the Ni2+ and Ni3+ reference standards. Compared to G/L peak fitting, the fitting parameters required no adjustment, meaning that the spectral fitting process was free from operator dependence and the reproducibility was improved. Comparison of residual standard deviation (STD) showed that the fitting quality of NLLSF was superior to that of G/L peaks fitting. Overall, these findings confirmed the reproducibility and effectiveness of the NLLSF method in XPS quantitative analysis of Ni2+/Ni3+ ratio in Li[NixMnyCoz]O2 cathode materials.

  3. Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study.

    PubMed

    Shard, Alexander G; Havelund, Rasmus; Spencer, Steve J; Gilmore, Ian S; Alexander, Morgan R; Angerer, Tina B; Aoyagi, Satoka; Barnes, Jean-Paul; Benayad, Anass; Bernasik, Andrzej; Ceccone, Giacomo; Counsell, Jonathan D P; Deeks, Christopher; Fletcher, John S; Graham, Daniel J; Heuser, Christian; Lee, Tae Geol; Marie, Camille; Marzec, Mateusz M; Mishra, Gautam; Rading, Derk; Renault, Olivier; Scurr, David J; Shon, Hyun Kyong; Spampinato, Valentina; Tian, Hua; Wang, Fuyi; Winograd, Nicholas; Wu, Kui; Wucher, Andreas; Zhou, Yufan; Zhu, Zihua; Cristaudo, Vanina; Poleunis, Claude

    2015-08-20

    We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-l-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray photoelectron spectroscopy (XPS) or time-of-flight secondary ion mass spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided with the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants' data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally, we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.

  4. Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shard, A. G.; Havelund, Rasmus; Spencer, Steve J.

    We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-L-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray Photoelectron Spectroscopy (XPS) or Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided withmore » the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants’ data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.« less

  5. Selective depression mechanism of ferric chromium lignin sulfonate for chalcopyrite-galena flotation separation

    NASA Astrophysics Data System (ADS)

    Yu, Jin-sheng; Liu, Run-qing; Wang, Li; Sun, Wei; Peng, Hong; Hu, Yue-hua

    2018-05-01

    Selective recovery of chalcopyrite-galena ore by flotation remains a challenging issue. The development of highly efficient, low-cost, and environmentally friendly depressants for this flotation is necessary because most of available reagents (e.g., K2Cr2O4) are expensive and adversely affect the environment. In this study, ferric chromium lignin sulfonate (FCLS), which is a waste-product from the paper and pulp industry, was introduced as a selective depressant for galena with butyl xanthate (BX) as a collector. Results show that the residue recovery of Pb in Cu concentrate was substantially reduced to 4.73% using FCLS compared with 10.71% using the common depressant K2Cr2O4. The underlying mechanisms were revealed using zeta-potential measurements and X-ray photoelectron spectroscopy (XPS). Zeta-potential measurements revealed that FCLS was more efficiently absorbed onto galena than onto chalcopyrite. XPS measurements further suggested that FCLS enhanced the surface oxidation of galena but prevented that of chalcopyrite. Thus, FCLS could be a potential candidate as a depressant for chalcopyrite-galena flotation because of its low cost and its lack of detrimental effects on the environment.

  6. Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques.

    PubMed

    Fan, Q H; Tan, X L; Li, J X; Wang, X K; Wu, W S; Montavon, G

    2009-08-01

    The effects of pH, ionic strength, and temperature on sorption of Eu(III) on attapulgite were investigated in the presence and absence of fulvic acid (FA) and humic acid (HA). The results indicated that the sorption of Eu(III) on attapulgite was strongly dependent on pH and ionic strength, and independent of temperature. In the presence of FA/HA, Eu(III) sorption was enhanced at pH < 4, decreased at pH range of 4-6, and then increased again at pH > 7. The X-ray photoelectron spectroscopy (XPS) analysis suggested that the sorption of Eu(III) might be expressed as is identical to X3Eu0, is identical to S(w)OHEu3+, and is identical to SOEu-OOC-/HA in the ternary Eu/HN/attapulgite system. The extended X-ray absorption fine structure (EXAFS) analysis of Eu-HA complexes indicated that the distances of d(Eu-O) decreased from 2.415 to 2.360 angstroms with increasing pH from 1.76 to 9.50, whereas the coordination number (N) decreased from approximately 9.94 to approximately 8.56. Different complexation species were also found for the different addition sequences of HA and Eu(III) to attapulgite suspension. The results are important to understand the influence of humic substances on Eu(III) behavior in the natural environment.

  7. Confirmation of Incorporation of Cu and Se Ions in Applied p- and n-Type-Doped Sb2S3 by Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Validžić, Ivana Lj; Popović, Maja; Lojpur, Vesna; Bundaleski, Nenad; Rakočević, Zlatko

    2018-04-01

    The effect of incorporating copper (Cu) and selenium (Se) ions into stibnite (Sb2S3) lattice was investigated using x-ray photoelectron spectroscopy (XPS). The incorporation of Cu and Se ions was verified by comparing the XPS spectra of the undoped (amorphous Sb2S3), doped ( p and n-doped) and pure Se and Cu-acetate powders. The main photoelectron Cu 2p1/2 (951.8 eV) and Cu 2p3/2 (932.1 eV) lines derived from the Cu-doped and Cu-acetate powder samples were clearly observed, whereas in the undoped sample, none of the characteristic lines of Cu were detected. The Se Auger line (138.6 eV), the only line of Se which does not coincide with the lines of Sb and S, was successfully detected in an Se-doped XPS sample and the spectrum of pure Se, while Se in the undoped sample was not found. Further, the XPS measurements revealed the relative amounts of Cu and Se in antimony sulfide, as well as the oxidation state of copper incorporated into the matrix.

  8. In Situ X-Ray Photoelectron Spectroscopy of Model Catalysts: At the Edge of the Gap

    NASA Astrophysics Data System (ADS)

    Blomberg, S.; Hoffmann, M. J.; Gustafson, J.; Martin, N. M.; Fernandes, V. R.; Borg, A.; Liu, Z.; Chang, R.; Matera, S.; Reuter, K.; Lundgren, E.

    2013-03-01

    We present high-pressure x-ray photoelectron spectroscopy (HP-XPS) and first-principles kinetic Monte Carlo study addressing the nature of the active surface in CO oxidation over Pd(100). Simultaneously measuring the chemical composition at the surface and in the near-surface gas phase, we reveal both O-covered pristine Pd(100) and a surface oxide as stable, highly active phases in the near-ambient regime accessible to HP-XPS. Surprisingly, no adsorbed CO can be detected during high CO2 production rates, which can be explained by a combination of a remarkably short residence time of the CO molecule on the surface and mass-transfer limitations in the present setup.

  9. Intrinsic ferromagnetism in nanocrystalline Mn-doped ZnO depending on Mn concentration.

    PubMed

    Subramanian, Munisamy; Tanemura, Masaki; Hihara, Takehiko; Soga, Tetsuo; Jimbo, Takashi

    2011-04-01

    The physical properties of Zn(1-x)Mn(x)O nanoparticles synthesized by thermal decomposition are extensively investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman light scattering and Hysteresis measurements. XRD and XPS spectra reveal the absence of secondary phase in nanocrystalline ZnO doped with 5% or less Mn; and, later confirms that the valance state of Mn to be 2+ for all the samples. Raman spectra exhibit a peak at 660 cm(-1) which we attribute to the intrinsic lattice defects of ZnO with increasing Mn concentration. Overall, our results demonstrate that ferromagnetic properties can be realized while Mn-doped ZnO obtained in the nanocrystalline form.

  10. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Gatti, L. V.; Gloor, M.; Miller, J. B.; Doughty, C. E.; Malhi, Y.; Domingues, L. G.; Basso, L. S.; Martinewski, A.; Correia, C. S. C.; Borges, V. F.; Freitas, S.; Braz, R.; Anderson, L. O.; Rocha, H.; Grace, J.; Phillips, O. L.; Lloyd, J.

    2014-02-01

    Feedbacks between land carbon pools and climate provide one of the largest sources of uncertainty in our predictions of global climate. Estimates of the sensitivity of the terrestrial carbon budget to climate anomalies in the tropics and the identification of the mechanisms responsible for feedback effects remain uncertain. The Amazon basin stores a vast amount of carbon, and has experienced increasingly higher temperatures and more frequent floods and droughts over the past two decades. Here we report seasonal and annual carbon balances across the Amazon basin, based on carbon dioxide and carbon monoxide measurements for the anomalously dry and wet years 2010 and 2011, respectively. We find that the Amazon basin lost 0.48+/-0.18 petagrams of carbon per year (PgCyr-1) during the dry year but was carbon neutral (0.06+/-0.1PgCyr-1) during the wet year. Taking into account carbon losses from fire by using carbon monoxide measurements, we derived the basin net biome exchange (that is, the carbon flux between the non-burned forest and the atmosphere) revealing that during the dry year, vegetation was carbon neutral. During the wet year, vegetation was a net carbon sink of 0.25+/-0.14PgCyr-1, which is roughly consistent with the mean long-term intact-forest biomass sink of 0.39+/-0.10PgCyr-1 previously estimated from forest censuses. Observations from Amazonian forest plots suggest the suppression of photosynthesis during drought as the primary cause for the 2010 sink neutralization. Overall, our results suggest that moisture has an important role in determining the Amazonian carbon balance. If the recent trend of increasing precipitation extremes persists, the Amazon may become an increasing carbon source as a result of both emissions from fires and the suppression of net biome exchange by drought.

  11. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements.

    PubMed

    Gatti, L V; Gloor, M; Miller, J B; Doughty, C E; Malhi, Y; Domingues, L G; Basso, L S; Martinewski, A; Correia, C S C; Borges, V F; Freitas, S; Braz, R; Anderson, L O; Rocha, H; Grace, J; Phillips, O L; Lloyd, J

    2014-02-06

    Feedbacks between land carbon pools and climate provide one of the largest sources of uncertainty in our predictions of global climate. Estimates of the sensitivity of the terrestrial carbon budget to climate anomalies in the tropics and the identification of the mechanisms responsible for feedback effects remain uncertain. The Amazon basin stores a vast amount of carbon, and has experienced increasingly higher temperatures and more frequent floods and droughts over the past two decades. Here we report seasonal and annual carbon balances across the Amazon basin, based on carbon dioxide and carbon monoxide measurements for the anomalously dry and wet years 2010 and 2011, respectively. We find that the Amazon basin lost 0.48 ± 0.18 petagrams of carbon per year (Pg C yr(-1)) during the dry year but was carbon neutral (0.06 ± 0.1 Pg C yr(-1)) during the wet year. Taking into account carbon losses from fire by using carbon monoxide measurements, we derived the basin net biome exchange (that is, the carbon flux between the non-burned forest and the atmosphere) revealing that during the dry year, vegetation was carbon neutral. During the wet year, vegetation was a net carbon sink of 0.25 ± 0.14 Pg C yr(-1), which is roughly consistent with the mean long-term intact-forest biomass sink of 0.39 ± 0.10 Pg C yr(-1) previously estimated from forest censuses. Observations from Amazonian forest plots suggest the suppression of photosynthesis during drought as the primary cause for the 2010 sink neutralization. Overall, our results suggest that moisture has an important role in determining the Amazonian carbon balance. If the recent trend of increasing precipitation extremes persists, the Amazon may become an increasing carbon source as a result of both emissions from fires and the suppression of net biome exchange by drought.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimoto, Shinya, E-mail: yosshi@issp.u-tokyo.ac.jp; Shiozawa, Yuichiro; Koitaya, Takanori

    Electronic states and electrical conductivity of the native oxide Si(111) surface adsorbed with an electron donor tetrakis(dimethylamino)ethylene (TDAE) were investigated using ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy (XPS), and independently driven four-probe conductivity measurements. The formation of positively charged TDAE species is confirmed by the downward shift of the vacuum level by 1.45 eV, the absence of HOMO level in the valence band, and observation of the positively charged state in the N 1s XPS spectra. Si 2p XPS spectra and four-probe conductivity measurements revealed that TDAE adsorption induces an increase in downward band bending and a reduction in electrical resistancemore » of the surface, respectively. The sheet conductivity and the electron density of the surface are 1.1 μS/◻ and 4.6 × 10{sup 9} cm{sup −2}, respectively, after TDAE adsorption, and they are as high as 350% of the original surface. These results demonstrate that the electron density of the semiconductor surface is successfully controlled by the electron donor molecule TDAE.« less

  13. Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid-base complexes.

    PubMed

    Stevens, Joanna S; Byard, Stephen J; Seaton, Colin C; Sadiq, Ghazala; Davey, Roger J; Schroeder, Sven L M

    2014-01-21

    The properties of nitrogen centres acting either as hydrogen-bond or Brønsted acceptors in solid molecular acid-base complexes have been probed by N 1s X-ray photoelectron spectroscopy (XPS) as well as (15)N solid-state nuclear magnetic resonance (ssNMR) spectroscopy and are interpreted with reference to local crystallographic structure information provided by X-ray diffraction (XRD). We have previously shown that the strong chemical shift of the N 1s binding energy associated with the protonation of nitrogen centres unequivocally distinguishes protonated (salt) from hydrogen-bonded (co-crystal) nitrogen species. This result is further supported by significant ssNMR shifts to low frequency, which occur with proton transfer from the acid to the base component. Generally, only minor chemical shifts occur upon co-crystal formation, unless a strong hydrogen bond is formed. CASTEP density functional theory (DFT) calculations of (15)N ssNMR isotropic chemical shifts correlate well with the experimental data, confirming that computational predictions of H-bond strengths and associated ssNMR chemical shifts allow the identification of salt and co-crystal structures (NMR crystallography). The excellent agreement between the conclusions drawn by XPS and the combined CASTEP/ssNMR investigations opens up a reliable avenue for local structure characterization in molecular systems even in the absence of crystal structure information, for example for non-crystalline or amorphous matter. The range of 17 different systems investigated in this study demonstrates the generic nature of this approach, which will be applicable to many other molecular materials in organic, physical, and materials chemistry.

  14. Improved flotation performance of hematite fines using citric acid as a dispersant

    NASA Astrophysics Data System (ADS)

    Luo, Xi-mei; Yin, Wan-zhong; Sun, Chuan-yao; Wang, Nai-ling; Ma, Ying-qiang; Wang, Yun-fan

    2016-10-01

    In this study, citric acid was used as a dispersant to improve the flotation performance of hematite fines. The effect and mechanism of citric acid on the reverse flotation of hematite fines were investigated by flotation tests, sedimentation experiments, scanning electron microscopy (SEM), zeta-potential measurements, and X-ray photoelectron spectroscopy (XPS). The results of SEM analysis and flotation tests reveal that a strong heterocoagulation in the form of slime coating or coagulation in hematite fine slurry affects the beneficiation of hematite ores by froth flotation. The addition of a small amount of citric acid (less than 300 g/t) favorably affects the reverse flotation of hematite fines by improving particle dispersion. The results of sedimentation experiments, zeta-potential measurements, and XPS measurements demonstrate that citric acid adsorbs onto hematite and quartz surfaces via hydrogen bonding, thereby reducing the zeta potentials of mineral surfaces, strengthening the electrical double-layer repulsion between mineral particles, and dispersing the pulp particles.

  15. High-resolution Bio-Argo and Argo Measurements to Reveal Specific Oceanic Processes.

    NASA Astrophysics Data System (ADS)

    Poteau, A.; Claustre, H.; Briggs, N.; D'Ortenzio, F.; Schmechtig, C.; Prieur, L. M.; Boss, E.

    2016-02-01

    Together with temperature and salinity measurements, Bio-Argo profiling floats now measure a significant range of biogeochemical (e.g. O2, NO3) and bio-optical variables (Chla, backscattering coefficient and radiometry). To transmit the very large amount of data acquired by this new generation of floats, it was required to substitute the Argos telemetry (Argo program) with iridium telemetry. The obvious consequence is not only a much greater flexibly on data transmission but also on data acquisition thanks to the two-way communication allowed by iridium. Our group has now deployed and managed over 100 Bio-Argo floats of this type. In particular we have set up high-resolution mode of acquisition for certain periods of time or for dedicated portions of the water column. Here we illustrate with three examples the potential of conducting high-resolution measurement to identify and explore certain oceanic processes. (1) High resolution measurements of pressure, temperature and salinity (every 2 s) when the float is finishing its ascent (without any pump action) in the upper 10 m layer are analyzed with respect to sea state. We particularly focus on the study of the speed anomaly as compared to a nominal speed expected for a calm sea state. By comparison between speed anomaly of a float in the Mediterranean Sea and concurrent sea state measurements by a weather buoy in the same area, we suggest that float behaviour can be an indicator of sea state. (2) Each year, in response to springtime phytoplankton blooms, the resolution of bio-optical variables (backscattering and Chla) in the top 1000 m was increased to at least 1 m (every 10 s) for all floats in the North Atlantic and Southern Ocean. This resolution allowed accurate estimation of the concentration of large phytoplankton aggregates and revealed systematic differences in bulk aggregate sinking rate between ocean basins. (3) Finally we continuously record all the variables at a 10 min resolution during the float

  16. Chemical and morphological characterization of TSP and PM2.5 by SEM-EDS, XPS and XRD collected in the metropolitan area of Monterrey, Mexico

    NASA Astrophysics Data System (ADS)

    González, Lucy T.; Rodríguez, F. E. Longoria; Sánchez-Domínguez, M.; Leyva-Porras, C.; Silva-Vidaurri, L. G.; Acuna-Askar, Karim; Kharisov, B. I.; Villarreal Chiu, J. F.; Alfaro Barbosa, J. M.

    2016-10-01

    Total suspended particles (TSP) and particles smaller than 2.5 μm (PM2.5) were collected at four sites in the metropolitan area of Monterrey (MAM) in Mexico. The samples were characterized by X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and Scanning Electron Microscopy (SEM). In order to determine the possible sources of emissions of atmospheric particulate matter, a principal component analysis (PCA) was performed. The XRD results showed that the major crystalline compounds found in the TPS were CaCO3 and SiO2; while in the PM2.5 CaSO4 was found. The XPS analysis showed that the main elements found on the surface of the particles were C, O, Si, Ca, S, and N. The deconvolution carried out on the high-resolution spectra for C1s, S2p and N1s, showed that the aromatics, sulfates and pyrrolic-amides were the main groups contributing to the signal of these elements, respectively. The C-rich particles presented a spherical morphology, while the Ca- and Si-based particles mostly showed a prismatic shape. The PCA analysis together with the results obtained from the characterization techniques, suggested that the main contributors to the CaCO3 particles collected in the PM were most probably produced and emitted into the atmosphere by local construction industries and exploitation of rich-deposits of calcite. Meanwhile, the SiO2 found in the MAM originated from the suspension of geological material abundant in the region, and the carbon particles were mainly produced by the combustion of fossil fuels.

  17. Conservation of artists' acrylic emulsion paints: XPS, NEXAFS and ATR-FTIR studies of wet cleaning methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willneff, E. A.; Ormsby, B. A.; Stevens, J. S.

    Works of art prepared with acrylic emulsion paints became commercially available in the 1960s. It is increasingly necessary to undertake and optimise cleaning and preventative conservation treatments to ensure their longevity. Model artists' acrylic paint films covered with artificial soiling were thus prepared on a canvas support and exposed to a variety of wet cleaning treatments based on aqueous or hydrocarbon solvent systems. This included some with additives such as chelating agents and/or surfactants, and microemulsion systems made specifically for conservation practice. The impact of cleaning (soiling removal) on the paint film surface was examined visually and correlated with resultsmore » of attenuated total reflection Fourier transform infrared, XPS and near-edge X-ray absorption fine structure analyses – three spectroscopic techniques with increasing surface sensitivity ranging from approximately $-$ 1000, 10 and 5 nm, respectively. Visual analysis established the relative cleaning efficacy of the wet cleaning treatments in line with previous results. X-ray spectroscopy analysis provided significant additional findings, including evidence for (i) surfactant extraction following aqueous swabbing, (ii) modifications to pigment following cleaning and (iii) cleaning system residues.« less

  18. Conservation of artists' acrylic emulsion paints: XPS, NEXAFS and ATR-FTIR studies of wet cleaning methods

    DOE PAGES

    Willneff, E. A.; Ormsby, B. A.; Stevens, J. S.; ...

    2014-02-17

    Works of art prepared with acrylic emulsion paints became commercially available in the 1960s. It is increasingly necessary to undertake and optimise cleaning and preventative conservation treatments to ensure their longevity. Model artists' acrylic paint films covered with artificial soiling were thus prepared on a canvas support and exposed to a variety of wet cleaning treatments based on aqueous or hydrocarbon solvent systems. This included some with additives such as chelating agents and/or surfactants, and microemulsion systems made specifically for conservation practice. The impact of cleaning (soiling removal) on the paint film surface was examined visually and correlated with resultsmore » of attenuated total reflection Fourier transform infrared, XPS and near-edge X-ray absorption fine structure analyses – three spectroscopic techniques with increasing surface sensitivity ranging from approximately $-$ 1000, 10 and 5 nm, respectively. Visual analysis established the relative cleaning efficacy of the wet cleaning treatments in line with previous results. X-ray spectroscopy analysis provided significant additional findings, including evidence for (i) surfactant extraction following aqueous swabbing, (ii) modifications to pigment following cleaning and (iii) cleaning system residues.« less

  19. XPS analysis of 440C steel surfaces lubricated with perfluoropolyethers under sliding conditions in high vacuum

    NASA Technical Reports Server (NTRS)

    Herrera-Fierro, Pilar; Masuko, Masabumi; Jones, William R., Jr.; Pepper, Stephen V.

    1994-01-01

    This work presents the results of the X-Ray Photoelectron Spectroscopy (XPS) analysis of AISI 440C ball surfaces lubricated with perfluoropolyether (PFPE) oils after friction experiments under sliding conditions at high load in air and vacuum environments. The PFPE lubricants tested were Demnum S100, Fomblin Z-25, and Krytox 143AB. It was found that all the PFPE lubricants were degraded by sliding contact causing the formation of inorganic fluorides on the metallic surfaces and a layer of organic decomposition products. KRYTOX 143AB was the least reactive of the three lubricants tested. It was also found that metal fluoride formed at off-scar areas. This suggests the formation of reactive species, such as COF2 or R(sub f)COF, during sliding experiments, which can diffuse through the lubricant film and react with the metallic surfaces away from the contact region. Comparison of reference specimens before sliding with those that had undergone the sliding tests showed that the amount of non-degraded PFPE remaining on the surface of the balls after the sliding experiments was greater than that of the balls without sliding.

  20. Synthesis and characterization of an effective organic/inorganic hybrid green corrosion inhibitive complex based on zinc acetate/Urtica Dioica

    NASA Astrophysics Data System (ADS)

    Salehi, E.; Naderi, Reza; Ramezanzadeh, B.

    2017-02-01

    This study aims at synthesis and characterization of an effective corrosion inhibitive complex based on zinc acetate/Urtica Dioica (ZnA-U.D) for corrosion protection of mild steel in chloride solution. The chemical structure and morphology of the complex were characterized by Fourier transform infrared spectroscopy (FT-IR), UV-vis, thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The corrosion protection performance of the mild steel samples dipped in 3.5 wt.% NaCl solutions with and without ZnA-U.D extract was investigated by visual observations, open circuit potential (OCP) measurements, electrochemical impedance spectroscopy (EIS) and polarization test. Results revealed that the ZnA successfully chelated with organic inhibitive compounds (i.e Quercetin, Quinic acid, Caffeic acid, Hystamine and Serotonin) present in the U.D extract. The electrochemical measurements revealed the effective inhibition action of ZnA-U.D complex in the sodium chloride solution on the mild steel. The synergistic effect between Zn2+ and organic compounds present in the U.D extract resulted in protective film deposition on the steel surface, which was proved by SEM and XPS analyses.

  1. XPS investigations of tribolayers formed on TiN and (Ti,Re)N coatings

    NASA Astrophysics Data System (ADS)

    Oktay, Serkan; Kahraman, Zafer; Urgen, Mustafa; Kazmanli, Kursat

    2015-02-01

    TiN and (Ti,Re)N coatings were deposited on high-speed-steel substrates by a hybrid coating system composed of cathodic arc PVD and magnetron sputtering techniques. In order to keep rhenium content low (8 ± 1.9 at.%) in the coating, magnetron sputtering technique was utilized to evaporate rhenium. The (Ti,Re)N coating consisted of TiN and ReNx (x > 1.33) phases. The hardness of TiN and (Ti,Re)N were 31 GPa and 29 GPa (± 2 GPa), respectively. Tribological behaviors of the samples were tested against Al2O3 balls at 21 °C (RT) and 150 °C (HT) by reciprocating wear technique. The tribolayers were analyzed by XPS technique. Friction coefficients of TiN were 0.56, 0.35 for 21 °C and 150 °C tests, respectively. Rhenium addition to TiN drastically dropped the friction coefficients to 0.22 and 0.17 for RT and HT samples. Rhenium addition also improved the wear resistance of the coating at both test temperatures. For TiN, main oxide component of the tribolayers was Ti2O3 for RT tests and TiO2 for HT tests. The oxide layer formed on (Ti,Re)N were the mixture of TiO2, Tisbnd Osbnd N, ReO2 and Re2O7 for both test temperatures. Re2O7 provided very low friction coefficient to (Ti,Re)N. The findings are consistent with the crystal chemistry approach.

  2. Multimodal and Multi-tissue Measures of Connectivity Revealed by Joint Independent Component Analysis.

    PubMed

    Franco, Alexandre R; Ling, Josef; Caprihan, Arvind; Calhoun, Vince D; Jung, Rex E; Heileman, Gregory L; Mayer, Andrew R

    2008-12-01

    The human brain functions as an efficient system where signals arising from gray matter are transported via white matter tracts to other regions of the brain to facilitate human behavior. However, with a few exceptions, functional and structural neuroimaging data are typically optimized to maximize the quantification of signals arising from a single source. For example, functional magnetic resonance imaging (FMRI) is typically used as an index of gray matter functioning whereas diffusion tensor imaging (DTI) is typically used to determine white matter properties. While it is likely that these signals arising from different tissue sources contain complementary information, the signal processing algorithms necessary for the fusion of neuroimaging data across imaging modalities are still in a nascent stage. In the current paper we present a data-driven method for combining measures of functional connectivity arising from gray matter sources (FMRI resting state data) with different measures of white matter connectivity (DTI). Specifically, a joint independent component analysis (J-ICA) was used to combine these measures of functional connectivity following intensive signal processing and feature extraction within each of the individual modalities. Our results indicate that one of the most predominantly used measures of functional connectivity (activity in the default mode network) is highly dependent on the integrity of white matter connections between the two hemispheres (corpus callosum) and within the cingulate bundles. Importantly, the discovery of this complex relationship of connectivity was entirely facilitated by the signal processing and fusion techniques presented herein and could not have been revealed through separate analyses of both data types as is typically performed in the majority of neuroimaging experiments. We conclude by discussing future applications of this technique to other areas of neuroimaging and examining potential limitations of the

  3. Ambient Pressure XPS Study of Mixed Conducting Perovskite-Type SOFC Cathode and Anode Materials under Well-Defined Electrochemical Polarization

    PubMed Central

    2015-01-01

    The oxygen exchange activity of mixed conducting oxide surfaces has been widely investigated, but a detailed understanding of the corresponding reaction mechanisms and the rate-limiting steps is largely still missing. Combined in situ investigation of electrochemically polarized model electrode surfaces under realistic temperature and pressure conditions by near-ambient pressure (NAP) XPS and impedance spectroscopy enables very surface-sensitive chemical analysis and may detect species that are involved in the rate-limiting step. In the present study, acceptor-doped perovskite-type La0.6Sr0.4CoO3-δ (LSC), La0.6Sr0.4FeO3-δ (LSF), and SrTi0.7Fe0.3O3-δ (STF) thin film model electrodes were investigated under well-defined electrochemical polarization as cathodes in oxidizing (O2) and as anodes in reducing (H2/H2O) atmospheres. In oxidizing atmosphere all materials exhibit additional surface species of strontium and oxygen. The polaron-type electronic conduction mechanism of LSF and STF and the metal-like mechanism of LSC are reflected by distinct differences in the valence band spectra. Switching between oxidizing and reducing atmosphere as well as electrochemical polarization cause reversible shifts in the measured binding energy. This can be correlated to a Fermi level shift due to variations in the chemical potential of oxygen. Changes of oxidation states were detected on Fe, which appears as FeIII in oxidizing atmosphere and as mixed FeII/III in H2/H2O. Cathodic polarization in reducing atmosphere leads to the reversible formation of a catalytically active Fe0 phase. PMID:26877827

  4. Opacity and transport measurements reveal that dilute plasma models of sonoluminescence are not valid.

    PubMed

    Khalid, Shahzad; Kappus, Brian; Weninger, Keith; Putterman, Seth

    2012-03-09

    A strong interaction between a nanosecond laser and a 70 μm radius sonoluminescing plasma is achieved. The overall response of the system results in a factor of 2 increase in temperature as determined by its spectrum. Images of the interaction reveal that light energy is absorbed and trapped in a region smaller than the sonoluminescence emitting region of the bubble for over 100 ns. We interpret this opacity and transport measurement as demonstrating that sonoluminescencing bubbles can be 1000 times more opaque than what follows from the Saha equation of statistical mechanics in the ideal plasma limit. To address this discrepancy, we suggest that the effects of strong Coulomb interactions are an essential component of a first principles theory of sonoluminescence.

  5. Opacity and Transport Measurements Reveal That Dilute Plasma Models of Sonoluminescence Are Not Valid

    NASA Astrophysics Data System (ADS)

    Khalid, Shahzad; Kappus, Brian; Weninger, Keith; Putterman, Seth

    2012-03-01

    A strong interaction between a nanosecond laser and a 70 μm radius sonoluminescing plasma is achieved. The overall response of the system results in a factor of 2 increase in temperature as determined by its spectrum. Images of the interaction reveal that light energy is absorbed and trapped in a region smaller than the sonoluminescence emitting region of the bubble for over 100 ns. We interpret this opacity and transport measurement as demonstrating that sonoluminescencing bubbles can be 1000 times more opaque than what follows from the Saha equation of statistical mechanics in the ideal plasma limit. To address this discrepancy, we suggest that the effects of strong Coulomb interactions are an essential component of a first principles theory of sonoluminescence.

  6. Evolution of Eu valence and superconductivity in layered Eu0.5La0.5FBiS2 -xSex system

    NASA Astrophysics Data System (ADS)

    Mizuguchi, Y.; Paris, E.; Wakita, T.; Jinno, G.; Puri, A.; Terashima, K.; Joseph, B.; Miura, O.; Yokoya, T.; Saini, N. L.

    2017-02-01

    We have studied the effect of Se substitution on Eu valence in a layered Eu0.5La0.5FBiS2 -xSex superconductor using a combined analysis of x-ray absorption near-edge structure (XANES) and x-ray photoelectron spectroscopy (XPS) measurements. Eu L3-edge XANES spectra reveal that Eu is in the mixed valence state with coexisting Eu2 + and Eu3 +. The average Eu valence decreases sharply from ˜2.3 for x =0.0 to ˜2.1 for x =0.4 . Consistently, Eu 3 d XPS shows a clear decrease in the average valence by Se substitution. Bi 4 f XPS indicates that effective charge carriers in the BiCh2 (Ch = S, Se) layers are slightly increased by Se substitution. On the basis of the present results it has been discussed that the metallic character induced by Se substitution in Eu0.5La0.5FBiS2 -xSex is likely to be due to increased in-plane orbital overlap driven by reduced in-plane disorder that affects the carrier mobility.

  7. Effect of nitrogen plasma afterglow on the surface charge effect resulted during XPS surface analysis of amorphous carbon nitride thin films

    NASA Astrophysics Data System (ADS)

    Kayed, Kamal

    2018-06-01

    The aim of this paper is to investigate the relationship between the micro structure and the surface charge effect resulted during XPS surface analysis of amorphous carbon nitride thin films prepared by laser ablation method. The study results show that the charge effect coefficient (E) is not just a correction factor. We found that the changes in this coefficient value due to incorporation of nitrogen atoms into the carbon network are related to the spatial configurations of the sp2 bonded carbon atoms, order degree and sp2 clusters size. In addition, results show that the curve E vs. C(sp3)-N is a characteristic curve of the micro structure. This means that using this curve makes it easy to sorting the samples according to the micro structure (hexagonal rings or chains).

  8. Surface studies of low molecular weight photolysis products from UV-ozone oxidised polystyrene

    NASA Astrophysics Data System (ADS)

    Davidson, M. R.; Mitchell, S. A.; Bradley, R. H.

    2005-05-01

    The production of low molecular weight oxidised material during UV-ozone treatment of polystyrene has been studied by XPS, GC-MS, FTIR and UV/visible spectroscopy. XPS analysis of the oxidised polystyrene surfaces before and after washing with water or methanol indicates that the removal of oxidation products and the surface that remains after washing is strongly dependent on the choice of solvent. Methanol washing removes a greater proportion of the more highly oxidised carbonyl and carboxyl groups resulting in a surface with a lower oxygen content than that remaining after water washing. Extended exposure to UV-ozone treatment reveals a two-stage oxidation process with mono-substituted benzene rings such as benzaldehyde, acetophenone and benzoic acid being produced at exposure times less than 15 min. Compounds, more typical of those formed via dehydration reactions of existing oxidised species, are produced at longer exposure times. UV-visible spectroscopy and Fourier transform infrared spectroscopy also confirm the presence of carboxylic acid, aromatic ketones and esters. Measurements of water contact angle on a 10 min treated surface reveals that methanol washing produces a more hydrophilic surface than water washing, the resulting water contact angles being 47° and 62° respectively. Ageing of methanol washed surfaces for 24 h leads to a recovery of the water contact angle back to 62° which suggests some form of post-washing surface relaxation process. Since XPS analyses show no increase in the oxygen concentration of the methanol washed surfaces after a 24 h ageing period, the increase in contact angle found with ageing is attributed to the reorientation of very near-surface functional groups i.e. within the XPS sampling depth.

  9. XPS analysis of the effect of fillers on PTFE transfer film development in sliding contacts

    NASA Technical Reports Server (NTRS)

    Blanchet, T. A.; Kennedy, F. E.; Jayne, D. T.

    1993-01-01

    The development of transfer films atop steel counterfaces in contact with unfilled and bronze-filled PTFE has been studied using X-ray photoelectron spectroscopy. The sliding apparatus was contained within the vacuum of the analytical system, so the effects of the native oxide, hydrocarbon, and adsorbed gaseous surface layers of the steel upon the PTFE transfer behavior could be studied in situ. For both the filled and the unfilled PTFE, cleaner surfaces promoted greater amounts of transfer. Metal fluorides, which formed at the transfer film/counterface interface, were found solely in cases where the native oxide had been removed to expose the metallic surface prior to sliding. These fluorides also were found at clean metal/PTFE interfaces formed in the absence of frictional contact. A fraction of these fluorides resulted from irradiation damage inherent in XPS analysis. PTFE transfer films were found to build up with repeated sliding passes, by a process in which strands of transfer filled in the remaining counterface area. Under these reported test conditions, the transfer process is not expected to continue atop previously deposited transfer films. The bronze-filled composite generated greater amounts of transfer than the unfilled PTFE. The results are discussed relative to the observed increase in wear resistance imparted to PTFE by a broad range of inorganic fillers.

  10. New Aspects of Photocurrent Generation at Graphene pn Junctions Revealed by Ultrafast Optical Measurements

    NASA Astrophysics Data System (ADS)

    Aivazian, Grant; Sun, Dong; Jones, Aaron; Ross, Jason; Yao, Wang; Cobden, David; Xu, Xiaodong

    2012-02-01

    The remarkable electrical and optical properties of graphene make it a promising material for new optoelectronic applications. However, one important, but so far unexplored, property is the role of hot carriers in charge and energy transport at graphene interfaces. Here we investigate the photocurrent (PC) dynamics at a tunable graphene pn junction using ultrafast scanning PC microscopy. Pump-probe measurements show a temperature dependent relaxation time of photogenerated carriers that increases from 1.5ps at 290K to 4ps at 20K; while the amplitude of the PC is independent of the lattice temperature. These observations imply that it is hot carriers, not phonons, which dominate ultrafast energy transport. Gate dependent measurements show many interesting features such as pump induced saturation, enhancement, and sign reversal of probe generated PC. These observations reveal that the underlying PC mechanism is a combination of the thermoelectric and built-in electric field effects. Our results enhance the understanding of non-equilibrium electron dynamics, electron-electron interactions, and electron-phonon interactions in graphene. They also determine fundamental limits on ultrafast device operation speeds (˜500 GHz) for graphene-based photodetectors.

  11. Ion beam modification of zinc white pigment characterized by ex situ and in situ μ-Raman and XPS

    NASA Astrophysics Data System (ADS)

    Beck, L.; Gutiérrez, P. C.; Miro, S.; Miserque, F.

    2017-10-01

    Zinc oxide, known as zinc white, is one of the principal white pigments developed in the 18th century and was used by the Impressionist painters. ZnO as artists' pigment has occasionally been characterized by X-ray and ion beam techniques, but these studies are limited by the potential for visible radiation effect. Ion beam modifications of zinc oxide have extensively been investigated, but mainly for electronic and industrial applications. In this paper, we focus our investigation on ion beam modification of ZnO used as pigment. Two irradiation conditions have been used: an external 3 MeV proton micro-beam representative of PIXE analysis and 2 MeV H+ and 1.2 MeV Au + beams in vacuum to investigate irradiation modifications in electronic and nuclear energy loss regimes. Ion beam modification was characterized by ex situ and in situ micro-Raman spectrometry and XPS. The results shows that IBA of zinc white can be carried out safely in historical paintings with low current and dose.

  12. XPS Study on the Stability and Transformation of Hydrate and Carbonate Phases within MgO Systems

    PubMed Central

    Rheinheimer, Vanessa; Unluer, Cise; Liu, Jiawei; Ruan, Shaoqin; Pan, Jisheng; Monteiro, Paulo J. M.

    2017-01-01

    MgO cements have great potential for carbon sequestration as they have the ability to carbonate and gain strength over time. The hydration of reactive MgO occurs at a similar rate as ordinary Portland cement (PC) and forms brucite (Mg(OH)2, magnesium hydroxide), which reacts with CO2 to form a range of hydrated magnesium carbonates (HMCs). However, the formation of HMCs within the MgO–CO2–H2O system depends on many factors, such as the temperature and CO2 concentration, among others, which play an important role in determining the rate and degree of carbonation, the type and stability of the produced HMCs and the associated strength development. It is critical to understand the stability and transformation pathway of HMCs, which are assessed here through the use of X-ray photoelectron spectroscopy (XPS). The effects of the CO2 concentration (in air or 10% CO2), exposure to high temperatures (up to 300 °C) and curing period (one or seven days) are reported. Observed changes in the binding energy (BE) indicate the formation of different components and the transformation of the hydrated carbonates from one form to another, which will influence the final performance of the carbonated blends. PMID:28772437

  13. Reaction of propane with the ordered NiO/Rh(1 1 1) studied by XPS and LEISS

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Wang, Wenyi; Chen, Mingshu; Wan, Huilin

    2018-05-01

    Nickel oxide has been reported to be an efficient catalyst for oxidative dehydrogenation of propane (ODP) to propene at low temperature. In this paper, ultrathin NiO films with various thickness were prepared on a Rh(1 1 1) surface and characterized by X-ray photoemission spectroscopy (XPS) and Low-energy ion scattering spectroscopy (LEISS). Results show that NiO forms a two-dimensional (2D) network with a O-Ni-O structure at submonolayer coverages, and a bulk-like NiO at multilayer coverages. The submonolayer NiO films are less stable than the thick ones when annealed in ultra-high vacuum (UHV) due to the strong interaction with the Rh substrate. Propane was dosed onto the model surfaces at different temperatures to investigate the activation of propane and reactivity of NiO films with propane. The reactions of propane with the thin and thick NiO films are significantly different. Propane activates on the O defect sites for the thick NiO films, whereas activation occurs on the interface of nickel oxide and substrate for the thin films with a higher activity.

  14. The electronic characterization of biphenylene—Experimental and theoretical insights from core and valence level spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lüder, Johann; Sanyal, Biplab; Eriksson, Olle

    In this paper, we provide detailed insights into the electronic structure of the gas phase biphenylene molecule through core and valence spectroscopy. By comparing results of X-ray Photoelectron Spectroscopy (XPS) measurements with ΔSCF core-hole calculations in the framework of Density Functional Theory (DFT), we could decompose the characteristic contributions to the total spectra and assign them to non-equivalent carbon atoms. As a difference with similar molecules like biphenyl and naphthalene, an influence of the localized orbitals on the relative XPS shifts was found. The valence spectrum probed by photoelectron spectroscopy at a photon energy of 50 eV in conjunction withmore » hybrid DFT calculations revealed the effects of the localization on the electronic states. Using the transition potential approach to simulate the X-ray absorption spectroscopy measurements, similar contributions from the non-equivalent carbon atoms were determined from the total spectrum, for which the slightly shifted individual components can explain the observed asymmetric features.« less

  15. Influence of Ga vacancies, Mn and O impurities on the ferromagnetic properties of GaN micro- and nanostructures

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Escudero, R.; Silva, R.; Herrera, M.

    2018-04-01

    We present a study of the influence of gallium vacancy (VGa) point defects on the ferromagnetic properties of GaN:Mn and GaN:Mn,O micro- and nanostructures. Results demonstrate that the generation of these point defects enhances the ferromagnetic signal of GaN:Mn microstructures, while incorporation of oxygen as an impurity inhibits this property. XPS measurements revealed that Mn impurities in ferromagnetic GaN:Mn samples mainly exhibit a valence state of 2+. Cathodoluminescence (CL) spectra from Mn-doped GaN samples displayed emissions centered at about 1.97 eV, attributed to transitions between the 4T1-6A1 states of the Mn2+ d orbitals, and emissions centered at 2.45 and 2.9 eV, associated with the presence of VGa. CL measurements also revealed a blue shift of the GaN band-edge emission generated by the expansion of the wurtzite lattice due to Mn incorporation, which was confirmed by XRD measurements. These latter measurements also revealed an amorphization of GaN:Mn due to the incorporation of oxygen as impurities. The GaN:Mn samples were synthesized by thermal evaporation of GaN and MnCO3 powders onto Ni0.8Cr0.2/Si(100) in a horizontal furnace operated at low vacuum. The residual air inside the system was used as a source of oxygen during the synthesis of Mn and O co-doped GaN nanostructures. Mn and O impurities were incorporated into the nanostructures at different concentrations by varying the growth temperature. Energy Dispersive Spectroscopy, XRD, and XPS measurements confirmed that the obtained samples predominantly consisted of GaN.

  16. Toward a comprehensive understanding of solid-state core-level XPS linewidths: Experimental and theoretical studies on the Si2p and O1s linewidths in silicates

    NASA Astrophysics Data System (ADS)

    Bancroft, G. M.; Nesbitt, H. W.; Ho, R.; Shaw, D. M.; Tse, J. S.; Biesinger, M. C.

    2009-08-01

    High resolution X-ray Photoelectron Spectroscopy (XPS) core-level Si2p and O1s spectra of the nonconductors α-SiO2 (quartz) at 120 and 300 K and vitreous SiO2 at 300 K were obtained with a Kratos Axis Ultra XPS instrument (instrumental resolution of <0.4eV ) which incorporates a unique charge compensation system that minimizes differential charge broadening on nonconductors. The Si2p and O1s linewidths at 300 K ( ˜1.1 and ˜1.2eV , respectively) are similar for all silicates (and similar to previous thin film SiO2 spectra obtained previously), showing that differential charging does not contribute significantly to our spectra. At 120 K, there is a small decrease (0.04 eV) in the Si2p linewidth of α-SiO2 , but no measurable decrease in O1s linewidth. The O1s lines are generally and distinctly asymmetric. We consider all possible sources of line broadening and show that final state vibrational broadening (FSVB) and phonon broadening are the major causes of the broad and asymmetric lines. Previous high resolution gas phase XPS studies have identified large FSVB contributions to the Si2p spectra of SiCl4 , SiF4 , and Si(OCH3)4 molecules, and this vibrational structure leads total Si2p3/2 linewidths of up to ˜0.5eV , even with individual peak linewidths of <0.1eV . The Si atom of Si(OCH3)4 is an excellent analog for Si in crystalline SiO2 because the Si-O bond lengths and symmetric stretch frequencies are similar in both compounds. Similar vibrational contributions to the Si2p and O1s spectra of solid silicates are anticipated if the Si2p and O1s core-hole states produce similar changes to the Si-O bond length in both phases. To investigate the possibility, Car-Parrinello molecular dynamics calculations were performed and show that changes to Si-O bond lengths between ion and ground states (Δr) for both Si2p and O1s hole states are similar for both crystalline SiO2 and gaseous Si(OCH3)4 . Δr are -0.04Å for Si2p and ˜+0.05Å for O1s in both compounds. Indeed, the

  17. The Latest SORCE Solar Spectral Irradiance Data Release: Inter-Comparison and a First Look at TSIS SIM Measurement.

    NASA Astrophysics Data System (ADS)

    Beland, S.; Sandoval, L.; Vanier, B.; Elliott, J.; Harder, J. W.; Snow, M. A.; Woods, T. N.; Richard, E. C.; Pilewskie, P.

    2017-12-01

    The Spectral Irradiance Monitor (SIM), the SOLar STellar Irradiance Comparison Experiment (SOLSTICE), and the XUV Photometer System (XPS) instruments on board the Solar Radiation and Climate Experiment (SORCE) mission have been taking daily Solar spectral irradiance (SSI) measurements since April 2003. We present the latest data releases from these instruments, describing the improvements in the new datasets and the trends measured during Solar cycles 23 and 24. An inter-comparison of the SSI over the overlapping wavelengths for SIM and SOLSTICE is presented as well as, if the data is available, a comparison with the first light measurements from TSIS-SIM.

  18. What measurements of neutrino neutral current events can reveal

    DOE PAGES

    Gandhi, Raj; Kayser, Boris; Prakash, Suprabh; ...

    2017-11-29

    Here, we show that neutral current (NC) measurements at neutrino detectors can play a valuable role in the search for new physics. Such measurements have certain intrinsic features and advantages that can fruitfully be combined with the usual well-studied charged lepton detection channels in order to probe the presence of new interactions or new light states. In addition to the fact that NC events are immune to uncertainties in standard model neutrino mixing and mass parameters, they can have small matter effects and superior rates since all three flavours participate. We also show, as a general feature, that NC measurementsmore » provide access to different combinations of CP phases and mixing parameters compared to CC measurements at both long and short baseline experiments. Using the Deep Underground Neutrino Experiment (DUNE) as an illustrative setting, we demonstrate the capability of NC measurements to break degeneracies arising in CC measurements, allowing us, in principle, to distinguish between new physics that violates three flavour unitarity and that which does not. Finally, we show that NC measurements can enable us to restrict new physics parameters that are not easily constrained by CC measurements.« less

  19. What measurements of neutrino neutral current events can reveal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandhi, Raj; Kayser, Boris; Prakash, Suprabh

    Here, we show that neutral current (NC) measurements at neutrino detectors can play a valuable role in the search for new physics. Such measurements have certain intrinsic features and advantages that can fruitfully be combined with the usual well-studied charged lepton detection channels in order to probe the presence of new interactions or new light states. In addition to the fact that NC events are immune to uncertainties in standard model neutrino mixing and mass parameters, they can have small matter effects and superior rates since all three flavours participate. We also show, as a general feature, that NC measurementsmore » provide access to different combinations of CP phases and mixing parameters compared to CC measurements at both long and short baseline experiments. Using the Deep Underground Neutrino Experiment (DUNE) as an illustrative setting, we demonstrate the capability of NC measurements to break degeneracies arising in CC measurements, allowing us, in principle, to distinguish between new physics that violates three flavour unitarity and that which does not. Finally, we show that NC measurements can enable us to restrict new physics parameters that are not easily constrained by CC measurements.« less

  20. Thickness measurement of a thin hetero-oxide film with an interfacial oxide layer by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Joong; Lee, Seung Mi; Jang, Jong Shik; Moret, Mona

    2012-02-01

    The general equation Tove = L cos θ ln(Rexp/R0 + 1) for the thickness measurement of thin oxide films by X-ray photoelectron spectroscopy (XPS) was applied to a HfO2/SiO2/Si(1 0 0) as a thin hetero-oxide film system with an interfacial oxide layer. The contribution of the thick interfacial SiO2 layer to the thickness of the HfO2 overlayer was counterbalanced by multiplying the ratio between the intensity of Si4+ from a thick SiO2 film and that of Si0 from a Si(1 0 0) substrate to the intensity of Si4+ from the HfO2/SiO2/Si(1 0 0) film. With this approximation, the thickness levels of the HfO2 overlayers showed a small standard deviation of 0.03 nm in a series of HfO2 (2 nm)/SiO2 (2-6 nm)/Si(1 0 0) films. Mutual calibration with XPS and transmission electron microscopy (TEM) was used to verify the thickness of HfO2 overlayers in a series of HfO2 (1-4 nm)/SiO2 (3 nm)/Si(1 0 0) films. From the linear relation between the thickness values derived from XPS and TEM, the effective attenuation length of the photoelectrons and the thickness of the HfO2 overlayer could be determined.

  1. Problems at the Leading Edge of Space Weathering as Revealed by TEM Combined with Surface Science Techniques

    NASA Astrophysics Data System (ADS)

    Christoffersen, R.; Dukes, C. A.; Keller, L. P.; Rahman, Z.; Baragiola, R. A.

    2015-11-01

    Analytical field-emission TEM techniques cross-correlated with surface analyses by X-ray photoelectron spectroscopy (XPS) provides a unique two-prong approach for characterizing how solar wind ion processing contributes to space weathering.

  2. Surface characterization of LDEF carbon fiber/polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Grammer, Holly L.; Wightman, James P.; Young, Philip R.; Slemp, Wayne S.

    1995-01-01

    XPS (x-ray photoelectron spectroscopy) and SEM (scanning electron microscopy) analysis of both carbon fiber/epoxy matrix and carbon fiber/polysulfone matrix composites revealed significant changes in the surface composition as a result of exposure to low-earth orbit. The carbon 1s curve fit XPS analysis in conjunction with the SEM photomicrographs revealed significant erosion of the polymer matrix resins by atomic oxygen to expose the carbon fibers of the composite samples. This erosion effect on the composites was seen after 10 months in orbit and was even more obvious after 69 months.

  3. Synthesis of a new photoreactive derivative of dipyridamole and its use in the manufacture of artificial surfaces with low thrombogenicity.

    PubMed

    Aldenhoff, Y B; Pijpers, A P; Koole, L H

    1997-01-01

    Photoimmobilization of dipyridamole (Persantin) was accomplished through the use of a new synthetic conjugate molecule, 1. Persantin is a powerful inhibitor of platelet activation and aggregation and is widely used as a vasodilator. Conjugate 1 consists of triply protected dipyridamole [three of the four hydroxyl groups carry a tert-butyldimethylsilyl (TBDMS) protective group) and the photoreactive 4-azidobenzoyl group. A short hydrophilic spacer chain, derived from triethylene glycol, separates the protected dipyridamole system and the photoreactive group. Compound 1 was immobilized on polyurethane sheets (Pellethane D-55) through irradiation with ultraviolet (UV) light, and the protective groups were removed afterward. The resulting modified polyurethane surfaces were characterized by different physicochemical techniques: UV extinction, contact angle measurements (captive bubble technique), and X-ray photoelectron spectroscopy (XPS). The UV extinction measurements showed the presence of 13 +/- 1 nmol of immobilized dipyridamole/cm2. The contact angle measurements revealed that the modified surface was markedly more hydrophilic than the control (i.e. unmodified polyurethane). XPS measurements clearly established the presence of immobilized dipyridamole in the outermost layers of the modified surface. This was especially clear from the XPS spectra recorded at a low take-off angle (approximately 6 degrees). Furthermore, the XPS spectra showed that the TBDMS protective groups had been quantitatively removed during the deprotection/washing treatment. The in vitro blood compatibility of the modified surface was studied with the thrombin generation assay as developed in our group, as well as with scanning electron microscopy. The thrombin generation test produced a lag time of 1275 s for the modified surface, as opposed to 569 s for the control. Scanning electron microscopy showed that far fewer platelets adhere to the modified surface (approximately 7 x 10(3)/mm2) as

  4. Stages of Se adsorption on Au(111): A combined XPS, LEED, TOF-DRS, and DFT study

    NASA Astrophysics Data System (ADS)

    Ruano, G.; Tosi, E.; Sanchez, E.; Abufager, P.; Martiarena, M. L.; Grizzi, O.; Zampieri, G.

    2017-08-01

    We have studied the adsorption of Se on the surface Au(111) using XPS, TOF-DRS, LEED and DFT calculations. The use of a doser that operates in vacuum allowed us to investigate all the stages of the adsorption from the clean surface up to the formation of multilayers. In the monolayer regime we have found two ordered phases with distinctive LEED patterns. The LEED pattern of the first phase presents three fractional spots arranged symmetrically around the positions of the spots in a √3x√3 pattern. The analysis of this pattern suggests the formation of either a nxn superstructure of √3x√3 domains with n=19 or n=22, or that the adsorption occurs without removing the 22x√3 herringbone reconstruction of the gold surface. This last possibility is in accordance with DFT calculations which show that the charge transfer to a Se adsorbate might not be enough to destabilize the surface reconstruction. Increasing the coverage, beyond 0.3 ML a new LEED pattern appears with broad spots which upon annealing at 150 °C become well defined indicating a 1×8 periodicity. At the highest doses we have observed the formation of multilayers with no discernible LEED pattern. The comparison with adsorption experiments carried out in liquid solutions show similarities and also some important differences.

  5. Synthesis and characterization of novel 4-Tetra-4-Tolylsulfonyl ZnPc thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Khalil, Salah; Tazarki, Helmi; Souli, Mehdi; Guasch, Cathy; Jamoussi, Bassem; Kamoun, Najoua

    2017-11-01

    Novel 4-Tetra-4-Tolylsulfonyl:zinc phthalocyanine and simple zinc phthalocyanine were synthesized. Our materials were grown on glass substrates by spin coating technique. Thin films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electronic micrograph (SEM), atomic force microscopy (AFM), spectrophotometer and Hall effect measurement. X-ray spectra reveal that 4-Tetra-4-Tolylsulfonyl:zinc phthalocyanine (4T4TS:ZnPc) and zinc phthalocyanine (ZnPc) thin films have a monoclinic crystalline structure in β phase. The surface properties and chemical composition were detailed using XPS measurement. SEM were used to investigate the surface morphology for 4T4TS:ZnPc and ZnPc thin films. Atomic force microscopy images have shown a decrease in surface roughness after substitution. Optical properties were investigated by measuring transmission and reflection spectra. Electrical properties were studied and the different electrical parameters was measured and compared on glass, silicon and tin dioxide substrates by Hall Effect technique. All obtained results indicate an improvement in physical properties of 4T4TS:ZnPc which allows used it in optoelectronic applications.

  6. Band line-up determination at p- and n-type Al/4H-SiC Schottky interfaces using photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kohlscheen, J.; Emirov, Y. N.; Beerbom, M. M.; Wolan, J. T.; Saddow, S. E.; Chung, G.; MacMillan, M. F.; Schlaf, R.

    2003-09-01

    The band lineup of p- and n-type 4H-SiC/Al interfaces was determined using x-ray photoemission spectroscopy (XPS). Al was deposited in situ on ex situ cleaned SiC substrates in several steps starting at 1.2 Å up to 238 Å nominal film thickness. Before growth and after each growth step, the sample surface was characterized in situ by XPS. The analysis of the spectral shifts indicated that during the initial deposition stages the Al films react with the ambient surface contamination layer present on the samples after insertion into vacuum. At higher coverage metallic Al clusters are formed. The band lineups were determined from the analysis of the core level peak shifts and the positions of the valence bands maxima (VBM) depending on the Al overlayer thickness. Shifts of the Si 2p and C 1s XPS core levels occurred to higher (lower) binding energy for the p-(n-)type substrates, which was attributed to the occurrence of band bending due to Fermi-level equilibration at the interface. The hole injection barrier at the p-type interface was determined to be 1.83±0.1 eV, while the n-type interface revealed an electron injection barrier of 0.98±0.1 eV. Due to the weak features in the SiC valence bands measured by XPS, the VBM positions were determined using the Si 2p peak positions. This procedure required the determination of the Si 2p-to-VBM binding energy difference (99.34 eV), which was obtained from additional measurements.

  7. XPS-nanocharacterization of organic layers electrochemically grafted on the surface of SnO2 thin films to produce a new hybrid material coating

    NASA Astrophysics Data System (ADS)

    Drevet, R.; Dragoé, D.; Barthés-Labrousse, M. G.; Chaussé, A.; Andrieux, M.

    2016-10-01

    This work presents the synthesis and the characterization of hybrid material thin films obtained by the combination of two processes. The electrochemical grafting of organic layers made of carboxyphenyl moieties is carried out from the reduction of a diazonium salt on tin dioxide (SnO2) thin films previously deposited on Si substrates by metal organic chemical vapor deposition (MOCVD). Since the MOCVD experimental parameters impact the crystal growth of the SnO2 layer (i.e. its morphology and its texturation), various electrochemical grafting models can occur, producing different hybrid materials. In order to evidence the efficiency of the electrochemical grafting of the carboxyphenyl moieties, X-ray Photoelectron Spectroscopy (XPS) is used to characterize the first nanometers in depth of the synthesized hybrid material layer. Then three electrochemical grafting models are proposed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unuigbe, David M.; Harting, Margit; Jonah, Emmanuel O.

    The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High-resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)- and (100)-oriented planes which stabilizes against further oxidation of the particles. X-ray absorption spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) measurements at the O 1s-edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milledmore » for different times. XANES results reveal the presence of the +4 (SiO 2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2pXPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub-oxide, +1 (Si 2O), +2 (SiO) and +3 (Si 2O 3), states are present. The analysis of the change in the sub-oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.« less

  9. Investigation of nanoparticulate silicon as printed layers using scanning electron microscopy, transmission electron microscopy, X-ray absorption spectroscopy and X-ray photoelectron spectroscopy

    DOE PAGES

    Unuigbe, David M.; Harting, Margit; Jonah, Emmanuel O.; ...

    2017-08-21

    The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High-resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)- and (100)-oriented planes which stabilizes against further oxidation of the particles. X-ray absorption spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) measurements at the O 1s-edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milledmore » for different times. XANES results reveal the presence of the +4 (SiO 2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2pXPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub-oxide, +1 (Si 2O), +2 (SiO) and +3 (Si 2O 3), states are present. The analysis of the change in the sub-oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.« less

  10. Toward an implicit measure of emotions: ratings of abstract images reveal distinct emotional states.

    PubMed

    Bartoszek, Gregory; Cervone, Daniel

    2017-11-01

    Although implicit tests of positive and negative affect exist, implicit measures of distinct emotional states are scarce. Three experiments examined whether a novel implicit emotion-assessment task, the rating of emotion expressed in abstract images, would reveal distinct emotional states. In Experiment 1, participants exposed to a sadness-inducing story inferred more sadness, and less happiness, in abstract images. In Experiment 2, an anger-provoking interaction increased anger ratings. In Experiment 3, compared to neutral images, spider images increased fear ratings in spider-fearful participants but not in controls. In each experiment, the implicit task indicated elevated levels of the target emotion and did not indicate elevated levels of non-target negative emotions; the task thus differentiated among emotional states of the same valence. Correlations also supported the convergent and discriminant validity of the implicit task. Supporting the possibility that heuristic processes underlie the ratings, group differences were stronger among those who responded relatively quickly.

  11. Fibrinogen adsorption mechanisms at the gold substrate revealed by QCM-D measurements and RSA modeling.

    PubMed

    Kubiak, Katarzyna; Adamczyk, Zbigniew; Cieśla, Michał

    2016-03-01

    Adsorption kinetics of fibrinogen at a gold substrate at various pHs was thoroughly studied using the QCM-D method. The experimental were interpreted in terms of theoretical calculations performed according to the random sequential adsorption model (RSA). In this way, the hydration functions and water factors of fibrinogen monolayers were quantitatively evaluated at various pHs. It was revealed that for the lower range of fibrinogen coverage the hydration function were considerably lower than previously obtained for the silica sensor [33]. The lower hydration of fibrinogen monolayers on the gold sensor was attributed to its higher roughness. However, for higher fibrinogen coverage the hydration functions for both sensors became identical exhibiting an universal behavior. By using the hydration functions, the fibrinogen adsorption/desorption runs derived from QCM-D measurements were converted to the Γd vs. the time relationships. This allowed to precisely determine the maximum coverage that varied between 1.6mgm(-2) at pH 3.5 and 4.5mgm(-2) at pH 7.4 (for ionic strength of 0.15M). These results agree with theoretical eRSA modeling and previous experimental data derived by using ellipsometry, OWLS and TIRF. Various fibrinogen adsorption mechanisms were revealed by exploiting the maximum coverage data. These results allow one to develop a method for preparing fibrinogen monolayers of well-controlled coverage and molecule orientation. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Macroscopic and microscopic investigation of Ni(II) sequestration on diatomite by batch, XPS, and EXAFS techniques.

    PubMed

    Sheng, Guodong; Yang, Shitong; Sheng, Jiang; Hu, Jun; Tan, Xiaoli; Wang, Xiangke

    2011-09-15

    Sequestration of Ni(II) on diatomite as a function of time, pH, and temperature was investigated by batch, XPS, and EXAFS techniques. The ionic strength-dependent sorption at pH < 7.0 was consistent with outer-sphere surface complexation, while the ionic strength-independent sorption at pH = 7.0-8.6 was indicative of inner-sphere surface complexation. EXAFS results indicated that the adsorbed Ni(II) consisted of ∼6 O at R(Ni-O) ≈ 2.05 Å. EXAFS analysis from the second shell suggested that three phenomena occurred at the diatomite/water interface: (1) outer-sphere and/or inner-sphere complexation; (2) dissolution of Si which is the rate limiting step during Ni uptake; and (3) extensive growth of surface (co)precipitates. Under acidic conditions, outer-sphere complexation is the main mechanism controlling Ni uptake, which is in good agreement with the macroscopic results. At contact time of 1 h or 1 day or pH = 7.0-8.0, surface coprecipitates occur concurrently with inner-sphere complexes on diatomite surface, whereas at contact time of 1 month or pH = 10.0, surface (co)precipitates dominate Ni uptake. Furthermore, surface loading increases with temperature increasing, and surface coprecipitates become the dominant mechanism at elevated temperature. The results are important to understand Ni interaction with minerals at the solid-water interface, which is helpful to evaluate the mobility of Ni(II) in the natural environment.

  13. An XPS study of the stability of Fomblin Z25 on the native oxide of aluminum. [x ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Herrera-Fierro, Pilar; Pepper, Stephen V.; Jones, William R.

    1991-01-01

    Thin films of Fomblin Z25, a perfluoropolyalkylether lubricant, were vapor deposited onto clean, oxidized aluminum and sapphire surfaces, and their behavior at different temperatures was studied using x ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). It was found that the interfacial fluid molecules decompose on the native oxide at room temperature, and continue to decompose at elevated temperatures, as previous studies had shown to occur on clean metal. TDS indicated that different degradation mechanisms were operative for clean and oxidized aluminum. On sapphire substrates, no reaction was observed at room temperature. Our conclusion is that the native oxide of aluminum is neither passive nor protective towards Fomblin Z25. At high temperatures (150 C) degradation of the polymer on sapphire produced a debris layer at the interface with a chemical composition similar to the one formed on aluminum oxide. Rubbing a Fomblin film on a single crystal sapphire also induced the decomposition of the lubricant in contact with the interface and the formulation of a debris layer.

  14. Preparation and characterization of the nanoporous ultrathin multilayer films based on molybdenum polyoxometalate (Mo 38) n

    NASA Astrophysics Data System (ADS)

    Wang, L.; Jiang, M.; Wang, E. B.; Duan, L. Y.; Hao, N.; Lan, Y.; Xu, L.; Li, Z.

    2003-11-01

    Ultrathin multilayer films of the wheel-shaped molybdenum polyoxometalate cluster (Mo 38) n and poly(allylamine hydrochloride)(PAH) have been prepared by the layer-by-layer (LbL) self-assembly method. The ((Mo 38) n/PAH) m multilayer films have been characterized by X-ray photoelectron spectra (XPS) and atomic force microscopy (AFM). UV-VIS measurements reveal regular film growth with each (Mo 38) n adsorption. The electrochemistry behavior of the film at room temperature was investigated.

  15. Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes**

    PubMed Central

    Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Fleig, Jürgen; Klötzer, Bernhard

    2015-01-01

    In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6Sr0.4FeO3−δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe0 on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity. PMID:25557533

  16. Cyclic fatigue resistance of XP-endo Shaper compared with different nickel-titanium alloy instruments.

    PubMed

    Elnaghy, Amr; Elsaka, Shaymaa

    2018-04-01

    The aims of this study were to assess and compare the resistance to cyclic fatigue of XP-endo Shaper (XPS; FKG Dentaire, La Chaux-de-Fonds, Switzerland) instruments with TRUShape (TRS; Dentsply Tulsa Dental Specialties, Tulsa, OK, USA), HyFlex CM (HCM; Coltene, Cuyahoga Falls, OH, USA), Vortex Blue (VB; Dentsply Tulsa Dental Specialties), and iRace (iR; FKG Dentaire) nickel-titanium rotary instruments at body temperature. Size 30, 0.01 taper of XPS, size 30, 0.04 taper of HCM, VB, iR, and size 30, 0.06 taper of TRS instruments were immersed in saline at 37 ± 1 °C during cyclic fatigue testing. The instruments were tested with 60° angle of curvature and a 3-mm radius of curvature. The number of cycles to failure (NCF) was calculated and the length of the fractured segment was measured. Fractographic examination of the fractured surface was performed using a scanning electron microscope. The data were analyzed statistically using Kruskal-Wallis H test and Mann-Whitney U tests. Statistical significance was set at P < 0.05. XPS had a significantly greater NCF compared with the other instruments (P < 0.001). The topographic appearance of the fracture surfaces of tested instruments revealed ductile fracture of cyclic fatigue failure. XPS instruments exhibited greater cyclic fatigue resistance compared with the other tested instruments. XP-endo Shaper instruments could be used more safely in curved canals due to their higher fatigue resistance.

  17. Tunable Stoichiometry of BCxNy Thin Films Through Multitarget Pulsed Laser Deposition Monitored via In Situ Ellipsometry (Postprint)

    DTIC Science & Technology

    2014-02-05

    X - ray photoelectron spectroscopy (XPS), Raman spectroscopy , and atomic ...calculate thickness, n and k. X - ray photoelectron spectroscopy (XPS), Raman spectroscopy , and atomic force microscopy (AFM) were all performed on each of the... X - ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to measure and compare the composition of the films.6 In this paper,

  18. Reduced graphene oxide growth on 316L stainless steel for medical applications

    NASA Astrophysics Data System (ADS)

    Cardenas, L.; MacLeod, J.; Lipton-Duffin, J.; Seifu, D. G.; Popescu, F.; Siaj, M.; Mantovani, D.; Rosei, F.

    2014-07-01

    We report a new method for the growth of reduced graphene oxide (rGO) on the 316L alloy of stainless steel (SS) and its relevance for biomedical applications. We demonstrate that electrochemical etching increases the concentration of metallic species on the surface and enables the growth of rGO. This result is supported through a combination of Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), density functional theory (DFT) calculations and static water contact angle measurements. Raman spectroscopy identifies the G and D bands for oxidized species of graphene at 1595 cm-1 and 1350 cm-1, respectively, and gives an ID/IG ratio of 1.2, indicating a moderate degree of oxidation. XPS shows -OH and -COOH groups in the rGO stoichiometry and static contact angle measurements confirm the wettability of rGO. SEM and AFM measurements were performed on different substrates before and after coronene treatment to confirm rGO growth. Cell viability studies reveal that these rGO coatings do not have toxic effects on mammalian cells, making this material suitable for biomedical and biotechnological applications.

  19. Chemisorbed monolayers of corannulene penta-thioethers on gold.

    PubMed

    Angelova, Polina; Solel, Ephrath; Parvari, Galit; Turchanin, Andrey; Botoshansky, Mark; Gölzhäuser, Armin; Keinan, Ehud

    2013-02-19

    Penta(tert-butylthio)corannulene and penta(4-dimethylaminophenylthio)corannulene form highly stable monolayers on gold surfaces, as indicated by X-ray photoelectron spectroscopy (XPS). Formation of these homogeneous monolayers involves multivalent coordination of the five sulfur atoms to gold with the peripheral alkyl or aryl substituents pointing away from the surface. No dissociation of C-S bonds upon binding could be observed at room temperature. Yet, the XPS experiments reveal strong chemical bonding between the thioether groups and gold. Temperature-dependent XPS study shows that the thermal stability of the monolayers is higher than the typical stability of self-assembled monolayers (SAMs) of thiolates on gold.

  20. Application of surface analysis to solve problems of wear

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1981-01-01

    Results are presented for the use of surface analytical tools including field ion microscopy, Auger emission spectroscopy analysis (AES), cylindrical mirror Auger analysis and X-ray photoelectron spectroscopy (XPS). Data from the field ion microscope reveal adhesive transfer (wear) at the atomic level with the formation of surface compounds not found in the bulk, and AES reveals that this transfer will occur even in the presence of surface oxides. Both AES and XPS reveal that in abrasive wear with silicon carbide and diamond contacting the transition metals, the surface and the abrasive undergo a chemical or structural change which effects wear. With silicon carbide, silicon volatilizes leaving behind a pseudo-graphitic surface and the surface of diamond is observed to graphitize.

  1. Thickness Influence on In Vitro Biocompatibility of Titanium Nitride Thin Films Synthesized by Pulsed Laser Deposition

    PubMed Central

    Duta, Liviu; Stan, George E.; Popa, Adrian C.; Husanu, Marius A.; Moga, Sorin; Socol, Marcela; Zgura, Irina; Miculescu, Florin; Urzica, Iuliana; Popescu, Andrei C.; Mihailescu, Ion N.

    2016-01-01

    We report a study on the biocompatibility vs. thickness in the case of titanium nitride (TiN) films synthesized on 410 medical grade stainless steel substrates by pulsed laser deposition. The films were grown in a nitrogen atmosphere, and their in vitro cytotoxicity was assessed according to ISO 10993-5 [1]. Extensive physical-chemical analyses have been carried out on the deposited structures with various thicknesses in order to explain the differences in biological behavior: profilometry, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction and surface energy measurements. XPS revealed the presence of titanium oxynitride beside TiN in amounts that vary with the film thickness. The cytocompatibility of films seems to be influenced by their TiN surface content. The thinner films seem to be more suitable for medical applications, due to the combined high values of bonding strength and superior cytocompatibility. PMID:28787846

  2. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  3. Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni–CeO 2(111) catalysts: An in situ study of C–C and O–H bond scission

    DOE PAGES

    Liu, Zongyuan; Duchon, Tomas; Wang, Huanru; ...

    2016-03-31

    Ambient-Pressure X-ray Photoelectron Spectroscopy (AP-XPS) and Infrared Reflection Absorption Spectroscopy (AP-IRRAS) have been used to elucidate the active sites and mechanistic steps associated with the ethanol steam reforming reaction (ESR) over Ni–CeO 2(111) model catalysts. Our results reveal that surface layers of the ceria substrate are both highly reduced and hydroxylated under reaction conditions while the small supported Ni nanoparticles are present as Ni 0/NixC. A multifunctional, synergistic role is highlighted in which Ni, CeO x and the interface provide an ensemble effect in the active chemistry that leads to H 2. Ni 0 is the active phase leading tomore » both C–C and C–H bond cleavage in ethanol and it is also responsible for carbon accumulation. On the other hand, CeO x is important for the deprotonation of ethanol/water to ethoxy and OH intermediates. The active state of CeO x is a Ce 3+(OH) x compound that results from extensive reduction by ethanol and the efficient dissociation of water. Additionally, we gain an important insight into the stability and selectivity of the catalyst by its effective water dissociation, where the accumulation of surface carbon can be mitigated by the increased presence of surface OH groups. As a result, the co-existence and cooperative interplay of Ni 0 and Ce 3+(OH) x through a metal–support interaction facilitate oxygen transfer, activation of ethanol/water as well as the removal of coke.« less

  4. Study of the interaction of inorganic and organic compounds of cell culture medium with a Ti surface.

    PubMed

    Burgos-Asperilla, L; García-Alonso, M C; Escudero, M L; Alonso, C

    2010-02-01

    The interaction between Ti and each component of Dulbecco's modified Eagle's medium was studied in depth using different techniques, such as the measurement of the corrosion potential, electrochemical impedance spectroscopy and polarization curves. The characterization of metal surfaces was carried out by scanning electron microscopy and X-ray photoelectron spectroscopy (XPS). The adsorption process of each component was studied using the quartz crystal balance (QCM). The QCM and XPS results reveal that the adsorption kinetics for phosphate and calcium ions is slow. However, the bovine serum albumin (BSA) totally covers the Ti surface rapidly. Because the passive film (titanium oxide) has acidic hydroxyl groups, the calcium ions would have a bridging effect on the electrostatic adsorption of phosphate ions as well as that of BSA. The polarization curves reveal that the adsorbed glucose permits the ionic diffusion of the oxygen to the electrode, while the BSA and fetal bovine serum (FBS) adsorbed after 7 days of immersion act as a diffusive barrier. The impedance measurement and data fitting to the electrical equivalent circuit model show that the resistance of the proteins/TiO(2) interface, for Ti immersed in FBS, is higher than those obtained for BSA, due to the proteins present in the solution as well as the fact that the adsorbed proteins on the surface are greater.

  5. Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Primetzhofer, D.; Lu, J.; Hultman, L.

    2017-02-01

    We present the first measurements of x-ray photoelectron spectroscopy (XPS) core level binding energies (BE:s) for the widely-applicable group IVb-VIb polycrystalline transition metal nitrides (TMN's) TiN, VN, CrN, ZrN, NbN, MoN, HfN, TaN, and WN as well as AlN and SiN, which are common components in the TMN-based alloy systems. Nitride thin film samples were grown at 400 °C by reactive dc magnetron sputtering from elemental targets in Ar/N2 atmosphere. For XPS measurements, layers are either (i) Ar+ ion-etched to remove surface oxides resulting from the air exposure during sample transfer from the growth chamber into the XPS system, or (ii) in situ capped with a few nm thick Cr or W overlayers in the deposition system prior to air-exposure and loading into the XPS instrument. Film elemental composition and phase content is thoroughly characterized with time-of-flight elastic recoil detection analysis (ToF-E ERDA), Rutherford backscattering spectrometry (RBS), and x-ray diffraction. High energy resolution core level XPS spectra acquired with monochromatic Al Kα radiation on the ISO-calibrated instrument reveal that even mild etching conditions result in the formation of a nitrogen-deficient surface layer that substantially affects the extracted binding energy values. These spectra-modifying effects of Ar+ ion bombardment increase with increasing the metal atom mass due to an increasing nitrogen-to-metal sputter yield ratio. The superior quality of the XPS spectra obtained in a non-destructive way from capped TMN films is evident from that numerous metal peaks, including Ti 2p, V 2p, Zr 3d, and Hf 4f, exhibit pronounced satellite features, in agreement with previously published spectra from layers grown and analyzed in situ. In addition, the N/metal concentration ratios are found to be 25-90% higher than those obtained from the corresponding ion-etched surfaces, and in most cases agree very well with the RBS and ToF-E ERDA values. The N 1 s BE:s extracted from

  6. REVEAL: Software Documentation and Platform Migration

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Veibell, Victoir T.; Freudinger, Lawrence C.

    2008-01-01

    The Research Environment for Vehicle Embedded Analysis on Linux (REVEAL) is reconfigurable data acquisition software designed for network-distributed test and measurement applications. In development since 2001, it has been successfully demonstrated in support of a number of actual missions within NASA s Suborbital Science Program. Improvements to software configuration control were needed to properly support both an ongoing transition to operational status and continued evolution of REVEAL capabilities. For this reason the project described in this report targets REVEAL software source documentation and deployment of the software on a small set of hardware platforms different from what is currently used in the baseline system implementation. This report specifically describes the actions taken over a ten week period by two undergraduate student interns and serves as a final report for that internship. The topics discussed include: the documentation of REVEAL source code; the migration of REVEAL to other platforms; and an end-to-end field test that successfully validates the efforts.

  7. CO dissociation and CO hydrogenation on smooth and ion-bombarded Pd(1 1 1): SFG and XPS spectroscopy at mbar pressures

    NASA Astrophysics Data System (ADS)

    Rupprechter, G.; Kaichev, V. V.; Unterhalt, H.; Morkel, M.; Bukhtiyarov, V. I.

    2004-07-01

    The CO dissociation probability on transition metals is often invoked to explain the product distribution (selectivity) of catalytic CO hydrogenation. Along these lines, we have investigated CO adsorption and dissociation on smooth and ion-bombarded Pd(1 1 1) at pressures up to 1 mbar using vibrational sum frequency generation (SFG) and X-ray photoelectron spectroscopy (XPS). Under high pressure, CO adsorbate structures were observed that were identical to high-coverage structures in UHV. On ion-bombarded surfaces an additional species was detected which was attributed to CO bridge bonded to defect (low-coordinated) sites. On both surfaces, no indications of CO dissociation were found even after hours of 0.1 mbar CO exposure. However, exposing CO/H 2 mixtures to ion-bombarded Pd(1 1 1) produced carbonaceous deposits suggesting CH xO species as precursors for CO bond cleavage and that the formation of CH xO is facilitated by surface defects. The relevance of the observations for CO hydrogenation on Pd catalysts is discussed.

  8. Electronic structure and phase separation of superconducting and nonsuperconducting KxFe2-ySe2 revealed by x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Oiwake, M.; Ootsuki, D.; Noji, T.; Hatakeda, T.; Koike, Y.; Horio, M.; Fujimori, A.; Saini, N. L.; Mizokawa, T.

    2013-12-01

    We have investigated the electronic structure of superconducting (SC) and nonsuperconducting (non-SC) KxFe2-ySe2 using x-ray photoemission spectroscopy (XPS). The spectral shape of the Fe 2p XPS is found to depend on the amount of Fe vacancies. The Fe 2p3/2 peak of the SC and non-SC Fe-rich samples is accompanied by a shoulder structure on the lower binding energy side, which can be attributed to the metallic phase embedded in the Fe2+ insulating phase. The absence of the shoulder structure in the non-SC Fe-poor sample allows us to analyze the Fe 2p spectra using a FeSe4 cluster model. The Fe 3d-Se 4p charge-transfer energy of the Fe2+ insulating phase is found to be ˜2.3 eV which is smaller than the Fe 3d-Fe 3d Coulomb interaction of ˜3.5 eV. This indicates that the Fe2+ insulating state is the charge-transfer type in the Zaanen-Sawatzky-Allen scheme. We also find a substantial change in the valence-band XPS as a function of Fe content and temperature. The metallic state at the Fermi level is seen in the SC and non-SC Fe-rich samples and tends to be enhanced with cooling in the SC sample.

  9. Wettability and XPS analyses of nickel-phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    NASA Astrophysics Data System (ADS)

    Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K. L.; Morelle, J. M.; Etcheberry, A.; Chalumeau, L.

    2013-06-01

    Electroless nickel-high-phosphorus Ni-P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni-P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni-P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni-P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni-P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni-P surface preparation has been established. The sessile drop method can be

  10. Combined far infrared RAIRS and XPS studies of TiCl 4 adsorption and reaction on Mg films

    NASA Astrophysics Data System (ADS)

    Pilling, M. J.; Fonseca, A. Amieiro; Cousins, M. J.; Waugh, K. C.; Surman, M.; Gardner, P.

    2005-08-01

    In recent years there has been an increase in interest in the study of model Ziegler-Natta catalysts used for the polymerisation of ethene and propene. Particular attention has focused on catalysts consisting of TiCl 4 on activated MgCl 2 accompanied by a co-catalyst, usually triethylaluminium (AlEt 3). As part of a wider project on the characterisation of model Ziegler-Natta catalysts we have investigated the interaction of TiCl 4 with metallic Mg films grown on a Au surface using X-ray photoelectron spectroscopy (XPS) and far infrared reflection absorption infrared spectroscopy. Somewhat surprisingly, the infrared spectra show little variation as a function of exposure to TiCl 4. A very broad asymmetric vibrational band grows in with maximum intensity at 382 cm -1. Three prominent low frequency shoulders are observed at approximately 360, 320, and 260 cm -1. For monolayer coverages of Mg the main band at 382 cm -1 is narrower, less asymmetric and accompanied by a prominent shoulder at 398 cm -1, which increases with increasing exposure to TiCl 4. TiCl 4 exposure in the presence of 5 × 10 -8 Torr of ethyl benzoate results in a change in line shape with low frequency broadening and a small shift in the frequency of the band. These spectra are discussed in the light of the possible constituent species making up the surface layer.

  11. Measure for Measure: What Combining Diverse Measures Reveals about Children's Understanding of the Equal Sign as An Indicator of Mathematical Equality

    ERIC Educational Resources Information Center

    Matthews, Percival; Rittle-Johnson, Bethany; McEldoon, Katherine; Taylor, Roger

    2012-01-01

    Knowledge of the equal sign as an indicator of mathematical equality is foundational to children's mathematical development and serves as a key link between arithmetic and algebra. The current findings reaffirmed a past finding that diverse items can be integrated onto a single scale, revealed the wide variability in children's knowledge of the…

  12. Reference binding energies of transition metal carbides by core-level x-ray photoelectron spectroscopy free from Ar+ etching artefacts

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Primetzhofer, D.; Hultman, L.

    2018-04-01

    We report x-ray photoelectron spectroscopy (XPS) core level binding energies (BE's) for the widely-applicable groups IVb-VIb transition metal carbides (TMCs) TiC, VC, CrC, ZrC, NbC, MoC, HfC, TaC, and WC. Thin film samples are grown in the same deposition system, by dc magnetron co-sputtering from graphite and respective elemental metal targets in Ar atmosphere. To remove surface contaminations resulting from exposure to air during sample transfer from the growth chamber into the XPS system, layers are either (i) Ar+ ion-etched or (ii) UHV-annealed in situ prior to XPS analyses. High resolution XPS spectra reveal that even gentle etching affects the shape of core level signals, as well as BE values, which are systematically offset by 0.2-0.5 eV towards lower BE. These destructive effects of Ar+ ion etch become more pronounced with increasing the metal atom mass due to an increasing carbon-to-metal sputter yield ratio. Systematic analysis reveals that for each row in the periodic table (3d, 4d, and 5d) C 1s BE increases from left to right indicative of a decreased charge transfer from TM to C atoms, hence bond weakening. Moreover, C 1s BE decreases linearly with increasing carbide/metal melting point ratio. Spectra reported here, acquired from a consistent set of samples in the same instrument, should serve as a reference for true deconvolution of complex XPS cases, including multinary carbides, nitrides, and carbonitrides.

  13. Scanning electron and atomic force microscopy, and raman and x-ray photoelectron spectroscopy characterization of near-isogenic soft and hard wheat kernels and corresponding flours

    USDA-ARS?s Scientific Manuscript database

    Atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) are used to investigate vitreous (hard) and non-vitreous (soft) wheat kernels and their corresponding wheat flours. AFM data reveal two different microstructures. The vitreous kernel reveals a granular text...

  14. Effects of rare earth doping on multi-core iron oxide nanoparticles properties

    NASA Astrophysics Data System (ADS)

    Petran, Anca; Radu, Teodora; Borodi, Gheorghe; Nan, Alexandrina; Suciu, Maria; Turcu, Rodica

    2018-01-01

    New multi-core iron oxide magnetic nanoparticles doped with rare earth metals (Gd, Eu) were obtained by a one step synthesis procedure using a solvothermal method for potential biomedical applications. The obtained clusters were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray microanalysis (EDX), X-ray photoelectron spectroscopy (XPS) and magnetization measurements. They possess high colloidal stability, a saturation magnetization of up to 52 emu/g, and nearly spherical shape. The presence of rare earth ions in the obtained samples was confirmed by EDX and XPS. XRD analysis proved the homogeneous distribution of the trivalent rare earth ions in the inverse-spinel structure of magnetite and the increase of crystal strain upon doping the samples. XPS study reveals the valence state and the cation distribution on the octahedral and tetrahedral sites of the analysed samples. The observed shift of the XPS valence band spectra maximum in the direction of higher binding energies after rare earth doping, as well as theoretical valence band calculations prove the presence of Gd and Eu ions in octahedral sites. The blood protein adsorption ability of the obtained samples surface, the most important factor of the interaction between biomaterials and body fluids, was assessed by interaction with bovine serum albumin (BSA). The rare earth doped clusters surface show higher afinity for binding BSA. In vitro cytotoxicity test results for the studied samples showed no cytotoxicity in low and medium doses, establishing a potential perspective for rare earth doped MNC to facilitate multiple therapies in a single formulation for cancer theranostics.

  15. The effects of surface pretreatment and nitrogen tetroxide purification on the corrosion rate of Type 304L stainless steel

    NASA Technical Reports Server (NTRS)

    Blue, G. D.; Moran, C. M.

    1985-01-01

    Corrosion rates of 304L stainless steel coupons in MON-1 oxidizer have been measured as a function of cleaning procedures employed, surface layer positions, propellant impurity levels, and short-term exposure durations (14 to 90 days). Of special interest was propellant contamination by buildup of soluble iron, which may cause flow decay. Surface treatments employed were combinations of cleaning, pickling, and passivation procedures. Propellants used were MIL-SPEC MON-1 and several types of purified NTO (i.e., low water, low chloride) which may, at a later time, be specified as spacecraft grade. Pretest coupon surface analysis by X-ray photoelectron spectroscopy (XPS-ESCA) has revealed important differences, for the different cleaning procedures, in the make-up of the surface layer, both in composition and state of chemical combination of the elements involved. Comparisons will be made of XPS/ESCA data, for different cleaning procedures, for specimens before and after propellant exposure.

  16. Adsorption behavior of glycidoxypropyl-trimethoxy-silane on titanium alloy Ti-6.5Al-1Mo-1V-2Zr

    NASA Astrophysics Data System (ADS)

    Liu, Jian-hua; Zhan, Zhong-wei; Yu, Mei; Li, Song-mei

    2013-01-01

    The adsorption behavior of glycidoxypropyl-trimethoxy-silane (GTMS) on titanium alloy Ti-6.5Al-1Mo-1V-2Zr was investigated by using X-ray photoelectron spectroscopy (XPS), Tafel polarization test, and electrochemical impedance spectroscopy (EIS). From the XPS results, it was found that the silane coverage on the titanium surface generally increased with GTMS concentration, with a slight decrease at concentration of 0.1%. Based on the relationship between isoelectronic point (IEP) of titanium surface and the pH values of silane solutions, adsorption mechanisms at different concentrations were proposed. The surface coverage data of GTMS on titanium surface was also derived from electrochemical measurements. By linear fitting the coverage data, it revealed that the adsorption of GTMS on the titanium alloy surface at 30 °C was of a physisorption-based mechanism, and obeyed Langmuir adsorption isotherm. The adsorption equilibrium constant (Kads) and free energy of adsorption process (ΔGads) were calculated to elaborate the mechanism of GTMS adsorption.

  17. Electron-beam-induced post-grafting polymerization of acrylic acid onto the surface of Kevlar fibers

    NASA Astrophysics Data System (ADS)

    Xu, Lu; Hu, Jiangtao; Ma, Hongjuan; Wu, Guozhong

    2018-04-01

    The surface of Kevlar fibers was successfully modified by electron beam (EB)-induced post-grafting of acrylic acid (AA). The generation of radicals in the fibers was confirmed by electron spin resonance (ESR) measurements, and the concentration of radicals was shown to increase as the absorbed dose increased, but decrease with increasing temperature. The influence of the synthesis conditions on the degree of grafting was also investigated. The surface microstructure and chemical composition of the modified Kevlar fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed that the surface of the grafted fibers was rougher than those of the pristine and irradiated fibers. XPS analysis confirmed an increase in C(O)OH groups on the surface of the Kevlar fibers, suggesting successful grafting of AA. These results indicate that EB-induced post-grafting polymerization is effective for modifying the surface properties of Kevlar fibers.

  18. Surface passivation and aging of InGaAs/InP heterojunction phototransistors

    NASA Astrophysics Data System (ADS)

    Park, Min-Su; Razaei, Mohsen; Barnhart, Katie; Tan, Chee Leong; Mohseni, Hooman

    2017-06-01

    We report the effect of different surface treatment and passivation techniques on the stability of InGaAs/InP heterojunction phototransistors (HPTs). An In0.53Ga0.47As surface passivated with aqueous ammonium sulfide ((NH4)2S), aluminum oxide (Al2O3) grown by atomic layer deposition (ALD), and their combination is evaluated by using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). All samples were kept in the air ambient, and their performances were periodically measured to investigate their long-term stability. Raman spectroscopy revealed that the peak intensity of the GaAs-like longitudinal optical phonon of all passivated samples is decreased compared with that of the control sample. This is attributable to the diminution of the carriers near the passivated surfaces, which was proven by extracted surface potential (Vs). The Vs of all passivated samples was decreased to less than half of that for the control sample. XPS evaluation of As3d spectra showed that arsenic oxides (As2O3 and As2O5) on the surfaces of the samples can be removed by passivation. However, both Raman and XPS spectra show that the (NH4)2S passivated sample reverts back over time and will resemble the untreated control sample. When capped with ALD-grown Al2O3, passivated samples irrespective of the pretreatment show no degradation over the measured time of 4 weeks. Similar conclusions are made from our experimental measurement of the performance of differently passivated HPTs. The ALD-grown Al2O3 passivated devices show an improved optical gain at low optical powers and long-term stability.

  19. The relationship between the surface composition and electrical properties of corrosion films formed on carbon steel in alkaline sour medium: an XPS and EIS study.

    PubMed

    Galicia, Policarpo; Batina, Nikola; González, Ignacio

    2006-07-27

    This work studies the evolution of 1018 carbon steel surfaces during 3-15 day immersion in alkaline sour medium 0.1 M (NH4)2S and 10 ppm CN(-) as (NaCN). During this period of time, surfaces were jointly characterized by electrochemical techniques in situ (electrochemical impedance spectroscopy, EIS) and spectroscopic techniques ex situ (X-ray photoelectron spectroscopy, XPS). The results obtained by these techniques allowed for a description of electrical and chemical properties of the films of corrosion products formed at the 1018 steel surface. There is an interconversion cycle of chemical species that form films of corrosion products whose conversion reactions favor two different types of diffusions inside the films: a chemical diffusion of iron cations and a typical diffusion of atomic hydrogen. These phenomena jointly control the passivity of the interface attacked by the corrosive medium.

  20. Native oxides formation and surface wettability of epitaxial III-V materials: The case of InP and GaAs

    NASA Astrophysics Data System (ADS)

    Gocalinska, A.; Rubini, S.; Pelucchi, E.

    2016-10-01

    The time dependent transition from hydrophobic to hydrophilic states of the metalorganic vapour phase epitaxy (MOVPE) grown InP, GaAs and InAs is systematically documented by contact angle measurements. Natural oxides forming on the surfaces of air-exposed materials, as well as the results of some typical wet chemical process to remove those oxides, were studied by X-ray photoemission spectroscopy (XPS), revealing, surprisingly, a fundamental lack of strong correlations between the surface oxide composition and the reported systematic changes in hydrophobicity.

  1. A near ambient pressure XPS study of subnanometer silver clusters on Al 2O 3 and TiO 2 ultrathin film supports

    DOE PAGES

    Mao, Bao -Hua; Chang, Rui; Shi, Lei; ...

    2014-10-29

    Here, we have investigated model systems of silver clusters with different sizes (3 and 15 atoms) deposited on alumina and titania supports using ambient pressure X-ray photoelectron spectroscopy. The electronic structures of silver clusters and support materials are studied upon exposure to various atmospheres (ultrahigh vacuum, O 2 and CO) at different temperatures. Compared to bulk silver, the binding energies of silver clusters are about 0.55 eV higher on TiO 2 and 0.95 eV higher on Al 2O 3 due to the final state effect and the interaction with supports. No clear size effect of the silver XPS peak ismore » observed on different silver clusters among these samples. Silver clusters on titania show better stability against sintering. Al 2p and Ti 2p core level peak positions of the alumina and titania support surfaces change upon exposure to oxygen while the Ag 3d core level position remains unchanged. We discuss the origin of these core level shifts and their implications for catalytic properties of Ag clusters.« less

  2. Surface modification of malachite with ethanediamine and its effect on sulfidization flotation

    NASA Astrophysics Data System (ADS)

    Feng, Qicheng; Zhao, Wenjuan; Wen, Shuming

    2018-04-01

    Ethanediamine was used to modify the mineral surface of malachite to improve its sulfidization and flotation behavior. The activation mechanism was investigated by adsorption experiments, X-ray photoelectron spectroscopy (XPS) analysis, and zeta potential measurements. Microflotation experiments showed that the flotation recovery of malachite was enhanced after the pretreatment of the mineral particles with ethanediamine prior to the addition of Na2S. Adsorption tests revealed that numerous sulfide ion species in the pulp solution were transferred onto the mineral surface through the formation of more copper sulfide species. This finding was confirmed by the results of the XPS measurements. Ethanediamine modification not only increased the contents of copper sulfide species on the malachite surface but also enhanced the reactivity of the sulfidization products. During sulfidization, Cu(II) species on the mineral surface were reduced into Cu(I) species, and the percentages of S22- and Sn2- relative to the total S increased after modification, resulting in increased surface hydrophobicity. The results of zeta potential measurements showed that the ethanediamine-modified mineral surface adsorbed with more sulfide ion species was advantageous to the attachment of xanthate species, thereby improving malachite floatability. The proposed ethanediamine modification followed by sulfidization xanthate flotation exhibits potential for industrial application.

  3. Difference in charge transport properties of Ni-Nb thin films with native and artificial oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trifonov, A. S., E-mail: trifonov.artem@phys.msu.ru; Physics Faculty, Lomonosov Moscow State University, Moscow 119991; Lubenchenko, A. V.

    2015-03-28

    Here, we report on the properties of native and artificial oxide amorphous thin film on a surface of an amorphous Ni-Nb sample. Careful measurements of local current-voltage characteristics of the system Ni-Nb / NiNb oxide/Pt, were carried out in contact mode of an atomic force microscope. Native oxide showed n-type conductivity, while in the artificial one exhibited p-type one. The shape of current-voltage characteristic curves is unique in both cases and no analogical behavior is found in the literature. X-ray photoelectron spectroscopy (XPS) measurements were used to detect chemical composition of the oxide films and the oxidation state of themore » alloy components. Detailed analysis of the XPS data revealed that the structure of natural Ni-Nb oxide film consists of Ni-NbO{sub x} top layer and nickel enriched bottom layer which provides n-type conductivity. In contrast, in the artificial oxide film Nb is oxidized completely to Nb{sub 2}O{sub 5}, Ni atoms migrate into bulk Ni-Nb matrix. Electron depletion layer is formed at the Ni-Nb/Nb{sub 2}O{sub 5} interface providing p-type conductivity.« less

  4. SiGe derivatization by spontaneous reduction of aryl diazonium salts

    NASA Astrophysics Data System (ADS)

    Girard, A.; Geneste, F.; Coulon, N.; Cardinaud, C.; Mohammed-Brahim, T.

    2013-10-01

    Germanium semiconductors have interesting properties for FET-based biosensor applications since they possess high surface roughness allowing the immobilization of a high amount of receptors on a small surface area. Since SiGe combined low cost of Si and intrinsic properties of Ge with high mobility carriers, we focused the study on this particularly interesting material. The comparison of the efficiency of a functionalization process involving the spontaneous reduction of diazonium salts is studied on Si(1 0 0), SiGe and Ge semiconductors. XPS analysis of the functionalized surfaces reveals the presence of a covalent grafted layer on all the substrates that was confirmed by AFM. Interestingly, the modified Ge derivatives have still higher surface roughness after derivatization. To support the estimated thickness by XPS, a step measurement of the organic layers is done by AFM or by profilometer technique after a O2 plasma etching of the functionalized layer. This original method is well-adapted to measure the thickness of thin organic films on rough substrates such as germanium. The analyses show a higher chemical grafting on SiGe substrates compared with Si and Ge semiconductors.

  5. Characterization of tetraethylene glycol passivated iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Nunes, Eloiza da Silva; Viali, Wesley Renato; da Silva, Sebastião William; Coaquira, José Antonio Huamaní; Garg, Vijayendra Kumar; de Oliveira, Aderbal Carlos; Morais, Paulo César; Jafelicci Júnior, Miguel

    2014-10-01

    The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90-120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe3O4) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron-iron oxide were 145 emu g-1 and 131 emu g-1, respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy.

  6. Revealing energy level structure of individual quantum dots by tunneling rate measured by single-electron sensitive electrostatic force spectroscopy.

    PubMed

    Roy-Gobeil, Antoine; Miyahara, Yoichi; Grutter, Peter

    2015-04-08

    We present theoretical and experimental studies of the effect of the density of states of a quantum dot (QD) on the rate of single-electron tunneling that can be directly measured by electrostatic force microscopy (e-EFM) experiments. In e-EFM, the motion of a biased atomic force microscope cantilever tip modulates the charge state of a QD in the Coulomb blockade regime. The charge dynamics of the dot, which is detected through its back-action on the capacitavely coupled cantilever, depends on the tunneling rate of the QD to a back-electrode. The density of states of the QD can therefore be measured through its effect on the energy dependence of tunneling rate. We present experimental data on individual 5 nm colloidal gold nanoparticles that exhibit a near continuous density of state at 77 K. In contrast, our analysis of already published data on self-assembled InAs QDs at 4 K clearly reveals discrete degenerate energy levels.

  7. Surface XPS characterization of NiTi shape memory alloy after advanced oxidation processes in UV/H 2O 2 photocatalytic system

    NASA Astrophysics Data System (ADS)

    Wang, R. M.; Chu, C. L.; Hu, T.; Dong, Y. S.; Guo, C.; Sheng, X. B.; Lin, P. H.; Chung, C. Y.; Chu, P. K.

    2007-08-01

    Surface structure of NiTi shape memory alloy (SMA) was modified by advanced oxidation processes (AOP) in an ultraviolet (UV)/H 2O 2 photocatalytic system, and then systematically characterized with x-ray photoelectron spectroscopy (XPS). It is found that the AOP in UV/H 2O 2 photocatalytic system leads to formation of titanium oxides film on NiTi substrate. Depth profiles of O, Ni and Ti show such a film possesses a graded interface structure to NiTi substrate and there is no intermediate Ni-rich layer like that produced in conventional high temperature oxidation. Except TiO 2 phase, some titanium suboxides (TiO, Ti 2O 3) may also exist in the titanium oxides film. Oxygen mainly presents in metal oxides and some chemisorbed water and OH - are found in titanium oxides film. Ni nearly reaches zero on the upper surface and relatively depleted in the whole titanium oxides film. The work indicates the AOP in UV/H 2O 2 photocatalytic system is a promising way to favor the widespread application of biomedical NiTi SMA by improving its biocompatibility.

  8. Surface study of graphene ink for fine solid lines printed on BOPP Substrate in micro-flexographic printing using XPS analysis technique

    NASA Astrophysics Data System (ADS)

    Hassan, S.; Yusof, M. S.; Embong, Z.; Ding, S.; Maksud, M. I.

    2018-01-01

    Micro-flexographic printing is a combination of flexography and micro-contact printing technique. It is a new printing method for fine solid lines printing purpose. Graphene material has been used as depositing agent or printing ink in other printing technique like inkjet printing. This graphene ink is printed on biaxially oriented polypropylene (BOPP) by using Micro-flexographic printing technique. The choose of graphene as a printing ink is due to its wide application in producing electronic and micro-electronic devices such as Radio-frequency identification (RFID) and printed circuit board. The graphene printed on the surface of BOPP substrate was analyzed using X-Ray Photoelectron Spectroscopy (XPS). The positions for each synthetic component in the narrow scan are referred to the electron binding energy (eV). This research is focused on two narrow scan regions which are C 1s and O 1s. Further discussion of the narrow scan spectrum will be explained in detail. From the narrow scan analysis, it is proposed that from the surface adhesive properties of graphene, it is suitable as an alternative printing ink medium for Micro-flexographic printing technique in printing multiple fine solid lines at micro to nano scale feature.

  9. Near-ambient pressure XPS of high-temperature surface chemistry in Sr2Co2O5 thin films

    DOE PAGES

    Hong, Wesley T.; Stoerzinger, Kelsey; Crumlin, Ethan J.; ...

    2016-02-11

    Transition metal perovskite oxides are promising electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells, but a lack of fundamental understanding of oxide surfaces impedes the rational design of novel catalysts with improved device efficiencies. In particular, understanding the surface chemistry of oxides is essential for controlling both catalytic activity and long-term stability. Thus, elucidating the physical nature of species on perovskite surfaces and their catalytic enhancement would generate new insights in developing oxide electrocatalysts. In this article, we perform near-ambient pressure XPS of model brownmillerite Sr 2Co 2O 5 (SCO) epitaxial thin films with different crystallographic orientations. Detailedmore » analysis of the Co 2p spectra suggests that the films lose oxygen as a function of temperature. Moreover, deconvolution of the O 1s spectra shows distinct behavior for (114)-oriented SCO films compared to (001)-oriented SCO films, where an additional bulk oxygen species is observed. These findings indicate a change to a perovskite-like oxygen chemistry that occurs more easily in (114) SCO than (001) SCO, likely due to the orientation of oxygen vacancy channels out-of-plane with respect to the film surface. This difference in surface chemistry is responsible for the anisotropy of the oxygen surface exchange coefficient of SCO and may contribute to the enhanced ORR kinetics of La 0.8Sr 0.2CoO 3-δ thin films by SCO surface particles observed previously.« less

  10. Lyin’ Eyes: Ocular-motor Measures of Reading Reveal Deception

    PubMed Central

    Cook, Anne E.; Hacker, Douglas J.; Webb, Andrea K.; Osher, Dahvyn; Kristjansson, Sean; Woltz, Dan J.; Kircher, John C.

    2013-01-01

    Our goal was to evaluate an alternative to current methods for detecting deception in security screening contexts. We evaluated a new cognitive-based test of deception that measured participants’ ocular-motor responses (pupil responses and reading behaviors) while they read and responded to statements on a computerized questionnaire. In Experiment 1, participants from a university community were randomly assigned to either a “guilty” group that committed one of two mock crimes or an “innocent” group that only learned about the crime. Participants then reported for testing, where they completed the computer-administered questionnaire that addressed their possible involvement in the crimes. Experiment 2 also manipulated participants’ incentive to pass the test and difficulty of statements on the test. In both experiments, guilty participants had increased pupil responses to statements answered deceptively; however, they spent less time fixating on, reading, and re-reading those statements than statements answered truthfully. These ocular-motor measures were optimally weighted in a discrimination function that correctly classified 85% of participants as either guilty or innocent. Findings from Experiment 2 indicated that group discrimination was improved with greater incentives to pass the test and the use of statements with simple syntax. The present findings suggest that two cognitive processes are involved in deception -- vigilance and strategy -- and that these processes are reflected in different ocular-motor measures. The ocular-motor test reported here represents a new approach to detecting deception that may fill an important need in security screening contexts. PMID:22545928

  11. A room temperature ethanol sensor made from p-type Sb-doped SnO2 nanowires.

    PubMed

    Wu, Jyh Ming

    2010-06-11

    A p-type ethanol sensor with a response time of approximately 8.3 s at room temperature was produced by SnO(2):Sb nanowires. The electrical properties of p-type SnO(2) nanowires are stable with a hole concentration of 1.544 x 10(17) cm(-3) and a field-effect mobility of 22 cm(2) V(-2) S(-1). X-ray photoelectron spectroscopy (XPS) and Hall measurement revealed that as-synthesized nanowires exhibit p-type behavior. A comprehensive investigation of the p-type sensing mechanism is reported.

  12. Characterization and measurement of polymer wear

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Aron, P. R.

    1984-01-01

    Analytical tools which characterize the polymer wear process are discussed. The devices discussed include: visual observation of polymer wear with SEM, the quantification with surface profilometry and ellipsometry, to study the chemistry with AES, XPS and SIMS, to establish interfacial polymer orientation and accordingly bonding with QUARTIR, polymer state with Raman spectroscopy and stresses that develop in polymer films using a X-ray double crystal camera technique.

  13. REVEAL: Software Documentation and Platform Migration

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Veibell, Victoir T.

    2011-01-01

    The Research Environment for Vehicle Embedded Analysis on Linux (REVEAL) is reconfigurable data acquisition software designed for network-distributed test and measurement applications. In development since 2001, it has been successfully demonstrated in support of a number of actual missions within NASA's Suborbital Science Program. Improvements to software configuration control were needed to properly support both an ongoing transition to operational status and continued evolution of REVEAL capabilities. For this reason the project described in this report targets REVEAL software source documentation and deployment of the software on a small set of hardware platforms different from what is currently used in the baseline system implementation. This presentation specifically describes the actions taken over a ten week period by two undergraduate student interns and serves as an overview of the content of the final report for that internship.

  14. Enhancing electrochemical water-splitting kinetics by polarization-driven formation of near-surface iron(0): an in situ XPS study on perovskite-type electrodes.

    PubMed

    Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Fleig, Jürgen; Klötzer, Bernhard

    2015-02-23

    In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6 Sr0.4 FeO3-δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe(0) on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  15. Application of surface analytical methods in thin film analysis

    NASA Astrophysics Data System (ADS)

    Wen, Xingu

    Self-assembly and the sol-gel process are two promising methods for the preparation of novel materials and thin films. In this research, these two methods were utilized to prepare two types of thin films: self-assembled monolayers of peptides on gold and SiO2 sol-gel thin films modified with Ru(II) complexes. The properties of the resulting thin films were investigated by several analytical techniques in order to explore their potential applications in biomaterials, chemical sensors, nonlinear optics and catalysis. Among the analytical techniques employed in the study, surface analytical techniques, such as X-ray photoelectron spectroscopy (XPS) and grazing angle reflection absorption Fourier transform infrared spectroscopy (RA-FTIR), are particularly useful in providing information regarding the compositions and structures of the thin films. In the preparation of peptide thin films, monodisperse peptides were self-assembled on gold substrate via the N-terminus-coupled lipoic acid. The film compositions were investigated by XPS and agreed well with the theoretical values. XPS results also revealed that the surface coverage of the self-assembled films was significantly larger than that of the physisorbed films and that the chemisorption between the peptides and gold surface was stable in solvent. Studies by angle dependent XPS (ADXPS) and grazing angle RA-FTIR indicated that the peptides were on average oriented at a small angle from the surface normal. By using a model of orientation distribution function, both the peptide tilt angle and film thickness can be well calculated. Ru(II) complex doped SiO2 sol-gel thin films were prepared by low temperature sol-gel process. The ability of XPS coupled with Ar + ion sputtering to provide both chemical and compositional depth profile information of these sol-gel films was evaluated. This technique, together with UV-VIS and electrochemical measurements, was used to investigate the stability of Ru complexes in the composite

  16. A study of the UV and VUV degradation of FEP

    NASA Technical Reports Server (NTRS)

    George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.

    1993-01-01

    UV and VUV degradation of fluorinated ethylene propylene (FEP) copolymer was studied using electron spin resonance (ESR) spectroscopy, x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The ESR study revealed the formation of a terminal polymer radical. The stability of this radical was investigated under different environments. An XPS study of FEP film exposed to VUV and atomic oxygen showed that oxidation takes place on the polymer surface. The study revealed also that the percentage of CF2 in the polymer surface decreased with exposure time and the percentage of CF, CF3, and carbon attached to oxygen increased. SEM micrographs of FEP film exposed to VUV and atomic oxygen identified a rough surface with undulations similar to sand dunes.

  17. The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studied in situ by synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Saveleva, Viktoriia A.; Daletou, Maria K.; Savinova, Elena R.

    2017-01-01

    Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt3Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide.

  18. Demonstration of an ultrasensitive refractive-index plasmonic sensor by enabling its quadrupole resonance in phase interrogation.

    PubMed

    Lee, Hsin-Cheng; Li, Chung-Tien; Chen, How-Foo; Yen, Ta-Jen

    2015-11-15

    We present an ultrasensitive plasmonic sensing system by introducing a nanostructured X-shaped plasmonic sensor (XPS) and measuring its localized optical properties in phase interrogation. Our tailored XPS exhibits two major resonant modes of a low-order dipole and a high-order quadrupole, between which the quadrupole resonance allows an ultrahigh sensitivity, due to its higher quality factor. Furthermore, we design an in-house common-path phase-interrogation system, in contrast to conventional wavelength-interrogation methods, to achieve greater sensing capability. The experimental measurement shows that the sensing resolution of the XPS reaches 1.15×10(-6) RIU, not only two orders of magnitude greater than the result of the controlled extinction measurement (i.e., 9.90×10(-5) RIU), but also superior than current reported plasmonic sensors.

  19. High-frequency measurements reveal spatial and temporal patterns of dissolved organic matter in an urban water conveyance.

    PubMed

    Mihalevich, Bryce A; Horsburgh, Jeffery S; Melcher, Anthony A

    2017-10-30

    Stormwater runoff in urban areas can contribute high concentrations of dissolved organic matter (DOM) to receiving waters, potentially causing impairment to the aquatic ecosystem of urban streams and downstream water bodies. Compositional changes in DOM due to storm events in forested, agricultural, and urban landscapes have been well studied, but in situ sensors have not been widely applied to monitor stormwater contributions in urbanized areas, leaving the spatial and temporal characteristics of DOM within these systems poorly understood. We deployed fluorescent DOM (FDOM) sensors at upstream and downstream locations within a study reach to characterize the spatial and temporal changes in DOM quantity and sources within an urban water conveyance that receives stormwater runoff. Baseflow FDOM decreased over the summer season as seasonal flows upstream transported less DOM. FDOM fluctuated diurnally, the amplitude of which also declined as the summer season progressed. During storms, FDOM concentrations were rapidly elevated to values orders of magnitude greater than baseflow measurements, with greater concentrations at the downstream monitoring site, revealing high contributions from stormwater outfalls between the two locations. Observations from custom, in situ fluorometers resembled results obtained using laboratory methods for identifying DOM source material and indicated that DOM transitioned to a more microbially derived composition as the summer season progressed, while stormwater contributions contributed DOM from terrestrial sources. Deployment of a mobile sensing platform during varying flow conditions captured spatial changes in DOM concentration and composition and revealed contributions of DOM from outfalls during stormflows that would have otherwise been unobserved.

  20. In-plane electronic anisotropy of underdoped '122' Fe-arsenide superconductors revealed by measurements of detwinned single crystals

    NASA Astrophysics Data System (ADS)

    Fisher, I. R.; Degiorgi, L.; Shen, Z. X.

    2011-12-01

    The parent phases of the Fe-arsenide superconductors harbor an antiferromagnetic ground state. Significantly, the Néel transition is either preceded or accompanied by a structural transition that breaks the four-fold symmetry of the high-temperature lattice. Borrowing language from the field of soft condensed matter physics, this broken discrete rotational symmetry is widely referred to as an Ising nematic phase transition. Understanding the origin of this effect is a key component of a complete theoretical description of the occurrence of superconductivity in this family of compounds, motivating both theoretical and experimental investigation of the nematic transition and the associated in-plane anisotropy. Here we review recent experimental progress in determining the intrinsic in-plane electronic anisotropy as revealed by resistivity, reflectivity and angle-resolved photoemission spectroscopy measurements of detwinned single crystals of underdoped Fe-arsenide superconductors in the '122' family of compounds.

  1. Location of Varying Hydrophobicity Zinc(II) Phthalocyanine-Type Photosensitizers in Methoxy Poly(ethylene oxide) and Poly(l-lactide) Block Copolymer Micelles Using 1H NMR and XPS Techniques.

    PubMed

    Lamch, Łukasz; Tylus, Włodzimierz; Jewgiński, Michał; Latajka, Rafał; Wilk, Kazimiera A

    2016-12-15

    Hydrophobic zinc(II) phthalocyanine-type derivatives, solubilized in polymeric micelles (PMs), provide a befitting group of so-called nanophotosensitizers, suitable for a variety of photodynamic therapy (PDT) protocols. The factors that influence the success of such products in PDT are the location of the active cargo in the PMs and the nanocarrier-enhanced ability to safely interact with biological systems and fulfill their therapeutic functions. Therefore, the aim of this work was to determine the solubilization loci of three phthalocyanines of varying hydrophobicity, i.e., zinc(II) phthalocyanine (ZnPc), along with its tetrasulfonic acid (ZnPc-sulfo 4 ) and perfluorinated (ZnPcF 16 ) derivatives, loaded in polymeric micelles of methoxy poly(ethylene oxide)-b-poly(l-lactide) (mPEG-b-PLLA), by means of 1 H nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) combined with ion sputtering. Furthermore, the microenvironment influence upon the chemical and physical status of the solubilized cargo in PMs, expressed by photobleaching and reactive oxygen species (ROS) generation comparing to the same properties of native cargoes in solution, was also evaluated and discussed in regards to the probing location data. The studied phthalocyanine-loaded PMs exhibited good physical stability, high drug-loading efficiency, and a size of less than ca. 150 nm with low polydispersity indices. The formation of polymeric micelles and the solubilization locus were investigated by 1 H NMR and XPS. ZnPc localized within the PM core, whereas both ZnPcF 16 and ZnPc-sulfo 4 - in the corona of PMs. We proved that the cargo locus is crucial for the photochemical properties of the studied phthalocyanines; the increase in photostability and ability to generate ROS in micellar solution compared to free photosensitizer was most significant for the photosensitizer in the PM core. Our results indicate the role of the cargo location in the PM microenvironment and demonstrate

  2. Structural, optical and electronic properties of K2Ba(NO3)4 crystal

    NASA Astrophysics Data System (ADS)

    Isaenko, L. I.; Korzhneva, K. E.; Goryainov, S. V.; Goloshumova, A. A.; Sheludyakova, L. A.; Bekenev, V. L.; Khyzhun, O. Y.

    2018-02-01

    Nitrate crystals reveal nonlinear optical properties and could be considered as converters of laser radiation in the short-wave region. The conditions for obtaining and basic properties of K2Ba(NO3)4 double nitrate crystals were investigated. Crystal growth was implemented by slow cooling in the temperature range of 72-49 °C and low rate evaporation. The structural analysis of K2Ba(NO3)4 formation on the basis of two mixed simple nitrate structures is discussed. The main groups of oscillations in K2Ba(NO3)4 crystal were revealed using Raman and IR spectroscopy, and the table of vibrations for this compound was compiled. The electronic structure of K2Ba(NO3)4 was elucidated in the present work from both experimental and theoretical viewpoints. In particular, X-ray photoelectron spectroscopy (XPS) was employed in the present work to measure binding energies of the atoms constituting the titled compound and its XPS valence-band spectrum for both pristine and Ar+ ion-bombarded surfaces. Further, total and partial densities of states of constituent atoms of K2Ba(NO3)4 have been calculated. The calculations reveal that the O 2p states dominate in the total valence-band region of K2Ba(NO3)4 except of its bottom, where K 3p and Ba 5p states are the principal contributors, while the bottom of the conduction band is composed mainly of the unoccupied O 2p states, with somewhat smaller contributions of the N 2p∗ states as well. With respect to the occupation of the valence band by the O 2p states, the present band-structure calculations are confirmed by comparison on a common energy scale of the XPS valence-band spectrum and the X-ray emission O Kα band for the K2Ba(NO3)4 crystal under study. Furthermore, the present calculations indicate that the K2Ba(NO3)4 compound is a direct-gap material.

  3. Nanosecond to submillisecond dynamics in dye-labeled single-stranded DNA, as revealed by ensemble measurements and photon statistics at single-molecule level.

    PubMed

    Kaji, Takahiro; Ito, Syoji; Iwai, Shigenori; Miyasaka, Hiroshi

    2009-10-22

    Single-molecule and ensemble time-resolved fluorescence measurements were applied for the investigation of the conformational dynamics of single-stranded DNA, ssDNA, connected with a fluorescein dye by a C6 linker, where the motions both of DNA and the C6 linker affect the geometry of the system. From the ensemble measurement of the fluorescence quenching via photoinduced electron transfer with a guanine base in the DNA sequence, three main conformations were found in aqueous solution: a conformation unaffected by the guanine base in the excited state lifetime of fluorescein, a conformation in which the fluorescence is dynamically quenched in the excited-state lifetime, and a conformation leading to rapid quenching via nonfluorescent complex. The analysis by using the parameters acquired from the ensemble measurements for interphoton time distribution histograms and FCS autocorrelations by the single-molecule measurement revealed that interconversion in these three conformations took place with two characteristic time constants of several hundreds of nanoseconds and tens of microseconds. The advantage of the combination use of the ensemble measurements with the single-molecule detections for rather complex dynamic motions is discussed by integrating the experimental results with those obtained by molecular dynamics simulation.

  4. Multicharged Ion Promoted Desorption (MIPD) of Reaction Co-Products

    DTIC Science & Technology

    2015-02-13

    measurements of surface modifications using mass spectrometry, Raman spectroscopy and XPS were made to 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...desorption and ex-situ measurements of surface modifications using mass spectrometry, Raman spectroscopy and XPS were made to determine ion-induced...irradiations were made with the samples at normal incidence to the incoming beams and post-analysis of these samples was achieved using Raman spectroscopy. It

  5. Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors

    NASA Astrophysics Data System (ADS)

    Turgut, Erdal; Çoban, Ömer; Sarıtaş, Sevda; Tüzemen, Sebahattin; Yıldırım, Muhammet; Gür, Emre

    2018-03-01

    NiO thin films were grown by Radio Frequency (RF) Magnetron Sputtering method under different oxygen partial pressures, which are 0.6 mTorr, 1.3 mTorr and 2.0 mTorr. The effects of oxygen partial pressures on the thin films were analyzed through Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Hall measurements. The change in the surface morphology of the thin films has been observed with the SEM and AFM measurements. While nano-pyramids have been obtained on the thin film grown at the lowest oxygen partial pressure, the spherical granules lower than 60 nm in size has been observed for the samples grown at higher oxygen partial pressures. The shift in the dominant XRD peak is realized to the lower two theta angle with increasing the oxygen partial pressures. XPS measurements showed that the Ni2p peak involves satellite peaks and two oxidation states of Ni, Ni2+ and Ni3+, have been existed together with the corresponding splitting in O1s spectrum. P-type conductivity of the grown NiO thin films are confirmed by the Hall measurements with concentrations on the order of 1013 holes/cm-3. Gas sensor measurements revealed minimum of 10% response to the 10 ppm H2 level. Enhanced responsivity of the gas sensor devices of NiO thin films is shown as the oxygen partial pressure increases.

  6. Detailed Characteristics of Radiation Belt Electrons Revealed by CSSWE/REPTile Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Li, X.; Schiller, Q.; Gerhardt, D. T.; Millan, R. M.

    2016-12-01

    The outer radiation belt electrons are highly dynamic. We study the detailed characteristics of the relativistic electrons in the outer belt using measurements from the Colorado Student Space Weather Experiment (CSSWE) mission, a low Earth orbit Cubesat, which transverses the radiation belt four times in one orbit ( 1.5 hr) and has the advantage of measuring the dynamic activities of the electrons including their rapid precipitations. Among the features of the relativistic electrons, we show the measured electron distribution as a function of geomagnetic activities and local magnetic field strength. Moreover, a specific precipitation band, which happened on 19 Jan 2013, is investigated based on the conjunctive measurement of CSSWE and the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL). In this precipitation band event, the net loss of the 0.58 1.63 MeV electrons (L=3.5 6) is estimated to account for 6.84% of the total electron content.

  7. X-ray photoelectron spectroscopy on 1-peso and 2-pesos of the Argentine Republic

    NASA Astrophysics Data System (ADS)

    Gard, Faramarz S.; Duffo, Gustavo; Bergamasco, Pablo; Forlerer, Elena

    2018-04-01

    Relative concentrations of nickel and copper at the surface of the ring and centre parts of 1-peso and 2-pesos Argentine coins have been studied by means of X-ray photoemission spectroscopy (XPS). It has been observed Ni-enrichment at the surface of the ring (silvery) part of a 1-peso, minted in 1994, whereas the XPS data reveals lack of nickel at the surface of the centre (silvery) part of a 2-pesos, minted in 2016. This discrepancy is explained by analyzing the XPS peaks of oxygen and carbon, and is suggested to be related to the contamination layer on the surface of the coins. The XPS analysis of the golden parts of the coins, namely the centre part of the 1-peso and the ring part of the 2-pesos coins were inconclusive, due to the small amount of the Ni (nominally %2) used in those parts. The possible oxidations states of the metals at the surface of the untreated and treated coins with the artificial human sweat were also identified.

  8. Dynamics of Charge Carriers in Silicon Nanowire Photoconductors Revealed by Photo Hall Effect Measurements.

    PubMed

    Chen, Kaixiang; Zhao, Xiaolong; Mesli, Abdelmadjid; He, Yongning; Dan, Yaping

    2018-04-24

    Photoconductors have extraordinarily high gain in quantum efficiency, but the origin of the gain has remained in dispute for decades. In this work, we employ photo Hall effect to reveal the gain mechanisms by probing the dynamics of photogenerated charge carriers in silicon nanowire photoconductors. The results reveal that a large number of photogenerated minority electrons are localized in the surface depletion region and surface trap states. The same number of excess hole counterparts is left in the nanowire conduction channel, resulting in the fact that excess holes outnumber the excess electrons in the nanowire conduction channel by orders of magnitude. The accumulation of the excess holes broadens the conduction channel by narrowing down the depletion region, which leads to the experimentally observed high photo gain.

  9. Cellulose gum and copper nanoparticles based hydrogel as antimicrobial agents against urinary tract infection (UTI) pathogens.

    PubMed

    Al-Enizi, Abdullah M; Ahamad, Tansir; Al-Hajji, Abdullah Baker; Ahmed, Jahangeer; Chaudhary, Anis Ahmad; Alshehri, Saad M

    2018-04-01

    In the present study, stable copper nanoparticles (CuNPs) were successfully prepared in the hydrogel matrix. The prepared nanocomposite (HCuNPs) was characterized via x-ray diffraction (XRD), electron microscopy (TEM), and energy-dispersive (EDX) and x-ray photoelectron spectroscopic (XPS) studies. The wide scan XPS spectra support the presence of C, N and O in neat hydrogel; while, the XPS spectra of HCuNPs demonstrate the presence of Cu along with C, N, and O elements. TEM studies show the formation of spherical shaped CuNPs in the size range from 7 to 12nm. The rheology results reveal that the storage modulus (G') of the HCuNPs was found to be higher than the loss modulus (G"). Additionally, the antibacterial activities and cytotoxic were carried out against urinary tract infection (UTI) microbes and HeLa (cervical) cells respectively. The antibacterial results reveal that HCuNPs composites show higher zone of inhibition against these pathogens then that of corresponding hydrogel matrix. The cytotoxic effects suggest that the prepared nanocomposite could be used as promising candidates for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Reveal quantum correlation in complementary bases

    PubMed Central

    Wu, Shengjun; Ma, Zhihao; Chen, Zhihua; Yu, Sixia

    2014-01-01

    An essential feature of genuine quantum correlation is the simultaneous existence of correlation in complementary bases. We reveal this feature of quantum correlation by defining measures based on invariance under a basis change. For a bipartite quantum state, the classical correlation is the maximal correlation present in a certain optimum basis, while the quantum correlation is characterized as a series of residual correlations in the mutually unbiased bases. Compared with other approaches to quantify quantum correlation, our approach gives information-theoretical measures that directly reflect the essential feature of quantum correlation. PMID:24503595

  11. High-Throughput Sequencing Reveals Circulating miRNAs as Potential Biomarkers for Measuring Puberty Onset in Chicken (Gallus gallus).

    PubMed

    Han, Wei; Zhu, Yunfen; Su, Yijun; Li, Guohui; Qu, Liang; Zhang, Huiyong; Wang, Kehua; Zou, Jianmin; Liu, Honglin

    2016-01-01

    There are still no highly sensitive and unique biomarkers for measurement of puberty onset. Circulating miRNAs have been shown to be promising biomarkers for diagnosis of various diseases. To identify circulating miRNAs that could be served as biomarkers for measuring chicken (Gallus gallus) puberty onset, the Solexa deep sequencing was performed to analyze the miRNA expression profiles in serum and plasma of hens from two different pubertal stages, before puberty onset (BO) and after puberty onset (AO). 197 conserved and 19 novel miRNAs (reads > 10) were identified as serum/plasma-expressed miRNAs in the chicken. The common miRNA amounts and their expression changes from BO to AO between serum and plasma were very similar, indicating the different treatments to generate serum and plasma had quite small influence on the miRNAs. 130 conserved serum-miRNAs were showed to be differentially expressed (reads > 10, P < 0.05) from BO to AO, with 68 up-regulated and 62 down-regulated. 4829 putative genes were predicted as the targets of the 40 most differentially expressed miRNAs (|log2(fold-change)|>1.0, P < 0.01). Functional analysis revealed several pathways that were associated with puberty onset. Further quantitative real-time PCR (RT-qPCR) test found that a seven-miRNA panel, including miR-29c, miR-375, miR-215, miR-217, miR-19b, miR-133a and let-7a, had great potentials to serve as novel biomarkers for measuring puberty onset in chicken. Due to highly conserved nature of miRNAs, the findings could provide cues for measurement of puberty onset in other animals as well as humans.

  12. High-Throughput Sequencing Reveals Circulating miRNAs as Potential Biomarkers for Measuring Puberty Onset in Chicken (Gallus gallus)

    PubMed Central

    Su, Yijun; Li, Guohui; Qu, Liang; Zhang, Huiyong; Wang, Kehua; Zou, Jianmin; Liu, Honglin

    2016-01-01

    There are still no highly sensitive and unique biomarkers for measurement of puberty onset. Circulating miRNAs have been shown to be promising biomarkers for diagnosis of various diseases. To identify circulating miRNAs that could be served as biomarkers for measuring chicken (Gallus gallus) puberty onset, the Solexa deep sequencing was performed to analyze the miRNA expression profiles in serum and plasma of hens from two different pubertal stages, before puberty onset (BO) and after puberty onset (AO). 197 conserved and 19 novel miRNAs (reads > 10) were identified as serum/plasma-expressed miRNAs in the chicken. The common miRNA amounts and their expression changes from BO to AO between serum and plasma were very similar, indicating the different treatments to generate serum and plasma had quite small influence on the miRNAs. 130 conserved serum-miRNAs were showed to be differentially expressed (reads > 10, P < 0.05) from BO to AO, with 68 up-regulated and 62 down-regulated. 4829 putative genes were predicted as the targets of the 40 most differentially expressed miRNAs (|log2(fold-change)|>1.0, P < 0.01). Functional analysis revealed several pathways that were associated with puberty onset. Further quantitative real-time PCR (RT-qPCR) test found that a seven-miRNA panel, including miR-29c, miR-375, miR-215, miR-217, miR-19b, miR-133a and let-7a, had great potentials to serve as novel biomarkers for measuring puberty onset in chicken. Due to highly conserved nature of miRNAs, the findings could provide cues for measurement of puberty onset in other animals as well as humans. PMID:27149515

  13. Autoclave growth, magnetic, and optical properties of GdB6 nanowires

    NASA Astrophysics Data System (ADS)

    Han, Wei; Wang, Zhen; Li, Qidong; Liu, Huatao; Fan, Qinghua; Dong, Youzhong; Kuang, Quan; Zhao, Yanming

    2017-12-01

    High-quality single crystalline gadolinium hexaboride (GdB6) nanowires have been successfully prepared at very low temperatures of 200-240 °C by a high pressure solid state (HPSS) method in an autoclave with a new chemical reaction route, where Gd, H3BO3, Mg and I2 were used as raw materials. The crystal structure, morphology, valence, magnetic and optical absorption properties were investigated using XRD, FESEM, HRTEM, XPS, SQUID magnetometry and optical measurements. HRTEM images and SAED patterns reveal that the GdB6 nanowires are single crystalline with a preferred growth direction along [001]. The XPS spectrum suggests that the valence of Gd ion in GdB6 is trivalent. The effective magnetic momentum per Gd3+ in GdB6 is about 6.26 μB. The optical properties exhibit weak absorption in the visible light range, but relatively strong absorbance in the NIR and UV range. Low work function and high NIR absorption can make GdB6 nanowires a potential solar radiation shielding material for solar cells or other NIR blocking applications.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, S.; Mondal, A.; Dey, K.

    Highlights: • Reduced graphene oxides (RGO) are prepared by two chemical routes. • Defects in RGO are characterized by Raman, FTIR and XPS studies. • Defects tailor colossal dielectricity in RGO. - Abstract: Reduced graphene oxide (RGO) is prepared in two different chemical routes where reduction of graphene oxide is performed by hydrazine hydrate and through high pressure in hydrothermal reactor. Samples are characterized by X-ray powdered diffraction (XRD), thermo gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and tunneling electron microscopy (TEM). Types of defects are probed by Raman, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). UV–vis absorptionmore » reveals different optical band gaps of the two RGOs. Conductivity mechanism is studied through I–V measurements displaying different characteristic features which are addressed due to the presence of defects appeared in different synthesis. Significantly high value (∼10{sup 4}) of dielectric permittivity at 10 MHz is attractive for technological application which could be tuned by the defects present in RGO.« less

  15. A new method of nanocrystalline nickel powder formation by magnetron sputtering on the water-soluble substrates

    NASA Astrophysics Data System (ADS)

    Tučkutė, S.; Urbonavičius, M.; Lelis, M.; Maiorov, M.; Díaz Ordaz, J. R.; Milčius, D.

    2018-01-01

    Due to the accurate and relatively easy control magnetron sputtering is an attractive technique for the synthesis of metallic particles. This work describes a new method of nickel powder production by depositing nickel on the surface of sodium chloride particles which were used as the template and are soluble in water. Ni powder with flake-like structure was obtained after washing Ni coated salt particles in ultrasonic cleaner. Salt particles and nickel powder were characterized using scanning electron microscope (SEM), energy-dispersive x-ray spectrometer, XRD and X-ray photoelectron spectroscopy (XPS) techniques. SEM images showed that thickness of the received Ni particles varied in the nanoscale and depended on the magnetron deposition time but did not depend on the size of salt particles. On the other hand initial size of the salt particles was successfully employed a measure to control lateral dimensions of Ni powder. XRD and XPS analysis results revealed that Ni particles had metallic core and oxidized shell which was a cause of the slightly deteriorated magnetic properties.

  16. Structure and Infrared Emissivity Properties of the MAO Coatings Formed on TC4 Alloys in K2ZrF6-Based Solution

    PubMed Central

    Li, Ying; Hu, Dan; Xi, Zhengping

    2018-01-01

    Micro-arc oxidation (MAO) ceramic coatings were formed on TC4 alloy surface in silicate and metaphosphate electrolytes based with K2ZrF6 for various concentrations. X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) were used to characterize the phase composition, microstructure and chemical compositions of the coatings. The infrared emissivity of the coatings was measured at 50 °C in a wavelength range of 8–20 µm. The microstructural observations all revealed the typical porousstructures. Moreover, adecline in roughness and thickness of the prepared coatings can be observed when the concentration of K2ZrF6 increases. Combined with the results of XRD and XPS, it was found that all the oxides existed as the amorphous form in the coatings except the TiO2 phase. The coatings exhibited the highest infrared emissivity value (about 0.89) when the concentration of K2ZrF6 was 6 g/L, which was possibly attributed to the defect microstructure and the optimal role of ZrO2. PMID:29414841

  17. What quantum measurements measure

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2017-09-01

    A solution to the second measurement problem, determining what prior microscopic properties can be inferred from measurement outcomes ("pointer positions"), is worked out for projective and generalized (POVM) measurements, using consistent histories. The result supports the idea that equipment properly designed and calibrated reveals the properties it was designed to measure. Applications include Einstein's hemisphere and Wheeler's delayed choice paradoxes, and a method for analyzing weak measurements without recourse to weak values. Quantum measurements are noncontextual in the original sense employed by Bell and Mermin: if [A ,B ]=[A ,C ]=0 ,[B ,C ]≠0 , the outcome of an A measurement does not depend on whether it is measured with B or with C . An application to Bohm's model of the Einstein-Podolsky-Rosen situation suggests that a faulty understanding of quantum measurements is at the root of this paradox.

  18. Nanostructured PdO Thin Film from Langmuir-Blodgett Precursor for Room-Temperature H2 Gas Sensing.

    PubMed

    Choudhury, Sipra; Betty, C A; Bhattacharyya, Kaustava; Saxena, Vibha; Bhattacharya, Debarati

    2016-07-06

    Nanoparticulate thin films of PdO were prepared using the Langmuir-Blodgett (LB) technique by thermal decomposition of a multilayer film of octadecylamine (ODA)-chloropalladate complex. The stable complex formation of ODA with chloropalladate ions (present in subphase) at the air-water interface was confirmed by the surface pressure-area isotherm and Brewster angle microscopy. The formation of nanocrystalline PdO thin film after thermal decomposition of as-deposited LB film was confirmed by X-ray diffraction and Raman spectroscopy. Nanocrystalline PdO thin films were further characterized by using UV-vis and X-ray photoelectron spectroscopic (XPS) measurements. The XPS study revealed the presence of prominent Pd(2+) with a small quantity (18%) of reduced PdO (Pd(0)) in nanocrystalline PdO thin film. From the absorption spectroscopic measurement, the band gap energy of PdO was estimated to be 2 eV, which was very close to that obtained from specular reflectance measurements. Surface morphology studies of these films using atomic force microscopy and field-emission scanning electron microscopy indicated formation of nanoparticles of size 20-30 nm. These PdO film when employed as a chemiresistive sensor showed H2 sensitivity in the range of 30-4000 ppm at room temperature. In addition, PdO films showed photosensitivity with increase in current upon shining of visible light.

  19. Upwelling characteristics in the Gulf of Finland (Baltic Sea) as revealed by Ferrybox measurements in 2007-2013

    NASA Astrophysics Data System (ADS)

    Kikas, Villu; Lips, Urmas

    2016-07-01

    Ferrybox measurements have been carried out between Tallinn and Helsinki in the Gulf of Finland (Baltic Sea) on a regular basis since 1997. The system measures autonomously water temperature, salinity, chlorophyll a fluorescence and turbidity and takes water samples for further analyses at a predefined time interval. We aimed to show how the Ferrybox technology could be used to study the coastal upwelling events in the Gulf of Finland. Based on the introduced upwelling index and related criteria, 33 coastal upwelling events were identified in May-September 2007-2013. The number of events, as well as the frequency of their occurrence and intensity expressed as a sum of daily average temperature deviations in the 20 km wide coastal area, were almost equal near the northern and southern coasts. Nevertheless, the wind impulse, which was needed to generate upwelling events of similar intensity, differed between the northern and southern coastal areas. It is suggested that the general thermohaline structure adapted to the prevailing forcing and the estuarine character of the basin weaken the upwelling created by the westerly to southwesterly (up-estuary) winds and strengthen the upwelling created by the easterly to northeasterly (down-estuary) winds. Two types of upwelling events were identified - one characterized by a strong temperature front and the other revealing gradual decrease in temperature from the open sea to the coastal area, with maximum temperature deviation close to the shore.

  20. O electrolyte for bio-application

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Almariri, A.

    2014-09-01

    Porous silicon (PS) has been prepared in the dark by anodic etching of n+-type (111) silicon substrate in a HF:HCl:C2H5OH:H2O2:H2O electrolyte. The processed PS layer is characterized by means of photoluminescence (PL) spectroscopy, scanning electron microscope (SEM), water contact angle (CA) measurements, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and micro-Raman scattering. The CA of fresh PS layer is found to be ~142°. On aging at ambient conditions, the CA decreases gently to reach ~133° after 3 month, and then it is stabilized for a prolonged time of aging. The visible PL emission from the PS layer also exhibits a good stability against aging time. The FTIR and XPS measurements and analysis show that the stable aged PS layer has rather SiO2-rich surface. The micro/nanostructure nature of the PS layer is revealed from SEM and micro-Raman results and correlated to CA results. Stable hydrophobic surface of oxidized PS layer is attractive for bio-applications. The efficiency of the produced PS layers as an entrapping template for specific immobilization of IgG2a antibody via physical absorption process is demonstrated.

  1. Microwave-Accelerated Surface Modification of Plasmonic Gold Thin Films with Self-Assembled Monolayers of Alkanethiols

    PubMed Central

    Grell, Tsehai A.J.; Alabanza, Anginelle M.; Gaskell, Karen; Aslan, Kadir

    2013-01-01

    A rapid surface modification technique for the formation of self-assembled monolayers (SAMs) of alkanethiols on gold thin films using microwave heating in less than 10 min is reported. In this regard, SAMs of two model alkanethiols, 11-mercaptoundecanoic acid (11-MUDA, to generate a hydrophilic surface) and undecanethiol (UDET, a hydrophobic surface), were successfully formed on gold thin films using selective microwave heating in 1) a semi-continuous and 2) a continuous fashion and at room temperature (24 hours, control experiment, no microwave heating). The formation of SAMs of 11-MUDA and UDET were confirmed by contact angle measurements, Fourier–transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The contact angles for water on SAMs formed by the selective microwave heating and conventional room temperature incubation technique (24 hours) were measured to be similar for 11-MUDA and UDET. FT-IR spectroscopy results confirmed that the internal structure of SAMs prepared using both microwave heating and at room temperature were similar. XPS results revealed that the organic and sulfate contaminants found on bare gold thin films were replaced by SAMs after the surface modification process was carried out using both microwave heating and at room temperature. PMID:24083414

  2. Polyphenylsilole multilayers--an insight from X-ray electron spectroscopy and density functional theory.

    PubMed

    Diller, Katharina; Ma, Yong; Luo, Yi; Allegretti, Francesco; Liu, Jianzhao; Tang, Ben Zhong; Lin, Nian; Barth, Johannes V; Klappenberger, Florian

    2015-12-14

    We present a combined investigation by means of X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy of condensed multilayers of two polyphenylsiloles, namely hexaphenylsilole (HPS) and tetraphenylsilole (TPS). Both compounds exhibit very similar spectroscopic signatures, whose interpretation is aided by density functional theory (DFT) calculations. High-resolution XPS spectra of the Si 2p and C 1s core levels of these multilayers indicate a positively charged silicon ion flanked by two negatively charged adjacent carbon atoms in the silole core of both molecules. This result is corroborated quantitatively by DFT calculations on isolated HPS (TPS) molecules, which show a natural bond orbital partial charge of +1.67 e (+1.58 e) on the silicon and -0.34 e (-0.58 e) on the two neighbouring carbon atoms in the silole ring. These charges are conserved in direct contact with a Cu(111) substrate for films of submonolayer coverage, as evidenced by the Si 2p XPS data. The C K-edge NEXAFS spectra of HPS and TPS multilayers exhibit distinct and differing features. Their main characteristics reappear in the simulated spectra and are assigned to the different inequivalent carbon species in the molecule. The angle-dependent measurements hardly reveal any dichroism, i.e., the molecular π-systems are not uniformly oriented parallel or perpendicular with respect to the surface. Changes in the growth conditions of TPS, i.e., a reduction of the substrate temperature from 240 K to 80 K during deposition, lead to a broadening of both XPS and NEXAFS signatures, as well as an upward shift of the Si 2p and C 1s binding energies, indicative of a less ordered growth mode at low temperature.

  3. Low temperature synthesis of hexagonal ZnO nanorods and their hydrogen sensing properties

    NASA Astrophysics Data System (ADS)

    Qurashi, Ahsanulhaq; Faiz, M.; Tabet, N.; Alam, Mir Waqas

    2011-08-01

    The growth of hexagonal ZnO nanorods was demonstrated by low temperature chemical synthesis approach. X-ray diffraction (XRD) analysis revealed a wurtzite hexagonal structure of the ZnO nanorods. The optical properties were measured by UV-vis spectrophotometer at room temperature. X-ray photoelectron spectroscopy (XPS) confirmed high purity of the ZnO nanorods. The hydrogen sensor made of the ZnO nanorods showed reversible response. The hydrogen gas tests were carried out in presence of ambient air and the influence of operation temperature on the hydrogen gas sensing property of ZnO nanorods was also investigated.

  4. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni2Si formation and the resulting barrier height changes

    NASA Astrophysics Data System (ADS)

    Tengeler, Sven; Kaiser, Bernhard; Chaussende, Didier; Jaegermann, Wolfram

    2017-04-01

    The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni2Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  5. Electropolymerized molecularly imprinted polypyrrole film for sensing of clofibric acid.

    PubMed

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-02-26

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6-8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity.

  6. Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid

    PubMed Central

    Schweiger, Bianca; Kim, Jungtae; Kim, Young Jun; Ulbricht, Mathias

    2015-01-01

    Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6–8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity. PMID:25730487

  7. How Costly is Hospital Quality? A Revealed-Preference Approach*

    PubMed Central

    Romley, John A.; Goldman, Dana P.

    2013-01-01

    We analyze the cost of quality improvement in hospitals, dealing with two challenges. Hospital quality is multidimensional and hard to measure, while unobserved productivity may influence quality supply. We infer the quality of hospitals in Los Angeles from patient choices. We then incorporate ‘revealed quality’ into a cost function, instrumenting with hospital demand. We find that revealed quality differentiates hospitals, but is not strongly correlated with clinical quality. Revealed quality is quite costly, and tends to increase with hospital productivity. Thus, non-clinical aspects of the hospital experience (perhaps including patient amenities) play important roles in hospital demand, competition, and costs. PMID:22299199

  8. Seismic measurements to reveal short-term variations in the elastic properties of the Earth crust

    NASA Astrophysics Data System (ADS)

    Piccinini, Davide; Zaccarelli, Lucia; Pastori, Marina; Margheriti, Lucia; Pio Lucente, Francesco; De Gori, Pasquale; Faenza, Licia; Soldati, Gaia

    2013-04-01

    Since the late the late '60s-early '70s era seismologists started developed theories that included variations of the elastic property of the Earth crust and the state of stress and its evolution crust prior to the occurrence of a large earthquake. Among the others the theory of the dilatancy (Scholz et al., 1973): when a rock is subject to stress, the rock grains are shifted generating micro-cracks, thus the rock itself increases its volume. Inside the fractured rock, fluid saturation and pore pressure play an important role in earthquake nucleation, by modulating the effective stress. Thus measuring the variations of wave speed and of anisotropic parameter in time can be highly informative on how the stress leading to a major fault failure builds up. In 80s and 90s such kind of research on earthquake precursor slowed down and the priority was given to seismic hazard and ground motions studies, which are very important since these are the basis for the building codes in many countries. Today we have dense and sophisticated seismic networks to measure wave-fields characteristics: we archive continuous waveform data recorded at three components broad-band seismometers, we almost routinely obtain high resolution earthquake locations. Therefore we are ready to start to systematically look at seismic-wave propagation properties to possibly reveal short-term variations in the elastic properties of the Earth crust. One seismological quantity which, since the '70s, is recognized to be diagnostic of the level of fracturation and/or of the pore pressure in the rock, hence of its state of stress, is the ratio between the compressional (P-wave) and the shear (S-wave) seismic velocities, the Vp/Vs (Nur, 1972; Kisslinger and Engdahl, 1973). Variations of this ratio have been recently observed and measured during the preparatory phase of a major earthquake (Lucente et al. 2010). In active fault areas and volcanoes, tectonic stress variation influences fracture field orientation

  9. 1300929

    NASA Image and Video Library

    2013-08-15

    ARTHUR BROWN (AST, AEROSPACE METALLIC MATERIALS) LOADS A CERAMIC COATED SILICON WAFER INTO A KRATOS (ELECTRON SPECTROSCOPY FOR CHEMICAL ANALYSIS) TO PERFORM X-RAY PHOTOELECTRON SPECTROSCOPY (XPS). XPS IS A TECHNIQUE THAT ANALYZES THE SURFACE CHEMISTRY OF A SAMPLE BY IRRADIATING IT WITH X-RAYS AND MEASURING THE NUMBER AND KINETIC ENERGY OF ELECTRON THAT ESCAPE.

  10. New NASA Laser Technology Reveals How Ice Measures Up

    NASA Image and Video Library

    2014-01-28

    NASA's Multiple Altimeter Beam Experimental Lidar flew over Southwest Greenland's glaciers and sea ice to test a new method of measuring the height of Earth from space. Read more here: 1.usa.gov/1fkvoBp Credit: NASA/Tim Williams NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Visual evoked potential measurement of contrast sensitivity in a case of retinal laser injury reveals visual function loss despite normal acuity

    NASA Astrophysics Data System (ADS)

    Glickman, Randolph D.; Harrison, Joseph M.; Zwick, Harry; Longbotham, Harold G.; Ballentine, Charles S.; Pierce, Bennie

    1996-04-01

    Although visual function following retinal laser injuries has traditionally been assessed by measuring visual acuity, this measure only indicates the highest spatial frequency resolvable under high-contrast viewing conditions. Another visual psychophysical parameter is contrast sensitivity (CS), which measures the minimum contrast required for detection of targets over a range of spatial frequencies, and may evaluate visual mechanisms that do not directly subserve acuity. We used the visual evoked potential (VEP) to measure CS in a population of normal subjects and in patients with ophthalmic conditions affecting retinal function, including one patient with a laser injury in the macula. In this patient, the acuity had recovered from measurements may reveal alterations in visual neural processing mechanisms not detected with standard clinical tests of acuity.

  12. Eigencentrality based on dissimilarity measures reveals central nodes in complex networks

    PubMed Central

    Alvarez-Socorro, A. J.; Herrera-Almarza, G. C.; González-Díaz, L. A.

    2015-01-01

    One of the most important problems in complex network’s theory is the location of the entities that are essential or have a main role within the network. For this purpose, the use of dissimilarity measures (specific to theory of classification and data mining) to enrich the centrality measures in complex networks is proposed. The centrality method used is the eigencentrality which is based on the heuristic that the centrality of a node depends on how central are the nodes in the immediate neighbourhood (like rich get richer phenomenon). This can be described by an eigenvalues problem, however the information of the neighbourhood and the connections between neighbours is not taken in account, neglecting their relevance when is one evaluates the centrality/importance/influence of a node. The contribution calculated by the dissimilarity measure is parameter independent, making the proposed method is also parameter independent. Finally, we perform a comparative study of our method versus other methods reported in the literature, obtaining more accurate and less expensive computational results in most cases. PMID:26603652

  13. Energy level alignment at the methylammonium lead iodide/copper phthalocyanine interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shi; Goh, Teck Wee; Sum, Tze Chien, E-mail: Alfred@ntu.edu.sg, E-mail: Tzechien@ntu.edu.sg

    2014-08-01

    The energy level alignment at the CH{sub 3}NH{sub 3}PbI{sub 3}/copper phthalocyanine (CuPc) interface is investigated by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). XPS reveal a 0.3 eV downward band bending in the CuPc film. UPS validate this finding and further reveal negligible interfacial dipole formation – verifying the viability of vacuum level alignment. The highest occupied molecular orbital of CuPc is found to be closer to the Fermi level than the valance band maximum of CH{sub 3}NH{sub 3}PbI{sub 3}, facilitating hole transfer from CH{sub 3}NH{sub 3}PbI{sub 3} to CuPc. However, subsequent hole extraction from CuPc may bemore » impeded by the downward band bending in the CuPc layer.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amusan, Akinwumi A., E-mail: akinwumi.amusan@ovgu.de; Kalkofen, Bodo; Burte, Edmund P.

    Silver (Ag) layers were deposited by remote plasma enhanced atomic layer deposition (PALD) using Ag(fod)(PEt{sub 3}) (fod = 2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionato) as precursor and hydrogen plasma on silicon substrate covered with thin films of SiO{sub 2}, TiN, Ti/TiN, Co, Ni, and W at different deposition temperatures from 70  to 200 °C. The deposited silver films were analyzed by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) with energy dispersive x-ray spectroscopy, four point probe measurement, ellipsometric measurement, x-ray fluorescence (XRF), and x-ray diffraction (XRD). XPS revealed pure Ag with carbon and oxygen contamination close to the detectionmore » limit after 30 s argon sputtering for depositions made at 120 and 200 °C substrate temperatures. However, an oxygen contamination was detected in the Ag film deposited at 70 °C after 12 s argon sputtering. A resistivity of 5.7 × 10{sup −6} Ω cm was obtained for approximately 97 nm Ag film on SiO{sub 2}/Si substrate. The thickness was determined from the SEM cross section on the SiO{sub 2}/Si substrate and also compared with XRF measurements. Polycrystalline cubic Ag reflections were identified from XRD for PALD Ag films deposited at 120 and 200 °C. Compared to W surface, where poor adhesion of the films was found, Co, Ni, TiN, Ti/TiN and SiO{sub 2} surfaces had better adhesion for silver films as revealed by SEM, TEM, and AFM images.« less

  15. Local Structure and Surface Properties of CoxZn1-xO Thin Films for Ozone Gas Sensing.

    PubMed

    Catto, Ariadne C; Silva, Luís F da; Bernardi, Maria Inês B; Bernardini, Sandrine; Aguir, Khalifa; Longo, Elson; Mastelaro, Valmor R

    2016-10-05

    A detailed study of the structural, surface, and gas-sensing properties of nanostructured Co x Zn 1-x O films is presented. X-ray diffraction (XRD) analysis revealed a decrease in the crystallization degree with increasing Co content. The X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopies (XPS) revealed that the Co 2+ ions preferentially occupied the Zn 2+ sites and that the oxygen vacancy concentration increased as the amount of cobalt increased. Electrical measurements showed that the Co dopants not only enhanced the sensor response at low ozone levels (ca. 42 ppb) but also led to a decrease in the operating temperature and improved selectivity. The enhancement in the gas-sensing properties was attributed to the presence of oxygen vacancies, which facilitated ozone adsorption.

  16. Elemental content of enamel and dentin after bleaching of teeth (a comparative study between laser-induced breakdown spectroscopy and x-ray photoelectron spectroscopy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imam, H.; Ahmed, Doaa; Eldakrouri, Ashraf

    2013-06-21

    The elemental content of the superficial and inner enamel as well as that of dentin was analyzed using laser-induced breakdown spectroscopy (LIBS) and x-ray photoelectron spectroscopy (XPS) of bleached and unbleached tooth specimens. It is thus clear from the spectral analysis using both the LIBS and XPS technique that elemental changes (though insignificant within the scopes of this study) of variable intensities do occur on the surface of the enamel and extend deeper to reach dentin. The results of the LIBS revealed a slight reduction in the calcium levels in the bleached compared to the control specimens in all themore » different bleaching groups and in both enamel and dentin. The good correlation found between the LIBS and XPS results demonstrates the possibility of LIBS technique for detection of minor loss in calcium and phosphorus in enamel and dentin.« less

  17. Behavioral manifestations of audiometrically-defined "slight" or "hidden" hearing loss revealed by measures of binaural detection.

    PubMed

    Bernstein, Leslie R; Trahiotis, Constantine

    2016-11-01

    This study assessed whether audiometrically-defined "slight" or "hidden" hearing losses might be associated with degradations in binaural processing as measured in binaural detection experiments employing interaurally delayed signals and maskers. Thirty-one listeners participated, all having no greater than slight hearing losses (i.e., no thresholds greater than 25 dB HL). Across the 31 listeners and consistent with the findings of Bernstein and Trahiotis [(2015). J. Acoust. Soc. Am. 138, EL474-EL479] binaural detection thresholds at 500 Hz and 4 kHz increased with increasing magnitude of interaural delay, suggesting a loss of precision of coding with magnitude of interaural delay. Binaural detection thresholds were consistently found to be elevated for listeners whose absolute thresholds at 4 kHz exceeded 7.5 dB HL. No such elevations were observed in conditions having no binaural cues available to aid detection (i.e., "monaural" conditions). Partitioning and analyses of the data revealed that those elevated thresholds (1) were more attributable to hearing level than to age and (2) result from increased levels of internal noise. The data suggest that listeners whose high-frequency monaural hearing status would be classified audiometrically as being normal or "slight loss" may exhibit substantial and perceptually meaningful losses of binaural processing.

  18. Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA

    PubMed Central

    Oberstrass, Florian C.; Fernandes, Louis E.; Bryant, Zev

    2012-01-01

    B-DNA becomes unstable under superhelical stress and is able to adopt a wide range of alternative conformations including strand-separated DNA and Z-DNA. Localized sequence-dependent structural transitions are important for the regulation of biological processes such as DNA replication and transcription. To directly probe the effect of sequence on structural transitions driven by torque, we have measured the torsional response of a panel of DNA sequences using single molecule assays that employ nanosphere rotational probes to achieve high torque resolution. The responses of Z-forming d(pGpC)n sequences match our predictions based on a theoretical treatment of cooperative transitions in helical polymers. “Bubble” templates containing 50–100 bp mismatch regions show cooperative structural transitions similar to B-DNA, although less torque is required to disrupt strand–strand interactions. Our mechanical measurements, including direct characterization of the torsional rigidity of strand-separated DNA, establish a framework for quantitative predictions of the complex torsional response of arbitrary sequences in their biological context. PMID:22474350

  19. Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid

    NASA Astrophysics Data System (ADS)

    Berger, Claudia A.; Arkhipova, Maria; Maas, Gerhard; Jacob, Timo

    2016-07-01

    The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer.The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important

  20. Depth resolved compositional analysis of aluminium oxide thin film using non-destructive soft x-ray reflectivity technique

    NASA Astrophysics Data System (ADS)

    Sinha, Mangalika; Modi, Mohammed H.

    2017-10-01

    In-depth compositional analysis of 240 Å thick aluminium oxide thin film has been carried out using soft x-ray reflectivity (SXR) and x-ray photoelectron spectroscopy technique (XPS). The compositional details of the film is estimated by modelling the optical index profile obtained from the SXR measurements over 60-200 Å wavelength region. The SXR measurements are carried out at Indus-1 reflectivity beamline. The method suggests that the principal film region is comprised of Al2O3 and AlOx (x = 1.6) phases whereas the interface region comprised of SiO2 and AlOx (x = 1.6) mixture. The soft x-ray reflectivity technique combined with XPS measurements explains the compositional details of principal layer. Since the interface region cannot be analyzed with the XPS technique in a non-destructive manner in such a case the SXR technique is a powerful tool for nondestructive compositional analysis of interface region.

  1. Vibrational spectra of nanowires measured using laser doppler vibrometry and STM studies of epitaxial graphene : an LDRD fellowship report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biedermann, Laura Butler

    2009-09-01

    MWNTs, their vibration spectra was more extensively studied. The thermal vibration spectra of Ag{sub 2}Ga nanoneedles was measured under both ambient and low-vacuum conditions. The operational deflection shapes of the vibrating Ag{sub 2}Ga nanoneedles was also measured, allowing confirmation of the eigenmodes of vibration. The modulus of the crystalline nanoneedles was 84.3 {+-} 1.0 GPa. Gas damping is the dominate mechanism of energy loss for nanowires oscillating under ambient conditions. The measured quality factors, Q, of oscillation are in line with theoretical predictions of air damping in the free molecular gas damping regime. In the free molecular regime, Q{sub gas} is linearly proportional to the density and diameter of the nanowire and inversely proportional to the air pressure. Since the density of the Ag{sub 2}Ga nanoneedles is three times that of the MWNTs, the Ag{sub 2}Ga nanoneedles have greater Q at atmospheric pressures. Our initial measurements of Q for Ag{sub 2}Ga nanoneedles in low-vacuum (10 Torr) suggest that the intrinsic Q of these nanoneedles may be on the order of 1000. The epitaxial carbon that grows after heating (000{bar 1}) silicon carbide (SiC) to high temperatures (1450-1600) in vacuum was also studied. At these high temperatures, the surface Si atoms sublime and the remaining C atoms reconstruct to form graphene. X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) were used to characterize the quality of the few-layer graphene (FLG) surface. The XPS studies were useful in confirming the graphitic composition and measuring the thickness of the FLG samples. STM studies revealed a wide variety of nanometer-scale features that include sharp carbon-rich ridges, moire superlattices, one-dimensional line defects, and grain boundaries. By imaging these features with atomic scale resolution, considerable insight into the growth mechanisms of FLG on the carbon-face of SiC is obtained.« less

  2. Temperature-induced structural evolution of Sm nanoparticles on Al2O3 thin film: An in-situ investigation using SRPES, XPS and STM

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Hu, Shanwei; Wang, Weijia; Wang, Yan; Ju, Huanxin; Zhu, Junfa

    2018-02-01

    The structural evolution of Sm nanoclusters on ultrathin film of Al2O3 epitaxially grown on Ni3Al(111) substrate at elevated temperatures was investigated in-situ using synchrotron radiation photoemission spectroscopy (SRPES), X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). The vapor-deposited metallic Sm onto the Al2O3 thin film at 300 K is partially oxidized, leading to the appearance of both Sm2+ and Sm3+ states at low coverages, due to the charge transfer from Sm to oxide film. The complete oxidation of the Sm, i.e., all Sm2+ converted to Sm3+, occurs when the sample is annealed to 500 K. Further annealing results in the diffusion of Sm into the Al2O3 lattice. At ∼900 K, the formation of a SmAlO3 complex is observed. However, this complex starts to decompose and desorb from the surface at temperature higher than 1200 K. Interestingly, it is found that Sm can promote the oxidation of Ni3Al substrate and thicken the alumina film when Sm is deposited at room temperature onto the Al2O3/Ni3Al(111) substrate followed by annealing in oxygen environment at ∼800 K.

  3. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    NASA Astrophysics Data System (ADS)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  4. Subclinical hypervitaminosis A in rat: measurements of bone mineral density (BMD) do not reveal adverse skeletal changes.

    PubMed

    Lind, P M; Johansson, S; Rönn, M; Melhus, H

    2006-01-05

    We have previously shown that subclinical hypervitaminosis A in rats causes fragile bones. To begin to investigate possible mechanisms for Vitamin A action we extended our previous study. Forty-five mature female Sprague-Dawley rats were divided into three groups, each with 15 animals. They were fed a standard diet containing 12IU Vitamin A per g pellet (control, C), or a standard diet supplemented with 120 IU ("10xC") or 600 IU ("50xC") Vitamin A/g pellet for 12 weeks. At the end of the study, serum retinyl esters were elevated 4- and 20-fold. Although neither average food intake nor final body weights were significantly different between groups, a dose-dependent reduction in serum levels of Vitamin D and E, but not Vitamin K, was found. In the 50xC-group the length of the humerus was the same as in controls, but the diameter was reduced (-4.1%, p<0.05). Peripheral quantitative computed tomography (pQCT) at the diaphysis showed that bone mineral density (BMD) was unchanged and that periosteal circumference had decreased significantly (-3.7%, p<0.05). Ash weight of the humerus was not affected, but since bone volume decreased, volumetric BMD, as measured by the bone ash method, even increased (+2.5%, p<0.05). In conclusion, interference with other fat-soluble Vitamins is a possible indirect mechanism of Vitamin A action. Moreover, BMD measurements do not reveal early adverse skeletal changes induced by moderate excesses of Vitamin A in rats. Since the WHO criterium for osteoporosis is based on BMD, further studies are warranted to examine whether this is also true in humans.

  5. Acid-Base Interactions of Polystyrene Sulfonic Acid in Amorphous Solid Dispersions Using a Combined UV/FTIR/XPS/ssNMR Study.

    PubMed

    Song, Yang; Zemlyanov, Dmitry; Chen, Xin; Nie, Haichen; Su, Ziyang; Fang, Ke; Yang, Xinghao; Smith, Daniel; Byrn, Stephen; Lubach, Joseph W

    2016-02-01

    This study investigates the potential drug-excipient interactions of polystyrene sulfonic acid (PSSA) and two weakly basic anticancer drugs, lapatinib (LB) and gefitinib (GB), in amorphous solid dispersions. Based on the strong acidity of the sulfonic acid functional group, PSSA was hypothesized to exhibit specific intermolecular acid-base interactions with both model basic drugs. Ultraviolet (UV) spectroscopy identified red shifts, which correlated well with the color change observed in lapatinib-PSSA solutions. Fourier transform infrared (FTIR) spectra suggest the protonation of the quinazoline nitrogen atom in both model compounds, which agrees well with data from the crystalline ditosylate salt of lapatinib. X-ray photoelectron spectroscopy (XPS) detected increases in binding energy of the basic nitrogen atoms in both lapatinib and gefitinib, strongly indicating protonation of these nitrogen atoms. (15)N solid-state NMR spectroscopy provided direct spectroscopic evidence for protonation of the quinazoline nitrogen atoms in both LB and GB, as well as the secondary amine nitrogen atom in LB and the tertiary amine nitrogen atom in GB. The observed chemical shifts in the LB-PSSA (15)N spectrum also agree very well with the lapatinib ditosylate salt where proton transfer is known. Additionally, the dissolution and physical stability behaviors of both amorphous solid dispersions were examined. PSSA was found to significantly improve the dissolution of LB and GB and effectively inhibit the crystallization of LB and GB under accelerated storage conditions due to the beneficial strong intermolecular acid-base interaction between the sulfonic acid groups and basic nitrogen centers.

  6. Layer uniformity in glucose oxidase immobilization on SiO 2 surfaces

    NASA Astrophysics Data System (ADS)

    Libertino, Sebania; Scandurra, Antonino; Aiello, Venera; Giannazzo, Filippo; Sinatra, Fulvia; Renis, Marcella; Fichera, Manuela

    2007-09-01

    The goal of this work was the characterization, step by step, of the enzyme glucose oxidase (GOx) immobilization on silicon oxide surfaces, mainly by means of X-Ray photoelectron spectroscopy (XPS). The immobilization protocol consists of four steps: oxide activation, silanization, linker molecule deposition and GOx immobilization. The linker molecule, glutaraldehyde (GA) in this study, must be able to form a uniform layer on the sample surface in order to maximize the sites available for enzyme bonding and achieve the best enzyme deposition. Using a thin SiO 2 layer grown on Si wafers and following the XPS Si2p signal of the Si substrate during the immobilization steps, we demonstrated both the glutaraldehyde layer uniformity and the possibility to use XPS to monitor thin layer uniformity. In fact, the XPS substrate signal, not shielded by the oxide, is suppressed only when a uniform layer is deposited. The enzyme correct immobilization was monitored using the XPS C1s and N1s signals. Atomic force microscopy (AFM) measurements carried out on the same samples confirmed the results.

  7. Structural and Electrical Characterization of SiO2 Gate Dielectrics Deposited from Solutions at Moderate Temperatures in Air.

    PubMed

    Esro, Mazran; Kolosov, Oleg; Jones, Peter J; Milne, William I; Adamopoulos, George

    2017-01-11

    Silicon dioxide (SiO 2 ) is the most widely used dielectric for electronic applications. It is usually produced by thermal oxidation of silicon or by using a wide range of vacuum-based techniques. By default, the growth of SiO 2 by thermal oxidation of silicon requires the use of Si substrates whereas the other deposition techniques either produce low quality or poor interface material and mostly require high deposition or annealing temperatures. Recent investigations therefore have focused on the development of alternative deposition paradigms based on solutions. Here, we report the deposition of SiO 2 thin film dielectrics deposited by spray pyrolysis in air at moderate temperatures of ≈350 °C from pentane-2,4-dione solutions of SiCl 4 . SiO 2 dielectrics were investigated by means of UV-vis absorption spectroscopy, spectroscopic ellipsometry, XPS, XRD, UFM/AFM, admittance spectroscopy, and field-effect measurements. Data analysis reveals smooth (R RMS < 1 nm) amorphous films with a dielectric constant of about 3.8, an optical band gap of ≈8.1 eV, leakage current densities in the order of ≈10 -7 A/cm 2 at 1 MV/cm, and high dielectric strength in excess of 5 MV/cm. XPS measurements confirm the SiO 2 stoichiometry and FTIR spectra reveal features related to SiO 2 only. Thin film transistors implementing spray-coated SiO 2 gate dielectrics and C 60 and pentacene semiconducting channels exhibit excellent transport characteristics, i.e., negligible hysteresis, low leakage currents, high on/off current modulation ratio on the order of 10 6 , and high carrier mobility.

  8. Landscape complementation revealed through bipartite networks: An example with the Florida manatee

    USGS Publications Warehouse

    Haase, Catherine G.; Fletcher, Robert J.; Slone, Daniel H.; Reid, James P.; Butler, Susan M.

    2017-01-01

    Landscape complementation is an important predictor of selection and thus classic complementation measures are not sufficient in describing the process. Formalization of complementation with bipartite network can therefor reveal effects potentially missed with conventional measures.

  9. Valence-band offsets of CoTiSb/In0.53Ga0.47As and CoTiSb/In0.52Al0.48As heterojunctions

    NASA Astrophysics Data System (ADS)

    Harrington, S. D.; Sharan, A.; Rice, A. D.; Logan, J. A.; McFadden, A. P.; Pendharkar, M.; Pennachio, D. J.; Wilson, N. S.; Gui, Z.; Janotti, A.; Palmstrøm, C. J.

    2017-08-01

    The valence-band offsets, ΔEv, between semiconducting half-Heusler compound CoTiSb and lattice-matched III-V In0.53Ga0.47As and In0.52Al0.48As heterojunction interfaces have been measured using X-ray photoemission spectroscopy (XPS). These interfaces were formed using molecular beam epitaxy and transferred in situ for XPS measurements. Valence-band offsets of 0.30 eV and 0.58 eV were measured for CoTiSb/In0.53Ga0.47As and CoTiSb/In0.52Al0.48As, respectively. By combining these measurements with previously reported XPS ΔEv (In0.53Ga0.47As/In0.52Al0.48As) data, the results suggest that band offset transitivity is satisfied. In addition, the film growth order of the interface between CoTiSb and In0.53Ga0.47As is explored and does not seem to affect the band offsets. Finally, the band alignments of CoTiSb with GaAs, AlAs, and InAs are calculated using the density function theory with the HSE06 hybrid functional and applied to predict the band alignment of CoTiSb with In0.53Ga0.47As and In0.52Al0.48As. Good agreement is found between the calculated valence-band offsets and those determined from XPS.

  10. Valence-band offsets of CoTiSb/In 0.53Ga 0.47As and CoTiSb/In 0.52Al 0.48As heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, S. D.; Sharan, A.; Rice, A. D.

    2017-08-11

    The valence-band offsets, ΔE v, between semiconducting half-Heusler compound CoTiSb and lattice-matched III-V In 0.53Ga 0.47As and In 0.52Al 0.48As heterojunction interfaces have been measured using X-ray photoemission spectroscopy (XPS). These interfaces were formed using molecular beam epitaxy and transferred in situ for XPS measurements. Valence-band offsets of 0.30 eV and 0.58 eV were measured for CoTiSb/In 0.53Ga 0.47As and CoTiSb/In 0.52Al 0.48As, respectively. By combining these measurements with previously reported XPS ΔE v (In 0.53Ga 0.47As/In 0.52Al 0.48As) data, the results suggest that band offset transitivity is satisfied. In addition, the film growth order of the interface between CoTiSbmore » and In 0.53Ga 0.47As is explored and does not seem to affect the band offsets. Finally, the band alignments of CoTiSb with GaAs, AlAs, and InAs are calculated using the density function theory with the HSE06 hybrid functional and applied to predict the band alignment of CoTiSb with In 0.53Ga 0.47As and In 0.52Al 0.48As. As a result, good agreement is found between the calculated valence-band offsets and those determined from XPS.« less

  11. Adsorption differences between low coverage enantiomers of alanine on the chiral Cu{421}R surface.

    PubMed

    Gladys, Michael J; Han, Jeong Woo; Pedersen, Therese S; Tadich, Anton; O'Donnell, Kane M; Thomsen, Lars

    2017-05-31

    Chiral separation using heterogeneous methods has long been sought after. Chiral metal surfaces have the potential to make it possible to model these systems using small amino acids, the building blocks for proteins. A comparison of submonolayer concentrations of alanine enantiomers adsorbed onto Cu{421} R has revealed a large geometrical differences between the two molecules as compared to the saturated coverage. Large differences were observed in HR-XPS and NEXAFS and complemented by theoretical DFT calculations. At approximately one third of a monolayer a comparison of the C1s XPS signal showed a shift in the methyl group of more than 300 meV indicating that the two enantiomers are in different chemical environments. NEXAFS spectroscopy confirmed the XPS variations and showed large differences in the orientation of the adsorbed molecules. Our DFT results show that the l-enantiomer is energetically the most stable in the {311} microfacet configuration. In contrast to the full monolayer coverage, these lower coverages showed enhanced selectivity.

  12. Nanoparticle formation of deposited Agn-clusters on free-standing graphene

    NASA Astrophysics Data System (ADS)

    Al-Hada, M.; Peters, S.; Gregoratti, L.; Amati, M.; Sezen, H.; Parisse, P.; Selve, S.; Niermann, T.; Berger, D.; Neeb, M.; Eberhardt, W.

    2017-11-01

    Size-selected Agn-clusters on unsupported graphene of a commercial Quantifoil sample have been investigated by surface and element-specific techniques such as transmission electron microscopy (TEM), spatially-resolved inner-shell X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). An agglomeration of the highly mobile clusters into nm-sized Ag-nanodots of 2-3 nm is observed. Moreover, crystalline as well as non-periodic fivefold symmetric structures of the Ag-nanoparticles are evident by high-resolution TEM. Using a lognormal size-distribution as revealed by TEM, the measured positive binding energy shift of the air-exposed Ag-nanodots can be explained by the size-dependent dynamical liquid-drop model.

  13. Structure and magnetic properties of Fe-doped ZnO prepared by the sol-gel method.

    PubMed

    Liu, Huilian; Yang, Jinghai; Zhang, Yongjun; Yang, Lili; Wei, Maobin; Ding, Xue

    2009-04-08

    Zn(0.97)Fe(0.03)O nanoparticles were synthesized by the sol-gel method. X-ray diffraction (XRD) and transmission electron microscope (TEM) analysis revealed that the samples had pure ZnO wurtzite structure and Fe ions were well incorporated into the ZnO crystal lattice. X-ray photoelectron spectroscopy (XPS) showed that both Fe(2+) and Fe(3+) existed in Zn(0.97)Fe(0.03)O. The result of x-ray absorption near-edge structure (XANES) further testified that Fe ions took the place of Zn sites in our samples. Magnetic measurements indicated that Zn(0.97)Fe(0.03)O was ferromagnetic at room temperature.

  14. The effect of Cr substitution on the structural, electronic and magnetic properties of pulsed laser deposited NiFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Panwar, Kalpana; Tiwari, Shailja; Bapna, Komal; Heda, N. L.; Choudhary, R. J.; Phase, D. M.; Ahuja, B. L.

    2017-01-01

    We have studied the structural, electronic and magnetic properties of pulsed laser deposited thin films of Ni1-xCrxFe2O4 (x=0.02 and 0.05) on Si (111) and Si (100) substrates. The films reveal single phase, polycrystalline structure with larger grain size on Si (111) substrate than that on Si (100) substrate. Contrary to the expected inverse spinel structure, x-ray photoemission (XPS) studies reveal the mixed spinel structure. XPS results suggest that Ni and Fe ions exist in 2+ and 3+ states, respectively, and they exist in tetrahedral as well as octahedral sites. The deviation from the inverse spinel leads to modified magnetic properties. It is observed that saturation magnetization drastically drops compared to the expected saturation value for inverse spinel structure. Strain in the films and lattice distortion produced by the Cr doping also appear to influence the magnetic properties.

  15. Performance and Durability of Thin Film Thermocouple Array on a Porous Electrode.

    PubMed

    Guk, Erdogan; Ranaweera, Manoj; Venkatesan, Vijay; Kim, Jung-Sik

    2016-08-23

    Management of solid oxide fuel cell (SOFC) thermal gradients is vital to limit thermal expansion mismatch and thermal stress. However, owing to harsh operation conditions of SOFCs and limited available space in stack configuration, the number of techniques available to obtain temperature distribution from the cell surface is limited. The authors previously developed and studied a thermocouple array pattern to detect surface temperature distribution on an SOFC in open circuit conditions. In this study, the performance in terms of mechanical durability and oxidation state of the thin film thermoelements of the thermocouple array on the porous SOFC cathode is investigated. A thin-film multi-junction thermocouple array was sputter deposited using a magnetron sputter coater. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) characterisation techniques were carried out to understand characteristics of the thin film before and after temperature (20 °C-800 °C) measurement. Temperature readings from the sensor agreed well with the closely placed commercial thermocouple during heating segments. However, a sensor failure occurred at around 350 °C during the cooling segment. The SEM and XPS tests revealed cracks on the thin film thermoelements and oxidation to the film thickness direction.

  16. Performance and Durability of Thin Film Thermocouple Array on a Porous Electrode

    PubMed Central

    Guk, Erdogan; Ranaweera, Manoj; Venkatesan, Vijay; Kim, Jung-Sik

    2016-01-01

    Management of solid oxide fuel cell (SOFC) thermal gradients is vital to limit thermal expansion mismatch and thermal stress. However, owing to harsh operation conditions of SOFCs and limited available space in stack configuration, the number of techniques available to obtain temperature distribution from the cell surface is limited. The authors previously developed and studied a thermocouple array pattern to detect surface temperature distribution on an SOFC in open circuit conditions. In this study, the performance in terms of mechanical durability and oxidation state of the thin film thermoelements of the thermocouple array on the porous SOFC cathode is investigated. A thin-film multi-junction thermocouple array was sputter deposited using a magnetron sputter coater. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) characterisation techniques were carried out to understand characteristics of the thin film before and after temperature (20 °C–800 °C) measurement. Temperature readings from the sensor agreed well with the closely placed commercial thermocouple during heating segments. However, a sensor failure occurred at around 350 °C during the cooling segment. The SEM and XPS tests revealed cracks on the thin film thermoelements and oxidation to the film thickness direction. PMID:27563893

  17. Growth of ultra-thin TiO 2 films by spray pyrolysis on different substrates

    NASA Astrophysics Data System (ADS)

    Oja Acik, I.; Junolainen, A.; Mikli, V.; Danilson, M.; Krunks, M.

    2009-12-01

    In the present study TiO 2 films were deposited by spray pyrolysis method onto ITO covered glass and Si (1 0 0) substrates. The spray solution containing titanium(IV) isopropoxide, acetylacetone and ethanol was sprayed at a substrate temperature of 450 °C employing 1-125 spray pulses (1 s spray and 30 s pause). According to AFM, continuous coverage of ITO and Si substrates with TiO 2 layer is formed by 5-10 and below 5 spray pulses, respectively. XPS studies revealed that TiO 2 film growth on Si substrate using up to 4 spray pulses follows 2D or layer-by-layer-growth. Above 4 spray pulses, 3D or island growth becomes dominant irrespective of the substrate. Only 50 spray pulses result in TiO 2 layer with the thickness more than XPS measurement escape depth as any signal from the substrate could not be detected. TiO 2 grain size remains 30 nm on ITO and increases from 10-20 nm to 50-100 nm on Si substrate with the number of spray pulses from 1 to 125.

  18. In situ observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth.

    PubMed

    Patera, Laerte L; Africh, Cristina; Weatherup, Robert S; Blume, Raoul; Bhardwaj, Sunil; Castellarin-Cudia, Carla; Knop-Gericke, Axel; Schloegl, Robert; Comelli, Giovanni; Hofmann, Stephan; Cepek, Cinzia

    2013-09-24

    The key atomistic mechanisms of graphene formation on Ni for technologically relevant hydrocarbon exposures below 600 °C are directly revealed via complementary in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. For clean Ni(111) below 500 °C, two different surface carbide (Ni2C) conversion mechanisms are dominant which both yield epitaxial graphene, whereas above 500 °C, graphene predominantly grows directly on Ni(111) via replacement mechanisms leading to embedded epitaxial and/or rotated graphene domains. Upon cooling, additional carbon structures form exclusively underneath rotated graphene domains. The dominant graphene growth mechanism also critically depends on the near-surface carbon concentration and hence is intimately linked to the full history of the catalyst and all possible sources of contamination. The detailed XPS fingerprinting of these processes allows a direct link to high pressure XPS measurements of a wide range of growth conditions, including polycrystalline Ni catalysts and recipes commonly used in industrial reactors for graphene and carbon nanotube CVD. This enables an unambiguous and consistent interpretation of prior literature and an assessment of how the quality/structure of as-grown carbon nanostructures relates to the growth modes.

  19. Flame retardancy and thermal behavior of intumescent flame-retardant EVA composites with an efficient triazine-based charring agent

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Ma, Wen; Wu, Xiao; Qian, Lijun; Jiang, Shan

    2018-04-01

    Intumescent flame retardant (IFR) EVA composites were prepared based on a hyperbranched triazine charring-foaming agent (HTCFA) and ammonium polyphosphate (APP). The synergistic effect of HTCFA and APP on the flame retardancy and thermal behavior of the composites were investigated through flammability tests, cone calorimeter measurements, thermogravimetric analysis (TGA) including evolved gas analysis (TG-IR) and residue analysis (Fourier transform infrared (FTIR), laser Raman spectroscopy (LRS), x-ray Photoelectron Spectroscopy (XPS) and scanning electron microscopy (SEM)). The flammability test results showed HTCFA/APP (1/3) system presented the best synergistic effect in flame-retardant EVA composites with the highest LOI value and UL-94 V-0 rating. As for cone calorimeter results, IFR changed the combustion behavior of EVA and resulted in remarkable decrease of flammability and smoke product. TGA results showed the synergistic effect between APP and HTCFA could strengthen the char-forming ability of composites. TG-IR results indicated the melt viscosities and gas release with increasing temperature were well-correlated for EVA/IFR composite. The residue analysis results from SEM, LRS, FT-IR and XPS revealed IFR promoted forming more compact graphitic char layer, connected by rich P–O–C and P–N structures.

  20. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teyssedre, G., E-mail: gilbert.teyssedre@laplace.univ-tlse.fr; Laurent, C.; CNRS, LAPLACE, F-31062 Toulouse

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are modelmore » of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.« less

  1. Mass gain of glaciers in Lahaul and Spiti region (North India) during the nineties revealed by in-situ and satellite geodetic measurements

    NASA Astrophysics Data System (ADS)

    Vincent, C.; Ramanathan, A.; Wagnon, P.; Dobhal, D. P.; Linda, A.; Berthier, E.; Sharma, P.; Arnaud, Y.; Azam, M. F.; Jose, P. G.; Gardelle, J.

    2012-09-01

    The volume change of Chhota Shigri Glacier (India, 32° N) between 1988 and 2010 has been determined using in-situ geodetic measurements. This glacier has experienced only a slight mass loss over the last 22 yr (-3.8 ± 1.8 m w.e.). Using satellite digital elevation models (DEM) differencing and field measurements, we measure a negative mass balance (MB) between 1999 and 2011 (-4.7 ± 1.8 m w.e.). Thus, we deduce a positive MB between 1988 and 1999 (+1.0 ± 2.5 m w.e.). Furthermore, satellite DEM differencing reveals a good correspondence between the MB of Chhota Shigri Glacier and the MB of an over 2000 km2 glaciarized area in the Lahaul and Spiti region during 1999-2011. We conclude that there has been no large ice wastage in this region over the last 22 yr, ice mass loss being limited to the last decade. This contrasts to the most recent compilation of MB data in the Himalayan range that indicates ice wastage since 1975, accelerating after 1990. For the rest of western Himalaya, available observations of glacier MBs are too sparse and discontinuous to provide a clear and relevant regional pattern of glacier volume change over the last two decades.

  2. X-ray photoelectron spectroscopy and atomic force microscopy characterization of the effects of etching Zn xCd 1- xTe surfaces

    NASA Astrophysics Data System (ADS)

    George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Burger, A.; Collins, W. E.; Silberman, E.

    1993-10-01

    X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was used for the first time to characterize the chemical composition of modified surfaces of Zn xCd 1- xTe single crystals. These surface treatments were selected for their relevance to device preparation procedures. The XPS peaks indicated an increase of the tellurium and a depletion of the cadmium concentrations upon etching in bromine methanol solution. AFM revealed the formation of pronounced Te inclusions. Higher x values correlated with a decrease in residual bromine left on the surface, while cut and polished samples had higher oxide concentrations and increased bromination of the surface than cleaved samples.

  3. Modification of Wetting Properties of PMMA by Immersion Plasma Ion Implantation

    NASA Astrophysics Data System (ADS)

    Mireault, N.; Ross, G. G.

    Advancing and receding contact angles below 5° have been obtained on PMMA surfaces with the implantation of argon and oxygen ions. The ion implantations were performed by means of the Immersion Plasma Ion Implantation (IPII) technique, a hybrid between ion beams and immersion plasmas. Characterization of treated PMMA surfaces by means of XPS and its combination with chemical derivatization (CD-XPS) have revealed the depletion of oxygen and the creation of dangling bonds, together with the formation of new chemical functions such as -OOH, -COOH and C=C. These observations provide a good explanation for the strong increase of the wetting properties of the PMMA surfaces.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pragati, E-mail: pkumar.phy@gmail.com; Department of Physics and Astrophysics, University of Delhi, Delhi, 110 007; Saxena, Nupur

    This work shows the influence of Ag concentration on structural properties of pulsed laser deposited nanocrystalline CdS thin film. X-ray photoelectron spectroscopy (XPS) studies confirm the dopant concentration in CdS films and atomic concentration of elements. XPS studies show that the samples are slightly sulfur deficient. GAXRD scan reveals the structural phase transformation from cubic to hexagonal phase of CdS without appearance of any phase of CdO, Ag{sub 2}O or Ag{sub 2}S suggesting the substitutional doping of Ag ions. Photoluminescence studies illustrate that emission intensity increases with increase in dopant concentration upto 5% and then decreases for higher dopant concentration.

  5. Investigation of significantly high barrier height in Cu/GaN Schottky diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, Manjari, E-mail: meghagarg142@gmail.com; Kumar, Ashutosh; Singh, R.

    2016-01-15

    Current-voltage (I-V) measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu) Schottky diodes fabricated on Gallium Nitride (GaN) epitaxial films. An ideality factor of 1.7 was found at room temperature (RT), which indicated deviation from thermionic emission (TE) mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE) mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS) was used to investigate the plausible reason for observing Schottky barrier height (SBH) that is significantlymore » higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu{sub 2}O) layer at the interface between Cu and GaN. With Cu{sub 2}O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu{sub 2}O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.« less

  6. Protein adsorption and biomimetic mineralization behaviors of PLL-DNA multilayered films assembled onto titanium

    NASA Astrophysics Data System (ADS)

    Gao, Wenli; Feng, Bo; Ni, Yuxiang; Yang, Yongli; Lu, Xiong; Weng, Jie

    2010-11-01

    Titanium and its alloys are frequently used as surgical implants in load bearing situations, such as hip prostheses and dental implants, owing to their biocompatibility, mechanical and physical properties. In this paper, a layer-by-layer (LBL) self-assembly technique, based on the polyelectrolyte-mediated electrostatic adsorption of poly-L-lysine (PLL) and DNA, was used to the formation of multilayer on titanium surfaces. Then bovine serum albumin (BSA) adsorption and biomimetic mineralization of modified surfaces were studied. The chemical composition and wettability of assembled substrates were investigated by X-ray photoelectron spectroscopy (XPS), fluorescence microscopy and water contact angle measurement, respectively. The XPS analysis indicated that the layers were assembled successfully through electrostatic attractions. The measurement with ultraviolet (UV) spectrophotometer revealed that the LBL films enhanced ability of BSA adsorption onto titanium. The adsorption quantity of BSA on the surface terminated with PLL was higher than that of the surface terminated with DNA, and the samples of TiOH/P/D/P absorbed BSA most. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that samples of assembled PLL or/and DNA had better bioactivity in inducing HA formation. Thus the assembling of PLL and DNA onto the surface of titanium in turn via a layer-by-layer self-assembly technology can improve the bioactivity of titanium.

  7. Homogeneously dispersed CeO2 nanoparticles on exfoliated hexaniobate nanosheets

    NASA Astrophysics Data System (ADS)

    Marques, Thalles M. F.; Strayer, Megan E.; Ghosh, Anupama; Silva, Alexandre; Ferreira, Odair P.; Fujisawa, Kazunori; Alves da Cunha, Jose R.; Abreu, Guilherme J. P.; Terrones, Mauricio; Mallouk, Thomas E.; Viana, Bartolomeu C.

    2017-12-01

    Hexaniobate nanosheets derived from the parent compound K4Nb6O17 have been decorated with CeO2 nanoparticles by ion exchange with aqueous cerium (IV) solution. Very homogeneous CeO2 nanoparticle decoration of the hexaniobate sheets can be achieved by this method and the resulting composites may absorb visible light. HRTEM images show that ∼3.0 nm diameter CeO2 nanoparticles adhere to hexaniobate nanosheets that are exfoliated and then restacked prior to Ce deposition. The interfacial interaction between CeO2 nanoparticles and nanosheets would be due to an electrostatic attraction mechanism. Raman and XRD measurements have given strong evidence that CeO2 nanoparticles have fluorite structure. EDS, FTIR and XPS results suggest almost complete exchange of TBA+ and K+ by Ce4+. Cerium ion exchange on the acid exchanged parent compound, H2.9K1.1Nb6O17, revealed that the extent of Ce ion exchange is much greater in case of nanosheets, which may be rationalized by the larger surface area available after exfoliation. XPS measurements show that the ratio of Ce4+/Ce3+ is around 4.4, in agreement with the formation of fluorite structure (CeO2). Thus, these CeO2 nanoparticle/nanosheet composites may be useful for catalytic processes.

  8. Titanium composite conversion coating formation on CRS In the presence of Mo and Ni ions: Electrochemical and microstructure characterizations

    NASA Astrophysics Data System (ADS)

    Eivaz Mohammadloo, H.; Sarabi, A. A.

    2016-11-01

    There have been an increasing interest in finding a replacement for the chromating process due to environmental and health concerns. Hence, in this study Chrome-free chemical conversion coatings were deposited on the surface of cold-rolled steel (CRS) on the basis of Titanium (TiCC), Titanium-Nickel (TiNiCC) and titanium-molybdate (TiMoCC) based conversion coating solutions. The surface characterization was performed by field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measuring device. Also, the corrosion behavior was assessed by the means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. FESEM and AFM study show that the TiNiCC is denser and more uniform than that TiCC and TiMoCC since, TiMoCC conversion coating presents network feature, and there were abundant micro-cracks on the surface of the coating. XPS results confirmed the precipitation of Ti and Ni oxide/hydroxide, Mn dioxide/trioxide on the surface of different Ti-based conversion coatings. Electrochemical results revealed that all Ti-based conversion coatings have better anti-corrosion properties than bare CRS. Moreover, TiNiCC treatment inhibited the corrosion of CRS to a significant degree (polarization resistance (Rp) = 5510 Ω cm2) in comparison with TiCC (Rp = 2705 Ω cm2) and TiMoCC (Rp = 805 Ω cm2).

  9. Effects of thermal annealing on the structural, mechanical, and tribological properties of hard fluorinated carbon films deposited by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Maia da Costa, M. E. H.; Baumvol, I. J. R.; Radke, C.; Jacobsohn, L. G.; Zamora, R. R. M.; Freire, F. L.

    2004-11-01

    Hard amorphous fluorinated carbon films (a-C:F) deposited by plasma enhanced chemical vapor deposition were annealed in vacuum for 30 min in the temperature range of 200-600 °C. The structural and compositional modifications were followed by several analytical techniques: Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Nanoidentation measurements and lateral force microscopy experiments were carried out in order to provide the film hardness and the friction coefficient, respectively. The internal stress and contact angle were also measured. RBS, ERDA, and XPS results indicate that both fluorine and hydrogen losses occur for annealing temperatures higher than 300 °C. Raman spectroscopy shows a progressive graphitization upon annealing, while the surface became slightly more hydrophobic as revealed by the increase of the contact angle. Following the surface wettability reduction, a decrease of the friction coefficient was observed. These results highlight the influence of the capillary condensation on the nanoscale friction. The film hardness and the internal stress are constant up to 300 °C and decrease for higher annealing temperatures, showing a direct correlation with the atomic density of the films. Since the thickness variation is negligible, the mass loss upon thermal treatment results in amorphous structures with a lower degree of cross-linking, explaining the deterioration of the mechanical properties of the a-C:F films.

  10. Tunable-color luminescence via energy transfer in NaCa13/18Mg5/18PO4:A (A = Eu2+/Tb3+/Mn2+, Dy3+) phosphors for solid state lighting.

    PubMed

    Li, Kai; Fan, Jian; Mi, Xiaoyun; Zhang, Yang; Lian, Hongzhou; Shang, Mengmeng; Lin, Jun

    2014-11-17

    A series of NaCa13/18Mg5/18PO4(NCMPO):A (A = Eu(2+)/Tb(3+)/Mn(2+), Dy(3+)) phosphors have been prepared by the high-temperature solid-state reaction method. The X-ray diffraction (XRD) and Rietveld refinement, X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), cathodoluminescence (CL), decay lifetimes, and PL quantum yields (QYs) were utilized to characterize the phosphors. The pure crystalline phase of as-prepared samples has been demonstrated via XRD measurement and Rietveld refinements. XPS reveals that the Eu(2+)/Tb(3+)/Mn(2+) can be efficiently doped into the crystal lattice. NCMPO:Eu(2+)/Tb(3+)/Mn(2+) phosphors can be effectively excited under UV radiation, which show tunable color from purple-blue to red including white emission based on energy transfer from Eu(2+) to Tb(3+)/Mn(2+) ions. Under low-voltage electron beam bombardment, the NCMPO:A (A = Eu(2+)/Tb(3+)/Mn(2+), Dy(3+)) display their, respectively, characteristic emissions with different colors, and the CL spectrum of NCMPO:0.04Tb(3+) has the comparable intensity to the ZnO:Zn commercial product. In addition, the calculated CIE coordinate of NCMPO:0.04Tb(3+) (0.252, 0.432) is more saturated than it (0.195, 0.417). These results reveal that NCMPO:A (A = Eu(2+)/Tb(3+)/Mn(2+), Dy(3+)) may be potential candidate phosphors for WLEDs and FEDs.

  11. Band alignments of different buffer layers (CdS, Zn(O,S), and In{sub 2}S{sub 3}) on Cu{sub 2}ZnSnS{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Chang; Liu, Fangyang; Song, Ning

    2014-04-28

    The heterojunctions of different n-type buffers, i.e., CdS, Zn(O,S), and In{sub 2}S{sub 3} on p-type Cu{sub 2}ZnSnS{sub 4} (CZTS) were investigated using X-ray Photoelectron Spectroscopy (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) Measurements. The band alignment of the heterojunctions formed between CZTS and the buffer materials was carefully measured. The XPS data were used to determine the Valence Band Offsets (VBO) of different buffer/CZTS heterojunctions. The Conduction Band Offset (CBO) was calculated indirectly by XPS data and directly measured by NEXAFS characterization. The CBO of the CdS/CZTS heterojunction was found to be cliff-like with CBO{sub XPS} = −0.24 ± 0.10 eV and CBO{submore » NEXAFS} = −0.18 ± 0.10 eV, whereas those of Zn(O,S) and In{sub 2}S{sub 3} were found to be spike-like with CBO{sub XPS} = 0.92 ± 0.10 eV and CBO{sub NEXAFS} = 0.87 ± 0.10 eV for Zn(O,S)/CZTS and CBO{sub XPS} = 0.41 ± 0.10 eV for In{sub 2}S{sub 3}/CZTS, respectively. The CZTS photovoltaic device using the spike-like In{sub 2}S{sub 3} buffer was found to yield a higher open circuit voltage (Voc) than that using the cliff-like CdS buffer. However, the CBO of In{sub 2}S{sub 3}/CZTS is slightly higher than the optimum level and thus acts to block the flow of light-generated electrons, significantly reducing the short circuit current (Jsc) and Fill Factor (FF) and thereby limiting the efficiency. Instead, the use of a hybrid buffer for optimization of band alignment is proposed.« less

  12. Dysprosium electrodeposition from a hexaalkylguanidinium-based ionic liquid.

    PubMed

    Berger, Claudia A; Arkhipova, Maria; Maas, Gerhard; Jacob, Timo

    2016-08-07

    The rare-earth element dysprosium (Dy) is an important additive that increases the magnetocrystalline anisotropy of neodymium magnets and additionally prevents from demagnetizing at high temperatures. Therefore, it is one of the most important elements for high-tech industries and is mainly used in permanent magnetic applications, for example in electric vehicles, industrial motors and direct-drive wind turbines. In an effort to develop a more efficient electrochemical technique for depositing Dy on Nd-magnets in contrast to commonly used costly physical vapor deposition, we investigated the electrochemical behavior of dysprosium(iii) trifluoromethanesulfonate in a custom-made guanidinium-based room-temperature ionic liquid (RTIL). We first examined the electrodeposition of Dy on an Au(111) model electrode. The investigation was carried out by means of cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). CV measurements revealed a large cathodic reduction peak, which corresponds to the growth of monoatomic high islands, based on STM images taken during the initial stages of deposition. XPS identified these deposited islands as dysprosium. A similar reduction peak was also observed on an Nd-Fe-B substrate, and positively identified as deposited Dy using XPS. Finally, we varied the concentration of the Dy precursor, electrolyte flow and temperature during Dy deposition and demonstrated that each of these parameters could be used to increase the thickness of the Dy deposit, suggesting that these parameters could be tuned simultaneously in a temperature-controlled flow cell to enhance the thickness of the Dy layer.

  13. Surface functionalization of thin-film diamond for highly stable and selective biological interfaces

    PubMed Central

    Stavis, Courtney; Clare, Tami Lasseter; Butler, James E.; Radadia, Adarsh D.; Carr, Rogan; Zeng, Hongjun; King, William P.; Carlisle, John A.; Aksimentiev, Aleksei; Bashir, Rashid; Hamers, Robert J.

    2011-01-01

    Carbon is an extremely versatile family of materials with a wide range of mechanical, optical, and mechanical properties, but many similarities in surface chemistry. As one of the most chemically stable materials known, carbon provides an outstanding platform for the development of highly tunable molecular and biomolecular interfaces. Photochemical grafting of alkenes has emerged as an attractive method for functionalizing surfaces of diamond, but many aspects of the surface chemistry and impact on biological recognition processes remain unexplored. Here we report investigations of the interaction of functionalized diamond surfaces with proteins and biological cells using X-ray photoelectron spectroscopy (XPS), atomic force microscopy, and fluorescence methods. XPS data show that functionalization of diamond with short ethylene glycol oligomers reduces the nonspecific binding of fibrinogen below the detection limit of XPS, estimated as > 97% reduction over H-terminated diamond. Measurements of different forms of diamond with different roughness are used to explore the influence of roughness on nonspecific binding onto H-terminated and ethylene glycol (EG)-terminated surfaces. Finally, we use XPS to characterize the chemical stability of Escherichia coli K12 antibodies on the surfaces of diamond and amine-functionalized glass. Our results show that antibody-modified diamond surfaces exhibit increased stability in XPS and that this is accompanied by retention of biological activity in cell-capture measurements. Our results demonstrate that surface chemistry on diamond and other carbon-based materials provides an excellent platform for biomolecular interfaces with high stability and high selectivity. PMID:20884854

  14. Revealing physical interaction networks from statistics of collective dynamics

    PubMed Central

    Nitzan, Mor; Casadiego, Jose; Timme, Marc

    2017-01-01

    Revealing physical interactions in complex systems from observed collective dynamics constitutes a fundamental inverse problem in science. Current reconstruction methods require access to a system’s model or dynamical data at a level of detail often not available. We exploit changes in invariant measures, in particular distributions of sampled states of the system in response to driving signals, and use compressed sensing to reveal physical interaction networks. Dynamical observations following driving suffice to infer physical connectivity even if they are temporally disordered, are acquired at large sampling intervals, and stem from different experiments. Testing various nonlinear dynamic processes emerging on artificial and real network topologies indicates high reconstruction quality for existence as well as type of interactions. These results advance our ability to reveal physical interaction networks in complex synthetic and natural systems. PMID:28246630

  15. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators

    NASA Astrophysics Data System (ADS)

    Hilker, Timon A.; Salomon, Guillaume; Grusdt, Fabian; Omran, Ahmed; Boll, Martin; Demler, Eugene; Bloch, Immanuel; Gross, Christian

    2017-08-01

    Topological phases, like the Haldane phase in spin-1 chains, defy characterization through local order parameters. Instead, nonlocal string order parameters can be employed to reveal their hidden order. Similar diluted magnetic correlations appear in doped one-dimensional lattice systems owing to the phenomenon of spin-charge separation. Here we report on the direct observation of such hidden magnetic correlations via quantum gas microscopy of hole-doped ultracold Fermi-Hubbard chains. The measurement of nonlocal spin-density correlation functions reveals a hidden finite-range antiferromagnetic order, a direct consequence of spin-charge separation. Our technique, which measures nonlocal order directly, can be readily extended to higher dimensions to study the complex interplay between magnetic order and density fluctuations.

  16. Effect of substrate surface treatment on electrochemically assisted photocatalytic activity of N-S co-doped TiO2 films

    NASA Astrophysics Data System (ADS)

    Parada-Gamboa, N. J.; Pedraza-Avella, J. A.; Meléndez, A. M.

    2017-01-01

    To investigate whether different metal surface treatments, performed on meshes of stainless steel 304 and titanium, affect the photocatalytic activity (PCA) of supported modified anodic TiO2 films, metallic substrates were coated with titanium isopropoxide sol-gel precursor modified with thiourea. Substrates were pretreated by some of the following techniques: a) sandblasting, b) pickling, c) hydroxylation and d) passivation. The as-prepared electrode materials were characterized by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and voltammetry in the dark and under light UVA irradiation. PCA of modified N-S-TiO2 electrodes was evaluated by electrochemically assisted photocatalytic degradation of methyl orange. The results of XPS revealed that N and S were incorporated into the lattice of TiO2. FESEM showed that surface roughness and thickness of films varies depending on surface treatment. Voltammetric and XPS characterization of N-S co-doped TiO2 films supported on stainless steel revealed that their surface contains alpha-Fe2O3/FeOOH. Accordingly, iron contamination of the films coming from stainless steel was detrimental to the degradation of methyl orange. Prior to sol-gel coating process, sandblasting followed by nitric acid passivation for stainless steel or hydrofluoric acid pickling process in the case of titanium improved the PCA of N-S co-doped TiO2 films.

  17. U-Zr alloy: XPS and TEM study of surface passivation

    NASA Astrophysics Data System (ADS)

    Paukov, M.; Tkach, I.; Huber, F.; Gouder, T.; Cieslar, M.; Drozdenko, D.; Minarik, P.; Havela, L.

    2018-05-01

    Surface reactivity of Uranium metal is an important factor limiting its practical applications. Bcc alloys of U with various transition metals are much less reactive than pure Uranium. So as to specify the mechanism of surface protection, we have been studying the U-20 at.% Zr alloy by photoelectron spectroscopy and transmission electron microscopy. The surface was studied in as-obtained state, in various stages of surface cleaning, and during an isochronal annealing cycle. The analysis based on U-4f, Zr-3p, and O-1 s spectra shows that a Zr-rich phase segregates at the surface at temperatures exceeding 550 K, which provides a self-assembled coating. The comparison of oxygen exposure of the stoichiometric and coated surfaces shows that the coating is efficiently preventing the oxidation of uranium even at elevated temperatures. The coating can be associated with the UZr2+x phase. TEM study indicated that the coating is about 20 nm thick. For the clean state, the U-4f core-level lines of the bcc alloy are practically identical to those of α-U, revealing similar delocalization of the 5f electronic states.

  18. Investigation of the interfacial reaction between metal and fluorine-contained polyimides

    NASA Astrophysics Data System (ADS)

    Yang, Ching-Yu; Chen, J. S.; Hsu, S. L. C.

    2005-07-01

    In this work, thin metal films (Cr and Ta) were deposited on fluorine-contained polyimides, 6FDA-BisAAF, and 6FDA-PPD. The chemical states of the metal/polyimide samples were characterized by using x-ray photoelectron spectroscopy (XPS). XPS analysis reveals that metal-C, C-O, and metal-O bondings are present in metallized 6FDA-BisAAF and 6FDA-PPD. C-F bonds are observed in bare 6FDA-BisAAF and 6FDA-PPD however, they are not seen in the metallized samples. Disappearance of the C-F bonding is attributed to the disruption of CF3 side groups from the main chains of 6FDA-BisAAF and 6FDA-PPD when the chains are exposed to the plasma during the metal deposition. Nevertheless, the disruption of CF3 side groups also creates sites for the formation of metal-C or C-O bondings, which provide a positive adhesion strength at the metal/polyimide interface, as revealed by the tape test.

  19. Facile fabrication of BiVO4 nanofilms with controlled pore size and their photoelectrochemical performances

    NASA Astrophysics Data System (ADS)

    Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu

    2015-12-01

    We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06584d

  20. Dielectric relaxation and electronic structure of double perovskite Sr{sub 2}FeSbO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Alo; Sinha, T. P.; Shannigrahi, Santiranjan

    2008-09-15

    The dielectric property and the electronic structure of a double perovskite, Sr{sub 2}FeSbO{sub 6} (SFS) synthesized by solid state reaction technique are investigated. The x-ray diffraction of the sample taken at room temperature shows cubic phase. The scanning electron micrograph of the sample also confirms the formation of the single phase of the material. We have measured the capacitance and conductance of SFS in a frequency range from 50 Hz to 1 MHz and in a temperature range from 163 to 463 K. A relaxation is observed in the entire temperature range as a gradual decrease in {epsilon}{sup '}({omega}) andmore » as a broad peak in {epsilon}{sup ''}({omega}). The frequency dependent electrical data are analyzed in the framework of conductivity and electric modulus formalisms. The frequencies corresponding to the maxima of the imaginary electric modulus at various temperatures are found to obey an Arrhenius law with an activation energy of 0.74 eV. The Cole-Cole model is used to study the dielectric relaxation of SFS. The scaling behavior of imaginary part of electric modulus suggests that the relaxation describes the same mechanism at various temperatures. The frequency dependent conductivity spectra follow the universal power law. The electronic structure of the SFS is studied by x-ray photoemission spectroscopy (XPS). Its valence band consists mainly of the oxygen 2p-states hybridized with the Fe 3d-states. The XPS spectra are investigated by the first principles full potential linearized augmented plane wave method. The angular momentum projected total and partial density of states obtained from first principles calculation are used to analyze the XPS results of the sample. The calculated electronic structures of SFS are qualitatively similar to those of the XPS spectra in terms of spectral features, energy positions, and relative intensities. The electronic structure calculation reveals that the electrical properties of SFS are dominated by the interaction

  1. Schottky Barrier Height of Pd/MoS2 Contact by Large Area Photoemission Spectroscopy.

    PubMed

    Dong, Hong; Gong, Cheng; Addou, Rafik; McDonnell, Stephen; Azcatl, Angelica; Qin, Xiaoye; Wang, Weichao; Wang, Weihua; Hinkle, Christopher L; Wallace, Robert M

    2017-11-08

    MoS 2 , as a model transition metal dichalcogenide, is viewed as a potential channel material in future nanoelectronic and optoelectronic devices. Minimizing the contact resistance of the metal/MoS 2 junction is critical to realizing the potential of MoS 2 -based devices. In this work, the Schottky barrier height (SBH) and the band structure of high work function Pd metal on MoS 2 have been studied by in situ X-ray photoelectron spectroscopy (XPS). The analytical spot diameter of the XPS spectrometer is about 400 μm, and the XPS signal is proportional to the detection area, so the influence of defect-mediated parallel conduction paths on the SBH does not affect the measurement. The charge redistribution by Pd on MoS 2 is detected by XPS characterization, which gives insight into metal contact physics to MoS 2 and suggests that interface engineering is necessary to lower the contact resistance for the future generation electronic applications.

  2. Surface characterization of LDEF materials

    NASA Astrophysics Data System (ADS)

    Wightman, J. P.; Grammer, Holly Little

    1993-10-01

    The NASA Long Duration Exposure Facility (LDEF), a passive experimental satellite, was placed into low-Earth orbit by the Shuttle Challenger in Apr. 1984. The LDEF spent an unprecedented 69 months in space. The flight and recovery of the LDEF provided a wealth of information on the longterm space environmental effects of a variety of materials exposed to the low-Earth orbit environment. Surface characterization of LDEF materials included polymers, composites, thermal control paints, and aluminum. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), and contact angle analysis were used to document changes in both the surface composition and surface chemistry of these materials. Detailed XPS analysis of the polymer systems, such as Kapton, polyimide polysiloxane copolymers, and fluorinated ethylene propylene thermal blankets on the backside of the LDEF revealed significant changes in both the surface composition and surface chemistry as a result of exposure to the low-Earth orbit environment. Polymer systems such as Kapton, polyimide polysiloxane copolymers, and polysulfone showed a common trend of decreasing carbon content and increasing oxygen content with respect to the control sample. Carbon 1s curve fit XPS analysis of the composite samples, in conjunction with SEM photomicrographs, revealed significant ablation of the polymer matrix resin to expose the carbon fibers of the composite during exposure to the space environment. Surface characterization of anodized aluminum tray clamps, which were located at regular intervals over the entire LDEF frame, provided the first results to evaluate the extent of contamination with respect to position on the LDEF. The XPS results clearly showed that the amount and state of both silicon and fluorine contamination were directly dependent upon the position of the tray clamp on the LDEF.

  3. Surface characterization of LDEF materials

    NASA Technical Reports Server (NTRS)

    Wightman, J. P.; Grammer, Holly Little

    1993-01-01

    The NASA Long Duration Exposure Facility (LDEF), a passive experimental satellite, was placed into low-Earth orbit by the Shuttle Challenger in Apr. 1984. The LDEF spent an unprecedented 69 months in space. The flight and recovery of the LDEF provided a wealth of information on the longterm space environmental effects of a variety of materials exposed to the low-Earth orbit environment. Surface characterization of LDEF materials included polymers, composites, thermal control paints, and aluminum. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), and contact angle analysis were used to document changes in both the surface composition and surface chemistry of these materials. Detailed XPS analysis of the polymer systems, such as Kapton, polyimide polysiloxane copolymers, and fluorinated ethylene propylene thermal blankets on the backside of the LDEF revealed significant changes in both the surface composition and surface chemistry as a result of exposure to the low-Earth orbit environment. Polymer systems such as Kapton, polyimide polysiloxane copolymers, and polysulfone showed a common trend of decreasing carbon content and increasing oxygen content with respect to the control sample. Carbon 1s curve fit XPS analysis of the composite samples, in conjunction with SEM photomicrographs, revealed significant ablation of the polymer matrix resin to expose the carbon fibers of the composite during exposure to the space environment. Surface characterization of anodized aluminum tray clamps, which were located at regular intervals over the entire LDEF frame, provided the first results to evaluate the extent of contamination with respect to position on the LDEF. The XPS results clearly showed that the amount and state of both silicon and fluorine contamination were directly dependent upon the position of the tray clamp on the LDEF.

  4. Measurement Challenges for Carbon Nanotube Material

    NASA Technical Reports Server (NTRS)

    Sosa, Edward; Arepalli, Sivaram; Nikolaev, Pasha; Gorelik, Olga; Yowell, Leonard

    2006-01-01

    The advances in large scale applications of carbon nanotubes demand a reliable supply of raw and processed materials. It is imperative to have a consistent quality control of these nanomaterials to distinguish material inconsistency from the modifications induced by processing of nanotubes for any application. NASA Johnson Space Center realized this need five years back and started a program to standardize the characterization methods. The JSC team conducted two workshops (2003 and 2005) in collaboration with NIST focusing on purity and dispersion measurement issues of carbon nanotubes [1]. In 2004, the NASA-JSC protocol was developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA [2]. This protocol is routinely used by several researchers across the world as a first step in characterizing raw and purified carbon nanotubes. A suggested practice guide consisting of detailed chapters on TGA, Raman, electron microscopy and NIR absorption is in the final stages and is undergoing revisions with input from the nanotube community [3]. The possible addition of other techniques such as XPS, and ICP to the existing protocol will be presented. Recent activities at ANSI and ISO towards implementing these protocols as nanotube characterization standards will be discussed.

  5. Identification of a BrOOO- intermediate species in the ozonolysis of bromide at the liquid/vapor interface from liquid jet XPS

    NASA Astrophysics Data System (ADS)

    Chen, Shuzhen; Artiglia, Luca; Orlando, Fabrizio; Corral-Arroyo, Pablo; Edebeli, Jacinta; Ammann, Markus

    2017-04-01

    Oxidation of bromide by gas phase ozone (O3) in the absence of photochemistry is believed to be one of the important dark reactions to produce HOBr as the starting point of the multiphase cycling reaction mechanisms that release bromide out of sea water, sea spray or marine aerosols from aqueous solution that later drive O3 depleting chemistry in the troposphere [1]. The reaction of bromide with O3 occurs through an acid catalyzed mechanism involving a BrOOO- complex as an intermediate [2]. Slow oxidation of bromide by O3 in the bulk aqueous phase is of limited relevance; previous kinetic experiments have suspected the reaction to be enhanced at the surface of aqueous solutions. Thus, identifying BrOOO- at the interface would be a major step to understanding the multiphase oxidation of bromide with O3. Here, we provide a direct experimental evidence for the formation of a BrOOO- reaction intermediate at the surface by investigating the reaction of aqueous solutions NaBr with gas phase O3 after millisecond time scale exposure using the surface sensitive in situ liquid jet X-ray photoelectron spectroscopy (XPS) at the Swiss Light Source (SLS). We acquired Br 3d core level spectra of 0.125 M NaBr solution in presence and absence of ozone in the gas phase. We found a new feature with a peak position shifted towards higher binding energy (by ˜0.7 eV) compared to Br-, which was clearly different from the Br 3d core levels spectra of hypobromite and bromate measured with reference solutions. Our results suggest the appearance of the formation of the BrOOO- reaction intermediate as a new component, in agreement with theoretical calculations of the Br- ozonolysis mechanism [3]. Additionally, by varying the photoelectron kinetic energy and thus probe depth via variation of the probing photon energy, the new feature appears to be present near the liquid/vapor interface. Besides, kinetic experiments for the reaction of O3 with bromide are ongoing to investigate the dependence

  6. X-ray photoelectron spectroscopic analysis of rice kernels and flours: Measurement of surface chemical composition.

    PubMed

    Nawaz, Malik A; Gaiani, Claire; Fukai, Shu; Bhandari, Bhesh

    2016-12-01

    The objectives of this study were to evaluate the ability of X-ray photoelectron spectroscopy (XPS) to differentiate rice macromolecules and to calculate the surface composition of rice kernels and flours. The uncooked kernels and flours surface composition of the two selected rice varieties, Thadokkham-11 (TDK11) and Doongara (DG) demonstrated an over-expression of lipids and proteins and an under-expression of starch compared to the bulk composition. The results of the study showed that XPS was able to differentiate rice polysaccharides (mainly starch), proteins and lipids in uncooked rice kernels and flours. Nevertheless, it was unable to distinguish components in cooked rice samples possibly due to complex interactions between gelatinized starch, denatured proteins and lipids. High resolution imaging methods (Scanning Electron Microscopy and Confocal Laser Scanning Microscopy) were employed to obtain complementary information about the properties and location of starch, proteins and lipids in rice kernels and flours. Copyright © 2016. Published by Elsevier Ltd.

  7. Revealing the Earth's mantle from the tallest mountains using the Jinping Neutrino Experiment.

    PubMed

    Šrámek, Ondřej; Roskovec, Bedřich; Wipperfurth, Scott A; Xi, Yufei; McDonough, William F

    2016-09-09

    The Earth's engine is driven by unknown proportions of primordial energy and heat produced in radioactive decay. Unfortunately, competing models of Earth's composition reveal an order of magnitude uncertainty in the amount of radiogenic power driving mantle dynamics. Recent measurements of the Earth's flux of geoneutrinos, electron antineutrinos from terrestrial natural radioactivity, reveal the amount of uranium and thorium in the Earth and set limits on the residual proportion of primordial energy. Comparison of the flux measured at large underground neutrino experiments with geologically informed predictions of geoneutrino emission from the crust provide the critical test needed to define the mantle's radiogenic power. Measurement at an oceanic location, distant from nuclear reactors and continental crust, would best reveal the mantle flux, however, no such experiment is anticipated. We predict the geoneutrino flux at the site of the Jinping Neutrino Experiment (Sichuan, China). Within 8 years, the combination of existing data and measurements from soon to come experiments, including Jinping, will exclude end-member models at the 1σ level, define the mantle's radiogenic contribution to the surface heat loss, set limits on the composition of the silicate Earth, and provide significant parameter bounds for models defining the mode of mantle convection.

  8. Synthesis of TiN/a-Si3N4 thin film by using a Mather type dense plasma focus system

    NASA Astrophysics Data System (ADS)

    Hussain, T.; R., Ahmad; Khalid, N.; A. Umar, Z.; Hussnain, A.

    2013-05-01

    A 2.3 kJ Mather type pulsed plasma focus device was used for the synthesis of a TiN/a-Si3N4 thin film at room temperature. The film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The XRD pattern confirms the growth of polycrystalline TiN thin film. The XPS results indicate that the synthesized film is non-stoichiometric and contains titanium nitride, silicon nitride, and a phase of silicon oxy-nitride. The SEM and AFM results reveal that the surface of the synthesized film is quite smooth with 0.59 nm roughness (root-mean-square).

  9. Growth, Crystal Structure, Theoretical Analysis and Properties of Te4+-Doped KTiOPO4

    NASA Astrophysics Data System (ADS)

    Liu, Lintao; Yao, Qian; Zhang, Junying; Dong, Weimin; Li, Jing; Wang, Jiyang; Boughton, Robert I.

    2018-04-01

    A single crystal of Te4+-doped KTiOPO4(Te:KTP) has been grown by the flux method. The electronic structure and density of states of KTiOPO4 (KTP) and Te:KTP were calculated from first principles. As the results reveal, there is no change in the space group or lattice structure of Te:KTP, but that some increase in lattice parameters occurred. The chemical composition of Te:KTP was analyzed using x-ray photoelectron spectroscopy (XPS). The possible existence of Ti3+ has been evaluated by measuring the electron paramagnetic resonance spectrum, and the results reveal that the ion is absent from this crystal. It was observed that Te4+ doping reduces the conductivity of the crystal from measurements of its conductivity at different temperatures and frequencies, indicating that Te:KTP has excellent electro-optical properties. The effect of Te4+ doping on the second harmonic generation in KTP was also studied. The thermal expansion, thermal diffusivity, thermal conductivity and specific heat capacity of KTP and Te:KTP were determined.

  10. Sorption of Eu(III) on humic acid or fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS, and batch techniques.

    PubMed

    Tan, X L; Wang, X K; Geckeis, H; Rabung, Th

    2008-09-01

    To identify the effect of humic acid (HA) and fulvic acid (FA) on the sorption mechanism of Eu(III) on organic--inorganic colloids in the environment at a molecular level, surface adsorbed/ complexed Eu(III) on hydrous alumina, HA-, and FA-hydrous alumina hybrids were characterized by using X-ray photoelectron spectroscopy (XPS) and time-resolved laser fluorescence spectroscopy (TRLFS). The experiments were performed in 0.1 mol/L KNO3 or 0.1 mol/L NaClO4 under ambient conditions. The pH values were varied between 2 and 11 at a fixed Eu(III) concentration of 6.0 x 10(-7) mol/L and 4.3 x 10(-5) mol/L. The different Eu(III)/FA(HA)/hydrous alumina complexes were characterized by their fluorescence emission spectra ((5D0-F1)/ (5D0 --> 7F2)) and binding energy of Eu(III). Inner-sphere surface complexation may contribute mainly to Eu(III) sorption on hydrous alumina, and a ternary surface complex is formed at the HA/ FA-hydrous alumina hybrid surfaces. The sorption and species of Eu(III) in ternary Eu-HA/FA-hydrous alumina systems are not dominated by either HA/FA or hydrous alumina, but are dominated by both HA/FA and hydrous alumina. The results are important for understanding the sorption mechanisms and the nature of surface adsorbed Eu(III) species and trivalent chemical homologues of Eu(III) in the natural environment.

  11. Geochemistry of the lunar highlands as revealed by measurements of thermal neutrons.

    PubMed

    Peplowski, Patrick N; Beck, Andrew W; Lawrence, David J

    2016-03-01

    Thermal neutron emissions from the lunar surface provide a direct measure of bulk elemental composition that can be used to constrain the chemical properties of near-surface (depth <1 m) lunar materials. We present a new calibration of the Lunar Prospector thermal neutron map, providing a direct link between measured count rates and bulk elemental composition. The data are used to examine the chemical and mineralogical composition of the lunar surface, with an emphasis on constraining the plagioclase concentration across the highlands. We observe that the regions of lowest neutron absorption, which correspond to estimated plagioclase concentrations of >85%, are generally associated with large impact basins and are colocated with clusters of nearly pure plagioclase identified with spectral reflectance data.

  12. Geochemistry of the lunar highlands as revealed by measurements of thermal neutrons

    PubMed Central

    Beck, Andrew W.; Lawrence, David J.

    2016-01-01

    Abstract Thermal neutron emissions from the lunar surface provide a direct measure of bulk elemental composition that can be used to constrain the chemical properties of near‐surface (depth <1 m) lunar materials. We present a new calibration of the Lunar Prospector thermal neutron map, providing a direct link between measured count rates and bulk elemental composition. The data are used to examine the chemical and mineralogical composition of the lunar surface, with an emphasis on constraining the plagioclase concentration across the highlands. We observe that the regions of lowest neutron absorption, which correspond to estimated plagioclase concentrations of >85%, are generally associated with large impact basins and are colocated with clusters of nearly pure plagioclase identified with spectral reflectance data. PMID:27830110

  13. Investigating the complex mechanism of B migration in a magnetic-tunnel-junction trilayer structure—a combined study using XPS and TOF-SIMS

    NASA Astrophysics Data System (ADS)

    Ying, Ji-Feng; Ji, Rong; Ter Lim, Sze; Tran, Michael N.; Wang, Chen Chen; Ernult, Franck

    2016-02-01

    The magnetic-tunnel-junction (MTJ) structure is the core of many important devices, such as magnetic recording head and STT-RAM. CoFeB/MgO/CoFeB tri-layer thin-film stack is a widely researched MTJ structure. In this tri-layer, the functional property of the MTJ, i.e. its TMR ratio, is critically dependent on the crystal orientation of the CoFe grains. In order for the desired (1 0 0) out of plane texture to develop in the CoFeB layers, B needs to be engineered to be expelled out of these CoFeB layers, and diffuse or migrate into the adjacent layers. Ta is usually used as a seed layer adjacent to the MTJ structure. In this work, we investigated the important B-migration mechanisms within this MTJ structure through a combined XPS/TOF-SIMS study. Specifically, we tried to elucidate the possible physical/chemical interactions between the B and Ta that could happen with different film stack designs. Previous works have shown that there might be two possible B-migration mechanisms. One mechanism is direct B diffusion into the adjacent Ta layer during annealing. The other B-migration mechanism is through the formation of TaBOx species, in which B could be carried out by the Ta diffusion. In particular, through studying a series of film stacks, we discussed the circumstances under which one of these B-migration mechanisms becomes dominant. Furthermore, we discussed how these B-migration mechanisms facilitated the B expulsion in a common MTJ structure.

  14. Excellent photocatalytic performance under visible-light irradiation of ZnS/rGO nanocomposites synthesized by a green method

    NASA Astrophysics Data System (ADS)

    Azimi, Hassan Rayat; Ghoranneviss, Mahmood; Elahi, Seyed Mohammad; Mahmoudian, Mohammad Reza; Jamali-Sheini, Farid; Yousefi, Ramin

    2016-12-01

    ZnS/graphene nanocomposites with different graphene concentrations (5, 10 and 15 wt.%) were synthesized using L-cysteine as surfactant and graphene oxide (GO) powders as graphene source. Excellent performance for nanocomposites to remove methylene blue (MB) dye and hexavalent chromium (Cr(VI)) under visible-light illumination was revealed. TEM images showed that ZnS NPs were decorated on GO sheets and the GO caused a significant decrease in the ZnS diameter size. XRD patterns, XPS and FTIR spectroscopy results indicated that GO sheets changed into reduced graphene oxide (rGO) during the synthesis process. Photocurrent measurements under a visiblelight source indicated a good chemical reaction between ZnS NPs and rGO sheets.

  15. Orbital debris measurements

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1986-01-01

    What is currently known about the orbital debris flux is from a combination of ground based and in-space measurements. These measurements have revealed an increasing population with decreasing size. A summary of measurements is presented for the following sources: the North American Aerospace Defense Command Catalog, the Perimeter Acquisition and Attack Characterization System Radar, ground based optical telescopes, the Explorer 46 Meteoroid Bumper Experiment, spacecraft windows, and Solar Max surfaces.

  16. Orbital debris measurements

    NASA Astrophysics Data System (ADS)

    Kessler, D. J.

    What is currently known about the orbital debris flux is from a combination of ground based and in-space measurements. These measurements have revealed an increasing population with decreasing size. A summary of measurements is presented for the following sources: the North American Aerospace Defense Command Catalog, the Perimeter Acquisition and Attack Characterization System Radar, ground based optical telescopes, the Explorer 46 Meteoroid Bumper Experiment, spacecraft windows, and Solar Max surfaces.

  17. Composition Dependence of the Na(+) Ion Conductivity in 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] Mixed Glass Former Glasses: A Structural Interpretation of a Negative Mixed Glass Former Effect.

    PubMed

    Martin, Steve W; Bischoff, Christian; Schuller, Katherine

    2015-12-24

    A negative mixed glass former effect (MGFE) in the Na(+) ion conductivity of glass has been found in 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] glasses where the Na(+) ion conductivity is significantly smaller for all of the ternary glasses than either of the binary end-member glasses. The minimum conductivity of ∼0.4 × 10(-6) (Ω cm)(-1) at 25 °C occurs for the x = 0.7 glass. Prior to this observation, the alkali ion conductivity of sulfide glasses at constant alkali concentration, but variable ratio of one glass former for another (x) ternary mixed glass former (MGF) glasses, has always produced a positive MGFE in the alkali ion conductivity; that is, the ternary glasses have always had higher ion conductivities that either of the end-member binary glasses. While the Na(+) ion conductivity exhibits a single global minimum value, the conductivity activation energy exhibits a bimodal double maximum at x ≈ 0.4 and x ≈ 0.7. The modified Christensen-Martin-Anderson-Stuart (CMAS) model of the activation energies reveals the origin of the negative MGFE to be due to an increase in the dielectric stiffness (a decrease in relative dielectric permittivity) of these glasses. When coupled with an increase in the average Na(+) ion jump distance and a slight increase in the mechanical stiffness of the glass, this causes the activation energy to go through maximum values and thereby produce the negative MGFE. The double maximum in the conductivity activation energy is coincident with double maximums in CMAS calculated strain, ΔES, and Coulombic, ΔEC, activation energies. In these ternary glasses, the increase in the dielectric stiffness of the glass arises from a negative deviation of the limiting high frequency dielectric permittivity as compared to the binary end-member glasses. While the CMAS calculated total activation energies ΔEact = ΔES + ΔEC are found to reproduce the overall shape of the composition dependence of the measured ΔEact values, they are consistently

  18. Polyethylene imine modified hydrochar adsorption for chromium (VI) and nickel (II) removal from aqueous solution.

    PubMed

    Shi, Yuanji; Zhang, Tao; Ren, Hongqiang; Kruse, Andrea; Cui, Ruofan

    2018-01-01

    An adsorbent hydrochar was synthesized from corn cobs and modified with polyethylene imine (PEI). The hydrochars before and after modification were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis. FTIR and XPS revealed that the PEI was grafted onto the hydrochar via ether and imine bonds formed with glutaraldehyde. The maximum adsorption capacities for Cr(VI) (33.663mg/g) and Ni(II) (29.059mg/g) on the modified hydrochars were 365% and 43.7% higher, respectively, than those on the unmodified hydrochar. A pseudo-second-order model described the adsorption of Ni(II) and Cr(VI) on all the adsorbents. The adsorption of Cr(VI) was endothermic, spontaneous, increased disorder, and obeyed the Langmuir model. By contrast, the adsorption of Ni(II) was exothermic, spontaneous, decreased disorder, and obeyed the Freundlich model. XPS confirmed that the adsorption sites and mechanisms for Ni(II) and Cr(VI) on the modified hydrochars were different. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Deposition and characterization of stoichiometric films of V2O5 on Pd(111)

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Abdel-Rahman, Mohammed K.; Kruppe, Christopher M.; Trenary, Michael

    2017-10-01

    A simple and efficient method has been used to grow V2O5 thin films on Pd(111) at a substrate temperature of 300 K through physical vapor deposition by heating a fine powder of V2O5 in a non-oxidative, UHV environment. X-ray photoelectron spectroscopy (XPS), reflection absorption infrared spectroscopy (RAIRS) and low energy electron diffraction (LEED) were used to characterize the thin films. When the as-grown films exceed a minimum thickness, characteristic features of V2O5 were revealed by XPS and RAIRS, which confirms the presence of stoichiometric V2O5. LEED indicates no long range order of the as-grown films at 300 K. Annealing to temperatures between 600 and 700 K causes a reduction of V2O5 to VO2 as identified by XPS and the formation of ordered structures as determined by LEED, and VO2 is predominant after annealing to 800 K. After further annealing to 1000 K, only an ordered form of V2O3 is present on Pd(111).

  20. UV irradiation study of a tripeptide isolated in an argon matrix: A tautomerism process evidenced by infrared and X-ray photoemission spectroscopies

    NASA Astrophysics Data System (ADS)

    Mateo-Marti, E.; Pradier, C. M.

    2013-05-01

    Matrix isolation is a powerful tool for studying photochemical processes occurring in isolated molecules. In this way, we characterized the chemical modifications occurring within a tri peptide molecule, IGF, when exposed to the influence of Ultraviolet (UV) irradiation. This paper first describes the successful formation of the tripeptide (IGF) argon matrix under vacuum conditions, followed by the in situ UV irradiation and characterization of the molecular matrix reactivity after UV-irradiation. These studies have been performed by combining two complementary spectroscopic techniques, Fourier-Transform Reflexion Absorption Spectroscopy (FT-IRRAS) and X-ray Photoelectron Spectroscopy (XPS). The IR spectra of the isolated peptide-matrix, before and after UV irradiation, revealed significant differences that could be associated either to a partial deprotonation of the molecule or to a tautomeric conversion of some amide bonds to imide ones on some peptide molecules. XPS analyses undoubtedly confirmed the second hypothesis; the combination of IRRAS and XPS results provide evidence that UV irradiation of peptides induces a chemical reaction, namely a shift of the double bond, meaning partial conversion from amide tautomer into an imidic acid tautomer.

  1. [Blood pressure measurement].

    PubMed

    Bang, Lia Evi; Wiinberg, Niels

    2009-06-08

    Blood pressure measurement should follow recommended procedures, otherwise incorrect diagnoses will follow resulting in incorrect treatment and cardiovascular events. The standard for clinical blood pressure measurement is the auscultatory method, but mercury sphygmomanometers can still be used. Blood pressure measurement at home using 24-hour or home blood pressure has documented a better reproducibility and predicts cardiovascular event more precisely than clinic blood pressure. 24-hour measurement or home blood pressure measurement should be performed in patients with suspected hypertension without hypertensive organ damage to reveal white-coat hypertension.

  2. A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurements.

    PubMed

    Hood, Donald C; Anderson, Susan C; Wall, Michael; Raza, Ali S; Kardon, Randy H

    2009-09-01

    Retinal nerve fiber (RNFL) thickness and visual field loss data from patients with glaucoma were analyzed in the context of a model, to better understand individual variation in structure versus function. Optical coherence tomography (OCT) RNFL thickness and standard automated perimetry (SAP) visual field loss were measured in the arcuate regions of one eye of 140 patients with glaucoma and 82 normal control subjects. An estimate of within-individual (measurement) error was obtained by repeat measures made on different days within a short period in 34 patients and 22 control subjects. A linear model, previously shown to describe the general characteristics of the structure-function data, was extended to predict the variability in the data. For normal control subjects, between-individual error (individual differences) accounted for 87% and 71% of the total variance in OCT and SAP measures, respectively. SAP within-individual error increased and then decreased with increased SAP loss, whereas OCT error remained constant. The linear model with variability (LMV) described much of the variability in the data. However, 12.5% of the patients' points fell outside the 95% boundary. An examination of these points revealed factors that can contribute to the overall variability in the data. These factors include epiretinal membranes, edema, individual variation in field-to-disc mapping, and the location of blood vessels and degree to which they are included by the RNFL algorithm. The model and the partitioning of within- versus between-individual variability helped elucidate the factors contributing to the considerable variability in the structure-versus-function data.

  3. Plasma enhancement of in vitro attachment of rat bone-marrow-derived stem cells on cross-linked gelatin films.

    PubMed

    Prasertsung, I; Kanokpanont, S; Mongkolnavin, R; Wong, C S; Panpranot, J; Damrongsakkul, S

    2012-01-01

    In this work, nitrogen, oxygen and air glow discharges powered by 50 Hz AC power supply are used for the treatment of type-A gelatin film cross-linked by a dehydrothermal (DHT) process. The properties of cross-linked gelatin were characterized by contact angle measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) analysis. The results showed that the water contact angle of gelatin films decrease with increasing plasma treatment time. The treatment of nitrogen, oxygen and air plasma up to 30 s had no effects on the surface roughness of the gelatin film as revealed by AFM results. The XPS analysis showed that the N-containing functional groups generated by nitrogen and air plasma, and O-containing functional groups generated by oxygen and air plasmas were incorporated onto the film surface, the functional groups were found to increase with increasing treatment time. An in vitro test using rat bone-marrow-mesenchym-derived stem cells (MSCs) revealed that the number of cells attached on plasma-treated gelatin films was significantly increased compared to untreated samples. The best enhancement of cell attachment was noticed when the film was treated with nitrogen plasma for 15-30 s, oxygen plasma for 3 s, and air plasma for 9 s. In addition, among the three types of plasmas used, nitrogen plasma treatment gave the best MSCs attachment on the gelatin surface. The results suggest that a type-A gelatin film with water contact angle of 27-28° and an O/N ratio of 1.4 is most suitable for MSCs attachment.

  4. Virtually Naked: Virtual Environment Reveals Sex-Dependent Nature of Skin Disclosure

    PubMed Central

    Lomanowska, Anna M.; Guitton, Matthieu J.

    2012-01-01

    The human tendency to reveal or cover naked skin reflects a competition between the individual propensity for social interactions related to sexual appeal and interpersonal touch versus climatic, environmental, physical, and cultural constraints. However, due to the ubiquitous nature of these constraints, isolating on a large scale the spontaneous human tendency to reveal naked skin has remained impossible. Using the online 3-dimensional virtual world of Second Life, we examined spontaneous human skin-covering behavior unhindered by real-world climatic, environmental, and physical variables. Analysis of hundreds of avatars revealed that virtual females disclose substantially more naked skin than virtual males. This phenomenon was not related to avatar hypersexualization as evaluated by measurement of sexually dimorphic body proportions. Furthermore, analysis of skin-covering behavior of a population of culturally homogeneous avatars indicated that the propensity of female avatars to reveal naked skin persisted despite explicit cultural norms promoting less revealing attire. These findings have implications for further understanding how sex-specific aspects of skin disclosure influence human social interactions in both virtual and real settings. PMID:23300580

  5. Virtually naked: virtual environment reveals sex-dependent nature of skin disclosure.

    PubMed

    Lomanowska, Anna M; Guitton, Matthieu J

    2012-01-01

    The human tendency to reveal or cover naked skin reflects a competition between the individual propensity for social interactions related to sexual appeal and interpersonal touch versus climatic, environmental, physical, and cultural constraints. However, due to the ubiquitous nature of these constraints, isolating on a large scale the spontaneous human tendency to reveal naked skin has remained impossible. Using the online 3-dimensional virtual world of Second Life, we examined spontaneous human skin-covering behavior unhindered by real-world climatic, environmental, and physical variables. Analysis of hundreds of avatars revealed that virtual females disclose substantially more naked skin than virtual males. This phenomenon was not related to avatar hypersexualization as evaluated by measurement of sexually dimorphic body proportions. Furthermore, analysis of skin-covering behavior of a population of culturally homogeneous avatars indicated that the propensity of female avatars to reveal naked skin persisted despite explicit cultural norms promoting less revealing attire. These findings have implications for further understanding how sex-specific aspects of skin disclosure influence human social interactions in both virtual and real settings.

  6. Mechanisms for renal blood flow control early in diabetes as revealed by chronic flow measurement and transfer function analysis.

    PubMed

    Bell, Tracy D; DiBona, Gerald F; Wang, Ying; Brands, Michael W

    2006-08-01

    The purpose of this study was to establish the roles of the myogenic response and the TGF mechanism in renal blood flow (RBF) control at the very earliest stages of diabetes. Mean arterial pressure (MAP) and RBF were measured continuously, 18 h/d, in uninephrectomized control and diabetic rats, and transfer function analysis was used to determine the dynamic autoregulatory efficiency of the renal vasculature. During the control period, MAP averaged 91 +/- 0.5 and 89 +/- 0.4 mmHg, and RBF averaged 8.0 +/- 0.1 and 7.8 +/- 0.1 ml/min in the control and diabetic groups, respectively. Induction of diabetes with streptozotocin caused a marked and progressive increase in RBF in the diabetic rats, averaging 10 +/- 6% above control on day 1 of diabetes and 22 +/- 3 and 34 +/- 1% above control by the end of diabetes weeks 1 and 2. MAP increased approximately 9 mmHg during the 2 wk in the diabetic rats, and renal vascular resistance decreased. Transfer function analysis revealed significant increases in gain to positive values over the frequency ranges of both the TGF and myogenic mechanisms, beginning on day 1 of diabetes and continuing through day 14. These very rapid increases in RBF and transfer function gain suggest that autoregulation is impaired at the very onset of hyperglycemia in streptozotocin-induced type 1 diabetes and may play an important role in the increase in RBF and GFR in diabetes. Together with previous reports of decreases in chronically measured cardiac output and hindquarter blood flow, this suggests that there may be differential effects of diabetes on RBF versus nonrenal BF control.

  7. X-ray photoemission studies of Zn doped Cu 1- xTl xBa 2Ca 2Cu 3- yZn yO 10- δ ( y = 0, 2.65) superconductors

    NASA Astrophysics Data System (ADS)

    Khan, Nawazish A.; Mumtaz, M.; Ahadian, M. M.; Iraji-zad, Azam

    2007-03-01

    The X-ray photoemission (XPS) measurements of Cu 1- xTl xBa 2Ca 2Cu 3- yZn yO 10- δ ( y = 0, 2.65) superconductors have been performed and compared. These studies revealed that the charge state of thallium in the Cu 0.5Tl 0.5Ba 2O 4- δ charge reservoir layer in Zn doped samples is Tl 1+, while it is a mix of Tl 1+ and Tl 2+ in Zn free samples. The binding energy of Ba atoms in the Zn doped samples is shifted to higher energy, which when considered along with the presence of Tl 1+ suggested that it more efficiently directed the carriers to ZnO 2 and CuO 2 planes. The evidence of improved inter-plane coupling witnessed in X-ray diffraction is also confirmed by XPS measurements of Ca atoms in the Zn doped samples. The shift of the valance band spectrum in these Zn doped samples to higher energies suggested that the electrons at the top edge of the valance band were tied to a higher binding energy (relative to samples without Zn doping), which most likely resulted in a much lower energy state of the system in the superconducting state. The stronger superconducting state arising out of these effects is witnessed in the form of increased Tc( R = 0), Jc and the extent of diamagnetism in the final compound.

  8. Electronic structure and fundamental absorption edges of KPb2Br5, K0.5Rb0.5Pb2Br5, and RbPb2Br5 single crystals

    NASA Astrophysics Data System (ADS)

    Tarasova, A. Yu.; Isaenko, L. I.; Kesler, V. G.; Pashkov, V. M.; Yelisseyev, A. P.; Denysyuk, N. M.; Khyzhun, O. Yu.

    2012-05-01

    X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated (001) surfaces of KPb2Br5, K0.5Rb0.5Pb2Br5, and RbPb2Br5 single crystals grown by the Bridgman method have been measured and fundamental absorption edges of the ternary bromides have been recorded in the polarized light at 300 K and 80 K. The present X-ray photoelectron spectroscopy (XPS) results reveal high chemical stability of (001) surfaces of KxRb1-xPb2Br5 (x=0, 0.5, and 1.0) single crystals. Substitution of potassium for rubidium in KxRb1-xPb2Br5 does not cause any changes of binding energy values and shapes of the XPS constituent element core-level spectra. Measurements of the fundamental absorption edges indicate that band gap energy, Eg, increases by about 0.14 and 0.19 eV when temperature decreases from 300 K to 80 K in KPb2Br5 and RbPb2Br5, respectively. Furthermore, there is no dependence of the Eg value for KPb2Br5 upon the light polarization, whilst the band gap energy value for RbPb2Br5 is bigger by 0.03-0.05 eV in the case of E‖c compared to those in the cases of E‖a and E‖b.

  9. Poly(dimethyl siloxane) surface modification with biosurfactants isolated from probiotic strains.

    PubMed

    Pinto, S; Alves, P; Santos, A C; Matos, C M; Oliveiros, B; Gonçalves, S; Gudiña, E; Rodrigues, L R; Teixeira, J A; Gil, M H

    2011-09-15

    Depending on the final application envisaged for a given biomaterial, many surfaces must be modified before use. The material performance in a biological environment is mainly mediated by its surface properties that can be improved using suitable modification methods. The aim of this work was to coat poly(dimethyl siloxane) (PDMS) surfaces with biosurfactants (BSs) and to evaluate how these compounds affect the PDMS surface properties. BSs isolated from four probiotic strains (Lactococcus lactis, Lactobacillus paracasei, Streptococcus thermophilus A, and Streptococcus thermophilus B) were used. Bare PDMS and PDMS coated with BSs were characterized by contact angle measurements, infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The influence of the surface modifications on the materials blood compatibility was studied through thrombosis and hemolysis assays. The cytotoxicity of these materials was tested against rat peritoneal macrophages. AFM results demonstrated the successful coating of the surfaces. Also, by contact angle measurements, an increase of the coated surfaces hydrophilicity was seen. Furthermore, XPS analysis indicated a decrease of the silicon content at the surface, and ATR-FTIR results showed the presence of BS characteristic groups as a consequence of the modification. All the studied materials revealed no toxicity and were found to be nonhemolytic. The proposed approach for the modification of PDMS surfaces was found to be effective and opens new possibilities for the application of these surfaces in the biomedical field. Copyright © 2011 Wiley Periodicals, Inc.

  10. Quantum criticality at the superconductor-insulator transition revealed by specific heat measurements

    PubMed Central

    Poran, S.; Nguyen-Duc, T.; Auerbach, A.; Dupuis, N.; Frydman, A.; Bourgeois, Olivier

    2017-01-01

    The superconductor–insulator transition (SIT) is considered an excellent example of a quantum phase transition that is driven by quantum fluctuations at zero temperature. The quantum critical point is characterized by a diverging correlation length and a vanishing energy scale. Low-energy fluctuations near quantum criticality may be experimentally detected by specific heat, cp, measurements. Here we use a unique highly sensitive experiment to measure cp of two-dimensional granular Pb films through the SIT. The specific heat shows the usual jump at the mean field superconducting transition temperature marking the onset of Cooper pairs formation. As the film thickness is tuned towards the SIT, is relatively unchanged, while the magnitude of the jump and low-temperature specific heat increase significantly. This behaviour is taken as the thermodynamic fingerprint of quantum criticality in the vicinity of a quantum phase transition. PMID:28224994

  11. Quantum criticality at the superconductor-insulator transition revealed by specific heat measurements.

    PubMed

    Poran, S; Nguyen-Duc, T; Auerbach, A; Dupuis, N; Frydman, A; Bourgeois, Olivier

    2017-02-22

    The superconductor-insulator transition (SIT) is considered an excellent example of a quantum phase transition that is driven by quantum fluctuations at zero temperature. The quantum critical point is characterized by a diverging correlation length and a vanishing energy scale. Low-energy fluctuations near quantum criticality may be experimentally detected by specific heat, c p , measurements. Here we use a unique highly sensitive experiment to measure c p of two-dimensional granular Pb films through the SIT. The specific heat shows the usual jump at the mean field superconducting transition temperature marking the onset of Cooper pairs formation. As the film thickness is tuned towards the SIT, is relatively unchanged, while the magnitude of the jump and low-temperature specific heat increase significantly. This behaviour is taken as the thermodynamic fingerprint of quantum criticality in the vicinity of a quantum phase transition.

  12. Electromagnetic and optical characteristics of Nb5+-doped double-crossover and salmon DNA thin films

    NASA Astrophysics Data System (ADS)

    Babu Mitta, Sekhar; Reddy Dugasani, Sreekantha; Jung, Soon-Gil; Vellampatti, Srivithya; Park, Tuson; Park, Sung Ha

    2017-10-01

    We report the fabrication and physical characteristics of niobium ion (Nb5+)-doped double-crossover DNA (DX-DNA) and salmon DNA (SDNA) thin films. Different concentrations of Nb5+ ([Nb5+]) are coordinated into the DNA molecules, and the thin films are fabricated via substrate-assisted growth (DX-DNA) and drop-casting (SDNA) on oxygen plasma treated substrates. We conducted atomic force microscopy to estimate the optimum concentration of Nb5+ ([Nb5+]O = 0.08 mM) in Nb5+-doped DX-DNA thin films, up to which the DX-DNA lattices maintain their structures without deformation. X-ray photoelectron spectroscopy (XPS) was performed to probe the chemical nature of the intercalated Nb5+ in the SDNA thin films. The change in peak intensities and the shift in binding energy were witnessed in XPS spectra to explicate the binding and charge transfer mechanisms between Nb5+ and SDNA molecules. UV-visible, Raman, and photoluminescence (PL) spectra were measured to determine the optical properties and thus investigate the binding modes, Nb5+ coordination sites in Nb5+-doped SDNA thin films, and energy transfer mechanisms, respectively. As [Nb5+] increases, the absorbance peak intensities monotonically increase until ˜[Nb5+]O and then decrease. However, from the Raman measurements, the peak intensities gradually decrease with an increase in [Nb5+] to reveal the binding mechanism and binding sites of metal ions in the SDNA molecules. From the PL, we observe the emission intensities to reduce them at up to ˜[Nb5+]O and then increase after that, expecting the energy transfer between the Nb5+ and SDNA molecules. The current-voltage measurement shows a significant increase in the current observed as [Nb5+] increases in the SDNA thin films when compared to that of pristine SDNA thin films. Finally, we investigate the temperature dependent magnetization in which the Nb5+-doped SDNA thin films reveal weak ferromagnetism due to the existence of tiny magnetic dipoles in the Nb5+-doped SDNA

  13. Chemical states of surface oxygen during CO oxidation on Pt(1 1 0) surface revealed by ambient pressure XPS

    DOE PAGES

    Yu, Youngseok; Koh, Yoobin Esther; Lim, Hojoon; ...

    2017-10-20

    Here, the study of CO oxidation on Pt(110) surface is revisited using ambient pressure x-ray photoemission spectroscopy. When the surface temperature reaches the activation temperature for CO oxidation under elevated pressure conditions, both the α-phase of PtO 2 oxide and chemisorbed oxygen are formed simultaneously on the surface. Due to the exothermic nature of CO oxidation, the temperature of the Pt surface increases as CO oxidation takes place. As the CO/O 2 ratio increases, the production of CO 2 increases continuously and the surface temperature also increases. Interestingly, within the diffusion limited regions, the amount of surface oxide changes littlemore » while the chemisorbed oxygen is reduced.« less

  14. Chemical states of surface oxygen during CO oxidation on Pt(1 1 0) surface revealed by ambient pressure XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Youngseok; Koh, Yoobin Esther; Lim, Hojoon

    Here, the study of CO oxidation on Pt(110) surface is revisited using ambient pressure x-ray photoemission spectroscopy. When the surface temperature reaches the activation temperature for CO oxidation under elevated pressure conditions, both the α-phase of PtO 2 oxide and chemisorbed oxygen are formed simultaneously on the surface. Due to the exothermic nature of CO oxidation, the temperature of the Pt surface increases as CO oxidation takes place. As the CO/O 2 ratio increases, the production of CO 2 increases continuously and the surface temperature also increases. Interestingly, within the diffusion limited regions, the amount of surface oxide changes littlemore » while the chemisorbed oxygen is reduced.« less

  15. How Are Preferences Revealed?

    PubMed Central

    Beshears, John; Choi, James J.; Laibson, David; Madrian, Brigitte C.

    2009-01-01

    Revealed preferences are tastes that rationalize an economic agent’s observed actions. Normative preferences represent the agent’s actual interests. It sometimes makes sense to assume that revealed preferences are identical to normative preferences. But there are many cases where this assumption is violated. We identify five factors that increase the likelihood of a disparity between revealed preferences and normative preferences: passive choice, complexity, limited personal experience, third-party marketing, and intertemporal choice. We then discuss six approaches that jointly contribute to the identification of normative preferences: structural estimation, active decisions, asymptotic choice, aggregated revealed preferences, reported preferences, and informed preferences. Each of these approaches uses consumer behavior to infer some property of normative preferences without equating revealed and normative preferences. We illustrate these issues with evidence from savings and investment outcomes. PMID:24761048

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Matthew A.; Redondo, Amaia Beloqui; Duyckaerts, Nicolas

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutionsmore » and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.« less

  17. Rapid reductive degradation of aqueous p-nitrophenol using nanoscale zero-valent iron particles immobilized on mesoporous silica with enhanced antioxidation effect

    NASA Astrophysics Data System (ADS)

    Tang, Lin; Tang, Jing; Zeng, Guangming; Yang, Guide; Xie, Xia; Zhou, Yaoyu; Pang, Ya; Fang, Yan; Wang, Jiajia; Xiong, Weiping

    2015-04-01

    In this study, nanoscale zero-valent iron particles immobilized on mesoporous silica (nZVI/SBA-15) were successfully prepared for effective degradation of p-nitrophenol (PNP). The nZVI/SBA-15 composites were characterized by N2 adsorption/desorption, transmission electron microscopy (TEM), UV-vis spectrum and X-ray photoelectron spectroscopy (XPS). Results showed that abundant ultrasmall nanoscale zero-valent iron particles were formed and well dispersed on mesoporous silica (SBA-15). Batch experiments revealed that PNP removal declined from 96.70% to 16.14% as solution pH increased from 3.0 to 9.0. Besides, degradation equilibrium was reached within 5 min, which was independent of initial PNP concentration. Furthermore, only a little PNP elimination on SBA-15 indicated that nZVI immobilized on mesoporous silica was mainly responsible for the target contaminant removal. The UV-vis spectrum and XPS measurement confirmed that the PNP removal was a reductive degradation process, which was further proved by the detected intermediates using gas chromatography-mass spectrometry (GC/MS). The excellent antioxidation ability had been discovered with more than 80% of PNP being removed by nZVI/SBA-15 treated with 30 days' exposure to air. These results demonstrated the feasible and potential application of nZVI/SBA-15 composites in organic wastewater treatment.

  18. Effect of Pb2+ ions on ilmenite flotation and adsorption of benzohydroxamic acid as a collector

    NASA Astrophysics Data System (ADS)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Lu, Zhongyuan; Yang, Yaohui; Sun, Wei; Hu, Yuehua

    2017-12-01

    The effects of Pb2+ ions on ilmenite flotation and adsorption of benzohydroxamic acid (BHA) as a collector were investigated using microflotation tests, zeta potential measurements, adsorption analysis, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The microflotation results indicate that the addition of Pb2+ significantly improves the recovery of ilmenite using BHA as a collector. A maximum recovery of 88.46% is obtained at pH 8.12 in the presence of Pb2+; a maximum recovery of 45% is obtained at the same pH using BHA alone. At pHs below 8.0, lead nitrate are mainly present in the solution as Pb2+ and PbOH+, while at pHs above 8.0, the predominant components are Pb(OH)2(s) and Pb(OH)3-. The adsorption of these lead species influences the zeta potential of ilmenite and the number of activated sites on the ilmenite surface. FTIR and XPS analyses reveal that lead species and BHA react with the metal sites on the ilmenite surface. The lead species in solution are either adsorbed onto the ilmenite surface, which increases the surface activity of ilmenite, or react with BHA in solution to form complexes of lead and BHA.

  19. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue

    NASA Astrophysics Data System (ADS)

    Liu, Qing-Song; Zheng, Tong; Li, Nan; Wang, Peng; Abulikemu, Gulizhaer

    2010-03-01

    Modification of bamboo-based activated carbon was carried out in a microwave oven under N 2 atmosphere. The virgin and modified activated carbons were characterized by means of low temperature N 2 adsorption, acid-base titration, point of zero charge (pH pzc) measurement, FTIR and XPS spectra. A gradual decrease in the surface acidic groups was observed during the modification, while the surface basicity was enhanced to some extent, which gave rise to an increase in the pH pzc value. The species of the functional groups and relative content of various elements and groups were given further analysis using FTIR and XPS spectra. An increase in the micropores was found at the start, and the micropores were then extended into larger ones, resulting in an increase in the pore volume and average pore size. Adsorption studies showed enhanced adsorption of methylene blue on the modified activated carbons, caused mainly by the enlargement of the micropores. Adsorption isotherm fittings revealed that Langmuir and Freundlich models were applicable for the virgin and modified activated carbons, respectively. Kinetic studies exhibited faster adsorption rate of methylene blue on the modified activated carbons, and the pseudo-second-order model fitted well for all of the activated carbons.

  20. Comparative analysis of electrophysical properties of ceramic tantalum pentoxide coatings, deposited by electron beam evaporation and magnetron sputtering methods

    NASA Astrophysics Data System (ADS)

    Donkov, N.; Mateev, E.; Safonov, V.; Zykova, A.; Yakovin, S.; Kolesnikov, D.; Sudzhanskaya, I.; Goncharov, I.; Georgieva, V.

    2014-12-01

    Ta2O5 ceramic coatings have been deposited on glass substrates by e-beam evaporation and magnetron sputtering methods. For the magnetron sputtering process Ta target was used. X-ray diffraction measurements show that these coatings are amorphous. XPS survey spectra of the ceramic Ta2O5 coatings were obtained. All spectra consist of well-defined XPS lines of Ta 4f, 4d, 4p and 4s; O 1s; C 1s. Ta 4f doublets are typical for Ta2O5 coatings with two main peaks. Scanning electron microscopy and atomic force microscopy images of the e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have revealed a relatively flat surface with no cracks. The dielectric properties of the tantalum pentoxide coatings have been investigated in the frequency range of 100 Hz to 1 MHz. The electrical behaviour of e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have also been compared. The deposition process conditions principally effect the structure parameters and electrical properties of Ta2O5 ceramic coatings. The coatings deposited by different methods demonstrate the range of dielectric parameters due to the structural and stoichiometric composition changes

  1. X-ray photoelectron spectroscopy for identification of morphological defects and disorders in graphene devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogan, Pinar; Suzer, Sefik, E-mail: suzer@fen.bilkent.edu.tr; Polat, Emre O.

    The progress in the development of graphene devices is promising, and they are now considered as an option for the current Si-based electronics. However, the structural defects in graphene may strongly influence the local electronic and mechanical characteristics. Although there are well-established analytical characterization methods to analyze the chemical and physical parameters of this material, they remain incapable of fully understanding of the morphological disorders. In this study, x-ray photoelectron spectroscopy (XPS) with an external voltage bias across the sample is used for the characterization of morphological defects in large area of a few layers graphene in a chemically specificmore » fashion. For the XPS measurements, an external +6 V bias applied between the two electrodes and areal analysis for three different elements, C1s, O1s, and Au4f, were performed. By monitoring the variations of the binding energy, the authors extract the voltage variations in the graphene layer which reveal information about the structural defects, cracks, impurities, and oxidation levels in graphene layer which are created purposely or not. Raman spectroscopy was also utilized to confirm some of the findings. This methodology the authors offer is simple but provides promising chemically specific electrical and morphological information.« less

  2. Revealing the Earth’s mantle from the tallest mountains using the Jinping Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Šrámek, Ondřej; Roskovec, Bedřich; Wipperfurth, Scott A.; Xi, Yufei; McDonough, William F.

    2016-09-01

    The Earth’s engine is driven by unknown proportions of primordial energy and heat produced in radioactive decay. Unfortunately, competing models of Earth’s composition reveal an order of magnitude uncertainty in the amount of radiogenic power driving mantle dynamics. Recent measurements of the Earth’s flux of geoneutrinos, electron antineutrinos from terrestrial natural radioactivity, reveal the amount of uranium and thorium in the Earth and set limits on the residual proportion of primordial energy. Comparison of the flux measured at large underground neutrino experiments with geologically informed predictions of geoneutrino emission from the crust provide the critical test needed to define the mantle’s radiogenic power. Measurement at an oceanic location, distant from nuclear reactors and continental crust, would best reveal the mantle flux, however, no such experiment is anticipated. We predict the geoneutrino flux at the site of the Jinping Neutrino Experiment (Sichuan, China). Within 8 years, the combination of existing data and measurements from soon to come experiments, including Jinping, will exclude end-member models at the 1σ level, define the mantle’s radiogenic contribution to the surface heat loss, set limits on the composition of the silicate Earth, and provide significant parameter bounds for models defining the mode of mantle convection.

  3. Revealing the Earth’s mantle from the tallest mountains using the Jinping Neutrino Experiment

    PubMed Central

    Šrámek, Ondřej; Roskovec, Bedřich; Wipperfurth, Scott A.; Xi, Yufei; McDonough, William F.

    2016-01-01

    The Earth’s engine is driven by unknown proportions of primordial energy and heat produced in radioactive decay. Unfortunately, competing models of Earth’s composition reveal an order of magnitude uncertainty in the amount of radiogenic power driving mantle dynamics. Recent measurements of the Earth’s flux of geoneutrinos, electron antineutrinos from terrestrial natural radioactivity, reveal the amount of uranium and thorium in the Earth and set limits on the residual proportion of primordial energy. Comparison of the flux measured at large underground neutrino experiments with geologically informed predictions of geoneutrino emission from the crust provide the critical test needed to define the mantle’s radiogenic power. Measurement at an oceanic location, distant from nuclear reactors and continental crust, would best reveal the mantle flux, however, no such experiment is anticipated. We predict the geoneutrino flux at the site of the Jinping Neutrino Experiment (Sichuan, China). Within 8 years, the combination of existing data and measurements from soon to come experiments, including Jinping, will exclude end-member models at the 1σ level, define the mantle’s radiogenic contribution to the surface heat loss, set limits on the composition of the silicate Earth, and provide significant parameter bounds for models defining the mode of mantle convection. PMID:27611737

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspar, Tiffany C.; Sushko, Peter V.; Bowden, Mark E.

    Epitaxial thin films of Cr2-xTixO3 were deposited by oxygen-plasma-assisted molecular beam epitaxy (OPA-MBE) for 0.04 ≤ x ≤ 0.26. Ti speciation is verified by both x-ray photoelectron spectroscopy (XPS) and Ti K-edge x-ray absorption near-edge spectroscopy (XANES) to be Ti4+. Substitution of Ti for Cr in the corundum lattice is confirmed by modeling of the Ti K-edge extended x-ray absorption fine structure (EXAFS). Room temperature electrical transport measurements confirm the highly insulating nature of Ti-doped Cr2O3, despite the presence of aliovalent Ti4+. The resistivity of highly pure, undoped Cr2O3 was measured to be three orders of magnitude higher than formore » Ti-doped Cr2O3. Although the formation of Cr vacancies in Ti-doped Cr2O3 is found by density functional theory (DFT) calculations to be the energetically preferable defect compensation mechanism to maintain charge neutrality, an analysis of the XPS and EXAFS data reveal the presence of both Cr vacancies and oxygen interstitials at intermediate and high Ti concentrations, with a weak trend towards Cr vacancies as the Ti concentration increases. At low Ti concentrations, a strong dependence of the XPS Ti 2p core level peak width on concentration is observed. This dependence is attributed to the presence of widely spaced Ti dopants, which renders compensation of two or three Ti by a single oxygen interstitial or Cr vacancy, respectively, less probable. Instead, defect clusters of unknown type occur, although they may involve Cr vacancies. The defect compensation model developed here provides insight into previous, conflicting reports of n-type versus p-type conductivity in Ti-doped Cr2O3 at high temperature, and will inform future studies to exploit the wide variety of electronic and magnetic properties of corundum-structure oxides.« less

  5. Honey bee odorant-binding protein 14: effects on thermal stability upon odorant binding revealed by FT-IR spectroscopy and CD measurements.

    PubMed

    Schwaighofer, Andreas; Kotlowski, Caroline; Araman, Can; Chu, Nam; Mastrogiacomo, Rosa; Becker, Christian; Pelosi, Paolo; Knoll, Wolfgang; Larisika, Melanie; Nowak, Christoph

    2014-03-01

    In the present work, we study the effect of odorant binding on the thermal stability of honey bee (Apis mellifera L.) odorant-binding protein 14. Thermal denaturation of the protein in the absence and presence of different odorant molecules was monitored by Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD). FT-IR spectra show characteristic bands for intermolecular aggregation through the formation of intermolecular β-sheets during the heating process. Transition temperatures in the FT-IR spectra were evaluated using moving-window 2D correlation maps and confirmed by CD measurements. The obtained results reveal an increase of the denaturation temperature of the protein when bound to an odorant molecule. We could also discriminate between high- and low-affinity odorants by determining transition temperatures, as demonstrated independently by the two applied methodologies. The increased thermal stability in the presence of ligands is attributed to a stabilizing effect of non-covalent interactions between odorant-binding protein 14 and the odorant molecule.

  6. Functionalization to control microstructural, optical, electronic and wetting properties of metal oxide surfaces

    NASA Astrophysics Data System (ADS)

    Singh, Jagdeep

    , carboxylic acid, and methyl-terminated alkanethiol molecules have been used to probe the adhesive forces of polystyrene and poly(acrylic acid) films in dry air (relative humidity < 0.5%). XPS and contact angle measurements confirm the quality and uniformity of similarly treated gold surfaces and the polymer films. XPS indicates that the amine-functionalized thiol films are protonated and comprised of multilayers. Toward the goal of modifying its optical properties, ZnO nanorod surfaces have been modified using 3-mercaptopropyltriethoxysilane (MPTES) and 1-propanethiol (PPT), and XPS has been used to investigate the changes occurring on the nanorods after surface modification. XPS reveals that in the case of MPTES-modified nanorods, bonding occurs via both S-Zn and Si-O-Zn bond formation. For comparison, 3-mercaptopropyltrimethoxysilane (MPTMS), dodecanethiol and methanethiol have been adsorbed on sputter-cleaned Zn-terminated ZnO (0001) in ultrahigh vacuum (UHV). In this case, XPS indicates that bonding of thiols on ZnO surfaces occurs via S-Zn bond formation. Photoluminescence spectroscopy has been used to study the effect of surface functionalization on the optical properties of the nanorods. MPTES- and PPT-functionalized nano-ZnO show an increase in intensity of the UV emission peak relative to the unfunctionalized nanorods due to reduced probability of surface dependent non-radiative processes. A decrease in the visible peak in both cases is believed to be due to passivation of surface defects. A simple method for encapsulating zinc oxide nanoparticles within an organic matrix has been discovered that consists of dispersing them in an ethanolic solution, adding an organothiol and stirring while heating. Electron microscopy, photoemission, Raman spectroscopy and thermal gray metric analyses demonstrate that partial dissolution of the oxide occurs accompanied by encapsulation within a matrix consisting of a 1:2 zinc-thiol complex. Using this methodology, it is possible to

  7. Voltage contrast X-ray photoelectron spectroscopy reveals graphene-substrate interaction in graphene devices fabricated on the C- and Si- faces of SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogan, Pinar; Suzer, Sefik, E-mail: suzer@fen.bilkent.edu.tr; Arslan, Engin

    2015-09-21

    We report on an X-ray photoelectron spectroscopy (XPS) study of two graphene based devices that were analyzed by imposing a significant current under +3 V bias. The devices were fabricated as graphene layers(s) on hexagonal SiC substrates, either on the C- or Si-terminated faces. Position dependent potential distributions (IR-drop), as measured by variations in the binding energy of a C1s peak are observed to be sporadic for the C-face graphene sample, but very smooth for the Si-face one, although the latter is less conductive. We attribute these sporadic variations in the C-face device to the incomplete electrical decoupling between the graphenemore » layer(s) with the underlying buffer and/or substrate layers. Variations in the Si2p and O1s peaks of the underlayer(s) shed further light into the electrical interaction between graphene and other layers. Since the potential variations are amplified only under applied bias (voltage-contrast), our methodology gives unique, chemically specific electrical information that is difficult to obtain by other techniques.« less

  8. Multivariate pattern classification reveals autonomic and experiential representations of discrete emotions.

    PubMed

    Kragel, Philip A; Labar, Kevin S

    2013-08-01

    Defining the structural organization of emotions is a central unresolved question in affective science. In particular, the extent to which autonomic nervous system activity signifies distinct affective states remains controversial. Most prior research on this topic has used univariate statistical approaches in attempts to classify emotions from psychophysiological data. In the present study, electrodermal, cardiac, respiratory, and gastric activity, as well as self-report measures were taken from healthy subjects during the experience of fear, anger, sadness, surprise, contentment, and amusement in response to film and music clips. Information pertaining to affective states present in these response patterns was analyzed using multivariate pattern classification techniques. Overall accuracy for classifying distinct affective states was 58.0% for autonomic measures and 88.2% for self-report measures, both of which were significantly above chance. Further, examining the error distribution of classifiers revealed that the dimensions of valence and arousal selectively contributed to decoding emotional states from self-report, whereas a categorical configuration of affective space was evident in both self-report and autonomic measures. Taken together, these findings extend recent multivariate approaches to study emotion and indicate that pattern classification tools may improve upon univariate approaches to reveal the underlying structure of emotional experience and physiological expression. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  9. Multivariate Pattern Classification Reveals Autonomic and Experiential Representations of Discrete Emotions

    PubMed Central

    Kragel, Philip A.; LaBar, Kevin S.

    2013-01-01

    Defining the structural organization of emotions is a central unresolved question in affective science. In particular, the extent to which autonomic nervous system activity signifies distinct affective states remains controversial. Most prior research on this topic has used univariate statistical approaches in attempts to classify emotions from psychophysiological data. In the present study, electrodermal, cardiac, respiratory, and gastric activity, as well as self-report measures were taken from healthy subjects during the experience of fear, anger, sadness, surprise, contentment, and amusement in response to film and music clips. Information pertaining to affective states present in these response patterns was analyzed using multivariate pattern classification techniques. Overall accuracy for classifying distinct affective states was 58.0% for autonomic measures and 88.2% for self-report measures, both of which were significantly above chance. Further, examining the error distribution of classifiers revealed that the dimensions of valence and arousal selectively contributed to decoding emotional states from self-report, whereas a categorical configuration of affective space was evident in both self-report and autonomic measures. Taken together, these findings extend recent multivariate approaches to study emotion and indicate that pattern classification tools may improve upon univariate approaches to reveal the underlying structure of emotional experience and physiological expression. PMID:23527508

  10. A novel X-ray photoelectron spectroscopy study of the Al/SiO2 interface

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Vasquez, R. P.; Grunthaner, F. J.; Zamani, N.; Maserjian, J.

    1985-01-01

    The nondestructive measurement of the chemical and physical characteristics of the interface between bulk SiO2 and thick aluminum films is reported. Both X-ray phototelectron spectroscopy (XPS) and electrical measurements of unannealed, resistively evaporated Al films on thermal SiO2 indicate an atomically abrupt interface. Post metallization annealing at 450 C induces reduction of the SiO2 by the aluminum, at a rate consistent with the bulk reaction rate. The XPS measurement is performed from the SiO2 side after the removal of the Si substrate with XeF2 gas and thinning of the SiO2 layer with HF:ETOH. This represents a powerful new approach to the study of metal-insulator and related interfaces.

  11. Gallium-containing polymer brush film as efficient supported Lewis acid catalyst in a glass microreactor.

    PubMed

    Munirathinam, Rajesh; Ricciardi, Roberto; Egberink, Richard J M; Huskens, Jurriaan; Holtkamp, Michael; Wormeester, Herbert; Karst, Uwe; Verboom, Willem

    2013-01-01

    Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS). XPS revealed the presence of one gallium per 2-3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3.

  12. Electronic structure and fine structural features of the air-grown UNxOy on nitrogen-rich uranium nitride

    NASA Astrophysics Data System (ADS)

    Long, Zhong; Zeng, Rongguang; Hu, Yin; Liu, Jing; Wang, Wenyuan; Zhao, Yawen; Luo, Zhipeng; Bai, Bin; Wang, Xiaofang; Liu, Kezhao

    2018-06-01

    Oxide formation on surface of nitrogen-rich uranium nitride film/particles was investigated using X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), aberration-corrected transmission electron microscopy (TEM), and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) coupled with electron energy-loss spectroscopy (EELS). XPS and AES studies indicated that the oxidized layer on UN2-x film is ternary compound uranium oxynitride (UNxOy) in 5-10 nm thickness. TEM/HAADF-STEM and EELS studies revealed the UNxOy crystallizes in the FCC CaF2-type structure with the lattice parameter close to the CaF2-type UN2-x matrix. The work can provide further information to the oxidation mechanism of uranium nitride.

  13. Compositions of surface layers formed on amalgams in air, water, and saline.

    PubMed

    Hanawa, T; Gnade, B E; Ferracane, J L; Okabe, T; Watari, F

    1993-12-01

    The surface layers formed on both a zinc-free and a zinc-containing dental amalgam after polishing and aging in air, water, or saline, were characterized using x-ray photoelectron spectroscopy (XPS) to determine the compositions of the surface layers which might govern the release of mercury from amalgam. The XPS data revealed that the formation of the surface layer on the zinc-containing amalgam was affected by the environment in which the amalgam was polished and aged, whereas that on the zinc-free amalgam was not affected. In addition, among the elements contained in amalgam, zinc was the most reactive with the environment, and was preferentially dissolved from amalgam into water or saline. Mercury atoms existed in the metallic state in the surface layer.

  14. High throughput measurement of metabolism in planarians reveals activation of glycolysis during regeneration

    PubMed Central

    Osuma, Edie A.; Riggs, Daniel W.; Gibb, Andrew A.

    2018-01-01

    Abstract Planarians are outstanding models for studying mechanisms of regeneration; however, there are few methods to measure changes in their metabolism. Examining metabolism in planarians is important because the regenerative process is dependent on numerous integrated metabolic pathways, which provide the energy required for tissue repair as well as the ability to synthesize the cellular building blocks needed to form new tissue. Therefore, we standardized an extracellular flux analysis method to measure mitochondrial and glycolytic activity in live planarians during normal growth as well as during regeneration. Small, uninjured planarians showed higher rates of oxygen consumption compared with large planarians, with no difference in glycolytic activity; however, glycolysis increased during planarian regeneration. Exposure of planarians to koningic acid, a specific inhibitor of glyceraldehyde‐3‐phosphate dehydrogenase, completely abolished extracellular acidification with little effect on oxygen consumption, which suggests that the majority of glucose catabolized in planarians is fated for aerobic glycolysis. These studies describe a useful method for measuring respiration and glycolysis in planarians and provide data implicating changes in glucose metabolism in the regenerative response. PMID:29721328

  15. Electronic anisotropies revealed by detwinned angle-resolved photo-emission spectroscopy measurements of FeSe

    NASA Astrophysics Data System (ADS)

    Watson, Matthew D.; Haghighirad, Amir A.; Rhodes, Luke C.; Hoesch, Moritz; Kim, Timur K.

    2017-10-01

    We report high resolution angle-resolved photo-emission spectroscopy (ARPES) measurements of detwinned FeSe single crystals. The application of a mechanical strain is used to promote the volume fraction of one of the orthorhombic domains in the sample, which we estimate to be 80 % detwinned. While the full structure of the electron pockets consisting of two crossed ellipses may be observed in the tetragonal phase at temperatures above 90 K, we find that remarkably, only one peanut-shaped electron pocket oriented along the longer a axis contributes to the ARPES measurement at low temperatures in the nematic phase, with the expected pocket along b being not observed. Thus the low temperature Fermi surface of FeSe as experimentally determined by ARPES consists of one elliptical hole pocket and one orthogonally-oriented peanut-shaped electron pocket. Our measurements clarify the long-standing controversies over the interpretation of ARPES measurements of FeSe.

  16. Differences in Fidelity of Implementation Measures: What Videos and Surveys Reveal about Algebra Instruction

    ERIC Educational Resources Information Center

    Durkin, Kelley; Pollack, Courtney; Star, Jon R.; Rittle-Johnson, Bethany

    2012-01-01

    The current paper investigated the following research questions regarding measures of fidelity: (1) Is there a significant relationship between two different measures of fidelity of implementation: a survey of instructional practices and coded videos of classroom lessons? Does the strength of this relationship differ between treatment and control…

  17. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways

    PubMed Central

    Das, Anupam; Espinosa-Cantú, Adriana; De Maeyer, Dries; Arslan, Ahmed; Van Pee, Michiel; van der Zande, Elisa; Meert, Wim; Yang, Yudi; Zhu, Bo; Marchal, Kathleen; DeLuna, Alexander; Van Noort, Vera; Jelier, Rob; Verstrepen, Kevin J.

    2015-01-01

    Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts. PMID:26545090

  18. Hybrid enabled thin film metrology using XPS and optical

    NASA Astrophysics Data System (ADS)

    Vaid, Alok; Iddawela, Givantha; Mahendrakar, Sridhar; Lenahan, Michael; Hossain, Mainul; Timoney, Padraig; Bello, Abner F.; Bozdog, Cornel; Pois, Heath; Lee, Wei Ti; Klare, Mark; Kwan, Michael; Kang, Byung Cheol; Isbester, Paul; Sendelbach, Matthew; Yellai, Naren; Dasari, Prasad; Larson, Tom

    2016-03-01

    Complexity of process steps integration and material systems for next-generation technology nodes is reaching unprecedented levels, the appetite for higher sampling rates is on the rise, while the process window continues to shrink. Current thickness metrology specifications reach as low as 0.1A for total error budget - breathing new life into an old paradigm with lower visibility for past few metrology nodes: accuracy. Furthermore, for advance nodes there is growing demand to measure film thickness and composition on devices/product instead of surrogate planar simpler pads. Here we extend our earlier work in Hybrid Metrology to the combination of X-Ray based reference technologies (high performance) with optical high volume manufacturing (HVM) workhorse metrology (high throughput). Our stated goal is: put more "eyes" on the wafer (higher sampling) and enable move to films on pattern structure (control what matters). Examples of 1X front-end applications are used to setup and validate the benefits.

  19. Surface deformation analysis of the Mauna Loa and Kilauea volcanoes, Hawaii , revealed by InSAR measurements

    NASA Astrophysics Data System (ADS)

    Casu, F.; Poland, M.; Solaro, G.; Tizzani, P.; Miklius, A.; Sansosti, E.; Lanari, R.

    2009-04-01

    The Big Island of Hawaii is home to three volcanoes that have historically erupted. Hualālai, on the east side of the island, Mauna Loa, the largest volcano on the planet which has erupted 39 times since 1832 (most recently in 1984) and Kilauea, which has been in a state of continuous eruption since 1983 from vents on the volcano's east rift zone. Deformation at Kilauea is characterized by summit and rift zone displacements related to magmatic activity and seaward motion of the south flank caused by slip along a basal decollement. In this work we investigate the deformation affecting the Mauna Loa and Kilauea volcanoes, Hawaii , by exploiting the advanced Interferometric Synthetic Aperture Radar (InSAR) technique referred to as Small BAseline Subset (SBAS) algorithm. In particular, we present time series of line-of-sight (LOS) displacements derived from the SAR data acquired by the ASAR instrument, on board the ENVISAT satellite, from the ascending (track 93, frame 387) and descending (track 429, frame 3213) orbits over a time period between 2003 and 2008. For each coherent pixel of the radar images we compute time-dependent surface displacements as well as the average LOS deformation velocity. We also benefit from the use of the multi-orbit (ascending and descending) data which permit us to discriminate the vertical and east-west components of the revealed displacements. The retrieved InSAR measurements are also favourably compared to the continuous GPS data available in the area in order to asses the quality of the SBAS-InSAR products. The presented results show the complex and articulated deformation behavior of the investigated volcanoes; moreover, the possibility to invert the retrieved DInSAR products, in order to model both deep geological structures and magmatic sources, represents a relevant issue for the comprehension of the volcanoes dynamics.

  20. Dendrometric measurements reveal stages leading to tree mortality in a semiarid pine forest

    NASA Astrophysics Data System (ADS)

    Tatarinov, Fyodor; Preisler, Yakir; Klein, Tamir; Rotenberg, Eyal; Yakir, Dan

    2017-04-01

    Increasing frequency and intensity of climatic extreme events, such as droughts may lead to increasing vulnerability of forests, especially in semi-arid regions. In the spring of 2016 mortality was observed among trees used for sap flow (SF) and dendrometry measurements in the semi-arid Fluxnet pine forest site of Yatir in Israel (280mm annual mean precipitation). This was accompanied by bark-beetle attack, and with visual drying of needles starting in April 2016. Comparative analysis of dendrometry and sap flux (SF) measurements in 31 trees of which 7 died and 24 survived permitted identification of the stages leading to tree mortality. Distinction between dying and surviving trees was identified in the dendrometric measurements from Nov. 2015, about five months before visual mortality signs: First, clear decline in diameter (DBH) was observed in all dying trees, whereas DBH of living trees remained constant until the first rain in January 2016 followed by growth. Second, the diurnal patterns in DBH showed a gradual shift of the diurnal DBH maximum from noon-time to early morning from the summer of 2015 to the spring of 2016 in surviving trees, whereas in dying trees it remained stable around noontime. Third, the diurnal swelling/shrinkage dynamics, assumed to reflect water use and storage dynamics, showed clear decline in magnitude, down to near zero, in the dying trees while regular daily cycle continued in the surviving trees. In September 2015 Shoot measurements showed midnight minimum of leaf water potential, lower than in living trees (-4.5 vs. -3.6 MPa respectively). Sap flow measurements were not sufficiently sensitive during the non-active season (fall and early winter) and indicated changes only after the first rain in January 2016. At this time, SF showed dramatic increase in SF with typical midday maximum in the surviving trees, whereas in dying trees SF remained low and irregular. The results show that indicators of mortality can be detected at least

  1. Quantitative measures to reveal coordinated cytoskeleton-nucleus reorganization during in vitro invasion of cancer cells

    NASA Astrophysics Data System (ADS)

    Dvir, Liron; Nissim, Ronen; Alvarez-Elizondo, Martha B.; Weihs, Daphne

    2015-04-01

    Metastasis formation is a major cause of mortality in cancer patients and includes tumor cell relocation to distant organs. A metastatic cell invades through other cells and extracellular matrix by biochemical attachment and mechanical force application. Force is used to move on or through a 2- or 3-dimensional (3D) environment, respectively, or to penetrate a 2D substrate. We have previously shown that even when a gel substrate is impenetrable, metastatic breast cancer cells can still indent it by applying force. Cells typically apply force through the acto-myosin network, which is mechanically connected to the nucleus. We develop a 3D image-analysis to reveal relative locations of the cell elements, and show that as cells apply force to the gel, a coordinated process occurs that involves cytoskeletal remodeling and repositioning of the nucleus. Our approach shows that the actin and microtubules reorganize in the cell, bringing the actin to the leading edge of the cell. In parallel, the nucleus is transported behind the actin, likely by the cytoskeleton, into the indentation dimple formed in the gel. The nucleus volume below the gel surface correlates with indentation depth, when metastatic breast cancer cells indent gels deeply. However, the nucleus always remains above the gel in benign cells, even when small indentations are observed. Determining mechanical processes during metastatic cell invasion can reveal how cells disseminate in the body and can uncover targets for diagnosis and treatment.

  2. Impression of plasma voltage on growth of α-V2O5 nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Rabindar Kumar; Kumar, Prabhat; Reddy, G. B.

    2015-06-01

    In this communication, we synthesized vanadium pentoxide (α-V2O5) nanostructured thin films (NSTs) accompanied with nanoflakes/ nanoplates on the Ni-coated glass substrates employing plasma assisted sublimation process (PASP) as a function of plasma voltage (Vp). The effect of plasma voltage on structural, morphological, compositional, and vibrational properties have been studied systematically. The structural analysis divulged that all films deposited at different Vp have pure orthorhombic phase, no impurity phase is detected under resolution limit of XRD and XPS. The morphological studies of samples is carried out by SEM, revealed that features as well as alignment of V2O5 NSTs is greatly monitored by Vp and the film possessing the best features is obtained at 2500volt. In addition, XPS results reveal that V5+ oxidation state is the most prominent state in sample V2, which represents better stoichiometric nature of film. The vibrational study of all samples is performed by FTIR and strongly support the XRD observations. All the results are in consonance with each other.

  3. Conformal SiO2 coating of sub-100 nm diameter channels of polycarbonate etched ion-track channels by atomic layer deposition

    PubMed Central

    Sobel, Nicolas; Lukas, Manuela; Spende, Anne; Stühn, Bernd; Trautmann, Christina

    2015-01-01

    Summary Polycarbonate etched ion-track membranes with about 30 µm long and 50 nm wide cylindrical channels were conformally coated with SiO2 by atomic layer deposition (ALD). The process was performed at 50 °C to avoid thermal damage to the polymer membrane. Analysis of the coated membranes by small angle X-ray scattering (SAXS) reveals a homogeneous, conformal layer of SiO2 in the channels at a deposition rate of 1.7–1.8 Å per ALD cycle. Characterization by infrared and X-ray photoelectron spectroscopy (XPS) confirms the stoichiometric composition of the SiO2 films. Detailed XPS analysis reveals that the mechanism of SiO2 formation is based on subsurface crystal growth. By dissolving the polymer, the silica nanotubes are released from the ion-track membrane. The thickness of the tube wall is well controlled by the ALD process. Because the track-etched channels exhibited diameters in the range of nanometres and lengths in the range of micrometres, cylindrical tubes with an aspect ratio as large as 3000 have been produced. PMID:25821688

  4. Impact of Microstructure on MoS 2 Oxidation and Friction

    DOE PAGES

    Curry, John F.; Wilson, Mark A.; Luftman, Henry S.; ...

    2017-07-31

    In this work, we demonstrate the role of microstructure in the friction and oxidation behavior of the lamellar solid lubricant molybdenum disulfide (MoS 2). We report on systematic investigations of oxidation and friction for two MoS 2 films with distinctively different microstructures—amorphous and planar/highly-ordered—before and after exposure to atomic oxygen (AO) and high-temperature (250 °C) molecular oxygen. A combination of experimental tribology, molecular dynamics simulations, X-ray photoelectron spectroscopy (XPS), and high-sensitivity low-energy ion scattering (HS-LEIS) was used to reveal new insights about the links between structure and properties of these widely utilized low-friction materials. Initially, ordered MoS 2 films showedmore » a surprising resistance to both atomic and molecular oxygens (even at elevated temperature), retaining characteristic low friction after exposure to extreme oxidative environments. Finally, XPS shows comparable oxidation of both coatings via AO; however, monolayer resolved compositional depth profiles from HS-LEIS reveal that the microstructure of the ordered coatings limits oxidation to the first atomic layer.« less

  5. Impact of Microstructure on MoS 2 Oxidation and Friction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, John F.; Wilson, Mark A.; Luftman, Henry S.

    In this work, we demonstrate the role of microstructure in the friction and oxidation behavior of the lamellar solid lubricant molybdenum disulfide (MoS 2). We report on systematic investigations of oxidation and friction for two MoS 2 films with distinctively different microstructures—amorphous and planar/highly-ordered—before and after exposure to atomic oxygen (AO) and high-temperature (250 °C) molecular oxygen. A combination of experimental tribology, molecular dynamics simulations, X-ray photoelectron spectroscopy (XPS), and high-sensitivity low-energy ion scattering (HS-LEIS) was used to reveal new insights about the links between structure and properties of these widely utilized low-friction materials. Initially, ordered MoS 2 films showedmore » a surprising resistance to both atomic and molecular oxygens (even at elevated temperature), retaining characteristic low friction after exposure to extreme oxidative environments. Finally, XPS shows comparable oxidation of both coatings via AO; however, monolayer resolved compositional depth profiles from HS-LEIS reveal that the microstructure of the ordered coatings limits oxidation to the first atomic layer.« less

  6. Influence of heat treatment temperature on the morphological and structural aspects of reticulated vitreous carbon used in polyaniline electrosynthesis

    NASA Astrophysics Data System (ADS)

    Gonçalves, E. S.; Dalmolin, C.; Biaggio, S. R.; Nascente, P. A. P.; Rezende, M. C.; Ferreira, N. G.

    2007-08-01

    Reticulated vitreous carbon (RVC) was obtained from different heat treatment temperature (HTT), in the range from 700 up to 2000 °C, and used as a substrate for polyaniline growth from electrosynthesis. The influence of HTT on RVC chemical surface was studied by X-ray photoelectron spectroscopy (XPS) and correlated to electrochemical parameters used in the electrosynthesis. XPS analyses have shown that RVC heteroatoms decrease as HTT increases. The results reveal the migration of chemical bonds from oxidized carbon forms towards carbon atoms as the unique final product. Cyclic voltammetry, electrochemical impedance spectroscopy, and stability test of polyaniline films were performed from oxidized and non-oxidized RVC substrates. Cyclic voltammetry in 0.5 mol L -1 H 2SO 4 revealed higher capacitance for the RVC treated at 1000 °C and oxidized in a hot H 2SO 4 solution. The charge accumulation after RVC chemical treatment has increased around ten times. The lowest electric resistivities and impedances were obtained for the RVC treated at 2000 °C, which also showed the highest polyaniline stability.

  7. Two distinct overstretched DNA structures revealed by single-molecule thermodynamics measurements

    PubMed Central

    Zhang, Xinghua; Chen, Hu; Fu, Hongxia; Doyle, Patrick S.; Yan, Jie

    2012-01-01

    Double-stranded DNA is a dynamic molecule whose structure can change depending on conditions. While there is consensus in the literature about many structures DNA can have, the state of highly-stretched DNA is still not clear. Several groups have shown that DNA in the torsion-unconstrained B-form undergoes an “overstretching” transition at a stretching force of around 65 pN, which leads to approximately 1.7-fold elongation of the DNA contour length. Recent experiments have revealed that two distinct structural transitions are involved in the overstretching process: (i) a hysteretic “peeling” off one strand from its complementary strand, and (ii) a nonhysteretic transition that leads to an undetermined DNA structure. We report the first simultaneous determination of the entropy (ΔS) and enthalpy changes (ΔH) pertaining to these respective transitions. For the hysteretic peeling transition, we determined ΔS ∼ 20 cal/(K.mol) and ΔH ∼ 7 kcal/mol. In the case of the nonhysteretic transition, ΔS ∼ -3 cal/(K.mol) and ΔH ∼ 1 kcal/mol. Furthermore, the response of the transition force to salt concentration implies that the two DNA strands are spatially separated after the hysteretic peeling transition. In contrast, the corresponding response after the nonhysteretic transition indicated that the strands remained in close proximity. The selection between the two transitions depends on DNA base-pair stability, and it can be illustrated by a multidimensional phase diagram. Our results provide important insights into the thermodynamics of DNA overstretching and conformational structures of overstretched DNA that may play an important role in vivo. PMID:22532662

  8. Photographic measurements in 301 cases of liposuction and abdominoplasty reveal fat reduction without redistribution.

    PubMed

    Swanson, Eric

    2012-08-01

    There are no published studies of liposuction or abdominoplasty in a large number of patients using measurements of body dimensions. In the absence of rigorous data, some investigators have proposed that fat returns after liposuction. A prospective study was undertaken among predominantly nonobese consecutive patients undergoing 301 liposuction and abdominoplasty procedures meeting the study criteria (inclusion rate, 70.7 percent). Lower body dimensions were measured using standardized photographs taken before and at least 3 months after surgery. Upper body measurements were compared between women who underwent simultaneous cosmetic breast surgery (n=67) and a group of women who had breast surgery alone (n=78) to investigate the possibility of fat redistribution. The average weight change was a loss of 2.2 lbs after lower body liposuction (p<0.01) and 4.6 lbs when combined with abdominoplasty (p<0.001). Liposuction significantly reduced abdominal, thigh, knee, and arm width (p<0.001). Midabdominal and hip width were more effectively reduced by lipoabdominoplasty than liposuction alone (p<0.001). There was no difference in upper body measurements when comparing patients who had simultaneous liposuction and/or abdominoplasty with patients who had cosmetic breast surgery alone. Measurements in patients with at least 1 year of follow-up (n=46) showed no evidence of fat reaccumulation. Both liposuction and abdominoplasty are valid techniques for long-term fat reduction and improvement of body proportions. There is no evidence of fat regrowth. Therapeutic, III.

  9. Towards the preparation of realistic model Ziegler-Natta catalysts: XPS study of the MgCl 2/TiCl 4 interaction with flat SiO 2/Si(1 0 0)

    NASA Astrophysics Data System (ADS)

    Siokou, Angeliki; Ntais, Spyridon

    2003-08-01

    Despite of the wide use of supported Ti based Ziegler-Natta catalysts in the olefin polymerization industry, questions concerning the role of each one of the catalyst components in the polymerization process, have not found a satisfactory answer yet. This is mainly because of the high sensitivity of these systems to oxygen and atmospheric moisture that makes their study in an atomic level rather complicated. Realistic surface science models of the pre-activated SiO 2 supported MgCl 2/TiCl 4 and TiCl 4 Ziegler-Natta catalysts were prepared by spin coating on flat conductive SiO 2/Si(1 0 0) supports under inert atmosphere. This preparation technique resembles the wet chemical impregnation which is the industrial method of the catalyst preparation. XPS analysis showed that the catalyst precursor anchors on the silica surface through bonding of the Ti atoms with surface silanes or siloxanes, while Mg is attached to the Ti through chlorine bridges. Thermal treatment of the catalysts at 723 K leads to total Cl desorption when MgCl 2 is not present while a significant amount of the Ti atoms is reduced to the Ti 3+ state.

  10. Reflectometry-Ellipsometry Reveals Thickness, Growth Rate, and Phase Composition in Oxidation of Copper.

    PubMed

    Diaz Leon, Juan J; Fryauf, David M; Cormia, Robert D; Zhang, Min-Xian Max; Samuels, Kathryn; Williams, R Stanley; Kobayashi, Nobuhiko P

    2016-08-31

    The oxidation of copper is a complicated process. Copper oxide develops two stable phases at room temperature and standard pressure (RTSP): cuprous oxide (Cu2O) and cupric oxide (CuO). Both phases have different optical and electrical characteristics that make them interesting for applications such as solar cells or resistive switching devices. For a given application, it is necessary to selectively control oxide thickness and cupric/cuprous oxide phase volume fraction. The thickness and composition of a copper oxide film growing on the surface of copper widely depend on the characteristics of as-deposited copper. In this Research Article, two samples, copper films prepared by two different deposition techniques, electron-beam evaporation and sputtering, were studied. As the core part of the study, the formation of the oxidized copper was analyzed routinely over a period of 253 days using spectroscopic polarized reflectometry-spectroscopic ellipsometry (RE). An effective medium approximation (EMA) model was used to fit the RE data. The RE measurements were complemented and validated by using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and X-ray diffraction (XRD). Our results show that the two samples oxidized under identical laboratory ambient conditions (RTSP, 87% average relative humidity) developed unique oxide films following an inverse-logarithmic growth rate with thickness and composition different from each other over time. Discussion is focused on the ability of RE to simultaneously extract thickness (i.e., growth rate) and composition of copper oxide films and on plausible physical mechanisms responsible for unique oxidation habits observed in the two copper samples. It appears that extended surface characteristics (i.e., surface roughness and grain boundaries) and preferential crystalline orientation of as-deposited polycrystalline copper films control the growth kinetics of the copper oxide film. Analysis based on a noncontact

  11. Economic Choices Reveal Probability Distortion in Macaque Monkeys

    PubMed Central

    Lak, Armin; Bossaerts, Peter; Schultz, Wolfram

    2015-01-01

    Economic choices are largely determined by two principal elements, reward value (utility) and probability. Although nonlinear utility functions have been acknowledged for centuries, nonlinear probability weighting (probability distortion) was only recently recognized as a ubiquitous aspect of real-world choice behavior. Even when outcome probabilities are known and acknowledged, human decision makers often overweight low probability outcomes and underweight high probability outcomes. Whereas recent studies measured utility functions and their corresponding neural correlates in monkeys, it is not known whether monkeys distort probability in a manner similar to humans. Therefore, we investigated economic choices in macaque monkeys for evidence of probability distortion. We trained two monkeys to predict reward from probabilistic gambles with constant outcome values (0.5 ml or nothing). The probability of winning was conveyed using explicit visual cues (sector stimuli). Choices between the gambles revealed that the monkeys used the explicit probability information to make meaningful decisions. Using these cues, we measured probability distortion from choices between the gambles and safe rewards. Parametric modeling of the choices revealed classic probability weighting functions with inverted-S shape. Therefore, the animals overweighted low probability rewards and underweighted high probability rewards. Empirical investigation of the behavior verified that the choices were best explained by a combination of nonlinear value and nonlinear probability distortion. Together, these results suggest that probability distortion may reflect evolutionarily preserved neuronal processing. PMID:25698750

  12. An Electrochemical, Microtopographical and Ambient Pressure X-Ray Photoelectron Spectroscopic Investigation of Si/TiO 2/Ni/Electrolyte Interfaces

    DOE PAGES

    Lichterman, Michael F.; Richter, Matthias H.; Hu, Shu; ...

    2015-12-05

    The electrical and spectroscopic properties of the TiO 2/Ni protection layer system, which enables stabilization of otherwise corroding photoanodes, have been investigated in contact with electrolyte solutions by scanning-probe microscopy, electrochemistry and in-situ ambient pressure X-ray photoelectron spectroscopy (AP-XPS). Specifically, the energy-band relations of the p +-Si/ALD-TiO 2/Ni interface have been determined for a selected range of Ni thicknesses. AP-XPS measurements using tender X-rays were performed in a three-electrode electrochemical arrangement under potentiostatic control to obtain information from the semiconductor near-surface region, the electrochemical double layer (ECDL) and the electrolyte beyond the ECDL. The degree of conductivity depended on themore » chemical state of the Ni on the TiO 2 surface. At low loadings of Ni, the Ni was present primarily as an oxide layer and the samples were not conductive, although the TiO 2 XPS core levels nonetheless displayed behavior indicative of a metal-electrolyte junction. In contrast, as the Ni thickness increased, the Ni phase was primarily metallic and the electrochemical behavior became highly conductive, with the AP-XPS data indicative of a metal-electrolyte junction. Electrochemical and microtopographical methods have been employed to better define the nature of the TiO 2/Ni electrodes and to contextualize the AP-XPS results.« less

  13. Revealing structure within the coronae of Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Wilkins, D.

    2017-10-01

    Detailed analysis of the reflection and reverberation of X-rays from the innermost regions of AGN accretion discs reveals the structure and processes that produce the intense continuum emission and the extreme variability we see, right down to the innermost stable orbit and event horizon of the black hole. Observations of Seyfert galaxies spanning more than a decade have enabled measurement of the geometry of the corona and how it evolves, leading to orders of magnitude of variability. They reveal processes the corona undergoes during transient events, notably the collimation and ejection of the corona during X-ray flares, reminiscent of the aborted launching of a jet. Recent reverberation studies, including those of the Seyfert galaxy I Zwicky 1 with XMM-Newton, are revealing structures within the corona for the first time. A persistent collimated core is found, akin to the base of a jet embedded in the innermost regions. The evolution of both the collimated and extended portions point to the mechanisms powering the X-ray emission and variability. This gives us important constraints on the processes by which energy is liberated from black hole accretion flows and by which jets are launched, allowing us to understand how these extreme objects are powered.

  14. Empirical optimization of DFT  +  U and HSE for the band structure of ZnO.

    PubMed

    Bashyal, Keshab; Pyles, Christopher K; Afroosheh, Sajjad; Lamichhane, Aneer; Zayak, Alexey T

    2018-02-14

    ZnO is a well-known wide band gap semiconductor with promising potential for applications in optoelectronics, transparent electronics, and spintronics. Computational simulations based on the density functional theory (DFT) play an important role in the research of ZnO, but the standard functionals, like Perdew-Burke-Erzenhof, result in largely underestimated values of the band gap and the binding energies of the Zn 3d electrons. Methods like DFT  +  U and hybrid functionals are meant to remedy the weaknesses of plain DFT. However, both methods are not parameter-free. Direct comparison with experimental data is the best way to optimize the computational parameters. X-ray photoemission spectroscopy (XPS) is commonly considered as a benchmark for the computed electronic densities of states. In this work, both DFT  +  U and HSE methods were parametrized to fit almost exactly the binding energies of electrons in ZnO obtained by XPS. The optimized parameterizations of DFT  +  U and HSE lead to significantly worse results in reproducing the ion-clamped static dielectric tensor, compared to standard high-level calculations, including GW, which in turn yield a perfect match for the dielectric tensor. The failure of our XPS-based optimization reveals the fact that XPS does not report the ground state electronic structure for ZnO and should not be used for benchmarking ground state electronic structure calculations.

  15. Empirical optimization of DFT  +  U and HSE for the band structure of ZnO

    NASA Astrophysics Data System (ADS)

    Bashyal, Keshab; Pyles, Christopher K.; Afroosheh, Sajjad; Lamichhane, Aneer; Zayak, Alexey T.

    2018-02-01

    ZnO is a well-known wide band gap semiconductor with promising potential for applications in optoelectronics, transparent electronics, and spintronics. Computational simulations based on the density functional theory (DFT) play an important role in the research of ZnO, but the standard functionals, like Perdew-Burke-Erzenhof, result in largely underestimated values of the band gap and the binding energies of the Zn3d electrons. Methods like DFT  +  U and hybrid functionals are meant to remedy the weaknesses of plain DFT. However, both methods are not parameter-free. Direct comparison with experimental data is the best way to optimize the computational parameters. X-ray photoemission spectroscopy (XPS) is commonly considered as a benchmark for the computed electronic densities of states. In this work, both DFT  +  U and HSE methods were parametrized to fit almost exactly the binding energies of electrons in ZnO obtained by XPS. The optimized parameterizations of DFT  +  U and HSE lead to significantly worse results in reproducing the ion-clamped static dielectric tensor, compared to standard high-level calculations, including GW, which in turn yield a perfect match for the dielectric tensor. The failure of our XPS-based optimization reveals the fact that XPS does not report the ground state electronic structure for ZnO and should not be used for benchmarking ground state electronic structure calculations.

  16. Gd-Complexes of New Arylpiperazinyl Conjugates of DTPA-Bis(amides): Synthesis, Characterization and Magnetic Relaxation Properties.

    PubMed

    Ba-Salem, Abdullah O; Ullah, Nisar; Shaikh, M Nasiruzzaman; Faiz, Mohamed; Ul-Haq, Zaheer

    2015-04-29

    Two new DTPA-bis(amide) based ligands conjugated with the arylpiperazinyl moiety were synthesized and subsequently transformed into their corresponding Gd(III) complexes 1 and 2 of the type [Gd(L)H2O]·nH2O. The relaxivity (R1) of these complexes was measured, which turned out to be comparable with that of Omniscan®, a commercially available MRI contrast agent. The cytotoxicity studies of these complexes indicated that they are non-toxic, which reveals their potential and physiological suitability as MRI contrast agents. All the synthesized ligands and complexes were characterized with the aid of analytical and spectroscopic methods, including elemental analysis, 1H-NMR, FT-IR, XPS and fast atom bombardment (FAB) mass spectrometry.

  17. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    NASA Astrophysics Data System (ADS)

    Sardar, Debasmita; Sengupta, Manideepa; Bordoloi, Ankur; Ahmed, Md. A.; Neogi, S. K.; Bandyopadhyay, Sudipta; Jain, Ruchi; Gopinath, Chinnakonda S.; Bala, Tanushree

    2017-05-01

    Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH4, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV-vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  18. Synergistic effect of tartaric acid with 2,6-diaminopyridine on the corrosion inhibition of mild steel in 0.5 M HCl

    PubMed Central

    Qiang, Yujie; Guo, Lei; Zhang, Shengtao; Li, Wenpo; Yu, Shanshan; Tan, Jianhong

    2016-01-01

    The inhibitive ability of 2,6-diaminopyridine, tartaric acid and their synergistic effect towards mild steel corrosion in 0.5 M HCl solution was evaluated at various concentrations using potentiodynamic polarization measurements, electrochemical impedance spectroscopy (EIS), and weight loss experiments. Corresponding surfaces of mild steel were examined by atomic force microscope (AFM), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) analysis. The experimental results are in good agreement and reveal a favorable synergistic effect of 2,6-diaminopyridine with tartaric acid, which could protect mild steel from corrosion effectively. Besides, quantum chemical calculations and Monte Carlo simulation were used to clarify the inhibition mechanism of the synergistic effect. PMID:27628901

  19. Two novel penetrating coordination polymers based on flexible S-containing dicarboxylate acid with sensing properties towards Fe3+ and Cr2O72- ions

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwei; Mi, Xiuna; Wang, Suna; Lu, Jing; Li, Yunwu; Li, Dacheng; Dou, Jianmin

    2018-05-01

    Two new coordination polymers (CPs), namely, {[Zn(L)(bpp)]·DMF}n (1) and {[Zn(L)(bpe)]·DMF}n (2) (L = 2,2'-[benzene-1,3-diylbis(methanediylsulfanediyl)]dibenzoic acid, bpp= 1,3-bis(4-pyridyl)propane, bpe = 1,2-Bis(4-pyridyl)ethylene, DMF = N,N-Dimethylformamide), have been solvothermally synthesized and fully characterized. Complex 1 displays a 2D→2D three-fold"false" interpenetrating structure while complex 2 possesses a novel 3-D 4-connected structure with fascinating self-penetrating moieties. The luminescence studies reveal that these complexes exhibited excellent selectivity for Fe3+ and Cr2O72- ions in DMF. The sensing mechanism was investigated through PXRD, XPS , EDS mapping measurements, and discussed in details.

  20. Low-temperature oxidizing plasma surface modification and composite polymer thin-film fabrication techniques for tailoring the composition and behavior of polymer surfaces

    NASA Astrophysics Data System (ADS)

    Tompkins, Brendan D.

    This dissertation examines methods for modifying the composition and behavior of polymer material surfaces. This is accomplished using (1) low-temperature low-density oxidizing plasmas to etch and implant new functionality on polymers, and (2) plasma enhanced chemical vapor deposition (PECVD) techniques to fabricate composite polymer materials. Emphases are placed on the structure of modified polymer surfaces, the evolution of polymer surfaces after treatment, and the species responsible for modifying polymers during plasma processing. H2O vapor plasma modification of high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polycarbonate (PC), and 75A polyurethane (PU) was examined to further our understanding of polymer surface reorganization leading to hydrophobic recovery. Water contact angles (wCA) measurements showed that PP and PS were the most susceptible to hydrophobic recovery, while PC and HDPE were the most stable. X-ray photoelectron spectroscopy (XPS) revealed a significant quantity of polar functional groups on the surface of all treated polymer samples. Shifts in the C1s binding energies (BE) with sample age were measured on PP and PS, revealing that surface reorganization was responsible for hydrophobic recovery on these materials. Differential scanning calorimetry (DSC) was used to rule out the intrinsic thermal properties as the cause of reorganization and hydrophobic recovery on HDPE, LDPE, and PP. The different contributions that polymer cross-linking and chain scission mechanisms make to polymer aging effects are considered. The H2O plasma treatment technique was extended to the modification of 0.2 microm and 3.0 microm track-etched polycarbonate (PC-TE) and track-etched polyethylene terephthalate (PET-TE) membranes with the goal of permanently increasing the hydrophilicity of the membrane surfaces. Contact angle measurements on freshly treated and aged samples confirmed the wettability of the

  1. Atomic force measurements of 16-mercaptohexadecanoic acid and its salt with CH 3, OH, and CONHCH 3 functionalized self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Morales-Cruz, Angel L.; Tremont, Rolando; Martínez, Ramón; Romañach, Rodolfo; Cabrera, Carlos R.

    2005-03-01

    Chemical and mechanical properties of different compounds can be elucidated by measuring fundamental forces such as adhesion, attraction and repulsion, between modified surfaces by means of atomic force microscopy (AFM) in force mode calibration. This work presents a combination of AFM, self-assembled monolayers (SAMs), and crystallization techniques to study the forces of interaction between excipients and active ingredients used in pharmaceutical formulations. SAMs of 16-mercaptohexadecanoate, which represent magnesium stereate, were used to modify the probe tip, whereas CH3-, OH- and CONHCH3-functional SAMs were formed on a gold-coated mica substrate, and used as examples of the surfaces of lactose and theophylline. The crystals of lactose and theophylline were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The modification of gold surfaces with 16-mercaptohexadecanoate, 10-mercapto-1-decanol (OH-functional SAM), 1-decanethiol (CH3-functional) and N-methyl-11-mercaptoundecanamide (CONHCH3-functional SAM) was studied by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and Fourier transform-infrared spectroscopy (FT-IR) in specular reflectance mode. XPS and AES results of the modified surfaces showed the presence of sulfur binding, and kinetic energies that correspond to the presence of 10-mercapto-1-decanol, 1-decanethiol, N-methyl-11-mercaptoundecanamide and the salt of 16-mercaptohexadecanoic acid. The absorption bands in the IR spectra further confirm the modification of the gold-coated substrates with these compounds. Force versus distance measurements were performed between the modified tip and the modified gold-coated mica substrates. The mean adhesion forces between the COO-Ca2+ functionalized tip and the CH3-, OH-, and CONHCH3-modified substrates were determined to be 4.5, 8.9 and 6.3 nN, respectively. The magnitude of the adhesion force (ion-dipole) interaction between the modified tip and

  2. Apatite Formation and Biocompatibility of a Low Young’s Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water

    PubMed Central

    Tanaka, Hidetatsu; Mori, Yu; Noro, Atsushi; Kogure, Atsushi; Kamimura, Masayuki; Yamada, Norikazu; Hanada, Shuji; Masahashi, Naoya; Itoi, Eiji

    2016-01-01

    Ti-6Al-4V alloy is widely prevalent as a material for orthopaedic implants because of its good corrosion resistance and biocompatibility. However, the discrepancy in Young’s modulus between metal prosthesis and human cortical bone sometimes induces clinical problems, thigh pain and bone atrophy due to stress shielding. We designed a Ti-Nb-Sn alloy with a low Young’s modulus to address problems of stress disproportion. In this study, we assessed effects of anodic oxidation with or without hot water treatment on the bone-bonding characteristics of a Ti-Nb-Sn alloy. We examined surface analyses and apatite formation by SEM micrographs, XPS and XRD analyses. We also evaluated biocompatibility in experimental animal models by measuring failure loads with a pull-out test and by quantitative histomorphometric analyses. By SEM, abundant apatite formation was observed on the surface of Ti-Nb-Sn alloy discs treated with anodic oxidation and hot water after incubation in Hank’s solution. A strong peak of apatite formation was detected on the surface using XRD analyses. XPS analysis revealed an increase of the H2O fraction in O 1s XPS. Results of the pull-out test showed that the failure loads of Ti-Nb-Sn alloy rods treated with anodic oxidation and hot water was greater than those of untreated rods. Quantitative histomorphometric analyses indicated that anodic oxidation and hot water treatment induced higher new bone formation around the rods. Our findings indicate that Ti-Nb-Sn alloy treated with anodic oxidation and hot water showed greater capacity for apatite formation, stronger bone bonding and higher biocompatibility for osteosynthesis. Ti-Nb-Sn alloy treated with anodic oxidation and hot water treatment is a promising material for orthopaedic implants enabling higher osteosynthesis and lower stress disproportion. PMID:26914329

  3. Spontaneous desorption and phase transitions of self-assembled alkanethiol and alicyclic thiol monolayers chemisorbed on Au(111) in ultrahigh vacuum at room temperature.

    PubMed

    Ito, Eisuke; Kang, Hungu; Lee, Dongjin; Park, Joon B; Hara, Masahiko; Noh, Jaegeun

    2013-03-15

    Scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) were used to examine the surface structure and adsorption conditions of hexanethiol (HT) and cyclohexanethiol (CHT) self-assembled monolayers (SAMs) on Au(111) as a function of storage period in ultrahigh vacuum (UHV) conditions of 3×10(-7) Pa at room temperature (RT). STM imaging revealed that after storage for 7 days, HT SAMs underwent phase transitions from c(4×2) phase to low coverage 4×√3 phase. This transition is due to a structural rearrangement of hexanethiolates that results from the spontaneous desorption of chemisorbed HT molecules on Au(111) surface. XPS measurements showed approximately 28% reduction in sulfur coverage, which indicates desorption of hexanethiolates from the surfaces. Contrary to HT SAMs, the structural order of CHT SAMs with (5×2√3)R35° phase completely disappeared after storage for 3 or 7 days. XPS results show desorption of more than 80% of the cyclohexanethiolates, even after storage for 3 days. We found that spontaneous desorption of CHT molecules on Au(111) in UHV at RT occurred quickly, whereas spontaneous desorption of HT molecules was much slower. Thermal desorption spectroscopy (TDS) results suggest CHT SAMs in UHV at RT can desorb more efficiently than HT SAMs due to formation of thiol desorption fragments that result from chemical reactions between surface hydrogen atoms and thiolates on Au(111) surfaces. This study clearly demonstrated that organic thiols chemisorbed on gold surfaces are desorbed spontaneously in UHV at RT and van der Waals interactions play an important role in determining the structural stability of thiolate SAMs in UHV. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Kinetics of electron-induced decomposition of CF2Cl2 coadsorbed with water (ice): A comparison with CCl4

    NASA Astrophysics Data System (ADS)

    Faradzhev, N. S.; Perry, C. C.; Kusmierek, D. O.; Fairbrother, D. H.; Madey, T. E.

    2004-11-01

    The kinetics of decomposition and subsequent chemistry of adsorbed CF2Cl2, activated by low-energy electron irradiation, have been examined and compared with CCl4. These molecules have been adsorbed alone and coadsorbed with water ice films of different thicknesses on metal surfaces (Ru; Au) at low temperatures (25 K; 100 K). The studies have been performed with temperature programmed desorption (TPD), reflection absorption infrared spectroscopy (RAIRS), and x-ray photoelectron spectroscopy (XPS). TPD data reveal the efficient decomposition of both halocarbon molecules under electron bombardment, which proceeds via dissociative electron attachment (DEA) of low-energy secondary electrons. The rates of CF2Cl2 and CCl4 dissociation increase in an H2O (D2O) environment (2-3×), but the increase is smaller than that reported in recent literature. The highest initial cross sections for halocarbon decomposition coadsorbed with H2O, using 180 eV incident electrons, are measured (using TPD) to be 1.0±0.2×10-15 cm2 for CF2Cl2 and 2.5±0.2×10-15 cm2 for CCl4. RAIRS and XPS studies confirm the decomposition of halocarbon molecules codeposited with water molecules, and provide insights into the irradiation products. Electron-induced generation of Cl- and F- anions in the halocarbon/water films and production of H3O+, CO2, and intermediate compounds COF2 (for CF2Cl2) and COCl2, C2Cl4 (for CCl4) under electron irradiation have been detected using XPS, TPD, and RAIRS. The products and the decomposition kinetics are similar to those observed in our recent experiments involving x-ray photons as the source of ionizing irradiation.

  5. Giant crystal-electric-field effect and complex magnetic behavior in single-crystalline CeRh3Si2

    NASA Astrophysics Data System (ADS)

    Pikul, A. P.; Kaczorowski, D.; Gajek, Z.; Stȩpień-Damm, J.; Ślebarski, A.; Werwiński, M.; Szajek, A.

    2010-05-01

    Single-crystalline CeRh3Si2 was investigated by means of x-ray diffraction, magnetic susceptibility, magnetization, electrical resistivity, and specific-heat measurements carried out in wide temperature and magnetic field ranges. Moreover, the electronic structure of the compound was studied at room temperature by cerium core-level x-ray photoemission spectroscopy (XPS). The physical properties were analyzed in terms of crystalline electric field and compared with results of ab initio band-structure calculations performed within the density-functional theory approach. The compound was found to crystallize in the orthorhombic unit cell of the ErRh3Si2 type (space group Imma No.74, Pearson symbol: oI24 ) with the lattice parameters a=7.1330(14)Å , b=9.7340(19)Å , and c=5.6040(11)Å . Analysis of the magnetic and XPS data revealed the presence of well-localized magnetic moments of trivalent cerium ions. All the physical properties were found to be highly anisotropic over the whole temperature range studied and influenced by exceptionally strong crystalline electric field with the overall splitting of the 4f1 ground multiplet exceeding 5700 K. Antiferromagnetic order of the cerium magnetic moments at TN=4.70(1)K and their subsequent spin rearrangement at Tt=4.48(1)K manifest themselves as distinct anomalies in the temperature characteristic of all the physical properties investigated and exhibit complex evolution in an external magnetic field. A tentative magnetic B-T phase diagram, constructed for B parallel to the b axis being the easy magnetization direction, shows very complex magnetic behavior of CeRh3Si2 , similar to that recently reported for an isostructural compound CeIr3Si2 . The electronic band-structure calculations corroborated the antiferromagnetic ordering of the cerium magnetic moments and well-reproduced the experimental XPS valence-band spectrum.

  6. X-ray photoelectron spectroscopic and morphologic studies of Ru nanoparticles deposited onto highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Bavand, R.; Yelon, A.; Sacher, E.

    2015-11-01

    Ruthenium nanoparticles (Ru NPs) function as effective catalysts in specific reactions, such as methanation and Fischer-Tropsch syntheses. It is our purpose to physicochemically characterize their surfaces, at which catalysis occurs, by surface-sensitive X-ray photoelectron spectroscopy (XPS), using the symmetric peak component anaylsis technique developed in our laboratory to reveal previously hidden components. Ru NPs were deposited by evaporation (0.25-1.5 nm nominal deposition range) onto highly oriented pyrolytic graphite (HOPG). In addition to their surfaces being characterized by XPS, an indication of morphology was obtained from transmission electron microscopy (TEM). Our use of symmetric peak component XPS analysis has revealed detailed information on a previously unidentified surface oxide initially formed, as well as on the valence electronic structure and its variation with NP size, information that is of potential importance in the use of these NPs in catalysis. Each of the several Ru core XPS spectra characterized (3d, 3p and 3s) was found to be composed of three symmetric components. Together with two metal oxide O1s components, these give evidence of a rather complex, previously unidentified oxide that is initially formed. The Ru valence band (4d and 5s) spectra clearly demonstrate a loss of metallicity, a simultaneous increase of the Kubo gap, and an abrupt transfer in valence electron density from the 4d to the 5s orbitals (known as electron spill-over), as the NP size decreases below 0.5 nm. TEM photomicrographs, as a function of deposition rate, show that, at a rate that gives insufficient time for the NP condensation energy to dissipate, the initially well-separated NPs are capable of diffusing laterally and aggregating. This indicates weak NP bonding to the HOPG substrate. Carbide is formed, at both high and low deposition rates, at Ru deposition thicknesses greater than 0.25 nm, its formation explained by Ru NPs reacting with residual

  7. Stable chromosome condensation revealed by chromosome conformation capture

    PubMed Central

    Eagen, Kyle P.; Hartl, Tom A.; Kornberg, Roger D.

    2015-01-01

    SUMMARY Chemical cross-linking and DNA sequencing have revealed regions of intra-chromosomal interaction, referred to as topologically associating domains (TADs), interspersed with regions of little or no interaction, in interphase nuclei. We find that TADs and the regions between them correspond with the bands and interbands of polytene chromosomes of Drosophila. We further establish the conservation of TADs between polytene and diploid cells of Drosophila. From direct measurements on light micrographs of polytene chromosomes, we then deduce the states of chromatin folding in the diploid cell nucleus. Two states of folding, fully extended fibers containing regulatory regions and promoters, and fibers condensed up to ten-fold containing coding regions of active genes, constitute the euchromatin of the nuclear interior. Chromatin fibers condensed up to 30-fold, containing coding regions of inactive genes, represent the heterochromatin of the nuclear periphery. A convergence of molecular analysis with direct observation thus reveals the architecture of interphase chromosomes. PMID:26544940

  8. A New NIST Database for the Simulation of Electron Spectra for Surface Analysis (SESSA): Application to Angle-Resolved X-ray Photoelectron Spectroscopy of HfO2, ZrO2, HfSiO4, and ZrSiO4 Films on Silicon

    NASA Astrophysics Data System (ADS)

    Powell, C. J.; Smekal, W.; Werner, W. S. M.

    2005-09-01

    We describe a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA). This database provides data for the many parameters needed in quantitative Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). In addition, AES and XPS spectra can be simulated for layered samples. The simulated spectra, for layer compositions and thicknesses specified by the user, can be compared with measured spectra. The layer compositions and thicknesses can then be adjusted to find maximum consistency between simulated and measured spectra. In this way, AES and XPS can provide more detailed characterization of multilayer thin-film materials. We report on the use of SESSA for determining the thicknesses of HfO2, ZrO2, HfSiO4, and ZrSiO4 films on Si by angle-resolved XPS. Practical effective attenuation lengths (EALs) have been computed from SESSA as a function of film thickness and photoelectron emission angle (i.e., to simulate the effects of tilting the sample). These EALs have been compared with similar values obtained from the NIST Electron Effective-Attenuation-Length Database (SRD 82). Generally good agreement was found between corresponding EAL values, but there were differences for film thicknesses less than the inelastic mean free path of the photoelectrons in the overlayer film. These differences are due to a simplifying approximation in the algorithm used to compute EALs in SRD 82. SESSA, with realistic cross sections for elastic and inelastic scattering in the film and substrate materials, is believed to provide more accurate EALs than SRD 82 for thin-film thickness measurements, particularly in applications where the film and substrate have different electron-scattering properties.

  9. Pinus Pinaster surface treatment realized in spatial and temporal afterglow DBD conditions

    NASA Astrophysics Data System (ADS)

    Lecoq, E.; Clément, F.; Panousis, E.; Loiseau, J.-F.; Held, B.; Castetbon, A.; Guimon, C.

    2008-04-01

    This experimental work deals with the exposition of Pinus Pinaster wood samples to a DBD afterglow. Electrical parameters like duty cycle and injected energy in the gas are being varied and the modifications induced by the afterglow on the wood are analysed by several macroscopic and microscopic ways like wettability, XPS analyses and also soaking tests of treated wood in a commercial fungicide solution. Soaking tests show that plasma treatment could enhance the absorption of fungicide into the wood. The wettability results point out that the plasma treatment can inflict on the wood different surface properties, making it hydrophilic or hydrophobic, when varying electrical parameters. XPS analyses reveal several chemical modifications like an increase of the O/C ratio and the presence of carboxyl groups on the surface after plasma treatments.

  10. Gallium-containing polymer brush film as efficient supported Lewis acid catalyst in a glass microreactor

    PubMed Central

    Munirathinam, Rajesh; Ricciardi, Roberto; Egberink, Richard J M; Huskens, Jurriaan; Holtkamp, Michael; Wormeester, Herbert; Karst, Uwe

    2013-01-01

    Summary Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS). XPS revealed the presence of one gallium per 2–3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3. PMID:24062830

  11. A Study of Ziegler–Natta Propylene Polymerization Catalysts by Spectroscopic Methods

    PubMed Central

    Tkachenko, Olga P.; Kucherov, Alexey V.; Kustov, Leonid M.; Virkkunen, Ville; Leinonen, Timo; Denifl, Peter

    2017-01-01

    Ziegler–Natta polymerization catalysts were characterized by a complex of surface- and bulk-sensitive methods (DRIFTS, XPS, ESR, and XAS = XANES + EXAFS). A diffuse-reflectance Fourier-transform IR spectroscopy (DRIFTS) study showed the presence of strong Lewis acid sites in different concentrations and absence of strong basic sites in the polymerization catalysts. X-ray photoelectron spectroscopy (XPS), electron-spin resonance (ESR), and (X-ray absorption near-edge structure (XANES) analysis revealed the presence of Ti4+, Ti3+, Ti2+, and Ti1+ species in the surface layers and in the bulk of catalysts. The samples under study differ drastically in terms of the number of ESR-visible paramagnetic sites. The EXAFS study shows the presence of a Cl atom as a nearest neighbor of the absorbing Ti atom. PMID:28772850

  12. Auger electron diffraction study of the growth of Fe(001) films on ZnSe(001)

    NASA Astrophysics Data System (ADS)

    Jonker, B. T.; Prinz, G. A.

    1991-03-01

    The growth of Fe films on ZnSe(001) epilayers and bulk GaAs(001) substrates has been studied to determine the mode of film growth, the formation of the interface, and the structure of the overlayer at the 1-10 monolayer level. Auger electron diffraction (AED), x-ray photoelectron spectroscopy (XPS), and reflection high-energy electron diffraction data are obtained for incremental deposition of the Fe(001) overlayer. The coverage dependence of the AED forward scattering peaks reveals a predominantly layer-by-layer mode of film growth at 175 °C on ZnSe, while a more three-dimensional growth mode occurs on the oxide-desorbed GaAs(001) substrate. XPS studies of the semiconductor 3d levels indicate that the Fe/ZnSe interface is less reactive than the Fe/GaAs interface.

  13. Metallization of ultra-thin, non-thiol SAMs with flat-lying molecular units: Pd on 1, 4-dicyanobenzene.

    PubMed

    Eberle, Felix; Metzler, Martin; Kolb, Dieter M; Saitner, Marc; Wagner, Patrick; Boyen, Hans-Gerd

    2010-09-10

    Self-assembled monolayers of 1,4-dicyanobenzene on Au(111) electrodes are studied by cyclic voltammetry, in-situ STM and ex-situ XPS. High-resolution STM images reveal a long-range order of propeller-like assemblies each of which consists of three molecules, all lying flat on the gold substrate with the cyano groups oriented parallel to the metal surface. It is demonstrated that both functional groups can act as complexation sites for metal ions from solution. Surprisingly, such arrangements still allow the metal to be deposited on top of the molecules by electrochemical reduction despite the close vicinity to the Au surface. The latter is demonstrated by angle-resolved XPS which unequivocally shows that the metal indeed resides on top of the organic layer rather than underneath, despite the flat arrangement of the molecules.

  14. Chrome-free Samarium-based Protective Coatings for Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Hou, Legan; Cui, Xiufang; Yang, Yuyun; Lin, Lili; Xiao, Qiang; Jin, Guo

    The microstructure of chrome-free samarium-based conversion coating on magnesium alloy was investigated and the corrosion resistance was evaluated as well. The micro-morphology, transverse section, crystal structure and composition of the coating were observed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and X- ray photoelectron spectroscopy (XPS), respectively. The corrosion resistance was evaluated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The results reveal that the morphology of samarium conversion coating is of crack-mud structure. Tiny cracks distribute in the compact coating deposited by samarium oxides. XRD, EDS and XPS results characterize that the coating is made of amorphous and trivalent-samarium oxides. The potentiodynamic polarization curve, EIS and OCP indicate that the samarium conversion coating can improve the corrosion resistance of magnesium alloys.

  15. Comparative study on the deposition of silicon oxide permeation barrier coatings for polymers using hexamethyldisilazane (HMDSN) and hexamethyldisiloxane (HMDSO)

    NASA Astrophysics Data System (ADS)

    Mitschker, F.; Schücke, L.; Hoppe, Ch; Jaritz, M.; Dahlmann, R.; de los Arcos, T.; Hopmann, Ch; Grundmeier, G.; Awakowicz, P.

    2018-06-01

    The effect of the selection of hexamethyldisiloxane (HMDSO) and hexamethyldisilazane (HMDSN) as a precursor in a microwave driven low pressure plasma on the deposition of silicon oxide barrier coatings and silicon based organic interlayers on polyethylene terephthalate (PET) and polypropylene (PP) substrates is investigated. Mass spectrometry is used to quantify the absolute gas density and the degree of depletion of neutral precursor molecules under variation of oxygen admixture. On average, HMDSN shows a smaller density, a higher depletion and the production of smaller fragments. Subsequently, this is correlated with barrier performance and chemical structure as a function of barrier layer thickness and oxygen admixture on PET. For this purpose, the oxygen transmission rate (OTR) is measured and Fourier transformed infrared (FTIR) spectroscopy as well as x-ray photoelectron spectroscopy (XPS) is performed. HMDSN based coatings exhibit significantly higher barrier performances for high admixtures of oxygen (200 sccm). In comparison to HMDSO based processes, however, a higher supply of oxygen is necessary to achieve a sufficient degree of oxidation, cross-linking and, therefore, barrier performance. FTIR and XPS reveal a distinct carbon content for low oxygen admixtures (10 and 20 sccm) in case of HMDSN based coatings. The variation of interlayer thickness also reveals significantly higher OTR for HMDSO based coatings on PET and PP. Barrier performance of HMDSO based coatings improves with increasing interlayer thickness up to 10 nm for PET and PP. HMDSN based coatings exhibit a minimum of OTR without interlayer on PP and for 2 nm interlayer thickness on PET. Furthermore, HMDSN based coatings show distinctly higher bond strengths to the PP substrate.

  16. Vertex centralities in input-output networks reveal the structure of modern economies

    NASA Astrophysics Data System (ADS)

    Blöchl, Florian; Theis, Fabian J.; Vega-Redondo, Fernando; Fisher, Eric O.'N.

    2011-04-01

    Input-output tables describe the flows of goods and services between the sectors of an economy. These tables can be interpreted as weighted directed networks. At the usual level of aggregation, they contain nodes with strong self-loops and are almost completely connected. We derive two measures of node centrality that are well suited for such networks. Both are based on random walks and have interpretations as the propagation of supply shocks through the economy. Random walk centrality reveals the vertices most immediately affected by a shock. Counting betweenness identifies the nodes where a shock lingers longest. The two measures differ in how they treat self-loops. We apply both to data from a wide set of countries and uncover salient characteristics of the structures of these national economies. We further validate our indices by clustering according to sectors’ centralities. This analysis reveals geographical proximity and similar developmental status.

  17. OMC-1 as Revealed by HST NICMOS Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Simpson, J. P.; Burton, M. G.; Colgan, S. W. J.; Erickson, E. F.; Schultz, A. S. B.; Simpson, E.

    2004-12-01

    The Orion Molecular Cloud (OMC-1) harbors the nearest and most studied massive star-forming region. Signs of the formation of multiple stars in this optically obscured region include powerful CO outflows, H2O and SiO maser emission, remarkable H2 "bullets", "fingers", and "streamers", and X-rays from pre-main-sequence stars. Highly polarized clouds indicate that the illuminating sources lie in the directions of the Becklin-Neugebauer object (BN), and stars in the vicinity of IRc2, radio source I, NIR source n, and others. Here we present 2 μ m polarization measurements of positions north and south of BN made with NICMOS Camera 2 on the Hubble Space Telescope. Near-infrared starlight can be polarized by scattering from nearby dust grains and by dichroic absorption by non-spherical dust grains aligned by a magnetic field. Within the 19'' field of view of Camera 2, BN appears to be the illuminating source of most of the nebulosity to its north; however, the material to the south is illuminated either by a star near I (IRc4) or by source n (IRc2B). Source n also illuminates material 1'' - 2'' to its northeast and southwest, at the same position angles as the extended radio source at the same location. We discuss possible interpretations of the strong polarization of IRc7, which is not illuminated by source I. We also display several stars (NICMOS point sources) that are the source of their own polarization, which ranges up to 40% and occurs at distinctly different angles from the polarization of the immediately surrounding diffuse emission. This may be caused by dichroic absorption and scattering in edge-on circumstellar disks. At least two faint stars are variable. Support for proposal 9752 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  18. Interactions between glycine and amorphous solid water nanoscale films

    NASA Astrophysics Data System (ADS)

    Tzvetkov, George; Koller, Georg; Netzer, Falko P.

    2012-12-01

    The interactions of glycine (Gly) with amorphous solid water (ASW) nanolayers (≤ 100 ML), vapor-deposited on single crystalline AlOx surfaces at 100 K, have been investigated by near-edge X-ray absorption fine structure spectroscopy (NEXAFS) at the oxygen K-edge, temperature-programmed thermal desorption (TPD), X-ray photoelectron spectroscopy (XPS), and temperature-dependent work function measurements. Gly-on-ASW, ASW-on-Gly, and Gly on top of ASW-on-Gly ultrathin films have been fabricated. In contrast to the uniform ASW films grown directly on the hydrophilic AlOx, water molecules adsorb on the hydrophobic Gly films in the form of 3D ASW clusters. This leads to significant differences in the NEXAFS and work function data obtained from ASW-on-AlOx and ASW-on-Gly films, respectively. Furthermore, these structural differences influence the chemical state of Gly molecules (neutral vs. zwitterionic) adsorbed on top of ASW films. N1s XPS measurements revealed an increased amount of neutral Gly molecules in the film top-deposited on the ASW-on-Gly structure in comparison to the neutral Gly in the films directly condensed on AlOx or grown on the ASW substrate. H2O TPD spectra demonstrate that the crystallization and desorption processes of ASW are affected in a different way by the Gly layers, top-deposited on to ASW-on-AlOx and ASW-on-Gly films. At the same time, Gly adlayers sink into the ASW film during crystallization/desorption of the latter and land softly on the alumina surface in the form of zwitterionic clusters.

  19. A Novel Assay for Antibody-Dependent Cell-Mediated Cytotoxicity against HIV-1- or SIV-Infected Cells Reveals Incomplete Overlap with Antibodies Measured by Neutralization and Binding Assays

    PubMed Central

    Alpert, Michael D.; Heyer, Lisa N.; Williams, David E. J.; Harvey, Jackson D.; Greenough, Thomas; Allhorn, Maria

    2012-01-01

    The resistance of human immunodeficiency virus type 1 (HIV-1) to antibody-mediated immunity often prevents the detection of antibodies that neutralize primary isolates of HIV-1. However, conventional assays for antibody functions other than neutralization are suboptimal. Current methods for measuring the killing of virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC) are limited by the number of natural killer (NK) cells obtainable from individual donors, donor-to-donor variation, and the use of nonphysiological targets. We therefore developed an ADCC assay based on NK cell lines that express human or macaque CD16 and a CD4+ T-cell line that expresses luciferase from a Tat-inducible promoter upon HIV-1 or simian immunodeficiency virus (SIV) infection. NK cells and virus-infected targets are mixed in the presence of serial plasma dilutions, and ADCC is measured as the dose-dependent loss of luciferase activity. Using this approach, ADCC titers were measured in plasma samples from HIV-infected human donors and SIV-infected macaques. For the same plasma samples paired with the same test viruses, this assay was approximately 2 orders of magnitude more sensitive than optimized assays for neutralizing antibodies—frequently allowing the measurement of ADCC in the absence of detectable neutralization. Although ADCC correlated with other measures of Env-specific antibodies, neutralizing and gp120 binding titers did not consistently predict ADCC activity. Hence, this assay affords a sensitive method for measuring antibodies capable of directing ADCC against HIV- or SIV-infected cells expressing native conformations of the viral envelope glycoprotein and reveals incomplete overlap of the antibodies that direct ADCC and those measured in neutralization and binding assays. PMID:22933282

  20. Leaf Phenology of Amazonian Canopy Trees as Revealed by Spectral and Physiochemical Measurements

    NASA Astrophysics Data System (ADS)

    Chavana-Bryant, C.; Gerard, F. F.; Malhi, Y.; Enquist, B. J.; Asner, G. P.

    2013-12-01

    The phenological dynamics of terrestrial ecosystems reflect the response of the Earth's biosphere to inter- and intra-annual dynamics of climatic and hydrological regimes. Some Dynamic Global Vegetation Models (GDVMs) have predicted that by 2050 the Amazon rainforest will begin to dieback (Cox et al. 2000, Nature) or that the ecosystem will become unsustainable (Salazar et al. 2007, GRL). One major component in DGVMs is the simulation of vegetation phenology, however, modelers are challenged with the estimation of tropical phenology which is highly complex. Current modeled phenology is based on observations of temperate vegetation and accurate representation of tropical phenology is long overdue. Remote sensing (RS) data are a key tool in monitoring vegetation dynamics at regional and global scales. Of the many RS techniques available, time-series analysis of vegetation indices (VIs) has become the most common approach in monitoring vegetation phenology (Samanta et al. 2010, GRL; Bradley et al. 2011, GCB). Our research focuses on investigating the influence that age related variation in the spectral reflectance and physiochemical properties of leaves may have on VIs of tropical canopies. In order to do this, we collected a unique leaf and canopy phenological dataset at two different Amazonian sites: Inselberg, French Guyana (FG) and Tambopata, Peru (PE). Hyperspectral reflectance measurements were collected from 4,102 individual leaves sampled to represent different leaf ages and vertical canopy positions (top, mid and low canopy) from 20 different canopy tree species (8 in FG and 12 in PE). These leaf spectra were complemented with 1) leaf physical measurements: fresh and dry weight, area and thickness, LMA and LWC and 2) leaf chemical measurements: %N, %C, %P, C:N and d13C. Canopy level observations included top-of-canopy reflectance measurements obtained using a multispectral 16-band radiometer, leaf demography (tot. number and age distribution) and branch

  1. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy.

    PubMed

    Stoerzinger, Kelsey A; Hong, Wesley T; Crumlin, Ethan J; Bluhm, Hendrik; Shao-Horn, Yang

    2015-11-17

    The understanding of fundamental processes in the bulk and at the interfaces of electrochemical devices is a prerequisite for the development of new technologies with higher efficiency and improved performance. One energy storage scheme of great interest is splitting water to form hydrogen and oxygen gas and converting back to electrical energy by their subsequent recombination with only water as a byproduct. However, kinetic limitations to the rate of oxygen-based electrochemical reactions hamper the efficiency in technologies such as solar fuels, fuel cells, and electrolyzers. For these reactions, the use of metal oxides as electrocatalysts is prevalent due to their stability, low cost, and ability to store oxygen within the lattice. However, due to the inherently convoluted nature of electrochemical and chemical processes in electrochemical systems, it is difficult to isolate and study individual electrochemical processes in a complex system. Therefore, in situ characterization tools are required for observing related physical and chemical processes directly at the places where and while they occur and can help elucidate the mechanisms of charge separation and charge transfer at electrochemical interfaces. X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis), has been used as a quantitative spectroscopic technique that measures the elemental composition, as well as chemical and electronic state of a material. Building from extensive ex situ characterization of electrochemical systems, initial in situ studies were conducted at or near ultrahigh vacuum (UHV) conditions (≤10(-6) Torr) to probe solid-state electrochemical systems. However, through the integration of differential-pumping stages, XPS can now operate at pressures in the torr range, comprising a technique called ambient pressure XPS (AP-XPS). In this Account, we briefly review the working principles and current status of AP-XPS. We use several recent

  2. Economic choices reveal probability distortion in macaque monkeys.

    PubMed

    Stauffer, William R; Lak, Armin; Bossaerts, Peter; Schultz, Wolfram

    2015-02-18

    Economic choices are largely determined by two principal elements, reward value (utility) and probability. Although nonlinear utility functions have been acknowledged for centuries, nonlinear probability weighting (probability distortion) was only recently recognized as a ubiquitous aspect of real-world choice behavior. Even when outcome probabilities are known and acknowledged, human decision makers often overweight low probability outcomes and underweight high probability outcomes. Whereas recent studies measured utility functions and their corresponding neural correlates in monkeys, it is not known whether monkeys distort probability in a manner similar to humans. Therefore, we investigated economic choices in macaque monkeys for evidence of probability distortion. We trained two monkeys to predict reward from probabilistic gambles with constant outcome values (0.5 ml or nothing). The probability of winning was conveyed using explicit visual cues (sector stimuli). Choices between the gambles revealed that the monkeys used the explicit probability information to make meaningful decisions. Using these cues, we measured probability distortion from choices between the gambles and safe rewards. Parametric modeling of the choices revealed classic probability weighting functions with inverted-S shape. Therefore, the animals overweighted low probability rewards and underweighted high probability rewards. Empirical investigation of the behavior verified that the choices were best explained by a combination of nonlinear value and nonlinear probability distortion. Together, these results suggest that probability distortion may reflect evolutionarily preserved neuronal processing. Copyright © 2015 Stauffer et al.

  3. Melting depths associated with Jack Hills zircons crystallization as revealed by in situ trace element measurements

    NASA Astrophysics Data System (ADS)

    Profeta, L.; Ducea, M. N.; Gehrels, G. E.

    2016-12-01

    The Jack Hills zircons hosted within the Narryer Gneiss Complex, Yilgarn craton have ages from 4.4 Ga up to Mesoarchean. These zircons crystallized from low temperature granitoid magmas (Harrison, 2009). Here, we use trace element measurements obtained simultaneously with U-Pb ages using LA-ICP-MS on 276 Jack Hills zircons in order to estimate the depth of melting. La/Yb are converted to whole rock equivalent values using newly determined REE -whole rock partition coefficients (Chapman et al., 2016). La/Yb are subsequently transformed into depth estimates using the correlation between whole rock La/Yb and crustal thickness put forward in Profeta et al. (2015) for modern arcs. Our data pertains to 4.2 to 3.2 Ga zircons, which are supplemented with previously published data on 4.4.-4.3 Ga zircons (Peck et al. 2001). Depth estimates are averaged over 100 Ma bins, revealing a remarkably constant trend throughout the investigated period with values around 50 ± 10 km. We interpret that these depths may not be the result of a thick continental crust, as is the case for modern arcs, but rather the existence of different melting conditions during the Hadean and Paleoarchean due to elevated thermal regimes within the mantle. The high La/Yb whole rock ratios (with computed values greater than 10) coupled with elevated mantle temperatures point towards granitoid generation from partial melting of hydrated basalts (e.g. Martin et al., 2014). [1] Harrison, T.M., Annu. Rev. Earth Planet. Sci. 37, 479-505 (2009). [2] Chapman, J. B. et al., Chem. Geol. 439, 59-70 (2016). doi: 10.1016/j.chemgeo.2016.06.014. [3] Profeta, L. et al., Sci. Rep. 5, 17786 (2015). doi: 10.1038/srep17786 [4] Peck, W. et al., Cosmochim. Acta 65, 4215-4229 (2001). doi: 10.1016/S0016-7037(01)00711-6 [5] Martin, H. et al. Lithos 198, 1-13 (2014). doi: 10.1016/j.lithos.2014.02.017

  4. High permittivity polyaniline-barium titanate nanocomposites with excellent electromagnetic interference shielding response

    NASA Astrophysics Data System (ADS)

    Saini, Parveen; Arora, Manju; Gupta, Govind; Gupta, Bipin Kumar; Singh, Vidya Nand; Choudhary, Veena

    2013-05-01

    Organic conductive polymers are at the forefront of materials science research because of their diverse applications built around their interesting and unique properties. This work reports for the first time a correlation between the structural, electrical, and electromagnetic properties of polyaniline (PANI)-tetragonal BaTiO3 (TBT) nanocomposites prepared by in-situ emulsion polymerization. XRD studies and HRTEM micrographs of these nanocomposites clearly revealed the incorporation of TBT nanoparticles in the conducting PANI matrix. EPR and XPS measurements reveal that increase in loading level of BaTiO3 results in a reduction of the doping level of PANI. The Ku-Band (12.4-18 GHz) network analysis of these composites shows exceptional microwave shielding response with absorption dominated total shielding effectiveness (SET) value of -71.5 dB (blockage of more than 99.99999% of incident radiation) which is the highest value reported in the literature. Such a high attenuation level, which critically depends on the fraction of BaTiO3 is attributed to optimized dielectric and electrical attributes. This demonstrates the possibility of using these materials in stealth technology and for making futuristic radar absorbing materials (RAMs).Organic conductive polymers are at the forefront of materials science research because of their diverse applications built around their interesting and unique properties. This work reports for the first time a correlation between the structural, electrical, and electromagnetic properties of polyaniline (PANI)-tetragonal BaTiO3 (TBT) nanocomposites prepared by in-situ emulsion polymerization. XRD studies and HRTEM micrographs of these nanocomposites clearly revealed the incorporation of TBT nanoparticles in the conducting PANI matrix. EPR and XPS measurements reveal that increase in loading level of BaTiO3 results in a reduction of the doping level of PANI. The Ku-Band (12.4-18 GHz) network analysis of these composites shows exceptional

  5. Characterization of remote O2-plasma-enhanced CVD SiO2/GaN(0001) structure using photoemission measurements

    NASA Astrophysics Data System (ADS)

    Truyen, Nguyen Xuan; Ohta, Akio; Makihara, Katsunori; Ikeda, Mitsuhisa; Miyazaki, Seiichi

    2018-01-01

    The control of chemical composition and bonding features at a SiO2/GaN interface is a key to realizing high-performance GaN power devices. In this study, an ∼5.2-nm-thick SiO2 film has been deposited on an epitaxial GaN(0001) surface by remote O2-plasma-enhanced chemical vapor deposition (O2-RPCVD) using SiH4 and Ar/O2 mixture gases at a substrate temperature of 500 °C. The depth profile of chemical structures and electronic defects of the O2-RPCVD SiO2/GaN structures has been evaluated from a combination of SiO2 thinning examined by X-ray photoelectron spectroscopy (XPS) and the total photoelectron yield spectroscopy (PYS) measurements. As a highlight, we found that O2-RPCVD is effective for fabricating an abrupt SiO2/GaN interface.

  6. Middle atmosphere composition revealed by satellite observations

    NASA Technical Reports Server (NTRS)

    Russell, J. M., III; Solomon, S.; Mccormick, M. P.; Miller, A. J.; Barnett, J. J.; Jones, R. L.; Rusch, D. W.

    1986-01-01

    A series of plots that describe the state of the stratosphere and to some degree, the mesosphere as revealed by satellite observations are shown. The pertinent instrument features, spatial and temporal coverage, and details of accuracy and precision for the experiments providing the data were described. The main features of zonal mean cross sections and polar stereographic projections were noted and intercomparisons were discussed where a parameter was measured by more than one experiment. The main purpose was to collect the available data in one place and provide enough inforamation on limitations or cautions about the data so that they could be used in model comparisons and science studies.

  7. Surface characteristics, biocompatibility, and mechanical properties of nickel-titanium plasma-implanted with nitrogen at different implantation voltages.

    PubMed

    Liu, X M; Wu, S L; Chan, Y L; Chu, Paul K; Chung, C Y; Chu, C L; Yeung, K W K; Lu, W W; Cheung, K M C; Luk, K D K

    2007-08-01

    NiTi shape memory alloy is one of the promising orthopedic materials due to the unique shape memory effect and superelasticity. However, the large amount of Ni in the alloy may cause allergic reactions and toxic effects thereby limiting its applications. In this work, the surface of NiTi alloy was modified by nitrogen plasma immersion ion implantation (N-PIII) at various voltages. The materials were characterized by X-ray photoelectron spectroscopy (XPS). The topography and roughness before and after N-PIII were measured by atomic force microscope. The effects of the modified surfaces on nickel release and cytotoxicity were assessed by immersion tests and cell cultures. The XPS results reveal that near-surface Ni concentration is significantly reduced by PIII and the surface TiN layer suppresses nickel release and favors osteoblast proliferation, especially for samples implanted at higher voltages. The surfaces produced at higher voltages of 30 and 40 kV show better adhesion ability to osteoblasts compared to the unimplanted and 20 kV PIII samples. The effects of heating during PIII on the phase transformation behavior and cyclic deformation response of the materials were investigated by differential scanning calorimetry and three-point bending tests. Our results show that N-PIII conducted using the proper conditions improves the biocompatibility and mechanical properties of the NiTi alloy significantly.

  8. Surface morphological, structural, electrical and optical properties of GaN-based light-emitting diodes using submicron-scaled Ag islands and ITO thin films

    NASA Astrophysics Data System (ADS)

    Lee, Young-Woong; Reddy, M. Siva Pratap; Kim, Bo-Myung; Park, Chinho

    2018-07-01

    An ITO-Ag islands complex as a new transparent conducting electrode (TCE) structure (on the 5 nm-thick p-InGaN/90 nm-thick p-GaN) for achieving high-performance and more reliable GaN-based LEDs were fabricated. A normal LED with a conventional ITO TCE was also compared. The surface morphological, structural, electrical and optical properties of fabricated GaN-based light-emitting diodes using a complex electrode of submicron-scaled Ag islands and ITO thin films are explored by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), current-voltage (I-V) and output power-current (L-I) techniques. Surface morphology investigations revealed Ag islands formed uniformly on the p-InGaN/p-GaN surface during rapid thermal annealing at 400 °C for 1 min in N2 ambient. The ohmic properties and overall device-performance of the suggested contact and device structures were superior to those in the conventional ITO contact and normal ITO LED structures. Based on the results of XRD and XPS measurements, the formation of the intermetallic gallide phases (AgGa) is responsible for better performance characteristics of the ITO-Ag islands device. The significant improvements are described in terms of the conducting bridge influence, highly effective micro-mirror effect, and wider photon window via the roughened structure.

  9. Comparative study of different carbon-supported Fe2O3-Pt catalysts for oxygen reduction reaction.

    PubMed

    Tellez-Cruz, M M; Padilla-Islas, M A; Pérez-González, M; Solorza-Feria, O

    2017-11-01

    One of the challenges in electrocatalysis is the adequate dispersion of the catalyst on an appropriate porous support matrix, being up to now the most commonly used the carbon-based supports. To overcome this challenge, carbon supports must first be functionalized to guide the catalyst's nucleation, thereby, improving the dispersion and allowing the use of smaller amount of the catalyst material to achieve a higher electrochemically active surface area. This study present the effect of functionalized Vulcan carbon XC72 (FVC) and functionalized Black Pearl carbon (FBPC) as supports on the catalytic activity of decorated Fe 2 O 3 with Pt. Both carbons were functionalized with HNO 3 and subsequently treated with ethanolamine. Fe 2 O 3 nanoparticles were synthesized by chemical reduction and decorated with platinum by epitaxial growth. Pt and Fe 2 O 3 structural phases were identified by XRD and XPS; the Pt content was measured by XPS, and results showed to a high Pt content in Fe 2 O 3 -Pt/FBPC. TEM micrographs reveal nanoparticles with an average size of 2 nm in both supported catalysts. The Fe 2 O 3 -Pt/FVC catalyst presents the highest specific activity and mass activity, 0.21 mA cm -2 Pt and 140 mA mg Pt -1 , respectively, associated to the appropriate distribution of platinum on the Fe 2 O 3 nanoparticles.

  10. The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Li, Xiang; Wang, Hao; Yan, Xinxiu; Wang, Lei; Deng, Bangwei; Ge, Wujie; Qu, Meizhen

    2018-01-01

    A gradient boracic polyanion-doping method is applied to Ni-rich LiNi0.8Co0.15Al0.05O2 (NCA) cathode material in this study to suppress the capacity/potential fade during charge-discharge cycling. Scanning electron microscope (SEM) results show that all samples present spherical morphology and the secondary particle size increases with increasing boron content. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) results demonstrate that boracic polyanions are successfully introduced into the bulk material and more enriched in the outer layer. XPS analysis further reveals that the valence state of Ni3+ is partly reduced to Ni2+ at the surface due to the incorporation of boracic polyanions. From the electrochemical measurements, B0.015-NCA electrode exhibits excellent cycling performance, even at high potential and elevated temperature. Moreover, the SEM images illustrate the presence of cracks and a thick SEI layer on pristine particles after 100 cycles at high temperature, while the B0.015-NCA particles show an intact structure and thin SEI layer. Electrochemical impedance spectroscopy confirms that the boracic polyanion doping could hinder the impedance increase during cycling at elevated temperature. These results clearly indicate that the gradient boracic polyanion-doping contributes to the remarkable enhancement of structure stability and cycling performance of NCA.

  11. Probing the influence of the center atom coordination structure in iron phthalocyanine multi-walled carbon nanotube-based oxygen reduction reaction catalysts by X-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Peng, Yingxiang; Li, Zhipan; Xia, Dingguo; Zheng, Lirong; Liao, Yi; Li, Kai; Zuo, Xia

    2015-09-01

    Three different pentacoordinate iron phthalocyanine (FePc) electrocatalysts with an axial ligand (pyridyl group, Py) anchored to multi-walled carbon nanotubes (MWCNTs) are prepared by a microwave method as high performance composite electrocatalysts (FePc-Py/MWCNTs) for the oxygen reduction reaction (ORR). For comparison, tetracoordinate FePc electrocatalysts without an axial ligand anchored to MWCNTs (FePc/MWCNTs) are assembled in the same way. Ultraviolet-visible spectrophotometry (UV-Vis), Raman spectroscopy (RS), and high-resolution transmission electron microscopy (HRTEM) are used to characterize the obtained electrocatalysts. The electrocatalytic activity of the samples is measured by linear sweep voltammetry (LSV), and the onset potential of all of the FePc-Py/MWCNTs electrocatalysts is found to be more positive than that of their FePc/MWCNTs counterparts. X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) spectroscopy are employed to elucidate the relationship between molecular structure and electrocatalytic activity. XPS indicates that higher concentrations of Fe3+ and pyridine-type nitrogen play critical roles in determining the electrocatalytic ORR activity of the samples. XAFS spectroscopy reveals that the FePc-Py/MWCNTs electrocatalysts have a coordination geometry around Fe that is closer to the square pyramidal structure, a higher concentration of Fe3+, and a smaller phthalocyanine ring radius compared with those of FePc/MWCNTs.

  12. FRET measurements of kinesin neck orientation reveal a structural basis for processivity and asymmetry.

    PubMed

    Martin, Douglas S; Fathi, Reza; Mitchison, Timothy J; Gelles, Jeff

    2010-03-23

    As the smallest and simplest motor enzymes, kinesins have served as the prototype for understanding the relationship between protein structure and mechanochemical function of enzymes in this class. Conventional kinesin (kinesin-1) is a motor enzyme that transports cargo toward the plus end of microtubules by a processive, asymmetric hand-over-hand mechanism. The coiled-coil neck domain, which connects the two kinesin motor domains, contributes to kinesin processivity (the ability to take many steps in a row) and is proposed to be a key determinant of the asymmetry in the kinesin mechanism. While previous studies have defined the orientation and position of microtubule-bound kinesin motor domains, the disposition of the neck coiled-coil remains uncertain. We determined the neck coiled-coil orientation using a multidonor fluorescence resonance energy transfer (FRET) technique to measure distances between microtubules and bound kinesin molecules. Microtubules were labeled with a new fluorescent taxol donor, TAMRA-X-taxol, and kinesin derivatives with an acceptor fluorophore attached at positions on the motor and neck coiled-coil domains were used to reconstruct the positions and orientations of the domains. FRET measurements to positions on the motor domain were largely consistent with the domain orientation determined in previous studies, validating the technique. Measurements to positions on the neck coiled-coil were inconsistent with a radial orientation and instead demonstrated that the neck coiled-coil is parallel to the microtubule surface. The measured orientation provides a structural explanation for how neck surface residues enhance processivity and suggests a simple hypothesis for the origin of kinesin step asymmetry and "limping."

  13. Gaussian graphical modeling reveals specific lipid correlations in glioblastoma cells

    NASA Astrophysics Data System (ADS)

    Mueller, Nikola S.; Krumsiek, Jan; Theis, Fabian J.; Böhm, Christian; Meyer-Bäse, Anke

    2011-06-01

    Advances in high-throughput measurements of biological specimens necessitate the development of biologically driven computational techniques. To understand the molecular level of many human diseases, such as cancer, lipid quantifications have been shown to offer an excellent opportunity to reveal disease-specific regulations. The data analysis of the cell lipidome, however, remains a challenging task and cannot be accomplished solely based on intuitive reasoning. We have developed a method to identify a lipid correlation network which is entirely disease-specific. A powerful method to correlate experimentally measured lipid levels across the various samples is a Gaussian Graphical Model (GGM), which is based on partial correlation coefficients. In contrast to regular Pearson correlations, partial correlations aim to identify only direct correlations while eliminating indirect associations. Conventional GGM calculations on the entire dataset can, however, not provide information on whether a correlation is truly disease-specific with respect to the disease samples and not a correlation of control samples. Thus, we implemented a novel differential GGM approach unraveling only the disease-specific correlations, and applied it to the lipidome of immortal Glioblastoma tumor cells. A large set of lipid species were measured by mass spectrometry in order to evaluate lipid remodeling as a result to a combination of perturbation of cells inducing programmed cell death, while the other perturbations served solely as biological controls. With the differential GGM, we were able to reveal Glioblastoma-specific lipid correlations to advance biomedical research on novel gene therapies.

  14. Multiple Fermi pockets revealed by Shubnikov-de Haas oscillations in WTe2

    NASA Astrophysics Data System (ADS)

    Xiang, Fei-Xiang; Veldhorst, Menno; Dou, Shi-Xue; Wang, Xiao-Lin

    2015-11-01

    The recently discovered non-saturating and parabolic magnetoresistance and the pressure-induced superconductivity at low temperature in WTe2 imply its rich electronic structure and possible practical applications. Here we use magnetotransport measurements to investigate the electronic structure of WTe2 single crystals. A non-saturating and parabolic magnetoresistance is observed from low temperature to high temperature up to 200 K with magnetic fields up to 8 T. Shubnikov-de Haas (SdH) oscillations with beating patterns are observed, the fast Fourier transform of which reveals three oscillation frequencies, corresponding to three pairs of Fermi pockets with comparable effective masses, m* ∼ 0.31~me . By fitting the Hall resistivity, we infer that they can be attributed to one pair of electron pockets and two pairs of hole pockets, together with nearly perfect compensation of the electron-hole carrier concentration. These magnetotransport measurements reveal the complex electronic structure in WTe2, explaining the non-saturating magnetoresistance.

  15. National measures of forest productivity for timber

    Treesearch

    Peter J. Ince; H. Edward Dickerhoof; H. Fred Kaiser

    1989-01-01

    This report presents national measures of forest productivity for timber. These measures reveal trends in the relationship between quantity of timber produced by forests and the quantity of forest resources employed in timber production. Timber production is measured by net annual growth of timber and annual timber removals. Measures of timber productivity include...

  16. Pupillometry reveals reduced unconscious emotional reactivity in autism.

    PubMed

    Nuske, Heather J; Vivanti, Giacomo; Hudry, Kristelle; Dissanayake, Cheryl

    2014-09-01

    Recent theoretical conceptualisations have suggested that emotion processing impairments in autism stem from disruption to the sub-cortical, rapid emotion-processing system. We argue that a clear way to ascertain whether this system is affected in autism is by measuring unconscious emotional reactivity. Using backwards masking, we presented fearful expressions non-consciously (subliminally) as well as consciously (supraliminally), and measured pupillary responses as an index of emotional reactivity in 19 children with autism and 19 typically developing children, aged 2-5 years. The pupillary responses of the children with autism revealed reduced unconscious emotional reactivity, with no group differences on consciously presented emotion. Together, these results indicate a hyporesponsiveness to non-consciously presented emotion suggesting a fundamental difference in emotion processing in autism, which requires consciousness and more time. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Recovery process of shear wave velocities of volcanic soil in central Mashiki Town after the 2016 Kumamoto earthquake revealed by intermittent measurements of microtremor

    NASA Astrophysics Data System (ADS)

    Hata, Yoshiya; Yoshimi, Masayuki; Goto, Hiroyuki; Hosoya, Takashi; Morikawa, Hitoshi; Kagawa, Takao

    2017-05-01

    An earthquake of JMA magnitude 6.5 (foreshock) hit Kumamoto Prefecture, Japan, at 21:26 JST on April 14, 2016. Subsequently, an earthquake of JMA magnitude 7.3 (main shock) hit Kumamoto and Oita Prefectures at 1:25 JST on April 16, 2016. The two epicenters were located adjacent to central Mashiki Town, and both events caused significantly strong motions. The heavy damage including collapse of residential houses was concentrated in "Sandwich Area" between Prefectural Route 28 and Akitsu River. During the main shock, we have successfully observed strong motions at TMP03 in Sandwich Area. Simultaneously with installation of the seismograph at TMP03 on April 15, 2016, between the foreshock and the main shock, a microtremor measurement was taken. After the main shock, intermittent measurements of microtremor at TMP03 were also taken within December 6, 2016. As the result, recovery process of shear wave velocities of volcanic soil at TMP03 before/after the main shock was revealed by time history of peak frequencies of the microtremor H/V spectra. Using results of original PS logging tests at proximity site of TMP03 on July 28, 2016, the applicability for the shear wave velocities to TMP03 was then confirmed based on similarity between the theoretical and monitored H/V spectra.

  18. Conceptual recurrence plots: revealing patterns in human discourse.

    PubMed

    Angus, Daniel; Smith, Andrew; Wiles, Janet

    2012-06-01

    Human discourse contains a rich mixture of conceptual information. Visualization of the global and local patterns within this data stream is a complex and challenging problem. Recurrence plots are an information visualization technique that can reveal trends and features in complex time series data. The recurrence plot technique works by measuring the similarity of points in a time series to all other points in the same time series and plotting the results in two dimensions. Previous studies have applied recurrence plotting techniques to textual data; however, these approaches plot recurrence using term-based similarity rather than conceptual similarity of the text. We introduce conceptual recurrence plots, which use a model of language to measure similarity between pairs of text utterances, and the similarity of all utterances is measured and displayed. In this paper, we explore how the descriptive power of the recurrence plotting technique can be used to discover patterns of interaction across a series of conversation transcripts. The results suggest that the conceptual recurrence plotting technique is a useful tool for exploring the structure of human discourse.

  19. The application of thermodynamic and spectroscopic techniques to adhesion in the polyimide/Ti 6-4 and polyphenylquinoxaline/Ti 6-4 systems

    NASA Technical Reports Server (NTRS)

    Dias, S.; Wightman, J. P.

    1984-01-01

    The results of calorimetric measurements of Ti adherend surfaces are presented. The measurements were carried out after several chemical pretreatments and after fracture of several lap shear samples aged at high temperature. The exact composition of the Ti samples was Ti(6 percent Al-4 percent V). The adhesives used were polyimides and polyphenylquinoxalines (PPQ). Each chemical pretreatment was accompanied by a unique spectroscopic feature which was characterized by XPS, SEM, and specular reflectance infrared spectroscopy. The energetics of the interaction between primer solutions and the Ti adherend were evaluated by microcalorimetry. Changes in the structure of the surface oxide layer upon heating of the adherend were deduced from immersion temperatures of the PI and PPQ solutions. The XPS and SEM data are given is a table.

  20. Acting without seeing: eye movements reveal visual processing without awareness.

    PubMed

    Spering, Miriam; Carrasco, Marisa

    2015-04-01

    Visual perception and eye movements are considered to be tightly linked. Diverse fields, ranging from developmental psychology to computer science, utilize eye tracking to measure visual perception. However, this prevailing view has been challenged by recent behavioral studies. Here, we review converging evidence revealing dissociations between the contents of perceptual awareness and different types of eye movement. Such dissociations reveal situations in which eye movements are sensitive to particular visual features that fail to modulate perceptual reports. We also discuss neurophysiological, neuroimaging, and clinical studies supporting the role of subcortical pathways for visual processing without awareness. Our review links awareness to perceptual-eye movement dissociations and furthers our understanding of the brain pathways underlying vision and movement with and without awareness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The mind-set of teens towards food communications revealed by conjoint measurement and multi-food databases.

    PubMed

    Foley, Michele; Beckley, Jacqueline; Ashman, Hollis; Moskowitz, Howard R

    2009-06-01

    We introduce a new type of study that combines self-profile of behaviors and attitudes regarding food together with responses to structured, systematically varied concepts about the food. We deal here with the responses of teens, for 28 different foods and beverages. The study creates a database that reveals how a person responds to different types of messaging about the food. We show how to develop the database for many different foods, from which one can compare foods to each other, or compare the performance of messages within a specific food.

  2. Investigation of the mechanical and chemical characteristics of nanotubular and nano-pitted anodic films on grade 2 titanium dental implant materials.

    PubMed

    Weszl, Miklós; Tóth, Krisztián László; Kientzl, Imre; Nagy, Péter; Pammer, Dávid; Pelyhe, Liza; Vrana, Nihal E; Scharnweber, Dieter; Wolf-Brandstetter, Cornelia; Joób F, Árpád; Bognár, Eszter

    2017-09-01

    The objective of this study was to investigate the reproducibility, mechanical integrity, surface characteristics and corrosion behavior of nanotubular (NT) titanium oxide arrays in comparison with a novel nano-pitted (NP) anodic film. Surface treatment processes were developed to grow homogenous NT and NP anodic films on the surface of grade 2 titanium discs and dental implants. The effect of process parameters on the surface characteristics and reproducibility of the anodic films was investigated and optimized. The mechanical integrity of the NT and NP anodic films were investigated by scanning electron microscopy, surface roughness measurement, scratch resistance and screwing tests, while the chemical and physicochemical properties were investigated in corrosion tests, contact angle measurement and X-ray photoelectron spectroscopy (XPS). The growth of NT anodic films was highly affected by process parameters, especially by temperature, and they were apt to corrosion and exfoliation. In contrast, the anodic growth of NP film showed high reproducibility even on the surface of 3-dimensional screw dental implants and they did not show signs of corrosion and exfoliation. The underlying reason of the difference in the tendency for exfoliation of the NT and NP anodic films is unclear; however the XPS analysis revealed fluorine dopants in a magnitude larger concentration on NT anodic film than on NP surface, which was identified as a possible causative. Concerning other surface characteristics that are supposed to affect the biological behavior of titanium implants, surface roughness values were found to be similar, whereas considerable differences were revealed in the wettability of the NT and NP anodic films. Our findings suggest that the applicability of NT anodic films on the surface of titanium bone implants may be limited because of mechanical considerations. In contrast, it is worth to consider the applicability of nano-pitted anodic films over nanotubular arrays

  3. New quaternary thallium indium germanium selenide TlInGe2Se6: Crystal and electronic structure

    NASA Astrophysics Data System (ADS)

    Khyzhun, O. Y.; Parasyuk, O. V.; Tsisar, O. V.; Piskach, L. V.; Myronchuk, G. L.; Levytskyy, V. O.; Babizhetskyy, V. S.

    2017-10-01

    Crystal structure of a novel quaternary thallium indium germanium selenide TlInGe2Se6 was investigated by means of powder X-ray diffraction method. It was determined that the compound crystallizes in the trigonal space group R3 with the unit cell parameters a = 10.1798(2) Å, c = 9.2872(3) Å. The relationship with similar structures was discussed. The as-synthesized TlInGe2Se6 ingot was tested with X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES). In particular, the XPS valence-band and core-level spectra were recorded for initial and Ar+ ion-bombarded surfaces of the sample under consideration. The XPS data allow for statement that the TlInGe2Se6 surface is rigid with respect to Ar+ ion-bombardment. Particularly, Ar+ ion-bombardment (3.0 keV, 5 min duration, ion current density fixed at 14 μA/cm2) did not cause substantial modifications of stoichiometry in topmost surface layers. Furthermore, comparison on a common energy scale of the XES Se Kβ2 and Ge Kβ2 bands and the XPS valence-band spectrum reveals that the principal contributions of the Se 4p and Ge 4p states occur in the upper and central portions of the valence band of TlInGe2Se6, respectively, with also their substantial contributions in other portions of the band. The bandgap energy of TlInGe2Se6 at the level of αg=103 cm-1 is equal to 2.38 eV at room temperature.

  4. Electron spectroscopy analysis

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    The Surface Science Laboratories at the University of Alabama in Huntsville (UAH) are equipped with x-ray photoelectron spectroscopy (XPS or ESCA) and Auger electron spectroscopy (AES) facilities. These techniques provide information from the uppermost atomic layers of a sample, and are thus truly surface sensitive. XPS provides both elemental and chemical state information without restriction on the type of material that can be analyzed. The sample is placed into an ultra high vacuum (UHV) chamber and irradiated with x-rays which cause the ejection of photoelectrons from the sample surface. Since x-rays do not normally cause charging problems or beam damage, XPS is applicable to a wide range of samples including metals, polymers, catalysts, and fibers. AES uses a beam of high energy electrons as a surface probe. Following electronic rearrangements within excited atoms by this probe, Auger electrons characteristic of each element present are emitted from the sample. The main advantage of electron induced AES is that the electron beam can be focused down to a small diameter and localized analysis can be carried out. On the rastering of this beam synchronously with a video display using established scanning electron microscopy techniques, physical images and chemical distribution maps of the surface can be produced. Thus very small features, such as electronic circuit elements or corrosion pits in metals, can be investigated. Facilities are available on both XPS and AES instruments for depth-profiling of materials, using a beam of argon ions to sputter away consecutive layers of material to reveal sub-surface (and even semi-bulk) analyses.

  5. Cellular pH measurements in Emiliania huxleyi reveal pronounced membrane proton permeability.

    PubMed

    Suffrian, K; Schulz, K G; Gutowska, M A; Riebesell, U; Bleich, M

    2011-05-01

    • To understand the influence of changing surface ocean pH and carbonate chemistry on the coccolithophore Emiliania huxleyi, it is necessary to characterize mechanisms involved in pH homeostasis and ion transport. • Here, we measured effects of changes in seawater carbonate chemistry on the fluorescence emission ratio of BCECF (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein) as a measure of intracellular pH (pH(i)). Out of equilibrium solutions were used to differentiate between membrane permeation pathways for H(+), CO(2) and HCO(3)(-). • Changes in fluorescence ratio were calibrated in single cells, resulting in a ratio change of 0.78 per pH(i) unit. pH(i) acutely followed the pH of seawater (pH(e)) in a linear fashion between pH(e) values of 6.5 and 9 with a slope of 0.44 per pH(e) unit. pH(i) was nearly insensitive to changes in seawater CO(2) at constant pH(e) and HCO(3)(-). An increase in extracellular HCO(3)(-) resulted in a slight intracellular acidification. In the presence of DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid), a broad-spectrum inhibitor of anion exchangers, E. huxleyi acidified irreversibly. DIDS slightly reduced the effect of pH(e) on pH(i). • The data for the first time show the occurrence of a proton permeation pathway in E. huxleyi plasma membrane. pH(i) homeostasis involves a DIDS-sensitive mechanism. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  6. Problems at the Leading Edge of Space Weathering as Revealed by TEM Combined with Surface Science Techniques

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Dukes, C. A.; Keller, L. P.; Rahman, Z.; Baragiola, R. A.

    2015-01-01

    Both transmission electron micros-copy (TEM) and surface analysis techniques such as X-ray photoelectron spectroscopy (XPS) were instrumen-tal in making the first characterizations of material generated by space weathering in lunar samples [1,2]. Without them, the nature of nanophase metallic Fe (npFe0) correlated with the surface of lunar regolith grains would have taken much longer to become rec-ognized and understood. Our groups at JSC and UVa have been using both techniques in a cross-correlated way to investigate how the solar wind contributes to space weathering [e.g., 3]. These efforts have identified a number of ongoing problems and knowledge gaps. Key insights made by UVa group leader Raul Barag-iola during this work are gratefully remembered.

  7. A New NIST Database for the Simulation of Electron Spectra for Surface Analysis (SESSA): Application to Angle-Resolved X-ray Photoelectron Spectroscopy of HfO2, ZrO2, HfSiO4, and ZrSiO4 Films on Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, C.J.; Smekal, W.; Werner, W.S.M.

    2005-09-09

    We describe a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA). This database provides data for the many parameters needed in quantitative Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). In addition, AES and XPS spectra can be simulated for layered samples. The simulated spectra, for layer compositions and thicknesses specified by the user, can be compared with measured spectra. The layer compositions and thicknesses can then be adjusted to find maximum consistency between simulated and measured spectra. In this way, AES and XPS can provide more detailed characterization of multilayer thin-film materials. Wemore » report on the use of SESSA for determining the thicknesses of HfO2, ZrO2, HfSiO4, and ZrSiO4 films on Si by angle-resolved XPS. Practical effective attenuation lengths (EALs) have been computed from SESSA as a function of film thickness and photoelectron emission angle (i.e., to simulate the effects of tilting the sample). These EALs have been compared with similar values obtained from the NIST Electron Effective-Attenuation-Length Database (SRD 82). Generally good agreement was found between corresponding EAL values, but there were differences for film thicknesses less than the inelastic mean free path of the photoelectrons in the overlayer film. These differences are due to a simplifying approximation in the algorithm used to compute EALs in SRD 82. SESSA, with realistic cross sections for elastic and inelastic scattering in the film and substrate materials, is believed to provide more accurate EALs than SRD 82 for thin-film thickness measurements, particularly in applications where the film and substrate have different electron-scattering properties.« less

  8. Study of the kinetics and mechanism of the thermal nitridation of SiO2

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Madhukar, A.; Grunthaner, F. J.; Naiman, M. L.

    1985-01-01

    X-ray photoelectron spectroscopy (XPS) has been used to study the nitridation time and temperature dependence of the nitrogen distribution in thermally nitrided SiO2 films. The XPS data show that the maximum nitrogen concentration near the (SiO(x)N(y)/Si interface is initially at the interface, but moves 20-25 A away from the interface with increasing nitridation time. Computer modeling of the kinetic processes involved is carried out and reveals a mechanism in which diffusing species, initially consisting primarily of nitrogen, react with the substrate, followed by formation of the oxygen-rich oxynitride due to reaction of the diffusing oxygen displaced by the slower nitridation of the SiO2. The data are consistent with this mechanism provided the influence of the interfacial strain on the nitridation and oxidation kinetics is explicitly accounted for.

  9. Effect of Morphology and Manganese Valence on the Voltage Fade and Capacity Retention of Li[Li 2/12Ni 3/12Mn 7/12]O 2

    DOE PAGES

    Verde, Michael G.; Liu, Haodong; Carroll, Kyler J.; ...

    2014-10-02

    We have determined the electrochemical characteristics of the high voltage, high capacity Li-ion battery cathode material Li[Li 2/12Ni 3/12Mn 7/12]O 2 prepared using three different synthesis routes: sol-gel, hydroxide co-precipitation, and carbonate co-precipitation. Each route leads to distinct morphologies and surface areas while maintaining the same crystal structures. X-ray photoelectron spectroscopy (XPS) measurements reveal differences in their surface chemistries upon cycling, which correlate with voltage fading. As expected, we observed the valence state of Mn on the surface to decrease upon lithiation, and this reduction is specifically correlated to discharging below 3.6V. Furthermore, the data shows a correlation of themore » formation of Li 2CO 3 with Mn oxidation state from the« less

  10. Preparation and characterisation of carbon-free Cu(111) films on sapphire for graphene synthesis

    NASA Astrophysics Data System (ADS)

    Lehnert, J.; Spemann, D.; Surjuse, S.; Mensing, M.; Grüner, C.; With, P.; Schumacher, P.; Finzel, A.; Hirsch, D.; Rauschenbach, B.

    2018-03-01

    This work presents an investigation of carbon formed on polycrystalline Cu(111) thin films prepared by ion beam sputtering at room temperature on c-plane Al2O3 after thermal treatment in a temperature range between 300 and 1020°C. The crystallinity of the Cu films was studied by XRD and RBS/channeling and the surface was characterised by Raman spectroscopy, XPS and AFM for each annealing temperature. RBS measurements revealed the diffusion of the Cu into the Al2O3 substrate at high temperatures of > 700°C. Furthermore, a cleaning procedure using UV ozone treatment is presented to remove the carbon from the surface which yields essentially carbon-free Cu films that open the possibility to synthesize graphene of well-controlled thickness (layer number).

  11. Effect of compressive stress on stability of N-doped p-type ZnO

    NASA Astrophysics Data System (ADS)

    Chen, Xingyou; Zhang, Zhenzhong; Yao, Bin; Jiang, Mingming; Wang, Shuangpeng; Li, Binghui; Shan, Chongxin; Liu, Lei; Zhao, Dongxu; Shen, Dezhen

    2011-08-01

    Nitrogen-doped p-type zinc oxide (p-ZnO:N) thin films were fabricated on a-/c-plane sapphire (a-/c-Al2O3) by plasma-assisted molecular beam epitaxy. Hall-effect measurements show that the p-type ZnO:N on c-Al2O3 degenerated into n-type after a preservation time; however, the one grown on a-Al2O3 showed good stability. The conversion of conductivity in the one grown on c-Al2O3 ascribed to the faster disappearance of NO and the growing N2(O), which is demonstrated by x-ray photoelectron spectroscopy (XPS). Compressive stress, caused by lattice misfit, was revealed by Raman spectra and optical absorption spectra, and it was regarded as the root of the instability in ZnO:N.

  12. Hydrophobic Coatings on Cotton Obtained by in Situ Plasma Polymerization of a Fluorinated Monomer in Ethanol Solutions.

    PubMed

    Molina, Ricardo; Teixidó, Josep Maria; Kan, Chi-Wai; Jovančić, Petar

    2017-02-15

    Plasma polymerization using hydrophobic monomers in the gas phase is a well-known technology to generate hydrophobic coatings. However, synthesis of functional hydrophobic coatings using plasma technology in liquids has not yet been accomplished. This work is consequently focused on polymerization of a liquid fluorinated monomer on cotton fabric initiated by atmospheric plasma in a dielectric barrier discharge configuration. Functional hydrophobic coatings on cotton were successfully achieved using in situ atmospheric plasma-initiated polymerization of fluorinated monomer dissolved in ethanol. Gravimetric measurements reveal that the amount of polymer deposited on cotton substrates can be modulated with the concentration of monomer in ethanol solution, and cross-linking reactions occur during plasma polymerization of a fluorinated monomer even without the presence of a cross-linking agent. FTIR and XPS analysis were used to study the chemical composition of hydrophobic coatings and to get insights into the physicochemical processes involved in plasma treatment. SEM analysis reveals that at high monomer concentration, coatings possess a three-dimensional pattern with a characteristic interconnected porous network structure. EDX analysis reveals that plasma polymerization of fluorinated monomers takes place preferentially at the surface of cotton fabric and negligible polymerization takes place inside the cotton fabric. Wetting time measurements confirm the hydrophobicity of cotton coatings obtained although equilibrium moisture content was slightly decreased. Additionally, the abrasion behavior and resistance to washing of plasma-coated cotton has been evaluated.

  13. Effects of argon addition on a-CNx film deposition by hot carbon filament chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshihisa; Aono, Masami; Yamazaki, Ayumi; Kitazawa, Nobuaki; Nakamura, Yoshikazu

    2002-07-01

    Using a carbon filament which supplies carbon and heat, amorphous carbon nitride (a-CNx) films were prepared on Si (100) substrates by hot filament chemical vapor deposition. Deposition was performed in a low-pressure atmosphere of pure nitrogen and a gas mixture of nitrogen and argon. Effects of argon additions to the nitrogen atmosphere on the film microstructure and interface composition between the film and substrate were studied by field-emission scanning electron microscopy (FESEM) and x-ray photoelectron spectroscopy (XPS). FESEM observations reveal that the film prepared in a pure nitrogen atmosphere has uniform nucleation and a densely packed columnar pieces structure. The film prepared in the nitrogen and argon gas mixture exhibits preferential nucleation and a tapered structure with macroscopic voids. Depth analyses using XPS reveal that the film prepared in pure nitrogen possesses a broad interface, which includes silicon carbide as well as a-CNx, whereas a sharp interface is discerned in the film prepared in the mixed nitrogen and argon gas. We observed that silicon carbide formation is suppressed by an argon addition to the nitrogen atmosphere during deposition. copyright 2002 American Vacuum Society.

  14. The polymeric nanofilm of triazinedithiolsilane fabricated by self-assembled technique on copper surface. Part 2: Characterization of composition and morphology

    NASA Astrophysics Data System (ADS)

    Wang, Yabin; Liu, Zhong; Huang, Yudong; Qi, Yutai

    2015-11-01

    In the first part, a novel design route for metal protection against corrosion was proposed, and a class of triazinedithiolsilane compounds was conceived as protector for copper. The protective capability of the polymeric nanofilm, fabricated by self-assembling one representative (abbreviated as TESPA) of triazinedithiolsilane compounds onto copper surface, has been investigated and evaluated by electrochemical tests. The results show that the polymeric nanofilm significantly inhibits copper corrosion. This study, on the one hand, concentrates on the chemical composition of the TESPA polymeric nanofilm by means of X-ray photoelectron spectroscopy (XPS). The XPS results reveal that the chemical bonds between copper and TESPA monomers, three dimensional disulfide units and siloxane networks are responsible for the satisfactory protection of TESPA polymeric nanofilm against copper corrosion. On the other hand, scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS) are utilized to reveal the morphology and the uniformity of the TESPA polymeric nanofilm. The SEM-EDS results demonstrate that the copper surfaces are uniformly covered with TESPA self-assembled monolayer and the polymeric nanofilm. The TESPA-covered copper surfaces turn out to be smoother than that of the bare copper surface.

  15. Impression of plasma voltage on growth of α-V{sub 2}O{sub 5} nanostructured thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Rabindar Kumar, E-mail: rkrksharma6@gmail.com; Kumar, Prabhat; Reddy, G. B.

    2015-06-24

    In this communication, we synthesized vanadium pentoxide (α-V{sub 2}O{sub 5}) nanostructured thin films (NST{sub s}) accompanied with nanoflakes/ nanoplates on the Ni-coated glass substrates employing plasma assisted sublimation process (PASP) as a function of plasma voltage (V{sub p}). The effect of plasma voltage on structural, morphological, compositional, and vibrational properties have been studied systematically. The structural analysis divulged that all films deposited at different V{sub p} have pure orthorhombic phase, no impurity phase is detected under resolution limit of XRD and XPS. The morphological studies of samples is carried out by SEM, revealed that features as well as alignment ofmore » V{sub 2}O{sub 5} NST{sub s} is greatly monitored by V{sub p} and the film possessing the best features is obtained at 2500volt. In addition, XPS results reveal that V{sup 5+} oxidation state is the most prominent state in sample V{sub 2}, which represents better stoichiometric nature of film. The vibrational study of all samples is performed by FTIR and strongly support the XRD observations. All the results are in consonance with each other.« less

  16. The surface chemistry of nanocrystalline MgO catalysts for FAME production: An in situ XPS study of H2O, CH3OH and CH3OAc adsorption

    NASA Astrophysics Data System (ADS)

    Montero, J. M.; Isaacs, M. A.; Lee, A. F.; Lynam, J. M.; Wilson, K.

    2016-04-01

    An in situ XPS study of water, methanol and methyl acetate adsorption over as-synthesised and calcined MgO nanocatalysts is reported with a view to gaining insight into the surface adsorption of key components relevant to fatty acid methyl esters (biodiesel) production during the transesterification of triglycerides with methanol. High temperature calcined NanoMgO-700 adsorbed all three species more readily than the parent material due to the higher density of electron-rich (111) and (110) facets exposed over the larger crystallites. Water and methanol chemisorb over the NanoMgO-700 through the conversion of surface O2 - sites to OH- and coincident creation of Mg-OH or Mg-OCH3 moieties respectively. A model is proposed in which the dissociative chemisorption of methanol occurs preferentially over defect and edge sites of NanoMgO-700, with higher methanol coverages resulting in physisorption over weakly basic (100) facets. Methyl acetate undergoes more complex surface chemistry over NanoMgO-700, with C-H dissociation and ester cleavage forming surface hydroxyl and acetate species even at extremely low coverages, indicative of preferential adsorption at defects. Comparison of C 1s spectra with spent catalysts from tributyrin transesterification suggest that ester hydrolysis plays a key factor in the deactivation of MgO catalysts for biodiesel production.

  17. Characterization of pulsed laser deposition grown V2O3 converted VO2

    NASA Astrophysics Data System (ADS)

    Majid, Suhail; Shukla, D. K.; Rahman, F.; Gautam, Kamini; Sathe, V. G.; Choudhary, R. J.; Phase, D. M.

    2016-10-01

    Controllable tuning of Metal-insulator transition in VxOy thin film has been a field of extensive research. However controlled synthesis of desired Vanadium oxide phase is a challenging task. We have successfully achieved VO2 phase on Silicon substrate after post deposition annealing treatment to the PLD grown as deposited V2O3 thin films. The annealed thin film was characterized by x-ray diffraction (XRD), resistivity, Raman spectroscopy, X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) measurements. XRD confirms the crystalline nature and growth of VO2 phase in thin film. The characteristic MIT was observed from resistivity measurements and transition temperature appeared at lower value around 336 K, compared to bulk VO2. The structural transition accompanied with MIT from lower temperature monoclinic phase to higher temperature Rutile phase became evident from temperature dependent Raman measurements. Chemical state of vanadium was examined using XAS and XPS measurements which confirm the presence of +4 oxidation state of vanadium in thin film.

  18. Induced Contamination Predictions for JAXA's MPAC&SEED Devices

    NASA Technical Reports Server (NTRS)

    Steagall, Courtney; Smith, Kendall; Huang, Alvin; Soares, Carlos; Mikatarian, Ron

    2008-01-01

    Externally mounted ISS payloads are exposed to the induced ISS environment, including material outgassing and thruster plume contamination. The Boeing Space Environments Team developed analytical and semiempirical models to predict material outgassing and thruster plume induced contamination. JAXA s SM/MPAC&SEED experiment provides an unique opportunity to compare induced contamination predications with measurements. Analysis results are qualitatively consistent with XPS measurements. Calculated depth of contamination within a factor of 2-3 of measured contamination. Represents extremely good agreement, especially considering long duration of experiment and number of outgassing sources. Despite XPS limitations in quantifying plume contamination, the measured and predicted results are of similar scale for the wake-facing surfaces. JAXA s JEM/MPAC&SEED experiment will also be exposed to induced contamination due to JEM and ISS hardware. Predicted material outgassing induced contamination to JEM/MPAC&SEED ranges from 44 to 262 (depending on surface temperature) for a 3 year exposure duration.

  19. Optic Nerve Head Measurements With Optical Coherence Tomography: A Phantom-Based Study Reveals Differences Among Clinical Devices

    PubMed Central

    Agrawal, Anant; Baxi, Jigesh; Calhoun, William; Chen, Chieh-Li; Ishikawa, Hiroshi; Schuman, Joel S.; Wollstein, Gadi; Hammer, Daniel X.

    2016-01-01

    Purpose Optical coherence tomography (OCT) can monitor for glaucoma by measuring dimensions of the optic nerve head (ONH) cup and disc. Multiple clinical studies have shown that different OCT devices yield different estimates of retinal dimensions. We developed phantoms mimicking ONH morphology as a new way to compare ONH measurements from different clinical OCT devices. Methods Three phantoms were fabricated to model the ONH: One normal and two with glaucomatous anatomies. Phantoms were scanned with Stratus, RTVue, and Cirrus clinical devices, and with a laboratory OCT system as a reference. We analyzed device-reported ONH measurements of cup-to-disc ratio (CDR) and cup volume and compared them with offline measurements done manually and with a custom software algorithm, respectively. Results The mean absolute difference between clinical devices with device-reported measurements versus offline measurements was 0.082 vs. 0.013 for CDR and 0.044 mm3 vs. 0.019 mm3 for cup volume. Statistically significant differences between devices were present for 16 of 18 comparisons of device-reported measurements from the phantoms. Offline Cirrus measurements tended to be significantly different from those from Stratus and RTVue. Conclusions The interdevice differences in CDR and cup volume are primarily caused by the devices' proprietary ONH analysis algorithms. The three devices yield more similar ONH measurements when a consistent offline analysis technique is applied. Scan pattern on the ONH also may be a factor in the measurement differences. This phantom-based study has provided unique insights into characteristics of OCT measurements of the ONH. PMID:27409500

  20. Zeta potential orientation dependence of sapphire substrates.

    PubMed

    Kershner, Ryan J; Bullard, Joseph W; Cima, Michael J

    2004-05-11

    The zeta potential of planar sapphire substrates for three different crystallographic orientations was measured by a streaming potential technique in the presence of KCl and (CH3)4NCl electrolytes. The streaming potential was measured for large single crystalline C-plane (0001), A-plane (1120), and R-plane (1102) wafers over a full pH range at three or more ionic strengths ranging from 1 to 100 mM. The roughness of the epi-polished wafers was verified using atomic force microscopy to be on the order of atomic scale, and X-ray photoelectron spectroscopy (XPS) was used to ensure that the samples were free of silica and other contaminants. The results reveal a shift in the isoelectric point (iep) of the three samples by as much as two pH units, with the R-plane surface exhibiting the most acidic behavior and the C-plane samples having the highest iep. The iep at all ionic strengths was tightly centered around a single pH for each wafer. These values of iep are substantially different from the range of pH 8-10 consistently reported in the literature for alpha-Al2O3 particles. Particle zeta potential measurements were performed on a model powder using phase analysis light scattering, and the iep was confirmed to occur at pH 8. Modified Auger parameters (MAP) were calculated from XPS spectra of a monolayer of iridium metal deposited on the sapphire by electron beam deposition. A shift in MAP consistent with the observed differences in iep of the surfaces confirms the effect of surface structure on the transfer of charge between the Ir and sapphire, hence accounting for the changes in acidity as a function of crystallographic orientation.